Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py +782 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py +108 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__init__.py +15 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/control_plots.py +961 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/lti.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/gamma_matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/gamma_matrices.py +716 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py +427 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py +178 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py +13 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_fermion.py +36 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_hilbert.py +110 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_operatorordering.py +38 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_printing.py +900 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_qft.py +50 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_represent.py +189 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_shor.py +21 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_spin.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__init__.py +36 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/printing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/vector.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (419 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc
ADDED
Binary file (7.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc
ADDED
Binary file (3.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc
ADDED
Binary file (6.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc
ADDED
Binary file (2.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc
ADDED
Binary file (83.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc
ADDED
Binary file (37.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (299 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc
ADDED
Binary file (120 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc
ADDED
Binary file (22.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (204 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc
ADDED
Binary file (21.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc
ADDED
Binary file (2.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import expand
|
2 |
+
from sympy.core.numbers import (Rational, pi)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.sets.sets import Interval
|
6 |
+
from sympy.simplify.simplify import simplify
|
7 |
+
from sympy.physics.continuum_mechanics.beam import Beam
|
8 |
+
from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
from sympy.physics.units import meter, newton, kilo, giga, milli
|
11 |
+
from sympy.physics.continuum_mechanics.beam import Beam3D
|
12 |
+
from sympy.geometry import Circle, Polygon, Point2D, Triangle
|
13 |
+
from sympy.core.sympify import sympify
|
14 |
+
|
15 |
+
x = Symbol('x')
|
16 |
+
y = Symbol('y')
|
17 |
+
R1, R2 = symbols('R1, R2')
|
18 |
+
|
19 |
+
|
20 |
+
def test_Beam():
|
21 |
+
E = Symbol('E')
|
22 |
+
E_1 = Symbol('E_1')
|
23 |
+
I = Symbol('I')
|
24 |
+
I_1 = Symbol('I_1')
|
25 |
+
A = Symbol('A')
|
26 |
+
|
27 |
+
b = Beam(1, E, I)
|
28 |
+
assert b.length == 1
|
29 |
+
assert b.elastic_modulus == E
|
30 |
+
assert b.second_moment == I
|
31 |
+
assert b.variable == x
|
32 |
+
|
33 |
+
# Test the length setter
|
34 |
+
b.length = 4
|
35 |
+
assert b.length == 4
|
36 |
+
|
37 |
+
# Test the E setter
|
38 |
+
b.elastic_modulus = E_1
|
39 |
+
assert b.elastic_modulus == E_1
|
40 |
+
|
41 |
+
# Test the I setter
|
42 |
+
b.second_moment = I_1
|
43 |
+
assert b.second_moment is I_1
|
44 |
+
|
45 |
+
# Test the variable setter
|
46 |
+
b.variable = y
|
47 |
+
assert b.variable is y
|
48 |
+
|
49 |
+
# Test for all boundary conditions.
|
50 |
+
b.bc_deflection = [(0, 2)]
|
51 |
+
b.bc_slope = [(0, 1)]
|
52 |
+
assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
|
53 |
+
|
54 |
+
# Test for slope boundary condition method
|
55 |
+
b.bc_slope.extend([(4, 3), (5, 0)])
|
56 |
+
s_bcs = b.bc_slope
|
57 |
+
assert s_bcs == [(0, 1), (4, 3), (5, 0)]
|
58 |
+
|
59 |
+
# Test for deflection boundary condition method
|
60 |
+
b.bc_deflection.extend([(4, 3), (5, 0)])
|
61 |
+
d_bcs = b.bc_deflection
|
62 |
+
assert d_bcs == [(0, 2), (4, 3), (5, 0)]
|
63 |
+
|
64 |
+
# Test for updated boundary conditions
|
65 |
+
bcs_new = b.boundary_conditions
|
66 |
+
assert bcs_new == {
|
67 |
+
'deflection': [(0, 2), (4, 3), (5, 0)],
|
68 |
+
'slope': [(0, 1), (4, 3), (5, 0)]}
|
69 |
+
|
70 |
+
b1 = Beam(30, E, I)
|
71 |
+
b1.apply_load(-8, 0, -1)
|
72 |
+
b1.apply_load(R1, 10, -1)
|
73 |
+
b1.apply_load(R2, 30, -1)
|
74 |
+
b1.apply_load(120, 30, -2)
|
75 |
+
b1.bc_deflection = [(10, 0), (30, 0)]
|
76 |
+
b1.solve_for_reaction_loads(R1, R2)
|
77 |
+
|
78 |
+
# Test for finding reaction forces
|
79 |
+
p = b1.reaction_loads
|
80 |
+
q = {R1: 6, R2: 2}
|
81 |
+
assert p == q
|
82 |
+
|
83 |
+
# Test for load distribution function.
|
84 |
+
p = b1.load
|
85 |
+
q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \
|
86 |
+
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
|
87 |
+
assert p == q
|
88 |
+
|
89 |
+
# Test for shear force distribution function
|
90 |
+
p = b1.shear_force()
|
91 |
+
q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
|
92 |
+
- 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
|
93 |
+
assert p == q
|
94 |
+
|
95 |
+
# Test for shear stress distribution function
|
96 |
+
p = b1.shear_stress()
|
97 |
+
q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
|
98 |
+
- 120*SingularityFunction(x, 30, -1) \
|
99 |
+
- 2*SingularityFunction(x, 30, 0))/A
|
100 |
+
assert p==q
|
101 |
+
|
102 |
+
# Test for bending moment distribution function
|
103 |
+
p = b1.bending_moment()
|
104 |
+
q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \
|
105 |
+
- 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
|
106 |
+
assert p == q
|
107 |
+
|
108 |
+
# Test for slope distribution function
|
109 |
+
p = b1.slope()
|
110 |
+
q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \
|
111 |
+
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \
|
112 |
+
+ Rational(4000, 3)
|
113 |
+
assert p == q/(E*I)
|
114 |
+
|
115 |
+
# Test for deflection distribution function
|
116 |
+
p = b1.deflection()
|
117 |
+
q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \
|
118 |
+
+ SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \
|
119 |
+
+ SingularityFunction(x, 30, 3)/3 - 12000
|
120 |
+
assert p == q/(E*I)
|
121 |
+
|
122 |
+
# Test using symbols
|
123 |
+
l = Symbol('l')
|
124 |
+
w0 = Symbol('w0')
|
125 |
+
w2 = Symbol('w2')
|
126 |
+
a1 = Symbol('a1')
|
127 |
+
c = Symbol('c')
|
128 |
+
c1 = Symbol('c1')
|
129 |
+
d = Symbol('d')
|
130 |
+
e = Symbol('e')
|
131 |
+
f = Symbol('f')
|
132 |
+
|
133 |
+
b2 = Beam(l, E, I)
|
134 |
+
|
135 |
+
b2.apply_load(w0, a1, 1)
|
136 |
+
b2.apply_load(w2, c1, -1)
|
137 |
+
|
138 |
+
b2.bc_deflection = [(c, d)]
|
139 |
+
b2.bc_slope = [(e, f)]
|
140 |
+
|
141 |
+
# Test for load distribution function.
|
142 |
+
p = b2.load
|
143 |
+
q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
|
144 |
+
assert p == q
|
145 |
+
|
146 |
+
# Test for shear force distribution function
|
147 |
+
p = b2.shear_force()
|
148 |
+
q = -w0*SingularityFunction(x, a1, 2)/2 \
|
149 |
+
- w2*SingularityFunction(x, c1, 0)
|
150 |
+
assert p == q
|
151 |
+
|
152 |
+
# Test for shear stress distribution function
|
153 |
+
p = b2.shear_stress()
|
154 |
+
q = (-w0*SingularityFunction(x, a1, 2)/2 \
|
155 |
+
- w2*SingularityFunction(x, c1, 0))/A
|
156 |
+
assert p == q
|
157 |
+
|
158 |
+
# Test for bending moment distribution function
|
159 |
+
p = b2.bending_moment()
|
160 |
+
q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1)
|
161 |
+
assert p == q
|
162 |
+
|
163 |
+
# Test for slope distribution function
|
164 |
+
p = b2.slope()
|
165 |
+
q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
|
166 |
+
assert expand(p) == expand(q)
|
167 |
+
|
168 |
+
# Test for deflection distribution function
|
169 |
+
p = b2.deflection()
|
170 |
+
q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \
|
171 |
+
- w2*SingularityFunction(e, c1, 2)/2)/(E*I) \
|
172 |
+
+ (w0*SingularityFunction(x, a1, 5)/120 \
|
173 |
+
+ w2*SingularityFunction(x, c1, 3)/6)/(E*I) \
|
174 |
+
+ (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \
|
175 |
+
+ c*w2*SingularityFunction(e, c1, 2)/2 \
|
176 |
+
- w0*SingularityFunction(c, a1, 5)/120 \
|
177 |
+
- w2*SingularityFunction(c, c1, 3)/6)/(E*I)
|
178 |
+
assert simplify(p - q) == 0
|
179 |
+
|
180 |
+
b3 = Beam(9, E, I, 2)
|
181 |
+
b3.apply_load(value=-2, start=2, order=2, end=3)
|
182 |
+
b3.bc_slope.append((0, 2))
|
183 |
+
C3 = symbols('C3')
|
184 |
+
C4 = symbols('C4')
|
185 |
+
|
186 |
+
p = b3.load
|
187 |
+
q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \
|
188 |
+
+ 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
|
189 |
+
assert p == q
|
190 |
+
|
191 |
+
p = b3.shear_force()
|
192 |
+
q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \
|
193 |
+
- 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3
|
194 |
+
assert p == q
|
195 |
+
|
196 |
+
p = b3.shear_stress()
|
197 |
+
q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \
|
198 |
+
- 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3
|
199 |
+
assert p == q
|
200 |
+
|
201 |
+
p = b3.slope()
|
202 |
+
q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \
|
203 |
+
- SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I)
|
204 |
+
assert p == q
|
205 |
+
|
206 |
+
p = b3.deflection()
|
207 |
+
q = 2*x - (SingularityFunction(x, 2, 6)/180 \
|
208 |
+
- SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \
|
209 |
+
- SingularityFunction(x, 3, 6)/180)/(E*I)
|
210 |
+
assert p == q + C4
|
211 |
+
|
212 |
+
b4 = Beam(4, E, I, 3)
|
213 |
+
b4.apply_load(-3, 0, 0, end=3)
|
214 |
+
|
215 |
+
p = b4.load
|
216 |
+
q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
|
217 |
+
assert p == q
|
218 |
+
|
219 |
+
p = b4.shear_force()
|
220 |
+
q = 3*SingularityFunction(x, 0, 1) \
|
221 |
+
- 3*SingularityFunction(x, 3, 1)
|
222 |
+
assert p == q
|
223 |
+
|
224 |
+
p = b4.shear_stress()
|
225 |
+
q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1)
|
226 |
+
assert p == q
|
227 |
+
|
228 |
+
p = b4.slope()
|
229 |
+
q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
|
230 |
+
assert p == q/(E*I) + C3
|
231 |
+
|
232 |
+
p = b4.deflection()
|
233 |
+
q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
|
234 |
+
assert p == q/(E*I) + C3*x + C4
|
235 |
+
|
236 |
+
# can't use end with point loads
|
237 |
+
raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
|
238 |
+
with raises(TypeError):
|
239 |
+
b4.variable = 1
|
240 |
+
|
241 |
+
|
242 |
+
def test_insufficient_bconditions():
|
243 |
+
# Test cases when required number of boundary conditions
|
244 |
+
# are not provided to solve the integration constants.
|
245 |
+
L = symbols('L', positive=True)
|
246 |
+
E, I, P, a3, a4 = symbols('E I P a3 a4')
|
247 |
+
|
248 |
+
b = Beam(L, E, I, base_char='a')
|
249 |
+
b.apply_load(R2, L, -1)
|
250 |
+
b.apply_load(R1, 0, -1)
|
251 |
+
b.apply_load(-P, L/2, -1)
|
252 |
+
b.solve_for_reaction_loads(R1, R2)
|
253 |
+
|
254 |
+
p = b.slope()
|
255 |
+
q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
|
256 |
+
assert p == q/(E*I) + a3
|
257 |
+
|
258 |
+
p = b.deflection()
|
259 |
+
q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
260 |
+
assert p == q/(E*I) + a3*x + a4
|
261 |
+
|
262 |
+
b.bc_deflection = [(0, 0)]
|
263 |
+
p = b.deflection()
|
264 |
+
q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
265 |
+
assert p == q/(E*I)
|
266 |
+
|
267 |
+
b.bc_deflection = [(0, 0), (L, 0)]
|
268 |
+
p = b.deflection()
|
269 |
+
q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
270 |
+
assert p == q/(E*I)
|
271 |
+
|
272 |
+
|
273 |
+
def test_statically_indeterminate():
|
274 |
+
E = Symbol('E')
|
275 |
+
I = Symbol('I')
|
276 |
+
M1, M2 = symbols('M1, M2')
|
277 |
+
F = Symbol('F')
|
278 |
+
l = Symbol('l', positive=True)
|
279 |
+
|
280 |
+
b5 = Beam(l, E, I)
|
281 |
+
b5.bc_deflection = [(0, 0),(l, 0)]
|
282 |
+
b5.bc_slope = [(0, 0),(l, 0)]
|
283 |
+
|
284 |
+
b5.apply_load(R1, 0, -1)
|
285 |
+
b5.apply_load(M1, 0, -2)
|
286 |
+
b5.apply_load(R2, l, -1)
|
287 |
+
b5.apply_load(M2, l, -2)
|
288 |
+
b5.apply_load(-F, l/2, -1)
|
289 |
+
|
290 |
+
b5.solve_for_reaction_loads(R1, R2, M1, M2)
|
291 |
+
p = b5.reaction_loads
|
292 |
+
q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8}
|
293 |
+
assert p == q
|
294 |
+
|
295 |
+
|
296 |
+
def test_beam_units():
|
297 |
+
E = Symbol('E')
|
298 |
+
I = Symbol('I')
|
299 |
+
R1, R2 = symbols('R1, R2')
|
300 |
+
|
301 |
+
kN = kilo*newton
|
302 |
+
gN = giga*newton
|
303 |
+
|
304 |
+
b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4)
|
305 |
+
b.apply_load(5*kN, 2*meter, -1)
|
306 |
+
b.apply_load(R1, 0*meter, -1)
|
307 |
+
b.apply_load(R2, 8*meter, -1)
|
308 |
+
b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter)
|
309 |
+
b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
|
310 |
+
b.solve_for_reaction_loads(R1, R2)
|
311 |
+
assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}
|
312 |
+
|
313 |
+
b = Beam(3*meter, E*newton/meter**2, I*meter**4)
|
314 |
+
b.apply_load(8*kN, 1*meter, -1)
|
315 |
+
b.apply_load(R1, 0*meter, -1)
|
316 |
+
b.apply_load(R2, 3*meter, -1)
|
317 |
+
b.apply_load(12*kN*meter, 2*meter, -2)
|
318 |
+
b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
|
319 |
+
b.solve_for_reaction_loads(R1, R2)
|
320 |
+
assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)}
|
321 |
+
assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
|
322 |
+
|
323 |
+
|
324 |
+
def test_variable_moment():
|
325 |
+
E = Symbol('E')
|
326 |
+
I = Symbol('I')
|
327 |
+
|
328 |
+
b = Beam(4, E, 2*(4 - x))
|
329 |
+
b.apply_load(20, 4, -1)
|
330 |
+
R, M = symbols('R, M')
|
331 |
+
b.apply_load(R, 0, -1)
|
332 |
+
b.apply_load(M, 0, -2)
|
333 |
+
b.bc_deflection = [(0, 0)]
|
334 |
+
b.bc_slope = [(0, 0)]
|
335 |
+
b.solve_for_reaction_loads(R, M)
|
336 |
+
assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
|
337 |
+
- 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
|
338 |
+
assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
|
339 |
+
- 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
|
340 |
+
+ 40*SingularityFunction(x, 4, 1))/E).expand()
|
341 |
+
|
342 |
+
b = Beam(4, E - x, I)
|
343 |
+
b.apply_load(20, 4, -1)
|
344 |
+
R, M = symbols('R, M')
|
345 |
+
b.apply_load(R, 0, -1)
|
346 |
+
b.apply_load(M, 0, -2)
|
347 |
+
b.bc_deflection = [(0, 0)]
|
348 |
+
b.bc_slope = [(0, 0)]
|
349 |
+
b.solve_for_reaction_loads(R, M)
|
350 |
+
assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
|
351 |
+
+ 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
|
352 |
+
+ E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
|
353 |
+
+ x - 4)*SingularityFunction(x, 4, 0))/I).expand()
|
354 |
+
|
355 |
+
|
356 |
+
def test_composite_beam():
|
357 |
+
E = Symbol('E')
|
358 |
+
I = Symbol('I')
|
359 |
+
b1 = Beam(2, E, 1.5*I)
|
360 |
+
b2 = Beam(2, E, I)
|
361 |
+
b = b1.join(b2, "fixed")
|
362 |
+
b.apply_load(-20, 0, -1)
|
363 |
+
b.apply_load(80, 0, -2)
|
364 |
+
b.apply_load(20, 4, -1)
|
365 |
+
b.bc_slope = [(0, 0)]
|
366 |
+
b.bc_deflection = [(0, 0)]
|
367 |
+
assert b.length == 4
|
368 |
+
assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4))
|
369 |
+
assert b.slope().subs(x, 4) == 120.0/(E*I)
|
370 |
+
assert b.slope().subs(x, 2) == 80.0/(E*I)
|
371 |
+
assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I)
|
372 |
+
|
373 |
+
l = symbols('l', positive=True)
|
374 |
+
R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
|
375 |
+
b1 = Beam(2*l, E, I)
|
376 |
+
b2 = Beam(2*l, E, I)
|
377 |
+
b = b1.join(b2,"hinge")
|
378 |
+
b.apply_load(M1, 0, -2)
|
379 |
+
b.apply_load(R1, 0, -1)
|
380 |
+
b.apply_load(R2, l, -1)
|
381 |
+
b.apply_load(R3, 4*l, -1)
|
382 |
+
b.apply_load(P, 3*l, -1)
|
383 |
+
b.bc_slope = [(0, 0)]
|
384 |
+
b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
|
385 |
+
b.solve_for_reaction_loads(M1, R1, R2, R3)
|
386 |
+
assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)}
|
387 |
+
assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I)
|
388 |
+
assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I)
|
389 |
+
assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I)
|
390 |
+
|
391 |
+
# When beams having same second moment are joined.
|
392 |
+
b1 = Beam(2, 500, 10)
|
393 |
+
b2 = Beam(2, 500, 10)
|
394 |
+
b = b1.join(b2, "fixed")
|
395 |
+
b.apply_load(M1, 0, -2)
|
396 |
+
b.apply_load(R1, 0, -1)
|
397 |
+
b.apply_load(R2, 1, -1)
|
398 |
+
b.apply_load(R3, 4, -1)
|
399 |
+
b.apply_load(10, 3, -1)
|
400 |
+
b.bc_slope = [(0, 0)]
|
401 |
+
b.bc_deflection = [(0, 0), (1, 0), (4, 0)]
|
402 |
+
b.solve_for_reaction_loads(M1, R1, R2, R3)
|
403 |
+
assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\
|
404 |
+
- 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\
|
405 |
+
- 37*SingularityFunction(x, 4, 2)/67500
|
406 |
+
assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\
|
407 |
+
- 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\
|
408 |
+
- 37*SingularityFunction(x, 4, 3)/202500
|
409 |
+
|
410 |
+
|
411 |
+
def test_point_cflexure():
|
412 |
+
E = Symbol('E')
|
413 |
+
I = Symbol('I')
|
414 |
+
b = Beam(10, E, I)
|
415 |
+
b.apply_load(-4, 0, -1)
|
416 |
+
b.apply_load(-46, 6, -1)
|
417 |
+
b.apply_load(10, 2, -1)
|
418 |
+
b.apply_load(20, 4, -1)
|
419 |
+
b.apply_load(3, 6, 0)
|
420 |
+
assert b.point_cflexure() == [Rational(10, 3)]
|
421 |
+
|
422 |
+
|
423 |
+
def test_remove_load():
|
424 |
+
E = Symbol('E')
|
425 |
+
I = Symbol('I')
|
426 |
+
b = Beam(4, E, I)
|
427 |
+
|
428 |
+
try:
|
429 |
+
b.remove_load(2, 1, -1)
|
430 |
+
# As no load is applied on beam, ValueError should be returned.
|
431 |
+
except ValueError:
|
432 |
+
assert True
|
433 |
+
else:
|
434 |
+
assert False
|
435 |
+
|
436 |
+
b.apply_load(-3, 0, -2)
|
437 |
+
b.apply_load(4, 2, -1)
|
438 |
+
b.apply_load(-2, 2, 2, end = 3)
|
439 |
+
b.remove_load(-2, 2, 2, end = 3)
|
440 |
+
assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
|
441 |
+
assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)]
|
442 |
+
|
443 |
+
try:
|
444 |
+
b.remove_load(1, 2, -1)
|
445 |
+
# As load of this magnitude was never applied at
|
446 |
+
# this position, method should return a ValueError.
|
447 |
+
except ValueError:
|
448 |
+
assert True
|
449 |
+
else:
|
450 |
+
assert False
|
451 |
+
|
452 |
+
b.remove_load(-3, 0, -2)
|
453 |
+
b.remove_load(4, 2, -1)
|
454 |
+
assert b.load == 0
|
455 |
+
assert b.applied_loads == []
|
456 |
+
|
457 |
+
|
458 |
+
def test_apply_support():
|
459 |
+
E = Symbol('E')
|
460 |
+
I = Symbol('I')
|
461 |
+
|
462 |
+
b = Beam(4, E, I)
|
463 |
+
b.apply_support(0, "cantilever")
|
464 |
+
b.apply_load(20, 4, -1)
|
465 |
+
M_0, R_0 = symbols('M_0, R_0')
|
466 |
+
b.solve_for_reaction_loads(R_0, M_0)
|
467 |
+
assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
|
468 |
+
+ 10*SingularityFunction(x, 4, 2))/(E*I))
|
469 |
+
assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
|
470 |
+
+ 10*SingularityFunction(x, 4, 3)/3)/(E*I))
|
471 |
+
|
472 |
+
b = Beam(30, E, I)
|
473 |
+
b.apply_support(10, "pin")
|
474 |
+
b.apply_support(30, "roller")
|
475 |
+
b.apply_load(-8, 0, -1)
|
476 |
+
b.apply_load(120, 30, -2)
|
477 |
+
R_10, R_30 = symbols('R_10, R_30')
|
478 |
+
b.solve_for_reaction_loads(R_10, R_30)
|
479 |
+
assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
|
480 |
+
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I)
|
481 |
+
assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
|
482 |
+
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
|
483 |
+
|
484 |
+
P = Symbol('P', positive=True)
|
485 |
+
L = Symbol('L', positive=True)
|
486 |
+
b = Beam(L, E, I)
|
487 |
+
b.apply_support(0, type='fixed')
|
488 |
+
b.apply_support(L, type='fixed')
|
489 |
+
b.apply_load(-P, L/2, -1)
|
490 |
+
R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
|
491 |
+
b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
|
492 |
+
assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
|
493 |
+
|
494 |
+
|
495 |
+
def test_max_shear_force():
|
496 |
+
E = Symbol('E')
|
497 |
+
I = Symbol('I')
|
498 |
+
|
499 |
+
b = Beam(3, E, I)
|
500 |
+
R, M = symbols('R, M')
|
501 |
+
b.apply_load(R, 0, -1)
|
502 |
+
b.apply_load(M, 0, -2)
|
503 |
+
b.apply_load(2, 3, -1)
|
504 |
+
b.apply_load(4, 2, -1)
|
505 |
+
b.apply_load(2, 2, 0, end=3)
|
506 |
+
b.solve_for_reaction_loads(R, M)
|
507 |
+
assert b.max_shear_force() == (Interval(0, 2), 8)
|
508 |
+
|
509 |
+
l = symbols('l', positive=True)
|
510 |
+
P = Symbol('P')
|
511 |
+
b = Beam(l, E, I)
|
512 |
+
R1, R2 = symbols('R1, R2')
|
513 |
+
b.apply_load(R1, 0, -1)
|
514 |
+
b.apply_load(R2, l, -1)
|
515 |
+
b.apply_load(P, 0, 0, end=l)
|
516 |
+
b.solve_for_reaction_loads(R1, R2)
|
517 |
+
assert b.max_shear_force() == (0, l*Abs(P)/2)
|
518 |
+
|
519 |
+
|
520 |
+
def test_max_bmoment():
|
521 |
+
E = Symbol('E')
|
522 |
+
I = Symbol('I')
|
523 |
+
l, P = symbols('l, P', positive=True)
|
524 |
+
|
525 |
+
b = Beam(l, E, I)
|
526 |
+
R1, R2 = symbols('R1, R2')
|
527 |
+
b.apply_load(R1, 0, -1)
|
528 |
+
b.apply_load(R2, l, -1)
|
529 |
+
b.apply_load(P, l/2, -1)
|
530 |
+
b.solve_for_reaction_loads(R1, R2)
|
531 |
+
b.reaction_loads
|
532 |
+
assert b.max_bmoment() == (l/2, P*l/4)
|
533 |
+
|
534 |
+
b = Beam(l, E, I)
|
535 |
+
R1, R2 = symbols('R1, R2')
|
536 |
+
b.apply_load(R1, 0, -1)
|
537 |
+
b.apply_load(R2, l, -1)
|
538 |
+
b.apply_load(P, 0, 0, end=l)
|
539 |
+
b.solve_for_reaction_loads(R1, R2)
|
540 |
+
assert b.max_bmoment() == (l/2, P*l**2/8)
|
541 |
+
|
542 |
+
|
543 |
+
def test_max_deflection():
|
544 |
+
E, I, l, F = symbols('E, I, l, F', positive=True)
|
545 |
+
b = Beam(l, E, I)
|
546 |
+
b.bc_deflection = [(0, 0),(l, 0)]
|
547 |
+
b.bc_slope = [(0, 0),(l, 0)]
|
548 |
+
b.apply_load(F/2, 0, -1)
|
549 |
+
b.apply_load(-F*l/8, 0, -2)
|
550 |
+
b.apply_load(F/2, l, -1)
|
551 |
+
b.apply_load(F*l/8, l, -2)
|
552 |
+
b.apply_load(-F, l/2, -1)
|
553 |
+
assert b.max_deflection() == (l/2, F*l**3/(192*E*I))
|
554 |
+
|
555 |
+
|
556 |
+
def test_Beam3D():
|
557 |
+
l, E, G, I, A = symbols('l, E, G, I, A')
|
558 |
+
R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
559 |
+
|
560 |
+
b = Beam3D(l, E, G, I, A)
|
561 |
+
m, q = symbols('m, q')
|
562 |
+
b.apply_load(q, 0, 0, dir="y")
|
563 |
+
b.apply_moment_load(m, 0, 0, dir="z")
|
564 |
+
b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
565 |
+
b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
566 |
+
b.solve_slope_deflection()
|
567 |
+
|
568 |
+
assert b.polar_moment() == 2*I
|
569 |
+
assert b.shear_force() == [0, -q*x, 0]
|
570 |
+
assert b.shear_stress() == [0, -q*x/A, 0]
|
571 |
+
assert b.axial_stress() == 0
|
572 |
+
assert b.bending_moment() == [0, 0, -m*x + q*x**2/2]
|
573 |
+
expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) +
|
574 |
+
12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) +
|
575 |
+
12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 +
|
576 |
+
3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 +
|
577 |
+
A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I))
|
578 |
+
dx, dy, dz = b.deflection()
|
579 |
+
assert dx == dz == 0
|
580 |
+
assert simplify(dy - expected_deflection) == 0
|
581 |
+
|
582 |
+
b2 = Beam3D(30, E, G, I, A, x)
|
583 |
+
b2.apply_load(50, start=0, order=0, dir="y")
|
584 |
+
b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
|
585 |
+
b2.apply_load(R1, start=0, order=-1, dir="y")
|
586 |
+
b2.apply_load(R2, start=30, order=-1, dir="y")
|
587 |
+
b2.solve_for_reaction_loads(R1, R2)
|
588 |
+
assert b2.reaction_loads == {R1: -750, R2: -750}
|
589 |
+
|
590 |
+
b2.solve_slope_deflection()
|
591 |
+
assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)]
|
592 |
+
expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \
|
593 |
+
25*x**2/(A*G) + 750*x/(A*G)
|
594 |
+
dx, dy, dz = b2.deflection()
|
595 |
+
assert dx == dz == 0
|
596 |
+
assert dy == expected_deflection
|
597 |
+
|
598 |
+
# Test for solve_for_reaction_loads
|
599 |
+
b3 = Beam3D(30, E, G, I, A, x)
|
600 |
+
b3.apply_load(8, start=0, order=0, dir="y")
|
601 |
+
b3.apply_load(9*x, start=0, order=0, dir="z")
|
602 |
+
b3.apply_load(R1, start=0, order=-1, dir="y")
|
603 |
+
b3.apply_load(R2, start=30, order=-1, dir="y")
|
604 |
+
b3.apply_load(R3, start=0, order=-1, dir="z")
|
605 |
+
b3.apply_load(R4, start=30, order=-1, dir="z")
|
606 |
+
b3.solve_for_reaction_loads(R1, R2, R3, R4)
|
607 |
+
assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700}
|
608 |
+
|
609 |
+
|
610 |
+
def test_polar_moment_Beam3D():
|
611 |
+
l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2')
|
612 |
+
I = [I1, I2]
|
613 |
+
|
614 |
+
b = Beam3D(l, E, G, I, A)
|
615 |
+
assert b.polar_moment() == I1 + I2
|
616 |
+
|
617 |
+
|
618 |
+
def test_parabolic_loads():
|
619 |
+
|
620 |
+
E, I, L = symbols('E, I, L', positive=True, real=True)
|
621 |
+
R, M, P = symbols('R, M, P', real=True)
|
622 |
+
|
623 |
+
# cantilever beam fixed at x=0 and parabolic distributed loading across
|
624 |
+
# length of beam
|
625 |
+
beam = Beam(L, E, I)
|
626 |
+
|
627 |
+
beam.bc_deflection.append((0, 0))
|
628 |
+
beam.bc_slope.append((0, 0))
|
629 |
+
beam.apply_load(R, 0, -1)
|
630 |
+
beam.apply_load(M, 0, -2)
|
631 |
+
|
632 |
+
# parabolic load
|
633 |
+
beam.apply_load(1, 0, 2)
|
634 |
+
|
635 |
+
beam.solve_for_reaction_loads(R, M)
|
636 |
+
|
637 |
+
assert beam.reaction_loads[R] == -L**3/3
|
638 |
+
|
639 |
+
# cantilever beam fixed at x=0 and parabolic distributed loading across
|
640 |
+
# first half of beam
|
641 |
+
beam = Beam(2*L, E, I)
|
642 |
+
|
643 |
+
beam.bc_deflection.append((0, 0))
|
644 |
+
beam.bc_slope.append((0, 0))
|
645 |
+
beam.apply_load(R, 0, -1)
|
646 |
+
beam.apply_load(M, 0, -2)
|
647 |
+
|
648 |
+
# parabolic load from x=0 to x=L
|
649 |
+
beam.apply_load(1, 0, 2, end=L)
|
650 |
+
|
651 |
+
beam.solve_for_reaction_loads(R, M)
|
652 |
+
|
653 |
+
# result should be the same as the prior example
|
654 |
+
assert beam.reaction_loads[R] == -L**3/3
|
655 |
+
|
656 |
+
# check constant load
|
657 |
+
beam = Beam(2*L, E, I)
|
658 |
+
beam.apply_load(P, 0, 0, end=L)
|
659 |
+
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
|
660 |
+
assert loading.xreplace({x: 5}) == 40
|
661 |
+
assert loading.xreplace({x: 15}) == 0
|
662 |
+
|
663 |
+
# check ramp load
|
664 |
+
beam = Beam(2*L, E, I)
|
665 |
+
beam.apply_load(P, 0, 1, end=L)
|
666 |
+
assert beam.load == (P*SingularityFunction(x, 0, 1) -
|
667 |
+
P*SingularityFunction(x, L, 1) -
|
668 |
+
P*L*SingularityFunction(x, L, 0))
|
669 |
+
|
670 |
+
# check higher order load: x**8 load from x=0 to x=L
|
671 |
+
beam = Beam(2*L, E, I)
|
672 |
+
beam.apply_load(P, 0, 8, end=L)
|
673 |
+
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
|
674 |
+
assert loading.xreplace({x: 5}) == 40*5**8
|
675 |
+
assert loading.xreplace({x: 15}) == 0
|
676 |
+
|
677 |
+
|
678 |
+
def test_cross_section():
|
679 |
+
I = Symbol('I')
|
680 |
+
l = Symbol('l')
|
681 |
+
E = Symbol('E')
|
682 |
+
C3, C4 = symbols('C3, C4')
|
683 |
+
a, c, g, h, r, n = symbols('a, c, g, h, r, n')
|
684 |
+
|
685 |
+
# test for second_moment and cross_section setter
|
686 |
+
b0 = Beam(l, E, I)
|
687 |
+
assert b0.second_moment == I
|
688 |
+
assert b0.cross_section == None
|
689 |
+
b0.cross_section = Circle((0, 0), 5)
|
690 |
+
assert b0.second_moment == pi*Rational(625, 4)
|
691 |
+
assert b0.cross_section == Circle((0, 0), 5)
|
692 |
+
b0.second_moment = 2*n - 6
|
693 |
+
assert b0.second_moment == 2*n-6
|
694 |
+
assert b0.cross_section == None
|
695 |
+
with raises(ValueError):
|
696 |
+
b0.second_moment = Circle((0, 0), 5)
|
697 |
+
|
698 |
+
# beam with a circular cross-section
|
699 |
+
b1 = Beam(50, E, Circle((0, 0), r))
|
700 |
+
assert b1.cross_section == Circle((0, 0), r)
|
701 |
+
assert b1.second_moment == pi*r*Abs(r)**3/4
|
702 |
+
|
703 |
+
b1.apply_load(-10, 0, -1)
|
704 |
+
b1.apply_load(R1, 5, -1)
|
705 |
+
b1.apply_load(R2, 50, -1)
|
706 |
+
b1.apply_load(90, 45, -2)
|
707 |
+
b1.solve_for_reaction_loads(R1, R2)
|
708 |
+
assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9)
|
709 |
+
+ 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9)
|
710 |
+
assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9
|
711 |
+
- 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9)
|
712 |
+
q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9)
|
713 |
+
+ 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3)
|
714 |
+
assert b1.slope() == C3 + 4*q
|
715 |
+
q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2)
|
716 |
+
+ 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3)
|
717 |
+
assert b1.deflection() == C3*x + C4 + 4*q
|
718 |
+
|
719 |
+
# beam with a recatangular cross-section
|
720 |
+
b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c)))
|
721 |
+
assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c))
|
722 |
+
assert b2.second_moment == a*c**3/12
|
723 |
+
# beam with a triangular cross-section
|
724 |
+
b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h)))
|
725 |
+
assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h))
|
726 |
+
assert b3.second_moment == g*h**3/36
|
727 |
+
|
728 |
+
# composite beam
|
729 |
+
b = b2.join(b3, "fixed")
|
730 |
+
b.apply_load(-30, 0, -1)
|
731 |
+
b.apply_load(65, 0, -2)
|
732 |
+
b.apply_load(40, 0, -1)
|
733 |
+
b.bc_slope = [(0, 0)]
|
734 |
+
b.bc_deflection = [(0, 0)]
|
735 |
+
|
736 |
+
assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35))
|
737 |
+
assert b.cross_section == None
|
738 |
+
assert b.length == 35
|
739 |
+
assert b.slope().subs(x, 7) == 8400/(E*a*c**3)
|
740 |
+
assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3)
|
741 |
+
assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3)
|
742 |
+
|
743 |
+
def test_max_shear_force_Beam3D():
|
744 |
+
x = symbols('x')
|
745 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
746 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
747 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
748 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
749 |
+
assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)]
|
750 |
+
|
751 |
+
def test_max_bending_moment_Beam3D():
|
752 |
+
x = symbols('x')
|
753 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
754 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
755 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
756 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
757 |
+
assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)]
|
758 |
+
|
759 |
+
def test_max_deflection_Beam3D():
|
760 |
+
x = symbols('x')
|
761 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
762 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
763 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
764 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
765 |
+
b.solve_slope_deflection()
|
766 |
+
c = sympify("495/14")
|
767 |
+
p = sympify("-10 + 10*sqrt(10793)/43")
|
768 |
+
q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560")
|
769 |
+
assert b.max_deflection() == [(0, 0), (10, c), (p, q)]
|
770 |
+
|
771 |
+
def test_torsion_Beam3D():
|
772 |
+
x = symbols('x')
|
773 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
774 |
+
b.apply_moment_load(15, 5, -2, dir='x')
|
775 |
+
b.apply_moment_load(25, 10, -2, dir='x')
|
776 |
+
b.apply_moment_load(-5, 20, -2, dir='x')
|
777 |
+
b.solve_for_torsion()
|
778 |
+
assert b.angular_deflection().subs(x, 3) == sympify("1/40")
|
779 |
+
assert b.angular_deflection().subs(x, 9) == sympify("17/280")
|
780 |
+
assert b.angular_deflection().subs(x, 12) == sympify("53/840")
|
781 |
+
assert b.angular_deflection().subs(x, 17) == sympify("2/35")
|
782 |
+
assert b.angular_deflection().subs(x, 20) == sympify("3/56")
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import Symbol, symbols
|
2 |
+
from sympy.physics.continuum_mechanics.truss import Truss
|
3 |
+
from sympy import sqrt
|
4 |
+
|
5 |
+
|
6 |
+
def test_truss():
|
7 |
+
A = Symbol('A')
|
8 |
+
B = Symbol('B')
|
9 |
+
C = Symbol('C')
|
10 |
+
AB, BC, AC = symbols('AB, BC, AC')
|
11 |
+
P = Symbol('P')
|
12 |
+
|
13 |
+
t = Truss()
|
14 |
+
assert t.nodes == []
|
15 |
+
assert t.node_labels == []
|
16 |
+
assert t.node_positions == []
|
17 |
+
assert t.members == {}
|
18 |
+
assert t.loads == {}
|
19 |
+
assert t.supports == {}
|
20 |
+
assert t.reaction_loads == {}
|
21 |
+
assert t.internal_forces == {}
|
22 |
+
|
23 |
+
# testing the add_node method
|
24 |
+
t.add_node(A, 0, 0)
|
25 |
+
t.add_node(B, 2, 2)
|
26 |
+
t.add_node(C, 3, 0)
|
27 |
+
assert t.nodes == [(A, 0, 0), (B, 2, 2), (C, 3, 0)]
|
28 |
+
assert t.node_labels == [A, B, C]
|
29 |
+
assert t.node_positions == [(0, 0), (2, 2), (3, 0)]
|
30 |
+
assert t.loads == {}
|
31 |
+
assert t.supports == {}
|
32 |
+
assert t.reaction_loads == {}
|
33 |
+
|
34 |
+
# testing the remove_node method
|
35 |
+
t.remove_node(C)
|
36 |
+
assert t.nodes == [(A, 0, 0), (B, 2, 2)]
|
37 |
+
assert t.node_labels == [A, B]
|
38 |
+
assert t.node_positions == [(0, 0), (2, 2)]
|
39 |
+
assert t.loads == {}
|
40 |
+
assert t.supports == {}
|
41 |
+
|
42 |
+
t.add_node(C, 3, 0)
|
43 |
+
|
44 |
+
# testing the add_member method
|
45 |
+
t.add_member(AB, A, B)
|
46 |
+
t.add_member(BC, B, C)
|
47 |
+
t.add_member(AC, A, C)
|
48 |
+
assert t.members == {AB: [A, B], BC: [B, C], AC: [A, C]}
|
49 |
+
assert t.internal_forces == {AB: 0, BC: 0, AC: 0}
|
50 |
+
|
51 |
+
# testing the remove_member method
|
52 |
+
t.remove_member(BC)
|
53 |
+
assert t.members == {AB: [A, B], AC: [A, C]}
|
54 |
+
assert t.internal_forces == {AB: 0, AC: 0}
|
55 |
+
|
56 |
+
t.add_member(BC, B, C)
|
57 |
+
|
58 |
+
D, CD = symbols('D, CD')
|
59 |
+
|
60 |
+
# testing the change_label methods
|
61 |
+
t.change_node_label(B, D)
|
62 |
+
assert t.nodes == [(A, 0, 0), (D, 2, 2), (C, 3, 0)]
|
63 |
+
assert t.node_labels == [A, D, C]
|
64 |
+
assert t.loads == {}
|
65 |
+
assert t.supports == {}
|
66 |
+
assert t.members == {AB: [A, D], BC: [D, C], AC: [A, C]}
|
67 |
+
|
68 |
+
t.change_member_label(BC, CD)
|
69 |
+
assert t.members == {AB: [A, D], CD: [D, C], AC: [A, C]}
|
70 |
+
assert t.internal_forces == {AB: 0, CD: 0, AC: 0}
|
71 |
+
|
72 |
+
|
73 |
+
# testing the apply_load method
|
74 |
+
t.apply_load(A, P, 90)
|
75 |
+
t.apply_load(A, P/4, 90)
|
76 |
+
t.apply_load(A, 2*P,45)
|
77 |
+
t.apply_load(D, P/2, 90)
|
78 |
+
assert t.loads == {A: [[P, 90], [P/4, 90], [2*P, 45]], D: [[P/2, 90]]}
|
79 |
+
assert t.loads[A] == [[P, 90], [P/4, 90], [2*P, 45]]
|
80 |
+
|
81 |
+
# testing the remove_load method
|
82 |
+
t.remove_load(A, P/4, 90)
|
83 |
+
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90]]}
|
84 |
+
assert t.loads[A] == [[P, 90], [2*P, 45]]
|
85 |
+
|
86 |
+
# testing the apply_support method
|
87 |
+
t.apply_support(A, "pinned")
|
88 |
+
t.apply_support(D, "roller")
|
89 |
+
assert t.supports == {A: 'pinned', D: 'roller'}
|
90 |
+
assert t.reaction_loads == {}
|
91 |
+
assert t.loads == {A: [[P, 90], [2*P, 45], [Symbol('R_A_x'), 0], [Symbol('R_A_y'), 90]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
|
92 |
+
|
93 |
+
# testing the remove_support method
|
94 |
+
t.remove_support(A)
|
95 |
+
assert t.supports == {D: 'roller'}
|
96 |
+
assert t.reaction_loads == {}
|
97 |
+
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
|
98 |
+
|
99 |
+
t.apply_support(A, "pinned")
|
100 |
+
|
101 |
+
# testing the solve method
|
102 |
+
t.solve()
|
103 |
+
assert t.reaction_loads['R_A_x'] == -sqrt(2)*P
|
104 |
+
assert t.reaction_loads['R_A_y'] == -sqrt(2)*P - P
|
105 |
+
assert t.reaction_loads['R_D_y'] == -P/2
|
106 |
+
assert t.internal_forces[AB]/P == 0
|
107 |
+
assert t.internal_forces[CD] == 0
|
108 |
+
assert t.internal_forces[AC] == 0
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel,
|
2 |
+
Feedback, MIMOFeedback, TransferFunctionMatrix, bilinear, backward_diff)
|
3 |
+
from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
|
4 |
+
step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data,
|
5 |
+
ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot,
|
6 |
+
bode_phase_plot, bode_plot)
|
7 |
+
|
8 |
+
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel',
|
9 |
+
'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix','bilinear',
|
10 |
+
'backward_diff', 'pole_zero_numerical_data',
|
11 |
+
'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot',
|
12 |
+
'impulse_response_numerical_data', 'impulse_response_plot',
|
13 |
+
'ramp_response_numerical_data', 'ramp_response_plot',
|
14 |
+
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
|
15 |
+
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc
ADDED
Binary file (118 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/control_plots.py
ADDED
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import I, pi
|
2 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
3 |
+
from sympy.polys.partfrac import apart
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.external import import_module
|
6 |
+
from sympy.functions import arg, Abs
|
7 |
+
from sympy.integrals.laplace import _fast_inverse_laplace
|
8 |
+
from sympy.physics.control.lti import SISOLinearTimeInvariant
|
9 |
+
from sympy.plotting.plot import LineOver1DRangeSeries
|
10 |
+
from sympy.polys.polytools import Poly
|
11 |
+
from sympy.printing.latex import latex
|
12 |
+
|
13 |
+
__all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
|
14 |
+
'step_response_numerical_data', 'step_response_plot',
|
15 |
+
'impulse_response_numerical_data', 'impulse_response_plot',
|
16 |
+
'ramp_response_numerical_data', 'ramp_response_plot',
|
17 |
+
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
|
18 |
+
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
|
19 |
+
|
20 |
+
matplotlib = import_module(
|
21 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
22 |
+
catch=(RuntimeError,))
|
23 |
+
|
24 |
+
numpy = import_module('numpy')
|
25 |
+
|
26 |
+
if matplotlib:
|
27 |
+
plt = matplotlib.pyplot
|
28 |
+
|
29 |
+
if numpy:
|
30 |
+
np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.
|
31 |
+
|
32 |
+
|
33 |
+
def _check_system(system):
|
34 |
+
"""Function to check whether the dynamical system passed for plots is
|
35 |
+
compatible or not."""
|
36 |
+
if not isinstance(system, SISOLinearTimeInvariant):
|
37 |
+
raise NotImplementedError("Only SISO LTI systems are currently supported.")
|
38 |
+
sys = system.to_expr()
|
39 |
+
len_free_symbols = len(sys.free_symbols)
|
40 |
+
if len_free_symbols > 1:
|
41 |
+
raise ValueError("Extra degree of freedom found. Make sure"
|
42 |
+
" that there are no free symbols in the dynamical system other"
|
43 |
+
" than the variable of Laplace transform.")
|
44 |
+
if sys.has(exp):
|
45 |
+
# Should test that exp is not part of a constant, in which case
|
46 |
+
# no exception is required, compare exp(s) with s*exp(1)
|
47 |
+
raise NotImplementedError("Time delay terms are not supported.")
|
48 |
+
|
49 |
+
|
50 |
+
def pole_zero_numerical_data(system):
|
51 |
+
"""
|
52 |
+
Returns the numerical data of poles and zeros of the system.
|
53 |
+
It is internally used by ``pole_zero_plot`` to get the data
|
54 |
+
for plotting poles and zeros. Users can use this data to further
|
55 |
+
analyse the dynamics of the system or plot using a different
|
56 |
+
backend/plotting-module.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
==========
|
60 |
+
|
61 |
+
system : SISOLinearTimeInvariant
|
62 |
+
The system for which the pole-zero data is to be computed.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
=======
|
66 |
+
|
67 |
+
tuple : (zeros, poles)
|
68 |
+
zeros = Zeros of the system. NumPy array of complex numbers.
|
69 |
+
poles = Poles of the system. NumPy array of complex numbers.
|
70 |
+
|
71 |
+
Raises
|
72 |
+
======
|
73 |
+
|
74 |
+
NotImplementedError
|
75 |
+
When a SISO LTI system is not passed.
|
76 |
+
|
77 |
+
When time delay terms are present in the system.
|
78 |
+
|
79 |
+
ValueError
|
80 |
+
When more than one free symbol is present in the system.
|
81 |
+
The only variable in the transfer function should be
|
82 |
+
the variable of the Laplace transform.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
========
|
86 |
+
|
87 |
+
>>> from sympy.abc import s
|
88 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
89 |
+
>>> from sympy.physics.control.control_plots import pole_zero_numerical_data
|
90 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
91 |
+
>>> pole_zero_numerical_data(tf1) # doctest: +SKIP
|
92 |
+
([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ])
|
93 |
+
|
94 |
+
See Also
|
95 |
+
========
|
96 |
+
|
97 |
+
pole_zero_plot
|
98 |
+
|
99 |
+
"""
|
100 |
+
_check_system(system)
|
101 |
+
system = system.doit() # Get the equivalent TransferFunction object.
|
102 |
+
|
103 |
+
num_poly = Poly(system.num, system.var).all_coeffs()
|
104 |
+
den_poly = Poly(system.den, system.var).all_coeffs()
|
105 |
+
|
106 |
+
num_poly = np.array(num_poly, dtype=np.complex128)
|
107 |
+
den_poly = np.array(den_poly, dtype=np.complex128)
|
108 |
+
|
109 |
+
zeros = np.roots(num_poly)
|
110 |
+
poles = np.roots(den_poly)
|
111 |
+
|
112 |
+
return zeros, poles
|
113 |
+
|
114 |
+
|
115 |
+
def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
|
116 |
+
zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
|
117 |
+
show=True, **kwargs):
|
118 |
+
r"""
|
119 |
+
Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.
|
120 |
+
|
121 |
+
A Pole-Zero plot is a graphical representation of a system's poles and
|
122 |
+
zeros. It is plotted on a complex plane, with circular markers representing
|
123 |
+
the system's zeros and 'x' shaped markers representing the system's poles.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
==========
|
127 |
+
|
128 |
+
system : SISOLinearTimeInvariant type systems
|
129 |
+
The system for which the pole-zero plot is to be computed.
|
130 |
+
pole_color : str, tuple, optional
|
131 |
+
The color of the pole points on the plot. Default color
|
132 |
+
is blue. The color can be provided as a matplotlib color string,
|
133 |
+
or a 3-tuple of floats each in the 0-1 range.
|
134 |
+
pole_markersize : Number, optional
|
135 |
+
The size of the markers used to mark the poles in the plot.
|
136 |
+
Default pole markersize is 10.
|
137 |
+
zero_color : str, tuple, optional
|
138 |
+
The color of the zero points on the plot. Default color
|
139 |
+
is orange. The color can be provided as a matplotlib color string,
|
140 |
+
or a 3-tuple of floats each in the 0-1 range.
|
141 |
+
zero_markersize : Number, optional
|
142 |
+
The size of the markers used to mark the zeros in the plot.
|
143 |
+
Default zero markersize is 7.
|
144 |
+
grid : boolean, optional
|
145 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
146 |
+
show_axes : boolean, optional
|
147 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
148 |
+
show : boolean, optional
|
149 |
+
If ``True``, the plot will be displayed otherwise
|
150 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
151 |
+
Defaults to True.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
========
|
155 |
+
|
156 |
+
.. plot::
|
157 |
+
:context: close-figs
|
158 |
+
:format: doctest
|
159 |
+
:include-source: True
|
160 |
+
|
161 |
+
>>> from sympy.abc import s
|
162 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
163 |
+
>>> from sympy.physics.control.control_plots import pole_zero_plot
|
164 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
165 |
+
>>> pole_zero_plot(tf1) # doctest: +SKIP
|
166 |
+
|
167 |
+
See Also
|
168 |
+
========
|
169 |
+
|
170 |
+
pole_zero_numerical_data
|
171 |
+
|
172 |
+
References
|
173 |
+
==========
|
174 |
+
|
175 |
+
.. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
|
176 |
+
|
177 |
+
"""
|
178 |
+
zeros, poles = pole_zero_numerical_data(system)
|
179 |
+
|
180 |
+
zero_real = np.real(zeros)
|
181 |
+
zero_imag = np.imag(zeros)
|
182 |
+
|
183 |
+
pole_real = np.real(poles)
|
184 |
+
pole_imag = np.imag(poles)
|
185 |
+
|
186 |
+
plt.plot(pole_real, pole_imag, 'x', mfc='none',
|
187 |
+
markersize=pole_markersize, color=pole_color)
|
188 |
+
plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
|
189 |
+
color=zero_color)
|
190 |
+
plt.xlabel('Real Axis')
|
191 |
+
plt.ylabel('Imaginary Axis')
|
192 |
+
plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)
|
193 |
+
|
194 |
+
if grid:
|
195 |
+
plt.grid()
|
196 |
+
if show_axes:
|
197 |
+
plt.axhline(0, color='black')
|
198 |
+
plt.axvline(0, color='black')
|
199 |
+
if show:
|
200 |
+
plt.show()
|
201 |
+
return
|
202 |
+
|
203 |
+
return plt
|
204 |
+
|
205 |
+
|
206 |
+
def step_response_numerical_data(system, prec=8, lower_limit=0,
|
207 |
+
upper_limit=10, **kwargs):
|
208 |
+
"""
|
209 |
+
Returns the numerical values of the points in the step response plot
|
210 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
211 |
+
is used. If the user wants to instead get an uniformly
|
212 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
213 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
214 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
215 |
+
for more details.
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
==========
|
219 |
+
|
220 |
+
system : SISOLinearTimeInvariant
|
221 |
+
The system for which the unit step response data is to be computed.
|
222 |
+
prec : int, optional
|
223 |
+
The decimal point precision for the point coordinate values.
|
224 |
+
Defaults to 8.
|
225 |
+
lower_limit : Number, optional
|
226 |
+
The lower limit of the plot range. Defaults to 0.
|
227 |
+
upper_limit : Number, optional
|
228 |
+
The upper limit of the plot range. Defaults to 10.
|
229 |
+
kwargs :
|
230 |
+
Additional keyword arguments are passed to the underlying
|
231 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
232 |
+
|
233 |
+
Returns
|
234 |
+
=======
|
235 |
+
|
236 |
+
tuple : (x, y)
|
237 |
+
x = Time-axis values of the points in the step response. NumPy array.
|
238 |
+
y = Amplitude-axis values of the points in the step response. NumPy array.
|
239 |
+
|
240 |
+
Raises
|
241 |
+
======
|
242 |
+
|
243 |
+
NotImplementedError
|
244 |
+
When a SISO LTI system is not passed.
|
245 |
+
|
246 |
+
When time delay terms are present in the system.
|
247 |
+
|
248 |
+
ValueError
|
249 |
+
When more than one free symbol is present in the system.
|
250 |
+
The only variable in the transfer function should be
|
251 |
+
the variable of the Laplace transform.
|
252 |
+
|
253 |
+
When ``lower_limit`` parameter is less than 0.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.abc import s
|
259 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
260 |
+
>>> from sympy.physics.control.control_plots import step_response_numerical_data
|
261 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
262 |
+
>>> step_response_numerical_data(tf1) # doctest: +SKIP
|
263 |
+
([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
|
264 |
+
[0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
|
265 |
+
|
266 |
+
See Also
|
267 |
+
========
|
268 |
+
|
269 |
+
step_response_plot
|
270 |
+
|
271 |
+
"""
|
272 |
+
if lower_limit < 0:
|
273 |
+
raise ValueError("Lower limit of time must be greater "
|
274 |
+
"than or equal to zero.")
|
275 |
+
_check_system(system)
|
276 |
+
_x = Dummy("x")
|
277 |
+
expr = system.to_expr()/(system.var)
|
278 |
+
expr = apart(expr, system.var, full=True)
|
279 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
280 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
281 |
+
**kwargs).get_points()
|
282 |
+
|
283 |
+
|
284 |
+
def step_response_plot(system, color='b', prec=8, lower_limit=0,
|
285 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
286 |
+
r"""
|
287 |
+
Returns the unit step response of a continuous-time system. It is
|
288 |
+
the response of the system when the input signal is a step function.
|
289 |
+
|
290 |
+
Parameters
|
291 |
+
==========
|
292 |
+
|
293 |
+
system : SISOLinearTimeInvariant type
|
294 |
+
The LTI SISO system for which the Step Response is to be computed.
|
295 |
+
color : str, tuple, optional
|
296 |
+
The color of the line. Default is Blue.
|
297 |
+
show : boolean, optional
|
298 |
+
If ``True``, the plot will be displayed otherwise
|
299 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
300 |
+
Defaults to True.
|
301 |
+
lower_limit : Number, optional
|
302 |
+
The lower limit of the plot range. Defaults to 0.
|
303 |
+
upper_limit : Number, optional
|
304 |
+
The upper limit of the plot range. Defaults to 10.
|
305 |
+
prec : int, optional
|
306 |
+
The decimal point precision for the point coordinate values.
|
307 |
+
Defaults to 8.
|
308 |
+
show_axes : boolean, optional
|
309 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
310 |
+
grid : boolean, optional
|
311 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
312 |
+
|
313 |
+
Examples
|
314 |
+
========
|
315 |
+
|
316 |
+
.. plot::
|
317 |
+
:context: close-figs
|
318 |
+
:format: doctest
|
319 |
+
:include-source: True
|
320 |
+
|
321 |
+
>>> from sympy.abc import s
|
322 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
323 |
+
>>> from sympy.physics.control.control_plots import step_response_plot
|
324 |
+
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
|
325 |
+
>>> step_response_plot(tf1) # doctest: +SKIP
|
326 |
+
|
327 |
+
See Also
|
328 |
+
========
|
329 |
+
|
330 |
+
impulse_response_plot, ramp_response_plot
|
331 |
+
|
332 |
+
References
|
333 |
+
==========
|
334 |
+
|
335 |
+
.. [1] https://www.mathworks.com/help/control/ref/lti.step.html
|
336 |
+
|
337 |
+
"""
|
338 |
+
x, y = step_response_numerical_data(system, prec=prec,
|
339 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
340 |
+
plt.plot(x, y, color=color)
|
341 |
+
plt.xlabel('Time (s)')
|
342 |
+
plt.ylabel('Amplitude')
|
343 |
+
plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)
|
344 |
+
|
345 |
+
if grid:
|
346 |
+
plt.grid()
|
347 |
+
if show_axes:
|
348 |
+
plt.axhline(0, color='black')
|
349 |
+
plt.axvline(0, color='black')
|
350 |
+
if show:
|
351 |
+
plt.show()
|
352 |
+
return
|
353 |
+
|
354 |
+
return plt
|
355 |
+
|
356 |
+
|
357 |
+
def impulse_response_numerical_data(system, prec=8, lower_limit=0,
|
358 |
+
upper_limit=10, **kwargs):
|
359 |
+
"""
|
360 |
+
Returns the numerical values of the points in the impulse response plot
|
361 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
362 |
+
is used. If the user wants to instead get an uniformly
|
363 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
364 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
365 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
366 |
+
for more details.
|
367 |
+
|
368 |
+
Parameters
|
369 |
+
==========
|
370 |
+
|
371 |
+
system : SISOLinearTimeInvariant
|
372 |
+
The system for which the impulse response data is to be computed.
|
373 |
+
prec : int, optional
|
374 |
+
The decimal point precision for the point coordinate values.
|
375 |
+
Defaults to 8.
|
376 |
+
lower_limit : Number, optional
|
377 |
+
The lower limit of the plot range. Defaults to 0.
|
378 |
+
upper_limit : Number, optional
|
379 |
+
The upper limit of the plot range. Defaults to 10.
|
380 |
+
kwargs :
|
381 |
+
Additional keyword arguments are passed to the underlying
|
382 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
383 |
+
|
384 |
+
Returns
|
385 |
+
=======
|
386 |
+
|
387 |
+
tuple : (x, y)
|
388 |
+
x = Time-axis values of the points in the impulse response. NumPy array.
|
389 |
+
y = Amplitude-axis values of the points in the impulse response. NumPy array.
|
390 |
+
|
391 |
+
Raises
|
392 |
+
======
|
393 |
+
|
394 |
+
NotImplementedError
|
395 |
+
When a SISO LTI system is not passed.
|
396 |
+
|
397 |
+
When time delay terms are present in the system.
|
398 |
+
|
399 |
+
ValueError
|
400 |
+
When more than one free symbol is present in the system.
|
401 |
+
The only variable in the transfer function should be
|
402 |
+
the variable of the Laplace transform.
|
403 |
+
|
404 |
+
When ``lower_limit`` parameter is less than 0.
|
405 |
+
|
406 |
+
Examples
|
407 |
+
========
|
408 |
+
|
409 |
+
>>> from sympy.abc import s
|
410 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
411 |
+
>>> from sympy.physics.control.control_plots import impulse_response_numerical_data
|
412 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
413 |
+
>>> impulse_response_numerical_data(tf1) # doctest: +SKIP
|
414 |
+
([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
|
415 |
+
[0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])
|
416 |
+
|
417 |
+
See Also
|
418 |
+
========
|
419 |
+
|
420 |
+
impulse_response_plot
|
421 |
+
|
422 |
+
"""
|
423 |
+
if lower_limit < 0:
|
424 |
+
raise ValueError("Lower limit of time must be greater "
|
425 |
+
"than or equal to zero.")
|
426 |
+
_check_system(system)
|
427 |
+
_x = Dummy("x")
|
428 |
+
expr = system.to_expr()
|
429 |
+
expr = apart(expr, system.var, full=True)
|
430 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
431 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
432 |
+
**kwargs).get_points()
|
433 |
+
|
434 |
+
|
435 |
+
def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
|
436 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
437 |
+
r"""
|
438 |
+
Returns the unit impulse response (Input is the Dirac-Delta Function) of a
|
439 |
+
continuous-time system.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
==========
|
443 |
+
|
444 |
+
system : SISOLinearTimeInvariant type
|
445 |
+
The LTI SISO system for which the Impulse Response is to be computed.
|
446 |
+
color : str, tuple, optional
|
447 |
+
The color of the line. Default is Blue.
|
448 |
+
show : boolean, optional
|
449 |
+
If ``True``, the plot will be displayed otherwise
|
450 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
451 |
+
Defaults to True.
|
452 |
+
lower_limit : Number, optional
|
453 |
+
The lower limit of the plot range. Defaults to 0.
|
454 |
+
upper_limit : Number, optional
|
455 |
+
The upper limit of the plot range. Defaults to 10.
|
456 |
+
prec : int, optional
|
457 |
+
The decimal point precision for the point coordinate values.
|
458 |
+
Defaults to 8.
|
459 |
+
show_axes : boolean, optional
|
460 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
461 |
+
grid : boolean, optional
|
462 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
463 |
+
|
464 |
+
Examples
|
465 |
+
========
|
466 |
+
|
467 |
+
.. plot::
|
468 |
+
:context: close-figs
|
469 |
+
:format: doctest
|
470 |
+
:include-source: True
|
471 |
+
|
472 |
+
>>> from sympy.abc import s
|
473 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
474 |
+
>>> from sympy.physics.control.control_plots import impulse_response_plot
|
475 |
+
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
|
476 |
+
>>> impulse_response_plot(tf1) # doctest: +SKIP
|
477 |
+
|
478 |
+
See Also
|
479 |
+
========
|
480 |
+
|
481 |
+
step_response_plot, ramp_response_plot
|
482 |
+
|
483 |
+
References
|
484 |
+
==========
|
485 |
+
|
486 |
+
.. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html
|
487 |
+
|
488 |
+
"""
|
489 |
+
x, y = impulse_response_numerical_data(system, prec=prec,
|
490 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
491 |
+
plt.plot(x, y, color=color)
|
492 |
+
plt.xlabel('Time (s)')
|
493 |
+
plt.ylabel('Amplitude')
|
494 |
+
plt.title(f'Impulse Response of ${latex(system)}$', pad=20)
|
495 |
+
|
496 |
+
if grid:
|
497 |
+
plt.grid()
|
498 |
+
if show_axes:
|
499 |
+
plt.axhline(0, color='black')
|
500 |
+
plt.axvline(0, color='black')
|
501 |
+
if show:
|
502 |
+
plt.show()
|
503 |
+
return
|
504 |
+
|
505 |
+
return plt
|
506 |
+
|
507 |
+
|
508 |
+
def ramp_response_numerical_data(system, slope=1, prec=8,
|
509 |
+
lower_limit=0, upper_limit=10, **kwargs):
|
510 |
+
"""
|
511 |
+
Returns the numerical values of the points in the ramp response plot
|
512 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
513 |
+
is used. If the user wants to instead get an uniformly
|
514 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
515 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
516 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
517 |
+
for more details.
|
518 |
+
|
519 |
+
Parameters
|
520 |
+
==========
|
521 |
+
|
522 |
+
system : SISOLinearTimeInvariant
|
523 |
+
The system for which the ramp response data is to be computed.
|
524 |
+
slope : Number, optional
|
525 |
+
The slope of the input ramp function. Defaults to 1.
|
526 |
+
prec : int, optional
|
527 |
+
The decimal point precision for the point coordinate values.
|
528 |
+
Defaults to 8.
|
529 |
+
lower_limit : Number, optional
|
530 |
+
The lower limit of the plot range. Defaults to 0.
|
531 |
+
upper_limit : Number, optional
|
532 |
+
The upper limit of the plot range. Defaults to 10.
|
533 |
+
kwargs :
|
534 |
+
Additional keyword arguments are passed to the underlying
|
535 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
536 |
+
|
537 |
+
Returns
|
538 |
+
=======
|
539 |
+
|
540 |
+
tuple : (x, y)
|
541 |
+
x = Time-axis values of the points in the ramp response plot. NumPy array.
|
542 |
+
y = Amplitude-axis values of the points in the ramp response plot. NumPy array.
|
543 |
+
|
544 |
+
Raises
|
545 |
+
======
|
546 |
+
|
547 |
+
NotImplementedError
|
548 |
+
When a SISO LTI system is not passed.
|
549 |
+
|
550 |
+
When time delay terms are present in the system.
|
551 |
+
|
552 |
+
ValueError
|
553 |
+
When more than one free symbol is present in the system.
|
554 |
+
The only variable in the transfer function should be
|
555 |
+
the variable of the Laplace transform.
|
556 |
+
|
557 |
+
When ``lower_limit`` parameter is less than 0.
|
558 |
+
|
559 |
+
When ``slope`` is negative.
|
560 |
+
|
561 |
+
Examples
|
562 |
+
========
|
563 |
+
|
564 |
+
>>> from sympy.abc import s
|
565 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
566 |
+
>>> from sympy.physics.control.control_plots import ramp_response_numerical_data
|
567 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
568 |
+
>>> ramp_response_numerical_data(tf1) # doctest: +SKIP
|
569 |
+
(([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
|
570 |
+
[1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))
|
571 |
+
|
572 |
+
See Also
|
573 |
+
========
|
574 |
+
|
575 |
+
ramp_response_plot
|
576 |
+
|
577 |
+
"""
|
578 |
+
if slope < 0:
|
579 |
+
raise ValueError("Slope must be greater than or equal"
|
580 |
+
" to zero.")
|
581 |
+
if lower_limit < 0:
|
582 |
+
raise ValueError("Lower limit of time must be greater "
|
583 |
+
"than or equal to zero.")
|
584 |
+
_check_system(system)
|
585 |
+
_x = Dummy("x")
|
586 |
+
expr = (slope*system.to_expr())/((system.var)**2)
|
587 |
+
expr = apart(expr, system.var, full=True)
|
588 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
589 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
590 |
+
**kwargs).get_points()
|
591 |
+
|
592 |
+
|
593 |
+
def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
|
594 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
595 |
+
r"""
|
596 |
+
Returns the ramp response of a continuous-time system.
|
597 |
+
|
598 |
+
Ramp function is defined as the straight line
|
599 |
+
passing through origin ($f(x) = mx$). The slope of
|
600 |
+
the ramp function can be varied by the user and
|
601 |
+
the default value is 1.
|
602 |
+
|
603 |
+
Parameters
|
604 |
+
==========
|
605 |
+
|
606 |
+
system : SISOLinearTimeInvariant type
|
607 |
+
The LTI SISO system for which the Ramp Response is to be computed.
|
608 |
+
slope : Number, optional
|
609 |
+
The slope of the input ramp function. Defaults to 1.
|
610 |
+
color : str, tuple, optional
|
611 |
+
The color of the line. Default is Blue.
|
612 |
+
show : boolean, optional
|
613 |
+
If ``True``, the plot will be displayed otherwise
|
614 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
615 |
+
Defaults to True.
|
616 |
+
lower_limit : Number, optional
|
617 |
+
The lower limit of the plot range. Defaults to 0.
|
618 |
+
upper_limit : Number, optional
|
619 |
+
The upper limit of the plot range. Defaults to 10.
|
620 |
+
prec : int, optional
|
621 |
+
The decimal point precision for the point coordinate values.
|
622 |
+
Defaults to 8.
|
623 |
+
show_axes : boolean, optional
|
624 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
625 |
+
grid : boolean, optional
|
626 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
627 |
+
|
628 |
+
Examples
|
629 |
+
========
|
630 |
+
|
631 |
+
.. plot::
|
632 |
+
:context: close-figs
|
633 |
+
:format: doctest
|
634 |
+
:include-source: True
|
635 |
+
|
636 |
+
>>> from sympy.abc import s
|
637 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
638 |
+
>>> from sympy.physics.control.control_plots import ramp_response_plot
|
639 |
+
>>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
|
640 |
+
>>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP
|
641 |
+
|
642 |
+
See Also
|
643 |
+
========
|
644 |
+
|
645 |
+
step_response_plot, ramp_response_plot
|
646 |
+
|
647 |
+
References
|
648 |
+
==========
|
649 |
+
|
650 |
+
.. [1] https://en.wikipedia.org/wiki/Ramp_function
|
651 |
+
|
652 |
+
"""
|
653 |
+
x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
|
654 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
655 |
+
plt.plot(x, y, color=color)
|
656 |
+
plt.xlabel('Time (s)')
|
657 |
+
plt.ylabel('Amplitude')
|
658 |
+
plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)
|
659 |
+
|
660 |
+
if grid:
|
661 |
+
plt.grid()
|
662 |
+
if show_axes:
|
663 |
+
plt.axhline(0, color='black')
|
664 |
+
plt.axvline(0, color='black')
|
665 |
+
if show:
|
666 |
+
plt.show()
|
667 |
+
return
|
668 |
+
|
669 |
+
return plt
|
670 |
+
|
671 |
+
|
672 |
+
def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs):
|
673 |
+
"""
|
674 |
+
Returns the numerical data of the Bode magnitude plot of the system.
|
675 |
+
It is internally used by ``bode_magnitude_plot`` to get the data
|
676 |
+
for plotting Bode magnitude plot. Users can use this data to further
|
677 |
+
analyse the dynamics of the system or plot using a different
|
678 |
+
backend/plotting-module.
|
679 |
+
|
680 |
+
Parameters
|
681 |
+
==========
|
682 |
+
|
683 |
+
system : SISOLinearTimeInvariant
|
684 |
+
The system for which the data is to be computed.
|
685 |
+
initial_exp : Number, optional
|
686 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
687 |
+
final_exp : Number, optional
|
688 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
689 |
+
freq_unit : string, optional
|
690 |
+
User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
|
691 |
+
|
692 |
+
Returns
|
693 |
+
=======
|
694 |
+
|
695 |
+
tuple : (x, y)
|
696 |
+
x = x-axis values of the Bode magnitude plot.
|
697 |
+
y = y-axis values of the Bode magnitude plot.
|
698 |
+
|
699 |
+
Raises
|
700 |
+
======
|
701 |
+
|
702 |
+
NotImplementedError
|
703 |
+
When a SISO LTI system is not passed.
|
704 |
+
|
705 |
+
When time delay terms are present in the system.
|
706 |
+
|
707 |
+
ValueError
|
708 |
+
When more than one free symbol is present in the system.
|
709 |
+
The only variable in the transfer function should be
|
710 |
+
the variable of the Laplace transform.
|
711 |
+
|
712 |
+
When incorrect frequency units are given as input.
|
713 |
+
|
714 |
+
Examples
|
715 |
+
========
|
716 |
+
|
717 |
+
>>> from sympy.abc import s
|
718 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
719 |
+
>>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
|
720 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
721 |
+
>>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP
|
722 |
+
([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
|
723 |
+
[-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])
|
724 |
+
|
725 |
+
See Also
|
726 |
+
========
|
727 |
+
|
728 |
+
bode_magnitude_plot, bode_phase_numerical_data
|
729 |
+
|
730 |
+
"""
|
731 |
+
_check_system(system)
|
732 |
+
expr = system.to_expr()
|
733 |
+
freq_units = ('rad/sec', 'Hz')
|
734 |
+
if freq_unit not in freq_units:
|
735 |
+
raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
|
736 |
+
|
737 |
+
_w = Dummy("w", real=True)
|
738 |
+
if freq_unit == 'Hz':
|
739 |
+
repl = I*_w*2*pi
|
740 |
+
else:
|
741 |
+
repl = I*_w
|
742 |
+
w_expr = expr.subs({system.var: repl})
|
743 |
+
|
744 |
+
mag = 20*log(Abs(w_expr), 10)
|
745 |
+
|
746 |
+
x, y = LineOver1DRangeSeries(mag,
|
747 |
+
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
|
748 |
+
|
749 |
+
return x, y
|
750 |
+
|
751 |
+
|
752 |
+
def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
|
753 |
+
color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs):
|
754 |
+
r"""
|
755 |
+
Returns the Bode magnitude plot of a continuous-time system.
|
756 |
+
|
757 |
+
See ``bode_plot`` for all the parameters.
|
758 |
+
"""
|
759 |
+
x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
|
760 |
+
final_exp=final_exp, freq_unit=freq_unit)
|
761 |
+
plt.plot(x, y, color=color, **kwargs)
|
762 |
+
plt.xscale('log')
|
763 |
+
|
764 |
+
|
765 |
+
plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
|
766 |
+
plt.ylabel('Magnitude (dB)')
|
767 |
+
plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)
|
768 |
+
|
769 |
+
if grid:
|
770 |
+
plt.grid(True)
|
771 |
+
if show_axes:
|
772 |
+
plt.axhline(0, color='black')
|
773 |
+
plt.axvline(0, color='black')
|
774 |
+
if show:
|
775 |
+
plt.show()
|
776 |
+
return
|
777 |
+
|
778 |
+
return plt
|
779 |
+
|
780 |
+
|
781 |
+
def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
782 |
+
"""
|
783 |
+
Returns the numerical data of the Bode phase plot of the system.
|
784 |
+
It is internally used by ``bode_phase_plot`` to get the data
|
785 |
+
for plotting Bode phase plot. Users can use this data to further
|
786 |
+
analyse the dynamics of the system or plot using a different
|
787 |
+
backend/plotting-module.
|
788 |
+
|
789 |
+
Parameters
|
790 |
+
==========
|
791 |
+
|
792 |
+
system : SISOLinearTimeInvariant
|
793 |
+
The system for which the Bode phase plot data is to be computed.
|
794 |
+
initial_exp : Number, optional
|
795 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
796 |
+
final_exp : Number, optional
|
797 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
798 |
+
freq_unit : string, optional
|
799 |
+
User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units.
|
800 |
+
phase_unit : string, optional
|
801 |
+
User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
|
802 |
+
|
803 |
+
Returns
|
804 |
+
=======
|
805 |
+
|
806 |
+
tuple : (x, y)
|
807 |
+
x = x-axis values of the Bode phase plot.
|
808 |
+
y = y-axis values of the Bode phase plot.
|
809 |
+
|
810 |
+
Raises
|
811 |
+
======
|
812 |
+
|
813 |
+
NotImplementedError
|
814 |
+
When a SISO LTI system is not passed.
|
815 |
+
|
816 |
+
When time delay terms are present in the system.
|
817 |
+
|
818 |
+
ValueError
|
819 |
+
When more than one free symbol is present in the system.
|
820 |
+
The only variable in the transfer function should be
|
821 |
+
the variable of the Laplace transform.
|
822 |
+
|
823 |
+
When incorrect frequency or phase units are given as input.
|
824 |
+
|
825 |
+
Examples
|
826 |
+
========
|
827 |
+
|
828 |
+
>>> from sympy.abc import s
|
829 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
830 |
+
>>> from sympy.physics.control.control_plots import bode_phase_numerical_data
|
831 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
832 |
+
>>> bode_phase_numerical_data(tf1) # doctest: +SKIP
|
833 |
+
([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
|
834 |
+
[-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])
|
835 |
+
|
836 |
+
See Also
|
837 |
+
========
|
838 |
+
|
839 |
+
bode_magnitude_plot, bode_phase_numerical_data
|
840 |
+
|
841 |
+
"""
|
842 |
+
_check_system(system)
|
843 |
+
expr = system.to_expr()
|
844 |
+
freq_units = ('rad/sec', 'Hz')
|
845 |
+
phase_units = ('rad', 'deg')
|
846 |
+
if freq_unit not in freq_units:
|
847 |
+
raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
|
848 |
+
if phase_unit not in phase_units:
|
849 |
+
raise ValueError('Only "rad" and "deg" are accepted phase units.')
|
850 |
+
|
851 |
+
_w = Dummy("w", real=True)
|
852 |
+
if freq_unit == 'Hz':
|
853 |
+
repl = I*_w*2*pi
|
854 |
+
else:
|
855 |
+
repl = I*_w
|
856 |
+
w_expr = expr.subs({system.var: repl})
|
857 |
+
|
858 |
+
if phase_unit == 'deg':
|
859 |
+
phase = arg(w_expr)*180/pi
|
860 |
+
else:
|
861 |
+
phase = arg(w_expr)
|
862 |
+
|
863 |
+
x, y = LineOver1DRangeSeries(phase,
|
864 |
+
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
|
865 |
+
|
866 |
+
return x, y
|
867 |
+
|
868 |
+
|
869 |
+
def bode_phase_plot(system, initial_exp=-5, final_exp=5,
|
870 |
+
color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
871 |
+
r"""
|
872 |
+
Returns the Bode phase plot of a continuous-time system.
|
873 |
+
|
874 |
+
See ``bode_plot`` for all the parameters.
|
875 |
+
"""
|
876 |
+
x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
|
877 |
+
final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit)
|
878 |
+
plt.plot(x, y, color=color, **kwargs)
|
879 |
+
plt.xscale('log')
|
880 |
+
|
881 |
+
plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
|
882 |
+
plt.ylabel('Phase (%s)' % phase_unit)
|
883 |
+
plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)
|
884 |
+
|
885 |
+
if grid:
|
886 |
+
plt.grid(True)
|
887 |
+
if show_axes:
|
888 |
+
plt.axhline(0, color='black')
|
889 |
+
plt.axvline(0, color='black')
|
890 |
+
if show:
|
891 |
+
plt.show()
|
892 |
+
return
|
893 |
+
|
894 |
+
return plt
|
895 |
+
|
896 |
+
|
897 |
+
def bode_plot(system, initial_exp=-5, final_exp=5,
|
898 |
+
grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
899 |
+
r"""
|
900 |
+
Returns the Bode phase and magnitude plots of a continuous-time system.
|
901 |
+
|
902 |
+
Parameters
|
903 |
+
==========
|
904 |
+
|
905 |
+
system : SISOLinearTimeInvariant type
|
906 |
+
The LTI SISO system for which the Bode Plot is to be computed.
|
907 |
+
initial_exp : Number, optional
|
908 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
909 |
+
final_exp : Number, optional
|
910 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
911 |
+
show : boolean, optional
|
912 |
+
If ``True``, the plot will be displayed otherwise
|
913 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
914 |
+
Defaults to True.
|
915 |
+
prec : int, optional
|
916 |
+
The decimal point precision for the point coordinate values.
|
917 |
+
Defaults to 8.
|
918 |
+
grid : boolean, optional
|
919 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
920 |
+
show_axes : boolean, optional
|
921 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
922 |
+
freq_unit : string, optional
|
923 |
+
User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
|
924 |
+
phase_unit : string, optional
|
925 |
+
User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
|
926 |
+
|
927 |
+
Examples
|
928 |
+
========
|
929 |
+
|
930 |
+
.. plot::
|
931 |
+
:context: close-figs
|
932 |
+
:format: doctest
|
933 |
+
:include-source: True
|
934 |
+
|
935 |
+
>>> from sympy.abc import s
|
936 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
937 |
+
>>> from sympy.physics.control.control_plots import bode_plot
|
938 |
+
>>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
|
939 |
+
>>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP
|
940 |
+
|
941 |
+
See Also
|
942 |
+
========
|
943 |
+
|
944 |
+
bode_magnitude_plot, bode_phase_plot
|
945 |
+
|
946 |
+
"""
|
947 |
+
plt.subplot(211)
|
948 |
+
mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
|
949 |
+
show=False, grid=grid, show_axes=show_axes,
|
950 |
+
freq_unit=freq_unit, **kwargs)
|
951 |
+
mag.title(f'Bode Plot of ${latex(system)}$', pad=20)
|
952 |
+
mag.xlabel(None)
|
953 |
+
plt.subplot(212)
|
954 |
+
bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
|
955 |
+
show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, **kwargs).title(None)
|
956 |
+
|
957 |
+
if show:
|
958 |
+
plt.show()
|
959 |
+
return
|
960 |
+
|
961 |
+
return plt
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/lti.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/gamma_matrices.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/gamma_matrices.py
ADDED
@@ -0,0 +1,716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module to handle gamma matrices expressed as tensor objects.
|
3 |
+
|
4 |
+
Examples
|
5 |
+
========
|
6 |
+
|
7 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
|
8 |
+
>>> from sympy.tensor.tensor import tensor_indices
|
9 |
+
>>> i = tensor_indices('i', LorentzIndex)
|
10 |
+
>>> G(i)
|
11 |
+
GammaMatrix(i)
|
12 |
+
|
13 |
+
Note that there is already an instance of GammaMatrixHead in four dimensions:
|
14 |
+
GammaMatrix, which is simply declare as
|
15 |
+
|
16 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix
|
17 |
+
>>> from sympy.tensor.tensor import tensor_indices
|
18 |
+
>>> i = tensor_indices('i', LorentzIndex)
|
19 |
+
>>> GammaMatrix(i)
|
20 |
+
GammaMatrix(i)
|
21 |
+
|
22 |
+
To access the metric tensor
|
23 |
+
|
24 |
+
>>> LorentzIndex.metric
|
25 |
+
metric(LorentzIndex,LorentzIndex)
|
26 |
+
|
27 |
+
"""
|
28 |
+
from sympy.core.mul import Mul
|
29 |
+
from sympy.core.singleton import S
|
30 |
+
from sympy.matrices.dense import eye
|
31 |
+
from sympy.matrices.expressions.trace import trace
|
32 |
+
from sympy.tensor.tensor import TensorIndexType, TensorIndex,\
|
33 |
+
TensMul, TensAdd, tensor_mul, Tensor, TensorHead, TensorSymmetry
|
34 |
+
|
35 |
+
|
36 |
+
# DiracSpinorIndex = TensorIndexType('DiracSpinorIndex', dim=4, dummy_name="S")
|
37 |
+
|
38 |
+
|
39 |
+
LorentzIndex = TensorIndexType('LorentzIndex', dim=4, dummy_name="L")
|
40 |
+
|
41 |
+
|
42 |
+
GammaMatrix = TensorHead("GammaMatrix", [LorentzIndex],
|
43 |
+
TensorSymmetry.no_symmetry(1), comm=None)
|
44 |
+
|
45 |
+
|
46 |
+
def extract_type_tens(expression, component):
|
47 |
+
"""
|
48 |
+
Extract from a ``TensExpr`` all tensors with `component`.
|
49 |
+
|
50 |
+
Returns two tensor expressions:
|
51 |
+
|
52 |
+
* the first contains all ``Tensor`` of having `component`.
|
53 |
+
* the second contains all remaining.
|
54 |
+
|
55 |
+
|
56 |
+
"""
|
57 |
+
if isinstance(expression, Tensor):
|
58 |
+
sp = [expression]
|
59 |
+
elif isinstance(expression, TensMul):
|
60 |
+
sp = expression.args
|
61 |
+
else:
|
62 |
+
raise ValueError('wrong type')
|
63 |
+
|
64 |
+
# Collect all gamma matrices of the same dimension
|
65 |
+
new_expr = S.One
|
66 |
+
residual_expr = S.One
|
67 |
+
for i in sp:
|
68 |
+
if isinstance(i, Tensor) and i.component == component:
|
69 |
+
new_expr *= i
|
70 |
+
else:
|
71 |
+
residual_expr *= i
|
72 |
+
return new_expr, residual_expr
|
73 |
+
|
74 |
+
|
75 |
+
def simplify_gamma_expression(expression):
|
76 |
+
extracted_expr, residual_expr = extract_type_tens(expression, GammaMatrix)
|
77 |
+
res_expr = _simplify_single_line(extracted_expr)
|
78 |
+
return res_expr * residual_expr
|
79 |
+
|
80 |
+
|
81 |
+
def simplify_gpgp(ex, sort=True):
|
82 |
+
"""
|
83 |
+
simplify products ``G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)``
|
84 |
+
|
85 |
+
Examples
|
86 |
+
========
|
87 |
+
|
88 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
|
89 |
+
LorentzIndex, simplify_gpgp
|
90 |
+
>>> from sympy.tensor.tensor import tensor_indices, tensor_heads
|
91 |
+
>>> p, q = tensor_heads('p, q', [LorentzIndex])
|
92 |
+
>>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
|
93 |
+
>>> ps = p(i0)*G(-i0)
|
94 |
+
>>> qs = q(i0)*G(-i0)
|
95 |
+
>>> simplify_gpgp(ps*qs*qs)
|
96 |
+
GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1)
|
97 |
+
"""
|
98 |
+
def _simplify_gpgp(ex):
|
99 |
+
components = ex.components
|
100 |
+
a = []
|
101 |
+
comp_map = []
|
102 |
+
for i, comp in enumerate(components):
|
103 |
+
comp_map.extend([i]*comp.rank)
|
104 |
+
dum = [(i[0], i[1], comp_map[i[0]], comp_map[i[1]]) for i in ex.dum]
|
105 |
+
for i in range(len(components)):
|
106 |
+
if components[i] != GammaMatrix:
|
107 |
+
continue
|
108 |
+
for dx in dum:
|
109 |
+
if dx[2] == i:
|
110 |
+
p_pos1 = dx[3]
|
111 |
+
elif dx[3] == i:
|
112 |
+
p_pos1 = dx[2]
|
113 |
+
else:
|
114 |
+
continue
|
115 |
+
comp1 = components[p_pos1]
|
116 |
+
if comp1.comm == 0 and comp1.rank == 1:
|
117 |
+
a.append((i, p_pos1))
|
118 |
+
if not a:
|
119 |
+
return ex
|
120 |
+
elim = set()
|
121 |
+
tv = []
|
122 |
+
hit = True
|
123 |
+
coeff = S.One
|
124 |
+
ta = None
|
125 |
+
while hit:
|
126 |
+
hit = False
|
127 |
+
for i, ai in enumerate(a[:-1]):
|
128 |
+
if ai[0] in elim:
|
129 |
+
continue
|
130 |
+
if ai[0] != a[i + 1][0] - 1:
|
131 |
+
continue
|
132 |
+
if components[ai[1]] != components[a[i + 1][1]]:
|
133 |
+
continue
|
134 |
+
elim.add(ai[0])
|
135 |
+
elim.add(ai[1])
|
136 |
+
elim.add(a[i + 1][0])
|
137 |
+
elim.add(a[i + 1][1])
|
138 |
+
if not ta:
|
139 |
+
ta = ex.split()
|
140 |
+
mu = TensorIndex('mu', LorentzIndex)
|
141 |
+
hit = True
|
142 |
+
if i == 0:
|
143 |
+
coeff = ex.coeff
|
144 |
+
tx = components[ai[1]](mu)*components[ai[1]](-mu)
|
145 |
+
if len(a) == 2:
|
146 |
+
tx *= 4 # eye(4)
|
147 |
+
tv.append(tx)
|
148 |
+
break
|
149 |
+
|
150 |
+
if tv:
|
151 |
+
a = [x for j, x in enumerate(ta) if j not in elim]
|
152 |
+
a.extend(tv)
|
153 |
+
t = tensor_mul(*a)*coeff
|
154 |
+
# t = t.replace(lambda x: x.is_Matrix, lambda x: 1)
|
155 |
+
return t
|
156 |
+
else:
|
157 |
+
return ex
|
158 |
+
|
159 |
+
if sort:
|
160 |
+
ex = ex.sorted_components()
|
161 |
+
# this would be better off with pattern matching
|
162 |
+
while 1:
|
163 |
+
t = _simplify_gpgp(ex)
|
164 |
+
if t != ex:
|
165 |
+
ex = t
|
166 |
+
else:
|
167 |
+
return t
|
168 |
+
|
169 |
+
|
170 |
+
def gamma_trace(t):
|
171 |
+
"""
|
172 |
+
trace of a single line of gamma matrices
|
173 |
+
|
174 |
+
Examples
|
175 |
+
========
|
176 |
+
|
177 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
|
178 |
+
gamma_trace, LorentzIndex
|
179 |
+
>>> from sympy.tensor.tensor import tensor_indices, tensor_heads
|
180 |
+
>>> p, q = tensor_heads('p, q', [LorentzIndex])
|
181 |
+
>>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
|
182 |
+
>>> ps = p(i0)*G(-i0)
|
183 |
+
>>> qs = q(i0)*G(-i0)
|
184 |
+
>>> gamma_trace(G(i0)*G(i1))
|
185 |
+
4*metric(i0, i1)
|
186 |
+
>>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0)
|
187 |
+
0
|
188 |
+
>>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0)
|
189 |
+
0
|
190 |
+
|
191 |
+
"""
|
192 |
+
if isinstance(t, TensAdd):
|
193 |
+
res = TensAdd(*[gamma_trace(x) for x in t.args])
|
194 |
+
return res
|
195 |
+
t = _simplify_single_line(t)
|
196 |
+
res = _trace_single_line(t)
|
197 |
+
return res
|
198 |
+
|
199 |
+
|
200 |
+
def _simplify_single_line(expression):
|
201 |
+
"""
|
202 |
+
Simplify single-line product of gamma matrices.
|
203 |
+
|
204 |
+
Examples
|
205 |
+
========
|
206 |
+
|
207 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
|
208 |
+
LorentzIndex, _simplify_single_line
|
209 |
+
>>> from sympy.tensor.tensor import tensor_indices, TensorHead
|
210 |
+
>>> p = TensorHead('p', [LorentzIndex])
|
211 |
+
>>> i0,i1 = tensor_indices('i0:2', LorentzIndex)
|
212 |
+
>>> _simplify_single_line(G(i0)*G(i1)*p(-i1)*G(-i0)) + 2*G(i0)*p(-i0)
|
213 |
+
0
|
214 |
+
|
215 |
+
"""
|
216 |
+
t1, t2 = extract_type_tens(expression, GammaMatrix)
|
217 |
+
if t1 != 1:
|
218 |
+
t1 = kahane_simplify(t1)
|
219 |
+
res = t1*t2
|
220 |
+
return res
|
221 |
+
|
222 |
+
|
223 |
+
def _trace_single_line(t):
|
224 |
+
"""
|
225 |
+
Evaluate the trace of a single gamma matrix line inside a ``TensExpr``.
|
226 |
+
|
227 |
+
Notes
|
228 |
+
=====
|
229 |
+
|
230 |
+
If there are ``DiracSpinorIndex.auto_left`` and ``DiracSpinorIndex.auto_right``
|
231 |
+
indices trace over them; otherwise traces are not implied (explain)
|
232 |
+
|
233 |
+
|
234 |
+
Examples
|
235 |
+
========
|
236 |
+
|
237 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
|
238 |
+
LorentzIndex, _trace_single_line
|
239 |
+
>>> from sympy.tensor.tensor import tensor_indices, TensorHead
|
240 |
+
>>> p = TensorHead('p', [LorentzIndex])
|
241 |
+
>>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
|
242 |
+
>>> _trace_single_line(G(i0)*G(i1))
|
243 |
+
4*metric(i0, i1)
|
244 |
+
>>> _trace_single_line(G(i0)*p(-i0)*G(i1)*p(-i1)) - 4*p(i0)*p(-i0)
|
245 |
+
0
|
246 |
+
|
247 |
+
"""
|
248 |
+
def _trace_single_line1(t):
|
249 |
+
t = t.sorted_components()
|
250 |
+
components = t.components
|
251 |
+
ncomps = len(components)
|
252 |
+
g = LorentzIndex.metric
|
253 |
+
# gamma matirices are in a[i:j]
|
254 |
+
hit = 0
|
255 |
+
for i in range(ncomps):
|
256 |
+
if components[i] == GammaMatrix:
|
257 |
+
hit = 1
|
258 |
+
break
|
259 |
+
|
260 |
+
for j in range(i + hit, ncomps):
|
261 |
+
if components[j] != GammaMatrix:
|
262 |
+
break
|
263 |
+
else:
|
264 |
+
j = ncomps
|
265 |
+
numG = j - i
|
266 |
+
if numG == 0:
|
267 |
+
tcoeff = t.coeff
|
268 |
+
return t.nocoeff if tcoeff else t
|
269 |
+
if numG % 2 == 1:
|
270 |
+
return TensMul.from_data(S.Zero, [], [], [])
|
271 |
+
elif numG > 4:
|
272 |
+
# find the open matrix indices and connect them:
|
273 |
+
a = t.split()
|
274 |
+
ind1 = a[i].get_indices()[0]
|
275 |
+
ind2 = a[i + 1].get_indices()[0]
|
276 |
+
aa = a[:i] + a[i + 2:]
|
277 |
+
t1 = tensor_mul(*aa)*g(ind1, ind2)
|
278 |
+
t1 = t1.contract_metric(g)
|
279 |
+
args = [t1]
|
280 |
+
sign = 1
|
281 |
+
for k in range(i + 2, j):
|
282 |
+
sign = -sign
|
283 |
+
ind2 = a[k].get_indices()[0]
|
284 |
+
aa = a[:i] + a[i + 1:k] + a[k + 1:]
|
285 |
+
t2 = sign*tensor_mul(*aa)*g(ind1, ind2)
|
286 |
+
t2 = t2.contract_metric(g)
|
287 |
+
t2 = simplify_gpgp(t2, False)
|
288 |
+
args.append(t2)
|
289 |
+
t3 = TensAdd(*args)
|
290 |
+
t3 = _trace_single_line(t3)
|
291 |
+
return t3
|
292 |
+
else:
|
293 |
+
a = t.split()
|
294 |
+
t1 = _gamma_trace1(*a[i:j])
|
295 |
+
a2 = a[:i] + a[j:]
|
296 |
+
t2 = tensor_mul(*a2)
|
297 |
+
t3 = t1*t2
|
298 |
+
if not t3:
|
299 |
+
return t3
|
300 |
+
t3 = t3.contract_metric(g)
|
301 |
+
return t3
|
302 |
+
|
303 |
+
t = t.expand()
|
304 |
+
if isinstance(t, TensAdd):
|
305 |
+
a = [_trace_single_line1(x)*x.coeff for x in t.args]
|
306 |
+
return TensAdd(*a)
|
307 |
+
elif isinstance(t, (Tensor, TensMul)):
|
308 |
+
r = t.coeff*_trace_single_line1(t)
|
309 |
+
return r
|
310 |
+
else:
|
311 |
+
return trace(t)
|
312 |
+
|
313 |
+
|
314 |
+
def _gamma_trace1(*a):
|
315 |
+
gctr = 4 # FIXME specific for d=4
|
316 |
+
g = LorentzIndex.metric
|
317 |
+
if not a:
|
318 |
+
return gctr
|
319 |
+
n = len(a)
|
320 |
+
if n%2 == 1:
|
321 |
+
#return TensMul.from_data(S.Zero, [], [], [])
|
322 |
+
return S.Zero
|
323 |
+
if n == 2:
|
324 |
+
ind0 = a[0].get_indices()[0]
|
325 |
+
ind1 = a[1].get_indices()[0]
|
326 |
+
return gctr*g(ind0, ind1)
|
327 |
+
if n == 4:
|
328 |
+
ind0 = a[0].get_indices()[0]
|
329 |
+
ind1 = a[1].get_indices()[0]
|
330 |
+
ind2 = a[2].get_indices()[0]
|
331 |
+
ind3 = a[3].get_indices()[0]
|
332 |
+
|
333 |
+
return gctr*(g(ind0, ind1)*g(ind2, ind3) - \
|
334 |
+
g(ind0, ind2)*g(ind1, ind3) + g(ind0, ind3)*g(ind1, ind2))
|
335 |
+
|
336 |
+
|
337 |
+
def kahane_simplify(expression):
|
338 |
+
r"""
|
339 |
+
This function cancels contracted elements in a product of four
|
340 |
+
dimensional gamma matrices, resulting in an expression equal to the given
|
341 |
+
one, without the contracted gamma matrices.
|
342 |
+
|
343 |
+
Parameters
|
344 |
+
==========
|
345 |
+
|
346 |
+
`expression` the tensor expression containing the gamma matrices to simplify.
|
347 |
+
|
348 |
+
Notes
|
349 |
+
=====
|
350 |
+
|
351 |
+
If spinor indices are given, the matrices must be given in
|
352 |
+
the order given in the product.
|
353 |
+
|
354 |
+
Algorithm
|
355 |
+
=========
|
356 |
+
|
357 |
+
The idea behind the algorithm is to use some well-known identities,
|
358 |
+
i.e., for contractions enclosing an even number of `\gamma` matrices
|
359 |
+
|
360 |
+
`\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )`
|
361 |
+
|
362 |
+
for an odd number of `\gamma` matrices
|
363 |
+
|
364 |
+
`\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}`
|
365 |
+
|
366 |
+
Instead of repeatedly applying these identities to cancel out all contracted indices,
|
367 |
+
it is possible to recognize the links that would result from such an operation,
|
368 |
+
the problem is thus reduced to a simple rearrangement of free gamma matrices.
|
369 |
+
|
370 |
+
Examples
|
371 |
+
========
|
372 |
+
|
373 |
+
When using, always remember that the original expression coefficient
|
374 |
+
has to be handled separately
|
375 |
+
|
376 |
+
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
|
377 |
+
>>> from sympy.physics.hep.gamma_matrices import kahane_simplify
|
378 |
+
>>> from sympy.tensor.tensor import tensor_indices
|
379 |
+
>>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex)
|
380 |
+
>>> ta = G(i0)*G(-i0)
|
381 |
+
>>> kahane_simplify(ta)
|
382 |
+
Matrix([
|
383 |
+
[4, 0, 0, 0],
|
384 |
+
[0, 4, 0, 0],
|
385 |
+
[0, 0, 4, 0],
|
386 |
+
[0, 0, 0, 4]])
|
387 |
+
>>> tb = G(i0)*G(i1)*G(-i0)
|
388 |
+
>>> kahane_simplify(tb)
|
389 |
+
-2*GammaMatrix(i1)
|
390 |
+
>>> t = G(i0)*G(-i0)
|
391 |
+
>>> kahane_simplify(t)
|
392 |
+
Matrix([
|
393 |
+
[4, 0, 0, 0],
|
394 |
+
[0, 4, 0, 0],
|
395 |
+
[0, 0, 4, 0],
|
396 |
+
[0, 0, 0, 4]])
|
397 |
+
>>> t = G(i0)*G(-i0)
|
398 |
+
>>> kahane_simplify(t)
|
399 |
+
Matrix([
|
400 |
+
[4, 0, 0, 0],
|
401 |
+
[0, 4, 0, 0],
|
402 |
+
[0, 0, 4, 0],
|
403 |
+
[0, 0, 0, 4]])
|
404 |
+
|
405 |
+
If there are no contractions, the same expression is returned
|
406 |
+
|
407 |
+
>>> tc = G(i0)*G(i1)
|
408 |
+
>>> kahane_simplify(tc)
|
409 |
+
GammaMatrix(i0)*GammaMatrix(i1)
|
410 |
+
|
411 |
+
References
|
412 |
+
==========
|
413 |
+
|
414 |
+
[1] Algorithm for Reducing Contracted Products of gamma Matrices,
|
415 |
+
Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968.
|
416 |
+
"""
|
417 |
+
|
418 |
+
if isinstance(expression, Mul):
|
419 |
+
return expression
|
420 |
+
if isinstance(expression, TensAdd):
|
421 |
+
return TensAdd(*[kahane_simplify(arg) for arg in expression.args])
|
422 |
+
|
423 |
+
if isinstance(expression, Tensor):
|
424 |
+
return expression
|
425 |
+
|
426 |
+
assert isinstance(expression, TensMul)
|
427 |
+
|
428 |
+
gammas = expression.args
|
429 |
+
|
430 |
+
for gamma in gammas:
|
431 |
+
assert gamma.component == GammaMatrix
|
432 |
+
|
433 |
+
free = expression.free
|
434 |
+
# spinor_free = [_ for _ in expression.free_in_args if _[1] != 0]
|
435 |
+
|
436 |
+
# if len(spinor_free) == 2:
|
437 |
+
# spinor_free.sort(key=lambda x: x[2])
|
438 |
+
# assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2
|
439 |
+
# assert spinor_free[0][2] == 0
|
440 |
+
# elif spinor_free:
|
441 |
+
# raise ValueError('spinor indices do not match')
|
442 |
+
|
443 |
+
dum = []
|
444 |
+
for dum_pair in expression.dum:
|
445 |
+
if expression.index_types[dum_pair[0]] == LorentzIndex:
|
446 |
+
dum.append((dum_pair[0], dum_pair[1]))
|
447 |
+
|
448 |
+
dum = sorted(dum)
|
449 |
+
|
450 |
+
if len(dum) == 0: # or GammaMatrixHead:
|
451 |
+
# no contractions in `expression`, just return it.
|
452 |
+
return expression
|
453 |
+
|
454 |
+
# find the `first_dum_pos`, i.e. the position of the first contracted
|
455 |
+
# gamma matrix, Kahane's algorithm as described in his paper requires the
|
456 |
+
# gamma matrix expression to start with a contracted gamma matrix, this is
|
457 |
+
# a workaround which ignores possible initial free indices, and re-adds
|
458 |
+
# them later.
|
459 |
+
|
460 |
+
first_dum_pos = min(map(min, dum))
|
461 |
+
|
462 |
+
# for p1, p2, a1, a2 in expression.dum_in_args:
|
463 |
+
# if p1 != 0 or p2 != 0:
|
464 |
+
# # only Lorentz indices, skip Dirac indices:
|
465 |
+
# continue
|
466 |
+
# first_dum_pos = min(p1, p2)
|
467 |
+
# break
|
468 |
+
|
469 |
+
total_number = len(free) + len(dum)*2
|
470 |
+
number_of_contractions = len(dum)
|
471 |
+
|
472 |
+
free_pos = [None]*total_number
|
473 |
+
for i in free:
|
474 |
+
free_pos[i[1]] = i[0]
|
475 |
+
|
476 |
+
# `index_is_free` is a list of booleans, to identify index position
|
477 |
+
# and whether that index is free or dummy.
|
478 |
+
index_is_free = [False]*total_number
|
479 |
+
|
480 |
+
for i, indx in enumerate(free):
|
481 |
+
index_is_free[indx[1]] = True
|
482 |
+
|
483 |
+
# `links` is a dictionary containing the graph described in Kahane's paper,
|
484 |
+
# to every key correspond one or two values, representing the linked indices.
|
485 |
+
# All values in `links` are integers, negative numbers are used in the case
|
486 |
+
# where it is necessary to insert gamma matrices between free indices, in
|
487 |
+
# order to make Kahane's algorithm work (see paper).
|
488 |
+
links = {i: [] for i in range(first_dum_pos, total_number)}
|
489 |
+
|
490 |
+
# `cum_sign` is a step variable to mark the sign of every index, see paper.
|
491 |
+
cum_sign = -1
|
492 |
+
# `cum_sign_list` keeps storage for all `cum_sign` (every index).
|
493 |
+
cum_sign_list = [None]*total_number
|
494 |
+
block_free_count = 0
|
495 |
+
|
496 |
+
# multiply `resulting_coeff` by the coefficient parameter, the rest
|
497 |
+
# of the algorithm ignores a scalar coefficient.
|
498 |
+
resulting_coeff = S.One
|
499 |
+
|
500 |
+
# initialize a list of lists of indices. The outer list will contain all
|
501 |
+
# additive tensor expressions, while the inner list will contain the
|
502 |
+
# free indices (rearranged according to the algorithm).
|
503 |
+
resulting_indices = [[]]
|
504 |
+
|
505 |
+
# start to count the `connected_components`, which together with the number
|
506 |
+
# of contractions, determines a -1 or +1 factor to be multiplied.
|
507 |
+
connected_components = 1
|
508 |
+
|
509 |
+
# First loop: here we fill `cum_sign_list`, and draw the links
|
510 |
+
# among consecutive indices (they are stored in `links`). Links among
|
511 |
+
# non-consecutive indices will be drawn later.
|
512 |
+
for i, is_free in enumerate(index_is_free):
|
513 |
+
# if `expression` starts with free indices, they are ignored here;
|
514 |
+
# they are later added as they are to the beginning of all
|
515 |
+
# `resulting_indices` list of lists of indices.
|
516 |
+
if i < first_dum_pos:
|
517 |
+
continue
|
518 |
+
|
519 |
+
if is_free:
|
520 |
+
block_free_count += 1
|
521 |
+
# if previous index was free as well, draw an arch in `links`.
|
522 |
+
if block_free_count > 1:
|
523 |
+
links[i - 1].append(i)
|
524 |
+
links[i].append(i - 1)
|
525 |
+
else:
|
526 |
+
# Change the sign of the index (`cum_sign`) if the number of free
|
527 |
+
# indices preceding it is even.
|
528 |
+
cum_sign *= 1 if (block_free_count % 2) else -1
|
529 |
+
if block_free_count == 0 and i != first_dum_pos:
|
530 |
+
# check if there are two consecutive dummy indices:
|
531 |
+
# in this case create virtual indices with negative position,
|
532 |
+
# these "virtual" indices represent the insertion of two
|
533 |
+
# gamma^0 matrices to separate consecutive dummy indices, as
|
534 |
+
# Kahane's algorithm requires dummy indices to be separated by
|
535 |
+
# free indices. The product of two gamma^0 matrices is unity,
|
536 |
+
# so the new expression being examined is the same as the
|
537 |
+
# original one.
|
538 |
+
if cum_sign == -1:
|
539 |
+
links[-1-i] = [-1-i+1]
|
540 |
+
links[-1-i+1] = [-1-i]
|
541 |
+
if (i - cum_sign) in links:
|
542 |
+
if i != first_dum_pos:
|
543 |
+
links[i].append(i - cum_sign)
|
544 |
+
if block_free_count != 0:
|
545 |
+
if i - cum_sign < len(index_is_free):
|
546 |
+
if index_is_free[i - cum_sign]:
|
547 |
+
links[i - cum_sign].append(i)
|
548 |
+
block_free_count = 0
|
549 |
+
|
550 |
+
cum_sign_list[i] = cum_sign
|
551 |
+
|
552 |
+
# The previous loop has only created links between consecutive free indices,
|
553 |
+
# it is necessary to properly create links among dummy (contracted) indices,
|
554 |
+
# according to the rules described in Kahane's paper. There is only one exception
|
555 |
+
# to Kahane's rules: the negative indices, which handle the case of some
|
556 |
+
# consecutive free indices (Kahane's paper just describes dummy indices
|
557 |
+
# separated by free indices, hinting that free indices can be added without
|
558 |
+
# altering the expression result).
|
559 |
+
for i in dum:
|
560 |
+
# get the positions of the two contracted indices:
|
561 |
+
pos1 = i[0]
|
562 |
+
pos2 = i[1]
|
563 |
+
|
564 |
+
# create Kahane's upper links, i.e. the upper arcs between dummy
|
565 |
+
# (i.e. contracted) indices:
|
566 |
+
links[pos1].append(pos2)
|
567 |
+
links[pos2].append(pos1)
|
568 |
+
|
569 |
+
# create Kahane's lower links, this corresponds to the arcs below
|
570 |
+
# the line described in the paper:
|
571 |
+
|
572 |
+
# first we move `pos1` and `pos2` according to the sign of the indices:
|
573 |
+
linkpos1 = pos1 + cum_sign_list[pos1]
|
574 |
+
linkpos2 = pos2 + cum_sign_list[pos2]
|
575 |
+
|
576 |
+
# otherwise, perform some checks before creating the lower arcs:
|
577 |
+
|
578 |
+
# make sure we are not exceeding the total number of indices:
|
579 |
+
if linkpos1 >= total_number:
|
580 |
+
continue
|
581 |
+
if linkpos2 >= total_number:
|
582 |
+
continue
|
583 |
+
|
584 |
+
# make sure we are not below the first dummy index in `expression`:
|
585 |
+
if linkpos1 < first_dum_pos:
|
586 |
+
continue
|
587 |
+
if linkpos2 < first_dum_pos:
|
588 |
+
continue
|
589 |
+
|
590 |
+
# check if the previous loop created "virtual" indices between dummy
|
591 |
+
# indices, in such a case relink `linkpos1` and `linkpos2`:
|
592 |
+
if (-1-linkpos1) in links:
|
593 |
+
linkpos1 = -1-linkpos1
|
594 |
+
if (-1-linkpos2) in links:
|
595 |
+
linkpos2 = -1-linkpos2
|
596 |
+
|
597 |
+
# move only if not next to free index:
|
598 |
+
if linkpos1 >= 0 and not index_is_free[linkpos1]:
|
599 |
+
linkpos1 = pos1
|
600 |
+
|
601 |
+
if linkpos2 >=0 and not index_is_free[linkpos2]:
|
602 |
+
linkpos2 = pos2
|
603 |
+
|
604 |
+
# create the lower arcs:
|
605 |
+
if linkpos2 not in links[linkpos1]:
|
606 |
+
links[linkpos1].append(linkpos2)
|
607 |
+
if linkpos1 not in links[linkpos2]:
|
608 |
+
links[linkpos2].append(linkpos1)
|
609 |
+
|
610 |
+
# This loop starts from the `first_dum_pos` index (first dummy index)
|
611 |
+
# walks through the graph deleting the visited indices from `links`,
|
612 |
+
# it adds a gamma matrix for every free index in encounters, while it
|
613 |
+
# completely ignores dummy indices and virtual indices.
|
614 |
+
pointer = first_dum_pos
|
615 |
+
previous_pointer = 0
|
616 |
+
while True:
|
617 |
+
if pointer in links:
|
618 |
+
next_ones = links.pop(pointer)
|
619 |
+
else:
|
620 |
+
break
|
621 |
+
|
622 |
+
if previous_pointer in next_ones:
|
623 |
+
next_ones.remove(previous_pointer)
|
624 |
+
|
625 |
+
previous_pointer = pointer
|
626 |
+
|
627 |
+
if next_ones:
|
628 |
+
pointer = next_ones[0]
|
629 |
+
else:
|
630 |
+
break
|
631 |
+
|
632 |
+
if pointer == previous_pointer:
|
633 |
+
break
|
634 |
+
if pointer >=0 and free_pos[pointer] is not None:
|
635 |
+
for ri in resulting_indices:
|
636 |
+
ri.append(free_pos[pointer])
|
637 |
+
|
638 |
+
# The following loop removes the remaining connected components in `links`.
|
639 |
+
# If there are free indices inside a connected component, it gives a
|
640 |
+
# contribution to the resulting expression given by the factor
|
641 |
+
# `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's
|
642 |
+
# paper represented as {gamma_a, gamma_b, ... , gamma_z},
|
643 |
+
# virtual indices are ignored. The variable `connected_components` is
|
644 |
+
# increased by one for every connected component this loop encounters.
|
645 |
+
|
646 |
+
# If the connected component has virtual and dummy indices only
|
647 |
+
# (no free indices), it contributes to `resulting_indices` by a factor of two.
|
648 |
+
# The multiplication by two is a result of the
|
649 |
+
# factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper.
|
650 |
+
# Note: curly brackets are meant as in the paper, as a generalized
|
651 |
+
# multi-element anticommutator!
|
652 |
+
|
653 |
+
while links:
|
654 |
+
connected_components += 1
|
655 |
+
pointer = min(links.keys())
|
656 |
+
previous_pointer = pointer
|
657 |
+
# the inner loop erases the visited indices from `links`, and it adds
|
658 |
+
# all free indices to `prepend_indices` list, virtual indices are
|
659 |
+
# ignored.
|
660 |
+
prepend_indices = []
|
661 |
+
while True:
|
662 |
+
if pointer in links:
|
663 |
+
next_ones = links.pop(pointer)
|
664 |
+
else:
|
665 |
+
break
|
666 |
+
|
667 |
+
if previous_pointer in next_ones:
|
668 |
+
if len(next_ones) > 1:
|
669 |
+
next_ones.remove(previous_pointer)
|
670 |
+
|
671 |
+
previous_pointer = pointer
|
672 |
+
|
673 |
+
if next_ones:
|
674 |
+
pointer = next_ones[0]
|
675 |
+
|
676 |
+
if pointer >= first_dum_pos and free_pos[pointer] is not None:
|
677 |
+
prepend_indices.insert(0, free_pos[pointer])
|
678 |
+
# if `prepend_indices` is void, it means there are no free indices
|
679 |
+
# in the loop (and it can be shown that there must be a virtual index),
|
680 |
+
# loops of virtual indices only contribute by a factor of two:
|
681 |
+
if len(prepend_indices) == 0:
|
682 |
+
resulting_coeff *= 2
|
683 |
+
# otherwise, add the free indices in `prepend_indices` to
|
684 |
+
# the `resulting_indices`:
|
685 |
+
else:
|
686 |
+
expr1 = prepend_indices
|
687 |
+
expr2 = list(reversed(prepend_indices))
|
688 |
+
resulting_indices = [expri + ri for ri in resulting_indices for expri in (expr1, expr2)]
|
689 |
+
|
690 |
+
# sign correction, as described in Kahane's paper:
|
691 |
+
resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1
|
692 |
+
# power of two factor, as described in Kahane's paper:
|
693 |
+
resulting_coeff *= 2**(number_of_contractions)
|
694 |
+
|
695 |
+
# If `first_dum_pos` is not zero, it means that there are trailing free gamma
|
696 |
+
# matrices in front of `expression`, so multiply by them:
|
697 |
+
resulting_indices = [ free_pos[0:first_dum_pos] + ri for ri in resulting_indices ]
|
698 |
+
|
699 |
+
resulting_expr = S.Zero
|
700 |
+
for i in resulting_indices:
|
701 |
+
temp_expr = S.One
|
702 |
+
for j in i:
|
703 |
+
temp_expr *= GammaMatrix(j)
|
704 |
+
resulting_expr += temp_expr
|
705 |
+
|
706 |
+
t = resulting_coeff * resulting_expr
|
707 |
+
t1 = None
|
708 |
+
if isinstance(t, TensAdd):
|
709 |
+
t1 = t.args[0]
|
710 |
+
elif isinstance(t, TensMul):
|
711 |
+
t1 = t
|
712 |
+
if t1:
|
713 |
+
pass
|
714 |
+
else:
|
715 |
+
t = eye(4)*t
|
716 |
+
return t
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.dense import eye, Matrix
|
2 |
+
from sympy.tensor.tensor import tensor_indices, TensorHead, tensor_heads, \
|
3 |
+
TensExpr, canon_bp
|
4 |
+
from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex, \
|
5 |
+
kahane_simplify, gamma_trace, _simplify_single_line, simplify_gamma_expression
|
6 |
+
from sympy import Symbol
|
7 |
+
|
8 |
+
|
9 |
+
def _is_tensor_eq(arg1, arg2):
|
10 |
+
arg1 = canon_bp(arg1)
|
11 |
+
arg2 = canon_bp(arg2)
|
12 |
+
if isinstance(arg1, TensExpr):
|
13 |
+
return arg1.equals(arg2)
|
14 |
+
elif isinstance(arg2, TensExpr):
|
15 |
+
return arg2.equals(arg1)
|
16 |
+
return arg1 == arg2
|
17 |
+
|
18 |
+
def execute_gamma_simplify_tests_for_function(tfunc, D):
|
19 |
+
"""
|
20 |
+
Perform tests to check if sfunc is able to simplify gamma matrix expressions.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
==========
|
24 |
+
|
25 |
+
`sfunc` a function to simplify a `TIDS`, shall return the simplified `TIDS`.
|
26 |
+
`D` the number of dimension (in most cases `D=4`).
|
27 |
+
|
28 |
+
"""
|
29 |
+
|
30 |
+
mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
|
31 |
+
a1, a2, a3, a4, a5, a6 = tensor_indices("a1:7", LorentzIndex)
|
32 |
+
mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52 = tensor_indices("mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52", LorentzIndex)
|
33 |
+
mu61, mu71, mu72 = tensor_indices("mu61, mu71, mu72", LorentzIndex)
|
34 |
+
m0, m1, m2, m3, m4, m5, m6 = tensor_indices("m0:7", LorentzIndex)
|
35 |
+
|
36 |
+
def g(xx, yy):
|
37 |
+
return (G(xx)*G(yy) + G(yy)*G(xx))/2
|
38 |
+
|
39 |
+
# Some examples taken from Kahane's paper, 4 dim only:
|
40 |
+
if D == 4:
|
41 |
+
t = (G(a1)*G(mu11)*G(a2)*G(mu21)*G(-a1)*G(mu31)*G(-a2))
|
42 |
+
assert _is_tensor_eq(tfunc(t), -4*G(mu11)*G(mu31)*G(mu21) - 4*G(mu31)*G(mu11)*G(mu21))
|
43 |
+
|
44 |
+
t = (G(a1)*G(mu11)*G(mu12)*\
|
45 |
+
G(a2)*G(mu21)*\
|
46 |
+
G(a3)*G(mu31)*G(mu32)*\
|
47 |
+
G(a4)*G(mu41)*\
|
48 |
+
G(-a2)*G(mu51)*G(mu52)*\
|
49 |
+
G(-a1)*G(mu61)*\
|
50 |
+
G(-a3)*G(mu71)*G(mu72)*\
|
51 |
+
G(-a4))
|
52 |
+
assert _is_tensor_eq(tfunc(t), \
|
53 |
+
16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41))
|
54 |
+
|
55 |
+
# Fully Lorentz-contracted expressions, these return scalars:
|
56 |
+
|
57 |
+
def add_delta(ne):
|
58 |
+
return ne * eye(4) # DiracSpinorIndex.delta(DiracSpinorIndex.auto_left, -DiracSpinorIndex.auto_right)
|
59 |
+
|
60 |
+
t = (G(mu)*G(-mu))
|
61 |
+
ts = add_delta(D)
|
62 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
63 |
+
|
64 |
+
t = (G(mu)*G(nu)*G(-mu)*G(-nu))
|
65 |
+
ts = add_delta(2*D - D**2) # -8
|
66 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
67 |
+
|
68 |
+
t = (G(mu)*G(nu)*G(-nu)*G(-mu))
|
69 |
+
ts = add_delta(D**2) # 16
|
70 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
71 |
+
|
72 |
+
t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
|
73 |
+
ts = add_delta(4*D - 4*D**2 + D**3) # 16
|
74 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
75 |
+
|
76 |
+
t = (G(mu)*G(nu)*G(rho)*G(-rho)*G(-nu)*G(-mu))
|
77 |
+
ts = add_delta(D**3) # 64
|
78 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
79 |
+
|
80 |
+
t = (G(a1)*G(a2)*G(a3)*G(a4)*G(-a3)*G(-a1)*G(-a2)*G(-a4))
|
81 |
+
ts = add_delta(-8*D + 16*D**2 - 8*D**3 + D**4) # -32
|
82 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
83 |
+
|
84 |
+
t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
|
85 |
+
ts = add_delta(-16*D + 24*D**2 - 8*D**3 + D**4) # 64
|
86 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
87 |
+
|
88 |
+
t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
|
89 |
+
ts = add_delta(8*D - 12*D**2 + 6*D**3 - D**4) # -32
|
90 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
91 |
+
|
92 |
+
t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a2)*G(-a1)*G(-a5)*G(-a4))
|
93 |
+
ts = add_delta(64*D - 112*D**2 + 60*D**3 - 12*D**4 + D**5) # 256
|
94 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
95 |
+
|
96 |
+
t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a1)*G(-a2)*G(-a4)*G(-a5))
|
97 |
+
ts = add_delta(64*D - 120*D**2 + 72*D**3 - 16*D**4 + D**5) # -128
|
98 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
99 |
+
|
100 |
+
t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a3)*G(-a2)*G(-a1)*G(-a6)*G(-a5)*G(-a4))
|
101 |
+
ts = add_delta(416*D - 816*D**2 + 528*D**3 - 144*D**4 + 18*D**5 - D**6) # -128
|
102 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
103 |
+
|
104 |
+
t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a2)*G(-a3)*G(-a1)*G(-a6)*G(-a4)*G(-a5))
|
105 |
+
ts = add_delta(416*D - 848*D**2 + 584*D**3 - 172*D**4 + 22*D**5 - D**6) # -128
|
106 |
+
assert _is_tensor_eq(tfunc(t), ts)
|
107 |
+
|
108 |
+
# Expressions with free indices:
|
109 |
+
|
110 |
+
t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
|
111 |
+
assert _is_tensor_eq(tfunc(t), (-2*G(sigma)*G(rho)*G(nu) + (4-D)*G(nu)*G(rho)*G(sigma)))
|
112 |
+
|
113 |
+
t = (G(mu)*G(nu)*G(-mu))
|
114 |
+
assert _is_tensor_eq(tfunc(t), (2-D)*G(nu))
|
115 |
+
|
116 |
+
t = (G(mu)*G(nu)*G(rho)*G(-mu))
|
117 |
+
assert _is_tensor_eq(tfunc(t), 2*G(nu)*G(rho) + 2*G(rho)*G(nu) - (4-D)*G(nu)*G(rho))
|
118 |
+
|
119 |
+
t = 2*G(m2)*G(m0)*G(m1)*G(-m0)*G(-m1)
|
120 |
+
st = tfunc(t)
|
121 |
+
assert _is_tensor_eq(st, (D*(-2*D + 4))*G(m2))
|
122 |
+
|
123 |
+
t = G(m2)*G(m0)*G(m1)*G(-m0)*G(-m2)
|
124 |
+
st = tfunc(t)
|
125 |
+
assert _is_tensor_eq(st, ((-D + 2)**2)*G(m1))
|
126 |
+
|
127 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)
|
128 |
+
st = tfunc(t)
|
129 |
+
assert _is_tensor_eq(st, (D - 4)*G(m0)*G(m2)*G(m3) + 4*G(m0)*g(m2, m3))
|
130 |
+
|
131 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)*G(-m0)
|
132 |
+
st = tfunc(t)
|
133 |
+
assert _is_tensor_eq(st, ((D - 4)**2)*G(m2)*G(m3) + (8*D - 16)*g(m2, m3))
|
134 |
+
|
135 |
+
t = G(m2)*G(m0)*G(m1)*G(-m2)*G(-m0)
|
136 |
+
st = tfunc(t)
|
137 |
+
assert _is_tensor_eq(st, ((-D + 2)*(D - 4) + 4)*G(m1))
|
138 |
+
|
139 |
+
t = G(m3)*G(m1)*G(m0)*G(m2)*G(-m3)*G(-m0)*G(-m2)
|
140 |
+
st = tfunc(t)
|
141 |
+
assert _is_tensor_eq(st, (-4*D + (-D + 2)**2*(D - 4) + 8)*G(m1))
|
142 |
+
|
143 |
+
t = 2*G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)
|
144 |
+
st = tfunc(t)
|
145 |
+
assert _is_tensor_eq(st, ((-2*D + 8)*G(m1)*G(m2)*G(m3) - 4*G(m3)*G(m2)*G(m1)))
|
146 |
+
|
147 |
+
t = G(m5)*G(m0)*G(m1)*G(m4)*G(m2)*G(-m4)*G(m3)*G(-m0)
|
148 |
+
st = tfunc(t)
|
149 |
+
assert _is_tensor_eq(st, (((-D + 2)*(-D + 4))*G(m5)*G(m1)*G(m2)*G(m3) + (2*D - 4)*G(m5)*G(m3)*G(m2)*G(m1)))
|
150 |
+
|
151 |
+
t = -G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)*G(m4)
|
152 |
+
st = tfunc(t)
|
153 |
+
assert _is_tensor_eq(st, ((D - 4)*G(m1)*G(m2)*G(m3)*G(m4) + 2*G(m3)*G(m2)*G(m1)*G(m4)))
|
154 |
+
|
155 |
+
t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
|
156 |
+
st = tfunc(t)
|
157 |
+
|
158 |
+
result1 = ((-D + 4)**2 + 4)*G(m1)*G(m2)*G(m3)*G(m4) +\
|
159 |
+
(4*D - 16)*G(m3)*G(m2)*G(m1)*G(m4) + (4*D - 16)*G(m4)*G(m1)*G(m2)*G(m3)\
|
160 |
+
+ 4*G(m2)*G(m1)*G(m4)*G(m3) + 4*G(m3)*G(m4)*G(m1)*G(m2) +\
|
161 |
+
4*G(m4)*G(m3)*G(m2)*G(m1)
|
162 |
+
|
163 |
+
# Kahane's algorithm yields this result, which is equivalent to `result1`
|
164 |
+
# in four dimensions, but is not automatically recognized as equal:
|
165 |
+
result2 = 8*G(m1)*G(m2)*G(m3)*G(m4) + 8*G(m4)*G(m3)*G(m2)*G(m1)
|
166 |
+
|
167 |
+
if D == 4:
|
168 |
+
assert _is_tensor_eq(st, (result1)) or _is_tensor_eq(st, (result2))
|
169 |
+
else:
|
170 |
+
assert _is_tensor_eq(st, (result1))
|
171 |
+
|
172 |
+
# and a few very simple cases, with no contracted indices:
|
173 |
+
|
174 |
+
t = G(m0)
|
175 |
+
st = tfunc(t)
|
176 |
+
assert _is_tensor_eq(st, t)
|
177 |
+
|
178 |
+
t = -7*G(m0)
|
179 |
+
st = tfunc(t)
|
180 |
+
assert _is_tensor_eq(st, t)
|
181 |
+
|
182 |
+
t = 224*G(m0)*G(m1)*G(-m2)*G(m3)
|
183 |
+
st = tfunc(t)
|
184 |
+
assert _is_tensor_eq(st, t)
|
185 |
+
|
186 |
+
|
187 |
+
def test_kahane_algorithm():
|
188 |
+
# Wrap this function to convert to and from TIDS:
|
189 |
+
|
190 |
+
def tfunc(e):
|
191 |
+
return _simplify_single_line(e)
|
192 |
+
|
193 |
+
execute_gamma_simplify_tests_for_function(tfunc, D=4)
|
194 |
+
|
195 |
+
|
196 |
+
def test_kahane_simplify1():
|
197 |
+
i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15 = tensor_indices('i0:16', LorentzIndex)
|
198 |
+
mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
|
199 |
+
D = 4
|
200 |
+
t = G(i0)*G(i1)
|
201 |
+
r = kahane_simplify(t)
|
202 |
+
assert r.equals(t)
|
203 |
+
|
204 |
+
t = G(i0)*G(i1)*G(-i0)
|
205 |
+
r = kahane_simplify(t)
|
206 |
+
assert r.equals(-2*G(i1))
|
207 |
+
t = G(i0)*G(i1)*G(-i0)
|
208 |
+
r = kahane_simplify(t)
|
209 |
+
assert r.equals(-2*G(i1))
|
210 |
+
|
211 |
+
t = G(i0)*G(i1)
|
212 |
+
r = kahane_simplify(t)
|
213 |
+
assert r.equals(t)
|
214 |
+
t = G(i0)*G(i1)
|
215 |
+
r = kahane_simplify(t)
|
216 |
+
assert r.equals(t)
|
217 |
+
t = G(i0)*G(-i0)
|
218 |
+
r = kahane_simplify(t)
|
219 |
+
assert r.equals(4*eye(4))
|
220 |
+
t = G(i0)*G(-i0)
|
221 |
+
r = kahane_simplify(t)
|
222 |
+
assert r.equals(4*eye(4))
|
223 |
+
t = G(i0)*G(-i0)
|
224 |
+
r = kahane_simplify(t)
|
225 |
+
assert r.equals(4*eye(4))
|
226 |
+
t = G(i0)*G(i1)*G(-i0)
|
227 |
+
r = kahane_simplify(t)
|
228 |
+
assert r.equals(-2*G(i1))
|
229 |
+
t = G(i0)*G(i1)*G(-i0)*G(-i1)
|
230 |
+
r = kahane_simplify(t)
|
231 |
+
assert r.equals((2*D - D**2)*eye(4))
|
232 |
+
t = G(i0)*G(i1)*G(-i0)*G(-i1)
|
233 |
+
r = kahane_simplify(t)
|
234 |
+
assert r.equals((2*D - D**2)*eye(4))
|
235 |
+
t = G(i0)*G(-i0)*G(i1)*G(-i1)
|
236 |
+
r = kahane_simplify(t)
|
237 |
+
assert r.equals(16*eye(4))
|
238 |
+
t = (G(mu)*G(nu)*G(-nu)*G(-mu))
|
239 |
+
r = kahane_simplify(t)
|
240 |
+
assert r.equals(D**2*eye(4))
|
241 |
+
t = (G(mu)*G(nu)*G(-nu)*G(-mu))
|
242 |
+
r = kahane_simplify(t)
|
243 |
+
assert r.equals(D**2*eye(4))
|
244 |
+
t = (G(mu)*G(nu)*G(-nu)*G(-mu))
|
245 |
+
r = kahane_simplify(t)
|
246 |
+
assert r.equals(D**2*eye(4))
|
247 |
+
t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
|
248 |
+
r = kahane_simplify(t)
|
249 |
+
assert r.equals((4*D - 4*D**2 + D**3)*eye(4))
|
250 |
+
t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
|
251 |
+
r = kahane_simplify(t)
|
252 |
+
assert r.equals((-16*D + 24*D**2 - 8*D**3 + D**4)*eye(4))
|
253 |
+
t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
|
254 |
+
r = kahane_simplify(t)
|
255 |
+
assert r.equals((8*D - 12*D**2 + 6*D**3 - D**4)*eye(4))
|
256 |
+
|
257 |
+
# Expressions with free indices:
|
258 |
+
t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
|
259 |
+
r = kahane_simplify(t)
|
260 |
+
assert r.equals(-2*G(sigma)*G(rho)*G(nu))
|
261 |
+
t = (G(mu)*G(-mu)*G(rho)*G(sigma))
|
262 |
+
r = kahane_simplify(t)
|
263 |
+
assert r.equals(4*G(rho)*G(sigma))
|
264 |
+
t = (G(rho)*G(sigma)*G(mu)*G(-mu))
|
265 |
+
r = kahane_simplify(t)
|
266 |
+
assert r.equals(4*G(rho)*G(sigma))
|
267 |
+
|
268 |
+
def test_gamma_matrix_class():
|
269 |
+
i, j, k = tensor_indices('i,j,k', LorentzIndex)
|
270 |
+
|
271 |
+
# define another type of TensorHead to see if exprs are correctly handled:
|
272 |
+
A = TensorHead('A', [LorentzIndex])
|
273 |
+
|
274 |
+
t = A(k)*G(i)*G(-i)
|
275 |
+
ts = simplify_gamma_expression(t)
|
276 |
+
assert _is_tensor_eq(ts, Matrix([
|
277 |
+
[4, 0, 0, 0],
|
278 |
+
[0, 4, 0, 0],
|
279 |
+
[0, 0, 4, 0],
|
280 |
+
[0, 0, 0, 4]])*A(k))
|
281 |
+
|
282 |
+
t = G(i)*A(k)*G(j)
|
283 |
+
ts = simplify_gamma_expression(t)
|
284 |
+
assert _is_tensor_eq(ts, A(k)*G(i)*G(j))
|
285 |
+
|
286 |
+
execute_gamma_simplify_tests_for_function(simplify_gamma_expression, D=4)
|
287 |
+
|
288 |
+
|
289 |
+
def test_gamma_matrix_trace():
|
290 |
+
g = LorentzIndex.metric
|
291 |
+
|
292 |
+
m0, m1, m2, m3, m4, m5, m6 = tensor_indices('m0:7', LorentzIndex)
|
293 |
+
n0, n1, n2, n3, n4, n5 = tensor_indices('n0:6', LorentzIndex)
|
294 |
+
|
295 |
+
# working in D=4 dimensions
|
296 |
+
D = 4
|
297 |
+
|
298 |
+
# traces of odd number of gamma matrices are zero:
|
299 |
+
t = G(m0)
|
300 |
+
t1 = gamma_trace(t)
|
301 |
+
assert t1.equals(0)
|
302 |
+
|
303 |
+
t = G(m0)*G(m1)*G(m2)
|
304 |
+
t1 = gamma_trace(t)
|
305 |
+
assert t1.equals(0)
|
306 |
+
|
307 |
+
t = G(m0)*G(m1)*G(-m0)
|
308 |
+
t1 = gamma_trace(t)
|
309 |
+
assert t1.equals(0)
|
310 |
+
|
311 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)
|
312 |
+
t1 = gamma_trace(t)
|
313 |
+
assert t1.equals(0)
|
314 |
+
|
315 |
+
# traces without internal contractions:
|
316 |
+
t = G(m0)*G(m1)
|
317 |
+
t1 = gamma_trace(t)
|
318 |
+
assert _is_tensor_eq(t1, 4*g(m0, m1))
|
319 |
+
|
320 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)
|
321 |
+
t1 = gamma_trace(t)
|
322 |
+
t2 = -4*g(m0, m2)*g(m1, m3) + 4*g(m0, m1)*g(m2, m3) + 4*g(m0, m3)*g(m1, m2)
|
323 |
+
assert _is_tensor_eq(t1, t2)
|
324 |
+
|
325 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)
|
326 |
+
t1 = gamma_trace(t)
|
327 |
+
t2 = t1*g(-m0, -m5)
|
328 |
+
t2 = t2.contract_metric(g)
|
329 |
+
assert _is_tensor_eq(t2, D*gamma_trace(G(m1)*G(m2)*G(m3)*G(m4)))
|
330 |
+
|
331 |
+
# traces of expressions with internal contractions:
|
332 |
+
t = G(m0)*G(-m0)
|
333 |
+
t1 = gamma_trace(t)
|
334 |
+
assert t1.equals(4*D)
|
335 |
+
|
336 |
+
t = G(m0)*G(m1)*G(-m0)*G(-m1)
|
337 |
+
t1 = gamma_trace(t)
|
338 |
+
assert t1.equals(8*D - 4*D**2)
|
339 |
+
|
340 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)
|
341 |
+
t1 = gamma_trace(t)
|
342 |
+
t2 = (-4*D)*g(m1, m3)*g(m2, m4) + (4*D)*g(m1, m2)*g(m3, m4) + \
|
343 |
+
(4*D)*g(m1, m4)*g(m2, m3)
|
344 |
+
assert _is_tensor_eq(t1, t2)
|
345 |
+
|
346 |
+
t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
|
347 |
+
t1 = gamma_trace(t)
|
348 |
+
t2 = (32*D + 4*(-D + 4)**2 - 64)*(g(m1, m2)*g(m3, m4) - \
|
349 |
+
g(m1, m3)*g(m2, m4) + g(m1, m4)*g(m2, m3))
|
350 |
+
assert _is_tensor_eq(t1, t2)
|
351 |
+
|
352 |
+
t = G(m0)*G(m1)*G(-m0)*G(m3)
|
353 |
+
t1 = gamma_trace(t)
|
354 |
+
assert t1.equals((-4*D + 8)*g(m1, m3))
|
355 |
+
|
356 |
+
# p, q = S1('p,q')
|
357 |
+
# ps = p(m0)*G(-m0)
|
358 |
+
# qs = q(m0)*G(-m0)
|
359 |
+
# t = ps*qs*ps*qs
|
360 |
+
# t1 = gamma_trace(t)
|
361 |
+
# assert t1 == 8*p(m0)*q(-m0)*p(m1)*q(-m1) - 4*p(m0)*p(-m0)*q(m1)*q(-m1)
|
362 |
+
|
363 |
+
t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)*G(-m5)
|
364 |
+
t1 = gamma_trace(t)
|
365 |
+
assert t1.equals(-4*D**6 + 120*D**5 - 1040*D**4 + 3360*D**3 - 4480*D**2 + 2048*D)
|
366 |
+
|
367 |
+
t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(-n2)*G(-n1)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
|
368 |
+
t1 = gamma_trace(t)
|
369 |
+
tresu = -7168*D + 16768*D**2 - 14400*D**3 + 5920*D**4 - 1232*D**5 + 120*D**6 - 4*D**7
|
370 |
+
assert t1.equals(tresu)
|
371 |
+
|
372 |
+
# checked with Mathematica
|
373 |
+
# In[1]:= <<Tracer.m
|
374 |
+
# In[2]:= Spur[l];
|
375 |
+
# In[3]:= GammaTrace[l, {m0},{m1},{n1},{m2},{n2},{m3},{m4},{n3},{n4},{m0},{m1},{m2},{m3},{m4}]
|
376 |
+
t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(n3)*G(n4)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
|
377 |
+
t1 = gamma_trace(t)
|
378 |
+
# t1 = t1.expand_coeff()
|
379 |
+
c1 = -4*D**5 + 120*D**4 - 1200*D**3 + 5280*D**2 - 10560*D + 7808
|
380 |
+
c2 = -4*D**5 + 88*D**4 - 560*D**3 + 1440*D**2 - 1600*D + 640
|
381 |
+
assert _is_tensor_eq(t1, c1*g(n1, n4)*g(n2, n3) + c2*g(n1, n2)*g(n3, n4) + \
|
382 |
+
(-c1)*g(n1, n3)*g(n2, n4))
|
383 |
+
|
384 |
+
p, q = tensor_heads('p,q', [LorentzIndex])
|
385 |
+
ps = p(m0)*G(-m0)
|
386 |
+
qs = q(m0)*G(-m0)
|
387 |
+
p2 = p(m0)*p(-m0)
|
388 |
+
q2 = q(m0)*q(-m0)
|
389 |
+
pq = p(m0)*q(-m0)
|
390 |
+
t = ps*qs*ps*qs
|
391 |
+
r = gamma_trace(t)
|
392 |
+
assert _is_tensor_eq(r, 8*pq*pq - 4*p2*q2)
|
393 |
+
t = ps*qs*ps*qs*ps*qs
|
394 |
+
r = gamma_trace(t)
|
395 |
+
assert _is_tensor_eq(r, -12*p2*pq*q2 + 16*pq*pq*pq)
|
396 |
+
t = ps*qs*ps*qs*ps*qs*ps*qs
|
397 |
+
r = gamma_trace(t)
|
398 |
+
assert _is_tensor_eq(r, -32*pq*pq*p2*q2 + 32*pq*pq*pq*pq + 4*p2*p2*q2*q2)
|
399 |
+
|
400 |
+
t = 4*p(m1)*p(m0)*p(-m0)*q(-m1)*q(m2)*q(-m2)
|
401 |
+
assert _is_tensor_eq(gamma_trace(t), t)
|
402 |
+
t = ps*ps*ps*ps*ps*ps*ps*ps
|
403 |
+
r = gamma_trace(t)
|
404 |
+
assert r.equals(4*p2*p2*p2*p2)
|
405 |
+
|
406 |
+
|
407 |
+
def test_bug_13636():
|
408 |
+
"""Test issue 13636 regarding handling traces of sums of products
|
409 |
+
of GammaMatrix mixed with other factors."""
|
410 |
+
pi, ki, pf = tensor_heads("pi, ki, pf", [LorentzIndex])
|
411 |
+
i0, i1, i2, i3, i4 = tensor_indices("i0:5", LorentzIndex)
|
412 |
+
x = Symbol("x")
|
413 |
+
pis = pi(i2) * G(-i2)
|
414 |
+
kis = ki(i3) * G(-i3)
|
415 |
+
pfs = pf(i4) * G(-i4)
|
416 |
+
|
417 |
+
a = pfs * G(i0) * kis * G(i1) * pis * G(-i1) * kis * G(-i0)
|
418 |
+
b = pfs * G(i0) * kis * G(i1) * pis * x * G(-i0) * pi(-i1)
|
419 |
+
ta = gamma_trace(a)
|
420 |
+
tb = gamma_trace(b)
|
421 |
+
t_a_plus_b = gamma_trace(a + b)
|
422 |
+
assert ta == 4 * (
|
423 |
+
-4 * ki(i0) * ki(-i0) * pf(i1) * pi(-i1)
|
424 |
+
+ 8 * ki(i0) * ki(i1) * pf(-i0) * pi(-i1)
|
425 |
+
)
|
426 |
+
assert tb == -8 * x * ki(i0) * pf(-i0) * pi(i1) * pi(-i1)
|
427 |
+
assert t_a_plus_b == ta + tb
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.numbers import Rational
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import symbols
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp
|
7 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
8 |
+
|
9 |
+
|
10 |
+
def test_cg_simp_add():
|
11 |
+
j, m1, m1p, m2, m2p = symbols('j m1 m1p m2 m2p')
|
12 |
+
# Test Varshalovich 8.7.1 Eq 1
|
13 |
+
a = CG(S.Half, S.Half, 0, 0, S.Half, S.Half)
|
14 |
+
b = CG(S.Half, Rational(-1, 2), 0, 0, S.Half, Rational(-1, 2))
|
15 |
+
c = CG(1, 1, 0, 0, 1, 1)
|
16 |
+
d = CG(1, 0, 0, 0, 1, 0)
|
17 |
+
e = CG(1, -1, 0, 0, 1, -1)
|
18 |
+
assert cg_simp(a + b) == 2
|
19 |
+
assert cg_simp(c + d + e) == 3
|
20 |
+
assert cg_simp(a + b + c + d + e) == 5
|
21 |
+
assert cg_simp(a + b + c) == 2 + c
|
22 |
+
assert cg_simp(2*a + b) == 2 + a
|
23 |
+
assert cg_simp(2*c + d + e) == 3 + c
|
24 |
+
assert cg_simp(5*a + 5*b) == 10
|
25 |
+
assert cg_simp(5*c + 5*d + 5*e) == 15
|
26 |
+
assert cg_simp(-a - b) == -2
|
27 |
+
assert cg_simp(-c - d - e) == -3
|
28 |
+
assert cg_simp(-6*a - 6*b) == -12
|
29 |
+
assert cg_simp(-4*c - 4*d - 4*e) == -12
|
30 |
+
a = CG(S.Half, S.Half, j, 0, S.Half, S.Half)
|
31 |
+
b = CG(S.Half, Rational(-1, 2), j, 0, S.Half, Rational(-1, 2))
|
32 |
+
c = CG(1, 1, j, 0, 1, 1)
|
33 |
+
d = CG(1, 0, j, 0, 1, 0)
|
34 |
+
e = CG(1, -1, j, 0, 1, -1)
|
35 |
+
assert cg_simp(a + b) == 2*KroneckerDelta(j, 0)
|
36 |
+
assert cg_simp(c + d + e) == 3*KroneckerDelta(j, 0)
|
37 |
+
assert cg_simp(a + b + c + d + e) == 5*KroneckerDelta(j, 0)
|
38 |
+
assert cg_simp(a + b + c) == 2*KroneckerDelta(j, 0) + c
|
39 |
+
assert cg_simp(2*a + b) == 2*KroneckerDelta(j, 0) + a
|
40 |
+
assert cg_simp(2*c + d + e) == 3*KroneckerDelta(j, 0) + c
|
41 |
+
assert cg_simp(5*a + 5*b) == 10*KroneckerDelta(j, 0)
|
42 |
+
assert cg_simp(5*c + 5*d + 5*e) == 15*KroneckerDelta(j, 0)
|
43 |
+
assert cg_simp(-a - b) == -2*KroneckerDelta(j, 0)
|
44 |
+
assert cg_simp(-c - d - e) == -3*KroneckerDelta(j, 0)
|
45 |
+
assert cg_simp(-6*a - 6*b) == -12*KroneckerDelta(j, 0)
|
46 |
+
assert cg_simp(-4*c - 4*d - 4*e) == -12*KroneckerDelta(j, 0)
|
47 |
+
# Test Varshalovich 8.7.1 Eq 2
|
48 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)
|
49 |
+
b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
|
50 |
+
c = CG(1, 1, 1, -1, 0, 0)
|
51 |
+
d = CG(1, 0, 1, 0, 0, 0)
|
52 |
+
e = CG(1, -1, 1, 1, 0, 0)
|
53 |
+
assert cg_simp(a - b) == sqrt(2)
|
54 |
+
assert cg_simp(c - d + e) == sqrt(3)
|
55 |
+
assert cg_simp(a - b + c - d + e) == sqrt(2) + sqrt(3)
|
56 |
+
assert cg_simp(a - b + c) == sqrt(2) + c
|
57 |
+
assert cg_simp(2*a - b) == sqrt(2) + a
|
58 |
+
assert cg_simp(2*c - d + e) == sqrt(3) + c
|
59 |
+
assert cg_simp(5*a - 5*b) == 5*sqrt(2)
|
60 |
+
assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)
|
61 |
+
assert cg_simp(-a + b) == -sqrt(2)
|
62 |
+
assert cg_simp(-c + d - e) == -sqrt(3)
|
63 |
+
assert cg_simp(-6*a + 6*b) == -6*sqrt(2)
|
64 |
+
assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)
|
65 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), j, 0)
|
66 |
+
b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, j, 0)
|
67 |
+
c = CG(1, 1, 1, -1, j, 0)
|
68 |
+
d = CG(1, 0, 1, 0, j, 0)
|
69 |
+
e = CG(1, -1, 1, 1, j, 0)
|
70 |
+
assert cg_simp(a - b) == sqrt(2)*KroneckerDelta(j, 0)
|
71 |
+
assert cg_simp(c - d + e) == sqrt(3)*KroneckerDelta(j, 0)
|
72 |
+
assert cg_simp(a - b + c - d + e) == sqrt(
|
73 |
+
2)*KroneckerDelta(j, 0) + sqrt(3)*KroneckerDelta(j, 0)
|
74 |
+
assert cg_simp(a - b + c) == sqrt(2)*KroneckerDelta(j, 0) + c
|
75 |
+
assert cg_simp(2*a - b) == sqrt(2)*KroneckerDelta(j, 0) + a
|
76 |
+
assert cg_simp(2*c - d + e) == sqrt(3)*KroneckerDelta(j, 0) + c
|
77 |
+
assert cg_simp(5*a - 5*b) == 5*sqrt(2)*KroneckerDelta(j, 0)
|
78 |
+
assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)*KroneckerDelta(j, 0)
|
79 |
+
assert cg_simp(-a + b) == -sqrt(2)*KroneckerDelta(j, 0)
|
80 |
+
assert cg_simp(-c + d - e) == -sqrt(3)*KroneckerDelta(j, 0)
|
81 |
+
assert cg_simp(-6*a + 6*b) == -6*sqrt(2)*KroneckerDelta(j, 0)
|
82 |
+
assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)*KroneckerDelta(j, 0)
|
83 |
+
# Test Varshalovich 8.7.2 Eq 9
|
84 |
+
# alpha=alphap,beta=betap case
|
85 |
+
# numerical
|
86 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0)**2
|
87 |
+
b = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)**2
|
88 |
+
c = CG(1, 0, 1, 1, 1, 1)**2
|
89 |
+
d = CG(1, 0, 1, 1, 2, 1)**2
|
90 |
+
assert cg_simp(a + b) == 1
|
91 |
+
assert cg_simp(c + d) == 1
|
92 |
+
assert cg_simp(a + b + c + d) == 2
|
93 |
+
assert cg_simp(4*a + 4*b) == 4
|
94 |
+
assert cg_simp(4*c + 4*d) == 4
|
95 |
+
assert cg_simp(5*a + 3*b) == 3 + 2*a
|
96 |
+
assert cg_simp(5*c + 3*d) == 3 + 2*c
|
97 |
+
assert cg_simp(-a - b) == -1
|
98 |
+
assert cg_simp(-c - d) == -1
|
99 |
+
# symbolic
|
100 |
+
a = CG(S.Half, m1, S.Half, m2, 1, 1)**2
|
101 |
+
b = CG(S.Half, m1, S.Half, m2, 1, 0)**2
|
102 |
+
c = CG(S.Half, m1, S.Half, m2, 1, -1)**2
|
103 |
+
d = CG(S.Half, m1, S.Half, m2, 0, 0)**2
|
104 |
+
assert cg_simp(a + b + c + d) == 1
|
105 |
+
assert cg_simp(4*a + 4*b + 4*c + 4*d) == 4
|
106 |
+
assert cg_simp(3*a + 5*b + 3*c + 4*d) == 3 + 2*b + d
|
107 |
+
assert cg_simp(-a - b - c - d) == -1
|
108 |
+
a = CG(1, m1, 1, m2, 2, 2)**2
|
109 |
+
b = CG(1, m1, 1, m2, 2, 1)**2
|
110 |
+
c = CG(1, m1, 1, m2, 2, 0)**2
|
111 |
+
d = CG(1, m1, 1, m2, 2, -1)**2
|
112 |
+
e = CG(1, m1, 1, m2, 2, -2)**2
|
113 |
+
f = CG(1, m1, 1, m2, 1, 1)**2
|
114 |
+
g = CG(1, m1, 1, m2, 1, 0)**2
|
115 |
+
h = CG(1, m1, 1, m2, 1, -1)**2
|
116 |
+
i = CG(1, m1, 1, m2, 0, 0)**2
|
117 |
+
assert cg_simp(a + b + c + d + e + f + g + h + i) == 1
|
118 |
+
assert cg_simp(4*(a + b + c + d + e + f + g + h + i)) == 4
|
119 |
+
assert cg_simp(a + b + 2*c + d + 4*e + f + g + h + i) == 1 + c + 3*e
|
120 |
+
assert cg_simp(-a - b - c - d - e - f - g - h - i) == -1
|
121 |
+
# alpha!=alphap or beta!=betap case
|
122 |
+
# numerical
|
123 |
+
a = CG(S.Half, S(
|
124 |
+
1)/2, S.Half, Rational(-1, 2), 1, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 1, 0)
|
125 |
+
b = CG(S.Half, S(
|
126 |
+
1)/2, S.Half, Rational(-1, 2), 0, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
|
127 |
+
c = CG(1, 1, 1, 0, 2, 1)*CG(1, 0, 1, 1, 2, 1)
|
128 |
+
d = CG(1, 1, 1, 0, 1, 1)*CG(1, 0, 1, 1, 1, 1)
|
129 |
+
assert cg_simp(a + b) == 0
|
130 |
+
assert cg_simp(c + d) == 0
|
131 |
+
# symbolic
|
132 |
+
a = CG(S.Half, m1, S.Half, m2, 1, 1)*CG(S.Half, m1p, S.Half, m2p, 1, 1)
|
133 |
+
b = CG(S.Half, m1, S.Half, m2, 1, 0)*CG(S.Half, m1p, S.Half, m2p, 1, 0)
|
134 |
+
c = CG(S.Half, m1, S.Half, m2, 1, -1)*CG(S.Half, m1p, S.Half, m2p, 1, -1)
|
135 |
+
d = CG(S.Half, m1, S.Half, m2, 0, 0)*CG(S.Half, m1p, S.Half, m2p, 0, 0)
|
136 |
+
assert cg_simp(a + b + c + d) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
|
137 |
+
a = CG(1, m1, 1, m2, 2, 2)*CG(1, m1p, 1, m2p, 2, 2)
|
138 |
+
b = CG(1, m1, 1, m2, 2, 1)*CG(1, m1p, 1, m2p, 2, 1)
|
139 |
+
c = CG(1, m1, 1, m2, 2, 0)*CG(1, m1p, 1, m2p, 2, 0)
|
140 |
+
d = CG(1, m1, 1, m2, 2, -1)*CG(1, m1p, 1, m2p, 2, -1)
|
141 |
+
e = CG(1, m1, 1, m2, 2, -2)*CG(1, m1p, 1, m2p, 2, -2)
|
142 |
+
f = CG(1, m1, 1, m2, 1, 1)*CG(1, m1p, 1, m2p, 1, 1)
|
143 |
+
g = CG(1, m1, 1, m2, 1, 0)*CG(1, m1p, 1, m2p, 1, 0)
|
144 |
+
h = CG(1, m1, 1, m2, 1, -1)*CG(1, m1p, 1, m2p, 1, -1)
|
145 |
+
i = CG(1, m1, 1, m2, 0, 0)*CG(1, m1p, 1, m2p, 0, 0)
|
146 |
+
assert cg_simp(
|
147 |
+
a + b + c + d + e + f + g + h + i) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
|
148 |
+
|
149 |
+
|
150 |
+
def test_cg_simp_sum():
|
151 |
+
x, a, b, c, cp, alpha, beta, gamma, gammap = symbols(
|
152 |
+
'x a b c cp alpha beta gamma gammap')
|
153 |
+
# Varshalovich 8.7.1 Eq 1
|
154 |
+
assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)
|
155 |
+
)) == x*(2*a + 1)*KroneckerDelta(b, 0)
|
156 |
+
assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)) + CG(1, 0, 1, 0, 1, 0)) == x*(2*a + 1)*KroneckerDelta(b, 0) + CG(1, 0, 1, 0, 1, 0)
|
157 |
+
assert cg_simp(2 * Sum(CG(1, alpha, 0, 0, 1, alpha), (alpha, -1, 1))) == 6
|
158 |
+
# Varshalovich 8.7.1 Eq 2
|
159 |
+
assert cg_simp(x*Sum((-1)**(a - alpha) * CG(a, alpha, a, -alpha, c,
|
160 |
+
0), (alpha, -a, a))) == x*sqrt(2*a + 1)*KroneckerDelta(c, 0)
|
161 |
+
assert cg_simp(3*Sum((-1)**(2 - alpha) * CG(
|
162 |
+
2, alpha, 2, -alpha, 0, 0), (alpha, -2, 2))) == 3*sqrt(5)
|
163 |
+
# Varshalovich 8.7.2 Eq 4
|
164 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)
|
165 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, c, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(gamma, gammap)
|
166 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gamma), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)
|
167 |
+
assert cg_simp(Sum(CG(
|
168 |
+
a, alpha, b, beta, c, gamma)**2, (alpha, -a, a), (beta, -b, b))) == 1
|
169 |
+
assert cg_simp(Sum(CG(2, alpha, 1, beta, 2, gamma)*CG(2, alpha, 1, beta, 2, gammap), (alpha, -2, 2), (beta, -1, 1))) == KroneckerDelta(gamma, gammap)
|
170 |
+
|
171 |
+
|
172 |
+
def test_doit():
|
173 |
+
assert Wigner3j(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0).doit() == -sqrt(2)/2
|
174 |
+
assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105
|
175 |
+
assert Wigner6j(3, 1, 2, 2, 2, 1).doit() == sqrt(21) / 105
|
176 |
+
assert Wigner9j(
|
177 |
+
2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0).doit() == sqrt(2)/12
|
178 |
+
assert CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0).doit() == sqrt(2)/2
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Float
|
2 |
+
|
3 |
+
from sympy.physics.quantum.constants import hbar
|
4 |
+
|
5 |
+
|
6 |
+
def test_hbar():
|
7 |
+
assert hbar.is_commutative is True
|
8 |
+
assert hbar.is_real is True
|
9 |
+
assert hbar.is_positive is True
|
10 |
+
assert hbar.is_negative is False
|
11 |
+
assert hbar.is_irrational is True
|
12 |
+
|
13 |
+
assert hbar.evalf() == Float(1.05457162e-34)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_fermion.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.quantum import Dagger, AntiCommutator, qapply
|
2 |
+
from sympy.physics.quantum.fermion import FermionOp
|
3 |
+
from sympy.physics.quantum.fermion import FermionFockKet, FermionFockBra
|
4 |
+
|
5 |
+
|
6 |
+
def test_fermionoperator():
|
7 |
+
c = FermionOp('c')
|
8 |
+
d = FermionOp('d')
|
9 |
+
|
10 |
+
assert isinstance(c, FermionOp)
|
11 |
+
assert isinstance(Dagger(c), FermionOp)
|
12 |
+
|
13 |
+
assert c.is_annihilation
|
14 |
+
assert not Dagger(c).is_annihilation
|
15 |
+
|
16 |
+
assert FermionOp("c") == FermionOp("c", True)
|
17 |
+
assert FermionOp("c") != FermionOp("d")
|
18 |
+
assert FermionOp("c", True) != FermionOp("c", False)
|
19 |
+
|
20 |
+
assert AntiCommutator(c, Dagger(c)).doit() == 1
|
21 |
+
|
22 |
+
assert AntiCommutator(c, Dagger(d)).doit() == c * Dagger(d) + Dagger(d) * c
|
23 |
+
|
24 |
+
|
25 |
+
def test_fermion_states():
|
26 |
+
c = FermionOp("c")
|
27 |
+
|
28 |
+
# Fock states
|
29 |
+
assert (FermionFockBra(0) * FermionFockKet(1)).doit() == 0
|
30 |
+
assert (FermionFockBra(1) * FermionFockKet(1)).doit() == 1
|
31 |
+
|
32 |
+
assert qapply(c * FermionFockKet(1)) == FermionFockKet(0)
|
33 |
+
assert qapply(c * FermionFockKet(0)) == 0
|
34 |
+
|
35 |
+
assert qapply(Dagger(c) * FermionFockKet(0)) == FermionFockKet(1)
|
36 |
+
assert qapply(Dagger(c) * FermionFockKet(1)) == 0
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_hilbert.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.quantum.hilbert import (
|
2 |
+
HilbertSpace, ComplexSpace, L2, FockSpace, TensorProductHilbertSpace,
|
3 |
+
DirectSumHilbertSpace, TensorPowerHilbertSpace
|
4 |
+
)
|
5 |
+
|
6 |
+
from sympy.core.numbers import oo
|
7 |
+
from sympy.core.symbol import Symbol
|
8 |
+
from sympy.printing.repr import srepr
|
9 |
+
from sympy.printing.str import sstr
|
10 |
+
from sympy.sets.sets import Interval
|
11 |
+
|
12 |
+
|
13 |
+
def test_hilbert_space():
|
14 |
+
hs = HilbertSpace()
|
15 |
+
assert isinstance(hs, HilbertSpace)
|
16 |
+
assert sstr(hs) == 'H'
|
17 |
+
assert srepr(hs) == 'HilbertSpace()'
|
18 |
+
|
19 |
+
|
20 |
+
def test_complex_space():
|
21 |
+
c1 = ComplexSpace(2)
|
22 |
+
assert isinstance(c1, ComplexSpace)
|
23 |
+
assert c1.dimension == 2
|
24 |
+
assert sstr(c1) == 'C(2)'
|
25 |
+
assert srepr(c1) == 'ComplexSpace(Integer(2))'
|
26 |
+
|
27 |
+
n = Symbol('n')
|
28 |
+
c2 = ComplexSpace(n)
|
29 |
+
assert isinstance(c2, ComplexSpace)
|
30 |
+
assert c2.dimension == n
|
31 |
+
assert sstr(c2) == 'C(n)'
|
32 |
+
assert srepr(c2) == "ComplexSpace(Symbol('n'))"
|
33 |
+
assert c2.subs(n, 2) == ComplexSpace(2)
|
34 |
+
|
35 |
+
|
36 |
+
def test_L2():
|
37 |
+
b1 = L2(Interval(-oo, 1))
|
38 |
+
assert isinstance(b1, L2)
|
39 |
+
assert b1.dimension is oo
|
40 |
+
assert b1.interval == Interval(-oo, 1)
|
41 |
+
|
42 |
+
x = Symbol('x', real=True)
|
43 |
+
y = Symbol('y', real=True)
|
44 |
+
b2 = L2(Interval(x, y))
|
45 |
+
assert b2.dimension is oo
|
46 |
+
assert b2.interval == Interval(x, y)
|
47 |
+
assert b2.subs(x, -1) == L2(Interval(-1, y))
|
48 |
+
|
49 |
+
|
50 |
+
def test_fock_space():
|
51 |
+
f1 = FockSpace()
|
52 |
+
f2 = FockSpace()
|
53 |
+
assert isinstance(f1, FockSpace)
|
54 |
+
assert f1.dimension is oo
|
55 |
+
assert f1 == f2
|
56 |
+
|
57 |
+
|
58 |
+
def test_tensor_product():
|
59 |
+
n = Symbol('n')
|
60 |
+
hs1 = ComplexSpace(2)
|
61 |
+
hs2 = ComplexSpace(n)
|
62 |
+
|
63 |
+
h = hs1*hs2
|
64 |
+
assert isinstance(h, TensorProductHilbertSpace)
|
65 |
+
assert h.dimension == 2*n
|
66 |
+
assert h.spaces == (hs1, hs2)
|
67 |
+
|
68 |
+
h = hs2*hs2
|
69 |
+
assert isinstance(h, TensorPowerHilbertSpace)
|
70 |
+
assert h.base == hs2
|
71 |
+
assert h.exp == 2
|
72 |
+
assert h.dimension == n**2
|
73 |
+
|
74 |
+
f = FockSpace()
|
75 |
+
h = hs1*hs2*f
|
76 |
+
assert h.dimension is oo
|
77 |
+
|
78 |
+
|
79 |
+
def test_tensor_power():
|
80 |
+
n = Symbol('n')
|
81 |
+
hs1 = ComplexSpace(2)
|
82 |
+
hs2 = ComplexSpace(n)
|
83 |
+
|
84 |
+
h = hs1**2
|
85 |
+
assert isinstance(h, TensorPowerHilbertSpace)
|
86 |
+
assert h.base == hs1
|
87 |
+
assert h.exp == 2
|
88 |
+
assert h.dimension == 4
|
89 |
+
|
90 |
+
h = hs2**3
|
91 |
+
assert isinstance(h, TensorPowerHilbertSpace)
|
92 |
+
assert h.base == hs2
|
93 |
+
assert h.exp == 3
|
94 |
+
assert h.dimension == n**3
|
95 |
+
|
96 |
+
|
97 |
+
def test_direct_sum():
|
98 |
+
n = Symbol('n')
|
99 |
+
hs1 = ComplexSpace(2)
|
100 |
+
hs2 = ComplexSpace(n)
|
101 |
+
|
102 |
+
h = hs1 + hs2
|
103 |
+
assert isinstance(h, DirectSumHilbertSpace)
|
104 |
+
assert h.dimension == 2 + n
|
105 |
+
assert h.spaces == (hs1, hs2)
|
106 |
+
|
107 |
+
f = FockSpace()
|
108 |
+
h = hs1 + f + hs2
|
109 |
+
assert h.dimension is oo
|
110 |
+
assert h.spaces == (hs1, f, hs2)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_operatorordering.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.quantum import Dagger
|
2 |
+
from sympy.physics.quantum.boson import BosonOp
|
3 |
+
from sympy.physics.quantum.fermion import FermionOp
|
4 |
+
from sympy.physics.quantum.operatorordering import (normal_order,
|
5 |
+
normal_ordered_form)
|
6 |
+
|
7 |
+
|
8 |
+
def test_normal_order():
|
9 |
+
a = BosonOp('a')
|
10 |
+
|
11 |
+
c = FermionOp('c')
|
12 |
+
|
13 |
+
assert normal_order(a * Dagger(a)) == Dagger(a) * a
|
14 |
+
assert normal_order(Dagger(a) * a) == Dagger(a) * a
|
15 |
+
assert normal_order(a * Dagger(a) ** 2) == Dagger(a) ** 2 * a
|
16 |
+
|
17 |
+
assert normal_order(c * Dagger(c)) == - Dagger(c) * c
|
18 |
+
assert normal_order(Dagger(c) * c) == Dagger(c) * c
|
19 |
+
assert normal_order(c * Dagger(c) ** 2) == Dagger(c) ** 2 * c
|
20 |
+
|
21 |
+
|
22 |
+
def test_normal_ordered_form():
|
23 |
+
a = BosonOp('a')
|
24 |
+
|
25 |
+
c = FermionOp('c')
|
26 |
+
|
27 |
+
assert normal_ordered_form(Dagger(a) * a) == Dagger(a) * a
|
28 |
+
assert normal_ordered_form(a * Dagger(a)) == 1 + Dagger(a) * a
|
29 |
+
assert normal_ordered_form(a ** 2 * Dagger(a)) == \
|
30 |
+
2 * a + Dagger(a) * a ** 2
|
31 |
+
assert normal_ordered_form(a ** 3 * Dagger(a)) == \
|
32 |
+
3 * a ** 2 + Dagger(a) * a ** 3
|
33 |
+
|
34 |
+
assert normal_ordered_form(Dagger(c) * c) == Dagger(c) * c
|
35 |
+
assert normal_ordered_form(c * Dagger(c)) == 1 - Dagger(c) * c
|
36 |
+
assert normal_ordered_form(c ** 2 * Dagger(c)) == Dagger(c) * c ** 2
|
37 |
+
assert normal_ordered_form(c ** 3 * Dagger(c)) == \
|
38 |
+
c ** 2 - Dagger(c) * c ** 3
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_printing.py
ADDED
@@ -0,0 +1,900 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
TODO:
|
4 |
+
* Address Issue 2251, printing of spin states
|
5 |
+
"""
|
6 |
+
from __future__ import annotations
|
7 |
+
from typing import Any
|
8 |
+
|
9 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
10 |
+
from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j
|
11 |
+
from sympy.physics.quantum.commutator import Commutator
|
12 |
+
from sympy.physics.quantum.constants import hbar
|
13 |
+
from sympy.physics.quantum.dagger import Dagger
|
14 |
+
from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate
|
15 |
+
from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2
|
16 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
17 |
+
from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator
|
18 |
+
from sympy.physics.quantum.qexpr import QExpr
|
19 |
+
from sympy.physics.quantum.qubit import Qubit, IntQubit
|
20 |
+
from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD
|
21 |
+
from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet
|
22 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
23 |
+
from sympy.physics.quantum.sho1d import RaisingOp
|
24 |
+
|
25 |
+
from sympy.core.function import (Derivative, Function)
|
26 |
+
from sympy.core.numbers import oo
|
27 |
+
from sympy.core.power import Pow
|
28 |
+
from sympy.core.singleton import S
|
29 |
+
from sympy.core.symbol import (Symbol, symbols)
|
30 |
+
from sympy.matrices.dense import Matrix
|
31 |
+
from sympy.sets.sets import Interval
|
32 |
+
from sympy.testing.pytest import XFAIL
|
33 |
+
|
34 |
+
# Imports used in srepr strings
|
35 |
+
from sympy.physics.quantum.spin import JzOp
|
36 |
+
|
37 |
+
from sympy.printing import srepr
|
38 |
+
from sympy.printing.pretty import pretty as xpretty
|
39 |
+
from sympy.printing.latex import latex
|
40 |
+
|
41 |
+
MutableDenseMatrix = Matrix
|
42 |
+
|
43 |
+
|
44 |
+
ENV: dict[str, Any] = {}
|
45 |
+
exec('from sympy import *', ENV)
|
46 |
+
exec('from sympy.physics.quantum import *', ENV)
|
47 |
+
exec('from sympy.physics.quantum.cg import *', ENV)
|
48 |
+
exec('from sympy.physics.quantum.spin import *', ENV)
|
49 |
+
exec('from sympy.physics.quantum.hilbert import *', ENV)
|
50 |
+
exec('from sympy.physics.quantum.qubit import *', ENV)
|
51 |
+
exec('from sympy.physics.quantum.qexpr import *', ENV)
|
52 |
+
exec('from sympy.physics.quantum.gate import *', ENV)
|
53 |
+
exec('from sympy.physics.quantum.constants import *', ENV)
|
54 |
+
|
55 |
+
|
56 |
+
def sT(expr, string):
|
57 |
+
"""
|
58 |
+
sT := sreprTest
|
59 |
+
from sympy/printing/tests/test_repr.py
|
60 |
+
"""
|
61 |
+
assert srepr(expr) == string
|
62 |
+
assert eval(string, ENV) == expr
|
63 |
+
|
64 |
+
|
65 |
+
def pretty(expr):
|
66 |
+
"""ASCII pretty-printing"""
|
67 |
+
return xpretty(expr, use_unicode=False, wrap_line=False)
|
68 |
+
|
69 |
+
|
70 |
+
def upretty(expr):
|
71 |
+
"""Unicode pretty-printing"""
|
72 |
+
return xpretty(expr, use_unicode=True, wrap_line=False)
|
73 |
+
|
74 |
+
|
75 |
+
def test_anticommutator():
|
76 |
+
A = Operator('A')
|
77 |
+
B = Operator('B')
|
78 |
+
ac = AntiCommutator(A, B)
|
79 |
+
ac_tall = AntiCommutator(A**2, B)
|
80 |
+
assert str(ac) == '{A,B}'
|
81 |
+
assert pretty(ac) == '{A,B}'
|
82 |
+
assert upretty(ac) == '{A,B}'
|
83 |
+
assert latex(ac) == r'\left\{A,B\right\}'
|
84 |
+
sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))")
|
85 |
+
assert str(ac_tall) == '{A**2,B}'
|
86 |
+
ascii_str = \
|
87 |
+
"""\
|
88 |
+
/ 2 \\\n\
|
89 |
+
<A ,B>\n\
|
90 |
+
\\ /\
|
91 |
+
"""
|
92 |
+
ucode_str = \
|
93 |
+
"""\
|
94 |
+
⎧ 2 ⎫\n\
|
95 |
+
⎨A ,B⎬\n\
|
96 |
+
⎩ ⎭\
|
97 |
+
"""
|
98 |
+
assert pretty(ac_tall) == ascii_str
|
99 |
+
assert upretty(ac_tall) == ucode_str
|
100 |
+
assert latex(ac_tall) == r'\left\{A^{2},B\right\}'
|
101 |
+
sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
|
102 |
+
|
103 |
+
|
104 |
+
def test_cg():
|
105 |
+
cg = CG(1, 2, 3, 4, 5, 6)
|
106 |
+
wigner3j = Wigner3j(1, 2, 3, 4, 5, 6)
|
107 |
+
wigner6j = Wigner6j(1, 2, 3, 4, 5, 6)
|
108 |
+
wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)
|
109 |
+
assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)'
|
110 |
+
ascii_str = \
|
111 |
+
"""\
|
112 |
+
5,6 \n\
|
113 |
+
C \n\
|
114 |
+
1,2,3,4\
|
115 |
+
"""
|
116 |
+
ucode_str = \
|
117 |
+
"""\
|
118 |
+
5,6 \n\
|
119 |
+
C \n\
|
120 |
+
1,2,3,4\
|
121 |
+
"""
|
122 |
+
assert pretty(cg) == ascii_str
|
123 |
+
assert upretty(cg) == ucode_str
|
124 |
+
assert latex(cg) == 'C^{5,6}_{1,2,3,4}'
|
125 |
+
assert latex(cg ** 2) == R'\left(C^{5,6}_{1,2,3,4}\right)^{2}'
|
126 |
+
sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
|
127 |
+
assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)'
|
128 |
+
ascii_str = \
|
129 |
+
"""\
|
130 |
+
/1 3 5\\\n\
|
131 |
+
| |\n\
|
132 |
+
\\2 4 6/\
|
133 |
+
"""
|
134 |
+
ucode_str = \
|
135 |
+
"""\
|
136 |
+
⎛1 3 5⎞\n\
|
137 |
+
⎜ ⎟\n\
|
138 |
+
⎝2 4 6⎠\
|
139 |
+
"""
|
140 |
+
assert pretty(wigner3j) == ascii_str
|
141 |
+
assert upretty(wigner3j) == ucode_str
|
142 |
+
assert latex(wigner3j) == \
|
143 |
+
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)'
|
144 |
+
sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
|
145 |
+
assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)'
|
146 |
+
ascii_str = \
|
147 |
+
"""\
|
148 |
+
/1 2 3\\\n\
|
149 |
+
< >\n\
|
150 |
+
\\4 5 6/\
|
151 |
+
"""
|
152 |
+
ucode_str = \
|
153 |
+
"""\
|
154 |
+
⎧1 2 3⎫\n\
|
155 |
+
⎨ ⎬\n\
|
156 |
+
⎩4 5 6⎭\
|
157 |
+
"""
|
158 |
+
assert pretty(wigner6j) == ascii_str
|
159 |
+
assert upretty(wigner6j) == ucode_str
|
160 |
+
assert latex(wigner6j) == \
|
161 |
+
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}'
|
162 |
+
sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
|
163 |
+
assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)'
|
164 |
+
ascii_str = \
|
165 |
+
"""\
|
166 |
+
/1 2 3\\\n\
|
167 |
+
| |\n\
|
168 |
+
<4 5 6>\n\
|
169 |
+
| |\n\
|
170 |
+
\\7 8 9/\
|
171 |
+
"""
|
172 |
+
ucode_str = \
|
173 |
+
"""\
|
174 |
+
⎧1 2 3⎫\n\
|
175 |
+
⎪ ⎪\n\
|
176 |
+
⎨4 5 6⎬\n\
|
177 |
+
⎪ ⎪\n\
|
178 |
+
⎩7 8 9⎭\
|
179 |
+
"""
|
180 |
+
assert pretty(wigner9j) == ascii_str
|
181 |
+
assert upretty(wigner9j) == ucode_str
|
182 |
+
assert latex(wigner9j) == \
|
183 |
+
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}'
|
184 |
+
sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))")
|
185 |
+
|
186 |
+
|
187 |
+
def test_commutator():
|
188 |
+
A = Operator('A')
|
189 |
+
B = Operator('B')
|
190 |
+
c = Commutator(A, B)
|
191 |
+
c_tall = Commutator(A**2, B)
|
192 |
+
assert str(c) == '[A,B]'
|
193 |
+
assert pretty(c) == '[A,B]'
|
194 |
+
assert upretty(c) == '[A,B]'
|
195 |
+
assert latex(c) == r'\left[A,B\right]'
|
196 |
+
sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))")
|
197 |
+
assert str(c_tall) == '[A**2,B]'
|
198 |
+
ascii_str = \
|
199 |
+
"""\
|
200 |
+
[ 2 ]\n\
|
201 |
+
[A ,B]\
|
202 |
+
"""
|
203 |
+
ucode_str = \
|
204 |
+
"""\
|
205 |
+
⎡ 2 ⎤\n\
|
206 |
+
⎣A ,B⎦\
|
207 |
+
"""
|
208 |
+
assert pretty(c_tall) == ascii_str
|
209 |
+
assert upretty(c_tall) == ucode_str
|
210 |
+
assert latex(c_tall) == r'\left[A^{2},B\right]'
|
211 |
+
sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
|
212 |
+
|
213 |
+
|
214 |
+
def test_constants():
|
215 |
+
assert str(hbar) == 'hbar'
|
216 |
+
assert pretty(hbar) == 'hbar'
|
217 |
+
assert upretty(hbar) == 'ℏ'
|
218 |
+
assert latex(hbar) == r'\hbar'
|
219 |
+
sT(hbar, "HBar()")
|
220 |
+
|
221 |
+
|
222 |
+
def test_dagger():
|
223 |
+
x = symbols('x')
|
224 |
+
expr = Dagger(x)
|
225 |
+
assert str(expr) == 'Dagger(x)'
|
226 |
+
ascii_str = \
|
227 |
+
"""\
|
228 |
+
+\n\
|
229 |
+
x \
|
230 |
+
"""
|
231 |
+
ucode_str = \
|
232 |
+
"""\
|
233 |
+
†\n\
|
234 |
+
x \
|
235 |
+
"""
|
236 |
+
assert pretty(expr) == ascii_str
|
237 |
+
assert upretty(expr) == ucode_str
|
238 |
+
assert latex(expr) == r'x^{\dagger}'
|
239 |
+
sT(expr, "Dagger(Symbol('x'))")
|
240 |
+
|
241 |
+
|
242 |
+
@XFAIL
|
243 |
+
def test_gate_failing():
|
244 |
+
a, b, c, d = symbols('a,b,c,d')
|
245 |
+
uMat = Matrix([[a, b], [c, d]])
|
246 |
+
g = UGate((0,), uMat)
|
247 |
+
assert str(g) == 'U(0)'
|
248 |
+
|
249 |
+
|
250 |
+
def test_gate():
|
251 |
+
a, b, c, d = symbols('a,b,c,d')
|
252 |
+
uMat = Matrix([[a, b], [c, d]])
|
253 |
+
q = Qubit(1, 0, 1, 0, 1)
|
254 |
+
g1 = IdentityGate(2)
|
255 |
+
g2 = CGate((3, 0), XGate(1))
|
256 |
+
g3 = CNotGate(1, 0)
|
257 |
+
g4 = UGate((0,), uMat)
|
258 |
+
assert str(g1) == '1(2)'
|
259 |
+
assert pretty(g1) == '1 \n 2'
|
260 |
+
assert upretty(g1) == '1 \n 2'
|
261 |
+
assert latex(g1) == r'1_{2}'
|
262 |
+
sT(g1, "IdentityGate(Integer(2))")
|
263 |
+
assert str(g1*q) == '1(2)*|10101>'
|
264 |
+
ascii_str = \
|
265 |
+
"""\
|
266 |
+
1 *|10101>\n\
|
267 |
+
2 \
|
268 |
+
"""
|
269 |
+
ucode_str = \
|
270 |
+
"""\
|
271 |
+
1 ⋅❘10101⟩\n\
|
272 |
+
2 \
|
273 |
+
"""
|
274 |
+
assert pretty(g1*q) == ascii_str
|
275 |
+
assert upretty(g1*q) == ucode_str
|
276 |
+
assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }'
|
277 |
+
sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))")
|
278 |
+
assert str(g2) == 'C((3,0),X(1))'
|
279 |
+
ascii_str = \
|
280 |
+
"""\
|
281 |
+
C /X \\\n\
|
282 |
+
3,0\\ 1/\
|
283 |
+
"""
|
284 |
+
ucode_str = \
|
285 |
+
"""\
|
286 |
+
C ⎛X ⎞\n\
|
287 |
+
3,0⎝ 1⎠\
|
288 |
+
"""
|
289 |
+
assert pretty(g2) == ascii_str
|
290 |
+
assert upretty(g2) == ucode_str
|
291 |
+
assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}'
|
292 |
+
sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))")
|
293 |
+
assert str(g3) == 'CNOT(1,0)'
|
294 |
+
ascii_str = \
|
295 |
+
"""\
|
296 |
+
CNOT \n\
|
297 |
+
1,0\
|
298 |
+
"""
|
299 |
+
ucode_str = \
|
300 |
+
"""\
|
301 |
+
CNOT \n\
|
302 |
+
1,0\
|
303 |
+
"""
|
304 |
+
assert pretty(g3) == ascii_str
|
305 |
+
assert upretty(g3) == ucode_str
|
306 |
+
assert latex(g3) == r'\text{CNOT}_{1,0}'
|
307 |
+
sT(g3, "CNotGate(Integer(1),Integer(0))")
|
308 |
+
ascii_str = \
|
309 |
+
"""\
|
310 |
+
U \n\
|
311 |
+
0\
|
312 |
+
"""
|
313 |
+
ucode_str = \
|
314 |
+
"""\
|
315 |
+
U \n\
|
316 |
+
0\
|
317 |
+
"""
|
318 |
+
assert str(g4) == \
|
319 |
+
"""\
|
320 |
+
U((0,),Matrix([\n\
|
321 |
+
[a, b],\n\
|
322 |
+
[c, d]]))\
|
323 |
+
"""
|
324 |
+
assert pretty(g4) == ascii_str
|
325 |
+
assert upretty(g4) == ucode_str
|
326 |
+
assert latex(g4) == r'U_{0}'
|
327 |
+
sT(g4, "UGate(Tuple(Integer(0)),ImmutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))")
|
328 |
+
|
329 |
+
|
330 |
+
def test_hilbert():
|
331 |
+
h1 = HilbertSpace()
|
332 |
+
h2 = ComplexSpace(2)
|
333 |
+
h3 = FockSpace()
|
334 |
+
h4 = L2(Interval(0, oo))
|
335 |
+
assert str(h1) == 'H'
|
336 |
+
assert pretty(h1) == 'H'
|
337 |
+
assert upretty(h1) == 'H'
|
338 |
+
assert latex(h1) == r'\mathcal{H}'
|
339 |
+
sT(h1, "HilbertSpace()")
|
340 |
+
assert str(h2) == 'C(2)'
|
341 |
+
ascii_str = \
|
342 |
+
"""\
|
343 |
+
2\n\
|
344 |
+
C \
|
345 |
+
"""
|
346 |
+
ucode_str = \
|
347 |
+
"""\
|
348 |
+
2\n\
|
349 |
+
C \
|
350 |
+
"""
|
351 |
+
assert pretty(h2) == ascii_str
|
352 |
+
assert upretty(h2) == ucode_str
|
353 |
+
assert latex(h2) == r'\mathcal{C}^{2}'
|
354 |
+
sT(h2, "ComplexSpace(Integer(2))")
|
355 |
+
assert str(h3) == 'F'
|
356 |
+
assert pretty(h3) == 'F'
|
357 |
+
assert upretty(h3) == 'F'
|
358 |
+
assert latex(h3) == r'\mathcal{F}'
|
359 |
+
sT(h3, "FockSpace()")
|
360 |
+
assert str(h4) == 'L2(Interval(0, oo))'
|
361 |
+
ascii_str = \
|
362 |
+
"""\
|
363 |
+
2\n\
|
364 |
+
L \
|
365 |
+
"""
|
366 |
+
ucode_str = \
|
367 |
+
"""\
|
368 |
+
2\n\
|
369 |
+
L \
|
370 |
+
"""
|
371 |
+
assert pretty(h4) == ascii_str
|
372 |
+
assert upretty(h4) == ucode_str
|
373 |
+
assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)'
|
374 |
+
sT(h4, "L2(Interval(Integer(0), oo, false, true))")
|
375 |
+
assert str(h1 + h2) == 'H+C(2)'
|
376 |
+
ascii_str = \
|
377 |
+
"""\
|
378 |
+
2\n\
|
379 |
+
H + C \
|
380 |
+
"""
|
381 |
+
ucode_str = \
|
382 |
+
"""\
|
383 |
+
2\n\
|
384 |
+
H ⊕ C \
|
385 |
+
"""
|
386 |
+
assert pretty(h1 + h2) == ascii_str
|
387 |
+
assert upretty(h1 + h2) == ucode_str
|
388 |
+
assert latex(h1 + h2)
|
389 |
+
sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
|
390 |
+
assert str(h1*h2) == "H*C(2)"
|
391 |
+
ascii_str = \
|
392 |
+
"""\
|
393 |
+
2\n\
|
394 |
+
H x C \
|
395 |
+
"""
|
396 |
+
ucode_str = \
|
397 |
+
"""\
|
398 |
+
2\n\
|
399 |
+
H ⨂ C \
|
400 |
+
"""
|
401 |
+
assert pretty(h1*h2) == ascii_str
|
402 |
+
assert upretty(h1*h2) == ucode_str
|
403 |
+
assert latex(h1*h2)
|
404 |
+
sT(h1*h2,
|
405 |
+
"TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
|
406 |
+
assert str(h1**2) == 'H**2'
|
407 |
+
ascii_str = \
|
408 |
+
"""\
|
409 |
+
x2\n\
|
410 |
+
H \
|
411 |
+
"""
|
412 |
+
ucode_str = \
|
413 |
+
"""\
|
414 |
+
⨂2\n\
|
415 |
+
H \
|
416 |
+
"""
|
417 |
+
assert pretty(h1**2) == ascii_str
|
418 |
+
assert upretty(h1**2) == ucode_str
|
419 |
+
assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}'
|
420 |
+
sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))")
|
421 |
+
|
422 |
+
|
423 |
+
def test_innerproduct():
|
424 |
+
x = symbols('x')
|
425 |
+
ip1 = InnerProduct(Bra(), Ket())
|
426 |
+
ip2 = InnerProduct(TimeDepBra(), TimeDepKet())
|
427 |
+
ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1))
|
428 |
+
ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1)))
|
429 |
+
ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2))
|
430 |
+
ip_tall2 = InnerProduct(Bra(x), Ket(x/2))
|
431 |
+
ip_tall3 = InnerProduct(Bra(x/2), Ket(x))
|
432 |
+
assert str(ip1) == '<psi|psi>'
|
433 |
+
assert pretty(ip1) == '<psi|psi>'
|
434 |
+
assert upretty(ip1) == '⟨ψ❘ψ⟩'
|
435 |
+
assert latex(
|
436 |
+
ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }'
|
437 |
+
sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))")
|
438 |
+
assert str(ip2) == '<psi;t|psi;t>'
|
439 |
+
assert pretty(ip2) == '<psi;t|psi;t>'
|
440 |
+
assert upretty(ip2) == '⟨ψ;t❘ψ;t⟩'
|
441 |
+
assert latex(ip2) == \
|
442 |
+
r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }'
|
443 |
+
sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))")
|
444 |
+
assert str(ip3) == "<1,1|1,1>"
|
445 |
+
assert pretty(ip3) == '<1,1|1,1>'
|
446 |
+
assert upretty(ip3) == '⟨1,1❘1,1⟩'
|
447 |
+
assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }'
|
448 |
+
sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))")
|
449 |
+
assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>"
|
450 |
+
assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>'
|
451 |
+
assert upretty(ip4) == '⟨1,1,j₁=1,j₂=1❘1,1,j₁=1,j₂=1⟩'
|
452 |
+
assert latex(ip4) == \
|
453 |
+
r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }'
|
454 |
+
sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))")
|
455 |
+
assert str(ip_tall1) == '<x/2|x/2>'
|
456 |
+
ascii_str = \
|
457 |
+
"""\
|
458 |
+
/ | \\ \n\
|
459 |
+
/ x|x \\\n\
|
460 |
+
\\ -|- /\n\
|
461 |
+
\\2|2/ \
|
462 |
+
"""
|
463 |
+
ucode_str = \
|
464 |
+
"""\
|
465 |
+
╱ │ ╲ \n\
|
466 |
+
╱ x│x ╲\n\
|
467 |
+
╲ ─│─ ╱\n\
|
468 |
+
╲2│2╱ \
|
469 |
+
"""
|
470 |
+
assert pretty(ip_tall1) == ascii_str
|
471 |
+
assert upretty(ip_tall1) == ucode_str
|
472 |
+
assert latex(ip_tall1) == \
|
473 |
+
r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }'
|
474 |
+
sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))")
|
475 |
+
assert str(ip_tall2) == '<x|x/2>'
|
476 |
+
ascii_str = \
|
477 |
+
"""\
|
478 |
+
/ | \\ \n\
|
479 |
+
/ |x \\\n\
|
480 |
+
\\ x|- /\n\
|
481 |
+
\\ |2/ \
|
482 |
+
"""
|
483 |
+
ucode_str = \
|
484 |
+
"""\
|
485 |
+
╱ │ ╲ \n\
|
486 |
+
╱ │x ╲\n\
|
487 |
+
╲ x│─ ╱\n\
|
488 |
+
╲ │2╱ \
|
489 |
+
"""
|
490 |
+
assert pretty(ip_tall2) == ascii_str
|
491 |
+
assert upretty(ip_tall2) == ucode_str
|
492 |
+
assert latex(ip_tall2) == \
|
493 |
+
r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }'
|
494 |
+
sT(ip_tall2,
|
495 |
+
"InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))")
|
496 |
+
assert str(ip_tall3) == '<x/2|x>'
|
497 |
+
ascii_str = \
|
498 |
+
"""\
|
499 |
+
/ | \\ \n\
|
500 |
+
/ x| \\\n\
|
501 |
+
\\ -|x /\n\
|
502 |
+
\\2| / \
|
503 |
+
"""
|
504 |
+
ucode_str = \
|
505 |
+
"""\
|
506 |
+
╱ │ ╲ \n\
|
507 |
+
╱ x│ ╲\n\
|
508 |
+
╲ ─│x ╱\n\
|
509 |
+
╲2│ ╱ \
|
510 |
+
"""
|
511 |
+
assert pretty(ip_tall3) == ascii_str
|
512 |
+
assert upretty(ip_tall3) == ucode_str
|
513 |
+
assert latex(ip_tall3) == \
|
514 |
+
r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }'
|
515 |
+
sT(ip_tall3,
|
516 |
+
"InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))")
|
517 |
+
|
518 |
+
|
519 |
+
def test_operator():
|
520 |
+
a = Operator('A')
|
521 |
+
b = Operator('B', Symbol('t'), S.Half)
|
522 |
+
inv = a.inv()
|
523 |
+
f = Function('f')
|
524 |
+
x = symbols('x')
|
525 |
+
d = DifferentialOperator(Derivative(f(x), x), f(x))
|
526 |
+
op = OuterProduct(Ket(), Bra())
|
527 |
+
assert str(a) == 'A'
|
528 |
+
assert pretty(a) == 'A'
|
529 |
+
assert upretty(a) == 'A'
|
530 |
+
assert latex(a) == 'A'
|
531 |
+
sT(a, "Operator(Symbol('A'))")
|
532 |
+
assert str(inv) == 'A**(-1)'
|
533 |
+
ascii_str = \
|
534 |
+
"""\
|
535 |
+
-1\n\
|
536 |
+
A \
|
537 |
+
"""
|
538 |
+
ucode_str = \
|
539 |
+
"""\
|
540 |
+
-1\n\
|
541 |
+
A \
|
542 |
+
"""
|
543 |
+
assert pretty(inv) == ascii_str
|
544 |
+
assert upretty(inv) == ucode_str
|
545 |
+
assert latex(inv) == r'A^{-1}'
|
546 |
+
sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))")
|
547 |
+
assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))'
|
548 |
+
ascii_str = \
|
549 |
+
"""\
|
550 |
+
/d \\\n\
|
551 |
+
DifferentialOperator|--(f(x)),f(x)|\n\
|
552 |
+
\\dx /\
|
553 |
+
"""
|
554 |
+
ucode_str = \
|
555 |
+
"""\
|
556 |
+
⎛d ⎞\n\
|
557 |
+
DifferentialOperator⎜──(f(x)),f(x)⎟\n\
|
558 |
+
⎝dx ⎠\
|
559 |
+
"""
|
560 |
+
assert pretty(d) == ascii_str
|
561 |
+
assert upretty(d) == ucode_str
|
562 |
+
assert latex(d) == \
|
563 |
+
r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)'
|
564 |
+
sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))")
|
565 |
+
assert str(b) == 'Operator(B,t,1/2)'
|
566 |
+
assert pretty(b) == 'Operator(B,t,1/2)'
|
567 |
+
assert upretty(b) == 'Operator(B,t,1/2)'
|
568 |
+
assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)'
|
569 |
+
sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))")
|
570 |
+
assert str(op) == '|psi><psi|'
|
571 |
+
assert pretty(op) == '|psi><psi|'
|
572 |
+
assert upretty(op) == '❘ψ⟩⟨ψ❘'
|
573 |
+
assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}'
|
574 |
+
sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))")
|
575 |
+
|
576 |
+
|
577 |
+
def test_qexpr():
|
578 |
+
q = QExpr('q')
|
579 |
+
assert str(q) == 'q'
|
580 |
+
assert pretty(q) == 'q'
|
581 |
+
assert upretty(q) == 'q'
|
582 |
+
assert latex(q) == r'q'
|
583 |
+
sT(q, "QExpr(Symbol('q'))")
|
584 |
+
|
585 |
+
|
586 |
+
def test_qubit():
|
587 |
+
q1 = Qubit('0101')
|
588 |
+
q2 = IntQubit(8)
|
589 |
+
assert str(q1) == '|0101>'
|
590 |
+
assert pretty(q1) == '|0101>'
|
591 |
+
assert upretty(q1) == '❘0101⟩'
|
592 |
+
assert latex(q1) == r'{\left|0101\right\rangle }'
|
593 |
+
sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))")
|
594 |
+
assert str(q2) == '|8>'
|
595 |
+
assert pretty(q2) == '|8>'
|
596 |
+
assert upretty(q2) == '❘8⟩'
|
597 |
+
assert latex(q2) == r'{\left|8\right\rangle }'
|
598 |
+
sT(q2, "IntQubit(8)")
|
599 |
+
|
600 |
+
|
601 |
+
def test_spin():
|
602 |
+
lz = JzOp('L')
|
603 |
+
ket = JzKet(1, 0)
|
604 |
+
bra = JzBra(1, 0)
|
605 |
+
cket = JzKetCoupled(1, 0, (1, 2))
|
606 |
+
cbra = JzBraCoupled(1, 0, (1, 2))
|
607 |
+
cket_big = JzKetCoupled(1, 0, (1, 2, 3))
|
608 |
+
cbra_big = JzBraCoupled(1, 0, (1, 2, 3))
|
609 |
+
rot = Rotation(1, 2, 3)
|
610 |
+
bigd = WignerD(1, 2, 3, 4, 5, 6)
|
611 |
+
smalld = WignerD(1, 2, 3, 0, 4, 0)
|
612 |
+
assert str(lz) == 'Lz'
|
613 |
+
ascii_str = \
|
614 |
+
"""\
|
615 |
+
L \n\
|
616 |
+
z\
|
617 |
+
"""
|
618 |
+
ucode_str = \
|
619 |
+
"""\
|
620 |
+
L \n\
|
621 |
+
z\
|
622 |
+
"""
|
623 |
+
assert pretty(lz) == ascii_str
|
624 |
+
assert upretty(lz) == ucode_str
|
625 |
+
assert latex(lz) == 'L_z'
|
626 |
+
sT(lz, "JzOp(Symbol('L'))")
|
627 |
+
assert str(J2) == 'J2'
|
628 |
+
ascii_str = \
|
629 |
+
"""\
|
630 |
+
2\n\
|
631 |
+
J \
|
632 |
+
"""
|
633 |
+
ucode_str = \
|
634 |
+
"""\
|
635 |
+
2\n\
|
636 |
+
J \
|
637 |
+
"""
|
638 |
+
assert pretty(J2) == ascii_str
|
639 |
+
assert upretty(J2) == ucode_str
|
640 |
+
assert latex(J2) == r'J^2'
|
641 |
+
sT(J2, "J2Op(Symbol('J'))")
|
642 |
+
assert str(Jz) == 'Jz'
|
643 |
+
ascii_str = \
|
644 |
+
"""\
|
645 |
+
J \n\
|
646 |
+
z\
|
647 |
+
"""
|
648 |
+
ucode_str = \
|
649 |
+
"""\
|
650 |
+
J \n\
|
651 |
+
z\
|
652 |
+
"""
|
653 |
+
assert pretty(Jz) == ascii_str
|
654 |
+
assert upretty(Jz) == ucode_str
|
655 |
+
assert latex(Jz) == 'J_z'
|
656 |
+
sT(Jz, "JzOp(Symbol('J'))")
|
657 |
+
assert str(ket) == '|1,0>'
|
658 |
+
assert pretty(ket) == '|1,0>'
|
659 |
+
assert upretty(ket) == '❘1,0⟩'
|
660 |
+
assert latex(ket) == r'{\left|1,0\right\rangle }'
|
661 |
+
sT(ket, "JzKet(Integer(1),Integer(0))")
|
662 |
+
assert str(bra) == '<1,0|'
|
663 |
+
assert pretty(bra) == '<1,0|'
|
664 |
+
assert upretty(bra) == '⟨1,0❘'
|
665 |
+
assert latex(bra) == r'{\left\langle 1,0\right|}'
|
666 |
+
sT(bra, "JzBra(Integer(1),Integer(0))")
|
667 |
+
assert str(cket) == '|1,0,j1=1,j2=2>'
|
668 |
+
assert pretty(cket) == '|1,0,j1=1,j2=2>'
|
669 |
+
assert upretty(cket) == '❘1,0,j₁=1,j₂=2⟩'
|
670 |
+
assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }'
|
671 |
+
sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
|
672 |
+
assert str(cbra) == '<1,0,j1=1,j2=2|'
|
673 |
+
assert pretty(cbra) == '<1,0,j1=1,j2=2|'
|
674 |
+
assert upretty(cbra) == '⟨1,0,j₁=1,j₂=2❘'
|
675 |
+
assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}'
|
676 |
+
sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
|
677 |
+
assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>'
|
678 |
+
# TODO: Fix non-unicode pretty printing
|
679 |
+
# i.e. j1,2 -> j(1,2)
|
680 |
+
assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>'
|
681 |
+
assert upretty(cket_big) == '❘1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3⟩'
|
682 |
+
assert latex(cket_big) == \
|
683 |
+
r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }'
|
684 |
+
sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
|
685 |
+
assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|'
|
686 |
+
assert pretty(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j1,2=3|'
|
687 |
+
assert upretty(cbra_big) == '⟨1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3❘'
|
688 |
+
assert latex(cbra_big) == \
|
689 |
+
r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}'
|
690 |
+
sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
|
691 |
+
assert str(rot) == 'R(1,2,3)'
|
692 |
+
assert pretty(rot) == 'R (1,2,3)'
|
693 |
+
assert upretty(rot) == 'ℛ (1,2,3)'
|
694 |
+
assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)'
|
695 |
+
sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))")
|
696 |
+
assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)'
|
697 |
+
ascii_str = \
|
698 |
+
"""\
|
699 |
+
1 \n\
|
700 |
+
D (4,5,6)\n\
|
701 |
+
2,3 \
|
702 |
+
"""
|
703 |
+
ucode_str = \
|
704 |
+
"""\
|
705 |
+
1 \n\
|
706 |
+
D (4,5,6)\n\
|
707 |
+
2,3 \
|
708 |
+
"""
|
709 |
+
assert pretty(bigd) == ascii_str
|
710 |
+
assert upretty(bigd) == ucode_str
|
711 |
+
assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)'
|
712 |
+
sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
|
713 |
+
assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)'
|
714 |
+
ascii_str = \
|
715 |
+
"""\
|
716 |
+
1 \n\
|
717 |
+
d (4)\n\
|
718 |
+
2,3 \
|
719 |
+
"""
|
720 |
+
ucode_str = \
|
721 |
+
"""\
|
722 |
+
1 \n\
|
723 |
+
d (4)\n\
|
724 |
+
2,3 \
|
725 |
+
"""
|
726 |
+
assert pretty(smalld) == ascii_str
|
727 |
+
assert upretty(smalld) == ucode_str
|
728 |
+
assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)'
|
729 |
+
sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))")
|
730 |
+
|
731 |
+
|
732 |
+
def test_state():
|
733 |
+
x = symbols('x')
|
734 |
+
bra = Bra()
|
735 |
+
ket = Ket()
|
736 |
+
bra_tall = Bra(x/2)
|
737 |
+
ket_tall = Ket(x/2)
|
738 |
+
tbra = TimeDepBra()
|
739 |
+
tket = TimeDepKet()
|
740 |
+
assert str(bra) == '<psi|'
|
741 |
+
assert pretty(bra) == '<psi|'
|
742 |
+
assert upretty(bra) == '⟨ψ❘'
|
743 |
+
assert latex(bra) == r'{\left\langle \psi\right|}'
|
744 |
+
sT(bra, "Bra(Symbol('psi'))")
|
745 |
+
assert str(ket) == '|psi>'
|
746 |
+
assert pretty(ket) == '|psi>'
|
747 |
+
assert upretty(ket) == '❘ψ⟩'
|
748 |
+
assert latex(ket) == r'{\left|\psi\right\rangle }'
|
749 |
+
sT(ket, "Ket(Symbol('psi'))")
|
750 |
+
assert str(bra_tall) == '<x/2|'
|
751 |
+
ascii_str = \
|
752 |
+
"""\
|
753 |
+
/ |\n\
|
754 |
+
/ x|\n\
|
755 |
+
\\ -|\n\
|
756 |
+
\\2|\
|
757 |
+
"""
|
758 |
+
ucode_str = \
|
759 |
+
"""\
|
760 |
+
╱ │\n\
|
761 |
+
╱ x│\n\
|
762 |
+
╲ ─│\n\
|
763 |
+
╲2│\
|
764 |
+
"""
|
765 |
+
assert pretty(bra_tall) == ascii_str
|
766 |
+
assert upretty(bra_tall) == ucode_str
|
767 |
+
assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}'
|
768 |
+
sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))")
|
769 |
+
assert str(ket_tall) == '|x/2>'
|
770 |
+
ascii_str = \
|
771 |
+
"""\
|
772 |
+
| \\ \n\
|
773 |
+
|x \\\n\
|
774 |
+
|- /\n\
|
775 |
+
|2/ \
|
776 |
+
"""
|
777 |
+
ucode_str = \
|
778 |
+
"""\
|
779 |
+
│ ╲ \n\
|
780 |
+
│x ╲\n\
|
781 |
+
│─ ╱\n\
|
782 |
+
│2╱ \
|
783 |
+
"""
|
784 |
+
assert pretty(ket_tall) == ascii_str
|
785 |
+
assert upretty(ket_tall) == ucode_str
|
786 |
+
assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }'
|
787 |
+
sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))")
|
788 |
+
assert str(tbra) == '<psi;t|'
|
789 |
+
assert pretty(tbra) == '<psi;t|'
|
790 |
+
assert upretty(tbra) == '⟨ψ;t❘'
|
791 |
+
assert latex(tbra) == r'{\left\langle \psi;t\right|}'
|
792 |
+
sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))")
|
793 |
+
assert str(tket) == '|psi;t>'
|
794 |
+
assert pretty(tket) == '|psi;t>'
|
795 |
+
assert upretty(tket) == '❘ψ;t⟩'
|
796 |
+
assert latex(tket) == r'{\left|\psi;t\right\rangle }'
|
797 |
+
sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))")
|
798 |
+
|
799 |
+
|
800 |
+
def test_tensorproduct():
|
801 |
+
tp = TensorProduct(JzKet(1, 1), JzKet(1, 0))
|
802 |
+
assert str(tp) == '|1,1>x|1,0>'
|
803 |
+
assert pretty(tp) == '|1,1>x |1,0>'
|
804 |
+
assert upretty(tp) == '❘1,1⟩⨂ ❘1,0⟩'
|
805 |
+
assert latex(tp) == \
|
806 |
+
r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}'
|
807 |
+
sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))")
|
808 |
+
|
809 |
+
|
810 |
+
def test_big_expr():
|
811 |
+
f = Function('f')
|
812 |
+
x = symbols('x')
|
813 |
+
e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1))
|
814 |
+
e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2))
|
815 |
+
e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1)))
|
816 |
+
e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval(
|
817 |
+
0, oo)) + HilbertSpace())
|
818 |
+
assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)'
|
819 |
+
ascii_str = \
|
820 |
+
"""\
|
821 |
+
/ 3 \\ \n\
|
822 |
+
|/ +\\ | \n\
|
823 |
+
2 / + +\\ <| /d \\ | + +> \n\
|
824 |
+
/J \\ x \\A + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\
|
825 |
+
\\ z/ \\\\ \\dx / / / \
|
826 |
+
"""
|
827 |
+
ucode_str = \
|
828 |
+
"""\
|
829 |
+
⎧ 3 ⎫ \n\
|
830 |
+
⎪⎛ †⎞ ⎪ \n\
|
831 |
+
2 ⎛ † †⎞ ⎨⎜ ⎛d ⎞ ⎟ † †⎬ \n\
|
832 |
+
⎛J ⎞ ⨂ ⎝A + B ⎠⋅⎪⎜DifferentialOperator⎜──(f(x)),f(x)⎟ ⎟ ,A + B ⎪⋅(⟨1,0❘ + ⟨1,1❘)⋅(❘0,0⟩ + ❘1,-1⟩)\n\
|
833 |
+
⎝ z⎠ ⎩⎝ ⎝dx ⎠ ⎠ ⎭ \
|
834 |
+
"""
|
835 |
+
assert pretty(e1) == ascii_str
|
836 |
+
assert upretty(e1) == ucode_str
|
837 |
+
assert latex(e1) == \
|
838 |
+
r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)'
|
839 |
+
sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))")
|
840 |
+
assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]'
|
841 |
+
ascii_str = \
|
842 |
+
"""\
|
843 |
+
[ 2 ] / -2 + +\\ [ 2 ]\n\
|
844 |
+
[/J \\ ,A + B]*<E ,D *C >*[J ,J ]\n\
|
845 |
+
[\\ z/ ] \\ / [ z]\
|
846 |
+
"""
|
847 |
+
ucode_str = \
|
848 |
+
"""\
|
849 |
+
⎡ 2 ⎤ ⎧ -2 † †⎫ ⎡ 2 ⎤\n\
|
850 |
+
⎢⎛J ⎞ ,A + B⎥⋅⎨E ,D ⋅C ⎬⋅⎢J ,J ⎥\n\
|
851 |
+
⎣⎝ z⎠ ⎦ ⎩ ⎭ ⎣ z⎦\
|
852 |
+
"""
|
853 |
+
assert pretty(e2) == ascii_str
|
854 |
+
assert upretty(e2) == ucode_str
|
855 |
+
assert latex(e2) == \
|
856 |
+
r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]'
|
857 |
+
sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))")
|
858 |
+
assert str(e3) == \
|
859 |
+
"Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>"
|
860 |
+
ascii_str = \
|
861 |
+
"""\
|
862 |
+
[ + ] / 2 \\ \n\
|
863 |
+
/1 3 5\\*[B + A,C + D]x |- J + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\
|
864 |
+
| | \\ z/ \n\
|
865 |
+
\\2 4 6/ \
|
866 |
+
"""
|
867 |
+
ucode_str = \
|
868 |
+
"""\
|
869 |
+
⎡ † ⎤ ⎛ 2 ⎞ \n\
|
870 |
+
⎛1 3 5⎞⋅⎣B + A,C + D⎦⨂ ⎜- J + J ⎟⋅❘1,0⟩⟨1,1❘⋅(❘1,0,j₁=1,j₂=1⟩ + ❘1,1,j₁=1,j₂=1⟩)⨂ ❘1,-1,j₁=1,j₂=1⟩\n\
|
871 |
+
⎜ ⎟ ⎝ z⎠ \n\
|
872 |
+
⎝2 4 6⎠ \
|
873 |
+
"""
|
874 |
+
assert pretty(e3) == ascii_str
|
875 |
+
assert upretty(e3) == ucode_str
|
876 |
+
assert latex(e3) == \
|
877 |
+
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}'
|
878 |
+
sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))")
|
879 |
+
assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)'
|
880 |
+
ascii_str = \
|
881 |
+
"""\
|
882 |
+
// 1 2\\ x2\\ / 2 \\\n\
|
883 |
+
\\\\C x C / + F / x \\L + H/\
|
884 |
+
"""
|
885 |
+
ucode_str = \
|
886 |
+
"""\
|
887 |
+
⎛⎛ 1 2⎞ ⨂2⎞ ⎛ 2 ⎞\n\
|
888 |
+
⎝⎝C ⨂ C ⎠ ⊕ F ⎠ ⨂ ⎝L ⊕ H⎠\
|
889 |
+
"""
|
890 |
+
assert pretty(e4) == ascii_str
|
891 |
+
assert upretty(e4) == ucode_str
|
892 |
+
assert latex(e4) == \
|
893 |
+
r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)'
|
894 |
+
sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))")
|
895 |
+
|
896 |
+
|
897 |
+
def _test_sho1d():
|
898 |
+
ad = RaisingOp('a')
|
899 |
+
assert pretty(ad) == ' \N{DAGGER}\na '
|
900 |
+
assert latex(ad) == 'a^{\\dagger}'
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_qft.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, pi)
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.functions.elementary.exponential import exp
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.matrices.dense import Matrix
|
6 |
+
|
7 |
+
from sympy.physics.quantum.qft import QFT, IQFT, RkGate
|
8 |
+
from sympy.physics.quantum.gate import (ZGate, SwapGate, HadamardGate, CGate,
|
9 |
+
PhaseGate, TGate)
|
10 |
+
from sympy.physics.quantum.qubit import Qubit
|
11 |
+
from sympy.physics.quantum.qapply import qapply
|
12 |
+
from sympy.physics.quantum.represent import represent
|
13 |
+
|
14 |
+
|
15 |
+
def test_RkGate():
|
16 |
+
x = Symbol('x')
|
17 |
+
assert RkGate(1, x).k == x
|
18 |
+
assert RkGate(1, x).targets == (1,)
|
19 |
+
assert RkGate(1, 1) == ZGate(1)
|
20 |
+
assert RkGate(2, 2) == PhaseGate(2)
|
21 |
+
assert RkGate(3, 3) == TGate(3)
|
22 |
+
|
23 |
+
assert represent(
|
24 |
+
RkGate(0, x), nqubits=1) == Matrix([[1, 0], [0, exp(2*I*pi/2**x)]])
|
25 |
+
|
26 |
+
|
27 |
+
def test_quantum_fourier():
|
28 |
+
assert QFT(0, 3).decompose() == \
|
29 |
+
SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
|
30 |
+
HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
|
31 |
+
HadamardGate(2)
|
32 |
+
|
33 |
+
assert IQFT(0, 3).decompose() == \
|
34 |
+
HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
|
35 |
+
HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)
|
36 |
+
|
37 |
+
assert represent(QFT(0, 3), nqubits=3) == \
|
38 |
+
Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])
|
39 |
+
|
40 |
+
assert QFT(0, 4).decompose() # non-trivial decomposition
|
41 |
+
assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
|
42 |
+
HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
|
43 |
+
).expand()
|
44 |
+
|
45 |
+
|
46 |
+
def test_qft_represent():
|
47 |
+
c = QFT(0, 3)
|
48 |
+
a = represent(c, nqubits=3)
|
49 |
+
b = represent(c.decompose(), nqubits=3)
|
50 |
+
assert a.evalf(n=10) == b.evalf(n=10)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_represent.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Float, I, Integer)
|
2 |
+
from sympy.matrices.dense import Matrix
|
3 |
+
from sympy.external import import_module
|
4 |
+
from sympy.testing.pytest import skip
|
5 |
+
|
6 |
+
from sympy.physics.quantum.dagger import Dagger
|
7 |
+
from sympy.physics.quantum.represent import (represent, rep_innerproduct,
|
8 |
+
rep_expectation, enumerate_states)
|
9 |
+
from sympy.physics.quantum.state import Bra, Ket
|
10 |
+
from sympy.physics.quantum.operator import Operator, OuterProduct
|
11 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
12 |
+
from sympy.physics.quantum.tensorproduct import matrix_tensor_product
|
13 |
+
from sympy.physics.quantum.commutator import Commutator
|
14 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
15 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
16 |
+
from sympy.physics.quantum.matrixutils import (numpy_ndarray,
|
17 |
+
scipy_sparse_matrix, to_numpy,
|
18 |
+
to_scipy_sparse, to_sympy)
|
19 |
+
from sympy.physics.quantum.cartesian import XKet, XOp, XBra
|
20 |
+
from sympy.physics.quantum.qapply import qapply
|
21 |
+
from sympy.physics.quantum.operatorset import operators_to_state
|
22 |
+
|
23 |
+
Amat = Matrix([[1, I], [-I, 1]])
|
24 |
+
Bmat = Matrix([[1, 2], [3, 4]])
|
25 |
+
Avec = Matrix([[1], [I]])
|
26 |
+
|
27 |
+
|
28 |
+
class AKet(Ket):
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def dual_class(self):
|
32 |
+
return ABra
|
33 |
+
|
34 |
+
def _represent_default_basis(self, **options):
|
35 |
+
return self._represent_AOp(None, **options)
|
36 |
+
|
37 |
+
def _represent_AOp(self, basis, **options):
|
38 |
+
return Avec
|
39 |
+
|
40 |
+
|
41 |
+
class ABra(Bra):
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def dual_class(self):
|
45 |
+
return AKet
|
46 |
+
|
47 |
+
|
48 |
+
class AOp(Operator):
|
49 |
+
|
50 |
+
def _represent_default_basis(self, **options):
|
51 |
+
return self._represent_AOp(None, **options)
|
52 |
+
|
53 |
+
def _represent_AOp(self, basis, **options):
|
54 |
+
return Amat
|
55 |
+
|
56 |
+
|
57 |
+
class BOp(Operator):
|
58 |
+
|
59 |
+
def _represent_default_basis(self, **options):
|
60 |
+
return self._represent_AOp(None, **options)
|
61 |
+
|
62 |
+
def _represent_AOp(self, basis, **options):
|
63 |
+
return Bmat
|
64 |
+
|
65 |
+
|
66 |
+
k = AKet('a')
|
67 |
+
b = ABra('a')
|
68 |
+
A = AOp('A')
|
69 |
+
B = BOp('B')
|
70 |
+
|
71 |
+
_tests = [
|
72 |
+
# Bra
|
73 |
+
(b, Dagger(Avec)),
|
74 |
+
(Dagger(b), Avec),
|
75 |
+
# Ket
|
76 |
+
(k, Avec),
|
77 |
+
(Dagger(k), Dagger(Avec)),
|
78 |
+
# Operator
|
79 |
+
(A, Amat),
|
80 |
+
(Dagger(A), Dagger(Amat)),
|
81 |
+
# OuterProduct
|
82 |
+
(OuterProduct(k, b), Avec*Avec.H),
|
83 |
+
# TensorProduct
|
84 |
+
(TensorProduct(A, B), matrix_tensor_product(Amat, Bmat)),
|
85 |
+
# Pow
|
86 |
+
(A**2, Amat**2),
|
87 |
+
# Add/Mul
|
88 |
+
(A*B + 2*A, Amat*Bmat + 2*Amat),
|
89 |
+
# Commutator
|
90 |
+
(Commutator(A, B), Amat*Bmat - Bmat*Amat),
|
91 |
+
# AntiCommutator
|
92 |
+
(AntiCommutator(A, B), Amat*Bmat + Bmat*Amat),
|
93 |
+
# InnerProduct
|
94 |
+
(InnerProduct(b, k), (Avec.H*Avec)[0])
|
95 |
+
]
|
96 |
+
|
97 |
+
|
98 |
+
def test_format_sympy():
|
99 |
+
for test in _tests:
|
100 |
+
lhs = represent(test[0], basis=A, format='sympy')
|
101 |
+
rhs = to_sympy(test[1])
|
102 |
+
assert lhs == rhs
|
103 |
+
|
104 |
+
|
105 |
+
def test_scalar_sympy():
|
106 |
+
assert represent(Integer(1)) == Integer(1)
|
107 |
+
assert represent(Float(1.0)) == Float(1.0)
|
108 |
+
assert represent(1.0 + I) == 1.0 + I
|
109 |
+
|
110 |
+
|
111 |
+
np = import_module('numpy')
|
112 |
+
|
113 |
+
|
114 |
+
def test_format_numpy():
|
115 |
+
if not np:
|
116 |
+
skip("numpy not installed.")
|
117 |
+
|
118 |
+
for test in _tests:
|
119 |
+
lhs = represent(test[0], basis=A, format='numpy')
|
120 |
+
rhs = to_numpy(test[1])
|
121 |
+
if isinstance(lhs, numpy_ndarray):
|
122 |
+
assert (lhs == rhs).all()
|
123 |
+
else:
|
124 |
+
assert lhs == rhs
|
125 |
+
|
126 |
+
|
127 |
+
def test_scalar_numpy():
|
128 |
+
if not np:
|
129 |
+
skip("numpy not installed.")
|
130 |
+
|
131 |
+
assert represent(Integer(1), format='numpy') == 1
|
132 |
+
assert represent(Float(1.0), format='numpy') == 1.0
|
133 |
+
assert represent(1.0 + I, format='numpy') == 1.0 + 1.0j
|
134 |
+
|
135 |
+
|
136 |
+
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
|
137 |
+
|
138 |
+
|
139 |
+
def test_format_scipy_sparse():
|
140 |
+
if not np:
|
141 |
+
skip("numpy not installed.")
|
142 |
+
if not scipy:
|
143 |
+
skip("scipy not installed.")
|
144 |
+
|
145 |
+
for test in _tests:
|
146 |
+
lhs = represent(test[0], basis=A, format='scipy.sparse')
|
147 |
+
rhs = to_scipy_sparse(test[1])
|
148 |
+
if isinstance(lhs, scipy_sparse_matrix):
|
149 |
+
assert np.linalg.norm((lhs - rhs).todense()) == 0.0
|
150 |
+
else:
|
151 |
+
assert lhs == rhs
|
152 |
+
|
153 |
+
|
154 |
+
def test_scalar_scipy_sparse():
|
155 |
+
if not np:
|
156 |
+
skip("numpy not installed.")
|
157 |
+
if not scipy:
|
158 |
+
skip("scipy not installed.")
|
159 |
+
|
160 |
+
assert represent(Integer(1), format='scipy.sparse') == 1
|
161 |
+
assert represent(Float(1.0), format='scipy.sparse') == 1.0
|
162 |
+
assert represent(1.0 + I, format='scipy.sparse') == 1.0 + 1.0j
|
163 |
+
|
164 |
+
x_ket = XKet('x')
|
165 |
+
x_bra = XBra('x')
|
166 |
+
x_op = XOp('X')
|
167 |
+
|
168 |
+
|
169 |
+
def test_innerprod_represent():
|
170 |
+
assert rep_innerproduct(x_ket) == InnerProduct(XBra("x_1"), x_ket).doit()
|
171 |
+
assert rep_innerproduct(x_bra) == InnerProduct(x_bra, XKet("x_1")).doit()
|
172 |
+
|
173 |
+
try:
|
174 |
+
rep_innerproduct(x_op)
|
175 |
+
except TypeError:
|
176 |
+
return True
|
177 |
+
|
178 |
+
|
179 |
+
def test_operator_represent():
|
180 |
+
basis_kets = enumerate_states(operators_to_state(x_op), 1, 2)
|
181 |
+
assert rep_expectation(
|
182 |
+
x_op) == qapply(basis_kets[1].dual*x_op*basis_kets[0])
|
183 |
+
|
184 |
+
|
185 |
+
def test_enumerate_states():
|
186 |
+
test = XKet("foo")
|
187 |
+
assert enumerate_states(test, 1, 1) == [XKet("foo_1")]
|
188 |
+
assert enumerate_states(
|
189 |
+
test, [1, 2, 4]) == [XKet("foo_1"), XKet("foo_2"), XKet("foo_4")]
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_shor.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import XFAIL
|
2 |
+
|
3 |
+
from sympy.physics.quantum.qapply import qapply
|
4 |
+
from sympy.physics.quantum.qubit import Qubit
|
5 |
+
from sympy.physics.quantum.shor import CMod, getr
|
6 |
+
|
7 |
+
|
8 |
+
@XFAIL
|
9 |
+
def test_CMod():
|
10 |
+
assert qapply(CMod(4, 2, 2)*Qubit(0, 0, 1, 0, 0, 0, 0, 0)) == \
|
11 |
+
Qubit(0, 0, 1, 0, 0, 0, 0, 0)
|
12 |
+
assert qapply(CMod(5, 5, 7)*Qubit(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)) == \
|
13 |
+
Qubit(0, 0, 1, 0, 0, 0, 0, 0, 1, 0)
|
14 |
+
assert qapply(CMod(3, 2, 3)*Qubit(0, 1, 0, 0, 0, 0)) == \
|
15 |
+
Qubit(0, 1, 0, 0, 0, 1)
|
16 |
+
|
17 |
+
|
18 |
+
def test_continued_frac():
|
19 |
+
assert getr(513, 1024, 10) == 2
|
20 |
+
assert getr(169, 1024, 11) == 6
|
21 |
+
assert getr(314, 4096, 16) == 13
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_spin.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
'CoordinateSym', 'ReferenceFrame',
|
3 |
+
|
4 |
+
'Dyadic',
|
5 |
+
|
6 |
+
'Vector',
|
7 |
+
|
8 |
+
'Point',
|
9 |
+
|
10 |
+
'cross', 'dot', 'express', 'time_derivative', 'outer',
|
11 |
+
'kinematic_equations', 'get_motion_params', 'partial_velocity',
|
12 |
+
'dynamicsymbols',
|
13 |
+
|
14 |
+
'vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting',
|
15 |
+
|
16 |
+
'curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
|
17 |
+
'scalar_potential', 'scalar_potential_difference',
|
18 |
+
|
19 |
+
]
|
20 |
+
from .frame import CoordinateSym, ReferenceFrame
|
21 |
+
|
22 |
+
from .dyadic import Dyadic
|
23 |
+
|
24 |
+
from .vector import Vector
|
25 |
+
|
26 |
+
from .point import Point
|
27 |
+
|
28 |
+
from .functions import (cross, dot, express, time_derivative, outer,
|
29 |
+
kinematic_equations, get_motion_params, partial_velocity,
|
30 |
+
dynamicsymbols)
|
31 |
+
|
32 |
+
from .printing import (vprint, vsstrrepr, vsprint, vpprint, vlatex,
|
33 |
+
init_vprinting)
|
34 |
+
|
35 |
+
from .fieldfunctions import (curl, divergence, gradient, is_conservative,
|
36 |
+
is_solenoidal, scalar_potential, scalar_potential_difference)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc
ADDED
Binary file (7.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc
ADDED
Binary file (45.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/printing.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/vector.cpython-310.pyc
ADDED
Binary file (24.8 kB). View file
|
|