Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py +782 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py +108 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__init__.py +15 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/control/control_plots.py +961 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/control/lti.py +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__init__.py +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/gamma_matrices.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/gamma_matrices.py +716 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py +427 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py +178 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py +13 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_fermion.py +36 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_hilbert.py +110 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_operatorordering.py +38 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_printing.py +900 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_qft.py +50 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_represent.py +189 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_shor.py +21 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_spin.py +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__init__.py +36 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/printing.cpython-310.pyc +0 -0
 - env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/vector.cpython-310.pyc +0 -0
 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (419 Bytes). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc
    ADDED
    
    | 
         Binary file (7.36 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc
    ADDED
    
    | 
         Binary file (3.63 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc
    ADDED
    
    | 
         Binary file (6.14 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc
    ADDED
    
    | 
         Binary file (2.42 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc
    ADDED
    
    | 
         Binary file (83.8 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc
    ADDED
    
    | 
         Binary file (37.3 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (299 Bytes). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc
    ADDED
    
    | 
         Binary file (120 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc
    ADDED
    
    | 
         Binary file (22.6 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (204 Bytes). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc
    ADDED
    
    | 
         Binary file (21.3 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc
    ADDED
    
    | 
         Binary file (2.65 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py
    ADDED
    
    | 
         @@ -0,0 +1,782 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.function import expand
         
     | 
| 2 | 
         
            +
            from sympy.core.numbers import (Rational, pi)
         
     | 
| 3 | 
         
            +
            from sympy.core.singleton import S
         
     | 
| 4 | 
         
            +
            from sympy.core.symbol import (Symbol, symbols)
         
     | 
| 5 | 
         
            +
            from sympy.sets.sets import Interval
         
     | 
| 6 | 
         
            +
            from sympy.simplify.simplify import simplify
         
     | 
| 7 | 
         
            +
            from sympy.physics.continuum_mechanics.beam import Beam
         
     | 
| 8 | 
         
            +
            from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log
         
     | 
| 9 | 
         
            +
            from sympy.testing.pytest import raises
         
     | 
| 10 | 
         
            +
            from sympy.physics.units import meter, newton, kilo, giga, milli
         
     | 
| 11 | 
         
            +
            from sympy.physics.continuum_mechanics.beam import Beam3D
         
     | 
| 12 | 
         
            +
            from sympy.geometry import Circle, Polygon, Point2D, Triangle
         
     | 
| 13 | 
         
            +
            from sympy.core.sympify import sympify
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            x = Symbol('x')
         
     | 
| 16 | 
         
            +
            y = Symbol('y')
         
     | 
| 17 | 
         
            +
            R1, R2 = symbols('R1, R2')
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def test_Beam():
         
     | 
| 21 | 
         
            +
                E = Symbol('E')
         
     | 
| 22 | 
         
            +
                E_1 = Symbol('E_1')
         
     | 
| 23 | 
         
            +
                I = Symbol('I')
         
     | 
| 24 | 
         
            +
                I_1 = Symbol('I_1')
         
     | 
| 25 | 
         
            +
                A = Symbol('A')
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                b = Beam(1, E, I)
         
     | 
| 28 | 
         
            +
                assert b.length == 1
         
     | 
| 29 | 
         
            +
                assert b.elastic_modulus == E
         
     | 
| 30 | 
         
            +
                assert b.second_moment == I
         
     | 
| 31 | 
         
            +
                assert b.variable == x
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                # Test the length setter
         
     | 
| 34 | 
         
            +
                b.length = 4
         
     | 
| 35 | 
         
            +
                assert b.length == 4
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                # Test the E setter
         
     | 
| 38 | 
         
            +
                b.elastic_modulus = E_1
         
     | 
| 39 | 
         
            +
                assert b.elastic_modulus == E_1
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                # Test the I setter
         
     | 
| 42 | 
         
            +
                b.second_moment = I_1
         
     | 
| 43 | 
         
            +
                assert b.second_moment is I_1
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                # Test the variable setter
         
     | 
| 46 | 
         
            +
                b.variable = y
         
     | 
| 47 | 
         
            +
                assert b.variable is y
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                # Test for all boundary conditions.
         
     | 
| 50 | 
         
            +
                b.bc_deflection = [(0, 2)]
         
     | 
| 51 | 
         
            +
                b.bc_slope = [(0, 1)]
         
     | 
| 52 | 
         
            +
                assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                # Test for slope boundary condition method
         
     | 
| 55 | 
         
            +
                b.bc_slope.extend([(4, 3), (5, 0)])
         
     | 
| 56 | 
         
            +
                s_bcs = b.bc_slope
         
     | 
| 57 | 
         
            +
                assert s_bcs == [(0, 1), (4, 3), (5, 0)]
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                # Test for deflection boundary condition method
         
     | 
| 60 | 
         
            +
                b.bc_deflection.extend([(4, 3), (5, 0)])
         
     | 
| 61 | 
         
            +
                d_bcs = b.bc_deflection
         
     | 
| 62 | 
         
            +
                assert d_bcs == [(0, 2), (4, 3), (5, 0)]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                # Test for updated boundary conditions
         
     | 
| 65 | 
         
            +
                bcs_new = b.boundary_conditions
         
     | 
| 66 | 
         
            +
                assert bcs_new == {
         
     | 
| 67 | 
         
            +
                    'deflection': [(0, 2), (4, 3), (5, 0)],
         
     | 
| 68 | 
         
            +
                    'slope': [(0, 1), (4, 3), (5, 0)]}
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                b1 = Beam(30, E, I)
         
     | 
| 71 | 
         
            +
                b1.apply_load(-8, 0, -1)
         
     | 
| 72 | 
         
            +
                b1.apply_load(R1, 10, -1)
         
     | 
| 73 | 
         
            +
                b1.apply_load(R2, 30, -1)
         
     | 
| 74 | 
         
            +
                b1.apply_load(120, 30, -2)
         
     | 
| 75 | 
         
            +
                b1.bc_deflection = [(10, 0), (30, 0)]
         
     | 
| 76 | 
         
            +
                b1.solve_for_reaction_loads(R1, R2)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                # Test for finding reaction forces
         
     | 
| 79 | 
         
            +
                p = b1.reaction_loads
         
     | 
| 80 | 
         
            +
                q = {R1: 6, R2: 2}
         
     | 
| 81 | 
         
            +
                assert p == q
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                # Test for load distribution function.
         
     | 
| 84 | 
         
            +
                p = b1.load
         
     | 
| 85 | 
         
            +
                q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \
         
     | 
| 86 | 
         
            +
                + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
         
     | 
| 87 | 
         
            +
                assert p == q
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                # Test for shear force distribution function
         
     | 
| 90 | 
         
            +
                p = b1.shear_force()
         
     | 
| 91 | 
         
            +
                q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
         
     | 
| 92 | 
         
            +
                - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
         
     | 
| 93 | 
         
            +
                assert p == q
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                # Test for shear stress distribution function
         
     | 
| 96 | 
         
            +
                p = b1.shear_stress()
         
     | 
| 97 | 
         
            +
                q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
         
     | 
| 98 | 
         
            +
                - 120*SingularityFunction(x, 30, -1) \
         
     | 
| 99 | 
         
            +
                - 2*SingularityFunction(x, 30, 0))/A
         
     | 
| 100 | 
         
            +
                assert p==q
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                # Test for bending moment distribution function
         
     | 
| 103 | 
         
            +
                p = b1.bending_moment()
         
     | 
| 104 | 
         
            +
                q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \
         
     | 
| 105 | 
         
            +
                - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
         
     | 
| 106 | 
         
            +
                assert p == q
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                # Test for slope distribution function
         
     | 
| 109 | 
         
            +
                p = b1.slope()
         
     | 
| 110 | 
         
            +
                q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \
         
     | 
| 111 | 
         
            +
                + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \
         
     | 
| 112 | 
         
            +
                + Rational(4000, 3)
         
     | 
| 113 | 
         
            +
                assert p == q/(E*I)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                # Test for deflection distribution function
         
     | 
| 116 | 
         
            +
                p = b1.deflection()
         
     | 
| 117 | 
         
            +
                q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \
         
     | 
| 118 | 
         
            +
                + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \
         
     | 
| 119 | 
         
            +
                + SingularityFunction(x, 30, 3)/3 - 12000
         
     | 
| 120 | 
         
            +
                assert p == q/(E*I)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                # Test using symbols
         
     | 
| 123 | 
         
            +
                l = Symbol('l')
         
     | 
| 124 | 
         
            +
                w0 = Symbol('w0')
         
     | 
| 125 | 
         
            +
                w2 = Symbol('w2')
         
     | 
| 126 | 
         
            +
                a1 = Symbol('a1')
         
     | 
| 127 | 
         
            +
                c = Symbol('c')
         
     | 
| 128 | 
         
            +
                c1 = Symbol('c1')
         
     | 
| 129 | 
         
            +
                d = Symbol('d')
         
     | 
| 130 | 
         
            +
                e = Symbol('e')
         
     | 
| 131 | 
         
            +
                f = Symbol('f')
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                b2 = Beam(l, E, I)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                b2.apply_load(w0, a1, 1)
         
     | 
| 136 | 
         
            +
                b2.apply_load(w2, c1, -1)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                b2.bc_deflection = [(c, d)]
         
     | 
| 139 | 
         
            +
                b2.bc_slope = [(e, f)]
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                # Test for load distribution function.
         
     | 
| 142 | 
         
            +
                p = b2.load
         
     | 
| 143 | 
         
            +
                q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
         
     | 
| 144 | 
         
            +
                assert p == q
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                # Test for shear force distribution function
         
     | 
| 147 | 
         
            +
                p = b2.shear_force()
         
     | 
| 148 | 
         
            +
                q = -w0*SingularityFunction(x, a1, 2)/2 \
         
     | 
| 149 | 
         
            +
                - w2*SingularityFunction(x, c1, 0)
         
     | 
| 150 | 
         
            +
                assert p == q
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                # Test for shear stress distribution function
         
     | 
| 153 | 
         
            +
                p = b2.shear_stress()
         
     | 
| 154 | 
         
            +
                q = (-w0*SingularityFunction(x, a1, 2)/2 \
         
     | 
| 155 | 
         
            +
                - w2*SingularityFunction(x, c1, 0))/A
         
     | 
| 156 | 
         
            +
                assert p == q
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                # Test for bending moment distribution function
         
     | 
| 159 | 
         
            +
                p = b2.bending_moment()
         
     | 
| 160 | 
         
            +
                q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1)
         
     | 
| 161 | 
         
            +
                assert p == q
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                # Test for slope distribution function
         
     | 
| 164 | 
         
            +
                p = b2.slope()
         
     | 
| 165 | 
         
            +
                q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
         
     | 
| 166 | 
         
            +
                assert expand(p) == expand(q)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                # Test for deflection distribution function
         
     | 
| 169 | 
         
            +
                p = b2.deflection()
         
     | 
| 170 | 
         
            +
                q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \
         
     | 
| 171 | 
         
            +
                - w2*SingularityFunction(e, c1, 2)/2)/(E*I) \
         
     | 
| 172 | 
         
            +
                + (w0*SingularityFunction(x, a1, 5)/120 \
         
     | 
| 173 | 
         
            +
                + w2*SingularityFunction(x, c1, 3)/6)/(E*I) \
         
     | 
| 174 | 
         
            +
                + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \
         
     | 
| 175 | 
         
            +
                + c*w2*SingularityFunction(e, c1, 2)/2 \
         
     | 
| 176 | 
         
            +
                - w0*SingularityFunction(c, a1, 5)/120 \
         
     | 
| 177 | 
         
            +
                - w2*SingularityFunction(c, c1, 3)/6)/(E*I)
         
     | 
| 178 | 
         
            +
                assert simplify(p - q) == 0
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                b3 = Beam(9, E, I, 2)
         
     | 
| 181 | 
         
            +
                b3.apply_load(value=-2, start=2, order=2, end=3)
         
     | 
| 182 | 
         
            +
                b3.bc_slope.append((0, 2))
         
     | 
| 183 | 
         
            +
                C3 = symbols('C3')
         
     | 
| 184 | 
         
            +
                C4 = symbols('C4')
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                p = b3.load
         
     | 
| 187 | 
         
            +
                q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \
         
     | 
| 188 | 
         
            +
                + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
         
     | 
| 189 | 
         
            +
                assert p == q
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                p = b3.shear_force()
         
     | 
| 192 | 
         
            +
                q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \
         
     | 
| 193 | 
         
            +
                - 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3
         
     | 
| 194 | 
         
            +
                assert p == q
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                p = b3.shear_stress()
         
     | 
| 197 | 
         
            +
                q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \
         
     | 
| 198 | 
         
            +
                - 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3
         
     | 
| 199 | 
         
            +
                assert p == q
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                p = b3.slope()
         
     | 
| 202 | 
         
            +
                q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \
         
     | 
| 203 | 
         
            +
                - SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I)
         
     | 
| 204 | 
         
            +
                assert p == q
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                p = b3.deflection()
         
     | 
| 207 | 
         
            +
                q = 2*x - (SingularityFunction(x, 2, 6)/180 \
         
     | 
| 208 | 
         
            +
                - SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \
         
     | 
| 209 | 
         
            +
                - SingularityFunction(x, 3, 6)/180)/(E*I)
         
     | 
| 210 | 
         
            +
                assert p == q + C4
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                b4 = Beam(4, E, I, 3)
         
     | 
| 213 | 
         
            +
                b4.apply_load(-3, 0, 0, end=3)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                p = b4.load
         
     | 
| 216 | 
         
            +
                q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
         
     | 
| 217 | 
         
            +
                assert p == q
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                p = b4.shear_force()
         
     | 
| 220 | 
         
            +
                q = 3*SingularityFunction(x, 0, 1) \
         
     | 
| 221 | 
         
            +
                - 3*SingularityFunction(x, 3, 1)
         
     | 
| 222 | 
         
            +
                assert p == q
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                p = b4.shear_stress()
         
     | 
| 225 | 
         
            +
                q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1)
         
     | 
| 226 | 
         
            +
                assert p == q
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                p = b4.slope()
         
     | 
| 229 | 
         
            +
                q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
         
     | 
| 230 | 
         
            +
                assert p == q/(E*I) + C3
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                p = b4.deflection()
         
     | 
| 233 | 
         
            +
                q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
         
     | 
| 234 | 
         
            +
                assert p == q/(E*I) + C3*x + C4
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                # can't use end with point loads
         
     | 
| 237 | 
         
            +
                raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
         
     | 
| 238 | 
         
            +
                with raises(TypeError):
         
     | 
| 239 | 
         
            +
                    b4.variable = 1
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            def test_insufficient_bconditions():
         
     | 
| 243 | 
         
            +
                # Test cases when required number of boundary conditions
         
     | 
| 244 | 
         
            +
                # are not provided to solve the integration constants.
         
     | 
| 245 | 
         
            +
                L = symbols('L', positive=True)
         
     | 
| 246 | 
         
            +
                E, I, P, a3, a4 = symbols('E I P a3 a4')
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                b = Beam(L, E, I, base_char='a')
         
     | 
| 249 | 
         
            +
                b.apply_load(R2, L, -1)
         
     | 
| 250 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 251 | 
         
            +
                b.apply_load(-P, L/2, -1)
         
     | 
| 252 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                p = b.slope()
         
     | 
| 255 | 
         
            +
                q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
         
     | 
| 256 | 
         
            +
                assert p == q/(E*I) + a3
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                p = b.deflection()
         
     | 
| 259 | 
         
            +
                q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
         
     | 
| 260 | 
         
            +
                assert p == q/(E*I) + a3*x + a4
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                b.bc_deflection = [(0, 0)]
         
     | 
| 263 | 
         
            +
                p = b.deflection()
         
     | 
| 264 | 
         
            +
                q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
         
     | 
| 265 | 
         
            +
                assert p == q/(E*I)
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                b.bc_deflection = [(0, 0), (L, 0)]
         
     | 
| 268 | 
         
            +
                p = b.deflection()
         
     | 
| 269 | 
         
            +
                q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
         
     | 
| 270 | 
         
            +
                assert p == q/(E*I)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            def test_statically_indeterminate():
         
     | 
| 274 | 
         
            +
                E = Symbol('E')
         
     | 
| 275 | 
         
            +
                I = Symbol('I')
         
     | 
| 276 | 
         
            +
                M1, M2 = symbols('M1, M2')
         
     | 
| 277 | 
         
            +
                F = Symbol('F')
         
     | 
| 278 | 
         
            +
                l = Symbol('l', positive=True)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                b5 = Beam(l, E, I)
         
     | 
| 281 | 
         
            +
                b5.bc_deflection = [(0, 0),(l, 0)]
         
     | 
| 282 | 
         
            +
                b5.bc_slope = [(0, 0),(l, 0)]
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                b5.apply_load(R1, 0, -1)
         
     | 
| 285 | 
         
            +
                b5.apply_load(M1, 0, -2)
         
     | 
| 286 | 
         
            +
                b5.apply_load(R2, l, -1)
         
     | 
| 287 | 
         
            +
                b5.apply_load(M2, l, -2)
         
     | 
| 288 | 
         
            +
                b5.apply_load(-F, l/2, -1)
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                b5.solve_for_reaction_loads(R1, R2, M1, M2)
         
     | 
| 291 | 
         
            +
                p = b5.reaction_loads
         
     | 
| 292 | 
         
            +
                q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8}
         
     | 
| 293 | 
         
            +
                assert p == q
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
            def test_beam_units():
         
     | 
| 297 | 
         
            +
                E = Symbol('E')
         
     | 
| 298 | 
         
            +
                I = Symbol('I')
         
     | 
| 299 | 
         
            +
                R1, R2 = symbols('R1, R2')
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                kN = kilo*newton
         
     | 
| 302 | 
         
            +
                gN = giga*newton
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4)
         
     | 
| 305 | 
         
            +
                b.apply_load(5*kN, 2*meter, -1)
         
     | 
| 306 | 
         
            +
                b.apply_load(R1, 0*meter, -1)
         
     | 
| 307 | 
         
            +
                b.apply_load(R2, 8*meter, -1)
         
     | 
| 308 | 
         
            +
                b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter)
         
     | 
| 309 | 
         
            +
                b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
         
     | 
| 310 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 311 | 
         
            +
                assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                b = Beam(3*meter, E*newton/meter**2, I*meter**4)
         
     | 
| 314 | 
         
            +
                b.apply_load(8*kN, 1*meter, -1)
         
     | 
| 315 | 
         
            +
                b.apply_load(R1, 0*meter, -1)
         
     | 
| 316 | 
         
            +
                b.apply_load(R2, 3*meter, -1)
         
     | 
| 317 | 
         
            +
                b.apply_load(12*kN*meter, 2*meter, -2)
         
     | 
| 318 | 
         
            +
                b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
         
     | 
| 319 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 320 | 
         
            +
                assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)}
         
     | 
| 321 | 
         
            +
                assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
            def test_variable_moment():
         
     | 
| 325 | 
         
            +
                E = Symbol('E')
         
     | 
| 326 | 
         
            +
                I = Symbol('I')
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                b = Beam(4, E, 2*(4 - x))
         
     | 
| 329 | 
         
            +
                b.apply_load(20, 4, -1)
         
     | 
| 330 | 
         
            +
                R, M = symbols('R, M')
         
     | 
| 331 | 
         
            +
                b.apply_load(R, 0, -1)
         
     | 
| 332 | 
         
            +
                b.apply_load(M, 0, -2)
         
     | 
| 333 | 
         
            +
                b.bc_deflection = [(0, 0)]
         
     | 
| 334 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 335 | 
         
            +
                b.solve_for_reaction_loads(R, M)
         
     | 
| 336 | 
         
            +
                assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
         
     | 
| 337 | 
         
            +
                    - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
         
     | 
| 338 | 
         
            +
                assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
         
     | 
| 339 | 
         
            +
                    - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
         
     | 
| 340 | 
         
            +
                    + 40*SingularityFunction(x, 4, 1))/E).expand()
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                b = Beam(4, E - x, I)
         
     | 
| 343 | 
         
            +
                b.apply_load(20, 4, -1)
         
     | 
| 344 | 
         
            +
                R, M = symbols('R, M')
         
     | 
| 345 | 
         
            +
                b.apply_load(R, 0, -1)
         
     | 
| 346 | 
         
            +
                b.apply_load(M, 0, -2)
         
     | 
| 347 | 
         
            +
                b.bc_deflection = [(0, 0)]
         
     | 
| 348 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 349 | 
         
            +
                b.solve_for_reaction_loads(R, M)
         
     | 
| 350 | 
         
            +
                assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
         
     | 
| 351 | 
         
            +
                    + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
         
     | 
| 352 | 
         
            +
                    + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
         
     | 
| 353 | 
         
            +
                    + x - 4)*SingularityFunction(x, 4, 0))/I).expand()
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
            def test_composite_beam():
         
     | 
| 357 | 
         
            +
                E = Symbol('E')
         
     | 
| 358 | 
         
            +
                I = Symbol('I')
         
     | 
| 359 | 
         
            +
                b1 = Beam(2, E, 1.5*I)
         
     | 
| 360 | 
         
            +
                b2 = Beam(2, E, I)
         
     | 
| 361 | 
         
            +
                b = b1.join(b2, "fixed")
         
     | 
| 362 | 
         
            +
                b.apply_load(-20, 0, -1)
         
     | 
| 363 | 
         
            +
                b.apply_load(80, 0, -2)
         
     | 
| 364 | 
         
            +
                b.apply_load(20, 4, -1)
         
     | 
| 365 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 366 | 
         
            +
                b.bc_deflection = [(0, 0)]
         
     | 
| 367 | 
         
            +
                assert b.length == 4
         
     | 
| 368 | 
         
            +
                assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4))
         
     | 
| 369 | 
         
            +
                assert b.slope().subs(x, 4) == 120.0/(E*I)
         
     | 
| 370 | 
         
            +
                assert b.slope().subs(x, 2) == 80.0/(E*I)
         
     | 
| 371 | 
         
            +
                assert int(b.deflection().subs(x, 4).args[0]) == -302  # Coefficient of 1/(E*I)
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                l = symbols('l', positive=True)
         
     | 
| 374 | 
         
            +
                R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
         
     | 
| 375 | 
         
            +
                b1 = Beam(2*l, E, I)
         
     | 
| 376 | 
         
            +
                b2 = Beam(2*l, E, I)
         
     | 
| 377 | 
         
            +
                b = b1.join(b2,"hinge")
         
     | 
| 378 | 
         
            +
                b.apply_load(M1, 0, -2)
         
     | 
| 379 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 380 | 
         
            +
                b.apply_load(R2, l, -1)
         
     | 
| 381 | 
         
            +
                b.apply_load(R3, 4*l, -1)
         
     | 
| 382 | 
         
            +
                b.apply_load(P, 3*l, -1)
         
     | 
| 383 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 384 | 
         
            +
                b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
         
     | 
| 385 | 
         
            +
                b.solve_for_reaction_loads(M1, R1, R2, R3)
         
     | 
| 386 | 
         
            +
                assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)}
         
     | 
| 387 | 
         
            +
                assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I)
         
     | 
| 388 | 
         
            +
                assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I)
         
     | 
| 389 | 
         
            +
                assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I)
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                # When beams having same second moment are joined.
         
     | 
| 392 | 
         
            +
                b1 = Beam(2, 500, 10)
         
     | 
| 393 | 
         
            +
                b2 = Beam(2, 500, 10)
         
     | 
| 394 | 
         
            +
                b = b1.join(b2, "fixed")
         
     | 
| 395 | 
         
            +
                b.apply_load(M1, 0, -2)
         
     | 
| 396 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 397 | 
         
            +
                b.apply_load(R2, 1, -1)
         
     | 
| 398 | 
         
            +
                b.apply_load(R3, 4, -1)
         
     | 
| 399 | 
         
            +
                b.apply_load(10, 3, -1)
         
     | 
| 400 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 401 | 
         
            +
                b.bc_deflection = [(0, 0), (1, 0), (4, 0)]
         
     | 
| 402 | 
         
            +
                b.solve_for_reaction_loads(M1, R1, R2, R3)
         
     | 
| 403 | 
         
            +
                assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\
         
     | 
| 404 | 
         
            +
                            - 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\
         
     | 
| 405 | 
         
            +
                            - 37*SingularityFunction(x, 4, 2)/67500
         
     | 
| 406 | 
         
            +
                assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\
         
     | 
| 407 | 
         
            +
                                - 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\
         
     | 
| 408 | 
         
            +
                                - 37*SingularityFunction(x, 4, 3)/202500
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
            def test_point_cflexure():
         
     | 
| 412 | 
         
            +
                E = Symbol('E')
         
     | 
| 413 | 
         
            +
                I = Symbol('I')
         
     | 
| 414 | 
         
            +
                b = Beam(10, E, I)
         
     | 
| 415 | 
         
            +
                b.apply_load(-4, 0, -1)
         
     | 
| 416 | 
         
            +
                b.apply_load(-46, 6, -1)
         
     | 
| 417 | 
         
            +
                b.apply_load(10, 2, -1)
         
     | 
| 418 | 
         
            +
                b.apply_load(20, 4, -1)
         
     | 
| 419 | 
         
            +
                b.apply_load(3, 6, 0)
         
     | 
| 420 | 
         
            +
                assert b.point_cflexure() == [Rational(10, 3)]
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
            def test_remove_load():
         
     | 
| 424 | 
         
            +
                E = Symbol('E')
         
     | 
| 425 | 
         
            +
                I = Symbol('I')
         
     | 
| 426 | 
         
            +
                b = Beam(4, E, I)
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                try:
         
     | 
| 429 | 
         
            +
                    b.remove_load(2, 1, -1)
         
     | 
| 430 | 
         
            +
                # As no load is applied on beam, ValueError should be returned.
         
     | 
| 431 | 
         
            +
                except ValueError:
         
     | 
| 432 | 
         
            +
                    assert True
         
     | 
| 433 | 
         
            +
                else:
         
     | 
| 434 | 
         
            +
                    assert False
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                b.apply_load(-3, 0, -2)
         
     | 
| 437 | 
         
            +
                b.apply_load(4, 2, -1)
         
     | 
| 438 | 
         
            +
                b.apply_load(-2, 2, 2, end = 3)
         
     | 
| 439 | 
         
            +
                b.remove_load(-2, 2, 2, end = 3)
         
     | 
| 440 | 
         
            +
                assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
         
     | 
| 441 | 
         
            +
                assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)]
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                try:
         
     | 
| 444 | 
         
            +
                    b.remove_load(1, 2, -1)
         
     | 
| 445 | 
         
            +
                # As load of this magnitude was never applied at
         
     | 
| 446 | 
         
            +
                # this position, method should return a ValueError.
         
     | 
| 447 | 
         
            +
                except ValueError:
         
     | 
| 448 | 
         
            +
                    assert True
         
     | 
| 449 | 
         
            +
                else:
         
     | 
| 450 | 
         
            +
                    assert False
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                b.remove_load(-3, 0, -2)
         
     | 
| 453 | 
         
            +
                b.remove_load(4, 2, -1)
         
     | 
| 454 | 
         
            +
                assert b.load == 0
         
     | 
| 455 | 
         
            +
                assert b.applied_loads == []
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
            def test_apply_support():
         
     | 
| 459 | 
         
            +
                E = Symbol('E')
         
     | 
| 460 | 
         
            +
                I = Symbol('I')
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                b = Beam(4, E, I)
         
     | 
| 463 | 
         
            +
                b.apply_support(0, "cantilever")
         
     | 
| 464 | 
         
            +
                b.apply_load(20, 4, -1)
         
     | 
| 465 | 
         
            +
                M_0, R_0 = symbols('M_0, R_0')
         
     | 
| 466 | 
         
            +
                b.solve_for_reaction_loads(R_0, M_0)
         
     | 
| 467 | 
         
            +
                assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
         
     | 
| 468 | 
         
            +
                            + 10*SingularityFunction(x, 4, 2))/(E*I))
         
     | 
| 469 | 
         
            +
                assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
         
     | 
| 470 | 
         
            +
                            + 10*SingularityFunction(x, 4, 3)/3)/(E*I))
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                b = Beam(30, E, I)
         
     | 
| 473 | 
         
            +
                b.apply_support(10, "pin")
         
     | 
| 474 | 
         
            +
                b.apply_support(30, "roller")
         
     | 
| 475 | 
         
            +
                b.apply_load(-8, 0, -1)
         
     | 
| 476 | 
         
            +
                b.apply_load(120, 30, -2)
         
     | 
| 477 | 
         
            +
                R_10, R_30 = symbols('R_10, R_30')
         
     | 
| 478 | 
         
            +
                b.solve_for_reaction_loads(R_10, R_30)
         
     | 
| 479 | 
         
            +
                assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
         
     | 
| 480 | 
         
            +
                        + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I)
         
     | 
| 481 | 
         
            +
                assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
         
     | 
| 482 | 
         
            +
                        + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                P = Symbol('P', positive=True)
         
     | 
| 485 | 
         
            +
                L = Symbol('L', positive=True)
         
     | 
| 486 | 
         
            +
                b = Beam(L, E, I)
         
     | 
| 487 | 
         
            +
                b.apply_support(0, type='fixed')
         
     | 
| 488 | 
         
            +
                b.apply_support(L, type='fixed')
         
     | 
| 489 | 
         
            +
                b.apply_load(-P, L/2, -1)
         
     | 
| 490 | 
         
            +
                R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
         
     | 
| 491 | 
         
            +
                b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
         
     | 
| 492 | 
         
            +
                assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
            def test_max_shear_force():
         
     | 
| 496 | 
         
            +
                E = Symbol('E')
         
     | 
| 497 | 
         
            +
                I = Symbol('I')
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                b = Beam(3, E, I)
         
     | 
| 500 | 
         
            +
                R, M = symbols('R, M')
         
     | 
| 501 | 
         
            +
                b.apply_load(R, 0, -1)
         
     | 
| 502 | 
         
            +
                b.apply_load(M, 0, -2)
         
     | 
| 503 | 
         
            +
                b.apply_load(2, 3, -1)
         
     | 
| 504 | 
         
            +
                b.apply_load(4, 2, -1)
         
     | 
| 505 | 
         
            +
                b.apply_load(2, 2, 0, end=3)
         
     | 
| 506 | 
         
            +
                b.solve_for_reaction_loads(R, M)
         
     | 
| 507 | 
         
            +
                assert b.max_shear_force() == (Interval(0, 2), 8)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                l = symbols('l', positive=True)
         
     | 
| 510 | 
         
            +
                P = Symbol('P')
         
     | 
| 511 | 
         
            +
                b = Beam(l, E, I)
         
     | 
| 512 | 
         
            +
                R1, R2 = symbols('R1, R2')
         
     | 
| 513 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 514 | 
         
            +
                b.apply_load(R2, l, -1)
         
     | 
| 515 | 
         
            +
                b.apply_load(P, 0, 0, end=l)
         
     | 
| 516 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 517 | 
         
            +
                assert b.max_shear_force() == (0, l*Abs(P)/2)
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
            def test_max_bmoment():
         
     | 
| 521 | 
         
            +
                E = Symbol('E')
         
     | 
| 522 | 
         
            +
                I = Symbol('I')
         
     | 
| 523 | 
         
            +
                l, P = symbols('l, P', positive=True)
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                b = Beam(l, E, I)
         
     | 
| 526 | 
         
            +
                R1, R2 = symbols('R1, R2')
         
     | 
| 527 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 528 | 
         
            +
                b.apply_load(R2, l, -1)
         
     | 
| 529 | 
         
            +
                b.apply_load(P, l/2, -1)
         
     | 
| 530 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 531 | 
         
            +
                b.reaction_loads
         
     | 
| 532 | 
         
            +
                assert b.max_bmoment() == (l/2, P*l/4)
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                b = Beam(l, E, I)
         
     | 
| 535 | 
         
            +
                R1, R2 = symbols('R1, R2')
         
     | 
| 536 | 
         
            +
                b.apply_load(R1, 0, -1)
         
     | 
| 537 | 
         
            +
                b.apply_load(R2, l, -1)
         
     | 
| 538 | 
         
            +
                b.apply_load(P, 0, 0, end=l)
         
     | 
| 539 | 
         
            +
                b.solve_for_reaction_loads(R1, R2)
         
     | 
| 540 | 
         
            +
                assert b.max_bmoment() == (l/2, P*l**2/8)
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
            def test_max_deflection():
         
     | 
| 544 | 
         
            +
                E, I, l, F = symbols('E, I, l, F', positive=True)
         
     | 
| 545 | 
         
            +
                b = Beam(l, E, I)
         
     | 
| 546 | 
         
            +
                b.bc_deflection = [(0, 0),(l, 0)]
         
     | 
| 547 | 
         
            +
                b.bc_slope = [(0, 0),(l, 0)]
         
     | 
| 548 | 
         
            +
                b.apply_load(F/2, 0, -1)
         
     | 
| 549 | 
         
            +
                b.apply_load(-F*l/8, 0, -2)
         
     | 
| 550 | 
         
            +
                b.apply_load(F/2, l, -1)
         
     | 
| 551 | 
         
            +
                b.apply_load(F*l/8, l, -2)
         
     | 
| 552 | 
         
            +
                b.apply_load(-F, l/2, -1)
         
     | 
| 553 | 
         
            +
                assert b.max_deflection() == (l/2, F*l**3/(192*E*I))
         
     | 
| 554 | 
         
            +
             
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
            def test_Beam3D():
         
     | 
| 557 | 
         
            +
                l, E, G, I, A = symbols('l, E, G, I, A')
         
     | 
| 558 | 
         
            +
                R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                b = Beam3D(l, E, G, I, A)
         
     | 
| 561 | 
         
            +
                m, q = symbols('m, q')
         
     | 
| 562 | 
         
            +
                b.apply_load(q, 0, 0, dir="y")
         
     | 
| 563 | 
         
            +
                b.apply_moment_load(m, 0, 0, dir="z")
         
     | 
| 564 | 
         
            +
                b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
         
     | 
| 565 | 
         
            +
                b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
         
     | 
| 566 | 
         
            +
                b.solve_slope_deflection()
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                assert b.polar_moment() == 2*I
         
     | 
| 569 | 
         
            +
                assert b.shear_force() == [0, -q*x, 0]
         
     | 
| 570 | 
         
            +
                assert b.shear_stress() == [0, -q*x/A, 0]
         
     | 
| 571 | 
         
            +
                assert b.axial_stress() == 0
         
     | 
| 572 | 
         
            +
                assert b.bending_moment() == [0, 0, -m*x + q*x**2/2]
         
     | 
| 573 | 
         
            +
                expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) +
         
     | 
| 574 | 
         
            +
                    12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) +
         
     | 
| 575 | 
         
            +
                    12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 +
         
     | 
| 576 | 
         
            +
                    3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 +
         
     | 
| 577 | 
         
            +
                    A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I))
         
     | 
| 578 | 
         
            +
                dx, dy, dz = b.deflection()
         
     | 
| 579 | 
         
            +
                assert dx == dz == 0
         
     | 
| 580 | 
         
            +
                assert simplify(dy - expected_deflection) == 0
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                b2 = Beam3D(30, E, G, I, A, x)
         
     | 
| 583 | 
         
            +
                b2.apply_load(50, start=0, order=0, dir="y")
         
     | 
| 584 | 
         
            +
                b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
         
     | 
| 585 | 
         
            +
                b2.apply_load(R1, start=0, order=-1, dir="y")
         
     | 
| 586 | 
         
            +
                b2.apply_load(R2, start=30, order=-1, dir="y")
         
     | 
| 587 | 
         
            +
                b2.solve_for_reaction_loads(R1, R2)
         
     | 
| 588 | 
         
            +
                assert b2.reaction_loads == {R1: -750, R2: -750}
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                b2.solve_slope_deflection()
         
     | 
| 591 | 
         
            +
                assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)]
         
     | 
| 592 | 
         
            +
                expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \
         
     | 
| 593 | 
         
            +
                    25*x**2/(A*G) + 750*x/(A*G)
         
     | 
| 594 | 
         
            +
                dx, dy, dz = b2.deflection()
         
     | 
| 595 | 
         
            +
                assert dx == dz == 0
         
     | 
| 596 | 
         
            +
                assert dy == expected_deflection
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                # Test for solve_for_reaction_loads
         
     | 
| 599 | 
         
            +
                b3 = Beam3D(30, E, G, I, A, x)
         
     | 
| 600 | 
         
            +
                b3.apply_load(8, start=0, order=0, dir="y")
         
     | 
| 601 | 
         
            +
                b3.apply_load(9*x, start=0, order=0, dir="z")
         
     | 
| 602 | 
         
            +
                b3.apply_load(R1, start=0, order=-1, dir="y")
         
     | 
| 603 | 
         
            +
                b3.apply_load(R2, start=30, order=-1, dir="y")
         
     | 
| 604 | 
         
            +
                b3.apply_load(R3, start=0, order=-1, dir="z")
         
     | 
| 605 | 
         
            +
                b3.apply_load(R4, start=30, order=-1, dir="z")
         
     | 
| 606 | 
         
            +
                b3.solve_for_reaction_loads(R1, R2, R3, R4)
         
     | 
| 607 | 
         
            +
                assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700}
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
            def test_polar_moment_Beam3D():
         
     | 
| 611 | 
         
            +
                l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2')
         
     | 
| 612 | 
         
            +
                I = [I1, I2]
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                b = Beam3D(l, E, G, I, A)
         
     | 
| 615 | 
         
            +
                assert b.polar_moment() == I1 + I2
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
            def test_parabolic_loads():
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                E, I, L = symbols('E, I, L', positive=True, real=True)
         
     | 
| 621 | 
         
            +
                R, M, P = symbols('R, M, P', real=True)
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                # cantilever beam fixed at x=0 and parabolic distributed loading across
         
     | 
| 624 | 
         
            +
                # length of beam
         
     | 
| 625 | 
         
            +
                beam = Beam(L, E, I)
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                beam.bc_deflection.append((0, 0))
         
     | 
| 628 | 
         
            +
                beam.bc_slope.append((0, 0))
         
     | 
| 629 | 
         
            +
                beam.apply_load(R, 0, -1)
         
     | 
| 630 | 
         
            +
                beam.apply_load(M, 0, -2)
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                # parabolic load
         
     | 
| 633 | 
         
            +
                beam.apply_load(1, 0, 2)
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                beam.solve_for_reaction_loads(R, M)
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                assert beam.reaction_loads[R] == -L**3/3
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                # cantilever beam fixed at x=0 and parabolic distributed loading across
         
     | 
| 640 | 
         
            +
                # first half of beam
         
     | 
| 641 | 
         
            +
                beam = Beam(2*L, E, I)
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                beam.bc_deflection.append((0, 0))
         
     | 
| 644 | 
         
            +
                beam.bc_slope.append((0, 0))
         
     | 
| 645 | 
         
            +
                beam.apply_load(R, 0, -1)
         
     | 
| 646 | 
         
            +
                beam.apply_load(M, 0, -2)
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                # parabolic load from x=0 to x=L
         
     | 
| 649 | 
         
            +
                beam.apply_load(1, 0, 2, end=L)
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                beam.solve_for_reaction_loads(R, M)
         
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
                # result should be the same as the prior example
         
     | 
| 654 | 
         
            +
                assert beam.reaction_loads[R] == -L**3/3
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                # check constant load
         
     | 
| 657 | 
         
            +
                beam = Beam(2*L, E, I)
         
     | 
| 658 | 
         
            +
                beam.apply_load(P, 0, 0, end=L)
         
     | 
| 659 | 
         
            +
                loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
         
     | 
| 660 | 
         
            +
                assert loading.xreplace({x: 5}) == 40
         
     | 
| 661 | 
         
            +
                assert loading.xreplace({x: 15}) == 0
         
     | 
| 662 | 
         
            +
             
     | 
| 663 | 
         
            +
                # check ramp load
         
     | 
| 664 | 
         
            +
                beam = Beam(2*L, E, I)
         
     | 
| 665 | 
         
            +
                beam.apply_load(P, 0, 1, end=L)
         
     | 
| 666 | 
         
            +
                assert beam.load == (P*SingularityFunction(x, 0, 1) -
         
     | 
| 667 | 
         
            +
                                     P*SingularityFunction(x, L, 1) -
         
     | 
| 668 | 
         
            +
                                     P*L*SingularityFunction(x, L, 0))
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                # check higher order load: x**8 load from x=0 to x=L
         
     | 
| 671 | 
         
            +
                beam = Beam(2*L, E, I)
         
     | 
| 672 | 
         
            +
                beam.apply_load(P, 0, 8, end=L)
         
     | 
| 673 | 
         
            +
                loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
         
     | 
| 674 | 
         
            +
                assert loading.xreplace({x: 5}) == 40*5**8
         
     | 
| 675 | 
         
            +
                assert loading.xreplace({x: 15}) == 0
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
            def test_cross_section():
         
     | 
| 679 | 
         
            +
                I = Symbol('I')
         
     | 
| 680 | 
         
            +
                l = Symbol('l')
         
     | 
| 681 | 
         
            +
                E = Symbol('E')
         
     | 
| 682 | 
         
            +
                C3, C4 = symbols('C3, C4')
         
     | 
| 683 | 
         
            +
                a, c, g, h, r, n = symbols('a, c, g, h, r, n')
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
                # test for second_moment and cross_section setter
         
     | 
| 686 | 
         
            +
                b0 = Beam(l, E, I)
         
     | 
| 687 | 
         
            +
                assert b0.second_moment == I
         
     | 
| 688 | 
         
            +
                assert b0.cross_section == None
         
     | 
| 689 | 
         
            +
                b0.cross_section = Circle((0, 0), 5)
         
     | 
| 690 | 
         
            +
                assert b0.second_moment == pi*Rational(625, 4)
         
     | 
| 691 | 
         
            +
                assert b0.cross_section == Circle((0, 0), 5)
         
     | 
| 692 | 
         
            +
                b0.second_moment = 2*n - 6
         
     | 
| 693 | 
         
            +
                assert b0.second_moment == 2*n-6
         
     | 
| 694 | 
         
            +
                assert b0.cross_section == None
         
     | 
| 695 | 
         
            +
                with raises(ValueError):
         
     | 
| 696 | 
         
            +
                    b0.second_moment = Circle((0, 0), 5)
         
     | 
| 697 | 
         
            +
             
     | 
| 698 | 
         
            +
                # beam with a circular cross-section
         
     | 
| 699 | 
         
            +
                b1 = Beam(50, E, Circle((0, 0), r))
         
     | 
| 700 | 
         
            +
                assert b1.cross_section == Circle((0, 0), r)
         
     | 
| 701 | 
         
            +
                assert b1.second_moment == pi*r*Abs(r)**3/4
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
                b1.apply_load(-10, 0, -1)
         
     | 
| 704 | 
         
            +
                b1.apply_load(R1, 5, -1)
         
     | 
| 705 | 
         
            +
                b1.apply_load(R2, 50, -1)
         
     | 
| 706 | 
         
            +
                b1.apply_load(90, 45, -2)
         
     | 
| 707 | 
         
            +
                b1.solve_for_reaction_loads(R1, R2)
         
     | 
| 708 | 
         
            +
                assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9)
         
     | 
| 709 | 
         
            +
                                     + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9)
         
     | 
| 710 | 
         
            +
                assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9
         
     | 
| 711 | 
         
            +
                                                 - 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9)
         
     | 
| 712 | 
         
            +
                q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9)
         
     | 
| 713 | 
         
            +
                       + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3)
         
     | 
| 714 | 
         
            +
                assert b1.slope() == C3 + 4*q
         
     | 
| 715 | 
         
            +
                q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2)
         
     | 
| 716 | 
         
            +
                       + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3)
         
     | 
| 717 | 
         
            +
                assert b1.deflection() == C3*x + C4 + 4*q
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                # beam with a recatangular cross-section
         
     | 
| 720 | 
         
            +
                b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c)))
         
     | 
| 721 | 
         
            +
                assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c))
         
     | 
| 722 | 
         
            +
                assert b2.second_moment == a*c**3/12
         
     | 
| 723 | 
         
            +
                # beam with a triangular cross-section
         
     | 
| 724 | 
         
            +
                b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h)))
         
     | 
| 725 | 
         
            +
                assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h))
         
     | 
| 726 | 
         
            +
                assert b3.second_moment == g*h**3/36
         
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
                # composite beam
         
     | 
| 729 | 
         
            +
                b = b2.join(b3, "fixed")
         
     | 
| 730 | 
         
            +
                b.apply_load(-30, 0, -1)
         
     | 
| 731 | 
         
            +
                b.apply_load(65, 0, -2)
         
     | 
| 732 | 
         
            +
                b.apply_load(40, 0, -1)
         
     | 
| 733 | 
         
            +
                b.bc_slope = [(0, 0)]
         
     | 
| 734 | 
         
            +
                b.bc_deflection = [(0, 0)]
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35))
         
     | 
| 737 | 
         
            +
                assert b.cross_section == None
         
     | 
| 738 | 
         
            +
                assert b.length == 35
         
     | 
| 739 | 
         
            +
                assert b.slope().subs(x, 7) == 8400/(E*a*c**3)
         
     | 
| 740 | 
         
            +
                assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3)
         
     | 
| 741 | 
         
            +
                assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3)
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
            def test_max_shear_force_Beam3D():
         
     | 
| 744 | 
         
            +
                x = symbols('x')
         
     | 
| 745 | 
         
            +
                b = Beam3D(20, 40, 21, 100, 25)
         
     | 
| 746 | 
         
            +
                b.apply_load(15, start=0, order=0, dir="z")
         
     | 
| 747 | 
         
            +
                b.apply_load(12*x, start=0, order=0, dir="y")
         
     | 
| 748 | 
         
            +
                b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
         
     | 
| 749 | 
         
            +
                assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)]
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
            def test_max_bending_moment_Beam3D():
         
     | 
| 752 | 
         
            +
                x = symbols('x')
         
     | 
| 753 | 
         
            +
                b = Beam3D(20, 40, 21, 100, 25)
         
     | 
| 754 | 
         
            +
                b.apply_load(15, start=0, order=0, dir="z")
         
     | 
| 755 | 
         
            +
                b.apply_load(12*x, start=0, order=0, dir="y")
         
     | 
| 756 | 
         
            +
                b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
         
     | 
| 757 | 
         
            +
                assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)]
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
            def test_max_deflection_Beam3D():
         
     | 
| 760 | 
         
            +
                x = symbols('x')
         
     | 
| 761 | 
         
            +
                b = Beam3D(20, 40, 21, 100, 25)
         
     | 
| 762 | 
         
            +
                b.apply_load(15, start=0, order=0, dir="z")
         
     | 
| 763 | 
         
            +
                b.apply_load(12*x, start=0, order=0, dir="y")
         
     | 
| 764 | 
         
            +
                b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
         
     | 
| 765 | 
         
            +
                b.solve_slope_deflection()
         
     | 
| 766 | 
         
            +
                c = sympify("495/14")
         
     | 
| 767 | 
         
            +
                p = sympify("-10 + 10*sqrt(10793)/43")
         
     | 
| 768 | 
         
            +
                q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560")
         
     | 
| 769 | 
         
            +
                assert b.max_deflection() == [(0, 0), (10, c), (p, q)]
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
            def test_torsion_Beam3D():
         
     | 
| 772 | 
         
            +
                x = symbols('x')
         
     | 
| 773 | 
         
            +
                b = Beam3D(20, 40, 21, 100, 25)
         
     | 
| 774 | 
         
            +
                b.apply_moment_load(15, 5, -2, dir='x')
         
     | 
| 775 | 
         
            +
                b.apply_moment_load(25, 10, -2, dir='x')
         
     | 
| 776 | 
         
            +
                b.apply_moment_load(-5, 20, -2, dir='x')
         
     | 
| 777 | 
         
            +
                b.solve_for_torsion()
         
     | 
| 778 | 
         
            +
                assert b.angular_deflection().subs(x, 3) == sympify("1/40")
         
     | 
| 779 | 
         
            +
                assert b.angular_deflection().subs(x, 9) == sympify("17/280")
         
     | 
| 780 | 
         
            +
                assert b.angular_deflection().subs(x, 12) == sympify("53/840")
         
     | 
| 781 | 
         
            +
                assert b.angular_deflection().subs(x, 17) == sympify("2/35")
         
     | 
| 782 | 
         
            +
                assert b.angular_deflection().subs(x, 20) == sympify("3/56")
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py
    ADDED
    
    | 
         @@ -0,0 +1,108 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.symbol import Symbol, symbols
         
     | 
| 2 | 
         
            +
            from sympy.physics.continuum_mechanics.truss import Truss
         
     | 
| 3 | 
         
            +
            from sympy import sqrt
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def test_truss():
         
     | 
| 7 | 
         
            +
                A = Symbol('A')
         
     | 
| 8 | 
         
            +
                B = Symbol('B')
         
     | 
| 9 | 
         
            +
                C = Symbol('C')
         
     | 
| 10 | 
         
            +
                AB, BC, AC = symbols('AB, BC, AC')
         
     | 
| 11 | 
         
            +
                P = Symbol('P')
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                t = Truss()
         
     | 
| 14 | 
         
            +
                assert t.nodes == []
         
     | 
| 15 | 
         
            +
                assert t.node_labels == []
         
     | 
| 16 | 
         
            +
                assert t.node_positions == []
         
     | 
| 17 | 
         
            +
                assert t.members == {}
         
     | 
| 18 | 
         
            +
                assert t.loads == {}
         
     | 
| 19 | 
         
            +
                assert t.supports == {}
         
     | 
| 20 | 
         
            +
                assert t.reaction_loads == {}
         
     | 
| 21 | 
         
            +
                assert t.internal_forces == {}
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                # testing the add_node method
         
     | 
| 24 | 
         
            +
                t.add_node(A, 0, 0)
         
     | 
| 25 | 
         
            +
                t.add_node(B, 2, 2)
         
     | 
| 26 | 
         
            +
                t.add_node(C, 3, 0)
         
     | 
| 27 | 
         
            +
                assert t.nodes == [(A, 0, 0), (B, 2, 2), (C, 3, 0)]
         
     | 
| 28 | 
         
            +
                assert t.node_labels == [A, B, C]
         
     | 
| 29 | 
         
            +
                assert t.node_positions == [(0, 0), (2, 2), (3, 0)]
         
     | 
| 30 | 
         
            +
                assert t.loads == {}
         
     | 
| 31 | 
         
            +
                assert t.supports == {}
         
     | 
| 32 | 
         
            +
                assert t.reaction_loads == {}
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                # testing the remove_node method
         
     | 
| 35 | 
         
            +
                t.remove_node(C)
         
     | 
| 36 | 
         
            +
                assert t.nodes == [(A, 0, 0), (B, 2, 2)]
         
     | 
| 37 | 
         
            +
                assert t.node_labels == [A, B]
         
     | 
| 38 | 
         
            +
                assert t.node_positions == [(0, 0), (2, 2)]
         
     | 
| 39 | 
         
            +
                assert t.loads == {}
         
     | 
| 40 | 
         
            +
                assert t.supports == {}
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                t.add_node(C, 3, 0)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                # testing the add_member method
         
     | 
| 45 | 
         
            +
                t.add_member(AB, A, B)
         
     | 
| 46 | 
         
            +
                t.add_member(BC, B, C)
         
     | 
| 47 | 
         
            +
                t.add_member(AC, A, C)
         
     | 
| 48 | 
         
            +
                assert t.members == {AB: [A, B], BC: [B, C], AC: [A, C]}
         
     | 
| 49 | 
         
            +
                assert t.internal_forces == {AB: 0, BC: 0, AC: 0}
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                # testing the remove_member method
         
     | 
| 52 | 
         
            +
                t.remove_member(BC)
         
     | 
| 53 | 
         
            +
                assert t.members == {AB: [A, B], AC: [A, C]}
         
     | 
| 54 | 
         
            +
                assert t.internal_forces == {AB: 0, AC: 0}
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                t.add_member(BC, B, C)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                D, CD = symbols('D, CD')
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                # testing the change_label methods
         
     | 
| 61 | 
         
            +
                t.change_node_label(B, D)
         
     | 
| 62 | 
         
            +
                assert t.nodes == [(A, 0, 0), (D, 2, 2), (C, 3, 0)]
         
     | 
| 63 | 
         
            +
                assert t.node_labels == [A, D, C]
         
     | 
| 64 | 
         
            +
                assert t.loads == {}
         
     | 
| 65 | 
         
            +
                assert t.supports == {}
         
     | 
| 66 | 
         
            +
                assert t.members == {AB: [A, D], BC: [D, C], AC: [A, C]}
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                t.change_member_label(BC, CD)
         
     | 
| 69 | 
         
            +
                assert t.members == {AB: [A, D], CD: [D, C], AC: [A, C]}
         
     | 
| 70 | 
         
            +
                assert t.internal_forces == {AB: 0, CD: 0, AC: 0}
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                # testing the apply_load method
         
     | 
| 74 | 
         
            +
                t.apply_load(A, P, 90)
         
     | 
| 75 | 
         
            +
                t.apply_load(A, P/4, 90)
         
     | 
| 76 | 
         
            +
                t.apply_load(A, 2*P,45)
         
     | 
| 77 | 
         
            +
                t.apply_load(D, P/2, 90)
         
     | 
| 78 | 
         
            +
                assert t.loads == {A: [[P, 90], [P/4, 90], [2*P, 45]], D: [[P/2, 90]]}
         
     | 
| 79 | 
         
            +
                assert t.loads[A] == [[P, 90], [P/4, 90], [2*P, 45]]
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                # testing the remove_load method
         
     | 
| 82 | 
         
            +
                t.remove_load(A, P/4, 90)
         
     | 
| 83 | 
         
            +
                assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90]]}
         
     | 
| 84 | 
         
            +
                assert t.loads[A] == [[P, 90], [2*P, 45]]
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                # testing the apply_support method
         
     | 
| 87 | 
         
            +
                t.apply_support(A, "pinned")
         
     | 
| 88 | 
         
            +
                t.apply_support(D, "roller")
         
     | 
| 89 | 
         
            +
                assert t.supports == {A: 'pinned', D: 'roller'}
         
     | 
| 90 | 
         
            +
                assert t.reaction_loads == {}
         
     | 
| 91 | 
         
            +
                assert t.loads == {A: [[P, 90], [2*P, 45], [Symbol('R_A_x'), 0], [Symbol('R_A_y'), 90]],  D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                # testing the remove_support method
         
     | 
| 94 | 
         
            +
                t.remove_support(A)
         
     | 
| 95 | 
         
            +
                assert t.supports == {D: 'roller'}
         
     | 
| 96 | 
         
            +
                assert t.reaction_loads == {}
         
     | 
| 97 | 
         
            +
                assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                t.apply_support(A, "pinned")
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                # testing the solve method
         
     | 
| 102 | 
         
            +
                t.solve()
         
     | 
| 103 | 
         
            +
                assert t.reaction_loads['R_A_x'] == -sqrt(2)*P
         
     | 
| 104 | 
         
            +
                assert t.reaction_loads['R_A_y'] == -sqrt(2)*P - P
         
     | 
| 105 | 
         
            +
                assert t.reaction_loads['R_D_y'] == -P/2
         
     | 
| 106 | 
         
            +
                assert t.internal_forces[AB]/P == 0
         
     | 
| 107 | 
         
            +
                assert t.internal_forces[CD] == 0
         
     | 
| 108 | 
         
            +
                assert t.internal_forces[AC] == 0
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,15 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel,
         
     | 
| 2 | 
         
            +
                Feedback, MIMOFeedback, TransferFunctionMatrix, bilinear, backward_diff)
         
     | 
| 3 | 
         
            +
            from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
         
     | 
| 4 | 
         
            +
                step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data,
         
     | 
| 5 | 
         
            +
                ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot,
         
     | 
| 6 | 
         
            +
                bode_phase_plot, bode_plot)
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel',
         
     | 
| 9 | 
         
            +
                'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix','bilinear',
         
     | 
| 10 | 
         
            +
                'backward_diff', 'pole_zero_numerical_data',
         
     | 
| 11 | 
         
            +
                'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot',
         
     | 
| 12 | 
         
            +
                'impulse_response_numerical_data', 'impulse_response_plot',
         
     | 
| 13 | 
         
            +
                'ramp_response_numerical_data', 'ramp_response_plot',
         
     | 
| 14 | 
         
            +
                'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
         
     | 
| 15 | 
         
            +
                'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc
    ADDED
    
    | 
         Binary file (30 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc
    ADDED
    
    | 
         Binary file (118 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/control/control_plots.py
    ADDED
    
    | 
         @@ -0,0 +1,961 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.numbers import I, pi
         
     | 
| 2 | 
         
            +
            from sympy.functions.elementary.exponential import (exp, log)
         
     | 
| 3 | 
         
            +
            from sympy.polys.partfrac import apart
         
     | 
| 4 | 
         
            +
            from sympy.core.symbol import Dummy
         
     | 
| 5 | 
         
            +
            from sympy.external import import_module
         
     | 
| 6 | 
         
            +
            from sympy.functions import arg, Abs
         
     | 
| 7 | 
         
            +
            from sympy.integrals.laplace import _fast_inverse_laplace
         
     | 
| 8 | 
         
            +
            from sympy.physics.control.lti import SISOLinearTimeInvariant
         
     | 
| 9 | 
         
            +
            from sympy.plotting.plot import LineOver1DRangeSeries
         
     | 
| 10 | 
         
            +
            from sympy.polys.polytools import Poly
         
     | 
| 11 | 
         
            +
            from sympy.printing.latex import latex
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            __all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
         
     | 
| 14 | 
         
            +
                'step_response_numerical_data', 'step_response_plot',
         
     | 
| 15 | 
         
            +
                'impulse_response_numerical_data', 'impulse_response_plot',
         
     | 
| 16 | 
         
            +
                'ramp_response_numerical_data', 'ramp_response_plot',
         
     | 
| 17 | 
         
            +
                'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
         
     | 
| 18 | 
         
            +
                'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            matplotlib = import_module(
         
     | 
| 21 | 
         
            +
                    'matplotlib', import_kwargs={'fromlist': ['pyplot']},
         
     | 
| 22 | 
         
            +
                    catch=(RuntimeError,))
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            numpy = import_module('numpy')
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            if matplotlib:
         
     | 
| 27 | 
         
            +
                plt = matplotlib.pyplot
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            if numpy:
         
     | 
| 30 | 
         
            +
                np = numpy  # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def _check_system(system):
         
     | 
| 34 | 
         
            +
                """Function to check whether the dynamical system passed for plots is
         
     | 
| 35 | 
         
            +
                compatible or not."""
         
     | 
| 36 | 
         
            +
                if not isinstance(system, SISOLinearTimeInvariant):
         
     | 
| 37 | 
         
            +
                    raise NotImplementedError("Only SISO LTI systems are currently supported.")
         
     | 
| 38 | 
         
            +
                sys = system.to_expr()
         
     | 
| 39 | 
         
            +
                len_free_symbols = len(sys.free_symbols)
         
     | 
| 40 | 
         
            +
                if len_free_symbols > 1:
         
     | 
| 41 | 
         
            +
                    raise ValueError("Extra degree of freedom found. Make sure"
         
     | 
| 42 | 
         
            +
                        " that there are no free symbols in the dynamical system other"
         
     | 
| 43 | 
         
            +
                        " than the variable of Laplace transform.")
         
     | 
| 44 | 
         
            +
                if sys.has(exp):
         
     | 
| 45 | 
         
            +
                    # Should test that exp is not part of a constant, in which case
         
     | 
| 46 | 
         
            +
                    # no exception is required, compare exp(s) with s*exp(1)
         
     | 
| 47 | 
         
            +
                    raise NotImplementedError("Time delay terms are not supported.")
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            def pole_zero_numerical_data(system):
         
     | 
| 51 | 
         
            +
                """
         
     | 
| 52 | 
         
            +
                Returns the numerical data of poles and zeros of the system.
         
     | 
| 53 | 
         
            +
                It is internally used by ``pole_zero_plot`` to get the data
         
     | 
| 54 | 
         
            +
                for plotting poles and zeros. Users can use this data to further
         
     | 
| 55 | 
         
            +
                analyse the dynamics of the system or plot using a different
         
     | 
| 56 | 
         
            +
                backend/plotting-module.
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                Parameters
         
     | 
| 59 | 
         
            +
                ==========
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 62 | 
         
            +
                    The system for which the pole-zero data is to be computed.
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                Returns
         
     | 
| 65 | 
         
            +
                =======
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                tuple : (zeros, poles)
         
     | 
| 68 | 
         
            +
                    zeros = Zeros of the system. NumPy array of complex numbers.
         
     | 
| 69 | 
         
            +
                    poles = Poles of the system. NumPy array of complex numbers.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                Raises
         
     | 
| 72 | 
         
            +
                ======
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                NotImplementedError
         
     | 
| 75 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                ValueError
         
     | 
| 80 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 81 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 82 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                Examples
         
     | 
| 85 | 
         
            +
                ========
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 88 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 89 | 
         
            +
                >>> from sympy.physics.control.control_plots import pole_zero_numerical_data
         
     | 
| 90 | 
         
            +
                >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
         
     | 
| 91 | 
         
            +
                >>> pole_zero_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 92 | 
         
            +
                ([-0.+1.j  0.-1.j], [-2. +0.j        -0.5+0.8660254j -0.5-0.8660254j -1. +0.j       ])
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                See Also
         
     | 
| 95 | 
         
            +
                ========
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                pole_zero_plot
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                """
         
     | 
| 100 | 
         
            +
                _check_system(system)
         
     | 
| 101 | 
         
            +
                system = system.doit()  # Get the equivalent TransferFunction object.
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                num_poly = Poly(system.num, system.var).all_coeffs()
         
     | 
| 104 | 
         
            +
                den_poly = Poly(system.den, system.var).all_coeffs()
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                num_poly = np.array(num_poly, dtype=np.complex128)
         
     | 
| 107 | 
         
            +
                den_poly = np.array(den_poly, dtype=np.complex128)
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                zeros = np.roots(num_poly)
         
     | 
| 110 | 
         
            +
                poles = np.roots(den_poly)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                return zeros, poles
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
         
     | 
| 116 | 
         
            +
                zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
         
     | 
| 117 | 
         
            +
                show=True, **kwargs):
         
     | 
| 118 | 
         
            +
                r"""
         
     | 
| 119 | 
         
            +
                Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                A Pole-Zero plot is a graphical representation of a system's poles and
         
     | 
| 122 | 
         
            +
                zeros. It is plotted on a complex plane, with circular markers representing
         
     | 
| 123 | 
         
            +
                the system's zeros and 'x' shaped markers representing the system's poles.
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                Parameters
         
     | 
| 126 | 
         
            +
                ==========
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                system : SISOLinearTimeInvariant type systems
         
     | 
| 129 | 
         
            +
                    The system for which the pole-zero plot is to be computed.
         
     | 
| 130 | 
         
            +
                pole_color : str, tuple, optional
         
     | 
| 131 | 
         
            +
                    The color of the pole points on the plot. Default color
         
     | 
| 132 | 
         
            +
                    is blue. The color can be provided as a matplotlib color string,
         
     | 
| 133 | 
         
            +
                    or a 3-tuple of floats each in the 0-1 range.
         
     | 
| 134 | 
         
            +
                pole_markersize : Number, optional
         
     | 
| 135 | 
         
            +
                    The size of the markers used to mark the poles in the plot.
         
     | 
| 136 | 
         
            +
                    Default pole markersize is 10.
         
     | 
| 137 | 
         
            +
                zero_color : str, tuple, optional
         
     | 
| 138 | 
         
            +
                    The color of the zero points on the plot. Default color
         
     | 
| 139 | 
         
            +
                    is orange. The color can be provided as a matplotlib color string,
         
     | 
| 140 | 
         
            +
                    or a 3-tuple of floats each in the 0-1 range.
         
     | 
| 141 | 
         
            +
                zero_markersize : Number, optional
         
     | 
| 142 | 
         
            +
                    The size of the markers used to mark the zeros in the plot.
         
     | 
| 143 | 
         
            +
                    Default zero markersize is 7.
         
     | 
| 144 | 
         
            +
                grid : boolean, optional
         
     | 
| 145 | 
         
            +
                    If ``True``, the plot will have a grid. Defaults to True.
         
     | 
| 146 | 
         
            +
                show_axes : boolean, optional
         
     | 
| 147 | 
         
            +
                    If ``True``, the coordinate axes will be shown. Defaults to False.
         
     | 
| 148 | 
         
            +
                show : boolean, optional
         
     | 
| 149 | 
         
            +
                    If ``True``, the plot will be displayed otherwise
         
     | 
| 150 | 
         
            +
                    the equivalent matplotlib ``plot`` object will be returned.
         
     | 
| 151 | 
         
            +
                    Defaults to True.
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                Examples
         
     | 
| 154 | 
         
            +
                ========
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                .. plot::
         
     | 
| 157 | 
         
            +
                    :context: close-figs
         
     | 
| 158 | 
         
            +
                    :format: doctest
         
     | 
| 159 | 
         
            +
                    :include-source: True
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    >>> from sympy.abc import s
         
     | 
| 162 | 
         
            +
                    >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 163 | 
         
            +
                    >>> from sympy.physics.control.control_plots import pole_zero_plot
         
     | 
| 164 | 
         
            +
                    >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
         
     | 
| 165 | 
         
            +
                    >>> pole_zero_plot(tf1)   # doctest: +SKIP
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                See Also
         
     | 
| 168 | 
         
            +
                ========
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                pole_zero_numerical_data
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                References
         
     | 
| 173 | 
         
            +
                ==========
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                .. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                """
         
     | 
| 178 | 
         
            +
                zeros, poles = pole_zero_numerical_data(system)
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                zero_real = np.real(zeros)
         
     | 
| 181 | 
         
            +
                zero_imag = np.imag(zeros)
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                pole_real = np.real(poles)
         
     | 
| 184 | 
         
            +
                pole_imag = np.imag(poles)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                plt.plot(pole_real, pole_imag, 'x', mfc='none',
         
     | 
| 187 | 
         
            +
                    markersize=pole_markersize, color=pole_color)
         
     | 
| 188 | 
         
            +
                plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
         
     | 
| 189 | 
         
            +
                    color=zero_color)
         
     | 
| 190 | 
         
            +
                plt.xlabel('Real Axis')
         
     | 
| 191 | 
         
            +
                plt.ylabel('Imaginary Axis')
         
     | 
| 192 | 
         
            +
                plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                if grid:
         
     | 
| 195 | 
         
            +
                    plt.grid()
         
     | 
| 196 | 
         
            +
                if show_axes:
         
     | 
| 197 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 198 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 199 | 
         
            +
                if show:
         
     | 
| 200 | 
         
            +
                    plt.show()
         
     | 
| 201 | 
         
            +
                    return
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                return plt
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
            def step_response_numerical_data(system, prec=8, lower_limit=0,
         
     | 
| 207 | 
         
            +
                upper_limit=10, **kwargs):
         
     | 
| 208 | 
         
            +
                """
         
     | 
| 209 | 
         
            +
                Returns the numerical values of the points in the step response plot
         
     | 
| 210 | 
         
            +
                of a SISO continuous-time system. By default, adaptive sampling
         
     | 
| 211 | 
         
            +
                is used. If the user wants to instead get an uniformly
         
     | 
| 212 | 
         
            +
                sampled response, then ``adaptive`` kwarg should be passed ``False``
         
     | 
| 213 | 
         
            +
                and ``nb_of_points`` must be passed as additional kwargs.
         
     | 
| 214 | 
         
            +
                Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
         
     | 
| 215 | 
         
            +
                for more details.
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                Parameters
         
     | 
| 218 | 
         
            +
                ==========
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 221 | 
         
            +
                    The system for which the unit step response data is to be computed.
         
     | 
| 222 | 
         
            +
                prec : int, optional
         
     | 
| 223 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 224 | 
         
            +
                    Defaults to 8.
         
     | 
| 225 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 226 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 227 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 228 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 229 | 
         
            +
                kwargs :
         
     | 
| 230 | 
         
            +
                    Additional keyword arguments are passed to the underlying
         
     | 
| 231 | 
         
            +
                    :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                Returns
         
     | 
| 234 | 
         
            +
                =======
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                tuple : (x, y)
         
     | 
| 237 | 
         
            +
                    x = Time-axis values of the points in the step response. NumPy array.
         
     | 
| 238 | 
         
            +
                    y = Amplitude-axis values of the points in the step response. NumPy array.
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                Raises
         
     | 
| 241 | 
         
            +
                ======
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                NotImplementedError
         
     | 
| 244 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                ValueError
         
     | 
| 249 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 250 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 251 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    When ``lower_limit`` parameter is less than 0.
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                Examples
         
     | 
| 256 | 
         
            +
                ========
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 259 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 260 | 
         
            +
                >>> from sympy.physics.control.control_plots import step_response_numerical_data
         
     | 
| 261 | 
         
            +
                >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
         
     | 
| 262 | 
         
            +
                >>> step_response_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 263 | 
         
            +
                ([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
         
     | 
| 264 | 
         
            +
                [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                See Also
         
     | 
| 267 | 
         
            +
                ========
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                step_response_plot
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                """
         
     | 
| 272 | 
         
            +
                if lower_limit < 0:
         
     | 
| 273 | 
         
            +
                    raise ValueError("Lower limit of time must be greater "
         
     | 
| 274 | 
         
            +
                        "than or equal to zero.")
         
     | 
| 275 | 
         
            +
                _check_system(system)
         
     | 
| 276 | 
         
            +
                _x = Dummy("x")
         
     | 
| 277 | 
         
            +
                expr = system.to_expr()/(system.var)
         
     | 
| 278 | 
         
            +
                expr = apart(expr, system.var, full=True)
         
     | 
| 279 | 
         
            +
                _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
         
     | 
| 280 | 
         
            +
                return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
         
     | 
| 281 | 
         
            +
                    **kwargs).get_points()
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
            def step_response_plot(system, color='b', prec=8, lower_limit=0,
         
     | 
| 285 | 
         
            +
                upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
         
     | 
| 286 | 
         
            +
                r"""
         
     | 
| 287 | 
         
            +
                Returns the unit step response of a continuous-time system. It is
         
     | 
| 288 | 
         
            +
                the response of the system when the input signal is a step function.
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                Parameters
         
     | 
| 291 | 
         
            +
                ==========
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                system : SISOLinearTimeInvariant type
         
     | 
| 294 | 
         
            +
                    The LTI SISO system for which the Step Response is to be computed.
         
     | 
| 295 | 
         
            +
                color : str, tuple, optional
         
     | 
| 296 | 
         
            +
                    The color of the line. Default is Blue.
         
     | 
| 297 | 
         
            +
                show : boolean, optional
         
     | 
| 298 | 
         
            +
                    If ``True``, the plot will be displayed otherwise
         
     | 
| 299 | 
         
            +
                    the equivalent matplotlib ``plot`` object will be returned.
         
     | 
| 300 | 
         
            +
                    Defaults to True.
         
     | 
| 301 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 302 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 303 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 304 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 305 | 
         
            +
                prec : int, optional
         
     | 
| 306 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 307 | 
         
            +
                    Defaults to 8.
         
     | 
| 308 | 
         
            +
                show_axes : boolean, optional
         
     | 
| 309 | 
         
            +
                    If ``True``, the coordinate axes will be shown. Defaults to False.
         
     | 
| 310 | 
         
            +
                grid : boolean, optional
         
     | 
| 311 | 
         
            +
                    If ``True``, the plot will have a grid. Defaults to True.
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                Examples
         
     | 
| 314 | 
         
            +
                ========
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                .. plot::
         
     | 
| 317 | 
         
            +
                    :context: close-figs
         
     | 
| 318 | 
         
            +
                    :format: doctest
         
     | 
| 319 | 
         
            +
                    :include-source: True
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    >>> from sympy.abc import s
         
     | 
| 322 | 
         
            +
                    >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 323 | 
         
            +
                    >>> from sympy.physics.control.control_plots import step_response_plot
         
     | 
| 324 | 
         
            +
                    >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
         
     | 
| 325 | 
         
            +
                    >>> step_response_plot(tf1)   # doctest: +SKIP
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                See Also
         
     | 
| 328 | 
         
            +
                ========
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
                impulse_response_plot, ramp_response_plot
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                References
         
     | 
| 333 | 
         
            +
                ==========
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                .. [1] https://www.mathworks.com/help/control/ref/lti.step.html
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                """
         
     | 
| 338 | 
         
            +
                x, y = step_response_numerical_data(system, prec=prec,
         
     | 
| 339 | 
         
            +
                    lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
         
     | 
| 340 | 
         
            +
                plt.plot(x, y, color=color)
         
     | 
| 341 | 
         
            +
                plt.xlabel('Time (s)')
         
     | 
| 342 | 
         
            +
                plt.ylabel('Amplitude')
         
     | 
| 343 | 
         
            +
                plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                if grid:
         
     | 
| 346 | 
         
            +
                    plt.grid()
         
     | 
| 347 | 
         
            +
                if show_axes:
         
     | 
| 348 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 349 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 350 | 
         
            +
                if show:
         
     | 
| 351 | 
         
            +
                    plt.show()
         
     | 
| 352 | 
         
            +
                    return
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                return plt
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
            def impulse_response_numerical_data(system, prec=8, lower_limit=0,
         
     | 
| 358 | 
         
            +
                upper_limit=10, **kwargs):
         
     | 
| 359 | 
         
            +
                """
         
     | 
| 360 | 
         
            +
                Returns the numerical values of the points in the impulse response plot
         
     | 
| 361 | 
         
            +
                of a SISO continuous-time system. By default, adaptive sampling
         
     | 
| 362 | 
         
            +
                is used. If the user wants to instead get an uniformly
         
     | 
| 363 | 
         
            +
                sampled response, then ``adaptive`` kwarg should be passed ``False``
         
     | 
| 364 | 
         
            +
                and ``nb_of_points`` must be passed as additional kwargs.
         
     | 
| 365 | 
         
            +
                Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
         
     | 
| 366 | 
         
            +
                for more details.
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                Parameters
         
     | 
| 369 | 
         
            +
                ==========
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 372 | 
         
            +
                    The system for which the impulse response data is to be computed.
         
     | 
| 373 | 
         
            +
                prec : int, optional
         
     | 
| 374 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 375 | 
         
            +
                    Defaults to 8.
         
     | 
| 376 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 377 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 378 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 379 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 380 | 
         
            +
                kwargs :
         
     | 
| 381 | 
         
            +
                    Additional keyword arguments are passed to the underlying
         
     | 
| 382 | 
         
            +
                    :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                Returns
         
     | 
| 385 | 
         
            +
                =======
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                tuple : (x, y)
         
     | 
| 388 | 
         
            +
                    x = Time-axis values of the points in the impulse response. NumPy array.
         
     | 
| 389 | 
         
            +
                    y = Amplitude-axis values of the points in the impulse response. NumPy array.
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                Raises
         
     | 
| 392 | 
         
            +
                ======
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                NotImplementedError
         
     | 
| 395 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                ValueError
         
     | 
| 400 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 401 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 402 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                    When ``lower_limit`` parameter is less than 0.
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                Examples
         
     | 
| 407 | 
         
            +
                ========
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 410 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 411 | 
         
            +
                >>> from sympy.physics.control.control_plots import impulse_response_numerical_data
         
     | 
| 412 | 
         
            +
                >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
         
     | 
| 413 | 
         
            +
                >>> impulse_response_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 414 | 
         
            +
                ([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
         
     | 
| 415 | 
         
            +
                [0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                See Also
         
     | 
| 418 | 
         
            +
                ========
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                impulse_response_plot
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                """
         
     | 
| 423 | 
         
            +
                if lower_limit < 0:
         
     | 
| 424 | 
         
            +
                    raise ValueError("Lower limit of time must be greater "
         
     | 
| 425 | 
         
            +
                        "than or equal to zero.")
         
     | 
| 426 | 
         
            +
                _check_system(system)
         
     | 
| 427 | 
         
            +
                _x = Dummy("x")
         
     | 
| 428 | 
         
            +
                expr = system.to_expr()
         
     | 
| 429 | 
         
            +
                expr = apart(expr, system.var, full=True)
         
     | 
| 430 | 
         
            +
                _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
         
     | 
| 431 | 
         
            +
                return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
         
     | 
| 432 | 
         
            +
                    **kwargs).get_points()
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
            def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
         
     | 
| 436 | 
         
            +
                upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
         
     | 
| 437 | 
         
            +
                r"""
         
     | 
| 438 | 
         
            +
                Returns the unit impulse response (Input is the Dirac-Delta Function) of a
         
     | 
| 439 | 
         
            +
                continuous-time system.
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                Parameters
         
     | 
| 442 | 
         
            +
                ==========
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                system : SISOLinearTimeInvariant type
         
     | 
| 445 | 
         
            +
                    The LTI SISO system for which the Impulse Response is to be computed.
         
     | 
| 446 | 
         
            +
                color : str, tuple, optional
         
     | 
| 447 | 
         
            +
                    The color of the line. Default is Blue.
         
     | 
| 448 | 
         
            +
                show : boolean, optional
         
     | 
| 449 | 
         
            +
                    If ``True``, the plot will be displayed otherwise
         
     | 
| 450 | 
         
            +
                    the equivalent matplotlib ``plot`` object will be returned.
         
     | 
| 451 | 
         
            +
                    Defaults to True.
         
     | 
| 452 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 453 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 454 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 455 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 456 | 
         
            +
                prec : int, optional
         
     | 
| 457 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 458 | 
         
            +
                    Defaults to 8.
         
     | 
| 459 | 
         
            +
                show_axes : boolean, optional
         
     | 
| 460 | 
         
            +
                    If ``True``, the coordinate axes will be shown. Defaults to False.
         
     | 
| 461 | 
         
            +
                grid : boolean, optional
         
     | 
| 462 | 
         
            +
                    If ``True``, the plot will have a grid. Defaults to True.
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                Examples
         
     | 
| 465 | 
         
            +
                ========
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                .. plot::
         
     | 
| 468 | 
         
            +
                    :context: close-figs
         
     | 
| 469 | 
         
            +
                    :format: doctest
         
     | 
| 470 | 
         
            +
                    :include-source: True
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                    >>> from sympy.abc import s
         
     | 
| 473 | 
         
            +
                    >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 474 | 
         
            +
                    >>> from sympy.physics.control.control_plots import impulse_response_plot
         
     | 
| 475 | 
         
            +
                    >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
         
     | 
| 476 | 
         
            +
                    >>> impulse_response_plot(tf1)   # doctest: +SKIP
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                See Also
         
     | 
| 479 | 
         
            +
                ========
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                step_response_plot, ramp_response_plot
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                References
         
     | 
| 484 | 
         
            +
                ==========
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                .. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                """
         
     | 
| 489 | 
         
            +
                x, y = impulse_response_numerical_data(system, prec=prec,
         
     | 
| 490 | 
         
            +
                    lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
         
     | 
| 491 | 
         
            +
                plt.plot(x, y, color=color)
         
     | 
| 492 | 
         
            +
                plt.xlabel('Time (s)')
         
     | 
| 493 | 
         
            +
                plt.ylabel('Amplitude')
         
     | 
| 494 | 
         
            +
                plt.title(f'Impulse Response of ${latex(system)}$', pad=20)
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                if grid:
         
     | 
| 497 | 
         
            +
                    plt.grid()
         
     | 
| 498 | 
         
            +
                if show_axes:
         
     | 
| 499 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 500 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 501 | 
         
            +
                if show:
         
     | 
| 502 | 
         
            +
                    plt.show()
         
     | 
| 503 | 
         
            +
                    return
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                return plt
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
            def ramp_response_numerical_data(system, slope=1, prec=8,
         
     | 
| 509 | 
         
            +
                lower_limit=0, upper_limit=10, **kwargs):
         
     | 
| 510 | 
         
            +
                """
         
     | 
| 511 | 
         
            +
                Returns the numerical values of the points in the ramp response plot
         
     | 
| 512 | 
         
            +
                of a SISO continuous-time system. By default, adaptive sampling
         
     | 
| 513 | 
         
            +
                is used. If the user wants to instead get an uniformly
         
     | 
| 514 | 
         
            +
                sampled response, then ``adaptive`` kwarg should be passed ``False``
         
     | 
| 515 | 
         
            +
                and ``nb_of_points`` must be passed as additional kwargs.
         
     | 
| 516 | 
         
            +
                Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
         
     | 
| 517 | 
         
            +
                for more details.
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                Parameters
         
     | 
| 520 | 
         
            +
                ==========
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 523 | 
         
            +
                    The system for which the ramp response data is to be computed.
         
     | 
| 524 | 
         
            +
                slope : Number, optional
         
     | 
| 525 | 
         
            +
                    The slope of the input ramp function. Defaults to 1.
         
     | 
| 526 | 
         
            +
                prec : int, optional
         
     | 
| 527 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 528 | 
         
            +
                    Defaults to 8.
         
     | 
| 529 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 530 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 531 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 532 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 533 | 
         
            +
                kwargs :
         
     | 
| 534 | 
         
            +
                    Additional keyword arguments are passed to the underlying
         
     | 
| 535 | 
         
            +
                    :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                Returns
         
     | 
| 538 | 
         
            +
                =======
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                tuple : (x, y)
         
     | 
| 541 | 
         
            +
                    x = Time-axis values of the points in the ramp response plot. NumPy array.
         
     | 
| 542 | 
         
            +
                    y = Amplitude-axis values of the points in the ramp response plot. NumPy array.
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                Raises
         
     | 
| 545 | 
         
            +
                ======
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                NotImplementedError
         
     | 
| 548 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                ValueError
         
     | 
| 553 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 554 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 555 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                    When ``lower_limit`` parameter is less than 0.
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                    When ``slope`` is negative.
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                Examples
         
     | 
| 562 | 
         
            +
                ========
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 565 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 566 | 
         
            +
                >>> from sympy.physics.control.control_plots import ramp_response_numerical_data
         
     | 
| 567 | 
         
            +
                >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
         
     | 
| 568 | 
         
            +
                >>> ramp_response_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 569 | 
         
            +
                (([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
         
     | 
| 570 | 
         
            +
                [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                See Also
         
     | 
| 573 | 
         
            +
                ========
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
                ramp_response_plot
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                """
         
     | 
| 578 | 
         
            +
                if slope < 0:
         
     | 
| 579 | 
         
            +
                    raise ValueError("Slope must be greater than or equal"
         
     | 
| 580 | 
         
            +
                        " to zero.")
         
     | 
| 581 | 
         
            +
                if lower_limit < 0:
         
     | 
| 582 | 
         
            +
                    raise ValueError("Lower limit of time must be greater "
         
     | 
| 583 | 
         
            +
                        "than or equal to zero.")
         
     | 
| 584 | 
         
            +
                _check_system(system)
         
     | 
| 585 | 
         
            +
                _x = Dummy("x")
         
     | 
| 586 | 
         
            +
                expr = (slope*system.to_expr())/((system.var)**2)
         
     | 
| 587 | 
         
            +
                expr = apart(expr, system.var, full=True)
         
     | 
| 588 | 
         
            +
                _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
         
     | 
| 589 | 
         
            +
                return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
         
     | 
| 590 | 
         
            +
                    **kwargs).get_points()
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
            def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
         
     | 
| 594 | 
         
            +
                upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
         
     | 
| 595 | 
         
            +
                r"""
         
     | 
| 596 | 
         
            +
                Returns the ramp response of a continuous-time system.
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                Ramp function is defined as the straight line
         
     | 
| 599 | 
         
            +
                passing through origin ($f(x) = mx$). The slope of
         
     | 
| 600 | 
         
            +
                the ramp function can be varied by the user and
         
     | 
| 601 | 
         
            +
                the default value is 1.
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                Parameters
         
     | 
| 604 | 
         
            +
                ==========
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                system : SISOLinearTimeInvariant type
         
     | 
| 607 | 
         
            +
                    The LTI SISO system for which the Ramp Response is to be computed.
         
     | 
| 608 | 
         
            +
                slope : Number, optional
         
     | 
| 609 | 
         
            +
                    The slope of the input ramp function. Defaults to 1.
         
     | 
| 610 | 
         
            +
                color : str, tuple, optional
         
     | 
| 611 | 
         
            +
                    The color of the line. Default is Blue.
         
     | 
| 612 | 
         
            +
                show : boolean, optional
         
     | 
| 613 | 
         
            +
                    If ``True``, the plot will be displayed otherwise
         
     | 
| 614 | 
         
            +
                    the equivalent matplotlib ``plot`` object will be returned.
         
     | 
| 615 | 
         
            +
                    Defaults to True.
         
     | 
| 616 | 
         
            +
                lower_limit : Number, optional
         
     | 
| 617 | 
         
            +
                    The lower limit of the plot range. Defaults to 0.
         
     | 
| 618 | 
         
            +
                upper_limit : Number, optional
         
     | 
| 619 | 
         
            +
                    The upper limit of the plot range. Defaults to 10.
         
     | 
| 620 | 
         
            +
                prec : int, optional
         
     | 
| 621 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 622 | 
         
            +
                    Defaults to 8.
         
     | 
| 623 | 
         
            +
                show_axes : boolean, optional
         
     | 
| 624 | 
         
            +
                    If ``True``, the coordinate axes will be shown. Defaults to False.
         
     | 
| 625 | 
         
            +
                grid : boolean, optional
         
     | 
| 626 | 
         
            +
                    If ``True``, the plot will have a grid. Defaults to True.
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                Examples
         
     | 
| 629 | 
         
            +
                ========
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                .. plot::
         
     | 
| 632 | 
         
            +
                    :context: close-figs
         
     | 
| 633 | 
         
            +
                    :format: doctest
         
     | 
| 634 | 
         
            +
                    :include-source: True
         
     | 
| 635 | 
         
            +
             
     | 
| 636 | 
         
            +
                    >>> from sympy.abc import s
         
     | 
| 637 | 
         
            +
                    >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 638 | 
         
            +
                    >>> from sympy.physics.control.control_plots import ramp_response_plot
         
     | 
| 639 | 
         
            +
                    >>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
         
     | 
| 640 | 
         
            +
                    >>> ramp_response_plot(tf1, upper_limit=2)   # doctest: +SKIP
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                See Also
         
     | 
| 643 | 
         
            +
                ========
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                step_response_plot, ramp_response_plot
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                References
         
     | 
| 648 | 
         
            +
                ==========
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                .. [1] https://en.wikipedia.org/wiki/Ramp_function
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
                """
         
     | 
| 653 | 
         
            +
                x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
         
     | 
| 654 | 
         
            +
                    lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
         
     | 
| 655 | 
         
            +
                plt.plot(x, y, color=color)
         
     | 
| 656 | 
         
            +
                plt.xlabel('Time (s)')
         
     | 
| 657 | 
         
            +
                plt.ylabel('Amplitude')
         
     | 
| 658 | 
         
            +
                plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
                if grid:
         
     | 
| 661 | 
         
            +
                    plt.grid()
         
     | 
| 662 | 
         
            +
                if show_axes:
         
     | 
| 663 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 664 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 665 | 
         
            +
                if show:
         
     | 
| 666 | 
         
            +
                    plt.show()
         
     | 
| 667 | 
         
            +
                    return
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
                return plt
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
            def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs):
         
     | 
| 673 | 
         
            +
                """
         
     | 
| 674 | 
         
            +
                Returns the numerical data of the Bode magnitude plot of the system.
         
     | 
| 675 | 
         
            +
                It is internally used by ``bode_magnitude_plot`` to get the data
         
     | 
| 676 | 
         
            +
                for plotting Bode magnitude plot. Users can use this data to further
         
     | 
| 677 | 
         
            +
                analyse the dynamics of the system or plot using a different
         
     | 
| 678 | 
         
            +
                backend/plotting-module.
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
                Parameters
         
     | 
| 681 | 
         
            +
                ==========
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 684 | 
         
            +
                    The system for which the data is to be computed.
         
     | 
| 685 | 
         
            +
                initial_exp : Number, optional
         
     | 
| 686 | 
         
            +
                    The initial exponent of 10 of the semilog plot. Defaults to -5.
         
     | 
| 687 | 
         
            +
                final_exp : Number, optional
         
     | 
| 688 | 
         
            +
                    The final exponent of 10 of the semilog plot. Defaults to 5.
         
     | 
| 689 | 
         
            +
                freq_unit : string, optional
         
     | 
| 690 | 
         
            +
                    User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                Returns
         
     | 
| 693 | 
         
            +
                =======
         
     | 
| 694 | 
         
            +
             
     | 
| 695 | 
         
            +
                tuple : (x, y)
         
     | 
| 696 | 
         
            +
                    x = x-axis values of the Bode magnitude plot.
         
     | 
| 697 | 
         
            +
                    y = y-axis values of the Bode magnitude plot.
         
     | 
| 698 | 
         
            +
             
     | 
| 699 | 
         
            +
                Raises
         
     | 
| 700 | 
         
            +
                ======
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                NotImplementedError
         
     | 
| 703 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 706 | 
         
            +
             
     | 
| 707 | 
         
            +
                ValueError
         
     | 
| 708 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 709 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 710 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                    When incorrect frequency units are given as input.
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                Examples
         
     | 
| 715 | 
         
            +
                ========
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 718 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 719 | 
         
            +
                >>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
         
     | 
| 720 | 
         
            +
                >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
         
     | 
| 721 | 
         
            +
                >>> bode_magnitude_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 722 | 
         
            +
                ([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
         
     | 
| 723 | 
         
            +
                [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                See Also
         
     | 
| 726 | 
         
            +
                ========
         
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
                bode_magnitude_plot, bode_phase_numerical_data
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                """
         
     | 
| 731 | 
         
            +
                _check_system(system)
         
     | 
| 732 | 
         
            +
                expr = system.to_expr()
         
     | 
| 733 | 
         
            +
                freq_units = ('rad/sec', 'Hz')
         
     | 
| 734 | 
         
            +
                if freq_unit not in freq_units:
         
     | 
| 735 | 
         
            +
                    raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                _w = Dummy("w", real=True)
         
     | 
| 738 | 
         
            +
                if freq_unit == 'Hz':
         
     | 
| 739 | 
         
            +
                    repl = I*_w*2*pi
         
     | 
| 740 | 
         
            +
                else:
         
     | 
| 741 | 
         
            +
                    repl = I*_w
         
     | 
| 742 | 
         
            +
                w_expr = expr.subs({system.var: repl})
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                mag = 20*log(Abs(w_expr), 10)
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
                x, y = LineOver1DRangeSeries(mag,
         
     | 
| 747 | 
         
            +
                    (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                return x, y
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
            def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
         
     | 
| 753 | 
         
            +
                color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs):
         
     | 
| 754 | 
         
            +
                r"""
         
     | 
| 755 | 
         
            +
                Returns the Bode magnitude plot of a continuous-time system.
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                See ``bode_plot`` for all the parameters.
         
     | 
| 758 | 
         
            +
                """
         
     | 
| 759 | 
         
            +
                x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
         
     | 
| 760 | 
         
            +
                    final_exp=final_exp, freq_unit=freq_unit)
         
     | 
| 761 | 
         
            +
                plt.plot(x, y, color=color, **kwargs)
         
     | 
| 762 | 
         
            +
                plt.xscale('log')
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
         
     | 
| 766 | 
         
            +
                plt.ylabel('Magnitude (dB)')
         
     | 
| 767 | 
         
            +
                plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                if grid:
         
     | 
| 770 | 
         
            +
                    plt.grid(True)
         
     | 
| 771 | 
         
            +
                if show_axes:
         
     | 
| 772 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 773 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 774 | 
         
            +
                if show:
         
     | 
| 775 | 
         
            +
                    plt.show()
         
     | 
| 776 | 
         
            +
                    return
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                return plt
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
            def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', **kwargs):
         
     | 
| 782 | 
         
            +
                """
         
     | 
| 783 | 
         
            +
                Returns the numerical data of the Bode phase plot of the system.
         
     | 
| 784 | 
         
            +
                It is internally used by ``bode_phase_plot`` to get the data
         
     | 
| 785 | 
         
            +
                for plotting Bode phase plot. Users can use this data to further
         
     | 
| 786 | 
         
            +
                analyse the dynamics of the system or plot using a different
         
     | 
| 787 | 
         
            +
                backend/plotting-module.
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                Parameters
         
     | 
| 790 | 
         
            +
                ==========
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                system : SISOLinearTimeInvariant
         
     | 
| 793 | 
         
            +
                    The system for which the Bode phase plot data is to be computed.
         
     | 
| 794 | 
         
            +
                initial_exp : Number, optional
         
     | 
| 795 | 
         
            +
                    The initial exponent of 10 of the semilog plot. Defaults to -5.
         
     | 
| 796 | 
         
            +
                final_exp : Number, optional
         
     | 
| 797 | 
         
            +
                    The final exponent of 10 of the semilog plot. Defaults to 5.
         
     | 
| 798 | 
         
            +
                freq_unit : string, optional
         
     | 
| 799 | 
         
            +
                    User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units.
         
     | 
| 800 | 
         
            +
                phase_unit : string, optional
         
     | 
| 801 | 
         
            +
                    User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                Returns
         
     | 
| 804 | 
         
            +
                =======
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
                tuple : (x, y)
         
     | 
| 807 | 
         
            +
                    x = x-axis values of the Bode phase plot.
         
     | 
| 808 | 
         
            +
                    y = y-axis values of the Bode phase plot.
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                Raises
         
     | 
| 811 | 
         
            +
                ======
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                NotImplementedError
         
     | 
| 814 | 
         
            +
                    When a SISO LTI system is not passed.
         
     | 
| 815 | 
         
            +
             
     | 
| 816 | 
         
            +
                    When time delay terms are present in the system.
         
     | 
| 817 | 
         
            +
             
     | 
| 818 | 
         
            +
                ValueError
         
     | 
| 819 | 
         
            +
                    When more than one free symbol is present in the system.
         
     | 
| 820 | 
         
            +
                    The only variable in the transfer function should be
         
     | 
| 821 | 
         
            +
                    the variable of the Laplace transform.
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    When incorrect frequency or phase units are given as input.
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                Examples
         
     | 
| 826 | 
         
            +
                ========
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                >>> from sympy.abc import s
         
     | 
| 829 | 
         
            +
                >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 830 | 
         
            +
                >>> from sympy.physics.control.control_plots import bode_phase_numerical_data
         
     | 
| 831 | 
         
            +
                >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
         
     | 
| 832 | 
         
            +
                >>> bode_phase_numerical_data(tf1)   # doctest: +SKIP
         
     | 
| 833 | 
         
            +
                ([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
         
     | 
| 834 | 
         
            +
                [-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                See Also
         
     | 
| 837 | 
         
            +
                ========
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
                bode_magnitude_plot, bode_phase_numerical_data
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                """
         
     | 
| 842 | 
         
            +
                _check_system(system)
         
     | 
| 843 | 
         
            +
                expr = system.to_expr()
         
     | 
| 844 | 
         
            +
                freq_units = ('rad/sec', 'Hz')
         
     | 
| 845 | 
         
            +
                phase_units = ('rad', 'deg')
         
     | 
| 846 | 
         
            +
                if freq_unit not in freq_units:
         
     | 
| 847 | 
         
            +
                    raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
         
     | 
| 848 | 
         
            +
                if phase_unit not in phase_units:
         
     | 
| 849 | 
         
            +
                    raise ValueError('Only "rad" and "deg" are accepted phase units.')
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                _w = Dummy("w", real=True)
         
     | 
| 852 | 
         
            +
                if freq_unit == 'Hz':
         
     | 
| 853 | 
         
            +
                    repl = I*_w*2*pi
         
     | 
| 854 | 
         
            +
                else:
         
     | 
| 855 | 
         
            +
                    repl = I*_w
         
     | 
| 856 | 
         
            +
                w_expr = expr.subs({system.var: repl})
         
     | 
| 857 | 
         
            +
             
     | 
| 858 | 
         
            +
                if phase_unit == 'deg':
         
     | 
| 859 | 
         
            +
                    phase = arg(w_expr)*180/pi
         
     | 
| 860 | 
         
            +
                else:
         
     | 
| 861 | 
         
            +
                    phase = arg(w_expr)
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
                x, y = LineOver1DRangeSeries(phase,
         
     | 
| 864 | 
         
            +
                    (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                return x, y
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
            def bode_phase_plot(system, initial_exp=-5, final_exp=5,
         
     | 
| 870 | 
         
            +
                color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
         
     | 
| 871 | 
         
            +
                r"""
         
     | 
| 872 | 
         
            +
                Returns the Bode phase plot of a continuous-time system.
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                See ``bode_plot`` for all the parameters.
         
     | 
| 875 | 
         
            +
                """
         
     | 
| 876 | 
         
            +
                x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
         
     | 
| 877 | 
         
            +
                    final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit)
         
     | 
| 878 | 
         
            +
                plt.plot(x, y, color=color, **kwargs)
         
     | 
| 879 | 
         
            +
                plt.xscale('log')
         
     | 
| 880 | 
         
            +
             
     | 
| 881 | 
         
            +
                plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
         
     | 
| 882 | 
         
            +
                plt.ylabel('Phase (%s)' % phase_unit)
         
     | 
| 883 | 
         
            +
                plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
                if grid:
         
     | 
| 886 | 
         
            +
                    plt.grid(True)
         
     | 
| 887 | 
         
            +
                if show_axes:
         
     | 
| 888 | 
         
            +
                    plt.axhline(0, color='black')
         
     | 
| 889 | 
         
            +
                    plt.axvline(0, color='black')
         
     | 
| 890 | 
         
            +
                if show:
         
     | 
| 891 | 
         
            +
                    plt.show()
         
     | 
| 892 | 
         
            +
                    return
         
     | 
| 893 | 
         
            +
             
     | 
| 894 | 
         
            +
                return plt
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
            def bode_plot(system, initial_exp=-5, final_exp=5,
         
     | 
| 898 | 
         
            +
                grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
         
     | 
| 899 | 
         
            +
                r"""
         
     | 
| 900 | 
         
            +
                Returns the Bode phase and magnitude plots of a continuous-time system.
         
     | 
| 901 | 
         
            +
             
     | 
| 902 | 
         
            +
                Parameters
         
     | 
| 903 | 
         
            +
                ==========
         
     | 
| 904 | 
         
            +
             
     | 
| 905 | 
         
            +
                system : SISOLinearTimeInvariant type
         
     | 
| 906 | 
         
            +
                    The LTI SISO system for which the Bode Plot is to be computed.
         
     | 
| 907 | 
         
            +
                initial_exp : Number, optional
         
     | 
| 908 | 
         
            +
                    The initial exponent of 10 of the semilog plot. Defaults to -5.
         
     | 
| 909 | 
         
            +
                final_exp : Number, optional
         
     | 
| 910 | 
         
            +
                    The final exponent of 10 of the semilog plot. Defaults to 5.
         
     | 
| 911 | 
         
            +
                show : boolean, optional
         
     | 
| 912 | 
         
            +
                    If ``True``, the plot will be displayed otherwise
         
     | 
| 913 | 
         
            +
                    the equivalent matplotlib ``plot`` object will be returned.
         
     | 
| 914 | 
         
            +
                    Defaults to True.
         
     | 
| 915 | 
         
            +
                prec : int, optional
         
     | 
| 916 | 
         
            +
                    The decimal point precision for the point coordinate values.
         
     | 
| 917 | 
         
            +
                    Defaults to 8.
         
     | 
| 918 | 
         
            +
                grid : boolean, optional
         
     | 
| 919 | 
         
            +
                    If ``True``, the plot will have a grid. Defaults to True.
         
     | 
| 920 | 
         
            +
                show_axes : boolean, optional
         
     | 
| 921 | 
         
            +
                    If ``True``, the coordinate axes will be shown. Defaults to False.
         
     | 
| 922 | 
         
            +
                freq_unit : string, optional
         
     | 
| 923 | 
         
            +
                    User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
         
     | 
| 924 | 
         
            +
                phase_unit : string, optional
         
     | 
| 925 | 
         
            +
                    User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                Examples
         
     | 
| 928 | 
         
            +
                ========
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                .. plot::
         
     | 
| 931 | 
         
            +
                    :context: close-figs
         
     | 
| 932 | 
         
            +
                    :format: doctest
         
     | 
| 933 | 
         
            +
                    :include-source: True
         
     | 
| 934 | 
         
            +
             
     | 
| 935 | 
         
            +
                    >>> from sympy.abc import s
         
     | 
| 936 | 
         
            +
                    >>> from sympy.physics.control.lti import TransferFunction
         
     | 
| 937 | 
         
            +
                    >>> from sympy.physics.control.control_plots import bode_plot
         
     | 
| 938 | 
         
            +
                    >>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
         
     | 
| 939 | 
         
            +
                    >>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7)   # doctest: +SKIP
         
     | 
| 940 | 
         
            +
             
     | 
| 941 | 
         
            +
                See Also
         
     | 
| 942 | 
         
            +
                ========
         
     | 
| 943 | 
         
            +
             
     | 
| 944 | 
         
            +
                bode_magnitude_plot, bode_phase_plot
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
                """
         
     | 
| 947 | 
         
            +
                plt.subplot(211)
         
     | 
| 948 | 
         
            +
                mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
         
     | 
| 949 | 
         
            +
                    show=False, grid=grid, show_axes=show_axes,
         
     | 
| 950 | 
         
            +
                    freq_unit=freq_unit, **kwargs)
         
     | 
| 951 | 
         
            +
                mag.title(f'Bode Plot of ${latex(system)}$', pad=20)
         
     | 
| 952 | 
         
            +
                mag.xlabel(None)
         
     | 
| 953 | 
         
            +
                plt.subplot(212)
         
     | 
| 954 | 
         
            +
                bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
         
     | 
| 955 | 
         
            +
                    show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, **kwargs).title(None)
         
     | 
| 956 | 
         
            +
             
     | 
| 957 | 
         
            +
                if show:
         
     | 
| 958 | 
         
            +
                    plt.show()
         
     | 
| 959 | 
         
            +
                    return
         
     | 
| 960 | 
         
            +
             
     | 
| 961 | 
         
            +
                return plt
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/control/lti.py
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (182 Bytes). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/__pycache__/gamma_matrices.cpython-310.pyc
    ADDED
    
    | 
         Binary file (14.1 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/gamma_matrices.py
    ADDED
    
    | 
         @@ -0,0 +1,716 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
                Module to handle gamma matrices expressed as tensor objects.
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
                Examples
         
     | 
| 5 | 
         
            +
                ========
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
         
     | 
| 8 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices
         
     | 
| 9 | 
         
            +
                >>> i = tensor_indices('i', LorentzIndex)
         
     | 
| 10 | 
         
            +
                >>> G(i)
         
     | 
| 11 | 
         
            +
                GammaMatrix(i)
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                Note that there is already an instance of GammaMatrixHead in four dimensions:
         
     | 
| 14 | 
         
            +
                GammaMatrix, which is simply declare as
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix
         
     | 
| 17 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices
         
     | 
| 18 | 
         
            +
                >>> i = tensor_indices('i', LorentzIndex)
         
     | 
| 19 | 
         
            +
                >>> GammaMatrix(i)
         
     | 
| 20 | 
         
            +
                GammaMatrix(i)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                To access the metric tensor
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                >>> LorentzIndex.metric
         
     | 
| 25 | 
         
            +
                metric(LorentzIndex,LorentzIndex)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            """
         
     | 
| 28 | 
         
            +
            from sympy.core.mul import Mul
         
     | 
| 29 | 
         
            +
            from sympy.core.singleton import S
         
     | 
| 30 | 
         
            +
            from sympy.matrices.dense import eye
         
     | 
| 31 | 
         
            +
            from sympy.matrices.expressions.trace import trace
         
     | 
| 32 | 
         
            +
            from sympy.tensor.tensor import TensorIndexType, TensorIndex,\
         
     | 
| 33 | 
         
            +
                TensMul, TensAdd, tensor_mul, Tensor, TensorHead, TensorSymmetry
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            # DiracSpinorIndex = TensorIndexType('DiracSpinorIndex', dim=4, dummy_name="S")
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            LorentzIndex = TensorIndexType('LorentzIndex', dim=4, dummy_name="L")
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            GammaMatrix = TensorHead("GammaMatrix", [LorentzIndex],
         
     | 
| 43 | 
         
            +
                                     TensorSymmetry.no_symmetry(1), comm=None)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            def extract_type_tens(expression, component):
         
     | 
| 47 | 
         
            +
                """
         
     | 
| 48 | 
         
            +
                Extract from a ``TensExpr`` all tensors with `component`.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                Returns two tensor expressions:
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                * the first contains all ``Tensor`` of having `component`.
         
     | 
| 53 | 
         
            +
                * the second contains all remaining.
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                """
         
     | 
| 57 | 
         
            +
                if isinstance(expression, Tensor):
         
     | 
| 58 | 
         
            +
                    sp = [expression]
         
     | 
| 59 | 
         
            +
                elif isinstance(expression, TensMul):
         
     | 
| 60 | 
         
            +
                    sp = expression.args
         
     | 
| 61 | 
         
            +
                else:
         
     | 
| 62 | 
         
            +
                    raise ValueError('wrong type')
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                # Collect all gamma matrices of the same dimension
         
     | 
| 65 | 
         
            +
                new_expr = S.One
         
     | 
| 66 | 
         
            +
                residual_expr = S.One
         
     | 
| 67 | 
         
            +
                for i in sp:
         
     | 
| 68 | 
         
            +
                    if isinstance(i, Tensor) and i.component == component:
         
     | 
| 69 | 
         
            +
                        new_expr *= i
         
     | 
| 70 | 
         
            +
                    else:
         
     | 
| 71 | 
         
            +
                        residual_expr *= i
         
     | 
| 72 | 
         
            +
                return new_expr, residual_expr
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def simplify_gamma_expression(expression):
         
     | 
| 76 | 
         
            +
                extracted_expr, residual_expr = extract_type_tens(expression, GammaMatrix)
         
     | 
| 77 | 
         
            +
                res_expr = _simplify_single_line(extracted_expr)
         
     | 
| 78 | 
         
            +
                return res_expr * residual_expr
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            def simplify_gpgp(ex, sort=True):
         
     | 
| 82 | 
         
            +
                """
         
     | 
| 83 | 
         
            +
                simplify products ``G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)``
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                Examples
         
     | 
| 86 | 
         
            +
                ========
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
         
     | 
| 89 | 
         
            +
                    LorentzIndex, simplify_gpgp
         
     | 
| 90 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices, tensor_heads
         
     | 
| 91 | 
         
            +
                >>> p, q = tensor_heads('p, q', [LorentzIndex])
         
     | 
| 92 | 
         
            +
                >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
         
     | 
| 93 | 
         
            +
                >>> ps = p(i0)*G(-i0)
         
     | 
| 94 | 
         
            +
                >>> qs = q(i0)*G(-i0)
         
     | 
| 95 | 
         
            +
                >>> simplify_gpgp(ps*qs*qs)
         
     | 
| 96 | 
         
            +
                GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1)
         
     | 
| 97 | 
         
            +
                """
         
     | 
| 98 | 
         
            +
                def _simplify_gpgp(ex):
         
     | 
| 99 | 
         
            +
                    components = ex.components
         
     | 
| 100 | 
         
            +
                    a = []
         
     | 
| 101 | 
         
            +
                    comp_map = []
         
     | 
| 102 | 
         
            +
                    for i, comp in enumerate(components):
         
     | 
| 103 | 
         
            +
                        comp_map.extend([i]*comp.rank)
         
     | 
| 104 | 
         
            +
                    dum = [(i[0], i[1], comp_map[i[0]], comp_map[i[1]]) for i in ex.dum]
         
     | 
| 105 | 
         
            +
                    for i in range(len(components)):
         
     | 
| 106 | 
         
            +
                        if components[i] != GammaMatrix:
         
     | 
| 107 | 
         
            +
                            continue
         
     | 
| 108 | 
         
            +
                        for dx in dum:
         
     | 
| 109 | 
         
            +
                            if dx[2] == i:
         
     | 
| 110 | 
         
            +
                                p_pos1 = dx[3]
         
     | 
| 111 | 
         
            +
                            elif dx[3] == i:
         
     | 
| 112 | 
         
            +
                                p_pos1 = dx[2]
         
     | 
| 113 | 
         
            +
                            else:
         
     | 
| 114 | 
         
            +
                                continue
         
     | 
| 115 | 
         
            +
                            comp1 = components[p_pos1]
         
     | 
| 116 | 
         
            +
                            if comp1.comm == 0 and comp1.rank == 1:
         
     | 
| 117 | 
         
            +
                                a.append((i, p_pos1))
         
     | 
| 118 | 
         
            +
                    if not a:
         
     | 
| 119 | 
         
            +
                        return ex
         
     | 
| 120 | 
         
            +
                    elim = set()
         
     | 
| 121 | 
         
            +
                    tv = []
         
     | 
| 122 | 
         
            +
                    hit = True
         
     | 
| 123 | 
         
            +
                    coeff = S.One
         
     | 
| 124 | 
         
            +
                    ta = None
         
     | 
| 125 | 
         
            +
                    while hit:
         
     | 
| 126 | 
         
            +
                        hit = False
         
     | 
| 127 | 
         
            +
                        for i, ai in enumerate(a[:-1]):
         
     | 
| 128 | 
         
            +
                            if ai[0] in elim:
         
     | 
| 129 | 
         
            +
                                continue
         
     | 
| 130 | 
         
            +
                            if ai[0] != a[i + 1][0] - 1:
         
     | 
| 131 | 
         
            +
                                continue
         
     | 
| 132 | 
         
            +
                            if components[ai[1]] != components[a[i + 1][1]]:
         
     | 
| 133 | 
         
            +
                                continue
         
     | 
| 134 | 
         
            +
                            elim.add(ai[0])
         
     | 
| 135 | 
         
            +
                            elim.add(ai[1])
         
     | 
| 136 | 
         
            +
                            elim.add(a[i + 1][0])
         
     | 
| 137 | 
         
            +
                            elim.add(a[i + 1][1])
         
     | 
| 138 | 
         
            +
                            if not ta:
         
     | 
| 139 | 
         
            +
                                ta = ex.split()
         
     | 
| 140 | 
         
            +
                                mu = TensorIndex('mu', LorentzIndex)
         
     | 
| 141 | 
         
            +
                            hit = True
         
     | 
| 142 | 
         
            +
                            if i == 0:
         
     | 
| 143 | 
         
            +
                                coeff = ex.coeff
         
     | 
| 144 | 
         
            +
                            tx = components[ai[1]](mu)*components[ai[1]](-mu)
         
     | 
| 145 | 
         
            +
                            if len(a) == 2:
         
     | 
| 146 | 
         
            +
                                tx *= 4  # eye(4)
         
     | 
| 147 | 
         
            +
                            tv.append(tx)
         
     | 
| 148 | 
         
            +
                            break
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    if tv:
         
     | 
| 151 | 
         
            +
                        a = [x for j, x in enumerate(ta) if j not in elim]
         
     | 
| 152 | 
         
            +
                        a.extend(tv)
         
     | 
| 153 | 
         
            +
                        t = tensor_mul(*a)*coeff
         
     | 
| 154 | 
         
            +
                        # t = t.replace(lambda x: x.is_Matrix, lambda x: 1)
         
     | 
| 155 | 
         
            +
                        return t
         
     | 
| 156 | 
         
            +
                    else:
         
     | 
| 157 | 
         
            +
                        return ex
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                if sort:
         
     | 
| 160 | 
         
            +
                    ex = ex.sorted_components()
         
     | 
| 161 | 
         
            +
                # this would be better off with pattern matching
         
     | 
| 162 | 
         
            +
                while 1:
         
     | 
| 163 | 
         
            +
                    t = _simplify_gpgp(ex)
         
     | 
| 164 | 
         
            +
                    if t != ex:
         
     | 
| 165 | 
         
            +
                        ex = t
         
     | 
| 166 | 
         
            +
                    else:
         
     | 
| 167 | 
         
            +
                        return t
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            def gamma_trace(t):
         
     | 
| 171 | 
         
            +
                """
         
     | 
| 172 | 
         
            +
                trace of a single line of gamma matrices
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                Examples
         
     | 
| 175 | 
         
            +
                ========
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
         
     | 
| 178 | 
         
            +
                    gamma_trace, LorentzIndex
         
     | 
| 179 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices, tensor_heads
         
     | 
| 180 | 
         
            +
                >>> p, q = tensor_heads('p, q', [LorentzIndex])
         
     | 
| 181 | 
         
            +
                >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
         
     | 
| 182 | 
         
            +
                >>> ps = p(i0)*G(-i0)
         
     | 
| 183 | 
         
            +
                >>> qs = q(i0)*G(-i0)
         
     | 
| 184 | 
         
            +
                >>> gamma_trace(G(i0)*G(i1))
         
     | 
| 185 | 
         
            +
                4*metric(i0, i1)
         
     | 
| 186 | 
         
            +
                >>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0)
         
     | 
| 187 | 
         
            +
                0
         
     | 
| 188 | 
         
            +
                >>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0)
         
     | 
| 189 | 
         
            +
                0
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                """
         
     | 
| 192 | 
         
            +
                if isinstance(t, TensAdd):
         
     | 
| 193 | 
         
            +
                    res = TensAdd(*[gamma_trace(x) for x in t.args])
         
     | 
| 194 | 
         
            +
                    return res
         
     | 
| 195 | 
         
            +
                t = _simplify_single_line(t)
         
     | 
| 196 | 
         
            +
                res = _trace_single_line(t)
         
     | 
| 197 | 
         
            +
                return res
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            def _simplify_single_line(expression):
         
     | 
| 201 | 
         
            +
                """
         
     | 
| 202 | 
         
            +
                Simplify single-line product of gamma matrices.
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                Examples
         
     | 
| 205 | 
         
            +
                ========
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
         
     | 
| 208 | 
         
            +
                    LorentzIndex, _simplify_single_line
         
     | 
| 209 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices, TensorHead
         
     | 
| 210 | 
         
            +
                >>> p = TensorHead('p', [LorentzIndex])
         
     | 
| 211 | 
         
            +
                >>> i0,i1 = tensor_indices('i0:2', LorentzIndex)
         
     | 
| 212 | 
         
            +
                >>> _simplify_single_line(G(i0)*G(i1)*p(-i1)*G(-i0)) + 2*G(i0)*p(-i0)
         
     | 
| 213 | 
         
            +
                0
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                """
         
     | 
| 216 | 
         
            +
                t1, t2 = extract_type_tens(expression, GammaMatrix)
         
     | 
| 217 | 
         
            +
                if t1 != 1:
         
     | 
| 218 | 
         
            +
                    t1 = kahane_simplify(t1)
         
     | 
| 219 | 
         
            +
                res = t1*t2
         
     | 
| 220 | 
         
            +
                return res
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
            def _trace_single_line(t):
         
     | 
| 224 | 
         
            +
                """
         
     | 
| 225 | 
         
            +
                Evaluate the trace of a single gamma matrix line inside a ``TensExpr``.
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                Notes
         
     | 
| 228 | 
         
            +
                =====
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                If there are ``DiracSpinorIndex.auto_left`` and ``DiracSpinorIndex.auto_right``
         
     | 
| 231 | 
         
            +
                indices trace over them; otherwise traces are not implied (explain)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                Examples
         
     | 
| 235 | 
         
            +
                ========
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
         
     | 
| 238 | 
         
            +
                    LorentzIndex, _trace_single_line
         
     | 
| 239 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices, TensorHead
         
     | 
| 240 | 
         
            +
                >>> p = TensorHead('p', [LorentzIndex])
         
     | 
| 241 | 
         
            +
                >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
         
     | 
| 242 | 
         
            +
                >>> _trace_single_line(G(i0)*G(i1))
         
     | 
| 243 | 
         
            +
                4*metric(i0, i1)
         
     | 
| 244 | 
         
            +
                >>> _trace_single_line(G(i0)*p(-i0)*G(i1)*p(-i1)) - 4*p(i0)*p(-i0)
         
     | 
| 245 | 
         
            +
                0
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                """
         
     | 
| 248 | 
         
            +
                def _trace_single_line1(t):
         
     | 
| 249 | 
         
            +
                    t = t.sorted_components()
         
     | 
| 250 | 
         
            +
                    components = t.components
         
     | 
| 251 | 
         
            +
                    ncomps = len(components)
         
     | 
| 252 | 
         
            +
                    g = LorentzIndex.metric
         
     | 
| 253 | 
         
            +
                    # gamma matirices are in a[i:j]
         
     | 
| 254 | 
         
            +
                    hit = 0
         
     | 
| 255 | 
         
            +
                    for i in range(ncomps):
         
     | 
| 256 | 
         
            +
                        if components[i] == GammaMatrix:
         
     | 
| 257 | 
         
            +
                            hit = 1
         
     | 
| 258 | 
         
            +
                            break
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                    for j in range(i + hit, ncomps):
         
     | 
| 261 | 
         
            +
                        if components[j] != GammaMatrix:
         
     | 
| 262 | 
         
            +
                            break
         
     | 
| 263 | 
         
            +
                    else:
         
     | 
| 264 | 
         
            +
                        j = ncomps
         
     | 
| 265 | 
         
            +
                    numG = j - i
         
     | 
| 266 | 
         
            +
                    if numG == 0:
         
     | 
| 267 | 
         
            +
                        tcoeff = t.coeff
         
     | 
| 268 | 
         
            +
                        return t.nocoeff if tcoeff else t
         
     | 
| 269 | 
         
            +
                    if numG % 2 == 1:
         
     | 
| 270 | 
         
            +
                        return TensMul.from_data(S.Zero, [], [], [])
         
     | 
| 271 | 
         
            +
                    elif numG > 4:
         
     | 
| 272 | 
         
            +
                        # find the open matrix indices and connect them:
         
     | 
| 273 | 
         
            +
                        a = t.split()
         
     | 
| 274 | 
         
            +
                        ind1 = a[i].get_indices()[0]
         
     | 
| 275 | 
         
            +
                        ind2 = a[i + 1].get_indices()[0]
         
     | 
| 276 | 
         
            +
                        aa = a[:i] + a[i + 2:]
         
     | 
| 277 | 
         
            +
                        t1 = tensor_mul(*aa)*g(ind1, ind2)
         
     | 
| 278 | 
         
            +
                        t1 = t1.contract_metric(g)
         
     | 
| 279 | 
         
            +
                        args = [t1]
         
     | 
| 280 | 
         
            +
                        sign = 1
         
     | 
| 281 | 
         
            +
                        for k in range(i + 2, j):
         
     | 
| 282 | 
         
            +
                            sign = -sign
         
     | 
| 283 | 
         
            +
                            ind2 = a[k].get_indices()[0]
         
     | 
| 284 | 
         
            +
                            aa = a[:i] + a[i + 1:k] + a[k + 1:]
         
     | 
| 285 | 
         
            +
                            t2 = sign*tensor_mul(*aa)*g(ind1, ind2)
         
     | 
| 286 | 
         
            +
                            t2 = t2.contract_metric(g)
         
     | 
| 287 | 
         
            +
                            t2 = simplify_gpgp(t2, False)
         
     | 
| 288 | 
         
            +
                            args.append(t2)
         
     | 
| 289 | 
         
            +
                        t3 = TensAdd(*args)
         
     | 
| 290 | 
         
            +
                        t3 = _trace_single_line(t3)
         
     | 
| 291 | 
         
            +
                        return t3
         
     | 
| 292 | 
         
            +
                    else:
         
     | 
| 293 | 
         
            +
                        a = t.split()
         
     | 
| 294 | 
         
            +
                        t1 = _gamma_trace1(*a[i:j])
         
     | 
| 295 | 
         
            +
                        a2 = a[:i] + a[j:]
         
     | 
| 296 | 
         
            +
                        t2 = tensor_mul(*a2)
         
     | 
| 297 | 
         
            +
                        t3 = t1*t2
         
     | 
| 298 | 
         
            +
                        if not t3:
         
     | 
| 299 | 
         
            +
                            return t3
         
     | 
| 300 | 
         
            +
                        t3 = t3.contract_metric(g)
         
     | 
| 301 | 
         
            +
                        return t3
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                t = t.expand()
         
     | 
| 304 | 
         
            +
                if isinstance(t, TensAdd):
         
     | 
| 305 | 
         
            +
                    a = [_trace_single_line1(x)*x.coeff for x in t.args]
         
     | 
| 306 | 
         
            +
                    return TensAdd(*a)
         
     | 
| 307 | 
         
            +
                elif isinstance(t, (Tensor, TensMul)):
         
     | 
| 308 | 
         
            +
                    r = t.coeff*_trace_single_line1(t)
         
     | 
| 309 | 
         
            +
                    return r
         
     | 
| 310 | 
         
            +
                else:
         
     | 
| 311 | 
         
            +
                    return trace(t)
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
            def _gamma_trace1(*a):
         
     | 
| 315 | 
         
            +
                gctr = 4  # FIXME specific for d=4
         
     | 
| 316 | 
         
            +
                g = LorentzIndex.metric
         
     | 
| 317 | 
         
            +
                if not a:
         
     | 
| 318 | 
         
            +
                    return gctr
         
     | 
| 319 | 
         
            +
                n = len(a)
         
     | 
| 320 | 
         
            +
                if n%2 == 1:
         
     | 
| 321 | 
         
            +
                    #return TensMul.from_data(S.Zero, [], [], [])
         
     | 
| 322 | 
         
            +
                    return S.Zero
         
     | 
| 323 | 
         
            +
                if n == 2:
         
     | 
| 324 | 
         
            +
                    ind0 = a[0].get_indices()[0]
         
     | 
| 325 | 
         
            +
                    ind1 = a[1].get_indices()[0]
         
     | 
| 326 | 
         
            +
                    return gctr*g(ind0, ind1)
         
     | 
| 327 | 
         
            +
                if n == 4:
         
     | 
| 328 | 
         
            +
                    ind0 = a[0].get_indices()[0]
         
     | 
| 329 | 
         
            +
                    ind1 = a[1].get_indices()[0]
         
     | 
| 330 | 
         
            +
                    ind2 = a[2].get_indices()[0]
         
     | 
| 331 | 
         
            +
                    ind3 = a[3].get_indices()[0]
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    return gctr*(g(ind0, ind1)*g(ind2, ind3) - \
         
     | 
| 334 | 
         
            +
                       g(ind0, ind2)*g(ind1, ind3) + g(ind0, ind3)*g(ind1, ind2))
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
            def kahane_simplify(expression):
         
     | 
| 338 | 
         
            +
                r"""
         
     | 
| 339 | 
         
            +
                This function cancels contracted elements in a product of four
         
     | 
| 340 | 
         
            +
                dimensional gamma matrices, resulting in an expression equal to the given
         
     | 
| 341 | 
         
            +
                one, without the contracted gamma matrices.
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                Parameters
         
     | 
| 344 | 
         
            +
                ==========
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                `expression`    the tensor expression containing the gamma matrices to simplify.
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                Notes
         
     | 
| 349 | 
         
            +
                =====
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                If spinor indices are given, the matrices must be given in
         
     | 
| 352 | 
         
            +
                the order given in the product.
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                Algorithm
         
     | 
| 355 | 
         
            +
                =========
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                The idea behind the algorithm is to use some well-known identities,
         
     | 
| 358 | 
         
            +
                i.e., for contractions enclosing an even number of `\gamma` matrices
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )`
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                for an odd number of `\gamma` matrices
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}`
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                Instead of repeatedly applying these identities to cancel out all contracted indices,
         
     | 
| 367 | 
         
            +
                it is possible to recognize the links that would result from such an operation,
         
     | 
| 368 | 
         
            +
                the problem is thus reduced to a simple rearrangement of free gamma matrices.
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                Examples
         
     | 
| 371 | 
         
            +
                ========
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                When using, always remember that the original expression coefficient
         
     | 
| 374 | 
         
            +
                has to be handled separately
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
         
     | 
| 377 | 
         
            +
                >>> from sympy.physics.hep.gamma_matrices import kahane_simplify
         
     | 
| 378 | 
         
            +
                >>> from sympy.tensor.tensor import tensor_indices
         
     | 
| 379 | 
         
            +
                >>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex)
         
     | 
| 380 | 
         
            +
                >>> ta = G(i0)*G(-i0)
         
     | 
| 381 | 
         
            +
                >>> kahane_simplify(ta)
         
     | 
| 382 | 
         
            +
                Matrix([
         
     | 
| 383 | 
         
            +
                [4, 0, 0, 0],
         
     | 
| 384 | 
         
            +
                [0, 4, 0, 0],
         
     | 
| 385 | 
         
            +
                [0, 0, 4, 0],
         
     | 
| 386 | 
         
            +
                [0, 0, 0, 4]])
         
     | 
| 387 | 
         
            +
                >>> tb = G(i0)*G(i1)*G(-i0)
         
     | 
| 388 | 
         
            +
                >>> kahane_simplify(tb)
         
     | 
| 389 | 
         
            +
                -2*GammaMatrix(i1)
         
     | 
| 390 | 
         
            +
                >>> t = G(i0)*G(-i0)
         
     | 
| 391 | 
         
            +
                >>> kahane_simplify(t)
         
     | 
| 392 | 
         
            +
                Matrix([
         
     | 
| 393 | 
         
            +
                [4, 0, 0, 0],
         
     | 
| 394 | 
         
            +
                [0, 4, 0, 0],
         
     | 
| 395 | 
         
            +
                [0, 0, 4, 0],
         
     | 
| 396 | 
         
            +
                [0, 0, 0, 4]])
         
     | 
| 397 | 
         
            +
                >>> t = G(i0)*G(-i0)
         
     | 
| 398 | 
         
            +
                >>> kahane_simplify(t)
         
     | 
| 399 | 
         
            +
                Matrix([
         
     | 
| 400 | 
         
            +
                [4, 0, 0, 0],
         
     | 
| 401 | 
         
            +
                [0, 4, 0, 0],
         
     | 
| 402 | 
         
            +
                [0, 0, 4, 0],
         
     | 
| 403 | 
         
            +
                [0, 0, 0, 4]])
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                If there are no contractions, the same expression is returned
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                >>> tc = G(i0)*G(i1)
         
     | 
| 408 | 
         
            +
                >>> kahane_simplify(tc)
         
     | 
| 409 | 
         
            +
                GammaMatrix(i0)*GammaMatrix(i1)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                References
         
     | 
| 412 | 
         
            +
                ==========
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                [1] Algorithm for Reducing Contracted Products of gamma Matrices,
         
     | 
| 415 | 
         
            +
                Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968.
         
     | 
| 416 | 
         
            +
                """
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                if isinstance(expression, Mul):
         
     | 
| 419 | 
         
            +
                    return expression
         
     | 
| 420 | 
         
            +
                if isinstance(expression, TensAdd):
         
     | 
| 421 | 
         
            +
                    return TensAdd(*[kahane_simplify(arg) for arg in expression.args])
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                if isinstance(expression, Tensor):
         
     | 
| 424 | 
         
            +
                    return expression
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                assert isinstance(expression, TensMul)
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                gammas = expression.args
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                for gamma in gammas:
         
     | 
| 431 | 
         
            +
                    assert gamma.component == GammaMatrix
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                free = expression.free
         
     | 
| 434 | 
         
            +
                # spinor_free = [_ for _ in expression.free_in_args if _[1] != 0]
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                # if len(spinor_free) == 2:
         
     | 
| 437 | 
         
            +
                #     spinor_free.sort(key=lambda x: x[2])
         
     | 
| 438 | 
         
            +
                #     assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2
         
     | 
| 439 | 
         
            +
                #     assert spinor_free[0][2] == 0
         
     | 
| 440 | 
         
            +
                # elif spinor_free:
         
     | 
| 441 | 
         
            +
                #     raise ValueError('spinor indices do not match')
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                dum = []
         
     | 
| 444 | 
         
            +
                for dum_pair in expression.dum:
         
     | 
| 445 | 
         
            +
                    if expression.index_types[dum_pair[0]] == LorentzIndex:
         
     | 
| 446 | 
         
            +
                        dum.append((dum_pair[0], dum_pair[1]))
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                dum = sorted(dum)
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                if len(dum) == 0:  # or GammaMatrixHead:
         
     | 
| 451 | 
         
            +
                    # no contractions in `expression`, just return it.
         
     | 
| 452 | 
         
            +
                    return expression
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                # find the `first_dum_pos`, i.e. the position of the first contracted
         
     | 
| 455 | 
         
            +
                # gamma matrix, Kahane's algorithm as described in his paper requires the
         
     | 
| 456 | 
         
            +
                # gamma matrix expression to start with a contracted gamma matrix, this is
         
     | 
| 457 | 
         
            +
                # a workaround which ignores possible initial free indices, and re-adds
         
     | 
| 458 | 
         
            +
                # them later.
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                first_dum_pos = min(map(min, dum))
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                # for p1, p2, a1, a2 in expression.dum_in_args:
         
     | 
| 463 | 
         
            +
                #     if p1 != 0 or p2 != 0:
         
     | 
| 464 | 
         
            +
                #         # only Lorentz indices, skip Dirac indices:
         
     | 
| 465 | 
         
            +
                #         continue
         
     | 
| 466 | 
         
            +
                #     first_dum_pos = min(p1, p2)
         
     | 
| 467 | 
         
            +
                #     break
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                total_number = len(free) + len(dum)*2
         
     | 
| 470 | 
         
            +
                number_of_contractions = len(dum)
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                free_pos = [None]*total_number
         
     | 
| 473 | 
         
            +
                for i in free:
         
     | 
| 474 | 
         
            +
                    free_pos[i[1]] = i[0]
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                # `index_is_free` is a list of booleans, to identify index position
         
     | 
| 477 | 
         
            +
                # and whether that index is free or dummy.
         
     | 
| 478 | 
         
            +
                index_is_free = [False]*total_number
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                for i, indx in enumerate(free):
         
     | 
| 481 | 
         
            +
                    index_is_free[indx[1]] = True
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                # `links` is a dictionary containing the graph described in Kahane's paper,
         
     | 
| 484 | 
         
            +
                # to every key correspond one or two values, representing the linked indices.
         
     | 
| 485 | 
         
            +
                # All values in `links` are integers, negative numbers are used in the case
         
     | 
| 486 | 
         
            +
                # where it is necessary to insert gamma matrices between free indices, in
         
     | 
| 487 | 
         
            +
                # order to make Kahane's algorithm work (see paper).
         
     | 
| 488 | 
         
            +
                links = {i: [] for i in range(first_dum_pos, total_number)}
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                # `cum_sign` is a step variable to mark the sign of every index, see paper.
         
     | 
| 491 | 
         
            +
                cum_sign = -1
         
     | 
| 492 | 
         
            +
                # `cum_sign_list` keeps storage for all `cum_sign` (every index).
         
     | 
| 493 | 
         
            +
                cum_sign_list = [None]*total_number
         
     | 
| 494 | 
         
            +
                block_free_count = 0
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                # multiply `resulting_coeff` by the coefficient parameter, the rest
         
     | 
| 497 | 
         
            +
                # of the algorithm ignores a scalar coefficient.
         
     | 
| 498 | 
         
            +
                resulting_coeff = S.One
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                # initialize a list of lists of indices. The outer list will contain all
         
     | 
| 501 | 
         
            +
                # additive tensor expressions, while the inner list will contain the
         
     | 
| 502 | 
         
            +
                # free indices (rearranged according to the algorithm).
         
     | 
| 503 | 
         
            +
                resulting_indices = [[]]
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                # start to count the `connected_components`, which together with the number
         
     | 
| 506 | 
         
            +
                # of contractions, determines a -1 or +1 factor to be multiplied.
         
     | 
| 507 | 
         
            +
                connected_components = 1
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                # First loop: here we fill `cum_sign_list`, and draw the links
         
     | 
| 510 | 
         
            +
                # among consecutive indices (they are stored in `links`). Links among
         
     | 
| 511 | 
         
            +
                # non-consecutive indices will be drawn later.
         
     | 
| 512 | 
         
            +
                for i, is_free in enumerate(index_is_free):
         
     | 
| 513 | 
         
            +
                    # if `expression` starts with free indices, they are ignored here;
         
     | 
| 514 | 
         
            +
                    # they are later added as they are to the beginning of all
         
     | 
| 515 | 
         
            +
                    # `resulting_indices` list of lists of indices.
         
     | 
| 516 | 
         
            +
                    if i < first_dum_pos:
         
     | 
| 517 | 
         
            +
                        continue
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                    if is_free:
         
     | 
| 520 | 
         
            +
                        block_free_count += 1
         
     | 
| 521 | 
         
            +
                        # if previous index was free as well, draw an arch in `links`.
         
     | 
| 522 | 
         
            +
                        if block_free_count > 1:
         
     | 
| 523 | 
         
            +
                            links[i - 1].append(i)
         
     | 
| 524 | 
         
            +
                            links[i].append(i - 1)
         
     | 
| 525 | 
         
            +
                    else:
         
     | 
| 526 | 
         
            +
                        # Change the sign of the index (`cum_sign`) if the number of free
         
     | 
| 527 | 
         
            +
                        # indices preceding it is even.
         
     | 
| 528 | 
         
            +
                        cum_sign *= 1 if (block_free_count % 2) else -1
         
     | 
| 529 | 
         
            +
                        if block_free_count == 0 and i != first_dum_pos:
         
     | 
| 530 | 
         
            +
                            # check if there are two consecutive dummy indices:
         
     | 
| 531 | 
         
            +
                            # in this case create virtual indices with negative position,
         
     | 
| 532 | 
         
            +
                            # these "virtual" indices represent the insertion of two
         
     | 
| 533 | 
         
            +
                            # gamma^0 matrices to separate consecutive dummy indices, as
         
     | 
| 534 | 
         
            +
                            # Kahane's algorithm requires dummy indices to be separated by
         
     | 
| 535 | 
         
            +
                            # free indices. The product of two gamma^0 matrices is unity,
         
     | 
| 536 | 
         
            +
                            # so the new expression being examined is the same as the
         
     | 
| 537 | 
         
            +
                            # original one.
         
     | 
| 538 | 
         
            +
                            if cum_sign == -1:
         
     | 
| 539 | 
         
            +
                                links[-1-i] = [-1-i+1]
         
     | 
| 540 | 
         
            +
                                links[-1-i+1] = [-1-i]
         
     | 
| 541 | 
         
            +
                        if (i - cum_sign) in links:
         
     | 
| 542 | 
         
            +
                            if i != first_dum_pos:
         
     | 
| 543 | 
         
            +
                                links[i].append(i - cum_sign)
         
     | 
| 544 | 
         
            +
                            if block_free_count != 0:
         
     | 
| 545 | 
         
            +
                                if i - cum_sign < len(index_is_free):
         
     | 
| 546 | 
         
            +
                                    if index_is_free[i - cum_sign]:
         
     | 
| 547 | 
         
            +
                                        links[i - cum_sign].append(i)
         
     | 
| 548 | 
         
            +
                        block_free_count = 0
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    cum_sign_list[i] = cum_sign
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                # The previous loop has only created links between consecutive free indices,
         
     | 
| 553 | 
         
            +
                # it is necessary to properly create links among dummy (contracted) indices,
         
     | 
| 554 | 
         
            +
                # according to the rules described in Kahane's paper. There is only one exception
         
     | 
| 555 | 
         
            +
                # to Kahane's rules: the negative indices, which handle the case of some
         
     | 
| 556 | 
         
            +
                # consecutive free indices (Kahane's paper just describes dummy indices
         
     | 
| 557 | 
         
            +
                # separated by free indices, hinting that free indices can be added without
         
     | 
| 558 | 
         
            +
                # altering the expression result).
         
     | 
| 559 | 
         
            +
                for i in dum:
         
     | 
| 560 | 
         
            +
                    # get the positions of the two contracted indices:
         
     | 
| 561 | 
         
            +
                    pos1 = i[0]
         
     | 
| 562 | 
         
            +
                    pos2 = i[1]
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    # create Kahane's upper links, i.e. the upper arcs between dummy
         
     | 
| 565 | 
         
            +
                    # (i.e. contracted) indices:
         
     | 
| 566 | 
         
            +
                    links[pos1].append(pos2)
         
     | 
| 567 | 
         
            +
                    links[pos2].append(pos1)
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                    # create Kahane's lower links, this corresponds to the arcs below
         
     | 
| 570 | 
         
            +
                    # the line described in the paper:
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    # first we move `pos1` and `pos2` according to the sign of the indices:
         
     | 
| 573 | 
         
            +
                    linkpos1 = pos1 + cum_sign_list[pos1]
         
     | 
| 574 | 
         
            +
                    linkpos2 = pos2 + cum_sign_list[pos2]
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
                    # otherwise, perform some checks before creating the lower arcs:
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    # make sure we are not exceeding the total number of indices:
         
     | 
| 579 | 
         
            +
                    if linkpos1 >= total_number:
         
     | 
| 580 | 
         
            +
                        continue
         
     | 
| 581 | 
         
            +
                    if linkpos2 >= total_number:
         
     | 
| 582 | 
         
            +
                        continue
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    # make sure we are not below the first dummy index in `expression`:
         
     | 
| 585 | 
         
            +
                    if linkpos1 < first_dum_pos:
         
     | 
| 586 | 
         
            +
                        continue
         
     | 
| 587 | 
         
            +
                    if linkpos2 < first_dum_pos:
         
     | 
| 588 | 
         
            +
                        continue
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                    # check if the previous loop created "virtual" indices between dummy
         
     | 
| 591 | 
         
            +
                    # indices, in such a case relink `linkpos1` and `linkpos2`:
         
     | 
| 592 | 
         
            +
                    if (-1-linkpos1) in links:
         
     | 
| 593 | 
         
            +
                        linkpos1 = -1-linkpos1
         
     | 
| 594 | 
         
            +
                    if (-1-linkpos2) in links:
         
     | 
| 595 | 
         
            +
                        linkpos2 = -1-linkpos2
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                    # move only if not next to free index:
         
     | 
| 598 | 
         
            +
                    if linkpos1 >= 0 and not index_is_free[linkpos1]:
         
     | 
| 599 | 
         
            +
                        linkpos1 = pos1
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                    if linkpos2 >=0 and not index_is_free[linkpos2]:
         
     | 
| 602 | 
         
            +
                        linkpos2 = pos2
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                    # create the lower arcs:
         
     | 
| 605 | 
         
            +
                    if linkpos2 not in links[linkpos1]:
         
     | 
| 606 | 
         
            +
                        links[linkpos1].append(linkpos2)
         
     | 
| 607 | 
         
            +
                    if linkpos1 not in links[linkpos2]:
         
     | 
| 608 | 
         
            +
                        links[linkpos2].append(linkpos1)
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                # This loop starts from the `first_dum_pos` index (first dummy index)
         
     | 
| 611 | 
         
            +
                # walks through the graph deleting the visited indices from `links`,
         
     | 
| 612 | 
         
            +
                # it adds a gamma matrix for every free index in encounters, while it
         
     | 
| 613 | 
         
            +
                # completely ignores dummy indices and virtual indices.
         
     | 
| 614 | 
         
            +
                pointer = first_dum_pos
         
     | 
| 615 | 
         
            +
                previous_pointer = 0
         
     | 
| 616 | 
         
            +
                while True:
         
     | 
| 617 | 
         
            +
                    if pointer in links:
         
     | 
| 618 | 
         
            +
                        next_ones = links.pop(pointer)
         
     | 
| 619 | 
         
            +
                    else:
         
     | 
| 620 | 
         
            +
                        break
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                    if previous_pointer in next_ones:
         
     | 
| 623 | 
         
            +
                        next_ones.remove(previous_pointer)
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
                    previous_pointer = pointer
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    if next_ones:
         
     | 
| 628 | 
         
            +
                        pointer = next_ones[0]
         
     | 
| 629 | 
         
            +
                    else:
         
     | 
| 630 | 
         
            +
                        break
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                    if pointer == previous_pointer:
         
     | 
| 633 | 
         
            +
                        break
         
     | 
| 634 | 
         
            +
                    if pointer >=0 and free_pos[pointer] is not None:
         
     | 
| 635 | 
         
            +
                        for ri in resulting_indices:
         
     | 
| 636 | 
         
            +
                            ri.append(free_pos[pointer])
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                # The following loop removes the remaining connected components in `links`.
         
     | 
| 639 | 
         
            +
                # If there are free indices inside a connected component, it gives a
         
     | 
| 640 | 
         
            +
                # contribution to the resulting expression given by the factor
         
     | 
| 641 | 
         
            +
                # `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's
         
     | 
| 642 | 
         
            +
                # paper represented as  {gamma_a, gamma_b, ... , gamma_z},
         
     | 
| 643 | 
         
            +
                # virtual indices are ignored. The variable `connected_components` is
         
     | 
| 644 | 
         
            +
                # increased by one for every connected component this loop encounters.
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                # If the connected component has virtual and dummy indices only
         
     | 
| 647 | 
         
            +
                # (no free indices), it contributes to `resulting_indices` by a factor of two.
         
     | 
| 648 | 
         
            +
                # The multiplication by two is a result of the
         
     | 
| 649 | 
         
            +
                # factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper.
         
     | 
| 650 | 
         
            +
                # Note: curly brackets are meant as in the paper, as a generalized
         
     | 
| 651 | 
         
            +
                # multi-element anticommutator!
         
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
                while links:
         
     | 
| 654 | 
         
            +
                    connected_components += 1
         
     | 
| 655 | 
         
            +
                    pointer = min(links.keys())
         
     | 
| 656 | 
         
            +
                    previous_pointer = pointer
         
     | 
| 657 | 
         
            +
                    # the inner loop erases the visited indices from `links`, and it adds
         
     | 
| 658 | 
         
            +
                    # all free indices to `prepend_indices` list, virtual indices are
         
     | 
| 659 | 
         
            +
                    # ignored.
         
     | 
| 660 | 
         
            +
                    prepend_indices = []
         
     | 
| 661 | 
         
            +
                    while True:
         
     | 
| 662 | 
         
            +
                        if pointer in links:
         
     | 
| 663 | 
         
            +
                            next_ones = links.pop(pointer)
         
     | 
| 664 | 
         
            +
                        else:
         
     | 
| 665 | 
         
            +
                            break
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                        if previous_pointer in next_ones:
         
     | 
| 668 | 
         
            +
                            if len(next_ones) > 1:
         
     | 
| 669 | 
         
            +
                                next_ones.remove(previous_pointer)
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
                        previous_pointer = pointer
         
     | 
| 672 | 
         
            +
             
     | 
| 673 | 
         
            +
                        if next_ones:
         
     | 
| 674 | 
         
            +
                            pointer = next_ones[0]
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
                        if pointer >= first_dum_pos and free_pos[pointer] is not None:
         
     | 
| 677 | 
         
            +
                            prepend_indices.insert(0, free_pos[pointer])
         
     | 
| 678 | 
         
            +
                    # if `prepend_indices` is void, it means there are no free indices
         
     | 
| 679 | 
         
            +
                    # in the loop (and it can be shown that there must be a virtual index),
         
     | 
| 680 | 
         
            +
                    # loops of virtual indices only contribute by a factor of two:
         
     | 
| 681 | 
         
            +
                    if len(prepend_indices) == 0:
         
     | 
| 682 | 
         
            +
                        resulting_coeff *= 2
         
     | 
| 683 | 
         
            +
                    # otherwise, add the free indices in `prepend_indices` to
         
     | 
| 684 | 
         
            +
                    # the `resulting_indices`:
         
     | 
| 685 | 
         
            +
                    else:
         
     | 
| 686 | 
         
            +
                        expr1 = prepend_indices
         
     | 
| 687 | 
         
            +
                        expr2 = list(reversed(prepend_indices))
         
     | 
| 688 | 
         
            +
                        resulting_indices = [expri + ri for ri in resulting_indices for expri in (expr1, expr2)]
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                # sign correction, as described in Kahane's paper:
         
     | 
| 691 | 
         
            +
                resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1
         
     | 
| 692 | 
         
            +
                # power of two factor, as described in Kahane's paper:
         
     | 
| 693 | 
         
            +
                resulting_coeff *= 2**(number_of_contractions)
         
     | 
| 694 | 
         
            +
             
     | 
| 695 | 
         
            +
                # If `first_dum_pos` is not zero, it means that there are trailing free gamma
         
     | 
| 696 | 
         
            +
                # matrices in front of `expression`, so multiply by them:
         
     | 
| 697 | 
         
            +
                resulting_indices = [ free_pos[0:first_dum_pos] + ri for ri in resulting_indices ]
         
     | 
| 698 | 
         
            +
             
     | 
| 699 | 
         
            +
                resulting_expr = S.Zero
         
     | 
| 700 | 
         
            +
                for i in resulting_indices:
         
     | 
| 701 | 
         
            +
                    temp_expr = S.One
         
     | 
| 702 | 
         
            +
                    for j in i:
         
     | 
| 703 | 
         
            +
                        temp_expr *= GammaMatrix(j)
         
     | 
| 704 | 
         
            +
                    resulting_expr += temp_expr
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                t = resulting_coeff * resulting_expr
         
     | 
| 707 | 
         
            +
                t1 = None
         
     | 
| 708 | 
         
            +
                if isinstance(t, TensAdd):
         
     | 
| 709 | 
         
            +
                    t1 = t.args[0]
         
     | 
| 710 | 
         
            +
                elif isinstance(t, TensMul):
         
     | 
| 711 | 
         
            +
                    t1 = t
         
     | 
| 712 | 
         
            +
                if t1:
         
     | 
| 713 | 
         
            +
                    pass
         
     | 
| 714 | 
         
            +
                else:
         
     | 
| 715 | 
         
            +
                    t = eye(4)*t
         
     | 
| 716 | 
         
            +
                return t
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (188 Bytes). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc
    ADDED
    
    | 
         Binary file (13.2 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py
    ADDED
    
    | 
         @@ -0,0 +1,427 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.matrices.dense import eye, Matrix
         
     | 
| 2 | 
         
            +
            from sympy.tensor.tensor import tensor_indices, TensorHead, tensor_heads, \
         
     | 
| 3 | 
         
            +
                TensExpr, canon_bp
         
     | 
| 4 | 
         
            +
            from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex, \
         
     | 
| 5 | 
         
            +
                kahane_simplify, gamma_trace, _simplify_single_line, simplify_gamma_expression
         
     | 
| 6 | 
         
            +
            from sympy import Symbol
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            def _is_tensor_eq(arg1, arg2):
         
     | 
| 10 | 
         
            +
                arg1 = canon_bp(arg1)
         
     | 
| 11 | 
         
            +
                arg2 = canon_bp(arg2)
         
     | 
| 12 | 
         
            +
                if isinstance(arg1, TensExpr):
         
     | 
| 13 | 
         
            +
                    return arg1.equals(arg2)
         
     | 
| 14 | 
         
            +
                elif isinstance(arg2, TensExpr):
         
     | 
| 15 | 
         
            +
                    return arg2.equals(arg1)
         
     | 
| 16 | 
         
            +
                return arg1 == arg2
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def execute_gamma_simplify_tests_for_function(tfunc, D):
         
     | 
| 19 | 
         
            +
                """
         
     | 
| 20 | 
         
            +
                Perform tests to check if sfunc is able to simplify gamma matrix expressions.
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                Parameters
         
     | 
| 23 | 
         
            +
                ==========
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                `sfunc`     a function to simplify a `TIDS`, shall return the simplified `TIDS`.
         
     | 
| 26 | 
         
            +
                `D`         the number of dimension (in most cases `D=4`).
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                """
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
         
     | 
| 31 | 
         
            +
                a1, a2, a3, a4, a5, a6 = tensor_indices("a1:7", LorentzIndex)
         
     | 
| 32 | 
         
            +
                mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52 = tensor_indices("mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52", LorentzIndex)
         
     | 
| 33 | 
         
            +
                mu61, mu71, mu72 = tensor_indices("mu61, mu71, mu72", LorentzIndex)
         
     | 
| 34 | 
         
            +
                m0, m1, m2, m3, m4, m5, m6 = tensor_indices("m0:7", LorentzIndex)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def g(xx, yy):
         
     | 
| 37 | 
         
            +
                    return (G(xx)*G(yy) + G(yy)*G(xx))/2
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                # Some examples taken from Kahane's paper, 4 dim only:
         
     | 
| 40 | 
         
            +
                if D == 4:
         
     | 
| 41 | 
         
            +
                    t = (G(a1)*G(mu11)*G(a2)*G(mu21)*G(-a1)*G(mu31)*G(-a2))
         
     | 
| 42 | 
         
            +
                    assert _is_tensor_eq(tfunc(t), -4*G(mu11)*G(mu31)*G(mu21) - 4*G(mu31)*G(mu11)*G(mu21))
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                    t = (G(a1)*G(mu11)*G(mu12)*\
         
     | 
| 45 | 
         
            +
                                          G(a2)*G(mu21)*\
         
     | 
| 46 | 
         
            +
                                          G(a3)*G(mu31)*G(mu32)*\
         
     | 
| 47 | 
         
            +
                                          G(a4)*G(mu41)*\
         
     | 
| 48 | 
         
            +
                                          G(-a2)*G(mu51)*G(mu52)*\
         
     | 
| 49 | 
         
            +
                                          G(-a1)*G(mu61)*\
         
     | 
| 50 | 
         
            +
                                          G(-a3)*G(mu71)*G(mu72)*\
         
     | 
| 51 | 
         
            +
                                          G(-a4))
         
     | 
| 52 | 
         
            +
                    assert _is_tensor_eq(tfunc(t), \
         
     | 
| 53 | 
         
            +
                        16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41))
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                # Fully Lorentz-contracted expressions, these return scalars:
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                def add_delta(ne):
         
     | 
| 58 | 
         
            +
                    return ne * eye(4)  # DiracSpinorIndex.delta(DiracSpinorIndex.auto_left, -DiracSpinorIndex.auto_right)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                t = (G(mu)*G(-mu))
         
     | 
| 61 | 
         
            +
                ts = add_delta(D)
         
     | 
| 62 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                t = (G(mu)*G(nu)*G(-mu)*G(-nu))
         
     | 
| 65 | 
         
            +
                ts = add_delta(2*D - D**2)  # -8
         
     | 
| 66 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                t = (G(mu)*G(nu)*G(-nu)*G(-mu))
         
     | 
| 69 | 
         
            +
                ts = add_delta(D**2)  # 16
         
     | 
| 70 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
         
     | 
| 73 | 
         
            +
                ts = add_delta(4*D - 4*D**2 + D**3)  # 16
         
     | 
| 74 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                t = (G(mu)*G(nu)*G(rho)*G(-rho)*G(-nu)*G(-mu))
         
     | 
| 77 | 
         
            +
                ts = add_delta(D**3)  # 64
         
     | 
| 78 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                t = (G(a1)*G(a2)*G(a3)*G(a4)*G(-a3)*G(-a1)*G(-a2)*G(-a4))
         
     | 
| 81 | 
         
            +
                ts = add_delta(-8*D + 16*D**2 - 8*D**3 + D**4)  # -32
         
     | 
| 82 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
         
     | 
| 85 | 
         
            +
                ts = add_delta(-16*D + 24*D**2 - 8*D**3 + D**4)  # 64
         
     | 
| 86 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
         
     | 
| 89 | 
         
            +
                ts = add_delta(8*D - 12*D**2 + 6*D**3 - D**4)  # -32
         
     | 
| 90 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a2)*G(-a1)*G(-a5)*G(-a4))
         
     | 
| 93 | 
         
            +
                ts = add_delta(64*D - 112*D**2 + 60*D**3 - 12*D**4 + D**5)  # 256
         
     | 
| 94 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a1)*G(-a2)*G(-a4)*G(-a5))
         
     | 
| 97 | 
         
            +
                ts = add_delta(64*D - 120*D**2 + 72*D**3 - 16*D**4 + D**5)  # -128
         
     | 
| 98 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a3)*G(-a2)*G(-a1)*G(-a6)*G(-a5)*G(-a4))
         
     | 
| 101 | 
         
            +
                ts = add_delta(416*D - 816*D**2 + 528*D**3 - 144*D**4 + 18*D**5 - D**6)  # -128
         
     | 
| 102 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a2)*G(-a3)*G(-a1)*G(-a6)*G(-a4)*G(-a5))
         
     | 
| 105 | 
         
            +
                ts = add_delta(416*D - 848*D**2 + 584*D**3 - 172*D**4 + 22*D**5 - D**6)  # -128
         
     | 
| 106 | 
         
            +
                assert _is_tensor_eq(tfunc(t), ts)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                # Expressions with free indices:
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
         
     | 
| 111 | 
         
            +
                assert _is_tensor_eq(tfunc(t), (-2*G(sigma)*G(rho)*G(nu) + (4-D)*G(nu)*G(rho)*G(sigma)))
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                t = (G(mu)*G(nu)*G(-mu))
         
     | 
| 114 | 
         
            +
                assert _is_tensor_eq(tfunc(t), (2-D)*G(nu))
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                t = (G(mu)*G(nu)*G(rho)*G(-mu))
         
     | 
| 117 | 
         
            +
                assert _is_tensor_eq(tfunc(t), 2*G(nu)*G(rho) + 2*G(rho)*G(nu) - (4-D)*G(nu)*G(rho))
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                t = 2*G(m2)*G(m0)*G(m1)*G(-m0)*G(-m1)
         
     | 
| 120 | 
         
            +
                st = tfunc(t)
         
     | 
| 121 | 
         
            +
                assert _is_tensor_eq(st, (D*(-2*D + 4))*G(m2))
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                t = G(m2)*G(m0)*G(m1)*G(-m0)*G(-m2)
         
     | 
| 124 | 
         
            +
                st = tfunc(t)
         
     | 
| 125 | 
         
            +
                assert _is_tensor_eq(st, ((-D + 2)**2)*G(m1))
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)
         
     | 
| 128 | 
         
            +
                st = tfunc(t)
         
     | 
| 129 | 
         
            +
                assert _is_tensor_eq(st, (D - 4)*G(m0)*G(m2)*G(m3) + 4*G(m0)*g(m2, m3))
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)*G(-m0)
         
     | 
| 132 | 
         
            +
                st = tfunc(t)
         
     | 
| 133 | 
         
            +
                assert _is_tensor_eq(st, ((D - 4)**2)*G(m2)*G(m3) + (8*D - 16)*g(m2, m3))
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                t = G(m2)*G(m0)*G(m1)*G(-m2)*G(-m0)
         
     | 
| 136 | 
         
            +
                st = tfunc(t)
         
     | 
| 137 | 
         
            +
                assert _is_tensor_eq(st, ((-D + 2)*(D - 4) + 4)*G(m1))
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                t = G(m3)*G(m1)*G(m0)*G(m2)*G(-m3)*G(-m0)*G(-m2)
         
     | 
| 140 | 
         
            +
                st = tfunc(t)
         
     | 
| 141 | 
         
            +
                assert _is_tensor_eq(st, (-4*D + (-D + 2)**2*(D - 4) + 8)*G(m1))
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                t = 2*G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)
         
     | 
| 144 | 
         
            +
                st = tfunc(t)
         
     | 
| 145 | 
         
            +
                assert _is_tensor_eq(st, ((-2*D + 8)*G(m1)*G(m2)*G(m3) - 4*G(m3)*G(m2)*G(m1)))
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                t = G(m5)*G(m0)*G(m1)*G(m4)*G(m2)*G(-m4)*G(m3)*G(-m0)
         
     | 
| 148 | 
         
            +
                st = tfunc(t)
         
     | 
| 149 | 
         
            +
                assert _is_tensor_eq(st, (((-D + 2)*(-D + 4))*G(m5)*G(m1)*G(m2)*G(m3) + (2*D - 4)*G(m5)*G(m3)*G(m2)*G(m1)))
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                t = -G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)*G(m4)
         
     | 
| 152 | 
         
            +
                st = tfunc(t)
         
     | 
| 153 | 
         
            +
                assert _is_tensor_eq(st, ((D - 4)*G(m1)*G(m2)*G(m3)*G(m4) + 2*G(m3)*G(m2)*G(m1)*G(m4)))
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
         
     | 
| 156 | 
         
            +
                st = tfunc(t)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                result1 = ((-D + 4)**2 + 4)*G(m1)*G(m2)*G(m3)*G(m4) +\
         
     | 
| 159 | 
         
            +
                    (4*D - 16)*G(m3)*G(m2)*G(m1)*G(m4) + (4*D - 16)*G(m4)*G(m1)*G(m2)*G(m3)\
         
     | 
| 160 | 
         
            +
                    + 4*G(m2)*G(m1)*G(m4)*G(m3) + 4*G(m3)*G(m4)*G(m1)*G(m2) +\
         
     | 
| 161 | 
         
            +
                    4*G(m4)*G(m3)*G(m2)*G(m1)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                # Kahane's algorithm yields this result, which is equivalent to `result1`
         
     | 
| 164 | 
         
            +
                # in four dimensions, but is not automatically recognized as equal:
         
     | 
| 165 | 
         
            +
                result2 = 8*G(m1)*G(m2)*G(m3)*G(m4) + 8*G(m4)*G(m3)*G(m2)*G(m1)
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                if D == 4:
         
     | 
| 168 | 
         
            +
                    assert _is_tensor_eq(st, (result1)) or _is_tensor_eq(st, (result2))
         
     | 
| 169 | 
         
            +
                else:
         
     | 
| 170 | 
         
            +
                    assert _is_tensor_eq(st, (result1))
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                # and a few very simple cases, with no contracted indices:
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                t = G(m0)
         
     | 
| 175 | 
         
            +
                st = tfunc(t)
         
     | 
| 176 | 
         
            +
                assert _is_tensor_eq(st, t)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                t = -7*G(m0)
         
     | 
| 179 | 
         
            +
                st = tfunc(t)
         
     | 
| 180 | 
         
            +
                assert _is_tensor_eq(st, t)
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                t = 224*G(m0)*G(m1)*G(-m2)*G(m3)
         
     | 
| 183 | 
         
            +
                st = tfunc(t)
         
     | 
| 184 | 
         
            +
                assert _is_tensor_eq(st, t)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def test_kahane_algorithm():
         
     | 
| 188 | 
         
            +
                # Wrap this function to convert to and from TIDS:
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                def tfunc(e):
         
     | 
| 191 | 
         
            +
                    return _simplify_single_line(e)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                execute_gamma_simplify_tests_for_function(tfunc, D=4)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
            def test_kahane_simplify1():
         
     | 
| 197 | 
         
            +
                i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15 = tensor_indices('i0:16', LorentzIndex)
         
     | 
| 198 | 
         
            +
                mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
         
     | 
| 199 | 
         
            +
                D = 4
         
     | 
| 200 | 
         
            +
                t = G(i0)*G(i1)
         
     | 
| 201 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 202 | 
         
            +
                assert r.equals(t)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                t = G(i0)*G(i1)*G(-i0)
         
     | 
| 205 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 206 | 
         
            +
                assert r.equals(-2*G(i1))
         
     | 
| 207 | 
         
            +
                t = G(i0)*G(i1)*G(-i0)
         
     | 
| 208 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 209 | 
         
            +
                assert r.equals(-2*G(i1))
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                t = G(i0)*G(i1)
         
     | 
| 212 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 213 | 
         
            +
                assert r.equals(t)
         
     | 
| 214 | 
         
            +
                t = G(i0)*G(i1)
         
     | 
| 215 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 216 | 
         
            +
                assert r.equals(t)
         
     | 
| 217 | 
         
            +
                t = G(i0)*G(-i0)
         
     | 
| 218 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 219 | 
         
            +
                assert r.equals(4*eye(4))
         
     | 
| 220 | 
         
            +
                t = G(i0)*G(-i0)
         
     | 
| 221 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 222 | 
         
            +
                assert r.equals(4*eye(4))
         
     | 
| 223 | 
         
            +
                t = G(i0)*G(-i0)
         
     | 
| 224 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 225 | 
         
            +
                assert r.equals(4*eye(4))
         
     | 
| 226 | 
         
            +
                t = G(i0)*G(i1)*G(-i0)
         
     | 
| 227 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 228 | 
         
            +
                assert r.equals(-2*G(i1))
         
     | 
| 229 | 
         
            +
                t = G(i0)*G(i1)*G(-i0)*G(-i1)
         
     | 
| 230 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 231 | 
         
            +
                assert r.equals((2*D - D**2)*eye(4))
         
     | 
| 232 | 
         
            +
                t = G(i0)*G(i1)*G(-i0)*G(-i1)
         
     | 
| 233 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 234 | 
         
            +
                assert r.equals((2*D - D**2)*eye(4))
         
     | 
| 235 | 
         
            +
                t = G(i0)*G(-i0)*G(i1)*G(-i1)
         
     | 
| 236 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 237 | 
         
            +
                assert r.equals(16*eye(4))
         
     | 
| 238 | 
         
            +
                t = (G(mu)*G(nu)*G(-nu)*G(-mu))
         
     | 
| 239 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 240 | 
         
            +
                assert r.equals(D**2*eye(4))
         
     | 
| 241 | 
         
            +
                t = (G(mu)*G(nu)*G(-nu)*G(-mu))
         
     | 
| 242 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 243 | 
         
            +
                assert r.equals(D**2*eye(4))
         
     | 
| 244 | 
         
            +
                t = (G(mu)*G(nu)*G(-nu)*G(-mu))
         
     | 
| 245 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 246 | 
         
            +
                assert r.equals(D**2*eye(4))
         
     | 
| 247 | 
         
            +
                t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
         
     | 
| 248 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 249 | 
         
            +
                assert r.equals((4*D - 4*D**2 + D**3)*eye(4))
         
     | 
| 250 | 
         
            +
                t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
         
     | 
| 251 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 252 | 
         
            +
                assert r.equals((-16*D + 24*D**2 - 8*D**3 + D**4)*eye(4))
         
     | 
| 253 | 
         
            +
                t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
         
     | 
| 254 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 255 | 
         
            +
                assert r.equals((8*D - 12*D**2 + 6*D**3 - D**4)*eye(4))
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                # Expressions with free indices:
         
     | 
| 258 | 
         
            +
                t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
         
     | 
| 259 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 260 | 
         
            +
                assert r.equals(-2*G(sigma)*G(rho)*G(nu))
         
     | 
| 261 | 
         
            +
                t = (G(mu)*G(-mu)*G(rho)*G(sigma))
         
     | 
| 262 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 263 | 
         
            +
                assert r.equals(4*G(rho)*G(sigma))
         
     | 
| 264 | 
         
            +
                t = (G(rho)*G(sigma)*G(mu)*G(-mu))
         
     | 
| 265 | 
         
            +
                r = kahane_simplify(t)
         
     | 
| 266 | 
         
            +
                assert r.equals(4*G(rho)*G(sigma))
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
            def test_gamma_matrix_class():
         
     | 
| 269 | 
         
            +
                i, j, k = tensor_indices('i,j,k', LorentzIndex)
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                # define another type of TensorHead to see if exprs are correctly handled:
         
     | 
| 272 | 
         
            +
                A = TensorHead('A', [LorentzIndex])
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                t = A(k)*G(i)*G(-i)
         
     | 
| 275 | 
         
            +
                ts = simplify_gamma_expression(t)
         
     | 
| 276 | 
         
            +
                assert _is_tensor_eq(ts, Matrix([
         
     | 
| 277 | 
         
            +
                    [4, 0, 0, 0],
         
     | 
| 278 | 
         
            +
                    [0, 4, 0, 0],
         
     | 
| 279 | 
         
            +
                    [0, 0, 4, 0],
         
     | 
| 280 | 
         
            +
                    [0, 0, 0, 4]])*A(k))
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                t = G(i)*A(k)*G(j)
         
     | 
| 283 | 
         
            +
                ts = simplify_gamma_expression(t)
         
     | 
| 284 | 
         
            +
                assert _is_tensor_eq(ts, A(k)*G(i)*G(j))
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                execute_gamma_simplify_tests_for_function(simplify_gamma_expression, D=4)
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
            def test_gamma_matrix_trace():
         
     | 
| 290 | 
         
            +
                g = LorentzIndex.metric
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                m0, m1, m2, m3, m4, m5, m6 = tensor_indices('m0:7', LorentzIndex)
         
     | 
| 293 | 
         
            +
                n0, n1, n2, n3, n4, n5 = tensor_indices('n0:6', LorentzIndex)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                # working in D=4 dimensions
         
     | 
| 296 | 
         
            +
                D = 4
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                # traces of odd number of gamma matrices are zero:
         
     | 
| 299 | 
         
            +
                t = G(m0)
         
     | 
| 300 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 301 | 
         
            +
                assert t1.equals(0)
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                t = G(m0)*G(m1)*G(m2)
         
     | 
| 304 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 305 | 
         
            +
                assert t1.equals(0)
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                t = G(m0)*G(m1)*G(-m0)
         
     | 
| 308 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 309 | 
         
            +
                assert t1.equals(0)
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)
         
     | 
| 312 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 313 | 
         
            +
                assert t1.equals(0)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                # traces without internal contractions:
         
     | 
| 316 | 
         
            +
                t = G(m0)*G(m1)
         
     | 
| 317 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 318 | 
         
            +
                assert _is_tensor_eq(t1, 4*g(m0, m1))
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)
         
     | 
| 321 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 322 | 
         
            +
                t2 = -4*g(m0, m2)*g(m1, m3) + 4*g(m0, m1)*g(m2, m3) + 4*g(m0, m3)*g(m1, m2)
         
     | 
| 323 | 
         
            +
                assert _is_tensor_eq(t1, t2)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)
         
     | 
| 326 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 327 | 
         
            +
                t2 = t1*g(-m0, -m5)
         
     | 
| 328 | 
         
            +
                t2 = t2.contract_metric(g)
         
     | 
| 329 | 
         
            +
                assert _is_tensor_eq(t2, D*gamma_trace(G(m1)*G(m2)*G(m3)*G(m4)))
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                # traces of expressions with internal contractions:
         
     | 
| 332 | 
         
            +
                t = G(m0)*G(-m0)
         
     | 
| 333 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 334 | 
         
            +
                assert t1.equals(4*D)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                t = G(m0)*G(m1)*G(-m0)*G(-m1)
         
     | 
| 337 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 338 | 
         
            +
                assert t1.equals(8*D - 4*D**2)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)
         
     | 
| 341 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 342 | 
         
            +
                t2 = (-4*D)*g(m1, m3)*g(m2, m4) + (4*D)*g(m1, m2)*g(m3, m4) + \
         
     | 
| 343 | 
         
            +
                             (4*D)*g(m1, m4)*g(m2, m3)
         
     | 
| 344 | 
         
            +
                assert _is_tensor_eq(t1, t2)
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
         
     | 
| 347 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 348 | 
         
            +
                t2 = (32*D + 4*(-D + 4)**2 - 64)*(g(m1, m2)*g(m3, m4) - \
         
     | 
| 349 | 
         
            +
                        g(m1, m3)*g(m2, m4) + g(m1, m4)*g(m2, m3))
         
     | 
| 350 | 
         
            +
                assert _is_tensor_eq(t1, t2)
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                t = G(m0)*G(m1)*G(-m0)*G(m3)
         
     | 
| 353 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 354 | 
         
            +
                assert t1.equals((-4*D + 8)*g(m1, m3))
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
            #    p, q = S1('p,q')
         
     | 
| 357 | 
         
            +
            #    ps = p(m0)*G(-m0)
         
     | 
| 358 | 
         
            +
            #    qs = q(m0)*G(-m0)
         
     | 
| 359 | 
         
            +
            #    t = ps*qs*ps*qs
         
     | 
| 360 | 
         
            +
            #    t1 = gamma_trace(t)
         
     | 
| 361 | 
         
            +
            #    assert t1 == 8*p(m0)*q(-m0)*p(m1)*q(-m1) - 4*p(m0)*p(-m0)*q(m1)*q(-m1)
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)*G(-m5)
         
     | 
| 364 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 365 | 
         
            +
                assert t1.equals(-4*D**6 + 120*D**5 - 1040*D**4 + 3360*D**3 - 4480*D**2 + 2048*D)
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(-n2)*G(-n1)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
         
     | 
| 368 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 369 | 
         
            +
                tresu = -7168*D + 16768*D**2 - 14400*D**3 + 5920*D**4 - 1232*D**5 + 120*D**6 - 4*D**7
         
     | 
| 370 | 
         
            +
                assert t1.equals(tresu)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                # checked with Mathematica
         
     | 
| 373 | 
         
            +
                # In[1]:= <<Tracer.m
         
     | 
| 374 | 
         
            +
                # In[2]:= Spur[l];
         
     | 
| 375 | 
         
            +
                # In[3]:= GammaTrace[l, {m0},{m1},{n1},{m2},{n2},{m3},{m4},{n3},{n4},{m0},{m1},{m2},{m3},{m4}]
         
     | 
| 376 | 
         
            +
                t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(n3)*G(n4)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
         
     | 
| 377 | 
         
            +
                t1 = gamma_trace(t)
         
     | 
| 378 | 
         
            +
            #    t1 = t1.expand_coeff()
         
     | 
| 379 | 
         
            +
                c1 = -4*D**5 + 120*D**4 - 1200*D**3 + 5280*D**2 - 10560*D + 7808
         
     | 
| 380 | 
         
            +
                c2 = -4*D**5 + 88*D**4 - 560*D**3 + 1440*D**2 - 1600*D + 640
         
     | 
| 381 | 
         
            +
                assert _is_tensor_eq(t1, c1*g(n1, n4)*g(n2, n3) + c2*g(n1, n2)*g(n3, n4) + \
         
     | 
| 382 | 
         
            +
                        (-c1)*g(n1, n3)*g(n2, n4))
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                p, q = tensor_heads('p,q', [LorentzIndex])
         
     | 
| 385 | 
         
            +
                ps = p(m0)*G(-m0)
         
     | 
| 386 | 
         
            +
                qs = q(m0)*G(-m0)
         
     | 
| 387 | 
         
            +
                p2 = p(m0)*p(-m0)
         
     | 
| 388 | 
         
            +
                q2 = q(m0)*q(-m0)
         
     | 
| 389 | 
         
            +
                pq = p(m0)*q(-m0)
         
     | 
| 390 | 
         
            +
                t = ps*qs*ps*qs
         
     | 
| 391 | 
         
            +
                r = gamma_trace(t)
         
     | 
| 392 | 
         
            +
                assert _is_tensor_eq(r, 8*pq*pq - 4*p2*q2)
         
     | 
| 393 | 
         
            +
                t = ps*qs*ps*qs*ps*qs
         
     | 
| 394 | 
         
            +
                r = gamma_trace(t)
         
     | 
| 395 | 
         
            +
                assert _is_tensor_eq(r, -12*p2*pq*q2 + 16*pq*pq*pq)
         
     | 
| 396 | 
         
            +
                t = ps*qs*ps*qs*ps*qs*ps*qs
         
     | 
| 397 | 
         
            +
                r = gamma_trace(t)
         
     | 
| 398 | 
         
            +
                assert _is_tensor_eq(r, -32*pq*pq*p2*q2 + 32*pq*pq*pq*pq + 4*p2*p2*q2*q2)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                t = 4*p(m1)*p(m0)*p(-m0)*q(-m1)*q(m2)*q(-m2)
         
     | 
| 401 | 
         
            +
                assert _is_tensor_eq(gamma_trace(t), t)
         
     | 
| 402 | 
         
            +
                t = ps*ps*ps*ps*ps*ps*ps*ps
         
     | 
| 403 | 
         
            +
                r = gamma_trace(t)
         
     | 
| 404 | 
         
            +
                assert r.equals(4*p2*p2*p2*p2)
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
            def test_bug_13636():
         
     | 
| 408 | 
         
            +
                """Test issue 13636 regarding handling traces of sums of products
         
     | 
| 409 | 
         
            +
                of GammaMatrix mixed with other factors."""
         
     | 
| 410 | 
         
            +
                pi, ki, pf = tensor_heads("pi, ki, pf", [LorentzIndex])
         
     | 
| 411 | 
         
            +
                i0, i1, i2, i3, i4 = tensor_indices("i0:5", LorentzIndex)
         
     | 
| 412 | 
         
            +
                x = Symbol("x")
         
     | 
| 413 | 
         
            +
                pis = pi(i2) * G(-i2)
         
     | 
| 414 | 
         
            +
                kis = ki(i3) * G(-i3)
         
     | 
| 415 | 
         
            +
                pfs = pf(i4) * G(-i4)
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                a = pfs * G(i0) * kis * G(i1) * pis * G(-i1) * kis * G(-i0)
         
     | 
| 418 | 
         
            +
                b = pfs * G(i0) * kis * G(i1) * pis * x * G(-i0) * pi(-i1)
         
     | 
| 419 | 
         
            +
                ta = gamma_trace(a)
         
     | 
| 420 | 
         
            +
                tb = gamma_trace(b)
         
     | 
| 421 | 
         
            +
                t_a_plus_b = gamma_trace(a + b)
         
     | 
| 422 | 
         
            +
                assert ta == 4 * (
         
     | 
| 423 | 
         
            +
                    -4 * ki(i0) * ki(-i0) * pf(i1) * pi(-i1)
         
     | 
| 424 | 
         
            +
                    + 8 * ki(i0) * ki(i1) * pf(-i0) * pi(-i1)
         
     | 
| 425 | 
         
            +
                )
         
     | 
| 426 | 
         
            +
                assert tb == -8 * x * ki(i0) * pf(-i0) * pi(i1) * pi(-i1)
         
     | 
| 427 | 
         
            +
                assert t_a_plus_b == ta + tb
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc
    ADDED
    
    | 
         Binary file (1.17 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc
    ADDED
    
    | 
         Binary file (3.59 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py
    ADDED
    
    | 
         @@ -0,0 +1,178 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.concrete.summations import Sum
         
     | 
| 2 | 
         
            +
            from sympy.core.numbers import Rational
         
     | 
| 3 | 
         
            +
            from sympy.core.singleton import S
         
     | 
| 4 | 
         
            +
            from sympy.core.symbol import symbols
         
     | 
| 5 | 
         
            +
            from sympy.functions.elementary.miscellaneous import sqrt
         
     | 
| 6 | 
         
            +
            from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp
         
     | 
| 7 | 
         
            +
            from sympy.functions.special.tensor_functions import KroneckerDelta
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            def test_cg_simp_add():
         
     | 
| 11 | 
         
            +
                j, m1, m1p, m2, m2p = symbols('j m1 m1p m2 m2p')
         
     | 
| 12 | 
         
            +
                # Test Varshalovich 8.7.1 Eq 1
         
     | 
| 13 | 
         
            +
                a = CG(S.Half, S.Half, 0, 0, S.Half, S.Half)
         
     | 
| 14 | 
         
            +
                b = CG(S.Half, Rational(-1, 2), 0, 0, S.Half, Rational(-1, 2))
         
     | 
| 15 | 
         
            +
                c = CG(1, 1, 0, 0, 1, 1)
         
     | 
| 16 | 
         
            +
                d = CG(1, 0, 0, 0, 1, 0)
         
     | 
| 17 | 
         
            +
                e = CG(1, -1, 0, 0, 1, -1)
         
     | 
| 18 | 
         
            +
                assert cg_simp(a + b) == 2
         
     | 
| 19 | 
         
            +
                assert cg_simp(c + d + e) == 3
         
     | 
| 20 | 
         
            +
                assert cg_simp(a + b + c + d + e) == 5
         
     | 
| 21 | 
         
            +
                assert cg_simp(a + b + c) == 2 + c
         
     | 
| 22 | 
         
            +
                assert cg_simp(2*a + b) == 2 + a
         
     | 
| 23 | 
         
            +
                assert cg_simp(2*c + d + e) == 3 + c
         
     | 
| 24 | 
         
            +
                assert cg_simp(5*a + 5*b) == 10
         
     | 
| 25 | 
         
            +
                assert cg_simp(5*c + 5*d + 5*e) == 15
         
     | 
| 26 | 
         
            +
                assert cg_simp(-a - b) == -2
         
     | 
| 27 | 
         
            +
                assert cg_simp(-c - d - e) == -3
         
     | 
| 28 | 
         
            +
                assert cg_simp(-6*a - 6*b) == -12
         
     | 
| 29 | 
         
            +
                assert cg_simp(-4*c - 4*d - 4*e) == -12
         
     | 
| 30 | 
         
            +
                a = CG(S.Half, S.Half, j, 0, S.Half, S.Half)
         
     | 
| 31 | 
         
            +
                b = CG(S.Half, Rational(-1, 2), j, 0, S.Half, Rational(-1, 2))
         
     | 
| 32 | 
         
            +
                c = CG(1, 1, j, 0, 1, 1)
         
     | 
| 33 | 
         
            +
                d = CG(1, 0, j, 0, 1, 0)
         
     | 
| 34 | 
         
            +
                e = CG(1, -1, j, 0, 1, -1)
         
     | 
| 35 | 
         
            +
                assert cg_simp(a + b) == 2*KroneckerDelta(j, 0)
         
     | 
| 36 | 
         
            +
                assert cg_simp(c + d + e) == 3*KroneckerDelta(j, 0)
         
     | 
| 37 | 
         
            +
                assert cg_simp(a + b + c + d + e) == 5*KroneckerDelta(j, 0)
         
     | 
| 38 | 
         
            +
                assert cg_simp(a + b + c) == 2*KroneckerDelta(j, 0) + c
         
     | 
| 39 | 
         
            +
                assert cg_simp(2*a + b) == 2*KroneckerDelta(j, 0) + a
         
     | 
| 40 | 
         
            +
                assert cg_simp(2*c + d + e) == 3*KroneckerDelta(j, 0) + c
         
     | 
| 41 | 
         
            +
                assert cg_simp(5*a + 5*b) == 10*KroneckerDelta(j, 0)
         
     | 
| 42 | 
         
            +
                assert cg_simp(5*c + 5*d + 5*e) == 15*KroneckerDelta(j, 0)
         
     | 
| 43 | 
         
            +
                assert cg_simp(-a - b) == -2*KroneckerDelta(j, 0)
         
     | 
| 44 | 
         
            +
                assert cg_simp(-c - d - e) == -3*KroneckerDelta(j, 0)
         
     | 
| 45 | 
         
            +
                assert cg_simp(-6*a - 6*b) == -12*KroneckerDelta(j, 0)
         
     | 
| 46 | 
         
            +
                assert cg_simp(-4*c - 4*d - 4*e) == -12*KroneckerDelta(j, 0)
         
     | 
| 47 | 
         
            +
                # Test Varshalovich 8.7.1 Eq 2
         
     | 
| 48 | 
         
            +
                a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)
         
     | 
| 49 | 
         
            +
                b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
         
     | 
| 50 | 
         
            +
                c = CG(1, 1, 1, -1, 0, 0)
         
     | 
| 51 | 
         
            +
                d = CG(1, 0, 1, 0, 0, 0)
         
     | 
| 52 | 
         
            +
                e = CG(1, -1, 1, 1, 0, 0)
         
     | 
| 53 | 
         
            +
                assert cg_simp(a - b) == sqrt(2)
         
     | 
| 54 | 
         
            +
                assert cg_simp(c - d + e) == sqrt(3)
         
     | 
| 55 | 
         
            +
                assert cg_simp(a - b + c - d + e) == sqrt(2) + sqrt(3)
         
     | 
| 56 | 
         
            +
                assert cg_simp(a - b + c) == sqrt(2) + c
         
     | 
| 57 | 
         
            +
                assert cg_simp(2*a - b) == sqrt(2) + a
         
     | 
| 58 | 
         
            +
                assert cg_simp(2*c - d + e) == sqrt(3) + c
         
     | 
| 59 | 
         
            +
                assert cg_simp(5*a - 5*b) == 5*sqrt(2)
         
     | 
| 60 | 
         
            +
                assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)
         
     | 
| 61 | 
         
            +
                assert cg_simp(-a + b) == -sqrt(2)
         
     | 
| 62 | 
         
            +
                assert cg_simp(-c + d - e) == -sqrt(3)
         
     | 
| 63 | 
         
            +
                assert cg_simp(-6*a + 6*b) == -6*sqrt(2)
         
     | 
| 64 | 
         
            +
                assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)
         
     | 
| 65 | 
         
            +
                a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), j, 0)
         
     | 
| 66 | 
         
            +
                b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, j, 0)
         
     | 
| 67 | 
         
            +
                c = CG(1, 1, 1, -1, j, 0)
         
     | 
| 68 | 
         
            +
                d = CG(1, 0, 1, 0, j, 0)
         
     | 
| 69 | 
         
            +
                e = CG(1, -1, 1, 1, j, 0)
         
     | 
| 70 | 
         
            +
                assert cg_simp(a - b) == sqrt(2)*KroneckerDelta(j, 0)
         
     | 
| 71 | 
         
            +
                assert cg_simp(c - d + e) == sqrt(3)*KroneckerDelta(j, 0)
         
     | 
| 72 | 
         
            +
                assert cg_simp(a - b + c - d + e) == sqrt(
         
     | 
| 73 | 
         
            +
                    2)*KroneckerDelta(j, 0) + sqrt(3)*KroneckerDelta(j, 0)
         
     | 
| 74 | 
         
            +
                assert cg_simp(a - b + c) == sqrt(2)*KroneckerDelta(j, 0) + c
         
     | 
| 75 | 
         
            +
                assert cg_simp(2*a - b) == sqrt(2)*KroneckerDelta(j, 0) + a
         
     | 
| 76 | 
         
            +
                assert cg_simp(2*c - d + e) == sqrt(3)*KroneckerDelta(j, 0) + c
         
     | 
| 77 | 
         
            +
                assert cg_simp(5*a - 5*b) == 5*sqrt(2)*KroneckerDelta(j, 0)
         
     | 
| 78 | 
         
            +
                assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)*KroneckerDelta(j, 0)
         
     | 
| 79 | 
         
            +
                assert cg_simp(-a + b) == -sqrt(2)*KroneckerDelta(j, 0)
         
     | 
| 80 | 
         
            +
                assert cg_simp(-c + d - e) == -sqrt(3)*KroneckerDelta(j, 0)
         
     | 
| 81 | 
         
            +
                assert cg_simp(-6*a + 6*b) == -6*sqrt(2)*KroneckerDelta(j, 0)
         
     | 
| 82 | 
         
            +
                assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)*KroneckerDelta(j, 0)
         
     | 
| 83 | 
         
            +
                # Test Varshalovich 8.7.2 Eq 9
         
     | 
| 84 | 
         
            +
                # alpha=alphap,beta=betap case
         
     | 
| 85 | 
         
            +
                # numerical
         
     | 
| 86 | 
         
            +
                a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0)**2
         
     | 
| 87 | 
         
            +
                b = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)**2
         
     | 
| 88 | 
         
            +
                c = CG(1, 0, 1, 1, 1, 1)**2
         
     | 
| 89 | 
         
            +
                d = CG(1, 0, 1, 1, 2, 1)**2
         
     | 
| 90 | 
         
            +
                assert cg_simp(a + b) == 1
         
     | 
| 91 | 
         
            +
                assert cg_simp(c + d) == 1
         
     | 
| 92 | 
         
            +
                assert cg_simp(a + b + c + d) == 2
         
     | 
| 93 | 
         
            +
                assert cg_simp(4*a + 4*b) == 4
         
     | 
| 94 | 
         
            +
                assert cg_simp(4*c + 4*d) == 4
         
     | 
| 95 | 
         
            +
                assert cg_simp(5*a + 3*b) == 3 + 2*a
         
     | 
| 96 | 
         
            +
                assert cg_simp(5*c + 3*d) == 3 + 2*c
         
     | 
| 97 | 
         
            +
                assert cg_simp(-a - b) == -1
         
     | 
| 98 | 
         
            +
                assert cg_simp(-c - d) == -1
         
     | 
| 99 | 
         
            +
                # symbolic
         
     | 
| 100 | 
         
            +
                a = CG(S.Half, m1, S.Half, m2, 1, 1)**2
         
     | 
| 101 | 
         
            +
                b = CG(S.Half, m1, S.Half, m2, 1, 0)**2
         
     | 
| 102 | 
         
            +
                c = CG(S.Half, m1, S.Half, m2, 1, -1)**2
         
     | 
| 103 | 
         
            +
                d = CG(S.Half, m1, S.Half, m2, 0, 0)**2
         
     | 
| 104 | 
         
            +
                assert cg_simp(a + b + c + d) == 1
         
     | 
| 105 | 
         
            +
                assert cg_simp(4*a + 4*b + 4*c + 4*d) == 4
         
     | 
| 106 | 
         
            +
                assert cg_simp(3*a + 5*b + 3*c + 4*d) == 3 + 2*b + d
         
     | 
| 107 | 
         
            +
                assert cg_simp(-a - b - c - d) == -1
         
     | 
| 108 | 
         
            +
                a = CG(1, m1, 1, m2, 2, 2)**2
         
     | 
| 109 | 
         
            +
                b = CG(1, m1, 1, m2, 2, 1)**2
         
     | 
| 110 | 
         
            +
                c = CG(1, m1, 1, m2, 2, 0)**2
         
     | 
| 111 | 
         
            +
                d = CG(1, m1, 1, m2, 2, -1)**2
         
     | 
| 112 | 
         
            +
                e = CG(1, m1, 1, m2, 2, -2)**2
         
     | 
| 113 | 
         
            +
                f = CG(1, m1, 1, m2, 1, 1)**2
         
     | 
| 114 | 
         
            +
                g = CG(1, m1, 1, m2, 1, 0)**2
         
     | 
| 115 | 
         
            +
                h = CG(1, m1, 1, m2, 1, -1)**2
         
     | 
| 116 | 
         
            +
                i = CG(1, m1, 1, m2, 0, 0)**2
         
     | 
| 117 | 
         
            +
                assert cg_simp(a + b + c + d + e + f + g + h + i) == 1
         
     | 
| 118 | 
         
            +
                assert cg_simp(4*(a + b + c + d + e + f + g + h + i)) == 4
         
     | 
| 119 | 
         
            +
                assert cg_simp(a + b + 2*c + d + 4*e + f + g + h + i) == 1 + c + 3*e
         
     | 
| 120 | 
         
            +
                assert cg_simp(-a - b - c - d - e - f - g - h - i) == -1
         
     | 
| 121 | 
         
            +
                # alpha!=alphap or beta!=betap case
         
     | 
| 122 | 
         
            +
                # numerical
         
     | 
| 123 | 
         
            +
                a = CG(S.Half, S(
         
     | 
| 124 | 
         
            +
                    1)/2, S.Half, Rational(-1, 2), 1, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 1, 0)
         
     | 
| 125 | 
         
            +
                b = CG(S.Half, S(
         
     | 
| 126 | 
         
            +
                    1)/2, S.Half, Rational(-1, 2), 0, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
         
     | 
| 127 | 
         
            +
                c = CG(1, 1, 1, 0, 2, 1)*CG(1, 0, 1, 1, 2, 1)
         
     | 
| 128 | 
         
            +
                d = CG(1, 1, 1, 0, 1, 1)*CG(1, 0, 1, 1, 1, 1)
         
     | 
| 129 | 
         
            +
                assert cg_simp(a + b) == 0
         
     | 
| 130 | 
         
            +
                assert cg_simp(c + d) == 0
         
     | 
| 131 | 
         
            +
                # symbolic
         
     | 
| 132 | 
         
            +
                a = CG(S.Half, m1, S.Half, m2, 1, 1)*CG(S.Half, m1p, S.Half, m2p, 1, 1)
         
     | 
| 133 | 
         
            +
                b = CG(S.Half, m1, S.Half, m2, 1, 0)*CG(S.Half, m1p, S.Half, m2p, 1, 0)
         
     | 
| 134 | 
         
            +
                c = CG(S.Half, m1, S.Half, m2, 1, -1)*CG(S.Half, m1p, S.Half, m2p, 1, -1)
         
     | 
| 135 | 
         
            +
                d = CG(S.Half, m1, S.Half, m2, 0, 0)*CG(S.Half, m1p, S.Half, m2p, 0, 0)
         
     | 
| 136 | 
         
            +
                assert cg_simp(a + b + c + d) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
         
     | 
| 137 | 
         
            +
                a = CG(1, m1, 1, m2, 2, 2)*CG(1, m1p, 1, m2p, 2, 2)
         
     | 
| 138 | 
         
            +
                b = CG(1, m1, 1, m2, 2, 1)*CG(1, m1p, 1, m2p, 2, 1)
         
     | 
| 139 | 
         
            +
                c = CG(1, m1, 1, m2, 2, 0)*CG(1, m1p, 1, m2p, 2, 0)
         
     | 
| 140 | 
         
            +
                d = CG(1, m1, 1, m2, 2, -1)*CG(1, m1p, 1, m2p, 2, -1)
         
     | 
| 141 | 
         
            +
                e = CG(1, m1, 1, m2, 2, -2)*CG(1, m1p, 1, m2p, 2, -2)
         
     | 
| 142 | 
         
            +
                f = CG(1, m1, 1, m2, 1, 1)*CG(1, m1p, 1, m2p, 1, 1)
         
     | 
| 143 | 
         
            +
                g = CG(1, m1, 1, m2, 1, 0)*CG(1, m1p, 1, m2p, 1, 0)
         
     | 
| 144 | 
         
            +
                h = CG(1, m1, 1, m2, 1, -1)*CG(1, m1p, 1, m2p, 1, -1)
         
     | 
| 145 | 
         
            +
                i = CG(1, m1, 1, m2, 0, 0)*CG(1, m1p, 1, m2p, 0, 0)
         
     | 
| 146 | 
         
            +
                assert cg_simp(
         
     | 
| 147 | 
         
            +
                    a + b + c + d + e + f + g + h + i) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
            def test_cg_simp_sum():
         
     | 
| 151 | 
         
            +
                x, a, b, c, cp, alpha, beta, gamma, gammap = symbols(
         
     | 
| 152 | 
         
            +
                    'x a b c cp alpha beta gamma gammap')
         
     | 
| 153 | 
         
            +
                # Varshalovich 8.7.1 Eq 1
         
     | 
| 154 | 
         
            +
                assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)
         
     | 
| 155 | 
         
            +
                               )) == x*(2*a + 1)*KroneckerDelta(b, 0)
         
     | 
| 156 | 
         
            +
                assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)) + CG(1, 0, 1, 0, 1, 0)) == x*(2*a + 1)*KroneckerDelta(b, 0) + CG(1, 0, 1, 0, 1, 0)
         
     | 
| 157 | 
         
            +
                assert cg_simp(2 * Sum(CG(1, alpha, 0, 0, 1, alpha), (alpha, -1, 1))) == 6
         
     | 
| 158 | 
         
            +
                # Varshalovich 8.7.1 Eq 2
         
     | 
| 159 | 
         
            +
                assert cg_simp(x*Sum((-1)**(a - alpha) * CG(a, alpha, a, -alpha, c,
         
     | 
| 160 | 
         
            +
                               0), (alpha, -a, a))) == x*sqrt(2*a + 1)*KroneckerDelta(c, 0)
         
     | 
| 161 | 
         
            +
                assert cg_simp(3*Sum((-1)**(2 - alpha) * CG(
         
     | 
| 162 | 
         
            +
                    2, alpha, 2, -alpha, 0, 0), (alpha, -2, 2))) == 3*sqrt(5)
         
     | 
| 163 | 
         
            +
                # Varshalovich 8.7.2 Eq 4
         
     | 
| 164 | 
         
            +
                assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)
         
     | 
| 165 | 
         
            +
                assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, c, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(gamma, gammap)
         
     | 
| 166 | 
         
            +
                assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gamma), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)
         
     | 
| 167 | 
         
            +
                assert cg_simp(Sum(CG(
         
     | 
| 168 | 
         
            +
                    a, alpha, b, beta, c, gamma)**2, (alpha, -a, a), (beta, -b, b))) == 1
         
     | 
| 169 | 
         
            +
                assert cg_simp(Sum(CG(2, alpha, 1, beta, 2, gamma)*CG(2, alpha, 1, beta, 2, gammap), (alpha, -2, 2), (beta, -1, 1))) == KroneckerDelta(gamma, gammap)
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            def test_doit():
         
     | 
| 173 | 
         
            +
                assert Wigner3j(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0).doit() == -sqrt(2)/2
         
     | 
| 174 | 
         
            +
                assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105
         
     | 
| 175 | 
         
            +
                assert Wigner6j(3, 1, 2, 2, 2, 1).doit() == sqrt(21) / 105
         
     | 
| 176 | 
         
            +
                assert Wigner9j(
         
     | 
| 177 | 
         
            +
                    2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0).doit() == sqrt(2)/12
         
     | 
| 178 | 
         
            +
                assert CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0).doit() == sqrt(2)/2
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py
    ADDED
    
    | 
         @@ -0,0 +1,13 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.numbers import Float
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from sympy.physics.quantum.constants import hbar
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def test_hbar():
         
     | 
| 7 | 
         
            +
                assert hbar.is_commutative is True
         
     | 
| 8 | 
         
            +
                assert hbar.is_real is True
         
     | 
| 9 | 
         
            +
                assert hbar.is_positive is True
         
     | 
| 10 | 
         
            +
                assert hbar.is_negative is False
         
     | 
| 11 | 
         
            +
                assert hbar.is_irrational is True
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                assert hbar.evalf() == Float(1.05457162e-34)
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_fermion.py
    ADDED
    
    | 
         @@ -0,0 +1,36 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.physics.quantum import Dagger, AntiCommutator, qapply
         
     | 
| 2 | 
         
            +
            from sympy.physics.quantum.fermion import FermionOp
         
     | 
| 3 | 
         
            +
            from sympy.physics.quantum.fermion import FermionFockKet, FermionFockBra
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def test_fermionoperator():
         
     | 
| 7 | 
         
            +
                c = FermionOp('c')
         
     | 
| 8 | 
         
            +
                d = FermionOp('d')
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                assert isinstance(c, FermionOp)
         
     | 
| 11 | 
         
            +
                assert isinstance(Dagger(c), FermionOp)
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                assert c.is_annihilation
         
     | 
| 14 | 
         
            +
                assert not Dagger(c).is_annihilation
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                assert FermionOp("c") == FermionOp("c", True)
         
     | 
| 17 | 
         
            +
                assert FermionOp("c") != FermionOp("d")
         
     | 
| 18 | 
         
            +
                assert FermionOp("c", True) != FermionOp("c", False)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                assert AntiCommutator(c, Dagger(c)).doit() == 1
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                assert AntiCommutator(c, Dagger(d)).doit() == c * Dagger(d) + Dagger(d) * c
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def test_fermion_states():
         
     | 
| 26 | 
         
            +
                c = FermionOp("c")
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                # Fock states
         
     | 
| 29 | 
         
            +
                assert (FermionFockBra(0) * FermionFockKet(1)).doit() == 0
         
     | 
| 30 | 
         
            +
                assert (FermionFockBra(1) * FermionFockKet(1)).doit() == 1
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                assert qapply(c * FermionFockKet(1)) == FermionFockKet(0)
         
     | 
| 33 | 
         
            +
                assert qapply(c * FermionFockKet(0)) == 0
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                assert qapply(Dagger(c) * FermionFockKet(0)) == FermionFockKet(1)
         
     | 
| 36 | 
         
            +
                assert qapply(Dagger(c) * FermionFockKet(1)) == 0
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_hilbert.py
    ADDED
    
    | 
         @@ -0,0 +1,110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.physics.quantum.hilbert import (
         
     | 
| 2 | 
         
            +
                HilbertSpace, ComplexSpace, L2, FockSpace, TensorProductHilbertSpace,
         
     | 
| 3 | 
         
            +
                DirectSumHilbertSpace, TensorPowerHilbertSpace
         
     | 
| 4 | 
         
            +
            )
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from sympy.core.numbers import oo
         
     | 
| 7 | 
         
            +
            from sympy.core.symbol import Symbol
         
     | 
| 8 | 
         
            +
            from sympy.printing.repr import srepr
         
     | 
| 9 | 
         
            +
            from sympy.printing.str import sstr
         
     | 
| 10 | 
         
            +
            from sympy.sets.sets import Interval
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            def test_hilbert_space():
         
     | 
| 14 | 
         
            +
                hs = HilbertSpace()
         
     | 
| 15 | 
         
            +
                assert isinstance(hs, HilbertSpace)
         
     | 
| 16 | 
         
            +
                assert sstr(hs) == 'H'
         
     | 
| 17 | 
         
            +
                assert srepr(hs) == 'HilbertSpace()'
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def test_complex_space():
         
     | 
| 21 | 
         
            +
                c1 = ComplexSpace(2)
         
     | 
| 22 | 
         
            +
                assert isinstance(c1, ComplexSpace)
         
     | 
| 23 | 
         
            +
                assert c1.dimension == 2
         
     | 
| 24 | 
         
            +
                assert sstr(c1) == 'C(2)'
         
     | 
| 25 | 
         
            +
                assert srepr(c1) == 'ComplexSpace(Integer(2))'
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                n = Symbol('n')
         
     | 
| 28 | 
         
            +
                c2 = ComplexSpace(n)
         
     | 
| 29 | 
         
            +
                assert isinstance(c2, ComplexSpace)
         
     | 
| 30 | 
         
            +
                assert c2.dimension == n
         
     | 
| 31 | 
         
            +
                assert sstr(c2) == 'C(n)'
         
     | 
| 32 | 
         
            +
                assert srepr(c2) == "ComplexSpace(Symbol('n'))"
         
     | 
| 33 | 
         
            +
                assert c2.subs(n, 2) == ComplexSpace(2)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            def test_L2():
         
     | 
| 37 | 
         
            +
                b1 = L2(Interval(-oo, 1))
         
     | 
| 38 | 
         
            +
                assert isinstance(b1, L2)
         
     | 
| 39 | 
         
            +
                assert b1.dimension is oo
         
     | 
| 40 | 
         
            +
                assert b1.interval == Interval(-oo, 1)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                x = Symbol('x', real=True)
         
     | 
| 43 | 
         
            +
                y = Symbol('y', real=True)
         
     | 
| 44 | 
         
            +
                b2 = L2(Interval(x, y))
         
     | 
| 45 | 
         
            +
                assert b2.dimension is oo
         
     | 
| 46 | 
         
            +
                assert b2.interval == Interval(x, y)
         
     | 
| 47 | 
         
            +
                assert b2.subs(x, -1) == L2(Interval(-1, y))
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            def test_fock_space():
         
     | 
| 51 | 
         
            +
                f1 = FockSpace()
         
     | 
| 52 | 
         
            +
                f2 = FockSpace()
         
     | 
| 53 | 
         
            +
                assert isinstance(f1, FockSpace)
         
     | 
| 54 | 
         
            +
                assert f1.dimension is oo
         
     | 
| 55 | 
         
            +
                assert f1 == f2
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            def test_tensor_product():
         
     | 
| 59 | 
         
            +
                n = Symbol('n')
         
     | 
| 60 | 
         
            +
                hs1 = ComplexSpace(2)
         
     | 
| 61 | 
         
            +
                hs2 = ComplexSpace(n)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                h = hs1*hs2
         
     | 
| 64 | 
         
            +
                assert isinstance(h, TensorProductHilbertSpace)
         
     | 
| 65 | 
         
            +
                assert h.dimension == 2*n
         
     | 
| 66 | 
         
            +
                assert h.spaces == (hs1, hs2)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                h = hs2*hs2
         
     | 
| 69 | 
         
            +
                assert isinstance(h, TensorPowerHilbertSpace)
         
     | 
| 70 | 
         
            +
                assert h.base == hs2
         
     | 
| 71 | 
         
            +
                assert h.exp == 2
         
     | 
| 72 | 
         
            +
                assert h.dimension == n**2
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                f = FockSpace()
         
     | 
| 75 | 
         
            +
                h = hs1*hs2*f
         
     | 
| 76 | 
         
            +
                assert h.dimension is oo
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            def test_tensor_power():
         
     | 
| 80 | 
         
            +
                n = Symbol('n')
         
     | 
| 81 | 
         
            +
                hs1 = ComplexSpace(2)
         
     | 
| 82 | 
         
            +
                hs2 = ComplexSpace(n)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                h = hs1**2
         
     | 
| 85 | 
         
            +
                assert isinstance(h, TensorPowerHilbertSpace)
         
     | 
| 86 | 
         
            +
                assert h.base == hs1
         
     | 
| 87 | 
         
            +
                assert h.exp == 2
         
     | 
| 88 | 
         
            +
                assert h.dimension == 4
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                h = hs2**3
         
     | 
| 91 | 
         
            +
                assert isinstance(h, TensorPowerHilbertSpace)
         
     | 
| 92 | 
         
            +
                assert h.base == hs2
         
     | 
| 93 | 
         
            +
                assert h.exp == 3
         
     | 
| 94 | 
         
            +
                assert h.dimension == n**3
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            def test_direct_sum():
         
     | 
| 98 | 
         
            +
                n = Symbol('n')
         
     | 
| 99 | 
         
            +
                hs1 = ComplexSpace(2)
         
     | 
| 100 | 
         
            +
                hs2 = ComplexSpace(n)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                h = hs1 + hs2
         
     | 
| 103 | 
         
            +
                assert isinstance(h, DirectSumHilbertSpace)
         
     | 
| 104 | 
         
            +
                assert h.dimension == 2 + n
         
     | 
| 105 | 
         
            +
                assert h.spaces == (hs1, hs2)
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                f = FockSpace()
         
     | 
| 108 | 
         
            +
                h = hs1 + f + hs2
         
     | 
| 109 | 
         
            +
                assert h.dimension is oo
         
     | 
| 110 | 
         
            +
                assert h.spaces == (hs1, f, hs2)
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_operatorordering.py
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.physics.quantum import Dagger
         
     | 
| 2 | 
         
            +
            from sympy.physics.quantum.boson import BosonOp
         
     | 
| 3 | 
         
            +
            from sympy.physics.quantum.fermion import FermionOp
         
     | 
| 4 | 
         
            +
            from sympy.physics.quantum.operatorordering import (normal_order,
         
     | 
| 5 | 
         
            +
                                                             normal_ordered_form)
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            def test_normal_order():
         
     | 
| 9 | 
         
            +
                a = BosonOp('a')
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
                c = FermionOp('c')
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                assert normal_order(a * Dagger(a)) == Dagger(a) * a
         
     | 
| 14 | 
         
            +
                assert normal_order(Dagger(a) * a) == Dagger(a) * a
         
     | 
| 15 | 
         
            +
                assert normal_order(a * Dagger(a) ** 2) == Dagger(a) ** 2 * a
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                assert normal_order(c * Dagger(c)) == - Dagger(c) * c
         
     | 
| 18 | 
         
            +
                assert normal_order(Dagger(c) * c) == Dagger(c) * c
         
     | 
| 19 | 
         
            +
                assert normal_order(c * Dagger(c) ** 2) == Dagger(c) ** 2 * c
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            def test_normal_ordered_form():
         
     | 
| 23 | 
         
            +
                a = BosonOp('a')
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                c = FermionOp('c')
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                assert normal_ordered_form(Dagger(a) * a) == Dagger(a) * a
         
     | 
| 28 | 
         
            +
                assert normal_ordered_form(a * Dagger(a)) == 1 + Dagger(a) * a
         
     | 
| 29 | 
         
            +
                assert normal_ordered_form(a ** 2 * Dagger(a)) == \
         
     | 
| 30 | 
         
            +
                    2 * a + Dagger(a) * a ** 2
         
     | 
| 31 | 
         
            +
                assert normal_ordered_form(a ** 3 * Dagger(a)) == \
         
     | 
| 32 | 
         
            +
                    3 * a ** 2 + Dagger(a) * a ** 3
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                assert normal_ordered_form(Dagger(c) * c) == Dagger(c) * c
         
     | 
| 35 | 
         
            +
                assert normal_ordered_form(c * Dagger(c)) == 1 - Dagger(c) * c
         
     | 
| 36 | 
         
            +
                assert normal_ordered_form(c ** 2 * Dagger(c)) == Dagger(c) * c ** 2
         
     | 
| 37 | 
         
            +
                assert normal_ordered_form(c ** 3 * Dagger(c)) == \
         
     | 
| 38 | 
         
            +
                    c ** 2 - Dagger(c) * c ** 3
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_printing.py
    ADDED
    
    | 
         @@ -0,0 +1,900 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # -*- encoding: utf-8 -*-
         
     | 
| 2 | 
         
            +
            """
         
     | 
| 3 | 
         
            +
            TODO:
         
     | 
| 4 | 
         
            +
            * Address Issue 2251, printing of spin states
         
     | 
| 5 | 
         
            +
            """
         
     | 
| 6 | 
         
            +
            from __future__ import annotations
         
     | 
| 7 | 
         
            +
            from typing import Any
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from sympy.physics.quantum.anticommutator import AntiCommutator
         
     | 
| 10 | 
         
            +
            from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j
         
     | 
| 11 | 
         
            +
            from sympy.physics.quantum.commutator import Commutator
         
     | 
| 12 | 
         
            +
            from sympy.physics.quantum.constants import hbar
         
     | 
| 13 | 
         
            +
            from sympy.physics.quantum.dagger import Dagger
         
     | 
| 14 | 
         
            +
            from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate
         
     | 
| 15 | 
         
            +
            from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2
         
     | 
| 16 | 
         
            +
            from sympy.physics.quantum.innerproduct import InnerProduct
         
     | 
| 17 | 
         
            +
            from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator
         
     | 
| 18 | 
         
            +
            from sympy.physics.quantum.qexpr import QExpr
         
     | 
| 19 | 
         
            +
            from sympy.physics.quantum.qubit import Qubit, IntQubit
         
     | 
| 20 | 
         
            +
            from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD
         
     | 
| 21 | 
         
            +
            from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet
         
     | 
| 22 | 
         
            +
            from sympy.physics.quantum.tensorproduct import TensorProduct
         
     | 
| 23 | 
         
            +
            from sympy.physics.quantum.sho1d import RaisingOp
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            from sympy.core.function import (Derivative, Function)
         
     | 
| 26 | 
         
            +
            from sympy.core.numbers import oo
         
     | 
| 27 | 
         
            +
            from sympy.core.power import Pow
         
     | 
| 28 | 
         
            +
            from sympy.core.singleton import S
         
     | 
| 29 | 
         
            +
            from sympy.core.symbol import (Symbol, symbols)
         
     | 
| 30 | 
         
            +
            from sympy.matrices.dense import Matrix
         
     | 
| 31 | 
         
            +
            from sympy.sets.sets import Interval
         
     | 
| 32 | 
         
            +
            from sympy.testing.pytest import XFAIL
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            # Imports used in srepr strings
         
     | 
| 35 | 
         
            +
            from sympy.physics.quantum.spin import JzOp
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            from sympy.printing import srepr
         
     | 
| 38 | 
         
            +
            from sympy.printing.pretty import pretty as xpretty
         
     | 
| 39 | 
         
            +
            from sympy.printing.latex import latex
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            MutableDenseMatrix = Matrix
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            ENV: dict[str, Any] = {}
         
     | 
| 45 | 
         
            +
            exec('from sympy import *', ENV)
         
     | 
| 46 | 
         
            +
            exec('from sympy.physics.quantum import *', ENV)
         
     | 
| 47 | 
         
            +
            exec('from sympy.physics.quantum.cg import *', ENV)
         
     | 
| 48 | 
         
            +
            exec('from sympy.physics.quantum.spin import *', ENV)
         
     | 
| 49 | 
         
            +
            exec('from sympy.physics.quantum.hilbert import *', ENV)
         
     | 
| 50 | 
         
            +
            exec('from sympy.physics.quantum.qubit import *', ENV)
         
     | 
| 51 | 
         
            +
            exec('from sympy.physics.quantum.qexpr import *', ENV)
         
     | 
| 52 | 
         
            +
            exec('from sympy.physics.quantum.gate import *', ENV)
         
     | 
| 53 | 
         
            +
            exec('from sympy.physics.quantum.constants import *', ENV)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def sT(expr, string):
         
     | 
| 57 | 
         
            +
                """
         
     | 
| 58 | 
         
            +
                sT := sreprTest
         
     | 
| 59 | 
         
            +
                from sympy/printing/tests/test_repr.py
         
     | 
| 60 | 
         
            +
                """
         
     | 
| 61 | 
         
            +
                assert srepr(expr) == string
         
     | 
| 62 | 
         
            +
                assert eval(string, ENV) == expr
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def pretty(expr):
         
     | 
| 66 | 
         
            +
                """ASCII pretty-printing"""
         
     | 
| 67 | 
         
            +
                return xpretty(expr, use_unicode=False, wrap_line=False)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            def upretty(expr):
         
     | 
| 71 | 
         
            +
                """Unicode pretty-printing"""
         
     | 
| 72 | 
         
            +
                return xpretty(expr, use_unicode=True, wrap_line=False)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def test_anticommutator():
         
     | 
| 76 | 
         
            +
                A = Operator('A')
         
     | 
| 77 | 
         
            +
                B = Operator('B')
         
     | 
| 78 | 
         
            +
                ac = AntiCommutator(A, B)
         
     | 
| 79 | 
         
            +
                ac_tall = AntiCommutator(A**2, B)
         
     | 
| 80 | 
         
            +
                assert str(ac) == '{A,B}'
         
     | 
| 81 | 
         
            +
                assert pretty(ac) == '{A,B}'
         
     | 
| 82 | 
         
            +
                assert upretty(ac) == '{A,B}'
         
     | 
| 83 | 
         
            +
                assert latex(ac) == r'\left\{A,B\right\}'
         
     | 
| 84 | 
         
            +
                sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))")
         
     | 
| 85 | 
         
            +
                assert str(ac_tall) == '{A**2,B}'
         
     | 
| 86 | 
         
            +
                ascii_str = \
         
     | 
| 87 | 
         
            +
            """\
         
     | 
| 88 | 
         
            +
            / 2  \\\n\
         
     | 
| 89 | 
         
            +
            <A ,B>\n\
         
     | 
| 90 | 
         
            +
            \\    /\
         
     | 
| 91 | 
         
            +
            """
         
     | 
| 92 | 
         
            +
                ucode_str = \
         
     | 
| 93 | 
         
            +
            """\
         
     | 
| 94 | 
         
            +
            ⎧ 2  ⎫\n\
         
     | 
| 95 | 
         
            +
            ⎨A ,B⎬\n\
         
     | 
| 96 | 
         
            +
            ⎩    ⎭\
         
     | 
| 97 | 
         
            +
            """
         
     | 
| 98 | 
         
            +
                assert pretty(ac_tall) == ascii_str
         
     | 
| 99 | 
         
            +
                assert upretty(ac_tall) == ucode_str
         
     | 
| 100 | 
         
            +
                assert latex(ac_tall) == r'\left\{A^{2},B\right\}'
         
     | 
| 101 | 
         
            +
                sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            def test_cg():
         
     | 
| 105 | 
         
            +
                cg = CG(1, 2, 3, 4, 5, 6)
         
     | 
| 106 | 
         
            +
                wigner3j = Wigner3j(1, 2, 3, 4, 5, 6)
         
     | 
| 107 | 
         
            +
                wigner6j = Wigner6j(1, 2, 3, 4, 5, 6)
         
     | 
| 108 | 
         
            +
                wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)
         
     | 
| 109 | 
         
            +
                assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)'
         
     | 
| 110 | 
         
            +
                ascii_str = \
         
     | 
| 111 | 
         
            +
            """\
         
     | 
| 112 | 
         
            +
             5,6    \n\
         
     | 
| 113 | 
         
            +
            C       \n\
         
     | 
| 114 | 
         
            +
             1,2,3,4\
         
     | 
| 115 | 
         
            +
            """
         
     | 
| 116 | 
         
            +
                ucode_str = \
         
     | 
| 117 | 
         
            +
            """\
         
     | 
| 118 | 
         
            +
             5,6    \n\
         
     | 
| 119 | 
         
            +
            C       \n\
         
     | 
| 120 | 
         
            +
             1,2,3,4\
         
     | 
| 121 | 
         
            +
            """
         
     | 
| 122 | 
         
            +
                assert pretty(cg) == ascii_str
         
     | 
| 123 | 
         
            +
                assert upretty(cg) == ucode_str
         
     | 
| 124 | 
         
            +
                assert latex(cg) == 'C^{5,6}_{1,2,3,4}'
         
     | 
| 125 | 
         
            +
                assert latex(cg ** 2) == R'\left(C^{5,6}_{1,2,3,4}\right)^{2}'
         
     | 
| 126 | 
         
            +
                sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
         
     | 
| 127 | 
         
            +
                assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)'
         
     | 
| 128 | 
         
            +
                ascii_str = \
         
     | 
| 129 | 
         
            +
            """\
         
     | 
| 130 | 
         
            +
            /1  3  5\\\n\
         
     | 
| 131 | 
         
            +
            |       |\n\
         
     | 
| 132 | 
         
            +
            \\2  4  6/\
         
     | 
| 133 | 
         
            +
            """
         
     | 
| 134 | 
         
            +
                ucode_str = \
         
     | 
| 135 | 
         
            +
            """\
         
     | 
| 136 | 
         
            +
            ⎛1  3  5⎞\n\
         
     | 
| 137 | 
         
            +
            ⎜       ⎟\n\
         
     | 
| 138 | 
         
            +
            ⎝2  4  6⎠\
         
     | 
| 139 | 
         
            +
            """
         
     | 
| 140 | 
         
            +
                assert pretty(wigner3j) == ascii_str
         
     | 
| 141 | 
         
            +
                assert upretty(wigner3j) == ucode_str
         
     | 
| 142 | 
         
            +
                assert latex(wigner3j) == \
         
     | 
| 143 | 
         
            +
                    r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)'
         
     | 
| 144 | 
         
            +
                sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
         
     | 
| 145 | 
         
            +
                assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)'
         
     | 
| 146 | 
         
            +
                ascii_str = \
         
     | 
| 147 | 
         
            +
            """\
         
     | 
| 148 | 
         
            +
            /1  2  3\\\n\
         
     | 
| 149 | 
         
            +
            <       >\n\
         
     | 
| 150 | 
         
            +
            \\4  5  6/\
         
     | 
| 151 | 
         
            +
            """
         
     | 
| 152 | 
         
            +
                ucode_str = \
         
     | 
| 153 | 
         
            +
            """\
         
     | 
| 154 | 
         
            +
            ⎧1  2  3⎫\n\
         
     | 
| 155 | 
         
            +
            ⎨       ⎬\n\
         
     | 
| 156 | 
         
            +
            ⎩4  5  6⎭\
         
     | 
| 157 | 
         
            +
            """
         
     | 
| 158 | 
         
            +
                assert pretty(wigner6j) == ascii_str
         
     | 
| 159 | 
         
            +
                assert upretty(wigner6j) == ucode_str
         
     | 
| 160 | 
         
            +
                assert latex(wigner6j) == \
         
     | 
| 161 | 
         
            +
                    r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}'
         
     | 
| 162 | 
         
            +
                sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
         
     | 
| 163 | 
         
            +
                assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)'
         
     | 
| 164 | 
         
            +
                ascii_str = \
         
     | 
| 165 | 
         
            +
            """\
         
     | 
| 166 | 
         
            +
            /1  2  3\\\n\
         
     | 
| 167 | 
         
            +
            |       |\n\
         
     | 
| 168 | 
         
            +
            <4  5  6>\n\
         
     | 
| 169 | 
         
            +
            |       |\n\
         
     | 
| 170 | 
         
            +
            \\7  8  9/\
         
     | 
| 171 | 
         
            +
            """
         
     | 
| 172 | 
         
            +
                ucode_str = \
         
     | 
| 173 | 
         
            +
            """\
         
     | 
| 174 | 
         
            +
            ⎧1  2  3⎫\n\
         
     | 
| 175 | 
         
            +
            ⎪       ⎪\n\
         
     | 
| 176 | 
         
            +
            ⎨4  5  6⎬\n\
         
     | 
| 177 | 
         
            +
            ⎪       ⎪\n\
         
     | 
| 178 | 
         
            +
            ⎩7  8  9⎭\
         
     | 
| 179 | 
         
            +
            """
         
     | 
| 180 | 
         
            +
                assert pretty(wigner9j) == ascii_str
         
     | 
| 181 | 
         
            +
                assert upretty(wigner9j) == ucode_str
         
     | 
| 182 | 
         
            +
                assert latex(wigner9j) == \
         
     | 
| 183 | 
         
            +
                    r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}'
         
     | 
| 184 | 
         
            +
                sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))")
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def test_commutator():
         
     | 
| 188 | 
         
            +
                A = Operator('A')
         
     | 
| 189 | 
         
            +
                B = Operator('B')
         
     | 
| 190 | 
         
            +
                c = Commutator(A, B)
         
     | 
| 191 | 
         
            +
                c_tall = Commutator(A**2, B)
         
     | 
| 192 | 
         
            +
                assert str(c) == '[A,B]'
         
     | 
| 193 | 
         
            +
                assert pretty(c) == '[A,B]'
         
     | 
| 194 | 
         
            +
                assert upretty(c) == '[A,B]'
         
     | 
| 195 | 
         
            +
                assert latex(c) == r'\left[A,B\right]'
         
     | 
| 196 | 
         
            +
                sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))")
         
     | 
| 197 | 
         
            +
                assert str(c_tall) == '[A**2,B]'
         
     | 
| 198 | 
         
            +
                ascii_str = \
         
     | 
| 199 | 
         
            +
            """\
         
     | 
| 200 | 
         
            +
            [ 2  ]\n\
         
     | 
| 201 | 
         
            +
            [A ,B]\
         
     | 
| 202 | 
         
            +
            """
         
     | 
| 203 | 
         
            +
                ucode_str = \
         
     | 
| 204 | 
         
            +
            """\
         
     | 
| 205 | 
         
            +
            ⎡ 2  ⎤\n\
         
     | 
| 206 | 
         
            +
            ⎣A ,B⎦\
         
     | 
| 207 | 
         
            +
            """
         
     | 
| 208 | 
         
            +
                assert pretty(c_tall) == ascii_str
         
     | 
| 209 | 
         
            +
                assert upretty(c_tall) == ucode_str
         
     | 
| 210 | 
         
            +
                assert latex(c_tall) == r'\left[A^{2},B\right]'
         
     | 
| 211 | 
         
            +
                sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
            def test_constants():
         
     | 
| 215 | 
         
            +
                assert str(hbar) == 'hbar'
         
     | 
| 216 | 
         
            +
                assert pretty(hbar) == 'hbar'
         
     | 
| 217 | 
         
            +
                assert upretty(hbar) == 'ℏ'
         
     | 
| 218 | 
         
            +
                assert latex(hbar) == r'\hbar'
         
     | 
| 219 | 
         
            +
                sT(hbar, "HBar()")
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
            def test_dagger():
         
     | 
| 223 | 
         
            +
                x = symbols('x')
         
     | 
| 224 | 
         
            +
                expr = Dagger(x)
         
     | 
| 225 | 
         
            +
                assert str(expr) == 'Dagger(x)'
         
     | 
| 226 | 
         
            +
                ascii_str = \
         
     | 
| 227 | 
         
            +
            """\
         
     | 
| 228 | 
         
            +
             +\n\
         
     | 
| 229 | 
         
            +
            x \
         
     | 
| 230 | 
         
            +
            """
         
     | 
| 231 | 
         
            +
                ucode_str = \
         
     | 
| 232 | 
         
            +
            """\
         
     | 
| 233 | 
         
            +
             †\n\
         
     | 
| 234 | 
         
            +
            x \
         
     | 
| 235 | 
         
            +
            """
         
     | 
| 236 | 
         
            +
                assert pretty(expr) == ascii_str
         
     | 
| 237 | 
         
            +
                assert upretty(expr) == ucode_str
         
     | 
| 238 | 
         
            +
                assert latex(expr) == r'x^{\dagger}'
         
     | 
| 239 | 
         
            +
                sT(expr, "Dagger(Symbol('x'))")
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            @XFAIL
         
     | 
| 243 | 
         
            +
            def test_gate_failing():
         
     | 
| 244 | 
         
            +
                a, b, c, d = symbols('a,b,c,d')
         
     | 
| 245 | 
         
            +
                uMat = Matrix([[a, b], [c, d]])
         
     | 
| 246 | 
         
            +
                g = UGate((0,), uMat)
         
     | 
| 247 | 
         
            +
                assert str(g) == 'U(0)'
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            def test_gate():
         
     | 
| 251 | 
         
            +
                a, b, c, d = symbols('a,b,c,d')
         
     | 
| 252 | 
         
            +
                uMat = Matrix([[a, b], [c, d]])
         
     | 
| 253 | 
         
            +
                q = Qubit(1, 0, 1, 0, 1)
         
     | 
| 254 | 
         
            +
                g1 = IdentityGate(2)
         
     | 
| 255 | 
         
            +
                g2 = CGate((3, 0), XGate(1))
         
     | 
| 256 | 
         
            +
                g3 = CNotGate(1, 0)
         
     | 
| 257 | 
         
            +
                g4 = UGate((0,), uMat)
         
     | 
| 258 | 
         
            +
                assert str(g1) == '1(2)'
         
     | 
| 259 | 
         
            +
                assert pretty(g1) == '1 \n 2'
         
     | 
| 260 | 
         
            +
                assert upretty(g1) == '1 \n 2'
         
     | 
| 261 | 
         
            +
                assert latex(g1) == r'1_{2}'
         
     | 
| 262 | 
         
            +
                sT(g1, "IdentityGate(Integer(2))")
         
     | 
| 263 | 
         
            +
                assert str(g1*q) == '1(2)*|10101>'
         
     | 
| 264 | 
         
            +
                ascii_str = \
         
     | 
| 265 | 
         
            +
            """\
         
     | 
| 266 | 
         
            +
            1 *|10101>\n\
         
     | 
| 267 | 
         
            +
             2        \
         
     | 
| 268 | 
         
            +
            """
         
     | 
| 269 | 
         
            +
                ucode_str = \
         
     | 
| 270 | 
         
            +
            """\
         
     | 
| 271 | 
         
            +
            1 ⋅❘10101⟩\n\
         
     | 
| 272 | 
         
            +
             2        \
         
     | 
| 273 | 
         
            +
            """
         
     | 
| 274 | 
         
            +
                assert pretty(g1*q) == ascii_str
         
     | 
| 275 | 
         
            +
                assert upretty(g1*q) == ucode_str
         
     | 
| 276 | 
         
            +
                assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }'
         
     | 
| 277 | 
         
            +
                sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))")
         
     | 
| 278 | 
         
            +
                assert str(g2) == 'C((3,0),X(1))'
         
     | 
| 279 | 
         
            +
                ascii_str = \
         
     | 
| 280 | 
         
            +
            """\
         
     | 
| 281 | 
         
            +
            C   /X \\\n\
         
     | 
| 282 | 
         
            +
             3,0\\ 1/\
         
     | 
| 283 | 
         
            +
            """
         
     | 
| 284 | 
         
            +
                ucode_str = \
         
     | 
| 285 | 
         
            +
            """\
         
     | 
| 286 | 
         
            +
            C   ⎛X ⎞\n\
         
     | 
| 287 | 
         
            +
             3,0⎝ 1⎠\
         
     | 
| 288 | 
         
            +
            """
         
     | 
| 289 | 
         
            +
                assert pretty(g2) == ascii_str
         
     | 
| 290 | 
         
            +
                assert upretty(g2) == ucode_str
         
     | 
| 291 | 
         
            +
                assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}'
         
     | 
| 292 | 
         
            +
                sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))")
         
     | 
| 293 | 
         
            +
                assert str(g3) == 'CNOT(1,0)'
         
     | 
| 294 | 
         
            +
                ascii_str = \
         
     | 
| 295 | 
         
            +
            """\
         
     | 
| 296 | 
         
            +
            CNOT   \n\
         
     | 
| 297 | 
         
            +
                1,0\
         
     | 
| 298 | 
         
            +
            """
         
     | 
| 299 | 
         
            +
                ucode_str = \
         
     | 
| 300 | 
         
            +
            """\
         
     | 
| 301 | 
         
            +
            CNOT   \n\
         
     | 
| 302 | 
         
            +
                1,0\
         
     | 
| 303 | 
         
            +
            """
         
     | 
| 304 | 
         
            +
                assert pretty(g3) == ascii_str
         
     | 
| 305 | 
         
            +
                assert upretty(g3) == ucode_str
         
     | 
| 306 | 
         
            +
                assert latex(g3) == r'\text{CNOT}_{1,0}'
         
     | 
| 307 | 
         
            +
                sT(g3, "CNotGate(Integer(1),Integer(0))")
         
     | 
| 308 | 
         
            +
                ascii_str = \
         
     | 
| 309 | 
         
            +
            """\
         
     | 
| 310 | 
         
            +
            U \n\
         
     | 
| 311 | 
         
            +
             0\
         
     | 
| 312 | 
         
            +
            """
         
     | 
| 313 | 
         
            +
                ucode_str = \
         
     | 
| 314 | 
         
            +
            """\
         
     | 
| 315 | 
         
            +
            U \n\
         
     | 
| 316 | 
         
            +
             0\
         
     | 
| 317 | 
         
            +
            """
         
     | 
| 318 | 
         
            +
                assert str(g4) == \
         
     | 
| 319 | 
         
            +
            """\
         
     | 
| 320 | 
         
            +
            U((0,),Matrix([\n\
         
     | 
| 321 | 
         
            +
            [a, b],\n\
         
     | 
| 322 | 
         
            +
            [c, d]]))\
         
     | 
| 323 | 
         
            +
            """
         
     | 
| 324 | 
         
            +
                assert pretty(g4) == ascii_str
         
     | 
| 325 | 
         
            +
                assert upretty(g4) == ucode_str
         
     | 
| 326 | 
         
            +
                assert latex(g4) == r'U_{0}'
         
     | 
| 327 | 
         
            +
                sT(g4, "UGate(Tuple(Integer(0)),ImmutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))")
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
            def test_hilbert():
         
     | 
| 331 | 
         
            +
                h1 = HilbertSpace()
         
     | 
| 332 | 
         
            +
                h2 = ComplexSpace(2)
         
     | 
| 333 | 
         
            +
                h3 = FockSpace()
         
     | 
| 334 | 
         
            +
                h4 = L2(Interval(0, oo))
         
     | 
| 335 | 
         
            +
                assert str(h1) == 'H'
         
     | 
| 336 | 
         
            +
                assert pretty(h1) == 'H'
         
     | 
| 337 | 
         
            +
                assert upretty(h1) == 'H'
         
     | 
| 338 | 
         
            +
                assert latex(h1) == r'\mathcal{H}'
         
     | 
| 339 | 
         
            +
                sT(h1, "HilbertSpace()")
         
     | 
| 340 | 
         
            +
                assert str(h2) == 'C(2)'
         
     | 
| 341 | 
         
            +
                ascii_str = \
         
     | 
| 342 | 
         
            +
            """\
         
     | 
| 343 | 
         
            +
             2\n\
         
     | 
| 344 | 
         
            +
            C \
         
     | 
| 345 | 
         
            +
            """
         
     | 
| 346 | 
         
            +
                ucode_str = \
         
     | 
| 347 | 
         
            +
            """\
         
     | 
| 348 | 
         
            +
             2\n\
         
     | 
| 349 | 
         
            +
            C \
         
     | 
| 350 | 
         
            +
            """
         
     | 
| 351 | 
         
            +
                assert pretty(h2) == ascii_str
         
     | 
| 352 | 
         
            +
                assert upretty(h2) == ucode_str
         
     | 
| 353 | 
         
            +
                assert latex(h2) == r'\mathcal{C}^{2}'
         
     | 
| 354 | 
         
            +
                sT(h2, "ComplexSpace(Integer(2))")
         
     | 
| 355 | 
         
            +
                assert str(h3) == 'F'
         
     | 
| 356 | 
         
            +
                assert pretty(h3) == 'F'
         
     | 
| 357 | 
         
            +
                assert upretty(h3) == 'F'
         
     | 
| 358 | 
         
            +
                assert latex(h3) == r'\mathcal{F}'
         
     | 
| 359 | 
         
            +
                sT(h3, "FockSpace()")
         
     | 
| 360 | 
         
            +
                assert str(h4) == 'L2(Interval(0, oo))'
         
     | 
| 361 | 
         
            +
                ascii_str = \
         
     | 
| 362 | 
         
            +
            """\
         
     | 
| 363 | 
         
            +
             2\n\
         
     | 
| 364 | 
         
            +
            L \
         
     | 
| 365 | 
         
            +
            """
         
     | 
| 366 | 
         
            +
                ucode_str = \
         
     | 
| 367 | 
         
            +
            """\
         
     | 
| 368 | 
         
            +
             2\n\
         
     | 
| 369 | 
         
            +
            L \
         
     | 
| 370 | 
         
            +
            """
         
     | 
| 371 | 
         
            +
                assert pretty(h4) == ascii_str
         
     | 
| 372 | 
         
            +
                assert upretty(h4) == ucode_str
         
     | 
| 373 | 
         
            +
                assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)'
         
     | 
| 374 | 
         
            +
                sT(h4, "L2(Interval(Integer(0), oo, false, true))")
         
     | 
| 375 | 
         
            +
                assert str(h1 + h2) == 'H+C(2)'
         
     | 
| 376 | 
         
            +
                ascii_str = \
         
     | 
| 377 | 
         
            +
            """\
         
     | 
| 378 | 
         
            +
                 2\n\
         
     | 
| 379 | 
         
            +
            H + C \
         
     | 
| 380 | 
         
            +
            """
         
     | 
| 381 | 
         
            +
                ucode_str = \
         
     | 
| 382 | 
         
            +
            """\
         
     | 
| 383 | 
         
            +
                 2\n\
         
     | 
| 384 | 
         
            +
            H ⊕ C \
         
     | 
| 385 | 
         
            +
            """
         
     | 
| 386 | 
         
            +
                assert pretty(h1 + h2) == ascii_str
         
     | 
| 387 | 
         
            +
                assert upretty(h1 + h2) == ucode_str
         
     | 
| 388 | 
         
            +
                assert latex(h1 + h2)
         
     | 
| 389 | 
         
            +
                sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
         
     | 
| 390 | 
         
            +
                assert str(h1*h2) == "H*C(2)"
         
     | 
| 391 | 
         
            +
                ascii_str = \
         
     | 
| 392 | 
         
            +
            """\
         
     | 
| 393 | 
         
            +
                 2\n\
         
     | 
| 394 | 
         
            +
            H x C \
         
     | 
| 395 | 
         
            +
            """
         
     | 
| 396 | 
         
            +
                ucode_str = \
         
     | 
| 397 | 
         
            +
            """\
         
     | 
| 398 | 
         
            +
                 2\n\
         
     | 
| 399 | 
         
            +
            H ⨂ C \
         
     | 
| 400 | 
         
            +
            """
         
     | 
| 401 | 
         
            +
                assert pretty(h1*h2) == ascii_str
         
     | 
| 402 | 
         
            +
                assert upretty(h1*h2) == ucode_str
         
     | 
| 403 | 
         
            +
                assert latex(h1*h2)
         
     | 
| 404 | 
         
            +
                sT(h1*h2,
         
     | 
| 405 | 
         
            +
                   "TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
         
     | 
| 406 | 
         
            +
                assert str(h1**2) == 'H**2'
         
     | 
| 407 | 
         
            +
                ascii_str = \
         
     | 
| 408 | 
         
            +
            """\
         
     | 
| 409 | 
         
            +
             x2\n\
         
     | 
| 410 | 
         
            +
            H  \
         
     | 
| 411 | 
         
            +
            """
         
     | 
| 412 | 
         
            +
                ucode_str = \
         
     | 
| 413 | 
         
            +
            """\
         
     | 
| 414 | 
         
            +
             ⨂2\n\
         
     | 
| 415 | 
         
            +
            H  \
         
     | 
| 416 | 
         
            +
            """
         
     | 
| 417 | 
         
            +
                assert pretty(h1**2) == ascii_str
         
     | 
| 418 | 
         
            +
                assert upretty(h1**2) == ucode_str
         
     | 
| 419 | 
         
            +
                assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}'
         
     | 
| 420 | 
         
            +
                sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))")
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
            def test_innerproduct():
         
     | 
| 424 | 
         
            +
                x = symbols('x')
         
     | 
| 425 | 
         
            +
                ip1 = InnerProduct(Bra(), Ket())
         
     | 
| 426 | 
         
            +
                ip2 = InnerProduct(TimeDepBra(), TimeDepKet())
         
     | 
| 427 | 
         
            +
                ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1))
         
     | 
| 428 | 
         
            +
                ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1)))
         
     | 
| 429 | 
         
            +
                ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2))
         
     | 
| 430 | 
         
            +
                ip_tall2 = InnerProduct(Bra(x), Ket(x/2))
         
     | 
| 431 | 
         
            +
                ip_tall3 = InnerProduct(Bra(x/2), Ket(x))
         
     | 
| 432 | 
         
            +
                assert str(ip1) == '<psi|psi>'
         
     | 
| 433 | 
         
            +
                assert pretty(ip1) == '<psi|psi>'
         
     | 
| 434 | 
         
            +
                assert upretty(ip1) == '⟨ψ❘ψ⟩'
         
     | 
| 435 | 
         
            +
                assert latex(
         
     | 
| 436 | 
         
            +
                    ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }'
         
     | 
| 437 | 
         
            +
                sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))")
         
     | 
| 438 | 
         
            +
                assert str(ip2) == '<psi;t|psi;t>'
         
     | 
| 439 | 
         
            +
                assert pretty(ip2) == '<psi;t|psi;t>'
         
     | 
| 440 | 
         
            +
                assert upretty(ip2) == '⟨ψ;t❘ψ;t⟩'
         
     | 
| 441 | 
         
            +
                assert latex(ip2) == \
         
     | 
| 442 | 
         
            +
                    r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }'
         
     | 
| 443 | 
         
            +
                sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))")
         
     | 
| 444 | 
         
            +
                assert str(ip3) == "<1,1|1,1>"
         
     | 
| 445 | 
         
            +
                assert pretty(ip3) == '<1,1|1,1>'
         
     | 
| 446 | 
         
            +
                assert upretty(ip3) == '⟨1,1❘1,1⟩'
         
     | 
| 447 | 
         
            +
                assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }'
         
     | 
| 448 | 
         
            +
                sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))")
         
     | 
| 449 | 
         
            +
                assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>"
         
     | 
| 450 | 
         
            +
                assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>'
         
     | 
| 451 | 
         
            +
                assert upretty(ip4) == '⟨1,1,j₁=1,j₂=1❘1,1,j₁=1,j₂=1⟩'
         
     | 
| 452 | 
         
            +
                assert latex(ip4) == \
         
     | 
| 453 | 
         
            +
                    r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }'
         
     | 
| 454 | 
         
            +
                sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))")
         
     | 
| 455 | 
         
            +
                assert str(ip_tall1) == '<x/2|x/2>'
         
     | 
| 456 | 
         
            +
                ascii_str = \
         
     | 
| 457 | 
         
            +
            """\
         
     | 
| 458 | 
         
            +
             / | \\ \n\
         
     | 
| 459 | 
         
            +
            / x|x \\\n\
         
     | 
| 460 | 
         
            +
            \\ -|- /\n\
         
     | 
| 461 | 
         
            +
             \\2|2/ \
         
     | 
| 462 | 
         
            +
            """
         
     | 
| 463 | 
         
            +
                ucode_str = \
         
     | 
| 464 | 
         
            +
            """\
         
     | 
| 465 | 
         
            +
             ╱ │ ╲ \n\
         
     | 
| 466 | 
         
            +
            ╱ x│x ╲\n\
         
     | 
| 467 | 
         
            +
            ╲ ─│─ ╱\n\
         
     | 
| 468 | 
         
            +
             ╲2│2╱ \
         
     | 
| 469 | 
         
            +
            """
         
     | 
| 470 | 
         
            +
                assert pretty(ip_tall1) == ascii_str
         
     | 
| 471 | 
         
            +
                assert upretty(ip_tall1) == ucode_str
         
     | 
| 472 | 
         
            +
                assert latex(ip_tall1) == \
         
     | 
| 473 | 
         
            +
                    r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }'
         
     | 
| 474 | 
         
            +
                sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))")
         
     | 
| 475 | 
         
            +
                assert str(ip_tall2) == '<x|x/2>'
         
     | 
| 476 | 
         
            +
                ascii_str = \
         
     | 
| 477 | 
         
            +
            """\
         
     | 
| 478 | 
         
            +
             / | \\ \n\
         
     | 
| 479 | 
         
            +
            /  |x \\\n\
         
     | 
| 480 | 
         
            +
            \\ x|- /\n\
         
     | 
| 481 | 
         
            +
             \\ |2/ \
         
     | 
| 482 | 
         
            +
            """
         
     | 
| 483 | 
         
            +
                ucode_str = \
         
     | 
| 484 | 
         
            +
            """\
         
     | 
| 485 | 
         
            +
             ╱ │ ╲ \n\
         
     | 
| 486 | 
         
            +
            ╱  │x ╲\n\
         
     | 
| 487 | 
         
            +
            ╲ x│─ ╱\n\
         
     | 
| 488 | 
         
            +
             ╲ │2╱ \
         
     | 
| 489 | 
         
            +
            """
         
     | 
| 490 | 
         
            +
                assert pretty(ip_tall2) == ascii_str
         
     | 
| 491 | 
         
            +
                assert upretty(ip_tall2) == ucode_str
         
     | 
| 492 | 
         
            +
                assert latex(ip_tall2) == \
         
     | 
| 493 | 
         
            +
                    r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }'
         
     | 
| 494 | 
         
            +
                sT(ip_tall2,
         
     | 
| 495 | 
         
            +
                   "InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))")
         
     | 
| 496 | 
         
            +
                assert str(ip_tall3) == '<x/2|x>'
         
     | 
| 497 | 
         
            +
                ascii_str = \
         
     | 
| 498 | 
         
            +
            """\
         
     | 
| 499 | 
         
            +
             / | \\ \n\
         
     | 
| 500 | 
         
            +
            / x|  \\\n\
         
     | 
| 501 | 
         
            +
            \\ -|x /\n\
         
     | 
| 502 | 
         
            +
             \\2| / \
         
     | 
| 503 | 
         
            +
            """
         
     | 
| 504 | 
         
            +
                ucode_str = \
         
     | 
| 505 | 
         
            +
            """\
         
     | 
| 506 | 
         
            +
             ╱ │ ╲ \n\
         
     | 
| 507 | 
         
            +
            ╱ x│  ╲\n\
         
     | 
| 508 | 
         
            +
            ╲ ─│x ╱\n\
         
     | 
| 509 | 
         
            +
             ╲2│ ╱ \
         
     | 
| 510 | 
         
            +
            """
         
     | 
| 511 | 
         
            +
                assert pretty(ip_tall3) == ascii_str
         
     | 
| 512 | 
         
            +
                assert upretty(ip_tall3) == ucode_str
         
     | 
| 513 | 
         
            +
                assert latex(ip_tall3) == \
         
     | 
| 514 | 
         
            +
                    r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }'
         
     | 
| 515 | 
         
            +
                sT(ip_tall3,
         
     | 
| 516 | 
         
            +
                   "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))")
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
            def test_operator():
         
     | 
| 520 | 
         
            +
                a = Operator('A')
         
     | 
| 521 | 
         
            +
                b = Operator('B', Symbol('t'), S.Half)
         
     | 
| 522 | 
         
            +
                inv = a.inv()
         
     | 
| 523 | 
         
            +
                f = Function('f')
         
     | 
| 524 | 
         
            +
                x = symbols('x')
         
     | 
| 525 | 
         
            +
                d = DifferentialOperator(Derivative(f(x), x), f(x))
         
     | 
| 526 | 
         
            +
                op = OuterProduct(Ket(), Bra())
         
     | 
| 527 | 
         
            +
                assert str(a) == 'A'
         
     | 
| 528 | 
         
            +
                assert pretty(a) == 'A'
         
     | 
| 529 | 
         
            +
                assert upretty(a) == 'A'
         
     | 
| 530 | 
         
            +
                assert latex(a) == 'A'
         
     | 
| 531 | 
         
            +
                sT(a, "Operator(Symbol('A'))")
         
     | 
| 532 | 
         
            +
                assert str(inv) == 'A**(-1)'
         
     | 
| 533 | 
         
            +
                ascii_str = \
         
     | 
| 534 | 
         
            +
            """\
         
     | 
| 535 | 
         
            +
             -1\n\
         
     | 
| 536 | 
         
            +
            A  \
         
     | 
| 537 | 
         
            +
            """
         
     | 
| 538 | 
         
            +
                ucode_str = \
         
     | 
| 539 | 
         
            +
            """\
         
     | 
| 540 | 
         
            +
             -1\n\
         
     | 
| 541 | 
         
            +
            A  \
         
     | 
| 542 | 
         
            +
            """
         
     | 
| 543 | 
         
            +
                assert pretty(inv) == ascii_str
         
     | 
| 544 | 
         
            +
                assert upretty(inv) == ucode_str
         
     | 
| 545 | 
         
            +
                assert latex(inv) == r'A^{-1}'
         
     | 
| 546 | 
         
            +
                sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))")
         
     | 
| 547 | 
         
            +
                assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))'
         
     | 
| 548 | 
         
            +
                ascii_str = \
         
     | 
| 549 | 
         
            +
            """\
         
     | 
| 550 | 
         
            +
                                /d            \\\n\
         
     | 
| 551 | 
         
            +
            DifferentialOperator|--(f(x)),f(x)|\n\
         
     | 
| 552 | 
         
            +
                                \\dx           /\
         
     | 
| 553 | 
         
            +
            """
         
     | 
| 554 | 
         
            +
                ucode_str = \
         
     | 
| 555 | 
         
            +
            """\
         
     | 
| 556 | 
         
            +
                                ⎛d            ⎞\n\
         
     | 
| 557 | 
         
            +
            DifferentialOperator⎜──(f(x)),f(x)⎟\n\
         
     | 
| 558 | 
         
            +
                                ⎝dx           ⎠\
         
     | 
| 559 | 
         
            +
            """
         
     | 
| 560 | 
         
            +
                assert pretty(d) == ascii_str
         
     | 
| 561 | 
         
            +
                assert upretty(d) == ucode_str
         
     | 
| 562 | 
         
            +
                assert latex(d) == \
         
     | 
| 563 | 
         
            +
                    r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)'
         
     | 
| 564 | 
         
            +
                sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))")
         
     | 
| 565 | 
         
            +
                assert str(b) == 'Operator(B,t,1/2)'
         
     | 
| 566 | 
         
            +
                assert pretty(b) == 'Operator(B,t,1/2)'
         
     | 
| 567 | 
         
            +
                assert upretty(b) == 'Operator(B,t,1/2)'
         
     | 
| 568 | 
         
            +
                assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)'
         
     | 
| 569 | 
         
            +
                sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))")
         
     | 
| 570 | 
         
            +
                assert str(op) == '|psi><psi|'
         
     | 
| 571 | 
         
            +
                assert pretty(op) == '|psi><psi|'
         
     | 
| 572 | 
         
            +
                assert upretty(op) == '❘ψ⟩⟨ψ❘'
         
     | 
| 573 | 
         
            +
                assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}'
         
     | 
| 574 | 
         
            +
                sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))")
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
            def test_qexpr():
         
     | 
| 578 | 
         
            +
                q = QExpr('q')
         
     | 
| 579 | 
         
            +
                assert str(q) == 'q'
         
     | 
| 580 | 
         
            +
                assert pretty(q) == 'q'
         
     | 
| 581 | 
         
            +
                assert upretty(q) == 'q'
         
     | 
| 582 | 
         
            +
                assert latex(q) == r'q'
         
     | 
| 583 | 
         
            +
                sT(q, "QExpr(Symbol('q'))")
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
            def test_qubit():
         
     | 
| 587 | 
         
            +
                q1 = Qubit('0101')
         
     | 
| 588 | 
         
            +
                q2 = IntQubit(8)
         
     | 
| 589 | 
         
            +
                assert str(q1) == '|0101>'
         
     | 
| 590 | 
         
            +
                assert pretty(q1) == '|0101>'
         
     | 
| 591 | 
         
            +
                assert upretty(q1) == '❘0101⟩'
         
     | 
| 592 | 
         
            +
                assert latex(q1) == r'{\left|0101\right\rangle }'
         
     | 
| 593 | 
         
            +
                sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))")
         
     | 
| 594 | 
         
            +
                assert str(q2) == '|8>'
         
     | 
| 595 | 
         
            +
                assert pretty(q2) == '|8>'
         
     | 
| 596 | 
         
            +
                assert upretty(q2) == '❘8⟩'
         
     | 
| 597 | 
         
            +
                assert latex(q2) == r'{\left|8\right\rangle }'
         
     | 
| 598 | 
         
            +
                sT(q2, "IntQubit(8)")
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
            def test_spin():
         
     | 
| 602 | 
         
            +
                lz = JzOp('L')
         
     | 
| 603 | 
         
            +
                ket = JzKet(1, 0)
         
     | 
| 604 | 
         
            +
                bra = JzBra(1, 0)
         
     | 
| 605 | 
         
            +
                cket = JzKetCoupled(1, 0, (1, 2))
         
     | 
| 606 | 
         
            +
                cbra = JzBraCoupled(1, 0, (1, 2))
         
     | 
| 607 | 
         
            +
                cket_big = JzKetCoupled(1, 0, (1, 2, 3))
         
     | 
| 608 | 
         
            +
                cbra_big = JzBraCoupled(1, 0, (1, 2, 3))
         
     | 
| 609 | 
         
            +
                rot = Rotation(1, 2, 3)
         
     | 
| 610 | 
         
            +
                bigd = WignerD(1, 2, 3, 4, 5, 6)
         
     | 
| 611 | 
         
            +
                smalld = WignerD(1, 2, 3, 0, 4, 0)
         
     | 
| 612 | 
         
            +
                assert str(lz) == 'Lz'
         
     | 
| 613 | 
         
            +
                ascii_str = \
         
     | 
| 614 | 
         
            +
            """\
         
     | 
| 615 | 
         
            +
            L \n\
         
     | 
| 616 | 
         
            +
             z\
         
     | 
| 617 | 
         
            +
            """
         
     | 
| 618 | 
         
            +
                ucode_str = \
         
     | 
| 619 | 
         
            +
            """\
         
     | 
| 620 | 
         
            +
            L \n\
         
     | 
| 621 | 
         
            +
             z\
         
     | 
| 622 | 
         
            +
            """
         
     | 
| 623 | 
         
            +
                assert pretty(lz) == ascii_str
         
     | 
| 624 | 
         
            +
                assert upretty(lz) == ucode_str
         
     | 
| 625 | 
         
            +
                assert latex(lz) == 'L_z'
         
     | 
| 626 | 
         
            +
                sT(lz, "JzOp(Symbol('L'))")
         
     | 
| 627 | 
         
            +
                assert str(J2) == 'J2'
         
     | 
| 628 | 
         
            +
                ascii_str = \
         
     | 
| 629 | 
         
            +
            """\
         
     | 
| 630 | 
         
            +
             2\n\
         
     | 
| 631 | 
         
            +
            J \
         
     | 
| 632 | 
         
            +
            """
         
     | 
| 633 | 
         
            +
                ucode_str = \
         
     | 
| 634 | 
         
            +
            """\
         
     | 
| 635 | 
         
            +
             2\n\
         
     | 
| 636 | 
         
            +
            J \
         
     | 
| 637 | 
         
            +
            """
         
     | 
| 638 | 
         
            +
                assert pretty(J2) == ascii_str
         
     | 
| 639 | 
         
            +
                assert upretty(J2) == ucode_str
         
     | 
| 640 | 
         
            +
                assert latex(J2) == r'J^2'
         
     | 
| 641 | 
         
            +
                sT(J2, "J2Op(Symbol('J'))")
         
     | 
| 642 | 
         
            +
                assert str(Jz) == 'Jz'
         
     | 
| 643 | 
         
            +
                ascii_str = \
         
     | 
| 644 | 
         
            +
            """\
         
     | 
| 645 | 
         
            +
            J \n\
         
     | 
| 646 | 
         
            +
             z\
         
     | 
| 647 | 
         
            +
            """
         
     | 
| 648 | 
         
            +
                ucode_str = \
         
     | 
| 649 | 
         
            +
            """\
         
     | 
| 650 | 
         
            +
            J \n\
         
     | 
| 651 | 
         
            +
             z\
         
     | 
| 652 | 
         
            +
            """
         
     | 
| 653 | 
         
            +
                assert pretty(Jz) == ascii_str
         
     | 
| 654 | 
         
            +
                assert upretty(Jz) == ucode_str
         
     | 
| 655 | 
         
            +
                assert latex(Jz) == 'J_z'
         
     | 
| 656 | 
         
            +
                sT(Jz, "JzOp(Symbol('J'))")
         
     | 
| 657 | 
         
            +
                assert str(ket) == '|1,0>'
         
     | 
| 658 | 
         
            +
                assert pretty(ket) == '|1,0>'
         
     | 
| 659 | 
         
            +
                assert upretty(ket) == '❘1,0⟩'
         
     | 
| 660 | 
         
            +
                assert latex(ket) == r'{\left|1,0\right\rangle }'
         
     | 
| 661 | 
         
            +
                sT(ket, "JzKet(Integer(1),Integer(0))")
         
     | 
| 662 | 
         
            +
                assert str(bra) == '<1,0|'
         
     | 
| 663 | 
         
            +
                assert pretty(bra) == '<1,0|'
         
     | 
| 664 | 
         
            +
                assert upretty(bra) == '⟨1,0❘'
         
     | 
| 665 | 
         
            +
                assert latex(bra) == r'{\left\langle 1,0\right|}'
         
     | 
| 666 | 
         
            +
                sT(bra, "JzBra(Integer(1),Integer(0))")
         
     | 
| 667 | 
         
            +
                assert str(cket) == '|1,0,j1=1,j2=2>'
         
     | 
| 668 | 
         
            +
                assert pretty(cket) == '|1,0,j1=1,j2=2>'
         
     | 
| 669 | 
         
            +
                assert upretty(cket) == '❘1,0,j₁=1,j₂=2⟩'
         
     | 
| 670 | 
         
            +
                assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }'
         
     | 
| 671 | 
         
            +
                sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
         
     | 
| 672 | 
         
            +
                assert str(cbra) == '<1,0,j1=1,j2=2|'
         
     | 
| 673 | 
         
            +
                assert pretty(cbra) == '<1,0,j1=1,j2=2|'
         
     | 
| 674 | 
         
            +
                assert upretty(cbra) == '⟨1,0,j₁=1,j₂=2❘'
         
     | 
| 675 | 
         
            +
                assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}'
         
     | 
| 676 | 
         
            +
                sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
         
     | 
| 677 | 
         
            +
                assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>'
         
     | 
| 678 | 
         
            +
                # TODO: Fix non-unicode pretty printing
         
     | 
| 679 | 
         
            +
                # i.e. j1,2 -> j(1,2)
         
     | 
| 680 | 
         
            +
                assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>'
         
     | 
| 681 | 
         
            +
                assert upretty(cket_big) == '❘1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3⟩'
         
     | 
| 682 | 
         
            +
                assert latex(cket_big) == \
         
     | 
| 683 | 
         
            +
                    r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }'
         
     | 
| 684 | 
         
            +
                sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
         
     | 
| 685 | 
         
            +
                assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|'
         
     | 
| 686 | 
         
            +
                assert pretty(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j1,2=3|'
         
     | 
| 687 | 
         
            +
                assert upretty(cbra_big) == '⟨1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3❘'
         
     | 
| 688 | 
         
            +
                assert latex(cbra_big) == \
         
     | 
| 689 | 
         
            +
                    r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}'
         
     | 
| 690 | 
         
            +
                sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
         
     | 
| 691 | 
         
            +
                assert str(rot) == 'R(1,2,3)'
         
     | 
| 692 | 
         
            +
                assert pretty(rot) == 'R (1,2,3)'
         
     | 
| 693 | 
         
            +
                assert upretty(rot) == 'ℛ (1,2,3)'
         
     | 
| 694 | 
         
            +
                assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)'
         
     | 
| 695 | 
         
            +
                sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))")
         
     | 
| 696 | 
         
            +
                assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)'
         
     | 
| 697 | 
         
            +
                ascii_str = \
         
     | 
| 698 | 
         
            +
            """\
         
     | 
| 699 | 
         
            +
             1         \n\
         
     | 
| 700 | 
         
            +
            D   (4,5,6)\n\
         
     | 
| 701 | 
         
            +
             2,3       \
         
     | 
| 702 | 
         
            +
            """
         
     | 
| 703 | 
         
            +
                ucode_str = \
         
     | 
| 704 | 
         
            +
            """\
         
     | 
| 705 | 
         
            +
             1         \n\
         
     | 
| 706 | 
         
            +
            D   (4,5,6)\n\
         
     | 
| 707 | 
         
            +
             2,3       \
         
     | 
| 708 | 
         
            +
            """
         
     | 
| 709 | 
         
            +
                assert pretty(bigd) == ascii_str
         
     | 
| 710 | 
         
            +
                assert upretty(bigd) == ucode_str
         
     | 
| 711 | 
         
            +
                assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)'
         
     | 
| 712 | 
         
            +
                sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
         
     | 
| 713 | 
         
            +
                assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)'
         
     | 
| 714 | 
         
            +
                ascii_str = \
         
     | 
| 715 | 
         
            +
            """\
         
     | 
| 716 | 
         
            +
             1     \n\
         
     | 
| 717 | 
         
            +
            d   (4)\n\
         
     | 
| 718 | 
         
            +
             2,3   \
         
     | 
| 719 | 
         
            +
            """
         
     | 
| 720 | 
         
            +
                ucode_str = \
         
     | 
| 721 | 
         
            +
            """\
         
     | 
| 722 | 
         
            +
             1     \n\
         
     | 
| 723 | 
         
            +
            d   (4)\n\
         
     | 
| 724 | 
         
            +
             2,3   \
         
     | 
| 725 | 
         
            +
            """
         
     | 
| 726 | 
         
            +
                assert pretty(smalld) == ascii_str
         
     | 
| 727 | 
         
            +
                assert upretty(smalld) == ucode_str
         
     | 
| 728 | 
         
            +
                assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)'
         
     | 
| 729 | 
         
            +
                sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))")
         
     | 
| 730 | 
         
            +
             
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
            def test_state():
         
     | 
| 733 | 
         
            +
                x = symbols('x')
         
     | 
| 734 | 
         
            +
                bra = Bra()
         
     | 
| 735 | 
         
            +
                ket = Ket()
         
     | 
| 736 | 
         
            +
                bra_tall = Bra(x/2)
         
     | 
| 737 | 
         
            +
                ket_tall = Ket(x/2)
         
     | 
| 738 | 
         
            +
                tbra = TimeDepBra()
         
     | 
| 739 | 
         
            +
                tket = TimeDepKet()
         
     | 
| 740 | 
         
            +
                assert str(bra) == '<psi|'
         
     | 
| 741 | 
         
            +
                assert pretty(bra) == '<psi|'
         
     | 
| 742 | 
         
            +
                assert upretty(bra) == '⟨ψ❘'
         
     | 
| 743 | 
         
            +
                assert latex(bra) == r'{\left\langle \psi\right|}'
         
     | 
| 744 | 
         
            +
                sT(bra, "Bra(Symbol('psi'))")
         
     | 
| 745 | 
         
            +
                assert str(ket) == '|psi>'
         
     | 
| 746 | 
         
            +
                assert pretty(ket) == '|psi>'
         
     | 
| 747 | 
         
            +
                assert upretty(ket) == '❘ψ⟩'
         
     | 
| 748 | 
         
            +
                assert latex(ket) == r'{\left|\psi\right\rangle }'
         
     | 
| 749 | 
         
            +
                sT(ket, "Ket(Symbol('psi'))")
         
     | 
| 750 | 
         
            +
                assert str(bra_tall) == '<x/2|'
         
     | 
| 751 | 
         
            +
                ascii_str = \
         
     | 
| 752 | 
         
            +
            """\
         
     | 
| 753 | 
         
            +
             / |\n\
         
     | 
| 754 | 
         
            +
            / x|\n\
         
     | 
| 755 | 
         
            +
            \\ -|\n\
         
     | 
| 756 | 
         
            +
             \\2|\
         
     | 
| 757 | 
         
            +
            """
         
     | 
| 758 | 
         
            +
                ucode_str = \
         
     | 
| 759 | 
         
            +
            """\
         
     | 
| 760 | 
         
            +
             ╱ │\n\
         
     | 
| 761 | 
         
            +
            ╱ x│\n\
         
     | 
| 762 | 
         
            +
            ╲ ─│\n\
         
     | 
| 763 | 
         
            +
             ╲2│\
         
     | 
| 764 | 
         
            +
            """
         
     | 
| 765 | 
         
            +
                assert pretty(bra_tall) == ascii_str
         
     | 
| 766 | 
         
            +
                assert upretty(bra_tall) == ucode_str
         
     | 
| 767 | 
         
            +
                assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}'
         
     | 
| 768 | 
         
            +
                sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))")
         
     | 
| 769 | 
         
            +
                assert str(ket_tall) == '|x/2>'
         
     | 
| 770 | 
         
            +
                ascii_str = \
         
     | 
| 771 | 
         
            +
            """\
         
     | 
| 772 | 
         
            +
            | \\ \n\
         
     | 
| 773 | 
         
            +
            |x \\\n\
         
     | 
| 774 | 
         
            +
            |- /\n\
         
     | 
| 775 | 
         
            +
            |2/ \
         
     | 
| 776 | 
         
            +
            """
         
     | 
| 777 | 
         
            +
                ucode_str = \
         
     | 
| 778 | 
         
            +
            """\
         
     | 
| 779 | 
         
            +
            │ ╲ \n\
         
     | 
| 780 | 
         
            +
            │x ╲\n\
         
     | 
| 781 | 
         
            +
            │─ ╱\n\
         
     | 
| 782 | 
         
            +
            │2╱ \
         
     | 
| 783 | 
         
            +
            """
         
     | 
| 784 | 
         
            +
                assert pretty(ket_tall) == ascii_str
         
     | 
| 785 | 
         
            +
                assert upretty(ket_tall) == ucode_str
         
     | 
| 786 | 
         
            +
                assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }'
         
     | 
| 787 | 
         
            +
                sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))")
         
     | 
| 788 | 
         
            +
                assert str(tbra) == '<psi;t|'
         
     | 
| 789 | 
         
            +
                assert pretty(tbra) == '<psi;t|'
         
     | 
| 790 | 
         
            +
                assert upretty(tbra) == '⟨ψ;t❘'
         
     | 
| 791 | 
         
            +
                assert latex(tbra) == r'{\left\langle \psi;t\right|}'
         
     | 
| 792 | 
         
            +
                sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))")
         
     | 
| 793 | 
         
            +
                assert str(tket) == '|psi;t>'
         
     | 
| 794 | 
         
            +
                assert pretty(tket) == '|psi;t>'
         
     | 
| 795 | 
         
            +
                assert upretty(tket) == '❘ψ;t⟩'
         
     | 
| 796 | 
         
            +
                assert latex(tket) == r'{\left|\psi;t\right\rangle }'
         
     | 
| 797 | 
         
            +
                sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))")
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
            def test_tensorproduct():
         
     | 
| 801 | 
         
            +
                tp = TensorProduct(JzKet(1, 1), JzKet(1, 0))
         
     | 
| 802 | 
         
            +
                assert str(tp) == '|1,1>x|1,0>'
         
     | 
| 803 | 
         
            +
                assert pretty(tp) == '|1,1>x |1,0>'
         
     | 
| 804 | 
         
            +
                assert upretty(tp) == '❘1,1⟩⨂ ❘1,0⟩'
         
     | 
| 805 | 
         
            +
                assert latex(tp) == \
         
     | 
| 806 | 
         
            +
                    r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}'
         
     | 
| 807 | 
         
            +
                sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))")
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
            def test_big_expr():
         
     | 
| 811 | 
         
            +
                f = Function('f')
         
     | 
| 812 | 
         
            +
                x = symbols('x')
         
     | 
| 813 | 
         
            +
                e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1))
         
     | 
| 814 | 
         
            +
                e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2))
         
     | 
| 815 | 
         
            +
                e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1)))
         
     | 
| 816 | 
         
            +
                e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval(
         
     | 
| 817 | 
         
            +
                    0, oo)) + HilbertSpace())
         
     | 
| 818 | 
         
            +
                assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)'
         
     | 
| 819 | 
         
            +
                ascii_str = \
         
     | 
| 820 | 
         
            +
            """\
         
     | 
| 821 | 
         
            +
                             /                                      3        \\                                 \n\
         
     | 
| 822 | 
         
            +
                             |/                                   +\\         |                                 \n\
         
     | 
| 823 | 
         
            +
                2  / +    +\\ <|                    /d            \\ |   +    +>                                 \n\
         
     | 
| 824 | 
         
            +
            /J \\ x \\A  + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A  + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\
         
     | 
| 825 | 
         
            +
            \\ z/             \\\\                    \\dx           / /         /                                 \
         
     | 
| 826 | 
         
            +
            """
         
     | 
| 827 | 
         
            +
                ucode_str = \
         
     | 
| 828 | 
         
            +
            """\
         
     | 
| 829 | 
         
            +
                             ⎧                                      3        ⎫                                 \n\
         
     | 
| 830 | 
         
            +
                             ⎪⎛                                   †⎞         ⎪                                 \n\
         
     | 
| 831 | 
         
            +
                2  ⎛ †    †⎞ ⎨⎜                    ⎛d            ⎞ ⎟   †    †⎬                                 \n\
         
     | 
| 832 | 
         
            +
            ⎛J ⎞ ⨂ ⎝A  + B ⎠⋅⎪⎜DifferentialOperator⎜──(f(x)),f(x)⎟ ⎟ ,A  + B ⎪⋅(⟨1,0❘ + ⟨1,1❘)⋅(❘0,0⟩ + ❘1,-1⟩)\n\
         
     | 
| 833 | 
         
            +
            ⎝ z⎠             ⎩⎝                    ⎝dx           ⎠ ⎠         ⎭                                 \
         
     | 
| 834 | 
         
            +
            """
         
     | 
| 835 | 
         
            +
                assert pretty(e1) == ascii_str
         
     | 
| 836 | 
         
            +
                assert upretty(e1) == ucode_str
         
     | 
| 837 | 
         
            +
                assert latex(e1) == \
         
     | 
| 838 | 
         
            +
                    r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)'
         
     | 
| 839 | 
         
            +
                sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))")
         
     | 
| 840 | 
         
            +
                assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]'
         
     | 
| 841 | 
         
            +
                ascii_str = \
         
     | 
| 842 | 
         
            +
            """\
         
     | 
| 843 | 
         
            +
            [    2      ] / -2  +  +\\ [ 2   ]\n\
         
     | 
| 844 | 
         
            +
            [/J \\ ,A + B]*<E  ,D *C >*[J ,J ]\n\
         
     | 
| 845 | 
         
            +
            [\\ z/       ] \\         / [    z]\
         
     | 
| 846 | 
         
            +
            """
         
     | 
| 847 | 
         
            +
                ucode_str = \
         
     | 
| 848 | 
         
            +
            """\
         
     | 
| 849 | 
         
            +
            ⎡    2      ⎤ ⎧ -2  †  †⎫ ⎡ 2   ⎤\n\
         
     | 
| 850 | 
         
            +
            ⎢⎛J ⎞ ,A + B⎥⋅⎨E  ,D ⋅C ⎬⋅⎢J ,J ⎥\n\
         
     | 
| 851 | 
         
            +
            ⎣⎝ z⎠       ⎦ ⎩         ⎭ ⎣    z⎦\
         
     | 
| 852 | 
         
            +
            """
         
     | 
| 853 | 
         
            +
                assert pretty(e2) == ascii_str
         
     | 
| 854 | 
         
            +
                assert upretty(e2) == ucode_str
         
     | 
| 855 | 
         
            +
                assert latex(e2) == \
         
     | 
| 856 | 
         
            +
                    r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]'
         
     | 
| 857 | 
         
            +
                sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))")
         
     | 
| 858 | 
         
            +
                assert str(e3) == \
         
     | 
| 859 | 
         
            +
                    "Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>"
         
     | 
| 860 | 
         
            +
                ascii_str = \
         
     | 
| 861 | 
         
            +
            """\
         
     | 
| 862 | 
         
            +
                      [ +          ]  /   2     \\                                                                 \n\
         
     | 
| 863 | 
         
            +
            /1  3  5\\*[B  + A,C + D]x |- J  + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\
         
     | 
| 864 | 
         
            +
            |       |                 \\        z/                                                                 \n\
         
     | 
| 865 | 
         
            +
            \\2  4  6/                                                                                             \
         
     | 
| 866 | 
         
            +
            """
         
     | 
| 867 | 
         
            +
                ucode_str = \
         
     | 
| 868 | 
         
            +
            """\
         
     | 
| 869 | 
         
            +
                      ⎡ †          ⎤  ⎛   2     ⎞                                                                 \n\
         
     | 
| 870 | 
         
            +
            ⎛1  3  5⎞⋅⎣B  + A,C + D⎦⨂ ⎜- J  + J ⎟⋅❘1,0⟩⟨1,1❘⋅(❘1,0,j₁=1,j₂=1⟩ + ❘1,1,j₁=1,j₂=1⟩)⨂ ❘1,-1,j₁=1,j₂=1⟩\n\
         
     | 
| 871 | 
         
            +
            ⎜       ⎟                 ⎝        z⎠                                                                 \n\
         
     | 
| 872 | 
         
            +
            ⎝2  4  6⎠                                                                                             \
         
     | 
| 873 | 
         
            +
            """
         
     | 
| 874 | 
         
            +
                assert pretty(e3) == ascii_str
         
     | 
| 875 | 
         
            +
                assert upretty(e3) == ucode_str
         
     | 
| 876 | 
         
            +
                assert latex(e3) == \
         
     | 
| 877 | 
         
            +
                    r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}'
         
     | 
| 878 | 
         
            +
                sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))")
         
     | 
| 879 | 
         
            +
                assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)'
         
     | 
| 880 | 
         
            +
                ascii_str = \
         
     | 
| 881 | 
         
            +
            """\
         
     | 
| 882 | 
         
            +
            // 1    2\\    x2\\   / 2    \\\n\
         
     | 
| 883 | 
         
            +
            \\\\C  x C / + F  / x \\L  + H/\
         
     | 
| 884 | 
         
            +
            """
         
     | 
| 885 | 
         
            +
                ucode_str = \
         
     | 
| 886 | 
         
            +
            """\
         
     | 
| 887 | 
         
            +
            ⎛⎛ 1    2⎞    ⨂2⎞   ⎛ 2    ⎞\n\
         
     | 
| 888 | 
         
            +
            ⎝⎝C  ⨂ C ⎠ ⊕ F  ⎠ ⨂ ⎝L  ⊕ H⎠\
         
     | 
| 889 | 
         
            +
            """
         
     | 
| 890 | 
         
            +
                assert pretty(e4) == ascii_str
         
     | 
| 891 | 
         
            +
                assert upretty(e4) == ucode_str
         
     | 
| 892 | 
         
            +
                assert latex(e4) == \
         
     | 
| 893 | 
         
            +
                    r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)'
         
     | 
| 894 | 
         
            +
                sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))")
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
            def _test_sho1d():
         
     | 
| 898 | 
         
            +
                ad = RaisingOp('a')
         
     | 
| 899 | 
         
            +
                assert pretty(ad) == ' \N{DAGGER}\na '
         
     | 
| 900 | 
         
            +
                assert latex(ad) == 'a^{\\dagger}'
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_qft.py
    ADDED
    
    | 
         @@ -0,0 +1,50 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.numbers import (I, pi)
         
     | 
| 2 | 
         
            +
            from sympy.core.symbol import Symbol
         
     | 
| 3 | 
         
            +
            from sympy.functions.elementary.exponential import exp
         
     | 
| 4 | 
         
            +
            from sympy.functions.elementary.miscellaneous import sqrt
         
     | 
| 5 | 
         
            +
            from sympy.matrices.dense import Matrix
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from sympy.physics.quantum.qft import QFT, IQFT, RkGate
         
     | 
| 8 | 
         
            +
            from sympy.physics.quantum.gate import (ZGate, SwapGate, HadamardGate, CGate,
         
     | 
| 9 | 
         
            +
                                                    PhaseGate, TGate)
         
     | 
| 10 | 
         
            +
            from sympy.physics.quantum.qubit import Qubit
         
     | 
| 11 | 
         
            +
            from sympy.physics.quantum.qapply import qapply
         
     | 
| 12 | 
         
            +
            from sympy.physics.quantum.represent import represent
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def test_RkGate():
         
     | 
| 16 | 
         
            +
                x = Symbol('x')
         
     | 
| 17 | 
         
            +
                assert RkGate(1, x).k == x
         
     | 
| 18 | 
         
            +
                assert RkGate(1, x).targets == (1,)
         
     | 
| 19 | 
         
            +
                assert RkGate(1, 1) == ZGate(1)
         
     | 
| 20 | 
         
            +
                assert RkGate(2, 2) == PhaseGate(2)
         
     | 
| 21 | 
         
            +
                assert RkGate(3, 3) == TGate(3)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                assert represent(
         
     | 
| 24 | 
         
            +
                    RkGate(0, x), nqubits=1) == Matrix([[1, 0], [0, exp(2*I*pi/2**x)]])
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            def test_quantum_fourier():
         
     | 
| 28 | 
         
            +
                assert QFT(0, 3).decompose() == \
         
     | 
| 29 | 
         
            +
                    SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
         
     | 
| 30 | 
         
            +
                    HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
         
     | 
| 31 | 
         
            +
                    HadamardGate(2)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                assert IQFT(0, 3).decompose() == \
         
     | 
| 34 | 
         
            +
                    HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
         
     | 
| 35 | 
         
            +
                    HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                assert represent(QFT(0, 3), nqubits=3) == \
         
     | 
| 38 | 
         
            +
                    Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                assert QFT(0, 4).decompose()  # non-trivial decomposition
         
     | 
| 41 | 
         
            +
                assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
         
     | 
| 42 | 
         
            +
                    HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
         
     | 
| 43 | 
         
            +
                ).expand()
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            def test_qft_represent():
         
     | 
| 47 | 
         
            +
                c = QFT(0, 3)
         
     | 
| 48 | 
         
            +
                a = represent(c, nqubits=3)
         
     | 
| 49 | 
         
            +
                b = represent(c.decompose(), nqubits=3)
         
     | 
| 50 | 
         
            +
                assert a.evalf(n=10) == b.evalf(n=10)
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_represent.py
    ADDED
    
    | 
         @@ -0,0 +1,189 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.core.numbers import (Float, I, Integer)
         
     | 
| 2 | 
         
            +
            from sympy.matrices.dense import Matrix
         
     | 
| 3 | 
         
            +
            from sympy.external import import_module
         
     | 
| 4 | 
         
            +
            from sympy.testing.pytest import skip
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from sympy.physics.quantum.dagger import Dagger
         
     | 
| 7 | 
         
            +
            from sympy.physics.quantum.represent import (represent, rep_innerproduct,
         
     | 
| 8 | 
         
            +
                                                         rep_expectation, enumerate_states)
         
     | 
| 9 | 
         
            +
            from sympy.physics.quantum.state import Bra, Ket
         
     | 
| 10 | 
         
            +
            from sympy.physics.quantum.operator import Operator, OuterProduct
         
     | 
| 11 | 
         
            +
            from sympy.physics.quantum.tensorproduct import TensorProduct
         
     | 
| 12 | 
         
            +
            from sympy.physics.quantum.tensorproduct import matrix_tensor_product
         
     | 
| 13 | 
         
            +
            from sympy.physics.quantum.commutator import Commutator
         
     | 
| 14 | 
         
            +
            from sympy.physics.quantum.anticommutator import AntiCommutator
         
     | 
| 15 | 
         
            +
            from sympy.physics.quantum.innerproduct import InnerProduct
         
     | 
| 16 | 
         
            +
            from sympy.physics.quantum.matrixutils import (numpy_ndarray,
         
     | 
| 17 | 
         
            +
                                                           scipy_sparse_matrix, to_numpy,
         
     | 
| 18 | 
         
            +
                                                           to_scipy_sparse, to_sympy)
         
     | 
| 19 | 
         
            +
            from sympy.physics.quantum.cartesian import XKet, XOp, XBra
         
     | 
| 20 | 
         
            +
            from sympy.physics.quantum.qapply import qapply
         
     | 
| 21 | 
         
            +
            from sympy.physics.quantum.operatorset import operators_to_state
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            Amat = Matrix([[1, I], [-I, 1]])
         
     | 
| 24 | 
         
            +
            Bmat = Matrix([[1, 2], [3, 4]])
         
     | 
| 25 | 
         
            +
            Avec = Matrix([[1], [I]])
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            class AKet(Ket):
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                @classmethod
         
     | 
| 31 | 
         
            +
                def dual_class(self):
         
     | 
| 32 | 
         
            +
                    return ABra
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def _represent_default_basis(self, **options):
         
     | 
| 35 | 
         
            +
                    return self._represent_AOp(None, **options)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def _represent_AOp(self, basis, **options):
         
     | 
| 38 | 
         
            +
                    return Avec
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            class ABra(Bra):
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                @classmethod
         
     | 
| 44 | 
         
            +
                def dual_class(self):
         
     | 
| 45 | 
         
            +
                    return AKet
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            class AOp(Operator):
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def _represent_default_basis(self, **options):
         
     | 
| 51 | 
         
            +
                    return self._represent_AOp(None, **options)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def _represent_AOp(self, basis, **options):
         
     | 
| 54 | 
         
            +
                    return Amat
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            class BOp(Operator):
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def _represent_default_basis(self, **options):
         
     | 
| 60 | 
         
            +
                    return self._represent_AOp(None, **options)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def _represent_AOp(self, basis, **options):
         
     | 
| 63 | 
         
            +
                    return Bmat
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            k = AKet('a')
         
     | 
| 67 | 
         
            +
            b = ABra('a')
         
     | 
| 68 | 
         
            +
            A = AOp('A')
         
     | 
| 69 | 
         
            +
            B = BOp('B')
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            _tests = [
         
     | 
| 72 | 
         
            +
                # Bra
         
     | 
| 73 | 
         
            +
                (b, Dagger(Avec)),
         
     | 
| 74 | 
         
            +
                (Dagger(b), Avec),
         
     | 
| 75 | 
         
            +
                # Ket
         
     | 
| 76 | 
         
            +
                (k, Avec),
         
     | 
| 77 | 
         
            +
                (Dagger(k), Dagger(Avec)),
         
     | 
| 78 | 
         
            +
                # Operator
         
     | 
| 79 | 
         
            +
                (A, Amat),
         
     | 
| 80 | 
         
            +
                (Dagger(A), Dagger(Amat)),
         
     | 
| 81 | 
         
            +
                # OuterProduct
         
     | 
| 82 | 
         
            +
                (OuterProduct(k, b), Avec*Avec.H),
         
     | 
| 83 | 
         
            +
                # TensorProduct
         
     | 
| 84 | 
         
            +
                (TensorProduct(A, B), matrix_tensor_product(Amat, Bmat)),
         
     | 
| 85 | 
         
            +
                # Pow
         
     | 
| 86 | 
         
            +
                (A**2, Amat**2),
         
     | 
| 87 | 
         
            +
                # Add/Mul
         
     | 
| 88 | 
         
            +
                (A*B + 2*A, Amat*Bmat + 2*Amat),
         
     | 
| 89 | 
         
            +
                # Commutator
         
     | 
| 90 | 
         
            +
                (Commutator(A, B), Amat*Bmat - Bmat*Amat),
         
     | 
| 91 | 
         
            +
                # AntiCommutator
         
     | 
| 92 | 
         
            +
                (AntiCommutator(A, B), Amat*Bmat + Bmat*Amat),
         
     | 
| 93 | 
         
            +
                # InnerProduct
         
     | 
| 94 | 
         
            +
                (InnerProduct(b, k), (Avec.H*Avec)[0])
         
     | 
| 95 | 
         
            +
            ]
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            def test_format_sympy():
         
     | 
| 99 | 
         
            +
                for test in _tests:
         
     | 
| 100 | 
         
            +
                    lhs = represent(test[0], basis=A, format='sympy')
         
     | 
| 101 | 
         
            +
                    rhs = to_sympy(test[1])
         
     | 
| 102 | 
         
            +
                    assert lhs == rhs
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            def test_scalar_sympy():
         
     | 
| 106 | 
         
            +
                assert represent(Integer(1)) == Integer(1)
         
     | 
| 107 | 
         
            +
                assert represent(Float(1.0)) == Float(1.0)
         
     | 
| 108 | 
         
            +
                assert represent(1.0 + I) == 1.0 + I
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            np = import_module('numpy')
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            def test_format_numpy():
         
     | 
| 115 | 
         
            +
                if not np:
         
     | 
| 116 | 
         
            +
                    skip("numpy not installed.")
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                for test in _tests:
         
     | 
| 119 | 
         
            +
                    lhs = represent(test[0], basis=A, format='numpy')
         
     | 
| 120 | 
         
            +
                    rhs = to_numpy(test[1])
         
     | 
| 121 | 
         
            +
                    if isinstance(lhs, numpy_ndarray):
         
     | 
| 122 | 
         
            +
                        assert (lhs == rhs).all()
         
     | 
| 123 | 
         
            +
                    else:
         
     | 
| 124 | 
         
            +
                        assert lhs == rhs
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
            def test_scalar_numpy():
         
     | 
| 128 | 
         
            +
                if not np:
         
     | 
| 129 | 
         
            +
                    skip("numpy not installed.")
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                assert represent(Integer(1), format='numpy') == 1
         
     | 
| 132 | 
         
            +
                assert represent(Float(1.0), format='numpy') == 1.0
         
     | 
| 133 | 
         
            +
                assert represent(1.0 + I, format='numpy') == 1.0 + 1.0j
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            def test_format_scipy_sparse():
         
     | 
| 140 | 
         
            +
                if not np:
         
     | 
| 141 | 
         
            +
                    skip("numpy not installed.")
         
     | 
| 142 | 
         
            +
                if not scipy:
         
     | 
| 143 | 
         
            +
                    skip("scipy not installed.")
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                for test in _tests:
         
     | 
| 146 | 
         
            +
                    lhs = represent(test[0], basis=A, format='scipy.sparse')
         
     | 
| 147 | 
         
            +
                    rhs = to_scipy_sparse(test[1])
         
     | 
| 148 | 
         
            +
                    if isinstance(lhs, scipy_sparse_matrix):
         
     | 
| 149 | 
         
            +
                        assert np.linalg.norm((lhs - rhs).todense()) == 0.0
         
     | 
| 150 | 
         
            +
                    else:
         
     | 
| 151 | 
         
            +
                        assert lhs == rhs
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            def test_scalar_scipy_sparse():
         
     | 
| 155 | 
         
            +
                if not np:
         
     | 
| 156 | 
         
            +
                    skip("numpy not installed.")
         
     | 
| 157 | 
         
            +
                if not scipy:
         
     | 
| 158 | 
         
            +
                    skip("scipy not installed.")
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                assert represent(Integer(1), format='scipy.sparse') == 1
         
     | 
| 161 | 
         
            +
                assert represent(Float(1.0), format='scipy.sparse') == 1.0
         
     | 
| 162 | 
         
            +
                assert represent(1.0 + I, format='scipy.sparse') == 1.0 + 1.0j
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
            x_ket = XKet('x')
         
     | 
| 165 | 
         
            +
            x_bra = XBra('x')
         
     | 
| 166 | 
         
            +
            x_op = XOp('X')
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            def test_innerprod_represent():
         
     | 
| 170 | 
         
            +
                assert rep_innerproduct(x_ket) == InnerProduct(XBra("x_1"), x_ket).doit()
         
     | 
| 171 | 
         
            +
                assert rep_innerproduct(x_bra) == InnerProduct(x_bra, XKet("x_1")).doit()
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                try:
         
     | 
| 174 | 
         
            +
                    rep_innerproduct(x_op)
         
     | 
| 175 | 
         
            +
                except TypeError:
         
     | 
| 176 | 
         
            +
                    return True
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            def test_operator_represent():
         
     | 
| 180 | 
         
            +
                basis_kets = enumerate_states(operators_to_state(x_op), 1, 2)
         
     | 
| 181 | 
         
            +
                assert rep_expectation(
         
     | 
| 182 | 
         
            +
                    x_op) == qapply(basis_kets[1].dual*x_op*basis_kets[0])
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            def test_enumerate_states():
         
     | 
| 186 | 
         
            +
                test = XKet("foo")
         
     | 
| 187 | 
         
            +
                assert enumerate_states(test, 1, 1) == [XKet("foo_1")]
         
     | 
| 188 | 
         
            +
                assert enumerate_states(
         
     | 
| 189 | 
         
            +
                    test, [1, 2, 4]) == [XKet("foo_1"), XKet("foo_2"), XKet("foo_4")]
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_shor.py
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from sympy.testing.pytest import XFAIL
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from sympy.physics.quantum.qapply import qapply
         
     | 
| 4 | 
         
            +
            from sympy.physics.quantum.qubit import Qubit
         
     | 
| 5 | 
         
            +
            from sympy.physics.quantum.shor import CMod, getr
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            @XFAIL
         
     | 
| 9 | 
         
            +
            def test_CMod():
         
     | 
| 10 | 
         
            +
                assert qapply(CMod(4, 2, 2)*Qubit(0, 0, 1, 0, 0, 0, 0, 0)) == \
         
     | 
| 11 | 
         
            +
                    Qubit(0, 0, 1, 0, 0, 0, 0, 0)
         
     | 
| 12 | 
         
            +
                assert qapply(CMod(5, 5, 7)*Qubit(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)) == \
         
     | 
| 13 | 
         
            +
                    Qubit(0, 0, 1, 0, 0, 0, 0, 0, 1, 0)
         
     | 
| 14 | 
         
            +
                assert qapply(CMod(3, 2, 3)*Qubit(0, 1, 0, 0, 0, 0)) == \
         
     | 
| 15 | 
         
            +
                    Qubit(0, 1, 0, 0, 0, 1)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def test_continued_frac():
         
     | 
| 19 | 
         
            +
                assert getr(513, 1024, 10) == 2
         
     | 
| 20 | 
         
            +
                assert getr(169, 1024, 11) == 6
         
     | 
| 21 | 
         
            +
                assert getr(314, 4096, 16) == 13
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_spin.py
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,36 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            __all__ = [
         
     | 
| 2 | 
         
            +
                'CoordinateSym', 'ReferenceFrame',
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
                'Dyadic',
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
                'Vector',
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                'Point',
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                'cross', 'dot', 'express', 'time_derivative', 'outer',
         
     | 
| 11 | 
         
            +
                'kinematic_equations', 'get_motion_params', 'partial_velocity',
         
     | 
| 12 | 
         
            +
                'dynamicsymbols',
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                'vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting',
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                'curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
         
     | 
| 17 | 
         
            +
                'scalar_potential', 'scalar_potential_difference',
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            ]
         
     | 
| 20 | 
         
            +
            from .frame import CoordinateSym, ReferenceFrame
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from .dyadic import Dyadic
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            from .vector import Vector
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            from .point import Point
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            from .functions import (cross, dot, express, time_derivative, outer,
         
     | 
| 29 | 
         
            +
                    kinematic_equations, get_motion_params, partial_velocity,
         
     | 
| 30 | 
         
            +
                    dynamicsymbols)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            from .printing import (vprint, vsstrrepr, vsprint, vpprint, vlatex,
         
     | 
| 33 | 
         
            +
                    init_vprinting)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            from .fieldfunctions import (curl, divergence, gradient, is_conservative,
         
     | 
| 36 | 
         
            +
                    is_solenoidal, scalar_potential, scalar_potential_difference)
         
     | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (1.08 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc
    ADDED
    
    | 
         Binary file (17.5 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc
    ADDED
    
    | 
         Binary file (7.74 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc
    ADDED
    
    | 
         Binary file (45.8 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc
    ADDED
    
    | 
         Binary file (19.4 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc
    ADDED
    
    | 
         Binary file (18.7 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/printing.cpython-310.pyc
    ADDED
    
    | 
         Binary file (10.7 kB). View file 
     | 
| 
         | 
    	
        env-llmeval/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/vector.cpython-310.pyc
    ADDED
    
    | 
         Binary file (24.8 kB). View file 
     | 
| 
         |