Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/categories/__init__.py +33 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/baseclasses.py +979 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py +2591 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py +209 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bessel.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/beta_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bsplines.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/delta_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/elliptic_integrals.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/error_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/gamma_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/hyper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/mathieu_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/polynomials.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/singularity_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/spherical_harmonics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/tensor_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/zeta_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/bench_special.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/bench_special.py +8 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_beta_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_delta_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_hyper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_mathieu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_singularity_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_spec_polynomials.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_spherical_harmonics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_tensor_functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__init__.py +36 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/fancysets.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/sets.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/conditionset.py +246 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/contains.py +48 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/fancysets.py +1521 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/add.py +79 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py +53 -0
- llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/functions.py +262 -0
llmeval-env/lib/python3.10/site-packages/sympy/categories/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Category Theory module.
|
3 |
+
|
4 |
+
Provides some of the fundamental category-theory-related classes,
|
5 |
+
including categories, morphisms, diagrams. Functors are not
|
6 |
+
implemented yet.
|
7 |
+
|
8 |
+
The general reference work this module tries to follow is
|
9 |
+
|
10 |
+
[JoyOfCats] J. Adamek, H. Herrlich. G. E. Strecker: Abstract and
|
11 |
+
Concrete Categories. The Joy of Cats.
|
12 |
+
|
13 |
+
The latest version of this book should be available for free download
|
14 |
+
from
|
15 |
+
|
16 |
+
katmat.math.uni-bremen.de/acc/acc.pdf
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
from .baseclasses import (Object, Morphism, IdentityMorphism,
|
21 |
+
NamedMorphism, CompositeMorphism, Category,
|
22 |
+
Diagram)
|
23 |
+
|
24 |
+
from .diagram_drawing import (DiagramGrid, XypicDiagramDrawer,
|
25 |
+
xypic_draw_diagram, preview_diagram)
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'Object', 'Morphism', 'IdentityMorphism', 'NamedMorphism',
|
29 |
+
'CompositeMorphism', 'Category', 'Diagram',
|
30 |
+
|
31 |
+
'DiagramGrid', 'XypicDiagramDrawer', 'xypic_draw_diagram',
|
32 |
+
'preview_diagram',
|
33 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc
ADDED
Binary file (28.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc
ADDED
Binary file (65.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/baseclasses.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify
|
2 |
+
from sympy.core.symbol import Str
|
3 |
+
from sympy.sets import Set, FiniteSet, EmptySet
|
4 |
+
from sympy.utilities.iterables import iterable
|
5 |
+
|
6 |
+
|
7 |
+
class Class(Set):
|
8 |
+
r"""
|
9 |
+
The base class for any kind of class in the set-theoretic sense.
|
10 |
+
|
11 |
+
Explanation
|
12 |
+
===========
|
13 |
+
|
14 |
+
In axiomatic set theories, everything is a class. A class which
|
15 |
+
can be a member of another class is a set. A class which is not a
|
16 |
+
member of another class is a proper class. The class `\{1, 2\}`
|
17 |
+
is a set; the class of all sets is a proper class.
|
18 |
+
|
19 |
+
This class is essentially a synonym for :class:`sympy.core.Set`.
|
20 |
+
The goal of this class is to assure easier migration to the
|
21 |
+
eventual proper implementation of set theory.
|
22 |
+
"""
|
23 |
+
is_proper = False
|
24 |
+
|
25 |
+
|
26 |
+
class Object(Symbol):
|
27 |
+
"""
|
28 |
+
The base class for any kind of object in an abstract category.
|
29 |
+
|
30 |
+
Explanation
|
31 |
+
===========
|
32 |
+
|
33 |
+
While technically any instance of :class:`~.Basic` will do, this
|
34 |
+
class is the recommended way to create abstract objects in
|
35 |
+
abstract categories.
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class Morphism(Basic):
|
40 |
+
"""
|
41 |
+
The base class for any morphism in an abstract category.
|
42 |
+
|
43 |
+
Explanation
|
44 |
+
===========
|
45 |
+
|
46 |
+
In abstract categories, a morphism is an arrow between two
|
47 |
+
category objects. The object where the arrow starts is called the
|
48 |
+
domain, while the object where the arrow ends is called the
|
49 |
+
codomain.
|
50 |
+
|
51 |
+
Two morphisms between the same pair of objects are considered to
|
52 |
+
be the same morphisms. To distinguish between morphisms between
|
53 |
+
the same objects use :class:`NamedMorphism`.
|
54 |
+
|
55 |
+
It is prohibited to instantiate this class. Use one of the
|
56 |
+
derived classes instead.
|
57 |
+
|
58 |
+
See Also
|
59 |
+
========
|
60 |
+
|
61 |
+
IdentityMorphism, NamedMorphism, CompositeMorphism
|
62 |
+
"""
|
63 |
+
def __new__(cls, domain, codomain):
|
64 |
+
raise(NotImplementedError(
|
65 |
+
"Cannot instantiate Morphism. Use derived classes instead."))
|
66 |
+
|
67 |
+
@property
|
68 |
+
def domain(self):
|
69 |
+
"""
|
70 |
+
Returns the domain of the morphism.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
========
|
74 |
+
|
75 |
+
>>> from sympy.categories import Object, NamedMorphism
|
76 |
+
>>> A = Object("A")
|
77 |
+
>>> B = Object("B")
|
78 |
+
>>> f = NamedMorphism(A, B, "f")
|
79 |
+
>>> f.domain
|
80 |
+
Object("A")
|
81 |
+
|
82 |
+
"""
|
83 |
+
return self.args[0]
|
84 |
+
|
85 |
+
@property
|
86 |
+
def codomain(self):
|
87 |
+
"""
|
88 |
+
Returns the codomain of the morphism.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.categories import Object, NamedMorphism
|
94 |
+
>>> A = Object("A")
|
95 |
+
>>> B = Object("B")
|
96 |
+
>>> f = NamedMorphism(A, B, "f")
|
97 |
+
>>> f.codomain
|
98 |
+
Object("B")
|
99 |
+
|
100 |
+
"""
|
101 |
+
return self.args[1]
|
102 |
+
|
103 |
+
def compose(self, other):
|
104 |
+
r"""
|
105 |
+
Composes self with the supplied morphism.
|
106 |
+
|
107 |
+
The order of elements in the composition is the usual order,
|
108 |
+
i.e., to construct `g\circ f` use ``g.compose(f)``.
|
109 |
+
|
110 |
+
Examples
|
111 |
+
========
|
112 |
+
|
113 |
+
>>> from sympy.categories import Object, NamedMorphism
|
114 |
+
>>> A = Object("A")
|
115 |
+
>>> B = Object("B")
|
116 |
+
>>> C = Object("C")
|
117 |
+
>>> f = NamedMorphism(A, B, "f")
|
118 |
+
>>> g = NamedMorphism(B, C, "g")
|
119 |
+
>>> g * f
|
120 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
121 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
122 |
+
>>> (g * f).domain
|
123 |
+
Object("A")
|
124 |
+
>>> (g * f).codomain
|
125 |
+
Object("C")
|
126 |
+
|
127 |
+
"""
|
128 |
+
return CompositeMorphism(other, self)
|
129 |
+
|
130 |
+
def __mul__(self, other):
|
131 |
+
r"""
|
132 |
+
Composes self with the supplied morphism.
|
133 |
+
|
134 |
+
The semantics of this operation is given by the following
|
135 |
+
equation: ``g * f == g.compose(f)`` for composable morphisms
|
136 |
+
``g`` and ``f``.
|
137 |
+
|
138 |
+
See Also
|
139 |
+
========
|
140 |
+
|
141 |
+
compose
|
142 |
+
"""
|
143 |
+
return self.compose(other)
|
144 |
+
|
145 |
+
|
146 |
+
class IdentityMorphism(Morphism):
|
147 |
+
"""
|
148 |
+
Represents an identity morphism.
|
149 |
+
|
150 |
+
Explanation
|
151 |
+
===========
|
152 |
+
|
153 |
+
An identity morphism is a morphism with equal domain and codomain,
|
154 |
+
which acts as an identity with respect to composition.
|
155 |
+
|
156 |
+
Examples
|
157 |
+
========
|
158 |
+
|
159 |
+
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
|
160 |
+
>>> A = Object("A")
|
161 |
+
>>> B = Object("B")
|
162 |
+
>>> f = NamedMorphism(A, B, "f")
|
163 |
+
>>> id_A = IdentityMorphism(A)
|
164 |
+
>>> id_B = IdentityMorphism(B)
|
165 |
+
>>> f * id_A == f
|
166 |
+
True
|
167 |
+
>>> id_B * f == f
|
168 |
+
True
|
169 |
+
|
170 |
+
See Also
|
171 |
+
========
|
172 |
+
|
173 |
+
Morphism
|
174 |
+
"""
|
175 |
+
def __new__(cls, domain):
|
176 |
+
return Basic.__new__(cls, domain)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def codomain(self):
|
180 |
+
return self.domain
|
181 |
+
|
182 |
+
|
183 |
+
class NamedMorphism(Morphism):
|
184 |
+
"""
|
185 |
+
Represents a morphism which has a name.
|
186 |
+
|
187 |
+
Explanation
|
188 |
+
===========
|
189 |
+
|
190 |
+
Names are used to distinguish between morphisms which have the
|
191 |
+
same domain and codomain: two named morphisms are equal if they
|
192 |
+
have the same domains, codomains, and names.
|
193 |
+
|
194 |
+
Examples
|
195 |
+
========
|
196 |
+
|
197 |
+
>>> from sympy.categories import Object, NamedMorphism
|
198 |
+
>>> A = Object("A")
|
199 |
+
>>> B = Object("B")
|
200 |
+
>>> f = NamedMorphism(A, B, "f")
|
201 |
+
>>> f
|
202 |
+
NamedMorphism(Object("A"), Object("B"), "f")
|
203 |
+
>>> f.name
|
204 |
+
'f'
|
205 |
+
|
206 |
+
See Also
|
207 |
+
========
|
208 |
+
|
209 |
+
Morphism
|
210 |
+
"""
|
211 |
+
def __new__(cls, domain, codomain, name):
|
212 |
+
if not name:
|
213 |
+
raise ValueError("Empty morphism names not allowed.")
|
214 |
+
|
215 |
+
if not isinstance(name, Str):
|
216 |
+
name = Str(name)
|
217 |
+
|
218 |
+
return Basic.__new__(cls, domain, codomain, name)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def name(self):
|
222 |
+
"""
|
223 |
+
Returns the name of the morphism.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy.categories import Object, NamedMorphism
|
229 |
+
>>> A = Object("A")
|
230 |
+
>>> B = Object("B")
|
231 |
+
>>> f = NamedMorphism(A, B, "f")
|
232 |
+
>>> f.name
|
233 |
+
'f'
|
234 |
+
|
235 |
+
"""
|
236 |
+
return self.args[2].name
|
237 |
+
|
238 |
+
|
239 |
+
class CompositeMorphism(Morphism):
|
240 |
+
r"""
|
241 |
+
Represents a morphism which is a composition of other morphisms.
|
242 |
+
|
243 |
+
Explanation
|
244 |
+
===========
|
245 |
+
|
246 |
+
Two composite morphisms are equal if the morphisms they were
|
247 |
+
obtained from (components) are the same and were listed in the
|
248 |
+
same order.
|
249 |
+
|
250 |
+
The arguments to the constructor for this class should be listed
|
251 |
+
in diagram order: to obtain the composition `g\circ f` from the
|
252 |
+
instances of :class:`Morphism` ``g`` and ``f`` use
|
253 |
+
``CompositeMorphism(f, g)``.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
|
259 |
+
>>> A = Object("A")
|
260 |
+
>>> B = Object("B")
|
261 |
+
>>> C = Object("C")
|
262 |
+
>>> f = NamedMorphism(A, B, "f")
|
263 |
+
>>> g = NamedMorphism(B, C, "g")
|
264 |
+
>>> g * f
|
265 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
266 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
267 |
+
>>> CompositeMorphism(f, g) == g * f
|
268 |
+
True
|
269 |
+
|
270 |
+
"""
|
271 |
+
@staticmethod
|
272 |
+
def _add_morphism(t, morphism):
|
273 |
+
"""
|
274 |
+
Intelligently adds ``morphism`` to tuple ``t``.
|
275 |
+
|
276 |
+
Explanation
|
277 |
+
===========
|
278 |
+
|
279 |
+
If ``morphism`` is a composite morphism, its components are
|
280 |
+
added to the tuple. If ``morphism`` is an identity, nothing
|
281 |
+
is added to the tuple.
|
282 |
+
|
283 |
+
No composability checks are performed.
|
284 |
+
"""
|
285 |
+
if isinstance(morphism, CompositeMorphism):
|
286 |
+
# ``morphism`` is a composite morphism; we have to
|
287 |
+
# denest its components.
|
288 |
+
return t + morphism.components
|
289 |
+
elif isinstance(morphism, IdentityMorphism):
|
290 |
+
# ``morphism`` is an identity. Nothing happens.
|
291 |
+
return t
|
292 |
+
else:
|
293 |
+
return t + Tuple(morphism)
|
294 |
+
|
295 |
+
def __new__(cls, *components):
|
296 |
+
if components and not isinstance(components[0], Morphism):
|
297 |
+
# Maybe the user has explicitly supplied a list of
|
298 |
+
# morphisms.
|
299 |
+
return CompositeMorphism.__new__(cls, *components[0])
|
300 |
+
|
301 |
+
normalised_components = Tuple()
|
302 |
+
|
303 |
+
for current, following in zip(components, components[1:]):
|
304 |
+
if not isinstance(current, Morphism) or \
|
305 |
+
not isinstance(following, Morphism):
|
306 |
+
raise TypeError("All components must be morphisms.")
|
307 |
+
|
308 |
+
if current.codomain != following.domain:
|
309 |
+
raise ValueError("Uncomposable morphisms.")
|
310 |
+
|
311 |
+
normalised_components = CompositeMorphism._add_morphism(
|
312 |
+
normalised_components, current)
|
313 |
+
|
314 |
+
# We haven't added the last morphism to the list of normalised
|
315 |
+
# components. Add it now.
|
316 |
+
normalised_components = CompositeMorphism._add_morphism(
|
317 |
+
normalised_components, components[-1])
|
318 |
+
|
319 |
+
if not normalised_components:
|
320 |
+
# If ``normalised_components`` is empty, only identities
|
321 |
+
# were supplied. Since they all were composable, they are
|
322 |
+
# all the same identities.
|
323 |
+
return components[0]
|
324 |
+
elif len(normalised_components) == 1:
|
325 |
+
# No sense to construct a whole CompositeMorphism.
|
326 |
+
return normalised_components[0]
|
327 |
+
|
328 |
+
return Basic.__new__(cls, normalised_components)
|
329 |
+
|
330 |
+
@property
|
331 |
+
def components(self):
|
332 |
+
"""
|
333 |
+
Returns the components of this composite morphism.
|
334 |
+
|
335 |
+
Examples
|
336 |
+
========
|
337 |
+
|
338 |
+
>>> from sympy.categories import Object, NamedMorphism
|
339 |
+
>>> A = Object("A")
|
340 |
+
>>> B = Object("B")
|
341 |
+
>>> C = Object("C")
|
342 |
+
>>> f = NamedMorphism(A, B, "f")
|
343 |
+
>>> g = NamedMorphism(B, C, "g")
|
344 |
+
>>> (g * f).components
|
345 |
+
(NamedMorphism(Object("A"), Object("B"), "f"),
|
346 |
+
NamedMorphism(Object("B"), Object("C"), "g"))
|
347 |
+
|
348 |
+
"""
|
349 |
+
return self.args[0]
|
350 |
+
|
351 |
+
@property
|
352 |
+
def domain(self):
|
353 |
+
"""
|
354 |
+
Returns the domain of this composite morphism.
|
355 |
+
|
356 |
+
The domain of the composite morphism is the domain of its
|
357 |
+
first component.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy.categories import Object, NamedMorphism
|
363 |
+
>>> A = Object("A")
|
364 |
+
>>> B = Object("B")
|
365 |
+
>>> C = Object("C")
|
366 |
+
>>> f = NamedMorphism(A, B, "f")
|
367 |
+
>>> g = NamedMorphism(B, C, "g")
|
368 |
+
>>> (g * f).domain
|
369 |
+
Object("A")
|
370 |
+
|
371 |
+
"""
|
372 |
+
return self.components[0].domain
|
373 |
+
|
374 |
+
@property
|
375 |
+
def codomain(self):
|
376 |
+
"""
|
377 |
+
Returns the codomain of this composite morphism.
|
378 |
+
|
379 |
+
The codomain of the composite morphism is the codomain of its
|
380 |
+
last component.
|
381 |
+
|
382 |
+
Examples
|
383 |
+
========
|
384 |
+
|
385 |
+
>>> from sympy.categories import Object, NamedMorphism
|
386 |
+
>>> A = Object("A")
|
387 |
+
>>> B = Object("B")
|
388 |
+
>>> C = Object("C")
|
389 |
+
>>> f = NamedMorphism(A, B, "f")
|
390 |
+
>>> g = NamedMorphism(B, C, "g")
|
391 |
+
>>> (g * f).codomain
|
392 |
+
Object("C")
|
393 |
+
|
394 |
+
"""
|
395 |
+
return self.components[-1].codomain
|
396 |
+
|
397 |
+
def flatten(self, new_name):
|
398 |
+
"""
|
399 |
+
Forgets the composite structure of this morphism.
|
400 |
+
|
401 |
+
Explanation
|
402 |
+
===========
|
403 |
+
|
404 |
+
If ``new_name`` is not empty, returns a :class:`NamedMorphism`
|
405 |
+
with the supplied name, otherwise returns a :class:`Morphism`.
|
406 |
+
In both cases the domain of the new morphism is the domain of
|
407 |
+
this composite morphism and the codomain of the new morphism
|
408 |
+
is the codomain of this composite morphism.
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy.categories import Object, NamedMorphism
|
414 |
+
>>> A = Object("A")
|
415 |
+
>>> B = Object("B")
|
416 |
+
>>> C = Object("C")
|
417 |
+
>>> f = NamedMorphism(A, B, "f")
|
418 |
+
>>> g = NamedMorphism(B, C, "g")
|
419 |
+
>>> (g * f).flatten("h")
|
420 |
+
NamedMorphism(Object("A"), Object("C"), "h")
|
421 |
+
|
422 |
+
"""
|
423 |
+
return NamedMorphism(self.domain, self.codomain, new_name)
|
424 |
+
|
425 |
+
|
426 |
+
class Category(Basic):
|
427 |
+
r"""
|
428 |
+
An (abstract) category.
|
429 |
+
|
430 |
+
Explanation
|
431 |
+
===========
|
432 |
+
|
433 |
+
A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id,
|
434 |
+
\circ)` consisting of
|
435 |
+
|
436 |
+
* a (set-theoretical) class `O`, whose members are called
|
437 |
+
`K`-objects,
|
438 |
+
|
439 |
+
* for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose
|
440 |
+
members are called `K`-morphisms from `A` to `B`,
|
441 |
+
|
442 |
+
* for a each `K`-object `A`, a morphism `id:A\rightarrow A`,
|
443 |
+
called the `K`-identity of `A`,
|
444 |
+
|
445 |
+
* a composition law `\circ` associating with every `K`-morphisms
|
446 |
+
`f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ
|
447 |
+
f:A\rightarrow C`, called the composite of `f` and `g`.
|
448 |
+
|
449 |
+
Composition is associative, `K`-identities are identities with
|
450 |
+
respect to composition, and the sets `\hom(A, B)` are pairwise
|
451 |
+
disjoint.
|
452 |
+
|
453 |
+
This class knows nothing about its objects and morphisms.
|
454 |
+
Concrete cases of (abstract) categories should be implemented as
|
455 |
+
classes derived from this one.
|
456 |
+
|
457 |
+
Certain instances of :class:`Diagram` can be asserted to be
|
458 |
+
commutative in a :class:`Category` by supplying the argument
|
459 |
+
``commutative_diagrams`` in the constructor.
|
460 |
+
|
461 |
+
Examples
|
462 |
+
========
|
463 |
+
|
464 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
465 |
+
>>> from sympy import FiniteSet
|
466 |
+
>>> A = Object("A")
|
467 |
+
>>> B = Object("B")
|
468 |
+
>>> C = Object("C")
|
469 |
+
>>> f = NamedMorphism(A, B, "f")
|
470 |
+
>>> g = NamedMorphism(B, C, "g")
|
471 |
+
>>> d = Diagram([f, g])
|
472 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
473 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
474 |
+
True
|
475 |
+
|
476 |
+
See Also
|
477 |
+
========
|
478 |
+
|
479 |
+
Diagram
|
480 |
+
"""
|
481 |
+
def __new__(cls, name, objects=EmptySet, commutative_diagrams=EmptySet):
|
482 |
+
if not name:
|
483 |
+
raise ValueError("A Category cannot have an empty name.")
|
484 |
+
|
485 |
+
if not isinstance(name, Str):
|
486 |
+
name = Str(name)
|
487 |
+
|
488 |
+
if not isinstance(objects, Class):
|
489 |
+
objects = Class(objects)
|
490 |
+
|
491 |
+
new_category = Basic.__new__(cls, name, objects,
|
492 |
+
FiniteSet(*commutative_diagrams))
|
493 |
+
return new_category
|
494 |
+
|
495 |
+
@property
|
496 |
+
def name(self):
|
497 |
+
"""
|
498 |
+
Returns the name of this category.
|
499 |
+
|
500 |
+
Examples
|
501 |
+
========
|
502 |
+
|
503 |
+
>>> from sympy.categories import Category
|
504 |
+
>>> K = Category("K")
|
505 |
+
>>> K.name
|
506 |
+
'K'
|
507 |
+
|
508 |
+
"""
|
509 |
+
return self.args[0].name
|
510 |
+
|
511 |
+
@property
|
512 |
+
def objects(self):
|
513 |
+
"""
|
514 |
+
Returns the class of objects of this category.
|
515 |
+
|
516 |
+
Examples
|
517 |
+
========
|
518 |
+
|
519 |
+
>>> from sympy.categories import Object, Category
|
520 |
+
>>> from sympy import FiniteSet
|
521 |
+
>>> A = Object("A")
|
522 |
+
>>> B = Object("B")
|
523 |
+
>>> K = Category("K", FiniteSet(A, B))
|
524 |
+
>>> K.objects
|
525 |
+
Class({Object("A"), Object("B")})
|
526 |
+
|
527 |
+
"""
|
528 |
+
return self.args[1]
|
529 |
+
|
530 |
+
@property
|
531 |
+
def commutative_diagrams(self):
|
532 |
+
"""
|
533 |
+
Returns the :class:`~.FiniteSet` of diagrams which are known to
|
534 |
+
be commutative in this category.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
========
|
538 |
+
|
539 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
540 |
+
>>> from sympy import FiniteSet
|
541 |
+
>>> A = Object("A")
|
542 |
+
>>> B = Object("B")
|
543 |
+
>>> C = Object("C")
|
544 |
+
>>> f = NamedMorphism(A, B, "f")
|
545 |
+
>>> g = NamedMorphism(B, C, "g")
|
546 |
+
>>> d = Diagram([f, g])
|
547 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
548 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
549 |
+
True
|
550 |
+
|
551 |
+
"""
|
552 |
+
return self.args[2]
|
553 |
+
|
554 |
+
def hom(self, A, B):
|
555 |
+
raise NotImplementedError(
|
556 |
+
"hom-sets are not implemented in Category.")
|
557 |
+
|
558 |
+
def all_morphisms(self):
|
559 |
+
raise NotImplementedError(
|
560 |
+
"Obtaining the class of morphisms is not implemented in Category.")
|
561 |
+
|
562 |
+
|
563 |
+
class Diagram(Basic):
|
564 |
+
r"""
|
565 |
+
Represents a diagram in a certain category.
|
566 |
+
|
567 |
+
Explanation
|
568 |
+
===========
|
569 |
+
|
570 |
+
Informally, a diagram is a collection of objects of a category and
|
571 |
+
certain morphisms between them. A diagram is still a monoid with
|
572 |
+
respect to morphism composition; i.e., identity morphisms, as well
|
573 |
+
as all composites of morphisms included in the diagram belong to
|
574 |
+
the diagram. For a more formal approach to this notion see
|
575 |
+
[Pare1970].
|
576 |
+
|
577 |
+
The components of composite morphisms are also added to the
|
578 |
+
diagram. No properties are assigned to such morphisms by default.
|
579 |
+
|
580 |
+
A commutative diagram is often accompanied by a statement of the
|
581 |
+
following kind: "if such morphisms with such properties exist,
|
582 |
+
then such morphisms which such properties exist and the diagram is
|
583 |
+
commutative". To represent this, an instance of :class:`Diagram`
|
584 |
+
includes a collection of morphisms which are the premises and
|
585 |
+
another collection of conclusions. ``premises`` and
|
586 |
+
``conclusions`` associate morphisms belonging to the corresponding
|
587 |
+
categories with the :class:`~.FiniteSet`'s of their properties.
|
588 |
+
|
589 |
+
The set of properties of a composite morphism is the intersection
|
590 |
+
of the sets of properties of its components. The domain and
|
591 |
+
codomain of a conclusion morphism should be among the domains and
|
592 |
+
codomains of the morphisms listed as the premises of a diagram.
|
593 |
+
|
594 |
+
No checks are carried out of whether the supplied object and
|
595 |
+
morphisms do belong to one and the same category.
|
596 |
+
|
597 |
+
Examples
|
598 |
+
========
|
599 |
+
|
600 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
601 |
+
>>> from sympy import pprint, default_sort_key
|
602 |
+
>>> A = Object("A")
|
603 |
+
>>> B = Object("B")
|
604 |
+
>>> C = Object("C")
|
605 |
+
>>> f = NamedMorphism(A, B, "f")
|
606 |
+
>>> g = NamedMorphism(B, C, "g")
|
607 |
+
>>> d = Diagram([f, g])
|
608 |
+
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
|
609 |
+
>>> pprint(premises_keys, use_unicode=False)
|
610 |
+
[g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C]
|
611 |
+
>>> pprint(d.premises, use_unicode=False)
|
612 |
+
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: EmptyS
|
613 |
+
et, f:A-->B: EmptySet, g:B-->C: EmptySet}
|
614 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
615 |
+
>>> pprint(d.conclusions,use_unicode=False)
|
616 |
+
{g*f:A-->C: {unique}}
|
617 |
+
|
618 |
+
References
|
619 |
+
==========
|
620 |
+
|
621 |
+
[Pare1970] B. Pareigis: Categories and functors. Academic Press, 1970.
|
622 |
+
|
623 |
+
"""
|
624 |
+
@staticmethod
|
625 |
+
def _set_dict_union(dictionary, key, value):
|
626 |
+
"""
|
627 |
+
If ``key`` is in ``dictionary``, set the new value of ``key``
|
628 |
+
to be the union between the old value and ``value``.
|
629 |
+
Otherwise, set the value of ``key`` to ``value.
|
630 |
+
|
631 |
+
Returns ``True`` if the key already was in the dictionary and
|
632 |
+
``False`` otherwise.
|
633 |
+
"""
|
634 |
+
if key in dictionary:
|
635 |
+
dictionary[key] = dictionary[key] | value
|
636 |
+
return True
|
637 |
+
else:
|
638 |
+
dictionary[key] = value
|
639 |
+
return False
|
640 |
+
|
641 |
+
@staticmethod
|
642 |
+
def _add_morphism_closure(morphisms, morphism, props, add_identities=True,
|
643 |
+
recurse_composites=True):
|
644 |
+
"""
|
645 |
+
Adds a morphism and its attributes to the supplied dictionary
|
646 |
+
``morphisms``. If ``add_identities`` is True, also adds the
|
647 |
+
identity morphisms for the domain and the codomain of
|
648 |
+
``morphism``.
|
649 |
+
"""
|
650 |
+
if not Diagram._set_dict_union(morphisms, morphism, props):
|
651 |
+
# We have just added a new morphism.
|
652 |
+
|
653 |
+
if isinstance(morphism, IdentityMorphism):
|
654 |
+
if props:
|
655 |
+
# Properties for identity morphisms don't really
|
656 |
+
# make sense, because very much is known about
|
657 |
+
# identity morphisms already, so much that they
|
658 |
+
# are trivial. Having properties for identity
|
659 |
+
# morphisms would only be confusing.
|
660 |
+
raise ValueError(
|
661 |
+
"Instances of IdentityMorphism cannot have properties.")
|
662 |
+
return
|
663 |
+
|
664 |
+
if add_identities:
|
665 |
+
empty = EmptySet
|
666 |
+
|
667 |
+
id_dom = IdentityMorphism(morphism.domain)
|
668 |
+
id_cod = IdentityMorphism(morphism.codomain)
|
669 |
+
|
670 |
+
Diagram._set_dict_union(morphisms, id_dom, empty)
|
671 |
+
Diagram._set_dict_union(morphisms, id_cod, empty)
|
672 |
+
|
673 |
+
for existing_morphism, existing_props in list(morphisms.items()):
|
674 |
+
new_props = existing_props & props
|
675 |
+
if morphism.domain == existing_morphism.codomain:
|
676 |
+
left = morphism * existing_morphism
|
677 |
+
Diagram._set_dict_union(morphisms, left, new_props)
|
678 |
+
if morphism.codomain == existing_morphism.domain:
|
679 |
+
right = existing_morphism * morphism
|
680 |
+
Diagram._set_dict_union(morphisms, right, new_props)
|
681 |
+
|
682 |
+
if isinstance(morphism, CompositeMorphism) and recurse_composites:
|
683 |
+
# This is a composite morphism, add its components as
|
684 |
+
# well.
|
685 |
+
empty = EmptySet
|
686 |
+
for component in morphism.components:
|
687 |
+
Diagram._add_morphism_closure(morphisms, component, empty,
|
688 |
+
add_identities)
|
689 |
+
|
690 |
+
def __new__(cls, *args):
|
691 |
+
"""
|
692 |
+
Construct a new instance of Diagram.
|
693 |
+
|
694 |
+
Explanation
|
695 |
+
===========
|
696 |
+
|
697 |
+
If no arguments are supplied, an empty diagram is created.
|
698 |
+
|
699 |
+
If at least an argument is supplied, ``args[0]`` is
|
700 |
+
interpreted as the premises of the diagram. If ``args[0]`` is
|
701 |
+
a list, it is interpreted as a list of :class:`Morphism`'s, in
|
702 |
+
which each :class:`Morphism` has an empty set of properties.
|
703 |
+
If ``args[0]`` is a Python dictionary or a :class:`Dict`, it
|
704 |
+
is interpreted as a dictionary associating to some
|
705 |
+
:class:`Morphism`'s some properties.
|
706 |
+
|
707 |
+
If at least two arguments are supplied ``args[1]`` is
|
708 |
+
interpreted as the conclusions of the diagram. The type of
|
709 |
+
``args[1]`` is interpreted in exactly the same way as the type
|
710 |
+
of ``args[0]``. If only one argument is supplied, the diagram
|
711 |
+
has no conclusions.
|
712 |
+
|
713 |
+
Examples
|
714 |
+
========
|
715 |
+
|
716 |
+
>>> from sympy.categories import Object, NamedMorphism
|
717 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
718 |
+
>>> A = Object("A")
|
719 |
+
>>> B = Object("B")
|
720 |
+
>>> C = Object("C")
|
721 |
+
>>> f = NamedMorphism(A, B, "f")
|
722 |
+
>>> g = NamedMorphism(B, C, "g")
|
723 |
+
>>> d = Diagram([f, g])
|
724 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
725 |
+
True
|
726 |
+
>>> g * f in d.premises.keys()
|
727 |
+
True
|
728 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
729 |
+
>>> d.conclusions[g * f]
|
730 |
+
{unique}
|
731 |
+
|
732 |
+
"""
|
733 |
+
premises = {}
|
734 |
+
conclusions = {}
|
735 |
+
|
736 |
+
# Here we will keep track of the objects which appear in the
|
737 |
+
# premises.
|
738 |
+
objects = EmptySet
|
739 |
+
|
740 |
+
if len(args) >= 1:
|
741 |
+
# We've got some premises in the arguments.
|
742 |
+
premises_arg = args[0]
|
743 |
+
|
744 |
+
if isinstance(premises_arg, list):
|
745 |
+
# The user has supplied a list of morphisms, none of
|
746 |
+
# which have any attributes.
|
747 |
+
empty = EmptySet
|
748 |
+
|
749 |
+
for morphism in premises_arg:
|
750 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
751 |
+
Diagram._add_morphism_closure(premises, morphism, empty)
|
752 |
+
elif isinstance(premises_arg, (dict, Dict)):
|
753 |
+
# The user has supplied a dictionary of morphisms and
|
754 |
+
# their properties.
|
755 |
+
for morphism, props in premises_arg.items():
|
756 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
757 |
+
Diagram._add_morphism_closure(
|
758 |
+
premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props))
|
759 |
+
|
760 |
+
if len(args) >= 2:
|
761 |
+
# We also have some conclusions.
|
762 |
+
conclusions_arg = args[1]
|
763 |
+
|
764 |
+
if isinstance(conclusions_arg, list):
|
765 |
+
# The user has supplied a list of morphisms, none of
|
766 |
+
# which have any attributes.
|
767 |
+
empty = EmptySet
|
768 |
+
|
769 |
+
for morphism in conclusions_arg:
|
770 |
+
# Check that no new objects appear in conclusions.
|
771 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
772 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
773 |
+
# No need to add identities and recurse
|
774 |
+
# composites this time.
|
775 |
+
Diagram._add_morphism_closure(
|
776 |
+
conclusions, morphism, empty, add_identities=False,
|
777 |
+
recurse_composites=False)
|
778 |
+
elif isinstance(conclusions_arg, dict) or \
|
779 |
+
isinstance(conclusions_arg, Dict):
|
780 |
+
# The user has supplied a dictionary of morphisms and
|
781 |
+
# their properties.
|
782 |
+
for morphism, props in conclusions_arg.items():
|
783 |
+
# Check that no new objects appear in conclusions.
|
784 |
+
if (morphism.domain in objects) and \
|
785 |
+
(morphism.codomain in objects):
|
786 |
+
# No need to add identities and recurse
|
787 |
+
# composites this time.
|
788 |
+
Diagram._add_morphism_closure(
|
789 |
+
conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props),
|
790 |
+
add_identities=False, recurse_composites=False)
|
791 |
+
|
792 |
+
return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects)
|
793 |
+
|
794 |
+
@property
|
795 |
+
def premises(self):
|
796 |
+
"""
|
797 |
+
Returns the premises of this diagram.
|
798 |
+
|
799 |
+
Examples
|
800 |
+
========
|
801 |
+
|
802 |
+
>>> from sympy.categories import Object, NamedMorphism
|
803 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
804 |
+
>>> from sympy import pretty
|
805 |
+
>>> A = Object("A")
|
806 |
+
>>> B = Object("B")
|
807 |
+
>>> f = NamedMorphism(A, B, "f")
|
808 |
+
>>> id_A = IdentityMorphism(A)
|
809 |
+
>>> id_B = IdentityMorphism(B)
|
810 |
+
>>> d = Diagram([f])
|
811 |
+
>>> print(pretty(d.premises, use_unicode=False))
|
812 |
+
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
|
813 |
+
|
814 |
+
"""
|
815 |
+
return self.args[0]
|
816 |
+
|
817 |
+
@property
|
818 |
+
def conclusions(self):
|
819 |
+
"""
|
820 |
+
Returns the conclusions of this diagram.
|
821 |
+
|
822 |
+
Examples
|
823 |
+
========
|
824 |
+
|
825 |
+
>>> from sympy.categories import Object, NamedMorphism
|
826 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
827 |
+
>>> from sympy import FiniteSet
|
828 |
+
>>> A = Object("A")
|
829 |
+
>>> B = Object("B")
|
830 |
+
>>> C = Object("C")
|
831 |
+
>>> f = NamedMorphism(A, B, "f")
|
832 |
+
>>> g = NamedMorphism(B, C, "g")
|
833 |
+
>>> d = Diagram([f, g])
|
834 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
835 |
+
True
|
836 |
+
>>> g * f in d.premises.keys()
|
837 |
+
True
|
838 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
839 |
+
>>> d.conclusions[g * f] == FiniteSet("unique")
|
840 |
+
True
|
841 |
+
|
842 |
+
"""
|
843 |
+
return self.args[1]
|
844 |
+
|
845 |
+
@property
|
846 |
+
def objects(self):
|
847 |
+
"""
|
848 |
+
Returns the :class:`~.FiniteSet` of objects that appear in this
|
849 |
+
diagram.
|
850 |
+
|
851 |
+
Examples
|
852 |
+
========
|
853 |
+
|
854 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
855 |
+
>>> A = Object("A")
|
856 |
+
>>> B = Object("B")
|
857 |
+
>>> C = Object("C")
|
858 |
+
>>> f = NamedMorphism(A, B, "f")
|
859 |
+
>>> g = NamedMorphism(B, C, "g")
|
860 |
+
>>> d = Diagram([f, g])
|
861 |
+
>>> d.objects
|
862 |
+
{Object("A"), Object("B"), Object("C")}
|
863 |
+
|
864 |
+
"""
|
865 |
+
return self.args[2]
|
866 |
+
|
867 |
+
def hom(self, A, B):
|
868 |
+
"""
|
869 |
+
Returns a 2-tuple of sets of morphisms between objects ``A`` and
|
870 |
+
``B``: one set of morphisms listed as premises, and the other set
|
871 |
+
of morphisms listed as conclusions.
|
872 |
+
|
873 |
+
Examples
|
874 |
+
========
|
875 |
+
|
876 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
877 |
+
>>> from sympy import pretty
|
878 |
+
>>> A = Object("A")
|
879 |
+
>>> B = Object("B")
|
880 |
+
>>> C = Object("C")
|
881 |
+
>>> f = NamedMorphism(A, B, "f")
|
882 |
+
>>> g = NamedMorphism(B, C, "g")
|
883 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
884 |
+
>>> print(pretty(d.hom(A, C), use_unicode=False))
|
885 |
+
({g*f:A-->C}, {g*f:A-->C})
|
886 |
+
|
887 |
+
See Also
|
888 |
+
========
|
889 |
+
Object, Morphism
|
890 |
+
"""
|
891 |
+
premises = EmptySet
|
892 |
+
conclusions = EmptySet
|
893 |
+
|
894 |
+
for morphism in self.premises.keys():
|
895 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
896 |
+
premises |= FiniteSet(morphism)
|
897 |
+
for morphism in self.conclusions.keys():
|
898 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
899 |
+
conclusions |= FiniteSet(morphism)
|
900 |
+
|
901 |
+
return (premises, conclusions)
|
902 |
+
|
903 |
+
def is_subdiagram(self, diagram):
|
904 |
+
"""
|
905 |
+
Checks whether ``diagram`` is a subdiagram of ``self``.
|
906 |
+
Diagram `D'` is a subdiagram of `D` if all premises
|
907 |
+
(conclusions) of `D'` are contained in the premises
|
908 |
+
(conclusions) of `D`. The morphisms contained
|
909 |
+
both in `D'` and `D` should have the same properties for `D'`
|
910 |
+
to be a subdiagram of `D`.
|
911 |
+
|
912 |
+
Examples
|
913 |
+
========
|
914 |
+
|
915 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
916 |
+
>>> A = Object("A")
|
917 |
+
>>> B = Object("B")
|
918 |
+
>>> C = Object("C")
|
919 |
+
>>> f = NamedMorphism(A, B, "f")
|
920 |
+
>>> g = NamedMorphism(B, C, "g")
|
921 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
922 |
+
>>> d1 = Diagram([f])
|
923 |
+
>>> d.is_subdiagram(d1)
|
924 |
+
True
|
925 |
+
>>> d1.is_subdiagram(d)
|
926 |
+
False
|
927 |
+
"""
|
928 |
+
premises = all((m in self.premises) and
|
929 |
+
(diagram.premises[m] == self.premises[m])
|
930 |
+
for m in diagram.premises)
|
931 |
+
if not premises:
|
932 |
+
return False
|
933 |
+
|
934 |
+
conclusions = all((m in self.conclusions) and
|
935 |
+
(diagram.conclusions[m] == self.conclusions[m])
|
936 |
+
for m in diagram.conclusions)
|
937 |
+
|
938 |
+
# Premises is surely ``True`` here.
|
939 |
+
return conclusions
|
940 |
+
|
941 |
+
def subdiagram_from_objects(self, objects):
|
942 |
+
"""
|
943 |
+
If ``objects`` is a subset of the objects of ``self``, returns
|
944 |
+
a diagram which has as premises all those premises of ``self``
|
945 |
+
which have a domains and codomains in ``objects``, likewise
|
946 |
+
for conclusions. Properties are preserved.
|
947 |
+
|
948 |
+
Examples
|
949 |
+
========
|
950 |
+
|
951 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
952 |
+
>>> from sympy import FiniteSet
|
953 |
+
>>> A = Object("A")
|
954 |
+
>>> B = Object("B")
|
955 |
+
>>> C = Object("C")
|
956 |
+
>>> f = NamedMorphism(A, B, "f")
|
957 |
+
>>> g = NamedMorphism(B, C, "g")
|
958 |
+
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
|
959 |
+
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
960 |
+
>>> d1 == Diagram([f], {f: "unique"})
|
961 |
+
True
|
962 |
+
"""
|
963 |
+
if not objects.is_subset(self.objects):
|
964 |
+
raise ValueError(
|
965 |
+
"Supplied objects should all belong to the diagram.")
|
966 |
+
|
967 |
+
new_premises = {}
|
968 |
+
for morphism, props in self.premises.items():
|
969 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
970 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
971 |
+
new_premises[morphism] = props
|
972 |
+
|
973 |
+
new_conclusions = {}
|
974 |
+
for morphism, props in self.conclusions.items():
|
975 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
976 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
977 |
+
new_conclusions[morphism] = props
|
978 |
+
|
979 |
+
return Diagram(new_premises, new_conclusions)
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py
ADDED
@@ -0,0 +1,2591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module contains the functionality to arrange the nodes of a
|
3 |
+
diagram on an abstract grid, and then to produce a graphical
|
4 |
+
representation of the grid.
|
5 |
+
|
6 |
+
The currently supported back-ends are Xy-pic [Xypic].
|
7 |
+
|
8 |
+
Layout Algorithm
|
9 |
+
================
|
10 |
+
|
11 |
+
This section provides an overview of the algorithms implemented in
|
12 |
+
:class:`DiagramGrid` to lay out diagrams.
|
13 |
+
|
14 |
+
The first step of the algorithm is the removal composite and identity
|
15 |
+
morphisms which do not have properties in the supplied diagram. The
|
16 |
+
premises and conclusions of the diagram are then merged.
|
17 |
+
|
18 |
+
The generic layout algorithm begins with the construction of the
|
19 |
+
"skeleton" of the diagram. The skeleton is an undirected graph which
|
20 |
+
has the objects of the diagram as vertices and has an (undirected)
|
21 |
+
edge between each pair of objects between which there exist morphisms.
|
22 |
+
The direction of the morphisms does not matter at this stage. The
|
23 |
+
skeleton also includes an edge between each pair of vertices `A` and
|
24 |
+
`C` such that there exists an object `B` which is connected via
|
25 |
+
a morphism to `A`, and via a morphism to `C`.
|
26 |
+
|
27 |
+
The skeleton constructed in this way has the property that every
|
28 |
+
object is a vertex of a triangle formed by three edges of the
|
29 |
+
skeleton. This property lies at the base of the generic layout
|
30 |
+
algorithm.
|
31 |
+
|
32 |
+
After the skeleton has been constructed, the algorithm lists all
|
33 |
+
triangles which can be formed. Note that some triangles will not have
|
34 |
+
all edges corresponding to morphisms which will actually be drawn.
|
35 |
+
Triangles which have only one edge or less which will actually be
|
36 |
+
drawn are immediately discarded.
|
37 |
+
|
38 |
+
The list of triangles is sorted according to the number of edges which
|
39 |
+
correspond to morphisms, then the triangle with the least number of such
|
40 |
+
edges is selected. One of such edges is picked and the corresponding
|
41 |
+
objects are placed horizontally, on a grid. This edge is recorded to
|
42 |
+
be in the fringe. The algorithm then finds a "welding" of a triangle
|
43 |
+
to the fringe. A welding is an edge in the fringe where a triangle
|
44 |
+
could be attached. If the algorithm succeeds in finding such a
|
45 |
+
welding, it adds to the grid that vertex of the triangle which was not
|
46 |
+
yet included in any edge in the fringe and records the two new edges in
|
47 |
+
the fringe. This process continues iteratively until all objects of
|
48 |
+
the diagram has been placed or until no more weldings can be found.
|
49 |
+
|
50 |
+
An edge is only removed from the fringe when a welding to this edge
|
51 |
+
has been found, and there is no room around this edge to place
|
52 |
+
another vertex.
|
53 |
+
|
54 |
+
When no more weldings can be found, but there are still triangles
|
55 |
+
left, the algorithm searches for a possibility of attaching one of the
|
56 |
+
remaining triangles to the existing structure by a vertex. If such a
|
57 |
+
possibility is found, the corresponding edge of the found triangle is
|
58 |
+
placed in the found space and the iterative process of welding
|
59 |
+
triangles restarts.
|
60 |
+
|
61 |
+
When logical groups are supplied, each of these groups is laid out
|
62 |
+
independently. Then a diagram is constructed in which groups are
|
63 |
+
objects and any two logical groups between which there exist morphisms
|
64 |
+
are connected via a morphism. This diagram is laid out. Finally,
|
65 |
+
the grid which includes all objects of the initial diagram is
|
66 |
+
constructed by replacing the cells which contain logical groups with
|
67 |
+
the corresponding laid out grids, and by correspondingly expanding the
|
68 |
+
rows and columns.
|
69 |
+
|
70 |
+
The sequential layout algorithm begins by constructing the
|
71 |
+
underlying undirected graph defined by the morphisms obtained after
|
72 |
+
simplifying premises and conclusions and merging them (see above).
|
73 |
+
The vertex with the minimal degree is then picked up and depth-first
|
74 |
+
search is started from it. All objects which are located at distance
|
75 |
+
`n` from the root in the depth-first search tree, are positioned in
|
76 |
+
the `n`-th column of the resulting grid. The sequential layout will
|
77 |
+
therefore attempt to lay the objects out along a line.
|
78 |
+
|
79 |
+
References
|
80 |
+
==========
|
81 |
+
|
82 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
83 |
+
|
84 |
+
"""
|
85 |
+
from sympy.categories import (CompositeMorphism, IdentityMorphism,
|
86 |
+
NamedMorphism, Diagram)
|
87 |
+
from sympy.core import Dict, Symbol, default_sort_key
|
88 |
+
from sympy.printing.latex import latex
|
89 |
+
from sympy.sets import FiniteSet
|
90 |
+
from sympy.utilities.iterables import iterable
|
91 |
+
from sympy.utilities.decorator import doctest_depends_on
|
92 |
+
|
93 |
+
from itertools import chain
|
94 |
+
|
95 |
+
|
96 |
+
__doctest_requires__ = {('preview_diagram',): 'pyglet'}
|
97 |
+
|
98 |
+
|
99 |
+
class _GrowableGrid:
|
100 |
+
"""
|
101 |
+
Holds a growable grid of objects.
|
102 |
+
|
103 |
+
Explanation
|
104 |
+
===========
|
105 |
+
|
106 |
+
It is possible to append or prepend a row or a column to the grid
|
107 |
+
using the corresponding methods. Prepending rows or columns has
|
108 |
+
the effect of changing the coordinates of the already existing
|
109 |
+
elements.
|
110 |
+
|
111 |
+
This class currently represents a naive implementation of the
|
112 |
+
functionality with little attempt at optimisation.
|
113 |
+
"""
|
114 |
+
def __init__(self, width, height):
|
115 |
+
self._width = width
|
116 |
+
self._height = height
|
117 |
+
|
118 |
+
self._array = [[None for j in range(width)] for i in range(height)]
|
119 |
+
|
120 |
+
@property
|
121 |
+
def width(self):
|
122 |
+
return self._width
|
123 |
+
|
124 |
+
@property
|
125 |
+
def height(self):
|
126 |
+
return self._height
|
127 |
+
|
128 |
+
def __getitem__(self, i_j):
|
129 |
+
"""
|
130 |
+
Returns the element located at in the i-th line and j-th
|
131 |
+
column.
|
132 |
+
"""
|
133 |
+
i, j = i_j
|
134 |
+
return self._array[i][j]
|
135 |
+
|
136 |
+
def __setitem__(self, i_j, newvalue):
|
137 |
+
"""
|
138 |
+
Sets the element located at in the i-th line and j-th
|
139 |
+
column.
|
140 |
+
"""
|
141 |
+
i, j = i_j
|
142 |
+
self._array[i][j] = newvalue
|
143 |
+
|
144 |
+
def append_row(self):
|
145 |
+
"""
|
146 |
+
Appends an empty row to the grid.
|
147 |
+
"""
|
148 |
+
self._height += 1
|
149 |
+
self._array.append([None for j in range(self._width)])
|
150 |
+
|
151 |
+
def append_column(self):
|
152 |
+
"""
|
153 |
+
Appends an empty column to the grid.
|
154 |
+
"""
|
155 |
+
self._width += 1
|
156 |
+
for i in range(self._height):
|
157 |
+
self._array[i].append(None)
|
158 |
+
|
159 |
+
def prepend_row(self):
|
160 |
+
"""
|
161 |
+
Prepends the grid with an empty row.
|
162 |
+
"""
|
163 |
+
self._height += 1
|
164 |
+
self._array.insert(0, [None for j in range(self._width)])
|
165 |
+
|
166 |
+
def prepend_column(self):
|
167 |
+
"""
|
168 |
+
Prepends the grid with an empty column.
|
169 |
+
"""
|
170 |
+
self._width += 1
|
171 |
+
for i in range(self._height):
|
172 |
+
self._array[i].insert(0, None)
|
173 |
+
|
174 |
+
|
175 |
+
class DiagramGrid:
|
176 |
+
r"""
|
177 |
+
Constructs and holds the fitting of the diagram into a grid.
|
178 |
+
|
179 |
+
Explanation
|
180 |
+
===========
|
181 |
+
|
182 |
+
The mission of this class is to analyse the structure of the
|
183 |
+
supplied diagram and to place its objects on a grid such that,
|
184 |
+
when the objects and the morphisms are actually drawn, the diagram
|
185 |
+
would be "readable", in the sense that there will not be many
|
186 |
+
intersections of moprhisms. This class does not perform any
|
187 |
+
actual drawing. It does strive nevertheless to offer sufficient
|
188 |
+
metadata to draw a diagram.
|
189 |
+
|
190 |
+
Consider the following simple diagram.
|
191 |
+
|
192 |
+
>>> from sympy.categories import Object, NamedMorphism
|
193 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
194 |
+
>>> from sympy import pprint
|
195 |
+
>>> A = Object("A")
|
196 |
+
>>> B = Object("B")
|
197 |
+
>>> C = Object("C")
|
198 |
+
>>> f = NamedMorphism(A, B, "f")
|
199 |
+
>>> g = NamedMorphism(B, C, "g")
|
200 |
+
>>> diagram = Diagram([f, g])
|
201 |
+
|
202 |
+
The simplest way to have a diagram laid out is the following:
|
203 |
+
|
204 |
+
>>> grid = DiagramGrid(diagram)
|
205 |
+
>>> (grid.width, grid.height)
|
206 |
+
(2, 2)
|
207 |
+
>>> pprint(grid)
|
208 |
+
A B
|
209 |
+
<BLANKLINE>
|
210 |
+
C
|
211 |
+
|
212 |
+
Sometimes one sees the diagram as consisting of logical groups.
|
213 |
+
One can advise ``DiagramGrid`` as to such groups by employing the
|
214 |
+
``groups`` keyword argument.
|
215 |
+
|
216 |
+
Consider the following diagram:
|
217 |
+
|
218 |
+
>>> D = Object("D")
|
219 |
+
>>> f = NamedMorphism(A, B, "f")
|
220 |
+
>>> g = NamedMorphism(B, C, "g")
|
221 |
+
>>> h = NamedMorphism(D, A, "h")
|
222 |
+
>>> k = NamedMorphism(D, B, "k")
|
223 |
+
>>> diagram = Diagram([f, g, h, k])
|
224 |
+
|
225 |
+
Lay it out with generic layout:
|
226 |
+
|
227 |
+
>>> grid = DiagramGrid(diagram)
|
228 |
+
>>> pprint(grid)
|
229 |
+
A B D
|
230 |
+
<BLANKLINE>
|
231 |
+
C
|
232 |
+
|
233 |
+
Now, we can group the objects `A` and `D` to have them near one
|
234 |
+
another:
|
235 |
+
|
236 |
+
>>> grid = DiagramGrid(diagram, groups=[[A, D], B, C])
|
237 |
+
>>> pprint(grid)
|
238 |
+
B C
|
239 |
+
<BLANKLINE>
|
240 |
+
A D
|
241 |
+
|
242 |
+
Note how the positioning of the other objects changes.
|
243 |
+
|
244 |
+
Further indications can be supplied to the constructor of
|
245 |
+
:class:`DiagramGrid` using keyword arguments. The currently
|
246 |
+
supported hints are explained in the following paragraphs.
|
247 |
+
|
248 |
+
:class:`DiagramGrid` does not automatically guess which layout
|
249 |
+
would suit the supplied diagram better. Consider, for example,
|
250 |
+
the following linear diagram:
|
251 |
+
|
252 |
+
>>> E = Object("E")
|
253 |
+
>>> f = NamedMorphism(A, B, "f")
|
254 |
+
>>> g = NamedMorphism(B, C, "g")
|
255 |
+
>>> h = NamedMorphism(C, D, "h")
|
256 |
+
>>> i = NamedMorphism(D, E, "i")
|
257 |
+
>>> diagram = Diagram([f, g, h, i])
|
258 |
+
|
259 |
+
When laid out with the generic layout, it does not get to look
|
260 |
+
linear:
|
261 |
+
|
262 |
+
>>> grid = DiagramGrid(diagram)
|
263 |
+
>>> pprint(grid)
|
264 |
+
A B
|
265 |
+
<BLANKLINE>
|
266 |
+
C D
|
267 |
+
<BLANKLINE>
|
268 |
+
E
|
269 |
+
|
270 |
+
To get it laid out in a line, use ``layout="sequential"``:
|
271 |
+
|
272 |
+
>>> grid = DiagramGrid(diagram, layout="sequential")
|
273 |
+
>>> pprint(grid)
|
274 |
+
A B C D E
|
275 |
+
|
276 |
+
One may sometimes need to transpose the resulting layout. While
|
277 |
+
this can always be done by hand, :class:`DiagramGrid` provides a
|
278 |
+
hint for that purpose:
|
279 |
+
|
280 |
+
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
|
281 |
+
>>> pprint(grid)
|
282 |
+
A
|
283 |
+
<BLANKLINE>
|
284 |
+
B
|
285 |
+
<BLANKLINE>
|
286 |
+
C
|
287 |
+
<BLANKLINE>
|
288 |
+
D
|
289 |
+
<BLANKLINE>
|
290 |
+
E
|
291 |
+
|
292 |
+
Separate hints can also be provided for each group. For an
|
293 |
+
example, refer to ``tests/test_drawing.py``, and see the different
|
294 |
+
ways in which the five lemma [FiveLemma] can be laid out.
|
295 |
+
|
296 |
+
See Also
|
297 |
+
========
|
298 |
+
|
299 |
+
Diagram
|
300 |
+
|
301 |
+
References
|
302 |
+
==========
|
303 |
+
|
304 |
+
.. [FiveLemma] https://en.wikipedia.org/wiki/Five_lemma
|
305 |
+
"""
|
306 |
+
@staticmethod
|
307 |
+
def _simplify_morphisms(morphisms):
|
308 |
+
"""
|
309 |
+
Given a dictionary mapping morphisms to their properties,
|
310 |
+
returns a new dictionary in which there are no morphisms which
|
311 |
+
do not have properties, and which are compositions of other
|
312 |
+
morphisms included in the dictionary. Identities are dropped
|
313 |
+
as well.
|
314 |
+
"""
|
315 |
+
newmorphisms = {}
|
316 |
+
for morphism, props in morphisms.items():
|
317 |
+
if isinstance(morphism, CompositeMorphism) and not props:
|
318 |
+
continue
|
319 |
+
elif isinstance(morphism, IdentityMorphism):
|
320 |
+
continue
|
321 |
+
else:
|
322 |
+
newmorphisms[morphism] = props
|
323 |
+
return newmorphisms
|
324 |
+
|
325 |
+
@staticmethod
|
326 |
+
def _merge_premises_conclusions(premises, conclusions):
|
327 |
+
"""
|
328 |
+
Given two dictionaries of morphisms and their properties,
|
329 |
+
produces a single dictionary which includes elements from both
|
330 |
+
dictionaries. If a morphism has some properties in premises
|
331 |
+
and also in conclusions, the properties in conclusions take
|
332 |
+
priority.
|
333 |
+
"""
|
334 |
+
return dict(chain(premises.items(), conclusions.items()))
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def _juxtapose_edges(edge1, edge2):
|
338 |
+
"""
|
339 |
+
If ``edge1`` and ``edge2`` have precisely one common endpoint,
|
340 |
+
returns an edge which would form a triangle with ``edge1`` and
|
341 |
+
``edge2``.
|
342 |
+
|
343 |
+
If ``edge1`` and ``edge2`` do not have a common endpoint,
|
344 |
+
returns ``None``.
|
345 |
+
|
346 |
+
If ``edge1`` and ``edge`` are the same edge, returns ``None``.
|
347 |
+
"""
|
348 |
+
intersection = edge1 & edge2
|
349 |
+
if len(intersection) != 1:
|
350 |
+
# The edges either have no common points or are equal.
|
351 |
+
return None
|
352 |
+
|
353 |
+
# The edges have a common endpoint. Extract the different
|
354 |
+
# endpoints and set up the new edge.
|
355 |
+
return (edge1 - intersection) | (edge2 - intersection)
|
356 |
+
|
357 |
+
@staticmethod
|
358 |
+
def _add_edge_append(dictionary, edge, elem):
|
359 |
+
"""
|
360 |
+
If ``edge`` is not in ``dictionary``, adds ``edge`` to the
|
361 |
+
dictionary and sets its value to ``[elem]``. Otherwise
|
362 |
+
appends ``elem`` to the value of existing entry.
|
363 |
+
|
364 |
+
Note that edges are undirected, thus `(A, B) = (B, A)`.
|
365 |
+
"""
|
366 |
+
if edge in dictionary:
|
367 |
+
dictionary[edge].append(elem)
|
368 |
+
else:
|
369 |
+
dictionary[edge] = [elem]
|
370 |
+
|
371 |
+
@staticmethod
|
372 |
+
def _build_skeleton(morphisms):
|
373 |
+
"""
|
374 |
+
Creates a dictionary which maps edges to corresponding
|
375 |
+
morphisms. Thus for a morphism `f:A\rightarrow B`, the edge
|
376 |
+
`(A, B)` will be associated with `f`. This function also adds
|
377 |
+
to the list those edges which are formed by juxtaposition of
|
378 |
+
two edges already in the list. These new edges are not
|
379 |
+
associated with any morphism and are only added to assure that
|
380 |
+
the diagram can be decomposed into triangles.
|
381 |
+
"""
|
382 |
+
edges = {}
|
383 |
+
# Create edges for morphisms.
|
384 |
+
for morphism in morphisms:
|
385 |
+
DiagramGrid._add_edge_append(
|
386 |
+
edges, frozenset([morphism.domain, morphism.codomain]), morphism)
|
387 |
+
|
388 |
+
# Create new edges by juxtaposing existing edges.
|
389 |
+
edges1 = dict(edges)
|
390 |
+
for w in edges1:
|
391 |
+
for v in edges1:
|
392 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
393 |
+
if wv and wv not in edges:
|
394 |
+
edges[wv] = []
|
395 |
+
|
396 |
+
return edges
|
397 |
+
|
398 |
+
@staticmethod
|
399 |
+
def _list_triangles(edges):
|
400 |
+
"""
|
401 |
+
Builds the set of triangles formed by the supplied edges. The
|
402 |
+
triangles are arbitrary and need not be commutative. A
|
403 |
+
triangle is a set that contains all three of its sides.
|
404 |
+
"""
|
405 |
+
triangles = set()
|
406 |
+
|
407 |
+
for w in edges:
|
408 |
+
for v in edges:
|
409 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
410 |
+
if wv and wv in edges:
|
411 |
+
triangles.add(frozenset([w, v, wv]))
|
412 |
+
|
413 |
+
return triangles
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _drop_redundant_triangles(triangles, skeleton):
|
417 |
+
"""
|
418 |
+
Returns a list which contains only those triangles who have
|
419 |
+
morphisms associated with at least two edges.
|
420 |
+
"""
|
421 |
+
return [tri for tri in triangles
|
422 |
+
if len([e for e in tri if skeleton[e]]) >= 2]
|
423 |
+
|
424 |
+
@staticmethod
|
425 |
+
def _morphism_length(morphism):
|
426 |
+
"""
|
427 |
+
Returns the length of a morphism. The length of a morphism is
|
428 |
+
the number of components it consists of. A non-composite
|
429 |
+
morphism is of length 1.
|
430 |
+
"""
|
431 |
+
if isinstance(morphism, CompositeMorphism):
|
432 |
+
return len(morphism.components)
|
433 |
+
else:
|
434 |
+
return 1
|
435 |
+
|
436 |
+
@staticmethod
|
437 |
+
def _compute_triangle_min_sizes(triangles, edges):
|
438 |
+
r"""
|
439 |
+
Returns a dictionary mapping triangles to their minimal sizes.
|
440 |
+
The minimal size of a triangle is the sum of maximal lengths
|
441 |
+
of morphisms associated to the sides of the triangle. The
|
442 |
+
length of a morphism is the number of components it consists
|
443 |
+
of. A non-composite morphism is of length 1.
|
444 |
+
|
445 |
+
Sorting triangles by this metric attempts to address two
|
446 |
+
aspects of layout. For triangles with only simple morphisms
|
447 |
+
in the edge, this assures that triangles with all three edges
|
448 |
+
visible will get typeset after triangles with less visible
|
449 |
+
edges, which sometimes minimizes the necessity in diagonal
|
450 |
+
arrows. For triangles with composite morphisms in the edges,
|
451 |
+
this assures that objects connected with shorter morphisms
|
452 |
+
will be laid out first, resulting the visual proximity of
|
453 |
+
those objects which are connected by shorter morphisms.
|
454 |
+
"""
|
455 |
+
triangle_sizes = {}
|
456 |
+
for triangle in triangles:
|
457 |
+
size = 0
|
458 |
+
for e in triangle:
|
459 |
+
morphisms = edges[e]
|
460 |
+
if morphisms:
|
461 |
+
size += max(DiagramGrid._morphism_length(m)
|
462 |
+
for m in morphisms)
|
463 |
+
triangle_sizes[triangle] = size
|
464 |
+
return triangle_sizes
|
465 |
+
|
466 |
+
@staticmethod
|
467 |
+
def _triangle_objects(triangle):
|
468 |
+
"""
|
469 |
+
Given a triangle, returns the objects included in it.
|
470 |
+
"""
|
471 |
+
# A triangle is a frozenset of three two-element frozensets
|
472 |
+
# (the edges). This chains the three edges together and
|
473 |
+
# creates a frozenset from the iterator, thus producing a
|
474 |
+
# frozenset of objects of the triangle.
|
475 |
+
return frozenset(chain(*tuple(triangle)))
|
476 |
+
|
477 |
+
@staticmethod
|
478 |
+
def _other_vertex(triangle, edge):
|
479 |
+
"""
|
480 |
+
Given a triangle and an edge of it, returns the vertex which
|
481 |
+
opposes the edge.
|
482 |
+
"""
|
483 |
+
# This gets the set of objects of the triangle and then
|
484 |
+
# subtracts the set of objects employed in ``edge`` to get the
|
485 |
+
# vertex opposite to ``edge``.
|
486 |
+
return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0]
|
487 |
+
|
488 |
+
@staticmethod
|
489 |
+
def _empty_point(pt, grid):
|
490 |
+
"""
|
491 |
+
Checks if the cell at coordinates ``pt`` is either empty or
|
492 |
+
out of the bounds of the grid.
|
493 |
+
"""
|
494 |
+
if (pt[0] < 0) or (pt[1] < 0) or \
|
495 |
+
(pt[0] >= grid.height) or (pt[1] >= grid.width):
|
496 |
+
return True
|
497 |
+
return grid[pt] is None
|
498 |
+
|
499 |
+
@staticmethod
|
500 |
+
def _put_object(coords, obj, grid, fringe):
|
501 |
+
"""
|
502 |
+
Places an object at the coordinate ``cords`` in ``grid``,
|
503 |
+
growing the grid and updating ``fringe``, if necessary.
|
504 |
+
Returns (0, 0) if no row or column has been prepended, (1, 0)
|
505 |
+
if a row was prepended, (0, 1) if a column was prepended and
|
506 |
+
(1, 1) if both a column and a row were prepended.
|
507 |
+
"""
|
508 |
+
(i, j) = coords
|
509 |
+
offset = (0, 0)
|
510 |
+
if i == -1:
|
511 |
+
grid.prepend_row()
|
512 |
+
i = 0
|
513 |
+
offset = (1, 0)
|
514 |
+
for k in range(len(fringe)):
|
515 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
516 |
+
fringe[k] = ((i1 + 1, j1), (i2 + 1, j2))
|
517 |
+
elif i == grid.height:
|
518 |
+
grid.append_row()
|
519 |
+
|
520 |
+
if j == -1:
|
521 |
+
j = 0
|
522 |
+
offset = (offset[0], 1)
|
523 |
+
grid.prepend_column()
|
524 |
+
for k in range(len(fringe)):
|
525 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
526 |
+
fringe[k] = ((i1, j1 + 1), (i2, j2 + 1))
|
527 |
+
elif j == grid.width:
|
528 |
+
grid.append_column()
|
529 |
+
|
530 |
+
grid[i, j] = obj
|
531 |
+
return offset
|
532 |
+
|
533 |
+
@staticmethod
|
534 |
+
def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid):
|
535 |
+
"""
|
536 |
+
Given two points, ``pt1`` and ``pt2``, and the welding edge
|
537 |
+
``edge``, chooses one of the two points to place the opposing
|
538 |
+
vertex ``obj`` of the triangle. If neither of this points
|
539 |
+
fits, returns ``None``.
|
540 |
+
"""
|
541 |
+
pt1_empty = DiagramGrid._empty_point(pt1, grid)
|
542 |
+
pt2_empty = DiagramGrid._empty_point(pt2, grid)
|
543 |
+
|
544 |
+
if pt1_empty and pt2_empty:
|
545 |
+
# Both cells are empty. Of these two, choose that cell
|
546 |
+
# which will assure that a visible edge of the triangle
|
547 |
+
# will be drawn perpendicularly to the current welding
|
548 |
+
# edge.
|
549 |
+
|
550 |
+
A = grid[edge[0]]
|
551 |
+
|
552 |
+
if skeleton.get(frozenset([A, obj])):
|
553 |
+
return pt1
|
554 |
+
else:
|
555 |
+
return pt2
|
556 |
+
if pt1_empty:
|
557 |
+
return pt1
|
558 |
+
elif pt2_empty:
|
559 |
+
return pt2
|
560 |
+
else:
|
561 |
+
return None
|
562 |
+
|
563 |
+
@staticmethod
|
564 |
+
def _find_triangle_to_weld(triangles, fringe, grid):
|
565 |
+
"""
|
566 |
+
Finds, if possible, a triangle and an edge in the ``fringe`` to
|
567 |
+
which the triangle could be attached. Returns the tuple
|
568 |
+
containing the triangle and the index of the corresponding
|
569 |
+
edge in the ``fringe``.
|
570 |
+
|
571 |
+
This function relies on the fact that objects are unique in
|
572 |
+
the diagram.
|
573 |
+
"""
|
574 |
+
for triangle in triangles:
|
575 |
+
for (a, b) in fringe:
|
576 |
+
if frozenset([grid[a], grid[b]]) in triangle:
|
577 |
+
return (triangle, (a, b))
|
578 |
+
return None
|
579 |
+
|
580 |
+
@staticmethod
|
581 |
+
def _weld_triangle(tri, welding_edge, fringe, grid, skeleton):
|
582 |
+
"""
|
583 |
+
If possible, welds the triangle ``tri`` to ``fringe`` and
|
584 |
+
returns ``False``. If this method encounters a degenerate
|
585 |
+
situation in the fringe and corrects it such that a restart of
|
586 |
+
the search is required, it returns ``True`` (which means that
|
587 |
+
a restart in finding triangle weldings is required).
|
588 |
+
|
589 |
+
A degenerate situation is a situation when an edge listed in
|
590 |
+
the fringe does not belong to the visual boundary of the
|
591 |
+
diagram.
|
592 |
+
"""
|
593 |
+
a, b = welding_edge
|
594 |
+
target_cell = None
|
595 |
+
|
596 |
+
obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b]))
|
597 |
+
|
598 |
+
# We now have a triangle and an edge where it can be welded to
|
599 |
+
# the fringe. Decide where to place the other vertex of the
|
600 |
+
# triangle and check for degenerate situations en route.
|
601 |
+
|
602 |
+
if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1):
|
603 |
+
# A diagonal edge.
|
604 |
+
target_cell = (a[0], b[1])
|
605 |
+
if grid[target_cell]:
|
606 |
+
# That cell is already occupied.
|
607 |
+
target_cell = (b[0], a[1])
|
608 |
+
|
609 |
+
if grid[target_cell]:
|
610 |
+
# Degenerate situation, this edge is not
|
611 |
+
# on the actual fringe. Correct the
|
612 |
+
# fringe and go on.
|
613 |
+
fringe.remove((a, b))
|
614 |
+
return True
|
615 |
+
elif a[0] == b[0]:
|
616 |
+
# A horizontal edge. We first attempt to build the
|
617 |
+
# triangle in the downward direction.
|
618 |
+
|
619 |
+
down_left = a[0] + 1, a[1]
|
620 |
+
down_right = a[0] + 1, b[1]
|
621 |
+
|
622 |
+
target_cell = DiagramGrid._choose_target_cell(
|
623 |
+
down_left, down_right, (a, b), obj, skeleton, grid)
|
624 |
+
|
625 |
+
if not target_cell:
|
626 |
+
# No room below this edge. Check above.
|
627 |
+
up_left = a[0] - 1, a[1]
|
628 |
+
up_right = a[0] - 1, b[1]
|
629 |
+
|
630 |
+
target_cell = DiagramGrid._choose_target_cell(
|
631 |
+
up_left, up_right, (a, b), obj, skeleton, grid)
|
632 |
+
|
633 |
+
if not target_cell:
|
634 |
+
# This edge is not in the fringe, remove it
|
635 |
+
# and restart.
|
636 |
+
fringe.remove((a, b))
|
637 |
+
return True
|
638 |
+
elif a[1] == b[1]:
|
639 |
+
# A vertical edge. We will attempt to place the other
|
640 |
+
# vertex of the triangle to the right of this edge.
|
641 |
+
right_up = a[0], a[1] + 1
|
642 |
+
right_down = b[0], a[1] + 1
|
643 |
+
|
644 |
+
target_cell = DiagramGrid._choose_target_cell(
|
645 |
+
right_up, right_down, (a, b), obj, skeleton, grid)
|
646 |
+
|
647 |
+
if not target_cell:
|
648 |
+
# No room to the left. See what's to the right.
|
649 |
+
left_up = a[0], a[1] - 1
|
650 |
+
left_down = b[0], a[1] - 1
|
651 |
+
|
652 |
+
target_cell = DiagramGrid._choose_target_cell(
|
653 |
+
left_up, left_down, (a, b), obj, skeleton, grid)
|
654 |
+
|
655 |
+
if not target_cell:
|
656 |
+
# This edge is not in the fringe, remove it
|
657 |
+
# and restart.
|
658 |
+
fringe.remove((a, b))
|
659 |
+
return True
|
660 |
+
|
661 |
+
# We now know where to place the other vertex of the
|
662 |
+
# triangle.
|
663 |
+
offset = DiagramGrid._put_object(target_cell, obj, grid, fringe)
|
664 |
+
|
665 |
+
# Take care of the displacement of coordinates if a row or
|
666 |
+
# a column was prepended.
|
667 |
+
target_cell = (target_cell[0] + offset[0],
|
668 |
+
target_cell[1] + offset[1])
|
669 |
+
a = (a[0] + offset[0], a[1] + offset[1])
|
670 |
+
b = (b[0] + offset[0], b[1] + offset[1])
|
671 |
+
|
672 |
+
fringe.extend([(a, target_cell), (b, target_cell)])
|
673 |
+
|
674 |
+
# No restart is required.
|
675 |
+
return False
|
676 |
+
|
677 |
+
@staticmethod
|
678 |
+
def _triangle_key(tri, triangle_sizes):
|
679 |
+
"""
|
680 |
+
Returns a key for the supplied triangle. It should be the
|
681 |
+
same independently of the hash randomisation.
|
682 |
+
"""
|
683 |
+
objects = sorted(
|
684 |
+
DiagramGrid._triangle_objects(tri), key=default_sort_key)
|
685 |
+
return (triangle_sizes[tri], default_sort_key(objects))
|
686 |
+
|
687 |
+
@staticmethod
|
688 |
+
def _pick_root_edge(tri, skeleton):
|
689 |
+
"""
|
690 |
+
For a given triangle always picks the same root edge. The
|
691 |
+
root edge is the edge that will be placed first on the grid.
|
692 |
+
"""
|
693 |
+
candidates = [sorted(e, key=default_sort_key)
|
694 |
+
for e in tri if skeleton[e]]
|
695 |
+
sorted_candidates = sorted(candidates, key=default_sort_key)
|
696 |
+
# Don't forget to assure the proper ordering of the vertices
|
697 |
+
# in this edge.
|
698 |
+
return tuple(sorted(sorted_candidates[0], key=default_sort_key))
|
699 |
+
|
700 |
+
@staticmethod
|
701 |
+
def _drop_irrelevant_triangles(triangles, placed_objects):
|
702 |
+
"""
|
703 |
+
Returns only those triangles whose set of objects is not
|
704 |
+
completely included in ``placed_objects``.
|
705 |
+
"""
|
706 |
+
return [tri for tri in triangles if not placed_objects.issuperset(
|
707 |
+
DiagramGrid._triangle_objects(tri))]
|
708 |
+
|
709 |
+
@staticmethod
|
710 |
+
def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects):
|
711 |
+
"""
|
712 |
+
Starting from an object in the existing structure on the ``grid``,
|
713 |
+
adds an edge to which a triangle from ``triangles`` could be
|
714 |
+
welded. If this method has found a way to do so, it returns
|
715 |
+
the object it has just added.
|
716 |
+
|
717 |
+
This method should be applied when ``_weld_triangle`` cannot
|
718 |
+
find weldings any more.
|
719 |
+
"""
|
720 |
+
for i in range(grid.height):
|
721 |
+
for j in range(grid.width):
|
722 |
+
obj = grid[i, j]
|
723 |
+
if not obj:
|
724 |
+
continue
|
725 |
+
|
726 |
+
# Here we need to choose a triangle which has only
|
727 |
+
# ``obj`` in common with the existing structure. The
|
728 |
+
# situations when this is not possible should be
|
729 |
+
# handled elsewhere.
|
730 |
+
|
731 |
+
def good_triangle(tri):
|
732 |
+
objs = DiagramGrid._triangle_objects(tri)
|
733 |
+
return obj in objs and \
|
734 |
+
placed_objects & (objs - {obj}) == set()
|
735 |
+
|
736 |
+
tris = [tri for tri in triangles if good_triangle(tri)]
|
737 |
+
if not tris:
|
738 |
+
# This object is not interesting.
|
739 |
+
continue
|
740 |
+
|
741 |
+
# Pick the "simplest" of the triangles which could be
|
742 |
+
# attached. Remember that the list of triangles is
|
743 |
+
# sorted according to their "simplicity" (see
|
744 |
+
# _compute_triangle_min_sizes for the metric).
|
745 |
+
#
|
746 |
+
# Note that ``tris`` are sequentially built from
|
747 |
+
# ``triangles``, so we don't have to worry about hash
|
748 |
+
# randomisation.
|
749 |
+
tri = tris[0]
|
750 |
+
|
751 |
+
# We have found a triangle which could be attached to
|
752 |
+
# the existing structure by a vertex.
|
753 |
+
|
754 |
+
candidates = sorted([e for e in tri if skeleton[e]],
|
755 |
+
key=lambda e: FiniteSet(*e).sort_key())
|
756 |
+
edges = [e for e in candidates if obj in e]
|
757 |
+
|
758 |
+
# Note that a meaningful edge (i.e., and edge that is
|
759 |
+
# associated with a morphism) containing ``obj``
|
760 |
+
# always exists. That's because all triangles are
|
761 |
+
# guaranteed to have at least two meaningful edges.
|
762 |
+
# See _drop_redundant_triangles.
|
763 |
+
|
764 |
+
# Get the object at the other end of the edge.
|
765 |
+
edge = edges[0]
|
766 |
+
other_obj = tuple(edge - frozenset([obj]))[0]
|
767 |
+
|
768 |
+
# Now check for free directions. When checking for
|
769 |
+
# free directions, prefer the horizontal and vertical
|
770 |
+
# directions.
|
771 |
+
neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1),
|
772 |
+
(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)]
|
773 |
+
|
774 |
+
for pt in neighbours:
|
775 |
+
if DiagramGrid._empty_point(pt, grid):
|
776 |
+
# We have a found a place to grow the
|
777 |
+
# pseudopod into.
|
778 |
+
offset = DiagramGrid._put_object(
|
779 |
+
pt, other_obj, grid, fringe)
|
780 |
+
|
781 |
+
i += offset[0]
|
782 |
+
j += offset[1]
|
783 |
+
pt = (pt[0] + offset[0], pt[1] + offset[1])
|
784 |
+
fringe.append(((i, j), pt))
|
785 |
+
|
786 |
+
return other_obj
|
787 |
+
|
788 |
+
# This diagram is actually cooler that I can handle. Fail cowardly.
|
789 |
+
return None
|
790 |
+
|
791 |
+
@staticmethod
|
792 |
+
def _handle_groups(diagram, groups, merged_morphisms, hints):
|
793 |
+
"""
|
794 |
+
Given the slightly preprocessed morphisms of the diagram,
|
795 |
+
produces a grid laid out according to ``groups``.
|
796 |
+
|
797 |
+
If a group has hints, it is laid out with those hints only,
|
798 |
+
without any influence from ``hints``. Otherwise, it is laid
|
799 |
+
out with ``hints``.
|
800 |
+
"""
|
801 |
+
def lay_out_group(group, local_hints):
|
802 |
+
"""
|
803 |
+
If ``group`` is a set of objects, uses a ``DiagramGrid``
|
804 |
+
to lay it out and returns the grid. Otherwise returns the
|
805 |
+
object (i.e., ``group``). If ``local_hints`` is not
|
806 |
+
empty, it is supplied to ``DiagramGrid`` as the dictionary
|
807 |
+
of hints. Otherwise, the ``hints`` argument of
|
808 |
+
``_handle_groups`` is used.
|
809 |
+
"""
|
810 |
+
if isinstance(group, FiniteSet):
|
811 |
+
# Set up the corresponding object-to-group
|
812 |
+
# mappings.
|
813 |
+
for obj in group:
|
814 |
+
obj_groups[obj] = group
|
815 |
+
|
816 |
+
# Lay out the current group.
|
817 |
+
if local_hints:
|
818 |
+
groups_grids[group] = DiagramGrid(
|
819 |
+
diagram.subdiagram_from_objects(group), **local_hints)
|
820 |
+
else:
|
821 |
+
groups_grids[group] = DiagramGrid(
|
822 |
+
diagram.subdiagram_from_objects(group), **hints)
|
823 |
+
else:
|
824 |
+
obj_groups[group] = group
|
825 |
+
|
826 |
+
def group_to_finiteset(group):
|
827 |
+
"""
|
828 |
+
Converts ``group`` to a :class:``FiniteSet`` if it is an
|
829 |
+
iterable.
|
830 |
+
"""
|
831 |
+
if iterable(group):
|
832 |
+
return FiniteSet(*group)
|
833 |
+
else:
|
834 |
+
return group
|
835 |
+
|
836 |
+
obj_groups = {}
|
837 |
+
groups_grids = {}
|
838 |
+
|
839 |
+
# We would like to support various containers to represent
|
840 |
+
# groups. To achieve that, before laying each group out, it
|
841 |
+
# should be converted to a FiniteSet, because that is what the
|
842 |
+
# following code expects.
|
843 |
+
|
844 |
+
if isinstance(groups, (dict, Dict)):
|
845 |
+
finiteset_groups = {}
|
846 |
+
for group, local_hints in groups.items():
|
847 |
+
finiteset_group = group_to_finiteset(group)
|
848 |
+
finiteset_groups[finiteset_group] = local_hints
|
849 |
+
lay_out_group(group, local_hints)
|
850 |
+
groups = finiteset_groups
|
851 |
+
else:
|
852 |
+
finiteset_groups = []
|
853 |
+
for group in groups:
|
854 |
+
finiteset_group = group_to_finiteset(group)
|
855 |
+
finiteset_groups.append(finiteset_group)
|
856 |
+
lay_out_group(finiteset_group, None)
|
857 |
+
groups = finiteset_groups
|
858 |
+
|
859 |
+
new_morphisms = []
|
860 |
+
for morphism in merged_morphisms:
|
861 |
+
dom = obj_groups[morphism.domain]
|
862 |
+
cod = obj_groups[morphism.codomain]
|
863 |
+
# Note that we are not really interested in morphisms
|
864 |
+
# which do not employ two different groups, because
|
865 |
+
# these do not influence the layout.
|
866 |
+
if dom != cod:
|
867 |
+
# These are essentially unnamed morphisms; they are
|
868 |
+
# not going to mess in the final layout. By giving
|
869 |
+
# them the same names, we avoid unnecessary
|
870 |
+
# duplicates.
|
871 |
+
new_morphisms.append(NamedMorphism(dom, cod, "dummy"))
|
872 |
+
|
873 |
+
# Lay out the new diagram. Since these are dummy morphisms,
|
874 |
+
# properties and conclusions are irrelevant.
|
875 |
+
top_grid = DiagramGrid(Diagram(new_morphisms))
|
876 |
+
|
877 |
+
# We now have to substitute the groups with the corresponding
|
878 |
+
# grids, laid out at the beginning of this function. Compute
|
879 |
+
# the size of each row and column in the grid, so that all
|
880 |
+
# nested grids fit.
|
881 |
+
|
882 |
+
def group_size(group):
|
883 |
+
"""
|
884 |
+
For the supplied group (or object, eventually), returns
|
885 |
+
the size of the cell that will hold this group (object).
|
886 |
+
"""
|
887 |
+
if group in groups_grids:
|
888 |
+
grid = groups_grids[group]
|
889 |
+
return (grid.height, grid.width)
|
890 |
+
else:
|
891 |
+
return (1, 1)
|
892 |
+
|
893 |
+
row_heights = [max(group_size(top_grid[i, j])[0]
|
894 |
+
for j in range(top_grid.width))
|
895 |
+
for i in range(top_grid.height)]
|
896 |
+
|
897 |
+
column_widths = [max(group_size(top_grid[i, j])[1]
|
898 |
+
for i in range(top_grid.height))
|
899 |
+
for j in range(top_grid.width)]
|
900 |
+
|
901 |
+
grid = _GrowableGrid(sum(column_widths), sum(row_heights))
|
902 |
+
|
903 |
+
real_row = 0
|
904 |
+
real_column = 0
|
905 |
+
for logical_row in range(top_grid.height):
|
906 |
+
for logical_column in range(top_grid.width):
|
907 |
+
obj = top_grid[logical_row, logical_column]
|
908 |
+
|
909 |
+
if obj in groups_grids:
|
910 |
+
# This is a group. Copy the corresponding grid in
|
911 |
+
# place.
|
912 |
+
local_grid = groups_grids[obj]
|
913 |
+
for i in range(local_grid.height):
|
914 |
+
for j in range(local_grid.width):
|
915 |
+
grid[real_row + i,
|
916 |
+
real_column + j] = local_grid[i, j]
|
917 |
+
else:
|
918 |
+
# This is an object. Just put it there.
|
919 |
+
grid[real_row, real_column] = obj
|
920 |
+
|
921 |
+
real_column += column_widths[logical_column]
|
922 |
+
real_column = 0
|
923 |
+
real_row += row_heights[logical_row]
|
924 |
+
|
925 |
+
return grid
|
926 |
+
|
927 |
+
@staticmethod
|
928 |
+
def _generic_layout(diagram, merged_morphisms):
|
929 |
+
"""
|
930 |
+
Produces the generic layout for the supplied diagram.
|
931 |
+
"""
|
932 |
+
all_objects = set(diagram.objects)
|
933 |
+
if len(all_objects) == 1:
|
934 |
+
# There only one object in the diagram, just put in on 1x1
|
935 |
+
# grid.
|
936 |
+
grid = _GrowableGrid(1, 1)
|
937 |
+
grid[0, 0] = tuple(all_objects)[0]
|
938 |
+
return grid
|
939 |
+
|
940 |
+
skeleton = DiagramGrid._build_skeleton(merged_morphisms)
|
941 |
+
|
942 |
+
grid = _GrowableGrid(2, 1)
|
943 |
+
|
944 |
+
if len(skeleton) == 1:
|
945 |
+
# This diagram contains only one morphism. Draw it
|
946 |
+
# horizontally.
|
947 |
+
objects = sorted(all_objects, key=default_sort_key)
|
948 |
+
grid[0, 0] = objects[0]
|
949 |
+
grid[0, 1] = objects[1]
|
950 |
+
|
951 |
+
return grid
|
952 |
+
|
953 |
+
triangles = DiagramGrid._list_triangles(skeleton)
|
954 |
+
triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton)
|
955 |
+
triangle_sizes = DiagramGrid._compute_triangle_min_sizes(
|
956 |
+
triangles, skeleton)
|
957 |
+
|
958 |
+
triangles = sorted(triangles, key=lambda tri:
|
959 |
+
DiagramGrid._triangle_key(tri, triangle_sizes))
|
960 |
+
|
961 |
+
# Place the first edge on the grid.
|
962 |
+
root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton)
|
963 |
+
grid[0, 0], grid[0, 1] = root_edge
|
964 |
+
fringe = [((0, 0), (0, 1))]
|
965 |
+
|
966 |
+
# Record which objects we now have on the grid.
|
967 |
+
placed_objects = set(root_edge)
|
968 |
+
|
969 |
+
while placed_objects != all_objects:
|
970 |
+
welding = DiagramGrid._find_triangle_to_weld(
|
971 |
+
triangles, fringe, grid)
|
972 |
+
|
973 |
+
if welding:
|
974 |
+
(triangle, welding_edge) = welding
|
975 |
+
|
976 |
+
restart_required = DiagramGrid._weld_triangle(
|
977 |
+
triangle, welding_edge, fringe, grid, skeleton)
|
978 |
+
if restart_required:
|
979 |
+
continue
|
980 |
+
|
981 |
+
placed_objects.update(
|
982 |
+
DiagramGrid._triangle_objects(triangle))
|
983 |
+
else:
|
984 |
+
# No more weldings found. Try to attach triangles by
|
985 |
+
# vertices.
|
986 |
+
new_obj = DiagramGrid._grow_pseudopod(
|
987 |
+
triangles, fringe, grid, skeleton, placed_objects)
|
988 |
+
|
989 |
+
if not new_obj:
|
990 |
+
# No more triangles can be attached, not even by
|
991 |
+
# the edge. We will set up a new diagram out of
|
992 |
+
# what has been left, laid it out independently,
|
993 |
+
# and then attach it to this one.
|
994 |
+
|
995 |
+
remaining_objects = all_objects - placed_objects
|
996 |
+
|
997 |
+
remaining_diagram = diagram.subdiagram_from_objects(
|
998 |
+
FiniteSet(*remaining_objects))
|
999 |
+
remaining_grid = DiagramGrid(remaining_diagram)
|
1000 |
+
|
1001 |
+
# Now, let's glue ``remaining_grid`` to ``grid``.
|
1002 |
+
final_width = grid.width + remaining_grid.width
|
1003 |
+
final_height = max(grid.height, remaining_grid.height)
|
1004 |
+
final_grid = _GrowableGrid(final_width, final_height)
|
1005 |
+
|
1006 |
+
for i in range(grid.width):
|
1007 |
+
for j in range(grid.height):
|
1008 |
+
final_grid[i, j] = grid[i, j]
|
1009 |
+
|
1010 |
+
start_j = grid.width
|
1011 |
+
for i in range(remaining_grid.height):
|
1012 |
+
for j in range(remaining_grid.width):
|
1013 |
+
final_grid[i, start_j + j] = remaining_grid[i, j]
|
1014 |
+
|
1015 |
+
return final_grid
|
1016 |
+
|
1017 |
+
placed_objects.add(new_obj)
|
1018 |
+
|
1019 |
+
triangles = DiagramGrid._drop_irrelevant_triangles(
|
1020 |
+
triangles, placed_objects)
|
1021 |
+
|
1022 |
+
return grid
|
1023 |
+
|
1024 |
+
@staticmethod
|
1025 |
+
def _get_undirected_graph(objects, merged_morphisms):
|
1026 |
+
"""
|
1027 |
+
Given the objects and the relevant morphisms of a diagram,
|
1028 |
+
returns the adjacency lists of the underlying undirected
|
1029 |
+
graph.
|
1030 |
+
"""
|
1031 |
+
adjlists = {}
|
1032 |
+
for obj in objects:
|
1033 |
+
adjlists[obj] = []
|
1034 |
+
|
1035 |
+
for morphism in merged_morphisms:
|
1036 |
+
adjlists[morphism.domain].append(morphism.codomain)
|
1037 |
+
adjlists[morphism.codomain].append(morphism.domain)
|
1038 |
+
|
1039 |
+
# Assure that the objects in the adjacency list are always in
|
1040 |
+
# the same order.
|
1041 |
+
for obj in adjlists.keys():
|
1042 |
+
adjlists[obj].sort(key=default_sort_key)
|
1043 |
+
|
1044 |
+
return adjlists
|
1045 |
+
|
1046 |
+
@staticmethod
|
1047 |
+
def _sequential_layout(diagram, merged_morphisms):
|
1048 |
+
r"""
|
1049 |
+
Lays out the diagram in "sequential" layout. This method
|
1050 |
+
will attempt to produce a result as close to a line as
|
1051 |
+
possible. For linear diagrams, the result will actually be a
|
1052 |
+
line.
|
1053 |
+
"""
|
1054 |
+
objects = diagram.objects
|
1055 |
+
sorted_objects = sorted(objects, key=default_sort_key)
|
1056 |
+
|
1057 |
+
# Set up the adjacency lists of the underlying undirected
|
1058 |
+
# graph of ``merged_morphisms``.
|
1059 |
+
adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1060 |
+
|
1061 |
+
# Find an object with the minimal degree. This is going to be
|
1062 |
+
# the root.
|
1063 |
+
root = sorted_objects[0]
|
1064 |
+
mindegree = len(adjlists[root])
|
1065 |
+
for obj in sorted_objects:
|
1066 |
+
current_degree = len(adjlists[obj])
|
1067 |
+
if current_degree < mindegree:
|
1068 |
+
root = obj
|
1069 |
+
mindegree = current_degree
|
1070 |
+
|
1071 |
+
grid = _GrowableGrid(1, 1)
|
1072 |
+
grid[0, 0] = root
|
1073 |
+
|
1074 |
+
placed_objects = {root}
|
1075 |
+
|
1076 |
+
def place_objects(pt, placed_objects):
|
1077 |
+
"""
|
1078 |
+
Does depth-first search in the underlying graph of the
|
1079 |
+
diagram and places the objects en route.
|
1080 |
+
"""
|
1081 |
+
# We will start placing new objects from here.
|
1082 |
+
new_pt = (pt[0], pt[1] + 1)
|
1083 |
+
|
1084 |
+
for adjacent_obj in adjlists[grid[pt]]:
|
1085 |
+
if adjacent_obj in placed_objects:
|
1086 |
+
# This object has already been placed.
|
1087 |
+
continue
|
1088 |
+
|
1089 |
+
DiagramGrid._put_object(new_pt, adjacent_obj, grid, [])
|
1090 |
+
placed_objects.add(adjacent_obj)
|
1091 |
+
placed_objects.update(place_objects(new_pt, placed_objects))
|
1092 |
+
|
1093 |
+
new_pt = (new_pt[0] + 1, new_pt[1])
|
1094 |
+
|
1095 |
+
return placed_objects
|
1096 |
+
|
1097 |
+
place_objects((0, 0), placed_objects)
|
1098 |
+
|
1099 |
+
return grid
|
1100 |
+
|
1101 |
+
@staticmethod
|
1102 |
+
def _drop_inessential_morphisms(merged_morphisms):
|
1103 |
+
r"""
|
1104 |
+
Removes those morphisms which should appear in the diagram,
|
1105 |
+
but which have no relevance to object layout.
|
1106 |
+
|
1107 |
+
Currently this removes "loop" morphisms: the non-identity
|
1108 |
+
morphisms with the same domains and codomains.
|
1109 |
+
"""
|
1110 |
+
morphisms = [m for m in merged_morphisms if m.domain != m.codomain]
|
1111 |
+
return morphisms
|
1112 |
+
|
1113 |
+
@staticmethod
|
1114 |
+
def _get_connected_components(objects, merged_morphisms):
|
1115 |
+
"""
|
1116 |
+
Given a container of morphisms, returns a list of connected
|
1117 |
+
components formed by these morphisms. A connected component
|
1118 |
+
is represented by a diagram consisting of the corresponding
|
1119 |
+
morphisms.
|
1120 |
+
"""
|
1121 |
+
component_index = {}
|
1122 |
+
for o in objects:
|
1123 |
+
component_index[o] = None
|
1124 |
+
|
1125 |
+
# Get the underlying undirected graph of the diagram.
|
1126 |
+
adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1127 |
+
|
1128 |
+
def traverse_component(object, current_index):
|
1129 |
+
"""
|
1130 |
+
Does a depth-first search traversal of the component
|
1131 |
+
containing ``object``.
|
1132 |
+
"""
|
1133 |
+
component_index[object] = current_index
|
1134 |
+
for o in adjlist[object]:
|
1135 |
+
if component_index[o] is None:
|
1136 |
+
traverse_component(o, current_index)
|
1137 |
+
|
1138 |
+
# Traverse all components.
|
1139 |
+
current_index = 0
|
1140 |
+
for o in adjlist:
|
1141 |
+
if component_index[o] is None:
|
1142 |
+
traverse_component(o, current_index)
|
1143 |
+
current_index += 1
|
1144 |
+
|
1145 |
+
# List the objects of the components.
|
1146 |
+
component_objects = [[] for i in range(current_index)]
|
1147 |
+
for o, idx in component_index.items():
|
1148 |
+
component_objects[idx].append(o)
|
1149 |
+
|
1150 |
+
# Finally, list the morphisms belonging to each component.
|
1151 |
+
#
|
1152 |
+
# Note: If some objects are isolated, they will not get any
|
1153 |
+
# morphisms at this stage, and since the layout algorithm
|
1154 |
+
# relies, we are essentially going to lose this object.
|
1155 |
+
# Therefore, check if there are isolated objects and, for each
|
1156 |
+
# of them, provide the trivial identity morphism. It will get
|
1157 |
+
# discarded later, but the object will be there.
|
1158 |
+
|
1159 |
+
component_morphisms = []
|
1160 |
+
for component in component_objects:
|
1161 |
+
current_morphisms = {}
|
1162 |
+
for m in merged_morphisms:
|
1163 |
+
if (m.domain in component) and (m.codomain in component):
|
1164 |
+
current_morphisms[m] = merged_morphisms[m]
|
1165 |
+
|
1166 |
+
if len(component) == 1:
|
1167 |
+
# Let's add an identity morphism, for the sake of
|
1168 |
+
# surely having morphisms in this component.
|
1169 |
+
current_morphisms[IdentityMorphism(component[0])] = FiniteSet()
|
1170 |
+
|
1171 |
+
component_morphisms.append(Diagram(current_morphisms))
|
1172 |
+
|
1173 |
+
return component_morphisms
|
1174 |
+
|
1175 |
+
def __init__(self, diagram, groups=None, **hints):
|
1176 |
+
premises = DiagramGrid._simplify_morphisms(diagram.premises)
|
1177 |
+
conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions)
|
1178 |
+
all_merged_morphisms = DiagramGrid._merge_premises_conclusions(
|
1179 |
+
premises, conclusions)
|
1180 |
+
merged_morphisms = DiagramGrid._drop_inessential_morphisms(
|
1181 |
+
all_merged_morphisms)
|
1182 |
+
|
1183 |
+
# Store the merged morphisms for later use.
|
1184 |
+
self._morphisms = all_merged_morphisms
|
1185 |
+
|
1186 |
+
components = DiagramGrid._get_connected_components(
|
1187 |
+
diagram.objects, all_merged_morphisms)
|
1188 |
+
|
1189 |
+
if groups and (groups != diagram.objects):
|
1190 |
+
# Lay out the diagram according to the groups.
|
1191 |
+
self._grid = DiagramGrid._handle_groups(
|
1192 |
+
diagram, groups, merged_morphisms, hints)
|
1193 |
+
elif len(components) > 1:
|
1194 |
+
# Note that we check for connectedness _before_ checking
|
1195 |
+
# the layout hints because the layout strategies don't
|
1196 |
+
# know how to deal with disconnected diagrams.
|
1197 |
+
|
1198 |
+
# The diagram is disconnected. Lay out the components
|
1199 |
+
# independently.
|
1200 |
+
grids = []
|
1201 |
+
|
1202 |
+
# Sort the components to eventually get the grids arranged
|
1203 |
+
# in a fixed, hash-independent order.
|
1204 |
+
components = sorted(components, key=default_sort_key)
|
1205 |
+
|
1206 |
+
for component in components:
|
1207 |
+
grid = DiagramGrid(component, **hints)
|
1208 |
+
grids.append(grid)
|
1209 |
+
|
1210 |
+
# Throw the grids together, in a line.
|
1211 |
+
total_width = sum(g.width for g in grids)
|
1212 |
+
total_height = max(g.height for g in grids)
|
1213 |
+
|
1214 |
+
grid = _GrowableGrid(total_width, total_height)
|
1215 |
+
start_j = 0
|
1216 |
+
for g in grids:
|
1217 |
+
for i in range(g.height):
|
1218 |
+
for j in range(g.width):
|
1219 |
+
grid[i, start_j + j] = g[i, j]
|
1220 |
+
|
1221 |
+
start_j += g.width
|
1222 |
+
|
1223 |
+
self._grid = grid
|
1224 |
+
elif "layout" in hints:
|
1225 |
+
if hints["layout"] == "sequential":
|
1226 |
+
self._grid = DiagramGrid._sequential_layout(
|
1227 |
+
diagram, merged_morphisms)
|
1228 |
+
else:
|
1229 |
+
self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms)
|
1230 |
+
|
1231 |
+
if hints.get("transpose"):
|
1232 |
+
# Transpose the resulting grid.
|
1233 |
+
grid = _GrowableGrid(self._grid.height, self._grid.width)
|
1234 |
+
for i in range(self._grid.height):
|
1235 |
+
for j in range(self._grid.width):
|
1236 |
+
grid[j, i] = self._grid[i, j]
|
1237 |
+
self._grid = grid
|
1238 |
+
|
1239 |
+
@property
|
1240 |
+
def width(self):
|
1241 |
+
"""
|
1242 |
+
Returns the number of columns in this diagram layout.
|
1243 |
+
|
1244 |
+
Examples
|
1245 |
+
========
|
1246 |
+
|
1247 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1248 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1249 |
+
>>> A = Object("A")
|
1250 |
+
>>> B = Object("B")
|
1251 |
+
>>> C = Object("C")
|
1252 |
+
>>> f = NamedMorphism(A, B, "f")
|
1253 |
+
>>> g = NamedMorphism(B, C, "g")
|
1254 |
+
>>> diagram = Diagram([f, g])
|
1255 |
+
>>> grid = DiagramGrid(diagram)
|
1256 |
+
>>> grid.width
|
1257 |
+
2
|
1258 |
+
|
1259 |
+
"""
|
1260 |
+
return self._grid.width
|
1261 |
+
|
1262 |
+
@property
|
1263 |
+
def height(self):
|
1264 |
+
"""
|
1265 |
+
Returns the number of rows in this diagram layout.
|
1266 |
+
|
1267 |
+
Examples
|
1268 |
+
========
|
1269 |
+
|
1270 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1271 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1272 |
+
>>> A = Object("A")
|
1273 |
+
>>> B = Object("B")
|
1274 |
+
>>> C = Object("C")
|
1275 |
+
>>> f = NamedMorphism(A, B, "f")
|
1276 |
+
>>> g = NamedMorphism(B, C, "g")
|
1277 |
+
>>> diagram = Diagram([f, g])
|
1278 |
+
>>> grid = DiagramGrid(diagram)
|
1279 |
+
>>> grid.height
|
1280 |
+
2
|
1281 |
+
|
1282 |
+
"""
|
1283 |
+
return self._grid.height
|
1284 |
+
|
1285 |
+
def __getitem__(self, i_j):
|
1286 |
+
"""
|
1287 |
+
Returns the object placed in the row ``i`` and column ``j``.
|
1288 |
+
The indices are 0-based.
|
1289 |
+
|
1290 |
+
Examples
|
1291 |
+
========
|
1292 |
+
|
1293 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1294 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1295 |
+
>>> A = Object("A")
|
1296 |
+
>>> B = Object("B")
|
1297 |
+
>>> C = Object("C")
|
1298 |
+
>>> f = NamedMorphism(A, B, "f")
|
1299 |
+
>>> g = NamedMorphism(B, C, "g")
|
1300 |
+
>>> diagram = Diagram([f, g])
|
1301 |
+
>>> grid = DiagramGrid(diagram)
|
1302 |
+
>>> (grid[0, 0], grid[0, 1])
|
1303 |
+
(Object("A"), Object("B"))
|
1304 |
+
>>> (grid[1, 0], grid[1, 1])
|
1305 |
+
(None, Object("C"))
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
i, j = i_j
|
1309 |
+
return self._grid[i, j]
|
1310 |
+
|
1311 |
+
@property
|
1312 |
+
def morphisms(self):
|
1313 |
+
"""
|
1314 |
+
Returns those morphisms (and their properties) which are
|
1315 |
+
sufficiently meaningful to be drawn.
|
1316 |
+
|
1317 |
+
Examples
|
1318 |
+
========
|
1319 |
+
|
1320 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1321 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1322 |
+
>>> A = Object("A")
|
1323 |
+
>>> B = Object("B")
|
1324 |
+
>>> C = Object("C")
|
1325 |
+
>>> f = NamedMorphism(A, B, "f")
|
1326 |
+
>>> g = NamedMorphism(B, C, "g")
|
1327 |
+
>>> diagram = Diagram([f, g])
|
1328 |
+
>>> grid = DiagramGrid(diagram)
|
1329 |
+
>>> grid.morphisms
|
1330 |
+
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
|
1331 |
+
NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
|
1332 |
+
|
1333 |
+
"""
|
1334 |
+
return self._morphisms
|
1335 |
+
|
1336 |
+
def __str__(self):
|
1337 |
+
"""
|
1338 |
+
Produces a string representation of this class.
|
1339 |
+
|
1340 |
+
This method returns a string representation of the underlying
|
1341 |
+
list of lists of objects.
|
1342 |
+
|
1343 |
+
Examples
|
1344 |
+
========
|
1345 |
+
|
1346 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1347 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1348 |
+
>>> A = Object("A")
|
1349 |
+
>>> B = Object("B")
|
1350 |
+
>>> C = Object("C")
|
1351 |
+
>>> f = NamedMorphism(A, B, "f")
|
1352 |
+
>>> g = NamedMorphism(B, C, "g")
|
1353 |
+
>>> diagram = Diagram([f, g])
|
1354 |
+
>>> grid = DiagramGrid(diagram)
|
1355 |
+
>>> print(grid)
|
1356 |
+
[[Object("A"), Object("B")],
|
1357 |
+
[None, Object("C")]]
|
1358 |
+
|
1359 |
+
"""
|
1360 |
+
return repr(self._grid._array)
|
1361 |
+
|
1362 |
+
|
1363 |
+
class ArrowStringDescription:
|
1364 |
+
r"""
|
1365 |
+
Stores the information necessary for producing an Xy-pic
|
1366 |
+
description of an arrow.
|
1367 |
+
|
1368 |
+
The principal goal of this class is to abstract away the string
|
1369 |
+
representation of an arrow and to also provide the functionality
|
1370 |
+
to produce the actual Xy-pic string.
|
1371 |
+
|
1372 |
+
``unit`` sets the unit which will be used to specify the amount of
|
1373 |
+
curving and other distances. ``horizontal_direction`` should be a
|
1374 |
+
string of ``"r"`` or ``"l"`` specifying the horizontal offset of the
|
1375 |
+
target cell of the arrow relatively to the current one.
|
1376 |
+
``vertical_direction`` should specify the vertical offset using a
|
1377 |
+
series of either ``"d"`` or ``"u"``. ``label_position`` should be
|
1378 |
+
either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should
|
1379 |
+
be positioned above the arrow, below the arrow or just over the arrow,
|
1380 |
+
in a break. Note that the notions "above" and "below" are relative
|
1381 |
+
to arrow direction. ``label`` stores the morphism label.
|
1382 |
+
|
1383 |
+
This works as follows (disregard the yet unexplained arguments):
|
1384 |
+
|
1385 |
+
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
|
1386 |
+
>>> astr = ArrowStringDescription(
|
1387 |
+
... unit="mm", curving=None, curving_amount=None,
|
1388 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1389 |
+
... vertical_direction="r", label_position="_", label="f")
|
1390 |
+
>>> print(str(astr))
|
1391 |
+
\ar[dr]_{f}
|
1392 |
+
|
1393 |
+
``curving`` should be one of ``"^"``, ``"_"`` to specify in which
|
1394 |
+
direction the arrow is going to curve. ``curving_amount`` is a number
|
1395 |
+
describing how many ``unit``'s the morphism is going to curve:
|
1396 |
+
|
1397 |
+
>>> astr = ArrowStringDescription(
|
1398 |
+
... unit="mm", curving="^", curving_amount=12,
|
1399 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1400 |
+
... vertical_direction="r", label_position="_", label="f")
|
1401 |
+
>>> print(str(astr))
|
1402 |
+
\ar@/^12mm/[dr]_{f}
|
1403 |
+
|
1404 |
+
``looping_start`` and ``looping_end`` are currently only used for
|
1405 |
+
loop morphisms, those which have the same domain and codomain.
|
1406 |
+
These two attributes should store a valid Xy-pic direction and
|
1407 |
+
specify, correspondingly, the direction the arrow gets out into
|
1408 |
+
and the direction the arrow gets back from:
|
1409 |
+
|
1410 |
+
>>> astr = ArrowStringDescription(
|
1411 |
+
... unit="mm", curving=None, curving_amount=None,
|
1412 |
+
... looping_start="u", looping_end="l", horizontal_direction="",
|
1413 |
+
... vertical_direction="", label_position="_", label="f")
|
1414 |
+
>>> print(str(astr))
|
1415 |
+
\ar@(u,l)[]_{f}
|
1416 |
+
|
1417 |
+
``label_displacement`` controls how far the arrow label is from
|
1418 |
+
the ends of the arrow. For example, to position the arrow label
|
1419 |
+
near the arrow head, use ">":
|
1420 |
+
|
1421 |
+
>>> astr = ArrowStringDescription(
|
1422 |
+
... unit="mm", curving="^", curving_amount=12,
|
1423 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1424 |
+
... vertical_direction="r", label_position="_", label="f")
|
1425 |
+
>>> astr.label_displacement = ">"
|
1426 |
+
>>> print(str(astr))
|
1427 |
+
\ar@/^12mm/[dr]_>{f}
|
1428 |
+
|
1429 |
+
Finally, ``arrow_style`` is used to specify the arrow style. To
|
1430 |
+
get a dashed arrow, for example, use "{-->}" as arrow style:
|
1431 |
+
|
1432 |
+
>>> astr = ArrowStringDescription(
|
1433 |
+
... unit="mm", curving="^", curving_amount=12,
|
1434 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1435 |
+
... vertical_direction="r", label_position="_", label="f")
|
1436 |
+
>>> astr.arrow_style = "{-->}"
|
1437 |
+
>>> print(str(astr))
|
1438 |
+
\ar@/^12mm/@{-->}[dr]_{f}
|
1439 |
+
|
1440 |
+
Notes
|
1441 |
+
=====
|
1442 |
+
|
1443 |
+
Instances of :class:`ArrowStringDescription` will be constructed
|
1444 |
+
by :class:`XypicDiagramDrawer` and provided for further use in
|
1445 |
+
formatters. The user is not expected to construct instances of
|
1446 |
+
:class:`ArrowStringDescription` themselves.
|
1447 |
+
|
1448 |
+
To be able to properly utilise this class, the reader is encouraged
|
1449 |
+
to checkout the Xy-pic user guide, available at [Xypic].
|
1450 |
+
|
1451 |
+
See Also
|
1452 |
+
========
|
1453 |
+
|
1454 |
+
XypicDiagramDrawer
|
1455 |
+
|
1456 |
+
References
|
1457 |
+
==========
|
1458 |
+
|
1459 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
1460 |
+
"""
|
1461 |
+
def __init__(self, unit, curving, curving_amount, looping_start,
|
1462 |
+
looping_end, horizontal_direction, vertical_direction,
|
1463 |
+
label_position, label):
|
1464 |
+
self.unit = unit
|
1465 |
+
self.curving = curving
|
1466 |
+
self.curving_amount = curving_amount
|
1467 |
+
self.looping_start = looping_start
|
1468 |
+
self.looping_end = looping_end
|
1469 |
+
self.horizontal_direction = horizontal_direction
|
1470 |
+
self.vertical_direction = vertical_direction
|
1471 |
+
self.label_position = label_position
|
1472 |
+
self.label = label
|
1473 |
+
|
1474 |
+
self.label_displacement = ""
|
1475 |
+
self.arrow_style = ""
|
1476 |
+
|
1477 |
+
# This flag shows that the position of the label of this
|
1478 |
+
# morphism was set while typesetting a curved morphism and
|
1479 |
+
# should not be modified later.
|
1480 |
+
self.forced_label_position = False
|
1481 |
+
|
1482 |
+
def __str__(self):
|
1483 |
+
if self.curving:
|
1484 |
+
curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount,
|
1485 |
+
self.unit)
|
1486 |
+
else:
|
1487 |
+
curving_str = ""
|
1488 |
+
|
1489 |
+
if self.looping_start and self.looping_end:
|
1490 |
+
looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end)
|
1491 |
+
else:
|
1492 |
+
looping_str = ""
|
1493 |
+
|
1494 |
+
if self.arrow_style:
|
1495 |
+
|
1496 |
+
style_str = "@" + self.arrow_style
|
1497 |
+
else:
|
1498 |
+
style_str = ""
|
1499 |
+
|
1500 |
+
return "\\ar%s%s%s[%s%s]%s%s{%s}" % \
|
1501 |
+
(curving_str, looping_str, style_str, self.horizontal_direction,
|
1502 |
+
self.vertical_direction, self.label_position,
|
1503 |
+
self.label_displacement, self.label)
|
1504 |
+
|
1505 |
+
|
1506 |
+
class XypicDiagramDrawer:
|
1507 |
+
r"""
|
1508 |
+
Given a :class:`~.Diagram` and the corresponding
|
1509 |
+
:class:`DiagramGrid`, produces the Xy-pic representation of the
|
1510 |
+
diagram.
|
1511 |
+
|
1512 |
+
The most important method in this class is ``draw``. Consider the
|
1513 |
+
following triangle diagram:
|
1514 |
+
|
1515 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
1516 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
1517 |
+
>>> A = Object("A")
|
1518 |
+
>>> B = Object("B")
|
1519 |
+
>>> C = Object("C")
|
1520 |
+
>>> f = NamedMorphism(A, B, "f")
|
1521 |
+
>>> g = NamedMorphism(B, C, "g")
|
1522 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
1523 |
+
|
1524 |
+
To draw this diagram, its objects need to be laid out with a
|
1525 |
+
:class:`DiagramGrid`::
|
1526 |
+
|
1527 |
+
>>> grid = DiagramGrid(diagram)
|
1528 |
+
|
1529 |
+
Finally, the drawing:
|
1530 |
+
|
1531 |
+
>>> drawer = XypicDiagramDrawer()
|
1532 |
+
>>> print(drawer.draw(diagram, grid))
|
1533 |
+
\xymatrix{
|
1534 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1535 |
+
C &
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
For further details see the docstring of this method.
|
1539 |
+
|
1540 |
+
To control the appearance of the arrows, formatters are used. The
|
1541 |
+
dictionary ``arrow_formatters`` maps morphisms to formatter
|
1542 |
+
functions. A formatter is accepts an
|
1543 |
+
:class:`ArrowStringDescription` and is allowed to modify any of
|
1544 |
+
the arrow properties exposed thereby. For example, to have all
|
1545 |
+
morphisms with the property ``unique`` appear as dashed arrows,
|
1546 |
+
and to have their names prepended with `\exists !`, the following
|
1547 |
+
should be done:
|
1548 |
+
|
1549 |
+
>>> def formatter(astr):
|
1550 |
+
... astr.label = r"\exists !" + astr.label
|
1551 |
+
... astr.arrow_style = "{-->}"
|
1552 |
+
>>> drawer.arrow_formatters["unique"] = formatter
|
1553 |
+
>>> print(drawer.draw(diagram, grid))
|
1554 |
+
\xymatrix{
|
1555 |
+
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1556 |
+
C &
|
1557 |
+
}
|
1558 |
+
|
1559 |
+
To modify the appearance of all arrows in the diagram, set
|
1560 |
+
``default_arrow_formatter``. For example, to place all morphism
|
1561 |
+
labels a little bit farther from the arrow head so that they look
|
1562 |
+
more centred, do as follows:
|
1563 |
+
|
1564 |
+
>>> def default_formatter(astr):
|
1565 |
+
... astr.label_displacement = "(0.45)"
|
1566 |
+
>>> drawer.default_arrow_formatter = default_formatter
|
1567 |
+
>>> print(drawer.draw(diagram, grid))
|
1568 |
+
\xymatrix{
|
1569 |
+
A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\
|
1570 |
+
C &
|
1571 |
+
}
|
1572 |
+
|
1573 |
+
In some diagrams some morphisms are drawn as curved arrows.
|
1574 |
+
Consider the following diagram:
|
1575 |
+
|
1576 |
+
>>> D = Object("D")
|
1577 |
+
>>> E = Object("E")
|
1578 |
+
>>> h = NamedMorphism(D, A, "h")
|
1579 |
+
>>> k = NamedMorphism(D, B, "k")
|
1580 |
+
>>> diagram = Diagram([f, g, h, k])
|
1581 |
+
>>> grid = DiagramGrid(diagram)
|
1582 |
+
>>> drawer = XypicDiagramDrawer()
|
1583 |
+
>>> print(drawer.draw(diagram, grid))
|
1584 |
+
\xymatrix{
|
1585 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\
|
1586 |
+
& C &
|
1587 |
+
}
|
1588 |
+
|
1589 |
+
To control how far the morphisms are curved by default, one can
|
1590 |
+
use the ``unit`` and ``default_curving_amount`` attributes:
|
1591 |
+
|
1592 |
+
>>> drawer.unit = "cm"
|
1593 |
+
>>> drawer.default_curving_amount = 1
|
1594 |
+
>>> print(drawer.draw(diagram, grid))
|
1595 |
+
\xymatrix{
|
1596 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\
|
1597 |
+
& C &
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
In some diagrams, there are multiple curved morphisms between the
|
1601 |
+
same two objects. To control by how much the curving changes
|
1602 |
+
between two such successive morphisms, use
|
1603 |
+
``default_curving_step``:
|
1604 |
+
|
1605 |
+
>>> drawer.default_curving_step = 1
|
1606 |
+
>>> h1 = NamedMorphism(A, D, "h1")
|
1607 |
+
>>> diagram = Diagram([f, g, h, k, h1])
|
1608 |
+
>>> grid = DiagramGrid(diagram)
|
1609 |
+
>>> print(drawer.draw(diagram, grid))
|
1610 |
+
\xymatrix{
|
1611 |
+
A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\
|
1612 |
+
& C &
|
1613 |
+
}
|
1614 |
+
|
1615 |
+
The default value of ``default_curving_step`` is 4 units.
|
1616 |
+
|
1617 |
+
See Also
|
1618 |
+
========
|
1619 |
+
|
1620 |
+
draw, ArrowStringDescription
|
1621 |
+
"""
|
1622 |
+
def __init__(self):
|
1623 |
+
self.unit = "mm"
|
1624 |
+
self.default_curving_amount = 3
|
1625 |
+
self.default_curving_step = 4
|
1626 |
+
|
1627 |
+
# This dictionary maps properties to the corresponding arrow
|
1628 |
+
# formatters.
|
1629 |
+
self.arrow_formatters = {}
|
1630 |
+
|
1631 |
+
# This is the default arrow formatter which will be applied to
|
1632 |
+
# each arrow independently of its properties.
|
1633 |
+
self.default_arrow_formatter = None
|
1634 |
+
|
1635 |
+
@staticmethod
|
1636 |
+
def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords):
|
1637 |
+
"""
|
1638 |
+
Produces the information required for constructing the string
|
1639 |
+
representation of a loop morphism. This function is invoked
|
1640 |
+
from ``_process_morphism``.
|
1641 |
+
|
1642 |
+
See Also
|
1643 |
+
========
|
1644 |
+
|
1645 |
+
_process_morphism
|
1646 |
+
"""
|
1647 |
+
curving = ""
|
1648 |
+
label_pos = "^"
|
1649 |
+
looping_start = ""
|
1650 |
+
looping_end = ""
|
1651 |
+
|
1652 |
+
# This is a loop morphism. Count how many morphisms stick
|
1653 |
+
# in each of the four quadrants. Note that straight
|
1654 |
+
# vertical and horizontal morphisms count in two quadrants
|
1655 |
+
# at the same time (i.e., a morphism going up counts both
|
1656 |
+
# in the first and the second quadrants).
|
1657 |
+
|
1658 |
+
# The usual numbering (counterclockwise) of quadrants
|
1659 |
+
# applies.
|
1660 |
+
quadrant = [0, 0, 0, 0]
|
1661 |
+
|
1662 |
+
obj = grid[i, j]
|
1663 |
+
|
1664 |
+
for m, m_str_info in morphisms_str_info.items():
|
1665 |
+
if (m.domain == obj) and (m.codomain == obj):
|
1666 |
+
# That's another loop morphism. Check how it
|
1667 |
+
# loops and mark the corresponding quadrants as
|
1668 |
+
# busy.
|
1669 |
+
(l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end)
|
1670 |
+
|
1671 |
+
if (l_s, l_e) == ("r", "u"):
|
1672 |
+
quadrant[0] += 1
|
1673 |
+
elif (l_s, l_e) == ("u", "l"):
|
1674 |
+
quadrant[1] += 1
|
1675 |
+
elif (l_s, l_e) == ("l", "d"):
|
1676 |
+
quadrant[2] += 1
|
1677 |
+
elif (l_s, l_e) == ("d", "r"):
|
1678 |
+
quadrant[3] += 1
|
1679 |
+
|
1680 |
+
continue
|
1681 |
+
if m.domain == obj:
|
1682 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1683 |
+
goes_out = True
|
1684 |
+
elif m.codomain == obj:
|
1685 |
+
(end_i, end_j) = object_coords[m.domain]
|
1686 |
+
goes_out = False
|
1687 |
+
else:
|
1688 |
+
continue
|
1689 |
+
|
1690 |
+
d_i = end_i - i
|
1691 |
+
d_j = end_j - j
|
1692 |
+
m_curving = m_str_info.curving
|
1693 |
+
|
1694 |
+
if (d_i != 0) and (d_j != 0):
|
1695 |
+
# This is really a diagonal morphism. Detect the
|
1696 |
+
# quadrant.
|
1697 |
+
if (d_i > 0) and (d_j > 0):
|
1698 |
+
quadrant[0] += 1
|
1699 |
+
elif (d_i > 0) and (d_j < 0):
|
1700 |
+
quadrant[1] += 1
|
1701 |
+
elif (d_i < 0) and (d_j < 0):
|
1702 |
+
quadrant[2] += 1
|
1703 |
+
elif (d_i < 0) and (d_j > 0):
|
1704 |
+
quadrant[3] += 1
|
1705 |
+
elif d_i == 0:
|
1706 |
+
# Knowing where the other end of the morphism is
|
1707 |
+
# and which way it goes, we now have to decide
|
1708 |
+
# which quadrant is now the upper one and which is
|
1709 |
+
# the lower one.
|
1710 |
+
if d_j > 0:
|
1711 |
+
if goes_out:
|
1712 |
+
upper_quadrant = 0
|
1713 |
+
lower_quadrant = 3
|
1714 |
+
else:
|
1715 |
+
upper_quadrant = 3
|
1716 |
+
lower_quadrant = 0
|
1717 |
+
else:
|
1718 |
+
if goes_out:
|
1719 |
+
upper_quadrant = 2
|
1720 |
+
lower_quadrant = 1
|
1721 |
+
else:
|
1722 |
+
upper_quadrant = 1
|
1723 |
+
lower_quadrant = 2
|
1724 |
+
|
1725 |
+
if m_curving:
|
1726 |
+
if m_curving == "^":
|
1727 |
+
quadrant[upper_quadrant] += 1
|
1728 |
+
elif m_curving == "_":
|
1729 |
+
quadrant[lower_quadrant] += 1
|
1730 |
+
else:
|
1731 |
+
# This morphism counts in both upper and lower
|
1732 |
+
# quadrants.
|
1733 |
+
quadrant[upper_quadrant] += 1
|
1734 |
+
quadrant[lower_quadrant] += 1
|
1735 |
+
elif d_j == 0:
|
1736 |
+
# Knowing where the other end of the morphism is
|
1737 |
+
# and which way it goes, we now have to decide
|
1738 |
+
# which quadrant is now the left one and which is
|
1739 |
+
# the right one.
|
1740 |
+
if d_i < 0:
|
1741 |
+
if goes_out:
|
1742 |
+
left_quadrant = 1
|
1743 |
+
right_quadrant = 0
|
1744 |
+
else:
|
1745 |
+
left_quadrant = 0
|
1746 |
+
right_quadrant = 1
|
1747 |
+
else:
|
1748 |
+
if goes_out:
|
1749 |
+
left_quadrant = 3
|
1750 |
+
right_quadrant = 2
|
1751 |
+
else:
|
1752 |
+
left_quadrant = 2
|
1753 |
+
right_quadrant = 3
|
1754 |
+
|
1755 |
+
if m_curving:
|
1756 |
+
if m_curving == "^":
|
1757 |
+
quadrant[left_quadrant] += 1
|
1758 |
+
elif m_curving == "_":
|
1759 |
+
quadrant[right_quadrant] += 1
|
1760 |
+
else:
|
1761 |
+
# This morphism counts in both upper and lower
|
1762 |
+
# quadrants.
|
1763 |
+
quadrant[left_quadrant] += 1
|
1764 |
+
quadrant[right_quadrant] += 1
|
1765 |
+
|
1766 |
+
# Pick the freest quadrant to curve our morphism into.
|
1767 |
+
freest_quadrant = 0
|
1768 |
+
for i in range(4):
|
1769 |
+
if quadrant[i] < quadrant[freest_quadrant]:
|
1770 |
+
freest_quadrant = i
|
1771 |
+
|
1772 |
+
# Now set up proper looping.
|
1773 |
+
(looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"),
|
1774 |
+
("d", "r")][freest_quadrant]
|
1775 |
+
|
1776 |
+
return (curving, label_pos, looping_start, looping_end)
|
1777 |
+
|
1778 |
+
@staticmethod
|
1779 |
+
def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info,
|
1780 |
+
object_coords):
|
1781 |
+
"""
|
1782 |
+
Produces the information required for constructing the string
|
1783 |
+
representation of a horizontal morphism. This function is
|
1784 |
+
invoked from ``_process_morphism``.
|
1785 |
+
|
1786 |
+
See Also
|
1787 |
+
========
|
1788 |
+
|
1789 |
+
_process_morphism
|
1790 |
+
"""
|
1791 |
+
# The arrow is horizontal. Check if it goes from left to
|
1792 |
+
# right (``backwards == False``) or from right to left
|
1793 |
+
# (``backwards == True``).
|
1794 |
+
backwards = False
|
1795 |
+
start = j
|
1796 |
+
end = target_j
|
1797 |
+
if end < start:
|
1798 |
+
(start, end) = (end, start)
|
1799 |
+
backwards = True
|
1800 |
+
|
1801 |
+
# Let's see which objects are there between ``start`` and
|
1802 |
+
# ``end``, and then count how many morphisms stick out
|
1803 |
+
# upwards, and how many stick out downwards.
|
1804 |
+
#
|
1805 |
+
# For example, consider the situation:
|
1806 |
+
#
|
1807 |
+
# B1 C1
|
1808 |
+
# | |
|
1809 |
+
# A--B--C--D
|
1810 |
+
# |
|
1811 |
+
# B2
|
1812 |
+
#
|
1813 |
+
# Between the objects `A` and `D` there are two objects:
|
1814 |
+
# `B` and `C`. Further, there are two morphisms which
|
1815 |
+
# stick out upward (the ones between `B1` and `B` and
|
1816 |
+
# between `C` and `C1`) and one morphism which sticks out
|
1817 |
+
# downward (the one between `B and `B2`).
|
1818 |
+
#
|
1819 |
+
# We need this information to decide how to curve the
|
1820 |
+
# arrow between `A` and `D`. First of all, since there
|
1821 |
+
# are two objects between `A` and `D``, we must curve the
|
1822 |
+
# arrow. Then, we will have it curve downward, because
|
1823 |
+
# there is more space (less morphisms stick out downward
|
1824 |
+
# than upward).
|
1825 |
+
up = []
|
1826 |
+
down = []
|
1827 |
+
straight_horizontal = []
|
1828 |
+
for k in range(start + 1, end):
|
1829 |
+
obj = grid[i, k]
|
1830 |
+
if not obj:
|
1831 |
+
continue
|
1832 |
+
|
1833 |
+
for m in morphisms_str_info:
|
1834 |
+
if m.domain == obj:
|
1835 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1836 |
+
elif m.codomain == obj:
|
1837 |
+
(end_i, end_j) = object_coords[m.domain]
|
1838 |
+
else:
|
1839 |
+
continue
|
1840 |
+
|
1841 |
+
if end_i > i:
|
1842 |
+
down.append(m)
|
1843 |
+
elif end_i < i:
|
1844 |
+
up.append(m)
|
1845 |
+
elif not morphisms_str_info[m].curving:
|
1846 |
+
# This is a straight horizontal morphism,
|
1847 |
+
# because it has no curving.
|
1848 |
+
straight_horizontal.append(m)
|
1849 |
+
|
1850 |
+
if len(up) < len(down):
|
1851 |
+
# More morphisms stick out downward than upward, let's
|
1852 |
+
# curve the morphism up.
|
1853 |
+
if backwards:
|
1854 |
+
curving = "_"
|
1855 |
+
label_pos = "_"
|
1856 |
+
else:
|
1857 |
+
curving = "^"
|
1858 |
+
label_pos = "^"
|
1859 |
+
|
1860 |
+
# Assure that the straight horizontal morphisms have
|
1861 |
+
# their labels on the lower side of the arrow.
|
1862 |
+
for m in straight_horizontal:
|
1863 |
+
(i1, j1) = object_coords[m.domain]
|
1864 |
+
(i2, j2) = object_coords[m.codomain]
|
1865 |
+
|
1866 |
+
m_str_info = morphisms_str_info[m]
|
1867 |
+
if j1 < j2:
|
1868 |
+
m_str_info.label_position = "_"
|
1869 |
+
else:
|
1870 |
+
m_str_info.label_position = "^"
|
1871 |
+
|
1872 |
+
# Don't allow any further modifications of the
|
1873 |
+
# position of this label.
|
1874 |
+
m_str_info.forced_label_position = True
|
1875 |
+
else:
|
1876 |
+
# More morphisms stick out downward than upward, let's
|
1877 |
+
# curve the morphism up.
|
1878 |
+
if backwards:
|
1879 |
+
curving = "^"
|
1880 |
+
label_pos = "^"
|
1881 |
+
else:
|
1882 |
+
curving = "_"
|
1883 |
+
label_pos = "_"
|
1884 |
+
|
1885 |
+
# Assure that the straight horizontal morphisms have
|
1886 |
+
# their labels on the upper side of the arrow.
|
1887 |
+
for m in straight_horizontal:
|
1888 |
+
(i1, j1) = object_coords[m.domain]
|
1889 |
+
(i2, j2) = object_coords[m.codomain]
|
1890 |
+
|
1891 |
+
m_str_info = morphisms_str_info[m]
|
1892 |
+
if j1 < j2:
|
1893 |
+
m_str_info.label_position = "^"
|
1894 |
+
else:
|
1895 |
+
m_str_info.label_position = "_"
|
1896 |
+
|
1897 |
+
# Don't allow any further modifications of the
|
1898 |
+
# position of this label.
|
1899 |
+
m_str_info.forced_label_position = True
|
1900 |
+
|
1901 |
+
return (curving, label_pos)
|
1902 |
+
|
1903 |
+
@staticmethod
|
1904 |
+
def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info,
|
1905 |
+
object_coords):
|
1906 |
+
"""
|
1907 |
+
Produces the information required for constructing the string
|
1908 |
+
representation of a vertical morphism. This function is
|
1909 |
+
invoked from ``_process_morphism``.
|
1910 |
+
|
1911 |
+
See Also
|
1912 |
+
========
|
1913 |
+
|
1914 |
+
_process_morphism
|
1915 |
+
"""
|
1916 |
+
# This arrow is vertical. Check if it goes from top to
|
1917 |
+
# bottom (``backwards == False``) or from bottom to top
|
1918 |
+
# (``backwards == True``).
|
1919 |
+
backwards = False
|
1920 |
+
start = i
|
1921 |
+
end = target_i
|
1922 |
+
if end < start:
|
1923 |
+
(start, end) = (end, start)
|
1924 |
+
backwards = True
|
1925 |
+
|
1926 |
+
# Let's see which objects are there between ``start`` and
|
1927 |
+
# ``end``, and then count how many morphisms stick out to
|
1928 |
+
# the left, and how many stick out to the right.
|
1929 |
+
#
|
1930 |
+
# See the corresponding comment in the previous branch of
|
1931 |
+
# this if-statement for more details.
|
1932 |
+
left = []
|
1933 |
+
right = []
|
1934 |
+
straight_vertical = []
|
1935 |
+
for k in range(start + 1, end):
|
1936 |
+
obj = grid[k, j]
|
1937 |
+
if not obj:
|
1938 |
+
continue
|
1939 |
+
|
1940 |
+
for m in morphisms_str_info:
|
1941 |
+
if m.domain == obj:
|
1942 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1943 |
+
elif m.codomain == obj:
|
1944 |
+
(end_i, end_j) = object_coords[m.domain]
|
1945 |
+
else:
|
1946 |
+
continue
|
1947 |
+
|
1948 |
+
if end_j > j:
|
1949 |
+
right.append(m)
|
1950 |
+
elif end_j < j:
|
1951 |
+
left.append(m)
|
1952 |
+
elif not morphisms_str_info[m].curving:
|
1953 |
+
# This is a straight vertical morphism,
|
1954 |
+
# because it has no curving.
|
1955 |
+
straight_vertical.append(m)
|
1956 |
+
|
1957 |
+
if len(left) < len(right):
|
1958 |
+
# More morphisms stick out to the left than to the
|
1959 |
+
# right, let's curve the morphism to the right.
|
1960 |
+
if backwards:
|
1961 |
+
curving = "^"
|
1962 |
+
label_pos = "^"
|
1963 |
+
else:
|
1964 |
+
curving = "_"
|
1965 |
+
label_pos = "_"
|
1966 |
+
|
1967 |
+
# Assure that the straight vertical morphisms have
|
1968 |
+
# their labels on the left side of the arrow.
|
1969 |
+
for m in straight_vertical:
|
1970 |
+
(i1, j1) = object_coords[m.domain]
|
1971 |
+
(i2, j2) = object_coords[m.codomain]
|
1972 |
+
|
1973 |
+
m_str_info = morphisms_str_info[m]
|
1974 |
+
if i1 < i2:
|
1975 |
+
m_str_info.label_position = "^"
|
1976 |
+
else:
|
1977 |
+
m_str_info.label_position = "_"
|
1978 |
+
|
1979 |
+
# Don't allow any further modifications of the
|
1980 |
+
# position of this label.
|
1981 |
+
m_str_info.forced_label_position = True
|
1982 |
+
else:
|
1983 |
+
# More morphisms stick out to the right than to the
|
1984 |
+
# left, let's curve the morphism to the left.
|
1985 |
+
if backwards:
|
1986 |
+
curving = "_"
|
1987 |
+
label_pos = "_"
|
1988 |
+
else:
|
1989 |
+
curving = "^"
|
1990 |
+
label_pos = "^"
|
1991 |
+
|
1992 |
+
# Assure that the straight vertical morphisms have
|
1993 |
+
# their labels on the right side of the arrow.
|
1994 |
+
for m in straight_vertical:
|
1995 |
+
(i1, j1) = object_coords[m.domain]
|
1996 |
+
(i2, j2) = object_coords[m.codomain]
|
1997 |
+
|
1998 |
+
m_str_info = morphisms_str_info[m]
|
1999 |
+
if i1 < i2:
|
2000 |
+
m_str_info.label_position = "_"
|
2001 |
+
else:
|
2002 |
+
m_str_info.label_position = "^"
|
2003 |
+
|
2004 |
+
# Don't allow any further modifications of the
|
2005 |
+
# position of this label.
|
2006 |
+
m_str_info.forced_label_position = True
|
2007 |
+
|
2008 |
+
return (curving, label_pos)
|
2009 |
+
|
2010 |
+
def _process_morphism(self, diagram, grid, morphism, object_coords,
|
2011 |
+
morphisms, morphisms_str_info):
|
2012 |
+
"""
|
2013 |
+
Given the required information, produces the string
|
2014 |
+
representation of ``morphism``.
|
2015 |
+
"""
|
2016 |
+
def repeat_string_cond(times, str_gt, str_lt):
|
2017 |
+
"""
|
2018 |
+
If ``times > 0``, repeats ``str_gt`` ``times`` times.
|
2019 |
+
Otherwise, repeats ``str_lt`` ``-times`` times.
|
2020 |
+
"""
|
2021 |
+
if times > 0:
|
2022 |
+
return str_gt * times
|
2023 |
+
else:
|
2024 |
+
return str_lt * (-times)
|
2025 |
+
|
2026 |
+
def count_morphisms_undirected(A, B):
|
2027 |
+
"""
|
2028 |
+
Counts how many processed morphisms there are between the
|
2029 |
+
two supplied objects.
|
2030 |
+
"""
|
2031 |
+
return len([m for m in morphisms_str_info
|
2032 |
+
if {m.domain, m.codomain} == {A, B}])
|
2033 |
+
|
2034 |
+
def count_morphisms_filtered(dom, cod, curving):
|
2035 |
+
"""
|
2036 |
+
Counts the processed morphisms which go out of ``dom``
|
2037 |
+
into ``cod`` with curving ``curving``.
|
2038 |
+
"""
|
2039 |
+
return len([m for m, m_str_info in morphisms_str_info.items()
|
2040 |
+
if (m.domain, m.codomain) == (dom, cod) and
|
2041 |
+
(m_str_info.curving == curving)])
|
2042 |
+
|
2043 |
+
(i, j) = object_coords[morphism.domain]
|
2044 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2045 |
+
|
2046 |
+
# We now need to determine the direction of
|
2047 |
+
# the arrow.
|
2048 |
+
delta_i = target_i - i
|
2049 |
+
delta_j = target_j - j
|
2050 |
+
vertical_direction = repeat_string_cond(delta_i,
|
2051 |
+
"d", "u")
|
2052 |
+
horizontal_direction = repeat_string_cond(delta_j,
|
2053 |
+
"r", "l")
|
2054 |
+
|
2055 |
+
curving = ""
|
2056 |
+
label_pos = "^"
|
2057 |
+
looping_start = ""
|
2058 |
+
looping_end = ""
|
2059 |
+
|
2060 |
+
if (delta_i == 0) and (delta_j == 0):
|
2061 |
+
# This is a loop morphism.
|
2062 |
+
(curving, label_pos, looping_start,
|
2063 |
+
looping_end) = XypicDiagramDrawer._process_loop_morphism(
|
2064 |
+
i, j, grid, morphisms_str_info, object_coords)
|
2065 |
+
elif (delta_i == 0) and (abs(j - target_j) > 1):
|
2066 |
+
# This is a horizontal morphism.
|
2067 |
+
(curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism(
|
2068 |
+
i, j, target_j, grid, morphisms_str_info, object_coords)
|
2069 |
+
elif (delta_j == 0) and (abs(i - target_i) > 1):
|
2070 |
+
# This is a vertical morphism.
|
2071 |
+
(curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism(
|
2072 |
+
i, j, target_i, grid, morphisms_str_info, object_coords)
|
2073 |
+
|
2074 |
+
count = count_morphisms_undirected(morphism.domain, morphism.codomain)
|
2075 |
+
curving_amount = ""
|
2076 |
+
if curving:
|
2077 |
+
# This morphisms should be curved anyway.
|
2078 |
+
curving_amount = self.default_curving_amount + count * \
|
2079 |
+
self.default_curving_step
|
2080 |
+
elif count:
|
2081 |
+
# There are no objects between the domain and codomain of
|
2082 |
+
# the current morphism, but this is not there already are
|
2083 |
+
# some morphisms with the same domain and codomain, so we
|
2084 |
+
# have to curve this one.
|
2085 |
+
curving = "^"
|
2086 |
+
filtered_morphisms = count_morphisms_filtered(
|
2087 |
+
morphism.domain, morphism.codomain, curving)
|
2088 |
+
curving_amount = self.default_curving_amount + \
|
2089 |
+
filtered_morphisms * \
|
2090 |
+
self.default_curving_step
|
2091 |
+
|
2092 |
+
# Let's now get the name of the morphism.
|
2093 |
+
morphism_name = ""
|
2094 |
+
if isinstance(morphism, IdentityMorphism):
|
2095 |
+
morphism_name = "id_{%s}" + latex(grid[i, j])
|
2096 |
+
elif isinstance(morphism, CompositeMorphism):
|
2097 |
+
component_names = [latex(Symbol(component.name)) for
|
2098 |
+
component in morphism.components]
|
2099 |
+
component_names.reverse()
|
2100 |
+
morphism_name = "\\circ ".join(component_names)
|
2101 |
+
elif isinstance(morphism, NamedMorphism):
|
2102 |
+
morphism_name = latex(Symbol(morphism.name))
|
2103 |
+
|
2104 |
+
return ArrowStringDescription(
|
2105 |
+
self.unit, curving, curving_amount, looping_start,
|
2106 |
+
looping_end, horizontal_direction, vertical_direction,
|
2107 |
+
label_pos, morphism_name)
|
2108 |
+
|
2109 |
+
@staticmethod
|
2110 |
+
def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid):
|
2111 |
+
"""
|
2112 |
+
For a horizontal morphism, checks whether there is free space
|
2113 |
+
(i.e., space not occupied by any objects) above the morphism
|
2114 |
+
or below it.
|
2115 |
+
"""
|
2116 |
+
if dom_j < cod_j:
|
2117 |
+
(start, end) = (dom_j, cod_j)
|
2118 |
+
backwards = False
|
2119 |
+
else:
|
2120 |
+
(start, end) = (cod_j, dom_j)
|
2121 |
+
backwards = True
|
2122 |
+
|
2123 |
+
# Check for free space above.
|
2124 |
+
if dom_i == 0:
|
2125 |
+
free_up = True
|
2126 |
+
else:
|
2127 |
+
free_up = all(grid[dom_i - 1, j] for j in
|
2128 |
+
range(start, end + 1))
|
2129 |
+
|
2130 |
+
# Check for free space below.
|
2131 |
+
if dom_i == grid.height - 1:
|
2132 |
+
free_down = True
|
2133 |
+
else:
|
2134 |
+
free_down = not any(grid[dom_i + 1, j] for j in
|
2135 |
+
range(start, end + 1))
|
2136 |
+
|
2137 |
+
return (free_up, free_down, backwards)
|
2138 |
+
|
2139 |
+
@staticmethod
|
2140 |
+
def _check_free_space_vertical(dom_i, cod_i, dom_j, grid):
|
2141 |
+
"""
|
2142 |
+
For a vertical morphism, checks whether there is free space
|
2143 |
+
(i.e., space not occupied by any objects) to the left of the
|
2144 |
+
morphism or to the right of it.
|
2145 |
+
"""
|
2146 |
+
if dom_i < cod_i:
|
2147 |
+
(start, end) = (dom_i, cod_i)
|
2148 |
+
backwards = False
|
2149 |
+
else:
|
2150 |
+
(start, end) = (cod_i, dom_i)
|
2151 |
+
backwards = True
|
2152 |
+
|
2153 |
+
# Check if there's space to the left.
|
2154 |
+
if dom_j == 0:
|
2155 |
+
free_left = True
|
2156 |
+
else:
|
2157 |
+
free_left = not any(grid[i, dom_j - 1] for i in
|
2158 |
+
range(start, end + 1))
|
2159 |
+
|
2160 |
+
if dom_j == grid.width - 1:
|
2161 |
+
free_right = True
|
2162 |
+
else:
|
2163 |
+
free_right = not any(grid[i, dom_j + 1] for i in
|
2164 |
+
range(start, end + 1))
|
2165 |
+
|
2166 |
+
return (free_left, free_right, backwards)
|
2167 |
+
|
2168 |
+
@staticmethod
|
2169 |
+
def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid):
|
2170 |
+
"""
|
2171 |
+
For a diagonal morphism, checks whether there is free space
|
2172 |
+
(i.e., space not occupied by any objects) above the morphism
|
2173 |
+
or below it.
|
2174 |
+
"""
|
2175 |
+
def abs_xrange(start, end):
|
2176 |
+
if start < end:
|
2177 |
+
return range(start, end + 1)
|
2178 |
+
else:
|
2179 |
+
return range(end, start + 1)
|
2180 |
+
|
2181 |
+
if dom_i < cod_i and dom_j < cod_j:
|
2182 |
+
# This morphism goes from top-left to
|
2183 |
+
# bottom-right.
|
2184 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2185 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2186 |
+
backwards = False
|
2187 |
+
elif dom_i > cod_i and dom_j > cod_j:
|
2188 |
+
# This morphism goes from bottom-right to
|
2189 |
+
# top-left.
|
2190 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2191 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2192 |
+
backwards = True
|
2193 |
+
if dom_i < cod_i and dom_j > cod_j:
|
2194 |
+
# This morphism goes from top-right to
|
2195 |
+
# bottom-left.
|
2196 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2197 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2198 |
+
backwards = True
|
2199 |
+
elif dom_i > cod_i and dom_j < cod_j:
|
2200 |
+
# This morphism goes from bottom-left to
|
2201 |
+
# top-right.
|
2202 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2203 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2204 |
+
backwards = False
|
2205 |
+
|
2206 |
+
# This is an attempt at a fast and furious strategy to
|
2207 |
+
# decide where there is free space on the two sides of
|
2208 |
+
# a diagonal morphism. For a diagonal morphism
|
2209 |
+
# starting at ``(start_i, start_j)`` and ending at
|
2210 |
+
# ``(end_i, end_j)`` the rectangle defined by these
|
2211 |
+
# two points is considered. The slope of the diagonal
|
2212 |
+
# ``alpha`` is then computed. Then, for every cell
|
2213 |
+
# ``(i, j)`` within the rectangle, the slope
|
2214 |
+
# ``alpha1`` of the line through ``(start_i,
|
2215 |
+
# start_j)`` and ``(i, j)`` is considered. If
|
2216 |
+
# ``alpha1`` is between 0 and ``alpha``, the point
|
2217 |
+
# ``(i, j)`` is above the diagonal, if ``alpha1`` is
|
2218 |
+
# between ``alpha`` and infinity, the point is below
|
2219 |
+
# the diagonal. Also note that, with some beforehand
|
2220 |
+
# precautions, this trick works for both the main and
|
2221 |
+
# the secondary diagonals of the rectangle.
|
2222 |
+
|
2223 |
+
# I have considered the possibility to only follow the
|
2224 |
+
# shorter diagonals immediately above and below the
|
2225 |
+
# main (or secondary) diagonal. This, however,
|
2226 |
+
# wouldn't have resulted in much performance gain or
|
2227 |
+
# better detection of outer edges, because of
|
2228 |
+
# relatively small sizes of diagram grids, while the
|
2229 |
+
# code would have become harder to understand.
|
2230 |
+
|
2231 |
+
alpha = float(end_i - start_i)/(end_j - start_j)
|
2232 |
+
free_up = True
|
2233 |
+
free_down = True
|
2234 |
+
for i in abs_xrange(start_i, end_i):
|
2235 |
+
if not free_up and not free_down:
|
2236 |
+
break
|
2237 |
+
|
2238 |
+
for j in abs_xrange(start_j, end_j):
|
2239 |
+
if not free_up and not free_down:
|
2240 |
+
break
|
2241 |
+
|
2242 |
+
if (i, j) == (start_i, start_j):
|
2243 |
+
continue
|
2244 |
+
|
2245 |
+
if j == start_j:
|
2246 |
+
alpha1 = "inf"
|
2247 |
+
else:
|
2248 |
+
alpha1 = float(i - start_i)/(j - start_j)
|
2249 |
+
|
2250 |
+
if grid[i, j]:
|
2251 |
+
if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)):
|
2252 |
+
free_down = False
|
2253 |
+
elif abs(alpha1) < abs(alpha):
|
2254 |
+
free_up = False
|
2255 |
+
|
2256 |
+
return (free_up, free_down, backwards)
|
2257 |
+
|
2258 |
+
def _push_labels_out(self, morphisms_str_info, grid, object_coords):
|
2259 |
+
"""
|
2260 |
+
For all straight morphisms which form the visual boundary of
|
2261 |
+
the laid out diagram, puts their labels on their outer sides.
|
2262 |
+
"""
|
2263 |
+
def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info):
|
2264 |
+
"""
|
2265 |
+
Given the information about room available to one side and
|
2266 |
+
to the other side of a morphism (``free1`` and ``free2``),
|
2267 |
+
sets the position of the morphism label in such a way that
|
2268 |
+
it is on the freer side. This latter operations involves
|
2269 |
+
choice between ``pos1`` and ``pos2``, taking ``backwards``
|
2270 |
+
in consideration.
|
2271 |
+
|
2272 |
+
Thus this function will do nothing if either both ``free1
|
2273 |
+
== True`` and ``free2 == True`` or both ``free1 == False``
|
2274 |
+
and ``free2 == False``. In either case, choosing one side
|
2275 |
+
over the other presents no advantage.
|
2276 |
+
"""
|
2277 |
+
if backwards:
|
2278 |
+
(pos1, pos2) = (pos2, pos1)
|
2279 |
+
|
2280 |
+
if free1 and not free2:
|
2281 |
+
m_str_info.label_position = pos1
|
2282 |
+
elif free2 and not free1:
|
2283 |
+
m_str_info.label_position = pos2
|
2284 |
+
|
2285 |
+
for m, m_str_info in morphisms_str_info.items():
|
2286 |
+
if m_str_info.curving or m_str_info.forced_label_position:
|
2287 |
+
# This is either a curved morphism, and curved
|
2288 |
+
# morphisms have other magic, or the position of this
|
2289 |
+
# label has already been fixed.
|
2290 |
+
continue
|
2291 |
+
|
2292 |
+
if m.domain == m.codomain:
|
2293 |
+
# This is a loop morphism, their labels, again have a
|
2294 |
+
# different magic.
|
2295 |
+
continue
|
2296 |
+
|
2297 |
+
(dom_i, dom_j) = object_coords[m.domain]
|
2298 |
+
(cod_i, cod_j) = object_coords[m.codomain]
|
2299 |
+
|
2300 |
+
if dom_i == cod_i:
|
2301 |
+
# Horizontal morphism.
|
2302 |
+
(free_up, free_down,
|
2303 |
+
backwards) = XypicDiagramDrawer._check_free_space_horizontal(
|
2304 |
+
dom_i, dom_j, cod_j, grid)
|
2305 |
+
|
2306 |
+
set_label_position(free_up, free_down, "^", "_",
|
2307 |
+
backwards, m_str_info)
|
2308 |
+
elif dom_j == cod_j:
|
2309 |
+
# Vertical morphism.
|
2310 |
+
(free_left, free_right,
|
2311 |
+
backwards) = XypicDiagramDrawer._check_free_space_vertical(
|
2312 |
+
dom_i, cod_i, dom_j, grid)
|
2313 |
+
|
2314 |
+
set_label_position(free_left, free_right, "_", "^",
|
2315 |
+
backwards, m_str_info)
|
2316 |
+
else:
|
2317 |
+
# A diagonal morphism.
|
2318 |
+
(free_up, free_down,
|
2319 |
+
backwards) = XypicDiagramDrawer._check_free_space_diagonal(
|
2320 |
+
dom_i, cod_i, dom_j, cod_j, grid)
|
2321 |
+
|
2322 |
+
set_label_position(free_up, free_down, "^", "_",
|
2323 |
+
backwards, m_str_info)
|
2324 |
+
|
2325 |
+
@staticmethod
|
2326 |
+
def _morphism_sort_key(morphism, object_coords):
|
2327 |
+
"""
|
2328 |
+
Provides a morphism sorting key such that horizontal or
|
2329 |
+
vertical morphisms between neighbouring objects come
|
2330 |
+
first, then horizontal or vertical morphisms between more
|
2331 |
+
far away objects, and finally, all other morphisms.
|
2332 |
+
"""
|
2333 |
+
(i, j) = object_coords[morphism.domain]
|
2334 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2335 |
+
|
2336 |
+
if morphism.domain == morphism.codomain:
|
2337 |
+
# Loop morphisms should get after diagonal morphisms
|
2338 |
+
# so that the proper direction in which to curve the
|
2339 |
+
# loop can be determined.
|
2340 |
+
return (3, 0, default_sort_key(morphism))
|
2341 |
+
|
2342 |
+
if target_i == i:
|
2343 |
+
return (1, abs(target_j - j), default_sort_key(morphism))
|
2344 |
+
|
2345 |
+
if target_j == j:
|
2346 |
+
return (1, abs(target_i - i), default_sort_key(morphism))
|
2347 |
+
|
2348 |
+
# Diagonal morphism.
|
2349 |
+
return (2, 0, default_sort_key(morphism))
|
2350 |
+
|
2351 |
+
@staticmethod
|
2352 |
+
def _build_xypic_string(diagram, grid, morphisms,
|
2353 |
+
morphisms_str_info, diagram_format):
|
2354 |
+
"""
|
2355 |
+
Given a collection of :class:`ArrowStringDescription`
|
2356 |
+
describing the morphisms of a diagram and the object layout
|
2357 |
+
information of a diagram, produces the final Xy-pic picture.
|
2358 |
+
"""
|
2359 |
+
# Build the mapping between objects and morphisms which have
|
2360 |
+
# them as domains.
|
2361 |
+
object_morphisms = {}
|
2362 |
+
for obj in diagram.objects:
|
2363 |
+
object_morphisms[obj] = []
|
2364 |
+
for morphism in morphisms:
|
2365 |
+
object_morphisms[morphism.domain].append(morphism)
|
2366 |
+
|
2367 |
+
result = "\\xymatrix%s{\n" % diagram_format
|
2368 |
+
|
2369 |
+
for i in range(grid.height):
|
2370 |
+
for j in range(grid.width):
|
2371 |
+
obj = grid[i, j]
|
2372 |
+
if obj:
|
2373 |
+
result += latex(obj) + " "
|
2374 |
+
|
2375 |
+
morphisms_to_draw = object_morphisms[obj]
|
2376 |
+
for morphism in morphisms_to_draw:
|
2377 |
+
result += str(morphisms_str_info[morphism]) + " "
|
2378 |
+
|
2379 |
+
# Don't put the & after the last column.
|
2380 |
+
if j < grid.width - 1:
|
2381 |
+
result += "& "
|
2382 |
+
|
2383 |
+
# Don't put the line break after the last row.
|
2384 |
+
if i < grid.height - 1:
|
2385 |
+
result += "\\\\"
|
2386 |
+
result += "\n"
|
2387 |
+
|
2388 |
+
result += "}\n"
|
2389 |
+
|
2390 |
+
return result
|
2391 |
+
|
2392 |
+
def draw(self, diagram, grid, masked=None, diagram_format=""):
|
2393 |
+
r"""
|
2394 |
+
Returns the Xy-pic representation of ``diagram`` laid out in
|
2395 |
+
``grid``.
|
2396 |
+
|
2397 |
+
Consider the following simple triangle diagram.
|
2398 |
+
|
2399 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2400 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
2401 |
+
>>> A = Object("A")
|
2402 |
+
>>> B = Object("B")
|
2403 |
+
>>> C = Object("C")
|
2404 |
+
>>> f = NamedMorphism(A, B, "f")
|
2405 |
+
>>> g = NamedMorphism(B, C, "g")
|
2406 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2407 |
+
|
2408 |
+
To draw this diagram, its objects need to be laid out with a
|
2409 |
+
:class:`DiagramGrid`::
|
2410 |
+
|
2411 |
+
>>> grid = DiagramGrid(diagram)
|
2412 |
+
|
2413 |
+
Finally, the drawing:
|
2414 |
+
|
2415 |
+
>>> drawer = XypicDiagramDrawer()
|
2416 |
+
>>> print(drawer.draw(diagram, grid))
|
2417 |
+
\xymatrix{
|
2418 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2419 |
+
C &
|
2420 |
+
}
|
2421 |
+
|
2422 |
+
The argument ``masked`` can be used to skip morphisms in the
|
2423 |
+
presentation of the diagram:
|
2424 |
+
|
2425 |
+
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
|
2426 |
+
\xymatrix{
|
2427 |
+
A \ar[r]^{f} & B \ar[ld]^{g} \\
|
2428 |
+
C &
|
2429 |
+
}
|
2430 |
+
|
2431 |
+
Finally, the ``diagram_format`` argument can be used to
|
2432 |
+
specify the format string of the diagram. For example, to
|
2433 |
+
increase the spacing by 1 cm, proceeding as follows:
|
2434 |
+
|
2435 |
+
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
|
2436 |
+
\xymatrix@+1cm{
|
2437 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2438 |
+
C &
|
2439 |
+
}
|
2440 |
+
|
2441 |
+
"""
|
2442 |
+
# This method works in several steps. It starts by removing
|
2443 |
+
# the masked morphisms, if necessary, and then maps objects to
|
2444 |
+
# their positions in the grid (coordinate tuples). Remember
|
2445 |
+
# that objects are unique in ``Diagram`` and in the layout
|
2446 |
+
# produced by ``DiagramGrid``, so every object is mapped to a
|
2447 |
+
# single coordinate pair.
|
2448 |
+
#
|
2449 |
+
# The next step is the central step and is concerned with
|
2450 |
+
# analysing the morphisms of the diagram and deciding how to
|
2451 |
+
# draw them. For example, how to curve the arrows is decided
|
2452 |
+
# at this step. The bulk of the analysis is implemented in
|
2453 |
+
# ``_process_morphism``, to the result of which the
|
2454 |
+
# appropriate formatters are applied.
|
2455 |
+
#
|
2456 |
+
# The result of the previous step is a list of
|
2457 |
+
# ``ArrowStringDescription``. After the analysis and
|
2458 |
+
# application of formatters, some extra logic tries to assure
|
2459 |
+
# better positioning of morphism labels (for example, an
|
2460 |
+
# attempt is made to avoid the situations when arrows cross
|
2461 |
+
# labels). This functionality constitutes the next step and
|
2462 |
+
# is implemented in ``_push_labels_out``. Note that label
|
2463 |
+
# positions which have been set via a formatter are not
|
2464 |
+
# affected in this step.
|
2465 |
+
#
|
2466 |
+
# Finally, at the closing step, the array of
|
2467 |
+
# ``ArrowStringDescription`` and the layout information
|
2468 |
+
# incorporated in ``DiagramGrid`` are combined to produce the
|
2469 |
+
# resulting Xy-pic picture. This part of code lies in
|
2470 |
+
# ``_build_xypic_string``.
|
2471 |
+
|
2472 |
+
if not masked:
|
2473 |
+
morphisms_props = grid.morphisms
|
2474 |
+
else:
|
2475 |
+
morphisms_props = {}
|
2476 |
+
for m, props in grid.morphisms.items():
|
2477 |
+
if m in masked:
|
2478 |
+
continue
|
2479 |
+
morphisms_props[m] = props
|
2480 |
+
|
2481 |
+
# Build the mapping between objects and their position in the
|
2482 |
+
# grid.
|
2483 |
+
object_coords = {}
|
2484 |
+
for i in range(grid.height):
|
2485 |
+
for j in range(grid.width):
|
2486 |
+
if grid[i, j]:
|
2487 |
+
object_coords[grid[i, j]] = (i, j)
|
2488 |
+
|
2489 |
+
morphisms = sorted(morphisms_props,
|
2490 |
+
key=lambda m: XypicDiagramDrawer._morphism_sort_key(
|
2491 |
+
m, object_coords))
|
2492 |
+
|
2493 |
+
# Build the tuples defining the string representations of
|
2494 |
+
# morphisms.
|
2495 |
+
morphisms_str_info = {}
|
2496 |
+
for morphism in morphisms:
|
2497 |
+
string_description = self._process_morphism(
|
2498 |
+
diagram, grid, morphism, object_coords, morphisms,
|
2499 |
+
morphisms_str_info)
|
2500 |
+
|
2501 |
+
if self.default_arrow_formatter:
|
2502 |
+
self.default_arrow_formatter(string_description)
|
2503 |
+
|
2504 |
+
for prop in morphisms_props[morphism]:
|
2505 |
+
# prop is a Symbol. TODO: Find out why.
|
2506 |
+
if prop.name in self.arrow_formatters:
|
2507 |
+
formatter = self.arrow_formatters[prop.name]
|
2508 |
+
formatter(string_description)
|
2509 |
+
|
2510 |
+
morphisms_str_info[morphism] = string_description
|
2511 |
+
|
2512 |
+
# Reposition the labels a bit.
|
2513 |
+
self._push_labels_out(morphisms_str_info, grid, object_coords)
|
2514 |
+
|
2515 |
+
return XypicDiagramDrawer._build_xypic_string(
|
2516 |
+
diagram, grid, morphisms, morphisms_str_info, diagram_format)
|
2517 |
+
|
2518 |
+
|
2519 |
+
def xypic_draw_diagram(diagram, masked=None, diagram_format="",
|
2520 |
+
groups=None, **hints):
|
2521 |
+
r"""
|
2522 |
+
Provides a shortcut combining :class:`DiagramGrid` and
|
2523 |
+
:class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of
|
2524 |
+
``diagram``. The argument ``masked`` is a list of morphisms which
|
2525 |
+
will be not be drawn. The argument ``diagram_format`` is the
|
2526 |
+
format string inserted after "\xymatrix". ``groups`` should be a
|
2527 |
+
set of logical groups. The ``hints`` will be passed directly to
|
2528 |
+
the constructor of :class:`DiagramGrid`.
|
2529 |
+
|
2530 |
+
For more information about the arguments, see the docstrings of
|
2531 |
+
:class:`DiagramGrid` and ``XypicDiagramDrawer.draw``.
|
2532 |
+
|
2533 |
+
Examples
|
2534 |
+
========
|
2535 |
+
|
2536 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2537 |
+
>>> from sympy.categories import xypic_draw_diagram
|
2538 |
+
>>> A = Object("A")
|
2539 |
+
>>> B = Object("B")
|
2540 |
+
>>> C = Object("C")
|
2541 |
+
>>> f = NamedMorphism(A, B, "f")
|
2542 |
+
>>> g = NamedMorphism(B, C, "g")
|
2543 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2544 |
+
>>> print(xypic_draw_diagram(diagram))
|
2545 |
+
\xymatrix{
|
2546 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2547 |
+
C &
|
2548 |
+
}
|
2549 |
+
|
2550 |
+
See Also
|
2551 |
+
========
|
2552 |
+
|
2553 |
+
XypicDiagramDrawer, DiagramGrid
|
2554 |
+
"""
|
2555 |
+
grid = DiagramGrid(diagram, groups, **hints)
|
2556 |
+
drawer = XypicDiagramDrawer()
|
2557 |
+
return drawer.draw(diagram, grid, masked, diagram_format)
|
2558 |
+
|
2559 |
+
|
2560 |
+
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',))
|
2561 |
+
def preview_diagram(diagram, masked=None, diagram_format="", groups=None,
|
2562 |
+
output='png', viewer=None, euler=True, **hints):
|
2563 |
+
"""
|
2564 |
+
Combines the functionality of ``xypic_draw_diagram`` and
|
2565 |
+
``sympy.printing.preview``. The arguments ``masked``,
|
2566 |
+
``diagram_format``, ``groups``, and ``hints`` are passed to
|
2567 |
+
``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler``
|
2568 |
+
are passed to ``preview``.
|
2569 |
+
|
2570 |
+
Examples
|
2571 |
+
========
|
2572 |
+
|
2573 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2574 |
+
>>> from sympy.categories import preview_diagram
|
2575 |
+
>>> A = Object("A")
|
2576 |
+
>>> B = Object("B")
|
2577 |
+
>>> C = Object("C")
|
2578 |
+
>>> f = NamedMorphism(A, B, "f")
|
2579 |
+
>>> g = NamedMorphism(B, C, "g")
|
2580 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
2581 |
+
>>> preview_diagram(d)
|
2582 |
+
|
2583 |
+
See Also
|
2584 |
+
========
|
2585 |
+
|
2586 |
+
XypicDiagramDrawer
|
2587 |
+
"""
|
2588 |
+
from sympy.printing import preview
|
2589 |
+
latex_output = xypic_draw_diagram(diagram, masked, diagram_format,
|
2590 |
+
groups, **hints)
|
2591 |
+
preview(latex_output, output, viewer, euler, ("xypic",))
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories import (Object, Morphism, IdentityMorphism,
|
2 |
+
NamedMorphism, CompositeMorphism,
|
3 |
+
Diagram, Category)
|
4 |
+
from sympy.categories.baseclasses import Class
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.core.containers import (Dict, Tuple)
|
7 |
+
from sympy.sets import EmptySet
|
8 |
+
from sympy.sets.sets import FiniteSet
|
9 |
+
|
10 |
+
|
11 |
+
def test_morphisms():
|
12 |
+
A = Object("A")
|
13 |
+
B = Object("B")
|
14 |
+
C = Object("C")
|
15 |
+
D = Object("D")
|
16 |
+
|
17 |
+
# Test the base morphism.
|
18 |
+
f = NamedMorphism(A, B, "f")
|
19 |
+
assert f.domain == A
|
20 |
+
assert f.codomain == B
|
21 |
+
assert f == NamedMorphism(A, B, "f")
|
22 |
+
|
23 |
+
# Test identities.
|
24 |
+
id_A = IdentityMorphism(A)
|
25 |
+
id_B = IdentityMorphism(B)
|
26 |
+
assert id_A.domain == A
|
27 |
+
assert id_A.codomain == A
|
28 |
+
assert id_A == IdentityMorphism(A)
|
29 |
+
assert id_A != id_B
|
30 |
+
|
31 |
+
# Test named morphisms.
|
32 |
+
g = NamedMorphism(B, C, "g")
|
33 |
+
assert g.name == "g"
|
34 |
+
assert g != f
|
35 |
+
assert g == NamedMorphism(B, C, "g")
|
36 |
+
assert g != NamedMorphism(B, C, "f")
|
37 |
+
|
38 |
+
# Test composite morphisms.
|
39 |
+
assert f == CompositeMorphism(f)
|
40 |
+
|
41 |
+
k = g.compose(f)
|
42 |
+
assert k.domain == A
|
43 |
+
assert k.codomain == C
|
44 |
+
assert k.components == Tuple(f, g)
|
45 |
+
assert g * f == k
|
46 |
+
assert CompositeMorphism(f, g) == k
|
47 |
+
|
48 |
+
assert CompositeMorphism(g * f) == g * f
|
49 |
+
|
50 |
+
# Test the associativity of composition.
|
51 |
+
h = NamedMorphism(C, D, "h")
|
52 |
+
|
53 |
+
p = h * g
|
54 |
+
u = h * g * f
|
55 |
+
|
56 |
+
assert h * k == u
|
57 |
+
assert p * f == u
|
58 |
+
assert CompositeMorphism(f, g, h) == u
|
59 |
+
|
60 |
+
# Test flattening.
|
61 |
+
u2 = u.flatten("u")
|
62 |
+
assert isinstance(u2, NamedMorphism)
|
63 |
+
assert u2.name == "u"
|
64 |
+
assert u2.domain == A
|
65 |
+
assert u2.codomain == D
|
66 |
+
|
67 |
+
# Test identities.
|
68 |
+
assert f * id_A == f
|
69 |
+
assert id_B * f == f
|
70 |
+
assert id_A * id_A == id_A
|
71 |
+
assert CompositeMorphism(id_A) == id_A
|
72 |
+
|
73 |
+
# Test bad compositions.
|
74 |
+
raises(ValueError, lambda: f * g)
|
75 |
+
|
76 |
+
raises(TypeError, lambda: f.compose(None))
|
77 |
+
raises(TypeError, lambda: id_A.compose(None))
|
78 |
+
raises(TypeError, lambda: f * None)
|
79 |
+
raises(TypeError, lambda: id_A * None)
|
80 |
+
|
81 |
+
raises(TypeError, lambda: CompositeMorphism(f, None, 1))
|
82 |
+
|
83 |
+
raises(ValueError, lambda: NamedMorphism(A, B, ""))
|
84 |
+
raises(NotImplementedError, lambda: Morphism(A, B))
|
85 |
+
|
86 |
+
|
87 |
+
def test_diagram():
|
88 |
+
A = Object("A")
|
89 |
+
B = Object("B")
|
90 |
+
C = Object("C")
|
91 |
+
|
92 |
+
f = NamedMorphism(A, B, "f")
|
93 |
+
g = NamedMorphism(B, C, "g")
|
94 |
+
id_A = IdentityMorphism(A)
|
95 |
+
id_B = IdentityMorphism(B)
|
96 |
+
|
97 |
+
empty = EmptySet
|
98 |
+
|
99 |
+
# Test the addition of identities.
|
100 |
+
d1 = Diagram([f])
|
101 |
+
|
102 |
+
assert d1.objects == FiniteSet(A, B)
|
103 |
+
assert d1.hom(A, B) == (FiniteSet(f), empty)
|
104 |
+
assert d1.hom(A, A) == (FiniteSet(id_A), empty)
|
105 |
+
assert d1.hom(B, B) == (FiniteSet(id_B), empty)
|
106 |
+
|
107 |
+
assert d1 == Diagram([id_A, f])
|
108 |
+
assert d1 == Diagram([f, f])
|
109 |
+
|
110 |
+
# Test the addition of composites.
|
111 |
+
d2 = Diagram([f, g])
|
112 |
+
homAC = d2.hom(A, C)[0]
|
113 |
+
|
114 |
+
assert d2.objects == FiniteSet(A, B, C)
|
115 |
+
assert g * f in d2.premises.keys()
|
116 |
+
assert homAC == FiniteSet(g * f)
|
117 |
+
|
118 |
+
# Test equality, inequality and hash.
|
119 |
+
d11 = Diagram([f])
|
120 |
+
|
121 |
+
assert d1 == d11
|
122 |
+
assert d1 != d2
|
123 |
+
assert hash(d1) == hash(d11)
|
124 |
+
|
125 |
+
d11 = Diagram({f: "unique"})
|
126 |
+
assert d1 != d11
|
127 |
+
|
128 |
+
# Make sure that (re-)adding composites (with new properties)
|
129 |
+
# works as expected.
|
130 |
+
d = Diagram([f, g], {g * f: "unique"})
|
131 |
+
assert d.conclusions == Dict({g * f: FiniteSet("unique")})
|
132 |
+
|
133 |
+
# Check the hom-sets when there are premises and conclusions.
|
134 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
135 |
+
d = Diagram([f, g], [g * f])
|
136 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
137 |
+
|
138 |
+
# Check how the properties of composite morphisms are computed.
|
139 |
+
d = Diagram({f: ["unique", "isomorphism"], g: "unique"})
|
140 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
141 |
+
|
142 |
+
# Check that conclusion morphisms with new objects are not allowed.
|
143 |
+
d = Diagram([f], [g])
|
144 |
+
assert d.conclusions == Dict({})
|
145 |
+
|
146 |
+
# Test an empty diagram.
|
147 |
+
d = Diagram()
|
148 |
+
assert d.premises == Dict({})
|
149 |
+
assert d.conclusions == Dict({})
|
150 |
+
assert d.objects == empty
|
151 |
+
|
152 |
+
# Check a SymPy Dict object.
|
153 |
+
d = Diagram(Dict({f: FiniteSet("unique", "isomorphism"), g: "unique"}))
|
154 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
155 |
+
|
156 |
+
# Check the addition of components of composite morphisms.
|
157 |
+
d = Diagram([g * f])
|
158 |
+
assert f in d.premises
|
159 |
+
assert g in d.premises
|
160 |
+
|
161 |
+
# Check subdiagrams.
|
162 |
+
d = Diagram([f, g], {g * f: "unique"})
|
163 |
+
|
164 |
+
d1 = Diagram([f])
|
165 |
+
assert d.is_subdiagram(d1)
|
166 |
+
assert not d1.is_subdiagram(d)
|
167 |
+
|
168 |
+
d = Diagram([NamedMorphism(B, A, "f'")])
|
169 |
+
assert not d.is_subdiagram(d1)
|
170 |
+
assert not d1.is_subdiagram(d)
|
171 |
+
|
172 |
+
d1 = Diagram([f, g], {g * f: ["unique", "something"]})
|
173 |
+
assert not d.is_subdiagram(d1)
|
174 |
+
assert not d1.is_subdiagram(d)
|
175 |
+
|
176 |
+
d = Diagram({f: "blooh"})
|
177 |
+
d1 = Diagram({f: "bleeh"})
|
178 |
+
assert not d.is_subdiagram(d1)
|
179 |
+
assert not d1.is_subdiagram(d)
|
180 |
+
|
181 |
+
d = Diagram([f, g], {f: "unique", g * f: "veryunique"})
|
182 |
+
d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
183 |
+
assert d1 == Diagram([f], {f: "unique"})
|
184 |
+
raises(ValueError, lambda: d.subdiagram_from_objects(FiniteSet(A,
|
185 |
+
Object("D"))))
|
186 |
+
|
187 |
+
raises(ValueError, lambda: Diagram({IdentityMorphism(A): "unique"}))
|
188 |
+
|
189 |
+
|
190 |
+
def test_category():
|
191 |
+
A = Object("A")
|
192 |
+
B = Object("B")
|
193 |
+
C = Object("C")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
|
198 |
+
d1 = Diagram([f, g])
|
199 |
+
d2 = Diagram([f])
|
200 |
+
|
201 |
+
objects = d1.objects | d2.objects
|
202 |
+
|
203 |
+
K = Category("K", objects, commutative_diagrams=[d1, d2])
|
204 |
+
|
205 |
+
assert K.name == "K"
|
206 |
+
assert K.objects == Class(objects)
|
207 |
+
assert K.commutative_diagrams == FiniteSet(d1, d2)
|
208 |
+
|
209 |
+
raises(ValueError, lambda: Category(""))
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (196 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bessel.cpython-310.pyc
ADDED
Binary file (58.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/beta_functions.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bsplines.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/delta_functions.cpython-310.pyc
ADDED
Binary file (18.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/elliptic_integrals.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/error_functions.cpython-310.pyc
ADDED
Binary file (78.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/gamma_functions.cpython-310.pyc
ADDED
Binary file (41.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/hyper.cpython-310.pyc
ADDED
Binary file (40.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/mathieu_functions.cpython-310.pyc
ADDED
Binary file (7.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/polynomials.cpython-310.pyc
ADDED
Binary file (39.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/singularity_functions.cpython-310.pyc
ADDED
Binary file (7.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/spherical_harmonics.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/tensor_functions.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/__pycache__/zeta_functions.cpython-310.pyc
ADDED
Binary file (23.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (207 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/bench_special.cpython-310.pyc
ADDED
Binary file (496 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/benchmarks/bench_special.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.functions.special.spherical_harmonics import Ynm
|
3 |
+
|
4 |
+
x, y = symbols('x,y')
|
5 |
+
|
6 |
+
|
7 |
+
def timeit_Ynm_xy():
|
8 |
+
Ynm(1, 1, x, y)
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_beta_functions.cpython-310.pyc
ADDED
Binary file (3.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_delta_functions.cpython-310.pyc
ADDED
Binary file (5.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_hyper.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_mathieu.cpython-310.pyc
ADDED
Binary file (1.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_singularity_functions.cpython-310.pyc
ADDED
Binary file (4.77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_spec_polynomials.cpython-310.pyc
ADDED
Binary file (18.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_spherical_harmonics.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_tensor_functions.cpython-310.pyc
ADDED
Binary file (4.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .sets import (Set, Interval, Union, FiniteSet, ProductSet,
|
2 |
+
Intersection, imageset, Complement, SymmetricDifference,
|
3 |
+
DisjointUnion)
|
4 |
+
|
5 |
+
from .fancysets import ImageSet, Range, ComplexRegion
|
6 |
+
from .contains import Contains
|
7 |
+
from .conditionset import ConditionSet
|
8 |
+
from .ordinals import Ordinal, OmegaPower, ord0
|
9 |
+
from .powerset import PowerSet
|
10 |
+
from ..core.singleton import S
|
11 |
+
from .handlers.comparison import _eval_is_eq # noqa:F401
|
12 |
+
Complexes = S.Complexes
|
13 |
+
EmptySet = S.EmptySet
|
14 |
+
Integers = S.Integers
|
15 |
+
Naturals = S.Naturals
|
16 |
+
Naturals0 = S.Naturals0
|
17 |
+
Rationals = S.Rationals
|
18 |
+
Reals = S.Reals
|
19 |
+
UniversalSet = S.UniversalSet
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
|
23 |
+
'Intersection', 'imageset', 'Complement', 'SymmetricDifference', 'DisjointUnion',
|
24 |
+
|
25 |
+
'ImageSet', 'Range', 'ComplexRegion', 'Reals',
|
26 |
+
|
27 |
+
'Contains',
|
28 |
+
|
29 |
+
'ConditionSet',
|
30 |
+
|
31 |
+
'Ordinal', 'OmegaPower', 'ord0',
|
32 |
+
|
33 |
+
'PowerSet',
|
34 |
+
|
35 |
+
'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
|
36 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc
ADDED
Binary file (7.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/fancysets.cpython-310.pyc
ADDED
Binary file (42.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc
ADDED
Binary file (8.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/__pycache__/sets.cpython-310.pyc
ADDED
Binary file (81.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/conditionset.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.containers import Tuple
|
4 |
+
from sympy.core.function import Lambda, BadSignatureError
|
5 |
+
from sympy.core.logic import fuzzy_bool
|
6 |
+
from sympy.core.relational import Eq
|
7 |
+
from sympy.core.symbol import Dummy
|
8 |
+
from sympy.core.sympify import _sympify
|
9 |
+
from sympy.logic.boolalg import And, as_Boolean
|
10 |
+
from sympy.utilities.iterables import sift, flatten, has_dups
|
11 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
12 |
+
from .contains import Contains
|
13 |
+
from .sets import Set, Union, FiniteSet, SetKind
|
14 |
+
|
15 |
+
|
16 |
+
adummy = Dummy('conditionset')
|
17 |
+
|
18 |
+
|
19 |
+
class ConditionSet(Set):
|
20 |
+
r"""
|
21 |
+
Set of elements which satisfies a given condition.
|
22 |
+
|
23 |
+
.. math:: \{x \mid \textrm{condition}(x) = \texttt{True}, x \in S\}
|
24 |
+
|
25 |
+
Examples
|
26 |
+
========
|
27 |
+
|
28 |
+
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
|
29 |
+
>>> from sympy.abc import x, y, z
|
30 |
+
|
31 |
+
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
|
32 |
+
>>> 2*pi in sin_sols
|
33 |
+
True
|
34 |
+
>>> pi/2 in sin_sols
|
35 |
+
False
|
36 |
+
>>> 3*pi in sin_sols
|
37 |
+
False
|
38 |
+
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
|
39 |
+
True
|
40 |
+
|
41 |
+
If the value is not in the base set, the result is false:
|
42 |
+
|
43 |
+
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
|
44 |
+
False
|
45 |
+
|
46 |
+
Notes
|
47 |
+
=====
|
48 |
+
|
49 |
+
Symbols with assumptions should be avoided or else the
|
50 |
+
condition may evaluate without consideration of the set:
|
51 |
+
|
52 |
+
>>> n = Symbol('n', negative=True)
|
53 |
+
>>> cond = (n > 0); cond
|
54 |
+
False
|
55 |
+
>>> ConditionSet(n, cond, S.Integers)
|
56 |
+
EmptySet
|
57 |
+
|
58 |
+
Only free symbols can be changed by using `subs`:
|
59 |
+
|
60 |
+
>>> c = ConditionSet(x, x < 1, {x, z})
|
61 |
+
>>> c.subs(x, y)
|
62 |
+
ConditionSet(x, x < 1, {y, z})
|
63 |
+
|
64 |
+
To check if ``pi`` is in ``c`` use:
|
65 |
+
|
66 |
+
>>> pi in c
|
67 |
+
False
|
68 |
+
|
69 |
+
If no base set is specified, the universal set is implied:
|
70 |
+
|
71 |
+
>>> ConditionSet(x, x < 1).base_set
|
72 |
+
UniversalSet
|
73 |
+
|
74 |
+
Only symbols or symbol-like expressions can be used:
|
75 |
+
|
76 |
+
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
|
77 |
+
Traceback (most recent call last):
|
78 |
+
...
|
79 |
+
ValueError: non-symbol dummy not recognized in condition
|
80 |
+
|
81 |
+
When the base set is a ConditionSet, the symbols will be
|
82 |
+
unified if possible with preference for the outermost symbols:
|
83 |
+
|
84 |
+
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
|
85 |
+
ConditionSet(x, (x < y) & (x + y < 2), Integers)
|
86 |
+
|
87 |
+
"""
|
88 |
+
def __new__(cls, sym, condition, base_set=S.UniversalSet):
|
89 |
+
sym = _sympify(sym)
|
90 |
+
flat = flatten([sym])
|
91 |
+
if has_dups(flat):
|
92 |
+
raise BadSignatureError("Duplicate symbols detected")
|
93 |
+
base_set = _sympify(base_set)
|
94 |
+
if not isinstance(base_set, Set):
|
95 |
+
raise TypeError(
|
96 |
+
'base set should be a Set object, not %s' % base_set)
|
97 |
+
condition = _sympify(condition)
|
98 |
+
|
99 |
+
if isinstance(condition, FiniteSet):
|
100 |
+
condition_orig = condition
|
101 |
+
temp = (Eq(lhs, 0) for lhs in condition)
|
102 |
+
condition = And(*temp)
|
103 |
+
sympy_deprecation_warning(
|
104 |
+
f"""
|
105 |
+
Using a set for the condition in ConditionSet is deprecated. Use a boolean
|
106 |
+
instead.
|
107 |
+
|
108 |
+
In this case, replace
|
109 |
+
|
110 |
+
{condition_orig}
|
111 |
+
|
112 |
+
with
|
113 |
+
|
114 |
+
{condition}
|
115 |
+
""",
|
116 |
+
deprecated_since_version='1.5',
|
117 |
+
active_deprecations_target="deprecated-conditionset-set",
|
118 |
+
)
|
119 |
+
|
120 |
+
condition = as_Boolean(condition)
|
121 |
+
|
122 |
+
if condition is S.true:
|
123 |
+
return base_set
|
124 |
+
|
125 |
+
if condition is S.false:
|
126 |
+
return S.EmptySet
|
127 |
+
|
128 |
+
if base_set is S.EmptySet:
|
129 |
+
return S.EmptySet
|
130 |
+
|
131 |
+
# no simple answers, so now check syms
|
132 |
+
for i in flat:
|
133 |
+
if not getattr(i, '_diff_wrt', False):
|
134 |
+
raise ValueError('`%s` is not symbol-like' % i)
|
135 |
+
|
136 |
+
if base_set.contains(sym) is S.false:
|
137 |
+
raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
|
138 |
+
|
139 |
+
know = None
|
140 |
+
if isinstance(base_set, FiniteSet):
|
141 |
+
sifted = sift(
|
142 |
+
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
|
143 |
+
if sifted[None]:
|
144 |
+
know = FiniteSet(*sifted[True])
|
145 |
+
base_set = FiniteSet(*sifted[None])
|
146 |
+
else:
|
147 |
+
return FiniteSet(*sifted[True])
|
148 |
+
|
149 |
+
if isinstance(base_set, cls):
|
150 |
+
s, c, b = base_set.args
|
151 |
+
def sig(s):
|
152 |
+
return cls(s, Eq(adummy, 0)).as_dummy().sym
|
153 |
+
sa, sb = map(sig, (sym, s))
|
154 |
+
if sa != sb:
|
155 |
+
raise BadSignatureError('sym does not match sym of base set')
|
156 |
+
reps = dict(zip(flatten([sym]), flatten([s])))
|
157 |
+
if s == sym:
|
158 |
+
condition = And(condition, c)
|
159 |
+
base_set = b
|
160 |
+
elif not c.free_symbols & sym.free_symbols:
|
161 |
+
reps = {v: k for k, v in reps.items()}
|
162 |
+
condition = And(condition, c.xreplace(reps))
|
163 |
+
base_set = b
|
164 |
+
elif not condition.free_symbols & s.free_symbols:
|
165 |
+
sym = sym.xreplace(reps)
|
166 |
+
condition = And(condition.xreplace(reps), c)
|
167 |
+
base_set = b
|
168 |
+
|
169 |
+
# flatten ConditionSet(Contains(ConditionSet())) expressions
|
170 |
+
if isinstance(condition, Contains) and (sym == condition.args[0]):
|
171 |
+
if isinstance(condition.args[1], Set):
|
172 |
+
return condition.args[1].intersect(base_set)
|
173 |
+
|
174 |
+
rv = Basic.__new__(cls, sym, condition, base_set)
|
175 |
+
return rv if know is None else Union(know, rv)
|
176 |
+
|
177 |
+
sym = property(lambda self: self.args[0])
|
178 |
+
condition = property(lambda self: self.args[1])
|
179 |
+
base_set = property(lambda self: self.args[2])
|
180 |
+
|
181 |
+
@property
|
182 |
+
def free_symbols(self):
|
183 |
+
cond_syms = self.condition.free_symbols - self.sym.free_symbols
|
184 |
+
return cond_syms | self.base_set.free_symbols
|
185 |
+
|
186 |
+
@property
|
187 |
+
def bound_symbols(self):
|
188 |
+
return flatten([self.sym])
|
189 |
+
|
190 |
+
def _contains(self, other):
|
191 |
+
def ok_sig(a, b):
|
192 |
+
tuples = [isinstance(i, Tuple) for i in (a, b)]
|
193 |
+
c = tuples.count(True)
|
194 |
+
if c == 1:
|
195 |
+
return False
|
196 |
+
if c == 0:
|
197 |
+
return True
|
198 |
+
return len(a) == len(b) and all(
|
199 |
+
ok_sig(i, j) for i, j in zip(a, b))
|
200 |
+
if not ok_sig(self.sym, other):
|
201 |
+
return S.false
|
202 |
+
|
203 |
+
# try doing base_cond first and return
|
204 |
+
# False immediately if it is False
|
205 |
+
base_cond = Contains(other, self.base_set)
|
206 |
+
if base_cond is S.false:
|
207 |
+
return S.false
|
208 |
+
|
209 |
+
# Substitute other into condition. This could raise e.g. for
|
210 |
+
# ConditionSet(x, 1/x >= 0, Reals).contains(0)
|
211 |
+
lamda = Lambda((self.sym,), self.condition)
|
212 |
+
try:
|
213 |
+
lambda_cond = lamda(other)
|
214 |
+
except TypeError:
|
215 |
+
return Contains(other, self, evaluate=False)
|
216 |
+
else:
|
217 |
+
return And(base_cond, lambda_cond)
|
218 |
+
|
219 |
+
def as_relational(self, other):
|
220 |
+
f = Lambda(self.sym, self.condition)
|
221 |
+
if isinstance(self.sym, Tuple):
|
222 |
+
f = f(*other)
|
223 |
+
else:
|
224 |
+
f = f(other)
|
225 |
+
return And(f, self.base_set.contains(other))
|
226 |
+
|
227 |
+
def _eval_subs(self, old, new):
|
228 |
+
sym, cond, base = self.args
|
229 |
+
dsym = sym.subs(old, adummy)
|
230 |
+
insym = dsym.has(adummy)
|
231 |
+
# prioritize changing a symbol in the base
|
232 |
+
newbase = base.subs(old, new)
|
233 |
+
if newbase != base:
|
234 |
+
if not insym:
|
235 |
+
cond = cond.subs(old, new)
|
236 |
+
return self.func(sym, cond, newbase)
|
237 |
+
if insym:
|
238 |
+
pass # no change of bound symbols via subs
|
239 |
+
elif getattr(new, '_diff_wrt', False):
|
240 |
+
cond = cond.subs(old, new)
|
241 |
+
else:
|
242 |
+
pass # let error about the symbol raise from __new__
|
243 |
+
return self.func(sym, cond, base)
|
244 |
+
|
245 |
+
def _kind(self):
|
246 |
+
return SetKind(self.sym.kind)
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/contains.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S
|
2 |
+
from sympy.core.relational import Eq, Ne
|
3 |
+
from sympy.logic.boolalg import BooleanFunction
|
4 |
+
from sympy.utilities.misc import func_name
|
5 |
+
from .sets import Set
|
6 |
+
|
7 |
+
|
8 |
+
class Contains(BooleanFunction):
|
9 |
+
"""
|
10 |
+
Asserts that x is an element of the set S.
|
11 |
+
|
12 |
+
Examples
|
13 |
+
========
|
14 |
+
|
15 |
+
>>> from sympy import Symbol, Integer, S, Contains
|
16 |
+
>>> Contains(Integer(2), S.Integers)
|
17 |
+
True
|
18 |
+
>>> Contains(Integer(-2), S.Naturals)
|
19 |
+
False
|
20 |
+
>>> i = Symbol('i', integer=True)
|
21 |
+
>>> Contains(i, S.Naturals)
|
22 |
+
Contains(i, Naturals)
|
23 |
+
|
24 |
+
References
|
25 |
+
==========
|
26 |
+
|
27 |
+
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
|
28 |
+
"""
|
29 |
+
@classmethod
|
30 |
+
def eval(cls, x, s):
|
31 |
+
|
32 |
+
if not isinstance(s, Set):
|
33 |
+
raise TypeError('expecting Set, not %s' % func_name(s))
|
34 |
+
|
35 |
+
ret = s.contains(x)
|
36 |
+
if not isinstance(ret, Contains) and (
|
37 |
+
ret in (S.true, S.false) or isinstance(ret, Set)):
|
38 |
+
return ret
|
39 |
+
|
40 |
+
@property
|
41 |
+
def binary_symbols(self):
|
42 |
+
return set().union(*[i.binary_symbols
|
43 |
+
for i in self.args[1].args
|
44 |
+
if i.is_Boolean or i.is_Symbol or
|
45 |
+
isinstance(i, (Eq, Ne))])
|
46 |
+
|
47 |
+
def as_set(self):
|
48 |
+
return self.args[1]
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/fancysets.py
ADDED
@@ -0,0 +1,1521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
from itertools import product
|
3 |
+
|
4 |
+
from sympy.core.basic import Basic
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.expr import Expr
|
7 |
+
from sympy.core.function import Lambda
|
8 |
+
from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
|
9 |
+
from sympy.core.mod import Mod
|
10 |
+
from sympy.core.numbers import oo, igcd, Rational
|
11 |
+
from sympy.core.relational import Eq, is_eq
|
12 |
+
from sympy.core.kind import NumberKind
|
13 |
+
from sympy.core.singleton import Singleton, S
|
14 |
+
from sympy.core.symbol import Dummy, symbols, Symbol
|
15 |
+
from sympy.core.sympify import _sympify, sympify, _sympy_converter
|
16 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
17 |
+
from sympy.functions.elementary.trigonometric import sin, cos
|
18 |
+
from sympy.logic.boolalg import And, Or
|
19 |
+
from .sets import Set, Interval, Union, FiniteSet, ProductSet, SetKind
|
20 |
+
from sympy.utilities.misc import filldedent
|
21 |
+
|
22 |
+
|
23 |
+
class Rationals(Set, metaclass=Singleton):
|
24 |
+
"""
|
25 |
+
Represents the rational numbers. This set is also available as
|
26 |
+
the singleton ``S.Rationals``.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import S
|
32 |
+
>>> S.Half in S.Rationals
|
33 |
+
True
|
34 |
+
>>> iterable = iter(S.Rationals)
|
35 |
+
>>> [next(iterable) for i in range(12)]
|
36 |
+
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
|
37 |
+
"""
|
38 |
+
|
39 |
+
is_iterable = True
|
40 |
+
_inf = S.NegativeInfinity
|
41 |
+
_sup = S.Infinity
|
42 |
+
is_empty = False
|
43 |
+
is_finite_set = False
|
44 |
+
|
45 |
+
def _contains(self, other):
|
46 |
+
if not isinstance(other, Expr):
|
47 |
+
return False
|
48 |
+
return other.is_rational
|
49 |
+
|
50 |
+
def __iter__(self):
|
51 |
+
yield S.Zero
|
52 |
+
yield S.One
|
53 |
+
yield S.NegativeOne
|
54 |
+
d = 2
|
55 |
+
while True:
|
56 |
+
for n in range(d):
|
57 |
+
if igcd(n, d) == 1:
|
58 |
+
yield Rational(n, d)
|
59 |
+
yield Rational(d, n)
|
60 |
+
yield Rational(-n, d)
|
61 |
+
yield Rational(-d, n)
|
62 |
+
d += 1
|
63 |
+
|
64 |
+
@property
|
65 |
+
def _boundary(self):
|
66 |
+
return S.Reals
|
67 |
+
|
68 |
+
def _kind(self):
|
69 |
+
return SetKind(NumberKind)
|
70 |
+
|
71 |
+
|
72 |
+
class Naturals(Set, metaclass=Singleton):
|
73 |
+
"""
|
74 |
+
Represents the natural numbers (or counting numbers) which are all
|
75 |
+
positive integers starting from 1. This set is also available as
|
76 |
+
the singleton ``S.Naturals``.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy import S, Interval, pprint
|
82 |
+
>>> 5 in S.Naturals
|
83 |
+
True
|
84 |
+
>>> iterable = iter(S.Naturals)
|
85 |
+
>>> next(iterable)
|
86 |
+
1
|
87 |
+
>>> next(iterable)
|
88 |
+
2
|
89 |
+
>>> next(iterable)
|
90 |
+
3
|
91 |
+
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
|
92 |
+
{1, 2, ..., 10}
|
93 |
+
|
94 |
+
See Also
|
95 |
+
========
|
96 |
+
|
97 |
+
Naturals0 : non-negative integers (i.e. includes 0, too)
|
98 |
+
Integers : also includes negative integers
|
99 |
+
"""
|
100 |
+
|
101 |
+
is_iterable = True
|
102 |
+
_inf = S.One
|
103 |
+
_sup = S.Infinity
|
104 |
+
is_empty = False
|
105 |
+
is_finite_set = False
|
106 |
+
|
107 |
+
def _contains(self, other):
|
108 |
+
if not isinstance(other, Expr):
|
109 |
+
return False
|
110 |
+
elif other.is_positive and other.is_integer:
|
111 |
+
return True
|
112 |
+
elif other.is_integer is False or other.is_positive is False:
|
113 |
+
return False
|
114 |
+
|
115 |
+
def _eval_is_subset(self, other):
|
116 |
+
return Range(1, oo).is_subset(other)
|
117 |
+
|
118 |
+
def _eval_is_superset(self, other):
|
119 |
+
return Range(1, oo).is_superset(other)
|
120 |
+
|
121 |
+
def __iter__(self):
|
122 |
+
i = self._inf
|
123 |
+
while True:
|
124 |
+
yield i
|
125 |
+
i = i + 1
|
126 |
+
|
127 |
+
@property
|
128 |
+
def _boundary(self):
|
129 |
+
return self
|
130 |
+
|
131 |
+
def as_relational(self, x):
|
132 |
+
return And(Eq(floor(x), x), x >= self.inf, x < oo)
|
133 |
+
|
134 |
+
def _kind(self):
|
135 |
+
return SetKind(NumberKind)
|
136 |
+
|
137 |
+
|
138 |
+
class Naturals0(Naturals):
|
139 |
+
"""Represents the whole numbers which are all the non-negative integers,
|
140 |
+
inclusive of zero.
|
141 |
+
|
142 |
+
See Also
|
143 |
+
========
|
144 |
+
|
145 |
+
Naturals : positive integers; does not include 0
|
146 |
+
Integers : also includes the negative integers
|
147 |
+
"""
|
148 |
+
_inf = S.Zero
|
149 |
+
|
150 |
+
def _contains(self, other):
|
151 |
+
if not isinstance(other, Expr):
|
152 |
+
return S.false
|
153 |
+
elif other.is_integer and other.is_nonnegative:
|
154 |
+
return S.true
|
155 |
+
elif other.is_integer is False or other.is_nonnegative is False:
|
156 |
+
return S.false
|
157 |
+
|
158 |
+
def _eval_is_subset(self, other):
|
159 |
+
return Range(oo).is_subset(other)
|
160 |
+
|
161 |
+
def _eval_is_superset(self, other):
|
162 |
+
return Range(oo).is_superset(other)
|
163 |
+
|
164 |
+
|
165 |
+
class Integers(Set, metaclass=Singleton):
|
166 |
+
"""
|
167 |
+
Represents all integers: positive, negative and zero. This set is also
|
168 |
+
available as the singleton ``S.Integers``.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
========
|
172 |
+
|
173 |
+
>>> from sympy import S, Interval, pprint
|
174 |
+
>>> 5 in S.Naturals
|
175 |
+
True
|
176 |
+
>>> iterable = iter(S.Integers)
|
177 |
+
>>> next(iterable)
|
178 |
+
0
|
179 |
+
>>> next(iterable)
|
180 |
+
1
|
181 |
+
>>> next(iterable)
|
182 |
+
-1
|
183 |
+
>>> next(iterable)
|
184 |
+
2
|
185 |
+
|
186 |
+
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
|
187 |
+
{-4, -3, ..., 4}
|
188 |
+
|
189 |
+
See Also
|
190 |
+
========
|
191 |
+
|
192 |
+
Naturals0 : non-negative integers
|
193 |
+
Integers : positive and negative integers and zero
|
194 |
+
"""
|
195 |
+
|
196 |
+
is_iterable = True
|
197 |
+
is_empty = False
|
198 |
+
is_finite_set = False
|
199 |
+
|
200 |
+
def _contains(self, other):
|
201 |
+
if not isinstance(other, Expr):
|
202 |
+
return S.false
|
203 |
+
return other.is_integer
|
204 |
+
|
205 |
+
def __iter__(self):
|
206 |
+
yield S.Zero
|
207 |
+
i = S.One
|
208 |
+
while True:
|
209 |
+
yield i
|
210 |
+
yield -i
|
211 |
+
i = i + 1
|
212 |
+
|
213 |
+
@property
|
214 |
+
def _inf(self):
|
215 |
+
return S.NegativeInfinity
|
216 |
+
|
217 |
+
@property
|
218 |
+
def _sup(self):
|
219 |
+
return S.Infinity
|
220 |
+
|
221 |
+
@property
|
222 |
+
def _boundary(self):
|
223 |
+
return self
|
224 |
+
|
225 |
+
def _kind(self):
|
226 |
+
return SetKind(NumberKind)
|
227 |
+
|
228 |
+
def as_relational(self, x):
|
229 |
+
return And(Eq(floor(x), x), -oo < x, x < oo)
|
230 |
+
|
231 |
+
def _eval_is_subset(self, other):
|
232 |
+
return Range(-oo, oo).is_subset(other)
|
233 |
+
|
234 |
+
def _eval_is_superset(self, other):
|
235 |
+
return Range(-oo, oo).is_superset(other)
|
236 |
+
|
237 |
+
|
238 |
+
class Reals(Interval, metaclass=Singleton):
|
239 |
+
"""
|
240 |
+
Represents all real numbers
|
241 |
+
from negative infinity to positive infinity,
|
242 |
+
including all integer, rational and irrational numbers.
|
243 |
+
This set is also available as the singleton ``S.Reals``.
|
244 |
+
|
245 |
+
|
246 |
+
Examples
|
247 |
+
========
|
248 |
+
|
249 |
+
>>> from sympy import S, Rational, pi, I
|
250 |
+
>>> 5 in S.Reals
|
251 |
+
True
|
252 |
+
>>> Rational(-1, 2) in S.Reals
|
253 |
+
True
|
254 |
+
>>> pi in S.Reals
|
255 |
+
True
|
256 |
+
>>> 3*I in S.Reals
|
257 |
+
False
|
258 |
+
>>> S.Reals.contains(pi)
|
259 |
+
True
|
260 |
+
|
261 |
+
|
262 |
+
See Also
|
263 |
+
========
|
264 |
+
|
265 |
+
ComplexRegion
|
266 |
+
"""
|
267 |
+
@property
|
268 |
+
def start(self):
|
269 |
+
return S.NegativeInfinity
|
270 |
+
|
271 |
+
@property
|
272 |
+
def end(self):
|
273 |
+
return S.Infinity
|
274 |
+
|
275 |
+
@property
|
276 |
+
def left_open(self):
|
277 |
+
return True
|
278 |
+
|
279 |
+
@property
|
280 |
+
def right_open(self):
|
281 |
+
return True
|
282 |
+
|
283 |
+
def __eq__(self, other):
|
284 |
+
return other == Interval(S.NegativeInfinity, S.Infinity)
|
285 |
+
|
286 |
+
def __hash__(self):
|
287 |
+
return hash(Interval(S.NegativeInfinity, S.Infinity))
|
288 |
+
|
289 |
+
|
290 |
+
class ImageSet(Set):
|
291 |
+
"""
|
292 |
+
Image of a set under a mathematical function. The transformation
|
293 |
+
must be given as a Lambda function which has as many arguments
|
294 |
+
as the elements of the set upon which it operates, e.g. 1 argument
|
295 |
+
when acting on the set of integers or 2 arguments when acting on
|
296 |
+
a complex region.
|
297 |
+
|
298 |
+
This function is not normally called directly, but is called
|
299 |
+
from ``imageset``.
|
300 |
+
|
301 |
+
|
302 |
+
Examples
|
303 |
+
========
|
304 |
+
|
305 |
+
>>> from sympy import Symbol, S, pi, Dummy, Lambda
|
306 |
+
>>> from sympy import FiniteSet, ImageSet, Interval
|
307 |
+
|
308 |
+
>>> x = Symbol('x')
|
309 |
+
>>> N = S.Naturals
|
310 |
+
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
|
311 |
+
>>> 4 in squares
|
312 |
+
True
|
313 |
+
>>> 5 in squares
|
314 |
+
False
|
315 |
+
|
316 |
+
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
|
317 |
+
{1, 4, 9}
|
318 |
+
|
319 |
+
>>> square_iterable = iter(squares)
|
320 |
+
>>> for i in range(4):
|
321 |
+
... next(square_iterable)
|
322 |
+
1
|
323 |
+
4
|
324 |
+
9
|
325 |
+
16
|
326 |
+
|
327 |
+
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
|
328 |
+
`x` value is in ``base_set`` or not before passing it as args)
|
329 |
+
|
330 |
+
>>> squares.lamda(2)
|
331 |
+
4
|
332 |
+
>>> squares.lamda(S(1)/2)
|
333 |
+
1/4
|
334 |
+
|
335 |
+
>>> n = Dummy('n')
|
336 |
+
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
|
337 |
+
>>> dom = Interval(-1, 1)
|
338 |
+
>>> dom.intersect(solutions)
|
339 |
+
{0}
|
340 |
+
|
341 |
+
See Also
|
342 |
+
========
|
343 |
+
|
344 |
+
sympy.sets.sets.imageset
|
345 |
+
"""
|
346 |
+
def __new__(cls, flambda, *sets):
|
347 |
+
if not isinstance(flambda, Lambda):
|
348 |
+
raise ValueError('First argument must be a Lambda')
|
349 |
+
|
350 |
+
signature = flambda.signature
|
351 |
+
|
352 |
+
if len(signature) != len(sets):
|
353 |
+
raise ValueError('Incompatible signature')
|
354 |
+
|
355 |
+
sets = [_sympify(s) for s in sets]
|
356 |
+
|
357 |
+
if not all(isinstance(s, Set) for s in sets):
|
358 |
+
raise TypeError("Set arguments to ImageSet should of type Set")
|
359 |
+
|
360 |
+
if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
|
361 |
+
raise ValueError("Signature %s does not match sets %s" % (signature, sets))
|
362 |
+
|
363 |
+
if flambda is S.IdentityFunction and len(sets) == 1:
|
364 |
+
return sets[0]
|
365 |
+
|
366 |
+
if not set(flambda.variables) & flambda.expr.free_symbols:
|
367 |
+
is_empty = fuzzy_or(s.is_empty for s in sets)
|
368 |
+
if is_empty == True:
|
369 |
+
return S.EmptySet
|
370 |
+
elif is_empty == False:
|
371 |
+
return FiniteSet(flambda.expr)
|
372 |
+
|
373 |
+
return Basic.__new__(cls, flambda, *sets)
|
374 |
+
|
375 |
+
lamda = property(lambda self: self.args[0])
|
376 |
+
base_sets = property(lambda self: self.args[1:])
|
377 |
+
|
378 |
+
@property
|
379 |
+
def base_set(self):
|
380 |
+
# XXX: Maybe deprecate this? It is poorly defined in handling
|
381 |
+
# the multivariate case...
|
382 |
+
sets = self.base_sets
|
383 |
+
if len(sets) == 1:
|
384 |
+
return sets[0]
|
385 |
+
else:
|
386 |
+
return ProductSet(*sets).flatten()
|
387 |
+
|
388 |
+
@property
|
389 |
+
def base_pset(self):
|
390 |
+
return ProductSet(*self.base_sets)
|
391 |
+
|
392 |
+
@classmethod
|
393 |
+
def _check_sig(cls, sig_i, set_i):
|
394 |
+
if sig_i.is_symbol:
|
395 |
+
return True
|
396 |
+
elif isinstance(set_i, ProductSet):
|
397 |
+
sets = set_i.sets
|
398 |
+
if len(sig_i) != len(sets):
|
399 |
+
return False
|
400 |
+
# Recurse through the signature for nested tuples:
|
401 |
+
return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
|
402 |
+
else:
|
403 |
+
# XXX: Need a better way of checking whether a set is a set of
|
404 |
+
# Tuples or not. For example a FiniteSet can contain Tuples
|
405 |
+
# but so can an ImageSet or a ConditionSet. Others like
|
406 |
+
# Integers, Reals etc can not contain Tuples. We could just
|
407 |
+
# list the possibilities here... Current code for e.g.
|
408 |
+
# _contains probably only works for ProductSet.
|
409 |
+
return True # Give the benefit of the doubt
|
410 |
+
|
411 |
+
def __iter__(self):
|
412 |
+
already_seen = set()
|
413 |
+
for i in self.base_pset:
|
414 |
+
val = self.lamda(*i)
|
415 |
+
if val in already_seen:
|
416 |
+
continue
|
417 |
+
else:
|
418 |
+
already_seen.add(val)
|
419 |
+
yield val
|
420 |
+
|
421 |
+
def _is_multivariate(self):
|
422 |
+
return len(self.lamda.variables) > 1
|
423 |
+
|
424 |
+
def _contains(self, other):
|
425 |
+
from sympy.solvers.solveset import _solveset_multi
|
426 |
+
|
427 |
+
def get_symsetmap(signature, base_sets):
|
428 |
+
'''Attempt to get a map of symbols to base_sets'''
|
429 |
+
queue = list(zip(signature, base_sets))
|
430 |
+
symsetmap = {}
|
431 |
+
for sig, base_set in queue:
|
432 |
+
if sig.is_symbol:
|
433 |
+
symsetmap[sig] = base_set
|
434 |
+
elif base_set.is_ProductSet:
|
435 |
+
sets = base_set.sets
|
436 |
+
if len(sig) != len(sets):
|
437 |
+
raise ValueError("Incompatible signature")
|
438 |
+
# Recurse
|
439 |
+
queue.extend(zip(sig, sets))
|
440 |
+
else:
|
441 |
+
# If we get here then we have something like sig = (x, y) and
|
442 |
+
# base_set = {(1, 2), (3, 4)}. For now we give up.
|
443 |
+
return None
|
444 |
+
|
445 |
+
return symsetmap
|
446 |
+
|
447 |
+
def get_equations(expr, candidate):
|
448 |
+
'''Find the equations relating symbols in expr and candidate.'''
|
449 |
+
queue = [(expr, candidate)]
|
450 |
+
for e, c in queue:
|
451 |
+
if not isinstance(e, Tuple):
|
452 |
+
yield Eq(e, c)
|
453 |
+
elif not isinstance(c, Tuple) or len(e) != len(c):
|
454 |
+
yield False
|
455 |
+
return
|
456 |
+
else:
|
457 |
+
queue.extend(zip(e, c))
|
458 |
+
|
459 |
+
# Get the basic objects together:
|
460 |
+
other = _sympify(other)
|
461 |
+
expr = self.lamda.expr
|
462 |
+
sig = self.lamda.signature
|
463 |
+
variables = self.lamda.variables
|
464 |
+
base_sets = self.base_sets
|
465 |
+
|
466 |
+
# Use dummy symbols for ImageSet parameters so they don't match
|
467 |
+
# anything in other
|
468 |
+
rep = {v: Dummy(v.name) for v in variables}
|
469 |
+
variables = [v.subs(rep) for v in variables]
|
470 |
+
sig = sig.subs(rep)
|
471 |
+
expr = expr.subs(rep)
|
472 |
+
|
473 |
+
# Map the parts of other to those in the Lambda expr
|
474 |
+
equations = []
|
475 |
+
for eq in get_equations(expr, other):
|
476 |
+
# Unsatisfiable equation?
|
477 |
+
if eq is False:
|
478 |
+
return False
|
479 |
+
equations.append(eq)
|
480 |
+
|
481 |
+
# Map the symbols in the signature to the corresponding domains
|
482 |
+
symsetmap = get_symsetmap(sig, base_sets)
|
483 |
+
if symsetmap is None:
|
484 |
+
# Can't factor the base sets to a ProductSet
|
485 |
+
return None
|
486 |
+
|
487 |
+
# Which of the variables in the Lambda signature need to be solved for?
|
488 |
+
symss = (eq.free_symbols for eq in equations)
|
489 |
+
variables = set(variables) & reduce(set.union, symss, set())
|
490 |
+
|
491 |
+
# Use internal multivariate solveset
|
492 |
+
variables = tuple(variables)
|
493 |
+
base_sets = [symsetmap[v] for v in variables]
|
494 |
+
solnset = _solveset_multi(equations, variables, base_sets)
|
495 |
+
if solnset is None:
|
496 |
+
return None
|
497 |
+
return fuzzy_not(solnset.is_empty)
|
498 |
+
|
499 |
+
@property
|
500 |
+
def is_iterable(self):
|
501 |
+
return all(s.is_iterable for s in self.base_sets)
|
502 |
+
|
503 |
+
def doit(self, **hints):
|
504 |
+
from sympy.sets.setexpr import SetExpr
|
505 |
+
f = self.lamda
|
506 |
+
sig = f.signature
|
507 |
+
if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
|
508 |
+
base_set = self.base_sets[0]
|
509 |
+
return SetExpr(base_set)._eval_func(f).set
|
510 |
+
if all(s.is_FiniteSet for s in self.base_sets):
|
511 |
+
return FiniteSet(*(f(*a) for a in product(*self.base_sets)))
|
512 |
+
return self
|
513 |
+
|
514 |
+
def _kind(self):
|
515 |
+
return SetKind(self.lamda.expr.kind)
|
516 |
+
|
517 |
+
|
518 |
+
class Range(Set):
|
519 |
+
"""
|
520 |
+
Represents a range of integers. Can be called as ``Range(stop)``,
|
521 |
+
``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is
|
522 |
+
not given it defaults to 1.
|
523 |
+
|
524 |
+
``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value
|
525 |
+
(just as for Python ranges) is not included in the Range values.
|
526 |
+
|
527 |
+
>>> from sympy import Range
|
528 |
+
>>> list(Range(3))
|
529 |
+
[0, 1, 2]
|
530 |
+
|
531 |
+
The step can also be negative:
|
532 |
+
|
533 |
+
>>> list(Range(10, 0, -2))
|
534 |
+
[10, 8, 6, 4, 2]
|
535 |
+
|
536 |
+
The stop value is made canonical so equivalent ranges always
|
537 |
+
have the same args:
|
538 |
+
|
539 |
+
>>> Range(0, 10, 3)
|
540 |
+
Range(0, 12, 3)
|
541 |
+
|
542 |
+
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
|
543 |
+
set (``Range`` is always a subset of ``Integers``). If the starting point
|
544 |
+
is infinite, then the final value is ``stop - step``. To iterate such a
|
545 |
+
range, it needs to be reversed:
|
546 |
+
|
547 |
+
>>> from sympy import oo
|
548 |
+
>>> r = Range(-oo, 1)
|
549 |
+
>>> r[-1]
|
550 |
+
0
|
551 |
+
>>> next(iter(r))
|
552 |
+
Traceback (most recent call last):
|
553 |
+
...
|
554 |
+
TypeError: Cannot iterate over Range with infinite start
|
555 |
+
>>> next(iter(r.reversed))
|
556 |
+
0
|
557 |
+
|
558 |
+
Although ``Range`` is a :class:`Set` (and supports the normal set
|
559 |
+
operations) it maintains the order of the elements and can
|
560 |
+
be used in contexts where ``range`` would be used.
|
561 |
+
|
562 |
+
>>> from sympy import Interval
|
563 |
+
>>> Range(0, 10, 2).intersect(Interval(3, 7))
|
564 |
+
Range(4, 8, 2)
|
565 |
+
>>> list(_)
|
566 |
+
[4, 6]
|
567 |
+
|
568 |
+
Although slicing of a Range will always return a Range -- possibly
|
569 |
+
empty -- an empty set will be returned from any intersection that
|
570 |
+
is empty:
|
571 |
+
|
572 |
+
>>> Range(3)[:0]
|
573 |
+
Range(0, 0, 1)
|
574 |
+
>>> Range(3).intersect(Interval(4, oo))
|
575 |
+
EmptySet
|
576 |
+
>>> Range(3).intersect(Range(4, oo))
|
577 |
+
EmptySet
|
578 |
+
|
579 |
+
Range will accept symbolic arguments but has very limited support
|
580 |
+
for doing anything other than displaying the Range:
|
581 |
+
|
582 |
+
>>> from sympy import Symbol, pprint
|
583 |
+
>>> from sympy.abc import i, j, k
|
584 |
+
>>> Range(i, j, k).start
|
585 |
+
i
|
586 |
+
>>> Range(i, j, k).inf
|
587 |
+
Traceback (most recent call last):
|
588 |
+
...
|
589 |
+
ValueError: invalid method for symbolic range
|
590 |
+
|
591 |
+
Better success will be had when using integer symbols:
|
592 |
+
|
593 |
+
>>> n = Symbol('n', integer=True)
|
594 |
+
>>> r = Range(n, n + 20, 3)
|
595 |
+
>>> r.inf
|
596 |
+
n
|
597 |
+
>>> pprint(r)
|
598 |
+
{n, n + 3, ..., n + 18}
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __new__(cls, *args):
|
602 |
+
if len(args) == 1:
|
603 |
+
if isinstance(args[0], range):
|
604 |
+
raise TypeError(
|
605 |
+
'use sympify(%s) to convert range to Range' % args[0])
|
606 |
+
|
607 |
+
# expand range
|
608 |
+
slc = slice(*args)
|
609 |
+
|
610 |
+
if slc.step == 0:
|
611 |
+
raise ValueError("step cannot be 0")
|
612 |
+
|
613 |
+
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
|
614 |
+
try:
|
615 |
+
ok = []
|
616 |
+
for w in (start, stop, step):
|
617 |
+
w = sympify(w)
|
618 |
+
if w in [S.NegativeInfinity, S.Infinity] or (
|
619 |
+
w.has(Symbol) and w.is_integer != False):
|
620 |
+
ok.append(w)
|
621 |
+
elif not w.is_Integer:
|
622 |
+
if w.is_infinite:
|
623 |
+
raise ValueError('infinite symbols not allowed')
|
624 |
+
raise ValueError
|
625 |
+
else:
|
626 |
+
ok.append(w)
|
627 |
+
except ValueError:
|
628 |
+
raise ValueError(filldedent('''
|
629 |
+
Finite arguments to Range must be integers; `imageset` can define
|
630 |
+
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
|
631 |
+
[0, 1/10, 1/5].'''))
|
632 |
+
start, stop, step = ok
|
633 |
+
|
634 |
+
null = False
|
635 |
+
if any(i.has(Symbol) for i in (start, stop, step)):
|
636 |
+
dif = stop - start
|
637 |
+
n = dif/step
|
638 |
+
if n.is_Rational:
|
639 |
+
if dif == 0:
|
640 |
+
null = True
|
641 |
+
else: # (x, x + 5, 2) or (x, 3*x, x)
|
642 |
+
n = floor(n)
|
643 |
+
end = start + n*step
|
644 |
+
if dif.is_Rational: # (x, x + 5, 2)
|
645 |
+
if (end - stop).is_negative:
|
646 |
+
end += step
|
647 |
+
else: # (x, 3*x, x)
|
648 |
+
if (end/stop - 1).is_negative:
|
649 |
+
end += step
|
650 |
+
elif n.is_extended_negative:
|
651 |
+
null = True
|
652 |
+
else:
|
653 |
+
end = stop # other methods like sup and reversed must fail
|
654 |
+
elif start.is_infinite:
|
655 |
+
span = step*(stop - start)
|
656 |
+
if span is S.NaN or span <= 0:
|
657 |
+
null = True
|
658 |
+
elif step.is_Integer and stop.is_infinite and abs(step) != 1:
|
659 |
+
raise ValueError(filldedent('''
|
660 |
+
Step size must be %s in this case.''' % (1 if step > 0 else -1)))
|
661 |
+
else:
|
662 |
+
end = stop
|
663 |
+
else:
|
664 |
+
oostep = step.is_infinite
|
665 |
+
if oostep:
|
666 |
+
step = S.One if step > 0 else S.NegativeOne
|
667 |
+
n = ceiling((stop - start)/step)
|
668 |
+
if n <= 0:
|
669 |
+
null = True
|
670 |
+
elif oostep:
|
671 |
+
step = S.One # make it canonical
|
672 |
+
end = start + step
|
673 |
+
else:
|
674 |
+
end = start + n*step
|
675 |
+
if null:
|
676 |
+
start = end = S.Zero
|
677 |
+
step = S.One
|
678 |
+
return Basic.__new__(cls, start, end, step)
|
679 |
+
|
680 |
+
start = property(lambda self: self.args[0])
|
681 |
+
stop = property(lambda self: self.args[1])
|
682 |
+
step = property(lambda self: self.args[2])
|
683 |
+
|
684 |
+
@property
|
685 |
+
def reversed(self):
|
686 |
+
"""Return an equivalent Range in the opposite order.
|
687 |
+
|
688 |
+
Examples
|
689 |
+
========
|
690 |
+
|
691 |
+
>>> from sympy import Range
|
692 |
+
>>> Range(10).reversed
|
693 |
+
Range(9, -1, -1)
|
694 |
+
"""
|
695 |
+
if self.has(Symbol):
|
696 |
+
n = (self.stop - self.start)/self.step
|
697 |
+
if not n.is_extended_positive or not all(
|
698 |
+
i.is_integer or i.is_infinite for i in self.args):
|
699 |
+
raise ValueError('invalid method for symbolic range')
|
700 |
+
if self.start == self.stop:
|
701 |
+
return self
|
702 |
+
return self.func(
|
703 |
+
self.stop - self.step, self.start - self.step, -self.step)
|
704 |
+
|
705 |
+
def _kind(self):
|
706 |
+
return SetKind(NumberKind)
|
707 |
+
|
708 |
+
def _contains(self, other):
|
709 |
+
if self.start == self.stop:
|
710 |
+
return S.false
|
711 |
+
if other.is_infinite:
|
712 |
+
return S.false
|
713 |
+
if not other.is_integer:
|
714 |
+
return other.is_integer
|
715 |
+
if self.has(Symbol):
|
716 |
+
n = (self.stop - self.start)/self.step
|
717 |
+
if not n.is_extended_positive or not all(
|
718 |
+
i.is_integer or i.is_infinite for i in self.args):
|
719 |
+
return
|
720 |
+
else:
|
721 |
+
n = self.size
|
722 |
+
if self.start.is_finite:
|
723 |
+
ref = self.start
|
724 |
+
elif self.stop.is_finite:
|
725 |
+
ref = self.stop
|
726 |
+
else: # both infinite; step is +/- 1 (enforced by __new__)
|
727 |
+
return S.true
|
728 |
+
if n == 1:
|
729 |
+
return Eq(other, self[0])
|
730 |
+
res = (ref - other) % self.step
|
731 |
+
if res == S.Zero:
|
732 |
+
if self.has(Symbol):
|
733 |
+
d = Dummy('i')
|
734 |
+
return self.as_relational(d).subs(d, other)
|
735 |
+
return And(other >= self.inf, other <= self.sup)
|
736 |
+
elif res.is_Integer: # off sequence
|
737 |
+
return S.false
|
738 |
+
else: # symbolic/unsimplified residue modulo step
|
739 |
+
return None
|
740 |
+
|
741 |
+
def __iter__(self):
|
742 |
+
n = self.size # validate
|
743 |
+
if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
|
744 |
+
raise TypeError("Cannot iterate over symbolic Range")
|
745 |
+
if self.start in [S.NegativeInfinity, S.Infinity]:
|
746 |
+
raise TypeError("Cannot iterate over Range with infinite start")
|
747 |
+
elif self.start != self.stop:
|
748 |
+
i = self.start
|
749 |
+
if n.is_infinite:
|
750 |
+
while True:
|
751 |
+
yield i
|
752 |
+
i += self.step
|
753 |
+
else:
|
754 |
+
for _ in range(n):
|
755 |
+
yield i
|
756 |
+
i += self.step
|
757 |
+
|
758 |
+
@property
|
759 |
+
def is_iterable(self):
|
760 |
+
# Check that size can be determined, used by __iter__
|
761 |
+
dif = self.stop - self.start
|
762 |
+
n = dif/self.step
|
763 |
+
if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
|
764 |
+
return False
|
765 |
+
if self.start in [S.NegativeInfinity, S.Infinity]:
|
766 |
+
return False
|
767 |
+
if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)):
|
768 |
+
return False
|
769 |
+
return True
|
770 |
+
|
771 |
+
def __len__(self):
|
772 |
+
rv = self.size
|
773 |
+
if rv is S.Infinity:
|
774 |
+
raise ValueError('Use .size to get the length of an infinite Range')
|
775 |
+
return int(rv)
|
776 |
+
|
777 |
+
@property
|
778 |
+
def size(self):
|
779 |
+
if self.start == self.stop:
|
780 |
+
return S.Zero
|
781 |
+
dif = self.stop - self.start
|
782 |
+
n = dif/self.step
|
783 |
+
if n.is_infinite:
|
784 |
+
return S.Infinity
|
785 |
+
if n.is_extended_nonnegative and all(i.is_integer for i in self.args):
|
786 |
+
return abs(floor(n))
|
787 |
+
raise ValueError('Invalid method for symbolic Range')
|
788 |
+
|
789 |
+
@property
|
790 |
+
def is_finite_set(self):
|
791 |
+
if self.start.is_integer and self.stop.is_integer:
|
792 |
+
return True
|
793 |
+
return self.size.is_finite
|
794 |
+
|
795 |
+
@property
|
796 |
+
def is_empty(self):
|
797 |
+
try:
|
798 |
+
return self.size.is_zero
|
799 |
+
except ValueError:
|
800 |
+
return None
|
801 |
+
|
802 |
+
def __bool__(self):
|
803 |
+
# this only distinguishes between definite null range
|
804 |
+
# and non-null/unknown null; getting True doesn't mean
|
805 |
+
# that it actually is not null
|
806 |
+
b = is_eq(self.start, self.stop)
|
807 |
+
if b is None:
|
808 |
+
raise ValueError('cannot tell if Range is null or not')
|
809 |
+
return not bool(b)
|
810 |
+
|
811 |
+
def __getitem__(self, i):
|
812 |
+
ooslice = "cannot slice from the end with an infinite value"
|
813 |
+
zerostep = "slice step cannot be zero"
|
814 |
+
infinite = "slicing not possible on range with infinite start"
|
815 |
+
# if we had to take every other element in the following
|
816 |
+
# oo, ..., 6, 4, 2, 0
|
817 |
+
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
|
818 |
+
ambiguous = "cannot unambiguously re-stride from the end " + \
|
819 |
+
"with an infinite value"
|
820 |
+
if isinstance(i, slice):
|
821 |
+
if self.size.is_finite: # validates, too
|
822 |
+
if self.start == self.stop:
|
823 |
+
return Range(0)
|
824 |
+
start, stop, step = i.indices(self.size)
|
825 |
+
n = ceiling((stop - start)/step)
|
826 |
+
if n <= 0:
|
827 |
+
return Range(0)
|
828 |
+
canonical_stop = start + n*step
|
829 |
+
end = canonical_stop - step
|
830 |
+
ss = step*self.step
|
831 |
+
return Range(self[start], self[end] + ss, ss)
|
832 |
+
else: # infinite Range
|
833 |
+
start = i.start
|
834 |
+
stop = i.stop
|
835 |
+
if i.step == 0:
|
836 |
+
raise ValueError(zerostep)
|
837 |
+
step = i.step or 1
|
838 |
+
ss = step*self.step
|
839 |
+
#---------------------
|
840 |
+
# handle infinite Range
|
841 |
+
# i.e. Range(-oo, oo) or Range(oo, -oo, -1)
|
842 |
+
# --------------------
|
843 |
+
if self.start.is_infinite and self.stop.is_infinite:
|
844 |
+
raise ValueError(infinite)
|
845 |
+
#---------------------
|
846 |
+
# handle infinite on right
|
847 |
+
# e.g. Range(0, oo) or Range(0, -oo, -1)
|
848 |
+
# --------------------
|
849 |
+
if self.stop.is_infinite:
|
850 |
+
# start and stop are not interdependent --
|
851 |
+
# they only depend on step --so we use the
|
852 |
+
# equivalent reversed values
|
853 |
+
return self.reversed[
|
854 |
+
stop if stop is None else -stop + 1:
|
855 |
+
start if start is None else -start:
|
856 |
+
step].reversed
|
857 |
+
#---------------------
|
858 |
+
# handle infinite on the left
|
859 |
+
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
|
860 |
+
# --------------------
|
861 |
+
# consider combinations of
|
862 |
+
# start/stop {== None, < 0, == 0, > 0} and
|
863 |
+
# step {< 0, > 0}
|
864 |
+
if start is None:
|
865 |
+
if stop is None:
|
866 |
+
if step < 0:
|
867 |
+
return Range(self[-1], self.start, ss)
|
868 |
+
elif step > 1:
|
869 |
+
raise ValueError(ambiguous)
|
870 |
+
else: # == 1
|
871 |
+
return self
|
872 |
+
elif stop < 0:
|
873 |
+
if step < 0:
|
874 |
+
return Range(self[-1], self[stop], ss)
|
875 |
+
else: # > 0
|
876 |
+
return Range(self.start, self[stop], ss)
|
877 |
+
elif stop == 0:
|
878 |
+
if step > 0:
|
879 |
+
return Range(0)
|
880 |
+
else: # < 0
|
881 |
+
raise ValueError(ooslice)
|
882 |
+
elif stop == 1:
|
883 |
+
if step > 0:
|
884 |
+
raise ValueError(ooslice) # infinite singleton
|
885 |
+
else: # < 0
|
886 |
+
raise ValueError(ooslice)
|
887 |
+
else: # > 1
|
888 |
+
raise ValueError(ooslice)
|
889 |
+
elif start < 0:
|
890 |
+
if stop is None:
|
891 |
+
if step < 0:
|
892 |
+
return Range(self[start], self.start, ss)
|
893 |
+
else: # > 0
|
894 |
+
return Range(self[start], self.stop, ss)
|
895 |
+
elif stop < 0:
|
896 |
+
return Range(self[start], self[stop], ss)
|
897 |
+
elif stop == 0:
|
898 |
+
if step < 0:
|
899 |
+
raise ValueError(ooslice)
|
900 |
+
else: # > 0
|
901 |
+
return Range(0)
|
902 |
+
elif stop > 0:
|
903 |
+
raise ValueError(ooslice)
|
904 |
+
elif start == 0:
|
905 |
+
if stop is None:
|
906 |
+
if step < 0:
|
907 |
+
raise ValueError(ooslice) # infinite singleton
|
908 |
+
elif step > 1:
|
909 |
+
raise ValueError(ambiguous)
|
910 |
+
else: # == 1
|
911 |
+
return self
|
912 |
+
elif stop < 0:
|
913 |
+
if step > 1:
|
914 |
+
raise ValueError(ambiguous)
|
915 |
+
elif step == 1:
|
916 |
+
return Range(self.start, self[stop], ss)
|
917 |
+
else: # < 0
|
918 |
+
return Range(0)
|
919 |
+
else: # >= 0
|
920 |
+
raise ValueError(ooslice)
|
921 |
+
elif start > 0:
|
922 |
+
raise ValueError(ooslice)
|
923 |
+
else:
|
924 |
+
if self.start == self.stop:
|
925 |
+
raise IndexError('Range index out of range')
|
926 |
+
if not (all(i.is_integer or i.is_infinite
|
927 |
+
for i in self.args) and ((self.stop - self.start)/
|
928 |
+
self.step).is_extended_positive):
|
929 |
+
raise ValueError('Invalid method for symbolic Range')
|
930 |
+
if i == 0:
|
931 |
+
if self.start.is_infinite:
|
932 |
+
raise ValueError(ooslice)
|
933 |
+
return self.start
|
934 |
+
if i == -1:
|
935 |
+
if self.stop.is_infinite:
|
936 |
+
raise ValueError(ooslice)
|
937 |
+
return self.stop - self.step
|
938 |
+
n = self.size # must be known for any other index
|
939 |
+
rv = (self.stop if i < 0 else self.start) + i*self.step
|
940 |
+
if rv.is_infinite:
|
941 |
+
raise ValueError(ooslice)
|
942 |
+
val = (rv - self.start)/self.step
|
943 |
+
rel = fuzzy_or([val.is_infinite,
|
944 |
+
fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])])
|
945 |
+
if rel:
|
946 |
+
return rv
|
947 |
+
if rel is None:
|
948 |
+
raise ValueError('Invalid method for symbolic Range')
|
949 |
+
raise IndexError("Range index out of range")
|
950 |
+
|
951 |
+
@property
|
952 |
+
def _inf(self):
|
953 |
+
if not self:
|
954 |
+
return S.EmptySet.inf
|
955 |
+
if self.has(Symbol):
|
956 |
+
if all(i.is_integer or i.is_infinite for i in self.args):
|
957 |
+
dif = self.stop - self.start
|
958 |
+
if self.step.is_positive and dif.is_positive:
|
959 |
+
return self.start
|
960 |
+
elif self.step.is_negative and dif.is_negative:
|
961 |
+
return self.stop - self.step
|
962 |
+
raise ValueError('invalid method for symbolic range')
|
963 |
+
if self.step > 0:
|
964 |
+
return self.start
|
965 |
+
else:
|
966 |
+
return self.stop - self.step
|
967 |
+
|
968 |
+
@property
|
969 |
+
def _sup(self):
|
970 |
+
if not self:
|
971 |
+
return S.EmptySet.sup
|
972 |
+
if self.has(Symbol):
|
973 |
+
if all(i.is_integer or i.is_infinite for i in self.args):
|
974 |
+
dif = self.stop - self.start
|
975 |
+
if self.step.is_positive and dif.is_positive:
|
976 |
+
return self.stop - self.step
|
977 |
+
elif self.step.is_negative and dif.is_negative:
|
978 |
+
return self.start
|
979 |
+
raise ValueError('invalid method for symbolic range')
|
980 |
+
if self.step > 0:
|
981 |
+
return self.stop - self.step
|
982 |
+
else:
|
983 |
+
return self.start
|
984 |
+
|
985 |
+
@property
|
986 |
+
def _boundary(self):
|
987 |
+
return self
|
988 |
+
|
989 |
+
def as_relational(self, x):
|
990 |
+
"""Rewrite a Range in terms of equalities and logic operators. """
|
991 |
+
if self.start.is_infinite:
|
992 |
+
assert not self.stop.is_infinite # by instantiation
|
993 |
+
a = self.reversed.start
|
994 |
+
else:
|
995 |
+
a = self.start
|
996 |
+
step = self.step
|
997 |
+
in_seq = Eq(Mod(x - a, step), 0)
|
998 |
+
ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0))
|
999 |
+
n = (self.stop - self.start)/self.step
|
1000 |
+
if n == 0:
|
1001 |
+
return S.EmptySet.as_relational(x)
|
1002 |
+
if n == 1:
|
1003 |
+
return And(Eq(x, a), ints)
|
1004 |
+
try:
|
1005 |
+
a, b = self.inf, self.sup
|
1006 |
+
except ValueError:
|
1007 |
+
a = None
|
1008 |
+
if a is not None:
|
1009 |
+
range_cond = And(
|
1010 |
+
x > a if a.is_infinite else x >= a,
|
1011 |
+
x < b if b.is_infinite else x <= b)
|
1012 |
+
else:
|
1013 |
+
a, b = self.start, self.stop - self.step
|
1014 |
+
range_cond = Or(
|
1015 |
+
And(self.step >= 1, x > a if a.is_infinite else x >= a,
|
1016 |
+
x < b if b.is_infinite else x <= b),
|
1017 |
+
And(self.step <= -1, x < a if a.is_infinite else x <= a,
|
1018 |
+
x > b if b.is_infinite else x >= b))
|
1019 |
+
return And(in_seq, ints, range_cond)
|
1020 |
+
|
1021 |
+
|
1022 |
+
_sympy_converter[range] = lambda r: Range(r.start, r.stop, r.step)
|
1023 |
+
|
1024 |
+
def normalize_theta_set(theta):
|
1025 |
+
r"""
|
1026 |
+
Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns
|
1027 |
+
a normalized value of theta in the Set. For Interval, a maximum of
|
1028 |
+
one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$,
|
1029 |
+
returned normalized value would be $[0, 2\pi)$. As of now intervals
|
1030 |
+
with end points as non-multiples of ``pi`` is not supported.
|
1031 |
+
|
1032 |
+
Raises
|
1033 |
+
======
|
1034 |
+
|
1035 |
+
NotImplementedError
|
1036 |
+
The algorithms for Normalizing theta Set are not yet
|
1037 |
+
implemented.
|
1038 |
+
ValueError
|
1039 |
+
The input is not valid, i.e. the input is not a real set.
|
1040 |
+
RuntimeError
|
1041 |
+
It is a bug, please report to the github issue tracker.
|
1042 |
+
|
1043 |
+
Examples
|
1044 |
+
========
|
1045 |
+
|
1046 |
+
>>> from sympy.sets.fancysets import normalize_theta_set
|
1047 |
+
>>> from sympy import Interval, FiniteSet, pi
|
1048 |
+
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
|
1049 |
+
Interval(pi/2, pi)
|
1050 |
+
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
|
1051 |
+
Interval.Ropen(0, 2*pi)
|
1052 |
+
>>> normalize_theta_set(Interval(-pi/2, pi/2))
|
1053 |
+
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
|
1054 |
+
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
|
1055 |
+
Interval.Ropen(0, 2*pi)
|
1056 |
+
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
|
1057 |
+
Interval(pi/2, 3*pi/2)
|
1058 |
+
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
|
1059 |
+
{0, pi}
|
1060 |
+
|
1061 |
+
"""
|
1062 |
+
from sympy.functions.elementary.trigonometric import _pi_coeff
|
1063 |
+
|
1064 |
+
if theta.is_Interval:
|
1065 |
+
interval_len = theta.measure
|
1066 |
+
# one complete circle
|
1067 |
+
if interval_len >= 2*S.Pi:
|
1068 |
+
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
|
1069 |
+
k = _pi_coeff(theta.start)
|
1070 |
+
return Union(Interval(0, k*S.Pi, False, True),
|
1071 |
+
Interval(k*S.Pi, 2*S.Pi, True, True))
|
1072 |
+
return Interval(0, 2*S.Pi, False, True)
|
1073 |
+
|
1074 |
+
k_start, k_end = _pi_coeff(theta.start), _pi_coeff(theta.end)
|
1075 |
+
|
1076 |
+
if k_start is None or k_end is None:
|
1077 |
+
raise NotImplementedError("Normalizing theta without pi as coefficient is "
|
1078 |
+
"not yet implemented")
|
1079 |
+
new_start = k_start*S.Pi
|
1080 |
+
new_end = k_end*S.Pi
|
1081 |
+
|
1082 |
+
if new_start > new_end:
|
1083 |
+
return Union(Interval(S.Zero, new_end, False, theta.right_open),
|
1084 |
+
Interval(new_start, 2*S.Pi, theta.left_open, True))
|
1085 |
+
else:
|
1086 |
+
return Interval(new_start, new_end, theta.left_open, theta.right_open)
|
1087 |
+
|
1088 |
+
elif theta.is_FiniteSet:
|
1089 |
+
new_theta = []
|
1090 |
+
for element in theta:
|
1091 |
+
k = _pi_coeff(element)
|
1092 |
+
if k is None:
|
1093 |
+
raise NotImplementedError('Normalizing theta without pi as '
|
1094 |
+
'coefficient, is not Implemented.')
|
1095 |
+
else:
|
1096 |
+
new_theta.append(k*S.Pi)
|
1097 |
+
return FiniteSet(*new_theta)
|
1098 |
+
|
1099 |
+
elif theta.is_Union:
|
1100 |
+
return Union(*[normalize_theta_set(interval) for interval in theta.args])
|
1101 |
+
|
1102 |
+
elif theta.is_subset(S.Reals):
|
1103 |
+
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
|
1104 |
+
"implemented" % type(theta))
|
1105 |
+
else:
|
1106 |
+
raise ValueError(" %s is not a real set" % (theta))
|
1107 |
+
|
1108 |
+
|
1109 |
+
class ComplexRegion(Set):
|
1110 |
+
r"""
|
1111 |
+
Represents the Set of all Complex Numbers. It can represent a
|
1112 |
+
region of Complex Plane in both the standard forms Polar and
|
1113 |
+
Rectangular coordinates.
|
1114 |
+
|
1115 |
+
* Polar Form
|
1116 |
+
Input is in the form of the ProductSet or Union of ProductSets
|
1117 |
+
of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``.
|
1118 |
+
|
1119 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
|
1120 |
+
|
1121 |
+
* Rectangular Form
|
1122 |
+
Input is in the form of the ProductSet or Union of ProductSets
|
1123 |
+
of interval of x and y, the real and imaginary parts of the Complex numbers in a plane.
|
1124 |
+
Default input type is in rectangular form.
|
1125 |
+
|
1126 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
|
1127 |
+
|
1128 |
+
Examples
|
1129 |
+
========
|
1130 |
+
|
1131 |
+
>>> from sympy import ComplexRegion, Interval, S, I, Union
|
1132 |
+
>>> a = Interval(2, 3)
|
1133 |
+
>>> b = Interval(4, 6)
|
1134 |
+
>>> c1 = ComplexRegion(a*b) # Rectangular Form
|
1135 |
+
>>> c1
|
1136 |
+
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
|
1137 |
+
|
1138 |
+
* c1 represents the rectangular region in complex plane
|
1139 |
+
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
|
1140 |
+
(2, 6), of the four vertices.
|
1141 |
+
|
1142 |
+
>>> c = Interval(1, 8)
|
1143 |
+
>>> c2 = ComplexRegion(Union(a*b, b*c))
|
1144 |
+
>>> c2
|
1145 |
+
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
|
1146 |
+
|
1147 |
+
* c2 represents the Union of two rectangular regions in complex
|
1148 |
+
plane. One of them surrounded by the coordinates of c1 and
|
1149 |
+
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
|
1150 |
+
(4, 8).
|
1151 |
+
|
1152 |
+
>>> 2.5 + 4.5*I in c1
|
1153 |
+
True
|
1154 |
+
>>> 2.5 + 6.5*I in c1
|
1155 |
+
False
|
1156 |
+
|
1157 |
+
>>> r = Interval(0, 1)
|
1158 |
+
>>> theta = Interval(0, 2*S.Pi)
|
1159 |
+
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
|
1160 |
+
>>> c2 # unit Disk
|
1161 |
+
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
|
1162 |
+
|
1163 |
+
* c2 represents the region in complex plane inside the
|
1164 |
+
Unit Disk centered at the origin.
|
1165 |
+
|
1166 |
+
>>> 0.5 + 0.5*I in c2
|
1167 |
+
True
|
1168 |
+
>>> 1 + 2*I in c2
|
1169 |
+
False
|
1170 |
+
|
1171 |
+
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
|
1172 |
+
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
|
1173 |
+
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
|
1174 |
+
>>> intersection
|
1175 |
+
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
|
1176 |
+
>>> intersection == upper_half_unit_disk
|
1177 |
+
True
|
1178 |
+
|
1179 |
+
See Also
|
1180 |
+
========
|
1181 |
+
|
1182 |
+
CartesianComplexRegion
|
1183 |
+
PolarComplexRegion
|
1184 |
+
Complexes
|
1185 |
+
|
1186 |
+
"""
|
1187 |
+
is_ComplexRegion = True
|
1188 |
+
|
1189 |
+
def __new__(cls, sets, polar=False):
|
1190 |
+
if polar is False:
|
1191 |
+
return CartesianComplexRegion(sets)
|
1192 |
+
elif polar is True:
|
1193 |
+
return PolarComplexRegion(sets)
|
1194 |
+
else:
|
1195 |
+
raise ValueError("polar should be either True or False")
|
1196 |
+
|
1197 |
+
@property
|
1198 |
+
def sets(self):
|
1199 |
+
"""
|
1200 |
+
Return raw input sets to the self.
|
1201 |
+
|
1202 |
+
Examples
|
1203 |
+
========
|
1204 |
+
|
1205 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1206 |
+
>>> a = Interval(2, 3)
|
1207 |
+
>>> b = Interval(4, 5)
|
1208 |
+
>>> c = Interval(1, 7)
|
1209 |
+
>>> C1 = ComplexRegion(a*b)
|
1210 |
+
>>> C1.sets
|
1211 |
+
ProductSet(Interval(2, 3), Interval(4, 5))
|
1212 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1213 |
+
>>> C2.sets
|
1214 |
+
Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
|
1215 |
+
|
1216 |
+
"""
|
1217 |
+
return self.args[0]
|
1218 |
+
|
1219 |
+
@property
|
1220 |
+
def psets(self):
|
1221 |
+
"""
|
1222 |
+
Return a tuple of sets (ProductSets) input of the self.
|
1223 |
+
|
1224 |
+
Examples
|
1225 |
+
========
|
1226 |
+
|
1227 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1228 |
+
>>> a = Interval(2, 3)
|
1229 |
+
>>> b = Interval(4, 5)
|
1230 |
+
>>> c = Interval(1, 7)
|
1231 |
+
>>> C1 = ComplexRegion(a*b)
|
1232 |
+
>>> C1.psets
|
1233 |
+
(ProductSet(Interval(2, 3), Interval(4, 5)),)
|
1234 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1235 |
+
>>> C2.psets
|
1236 |
+
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
|
1237 |
+
|
1238 |
+
"""
|
1239 |
+
if self.sets.is_ProductSet:
|
1240 |
+
psets = ()
|
1241 |
+
psets = psets + (self.sets, )
|
1242 |
+
else:
|
1243 |
+
psets = self.sets.args
|
1244 |
+
return psets
|
1245 |
+
|
1246 |
+
@property
|
1247 |
+
def a_interval(self):
|
1248 |
+
"""
|
1249 |
+
Return the union of intervals of `x` when, self is in
|
1250 |
+
rectangular form, or the union of intervals of `r` when
|
1251 |
+
self is in polar form.
|
1252 |
+
|
1253 |
+
Examples
|
1254 |
+
========
|
1255 |
+
|
1256 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1257 |
+
>>> a = Interval(2, 3)
|
1258 |
+
>>> b = Interval(4, 5)
|
1259 |
+
>>> c = Interval(1, 7)
|
1260 |
+
>>> C1 = ComplexRegion(a*b)
|
1261 |
+
>>> C1.a_interval
|
1262 |
+
Interval(2, 3)
|
1263 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1264 |
+
>>> C2.a_interval
|
1265 |
+
Union(Interval(2, 3), Interval(4, 5))
|
1266 |
+
|
1267 |
+
"""
|
1268 |
+
a_interval = []
|
1269 |
+
for element in self.psets:
|
1270 |
+
a_interval.append(element.args[0])
|
1271 |
+
|
1272 |
+
a_interval = Union(*a_interval)
|
1273 |
+
return a_interval
|
1274 |
+
|
1275 |
+
@property
|
1276 |
+
def b_interval(self):
|
1277 |
+
"""
|
1278 |
+
Return the union of intervals of `y` when, self is in
|
1279 |
+
rectangular form, or the union of intervals of `theta`
|
1280 |
+
when self is in polar form.
|
1281 |
+
|
1282 |
+
Examples
|
1283 |
+
========
|
1284 |
+
|
1285 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1286 |
+
>>> a = Interval(2, 3)
|
1287 |
+
>>> b = Interval(4, 5)
|
1288 |
+
>>> c = Interval(1, 7)
|
1289 |
+
>>> C1 = ComplexRegion(a*b)
|
1290 |
+
>>> C1.b_interval
|
1291 |
+
Interval(4, 5)
|
1292 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1293 |
+
>>> C2.b_interval
|
1294 |
+
Interval(1, 7)
|
1295 |
+
|
1296 |
+
"""
|
1297 |
+
b_interval = []
|
1298 |
+
for element in self.psets:
|
1299 |
+
b_interval.append(element.args[1])
|
1300 |
+
|
1301 |
+
b_interval = Union(*b_interval)
|
1302 |
+
return b_interval
|
1303 |
+
|
1304 |
+
@property
|
1305 |
+
def _measure(self):
|
1306 |
+
"""
|
1307 |
+
The measure of self.sets.
|
1308 |
+
|
1309 |
+
Examples
|
1310 |
+
========
|
1311 |
+
|
1312 |
+
>>> from sympy import Interval, ComplexRegion, S
|
1313 |
+
>>> a, b = Interval(2, 5), Interval(4, 8)
|
1314 |
+
>>> c = Interval(0, 2*S.Pi)
|
1315 |
+
>>> c1 = ComplexRegion(a*b)
|
1316 |
+
>>> c1.measure
|
1317 |
+
12
|
1318 |
+
>>> c2 = ComplexRegion(a*c, polar=True)
|
1319 |
+
>>> c2.measure
|
1320 |
+
6*pi
|
1321 |
+
|
1322 |
+
"""
|
1323 |
+
return self.sets._measure
|
1324 |
+
|
1325 |
+
def _kind(self):
|
1326 |
+
return self.args[0].kind
|
1327 |
+
|
1328 |
+
@classmethod
|
1329 |
+
def from_real(cls, sets):
|
1330 |
+
"""
|
1331 |
+
Converts given subset of real numbers to a complex region.
|
1332 |
+
|
1333 |
+
Examples
|
1334 |
+
========
|
1335 |
+
|
1336 |
+
>>> from sympy import Interval, ComplexRegion
|
1337 |
+
>>> unit = Interval(0,1)
|
1338 |
+
>>> ComplexRegion.from_real(unit)
|
1339 |
+
CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))
|
1340 |
+
|
1341 |
+
"""
|
1342 |
+
if not sets.is_subset(S.Reals):
|
1343 |
+
raise ValueError("sets must be a subset of the real line")
|
1344 |
+
|
1345 |
+
return CartesianComplexRegion(sets * FiniteSet(0))
|
1346 |
+
|
1347 |
+
def _contains(self, other):
|
1348 |
+
from sympy.functions import arg, Abs
|
1349 |
+
other = sympify(other)
|
1350 |
+
isTuple = isinstance(other, Tuple)
|
1351 |
+
if isTuple and len(other) != 2:
|
1352 |
+
raise ValueError('expecting Tuple of length 2')
|
1353 |
+
|
1354 |
+
# If the other is not an Expression, and neither a Tuple
|
1355 |
+
if not isinstance(other, (Expr, Tuple)):
|
1356 |
+
return S.false
|
1357 |
+
# self in rectangular form
|
1358 |
+
if not self.polar:
|
1359 |
+
re, im = other if isTuple else other.as_real_imag()
|
1360 |
+
return fuzzy_or(fuzzy_and([
|
1361 |
+
pset.args[0]._contains(re),
|
1362 |
+
pset.args[1]._contains(im)])
|
1363 |
+
for pset in self.psets)
|
1364 |
+
|
1365 |
+
# self in polar form
|
1366 |
+
elif self.polar:
|
1367 |
+
if other.is_zero:
|
1368 |
+
# ignore undefined complex argument
|
1369 |
+
return fuzzy_or(pset.args[0]._contains(S.Zero)
|
1370 |
+
for pset in self.psets)
|
1371 |
+
if isTuple:
|
1372 |
+
r, theta = other
|
1373 |
+
else:
|
1374 |
+
r, theta = Abs(other), arg(other)
|
1375 |
+
if theta.is_real and theta.is_number:
|
1376 |
+
# angles in psets are normalized to [0, 2pi)
|
1377 |
+
theta %= 2*S.Pi
|
1378 |
+
return fuzzy_or(fuzzy_and([
|
1379 |
+
pset.args[0]._contains(r),
|
1380 |
+
pset.args[1]._contains(theta)])
|
1381 |
+
for pset in self.psets)
|
1382 |
+
|
1383 |
+
|
1384 |
+
class CartesianComplexRegion(ComplexRegion):
|
1385 |
+
r"""
|
1386 |
+
Set representing a square region of the complex plane.
|
1387 |
+
|
1388 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
|
1389 |
+
|
1390 |
+
Examples
|
1391 |
+
========
|
1392 |
+
|
1393 |
+
>>> from sympy import ComplexRegion, I, Interval
|
1394 |
+
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
|
1395 |
+
>>> 2 + 5*I in region
|
1396 |
+
True
|
1397 |
+
>>> 5*I in region
|
1398 |
+
False
|
1399 |
+
|
1400 |
+
See also
|
1401 |
+
========
|
1402 |
+
|
1403 |
+
ComplexRegion
|
1404 |
+
PolarComplexRegion
|
1405 |
+
Complexes
|
1406 |
+
"""
|
1407 |
+
|
1408 |
+
polar = False
|
1409 |
+
variables = symbols('x, y', cls=Dummy)
|
1410 |
+
|
1411 |
+
def __new__(cls, sets):
|
1412 |
+
|
1413 |
+
if sets == S.Reals*S.Reals:
|
1414 |
+
return S.Complexes
|
1415 |
+
|
1416 |
+
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
|
1417 |
+
|
1418 |
+
# ** ProductSet of FiniteSets in the Complex Plane. **
|
1419 |
+
# For Cases like ComplexRegion({2, 4}*{3}), It
|
1420 |
+
# would return {2 + 3*I, 4 + 3*I}
|
1421 |
+
|
1422 |
+
# FIXME: This should probably be handled with something like:
|
1423 |
+
# return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
|
1424 |
+
complex_num = []
|
1425 |
+
for x in sets.args[0]:
|
1426 |
+
for y in sets.args[1]:
|
1427 |
+
complex_num.append(x + S.ImaginaryUnit*y)
|
1428 |
+
return FiniteSet(*complex_num)
|
1429 |
+
else:
|
1430 |
+
return Set.__new__(cls, sets)
|
1431 |
+
|
1432 |
+
@property
|
1433 |
+
def expr(self):
|
1434 |
+
x, y = self.variables
|
1435 |
+
return x + S.ImaginaryUnit*y
|
1436 |
+
|
1437 |
+
|
1438 |
+
class PolarComplexRegion(ComplexRegion):
|
1439 |
+
r"""
|
1440 |
+
Set representing a polar region of the complex plane.
|
1441 |
+
|
1442 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
|
1443 |
+
|
1444 |
+
Examples
|
1445 |
+
========
|
1446 |
+
|
1447 |
+
>>> from sympy import ComplexRegion, Interval, oo, pi, I
|
1448 |
+
>>> rset = Interval(0, oo)
|
1449 |
+
>>> thetaset = Interval(0, pi)
|
1450 |
+
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
|
1451 |
+
>>> 1 + I in upper_half_plane
|
1452 |
+
True
|
1453 |
+
>>> 1 - I in upper_half_plane
|
1454 |
+
False
|
1455 |
+
|
1456 |
+
See also
|
1457 |
+
========
|
1458 |
+
|
1459 |
+
ComplexRegion
|
1460 |
+
CartesianComplexRegion
|
1461 |
+
Complexes
|
1462 |
+
|
1463 |
+
"""
|
1464 |
+
|
1465 |
+
polar = True
|
1466 |
+
variables = symbols('r, theta', cls=Dummy)
|
1467 |
+
|
1468 |
+
def __new__(cls, sets):
|
1469 |
+
|
1470 |
+
new_sets = []
|
1471 |
+
# sets is Union of ProductSets
|
1472 |
+
if not sets.is_ProductSet:
|
1473 |
+
for k in sets.args:
|
1474 |
+
new_sets.append(k)
|
1475 |
+
# sets is ProductSets
|
1476 |
+
else:
|
1477 |
+
new_sets.append(sets)
|
1478 |
+
# Normalize input theta
|
1479 |
+
for k, v in enumerate(new_sets):
|
1480 |
+
new_sets[k] = ProductSet(v.args[0],
|
1481 |
+
normalize_theta_set(v.args[1]))
|
1482 |
+
sets = Union(*new_sets)
|
1483 |
+
return Set.__new__(cls, sets)
|
1484 |
+
|
1485 |
+
@property
|
1486 |
+
def expr(self):
|
1487 |
+
r, theta = self.variables
|
1488 |
+
return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
|
1489 |
+
|
1490 |
+
|
1491 |
+
class Complexes(CartesianComplexRegion, metaclass=Singleton):
|
1492 |
+
"""
|
1493 |
+
The :class:`Set` of all complex numbers
|
1494 |
+
|
1495 |
+
Examples
|
1496 |
+
========
|
1497 |
+
|
1498 |
+
>>> from sympy import S, I
|
1499 |
+
>>> S.Complexes
|
1500 |
+
Complexes
|
1501 |
+
>>> 1 + I in S.Complexes
|
1502 |
+
True
|
1503 |
+
|
1504 |
+
See also
|
1505 |
+
========
|
1506 |
+
|
1507 |
+
Reals
|
1508 |
+
ComplexRegion
|
1509 |
+
|
1510 |
+
"""
|
1511 |
+
|
1512 |
+
is_empty = False
|
1513 |
+
is_finite_set = False
|
1514 |
+
|
1515 |
+
# Override property from superclass since Complexes has no args
|
1516 |
+
@property
|
1517 |
+
def sets(self):
|
1518 |
+
return ProductSet(S.Reals, S.Reals)
|
1519 |
+
|
1520 |
+
def __new__(cls):
|
1521 |
+
return Set.__new__(cls)
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/add.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import oo, Infinity, NegativeInfinity
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core import Basic, Expr
|
4 |
+
from sympy.multipledispatch import Dispatcher
|
5 |
+
from sympy.sets import Interval, FiniteSet
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# XXX: The functions in this module are clearly not tested and are broken in a
|
10 |
+
# number of ways.
|
11 |
+
|
12 |
+
_set_add = Dispatcher('_set_add')
|
13 |
+
_set_sub = Dispatcher('_set_sub')
|
14 |
+
|
15 |
+
|
16 |
+
@_set_add.register(Basic, Basic)
|
17 |
+
def _(x, y):
|
18 |
+
return None
|
19 |
+
|
20 |
+
|
21 |
+
@_set_add.register(Expr, Expr)
|
22 |
+
def _(x, y):
|
23 |
+
return x+y
|
24 |
+
|
25 |
+
|
26 |
+
@_set_add.register(Interval, Interval)
|
27 |
+
def _(x, y):
|
28 |
+
"""
|
29 |
+
Additions in interval arithmetic
|
30 |
+
https://en.wikipedia.org/wiki/Interval_arithmetic
|
31 |
+
"""
|
32 |
+
return Interval(x.start + y.start, x.end + y.end,
|
33 |
+
x.left_open or y.left_open, x.right_open or y.right_open)
|
34 |
+
|
35 |
+
|
36 |
+
@_set_add.register(Interval, Infinity)
|
37 |
+
def _(x, y):
|
38 |
+
if x.start is S.NegativeInfinity:
|
39 |
+
return Interval(-oo, oo)
|
40 |
+
return FiniteSet({S.Infinity})
|
41 |
+
|
42 |
+
@_set_add.register(Interval, NegativeInfinity)
|
43 |
+
def _(x, y):
|
44 |
+
if x.end is S.Infinity:
|
45 |
+
return Interval(-oo, oo)
|
46 |
+
return FiniteSet({S.NegativeInfinity})
|
47 |
+
|
48 |
+
|
49 |
+
@_set_sub.register(Basic, Basic)
|
50 |
+
def _(x, y):
|
51 |
+
return None
|
52 |
+
|
53 |
+
|
54 |
+
@_set_sub.register(Expr, Expr)
|
55 |
+
def _(x, y):
|
56 |
+
return x-y
|
57 |
+
|
58 |
+
|
59 |
+
@_set_sub.register(Interval, Interval)
|
60 |
+
def _(x, y):
|
61 |
+
"""
|
62 |
+
Subtractions in interval arithmetic
|
63 |
+
https://en.wikipedia.org/wiki/Interval_arithmetic
|
64 |
+
"""
|
65 |
+
return Interval(x.start - y.end, x.end - y.start,
|
66 |
+
x.left_open or y.right_open, x.right_open or y.left_open)
|
67 |
+
|
68 |
+
|
69 |
+
@_set_sub.register(Interval, Infinity)
|
70 |
+
def _(x, y):
|
71 |
+
if x.start is S.NegativeInfinity:
|
72 |
+
return Interval(-oo, oo)
|
73 |
+
return FiniteSet(-oo)
|
74 |
+
|
75 |
+
@_set_sub.register(Interval, NegativeInfinity)
|
76 |
+
def _(x, y):
|
77 |
+
if x.start is S.NegativeInfinity:
|
78 |
+
return Interval(-oo, oo)
|
79 |
+
return FiniteSet(-oo)
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.relational import Eq, is_eq
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.logic import fuzzy_and, fuzzy_bool
|
4 |
+
from sympy.logic.boolalg import And
|
5 |
+
from sympy.multipledispatch import dispatch
|
6 |
+
from sympy.sets.sets import tfn, ProductSet, Interval, FiniteSet, Set
|
7 |
+
|
8 |
+
|
9 |
+
@dispatch(Interval, FiniteSet) # type:ignore
|
10 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
11 |
+
return False
|
12 |
+
|
13 |
+
|
14 |
+
@dispatch(FiniteSet, Interval) # type:ignore
|
15 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
16 |
+
return False
|
17 |
+
|
18 |
+
|
19 |
+
@dispatch(Interval, Interval) # type:ignore
|
20 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
21 |
+
return And(Eq(lhs.left, rhs.left),
|
22 |
+
Eq(lhs.right, rhs.right),
|
23 |
+
lhs.left_open == rhs.left_open,
|
24 |
+
lhs.right_open == rhs.right_open)
|
25 |
+
|
26 |
+
@dispatch(FiniteSet, FiniteSet) # type:ignore
|
27 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
28 |
+
def all_in_both():
|
29 |
+
s_set = set(lhs.args)
|
30 |
+
o_set = set(rhs.args)
|
31 |
+
yield fuzzy_and(lhs._contains(e) for e in o_set - s_set)
|
32 |
+
yield fuzzy_and(rhs._contains(e) for e in s_set - o_set)
|
33 |
+
|
34 |
+
return tfn[fuzzy_and(all_in_both())]
|
35 |
+
|
36 |
+
|
37 |
+
@dispatch(ProductSet, ProductSet) # type:ignore
|
38 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
39 |
+
if len(lhs.sets) != len(rhs.sets):
|
40 |
+
return False
|
41 |
+
|
42 |
+
eqs = (is_eq(x, y) for x, y in zip(lhs.sets, rhs.sets))
|
43 |
+
return tfn[fuzzy_and(map(fuzzy_bool, eqs))]
|
44 |
+
|
45 |
+
|
46 |
+
@dispatch(Set, Basic) # type:ignore
|
47 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
48 |
+
return False
|
49 |
+
|
50 |
+
|
51 |
+
@dispatch(Set, Set) # type:ignore
|
52 |
+
def _eval_is_eq(lhs, rhs): # noqa: F811
|
53 |
+
return tfn[fuzzy_and(a.is_subset(b) for a, b in [(lhs, rhs), (rhs, lhs)])]
|
llmeval-env/lib/python3.10/site-packages/sympy/sets/handlers/functions.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.sets.sets import Set
|
3 |
+
from sympy.calculus.singularities import singularities
|
4 |
+
from sympy.core import Expr, Add
|
5 |
+
from sympy.core.function import Lambda, FunctionClass, diff, expand_mul
|
6 |
+
from sympy.core.numbers import Float, oo
|
7 |
+
from sympy.core.symbol import Dummy, symbols, Wild
|
8 |
+
from sympy.functions.elementary.exponential import exp, log
|
9 |
+
from sympy.functions.elementary.miscellaneous import Min, Max
|
10 |
+
from sympy.logic.boolalg import true
|
11 |
+
from sympy.multipledispatch import Dispatcher
|
12 |
+
from sympy.sets import (imageset, Interval, FiniteSet, Union, ImageSet,
|
13 |
+
Intersection, Range, Complement)
|
14 |
+
from sympy.sets.sets import EmptySet, is_function_invertible_in_set
|
15 |
+
from sympy.sets.fancysets import Integers, Naturals, Reals
|
16 |
+
from sympy.functions.elementary.exponential import match_real_imag
|
17 |
+
|
18 |
+
|
19 |
+
_x, _y = symbols("x y")
|
20 |
+
|
21 |
+
FunctionUnion = (FunctionClass, Lambda)
|
22 |
+
|
23 |
+
_set_function = Dispatcher('_set_function')
|
24 |
+
|
25 |
+
|
26 |
+
@_set_function.register(FunctionClass, Set)
|
27 |
+
def _(f, x):
|
28 |
+
return None
|
29 |
+
|
30 |
+
@_set_function.register(FunctionUnion, FiniteSet)
|
31 |
+
def _(f, x):
|
32 |
+
return FiniteSet(*map(f, x))
|
33 |
+
|
34 |
+
@_set_function.register(Lambda, Interval)
|
35 |
+
def _(f, x):
|
36 |
+
from sympy.solvers.solveset import solveset
|
37 |
+
from sympy.series import limit
|
38 |
+
# TODO: handle functions with infinitely many solutions (eg, sin, tan)
|
39 |
+
# TODO: handle multivariate functions
|
40 |
+
|
41 |
+
expr = f.expr
|
42 |
+
if len(expr.free_symbols) > 1 or len(f.variables) != 1:
|
43 |
+
return
|
44 |
+
var = f.variables[0]
|
45 |
+
if not var.is_real:
|
46 |
+
if expr.subs(var, Dummy(real=True)).is_real is False:
|
47 |
+
return
|
48 |
+
|
49 |
+
if expr.is_Piecewise:
|
50 |
+
result = S.EmptySet
|
51 |
+
domain_set = x
|
52 |
+
for (p_expr, p_cond) in expr.args:
|
53 |
+
if p_cond is true:
|
54 |
+
intrvl = domain_set
|
55 |
+
else:
|
56 |
+
intrvl = p_cond.as_set()
|
57 |
+
intrvl = Intersection(domain_set, intrvl)
|
58 |
+
|
59 |
+
if p_expr.is_Number:
|
60 |
+
image = FiniteSet(p_expr)
|
61 |
+
else:
|
62 |
+
image = imageset(Lambda(var, p_expr), intrvl)
|
63 |
+
result = Union(result, image)
|
64 |
+
|
65 |
+
# remove the part which has been `imaged`
|
66 |
+
domain_set = Complement(domain_set, intrvl)
|
67 |
+
if domain_set is S.EmptySet:
|
68 |
+
break
|
69 |
+
return result
|
70 |
+
|
71 |
+
if not x.start.is_comparable or not x.end.is_comparable:
|
72 |
+
return
|
73 |
+
|
74 |
+
try:
|
75 |
+
from sympy.polys.polyutils import _nsort
|
76 |
+
sing = list(singularities(expr, var, x))
|
77 |
+
if len(sing) > 1:
|
78 |
+
sing = _nsort(sing)
|
79 |
+
except NotImplementedError:
|
80 |
+
return
|
81 |
+
|
82 |
+
if x.left_open:
|
83 |
+
_start = limit(expr, var, x.start, dir="+")
|
84 |
+
elif x.start not in sing:
|
85 |
+
_start = f(x.start)
|
86 |
+
if x.right_open:
|
87 |
+
_end = limit(expr, var, x.end, dir="-")
|
88 |
+
elif x.end not in sing:
|
89 |
+
_end = f(x.end)
|
90 |
+
|
91 |
+
if len(sing) == 0:
|
92 |
+
soln_expr = solveset(diff(expr, var), var)
|
93 |
+
if not (isinstance(soln_expr, FiniteSet)
|
94 |
+
or soln_expr is S.EmptySet):
|
95 |
+
return
|
96 |
+
solns = list(soln_expr)
|
97 |
+
|
98 |
+
extr = [_start, _end] + [f(i) for i in solns
|
99 |
+
if i.is_real and i in x]
|
100 |
+
start, end = Min(*extr), Max(*extr)
|
101 |
+
|
102 |
+
left_open, right_open = False, False
|
103 |
+
if _start <= _end:
|
104 |
+
# the minimum or maximum value can occur simultaneously
|
105 |
+
# on both the edge of the interval and in some interior
|
106 |
+
# point
|
107 |
+
if start == _start and start not in solns:
|
108 |
+
left_open = x.left_open
|
109 |
+
if end == _end and end not in solns:
|
110 |
+
right_open = x.right_open
|
111 |
+
else:
|
112 |
+
if start == _end and start not in solns:
|
113 |
+
left_open = x.right_open
|
114 |
+
if end == _start and end not in solns:
|
115 |
+
right_open = x.left_open
|
116 |
+
|
117 |
+
return Interval(start, end, left_open, right_open)
|
118 |
+
else:
|
119 |
+
return imageset(f, Interval(x.start, sing[0],
|
120 |
+
x.left_open, True)) + \
|
121 |
+
Union(*[imageset(f, Interval(sing[i], sing[i + 1], True, True))
|
122 |
+
for i in range(0, len(sing) - 1)]) + \
|
123 |
+
imageset(f, Interval(sing[-1], x.end, True, x.right_open))
|
124 |
+
|
125 |
+
@_set_function.register(FunctionClass, Interval)
|
126 |
+
def _(f, x):
|
127 |
+
if f == exp:
|
128 |
+
return Interval(exp(x.start), exp(x.end), x.left_open, x.right_open)
|
129 |
+
elif f == log:
|
130 |
+
return Interval(log(x.start), log(x.end), x.left_open, x.right_open)
|
131 |
+
return ImageSet(Lambda(_x, f(_x)), x)
|
132 |
+
|
133 |
+
@_set_function.register(FunctionUnion, Union)
|
134 |
+
def _(f, x):
|
135 |
+
return Union(*(imageset(f, arg) for arg in x.args))
|
136 |
+
|
137 |
+
@_set_function.register(FunctionUnion, Intersection)
|
138 |
+
def _(f, x):
|
139 |
+
# If the function is invertible, intersect the maps of the sets.
|
140 |
+
if is_function_invertible_in_set(f, x):
|
141 |
+
return Intersection(*(imageset(f, arg) for arg in x.args))
|
142 |
+
else:
|
143 |
+
return ImageSet(Lambda(_x, f(_x)), x)
|
144 |
+
|
145 |
+
@_set_function.register(FunctionUnion, EmptySet)
|
146 |
+
def _(f, x):
|
147 |
+
return x
|
148 |
+
|
149 |
+
@_set_function.register(FunctionUnion, Set)
|
150 |
+
def _(f, x):
|
151 |
+
return ImageSet(Lambda(_x, f(_x)), x)
|
152 |
+
|
153 |
+
@_set_function.register(FunctionUnion, Range)
|
154 |
+
def _(f, self):
|
155 |
+
if not self:
|
156 |
+
return S.EmptySet
|
157 |
+
if not isinstance(f.expr, Expr):
|
158 |
+
return
|
159 |
+
if self.size == 1:
|
160 |
+
return FiniteSet(f(self[0]))
|
161 |
+
if f is S.IdentityFunction:
|
162 |
+
return self
|
163 |
+
|
164 |
+
x = f.variables[0]
|
165 |
+
expr = f.expr
|
166 |
+
# handle f that is linear in f's variable
|
167 |
+
if x not in expr.free_symbols or x in expr.diff(x).free_symbols:
|
168 |
+
return
|
169 |
+
if self.start.is_finite:
|
170 |
+
F = f(self.step*x + self.start) # for i in range(len(self))
|
171 |
+
else:
|
172 |
+
F = f(-self.step*x + self[-1])
|
173 |
+
F = expand_mul(F)
|
174 |
+
if F != expr:
|
175 |
+
return imageset(x, F, Range(self.size))
|
176 |
+
|
177 |
+
@_set_function.register(FunctionUnion, Integers)
|
178 |
+
def _(f, self):
|
179 |
+
expr = f.expr
|
180 |
+
if not isinstance(expr, Expr):
|
181 |
+
return
|
182 |
+
|
183 |
+
n = f.variables[0]
|
184 |
+
if expr == abs(n):
|
185 |
+
return S.Naturals0
|
186 |
+
|
187 |
+
# f(x) + c and f(-x) + c cover the same integers
|
188 |
+
# so choose the form that has the fewest negatives
|
189 |
+
c = f(0)
|
190 |
+
fx = f(n) - c
|
191 |
+
f_x = f(-n) - c
|
192 |
+
neg_count = lambda e: sum(_.could_extract_minus_sign()
|
193 |
+
for _ in Add.make_args(e))
|
194 |
+
if neg_count(f_x) < neg_count(fx):
|
195 |
+
expr = f_x + c
|
196 |
+
|
197 |
+
a = Wild('a', exclude=[n])
|
198 |
+
b = Wild('b', exclude=[n])
|
199 |
+
match = expr.match(a*n + b)
|
200 |
+
if match and match[a] and (
|
201 |
+
not match[a].atoms(Float) and
|
202 |
+
not match[b].atoms(Float)):
|
203 |
+
# canonical shift
|
204 |
+
a, b = match[a], match[b]
|
205 |
+
if a in [1, -1]:
|
206 |
+
# drop integer addends in b
|
207 |
+
nonint = []
|
208 |
+
for bi in Add.make_args(b):
|
209 |
+
if not bi.is_integer:
|
210 |
+
nonint.append(bi)
|
211 |
+
b = Add(*nonint)
|
212 |
+
if b.is_number and a.is_real:
|
213 |
+
# avoid Mod for complex numbers, #11391
|
214 |
+
br, bi = match_real_imag(b)
|
215 |
+
if br and br.is_comparable and a.is_comparable:
|
216 |
+
br %= a
|
217 |
+
b = br + S.ImaginaryUnit*bi
|
218 |
+
elif b.is_number and a.is_imaginary:
|
219 |
+
br, bi = match_real_imag(b)
|
220 |
+
ai = a/S.ImaginaryUnit
|
221 |
+
if bi and bi.is_comparable and ai.is_comparable:
|
222 |
+
bi %= ai
|
223 |
+
b = br + S.ImaginaryUnit*bi
|
224 |
+
expr = a*n + b
|
225 |
+
|
226 |
+
if expr != f.expr:
|
227 |
+
return ImageSet(Lambda(n, expr), S.Integers)
|
228 |
+
|
229 |
+
|
230 |
+
@_set_function.register(FunctionUnion, Naturals)
|
231 |
+
def _(f, self):
|
232 |
+
expr = f.expr
|
233 |
+
if not isinstance(expr, Expr):
|
234 |
+
return
|
235 |
+
|
236 |
+
x = f.variables[0]
|
237 |
+
if not expr.free_symbols - {x}:
|
238 |
+
if expr == abs(x):
|
239 |
+
if self is S.Naturals:
|
240 |
+
return self
|
241 |
+
return S.Naturals0
|
242 |
+
step = expr.coeff(x)
|
243 |
+
c = expr.subs(x, 0)
|
244 |
+
if c.is_Integer and step.is_Integer and expr == step*x + c:
|
245 |
+
if self is S.Naturals:
|
246 |
+
c += step
|
247 |
+
if step > 0:
|
248 |
+
if step == 1:
|
249 |
+
if c == 0:
|
250 |
+
return S.Naturals0
|
251 |
+
elif c == 1:
|
252 |
+
return S.Naturals
|
253 |
+
return Range(c, oo, step)
|
254 |
+
return Range(c, -oo, step)
|
255 |
+
|
256 |
+
|
257 |
+
@_set_function.register(FunctionUnion, Reals)
|
258 |
+
def _(f, self):
|
259 |
+
expr = f.expr
|
260 |
+
if not isinstance(expr, Expr):
|
261 |
+
return
|
262 |
+
return _set_function(f, Interval(-oo, oo))
|