diff --git "a/llmeval-env/lib/python3.10/site-packages/torch/_refs/__init__.py" "b/llmeval-env/lib/python3.10/site-packages/torch/_refs/__init__.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/torch/_refs/__init__.py" @@ -0,0 +1,6443 @@ +import builtins +import collections +import inspect +import itertools +import math +import operator +import warnings + +from collections.abc import Iterable +from enum import Enum +from functools import partial, reduce, singledispatch, wraps +from typing import Any, Callable, Dict, List, Optional, overload, Sequence, Tuple, Union + +import torch + +import torch._prims as prims +import torch._prims_common as utils +from torch import sym_float, sym_int +from torch._prims_common import ( + DeviceLikeType, + Dim, + DimsSequenceType, + DimsType, + dtype_to_type, + ELEMENTWISE_TYPE_PROMOTION_KIND, + FloatLike, + FloatWithoutSymFloat, + IntLike, + is_weakly_lesser_type, + Number, + NumberType, + RealNumberType, + REDUCTION_OUTPUT_TYPE_KIND, + ShapeType, + StrideType, + TensorLike, + TensorLikeType, + TensorOrNumberLikeType, + TensorSequenceType, +) +from torch._prims_common.wrappers import ( + _maybe_convert_to_dtype, + _maybe_resize_out, + _safe_copy_out, + elementwise_type_promotion_wrapper, + elementwise_unary_scalar_wrapper, + out_wrapper, +) + +# Experimental module containing prototype Python references for existing +# PyTorch operations. + +__all__ = [ + # + # Elementwise Unary References + # + "abs", + "acos", + "acosh", + "asinh", + "asin", + "atan", + "atanh", + "bitwise_not", + # "cbrt", # No corresponding torch operation + "ceil", + "conj_physical", + "cos", + "cosh", + "count_nonzero", + "deg2rad", + "digamma", + "erf", + "erfinv", + "erfc", + "exp", + "expm1", + "exponential", + "exp2", + "fill", + "fill_", + "floor", + "frac", + "geometric", + "index_add", + "index_copy", + "index_copy_", + "index_select", + "index_fill", + "index_fill_", + "isfinite", + "isinf", + "isposinf", + "isneginf", + "isnan", + "isreal", + "i0", + "lerp", + "lgamma", + "log", + "log1p", + "log2", + "log10", + "log_normal", + "log_softmax", + "mvlgamma", + "norm", + "normal", + "nan_to_num", + "neg", + "positive", + "rad2deg", + "reciprocal", + "round", # TODO: model kwargs + "sigmoid", + "sgn", + "sign", + "signbit", + "sin", + "sinc", + "sinh", + "softmax", + "sqrt", + "square", + "tan", + "tanh", + "trace", + "trunc", + # + # Elementwise Binary References + # + "add", + "atan2", + "bitwise_and", + "bitwise_left_shift", + "bitwise_or", + "bitwise_right_shift", + "bitwise_xor", + "clamp_min", + "clamp_max", + "copysign", + "div", + "eq", + "float_power", + "floor_divide", + "fmax", + "fmin", + "fmod", + "gcd", + "ge", + "gt", + "heaviside", + "hypot", + "igamma", + "igammac", + "imag", + "isclose", + "lcm", + # 'ldexp', + "le", + "logaddexp", + "logaddexp2", + "logical_and", + "logical_not", + "logical_or", + "logical_xor", + "logsumexp", + "lt", + # 'max', # implement with reductions + "maximum", + # 'min', # implement with reductions + "minimum", + "mul", + "ne", + "nextafter", + # 'polar', # abs, cos, sin + "pow", + "real", + "rpow", + "remainder", + "rsub", + "rtruediv", + "rfloordiv", + "sub", + "true_divide", + "trunc_divide", + "xlogy", + # + # Elementwise Ternary References + # + "addcdiv", + "addcmul", + "clamp", + # + # Conditional references + # + "masked_fill", + "masked_fill_", + "where", + # + # Data conversion and movement references + # + "clone", + "copy_to", # TODO: add OpInfo (or implement .to) + "item", + "to", + # + # Reduction ops + # + "all", + "amax", + "amin", + "any", + "cumsum", + "cumprod", + "mean", + "dot", + "vdot", + "std", + "std_mean", + "sum", + "sum_to_size", + "prod", + "var", + "var_mean", + # + # Linear algebra ops + # + "addr", + # + # View & Shape Ops + # + "alias", + "atleast_1d", + "atleast_2d", + "atleast_3d", + "as_strided", + "as_strided_scatter", + "block_diag", + "broadcast_shapes", + "broadcast_tensors", + "broadcast_to", + "cat", + "chunk", + "column_stack", + "conj", + "constant_pad_nd", + "contiguous", + "diag_embed", + "diag", + "diagonal", + "diagonal_copy", + "diagonal_scatter", + "dsplit", + "dstack", + "expand", + "expand_as", + "flatten", + "flip", + "fliplr", + "flipud", + "hsplit", + "hstack", + "meshgrid", + "movedim", + "narrow", + "narrow_copy", + "native_group_norm", + "native_layer_norm", + "permute", + "ravel", + "repeat", + "reshape", + "reshape_as", + "roll", + "rot90", + "rsqrt", + "stack", + "swap_axes", # alias for transpose + "squeeze", + "t", + "T", + "take_along_dim", + "tensor_split", + "transpose", + "unfold", + "unfold_copy", + "unsqueeze", + "view", + "view_as", + "vsplit", + "vstack", + "view_as_complex", + "unflatten", + "unbind", + "triu", + "tril", + "triu_indices", + "tril_indices", + # + # Tensor Creation + # + "arange", + "cauchy", + "empty", + "empty_like", + "empty_permuted", + "empty_strided", + "eye", + "full", + "full_like", + "linspace", + "logspace", + "new_empty", + "new_empty_strided", + "new_full", + "new_ones", + "new_zeros", + "ones", + "ones_like", + "randn", + "scalar_tensor", + "zero", + "zeros", + "zeros_like", + # + # Test-related functions + # + "allclose", + "equal", + # + # Statistical operations + # + "bucketize", + # + # Misc + # + "is_complex", + "renorm", + "stft", + "istft", +] + +Tensor = torch.Tensor +DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined] +aten = torch._ops.ops.aten + +# Note that the docstrings for the public methods from this file are in +# torch/_torch_docs.py + + +def is_noncontiguous_supported(device): + if device is not None and device.type == "hpu": + return False + return True + + +def handle_noncontiguous_outputs(input_tlist, output): + device = None + from torch._subclasses.fake_tensor import FakeTensor + + for t in input_tlist: + if isinstance(t, FakeTensor): + device = t.fake_device + break + + if not is_noncontiguous_supported(device): + output = output.contiguous() + + return output + + +def _broadcast_shapes(*_shapes): + from torch.fx.experimental.symbolic_shapes import guard_size_oblivious + + shapes = tuple( + (x,) if isinstance(x, IntLike) else x + for x in filter(lambda x: x is not None, _shapes) + ) + + # Short-circuits on no input + if len(shapes) == 0: + return None + + # Type checking + # TODO: make common validations available as utils + for shape in shapes: + assert isinstance(shape, Sequence) + + # Computes common shape + common_shape = [ + 1, + ] * reduce(max, (len(shape) for shape in shapes)) + for arg_idx, shape in enumerate(shapes): + for idx in range(-1, -1 - len(shape), -1): + if guard_size_oblivious(common_shape[idx] == 1): + if shape[idx] < 0: + raise ValueError( + "Attempting to broadcast a dimension with negative length!" + ) + common_shape[idx] = shape[idx] + elif guard_size_oblivious(shape[idx] != 1): + if common_shape[idx] != shape[idx]: + raise RuntimeError( + f"Attempting to broadcast a dimension of length {shape[idx]} at {idx}! " + f"Mismatching argument at index {arg_idx} had {shape}; but expected shape " + f"should be broadcastable to {common_shape}" + ) + + return common_shape + + +def _maybe_broadcast(*args, preserve_cpu_scalar_tensors=True): + # Computes common shape + common_shape = _broadcast_shapes( + *(t.shape if isinstance(t, TensorLike) else None for t in args) + ) + + def __maybe_broadcast(x, shape): + if x is None: + return None + elif isinstance(x, Number): + return x + elif isinstance(x, TensorLike): + if preserve_cpu_scalar_tensors and utils.is_cpu_scalar_tensor(x): + return x + + if not utils.same_shape(x.shape, common_shape): + return x.expand(common_shape) + + return x + else: + raise RuntimeError( + "Unexpected type when broadcasting: " + str(type(x)) + "!" + ) + + return tuple(__maybe_broadcast(x, common_shape) for x in args) + + +# Utilities should come BEFORE this import +from torch._decomp import register_decomposition + +# +# Elementwise unary references +# + +infer_aten_op = object() + + +# TODO: add type promotion support +def _make_elementwise_unary_reference( + type_promotion_kind, + *, + aten_op=infer_aten_op, + extra_meta=None, +) -> Callable: + def inner(prim: Callable): + nonlocal aten_op + + @wraps(prim) + @out_wrapper() + @elementwise_unary_scalar_wrapper + @elementwise_type_promotion_wrapper( + type_promoting_args=("a",), + type_promotion_kind=type_promotion_kind, + ) + def _ref(a: TensorLikeType) -> TensorLikeType: + if extra_meta is not None: + extra_meta(a) + + output = prim(a) + return handle_noncontiguous_outputs([a], output) + + if aten_op is infer_aten_op: + aten_op = utils.get_aten_op(prim, prim.__name__) + if aten_op is not None: + register_decomposition(aten_op)(_ref) + + return _ref + + return inner + + +def _make_alias(fn, name): + """ + This function defines an alias of another function and sets its __name__ argument. + It also sets its __module__ argument to the module of the caller. + Note that when naïvely doing `alias = fn`, we have that `alias.__name__ == "fn"`, and + `alias.__module__ == fn.__module__`. + """ + + def _fn(*args, **kwargs): + return fn(*args, **kwargs) + + _fn.__name__ = name + _fn.__module__ = inspect.currentframe().f_back.f_globals["__name__"] # type: ignore[union-attr] + return _fn + + +def _make_inplace(fn): + """ + Given a function with out variant (i.e. using `out_wrapper()), it returns its in-place variant + See https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-do-in-place-operations-work-in-pytorch + """ + + # nb. We use the name of the first argument used in the unary references + @wraps(fn) + def _fn(a, *args, **kwargs): + return fn(a, *args, out=a, **kwargs) + + inplace_name = f"{fn.__name__}_" + _fn.__name__ = inplace_name + _fn = register_decomposition(getattr(aten, inplace_name))(_fn) + + # We access the __all__ attribute of the module where fn is defined + # There may be a cleaner way of doing this... + from inspect import getmodule + + _all = getmodule(fn).__all__ # type: ignore[union-attr] + if inplace_name not in _all: + _all.append(inplace_name) + return _fn + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT) +def abs(a): + return prims.abs(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def acos(a): + return prims.acos(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def acosh(a): + return prims.acosh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def asin(a): + return prims.asin(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def asinh(a): + return prims.asinh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def atan(a): + return prims.atan(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def atanh(a): + return prims.atanh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def bitwise_not(a): + return prims.bitwise_not(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def ceil(a): + return prims.ceil(a) + + +@register_decomposition(aten.is_complex) +def is_complex(input: TensorLikeType): + return utils.is_complex_dtype(input.dtype) + + +@register_decomposition(aten.conj_physical) +@out_wrapper() +def conj_physical(input: TensorLikeType): + if not utils.is_complex_dtype(input.dtype): + return input + return prims.conj_physical(input) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def cos(a): + return prims.cos(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def cosh(a): + return prims.cosh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def digamma(a): + return prims.digamma(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def erf(a): + return prims.erf(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def erfinv(a): + return prims.erf_inv(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def erfc(a): + return prims.erfc(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def exp(a): + return prims.exp(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def expm1(a): + return prims.expm1(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def exp2(a): + return prims.exp2(a) + + +# Fill has its own implementation because it has a value parameter +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a,"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH, +) +def fill(a: TensorLikeType, value: NumberType) -> TensorLikeType: + assert isinstance(a, TensorLike) + assert isinstance(value, Number) + + python_type = utils.dtype_to_type(a.dtype) + if not utils.is_weakly_lesser_type(type(value), python_type): + msg = f"value argument of type {type(value)} cannot be safely cast to type {python_type}!" + raise ValueError(msg) + + return prims.fill(a, value) + + +def fill_(a: TensorLikeType, value: NumberType) -> TensorLikeType: + r = prims.fill(a, value) + prims.copy_to(a, r) + return a + + +@register_decomposition(aten.zero) +@out_wrapper() +def zero(input: TensorLikeType) -> TensorLikeType: + return torch.zeros_like(input) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def floor(a): + return prims.floor(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def frac(x: TensorLikeType) -> TensorLikeType: + trunc_x = torch.mul(torch.floor(torch.abs(x)), torch.sign(x)) + return torch.sub(x, trunc_x) + + +# imag does not use _make_elementwise_unary_reference because it does not support out +def imag(a: TensorLikeType) -> TensorLikeType: + assert isinstance(a, TensorLike) + torch._check( + utils.is_complex_dtype(a.dtype), lambda: "imag only supports complex tensors." + ) + return prims.imag(a) + + +@_make_elementwise_unary_reference( + ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + aten_op=None, # CompositeImplicitAutograd +) +def isfinite(a: TensorLikeType) -> TensorLikeType: + if utils.is_float_dtype(a.dtype) or utils.is_complex_dtype(a.dtype): + return prims.isfinite(a) + + return ones_like(a, dtype=torch.bool) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def isinf(a: TensorLikeType) -> TensorLikeType: + if utils.is_complex_dtype(a.dtype): + return torch.logical_or(isinf(torch.real(a)), isinf(torch.imag(a))) + if utils.is_float_dtype(a.dtype): + return torch.abs(a) == float("inf") + return torch.zeros_like(a, dtype=torch.bool) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def isposinf(a: TensorLikeType) -> TensorLikeType: + torch._check( + not utils.is_complex_dtype(a.dtype), + lambda: f"Complex dtype is not supported for isposinf, got dtype {a.dtype}", + ) + if utils.is_float_dtype(a.dtype): + return a == float("inf") + return torch.zeros_like(a, dtype=torch.bool) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def isneginf(a: TensorLikeType) -> TensorLikeType: + torch._check( + not utils.is_complex_dtype(a.dtype), + lambda: f"Complex dtype is not supported for isneginf, got dtype {a.dtype}", + ) + if utils.is_float_dtype(a.dtype): + return a == float("-inf") + return torch.zeros_like(a, dtype=torch.bool) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def isnan(a: TensorLikeType) -> TensorLikeType: + return prims.ne(a, a) + + +# alias +mvlgamma = _make_alias(torch.special.multigammaln, "mvlgamma") # type: ignore[has-type] + + +@_make_elementwise_unary_reference( + ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + aten_op=None, # CompositeImplicitAutograd +) +def isreal(a: TensorLikeType) -> TensorLikeType: + if utils.is_complex_dtype(a.dtype): + return torch.imag(a) == 0 + return torch.ones_like(a, dtype=torch.bool) + + +# TODO: if this is special maybe it should be defined there and imported here? +@_make_elementwise_unary_reference( + ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, aten_op=aten.i0 +) +def i0(a): + return prims.bessel_i0(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def lgamma(a): + return prims.lgamma(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def log(a): + return prims.log(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def log1p(a): + return prims.log1p(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def log2(a): + return prims.log2(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def log10(a): + return prims.log10(a) + + +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def log_softmax( + a: TensorLikeType, + dim: int, + dtype: Optional[torch.dtype] = None, +) -> TensorLikeType: + result_dtype = dtype or a.dtype + computation_dtype = utils.get_computation_dtype(result_dtype) + a_ = _maybe_convert_to_dtype(a, computation_dtype) + return _maybe_convert_to_dtype(a_ - logsumexp(a_, dim, keepdim=True), result_dtype) # type: ignore[return-value] + + +@register_decomposition(aten.logsumexp) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, +) +def logsumexp( + self: TensorLikeType, dim: DimsType, keepdim: bool = False +) -> TensorLikeType: + if not isinstance(dim, Iterable): + dim = (dim,) + if self.numel() == 0: + return torch.sum(torch.exp(self), dim, keepdim).log() + maxes = torch.amax(self, dim, keepdim=True) + maxes = torch.masked_fill(maxes, maxes.abs() == float("inf"), 0) + maxes_squeezed = maxes if keepdim else torch.squeeze(maxes, dim) + result = torch.sum(torch.exp(self - maxes), dim, keepdim) + return result.log().add(maxes_squeezed) + + +@register_decomposition(aten.nan_to_num) +@out_wrapper() +def nan_to_num( + a: TensorLikeType, + nan: Optional[NumberType] = 0.0, + posinf: Optional[NumberType] = None, + neginf: Optional[NumberType] = None, +) -> TensorLikeType: + assert isinstance(a, TensorLike) + + if utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype): + return a.clone() + + if nan is None: + nan = 0.0 + + if posinf is None: + posinf = torch.finfo(a.dtype).max + + if neginf is None: + neginf = torch.finfo(a.dtype).min + + result = torch.where(torch.isnan(a), nan, a) # type: ignore[call-overload] + result = torch.where(torch.isneginf(a), neginf, result) # type: ignore[call-overload] + result = torch.where(torch.isposinf(a), posinf, result) # type: ignore[call-overload] + return result + + +def _neg_meta(a: TensorLikeType): + torch._check( + a.dtype is not torch.bool, + lambda: ( + "Negation, the `-` operator, on a bool tensor is not supported. " + "If you are trying to invert a mask, use the `~` or `logical_not()` " + "operator instead." + ), + ) + + +@_make_elementwise_unary_reference( + ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, extra_meta=_neg_meta +) +def neg(a): + return prims.neg(a) + + +# positive does not use _make_elementwise_unary_reference because it does not support out +# CompositeImplicitAutograd - don't register decomp +def positive(a: TensorLikeType) -> TensorLikeType: + assert isinstance(a, TensorLike) + if a.dtype is torch.bool: + msg = "positive does not support bool tensors." + raise RuntimeError(msg) + return a + + +# real does not use _make_elementwise_unary_reference because it does not support out +def real(a: TensorLikeType) -> TensorLikeType: + assert isinstance(a, TensorLike) + if utils.is_complex_dtype(a.dtype): + return prims.real(a) + return a + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def reciprocal(a): + return prims.reciprocal(a) + + +@register_decomposition(aten.round) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def round(a: TensorLikeType, *, decimals: int = 0) -> TensorLikeType: + if decimals == 0: + return prims.round(a) + else: + ten_pow = 10**decimals + ten_neg_pow = 10 ** (-decimals) + return prims.mul(prims.round(prims.mul(a, ten_pow)), ten_neg_pow) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def rsqrt(a): + return prims.rsqrt(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def sigmoid(a: TensorLikeType) -> TensorLikeType: + return true_divide(1, add(1, exp(neg(a)))) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def sgn(a): + if utils.is_complex_dtype(a.dtype): + a_abs = a.abs() + return torch.where(a_abs == 0, 0, a / a_abs) + else: + return a.sign() + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def sign(a): + return prims.sign(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def signbit(a): + return prims.signbit(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def sin(a): + return prims.sin(a) + + +# Autograd note: This will give the right first derivative at zero (by chance), +# but not the right second derivative +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def sinc(a): + a = math.pi * a + return torch.where(a == 0, 1, torch.sin(a) / a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def sinh(a): + return prims.sinh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def sqrt(a): + return prims.sqrt(a) + + +@_make_elementwise_unary_reference( + ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG, + aten_op=None, # CompositeImplicitAutograd, +) +def square(a: TensorLikeType) -> TensorLikeType: + return mul(a, a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def tan(a): + return prims.tan(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def tanh(a): + return prims.tanh(a) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) +def trunc(a): + return prims.trunc(a) + + +# TODO: register this as a real ref/decomposition once TorchInductor supports complex! +def view_as_complex(self: TensorLikeType) -> TensorLikeType: + input_dtype = self.dtype + torch._check( + utils.is_float_dtype(input_dtype), + lambda: f"view_as_complex is only supported for floating point" + f"tensors, but got a tensor of scalar type: {input_dtype}", + ) + sizes = self.size() + torch._check( + len(sizes) != 0, + lambda: "Input tensor must have one or more dimensions", + ) + torch._check( + sizes[-1] == 2, + lambda: "Tensor must have a last dimension of size 2", + ) + + old_strides = self.stride() + torch._check( + old_strides[-1] == 1, + lambda: "Tensor must have a last dimension with stride 1", + ) + dims = old_strides[:-1] + torch._check( + py_all(stride % 2 == 0 for stride in dims), + lambda: "Tensor must have a stride divisible by 2 for all but last dimension", + ) + torch._check( + self.storage_offset() % 2 == 0, + lambda: "Tensor must have a storage_offset divisible by 2", + ) + return prims.view_element_type( + self, utils.corresponding_complex_dtype(input_dtype) + ).squeeze(-1) + + +def _make_elementwise_binary_reference( + type_promotion_kind, + aten_op=infer_aten_op, + name=None, + has_out=True, + supports_lhs_python_scalar=True, + supports_rhs_python_scalar=True, + supports_two_python_scalars=False, + should_register_decomposition=True, +) -> Callable: + def inner(prim: Callable): + nonlocal aten_op, name + if name is None: + name = prim.__name__ + + @wraps(prim) + @elementwise_type_promotion_wrapper( + type_promoting_args=("a", "b"), + type_promotion_kind=type_promotion_kind, + ) + def _ref( + a: Union[Tensor, NumberType], + b: Union[Tensor, NumberType], + ) -> Tensor: + torch._check_value( + supports_lhs_python_scalar or not isinstance(a, Number), + lambda: f"{name}: Received a lhs Python scalar to an elementwise binary " + "operation that does not accept lhs scalars!", + ) + torch._check_value( + supports_rhs_python_scalar or not isinstance(b, Number), + lambda: f"{name}: Received a rhs Python scalar to an elementwise binary " + "operation that does not accept rhs scalars!", + ) + torch._check_value( + supports_two_python_scalars + or not (isinstance(a, Number) and isinstance(b, Number)), + lambda: f"{name}: Receive two Number inputs to an elementwise binary operation!", + ) + a, b = _maybe_broadcast(a, b) + output = prim(a, b) + return handle_noncontiguous_outputs([a, b], output) + + if has_out: + _ref = out_wrapper()(_ref) + + _ref.__name__ = name + if aten_op is infer_aten_op: + aten_op = utils.get_aten_op(prim, name) + if aten_op is not None and should_register_decomposition: + register_decomposition(aten_op)(_ref) + + return _ref + + return inner + + +# Add has its own implementation because it has an alpha argument +@register_decomposition(aten.add) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a", "b"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def add( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], + *, + alpha: Optional[NumberType] = None, +): + """ + Reference implementation of torch.add + """ + + a, b = _maybe_broadcast(a, b) + + if alpha is not None: + dtype = a.dtype if isinstance(a, TensorLike) else b.dtype # type: ignore[union-attr] + python_type = utils.dtype_to_type(dtype) + if python_type != bool and not utils.is_weakly_lesser_type( + type(alpha), python_type + ): + msg = f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!" + raise ValueError(msg) + if isinstance(b, TensorLike): + b = prims.mul(b, alpha) + else: + b = b * alpha + + output = prims.add(a, b) + return handle_noncontiguous_outputs([a, b], output) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def atan2(a, b): + return prims.atan2(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def bitwise_and(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.bitwise_and(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def bitwise_left_shift(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.shift_left(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def bitwise_or(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.bitwise_or(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def bitwise_right_shift(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.shift_right_arithmetic(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def bitwise_xor(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.bitwise_xor(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + supports_lhs_python_scalar=False, +) +def copysign( + a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType] +): + if isinstance(b, Number) and isinstance(a, Tensor): + b = scalar_tensor(b, dtype=a.dtype, device=a.device) + elif isinstance(a, Tensor) and isinstance(b, Tensor) and a.device != b.device: + msg = "Expected divisor (b) to be on the same device ({}) as dividend (a), but it is found on {}!".format( + a.device, b.device + ) + raise RuntimeError(msg) + return where(signbit(b), neg(abs(a)), abs(a)) + + +# complex = _make_elementwise_binary_reference(prims.complex, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) + + +@register_decomposition(aten.div) +@out_wrapper() +def div( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], + *, + rounding_mode: Optional[str] = None, +): + """ + Reference implementation of torch.div + """ + if rounding_mode is None: + return true_divide(a, b) + elif rounding_mode == "trunc": + return trunc_divide(a, b) + elif rounding_mode == "floor": + return floor_divide(a, b) + else: + msg = f"div expected rounding_mode to be one of None, 'trunc', or 'floor' but found {rounding_mode}." + raise ValueError(msg) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def eq(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.eq(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG, +) +def pow( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], +) -> TensorLikeType: + assert isinstance(a, TensorLikeType) or isinstance(b, TensorLikeType) + + if isinstance(b, Number): + if b == 1.0: + return a.clone() # type: ignore[return-value,union-attr] + elif b == 2.0: + return a * a # type: ignore[return-value] + elif b == 0.5: + return torch.sqrt(a) # type: ignore[arg-type] + elif isinstance(a, Number): + if a == 1.0: + return torch.fill(b, True) + if a == 2.0 and ( + utils.is_float_dtype(b.dtype) or utils.is_complex_dtype(b.dtype) + ): + return torch.exp2(b) + + return prims.pow(a, b) + + +# Float power has its own implementation because it has unique type promotion. +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def float_power( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], +) -> Tensor: + if isinstance(a, Number) and isinstance(b, Number): + raise ValueError( + "Receive two Number inputs to an elementwise binary operation!" + ) + + # Handles type promotion + dtype = utils.get_higher_dtype(a, b) + assert dtype is not None + if utils.is_complex_dtype(dtype): + dtype = torch.complex128 + else: + dtype = torch.float64 + + # Float power has the following contiguous cast behavior to be + # consistent with its C++ impl + a = _maybe_convert_to_dtype(a, dtype) + b = _maybe_convert_to_dtype(b, dtype) + + a, b = _maybe_broadcast(a, b) + return pow(a, b) + + +# >>> a = torch.tensor(-0.2500, dtype=torch.float64) +# tensor(-0.250000000000000, dtype=torch.float64) +# +# >>> b = torch.tensor(-0.0010, dtype=torch.float64) +# tensor(-0.001000000000000, dtype=torch.float64) +# +# Note: In this case, casting float to double will expand the float mantissa with zeros, +# while creating a double generates a distinct mantissa. +# >>> torch.tensor(-0.001).to(dtype=torch.float64) +# tensor(-0.001000000047497, dtype=torch.float64) +# +# Floor Division +# The difference is caused because torch.remainder(a, b) = -0.001. +# +# >>> torch.floor(torch.true_divide(a, b)) +# tensor(250., dtype=torch.float64) +# +# >>> torch.div(a, b, rounding_mode='floor') +# tensor(249., dtype=torch.float64) +# +# Definition: a // b = (a - remainder(a, b)) / b +# >>> torch.true_divide(torch.sub(a, torch.remainder(a, b)), b) +# tensor(249., dtype=torch.float64) +# +# For reference, see CPython's implementation: +# https://github.com/python/cpython/blob/ace008c531dd685a30c1dd68f9b5ba35f20171cf/Objects/floatobject.c#L636 + + +@_make_elementwise_binary_reference( + type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_two_python_scalars=True, + should_register_decomposition=False, +) +def floor_divide( + a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType] +): + # Wrap scalars because some references only accept tensor arguments. + if isinstance(a, Number) and isinstance(b, Number): + a = scalar_tensor(a) + b = scalar_tensor(b) + elif isinstance(b, Number) and isinstance(a, Tensor): + b = scalar_tensor(b, dtype=a.dtype, device=a.device) + elif isinstance(a, Number) and isinstance(b, Tensor): + a = scalar_tensor(a, dtype=b.dtype, device=b.device) + elif isinstance(a, Tensor) and isinstance(b, Tensor) and a.device != b.device: + if a.device == torch.device("cpu"): + msg = "Expected divisor (b) to be on the same device ({}) as dividend (a), but it is found on {}!".format( + a.device, b.device + ) + raise RuntimeError(msg) + else: + b = prims.device_put(b, device=a.device) + + assert isinstance(a, Tensor) and isinstance(b, Tensor) + dtype = a.dtype + if utils.is_float_dtype(dtype): + return _floor_divide_float(a, b) + elif utils.is_integer_dtype(dtype): + return _floor_divide_integer(a, b) + else: + torch._check(False, lambda: f"{dtype} not supported for floor_divide") + + +def _floor_divide_integer(a: Tensor, b: Tensor) -> Tensor: + a, b = _maybe_broadcast(a, b) + + if not a.dtype.is_signed: + return prims.div(a, b) + + # Convert truncation to flooring: + offset = (torch.signbit(a) != torch.signbit(b)).logical_and(torch.fmod(a, b) != 0) + return prims.div(a, b) - _maybe_convert_to_dtype(offset, a.dtype) + + +def _floor_divide_float(a: Tensor, b: Tensor) -> Tensor: + mod = fmod(a, b) + div = true_divide(sub(a, mod), b) + + # Ensure that the remainder has the same sign as denominator + different_signed_inputs = bitwise_xor(lt(a, 0), lt(b, 0)) + non_zero_remainder = ne(mod, 0) + mask = bitwise_and(non_zero_remainder, different_signed_inputs) + div = where(mask, sub(div, 1), div) + + # Map quotient to nearest integer value + floor_div = floor(div) + mask = gt(sub(div, floor_div), 0.5) + floor_div = where(mask, add(floor_div, 1), floor_div) + + basic_div = true_divide(a, b) + zero_tensor = scalar_tensor(0, dtype=basic_div.dtype, device=basic_div.device) + + # If quotient is zero, copy signbit from true_divide quotient + floor_div = where(ne(div, 0), floor_div, copysign(zero_tensor, basic_div)) + + # If denominator is zero, then follow true_divide behavior + return where(ne(b, 0), floor_div, basic_div) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def fmax(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.fmax(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def fmin(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.fmin(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=True, +) +def fmod(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.fmod(a, b) + + +@register_decomposition(aten.frexp) +@out_wrapper("mantissa", "exponent") +def frexp(self: TensorLikeType) -> Tuple[TensorLikeType, TensorLikeType]: + return torch.return_types.frexp(prims.frexp(self)) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def gcd(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.gcd(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def ge(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.ge(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def gt(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.gt(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def heaviside(input: TensorLikeType, values: TensorLikeType) -> TensorLikeType: + input_eq_zero = torch.eq(input, 0) + input_lt_zero = torch.logical_or(torch.lt(input, 0), torch.isnan(input)) + zeros_and_ones = torch.where(input_lt_zero, 0, 1) + output = torch.where(input_eq_zero, values, zeros_and_ones) + return output + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def hypot(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.hypot(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def igamma(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.igamma(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def igammac(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.igammac(a, b) + + +def _check_close_args( + name: str, + a: TensorLikeType, + b: TensorLikeType, + rtol: float, + atol: float, +) -> None: + torch._check_value( + a.dtype == b.dtype, + lambda: f"{name}: Attempting to compare tensors of different dtypes {a.dtype} and {b.dtype}!", + ) + torch._check( + rtol >= 0, + lambda: f"{name}: rtol must be greater than or equal to zero, but got {rtol}!", + ) + torch._check( + atol >= 0, + lambda: f"{name}: atol must be greater than or equal to zero, but got {atol}!", + ) + + +# CompositeImplicitAutograd - don't register decomp +def isclose( + a: TensorLikeType, + b: TensorLikeType, + rtol: float = 1e-05, + atol: float = 1e-08, + equal_nan: bool = False, +) -> TensorLikeType: + _check_close_args(name="torch.isclose", a=a, b=b, rtol=rtol, atol=atol) + + close = eq(a, b) + if equal_nan and (utils.is_float_dtype(a.dtype) or utils.is_complex_dtype(a.dtype)): + close = logical_or(close, logical_and(isnan(a), isnan(b))) + + # Note: In case of zero tolerances the closeness inequality degenerates to an equality check. + # In this case, the short-circuit prevents false positives as detailed in the paragraph below. + if atol == 0 and rtol == 0: + return close + + # Note [closeness error computation] + # atol and rtol are provided as doubles, so the computation + # rtol * other will produce a float or complex tensor. + # When the difference (self - other) is compared to it then the + # tensor representing the difference will also be cast to float or complex. + # However, since (self - other) in uint8 is very likely to produce a + # negative value, this moves the cast forward so the difference is + # always computed in a float or complex type. + # If the values of the integer tensors cannot be exactly represented + # by the default scalar type then this may cause an incorrect result. + if not utils.is_float_dtype(a.dtype) and not utils.is_complex_dtype(a.dtype): + a = prims.convert_element_type(a, torch.get_default_dtype()) + b = prims.convert_element_type(b, torch.get_default_dtype()) + + allowed_error = add(atol, abs(mul(b, rtol))) + actual_error = abs(sub(a, b)) + + # Computes finite closeness + result = logical_or( + close, logical_and(isfinite(actual_error), le(actual_error, allowed_error)) + ) + + return result + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def lcm(a: TensorLikeType, b: TensorLikeType): + dtype = a.dtype + # promoting to int32 to maintain 100% consistency with C++ and to + # prevent overflow in case of int8 and int16 + promote_to_int = dtype in (torch.int8, torch.int16) + if promote_to_int: + a = prims.convert_element_type(a, torch.int32) + b = prims.convert_element_type(b, torch.int32) + + g = torch.gcd(a, b) + # Avoid division by zero in case gcd(0, 0) == 0 + g = torch.where(g == 0, 1, g) + res = torch.abs(prims.div(a, g) * b) + return res if not promote_to_int else prims.convert_element_type(res, dtype) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def le(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.le(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def logaddexp(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + # Nb. this implementation does not distribute the gradients evenly when a == b + mask = torch.real(a) >= torch.real(b) + max_ = torch.where(mask, a, b) + min_ = torch.where(mask, b, a) + inf_mask = torch.logical_and( + torch.logical_not(torch.isfinite(torch.real(a))), torch.real(a) == torch.real(b) + ) + if utils.is_complex_dtype(a.dtype) or utils.is_complex_dtype(b.dtype): + # are you wondering what this bunch of codes are for? edge cases! + neg_min_mask = torch.real(min_) < 0 + inf_vals = torch.where( + neg_min_mask, min_, torch.log(torch.exp(min_) + torch.exp(max_)) + ) + non_nan_vals = torch.where( + inf_mask, inf_vals, max_ + torch.log1p(torch.exp(min_ - max_)) + ) + # the type for full_like does not include tensor yet + nan_mask = torch.isnan(min_) + return torch.where(nan_mask, complex(float("nan"), float("nan")), non_nan_vals) # type: ignore[call-overload] + else: + return torch.where(inf_mask, a, max_ + torch.log1p(torch.exp(min_ - max_))) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def logaddexp2(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + torch._check( + not (utils.is_complex_dtype(a.dtype) or utils.is_complex_dtype(b.dtype)), + lambda: "logaddexp2 doesn't support complex dtypes", + ) + # Nb. this implementation does not distribute the gradients evenly when a == b + mask = a >= b + max_ = torch.where(mask, a, b) + min_ = torch.where(mask, b, a) + inf_mask = torch.logical_and(torch.isinf(a), a == b) + inv_log_2 = 1.0 / math.log(2) + result = max_ + torch.log1p(torch.exp2(min_ - max_)) * inv_log_2 + return torch.where(inf_mask, a, result) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, +) +def logical_and(a: TensorLikeType, b: TensorLikeType): + if not utils.is_boolean_dtype(a.dtype): + a = a != 0 + if not utils.is_boolean_dtype(b.dtype): + b = b != 0 + return a & b + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL) +def logical_not(a: TensorLikeType): + if not utils.is_boolean_dtype(a.dtype): + return a == 0 + return ~a + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, +) +def logical_or(a: TensorLikeType, b: TensorLikeType): + if not utils.is_boolean_dtype(a.dtype): + a = a != 0 + if not utils.is_boolean_dtype(b.dtype): + b = b != 0 + return bitwise_or(a, b) + + +# TODO: skip unnecessary conversion of long to float +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, +) +def logical_xor(a: TensorLikeType, b: TensorLikeType): + if not utils.is_boolean_dtype(a.dtype): + a = a != 0 + if not utils.is_boolean_dtype(b.dtype): + b = b != 0 + return a ^ b + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def lt(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.lt(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def maximum(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.maximum(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def minimum(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.minimum(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + supports_two_python_scalars=True, +) +def mul(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.mul(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, + supports_lhs_python_scalar=False, +) +def ne(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.ne(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH, + supports_lhs_python_scalar=False, + supports_rhs_python_scalar=False, +) +def nextafter(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.nextafter(a, b) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def remainder(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.remainder(a, b) + + +# reverse sub +@register_decomposition(aten.rsub) +@out_wrapper() +def rsub( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], + alpha: NumberType = 1, +): + if isinstance(a, Number): + msg = "Received a Number for the first argument, but expected a Tensor" + raise ValueError(msg) + + return torch.sub(b, a, alpha=alpha) + + +# TODO: consider refactoring this with add impl +# sub has its own implementation because it has an alpha argument +@register_decomposition(aten.sub) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a", "b"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def sub( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], + *, + alpha: NumberType = 1, +): + """ + Reference implementation of torch.sub + """ + + a, b = _maybe_broadcast(a, b) + + if alpha != 1: + dtype = a.dtype if isinstance(a, TensorLike) else b.dtype # type: ignore[union-attr] + python_type = utils.dtype_to_type(dtype) + if not utils.is_weakly_lesser_type(type(alpha), python_type): + msg = f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!" + raise ValueError(msg) + if isinstance(b, torch.Tensor): + b = prims.mul(b, alpha) + else: + # Carefully not to use prims.mul if b is a scalar / symint. + # prims.mul always returns a tensor, + # which will mess with type promotion. + b = b * alpha + + output = prims.sub(a, b) + return handle_noncontiguous_outputs([a, b], output) + + +@_make_elementwise_binary_reference( + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + name="true_divide", + aten_op=None, # CompositeImplicitAutograd + supports_two_python_scalars=True, +) +def true_divide(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType: + return prims.div(a, b) + + +@register_decomposition(aten.xlogy) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a", "b"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, +) +def xlogy(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]): + torch._check( + isinstance(a, TensorLike) or isinstance(b, TensorLike), + lambda: 'Expected either argument a or b to be a Tensor"', + ) + + # Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors. + if isinstance(b, TensorLike) and isinstance(a, Number): + a = scalar_tensor(a, dtype=b.dtype, device=b.device) + elif isinstance(a, TensorLike) and isinstance(b, Number): + b = scalar_tensor(b, dtype=a.dtype, device=a.device) + + # mypy: expected "Tensor" + assert isinstance(a, TensorLike) + assert isinstance(b, TensorLike) + rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log(b))) + return torch.where(torch.isnan(b), float("nan"), rhs) + + +@_make_elementwise_binary_reference( + type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + aten_op=None, # CompositeImplicitAutograd + supports_two_python_scalars=True, +) +def trunc_divide( + a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType] +): + dtype = utils.get_dtype(a) + if utils.is_integer_dtype(dtype): + return prims.div(a, b) + + return trunc(prims.div(a, b)) + + +# +# Elementwise Ternary References +# + + +@register_decomposition(aten.addcdiv) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self", "tensor1", "tensor2"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, +) +def addcdiv( + self: TensorLikeType, + tensor1: TensorLikeType, + tensor2: TensorLikeType, + *, + value: NumberType = 1, +) -> TensorLikeType: + """ + Reference implementation of torch.addcdiv + """ + if value is not None: + dtype = self.dtype # no scalars allowed, see add + python_type = utils.dtype_to_type(dtype) + torch._check_value( + utils.is_weakly_lesser_type(type(value), python_type), + lambda: f"value argument of type {type(value)} cannot be safely cast to type {python_type}!", + ) + + return self + value * tensor1 / tensor2 + + +@register_decomposition(aten.addcmul) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self", "tensor1", "tensor2"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def addcmul( + self: TensorLikeType, + tensor1: TensorLikeType, + tensor2: TensorLikeType, + *, + value: NumberType = 1, +) -> TensorLikeType: + """ + Reference implementation of torch.addcmul + """ + if value is not None: + dtype = self.dtype # no scalars allowed, see add + python_type = utils.dtype_to_type(dtype) + torch._check_value( + utils.is_weakly_lesser_type(type(value), python_type), + lambda: f"value argument of type {type(value)} cannot be safely cast to type {python_type}!", + ) + + return self + value * tensor1 * tensor2 + + +@register_decomposition(aten.clamp) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a", "min", "max"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def clamp( + a: TensorLikeType, + min: Optional[TensorOrNumberLikeType] = None, + max: Optional[TensorOrNumberLikeType] = None, +) -> TensorLikeType: + # NOTE: grad behavior with implementation `where` is not consistent on `nan` + if min is None and max is None: + msg = "clamp called but both min and max are none!" + raise ValueError(msg) + if min is not None: + a_isnan = torch.isnan(a) + condition = torch.bitwise_or(torch.ge(a, min), a_isnan) # type: ignore[arg-type] + # we should also propagate `nan` coming from boundaries. However, that's + # not necessary since `ge` would already `False` when either operands has + # a `nan`. So this line below is redundant + # `condition = bitwise_and(condition, bitwise_not(isnan(min)))` + a = torch.where(condition, a, min) # type: ignore[arg-type] + if max is not None: + a_isnan = torch.isnan(a) + # same as above, no need to adjust `nan` from `max` + condition = torch.bitwise_or(torch.le(a, max), a_isnan) # type: ignore[arg-type] + a = torch.where(condition, a, max) # type: ignore[arg-type] + + return a + + +@register_decomposition(aten.clamp_min) +@out_wrapper() +def clamp_min( + self: TensorLikeType, + min: Optional[TensorOrNumberLikeType] = None, +) -> TensorLikeType: + return torch.clamp(self, min=min) # type: ignore[arg-type] + + +@register_decomposition(aten.clamp_max) +@out_wrapper() +def clamp_max( + self: TensorLikeType, + max: Optional[TensorOrNumberLikeType] = None, +) -> TensorLikeType: + return torch.clamp(self, max=max) # type: ignore[arg-type] + + +# +# Conditional references +# + + +# https://pytorch.org/docs/stable/generated/torch.where.html +# TODO: implement alternate where +@register_decomposition(aten.where) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("a", "b"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH, +) +def where( + pred: Tensor, + a: Optional[TensorOrNumberLikeType] = None, + b: Optional[TensorOrNumberLikeType] = None, +): + """ """ + + if a is None or b is None: + raise NotImplementedError + + utils.check_same_device(pred, a, b, allow_cpu_scalar_tensors=True) + torch._check( + pred.dtype is torch.bool, + lambda: f"expected predicate to be bool, got {pred.dtype}", + ) + + pred, a, b = _maybe_broadcast(pred, a, b) + return prims.where(pred, a, b) + + +# +# Data Movement References +# +@register_decomposition(aten.clone) +@out_wrapper() +def clone( + a: TensorLikeType, *, memory_format: torch.memory_format = torch.preserve_format +) -> TensorLikeType: + result = prims.clone(a, memory_format=memory_format) + return result + + +def copy_to(a: Tensor, b: Tensor, *, allow_cross_device=True): + if not allow_cross_device and a.device != b.device: + msg = "Attempting to copy from device {} to device {}, but cross-device copies are not allowed!".format( + b.device, a.device + ) + raise RuntimeError(msg) + + return prims.copy_to(a, b) + + +@register_decomposition(aten.item) +def item(a: TensorLikeType) -> NumberType: + if a.numel() != 1: + msg = f"Can't convert a tensor with {a.numel()} elements to a number!" + raise ValueError(msg) + + # NOTE: explicit conversion is necessary for bool! + # See https://github.com/pytorch/pytorch/issues/78071 + number_type = utils.dtype_to_type(a.dtype) + return number_type(prims.item(a)) + + +# fast path when `to` returns an alias to input. This mimics the same function in aten +def _to_will_alias( + a: TensorLikeType, + device: Optional[DeviceLikeType] = None, + dtype: Optional[torch.dtype] = None, + copy: Optional[bool] = None, + layout: Optional[torch.layout] = None, + memory_format: Optional[torch.memory_format] = None, + pin_memory: Optional[bool] = False, + non_blocking: bool = False, # not using non_blocking +) -> bool: + return ( + not copy + and (device is None or a.device == device) + and (dtype is None or a.dtype == dtype) + and (layout is None or a.layout == layout) + # is_pinned issue #84925 + # and (pin_memory is None or pin_memory == a.is_pinned()) + and ( + memory_format is None + or memory_format == torch.preserve_format + or utils.is_contiguous_for_memory_format(a, memory_format=memory_format) + ) + ) + + +@singledispatch +def _to_dispatch(*args, **kwargs): + raise NotImplementedError + + +@_to_dispatch.register +def _to_device( + device: torch.device, + dtype: torch.dtype, + non_blocking: bool = False, + copy: bool = False, + memory_format: Optional[torch.memory_format] = None, +) -> Dict[str, Any]: + kwargs = { + "device": device, + "dtype": dtype, + "non_blocking": non_blocking, + "copy": copy, + "memory_format": memory_format, + } + return kwargs + + +@_to_dispatch.register +def _to_device_str( + device: str, + dtype: torch.dtype, + non_blocking: bool = False, + copy: bool = False, + memory_format: Optional[torch.memory_format] = None, +) -> Dict[str, Any]: + kwargs = { + "device": torch.device(device), + "dtype": dtype, + "non_blocking": non_blocking, + "copy": copy, + "memory_format": memory_format, + } + return kwargs + + +@_to_dispatch.register +def _to_dtype( + dtype: torch.dtype, + non_blocking: bool = False, + copy: bool = False, + memory_format: Optional[torch.memory_format] = None, +) -> Dict[str, Any]: + kwargs = { + "dtype": dtype, + "non_blocking": non_blocking, + "copy": copy, + "memory_format": memory_format, + } + return kwargs + + +@_to_dispatch.register +def _to_other( + other: Tensor, + non_blocking: bool = False, + copy: bool = False, + memory_format: Optional[torch.memory_format] = None, +) -> Dict[str, Any]: + device = other.device + dtype = other.dtype + layout = other.layout + # is_pinned issue #84925 + # pin_memory = other.is_pinned() + kwargs = { + "device": device, + "dtype": dtype, + "layout": layout, + "non_blocking": non_blocking, + "copy": copy, + "memory_format": memory_format, + } + return kwargs + + +# remove to_kwargs that is already present in `a` +def _canonicalize_to_arguments(a: Tensor, to_kwargs: dict): + options_to_check = ["dtype", "device", "layout", "memory_format"] + # "device" option could be passed a str instead torch.device + if "device" in to_kwargs and isinstance(to_kwargs["device"], str): + to_kwargs["device"] = torch.device(to_kwargs["device"]) + + for kw in options_to_check: + if kw in to_kwargs: + if ( + (kw == "memory_format" and to_kwargs[kw] is torch.preserve_format) + or ( + kw == "device" + and to_kwargs[kw].type == a.device.type + and ( + not to_kwargs[kw].index or to_kwargs[kw].index == a.device.index + ) + ) + or ( + getattr(a, kw, None) == to_kwargs[kw] + ) # this also handles {"memory_format": None} + ): + to_kwargs.pop(kw) + + +def to(a: TensorLikeType, *args, **kwargs) -> TensorLikeType: + # handled dispatch via positional arguments + if len(args) != 0: + kwargs = _to_dispatch(*args, **kwargs) + + # TODO: is_pinned is not currently supported in refs or fake_tensor + # https://github.com/pytorch/pytorch/issues/84925 + assert "pin_memory" not in kwargs + _canonicalize_to_arguments(a, kwargs) + + if _to_will_alias(a, **kwargs): + return a + + copy = kwargs.pop("copy") if "copy" in kwargs else False + non_blocking = kwargs.pop("non_blocking") if "non_blocking" in kwargs else False + + # short-circuit to `prims.convert_element_type` when `to` is just a dtype change + if ( + (copy or (kwargs.get("dtype", a.dtype) != a.dtype)) + and (not non_blocking) + and ("memory_format" not in kwargs) + and ("device" not in kwargs) + and ("layout" not in kwargs) + # is_pinned issue #84925 + # and ("pin_memory" not in kwargs) + ): + return prims.convert_element_type(a, kwargs.get("dtype", a.dtype)) + + result = torch.empty_like(a, **kwargs) + # TODO: non_blocking should be handled by `copy_to` + copy_to(result, a) + return result + + +# +# Reduction references +# + + +def _reduction( + a: TensorLikeType, + prim: Callable, + *, + has_identity: bool = True, + accepts_dim_tuple: bool = True, # to handle min/argmin that accept single dim only + dims: Optional[DimsType] = None, + keepdims: bool = False, + dtype: Optional[torch.dtype] = None, # should be specified for ops that support it + out: Optional[Tensor] = None, + output_dtype_kind: REDUCTION_OUTPUT_TYPE_KIND, +) -> TensorLikeType: # it is usually SAME, but I want + # ref writers to actually think about what to put here + assert isinstance(a, TensorLike) + if a.ndim > 64: + raise RuntimeError( + f"Received a tensor with {a.ndim} dimensions, but only tensors with up to 64 dims are supported!" + ) + + if out is not None: + assert isinstance(out, TensorLike) + if dtype is not None: + # TODO - this is true for eager mode currently, but it's wrong behavior for complex norms + if dtype != out.dtype: + raise RuntimeError( + "dtype argument and out dtype must match in reduction" + ) + if not accepts_dim_tuple: + assert dims is None or isinstance(dims, Dim) + if isinstance(dims, Dim): + dims = (dims,) # type: ignore[assignment] + dims = utils.reduction_dims(a.shape, dims) + if not has_identity: + valid_shape = a.ndim == 0 or py_all(a.shape[i] for i in dims) + if not valid_shape: + raise RuntimeError( + "reducing over zero-size dimension for reduction operation without identity" + ) + computation_dtype, result_dtype = utils.reduction_dtypes( + a, output_dtype_kind, dtype + ) + a = _maybe_convert_to_dtype(a, computation_dtype) # type: ignore[method-assign] + result = prim(a, dims) + if keepdims: + output_shape = [a.shape[i] if i not in dims else 1 for i in range(a.ndim)] + broadcast_dims = [i for i in range(a.ndim) if i not in dims] + result = prims.broadcast_in_dim(result, output_shape, broadcast_dims) + + if out is not None: + assert result_dtype is not None + if dtype is not None and result_dtype != out.dtype: + raise RuntimeError( + "Expected the dtype of reduction result and out to match" + ) + out = _maybe_resize_out(out, result.shape) + return _safe_copy_out(copy_from=result, copy_to=out) # type: ignore[arg-type] + + if result.dtype != result_dtype and result_dtype is not None: + result = prims.convert_element_type(result, result_dtype) + + return result + + +def _make_copy_from_view(fn): + """ + Given a view function (e.g. torch.diagonal) generates its copy variant (e.g. torch.diagonal_copy) + """ + name = fn.__name__ + fn = out_wrapper()(fn) + + def _fn(*args, out=None, **kwargs): + result = fn(*args, out=out, **kwargs) + if out is None: + return result.clone(memory_format=torch.contiguous_format) + return result + + copy_name = f"{name}_copy" + _fn.__name__ = copy_name + _fn = register_decomposition(getattr(aten, copy_name))(_fn) + return _fn + + +# Saves Python all +py_all = all + + +@register_decomposition(aten.all) +@out_wrapper() +def all( + a: TensorLikeType, + dim: Optional[DimsType] = None, + keepdim: bool = False, +) -> TensorLikeType: + result = torch.logical_not(torch.any(torch.logical_not(a), dim, keepdim=keepdim)) + + if a.dtype == torch.uint8: + result = result.to(dtype=torch.uint8) + + return result + + +# Saves Python any +py_any = any + + +@register_decomposition(aten.any) +@out_wrapper() +def any( + a: TensorLikeType, + dim: Optional[DimsType] = None, + keepdim: bool = False, +) -> TensorLikeType: + a_ = _maybe_convert_to_dtype(a, torch.bool) + if isinstance(dim, (list, tuple)) and len(dim) == 0: + result = a_.clone() + else: + result = a_.sum(dim=dim, keepdim=keepdim).ne(False) + + # Preserves uint8 -- probably a legacy mask thing + if a.dtype is torch.uint8: + return prims.convert_element_type(result, torch.uint8) + + return result + + +@register_decomposition([aten.sum.dim_IntList, aten.sum.IntList_out]) +def sum( + a: TensorLikeType, + dim: Union[Optional[int], Optional[List[int]]] = None, + keepdim: bool = False, + *, + dtype: Optional[torch.dtype] = None, + out: Optional[Tensor] = None, +) -> TensorLikeType: + if dtype is None: + if out is not None: + dtype = out.dtype + elif utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype): + dtype = torch.int64 + else: + dtype = a.dtype + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + return _reduction( + a, + prims.sum, + dims=dim, + keepdims=keepdim, + dtype=dtype, + out=out, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME, + ) + + +def sum_to_size( + a: Tensor, + *shape, +) -> Tensor: + shape = utils.extract_shape_from_varargs(shape, validate=False) + torch._check( + utils.is_expandable_to(shape, a.shape), + lambda: f'sum_to_size: size "{shape}" is not expandable to size "{a.shape}"', + ) + # In ATen scalar tensors are sent through sum and the result is returned as + # type promoted + if utils.is_same_shape(shape, a.shape) and len(shape) > 0: + return prims.view_of(a) + leading_dims = a.ndim - len(shape) + reduce_dims = tuple(range(leading_dims)) + tuple( + i + for i in range(leading_dims, len(shape)) + if shape[i - leading_dims] == 1 and a.shape[i] != 1 + ) + return torch.sum(a, dim=reduce_dims, keepdim=True, dtype=None) + + +@register_decomposition(aten.prod) +def prod( + a: TensorLikeType, + dim: Union[Optional[int], Optional[List[int]]] = None, + keepdim: bool = False, + *, + dtype=None, + out: Optional[Tensor] = None, +) -> TensorLikeType: + if dtype is None: + if out is not None: + dtype = out.dtype + elif utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype): + dtype = torch.int64 + else: + dtype = a.dtype + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + return _reduction( + a, + prims.prod, + dims=dim, + keepdims=keepdim, + dtype=dtype, + out=out, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME, + ) + + +@register_decomposition(aten.amin) +def amin( + a: TensorLikeType, + dim: Optional[DimsType] = None, + keepdim: bool = False, + *, + out: Optional[Tensor] = None, +) -> TensorLikeType: + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + + return _reduction( + a, + prims.amin, + dims=dim, + keepdims=keepdim, + dtype=None, + out=out, + has_identity=False, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME, + ) + + +@register_decomposition(aten.amax) +def amax( + a: TensorLikeType, + dim: Optional[DimsType] = None, + keepdim: bool = False, + *, + out: Optional[Tensor] = None, +) -> TensorLikeType: + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + + return _reduction( + a, + prims.amax, + dims=dim, + keepdims=keepdim, + dtype=None, + out=out, + has_identity=False, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME, + ) + + +def _dim_var_dispatch(dim=None, unbiased=None): + # There's the following overload of torch.var: + # var(Tensor self, bool unbiased=True) -> (Tensor, Tensor) + # We need to explicitly convert bool dims to unbiased arg + if unbiased is None and isinstance(dim, bool): + unbiased = dim + dim = None + return dim, unbiased + + +@register_decomposition(aten.var) +@out_wrapper() +def var( + a: TensorLikeType, + dim: Optional[DimsType] = None, + unbiased: Optional[bool] = None, + keepdim: bool = False, + *, + correction: Optional[NumberType] = None, +) -> TensorLikeType: + dim, unbiased = _dim_var_dispatch(dim, unbiased) + correction = utils.set_correction(unbiased, correction) + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + + result = _reduction( + a, + partial(prims.var, correction=correction), + dims=dim, + keepdims=keepdim, + dtype=None, + out=None, + has_identity=True, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, + ) + return result + + +@register_decomposition(aten.std) +@out_wrapper() +def std( + a: TensorLikeType, + dim: Union[Optional[int], Optional[List[int]]] = None, + unbiased: Optional[bool] = None, + keepdim: bool = False, + *, + correction: Optional[NumberType] = None, +) -> TensorLikeType: + dim, unbiased = _dim_var_dispatch(dim, unbiased) + correction = utils.set_correction(unbiased, correction) + + opmath_dtype, dtype = utils.reduction_dtypes( + a, REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT + ) + a = _maybe_convert_to_dtype(a, opmath_dtype) + a_var = torch.var(a, dim, correction=correction, keepdim=keepdim) + a_std = torch.sqrt(a_var) + assert dtype is not None + return _maybe_convert_to_dtype(a_std, dtype) + + +@register_decomposition(aten.mean) +def mean( + a: TensorLikeType, + dim: Optional[DimsType] = None, + keepdim: bool = False, + *, + dtype=None, + out=None, +) -> TensorLikeType: + # reduces over all dimensions if dim=() is passed + if dim == () or dim == []: + dim = None + orig_dtype = dtype + if dtype is None: + dtype = a.dtype + # can't use out wrapper because of this argument + torch._check( + out is None or out.dtype == dtype, + lambda: f"Expected out tensor to have dtype {dtype}, but got {out.dtype} instead", + ) + result = _reduction( + a, + prims.sum, + dims=dim, + keepdims=keepdim, + dtype=dtype, + out=None, + output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.KEEP_PROMOTED_TYPE, + ) + torch._check( + utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype), + lambda: ( + f"mean(): could not infer output dtype. " + f"{'Input' if orig_dtype is None else 'Optional'} dtype must be either " + f"a floating point or complex dtype. Got: {dtype}" + ), + ) + if isinstance(dim, Dim): + dim = (dim,) # type: ignore[assignment] + dims = utils.reduction_dims(a.shape, dim) # type: ignore[arg-type] + nelem = 1 if a.ndim == 0 else reduce(operator.mul, (a.shape[i] for i in dims), 1) + result = true_divide(result, nelem) + result_dtype = a.dtype if dtype is None else dtype + result = _maybe_convert_to_dtype(result, result_dtype) # type: ignore[method-assign] + if out is not None: + assert isinstance(out, TensorLike) + out = _maybe_resize_out(out, result.shape) + return _safe_copy_out(copy_from=result, copy_to=out) # type: ignore[arg-type] + return result + + +@register_decomposition(aten.std_mean) +@out_wrapper("out0", "out1") +def std_mean( + a: TensorLikeType, + dim: Optional[DimsType] = None, + *, + unbiased: Optional[bool] = None, + keepdim: bool = False, + correction: Optional[NumberType] = None, +): + dim, unbiased = _dim_var_dispatch(dim, unbiased) + correction = utils.set_correction(unbiased, correction) + opmath_dtype, dtype = utils.reduction_dtypes( + a, REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT + ) + original_dtype = a.dtype + a = _maybe_convert_to_dtype(a, opmath_dtype) + a_var, a_mean = torch.var_mean(a, dim, correction=correction, keepdim=keepdim) + a_std = torch.sqrt(a_var) + assert dtype is not None + return ( + _maybe_convert_to_dtype(a_std, dtype), + _maybe_convert_to_dtype(a_mean, original_dtype), + ) + + +@register_decomposition(aten.var_mean) +@out_wrapper("out0", "out1") +def var_mean( + a: TensorLikeType, + dim: Optional[DimsType] = None, + unbiased: Optional[bool] = None, + keepdim: bool = False, + *, + correction: Optional[NumberType] = None, +): + dim, unbiased = _dim_var_dispatch(dim, unbiased) + v = var(a, dim, unbiased, keepdim, correction=correction) + m = mean(a, dim, keepdim) + return v, m + + +@register_decomposition(aten.addr) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self", "vec1", "vec2"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def addr( + self: TensorLikeType, + vec1: TensorLikeType, + vec2: TensorLikeType, + *, + beta: NumberType = 1, + alpha: NumberType = 1, +) -> TensorLikeType: + torch._check( + vec1.ndim == 1, + lambda: f"addr: Expected 1-D argument vec1, but got {vec1.ndim}-D", + ) + torch._check( + vec2.ndim == 1, + lambda: f"addr: Expected 1-D argument vec2, but got {vec2.ndim}-D", + ) + self = self.expand(vec1.shape[0], vec2.shape[0]) + if utils.is_boolean_dtype(self.dtype): + # Integers are accepted for booleans + torch._check( + is_weakly_lesser_type(type(beta), int), + lambda: f"expected bool/int beta but got {type(beta)}", + ) + torch._check( + is_weakly_lesser_type(type(alpha), int), + lambda: f"expected bool/int alpha but got {type(beta)}", + ) + if not beta: + return torch.outer(vec1, vec2) if alpha else torch.full_like(self, False) + else: + return torch.logical_or( + self, + torch.outer(vec1, vec2) if alpha else torch.full_like(self, False), + ) + else: + torch._check( + is_weakly_lesser_type(type(beta), dtype_to_type(self.dtype)), + lambda: f"cannot safely convert {type(beta)} to {self.dtype}", + ) + torch._check( + is_weakly_lesser_type(type(alpha), dtype_to_type(self.dtype)), + lambda: f"cannot safely convert {type(alpha)} to {self.dtype}", + ) + if beta == 0: + # This means NaNs from self are dropped if beta is zero + return alpha * torch.outer(vec1, vec2) + else: + return beta * self + alpha * torch.outer(vec1, vec2) + + +# CompositeImplicitAutograd - don't register decomp +def atleast_1d( + arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType +) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]: + """Reference implementation of :func:`torch.atleast_1d`.""" + if not args and isinstance(arg, collections.abc.Sequence): + args_ = arg + else: + assert not isinstance(arg, collections.abc.Sequence) + args_ = (arg,) + args + res = tuple(a if a.ndim >= 1 else unsqueeze(a, 0) for a in args_) + return res if len(res) > 1 else res[0] + + +# Helper function with assert to avoid MyPy error +# of incompatible type passed to unsqueeze +def _unsqueeze_atleast( + at_least_fn: Callable, dim: int, arg: TensorLikeType +) -> TensorLikeType: + arg_ = at_least_fn(arg) + assert isinstance(arg_, TensorLike) + return unsqueeze(arg_, dim) + + +# CompositeImplicitAutograd - don't register decomp +def atleast_2d( + arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType +) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]: + """Reference implementation of :func:`torch.atleast_2d`.""" + if not args and isinstance(arg, collections.abc.Sequence): + args_ = arg + else: + assert not isinstance(arg, collections.abc.Sequence) + args_ = (arg,) + args + unsqueeze_atleast_1d = partial(_unsqueeze_atleast, atleast_1d, 0) + res = tuple(a if a.ndim >= 2 else unsqueeze_atleast_1d(a) for a in args_) + return res if len(res) > 1 else res[0] + + +# CompositeImplicitAutograd - don't register decomp +def atleast_3d( + arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType +) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]: + """Reference implementation of :func:`torch.atleast_3d`.""" + if not args and isinstance(arg, collections.abc.Sequence): + args_ = arg + else: + assert not isinstance(arg, collections.abc.Sequence) + args_ = (arg,) + args + unsqueeze_atleast_2d = partial(_unsqueeze_atleast, atleast_2d, -1) + res = tuple(a if a.ndim >= 3 else unsqueeze_atleast_2d(a) for a in args_) + return res if len(res) > 1 else res[0] + + +def as_strided( + a: TensorLikeType, + size: ShapeType, + stride: StrideType, + storage_offset: Optional[int] = None, +) -> TensorLikeType: + storage_offset_int = ( + storage_offset if storage_offset is not None else a.storage_offset() + ) + return prims.as_strided(a, size, stride, storage_offset_int) + + +@register_decomposition(aten.as_strided_scatter) +@out_wrapper() +def as_strided_scatter( + input: TensorLikeType, + src: TensorLikeType, + size: ShapeType, + stride: StrideType, + storage_offset: Optional[int] = None, +) -> TensorLikeType: + storage_offset_int = 0 if storage_offset is None else storage_offset + return prims.as_strided_scatter(input, src, size, stride, storage_offset_int) + + +def broadcast_shapes(*shapes) -> ShapeType: + return torch.Size(_broadcast_shapes(*shapes)) + + +@aten.broadcast_tensors.default.py_impl(DispatchKey.CompositeImplicitAutograd) +@aten.broadcast_tensors.default.py_impl(DispatchKey.Meta) +def broadcast_tensors(*tensors) -> List[TensorLikeType]: + if len(tensors) == 1 and not isinstance(tensors[0], Tensor): + tensors = tensors[0] + return list(_maybe_broadcast(*tensors, preserve_cpu_scalar_tensors=False)) + + +# CompositeImplicitAutograd - don't register decomp +def broadcast_to(a: TensorLikeType, size: ShapeType) -> TensorLikeType: + start = len(size) - len(a.shape) + dims = tuple(range(start, len(a.shape) + start)) + return prims.broadcast_in_dim(a, size, dims) + + +@register_decomposition(aten.cat) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("tensors",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH, +) +def cat(tensors: TensorSequenceType, dim: int = 0) -> TensorLikeType: + def cat_compute_output_memory_format(inputs): + format = None + for t in inputs: + f = utils.suggest_memory_format(t) + if f == torch.contiguous_format: + return f + if format is not None and format != f: + return torch.contiguous_format + format = f + assert format is not None + return format + + if len(tensors) == 0: + msg = "cat expects at least one tensor, but received zero!" + raise ValueError(msg) + + for tensor in tensors: + assert isinstance(tensor, TensorLike) + + utils.check_same_device(*tensors, allow_cpu_scalar_tensors=False) + + from torch.fx.experimental.symbolic_shapes import guard_size_oblivious + + # This is a bit tricky. Naively, you would expect to just pick one + # arbitrary tensor and check that all tensors match this tensor. However, + # there is legacy behavior which says that if you have a 1-D empty tensor + # (0,), this is permissible. So you can't assume that all the tensors + # have same dimensionality, and you can't assume that the first tensor is + # the correct stencil. + # + # We'll implement this in a few passes. First, we will try to infer the + # ndim of the cat output. If this ndim != 1, then we know that all ndim = + # 1 inputs must be empty, or are errors. If this ndim == 1, then life + # is easy (the legacy special case coincides with regular handling). + # + # NB: The regular implementation of cat just filters out empty inputs, + # but we do it slightly different here for better handling for unbacked + # SymInts + + example = None + for i, t in enumerate(tensors): + if example is None: + if t.ndim != 1: + example = t + else: + if t.ndim != 1: + torch._check( + t.ndim == example.ndim, + lambda: "Number of dimensions of tensors must match. " + f"Expected {example.ndim}-D tensors, but got {t.ndim}-D for " + f"tensor number {i} in the list", + ) + + if example is None: + # example is None if everything is 1-D. If so, just arbitrarily pick + # the first one + example = tensors[0] + + shape = example.shape + filtered = [] + for tensor_idx, tensor in enumerate(tensors): + if len(shape) != len(tensor.shape): + assert tensor.ndim == 1 # we've already checked this above + # Don't suggest the legacy behavior in the error message + torch._check( + tensor.shape[0] == 0, + lambda: f"Number of dimensions of tensors must match. " + f"Expected {example.ndim}-D tensors, but got 1-D for " + f"tensor number {tensor_idx} in the list", + ) + else: + # Remove inputs that are 1-D, zero size + if tensor.ndim == 1 and guard_size_oblivious(tensor.shape[0] == 0): + continue + # Don't bother checking size match, prims.cat will handle it + filtered.append(tensor) + + memory_format = cat_compute_output_memory_format(tensors) + + if len(filtered) == 0: + t = tensors[0] + + # TODO: fix this to work with meta tensors + try: + requires_grad = any(x.requires_grad for x in tensors) + except Exception: + requires_grad = False + + return empty( + (0,), + dtype=t.dtype, + device=t.device, + requires_grad=requires_grad, + memory_format=memory_format, + ) + + dim = utils.canonicalize_dim(filtered[0].ndim, dim) + utils.validate_idx(filtered[0].ndim, dim) + + return prims.cat(filtered, dim).clone(memory_format=memory_format) + + +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def column_stack(tensors: TensorSequenceType) -> TensorLikeType: + aligned_tensors = tuple( + x if x.ndim > 1 else x.reshape((x.numel(), 1)) for x in tensors + ) + return cat(aligned_tensors, 1) + + +def conj(input: TensorLikeType) -> TensorLikeType: + if not utils.is_complex_dtype(input.dtype): + return input + if input.is_sparse: + return torch.conj_physical(input) + return prims.conj(input) + + +# This replicates at::constant_pad_nd, defined in ATen/native/PadNd.cpp +@register_decomposition(aten.constant_pad_nd) +@out_wrapper() +def constant_pad_nd( + input: TensorLikeType, pad: List[int], value: NumberType = 0 +) -> TensorLikeType: + torch._check( + len(pad) % 2 == 0, + lambda: f"Length of pad must be even but instead it equals {len(pad)}", + ) + + input_sizes = input.shape + l_inp = len(input_sizes) + + l_pad = len(pad) // 2 + l_diff = l_inp - l_pad + + torch._check( + l_inp >= l_pad, + lambda: "Length of pad should be no more than twice the number of " + f"dimensions of the input. Pad length is {len(pad)} while the input has " + f"{l_inp} dimensions.", + ) + + c_input = input + for i in range(l_diff, l_inp): + pad_idx = 2 * (l_inp - i - 1) + if pad[pad_idx] < 0: + c_input = c_input.narrow(i, -pad[pad_idx], c_input.shape[i] + pad[pad_idx]) + + if pad[pad_idx + 1] < 0: + c_input = c_input.narrow(i, 0, c_input.shape[i] + pad[pad_idx + 1]) + + # if none of the pads are positive we can just return the result + if builtins.all(p <= 0 for p in pad): + return c_input.clone() + + new_shape = list(input_sizes[:l_diff]) + + for i in range(l_pad): + pad_idx = len(pad) - ((i + 1) * 2) + new_dim = input_sizes[l_diff + i] + pad[pad_idx] + pad[pad_idx + 1] + torch._check( + new_dim > 0, + lambda: f"The input size {input_sizes[l_diff + i]}, plus negative padding " + f"{pad[pad_idx]} and {pad[pad_idx + 1]} resulted in a negative output size, " + f"which is invalid. Check dimension {l_diff + i} of your input.", + ) + new_shape.append(new_dim) + + memory_format = utils.suggest_memory_format(input) + output = torch.empty( + new_shape, + dtype=input.dtype, + device=input.device, + requires_grad=input.requires_grad, + memory_format=memory_format, + ) + + if value == 0 and input.dtype == torch.bool: + value = False + # torch.fill isn't typed to allow complex values + output = torch.fill(output, value) # type: ignore[arg-type] + + c_output = output + for i in range(l_diff, l_inp): + pad_idx = 2 * (l_inp - i - 1) + if pad[pad_idx] > 0: + c_output = c_output.narrow( + i, pad[pad_idx], c_output.shape[i] - pad[pad_idx] + ) + if pad[pad_idx + 1] > 0: + c_output = c_output.narrow(i, 0, c_output.shape[i] - pad[pad_idx + 1]) + + prims.copy_to(c_output, c_input) + return output + + +def contiguous( + a: Tensor, *, memory_format: torch.memory_format = torch.contiguous_format +) -> Tensor: + torch._check( + memory_format != torch.preserve_format, + lambda: "preserve memory format is unsupported by the contiguous operator", + ) + + if utils.is_contiguous_for_memory_format(a, memory_format=memory_format): + return a + + return torch.clone(a, memory_format=memory_format) + + +@out_wrapper() +def dstack(tensors: TensorSequenceType) -> TensorLikeType: + torch._check(len(tensors) > 0, lambda: "dstack expects a non-empty TensorList") + aligned_tensors = atleast_3d(*tensors) + return cat(aligned_tensors, 2) + + +@register_decomposition(aten.expand) +def expand(a: Tensor, *shape) -> Tensor: + from torch.fx.experimental.symbolic_shapes import guard_size_oblivious + + # NOTE: cannot use utils.extract_shape_from_varargs here + # because that also validates the shape, but the shape + # given to expand may be "invalid" + if len(shape) == 1 and isinstance(shape[0], Sequence): + shape = tuple(shape[0]) + + torch._check( + len(shape) >= len(a.shape), + lambda: "expand: the requested shape has too few dimensions!", + ) + + offset = len(shape) - len(a.shape) + shape_ = list(shape) + for idx, x in enumerate(a.shape): + offset_idx = idx + offset + requested_length = shape[offset_idx] + torch._check( + guard_size_oblivious(requested_length == x) + or guard_size_oblivious(x == 1) + or requested_length == -1, + lambda: f"expand: attempting to expand a dimension of length {x}!", + ) + + shape_[offset_idx] = requested_length if requested_length != -1 else x + + # At this point shape must be valid + utils.validate_shape(shape_) + + return prims.broadcast_in_dim( + a, shape_, tuple(range(offset, len(a.shape) + offset)) + ) + + +# CompositeImplicitAutograd - don't register decomp +def expand_as(a: Tensor, b: Tensor) -> Tensor: + return a.expand(b.shape) + + +def chunk(a: TensorLikeType, chunks: int, dim: int = 0) -> Tuple[TensorLikeType, ...]: + if chunks <= 0: + msg = f"Expected at least one chunk, but got {chunks}!" + raise ValueError(msg) + + dim = utils.canonicalize_dim(a.ndim, dim) + length = a.shape[dim] + chunk_size = math.ceil(length / chunks) + full_chunks = math.floor(length / chunk_size) + tail_chunk_size = length % chunk_size + + result = [] + for i in range(full_chunks): + result.append(narrow(a, dim, i * chunk_size, chunk_size)) + + if tail_chunk_size != 0: + result.append(narrow(a, dim, full_chunks * chunk_size, tail_chunk_size)) + + return tuple(result) + + +# Note: flatten, unlike other shape operators, returns the input tensor on a no-op (unless +# a 0D tensor is flattened, in which case it's returned in 1D) +# CompositeImplicitAutograd - don't register decomp +def flatten(a: TensorLikeType, start_dim: int = 0, end_dim: int = -1) -> TensorLikeType: + start_dim = utils.canonicalize_dim(a.ndim, start_dim) + end_dim = utils.canonicalize_dim(a.ndim, end_dim) + + # Short-circuits on no-op + if start_dim == end_dim and a.ndim != 0: + return a + + # Tries to take a view + # TODO: we could look at directing collapse_view to skip its meta function here (unsafe_collapse_view) + new_shape, new_strides = prims._collapse_view_helper(a, start_dim, end_dim) + if new_shape is not None: + return prims.collapse_view(a, start_dim, end_dim) + + # Makes a copy if it can't make a view + return prims.collapse(a, start_dim, end_dim) + + +@register_decomposition(aten.flip) +@out_wrapper() +def flip(a: TensorLikeType, dims: DimsSequenceType) -> TensorLikeType: + if not isinstance(dims, tuple) and not isinstance(dims, list): + raise ValueError("dims has to be a sequence of ints") + dims = utils.canonicalize_dims(a.ndim, dims) # type: ignore[assignment] + utils.validate_no_repeating_dims(dims) + return prims.rev(a, dims) + + +# CompositeImplicitAutograd - don't register decomp +def fliplr(a: TensorLikeType) -> TensorLikeType: + if a.ndim < 2: + raise RuntimeError("Input must be >= 2-d.") + + return flip(a, (1,)) + + +# CompositeImplicitAutograd - don't register decomp +def flipud(a: TensorLikeType) -> TensorLikeType: + if a.ndim < 1: + raise RuntimeError("Input must be >= 1-d.") + + return flip(a, (0,)) + + +# CompositeImplicitAutograd - don't register decomp +def narrow( + a: TensorLikeType, dim: int, start: Union[int, TensorLikeType], length: int +) -> TensorLikeType: + # Supports Tensor overload that was added for XLA: + # https://github.com/pytorch/pytorch/issues/31558 + if isinstance(start, TensorLike): + torch._check( + start.dim() == 0 and utils.is_integer_dtype(start.dtype), + lambda: "start must be an 0-dim integral Tensor.", + ) + start = start.item() # type: ignore[assignment] + torch._check(a.dim() > 0, lambda: "narrow() cannot be applied to a 0-dim tensor.") + torch._check(length >= 0, lambda: "narrow(): length must be non-negative.") + dim = utils.canonicalize_dim(a.ndim, dim) + dim_length = a.size(dim) + torch._check_with( + IndexError, + -dim_length <= start and start <= dim_length, # type: ignore[arg-type] + lambda: f"start out of range (expected to be in range of [{-dim_length}, {dim_length}], but got {start})", + ) + if start < 0: + start = start + dim_length + torch._check( + start <= dim_length - length, # type: ignore[arg-type] + lambda: f"start ({start}) + length ({length}) exceeds dimension size ({dim_length}).", + ) + return prims.slice_in_dim(a, start, start + length, axis=dim) + + +# TODO: This must return a sparse tensor if the input is sparse, but refs have +# no sparse support. See narrow_copy_sparse in core. +narrow_copy = _make_copy_from_view(narrow) + + +def _normalize( + a: Tensor, norm_dims: DimsType, eps: float +) -> Tuple[Tensor, Tensor, Tensor]: + """Computes mean and 1/std of a tensor along norm_dims. + + Used as a helper function for normalization layers. + + Args: + a (Tensor): input tensor + norm_dims (DimsType): dimensions to normalize over + eps (float): epsilon for numerical stability + + Returns: + out (Tensor): normalized tensor. + mean (Tensor): mean of the tensor along norm_dims. + rstd (Tensor): 1/std of the tensor along norm_dims. + """ + norm_dims = utils.canonicalize_dims(a.ndim, norm_dims) + computation_dtype = utils.get_computation_dtype(a.dtype) + a_acc = _maybe_convert_to_dtype(a, computation_dtype) + assert isinstance(a_acc, TensorLike) # to avoid mypy error for var_mean + biased_var, mean = torch.var_mean( + a_acc, dim=norm_dims, unbiased=False, keepdim=True + ) + rstd = torch.rsqrt(biased_var + eps) + out = (a - mean) * rstd + return out, mean, rstd + + +# add all specified dimensions +def _unsqueeze_multiple(x: TensorLikeType, dimensions: List[int]) -> TensorLikeType: + for dim in sorted(dimensions): + x = torch.unsqueeze(x, dim) + return x + + +@register_decomposition(aten.native_group_norm.default) +def native_group_norm( + input: Tensor, + weight: Optional[Tensor], + bias: Optional[Tensor], + batch_size: int, + num_channels: int, + flattened_inner_size: int, + num_groups: int, + eps: float, +) -> Tuple[Tensor, Tensor, Tensor]: + torch._check( + input.ndim >= 2, + lambda: f"Expected at least 2 dimensions for input tensor but received {input.ndim}", + ) + torch._check( + num_channels % num_groups == 0, + lambda: "Expected number of channels in input to be divisible by num_groups, " + + f"but got input of shape {input.shape} and num_groups = {num_groups}", + ) + + # num_channels / num_groups and flattened inner dimension are the reduction axes + reduction_dims = [2, 3] + input_reshaped = torch.reshape( + input, + [batch_size, num_groups, num_channels // num_groups, flattened_inner_size], + ) + out, mean, rstd = _normalize(input_reshaped, reduction_dims, eps) + out = out.view(input.shape) + + broadcast_dims = [0] + list(range(2, input.ndim)) + unsqueeze_bias = None + if bias is not None: + unsqueeze_bias = _unsqueeze_multiple(bias, broadcast_dims) + unsqueeze_weight = None + if weight is not None: + unsqueeze_weight = _unsqueeze_multiple(weight, broadcast_dims) + + if unsqueeze_weight is not None: + out = out * unsqueeze_weight + if unsqueeze_bias is not None: + out = out + unsqueeze_bias + + out = _maybe_convert_to_dtype(out, input.dtype) # type: ignore[assignment] + mean = _maybe_convert_to_dtype(mean, input.dtype) # type: ignore[assignment] + rstd = _maybe_convert_to_dtype(rstd, input.dtype) # type: ignore[assignment] + + # remove broadcast dimensions from mean and rstd + mean = torch.squeeze(mean, reduction_dims) + rstd = torch.squeeze(rstd, reduction_dims) + return (out, mean, rstd) + + +@register_decomposition(aten.native_layer_norm) +@out_wrapper("out0", "out1", "out2") +def native_layer_norm( + input: Tensor, + normalized_shape: ShapeType, + weight: Optional[Tensor], + bias: Optional[Tensor], + eps: float, +) -> Tuple[Tensor, Tensor, Tensor]: + normalized_ndim = len(normalized_shape) + torch._check( + normalized_ndim >= 1, + lambda: "Expected normalized_shape to be at least 1-dimensional, i.e., " + + "containing at least one element, but got normalized_shape = " + + str(normalized_shape), + ) + # torch.Size([1, 2, 3]) == [1, 2, 3] evaluates to False + # while torch.Size([1, 2, 3]) == (1, 2, 3) is True + # therefore we use tuple(normalized_shape) + torch._check( + weight is None or weight.shape == tuple(normalized_shape), + lambda: "Expected weight to be of same shape as normalized_shape, but got " + + "weight of shape " + + str(weight.shape) # type: ignore[union-attr] + + " and normalized_shape = " + + str(normalized_shape), + ) + torch._check( + bias is None or bias.shape == tuple(normalized_shape), + lambda: "Expected bias to be of same shape as normalized_shape, but got " + + "bias of shape " + + str(bias.shape) # type: ignore[union-attr] + + " and normalized_shape = " + + str(normalized_shape), + ) + torch._check( + input.ndim >= normalized_ndim + and input.shape[(input.ndim - normalized_ndim) :] == tuple(normalized_shape), + lambda: "Given normalized_shape=" + + str(normalized_shape) + + ", expected input with shape " + + str(normalized_shape) + + ", but got input of size " + + str(input.shape), + ) + + input = input.contiguous() + if weight is not None: + weight = weight.contiguous() + if bias is not None: + bias = bias.contiguous() + + axis = input.ndim - normalized_ndim + reduction_dims = list(range(axis, input.ndim)) + out, mean, rstd = _normalize(input, reduction_dims, eps) + + if weight is None and bias is not None: + out = out + bias + elif weight is not None and bias is None: + out = out * weight + elif weight is not None and bias is not None: + out = out * weight + bias + + out = _maybe_convert_to_dtype(out, input.dtype) # type: ignore[assignment] + if input.device.type == "cpu": + mean = _maybe_convert_to_dtype(mean, input.dtype) # type: ignore[assignment] + rstd = _maybe_convert_to_dtype(rstd, input.dtype) # type: ignore[assignment] + return (out, mean, rstd) + + +# TODO: Adding this as a meta function causes functorch tests to fail when compiled with debug mode. +# test/test_eager_transforms.py::TestFunctionalizeCPU::test_functionalize_fx_transpose_simple_cpu +@register_decomposition(aten.permute) +def permute(a: TensorLikeType, *dims) -> TensorLikeType: + _permutation = utils.canonicalize_dims( + a.ndim, utils.extract_dims_from_varargs(dims) + ) + return prims.transpose(a, _permutation) + + +@register_decomposition(aten.renorm) +@out_wrapper() +def renorm( + input: TensorLikeType, p: RealNumberType, dim: int, maxnorm: RealNumberType +) -> TensorLikeType: + torch._check(not isinstance(p, complex), lambda: "renorm: p must be real-valued") + torch._check(p > 0, lambda: "renorm: non-positive norm not supported") + torch._check( + not isinstance(maxnorm, complex), lambda: "renorm: maxnorm must be real-valued" + ) + torch._check( + maxnorm >= 0, lambda: f"renorm: expected maxnorm to be >= 0 but got {maxnorm}" + ) + ndim = input.ndim + torch._check( + ndim > 1, + lambda: f"renorm: input needs at least 2 dimensions, got {ndim} dimensions", + ) + + dim = utils.canonicalize_dim(ndim, dim) + reduce_dims = list(range(ndim)) + del reduce_dims[dim] + + # For half and bfloat16, calculate norm in float precision then cast + # normalization factor to half + acc_type = utils.get_computation_dtype(input.dtype) + if acc_type != input.dtype: + norm = torch.linalg.vector_norm( + input, p, reduce_dims, keepdim=True, dtype=acc_type + ) + else: + norm = torch.linalg.vector_norm(input, p, reduce_dims, keepdim=True) + + eps = 1e-7 + norm_factor = torch.where(norm > maxnorm, maxnorm / (norm + eps), 1.0) + if acc_type != input.dtype: + norm_factor = prims.convert_element_type(norm_factor, input.dtype) + return (input * norm_factor).contiguous() + + +# CompositeImplicitAutograd - don't register decomp +@aten.stft.center.py_impl(DispatchKey.CompositeImplicitAutograd) +def stft( + input: Tensor, + n_fft: int, + hop_length: Optional[int] = None, + win_length: Optional[int] = None, + window: Optional[Tensor] = None, + center: bool = True, + pad_mode: str = "reflect", + normalized: bool = False, + onesided: Optional[bool] = None, + return_complex: Optional[bool] = None, +) -> Tensor: + torch._check( + window is None or window.device == input.device, + lambda: ( + f"stft input and window must be on the same device but got self on {input.device}" + + f" and window on {window.device}" # type: ignore[union-attr] + ), + ) + + hop_length_ = hop_length if hop_length is not None else n_fft // 4 + win_length_ = win_length if win_length is not None else n_fft + + if return_complex is None: + return_complex_ = input.is_complex() or ( + window is not None and utils.is_complex_dtype(window.dtype) + ) + torch._check( + return_complex_, + ( + "stft requires the return_complex parameter be given for real inputs, " + + "and will further require that return_complex=True in a future PyTorch release." + ), + ) + else: + return_complex_ = return_complex + + torch._check( + utils.is_float_dtype(input.dtype) or utils.is_complex_dtype(input.dtype), + lambda: "stft expected a tensor of floating point or complex values", + ) + torch._check(1 <= input.ndim <= 2, lambda: "stft expected a 1D or 2D tensor") + + original_ndim = input.ndim + if original_ndim == 1: + input = input.unsqueeze(0) + + if center: + extra_dims = 3 - input.ndim + pad_amount = n_fft // 2 + extended_shape = [*itertools.repeat(1, extra_dims), *input.shape] + input = aten.pad(input.view(extended_shape), [pad_amount, pad_amount], pad_mode) + input = input.view(input.size()[extra_dims:]) + + batch = input.size(0) + length = input.size(1) + torch._check( + 0 < n_fft <= length, + lambda: f"stft expected 0 < n_fft <= {length}, but got n_fft={n_fft}", + ) + torch._check( + hop_length_ > 0, + lambda: f"stft expected hop_length > 0 but got hop_length={hop_length_}", + ) + torch._check( + 0 < win_length_ <= n_fft, + lambda: f"stft expected 0 < win_length <= n_fft but got win_length={win_length_}", + ) + torch._check( + window is None or window.shape == (win_length_,), + lambda: ( + f"expected a 1D window tensor of size equal to win_length={win_length_}, " + + f"but got window with size {window.shape}" # type: ignore[union-attr] + ), + ) + + if win_length_ < n_fft: + if window is None: + window = torch.ones(win_length_, dtype=input.dtype, device=input.device) + left = (n_fft - win_length_) // 2 + window = aten.constant_pad_nd(window, [left, n_fft - win_length_ - left]) + + input = input.unfold(dimension=-1, size=n_fft, step=hop_length_) + if window is not None: + input = input * window + + complex_fft = utils.is_complex_dtype(input.dtype) + onesided = onesided if onesided is not None else not complex_fft + norm = "ortho" if normalized else None + if onesided: + torch._check( + not complex_fft, + lambda: "Cannot have onesided output if window or input is complex", + ) + out = torch.fft.rfft(input, dim=-1, norm=norm) + else: + out = torch.fft.fft(input, dim=-1, norm=norm) + + out.transpose_(1, 2) + + if original_ndim == 1: + out = out.squeeze_(0) + + return out if return_complex_ else torch.view_as_real(out) + + +# CompositeImplicitAutograd - don't register decomp +@aten.istft.default.py_impl(DispatchKey.CompositeImplicitAutograd) +def istft( + input: Tensor, + n_fft: int, + hop_length: Optional[int] = None, + win_length: Optional[int] = None, + window: Optional[Tensor] = None, + center: bool = True, + normalized: bool = False, + onesided: Optional[bool] = None, + length: Optional[int] = None, + return_complex=False, +) -> Tensor: + torch._check( + window is None or window.device == input.device, + lambda: ( + f"istft input and window must be on the same device but got self on {input.device}" + + f" and window on {window.device}" # type: ignore[union-attr] + ), + ) + + hop_length_ = hop_length if hop_length is not None else n_fft // 4 + win_length_ = win_length if win_length is not None else n_fft + + torch._check( + utils.is_complex_dtype(input.dtype), + lambda: ( + "istft input and window must be on the same device but got self on " + + f"{input.device} and window on {window.device}" # type: ignore[union-attr] + ), + ) + n_frames = input.size(-1) + fft_size = input.size(-2) + + expected_output_signal_len = n_fft + hop_length_ * (n_frames - 1) + torch._check(input.numel() > 0, lambda: "istft input tensor cannot be empty") + torch._check( + 2 <= input.ndim <= 3, + lambda: f"istft expected a tensor with 2 or 3 dimensions, but got {input.ndim}", + ) + onesided_ = onesided if onesided is not None else fft_size != n_fft + + if onesided_: + torch._check( + n_fft // 2 + 1 == fft_size, + lambda: ( + "istft expected the frequency dimension (3rd to the last) of the input tensor " + + "to match n_fft / 2 + 1 when onesided=True, but got {fft_size}" + ), + ) + else: + torch._check( + n_fft == fft_size, + lambda: ( + "istft expected the frequency dimension (3rd to the last) of the input tensor " + + "to match n_fft when onesided=False, but got {fft_size}", + ), + ) + + torch._check( + 0 < hop_length_ <= win_length_, + lambda: "istft expected 0 < hop_length <= win_length", + ) + torch._check( + 0 < win_length_ <= n_fft, lambda: "istft expected 0 < win_length <= n_fft" + ) + torch._check( + window is None or window.shape == (win_length_,), + lambda: "Invalid window shape. window has to be 1D and length of `win_length`", + ) + + if window is None: + real_dtype = utils.corresponding_real_dtype(input.dtype) + window_ = torch.ones(win_length_, dtype=real_dtype, device=input.device) + else: + window_ = window + + if win_length_ != n_fft: + left = (n_fft - win_length_) // 2 + window_ = aten.constant_pad_nd(window_, (left, n_fft - win_length_ - left), 0) + + original_ndim = input.ndim + if input.ndim == 2: + input = input.unsqueeze(0) + + input = input.transpose(1, 2) + norm = "ortho" if normalized else None + if return_complex: + torch._check( + not onesided_, + lambda: "cannot have onesided output if window or input is complex", + ) + input = torch.fft.ifft(input, dim=-1, norm=norm) + else: + torch._check( + window is None or not utils.is_complex_dtype(window.dtype), + lambda: "Complex windows are incompatible with return_complex=False", + ) + if not onesided_: + input = input.narrow(dim=-1, start=0, length=n_fft // 2 + 1) + input = torch.fft.irfft(input, dim=-1, norm=norm) + + assert input.size(2) == n_fft + + y_tmp = input * window_.view([1, 1, n_fft]) + y = aten.unfold_backward( + y_tmp, + input_sizes=(y_tmp.size(0), expected_output_signal_len), + dim=1, + size=n_fft, + step=hop_length_, + ) + window_envelop = aten.unfold_backward( + window_.pow(2).expand((1, n_frames, n_fft)), + input_sizes=(y_tmp.size(0), expected_output_signal_len), + dim=1, + size=n_fft, + step=hop_length_, + ) + + assert expected_output_signal_len == y.size(1) + assert expected_output_signal_len == window_envelop.size(1) + + start = n_fft // 2 if center else 0 + if length is not None: + end = start + length + elif center: + end = expected_output_signal_len - n_fft // 2 + else: + end = expected_output_signal_len + + length = max(0, end - start) + y = y.narrow(dim=1, start=start, length=length) + window_envelop = window_envelop.narrow(dim=1, start=start, length=length) + + window_envelop_lowest = window_envelop.abs().min().lt(1e-11) + torch._check( + not window_envelop_lowest.item(), + lambda: "window overlap add min less than 1e-11", + ) + + y = y / window_envelop + if original_ndim == 2: + y = y.squeeze(0) + + if end > expected_output_signal_len: + warnings.warn( + "The length of signal is shorter than the length parameter. Result is being " + + "padded with zeros in the tail. Please check your center and hop_length settings" + ) + y = aten.constant_pad_nd(y, (0, end - expected_output_signal_len), 0) + return y + + +# Get the new shape and stride after applying unfold to an input tensor +def _get_unfold_shape_stride( + a_shape: ShapeType, a_stride: StrideType, dimension: int, size: int, step: int +): + a_ndim = len(a_shape) + dim = utils.canonicalize_dim(a_ndim, dimension, wrap_scalar=True) + max_size = 1 if a_ndim == 0 else a_shape[dim] + last_stride = 1 if a_ndim == 0 else a_stride[dim] + + torch._check( + size <= max_size, + lambda: f"Maximum size for tensor at dimension {dim} is {max_size} but size is {size}", + ) + + torch._check( + step > 0, + lambda: f"Step is {step} but must be > 0", + ) + + shape = list(a_shape) + strides = list(a_stride) + shape.append(size) + strides.append(last_stride) + if dim < a_ndim: + shape[dim] = (shape[dim] - size) // step + 1 + strides[dim] *= step + return shape, strides + + +@register_decomposition(aten.repeat) +@out_wrapper() +def repeat(a: Tensor, *repeat_shape) -> Tensor: + repeat_shape = utils.extract_shape_from_varargs(repeat_shape, validate=False) + torch._check( + len(repeat_shape) >= len(a.shape), + lambda: "repeat: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor", + ) + + if len(repeat_shape) == 0: + return torch.clone(a) + + num_new_dimensions = len(repeat_shape) - a.ndim + padded_shape = [1] * num_new_dimensions + for dim_size in a.shape: + padded_shape.append(dim_size) + + target_shape = tuple( + padded_size * repeat_size + for padded_size, repeat_size in zip(padded_shape, repeat_shape) + ) + + # return an empty tensor if one of the repeat_shape dimensions is zero + if 0 in repeat_shape: + return torch.empty( + target_shape, + dtype=a.dtype, + device=a.device, + requires_grad=a.requires_grad, + memory_format=utils.suggest_memory_format(a), + ) + + urtensor_shape = target_shape + urtensor_stride = utils.make_contiguous_strides_for(target_shape) + for dim, dim_size in enumerate(padded_shape): + # repeat each dimension by using unfold_copy operation + urtensor_shape, urtensor_stride = _get_unfold_shape_stride( + urtensor_shape, urtensor_stride, dim, dim_size, max(dim_size, 1) + ) + + # derive permute order by sorting urtensor strides + enumerated_stride = list(enumerate(urtensor_stride)) + enumerated_stride.sort(key=lambda item: item[1], reverse=True) + permute_order, sorted_stride = zip(*enumerated_stride) + + # add new and expand dimensions according to urtensor + repeat_xtensor = a.expand(urtensor_shape) + + # clone tensor to concretize expanded dimensions + cloned_result = torch.clone(repeat_xtensor) + + # transpose axis so strides are in sorted order + permuted_result = cloned_result.permute(permute_order) + + # reshape to get contiguous tensor with correct target shape + return permuted_result.reshape(target_shape) + + +def _reshape_view_helper(a: TensorLikeType, *shape, allow_copy: bool) -> TensorLikeType: + from torch.fx.experimental.symbolic_shapes import guard_size_oblivious, sym_eq + + # Creates a valid shape + shape = utils.extract_shape_from_varargs(shape, validate=False) + # Reshape may be given a shape with a -1 length + # This indicates that the dimension's length should be inferred + shape = utils.infer_size(shape, a.numel()) + + # Short-circuits if shape is the same + if guard_size_oblivious(sym_eq(tuple(a.shape), tuple(shape))): + return prims.view_of(a) + + # Special-cases tensors with no elements + if guard_size_oblivious(a.numel() == 0): + return as_strided(a, shape, utils.make_contiguous_strides_for(shape)) + + # Special-cases reshaping zero dim tensors + if a.ndim == 0: + _a = a + for length in shape: + assert length == 1 + _a = unsqueeze(_a, -1) + return _a + + # Special-cases reshaping to zero dim tensors + if len(shape) == 0: + _a = a + for length in a.shape: + assert length == 1 + _a = squeeze(_a, -1) + return _a + + # Handles general case: a 1+D tensor reshaped into a distinct 1+D shape + + # NOTE [Reshape Algorithm] + # This algorithm works by attempting to greedily construct the desired dimensions in + # the output shape, left to right. It does this by, conceptually, accumulating + # dimensions of the original tensor, also left to right, until the dimension + # can be constructed using prims.split_dim. + # The algorithm also has special handling for tail squeezes/unsqueezes, like + # if a reshape from (5, 5) to (5, 5, 1) or vice versa. + # + # This algorithm does not flatten the original tensor and then split dims as appropriate + # because that would create copies more often than this algorithm. flatten is the only + # operation below which can create a view or a copy, and while it prefers creating + # views it may sometimes create a copy if the tensor's strides do not permit a view. + # As a result, this algorithm tries to minimize flattening. + # + # Note that a better version of this algorithm may exist. Regions which could be + # flattened without creating a copy can be identified in advance, and that might + # allow fewer flatten calls or faster short-circuiting to make a copy. + idx = 0 + a_ = a + for length in shape: + # Handles tail unsqueezes + if idx >= a_.ndim: + assert length == 1 + last_dim = a_.ndim - 1 + # NOTE: using split_dim instead of unsqueeze may seem silly here, + # but it's necessary to get the strides correct + a_ = prims.split_dim(a_, last_dim, a_.shape[last_dim]) + idx = idx + 1 + continue + + # Skips dimensions that are already the correct length + if guard_size_oblivious(length == a_.shape[idx]): + idx = idx + 1 + continue + + # Gathers enough original dimensions such that this new dimension can be created + # Note that this accumulation will terminate because we've verified a and the shape + # specify the same number of elements above + accum = a_.shape[idx] + end = idx + while guard_size_oblivious(accum % length != 0): + end = end + 1 + accum = accum * a_.shape[end] + if end != idx: + # NOTE: in this case multiple dimensions must be flatten to create the desired dimension + # This flattening is why reshape sometimes creates a copy -- because flattening + # may return a view of a copy + + # Checks if collapse can be a view and short-circuits to copying reshape if it can't + new_shape, new_strides = prims._collapse_view_helper(a_, idx, end) + if new_shape is None: + if allow_copy: + return prims.reshape(a, shape) + + msg = "Cannot view a tensor with shape {} and strides {} as a tensor with shape {}!".format( + a.shape, a.stride(), shape + ) + raise ValueError(msg) + + a_ = flatten(a_, idx, end) + + # Splits the (possibly flattened) dimension to create the desired dim length + if guard_size_oblivious(accum != length): + a_ = prims.split_dim(a_, idx, length) + + idx = idx + 1 + + # Squeezes tail + while idx < a_.ndim: + assert a_.shape[idx] == 1 + a_ = squeeze(a_, idx) + + return a_ + + +# CompositeImplicitAutograd - don't register decomp +# NOTE: shape is a vararg because Tensor.reshape can be called with as +# Tensor.reshape(a, b, c) or Tensor.reshape((a, b, c)) Function call +# torch.reshape doesn't support unpacked shapes +def reshape(a: TensorLikeType, *shape: ShapeType) -> TensorLikeType: + return _reshape_view_helper(a, *shape, allow_copy=True) + + +# CompositeImplicitAutograd - don't register decomp +def reshape_as(self: TensorLikeType, other: TensorLikeType) -> TensorLikeType: + return self.reshape(other.size()) + + +@register_decomposition(aten.roll) +@out_wrapper() +def roll( + a: TensorLikeType, shifts: DimsType, dims: DimsType = tuple() +) -> TensorLikeType: + """Reference implementation of :func:`torch.roll`.""" + dims = utils.canonicalize_dims(a.ndim, dims) + # ATen specifies int[1] type for shifts and dims which expands integers to tuples of length 1 + if not isinstance(shifts, Iterable): + shifts = (shifts,) + if not isinstance(dims, Iterable): + dims = (dims,) + + # Avoid modulo by zero + if a.numel() == 0: + # Keeping this as ref for now as FakeTensor runs into some issues with complex tensors + return a.clone() + + if a.dim() == 0 and len(dims) > 0: + raise IndexError( + f"Dimension specified as {dims[0]} but tensor has no dimensions" + ) + + len_shifts = len(shifts) + len_dims = len(dims) + if len_shifts != 1 or len_dims != 1: + if len_shifts == 0: + raise RuntimeError("`shifts` required") + # Takes care of the case when dims is not specified (default) + # By default, the tensor is flattened before shifting, after which the original shape is restored + if len_dims == 0 and len_shifts == 1: + return torch.roll(torch.flatten(a), shifts, 0).view(a.shape) + if len_shifts != len_dims: + raise RuntimeError( + f"shifts and dimensions must align. shifts: {len_shifts}, dims: {len_dims}" + ) + assert len_dims > 1 + tail_shifts = shifts[1:] + tail_dims = dims[1:] + first_dim_rolled = torch.roll(a, (shifts[0],), dims[0]) + return torch.roll(first_dim_rolled, tail_shifts, tail_dims) + + # This path is taken when only one dimension is rolled + # For example to get `first_dim_rolled` above + dim = dims[0] + size = a.shape[dim] + start = (size - shifts[0]) % size + idx = torch.arange(size, device=a.device) + return a.index_select(dim, torch.fmod(start + idx, size)) + + +@register_decomposition(aten.rot90) +@out_wrapper() +def rot90( + a: TensorLikeType, k: int = 1, dims: DimsSequenceType = (0, 1) +) -> TensorLikeType: + """Reference implementation of :func:`torch.rot90`.""" + if len(dims) != 2: + raise RuntimeError( + f"expected total rotation dims == 2, but got dims = {len(dims)}" + ) + if a.ndim < 2: + raise RuntimeError(f"expected total dims >= 2, but got total dims = {a.ndim}") + + # Do this after the initial checks to be compatible with the behavior in + # core. + dims = utils.canonicalize_dims(a.ndim, dims) + + if dims[0] == dims[1]: + raise RuntimeError( + f"expected rotation dims to be different, but got dim0 = {dims[0]} and dim1 = {dims[1]}" + ) + k = k % 4 # Rotation direction is from the second towards the first axis for k < 0 + if k == 1: + return torch.transpose(torch.flip(a, (dims[1],)), dims[0], dims[1]) + elif k == 2: + return torch.flip(a, dims) + elif k == 3: + return torch.transpose(torch.flip(a, (dims[0],)), dims[0], dims[1]) + else: + return clone(a, memory_format=torch.contiguous_format) + + +def _check_stack_inputs(tensors: TensorSequenceType) -> None: + entry_shape = tensors[0].shape + for i in range(1, len(tensors)): + assert tensors[i].shape == entry_shape, ( + f"stack expects each tensor to be equal size, but got {entry_shape} at entry 0" + f"and {tensors[i].shape} at entry {i}" + ) + + +@register_decomposition(aten.stack) +@out_wrapper() +def stack(tensors: TensorSequenceType, dim: int = 0) -> TensorLikeType: + assert len(tensors) > 0, "stack expects a non-empty TensorList" + wrapped_dim = utils.canonicalize_dim(tensors[0].ndim + 1, dim) + # Refs need sparse support to check other condition + if wrapped_dim < tensors[0].ndim: # and not tensors[0].is_sparse: + _check_stack_inputs(tensors) + result_sizes = list(tensors[0].shape) + result_sizes.insert(wrapped_dim, len(tensors)) + out = torch.cat(tensors, wrapped_dim) + return out.view(result_sizes) + + # If dim == tensors[0].ndim, view cannot efficiently handle it + return torch.cat([t.unsqueeze(wrapped_dim) for t in tensors], dim) + + +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def softmax( + a: TensorLikeType, + dim: int, + dtype: Optional[torch.dtype] = None, +) -> TensorLikeType: + result_dtype = dtype or a.dtype + computation_dtype = utils.get_computation_dtype(result_dtype) + a_ = _maybe_convert_to_dtype(a, computation_dtype) + if a.numel() == 0: + a_exp = exp(a_) + else: + a_max = amax(a_, dim, keepdim=True) + a_exp = exp(a_ - a_max) + return _maybe_convert_to_dtype( + true_divide(a_exp, sum(a_exp, dim, keepdim=True)), result_dtype + ) # type: ignore[return-value] + + +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def hstack(tensors: TensorSequenceType) -> TensorLikeType: + torch._check(len(tensors) > 0, lambda: "hstack expects a non-empty TensorList") + aligned_tensors = atleast_1d(*tensors) + if aligned_tensors[0].ndim == 1: + return cat(aligned_tensors, 0) + return cat(aligned_tensors, 1) + + +# CompositeImplicitAutograd - don't register decomp +@out_wrapper() +def vstack(tensors: TensorSequenceType) -> TensorLikeType: + torch._check(len(tensors) > 0, lambda: "vstack expects a non-empty TensorList") + aligned_tensors = atleast_2d(*tensors) + return cat(aligned_tensors, 0) + + +# CompositeImplicitAutograd - don't register decomp +def unflatten(a: TensorLikeType, dim: int, sizes: ShapeType) -> TensorLikeType: + dim = utils.canonicalize_dim(a.ndim, dim) + torch._check(len(sizes) != 0, lambda: "unflatten: sizes must be non-empty") + return a.view(tuple(a.shape[:dim]) + tuple(sizes) + tuple(a.shape[dim + 1 :])) + + +@register_decomposition(aten.unbind) +def unbind(t: TensorLikeType, dim: int = 0) -> TensorSequenceType: + dim = utils.canonicalize_dim(t.ndim, dim) + torch._check_index( + len(t.shape) > 0, + lambda: "Dimension specified as 0 but tensor has no dimensions", + ) + if t.shape[dim] == 0: + return tuple() + else: + return tuple( + torch.squeeze(s, dim) for s in torch.tensor_split(t, t.shape[dim], dim) + ) + + +@out_wrapper() +def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): + return x.clone(memory_format=torch.contiguous_format).index_copy_( + dim, index, tensor + ) + + +def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): + dim = utils.canonicalize_dims(x.ndim, dim) + torch._check( + index.ndim <= 1, + lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", + ) + # Treat scalars as elements of \R^1 + y = x.unsqueeze(0) if x.ndim == 0 else x + idx = (slice(None),) * dim + (index,) + y[idx] = tensor + return x + + +@register_decomposition(aten.index_fill) +@out_wrapper() +def index_fill( + x: TensorLike, dim: int, index: TensorLike, value: Union[NumberType, TensorLike] +): + return _index_fill(x, dim, index, value, inplace=False) + + +@register_decomposition(aten.index_fill_) +def index_fill_( + x: TensorLike, dim: int, index: TensorLike, value: Union[NumberType, TensorLike] +): + return _index_fill(x, dim, index, value, inplace=True) + + +def _index_fill( + x: TensorLike, + dim: int, + index: TensorLike, + value: Union[NumberType, TensorLike], + *, + inplace: bool, +): + torch._check( + index.ndim <= 1, + lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", + ) + if isinstance(value, TensorLike): + torch._check( + value.ndim == 0, + lambda: "Only supports 0-dimensional value tensor. " # type: ignore[union-attr] + f"Got a tensor with {value.ndim} dimensions.", + ) # type: ignore[arg-type] + else: + value = torch.scalar_tensor( + value, dtype=x.dtype, layout=x.layout, device=x.device # type: ignore[arg-type] + ) + + # index_copy has some unnecessary preconditions when x is a scalar. We do this to work through them + zero_dim = x.ndim == 0 + y = x.unsqueeze(0) if zero_dim else x + # index_copy does not broadcast on value so we have to do it manually + shape = list(y.shape) + shape[dim] = index.numel() + value = value.expand(shape) + index_copy = Tensor.index_copy_ if inplace else torch.index_copy + out = index_copy(y, dim, index, value) # type: ignore[operator] + if inplace: + return x + else: + if zero_dim: + # The clone is necessary so that it returns a fresh tensor rather than a view + out = out.squeeze(0).clone() + # index_fill preserves the strides. index_copy always returns contiguous tensors + if out.stride() != x.stride(): + new_out = torch.empty_like(x) + new_out.copy_(out) + out = new_out + return out + + +@out_wrapper() +def index_add( + x: TensorLike, + dim: int, + index: TensorLike, + tensor: TensorLike, + *, + alpha: NumberType = 1, +): + # index_add always returns a new contiguous tensor + return x.clone(memory_format=torch.contiguous_format).index_add_( + dim, index, tensor, alpha=alpha # type: ignore[arg-type] + ) + + +@register_decomposition(aten.index_select) +@out_wrapper() +def index_select(x: TensorLike, dim: int, index: TensorLike): + dim = utils.canonicalize_dims(x.ndim, dim) + torch._check( + index.ndim <= 1, + lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", + ) + if index.ndim == 0: + index = index.unsqueeze(0) + if x.ndim == 0: + # Treat scalars as elements of \R^1 + # We cannot use x[idx] here as it accesses item() (??), hence this awkward construction + return torch.empty_like(x).index_copy(0, index, x.expand_as(index)) + + idx = (slice(None),) * dim + (index,) + return x[idx] + + +@register_decomposition(aten.squeeze.dims) +def squeeze(a: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType: + from torch.fx.experimental.symbolic_shapes import guard_size_oblivious + + if dim is None: + dims = tuple(idx for idx, size in enumerate(a.shape) if size == 1) + return prims.squeeze(a, dims) if dims else prims.view_of(a) + + ndim = a.ndim + dim = utils.canonicalize_dims(ndim, dim) + dims = (dim,) if isinstance(dim, Dim) else dim + # Short-circuits if the tensor has no dimensions + if ndim == 0: + assert len(dims) == 0 or dims == (0,) + return prims.view_of(a) + + # Note: squeeze does not modify tensors when the given dim is not a dimension of length 1 + dims = tuple(d for d in dims if guard_size_oblivious(a.shape[d] == 1)) + if len(dims) == 0: + return prims.view_of(a) + if len(dims) == 1: + return prims.squeeze(a, dims) + dims_list = list(dims) + dims_list = sorted(dims_list, reverse=True) + for i in dims_list: + a = squeeze(a, i) + return a + + +# Note: does not work with TensorMetas because of data-dependent control-flow +# CompositeImplicitAutograd - don't register decomp +def tensor_split( + a: TensorLikeType, + indices_or_sections: Union[Tensor, DimsType], + dim: int = 0, +) -> Tuple[TensorLikeType, ...]: + _dim = utils.canonicalize_dim(a.ndim, dim) + if a.ndim == 0: + msg = "tensor_split: received a rank zero tensor, but expected a tensor of rank one or greater!" + raise ValueError(msg) + + # If indices_or_sections is a tensor, it must be a CPU Long tensor + if isinstance(indices_or_sections, TensorLike): + if not indices_or_sections.device.type == "cpu": + msg = "tensor_split: if indices_or_sections is a tensor it must be on the CPU, but received one on {}".format( + indices_or_sections.device + ) + raise ValueError(msg) + if indices_or_sections.dtype != torch.long: + msg = "tensor_split: if indices_or_sections is a tensor it must have long dtype, " + f" but received one with dtype {indices_or_sections.dtype}" + raise ValueError(msg) + + # Case 0 -- indices_or_sections is an integer or a scalar tensor n and a is split along dim into n parts of equal-ish length + if isinstance(indices_or_sections, IntLike) or ( + isinstance(indices_or_sections, TensorLike) and indices_or_sections.ndim == 0 + ): + sections: int = ( + indices_or_sections # type: ignore[assignment] + if isinstance(indices_or_sections, Number) + else indices_or_sections.item() + ) + + if sections <= 0: + msg = f"tensor_split: number of sections must be greater than 0, but was {sections}" + raise ValueError(msg) + + splits = [] + dim_size = a.shape[_dim] + min_split_size = math.floor(dim_size / sections) + num_splits_one_extra = dim_size % sections + start_idx = 0 + for split_idx in range(sections): + split_size = ( + min_split_size + 1 + if (split_idx < num_splits_one_extra) + else min_split_size + ) + s = prims.slice_in_dim(a, start_idx, start_idx + split_size, axis=_dim) + splits.append(s) + start_idx = start_idx + split_size + + return tuple(splits) + # Case 1 -- indices_or_sections is a sequence of integers or a 1D tensor describing the splits + else: + indices = indices_or_sections + if isinstance(indices_or_sections, TensorLike): + if indices_or_sections.ndim != 1: + msg = "tensor_split: non-scalar indices_or_sections tensors must have only one dimension, " + f"but received a tensor with {indices_or_sections.ndim} dimensions" + raise ValueError(msg) + + indices = indices_or_sections.tolist() + + splits = [] + start_idx = 0 + for x in indices: + splits.append(prims.slice_in_dim(a, start_idx, x, axis=_dim)) + start_idx = x + splits.append(prims.slice_in_dim(a, start_idx, a.shape[_dim], axis=_dim)) + return tuple(splits) + + +# CompositeImplicitAutograd - don't register decomp +def hsplit( + a: TensorLikeType, indices_or_sections: DimsType +) -> Tuple[TensorLikeType, ...]: + torch._check( + a.ndim >= 1, + lambda: ( + "torch.hsplit requires a tensor with at least 1 dimension, but got a tensor with " + + str(a.ndim) + + " dimensions!" + ), + ) + dim = 0 if a.ndim == 1 else 1 + if isinstance(indices_or_sections, IntLike): + split_size = indices_or_sections + torch._check( + (split_size != 0 and a.shape[dim] % split_size == 0), + lambda: ( + "torch.hsplit attempted to split along dimension " + + str(dim) + + ", but the size of the dimension " + + str(a.shape[dim]) + + " is not divisible by the split_size " + + str(split_size) + + "!" + ), + ) + return tensor_split(a, split_size, dim) + + torch._check_type( + isinstance(indices_or_sections, (list, tuple)), + lambda: ( + "hsplit(): received an invalid combination of arguments. " + "Expected indices_or_sections to be of type int, list of ints or tuple of ints " + f"but got type {type(indices_or_sections)}" + ), + ) + + split_sizes = indices_or_sections + return tensor_split(a, split_sizes, dim) + + +# CompositeImplicitAutograd - don't register decomp +def vsplit( + a: TensorLikeType, indices_or_sections: DimsType +) -> Tuple[TensorLikeType, ...]: + torch._check( + a.ndim >= 2, + lambda: ( + "torch.vsplit requires a tensor with at least 2 dimension, but got a tensor with " + + str(a.ndim) + + " dimensions!" + ), + ) + if isinstance(indices_or_sections, IntLike): + split_size = indices_or_sections + torch._check( + (split_size != 0 and a.shape[0] % split_size == 0), + lambda: ( + f"torch.vsplit attempted to split along dimension 0" + f", but the size of the dimension " + f"{a.shape[0]}" + f" is not divisible by the split_size " + f"{split_size}" + f"!" + ), + ) + return tensor_split(a, split_size, 0) + + torch._check_type( + isinstance(indices_or_sections, (list, tuple)), + lambda: ( + "vsplit(): received an invalid combination of arguments. " + "Expected indices_or_sections to be of type int, list of ints or tuple of ints " + f"but got type {type(indices_or_sections)}" + ), + ) + + split_sizes = indices_or_sections + return tensor_split(a, split_sizes, 0) + + +@register_decomposition(aten.diag.out) +@out_wrapper() +def diag( + self: TensorLikeType, + offset: int = 0, +) -> TensorLikeType: + ndim = self.dim() + torch._check( + ndim in (1, 2), lambda: f"diag(): Supports 1D or 2D tensors. Got {ndim}D" + ) + if ndim == 1: + return torch.diag_embed(self, offset) + else: + return torch.diagonal_copy(self, offset) + + +@register_decomposition(aten.diagonal_scatter) +@out_wrapper() +def diagonal_scatter( + input: TensorLikeType, + src: TensorLikeType, + offset: int = 0, + dim1: int = 0, + dim2: int = 1, +) -> TensorLikeType: + out = utils.clone_preserve_strides(input) + diag = out.diagonal(offset, dim1, dim2) + torch._check( + diag.shape == src.shape, + lambda: "expected src to have a size equal to the diagonal of the input." + f"Got {src.shape} for a diagonal of shape {diag.shape}", + ) + copy_to(diag, src) + return out + + +@register_decomposition(aten.diagonal) +def diagonal( + self: TensorLikeType, + offset: int = 0, + dim1: int = 0, + dim2: int = 1, +) -> TensorLikeType: + """ + Reference implementation of torch.diagonal + """ + num_dims = self.dim() + dim1 = utils.canonicalize_dim(idx=dim1, rank=num_dims) + dim2 = utils.canonicalize_dim(idx=dim2, rank=num_dims) + + torch._check( + dim1 != dim2, lambda: f"diagonal dimensions cannot be identical {dim1}, {dim2}" + ) + + storage_offset = self.storage_offset() + + if offset >= 0: + diag_size = max(min(self.size()[dim1], self.size()[dim2] - offset), 0) + else: + diag_size = max(min(self.size()[dim1] + offset, self.size()[dim2]), 0) + + if diag_size > 0: + if offset >= 0: + storage_offset += offset * self.stride()[dim2] + else: + storage_offset -= offset * self.stride()[dim1] + + sizes = [s for i, s in enumerate(self.size()) if i not in (dim1, dim2)] + sizes.append(diag_size) + + strides = [s for i, s in enumerate(self.stride()) if i not in (dim1, dim2)] + strides.append(self.stride()[dim1] + self.stride()[dim2]) + + result = self.as_strided(size=sizes, stride=strides, storage_offset=storage_offset) + + return result + + +diagonal_copy = _make_copy_from_view(diagonal) + + +@register_decomposition(aten.diag_embed) +@out_wrapper() +def diag_embed( + t: TensorLikeType, + offset: int = 0, + dim1: int = -2, + dim2: int = -1, +) -> TensorLikeType: + """ + Reference implementation of torch.diag_embed + """ + # convert from negative dims + rank = t.ndim + 1 + dim1 = utils.canonicalize_dim(rank=rank, idx=dim1) + dim2 = utils.canonicalize_dim(rank=rank, idx=dim2) + + # as per the docs, exchanging dims is equivalent to changing the sign of + # offset + if dim1 > dim2: + dim1, dim2 = dim2, dim1 + offset = -offset + + torch._check( + dim1 != dim2, lambda: f"diagonal dimensions cannot be identical {dim1}, {dim2}" + ) + + # as per the docs, the size of last dim is placed at dim1 and dim2 + last_dim = t.size(-1) + + if offset != 0: + # add padding to match the new size + t_shape = list(t.shape) + t_shape[-1] = builtins.abs(offset) + z = torch.zeros(t_shape, dtype=t.dtype, device=t.device, requires_grad=False) + pair = (z, t) if offset > 0 else (t, z) + t = torch.cat(pair, dim=-1) + # make sure the diagonal always has the same size + last_dim += builtins.abs(offset) + + # preserve original data, but place 1 at dim1 and move last dim to dim2 + t = t.unsqueeze(dim1).movedim(-1, dim2) + + # generate ranges shifting indices based on offset + a_range = torch.arange(last_dim, device=t.device, dtype=torch.int64) + b_range = torch.arange( + offset, last_dim + offset, device=t.device, dtype=torch.int64 + ) + + # broadcast + cond = a_range == b_range.unsqueeze(-1) + cond_shape = [last_dim if i in (dim1, dim2) else 1 for i in range(len(t.shape))] + cond = cond.reshape(cond_shape) + + # aten.diag_embed always returns a new contiguous tensor + # contiguous() is needed to correctly model the output stride + return utils.mask_tensor(cond, t).contiguous() + + +@register_decomposition(aten.block_diag) +@out_wrapper() +def _block_diag_iterable(tensors: List[TensorLikeType]) -> TensorLikeType: + """ + Reference implementation of torch.block_diag + """ + tensors_2d = [ + tensor.view(1, -1) if tensor.dim() <= 1 else tensor for tensor in tensors + ] + + ncols = builtins.sum(tensor.shape[1] for tensor in tensors_2d) + device = tensors_2d[0].device + + result = [] + + col_start = 0 + for i, tensor in enumerate(tensors_2d): + torch._check( + tensor.dim() == 2, + lambda: "Input tensors must have 2 or fewer dimensions. " + f"Input {i} has {tensor.dim()} dimensions", + ) + torch._check( + tensor.device == device, + lambda: "Input tensors must all be on the same device. " + f"Input 0 is on device {device} and input {i} is on device {tensor.device}.", + ) + row, col = tensor.shape + left = torch.zeros((row, col_start), device=device, dtype=tensor.dtype) + right = torch.zeros( + (row, ncols - col_start - col), device=device, dtype=tensor.dtype + ) + result += [torch.cat((left, tensor, right), dim=1)] + col_start += col + + return torch.cat(result, dim=0) + + +def block_diag(*tensors: List[TensorLikeType]) -> TensorLikeType: + """ + This is used as an input to PythonRefInfo. `torch.block_diag` + expects arguments splatted, but `aten.block_diag` expects only + one argument that is a list of Tensors. + """ + return _block_diag_iterable(tensors) + + +# CompositeImplicitAutograd - don't register decomp +def dsplit(a: TensorLikeType, sections: DimsType) -> TensorSequenceType: + if a.ndim < 3: + raise RuntimeError( + f"torch.dsplit requires a tensor with at least 3 dimension, but got a tensor with {a.ndim} dimensions!" + ) + if isinstance(sections, IntLike) and (sections == 0 or a.shape[2] % sections != 0): + raise RuntimeError( + "torch.dsplit attempted to split along dimension 2, " + + f"but the size of the dimension {a.shape[2]} is not divisible by the split_size {sections}!" + ) + return tensor_split(a, sections, 2) + + +@register_decomposition(aten.t.default) +def t(a: TensorLikeType): + # TODO: Add sparse support + # if a.is_sparse: + # sparse_dim = a.sparse_dim() + # dense_dim = a.dense_dim() + # if not (sparse_dim <= 2 and dense_dim == 0): + # raise RuntimeError( + # f"t() expects a tensor with <= 2 sparse and 0 dense dimensions, but got {sparse_dim} sparse and" + # f"{dense_dim} dense dimensions" + # ) + if a.ndim > 2: + raise RuntimeError( + f"t() expects a tensor with <= 2 dimensions, but self is {a.ndim}D" + ) + return torch.transpose(a, 0, 0 if a.ndim < 2 else 1) + + +# CompositeImplicitAutograd - don't register decomp +def T(a: TensorLikeType) -> TensorLikeType: + # n != 2 && n != 0 is deprecated in regular PyTorch. + torch._check( + a.ndim in (0, 2), + lambda: ( + "The use of `x.T` on tensors of dimension other than 0 or 2 " + "to reverse their shape is not supported." + ), + ) + return a.t() + + +@register_decomposition(aten.alias) +def alias(a: TensorLikeType) -> TensorLikeType: + return prims.view_of(a) + + +@register_decomposition(aten.transpose) +def transpose(a: TensorLikeType, dim0: int, dim1: int) -> TensorLikeType: + _dim0, _dim1 = utils.canonicalize_dims(a.ndim, (dim0, dim1)) # type: ignore[misc] + + if a.ndim <= 1 or dim0 == dim1: + return aten.alias.default(a) + + _permutation = list(range(0, a.ndim)) + _permutation[_dim0] = _dim1 + _permutation[_dim1] = _dim0 + return torch.permute(a, _permutation) + + +# Aliases for transpose +swap_axes = transpose + + +@register_decomposition(aten.unfold) +def unfold( + self: TensorLikeType, dimension: int, size: int, step: int +) -> TensorLikeType: + shape, strides = _get_unfold_shape_stride( + self.shape, self.stride(), dimension, size, step + ) + return self.as_strided(shape, strides) + + +@register_decomposition(aten.unfold_copy) +@out_wrapper() +def unfold_copy(self: TensorLikeType, dimension: int, size: int, step: int): + return self.unfold(dimension, size, step).clone( + memory_format=torch.contiguous_format + ) + + +def _cumsumprod_common( + func, + init, + a: TensorLikeType, + dim: int, + *, + dtype: Optional[torch.dtype] = None, + out: Optional[Tensor] = None, +) -> TensorLikeType: + # We implement all the kwargs of a reduction. ATen just handles dtype + # nb. This decomposition may not be as efficient as a backend-specific implementation + ndim = a.ndim + dim = utils.canonicalize_dim(ndim, dim) + if ndim == 0: + return func(a.unsqueeze(0), dim=0, dtype=dtype, out=out) + a = a.unsqueeze(dim + 1) + rg = torch.arange(a.shape[dim], device=a.device) + mask = rg.unsqueeze(1) <= rg + for _ in range(ndim - dim - 1): + mask = mask.unsqueeze(-1) + masked_a = torch.where(mask, a, init) + return func(masked_a, dim=dim, dtype=dtype, out=out) + + +@register_decomposition(aten.cumsum) +def cumsum( + a: TensorLikeType, + dim: int, + *, + dtype: Optional[torch.dtype] = None, + out: Optional[Tensor] = None, +) -> TensorLikeType: + return _cumsumprod_common(func=sum, init=0, a=a, dim=dim, dtype=dtype, out=out) + + +@register_decomposition(aten.cumprod) +def cumprod( + a: TensorLikeType, + dim: int, + *, + dtype: Optional[torch.dtype] = None, + out: Optional[Tensor] = None, +) -> TensorLikeType: + return _cumsumprod_common(func=prod, init=1, a=a, dim=dim, dtype=dtype, out=out) + + +# Note: although squeeze is documented as having the out= kwarg it doesn't +@register_decomposition(aten.unsqueeze) +def unsqueeze(a: TensorLikeType, dim: int) -> TensorLikeType: + # Note that unsqueeze canonicalizes with rank + 1 because it allows + # a new innermost dimension to be specified + ndim = a.ndim + 1 + dim = utils.canonicalize_dim(ndim, dim) + return prims.expand_dims(a, (dim,), ndim=ndim) + + +# NOTE: shape is a vararg because Tensor.reshape can be called with as +# Tensor.view(a, b, c) or Tensor.view((a, b, c)) Function call torch.view +# doesn't support unpacked shapes +# TODO: Turn this into a decomposition (currently fails on reshape meta tests) +@register_decomposition(aten.view.default) +def view(a: TensorLikeType, *shape: ShapeType) -> TensorLikeType: + return _reshape_view_helper(a, *shape, allow_copy=False) + + +# CompositeImplicitAutograd - don't register decomp +def view_as(self: TensorLikeType, other: TensorLikeType) -> TensorLikeType: + return self.view(other.size()) + + +# CompositeImplicitAutograd - don't register decomp +def ravel(a: TensorLikeType) -> TensorLikeType: + return reshape(a, (-1,)) + + +# CompositeImplicitAutograd - don't register decomp +# missing ref impl. for aten.gather +@out_wrapper() +def take_along_dim( + a: torch.Tensor, indices: torch.Tensor, dim: Optional[int] = None +) -> torch.Tensor: + torch._check( + a.ndim == indices.ndim, + lambda: ( + "torch.take_along_dim(): input and indices should have the same " + f"number of dimensions, but got {a.ndim} dimensions for input, and " + f"{indices.ndim} dimensions for indices" + ), + ) + + torch._check( + utils.is_integer_dtype(indices.dtype), + lambda: ( + "torch.take_along_dim(): dtype of indices should be int but got " + f"{indices.dtype} instead" + ), + ) + + if dim is None: + return torch.gather(a.view(-1), 0, indices.view(-1)) + else: + self_sizes = list(a.shape) + self_sizes[dim] = indices.size(dim) + broadcast_shape = utils.infer_size_shapes(self_sizes, indices.size()) + indices_broadcast = broadcast_to(indices, broadcast_shape) + + indices_sizes = list(indices.shape) + indices_sizes[dim] = a.size(dim) + broadcast_shape = utils.infer_size_shapes(indices_sizes, a.size()) + self_broadcast = broadcast_to(a, broadcast_shape) + + return torch.gather(self_broadcast, dim, indices_broadcast) + + +@out_wrapper() +def empty( + *shape, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + requires_grad: bool = False, + pin_memory: bool = False, + memory_format: torch.memory_format = torch.contiguous_format, +) -> TensorLikeType: + torch._check( + memory_format != torch.preserve_format, + lambda: "torch.empty: the Preserve memory format is not supported", + ) + + shape = utils.extract_shape_from_varargs(shape) + + if memory_format == torch.contiguous_format: + strides = utils.make_contiguous_strides_for(shape) + elif memory_format == torch.channels_last_3d: + strides = utils.make_channels_last_3d_strides_for(shape) + else: # memory_format == torch.channels_last + torch._check( + memory_format == torch.channels_last, + lambda: f"torch.empty: received an unknown memory format {memory_format}!", + ) + strides = utils.make_channels_last_2d_strides_for(shape) + + return torch.empty_strided( + shape, + strides, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@out_wrapper() +def empty_permuted( + shape, + physical_layout, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + requires_grad: bool = False, + pin_memory: bool = False, +) -> TensorLikeType: + return prims.empty_permuted( + shape, + physical_layout, + dtype=dtype, + device=device, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.new_empty) +@out_wrapper() +def new_empty( + a: TensorLikeType, + size: ShapeType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, +) -> TensorLikeType: + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + return torch.empty( + size, + dtype=dtype, + device=device, + pin_memory=pin_memory, + layout=layout, + ) + + +@register_decomposition(aten.new_empty_strided) +@out_wrapper() +def new_empty_strided( + a: TensorLikeType, + size: ShapeType, + stride: StrideType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, +) -> TensorLikeType: + """ + Reference implementation of torch.Tensor.new_empty_strided + """ + + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + return torch.empty_strided( + size, + stride, + dtype=dtype, + device=device, + pin_memory=pin_memory, + layout=layout, + ) + + +@register_decomposition(aten.zeros.default) +@out_wrapper() +def zeros( + *size, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + size = utils.extract_shape_from_varargs(size) + + if dtype is None: + dtype = torch.get_default_dtype() + + return torch.full( + size, + False if dtype == torch.bool else 0, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.new_zeros) +@out_wrapper() +def new_zeros( + a: TensorLikeType, + size: ShapeType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + return torch.full( + size, + False if (dtype or a.dtype) == torch.bool else 0, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.ones.default) +@out_wrapper() +def ones( + *size, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + size = utils.extract_shape_from_varargs(size) + + if dtype is None: + dtype = torch.get_default_dtype() + + return torch.full( + size, + True if dtype == torch.bool else 1, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.new_ones) +@out_wrapper() +def new_ones( + a: TensorLikeType, + size: ShapeType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + return torch.full( + size, + True if (dtype or a.dtype) == torch.bool else 1, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.new_full) +@out_wrapper() +def new_full( + a: TensorLikeType, + size: ShapeType, + fill_value: NumberType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, +) -> TensorLikeType: + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + return torch.full( + size, + fill_value, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + ) + + +@register_decomposition(aten.empty_like) +@out_wrapper() +def empty_like( + a: TensorLikeType, + *, + dtype: Optional[torch.dtype] = None, + device: Optional[DeviceLikeType] = None, + layout: Optional[torch.layout] = None, + pin_memory: bool = False, + requires_grad: bool = False, + memory_format: torch.memory_format = torch.preserve_format, +) -> TensorLikeType: + dtype = a.dtype if dtype is None else dtype + layout = a.layout if layout is None else layout + device = a.device if device is None else device + + if memory_format != torch.preserve_format: + return torch.empty( + a.shape, + dtype=dtype, + layout=layout, + device=device, + requires_grad=requires_grad, + pin_memory=pin_memory, + memory_format=memory_format, + ) + + # memory_format == torch.preserve_format + logical_to_physical_perm = ( + utils.compute_elementwise_output_logical_to_physical_perm(a) + ) + # identity perm is [2, 1, 0] + return torch.empty_permuted( + a.shape, + logical_to_physical_perm, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_decomposition([aten.arange.start_step, aten.arange.start_out]) +@out_wrapper() +def arange( + start: NumberType = 0, + end: Optional[NumberType] = None, + step: NumberType = 1, + *, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + utils.check_layout(layout) + utils.check_pin_memory(pin_memory) + device = torch.device(utils.device_or_default(device)) + + assert not isinstance(start, complex) + assert not isinstance(end, complex) + assert not isinstance(step, complex) + + # Case: torch.arange(5) + if end is None: + end = start + start = 0 + torch._check(step != 0, lambda: "step must be nonzero") + if step > 0: + torch._check( + end >= start, + lambda: "upper bound and lower bound inconsistent with step sign", + ) + elif step < 0: + torch._check( + end <= start, + lambda: "upper bound and lower bound inconsistent with step sign", + ) + + def is_finite(x): + return not isinstance(x, FloatWithoutSymFloat) or math.isfinite(x) + + torch._check( + is_finite(start) and is_finite(end), + lambda: f"unsupported range: {start} -> {end}", + ) + torch._check( + is_finite(step), + lambda: f"step must be finite but got {step}", + ) + + if dtype is None: + args = (start, end, step) + integer_args = builtins.all(isinstance(arg, IntLike) for arg in args) + dtype = torch.int64 if integer_args else torch.get_default_dtype() + + is_integer = utils.is_integer_dtype(dtype) + if is_integer: + xstart = sym_int(start) + xend = sym_int(end) + xstep = sym_int(step) + + # For int64 we truncate arguments to int before calculating length, but + # other integral dtypes we don't. Weird... but needed to match ATen shapes. + if dtype == torch.int64: + # Uses floordiv to avoid ceil in inductor. + sgn = bool(xstep > 0) - bool(xstep < 0) # type: ignore[possibly-undefined] + length = (xend - xstart + xstep - sgn) // xstep # type: ignore[possibly-undefined] + else: + length = math.ceil((end - start) / step) + + if is_integer: + return prims.iota( + length, + start=xstart, # type: ignore[possibly-undefined] + step=xstep, # type: ignore[possibly-undefined] + dtype=dtype, + device=device, + requires_grad=requires_grad, + ) + + computation_dtype = utils.get_acc_type(dtype, device) + index = prims.iota( + length, + start=0, + step=1, + dtype=torch.int64, + device=device, + requires_grad=False, + ) + index = _maybe_convert_to_dtype(index, computation_dtype) + result = start + step * index + result = _maybe_convert_to_dtype(result, dtype) + + if requires_grad: + result.requires_grad_(True) + return result + + +@register_decomposition(aten.lerp) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("start", "end", "weight"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def lerp(start: Tensor, end: Tensor, weight: Union[Tensor, NumberType]): + inputs = [start, end] + if isinstance(weight, Number): + weight = start.new_full((), weight) # type: ignore[arg-type] + else: + inputs.append(weight) + assert isinstance(weight, Tensor) # mypy + # We implement it this way for numerical stability. We assume (in the stability optimisation) + # that 0 <= weight <= 1. We take the abs to deal with complex numbers + # We want to perform operations near zero, which is where floating points are most precise + # thus, we perform the following optimisation: + # If weight.abs() >= 0.5: + # return (1 - weight) * (start - end) + end + mask = weight.abs() >= 0.5 + coeff = torch.where(mask, weight - 1, weight) + base = torch.where(mask, end, start) + output = coeff * (end - start) + base + # make sure the decomposition output's stride is same as non-decomposition path. + stride = utils.compute_elementwise_output_strides(*_maybe_broadcast(*inputs)) + if output.stride() != stride: + output = prims.copy_strided(output, stride) + + return handle_noncontiguous_outputs(inputs, output) + + +@register_decomposition(aten.linspace) +@out_wrapper() +def linspace( + start: Union[NumberType, TensorLikeType], + end: Union[NumberType, TensorLikeType], + steps: NumberType, + *, + dtype: Optional[torch.dtype] = None, + device: Optional[DeviceLikeType] = None, + layout: torch.layout = torch.strided, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + if isinstance(start, TensorLikeType): + torch._check( + start.dim() == 0, + lambda: "linspace only supports 0-dimensional start and end tensors", + ) + start = _maybe_convert_to_dtype(start, torch.float64) + if isinstance(end, TensorLikeType): + torch._check( + end.dim() == 0, + lambda: "linspace only supports 0-dimensional start and end tensors", + ) + end = _maybe_convert_to_dtype(end, torch.float64) + + if py_any(isinstance(arg, complex) for arg in (start, end, steps)): + default_complex_dtype = utils.corresponding_complex_dtype( + torch.get_default_dtype() + ) + if dtype is None: + dtype = default_complex_dtype + else: + torch._check( + utils.is_complex_dtype(dtype), + lambda: f"linspace(): inferred dtype {default_complex_dtype} can't be safely cast to passed dtype {dtype}", + ) + else: + dtype = dtype or torch.get_default_dtype() + assert isinstance(dtype, torch.dtype) + + # steps does not participate in the computation of the dtype + torch._check_type( + isinstance(steps, IntLike), + lambda: f"received an invalid combination of arguments - got \ +({type(start).__name__}, {type(end).__name__}, {type(steps).__name__})", + ) + assert isinstance(steps, IntLike) # for mypy + torch._check(steps >= 0, lambda: "number of steps must be non-negative") + + factory_kwargs = { + "layout": layout, + "device": device, + "pin_memory": pin_memory, + "requires_grad": requires_grad, + } + if steps == 0: + return torch.full((0,), 0, dtype=dtype, **factory_kwargs) # type: ignore[arg-type] + if steps == 1: + if isinstance(start, TensorLikeType): + return torch.empty((steps,), dtype=dtype, **factory_kwargs).copy_(start) # type: ignore[arg-type] + else: + return torch.full((steps,), start, dtype=dtype, **factory_kwargs) # type: ignore[arg-type] + + # Perform in arange in int because some backends like ATen or Triton do not support all the dtypes + rg = torch.arange(0, steps, **factory_kwargs) # type: ignore[arg-type] + + # Small types need to be computed in higher precision as this is, at heart, an associative scan + dtype_red = ( + torch.int64 + if (utils.is_boolean_dtype(dtype) or utils.is_integer_dtype(dtype)) + else dtype + ) + computation_dtype, _ = utils.reduction_dtypes( + rg, REDUCTION_OUTPUT_TYPE_KIND.SAME, dtype_red + ) + cast_rg = partial(_maybe_convert_to_dtype, dtype=computation_dtype) + + # We implement torch.lerp without performing rg / (steps - 1) explicitly + # With this we get out[0] == start, out[-1] == end + step = (end - start) / (steps - 1) + out = torch.where( + rg < steps / 2, + start + step * cast_rg(rg), # type: ignore[arg-type,operator] + end - step * cast_rg((steps - 1) - rg), # type: ignore[arg-type,operator] + ) + return _maybe_convert_to_dtype(out, dtype) # type: ignore[return-value] + + +@register_decomposition(aten.logspace) +@out_wrapper() +def logspace( + start: Union[NumberType, TensorLikeType], + end: Union[NumberType, TensorLikeType], + steps: NumberType, + base: NumberType = 10, + *, + dtype: Optional[torch.dtype] = None, + device: Optional[DeviceLikeType] = None, + layout: torch.layout = torch.strided, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + if dtype is None: + dtype = torch.get_default_dtype() + + # NB: NumPy doesn't have this cast + if prims.utils.is_integer_dtype(dtype): + if isinstance(start, FloatLike): + start = sym_int(start) + elif isinstance(start, TensorLikeType): + torch._check( + start.dim() == 0, + lambda: "logspace only supports 0-dimensional start and end tensors", + ) + start = _maybe_convert_to_dtype(start, dtype) + if isinstance(end, FloatLike): + end = sym_int(end) + elif isinstance(end, TensorLikeType): + torch._check( + end.dim() == 0, + lambda: "logspace only supports 0-dimensional start and end tensors", + ) + end = _maybe_convert_to_dtype(end, dtype) + + if py_any(isinstance(arg, complex) for arg in (start, end, steps)): + default_complex_dtype = utils.corresponding_complex_dtype( + torch.get_default_dtype() + ) + dtype = default_complex_dtype + _dtype = None # torch.linspace will update the correct dtype + else: + _dtype = torch.float64 + + assert not isinstance(base, complex) # for mypy + if base < 0: + raise NotImplementedError + ret = torch.linspace( # type: ignore[misc] + start, # type: ignore[arg-type] + end, # type: ignore[arg-type] + steps, # type: ignore[arg-type] + dtype=_dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + return _maybe_convert_to_dtype(torch.pow(base, ret), dtype) # type: ignore[arg-type,return-value] + + +@overload +def meshgrid(tensors: Sequence[TensorLikeType], indexing: str): + pass + + +@overload +def meshgrid(*tensors: TensorLikeType, indexing: str): + pass + + +@register_decomposition(aten.meshgrid) +def meshgrid( + *tensors: Union[TensorLikeType, List[TensorLikeType], Tuple[TensorLikeType]], + indexing: str, +) -> List[TensorLikeType]: + # This ref simultaneously handles two overloads (see stubs above) + # The `indexing` argument is currently optional for torch.meshgrid, but we + # plan to make the argument required: https://github.com/pytorch/pytorch/issues/50276 + if isinstance(tensors[0], (list, tuple)): + assert len(tensors) == 1 + tensors = tuple(tensors[0]) + + torch._check( + py_all(isinstance(a, TensorLike) for a in tensors), + lambda: "meshgrid expects its inputs to be tensors", + ) + + torch._check(len(tensors) > 0, lambda: "meshgrid expects a non-empty TensorList") + + for i in range(len(tensors) - 1): + torch._check( + tensors[i].dtype == tensors[i + 1].dtype, # type: ignore[union-attr] + lambda: "meshgrid expects all tensors to have the same dtype", + ) + torch._check( + tensors[i].device == tensors[i + 1].device, # type: ignore[union-attr] + lambda: "meshgrid expects all tensors to have the same device", + ) + + swap_first_and_second_tensors = False + if indexing == "xy": + swap_first_and_second_tensors = len(tensors) >= 2 + if swap_first_and_second_tensors: + tensors = (tensors[1], tensors[0], *tensors[2:]) + else: + torch._check( + indexing == "ij", + lambda: ( + 'torch.meshgrid: indexing must be one of "xy" or "ij", ' + f"but received: {indexing}" + ), + ) + + result_shape: List[int] = [] + for t in tensors: + assert isinstance(t, TensorLike) # mypy + torch._check( + t.ndim == 0 or t.ndim == 1, + lambda: f"torch.meshgrid: Expected 0D or 1D tensor in the tensor list but got: {t}", + ) + result_shape.append(t.numel()) + + grids: List[TensorLikeType] = [] + for i, t in enumerate(tensors): + assert isinstance(t, TensorLike) # mypy + if t.ndim == 0: + t = t.view((1,)) + grids.append(prims.broadcast_in_dim(t, result_shape, (i,))) + + if swap_first_and_second_tensors: + # Swap outputs if we originally swapped at the beginning + grids[0], grids[1] = grids[1], grids[0] + + return grids + + +# CompositeImplicitAutograd - don't register decomp +def movedim( + input: TensorLikeType, + source: Union[int, DimsSequenceType], + destination: Union[int, DimsSequenceType], +) -> TensorLikeType: + """ + Reference implementation of torch.movedim + """ + if type(source) is int: + source = (source,) + if type(destination) is int: + destination = (destination,) + + # Converts to list to produce a compatible error message with core PyTorch, + # which prints sequences in square brackets. + torch._check( + len(source) == len(destination), # type: ignore[arg-type] + lambda: ( + "movedim: Invalid source or destination dims: source " # type: ignore[arg-type] + f"({list(source)} dims) should contain the same number " # type: ignore[arg-type] + f"of dims as destination ({list(destination)} dims)" # type: ignore[arg-type] + ), + ) + + rank = input.ndim + ss = tuple(utils.canonicalize_dims(rank=rank, indices=source)) # type: ignore[arg-type] + ds = tuple(utils.canonicalize_dims(rank=rank, indices=destination)) # type: ignore[arg-type] + + sss = set(ss) + dss = set(ds) + + # See above on why this converts to list in error messages. + torch._check( + len(ss) == len(sss), + lambda: f"movedim: repeated dim in `source` ({list(source)})", # type: ignore[arg-type] + ) + torch._check( + len(ds) == len(dss), + lambda: f"movedim: repeated dim in `destination` ({list(destination)})", # type: ignore[arg-type] + ) + + m = dict(zip(ds, ss)) + dims = [] + si = 0 # source index + for di in range(rank): + # check if the destination index is in the mapping + s = m.get(di) + if s is not None: + # insert source index if found + dims.append(s) + else: + # insert source index sequentially, skipping indices from the mapping + while si in sss: + si += 1 + dims.append(si) + si += 1 + + result = torch.permute(input, tuple(dims)) + + return result + + +# NOTE: for convenience, shape can be a tuple of ints or a tuple containing a tuple of ints +@register_decomposition(aten.empty_strided) +@out_wrapper() +def empty_strided( + shape: Union[ShapeType, Tuple[ShapeType]], + strides: StrideType, + *, + dtype: Optional[torch.dtype] = None, + device: Optional[DeviceLikeType] = None, + layout: torch.layout = torch.strided, + requires_grad: bool = False, + pin_memory: bool = False, +) -> TensorLikeType: + # Layout == strided, pin_memory is False + utils.check_layout(layout) + utils.check_pin_memory(pin_memory) + + shape = utils.extract_shape_from_varargs(shape) + dtype = torch.get_default_dtype() if dtype is None else dtype + device = torch.device("cpu") if device is None else device + + return prims.empty_strided( + shape, + strides, + dtype=dtype, + device=device, + requires_grad=requires_grad, + ) + + +@register_decomposition(aten.eye) +@out_wrapper() +def eye( + n: int, + m: Optional[int] = None, + *, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, # TODO: unused +) -> TensorLikeType: + """ + Reference implementation of torch.eye + """ + if m is None: + m = n + + torch._check(n >= 0, lambda: f"n must be greater or equal to 0, got {n}") + torch._check(m >= 0, lambda: f"m must be greater or equal to 0, got {m}") + + range_n = torch.arange(n, dtype=torch.int64, device=device, requires_grad=False) + range_m = torch.arange(m, dtype=torch.int64, device=device, requires_grad=False) + + cond = range_n.unsqueeze(-1) == range_m + if dtype is torch.bool: + return cond + else: + one = torch.ones( + (1,), + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=False, + ) + return torch.where(cond, one, 0) + # TODO: Use requires_grad. All refs taking the requires_grad kwarg must + # return a leaf tensor. + # result.requires_grad_(requires_grad) + + +@register_decomposition([aten.full.default, aten.full.out]) +@out_wrapper() +def full( + shape: ShapeType, + fill_value: NumberType, + *, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, +) -> TensorLikeType: + utils.check_layout(layout) + utils.check_pin_memory(pin_memory) + + dtype = dtype if dtype is not None else utils.type_to_dtype(type(fill_value)) + device = device if device is not None else torch.device("cpu") + + e = empty( + shape, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + return torch.fill(e, fill_value) # type: ignore[arg-type] + + +def full_like( + a: TensorLikeType, + fill_value: NumberType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, + memory_format: torch.memory_format = torch.preserve_format, +) -> TensorLikeType: + e = torch.empty_like( + a, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + memory_format=memory_format, + ) + return fill(e, fill_value) + + +@register_decomposition(aten.zeros_like) +@out_wrapper() +def zeros_like( + a: TensorLikeType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, + memory_format: torch.memory_format = torch.preserve_format, +) -> TensorLikeType: + return torch.full_like( + a, + False if (dtype or a.dtype) == torch.bool else 0, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + memory_format=memory_format, + ) + + +@register_decomposition(aten.ones_like) +@out_wrapper() +def ones_like( + a: TensorLikeType, + *, + dtype: Optional[torch.dtype] = None, + layout: Optional[torch.layout] = None, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, + requires_grad: bool = False, + memory_format: torch.memory_format = torch.preserve_format, +) -> TensorLikeType: + return torch.full_like( + a, + True if (dtype or a.dtype) == torch.bool else 1, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + requires_grad=requires_grad, + memory_format=memory_format, + ) + + +@register_decomposition(aten.randn.default) +@out_wrapper() +def randn( + *shape, + dtype: Optional[torch.dtype] = None, + device: Optional[DeviceLikeType] = None, + layout: Optional[torch.layout] = None, + requires_grad: bool = False, + pin_memory: bool = False, +) -> TensorLikeType: + utils.check_pin_memory(pin_memory) + + shape_ = utils.extract_shape_from_varargs(shape) + + dtype = utils.dtype_or_default(dtype) + device = utils.device_or_default(device) + + return prims.normal( + shape_, + mean=0.0, + std=1.0, + dtype=dtype, + device=device, + requires_grad=requires_grad, + ) + + +def scalar_tensor( + a: NumberType, + *, + dtype: Optional[torch.dtype] = None, + layout: torch.layout = torch.strided, + device: Optional[DeviceLikeType] = None, + pin_memory: bool = False, +) -> TensorLikeType: + utils.check_layout(layout) + utils.check_pin_memory(pin_memory) + dtype = dtype if dtype is not None else utils.type_to_dtype(type(a)) + device = device if device is not None else torch.device("cpu") + return prims.scalar_tensor(a, dtype=dtype, device=device) + + +# +# Randomness References +# + + +def _uniform_helper( + shape: ShapeType, + low: Union[bool, int, float] = 0.0, + high: Union[bool, int, float] = 1.0, + *, + dtype: torch.dtype, + device: DeviceLikeType, +) -> TensorLikeType: + utils.validate_shape(shape) + + assert isinstance(low, Number) + assert isinstance(high, Number) + low = sym_float(low) + high = sym_float(high) + + assert isinstance(dtype, torch.dtype) + device = utils.canonicalize_device(device) + + return prims._uniform_helper(shape, low=low, high=high, dtype=dtype, device=device) + + +@register_decomposition(aten.masked_fill) +@out_wrapper() +def masked_fill(a: TensorLikeType, mask: TensorLikeType, value: TensorOrNumberLikeType): + python_type = utils.dtype_to_type(a.dtype) + if isinstance(value, Number): + value_type = type(value) + else: + # NOTE: Could not use value = item(value) as it resulted in + # RuntimeError: Cannot cast FakeTensor(cpu) to number + value_ndim = value.ndim + torch._check( + value_ndim == 0, + lambda: f"only supports a 0-dimensional value tensor, but got tensor with {value_ndim} dimension", + ) + # `masked_fill` allows cpu scalar to be moved to cuda and xpu but not otherwise. + is_cpu_scalar = a.device.type in ["cuda", "xpu"] and value.device.type == "cpu" + torch._check( + is_cpu_scalar or value.device == a.device, + lambda: "Expected `value` to be on same device as `a`", + ) + value_type = utils.dtype_to_type(value.dtype) + + if value_type is complex: + # only downcasting from complex to lower type is not allowed. + # We allow casting `value` to lower type for other case + # Eg. float -> int. + # Ref: https://github.com/pytorch/pytorch/issues/79195 + torch._check( + utils.is_weakly_lesser_type(value_type, python_type), + lambda: f"could not convert to type {python_type} without overflow", + ) + + # Since `where` allows type-promotion, + # cast value to correct type before passing to `where` + value = _maybe_convert_to_dtype(value, a.dtype) + r = torch.where(mask, value, a) # type: ignore[arg-type] + + # aten.mask_fill always return a new contiguous tensor + # contiguous() is needed to correctly model the output stride + return r.contiguous() + + +@register_decomposition(aten.masked_fill_) +def masked_fill_( + a: TensorLikeType, mask: TensorLikeType, value: TensorOrNumberLikeType +) -> TensorLikeType: + b = torch.masked_fill(a, mask, value) # type: ignore[arg-type] + a.copy_(b) + return a + + +# CompositeImplicitAutograd - don't register decomp +def allclose( + a: TensorLikeType, + b: TensorLikeType, + rtol: float = 1e-05, + atol: float = 1e-08, + equal_nan: bool = False, +) -> bool: + """ + Reference implementation of torch.allclose + """ + _check_close_args(name="torch.allclose", a=a, b=b, rtol=rtol, atol=atol) + + return bool( + torch.all(torch.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)).item() + ) + + +def equal(a: TensorLikeType, b: TensorLikeType) -> bool: + utils.check_same_device(a, b, allow_cpu_scalar_tensors=False) + utils.check_same_dtype(a, b) + + # Shape check + if a.ndim != b.ndim: + return False + + for x, y in zip(a.shape, b.shape): + if x != y: + return False + + # Short-circuits if there are no elements to validate + if a.numel() == 0: + return True + + return item(all(eq(a, b))) # type: ignore[return-value] + + +@register_decomposition(aten.norm) +@out_wrapper(exact_dtype=True) +def norm( + input: TensorLikeType, + p: Optional[Union[float, str]] = "fro", + dim: Optional[DimsType] = None, + keepdim: bool = False, + *, + dtype: Optional[torch.dtype] = None, +) -> TensorLikeType: + # In these cases we compute the "Frobenius norm" + if ( + p == "fro" and (dim is None or isinstance(dim, Dim) or len(dim) <= 2) + ) or p is None: + p = 2 + if isinstance(dim, Dim): + dim = [dim] + if isinstance(p, str): + # Here we either call the nuclear norm, or we call matrix_norm with some arguments + # that will throw an error + if dim is None: + dim = tuple(range(input.ndim)) + return torch.linalg.matrix_norm(input, p, dim, keepdim, dtype=dtype) + else: + return torch.linalg.vector_norm(input, p, dim, keepdim, dtype=dtype) + + +@register_decomposition(aten.trace) +@out_wrapper() +def trace(self: TensorLikeType) -> TensorLikeType: + torch._check( + self.ndim == 2, lambda: "expected a matrix, but got tensor with dim {self.ndim}" + ) + return torch.sum(torch.diag(self, 0)) + + +def _make_r_binary_op(base_op): + def rop( + a: Union[TensorLikeType, NumberType], + b: Union[TensorLikeType, NumberType], + ) -> TensorLikeType: + return base_op(b, a) + + return rop + + +rtruediv = _make_r_binary_op(true_divide) +rfloordiv = _make_r_binary_op(floor_divide) +rpow = _make_r_binary_op(pow) + + +@register_decomposition(aten.triu) +@out_wrapper() +def triu(a: TensorLikeType, diagonal: int = 0) -> TensorLikeType: + torch._check( + a.ndim >= 2, lambda: "triu: input tensor must have at least 2 dimensions" + ) + h, w = a.shape[-2:] + mask = ( + torch.arange(w, device=a.device).unsqueeze(-2) + - torch.arange(h, device=a.device).unsqueeze(-1) + ) >= diagonal + + # aten.triu always returns a new contiguous tensor + # contiguous() is needed to correctly model the output stride + return utils.mask_tensor(mask, a).contiguous() + + +@register_decomposition(aten.tril) +@out_wrapper() +def tril(a: TensorLikeType, diagonal: int = 0) -> TensorLikeType: + torch._check( + a.ndim >= 2, lambda: "tril: input tensor must have at least 2 dimensions" + ) + h, w = a.shape[-2:] + mask = ( + torch.arange(w, device=a.device).unsqueeze(-2) + - torch.arange(h, device=a.device).unsqueeze(-1) + ) <= diagonal + + # aten.tril always returns a new contiguous tensor + # contiguous() is needed to correctly model the output stride + return utils.mask_tensor(mask, a).contiguous() + + +# This is based on get_tril_size in aten/src/ATen/native/TensorFactories.h +# The components of the matrix that belong to the lower triangle with offset +# form a pentagon that can be broken down into a top trapezoid and a bottom +# rectangle. For the implementation of tril_indices, we need the sizes of +# both of these, as well as the length of the top side of the trapezoid. +def _get_tril_sizes(row: int, col: int, offset: int) -> Tuple[int, int, int]: + if row == 0 or col == 0: + return 0, 0, 0 + + m_first_row = min(col, 1 + offset) if offset > 0 else int(row + offset > 0) + m_last_row = max(0, min(col, row + offset)) + n_row_all = max(0, min(row, row + offset)) + n_row_trapezoid = m_last_row - m_first_row + 1 + + # Number of elements in top trapezoid + trapezoid_size = (m_first_row + m_last_row) * n_row_trapezoid // 2 + # Number of elements in bottom rectangle + diff_row = n_row_all - n_row_trapezoid + rectangle_size = max(0, diff_row * col) + + return trapezoid_size, rectangle_size, m_first_row + + +def _trilu_checks( + name: str, + row: int, + col: int, + dtype: torch.dtype, + layout: torch.layout, + pin_memory: bool, +): + torch._check(row >= 0, lambda: f"row must be non-negative, got {row}") + torch._check(col >= 0, lambda: f"col must be non-negative, got {col}") + torch._check( + dtype in (torch.int32, torch.int64), + lambda: f"\"{name}\" not implemented for '{dtype}'", + ) + + +# This is based on tril_indices_cuda in aten/src/ATen/native/cuda/TensorFactories.cu +@register_decomposition(aten.tril_indices) +@out_wrapper() +def tril_indices( + row: int, + col: int, + offset: int = 0, + *, + dtype: torch.dtype = torch.long, + layout: torch.layout = torch.strided, + device: DeviceLikeType = "cpu", + pin_memory: bool = False, +) -> TensorLikeType: + _trilu_checks("tril_indices", row, col, dtype, layout, pin_memory) + + trapezoid_size, rectangle_size, m_first_row = _get_tril_sizes(row, col, offset) + row_offset = max(0, -offset) + + arange_kw = partial( + torch.arange, layout=layout, device=device, pin_memory=pin_memory + ) + + # first we do the indices for top trapezoid + xs1 = arange_kw(0, trapezoid_size, dtype=torch.float64) + b = m_first_row - 0.5 + row_inds1 = torch.floor(-b + torch.sqrt(b * b + 2 * xs1)) + col_inds1 = torch.floor(xs1 - (2 * m_first_row - 1 + row_inds1) * row_inds1 * 0.5) + row_inds1 = _maybe_convert_to_dtype(row_inds1 + row_offset, dtype) + col_inds1 = _maybe_convert_to_dtype(col_inds1, dtype) + + # then bottom rectangle + xs2 = arange_kw(0, rectangle_size, dtype=dtype) + row_inds2 = xs2 // col + (col - m_first_row + 1 + row_offset) + col_inds2 = xs2 % col + + return torch.stack( + (torch.cat((row_inds1, row_inds2)), torch.cat((col_inds1, col_inds2))) + ) + + +# Similar to _get_tril_sizes above, but here there is a top trapezoid and +# a bottom rectangle instead. Note that you can't reduce this to +# _get_tril_sizes(col, row, -offset) because that would correspond to +# decomposing into a left trapezoid and right rectangle. +def _get_triu_sizes(row: int, col: int, offset: int) -> Tuple[int, int, int]: + if row == 0 or col == 0: + return 0, 0, 0 + + m_first_row = max(0, col - offset) if offset > 0 else col + + # Number of elements in top rectangle + rectangle_size = max(0, min(row, -offset) * col) + + # Number of elements in bottom trapezoid + trapezoid_size_tril, rectangle_size_tril, _ = _get_tril_sizes(row, col, offset - 1) + triu_size = row * col - (trapezoid_size_tril + rectangle_size_tril) + trapezoid_size = triu_size - rectangle_size + + return trapezoid_size, rectangle_size, m_first_row + + +@register_decomposition(aten.triu_indices) +@out_wrapper() +def triu_indices( + row: int, + col: int, + offset: int = 0, + *, + dtype: torch.dtype = torch.long, + layout: torch.layout = torch.strided, + device: DeviceLikeType = "cpu", + pin_memory: bool = False, +) -> TensorLikeType: + _trilu_checks("triu_indices", row, col, dtype, layout, pin_memory) + + trapezoid_size, rectangle_size, m_first_row = _get_triu_sizes(row, col, offset) + col_offset = max(0, offset) + + arange_kw = partial( + torch.arange, layout=layout, device=device, pin_memory=pin_memory + ) + + # indices for top rectangle + xs2 = arange_kw(0, rectangle_size, dtype=dtype) + row_inds2 = xs2 // col + col_inds2 = xs2 % col + + # bottom trapezoid + xs1 = arange_kw(0, trapezoid_size, dtype=torch.float64) + b = -0.5 - m_first_row + row_inds1 = torch.floor(-b - torch.sqrt(b * b - 2 * xs1)) + col_inds1 = torch.floor(xs1 - ((2 * m_first_row - 1 - row_inds1) * row_inds1) * 0.5) + row_inds1 = _maybe_convert_to_dtype(row_inds1, dtype) + col_inds1 = _maybe_convert_to_dtype(col_inds1, dtype) + + if col: + row_inds1 = row_inds1 + (rectangle_size // col) + col_inds1 = col_inds1 + col_offset + + return torch.stack( + (torch.cat((row_inds2, row_inds1)), torch.cat((col_inds2, col_inds1))) + ) + + +@register_decomposition(aten.bucketize) +@out_wrapper(exact_dtype=True) +def bucketize( + a: TensorLikeType, + boundaries: TensorLikeType, + *, + out_int32: bool = False, + right: bool = False, +): + torch._check( + boundaries.dim() == 1, + lambda: f"boundaries tensor must be 1 dimension but got dim({boundaries.dim()})", + ) + + out_dtype = torch.int32 if out_int32 else torch.int64 + n_boundaries = boundaries.shape[-1] + if n_boundaries == 0: + return torch.zeros_like(a) + # We are trying to find the bucket (defined by pairs of consecutive elements of `boundaries`) + # each element of `a` belongs to. We use binary search to achieve logarithimic complexity, + # but each step of the search is done "in parallel" over all elements of `a` + # can't use int32 as indexes, so we have to do all computations with int64 and convert at the end + start = torch.zeros(a.shape, device=a.device, dtype=torch.int64) + end = start + n_boundaries + # Max depth of the binary search + # Since we can't break out of the loop at different points for different elements of a, + # we just do the max amount of iterations that binary search requires and add condition + # tensor (cond_update below) to stop updating once the search terminates + + # For first iteration through loop we can skip some checks, we have separate implementation + mid = start + (end - start) // 2 + mid_val = boundaries[mid] + if right: + cond_mid = mid_val > a + else: + cond_mid = mid_val >= a + start = torch.where(cond_mid, start, mid + 1) + + if n_boundaries > 1: + cond_update = torch.ones_like(a, dtype=torch.bool) + niters = int(math.log2(n_boundaries)) + for _ in range(niters): + end = torch.where(cond_mid & cond_update, mid, end) + cond_update = start < end + # start might end up pointing to 1 past the end, we guard against that + mid = torch.where(cond_update, start + (end - start) // 2, 0) + mid_val = boundaries[mid] + # If right is true, the buckets are closed on the *left* + # (i.e., we are doing the equivalent of std::upper_bound in C++) + # Otherwise they are closed on the right (std::lower_bound) + if right: + cond_mid = mid_val > a + else: + cond_mid = mid_val >= a + start = torch.where((~cond_mid) & cond_update, mid + 1, start) + + return start.to(dtype=out_dtype) + + +@register_decomposition(aten.cauchy) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def cauchy(self, median=0, sigma=1, generator=None): + assert generator is None + torch._check( + not utils.is_complex_dtype(self.dtype) + and not utils.is_integer_dtype(self.dtype) + and not utils.is_boolean_dtype(self.dtype), + lambda: f"Cauchy distribution is a continuous probability distribution. \ + dtype must be a floating point but you specified {self.dtype}", + ) + torch._check( + sigma > 0.0, + lambda: f"cauchy_ expects sigma > 0.0, but found sigma={sigma}", + ) + return median + sigma * torch.tan(math.pi * (torch.rand_like(self) - 0.5)) + + +@register_decomposition(aten.exponential) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def exponential(self, rate=1, generator=None): + assert generator is None + torch._check( + not utils.is_complex_dtype(self.dtype) + and not utils.is_integer_dtype(self.dtype) + and not utils.is_boolean_dtype(self.dtype), + lambda: f"Exponential distribution is a continuous probability distribution. \ + dtype must be a floating point but you specified {self.dtype}", + ) + torch._check( + rate > 0.0, + lambda: f"exponential_ expects lambda > 0.0, but found lambda={rate}", + ) + return -1 / rate * torch.log1p(-torch.rand_like(self)) + + +@register_decomposition(aten.geometric) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def geometric(self, p, generator=None): + assert generator is None + # TODO: fix inductor rand_like for integer, bool dtypes + torch._check( + not utils.is_complex_dtype(self.dtype) + and not utils.is_boolean_dtype(self.dtype), + lambda: f"geometric not implemented for {self.dtype}", + ) + torch._check( + 0 < p and p < 1, + lambda: f"geometric_ expects p to be in (0, 1), but got p={p}", + ) + return torch.floor(torch.log1p(-torch.rand_like(self)) / math.log1p(-p)) + 1 + + +@register_decomposition(aten.log_normal) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self",), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def log_normal(self, mean=1, std=2, generator=None): + assert generator is None + torch._check( + not utils.is_complex_dtype(self.dtype) + and not utils.is_integer_dtype(self.dtype) + and not utils.is_boolean_dtype(self.dtype), + lambda: f"log_normal not implemented for {self.dtype}", + ) + torch._check( + 0 < std, + lambda: f"log_normal_ expects std > 0.0, but found std={std}", + ) + return torch.exp(std * torch.randn_like(self) + mean) + + +# TODO: add support for functionalization aten.normal_functional +# NOTE: the device and dtype will be ignored when shape is None +@register_decomposition(aten.normal) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=( + "mean", + "std", + ), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def normal( + mean=0, + std=1, + size=None, + *, + generator=None, + dtype=None, + layout=None, + device=None, + pin_memory=None, +): + assert layout is None or layout == torch.strided + + if not isinstance(std, TensorLike): + torch._check( + std >= 0, lambda: f"normal expects std >= 0.0, but found std {std}" + ) + + if size is None: + tensors = tuple(t for t in (mean, std) if isinstance(t, TensorLike)) + torch._check( + len(tensors) > 0, + lambda: "normal expects that either mean or std is a tensor, or size is defined", + ) + torch._check( + layout is None and pin_memory is None, + lambda: "Cannot pass layout, or pin_memory without size", + ) + + size = _broadcast_shapes(*(t.shape for t in tensors)) + dtype = tensors[0].dtype + device = tensors[0].device + else: + torch._check( + not isinstance(mean, TensorLike) and not isinstance(std, TensorLike), + lambda: "normal expects mean and std to be scalars when size is defined", + ) + dtype = torch.get_default_dtype() if dtype is None else dtype + device = torch.device("cpu") if device is None else device + + normal_samples = prims.normal( + size, + mean=0.0, + std=1.0, + dtype=dtype, + device=device, + requires_grad=False, + generator=generator, + ) + return std * normal_samples + mean + + +@register_decomposition(aten.normal_) +def normal_(self, mean=0, std=1, *, generator=None): + return normal(mean, std, self.shape, out=self, generator=generator) + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def rad2deg(self: TensorLikeType): + torch._check( + not utils.is_complex_dtype(self.dtype), + lambda: "rad2deg is not supported for complex tensors.", + ) + M_180_PI = 57.295779513082320876798154814105170332405472466564 + return self * M_180_PI + + +@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT) +def deg2rad(self: TensorLikeType): + torch._check( + not utils.is_complex_dtype(self.dtype), + lambda: "deg2rad is not supported for complex tensors.", + ) + M_PI_180 = 0.017453292519943295769236907684886127134428718885417 + return self * M_PI_180 + + +@register_decomposition(aten.count_nonzero) +@out_wrapper() +def count_nonzero(self, dim: Optional[DimsType] = None): + return (self != 0).sum(dim) + + +def _dot_check(self, other): + torch._check( + self.dim() == 1 and other.dim() == 1, + lambda: f"1D tensors expected, but got {self.dim()}D and {other.dim()}D tensors", + ) + + def numel_error(): + return ( + f"inconsistent tensor size, expected tensor [{self.numel()}] and src [{other.numel()}] to have the" + f"same number of elements, but got {self.numel()} and {other.numel()} elements respectively" + ) + + torch._check(self.numel() == other.numel(), numel_error) + + +@register_decomposition(aten.dot) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self", "other"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def dot(self, other): + if self.is_complex(): + if self.is_conj(): + if other.is_conj(): + return torch.dot(self.conj(), other.conj()).conj() + else: + return torch.vdot(self.conj(), other) + elif other.is_conj(): + return torch.vdot(other.conj(), self) + + _dot_check(self, other) + return (self * other).sum() + + +@register_decomposition(aten.vdot) +@out_wrapper() +@elementwise_type_promotion_wrapper( + type_promoting_args=("self", "other"), + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, +) +def vdot(self, other): + if not self.is_complex(): + return torch.dot(self, other) + + if self.is_conj(): + if other.is_conj(): + return torch.vdot(other.conj(), self.conj()) + else: + return torch.dot(self.conj(), other) + elif other.is_conj(): + return torch.dot(self, other.conj()).conj() + + _dot_check(self, other) + # The decomposition fails if you do self.conj()... not sure why + return (self.conj_physical() * other).sum() + + +# inplace +abs_ = _make_inplace(abs) +acos_ = _make_inplace(acos) +acosh_ = _make_inplace(acosh) +add_ = _make_inplace(add) +addcmul_ = _make_inplace(addcmul) +addcdiv_ = _make_inplace(addcdiv) +asin_ = _make_inplace(asin) +asinh_ = _make_inplace(asinh) +atan_ = _make_inplace(atan) +atanh_ = _make_inplace(atanh) +atan2_ = _make_inplace(atan2) +bitwise_and_ = _make_inplace(bitwise_and) +bitwise_left_shift_ = _make_inplace(bitwise_left_shift) +bitwise_not_ = _make_inplace(bitwise_not) +bitwise_or_ = _make_inplace(bitwise_or) +bitwise_right_shift_ = _make_inplace(bitwise_right_shift) +bitwise_xor_ = _make_inplace(bitwise_xor) +ceil_ = _make_inplace(ceil) +clamp_ = _make_inplace(clamp) +clamp_min_ = _make_inplace(clamp_min) +clamp_max_ = _make_inplace(clamp_max) +conj_physical_ = _make_inplace(conj_physical) +copysign_ = _make_inplace(copysign) +cos_ = _make_inplace(cos) +cosh_ = _make_inplace(cosh) +cumsum_ = _make_inplace(cumsum) +cumprod_ = _make_inplace(cumprod) +deg2rad_ = _make_inplace(deg2rad) +digamma_ = _make_inplace(digamma) +div_ = _make_inplace(div) +eq_ = _make_inplace(eq) +erf_ = _make_inplace(erf) +erfc_ = _make_inplace(erfc) +erfinv_ = _make_inplace(erfinv) +exp_ = _make_inplace(exp) +exp2_ = _make_inplace(exp2) +expm1_ = _make_inplace(expm1) +float_power_ = _make_inplace(float_power) +floor_ = _make_inplace(floor) +floor_divide_ = _make_inplace(floor_divide) +fmod_ = _make_inplace(fmod) +frac_ = _make_inplace(frac) +gcd_ = _make_inplace(gcd) +ge_ = _make_inplace(ge) +gt_ = _make_inplace(gt) +heaviside_ = _make_inplace(heaviside) +hypot_ = _make_inplace(hypot) +igamma_ = _make_inplace(igamma) +igammac_ = _make_inplace(igammac) +i0_ = _make_inplace(i0) +lcm_ = _make_inplace(lcm) +le_ = _make_inplace(le) +lerp_ = _make_inplace(lerp) +lgamma_ = _make_inplace(lgamma) +log10_ = _make_inplace(log10) +log1p_ = _make_inplace(log1p) +log2_ = _make_inplace(log2) +log_ = _make_inplace(log) +logical_and_ = _make_inplace(logical_and) +logical_not_ = _make_inplace(logical_not) +logical_or_ = _make_inplace(logical_or) +logical_xor_ = _make_inplace(logical_xor) +lt_ = _make_inplace(lt) +mul_ = _make_inplace(mul) +mvlgamma_ = _make_inplace(mvlgamma) +nan_to_num_ = _make_inplace(nan_to_num) +ne_ = _make_inplace(ne) +neg_ = _make_inplace(neg) +nextafter_ = _make_inplace(nextafter) +pow_ = _make_inplace(pow) +rad2deg_ = _make_inplace(rad2deg) +reciprocal_ = _make_inplace(reciprocal) +remainder_ = _make_inplace(remainder) +rsqrt_ = _make_inplace(rsqrt) +sgn_ = _make_inplace(sgn) +sigmoid_ = _make_inplace(sigmoid) +sign_ = _make_inplace(sign) +sin_ = _make_inplace(sin) +sinc_ = _make_inplace(sinc) +sinh_ = _make_inplace(sinh) +sqrt_ = _make_inplace(sqrt) +square_ = _make_inplace(square) +sub_ = _make_inplace(sub) +tan_ = _make_inplace(tan) +tanh_ = _make_inplace(tanh) +tril_ = _make_inplace(tril) +triu_ = _make_inplace(triu) +true_divide_ = _make_inplace(true_divide) +trunc_ = _make_inplace(trunc) +xlogy_ = _make_inplace(xlogy) +cauchy_ = _make_inplace(cauchy) +exponential_ = _make_inplace(exponential) +geometric_ = _make_inplace(geometric) +log_normal_ = _make_inplace(log_normal) +zero_ = _make_inplace(zero) + + +# xref: isStorage in torch/csrc/DynamicTypes.cpp +def _isStorage(obj): + return isinstance(obj, (torch.TypedStorage, torch.UntypedStorage)) + + +# xref: compute_sizes in torch/csrc/utils/tensor_new.cpp +def _compute_sizes(seq, scalar_type): + MAX_DIMS = 128 + is_storage = _isStorage(seq) + sizes = [] + # TODO: this is inaccurate, we actually test PySequence_Check + while isinstance(seq, (list, tuple)): + length = len(seq) + if is_storage: + length //= scalar_type.itemsize + sizes.append(length) + if len(sizes) > MAX_DIMS: + raise ValueError(f"too many dimensions '{type(seq).__name__}'") + if length == 0: + break + try: + handle = seq[0] + except Exception: + raise ValueError( # noqa: TRY200 + f"could not determine the shape of object type '{type(seq).__name__}'" + ) + seq = handle + + return sizes + + +# xref: infer_scalar_type in torch/csrc/utils/tensor_new.cpp +def _infer_scalar_type(obj): + if isinstance(obj, FloatLike): + return torch.get_default_dtype() + if isinstance(obj, IntLike) and not isinstance(obj, bool): # careful! + return torch.int64 + if isinstance(obj, bool): + return torch.bool + if isinstance(obj, complex): + default_dtype = torch.get_default_dtype() + if default_dtype is torch.float: + return torch.cfloat + elif default_dtype is torch.double: + return torch.cdouble + else: + raise RuntimeError("invalid default scalar type for complex") + if isinstance(obj, torch.Tensor): + return obj.dtype + if isinstance(obj, str): + raise TypeError(f"new(): invalid data type '{type(obj).__name__}'") + # TODO: this is inaccurate, we actually test PySequence_Check + if isinstance(obj, (list, tuple)): + scalarType = None + length = len(obj) + # match NumPy semantics, except use default tensor type instead of + # double. + if length == 0: + return torch.get_default_dtype() + for i in range(length): + cur_item = obj[i] + # TODO: test this + """ + if cur_item is obj: + raise TypeError("new(): self-referential lists are incompatible") + """ + item_scalarType = _infer_scalar_type(cur_item) # recurse! + if scalarType is not None: + scalarType = torch.promote_types(scalarType, item_scalarType) + else: + scalarType = item_scalarType + if scalarType is torch.cdouble: + # this won't change (unless we hit undefined, but that will + # fail later) + return scalarType + return scalarType + raise RuntimeError(f"Could not infer dtype of {type(obj).__name__}") + + +# Analogous to recursive_store +# xref: recursive_store in torch/csrc/utils/tensor_new.cpp +def _recursive_build(scalarType: torch.dtype, obj: TensorOrNumberLikeType): + if isinstance(obj, Tensor) and obj.ndim <= 1: + obj = obj.item() + # fall through into next case + if isinstance(obj, Number): + return torch.scalar_tensor(obj, dtype=scalarType) + + seq = obj + return torch.stack([_recursive_build(scalarType, item) for item in seq]) + + +# xref: internal_new_from_data in torch/csrc/utils/tensor_new.cpp +def _internal_new_from_data( + options, + scalar_type, + device_opt, + data, + copy_variables, + copy_numpy, + type_inference, + pin_memory=False, +): + if isinstance(data, torch.Tensor): + torch._check( + not pin_memory, lambda: "Can't pin tensor constructed from a variable" + ) + var = data + if copy_variables: + var = var.detach() + inferred_scalar_type = var.dtype if type_inference else scalar_type + device = device_opt if device_opt is not None else var.device + return var.to( + device=device, + dtype=inferred_scalar_type, + non_blocking=False, + copy=copy_variables, + ) + + # TODO + if hasattr(data, "__cuda_array_interface__"): + return NotImplemented + + # TODO: test for numpy input with PyArray_Check + + device = device_opt if device_opt is not None else options["device"] + inferred_scalar_type = _infer_scalar_type(data) if type_inference else scalar_type + + # NB: Don't need to avoid tracing, as we aren't going to do any manual + # pointer filling tricks + if _isStorage(data): + return NotImplemented + else: + if torch.device(device).type == "meta": + return NotImplemented + + # In the C implementation, we would directly start poking the memory + # of a freshly allocated CPU tensor. Here, we're going to do an + # alternate, heinously slow implementation: turn each individual + # scalar into a tensor, and then repeatedly cat them together + tensor = _recursive_build(inferred_scalar_type, data) + + tensor = tensor.to(device, inferred_scalar_type, non_blocking=False, copy=False) + + # NB: lift_fresh is not needed, because we built the tensor from scalars + # guaranteeing a fresh tensor in this case + return tensor + + +# xref: tensor_ctor in torch/csrc/utils/tensor_new.cpp +def tensor(data, *, dtype=None, device=None, pin_memory=False, requires_grad=False): + # TODO (or not): support names kwarg + if isinstance(data, torch.Tensor): + warnings.warn( + "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() " + "or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor)" + ) + type_inference = dtype is None + new_tensor = _internal_new_from_data( + # device="cpu" because that's what you get with torch.tensor(2) no + # device by default + {"device": "cpu"}, # TODO: use torch.get_default_tensor_type + dtype if dtype is not None else torch.get_default_dtype(), + device, + data, + copy_variables=True, + copy_numpy=True, + type_inference=type_inference, + pin_memory=pin_memory, + ) + new_tensor.detach_() + new_tensor.requires_grad_(requires_grad) + return new_tensor + + +# Views +# We can't model these as above, as the pattern of doing `op(a, out=a)` does not work for a view function +# given that it does not reshape the input (it just copies the result into it) + +# squeeze_ = _make_inplace(squeeze) +# t_ = _make_inplace(t) +# transpose_ = _make_inplace(transpose) +# unsqueeze_ = _make_inplace(unsqueeze) + + +import torch._refs._conversions +import torch._refs.fft +import torch._refs.linalg +import torch._refs.nn.functional +import torch._refs.special