Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_content_store.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cpp_extension_versioner.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cuda_trace.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_device.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_foreach_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_mode_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_python_dispatch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_pytree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_zip.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/backend_registration.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/checkpoint.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/deterministic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/file_baton.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/flop_counter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/hooks.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/mkldnn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/mobile_optimizer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/model_zoo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/show_pickle.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/throughput_benchmark.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/__init__.py +6 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/blas_compare_setup.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/compare.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/fuzzer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/op_benchmark.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/simple_timeit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/spectral_ops_fuzz_test.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/blas_compare_setup.py +221 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/compare.py +98 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/fuzzer.py +85 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/op_benchmark.py +103 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/simple_timeit.py +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/spectral_ops_fuzz_test.py +113 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/binary.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/sparse_binary.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/sparse_unary.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/spectral.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/unary.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/binary.py +106 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/sparse_binary.py +106 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/sparse_unary.py +82 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/spectral.py +93 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/unary.py +81 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/utils/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/utils/__pycache__/__init__.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_content_store.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cpp_extension_versioner.cpython-310.pyc
ADDED
Binary file (1.85 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cuda_trace.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_device.cpython-310.pyc
ADDED
Binary file (3.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_foreach_utils.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_mode_utils.cpython-310.pyc
ADDED
Binary file (609 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_python_dispatch.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_pytree.cpython-310.pyc
ADDED
Binary file (44.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_zip.cpython-310.pyc
ADDED
Binary file (1.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/backend_registration.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/checkpoint.cpython-310.pyc
ADDED
Binary file (43.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/deterministic.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/file_baton.cpython-310.pyc
ADDED
Binary file (1.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/flop_counter.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/hooks.cpython-310.pyc
ADDED
Binary file (8.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/mkldnn.cpython-310.pyc
ADDED
Binary file (7.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/mobile_optimizer.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/model_zoo.cpython-310.pyc
ADDED
Binary file (268 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/show_pickle.cpython-310.pyc
ADDED
Binary file (5.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/throughput_benchmark.cpython-310.pyc
ADDED
Binary file (6.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.benchmark.utils.common import * # noqa: F403
|
2 |
+
from torch.utils.benchmark.utils.timer import * # noqa: F403
|
3 |
+
from torch.utils.benchmark.utils.compare import * # noqa: F403
|
4 |
+
from torch.utils.benchmark.utils.fuzzer import * # noqa: F403
|
5 |
+
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import * # noqa: F403
|
6 |
+
from torch.utils.benchmark.utils.sparse_fuzzer import * # noqa: F403
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (508 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (203 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/blas_compare_setup.cpython-310.pyc
ADDED
Binary file (4.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/compare.cpython-310.pyc
ADDED
Binary file (3.54 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/fuzzer.cpython-310.pyc
ADDED
Binary file (2.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/op_benchmark.cpython-310.pyc
ADDED
Binary file (4.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/simple_timeit.cpython-310.pyc
ADDED
Binary file (897 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/spectral_ops_fuzz_test.cpython-310.pyc
ADDED
Binary file (4.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/blas_compare_setup.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
try:
|
7 |
+
# no type stub for conda command line interface
|
8 |
+
import conda.cli.python_api # type: ignore[import]
|
9 |
+
from conda.cli.python_api import Commands as conda_commands
|
10 |
+
except ImportError:
|
11 |
+
# blas_compare.py will fail to import these when it's inside a conda env,
|
12 |
+
# but that's fine as it only wants the constants.
|
13 |
+
pass
|
14 |
+
|
15 |
+
|
16 |
+
WORKING_ROOT = "/tmp/pytorch_blas_compare_environments"
|
17 |
+
MKL_2020_3 = "mkl_2020_3"
|
18 |
+
MKL_2020_0 = "mkl_2020_0"
|
19 |
+
OPEN_BLAS = "open_blas"
|
20 |
+
EIGEN = "eigen"
|
21 |
+
|
22 |
+
|
23 |
+
GENERIC_ENV_VARS = ("USE_CUDA=0", "USE_ROCM=0")
|
24 |
+
BASE_PKG_DEPS = (
|
25 |
+
"cmake",
|
26 |
+
"hypothesis",
|
27 |
+
"ninja",
|
28 |
+
"numpy",
|
29 |
+
"pyyaml",
|
30 |
+
"setuptools",
|
31 |
+
"typing_extensions",
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
SubEnvSpec = collections.namedtuple(
|
36 |
+
"SubEnvSpec", (
|
37 |
+
"generic_installs",
|
38 |
+
"special_installs",
|
39 |
+
"environment_variables",
|
40 |
+
|
41 |
+
# Validate install.
|
42 |
+
"expected_blas_symbols",
|
43 |
+
"expected_mkl_version",
|
44 |
+
))
|
45 |
+
|
46 |
+
|
47 |
+
SUB_ENVS = {
|
48 |
+
MKL_2020_3: SubEnvSpec(
|
49 |
+
generic_installs=(),
|
50 |
+
special_installs=("intel", ("mkl=2020.3", "mkl-include=2020.3")),
|
51 |
+
environment_variables=("BLAS=MKL",) + GENERIC_ENV_VARS,
|
52 |
+
expected_blas_symbols=("mkl_blas_sgemm",),
|
53 |
+
expected_mkl_version="2020.0.3",
|
54 |
+
),
|
55 |
+
|
56 |
+
MKL_2020_0: SubEnvSpec(
|
57 |
+
generic_installs=(),
|
58 |
+
special_installs=("intel", ("mkl=2020.0", "mkl-include=2020.0")),
|
59 |
+
environment_variables=("BLAS=MKL",) + GENERIC_ENV_VARS,
|
60 |
+
expected_blas_symbols=("mkl_blas_sgemm",),
|
61 |
+
expected_mkl_version="2020.0.0",
|
62 |
+
),
|
63 |
+
|
64 |
+
OPEN_BLAS: SubEnvSpec(
|
65 |
+
generic_installs=("openblas",),
|
66 |
+
special_installs=(),
|
67 |
+
environment_variables=("BLAS=OpenBLAS",) + GENERIC_ENV_VARS,
|
68 |
+
expected_blas_symbols=("exec_blas",),
|
69 |
+
expected_mkl_version=None,
|
70 |
+
),
|
71 |
+
|
72 |
+
# EIGEN: SubEnvSpec(
|
73 |
+
# generic_installs=(),
|
74 |
+
# special_installs=(),
|
75 |
+
# environment_variables=("BLAS=Eigen",) + GENERIC_ENV_VARS,
|
76 |
+
# expected_blas_symbols=(),
|
77 |
+
# ),
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
def conda_run(*args):
|
82 |
+
"""Convenience method."""
|
83 |
+
stdout, stderr, retcode = conda.cli.python_api.run_command(*args)
|
84 |
+
if retcode:
|
85 |
+
raise OSError(f"conda error: {str(args)} retcode: {retcode}\n{stderr}")
|
86 |
+
|
87 |
+
return stdout
|
88 |
+
|
89 |
+
|
90 |
+
def main():
|
91 |
+
if os.path.exists(WORKING_ROOT):
|
92 |
+
print("Cleaning: removing old working root.")
|
93 |
+
shutil.rmtree(WORKING_ROOT)
|
94 |
+
os.makedirs(WORKING_ROOT)
|
95 |
+
|
96 |
+
git_root = subprocess.check_output(
|
97 |
+
"git rev-parse --show-toplevel",
|
98 |
+
shell=True,
|
99 |
+
cwd=os.path.dirname(os.path.realpath(__file__))
|
100 |
+
).decode("utf-8").strip()
|
101 |
+
|
102 |
+
for env_name, env_spec in SUB_ENVS.items():
|
103 |
+
env_path = os.path.join(WORKING_ROOT, env_name)
|
104 |
+
print(f"Creating env: {env_name}: ({env_path})")
|
105 |
+
conda_run(
|
106 |
+
conda_commands.CREATE,
|
107 |
+
"--no-default-packages",
|
108 |
+
"--prefix", env_path,
|
109 |
+
"python=3",
|
110 |
+
)
|
111 |
+
|
112 |
+
print("Testing that env can be activated:")
|
113 |
+
base_source = subprocess.run(
|
114 |
+
f"source activate {env_path}",
|
115 |
+
shell=True,
|
116 |
+
capture_output=True,
|
117 |
+
check=False,
|
118 |
+
)
|
119 |
+
if base_source.returncode:
|
120 |
+
raise OSError(
|
121 |
+
"Failed to source base environment:\n"
|
122 |
+
f" stdout: {base_source.stdout.decode('utf-8')}\n"
|
123 |
+
f" stderr: {base_source.stderr.decode('utf-8')}"
|
124 |
+
)
|
125 |
+
|
126 |
+
print("Installing packages:")
|
127 |
+
conda_run(
|
128 |
+
conda_commands.INSTALL,
|
129 |
+
"--prefix", env_path,
|
130 |
+
*(BASE_PKG_DEPS + env_spec.generic_installs)
|
131 |
+
)
|
132 |
+
|
133 |
+
if env_spec.special_installs:
|
134 |
+
channel, channel_deps = env_spec.special_installs
|
135 |
+
print(f"Installing packages from channel: {channel}")
|
136 |
+
conda_run(
|
137 |
+
conda_commands.INSTALL,
|
138 |
+
"--prefix", env_path,
|
139 |
+
"-c", channel, *channel_deps
|
140 |
+
)
|
141 |
+
|
142 |
+
if env_spec.environment_variables:
|
143 |
+
print("Setting environment variables.")
|
144 |
+
|
145 |
+
# This does not appear to be possible using the python API.
|
146 |
+
env_set = subprocess.run(
|
147 |
+
f"source activate {env_path} && "
|
148 |
+
f"conda env config vars set {' '.join(env_spec.environment_variables)}",
|
149 |
+
shell=True,
|
150 |
+
capture_output=True,
|
151 |
+
check=False,
|
152 |
+
)
|
153 |
+
if env_set.returncode:
|
154 |
+
raise OSError(
|
155 |
+
"Failed to set environment variables:\n"
|
156 |
+
f" stdout: {env_set.stdout.decode('utf-8')}\n"
|
157 |
+
f" stderr: {env_set.stderr.decode('utf-8')}"
|
158 |
+
)
|
159 |
+
|
160 |
+
# Check that they were actually set correctly.
|
161 |
+
actual_env_vars = subprocess.run(
|
162 |
+
f"source activate {env_path} && env",
|
163 |
+
shell=True,
|
164 |
+
capture_output=True,
|
165 |
+
check=True,
|
166 |
+
).stdout.decode("utf-8").strip().splitlines()
|
167 |
+
for e in env_spec.environment_variables:
|
168 |
+
assert e in actual_env_vars, f"{e} not in envs"
|
169 |
+
|
170 |
+
print(f"Building PyTorch for env: `{env_name}`")
|
171 |
+
# We have to re-run during each build to pick up the new
|
172 |
+
# build config settings.
|
173 |
+
build_run = subprocess.run(
|
174 |
+
f"source activate {env_path} && "
|
175 |
+
f"cd {git_root} && "
|
176 |
+
"python setup.py install --cmake",
|
177 |
+
shell=True,
|
178 |
+
capture_output=True,
|
179 |
+
check=True,
|
180 |
+
)
|
181 |
+
|
182 |
+
print("Checking configuration:")
|
183 |
+
check_run = subprocess.run(
|
184 |
+
# Shameless abuse of `python -c ...`
|
185 |
+
f"source activate {env_path} && "
|
186 |
+
"python -c \""
|
187 |
+
"import torch;"
|
188 |
+
"from torch.utils.benchmark import Timer;"
|
189 |
+
"print(torch.__config__.show());"
|
190 |
+
"setup = 'x=torch.ones((128, 128));y=torch.ones((128, 128))';"
|
191 |
+
"counts = Timer('torch.mm(x, y)', setup).collect_callgrind(collect_baseline=False);"
|
192 |
+
"stats = counts.as_standardized().stats(inclusive=True);"
|
193 |
+
"print(stats.filter(lambda l: 'blas' in l.lower()))\"",
|
194 |
+
shell=True,
|
195 |
+
capture_output=True,
|
196 |
+
check=False,
|
197 |
+
)
|
198 |
+
if check_run.returncode:
|
199 |
+
raise OSError(
|
200 |
+
"Failed to set environment variables:\n"
|
201 |
+
f" stdout: {check_run.stdout.decode('utf-8')}\n"
|
202 |
+
f" stderr: {check_run.stderr.decode('utf-8')}"
|
203 |
+
)
|
204 |
+
check_run_stdout = check_run.stdout.decode('utf-8')
|
205 |
+
print(check_run_stdout)
|
206 |
+
|
207 |
+
for e in env_spec.environment_variables:
|
208 |
+
if "BLAS" in e:
|
209 |
+
assert e in check_run_stdout, f"PyTorch build did not respect `BLAS=...`: {e}"
|
210 |
+
|
211 |
+
for s in env_spec.expected_blas_symbols:
|
212 |
+
assert s in check_run_stdout
|
213 |
+
|
214 |
+
if env_spec.expected_mkl_version is not None:
|
215 |
+
assert f"- Intel(R) Math Kernel Library Version {env_spec.expected_mkl_version}" in check_run_stdout
|
216 |
+
|
217 |
+
print(f"Build complete: {env_name}")
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/compare.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Example of Timer and Compare APIs:
|
2 |
+
|
3 |
+
$ python -m examples.compare
|
4 |
+
"""
|
5 |
+
|
6 |
+
import pickle
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
import torch.utils.benchmark as benchmark_utils
|
13 |
+
|
14 |
+
|
15 |
+
class FauxTorch:
|
16 |
+
"""Emulate different versions of pytorch.
|
17 |
+
|
18 |
+
In normal circumstances this would be done with multiple processes
|
19 |
+
writing serialized measurements, but this simplifies that model to
|
20 |
+
make the example clearer.
|
21 |
+
"""
|
22 |
+
def __init__(self, real_torch, extra_ns_per_element):
|
23 |
+
self._real_torch = real_torch
|
24 |
+
self._extra_ns_per_element = extra_ns_per_element
|
25 |
+
|
26 |
+
def extra_overhead(self, result):
|
27 |
+
# time.sleep has a ~65 us overhead, so only fake a
|
28 |
+
# per-element overhead if numel is large enough.
|
29 |
+
numel = int(result.numel())
|
30 |
+
if numel > 5000:
|
31 |
+
time.sleep(numel * self._extra_ns_per_element * 1e-9)
|
32 |
+
return result
|
33 |
+
|
34 |
+
def add(self, *args, **kwargs):
|
35 |
+
return self.extra_overhead(self._real_torch.add(*args, **kwargs))
|
36 |
+
|
37 |
+
def mul(self, *args, **kwargs):
|
38 |
+
return self.extra_overhead(self._real_torch.mul(*args, **kwargs))
|
39 |
+
|
40 |
+
def cat(self, *args, **kwargs):
|
41 |
+
return self.extra_overhead(self._real_torch.cat(*args, **kwargs))
|
42 |
+
|
43 |
+
def matmul(self, *args, **kwargs):
|
44 |
+
return self.extra_overhead(self._real_torch.matmul(*args, **kwargs))
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
tasks = [
|
49 |
+
("add", "add", "torch.add(x, y)"),
|
50 |
+
("add", "add (extra +0)", "torch.add(x, y + zero)"),
|
51 |
+
]
|
52 |
+
|
53 |
+
serialized_results = []
|
54 |
+
repeats = 2
|
55 |
+
timers = [
|
56 |
+
benchmark_utils.Timer(
|
57 |
+
stmt=stmt,
|
58 |
+
globals={
|
59 |
+
"torch": torch if branch == "master" else FauxTorch(torch, overhead_ns),
|
60 |
+
"x": torch.ones((size, 4)),
|
61 |
+
"y": torch.ones((1, 4)),
|
62 |
+
"zero": torch.zeros(()),
|
63 |
+
},
|
64 |
+
label=label,
|
65 |
+
sub_label=sub_label,
|
66 |
+
description=f"size: {size}",
|
67 |
+
env=branch,
|
68 |
+
num_threads=num_threads,
|
69 |
+
)
|
70 |
+
for branch, overhead_ns in [("master", None), ("my_branch", 1), ("severe_regression", 5)]
|
71 |
+
for label, sub_label, stmt in tasks
|
72 |
+
for size in [1, 10, 100, 1000, 10000, 50000]
|
73 |
+
for num_threads in [1, 4]
|
74 |
+
]
|
75 |
+
|
76 |
+
for i, timer in enumerate(timers * repeats):
|
77 |
+
serialized_results.append(pickle.dumps(
|
78 |
+
timer.blocked_autorange(min_run_time=0.05)
|
79 |
+
))
|
80 |
+
print(f"\r{i + 1} / {len(timers) * repeats}", end="")
|
81 |
+
sys.stdout.flush()
|
82 |
+
print()
|
83 |
+
|
84 |
+
comparison = benchmark_utils.Compare([
|
85 |
+
pickle.loads(i) for i in serialized_results
|
86 |
+
])
|
87 |
+
|
88 |
+
print("== Unformatted " + "=" * 80 + "\n" + "/" * 95 + "\n")
|
89 |
+
comparison.print()
|
90 |
+
|
91 |
+
print("== Formatted " + "=" * 80 + "\n" + "/" * 93 + "\n")
|
92 |
+
comparison.trim_significant_figures()
|
93 |
+
comparison.colorize()
|
94 |
+
comparison.print()
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/fuzzer.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Example of the Timer and Fuzzer APIs:
|
2 |
+
|
3 |
+
$ python -m examples.fuzzer
|
4 |
+
"""
|
5 |
+
|
6 |
+
import sys
|
7 |
+
|
8 |
+
import torch.utils.benchmark as benchmark_utils
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
add_fuzzer = benchmark_utils.Fuzzer(
|
13 |
+
parameters=[
|
14 |
+
[
|
15 |
+
benchmark_utils.FuzzedParameter(
|
16 |
+
name=f"k{i}",
|
17 |
+
minval=16,
|
18 |
+
maxval=16 * 1024,
|
19 |
+
distribution="loguniform",
|
20 |
+
) for i in range(3)
|
21 |
+
],
|
22 |
+
benchmark_utils.FuzzedParameter(
|
23 |
+
name="d",
|
24 |
+
distribution={2: 0.6, 3: 0.4},
|
25 |
+
),
|
26 |
+
],
|
27 |
+
tensors=[
|
28 |
+
[
|
29 |
+
benchmark_utils.FuzzedTensor(
|
30 |
+
name=name,
|
31 |
+
size=("k0", "k1", "k2"),
|
32 |
+
dim_parameter="d",
|
33 |
+
probability_contiguous=0.75,
|
34 |
+
min_elements=64 * 1024,
|
35 |
+
max_elements=128 * 1024,
|
36 |
+
) for name in ("x", "y")
|
37 |
+
],
|
38 |
+
],
|
39 |
+
seed=0,
|
40 |
+
)
|
41 |
+
|
42 |
+
n = 250
|
43 |
+
measurements = []
|
44 |
+
for i, (tensors, tensor_properties, _) in enumerate(add_fuzzer.take(n=n)):
|
45 |
+
x, x_order = tensors["x"], str(tensor_properties["x"]["order"])
|
46 |
+
y, y_order = tensors["y"], str(tensor_properties["y"]["order"])
|
47 |
+
shape = ", ".join(tuple(f'{i:>4}' for i in x.shape))
|
48 |
+
|
49 |
+
description = "".join([
|
50 |
+
f"{x.numel():>7} | {shape:<16} | ",
|
51 |
+
f"{'contiguous' if x.is_contiguous() else x_order:<12} | ",
|
52 |
+
f"{'contiguous' if y.is_contiguous() else y_order:<12} | ",
|
53 |
+
])
|
54 |
+
|
55 |
+
timer = benchmark_utils.Timer(
|
56 |
+
stmt="x + y",
|
57 |
+
globals=tensors,
|
58 |
+
description=description,
|
59 |
+
)
|
60 |
+
|
61 |
+
measurements.append(timer.blocked_autorange(min_run_time=0.1))
|
62 |
+
measurements[-1].metadata = {"numel": x.numel()}
|
63 |
+
print(f"\r{i + 1} / {n}", end="")
|
64 |
+
sys.stdout.flush()
|
65 |
+
print()
|
66 |
+
|
67 |
+
# More string munging to make pretty output.
|
68 |
+
print(f"Average attempts per valid config: {1. / (1. - add_fuzzer.rejection_rate):.1f}")
|
69 |
+
|
70 |
+
def time_fn(m):
|
71 |
+
return m.median / m.metadata["numel"]
|
72 |
+
measurements.sort(key=time_fn)
|
73 |
+
|
74 |
+
template = f"{{:>6}}{' ' * 19}Size Shape{' ' * 13}X order Y order\n{'-' * 80}"
|
75 |
+
print(template.format("Best:"))
|
76 |
+
for m in measurements[:15]:
|
77 |
+
print(f"{time_fn(m) * 1e9:>4.1f} ns / element {m.description}")
|
78 |
+
|
79 |
+
print("\n" + template.format("Worst:"))
|
80 |
+
for m in measurements[-15:]:
|
81 |
+
print(f"{time_fn(m) * 1e9:>4.1f} ns / element {m.description}")
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/op_benchmark.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Example use of Timer and op fuzzers to measure kernel performance.
|
2 |
+
|
3 |
+
$ python -m examples.op_benchmark
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from torch.utils.benchmark import Timer
|
10 |
+
from torch.utils.benchmark.op_fuzzers.binary import BinaryOpFuzzer
|
11 |
+
from torch.utils.benchmark.op_fuzzers.unary import UnaryOpFuzzer
|
12 |
+
|
13 |
+
|
14 |
+
_MEASURE_TIME = 1.0
|
15 |
+
|
16 |
+
|
17 |
+
def assert_dicts_equal(dict_0, dict_1):
|
18 |
+
"""Builtin dict comparison will not compare numpy arrays.
|
19 |
+
e.g.
|
20 |
+
x = {"a": np.ones((2, 1))}
|
21 |
+
x == x # Raises ValueError
|
22 |
+
"""
|
23 |
+
assert set(dict_0.keys()) == set(dict_0.keys())
|
24 |
+
assert all(np.all(v == dict_1[k]) for k, v in dict_0.items() if k != "dtype")
|
25 |
+
|
26 |
+
|
27 |
+
def run(n, stmt, fuzzer_cls):
|
28 |
+
float_iter = fuzzer_cls(seed=0, dtype=torch.float32).take(n)
|
29 |
+
int_iter = fuzzer_cls(seed=0, dtype=torch.int32).take(n)
|
30 |
+
raw_results = []
|
31 |
+
for i, (float_values, int_values) in enumerate(zip(float_iter, int_iter)):
|
32 |
+
float_tensors, float_tensor_params, float_params = float_values
|
33 |
+
int_tensors, int_tensor_params, int_params = int_values
|
34 |
+
|
35 |
+
# This benchmark assumes that the two fuzzers generate identically
|
36 |
+
# sized and strided Tensors, since the same seed is used.
|
37 |
+
assert_dicts_equal(float_params, int_params)
|
38 |
+
assert_dicts_equal(float_tensor_params["x"], int_tensor_params["x"])
|
39 |
+
|
40 |
+
float_measurement, int_measurement = (
|
41 |
+
Timer(
|
42 |
+
stmt,
|
43 |
+
globals=tensors,
|
44 |
+
).blocked_autorange(min_run_time=_MEASURE_TIME)
|
45 |
+
for tensors in (float_tensors, int_tensors)
|
46 |
+
)
|
47 |
+
|
48 |
+
descriptions = []
|
49 |
+
for name in float_tensors:
|
50 |
+
shape_str = "(" + ", ".join([
|
51 |
+
f"2 ** {int(np.log2(i))}"
|
52 |
+
if 2 ** int(np.log2(i)) == i and i > 1
|
53 |
+
else str(i)
|
54 |
+
for i in float_tensors[name].shape
|
55 |
+
]) + ")"
|
56 |
+
order = float_tensor_params[name]["order"]
|
57 |
+
order_str = ("" if all(order == np.arange(len(order))) else str(tuple(order)))
|
58 |
+
steps = float_tensor_params[name]["steps"]
|
59 |
+
steps_str = str(steps) if sum(steps) > len(steps) else ""
|
60 |
+
descriptions.append((name, shape_str, order_str, steps_str))
|
61 |
+
raw_results.append((float_measurement, int_measurement, descriptions))
|
62 |
+
|
63 |
+
print(f"\r{i + 1} / {n}", end="")
|
64 |
+
print()
|
65 |
+
|
66 |
+
parsed_results, name_len, shape_len, order_len, steps_len = [], 0, 0, 0, 0
|
67 |
+
for float_measurement, int_measurement, descriptions in raw_results:
|
68 |
+
t_float = float_measurement.median * 1e6
|
69 |
+
t_int = int_measurement.median * 1e6
|
70 |
+
rel_diff = abs(t_float - t_int) / (t_float + t_int) * 2
|
71 |
+
parsed_results.append((t_float, t_int, rel_diff, descriptions))
|
72 |
+
for name, shape, order, steps in descriptions:
|
73 |
+
name_len = max(name_len, len(name))
|
74 |
+
shape_len = max(shape_len, len(shape))
|
75 |
+
order_len = max(order_len, len(order))
|
76 |
+
steps_len = max(steps_len, len(steps))
|
77 |
+
|
78 |
+
parsed_results.sort(key=lambda x: x[2])
|
79 |
+
|
80 |
+
print(f"stmt: {stmt}")
|
81 |
+
print(f" diff faster{'':>17}{' ' * name_len} ", end="")
|
82 |
+
print(f"{'shape'.ljust(shape_len)}{'':>16}{'order'.ljust(order_len)}", end="")
|
83 |
+
print(f" steps\n{'-' * 100}")
|
84 |
+
for results, spacer in [(parsed_results[:10], "..."), (parsed_results[-10:], "")]:
|
85 |
+
for t_float, t_int, rel_diff, descriptions in results:
|
86 |
+
time_str = [f"{rel_diff * 100:>4.1f}% {'int' if t_int < t_float else 'float':<20}"]
|
87 |
+
time_str.extend(["".ljust(len(time_str[0])) for _ in descriptions[:-1]])
|
88 |
+
for t_str, (name, shape, order, steps) in zip(time_str, descriptions):
|
89 |
+
name = f"{name}:".ljust(name_len + 1)
|
90 |
+
shape = shape.ljust(shape_len + 10)
|
91 |
+
order = order.ljust(order_len)
|
92 |
+
print(f"{t_str} {name} {shape}| {order} | {steps}")
|
93 |
+
print(spacer)
|
94 |
+
|
95 |
+
|
96 |
+
def main():
|
97 |
+
run(n=100, stmt="torch.median(x, dim=0)", fuzzer_cls=UnaryOpFuzzer)
|
98 |
+
run(n=100, stmt="torch.square(x)", fuzzer_cls=UnaryOpFuzzer)
|
99 |
+
run(n=100, stmt="x + y", fuzzer_cls=BinaryOpFuzzer)
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/simple_timeit.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Trivial use of Timer API:
|
2 |
+
|
3 |
+
$ python -m examples.simple_timeit
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import torch.utils.benchmark as benchmark_utils
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
timer = benchmark_utils.Timer(
|
13 |
+
stmt="x + y",
|
14 |
+
globals={"x": torch.ones((4, 8)), "y": torch.ones((1, 8))},
|
15 |
+
label="Broadcasting add (4x8)",
|
16 |
+
)
|
17 |
+
|
18 |
+
for i in range(3):
|
19 |
+
print(f"Run: {i}\n{'-' * 40}")
|
20 |
+
print(f"timeit:\n{timer.timeit(10000)}\n")
|
21 |
+
print(f"autorange:\n{timer.blocked_autorange()}\n\n")
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/examples/spectral_ops_fuzz_test.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Microbenchmarks for the torch.fft module"""
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from collections import namedtuple
|
4 |
+
from collections.abc import Iterable
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.fft
|
8 |
+
from torch.utils import benchmark
|
9 |
+
from torch.utils.benchmark.op_fuzzers.spectral import SpectralOpFuzzer
|
10 |
+
|
11 |
+
|
12 |
+
def _dim_options(ndim):
|
13 |
+
if ndim == 1:
|
14 |
+
return [None]
|
15 |
+
elif ndim == 2:
|
16 |
+
return [0, 1, None]
|
17 |
+
elif ndim == 3:
|
18 |
+
return [0, 1, 2, (0, 1), (0, 2), None]
|
19 |
+
raise ValueError(f"Expected ndim in range 1-3, got {ndim}")
|
20 |
+
|
21 |
+
|
22 |
+
def run_benchmark(name: str, function: object, dtype: torch.dtype, seed: int, device: str, samples: int,
|
23 |
+
probability_regular: float):
|
24 |
+
cuda = device == 'cuda'
|
25 |
+
spectral_fuzzer = SpectralOpFuzzer(seed=seed, dtype=dtype, cuda=cuda,
|
26 |
+
probability_regular=probability_regular)
|
27 |
+
results = []
|
28 |
+
for tensors, tensor_params, params in spectral_fuzzer.take(samples):
|
29 |
+
shape = [params['k0'], params['k1'], params['k2']][:params['ndim']]
|
30 |
+
str_shape = ' x '.join([f"{s:<4}" for s in shape])
|
31 |
+
sub_label = f"{str_shape} {'' if tensor_params['x']['is_contiguous'] else '(discontiguous)'}"
|
32 |
+
for dim in _dim_options(params['ndim']):
|
33 |
+
for nthreads in (1, 4, 16) if not cuda else (1,):
|
34 |
+
measurement = benchmark.Timer(
|
35 |
+
stmt='func(x, dim=dim)',
|
36 |
+
globals={'func': function, 'x': tensors['x'], 'dim': dim},
|
37 |
+
label=f"{name}_{device}",
|
38 |
+
sub_label=sub_label,
|
39 |
+
description=f"dim={dim}",
|
40 |
+
num_threads=nthreads,
|
41 |
+
).blocked_autorange(min_run_time=1)
|
42 |
+
measurement.metadata = {
|
43 |
+
'name': name,
|
44 |
+
'device': device,
|
45 |
+
'dim': dim,
|
46 |
+
'shape': shape,
|
47 |
+
}
|
48 |
+
measurement.metadata.update(tensor_params['x'])
|
49 |
+
results.append(measurement)
|
50 |
+
return results
|
51 |
+
|
52 |
+
|
53 |
+
Benchmark = namedtuple('Benchmark', ['name', 'function', 'dtype'])
|
54 |
+
BENCHMARKS = [
|
55 |
+
Benchmark('fft_real', torch.fft.fftn, torch.float32),
|
56 |
+
Benchmark('fft_complex', torch.fft.fftn, torch.complex64),
|
57 |
+
Benchmark('ifft', torch.fft.ifftn, torch.complex64),
|
58 |
+
Benchmark('rfft', torch.fft.rfftn, torch.float32),
|
59 |
+
Benchmark('irfft', torch.fft.irfftn, torch.complex64),
|
60 |
+
]
|
61 |
+
BENCHMARK_MAP = {b.name: b for b in BENCHMARKS}
|
62 |
+
BENCHMARK_NAMES = [b.name for b in BENCHMARKS]
|
63 |
+
DEVICE_NAMES = ['cpu', 'cuda']
|
64 |
+
|
65 |
+
def _output_csv(file, results):
|
66 |
+
file.write('benchmark,device,num_threads,numel,shape,contiguous,dim,mean (us),median (us),iqr (us)\n')
|
67 |
+
for measurement in results:
|
68 |
+
metadata = measurement.metadata
|
69 |
+
device, dim, shape, name, numel, contiguous = (
|
70 |
+
metadata['device'], metadata['dim'], metadata['shape'],
|
71 |
+
metadata['name'], metadata['numel'], metadata['is_contiguous'])
|
72 |
+
|
73 |
+
if isinstance(dim, Iterable):
|
74 |
+
dim_str = '-'.join(str(d) for d in dim)
|
75 |
+
else:
|
76 |
+
dim_str = str(dim)
|
77 |
+
shape_str = 'x'.join(str(s) for s in shape)
|
78 |
+
|
79 |
+
print(name, device, measurement.task_spec.num_threads, numel, shape_str, contiguous, dim_str, # type: ignore[possibly-undefined]
|
80 |
+
measurement.mean * 1e6, measurement.median * 1e6, measurement.iqr * 1e6,
|
81 |
+
sep=',', file=file)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
parser = ArgumentParser(description=__doc__)
|
86 |
+
parser.add_argument('--device', type=str, choices=DEVICE_NAMES, nargs='+', default=DEVICE_NAMES)
|
87 |
+
parser.add_argument('--bench', type=str, choices=BENCHMARK_NAMES, nargs='+', default=BENCHMARK_NAMES)
|
88 |
+
parser.add_argument('--seed', type=int, default=0)
|
89 |
+
parser.add_argument('--samples', type=int, default=10)
|
90 |
+
parser.add_argument('--probability-regular', '--probability_regular', type=float, default=1.0)
|
91 |
+
parser.add_argument('-o', '--output', type=str)
|
92 |
+
args = parser.parse_args()
|
93 |
+
|
94 |
+
num_benchmarks = len(args.device) * len(args.bench)
|
95 |
+
i = 0
|
96 |
+
results = []
|
97 |
+
for device in args.device:
|
98 |
+
for bench in (BENCHMARK_MAP[b] for b in args.bench):
|
99 |
+
results += run_benchmark(
|
100 |
+
name=bench.name, function=bench.function, dtype=bench.dtype,
|
101 |
+
seed=args.seed, device=device, samples=args.samples,
|
102 |
+
probability_regular=args.probability_regular)
|
103 |
+
i += 1
|
104 |
+
print(f'Completed {bench.name} benchmark on {device} ({i} of {num_benchmarks})')
|
105 |
+
|
106 |
+
if args.output is not None:
|
107 |
+
with open(args.output, 'w') as f:
|
108 |
+
_output_csv(f, results)
|
109 |
+
|
110 |
+
compare = benchmark.Compare(results)
|
111 |
+
compare.trim_significant_figures()
|
112 |
+
compare.colorize()
|
113 |
+
compare.print()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (205 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/binary.cpython-310.pyc
ADDED
Binary file (2.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/sparse_binary.cpython-310.pyc
ADDED
Binary file (2.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/sparse_unary.cpython-310.pyc
ADDED
Binary file (2.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/spectral.cpython-310.pyc
ADDED
Binary file (2.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/__pycache__/unary.cpython-310.pyc
ADDED
Binary file (2.54 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/binary.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from torch.utils.benchmark import Fuzzer, FuzzedParameter, ParameterAlias, FuzzedTensor
|
5 |
+
|
6 |
+
|
7 |
+
_MIN_DIM_SIZE = 16
|
8 |
+
_MAX_DIM_SIZE = 16 * 1024 ** 2
|
9 |
+
_POW_TWO_SIZES = tuple(2 ** i for i in range(
|
10 |
+
int(np.log2(_MIN_DIM_SIZE)),
|
11 |
+
int(np.log2(_MAX_DIM_SIZE)) + 1,
|
12 |
+
))
|
13 |
+
|
14 |
+
|
15 |
+
class BinaryOpFuzzer(Fuzzer):
|
16 |
+
def __init__(self, seed, dtype=torch.float32, cuda=False):
|
17 |
+
super().__init__(
|
18 |
+
parameters=[
|
19 |
+
# Dimensionality of x and y. (e.g. 1D, 2D, or 3D.)
|
20 |
+
FuzzedParameter("dim", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
21 |
+
|
22 |
+
# Shapes for `x` and `y`.
|
23 |
+
# It is important to test all shapes, however
|
24 |
+
# powers of two are especially important and therefore
|
25 |
+
# warrant special attention. This is done by generating
|
26 |
+
# both a value drawn from all integers between the min and
|
27 |
+
# max allowed values, and another from only the powers of two
|
28 |
+
# (both distributions are loguniform) and then randomly
|
29 |
+
# selecting between the two.
|
30 |
+
# Moreover, `y` will occasionally have singleton
|
31 |
+
# dimensions in order to test broadcasting.
|
32 |
+
[
|
33 |
+
FuzzedParameter(
|
34 |
+
name=f"k_any_{i}",
|
35 |
+
minval=_MIN_DIM_SIZE,
|
36 |
+
maxval=_MAX_DIM_SIZE,
|
37 |
+
distribution="loguniform",
|
38 |
+
) for i in range(3)
|
39 |
+
],
|
40 |
+
[
|
41 |
+
FuzzedParameter(
|
42 |
+
name=f"k_pow2_{i}",
|
43 |
+
distribution={size: 1. / len(_POW_TWO_SIZES) for size in _POW_TWO_SIZES}
|
44 |
+
) for i in range(3)
|
45 |
+
],
|
46 |
+
[
|
47 |
+
FuzzedParameter(
|
48 |
+
name=f"k{i}",
|
49 |
+
distribution={
|
50 |
+
ParameterAlias(f"k_any_{i}"): 0.8,
|
51 |
+
ParameterAlias(f"k_pow2_{i}"): 0.2,
|
52 |
+
},
|
53 |
+
strict=True,
|
54 |
+
) for i in range(3)
|
55 |
+
],
|
56 |
+
|
57 |
+
[
|
58 |
+
FuzzedParameter(
|
59 |
+
name=f"y_k{i}",
|
60 |
+
distribution={
|
61 |
+
ParameterAlias(f"k{i}"): 0.8,
|
62 |
+
1: 0.2,
|
63 |
+
},
|
64 |
+
strict=True,
|
65 |
+
) for i in range(3)
|
66 |
+
],
|
67 |
+
|
68 |
+
# Steps for `x` and `y`. (Benchmarks strided memory access.)
|
69 |
+
[
|
70 |
+
FuzzedParameter(
|
71 |
+
name=f"{name}_step_{i}",
|
72 |
+
distribution={1: 0.8, 2: 0.06, 4: 0.06, 8: 0.04, 16: 0.04},
|
73 |
+
)
|
74 |
+
for i in range(3)
|
75 |
+
for name in ("x", "y")
|
76 |
+
],
|
77 |
+
|
78 |
+
# Repeatable entropy for downstream applications.
|
79 |
+
FuzzedParameter(name="random_value", minval=0, maxval=2 ** 32 - 1, distribution="uniform"),
|
80 |
+
],
|
81 |
+
tensors=[
|
82 |
+
FuzzedTensor(
|
83 |
+
name="x",
|
84 |
+
size=("k0", "k1", "k2"),
|
85 |
+
steps=("x_step_0", "x_step_1", "x_step_2"),
|
86 |
+
probability_contiguous=0.75,
|
87 |
+
min_elements=4 * 1024,
|
88 |
+
max_elements=32 * 1024 ** 2,
|
89 |
+
max_allocation_bytes=2 * 1024**3, # 2 GB
|
90 |
+
dim_parameter="dim",
|
91 |
+
dtype=dtype,
|
92 |
+
cuda=cuda,
|
93 |
+
),
|
94 |
+
FuzzedTensor(
|
95 |
+
name="y",
|
96 |
+
size=("y_k0", "y_k1", "y_k2"),
|
97 |
+
steps=("x_step_0", "x_step_1", "x_step_2"),
|
98 |
+
probability_contiguous=0.75,
|
99 |
+
max_allocation_bytes=2 * 1024**3, # 2 GB
|
100 |
+
dim_parameter="dim",
|
101 |
+
dtype=dtype,
|
102 |
+
cuda=cuda,
|
103 |
+
),
|
104 |
+
],
|
105 |
+
seed=seed,
|
106 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/sparse_binary.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from torch.utils.benchmark import Fuzzer, FuzzedParameter, ParameterAlias, FuzzedSparseTensor
|
5 |
+
|
6 |
+
|
7 |
+
_MIN_DIM_SIZE = 16
|
8 |
+
_MAX_DIM_SIZE = 16 * 1024 ** 2
|
9 |
+
_POW_TWO_SIZES = tuple(2 ** i for i in range(
|
10 |
+
int(np.log2(_MIN_DIM_SIZE)),
|
11 |
+
int(np.log2(_MAX_DIM_SIZE)) + 1,
|
12 |
+
))
|
13 |
+
|
14 |
+
|
15 |
+
class BinaryOpSparseFuzzer(Fuzzer):
|
16 |
+
def __init__(self, seed, dtype=torch.float32, cuda=False):
|
17 |
+
super().__init__(
|
18 |
+
parameters=[
|
19 |
+
# Dimensionality of x and y. (e.g. 1D, 2D, or 3D.)
|
20 |
+
FuzzedParameter("dim_parameter", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
21 |
+
FuzzedParameter(
|
22 |
+
name="sparse_dim",
|
23 |
+
distribution={1: 0.4, 2: 0.4, 3: 0.2},
|
24 |
+
strict=True
|
25 |
+
),
|
26 |
+
# Shapes for `x` and `y`.
|
27 |
+
# It is important to test all shapes, however
|
28 |
+
# powers of two are especially important and therefore
|
29 |
+
# warrant special attention. This is done by generating
|
30 |
+
# both a value drawn from all integers between the min and
|
31 |
+
# max allowed values, and another from only the powers of two
|
32 |
+
# (both distributions are loguniform) and then randomly
|
33 |
+
# selecting between the two.
|
34 |
+
# Moreover, `y` will occasionally have singleton
|
35 |
+
# dimensions in order to test broadcasting.
|
36 |
+
[
|
37 |
+
FuzzedParameter(
|
38 |
+
name=f"k_any_{i}",
|
39 |
+
minval=_MIN_DIM_SIZE,
|
40 |
+
maxval=_MAX_DIM_SIZE,
|
41 |
+
distribution="loguniform",
|
42 |
+
) for i in range(3)
|
43 |
+
],
|
44 |
+
[
|
45 |
+
FuzzedParameter(
|
46 |
+
name=f"k_pow2_{i}",
|
47 |
+
distribution={size: 1. / len(_POW_TWO_SIZES) for size in _POW_TWO_SIZES}
|
48 |
+
) for i in range(3)
|
49 |
+
],
|
50 |
+
[
|
51 |
+
FuzzedParameter(
|
52 |
+
name=f"k{i}",
|
53 |
+
distribution={
|
54 |
+
ParameterAlias(f"k_any_{i}"): 0.8,
|
55 |
+
ParameterAlias(f"k_pow2_{i}"): 0.2,
|
56 |
+
},
|
57 |
+
strict=True,
|
58 |
+
) for i in range(3)
|
59 |
+
],
|
60 |
+
[
|
61 |
+
FuzzedParameter(
|
62 |
+
name=f"y_k{i}",
|
63 |
+
distribution={
|
64 |
+
ParameterAlias(f"k{i}"): 1.0},
|
65 |
+
strict=True,
|
66 |
+
) for i in range(3)
|
67 |
+
],
|
68 |
+
FuzzedParameter(
|
69 |
+
name="density",
|
70 |
+
distribution={0.1: 0.4, 0.05: 0.3, 0.01: 0.3},
|
71 |
+
),
|
72 |
+
FuzzedParameter(
|
73 |
+
name="coalesced",
|
74 |
+
distribution={True: 0.5, False: 0.5},
|
75 |
+
),
|
76 |
+
# Repeatable entropy for downstream applications.
|
77 |
+
FuzzedParameter(name="random_value", minval=0, maxval=2 ** 32 - 1, distribution="uniform"),
|
78 |
+
],
|
79 |
+
tensors=[
|
80 |
+
FuzzedSparseTensor(
|
81 |
+
name="x",
|
82 |
+
size=("k0", "k1", "k2"),
|
83 |
+
dim_parameter="dim_parameter",
|
84 |
+
sparse_dim="sparse_dim",
|
85 |
+
density="density",
|
86 |
+
coalesced="coalesced",
|
87 |
+
min_elements=4 * 1024,
|
88 |
+
max_elements=32 * 1024 ** 2,
|
89 |
+
dtype=dtype,
|
90 |
+
cuda=cuda,
|
91 |
+
),
|
92 |
+
FuzzedSparseTensor(
|
93 |
+
name="y",
|
94 |
+
size=("y_k0", "y_k1", "y_k2"),
|
95 |
+
dim_parameter="dim_parameter",
|
96 |
+
sparse_dim="sparse_dim",
|
97 |
+
density="density",
|
98 |
+
coalesced="coalesced",
|
99 |
+
min_elements=4 * 1024,
|
100 |
+
max_elements=32 * 1024 ** 2,
|
101 |
+
dtype=dtype,
|
102 |
+
cuda=cuda,
|
103 |
+
),
|
104 |
+
],
|
105 |
+
seed=seed,
|
106 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/sparse_unary.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch.utils.benchmark import Fuzzer, FuzzedParameter, ParameterAlias, FuzzedSparseTensor
|
5 |
+
|
6 |
+
|
7 |
+
_MIN_DIM_SIZE = 16
|
8 |
+
_MAX_DIM_SIZE = 16 * 1024 ** 2
|
9 |
+
_POW_TWO_SIZES = tuple(2 ** i for i in range(
|
10 |
+
int(np.log2(_MIN_DIM_SIZE)),
|
11 |
+
int(np.log2(_MAX_DIM_SIZE)) + 1,
|
12 |
+
))
|
13 |
+
|
14 |
+
class UnaryOpSparseFuzzer(Fuzzer):
|
15 |
+
def __init__(self, seed, dtype=torch.float32, cuda=False):
|
16 |
+
super().__init__(
|
17 |
+
parameters=[
|
18 |
+
# Sparse dim parameter of x. (e.g. 1D, 2D, or 3D.)
|
19 |
+
FuzzedParameter("dim_parameter", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
20 |
+
FuzzedParameter(
|
21 |
+
name="sparse_dim",
|
22 |
+
distribution={1: 0.4, 2: 0.4, 3: 0.2},
|
23 |
+
strict=True
|
24 |
+
),
|
25 |
+
# Shapes for `x`.
|
26 |
+
# It is important to test all shapes, however
|
27 |
+
# powers of two are especially important and therefore
|
28 |
+
# warrant special attention. This is done by generating
|
29 |
+
# both a value drawn from all integers between the min and
|
30 |
+
# max allowed values, and another from only the powers of two
|
31 |
+
# (both distributions are loguniform) and then randomly
|
32 |
+
# selecting between the two.
|
33 |
+
[
|
34 |
+
FuzzedParameter(
|
35 |
+
name=f"k_any_{i}",
|
36 |
+
minval=_MIN_DIM_SIZE,
|
37 |
+
maxval=_MAX_DIM_SIZE,
|
38 |
+
distribution="loguniform",
|
39 |
+
) for i in range(3)
|
40 |
+
],
|
41 |
+
[
|
42 |
+
FuzzedParameter(
|
43 |
+
name=f"k_pow2_{i}",
|
44 |
+
distribution={size: 1. / len(_POW_TWO_SIZES) for size in _POW_TWO_SIZES}
|
45 |
+
) for i in range(3)
|
46 |
+
],
|
47 |
+
[
|
48 |
+
FuzzedParameter(
|
49 |
+
name=f"k{i}",
|
50 |
+
distribution={
|
51 |
+
ParameterAlias(f"k_any_{i}"): 0.8,
|
52 |
+
ParameterAlias(f"k_pow2_{i}"): 0.2,
|
53 |
+
},
|
54 |
+
strict=True,
|
55 |
+
) for i in range(3)
|
56 |
+
],
|
57 |
+
FuzzedParameter(
|
58 |
+
name="density",
|
59 |
+
distribution={0.1: 0.4, 0.05: 0.3, 0.01: 0.3},
|
60 |
+
),
|
61 |
+
FuzzedParameter(
|
62 |
+
name="coalesced",
|
63 |
+
distribution={True: 0.5, False: 0.5},
|
64 |
+
),
|
65 |
+
FuzzedParameter(name="random_value", minval=0, maxval=2 ** 32 - 1, distribution="uniform"),
|
66 |
+
],
|
67 |
+
tensors=[
|
68 |
+
FuzzedSparseTensor(
|
69 |
+
name="x",
|
70 |
+
size=("k0", "k1", "k2"),
|
71 |
+
dim_parameter="dim_parameter",
|
72 |
+
sparse_dim="sparse_dim",
|
73 |
+
min_elements=4 * 1024,
|
74 |
+
max_elements=32 * 1024 ** 2,
|
75 |
+
density="density",
|
76 |
+
coalesced="coalesced",
|
77 |
+
dtype=dtype,
|
78 |
+
cuda=cuda,
|
79 |
+
),
|
80 |
+
],
|
81 |
+
seed=seed,
|
82 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/spectral.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.utils import benchmark
|
5 |
+
from torch.utils.benchmark import FuzzedParameter, FuzzedTensor, ParameterAlias
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = ['SpectralOpFuzzer']
|
9 |
+
|
10 |
+
MIN_DIM_SIZE = 16
|
11 |
+
MAX_DIM_SIZE = 16 * 1024
|
12 |
+
|
13 |
+
def power_range(upper_bound, base):
|
14 |
+
return (base ** i for i in range(int(math.log(upper_bound, base)) + 1))
|
15 |
+
|
16 |
+
# List of regular numbers from MIN_DIM_SIZE to MAX_DIM_SIZE
|
17 |
+
# These numbers factorize into multiples of prime factors 2, 3, and 5 only
|
18 |
+
# and are usually the fastest in FFT implementations.
|
19 |
+
REGULAR_SIZES = []
|
20 |
+
for i in power_range(MAX_DIM_SIZE, 2):
|
21 |
+
for j in power_range(MAX_DIM_SIZE // i, 3):
|
22 |
+
ij = i * j
|
23 |
+
for k in power_range(MAX_DIM_SIZE // ij, 5):
|
24 |
+
ijk = ij * k
|
25 |
+
if ijk > MIN_DIM_SIZE:
|
26 |
+
REGULAR_SIZES.append(ijk)
|
27 |
+
REGULAR_SIZES.sort()
|
28 |
+
|
29 |
+
class SpectralOpFuzzer(benchmark.Fuzzer):
|
30 |
+
def __init__(self, *, seed: int, dtype=torch.float64,
|
31 |
+
cuda: bool = False, probability_regular: float = 1.0):
|
32 |
+
super().__init__(
|
33 |
+
parameters=[
|
34 |
+
# Dimensionality of x. (e.g. 1D, 2D, or 3D.)
|
35 |
+
FuzzedParameter("ndim", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
36 |
+
|
37 |
+
# Shapes for `x`.
|
38 |
+
# It is important to test all shapes, however
|
39 |
+
# regular sizes are especially important to the FFT and therefore
|
40 |
+
# warrant special attention. This is done by generating
|
41 |
+
# both a value drawn from all integers between the min and
|
42 |
+
# max allowed values, and another from only the regular numbers
|
43 |
+
# (both distributions are loguniform) and then randomly
|
44 |
+
# selecting between the two.
|
45 |
+
[
|
46 |
+
FuzzedParameter(
|
47 |
+
name=f"k_any_{i}",
|
48 |
+
minval=MIN_DIM_SIZE,
|
49 |
+
maxval=MAX_DIM_SIZE,
|
50 |
+
distribution="loguniform",
|
51 |
+
) for i in range(3)
|
52 |
+
],
|
53 |
+
[
|
54 |
+
FuzzedParameter(
|
55 |
+
name=f"k_regular_{i}",
|
56 |
+
distribution={size: 1. / len(REGULAR_SIZES) for size in REGULAR_SIZES}
|
57 |
+
) for i in range(3)
|
58 |
+
],
|
59 |
+
[
|
60 |
+
FuzzedParameter(
|
61 |
+
name=f"k{i}",
|
62 |
+
distribution={
|
63 |
+
ParameterAlias(f"k_regular_{i}"): probability_regular,
|
64 |
+
ParameterAlias(f"k_any_{i}"): 1 - probability_regular,
|
65 |
+
},
|
66 |
+
strict=True,
|
67 |
+
) for i in range(3)
|
68 |
+
],
|
69 |
+
|
70 |
+
# Steps for `x`. (Benchmarks strided memory access.)
|
71 |
+
[
|
72 |
+
FuzzedParameter(
|
73 |
+
name=f"step_{i}",
|
74 |
+
distribution={1: 0.8, 2: 0.06, 4: 0.06, 8: 0.04, 16: 0.04},
|
75 |
+
) for i in range(3)
|
76 |
+
],
|
77 |
+
],
|
78 |
+
tensors=[
|
79 |
+
FuzzedTensor(
|
80 |
+
name="x",
|
81 |
+
size=("k0", "k1", "k2"),
|
82 |
+
steps=("step_0", "step_1", "step_2"),
|
83 |
+
probability_contiguous=0.75,
|
84 |
+
min_elements=4 * 1024,
|
85 |
+
max_elements=32 * 1024 ** 2,
|
86 |
+
max_allocation_bytes=2 * 1024**3, # 2 GB
|
87 |
+
dim_parameter="ndim",
|
88 |
+
dtype=dtype,
|
89 |
+
cuda=cuda,
|
90 |
+
),
|
91 |
+
],
|
92 |
+
seed=seed,
|
93 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/op_fuzzers/unary.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from torch.utils.benchmark import Fuzzer, FuzzedParameter, ParameterAlias, FuzzedTensor
|
5 |
+
|
6 |
+
|
7 |
+
_MIN_DIM_SIZE = 16
|
8 |
+
_MAX_DIM_SIZE = 16 * 1024 ** 2
|
9 |
+
_POW_TWO_SIZES = tuple(2 ** i for i in range(
|
10 |
+
int(np.log2(_MIN_DIM_SIZE)),
|
11 |
+
int(np.log2(_MAX_DIM_SIZE)) + 1,
|
12 |
+
))
|
13 |
+
|
14 |
+
|
15 |
+
class UnaryOpFuzzer(Fuzzer):
|
16 |
+
def __init__(self, seed, dtype=torch.float32, cuda=False):
|
17 |
+
super().__init__(
|
18 |
+
parameters=[
|
19 |
+
# Dimensionality of x. (e.g. 1D, 2D, or 3D.)
|
20 |
+
FuzzedParameter("dim", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
21 |
+
|
22 |
+
# Shapes for `x`.
|
23 |
+
# It is important to test all shapes, however
|
24 |
+
# powers of two are especially important and therefore
|
25 |
+
# warrant special attention. This is done by generating
|
26 |
+
# both a value drawn from all integers between the min and
|
27 |
+
# max allowed values, and another from only the powers of two
|
28 |
+
# (both distributions are loguniform) and then randomly
|
29 |
+
# selecting between the two.
|
30 |
+
[
|
31 |
+
FuzzedParameter(
|
32 |
+
name=f"k_any_{i}",
|
33 |
+
minval=_MIN_DIM_SIZE,
|
34 |
+
maxval=_MAX_DIM_SIZE,
|
35 |
+
distribution="loguniform",
|
36 |
+
) for i in range(3)
|
37 |
+
],
|
38 |
+
[
|
39 |
+
FuzzedParameter(
|
40 |
+
name=f"k_pow2_{i}",
|
41 |
+
distribution={size: 1. / len(_POW_TWO_SIZES) for size in _POW_TWO_SIZES}
|
42 |
+
) for i in range(3)
|
43 |
+
],
|
44 |
+
[
|
45 |
+
FuzzedParameter(
|
46 |
+
name=f"k{i}",
|
47 |
+
distribution={
|
48 |
+
ParameterAlias(f"k_any_{i}"): 0.8,
|
49 |
+
ParameterAlias(f"k_pow2_{i}"): 0.2,
|
50 |
+
},
|
51 |
+
strict=True,
|
52 |
+
) for i in range(3)
|
53 |
+
],
|
54 |
+
|
55 |
+
# Steps for `x`. (Benchmarks strided memory access.)
|
56 |
+
[
|
57 |
+
FuzzedParameter(
|
58 |
+
name=f"x_step_{i}",
|
59 |
+
distribution={1: 0.8, 2: 0.06, 4: 0.06, 8: 0.04, 16: 0.04},
|
60 |
+
) for i in range(3)
|
61 |
+
],
|
62 |
+
|
63 |
+
# Repeatable entropy for downstream applications.
|
64 |
+
FuzzedParameter(name="random_value", minval=0, maxval=2 ** 32 - 1, distribution="uniform"),
|
65 |
+
],
|
66 |
+
tensors=[
|
67 |
+
FuzzedTensor(
|
68 |
+
name="x",
|
69 |
+
size=("k0", "k1", "k2"),
|
70 |
+
steps=("x_step_0", "x_step_1", "x_step_2"),
|
71 |
+
probability_contiguous=0.75,
|
72 |
+
min_elements=4 * 1024,
|
73 |
+
max_elements=32 * 1024 ** 2,
|
74 |
+
max_allocation_bytes=2 * 1024**3, # 2 GB
|
75 |
+
dim_parameter="dim",
|
76 |
+
dtype=dtype,
|
77 |
+
cuda=cuda,
|
78 |
+
),
|
79 |
+
],
|
80 |
+
seed=seed,
|
81 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/utils/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/utils/benchmark/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (200 Bytes). View file
|
|