Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/engines.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/expr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/expressions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/scope.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/align.py +213 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/api.py +2 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/engines.py +143 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/eval.py +415 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/expr.py +840 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/expressions.py +286 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/pytables.py +666 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexers/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/accessors.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/category.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimelike.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/extension.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/frozen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/interval.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/period.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/range.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/timedeltas.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/accessors.py +643 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/api.py +388 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/base.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/category.py +513 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/datetimelike.py +843 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/datetimes.py +1127 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/extension.py +172 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/frozen.py +120 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/interval.py +1136 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/multi.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/period.py +614 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/range.py +1187 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/timedeltas.py +356 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/describe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/selectn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/to_dict.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/describe.py +416 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/selectn.py +269 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/methods/to_dict.py +272 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/reshape/__init__.py +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/engines.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/expr.cpython-310.pyc
ADDED
Binary file (23.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/expressions.cpython-310.pyc
ADDED
Binary file (6.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/scope.cpython-310.pyc
ADDED
Binary file (8.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/align.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Core eval alignment algorithms.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from functools import (
|
7 |
+
partial,
|
8 |
+
wraps,
|
9 |
+
)
|
10 |
+
from typing import (
|
11 |
+
TYPE_CHECKING,
|
12 |
+
Callable,
|
13 |
+
)
|
14 |
+
import warnings
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas.errors import PerformanceWarning
|
19 |
+
from pandas.util._exceptions import find_stack_level
|
20 |
+
|
21 |
+
from pandas.core.dtypes.generic import (
|
22 |
+
ABCDataFrame,
|
23 |
+
ABCSeries,
|
24 |
+
)
|
25 |
+
|
26 |
+
from pandas.core.base import PandasObject
|
27 |
+
import pandas.core.common as com
|
28 |
+
from pandas.core.computation.common import result_type_many
|
29 |
+
|
30 |
+
if TYPE_CHECKING:
|
31 |
+
from collections.abc import Sequence
|
32 |
+
|
33 |
+
from pandas._typing import F
|
34 |
+
|
35 |
+
from pandas.core.generic import NDFrame
|
36 |
+
from pandas.core.indexes.api import Index
|
37 |
+
|
38 |
+
|
39 |
+
def _align_core_single_unary_op(
|
40 |
+
term,
|
41 |
+
) -> tuple[partial | type[NDFrame], dict[str, Index] | None]:
|
42 |
+
typ: partial | type[NDFrame]
|
43 |
+
axes: dict[str, Index] | None = None
|
44 |
+
|
45 |
+
if isinstance(term.value, np.ndarray):
|
46 |
+
typ = partial(np.asanyarray, dtype=term.value.dtype)
|
47 |
+
else:
|
48 |
+
typ = type(term.value)
|
49 |
+
if hasattr(term.value, "axes"):
|
50 |
+
axes = _zip_axes_from_type(typ, term.value.axes)
|
51 |
+
|
52 |
+
return typ, axes
|
53 |
+
|
54 |
+
|
55 |
+
def _zip_axes_from_type(
|
56 |
+
typ: type[NDFrame], new_axes: Sequence[Index]
|
57 |
+
) -> dict[str, Index]:
|
58 |
+
return {name: new_axes[i] for i, name in enumerate(typ._AXIS_ORDERS)}
|
59 |
+
|
60 |
+
|
61 |
+
def _any_pandas_objects(terms) -> bool:
|
62 |
+
"""
|
63 |
+
Check a sequence of terms for instances of PandasObject.
|
64 |
+
"""
|
65 |
+
return any(isinstance(term.value, PandasObject) for term in terms)
|
66 |
+
|
67 |
+
|
68 |
+
def _filter_special_cases(f) -> Callable[[F], F]:
|
69 |
+
@wraps(f)
|
70 |
+
def wrapper(terms):
|
71 |
+
# single unary operand
|
72 |
+
if len(terms) == 1:
|
73 |
+
return _align_core_single_unary_op(terms[0])
|
74 |
+
|
75 |
+
term_values = (term.value for term in terms)
|
76 |
+
|
77 |
+
# we don't have any pandas objects
|
78 |
+
if not _any_pandas_objects(terms):
|
79 |
+
return result_type_many(*term_values), None
|
80 |
+
|
81 |
+
return f(terms)
|
82 |
+
|
83 |
+
return wrapper
|
84 |
+
|
85 |
+
|
86 |
+
@_filter_special_cases
|
87 |
+
def _align_core(terms):
|
88 |
+
term_index = [i for i, term in enumerate(terms) if hasattr(term.value, "axes")]
|
89 |
+
term_dims = [terms[i].value.ndim for i in term_index]
|
90 |
+
|
91 |
+
from pandas import Series
|
92 |
+
|
93 |
+
ndims = Series(dict(zip(term_index, term_dims)))
|
94 |
+
|
95 |
+
# initial axes are the axes of the largest-axis'd term
|
96 |
+
biggest = terms[ndims.idxmax()].value
|
97 |
+
typ = biggest._constructor
|
98 |
+
axes = biggest.axes
|
99 |
+
naxes = len(axes)
|
100 |
+
gt_than_one_axis = naxes > 1
|
101 |
+
|
102 |
+
for value in (terms[i].value for i in term_index):
|
103 |
+
is_series = isinstance(value, ABCSeries)
|
104 |
+
is_series_and_gt_one_axis = is_series and gt_than_one_axis
|
105 |
+
|
106 |
+
for axis, items in enumerate(value.axes):
|
107 |
+
if is_series_and_gt_one_axis:
|
108 |
+
ax, itm = naxes - 1, value.index
|
109 |
+
else:
|
110 |
+
ax, itm = axis, items
|
111 |
+
|
112 |
+
if not axes[ax].is_(itm):
|
113 |
+
axes[ax] = axes[ax].union(itm)
|
114 |
+
|
115 |
+
for i, ndim in ndims.items():
|
116 |
+
for axis, items in zip(range(ndim), axes):
|
117 |
+
ti = terms[i].value
|
118 |
+
|
119 |
+
if hasattr(ti, "reindex"):
|
120 |
+
transpose = isinstance(ti, ABCSeries) and naxes > 1
|
121 |
+
reindexer = axes[naxes - 1] if transpose else items
|
122 |
+
|
123 |
+
term_axis_size = len(ti.axes[axis])
|
124 |
+
reindexer_size = len(reindexer)
|
125 |
+
|
126 |
+
ordm = np.log10(max(1, abs(reindexer_size - term_axis_size)))
|
127 |
+
if ordm >= 1 and reindexer_size >= 10000:
|
128 |
+
w = (
|
129 |
+
f"Alignment difference on axis {axis} is larger "
|
130 |
+
f"than an order of magnitude on term {repr(terms[i].name)}, "
|
131 |
+
f"by more than {ordm:.4g}; performance may suffer."
|
132 |
+
)
|
133 |
+
warnings.warn(
|
134 |
+
w, category=PerformanceWarning, stacklevel=find_stack_level()
|
135 |
+
)
|
136 |
+
|
137 |
+
obj = ti.reindex(reindexer, axis=axis, copy=False)
|
138 |
+
terms[i].update(obj)
|
139 |
+
|
140 |
+
terms[i].update(terms[i].value.values)
|
141 |
+
|
142 |
+
return typ, _zip_axes_from_type(typ, axes)
|
143 |
+
|
144 |
+
|
145 |
+
def align_terms(terms):
|
146 |
+
"""
|
147 |
+
Align a set of terms.
|
148 |
+
"""
|
149 |
+
try:
|
150 |
+
# flatten the parse tree (a nested list, really)
|
151 |
+
terms = list(com.flatten(terms))
|
152 |
+
except TypeError:
|
153 |
+
# can't iterate so it must just be a constant or single variable
|
154 |
+
if isinstance(terms.value, (ABCSeries, ABCDataFrame)):
|
155 |
+
typ = type(terms.value)
|
156 |
+
return typ, _zip_axes_from_type(typ, terms.value.axes)
|
157 |
+
return np.result_type(terms.type), None
|
158 |
+
|
159 |
+
# if all resolved variables are numeric scalars
|
160 |
+
if all(term.is_scalar for term in terms):
|
161 |
+
return result_type_many(*(term.value for term in terms)).type, None
|
162 |
+
|
163 |
+
# perform the main alignment
|
164 |
+
typ, axes = _align_core(terms)
|
165 |
+
return typ, axes
|
166 |
+
|
167 |
+
|
168 |
+
def reconstruct_object(typ, obj, axes, dtype):
|
169 |
+
"""
|
170 |
+
Reconstruct an object given its type, raw value, and possibly empty
|
171 |
+
(None) axes.
|
172 |
+
|
173 |
+
Parameters
|
174 |
+
----------
|
175 |
+
typ : object
|
176 |
+
A type
|
177 |
+
obj : object
|
178 |
+
The value to use in the type constructor
|
179 |
+
axes : dict
|
180 |
+
The axes to use to construct the resulting pandas object
|
181 |
+
|
182 |
+
Returns
|
183 |
+
-------
|
184 |
+
ret : typ
|
185 |
+
An object of type ``typ`` with the value `obj` and possible axes
|
186 |
+
`axes`.
|
187 |
+
"""
|
188 |
+
try:
|
189 |
+
typ = typ.type
|
190 |
+
except AttributeError:
|
191 |
+
pass
|
192 |
+
|
193 |
+
res_t = np.result_type(obj.dtype, dtype)
|
194 |
+
|
195 |
+
if not isinstance(typ, partial) and issubclass(typ, PandasObject):
|
196 |
+
return typ(obj, dtype=res_t, **axes)
|
197 |
+
|
198 |
+
# special case for pathological things like ~True/~False
|
199 |
+
if hasattr(res_t, "type") and typ == np.bool_ and res_t != np.bool_:
|
200 |
+
ret_value = res_t.type(obj)
|
201 |
+
else:
|
202 |
+
ret_value = typ(obj).astype(res_t)
|
203 |
+
# The condition is to distinguish 0-dim array (returned in case of
|
204 |
+
# scalar) and 1 element array
|
205 |
+
# e.g. np.array(0) and np.array([0])
|
206 |
+
if (
|
207 |
+
len(obj.shape) == 1
|
208 |
+
and len(obj) == 1
|
209 |
+
and not isinstance(ret_value, np.ndarray)
|
210 |
+
):
|
211 |
+
ret_value = np.array([ret_value]).astype(res_t)
|
212 |
+
|
213 |
+
return ret_value
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/api.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__all__ = ["eval"]
|
2 |
+
from pandas.core.computation.eval import eval
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/engines.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Engine classes for :func:`~pandas.eval`
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import abc
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
|
9 |
+
from pandas.errors import NumExprClobberingError
|
10 |
+
|
11 |
+
from pandas.core.computation.align import (
|
12 |
+
align_terms,
|
13 |
+
reconstruct_object,
|
14 |
+
)
|
15 |
+
from pandas.core.computation.ops import (
|
16 |
+
MATHOPS,
|
17 |
+
REDUCTIONS,
|
18 |
+
)
|
19 |
+
|
20 |
+
from pandas.io.formats import printing
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from pandas.core.computation.expr import Expr
|
24 |
+
|
25 |
+
_ne_builtins = frozenset(MATHOPS + REDUCTIONS)
|
26 |
+
|
27 |
+
|
28 |
+
def _check_ne_builtin_clash(expr: Expr) -> None:
|
29 |
+
"""
|
30 |
+
Attempt to prevent foot-shooting in a helpful way.
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
expr : Expr
|
35 |
+
Terms can contain
|
36 |
+
"""
|
37 |
+
names = expr.names
|
38 |
+
overlap = names & _ne_builtins
|
39 |
+
|
40 |
+
if overlap:
|
41 |
+
s = ", ".join([repr(x) for x in overlap])
|
42 |
+
raise NumExprClobberingError(
|
43 |
+
f'Variables in expression "{expr}" overlap with builtins: ({s})'
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
class AbstractEngine(metaclass=abc.ABCMeta):
|
48 |
+
"""Object serving as a base class for all engines."""
|
49 |
+
|
50 |
+
has_neg_frac = False
|
51 |
+
|
52 |
+
def __init__(self, expr) -> None:
|
53 |
+
self.expr = expr
|
54 |
+
self.aligned_axes = None
|
55 |
+
self.result_type = None
|
56 |
+
|
57 |
+
def convert(self) -> str:
|
58 |
+
"""
|
59 |
+
Convert an expression for evaluation.
|
60 |
+
|
61 |
+
Defaults to return the expression as a string.
|
62 |
+
"""
|
63 |
+
return printing.pprint_thing(self.expr)
|
64 |
+
|
65 |
+
def evaluate(self) -> object:
|
66 |
+
"""
|
67 |
+
Run the engine on the expression.
|
68 |
+
|
69 |
+
This method performs alignment which is necessary no matter what engine
|
70 |
+
is being used, thus its implementation is in the base class.
|
71 |
+
|
72 |
+
Returns
|
73 |
+
-------
|
74 |
+
object
|
75 |
+
The result of the passed expression.
|
76 |
+
"""
|
77 |
+
if not self._is_aligned:
|
78 |
+
self.result_type, self.aligned_axes = align_terms(self.expr.terms)
|
79 |
+
|
80 |
+
# make sure no names in resolvers and locals/globals clash
|
81 |
+
res = self._evaluate()
|
82 |
+
return reconstruct_object(
|
83 |
+
self.result_type, res, self.aligned_axes, self.expr.terms.return_type
|
84 |
+
)
|
85 |
+
|
86 |
+
@property
|
87 |
+
def _is_aligned(self) -> bool:
|
88 |
+
return self.aligned_axes is not None and self.result_type is not None
|
89 |
+
|
90 |
+
@abc.abstractmethod
|
91 |
+
def _evaluate(self):
|
92 |
+
"""
|
93 |
+
Return an evaluated expression.
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
env : Scope
|
98 |
+
The local and global environment in which to evaluate an
|
99 |
+
expression.
|
100 |
+
|
101 |
+
Notes
|
102 |
+
-----
|
103 |
+
Must be implemented by subclasses.
|
104 |
+
"""
|
105 |
+
|
106 |
+
|
107 |
+
class NumExprEngine(AbstractEngine):
|
108 |
+
"""NumExpr engine class"""
|
109 |
+
|
110 |
+
has_neg_frac = True
|
111 |
+
|
112 |
+
def _evaluate(self):
|
113 |
+
import numexpr as ne
|
114 |
+
|
115 |
+
# convert the expression to a valid numexpr expression
|
116 |
+
s = self.convert()
|
117 |
+
|
118 |
+
env = self.expr.env
|
119 |
+
scope = env.full_scope
|
120 |
+
_check_ne_builtin_clash(self.expr)
|
121 |
+
return ne.evaluate(s, local_dict=scope)
|
122 |
+
|
123 |
+
|
124 |
+
class PythonEngine(AbstractEngine):
|
125 |
+
"""
|
126 |
+
Evaluate an expression in Python space.
|
127 |
+
|
128 |
+
Mostly for testing purposes.
|
129 |
+
"""
|
130 |
+
|
131 |
+
has_neg_frac = False
|
132 |
+
|
133 |
+
def evaluate(self):
|
134 |
+
return self.expr()
|
135 |
+
|
136 |
+
def _evaluate(self) -> None:
|
137 |
+
pass
|
138 |
+
|
139 |
+
|
140 |
+
ENGINES: dict[str, type[AbstractEngine]] = {
|
141 |
+
"numexpr": NumExprEngine,
|
142 |
+
"python": PythonEngine,
|
143 |
+
}
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/eval.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Top level ``eval`` module.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import tokenize
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
from pandas.util._exceptions import find_stack_level
|
11 |
+
from pandas.util._validators import validate_bool_kwarg
|
12 |
+
|
13 |
+
from pandas.core.dtypes.common import is_extension_array_dtype
|
14 |
+
|
15 |
+
from pandas.core.computation.engines import ENGINES
|
16 |
+
from pandas.core.computation.expr import (
|
17 |
+
PARSERS,
|
18 |
+
Expr,
|
19 |
+
)
|
20 |
+
from pandas.core.computation.parsing import tokenize_string
|
21 |
+
from pandas.core.computation.scope import ensure_scope
|
22 |
+
from pandas.core.generic import NDFrame
|
23 |
+
|
24 |
+
from pandas.io.formats.printing import pprint_thing
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from pandas.core.computation.ops import BinOp
|
28 |
+
|
29 |
+
|
30 |
+
def _check_engine(engine: str | None) -> str:
|
31 |
+
"""
|
32 |
+
Make sure a valid engine is passed.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
engine : str
|
37 |
+
String to validate.
|
38 |
+
|
39 |
+
Raises
|
40 |
+
------
|
41 |
+
KeyError
|
42 |
+
* If an invalid engine is passed.
|
43 |
+
ImportError
|
44 |
+
* If numexpr was requested but doesn't exist.
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
str
|
49 |
+
Engine name.
|
50 |
+
"""
|
51 |
+
from pandas.core.computation.check import NUMEXPR_INSTALLED
|
52 |
+
from pandas.core.computation.expressions import USE_NUMEXPR
|
53 |
+
|
54 |
+
if engine is None:
|
55 |
+
engine = "numexpr" if USE_NUMEXPR else "python"
|
56 |
+
|
57 |
+
if engine not in ENGINES:
|
58 |
+
valid_engines = list(ENGINES.keys())
|
59 |
+
raise KeyError(
|
60 |
+
f"Invalid engine '{engine}' passed, valid engines are {valid_engines}"
|
61 |
+
)
|
62 |
+
|
63 |
+
# TODO: validate this in a more general way (thinking of future engines
|
64 |
+
# that won't necessarily be import-able)
|
65 |
+
# Could potentially be done on engine instantiation
|
66 |
+
if engine == "numexpr" and not NUMEXPR_INSTALLED:
|
67 |
+
raise ImportError(
|
68 |
+
"'numexpr' is not installed or an unsupported version. Cannot use "
|
69 |
+
"engine='numexpr' for query/eval if 'numexpr' is not installed"
|
70 |
+
)
|
71 |
+
|
72 |
+
return engine
|
73 |
+
|
74 |
+
|
75 |
+
def _check_parser(parser: str):
|
76 |
+
"""
|
77 |
+
Make sure a valid parser is passed.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
parser : str
|
82 |
+
|
83 |
+
Raises
|
84 |
+
------
|
85 |
+
KeyError
|
86 |
+
* If an invalid parser is passed
|
87 |
+
"""
|
88 |
+
if parser not in PARSERS:
|
89 |
+
raise KeyError(
|
90 |
+
f"Invalid parser '{parser}' passed, valid parsers are {PARSERS.keys()}"
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def _check_resolvers(resolvers):
|
95 |
+
if resolvers is not None:
|
96 |
+
for resolver in resolvers:
|
97 |
+
if not hasattr(resolver, "__getitem__"):
|
98 |
+
name = type(resolver).__name__
|
99 |
+
raise TypeError(
|
100 |
+
f"Resolver of type '{name}' does not "
|
101 |
+
"implement the __getitem__ method"
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
def _check_expression(expr):
|
106 |
+
"""
|
107 |
+
Make sure an expression is not an empty string
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
----------
|
111 |
+
expr : object
|
112 |
+
An object that can be converted to a string
|
113 |
+
|
114 |
+
Raises
|
115 |
+
------
|
116 |
+
ValueError
|
117 |
+
* If expr is an empty string
|
118 |
+
"""
|
119 |
+
if not expr:
|
120 |
+
raise ValueError("expr cannot be an empty string")
|
121 |
+
|
122 |
+
|
123 |
+
def _convert_expression(expr) -> str:
|
124 |
+
"""
|
125 |
+
Convert an object to an expression.
|
126 |
+
|
127 |
+
This function converts an object to an expression (a unicode string) and
|
128 |
+
checks to make sure it isn't empty after conversion. This is used to
|
129 |
+
convert operators to their string representation for recursive calls to
|
130 |
+
:func:`~pandas.eval`.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
expr : object
|
135 |
+
The object to be converted to a string.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
str
|
140 |
+
The string representation of an object.
|
141 |
+
|
142 |
+
Raises
|
143 |
+
------
|
144 |
+
ValueError
|
145 |
+
* If the expression is empty.
|
146 |
+
"""
|
147 |
+
s = pprint_thing(expr)
|
148 |
+
_check_expression(s)
|
149 |
+
return s
|
150 |
+
|
151 |
+
|
152 |
+
def _check_for_locals(expr: str, stack_level: int, parser: str):
|
153 |
+
at_top_of_stack = stack_level == 0
|
154 |
+
not_pandas_parser = parser != "pandas"
|
155 |
+
|
156 |
+
if not_pandas_parser:
|
157 |
+
msg = "The '@' prefix is only supported by the pandas parser"
|
158 |
+
elif at_top_of_stack:
|
159 |
+
msg = (
|
160 |
+
"The '@' prefix is not allowed in top-level eval calls.\n"
|
161 |
+
"please refer to your variables by name without the '@' prefix."
|
162 |
+
)
|
163 |
+
|
164 |
+
if at_top_of_stack or not_pandas_parser:
|
165 |
+
for toknum, tokval in tokenize_string(expr):
|
166 |
+
if toknum == tokenize.OP and tokval == "@":
|
167 |
+
raise SyntaxError(msg)
|
168 |
+
|
169 |
+
|
170 |
+
def eval(
|
171 |
+
expr: str | BinOp, # we leave BinOp out of the docstr bc it isn't for users
|
172 |
+
parser: str = "pandas",
|
173 |
+
engine: str | None = None,
|
174 |
+
local_dict=None,
|
175 |
+
global_dict=None,
|
176 |
+
resolvers=(),
|
177 |
+
level: int = 0,
|
178 |
+
target=None,
|
179 |
+
inplace: bool = False,
|
180 |
+
):
|
181 |
+
"""
|
182 |
+
Evaluate a Python expression as a string using various backends.
|
183 |
+
|
184 |
+
The following arithmetic operations are supported: ``+``, ``-``, ``*``,
|
185 |
+
``/``, ``**``, ``%``, ``//`` (python engine only) along with the following
|
186 |
+
boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not).
|
187 |
+
Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`,
|
188 |
+
:keyword:`or`, and :keyword:`not` with the same semantics as the
|
189 |
+
corresponding bitwise operators. :class:`~pandas.Series` and
|
190 |
+
:class:`~pandas.DataFrame` objects are supported and behave as they would
|
191 |
+
with plain ol' Python evaluation.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
expr : str
|
196 |
+
The expression to evaluate. This string cannot contain any Python
|
197 |
+
`statements
|
198 |
+
<https://docs.python.org/3/reference/simple_stmts.html#simple-statements>`__,
|
199 |
+
only Python `expressions
|
200 |
+
<https://docs.python.org/3/reference/simple_stmts.html#expression-statements>`__.
|
201 |
+
parser : {'pandas', 'python'}, default 'pandas'
|
202 |
+
The parser to use to construct the syntax tree from the expression. The
|
203 |
+
default of ``'pandas'`` parses code slightly different than standard
|
204 |
+
Python. Alternatively, you can parse an expression using the
|
205 |
+
``'python'`` parser to retain strict Python semantics. See the
|
206 |
+
:ref:`enhancing performance <enhancingperf.eval>` documentation for
|
207 |
+
more details.
|
208 |
+
engine : {'python', 'numexpr'}, default 'numexpr'
|
209 |
+
|
210 |
+
The engine used to evaluate the expression. Supported engines are
|
211 |
+
|
212 |
+
- None : tries to use ``numexpr``, falls back to ``python``
|
213 |
+
- ``'numexpr'`` : This default engine evaluates pandas objects using
|
214 |
+
numexpr for large speed ups in complex expressions with large frames.
|
215 |
+
- ``'python'`` : Performs operations as if you had ``eval``'d in top
|
216 |
+
level python. This engine is generally not that useful.
|
217 |
+
|
218 |
+
More backends may be available in the future.
|
219 |
+
local_dict : dict or None, optional
|
220 |
+
A dictionary of local variables, taken from locals() by default.
|
221 |
+
global_dict : dict or None, optional
|
222 |
+
A dictionary of global variables, taken from globals() by default.
|
223 |
+
resolvers : list of dict-like or None, optional
|
224 |
+
A list of objects implementing the ``__getitem__`` special method that
|
225 |
+
you can use to inject an additional collection of namespaces to use for
|
226 |
+
variable lookup. For example, this is used in the
|
227 |
+
:meth:`~DataFrame.query` method to inject the
|
228 |
+
``DataFrame.index`` and ``DataFrame.columns``
|
229 |
+
variables that refer to their respective :class:`~pandas.DataFrame`
|
230 |
+
instance attributes.
|
231 |
+
level : int, optional
|
232 |
+
The number of prior stack frames to traverse and add to the current
|
233 |
+
scope. Most users will **not** need to change this parameter.
|
234 |
+
target : object, optional, default None
|
235 |
+
This is the target object for assignment. It is used when there is
|
236 |
+
variable assignment in the expression. If so, then `target` must
|
237 |
+
support item assignment with string keys, and if a copy is being
|
238 |
+
returned, it must also support `.copy()`.
|
239 |
+
inplace : bool, default False
|
240 |
+
If `target` is provided, and the expression mutates `target`, whether
|
241 |
+
to modify `target` inplace. Otherwise, return a copy of `target` with
|
242 |
+
the mutation.
|
243 |
+
|
244 |
+
Returns
|
245 |
+
-------
|
246 |
+
ndarray, numeric scalar, DataFrame, Series, or None
|
247 |
+
The completion value of evaluating the given code or None if ``inplace=True``.
|
248 |
+
|
249 |
+
Raises
|
250 |
+
------
|
251 |
+
ValueError
|
252 |
+
There are many instances where such an error can be raised:
|
253 |
+
|
254 |
+
- `target=None`, but the expression is multiline.
|
255 |
+
- The expression is multiline, but not all them have item assignment.
|
256 |
+
An example of such an arrangement is this:
|
257 |
+
|
258 |
+
a = b + 1
|
259 |
+
a + 2
|
260 |
+
|
261 |
+
Here, there are expressions on different lines, making it multiline,
|
262 |
+
but the last line has no variable assigned to the output of `a + 2`.
|
263 |
+
- `inplace=True`, but the expression is missing item assignment.
|
264 |
+
- Item assignment is provided, but the `target` does not support
|
265 |
+
string item assignment.
|
266 |
+
- Item assignment is provided and `inplace=False`, but the `target`
|
267 |
+
does not support the `.copy()` method
|
268 |
+
|
269 |
+
See Also
|
270 |
+
--------
|
271 |
+
DataFrame.query : Evaluates a boolean expression to query the columns
|
272 |
+
of a frame.
|
273 |
+
DataFrame.eval : Evaluate a string describing operations on
|
274 |
+
DataFrame columns.
|
275 |
+
|
276 |
+
Notes
|
277 |
+
-----
|
278 |
+
The ``dtype`` of any objects involved in an arithmetic ``%`` operation are
|
279 |
+
recursively cast to ``float64``.
|
280 |
+
|
281 |
+
See the :ref:`enhancing performance <enhancingperf.eval>` documentation for
|
282 |
+
more details.
|
283 |
+
|
284 |
+
Examples
|
285 |
+
--------
|
286 |
+
>>> df = pd.DataFrame({"animal": ["dog", "pig"], "age": [10, 20]})
|
287 |
+
>>> df
|
288 |
+
animal age
|
289 |
+
0 dog 10
|
290 |
+
1 pig 20
|
291 |
+
|
292 |
+
We can add a new column using ``pd.eval``:
|
293 |
+
|
294 |
+
>>> pd.eval("double_age = df.age * 2", target=df)
|
295 |
+
animal age double_age
|
296 |
+
0 dog 10 20
|
297 |
+
1 pig 20 40
|
298 |
+
"""
|
299 |
+
inplace = validate_bool_kwarg(inplace, "inplace")
|
300 |
+
|
301 |
+
exprs: list[str | BinOp]
|
302 |
+
if isinstance(expr, str):
|
303 |
+
_check_expression(expr)
|
304 |
+
exprs = [e.strip() for e in expr.splitlines() if e.strip() != ""]
|
305 |
+
else:
|
306 |
+
# ops.BinOp; for internal compat, not intended to be passed by users
|
307 |
+
exprs = [expr]
|
308 |
+
multi_line = len(exprs) > 1
|
309 |
+
|
310 |
+
if multi_line and target is None:
|
311 |
+
raise ValueError(
|
312 |
+
"multi-line expressions are only valid in the "
|
313 |
+
"context of data, use DataFrame.eval"
|
314 |
+
)
|
315 |
+
engine = _check_engine(engine)
|
316 |
+
_check_parser(parser)
|
317 |
+
_check_resolvers(resolvers)
|
318 |
+
|
319 |
+
ret = None
|
320 |
+
first_expr = True
|
321 |
+
target_modified = False
|
322 |
+
|
323 |
+
for expr in exprs:
|
324 |
+
expr = _convert_expression(expr)
|
325 |
+
_check_for_locals(expr, level, parser)
|
326 |
+
|
327 |
+
# get our (possibly passed-in) scope
|
328 |
+
env = ensure_scope(
|
329 |
+
level + 1,
|
330 |
+
global_dict=global_dict,
|
331 |
+
local_dict=local_dict,
|
332 |
+
resolvers=resolvers,
|
333 |
+
target=target,
|
334 |
+
)
|
335 |
+
|
336 |
+
parsed_expr = Expr(expr, engine=engine, parser=parser, env=env)
|
337 |
+
|
338 |
+
if engine == "numexpr" and (
|
339 |
+
is_extension_array_dtype(parsed_expr.terms.return_type)
|
340 |
+
or getattr(parsed_expr.terms, "operand_types", None) is not None
|
341 |
+
and any(
|
342 |
+
is_extension_array_dtype(elem)
|
343 |
+
for elem in parsed_expr.terms.operand_types
|
344 |
+
)
|
345 |
+
):
|
346 |
+
warnings.warn(
|
347 |
+
"Engine has switched to 'python' because numexpr does not support "
|
348 |
+
"extension array dtypes. Please set your engine to python manually.",
|
349 |
+
RuntimeWarning,
|
350 |
+
stacklevel=find_stack_level(),
|
351 |
+
)
|
352 |
+
engine = "python"
|
353 |
+
|
354 |
+
# construct the engine and evaluate the parsed expression
|
355 |
+
eng = ENGINES[engine]
|
356 |
+
eng_inst = eng(parsed_expr)
|
357 |
+
ret = eng_inst.evaluate()
|
358 |
+
|
359 |
+
if parsed_expr.assigner is None:
|
360 |
+
if multi_line:
|
361 |
+
raise ValueError(
|
362 |
+
"Multi-line expressions are only valid "
|
363 |
+
"if all expressions contain an assignment"
|
364 |
+
)
|
365 |
+
if inplace:
|
366 |
+
raise ValueError("Cannot operate inplace if there is no assignment")
|
367 |
+
|
368 |
+
# assign if needed
|
369 |
+
assigner = parsed_expr.assigner
|
370 |
+
if env.target is not None and assigner is not None:
|
371 |
+
target_modified = True
|
372 |
+
|
373 |
+
# if returning a copy, copy only on the first assignment
|
374 |
+
if not inplace and first_expr:
|
375 |
+
try:
|
376 |
+
target = env.target
|
377 |
+
if isinstance(target, NDFrame):
|
378 |
+
target = target.copy(deep=None)
|
379 |
+
else:
|
380 |
+
target = target.copy()
|
381 |
+
except AttributeError as err:
|
382 |
+
raise ValueError("Cannot return a copy of the target") from err
|
383 |
+
else:
|
384 |
+
target = env.target
|
385 |
+
|
386 |
+
# TypeError is most commonly raised (e.g. int, list), but you
|
387 |
+
# get IndexError if you try to do this assignment on np.ndarray.
|
388 |
+
# we will ignore numpy warnings here; e.g. if trying
|
389 |
+
# to use a non-numeric indexer
|
390 |
+
try:
|
391 |
+
if inplace and isinstance(target, NDFrame):
|
392 |
+
target.loc[:, assigner] = ret
|
393 |
+
else:
|
394 |
+
target[assigner] = ret # pyright: ignore[reportGeneralTypeIssues]
|
395 |
+
except (TypeError, IndexError) as err:
|
396 |
+
raise ValueError("Cannot assign expression output to target") from err
|
397 |
+
|
398 |
+
if not resolvers:
|
399 |
+
resolvers = ({assigner: ret},)
|
400 |
+
else:
|
401 |
+
# existing resolver needs updated to handle
|
402 |
+
# case of mutating existing column in copy
|
403 |
+
for resolver in resolvers:
|
404 |
+
if assigner in resolver:
|
405 |
+
resolver[assigner] = ret
|
406 |
+
break
|
407 |
+
else:
|
408 |
+
resolvers += ({assigner: ret},)
|
409 |
+
|
410 |
+
ret = None
|
411 |
+
first_expr = False
|
412 |
+
|
413 |
+
# We want to exclude `inplace=None` as being False.
|
414 |
+
if inplace is False:
|
415 |
+
return target if target_modified else ret
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/expr.py
ADDED
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
:func:`~pandas.eval` parsers.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import ast
|
7 |
+
from functools import (
|
8 |
+
partial,
|
9 |
+
reduce,
|
10 |
+
)
|
11 |
+
from keyword import iskeyword
|
12 |
+
import tokenize
|
13 |
+
from typing import (
|
14 |
+
Callable,
|
15 |
+
ClassVar,
|
16 |
+
TypeVar,
|
17 |
+
)
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from pandas.errors import UndefinedVariableError
|
22 |
+
|
23 |
+
import pandas.core.common as com
|
24 |
+
from pandas.core.computation.ops import (
|
25 |
+
ARITH_OPS_SYMS,
|
26 |
+
BOOL_OPS_SYMS,
|
27 |
+
CMP_OPS_SYMS,
|
28 |
+
LOCAL_TAG,
|
29 |
+
MATHOPS,
|
30 |
+
REDUCTIONS,
|
31 |
+
UNARY_OPS_SYMS,
|
32 |
+
BinOp,
|
33 |
+
Constant,
|
34 |
+
Div,
|
35 |
+
FuncNode,
|
36 |
+
Op,
|
37 |
+
Term,
|
38 |
+
UnaryOp,
|
39 |
+
is_term,
|
40 |
+
)
|
41 |
+
from pandas.core.computation.parsing import (
|
42 |
+
clean_backtick_quoted_toks,
|
43 |
+
tokenize_string,
|
44 |
+
)
|
45 |
+
from pandas.core.computation.scope import Scope
|
46 |
+
|
47 |
+
from pandas.io.formats import printing
|
48 |
+
|
49 |
+
|
50 |
+
def _rewrite_assign(tok: tuple[int, str]) -> tuple[int, str]:
|
51 |
+
"""
|
52 |
+
Rewrite the assignment operator for PyTables expressions that use ``=``
|
53 |
+
as a substitute for ``==``.
|
54 |
+
|
55 |
+
Parameters
|
56 |
+
----------
|
57 |
+
tok : tuple of int, str
|
58 |
+
ints correspond to the all caps constants in the tokenize module
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
tuple of int, str
|
63 |
+
Either the input or token or the replacement values
|
64 |
+
"""
|
65 |
+
toknum, tokval = tok
|
66 |
+
return toknum, "==" if tokval == "=" else tokval
|
67 |
+
|
68 |
+
|
69 |
+
def _replace_booleans(tok: tuple[int, str]) -> tuple[int, str]:
|
70 |
+
"""
|
71 |
+
Replace ``&`` with ``and`` and ``|`` with ``or`` so that bitwise
|
72 |
+
precedence is changed to boolean precedence.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
tok : tuple of int, str
|
77 |
+
ints correspond to the all caps constants in the tokenize module
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
tuple of int, str
|
82 |
+
Either the input or token or the replacement values
|
83 |
+
"""
|
84 |
+
toknum, tokval = tok
|
85 |
+
if toknum == tokenize.OP:
|
86 |
+
if tokval == "&":
|
87 |
+
return tokenize.NAME, "and"
|
88 |
+
elif tokval == "|":
|
89 |
+
return tokenize.NAME, "or"
|
90 |
+
return toknum, tokval
|
91 |
+
return toknum, tokval
|
92 |
+
|
93 |
+
|
94 |
+
def _replace_locals(tok: tuple[int, str]) -> tuple[int, str]:
|
95 |
+
"""
|
96 |
+
Replace local variables with a syntactically valid name.
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
tok : tuple of int, str
|
101 |
+
ints correspond to the all caps constants in the tokenize module
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
tuple of int, str
|
106 |
+
Either the input or token or the replacement values
|
107 |
+
|
108 |
+
Notes
|
109 |
+
-----
|
110 |
+
This is somewhat of a hack in that we rewrite a string such as ``'@a'`` as
|
111 |
+
``'__pd_eval_local_a'`` by telling the tokenizer that ``__pd_eval_local_``
|
112 |
+
is a ``tokenize.OP`` and to replace the ``'@'`` symbol with it.
|
113 |
+
"""
|
114 |
+
toknum, tokval = tok
|
115 |
+
if toknum == tokenize.OP and tokval == "@":
|
116 |
+
return tokenize.OP, LOCAL_TAG
|
117 |
+
return toknum, tokval
|
118 |
+
|
119 |
+
|
120 |
+
def _compose2(f, g):
|
121 |
+
"""
|
122 |
+
Compose 2 callables.
|
123 |
+
"""
|
124 |
+
return lambda *args, **kwargs: f(g(*args, **kwargs))
|
125 |
+
|
126 |
+
|
127 |
+
def _compose(*funcs):
|
128 |
+
"""
|
129 |
+
Compose 2 or more callables.
|
130 |
+
"""
|
131 |
+
assert len(funcs) > 1, "At least 2 callables must be passed to compose"
|
132 |
+
return reduce(_compose2, funcs)
|
133 |
+
|
134 |
+
|
135 |
+
def _preparse(
|
136 |
+
source: str,
|
137 |
+
f=_compose(
|
138 |
+
_replace_locals, _replace_booleans, _rewrite_assign, clean_backtick_quoted_toks
|
139 |
+
),
|
140 |
+
) -> str:
|
141 |
+
"""
|
142 |
+
Compose a collection of tokenization functions.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
source : str
|
147 |
+
A Python source code string
|
148 |
+
f : callable
|
149 |
+
This takes a tuple of (toknum, tokval) as its argument and returns a
|
150 |
+
tuple with the same structure but possibly different elements. Defaults
|
151 |
+
to the composition of ``_rewrite_assign``, ``_replace_booleans``, and
|
152 |
+
``_replace_locals``.
|
153 |
+
|
154 |
+
Returns
|
155 |
+
-------
|
156 |
+
str
|
157 |
+
Valid Python source code
|
158 |
+
|
159 |
+
Notes
|
160 |
+
-----
|
161 |
+
The `f` parameter can be any callable that takes *and* returns input of the
|
162 |
+
form ``(toknum, tokval)``, where ``toknum`` is one of the constants from
|
163 |
+
the ``tokenize`` module and ``tokval`` is a string.
|
164 |
+
"""
|
165 |
+
assert callable(f), "f must be callable"
|
166 |
+
return tokenize.untokenize(f(x) for x in tokenize_string(source))
|
167 |
+
|
168 |
+
|
169 |
+
def _is_type(t):
|
170 |
+
"""
|
171 |
+
Factory for a type checking function of type ``t`` or tuple of types.
|
172 |
+
"""
|
173 |
+
return lambda x: isinstance(x.value, t)
|
174 |
+
|
175 |
+
|
176 |
+
_is_list = _is_type(list)
|
177 |
+
_is_str = _is_type(str)
|
178 |
+
|
179 |
+
|
180 |
+
# partition all AST nodes
|
181 |
+
_all_nodes = frozenset(
|
182 |
+
node
|
183 |
+
for node in (getattr(ast, name) for name in dir(ast))
|
184 |
+
if isinstance(node, type) and issubclass(node, ast.AST)
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def _filter_nodes(superclass, all_nodes=_all_nodes):
|
189 |
+
"""
|
190 |
+
Filter out AST nodes that are subclasses of ``superclass``.
|
191 |
+
"""
|
192 |
+
node_names = (node.__name__ for node in all_nodes if issubclass(node, superclass))
|
193 |
+
return frozenset(node_names)
|
194 |
+
|
195 |
+
|
196 |
+
_all_node_names = frozenset(x.__name__ for x in _all_nodes)
|
197 |
+
_mod_nodes = _filter_nodes(ast.mod)
|
198 |
+
_stmt_nodes = _filter_nodes(ast.stmt)
|
199 |
+
_expr_nodes = _filter_nodes(ast.expr)
|
200 |
+
_expr_context_nodes = _filter_nodes(ast.expr_context)
|
201 |
+
_boolop_nodes = _filter_nodes(ast.boolop)
|
202 |
+
_operator_nodes = _filter_nodes(ast.operator)
|
203 |
+
_unary_op_nodes = _filter_nodes(ast.unaryop)
|
204 |
+
_cmp_op_nodes = _filter_nodes(ast.cmpop)
|
205 |
+
_comprehension_nodes = _filter_nodes(ast.comprehension)
|
206 |
+
_handler_nodes = _filter_nodes(ast.excepthandler)
|
207 |
+
_arguments_nodes = _filter_nodes(ast.arguments)
|
208 |
+
_keyword_nodes = _filter_nodes(ast.keyword)
|
209 |
+
_alias_nodes = _filter_nodes(ast.alias)
|
210 |
+
|
211 |
+
|
212 |
+
# nodes that we don't support directly but are needed for parsing
|
213 |
+
_hacked_nodes = frozenset(["Assign", "Module", "Expr"])
|
214 |
+
|
215 |
+
|
216 |
+
_unsupported_expr_nodes = frozenset(
|
217 |
+
[
|
218 |
+
"Yield",
|
219 |
+
"GeneratorExp",
|
220 |
+
"IfExp",
|
221 |
+
"DictComp",
|
222 |
+
"SetComp",
|
223 |
+
"Repr",
|
224 |
+
"Lambda",
|
225 |
+
"Set",
|
226 |
+
"AST",
|
227 |
+
"Is",
|
228 |
+
"IsNot",
|
229 |
+
]
|
230 |
+
)
|
231 |
+
|
232 |
+
# these nodes are low priority or won't ever be supported (e.g., AST)
|
233 |
+
_unsupported_nodes = (
|
234 |
+
_stmt_nodes
|
235 |
+
| _mod_nodes
|
236 |
+
| _handler_nodes
|
237 |
+
| _arguments_nodes
|
238 |
+
| _keyword_nodes
|
239 |
+
| _alias_nodes
|
240 |
+
| _expr_context_nodes
|
241 |
+
| _unsupported_expr_nodes
|
242 |
+
) - _hacked_nodes
|
243 |
+
|
244 |
+
# we're adding a different assignment in some cases to be equality comparison
|
245 |
+
# and we don't want `stmt` and friends in their so get only the class whose
|
246 |
+
# names are capitalized
|
247 |
+
_base_supported_nodes = (_all_node_names - _unsupported_nodes) | _hacked_nodes
|
248 |
+
intersection = _unsupported_nodes & _base_supported_nodes
|
249 |
+
_msg = f"cannot both support and not support {intersection}"
|
250 |
+
assert not intersection, _msg
|
251 |
+
|
252 |
+
|
253 |
+
def _node_not_implemented(node_name: str) -> Callable[..., None]:
|
254 |
+
"""
|
255 |
+
Return a function that raises a NotImplementedError with a passed node name.
|
256 |
+
"""
|
257 |
+
|
258 |
+
def f(self, *args, **kwargs):
|
259 |
+
raise NotImplementedError(f"'{node_name}' nodes are not implemented")
|
260 |
+
|
261 |
+
return f
|
262 |
+
|
263 |
+
|
264 |
+
# should be bound by BaseExprVisitor but that creates a circular dependency:
|
265 |
+
# _T is used in disallow, but disallow is used to define BaseExprVisitor
|
266 |
+
# https://github.com/microsoft/pyright/issues/2315
|
267 |
+
_T = TypeVar("_T")
|
268 |
+
|
269 |
+
|
270 |
+
def disallow(nodes: set[str]) -> Callable[[type[_T]], type[_T]]:
|
271 |
+
"""
|
272 |
+
Decorator to disallow certain nodes from parsing. Raises a
|
273 |
+
NotImplementedError instead.
|
274 |
+
|
275 |
+
Returns
|
276 |
+
-------
|
277 |
+
callable
|
278 |
+
"""
|
279 |
+
|
280 |
+
def disallowed(cls: type[_T]) -> type[_T]:
|
281 |
+
# error: "Type[_T]" has no attribute "unsupported_nodes"
|
282 |
+
cls.unsupported_nodes = () # type: ignore[attr-defined]
|
283 |
+
for node in nodes:
|
284 |
+
new_method = _node_not_implemented(node)
|
285 |
+
name = f"visit_{node}"
|
286 |
+
# error: "Type[_T]" has no attribute "unsupported_nodes"
|
287 |
+
cls.unsupported_nodes += (name,) # type: ignore[attr-defined]
|
288 |
+
setattr(cls, name, new_method)
|
289 |
+
return cls
|
290 |
+
|
291 |
+
return disallowed
|
292 |
+
|
293 |
+
|
294 |
+
def _op_maker(op_class, op_symbol):
|
295 |
+
"""
|
296 |
+
Return a function to create an op class with its symbol already passed.
|
297 |
+
|
298 |
+
Returns
|
299 |
+
-------
|
300 |
+
callable
|
301 |
+
"""
|
302 |
+
|
303 |
+
def f(self, node, *args, **kwargs):
|
304 |
+
"""
|
305 |
+
Return a partial function with an Op subclass with an operator already passed.
|
306 |
+
|
307 |
+
Returns
|
308 |
+
-------
|
309 |
+
callable
|
310 |
+
"""
|
311 |
+
return partial(op_class, op_symbol, *args, **kwargs)
|
312 |
+
|
313 |
+
return f
|
314 |
+
|
315 |
+
|
316 |
+
_op_classes = {"binary": BinOp, "unary": UnaryOp}
|
317 |
+
|
318 |
+
|
319 |
+
def add_ops(op_classes):
|
320 |
+
"""
|
321 |
+
Decorator to add default implementation of ops.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def f(cls):
|
325 |
+
for op_attr_name, op_class in op_classes.items():
|
326 |
+
ops = getattr(cls, f"{op_attr_name}_ops")
|
327 |
+
ops_map = getattr(cls, f"{op_attr_name}_op_nodes_map")
|
328 |
+
for op in ops:
|
329 |
+
op_node = ops_map[op]
|
330 |
+
if op_node is not None:
|
331 |
+
made_op = _op_maker(op_class, op)
|
332 |
+
setattr(cls, f"visit_{op_node}", made_op)
|
333 |
+
return cls
|
334 |
+
|
335 |
+
return f
|
336 |
+
|
337 |
+
|
338 |
+
@disallow(_unsupported_nodes)
|
339 |
+
@add_ops(_op_classes)
|
340 |
+
class BaseExprVisitor(ast.NodeVisitor):
|
341 |
+
"""
|
342 |
+
Custom ast walker. Parsers of other engines should subclass this class
|
343 |
+
if necessary.
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
----------
|
347 |
+
env : Scope
|
348 |
+
engine : str
|
349 |
+
parser : str
|
350 |
+
preparser : callable
|
351 |
+
"""
|
352 |
+
|
353 |
+
const_type: ClassVar[type[Term]] = Constant
|
354 |
+
term_type: ClassVar[type[Term]] = Term
|
355 |
+
|
356 |
+
binary_ops = CMP_OPS_SYMS + BOOL_OPS_SYMS + ARITH_OPS_SYMS
|
357 |
+
binary_op_nodes = (
|
358 |
+
"Gt",
|
359 |
+
"Lt",
|
360 |
+
"GtE",
|
361 |
+
"LtE",
|
362 |
+
"Eq",
|
363 |
+
"NotEq",
|
364 |
+
"In",
|
365 |
+
"NotIn",
|
366 |
+
"BitAnd",
|
367 |
+
"BitOr",
|
368 |
+
"And",
|
369 |
+
"Or",
|
370 |
+
"Add",
|
371 |
+
"Sub",
|
372 |
+
"Mult",
|
373 |
+
None,
|
374 |
+
"Pow",
|
375 |
+
"FloorDiv",
|
376 |
+
"Mod",
|
377 |
+
)
|
378 |
+
binary_op_nodes_map = dict(zip(binary_ops, binary_op_nodes))
|
379 |
+
|
380 |
+
unary_ops = UNARY_OPS_SYMS
|
381 |
+
unary_op_nodes = "UAdd", "USub", "Invert", "Not"
|
382 |
+
unary_op_nodes_map = dict(zip(unary_ops, unary_op_nodes))
|
383 |
+
|
384 |
+
rewrite_map = {
|
385 |
+
ast.Eq: ast.In,
|
386 |
+
ast.NotEq: ast.NotIn,
|
387 |
+
ast.In: ast.In,
|
388 |
+
ast.NotIn: ast.NotIn,
|
389 |
+
}
|
390 |
+
|
391 |
+
unsupported_nodes: tuple[str, ...]
|
392 |
+
|
393 |
+
def __init__(self, env, engine, parser, preparser=_preparse) -> None:
|
394 |
+
self.env = env
|
395 |
+
self.engine = engine
|
396 |
+
self.parser = parser
|
397 |
+
self.preparser = preparser
|
398 |
+
self.assigner = None
|
399 |
+
|
400 |
+
def visit(self, node, **kwargs):
|
401 |
+
if isinstance(node, str):
|
402 |
+
clean = self.preparser(node)
|
403 |
+
try:
|
404 |
+
node = ast.fix_missing_locations(ast.parse(clean))
|
405 |
+
except SyntaxError as e:
|
406 |
+
if any(iskeyword(x) for x in clean.split()):
|
407 |
+
e.msg = "Python keyword not valid identifier in numexpr query"
|
408 |
+
raise e
|
409 |
+
|
410 |
+
method = f"visit_{type(node).__name__}"
|
411 |
+
visitor = getattr(self, method)
|
412 |
+
return visitor(node, **kwargs)
|
413 |
+
|
414 |
+
def visit_Module(self, node, **kwargs):
|
415 |
+
if len(node.body) != 1:
|
416 |
+
raise SyntaxError("only a single expression is allowed")
|
417 |
+
expr = node.body[0]
|
418 |
+
return self.visit(expr, **kwargs)
|
419 |
+
|
420 |
+
def visit_Expr(self, node, **kwargs):
|
421 |
+
return self.visit(node.value, **kwargs)
|
422 |
+
|
423 |
+
def _rewrite_membership_op(self, node, left, right):
|
424 |
+
# the kind of the operator (is actually an instance)
|
425 |
+
op_instance = node.op
|
426 |
+
op_type = type(op_instance)
|
427 |
+
|
428 |
+
# must be two terms and the comparison operator must be ==/!=/in/not in
|
429 |
+
if is_term(left) and is_term(right) and op_type in self.rewrite_map:
|
430 |
+
left_list, right_list = map(_is_list, (left, right))
|
431 |
+
left_str, right_str = map(_is_str, (left, right))
|
432 |
+
|
433 |
+
# if there are any strings or lists in the expression
|
434 |
+
if left_list or right_list or left_str or right_str:
|
435 |
+
op_instance = self.rewrite_map[op_type]()
|
436 |
+
|
437 |
+
# pop the string variable out of locals and replace it with a list
|
438 |
+
# of one string, kind of a hack
|
439 |
+
if right_str:
|
440 |
+
name = self.env.add_tmp([right.value])
|
441 |
+
right = self.term_type(name, self.env)
|
442 |
+
|
443 |
+
if left_str:
|
444 |
+
name = self.env.add_tmp([left.value])
|
445 |
+
left = self.term_type(name, self.env)
|
446 |
+
|
447 |
+
op = self.visit(op_instance)
|
448 |
+
return op, op_instance, left, right
|
449 |
+
|
450 |
+
def _maybe_transform_eq_ne(self, node, left=None, right=None):
|
451 |
+
if left is None:
|
452 |
+
left = self.visit(node.left, side="left")
|
453 |
+
if right is None:
|
454 |
+
right = self.visit(node.right, side="right")
|
455 |
+
op, op_class, left, right = self._rewrite_membership_op(node, left, right)
|
456 |
+
return op, op_class, left, right
|
457 |
+
|
458 |
+
def _maybe_downcast_constants(self, left, right):
|
459 |
+
f32 = np.dtype(np.float32)
|
460 |
+
if (
|
461 |
+
left.is_scalar
|
462 |
+
and hasattr(left, "value")
|
463 |
+
and not right.is_scalar
|
464 |
+
and right.return_type == f32
|
465 |
+
):
|
466 |
+
# right is a float32 array, left is a scalar
|
467 |
+
name = self.env.add_tmp(np.float32(left.value))
|
468 |
+
left = self.term_type(name, self.env)
|
469 |
+
if (
|
470 |
+
right.is_scalar
|
471 |
+
and hasattr(right, "value")
|
472 |
+
and not left.is_scalar
|
473 |
+
and left.return_type == f32
|
474 |
+
):
|
475 |
+
# left is a float32 array, right is a scalar
|
476 |
+
name = self.env.add_tmp(np.float32(right.value))
|
477 |
+
right = self.term_type(name, self.env)
|
478 |
+
|
479 |
+
return left, right
|
480 |
+
|
481 |
+
def _maybe_eval(self, binop, eval_in_python):
|
482 |
+
# eval `in` and `not in` (for now) in "partial" python space
|
483 |
+
# things that can be evaluated in "eval" space will be turned into
|
484 |
+
# temporary variables. for example,
|
485 |
+
# [1,2] in a + 2 * b
|
486 |
+
# in that case a + 2 * b will be evaluated using numexpr, and the "in"
|
487 |
+
# call will be evaluated using isin (in python space)
|
488 |
+
return binop.evaluate(
|
489 |
+
self.env, self.engine, self.parser, self.term_type, eval_in_python
|
490 |
+
)
|
491 |
+
|
492 |
+
def _maybe_evaluate_binop(
|
493 |
+
self,
|
494 |
+
op,
|
495 |
+
op_class,
|
496 |
+
lhs,
|
497 |
+
rhs,
|
498 |
+
eval_in_python=("in", "not in"),
|
499 |
+
maybe_eval_in_python=("==", "!=", "<", ">", "<=", ">="),
|
500 |
+
):
|
501 |
+
res = op(lhs, rhs)
|
502 |
+
|
503 |
+
if res.has_invalid_return_type:
|
504 |
+
raise TypeError(
|
505 |
+
f"unsupported operand type(s) for {res.op}: "
|
506 |
+
f"'{lhs.type}' and '{rhs.type}'"
|
507 |
+
)
|
508 |
+
|
509 |
+
if self.engine != "pytables" and (
|
510 |
+
res.op in CMP_OPS_SYMS
|
511 |
+
and getattr(lhs, "is_datetime", False)
|
512 |
+
or getattr(rhs, "is_datetime", False)
|
513 |
+
):
|
514 |
+
# all date ops must be done in python bc numexpr doesn't work
|
515 |
+
# well with NaT
|
516 |
+
return self._maybe_eval(res, self.binary_ops)
|
517 |
+
|
518 |
+
if res.op in eval_in_python:
|
519 |
+
# "in"/"not in" ops are always evaluated in python
|
520 |
+
return self._maybe_eval(res, eval_in_python)
|
521 |
+
elif self.engine != "pytables":
|
522 |
+
if (
|
523 |
+
getattr(lhs, "return_type", None) == object
|
524 |
+
or getattr(rhs, "return_type", None) == object
|
525 |
+
):
|
526 |
+
# evaluate "==" and "!=" in python if either of our operands
|
527 |
+
# has an object return type
|
528 |
+
return self._maybe_eval(res, eval_in_python + maybe_eval_in_python)
|
529 |
+
return res
|
530 |
+
|
531 |
+
def visit_BinOp(self, node, **kwargs):
|
532 |
+
op, op_class, left, right = self._maybe_transform_eq_ne(node)
|
533 |
+
left, right = self._maybe_downcast_constants(left, right)
|
534 |
+
return self._maybe_evaluate_binop(op, op_class, left, right)
|
535 |
+
|
536 |
+
def visit_Div(self, node, **kwargs):
|
537 |
+
return lambda lhs, rhs: Div(lhs, rhs)
|
538 |
+
|
539 |
+
def visit_UnaryOp(self, node, **kwargs):
|
540 |
+
op = self.visit(node.op)
|
541 |
+
operand = self.visit(node.operand)
|
542 |
+
return op(operand)
|
543 |
+
|
544 |
+
def visit_Name(self, node, **kwargs) -> Term:
|
545 |
+
return self.term_type(node.id, self.env, **kwargs)
|
546 |
+
|
547 |
+
# TODO(py314): deprecated since Python 3.8. Remove after Python 3.14 is min
|
548 |
+
def visit_NameConstant(self, node, **kwargs) -> Term:
|
549 |
+
return self.const_type(node.value, self.env)
|
550 |
+
|
551 |
+
# TODO(py314): deprecated since Python 3.8. Remove after Python 3.14 is min
|
552 |
+
def visit_Num(self, node, **kwargs) -> Term:
|
553 |
+
return self.const_type(node.value, self.env)
|
554 |
+
|
555 |
+
def visit_Constant(self, node, **kwargs) -> Term:
|
556 |
+
return self.const_type(node.value, self.env)
|
557 |
+
|
558 |
+
# TODO(py314): deprecated since Python 3.8. Remove after Python 3.14 is min
|
559 |
+
def visit_Str(self, node, **kwargs) -> Term:
|
560 |
+
name = self.env.add_tmp(node.s)
|
561 |
+
return self.term_type(name, self.env)
|
562 |
+
|
563 |
+
def visit_List(self, node, **kwargs) -> Term:
|
564 |
+
name = self.env.add_tmp([self.visit(e)(self.env) for e in node.elts])
|
565 |
+
return self.term_type(name, self.env)
|
566 |
+
|
567 |
+
visit_Tuple = visit_List
|
568 |
+
|
569 |
+
def visit_Index(self, node, **kwargs):
|
570 |
+
"""df.index[4]"""
|
571 |
+
return self.visit(node.value)
|
572 |
+
|
573 |
+
def visit_Subscript(self, node, **kwargs) -> Term:
|
574 |
+
from pandas import eval as pd_eval
|
575 |
+
|
576 |
+
value = self.visit(node.value)
|
577 |
+
slobj = self.visit(node.slice)
|
578 |
+
result = pd_eval(
|
579 |
+
slobj, local_dict=self.env, engine=self.engine, parser=self.parser
|
580 |
+
)
|
581 |
+
try:
|
582 |
+
# a Term instance
|
583 |
+
v = value.value[result]
|
584 |
+
except AttributeError:
|
585 |
+
# an Op instance
|
586 |
+
lhs = pd_eval(
|
587 |
+
value, local_dict=self.env, engine=self.engine, parser=self.parser
|
588 |
+
)
|
589 |
+
v = lhs[result]
|
590 |
+
name = self.env.add_tmp(v)
|
591 |
+
return self.term_type(name, env=self.env)
|
592 |
+
|
593 |
+
def visit_Slice(self, node, **kwargs) -> slice:
|
594 |
+
"""df.index[slice(4,6)]"""
|
595 |
+
lower = node.lower
|
596 |
+
if lower is not None:
|
597 |
+
lower = self.visit(lower).value
|
598 |
+
upper = node.upper
|
599 |
+
if upper is not None:
|
600 |
+
upper = self.visit(upper).value
|
601 |
+
step = node.step
|
602 |
+
if step is not None:
|
603 |
+
step = self.visit(step).value
|
604 |
+
|
605 |
+
return slice(lower, upper, step)
|
606 |
+
|
607 |
+
def visit_Assign(self, node, **kwargs):
|
608 |
+
"""
|
609 |
+
support a single assignment node, like
|
610 |
+
|
611 |
+
c = a + b
|
612 |
+
|
613 |
+
set the assigner at the top level, must be a Name node which
|
614 |
+
might or might not exist in the resolvers
|
615 |
+
|
616 |
+
"""
|
617 |
+
if len(node.targets) != 1:
|
618 |
+
raise SyntaxError("can only assign a single expression")
|
619 |
+
if not isinstance(node.targets[0], ast.Name):
|
620 |
+
raise SyntaxError("left hand side of an assignment must be a single name")
|
621 |
+
if self.env.target is None:
|
622 |
+
raise ValueError("cannot assign without a target object")
|
623 |
+
|
624 |
+
try:
|
625 |
+
assigner = self.visit(node.targets[0], **kwargs)
|
626 |
+
except UndefinedVariableError:
|
627 |
+
assigner = node.targets[0].id
|
628 |
+
|
629 |
+
self.assigner = getattr(assigner, "name", assigner)
|
630 |
+
if self.assigner is None:
|
631 |
+
raise SyntaxError(
|
632 |
+
"left hand side of an assignment must be a single resolvable name"
|
633 |
+
)
|
634 |
+
|
635 |
+
return self.visit(node.value, **kwargs)
|
636 |
+
|
637 |
+
def visit_Attribute(self, node, **kwargs):
|
638 |
+
attr = node.attr
|
639 |
+
value = node.value
|
640 |
+
|
641 |
+
ctx = node.ctx
|
642 |
+
if isinstance(ctx, ast.Load):
|
643 |
+
# resolve the value
|
644 |
+
resolved = self.visit(value).value
|
645 |
+
try:
|
646 |
+
v = getattr(resolved, attr)
|
647 |
+
name = self.env.add_tmp(v)
|
648 |
+
return self.term_type(name, self.env)
|
649 |
+
except AttributeError:
|
650 |
+
# something like datetime.datetime where scope is overridden
|
651 |
+
if isinstance(value, ast.Name) and value.id == attr:
|
652 |
+
return resolved
|
653 |
+
raise
|
654 |
+
|
655 |
+
raise ValueError(f"Invalid Attribute context {type(ctx).__name__}")
|
656 |
+
|
657 |
+
def visit_Call(self, node, side=None, **kwargs):
|
658 |
+
if isinstance(node.func, ast.Attribute) and node.func.attr != "__call__":
|
659 |
+
res = self.visit_Attribute(node.func)
|
660 |
+
elif not isinstance(node.func, ast.Name):
|
661 |
+
raise TypeError("Only named functions are supported")
|
662 |
+
else:
|
663 |
+
try:
|
664 |
+
res = self.visit(node.func)
|
665 |
+
except UndefinedVariableError:
|
666 |
+
# Check if this is a supported function name
|
667 |
+
try:
|
668 |
+
res = FuncNode(node.func.id)
|
669 |
+
except ValueError:
|
670 |
+
# Raise original error
|
671 |
+
raise
|
672 |
+
|
673 |
+
if res is None:
|
674 |
+
# error: "expr" has no attribute "id"
|
675 |
+
raise ValueError(
|
676 |
+
f"Invalid function call {node.func.id}" # type: ignore[attr-defined]
|
677 |
+
)
|
678 |
+
if hasattr(res, "value"):
|
679 |
+
res = res.value
|
680 |
+
|
681 |
+
if isinstance(res, FuncNode):
|
682 |
+
new_args = [self.visit(arg) for arg in node.args]
|
683 |
+
|
684 |
+
if node.keywords:
|
685 |
+
raise TypeError(
|
686 |
+
f'Function "{res.name}" does not support keyword arguments'
|
687 |
+
)
|
688 |
+
|
689 |
+
return res(*new_args)
|
690 |
+
|
691 |
+
else:
|
692 |
+
new_args = [self.visit(arg)(self.env) for arg in node.args]
|
693 |
+
|
694 |
+
for key in node.keywords:
|
695 |
+
if not isinstance(key, ast.keyword):
|
696 |
+
# error: "expr" has no attribute "id"
|
697 |
+
raise ValueError(
|
698 |
+
"keyword error in function call "
|
699 |
+
f"'{node.func.id}'" # type: ignore[attr-defined]
|
700 |
+
)
|
701 |
+
|
702 |
+
if key.arg:
|
703 |
+
kwargs[key.arg] = self.visit(key.value)(self.env)
|
704 |
+
|
705 |
+
name = self.env.add_tmp(res(*new_args, **kwargs))
|
706 |
+
return self.term_type(name=name, env=self.env)
|
707 |
+
|
708 |
+
def translate_In(self, op):
|
709 |
+
return op
|
710 |
+
|
711 |
+
def visit_Compare(self, node, **kwargs):
|
712 |
+
ops = node.ops
|
713 |
+
comps = node.comparators
|
714 |
+
|
715 |
+
# base case: we have something like a CMP b
|
716 |
+
if len(comps) == 1:
|
717 |
+
op = self.translate_In(ops[0])
|
718 |
+
binop = ast.BinOp(op=op, left=node.left, right=comps[0])
|
719 |
+
return self.visit(binop)
|
720 |
+
|
721 |
+
# recursive case: we have a chained comparison, a CMP b CMP c, etc.
|
722 |
+
left = node.left
|
723 |
+
values = []
|
724 |
+
for op, comp in zip(ops, comps):
|
725 |
+
new_node = self.visit(
|
726 |
+
ast.Compare(comparators=[comp], left=left, ops=[self.translate_In(op)])
|
727 |
+
)
|
728 |
+
left = comp
|
729 |
+
values.append(new_node)
|
730 |
+
return self.visit(ast.BoolOp(op=ast.And(), values=values))
|
731 |
+
|
732 |
+
def _try_visit_binop(self, bop):
|
733 |
+
if isinstance(bop, (Op, Term)):
|
734 |
+
return bop
|
735 |
+
return self.visit(bop)
|
736 |
+
|
737 |
+
def visit_BoolOp(self, node, **kwargs):
|
738 |
+
def visitor(x, y):
|
739 |
+
lhs = self._try_visit_binop(x)
|
740 |
+
rhs = self._try_visit_binop(y)
|
741 |
+
|
742 |
+
op, op_class, lhs, rhs = self._maybe_transform_eq_ne(node, lhs, rhs)
|
743 |
+
return self._maybe_evaluate_binop(op, node.op, lhs, rhs)
|
744 |
+
|
745 |
+
operands = node.values
|
746 |
+
return reduce(visitor, operands)
|
747 |
+
|
748 |
+
|
749 |
+
_python_not_supported = frozenset(["Dict", "BoolOp", "In", "NotIn"])
|
750 |
+
_numexpr_supported_calls = frozenset(REDUCTIONS + MATHOPS)
|
751 |
+
|
752 |
+
|
753 |
+
@disallow(
|
754 |
+
(_unsupported_nodes | _python_not_supported)
|
755 |
+
- (_boolop_nodes | frozenset(["BoolOp", "Attribute", "In", "NotIn", "Tuple"]))
|
756 |
+
)
|
757 |
+
class PandasExprVisitor(BaseExprVisitor):
|
758 |
+
def __init__(
|
759 |
+
self,
|
760 |
+
env,
|
761 |
+
engine,
|
762 |
+
parser,
|
763 |
+
preparser=partial(
|
764 |
+
_preparse,
|
765 |
+
f=_compose(_replace_locals, _replace_booleans, clean_backtick_quoted_toks),
|
766 |
+
),
|
767 |
+
) -> None:
|
768 |
+
super().__init__(env, engine, parser, preparser)
|
769 |
+
|
770 |
+
|
771 |
+
@disallow(_unsupported_nodes | _python_not_supported | frozenset(["Not"]))
|
772 |
+
class PythonExprVisitor(BaseExprVisitor):
|
773 |
+
def __init__(
|
774 |
+
self, env, engine, parser, preparser=lambda source, f=None: source
|
775 |
+
) -> None:
|
776 |
+
super().__init__(env, engine, parser, preparser=preparser)
|
777 |
+
|
778 |
+
|
779 |
+
class Expr:
|
780 |
+
"""
|
781 |
+
Object encapsulating an expression.
|
782 |
+
|
783 |
+
Parameters
|
784 |
+
----------
|
785 |
+
expr : str
|
786 |
+
engine : str, optional, default 'numexpr'
|
787 |
+
parser : str, optional, default 'pandas'
|
788 |
+
env : Scope, optional, default None
|
789 |
+
level : int, optional, default 2
|
790 |
+
"""
|
791 |
+
|
792 |
+
env: Scope
|
793 |
+
engine: str
|
794 |
+
parser: str
|
795 |
+
|
796 |
+
def __init__(
|
797 |
+
self,
|
798 |
+
expr,
|
799 |
+
engine: str = "numexpr",
|
800 |
+
parser: str = "pandas",
|
801 |
+
env: Scope | None = None,
|
802 |
+
level: int = 0,
|
803 |
+
) -> None:
|
804 |
+
self.expr = expr
|
805 |
+
self.env = env or Scope(level=level + 1)
|
806 |
+
self.engine = engine
|
807 |
+
self.parser = parser
|
808 |
+
self._visitor = PARSERS[parser](self.env, self.engine, self.parser)
|
809 |
+
self.terms = self.parse()
|
810 |
+
|
811 |
+
@property
|
812 |
+
def assigner(self):
|
813 |
+
return getattr(self._visitor, "assigner", None)
|
814 |
+
|
815 |
+
def __call__(self):
|
816 |
+
return self.terms(self.env)
|
817 |
+
|
818 |
+
def __repr__(self) -> str:
|
819 |
+
return printing.pprint_thing(self.terms)
|
820 |
+
|
821 |
+
def __len__(self) -> int:
|
822 |
+
return len(self.expr)
|
823 |
+
|
824 |
+
def parse(self):
|
825 |
+
"""
|
826 |
+
Parse an expression.
|
827 |
+
"""
|
828 |
+
return self._visitor.visit(self.expr)
|
829 |
+
|
830 |
+
@property
|
831 |
+
def names(self):
|
832 |
+
"""
|
833 |
+
Get the names in an expression.
|
834 |
+
"""
|
835 |
+
if is_term(self.terms):
|
836 |
+
return frozenset([self.terms.name])
|
837 |
+
return frozenset(term.name for term in com.flatten(self.terms))
|
838 |
+
|
839 |
+
|
840 |
+
PARSERS = {"python": PythonExprVisitor, "pandas": PandasExprVisitor}
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/expressions.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Expressions
|
3 |
+
-----------
|
4 |
+
|
5 |
+
Offer fast expression evaluation through numexpr
|
6 |
+
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import operator
|
11 |
+
from typing import TYPE_CHECKING
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._config import get_option
|
17 |
+
|
18 |
+
from pandas.util._exceptions import find_stack_level
|
19 |
+
|
20 |
+
from pandas.core import roperator
|
21 |
+
from pandas.core.computation.check import NUMEXPR_INSTALLED
|
22 |
+
|
23 |
+
if NUMEXPR_INSTALLED:
|
24 |
+
import numexpr as ne
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from pandas._typing import FuncType
|
28 |
+
|
29 |
+
_TEST_MODE: bool | None = None
|
30 |
+
_TEST_RESULT: list[bool] = []
|
31 |
+
USE_NUMEXPR = NUMEXPR_INSTALLED
|
32 |
+
_evaluate: FuncType | None = None
|
33 |
+
_where: FuncType | None = None
|
34 |
+
|
35 |
+
# the set of dtypes that we will allow pass to numexpr
|
36 |
+
_ALLOWED_DTYPES = {
|
37 |
+
"evaluate": {"int64", "int32", "float64", "float32", "bool"},
|
38 |
+
"where": {"int64", "float64", "bool"},
|
39 |
+
}
|
40 |
+
|
41 |
+
# the minimum prod shape that we will use numexpr
|
42 |
+
_MIN_ELEMENTS = 1_000_000
|
43 |
+
|
44 |
+
|
45 |
+
def set_use_numexpr(v: bool = True) -> None:
|
46 |
+
# set/unset to use numexpr
|
47 |
+
global USE_NUMEXPR
|
48 |
+
if NUMEXPR_INSTALLED:
|
49 |
+
USE_NUMEXPR = v
|
50 |
+
|
51 |
+
# choose what we are going to do
|
52 |
+
global _evaluate, _where
|
53 |
+
|
54 |
+
_evaluate = _evaluate_numexpr if USE_NUMEXPR else _evaluate_standard
|
55 |
+
_where = _where_numexpr if USE_NUMEXPR else _where_standard
|
56 |
+
|
57 |
+
|
58 |
+
def set_numexpr_threads(n=None) -> None:
|
59 |
+
# if we are using numexpr, set the threads to n
|
60 |
+
# otherwise reset
|
61 |
+
if NUMEXPR_INSTALLED and USE_NUMEXPR:
|
62 |
+
if n is None:
|
63 |
+
n = ne.detect_number_of_cores()
|
64 |
+
ne.set_num_threads(n)
|
65 |
+
|
66 |
+
|
67 |
+
def _evaluate_standard(op, op_str, a, b):
|
68 |
+
"""
|
69 |
+
Standard evaluation.
|
70 |
+
"""
|
71 |
+
if _TEST_MODE:
|
72 |
+
_store_test_result(False)
|
73 |
+
return op(a, b)
|
74 |
+
|
75 |
+
|
76 |
+
def _can_use_numexpr(op, op_str, a, b, dtype_check) -> bool:
|
77 |
+
"""return a boolean if we WILL be using numexpr"""
|
78 |
+
if op_str is not None:
|
79 |
+
# required min elements (otherwise we are adding overhead)
|
80 |
+
if a.size > _MIN_ELEMENTS:
|
81 |
+
# check for dtype compatibility
|
82 |
+
dtypes: set[str] = set()
|
83 |
+
for o in [a, b]:
|
84 |
+
# ndarray and Series Case
|
85 |
+
if hasattr(o, "dtype"):
|
86 |
+
dtypes |= {o.dtype.name}
|
87 |
+
|
88 |
+
# allowed are a superset
|
89 |
+
if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes:
|
90 |
+
return True
|
91 |
+
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def _evaluate_numexpr(op, op_str, a, b):
|
96 |
+
result = None
|
97 |
+
|
98 |
+
if _can_use_numexpr(op, op_str, a, b, "evaluate"):
|
99 |
+
is_reversed = op.__name__.strip("_").startswith("r")
|
100 |
+
if is_reversed:
|
101 |
+
# we were originally called by a reversed op method
|
102 |
+
a, b = b, a
|
103 |
+
|
104 |
+
a_value = a
|
105 |
+
b_value = b
|
106 |
+
|
107 |
+
try:
|
108 |
+
result = ne.evaluate(
|
109 |
+
f"a_value {op_str} b_value",
|
110 |
+
local_dict={"a_value": a_value, "b_value": b_value},
|
111 |
+
casting="safe",
|
112 |
+
)
|
113 |
+
except TypeError:
|
114 |
+
# numexpr raises eg for array ** array with integers
|
115 |
+
# (https://github.com/pydata/numexpr/issues/379)
|
116 |
+
pass
|
117 |
+
except NotImplementedError:
|
118 |
+
if _bool_arith_fallback(op_str, a, b):
|
119 |
+
pass
|
120 |
+
else:
|
121 |
+
raise
|
122 |
+
|
123 |
+
if is_reversed:
|
124 |
+
# reverse order to original for fallback
|
125 |
+
a, b = b, a
|
126 |
+
|
127 |
+
if _TEST_MODE:
|
128 |
+
_store_test_result(result is not None)
|
129 |
+
|
130 |
+
if result is None:
|
131 |
+
result = _evaluate_standard(op, op_str, a, b)
|
132 |
+
|
133 |
+
return result
|
134 |
+
|
135 |
+
|
136 |
+
_op_str_mapping = {
|
137 |
+
operator.add: "+",
|
138 |
+
roperator.radd: "+",
|
139 |
+
operator.mul: "*",
|
140 |
+
roperator.rmul: "*",
|
141 |
+
operator.sub: "-",
|
142 |
+
roperator.rsub: "-",
|
143 |
+
operator.truediv: "/",
|
144 |
+
roperator.rtruediv: "/",
|
145 |
+
# floordiv not supported by numexpr 2.x
|
146 |
+
operator.floordiv: None,
|
147 |
+
roperator.rfloordiv: None,
|
148 |
+
# we require Python semantics for mod of negative for backwards compatibility
|
149 |
+
# see https://github.com/pydata/numexpr/issues/365
|
150 |
+
# so sticking with unaccelerated for now GH#36552
|
151 |
+
operator.mod: None,
|
152 |
+
roperator.rmod: None,
|
153 |
+
operator.pow: "**",
|
154 |
+
roperator.rpow: "**",
|
155 |
+
operator.eq: "==",
|
156 |
+
operator.ne: "!=",
|
157 |
+
operator.le: "<=",
|
158 |
+
operator.lt: "<",
|
159 |
+
operator.ge: ">=",
|
160 |
+
operator.gt: ">",
|
161 |
+
operator.and_: "&",
|
162 |
+
roperator.rand_: "&",
|
163 |
+
operator.or_: "|",
|
164 |
+
roperator.ror_: "|",
|
165 |
+
operator.xor: "^",
|
166 |
+
roperator.rxor: "^",
|
167 |
+
divmod: None,
|
168 |
+
roperator.rdivmod: None,
|
169 |
+
}
|
170 |
+
|
171 |
+
|
172 |
+
def _where_standard(cond, a, b):
|
173 |
+
# Caller is responsible for extracting ndarray if necessary
|
174 |
+
return np.where(cond, a, b)
|
175 |
+
|
176 |
+
|
177 |
+
def _where_numexpr(cond, a, b):
|
178 |
+
# Caller is responsible for extracting ndarray if necessary
|
179 |
+
result = None
|
180 |
+
|
181 |
+
if _can_use_numexpr(None, "where", a, b, "where"):
|
182 |
+
result = ne.evaluate(
|
183 |
+
"where(cond_value, a_value, b_value)",
|
184 |
+
local_dict={"cond_value": cond, "a_value": a, "b_value": b},
|
185 |
+
casting="safe",
|
186 |
+
)
|
187 |
+
|
188 |
+
if result is None:
|
189 |
+
result = _where_standard(cond, a, b)
|
190 |
+
|
191 |
+
return result
|
192 |
+
|
193 |
+
|
194 |
+
# turn myself on
|
195 |
+
set_use_numexpr(get_option("compute.use_numexpr"))
|
196 |
+
|
197 |
+
|
198 |
+
def _has_bool_dtype(x):
|
199 |
+
try:
|
200 |
+
return x.dtype == bool
|
201 |
+
except AttributeError:
|
202 |
+
return isinstance(x, (bool, np.bool_))
|
203 |
+
|
204 |
+
|
205 |
+
_BOOL_OP_UNSUPPORTED = {"+": "|", "*": "&", "-": "^"}
|
206 |
+
|
207 |
+
|
208 |
+
def _bool_arith_fallback(op_str, a, b) -> bool:
|
209 |
+
"""
|
210 |
+
Check if we should fallback to the python `_evaluate_standard` in case
|
211 |
+
of an unsupported operation by numexpr, which is the case for some
|
212 |
+
boolean ops.
|
213 |
+
"""
|
214 |
+
if _has_bool_dtype(a) and _has_bool_dtype(b):
|
215 |
+
if op_str in _BOOL_OP_UNSUPPORTED:
|
216 |
+
warnings.warn(
|
217 |
+
f"evaluating in Python space because the {repr(op_str)} "
|
218 |
+
"operator is not supported by numexpr for the bool dtype, "
|
219 |
+
f"use {repr(_BOOL_OP_UNSUPPORTED[op_str])} instead.",
|
220 |
+
stacklevel=find_stack_level(),
|
221 |
+
)
|
222 |
+
return True
|
223 |
+
return False
|
224 |
+
|
225 |
+
|
226 |
+
def evaluate(op, a, b, use_numexpr: bool = True):
|
227 |
+
"""
|
228 |
+
Evaluate and return the expression of the op on a and b.
|
229 |
+
|
230 |
+
Parameters
|
231 |
+
----------
|
232 |
+
op : the actual operand
|
233 |
+
a : left operand
|
234 |
+
b : right operand
|
235 |
+
use_numexpr : bool, default True
|
236 |
+
Whether to try to use numexpr.
|
237 |
+
"""
|
238 |
+
op_str = _op_str_mapping[op]
|
239 |
+
if op_str is not None:
|
240 |
+
if use_numexpr:
|
241 |
+
# error: "None" not callable
|
242 |
+
return _evaluate(op, op_str, a, b) # type: ignore[misc]
|
243 |
+
return _evaluate_standard(op, op_str, a, b)
|
244 |
+
|
245 |
+
|
246 |
+
def where(cond, a, b, use_numexpr: bool = True):
|
247 |
+
"""
|
248 |
+
Evaluate the where condition cond on a and b.
|
249 |
+
|
250 |
+
Parameters
|
251 |
+
----------
|
252 |
+
cond : np.ndarray[bool]
|
253 |
+
a : return if cond is True
|
254 |
+
b : return if cond is False
|
255 |
+
use_numexpr : bool, default True
|
256 |
+
Whether to try to use numexpr.
|
257 |
+
"""
|
258 |
+
assert _where is not None
|
259 |
+
return _where(cond, a, b) if use_numexpr else _where_standard(cond, a, b)
|
260 |
+
|
261 |
+
|
262 |
+
def set_test_mode(v: bool = True) -> None:
|
263 |
+
"""
|
264 |
+
Keeps track of whether numexpr was used.
|
265 |
+
|
266 |
+
Stores an additional ``True`` for every successful use of evaluate with
|
267 |
+
numexpr since the last ``get_test_result``.
|
268 |
+
"""
|
269 |
+
global _TEST_MODE, _TEST_RESULT
|
270 |
+
_TEST_MODE = v
|
271 |
+
_TEST_RESULT = []
|
272 |
+
|
273 |
+
|
274 |
+
def _store_test_result(used_numexpr: bool) -> None:
|
275 |
+
if used_numexpr:
|
276 |
+
_TEST_RESULT.append(used_numexpr)
|
277 |
+
|
278 |
+
|
279 |
+
def get_test_result() -> list[bool]:
|
280 |
+
"""
|
281 |
+
Get test result and reset test_results.
|
282 |
+
"""
|
283 |
+
global _TEST_RESULT
|
284 |
+
res = _TEST_RESULT
|
285 |
+
_TEST_RESULT = []
|
286 |
+
return res
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/pytables.py
ADDED
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" manage PyTables query interface via Expressions """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
import ast
|
5 |
+
from decimal import (
|
6 |
+
Decimal,
|
7 |
+
InvalidOperation,
|
8 |
+
)
|
9 |
+
from functools import partial
|
10 |
+
from typing import (
|
11 |
+
TYPE_CHECKING,
|
12 |
+
Any,
|
13 |
+
ClassVar,
|
14 |
+
)
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas._libs.tslibs import (
|
19 |
+
Timedelta,
|
20 |
+
Timestamp,
|
21 |
+
)
|
22 |
+
from pandas.errors import UndefinedVariableError
|
23 |
+
|
24 |
+
from pandas.core.dtypes.common import is_list_like
|
25 |
+
|
26 |
+
import pandas.core.common as com
|
27 |
+
from pandas.core.computation import (
|
28 |
+
expr,
|
29 |
+
ops,
|
30 |
+
scope as _scope,
|
31 |
+
)
|
32 |
+
from pandas.core.computation.common import ensure_decoded
|
33 |
+
from pandas.core.computation.expr import BaseExprVisitor
|
34 |
+
from pandas.core.computation.ops import is_term
|
35 |
+
from pandas.core.construction import extract_array
|
36 |
+
from pandas.core.indexes.base import Index
|
37 |
+
|
38 |
+
from pandas.io.formats.printing import (
|
39 |
+
pprint_thing,
|
40 |
+
pprint_thing_encoded,
|
41 |
+
)
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from pandas._typing import (
|
45 |
+
Self,
|
46 |
+
npt,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class PyTablesScope(_scope.Scope):
|
51 |
+
__slots__ = ("queryables",)
|
52 |
+
|
53 |
+
queryables: dict[str, Any]
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
level: int,
|
58 |
+
global_dict=None,
|
59 |
+
local_dict=None,
|
60 |
+
queryables: dict[str, Any] | None = None,
|
61 |
+
) -> None:
|
62 |
+
super().__init__(level + 1, global_dict=global_dict, local_dict=local_dict)
|
63 |
+
self.queryables = queryables or {}
|
64 |
+
|
65 |
+
|
66 |
+
class Term(ops.Term):
|
67 |
+
env: PyTablesScope
|
68 |
+
|
69 |
+
def __new__(cls, name, env, side=None, encoding=None):
|
70 |
+
if isinstance(name, str):
|
71 |
+
klass = cls
|
72 |
+
else:
|
73 |
+
klass = Constant
|
74 |
+
return object.__new__(klass)
|
75 |
+
|
76 |
+
def __init__(self, name, env: PyTablesScope, side=None, encoding=None) -> None:
|
77 |
+
super().__init__(name, env, side=side, encoding=encoding)
|
78 |
+
|
79 |
+
def _resolve_name(self):
|
80 |
+
# must be a queryables
|
81 |
+
if self.side == "left":
|
82 |
+
# Note: The behavior of __new__ ensures that self.name is a str here
|
83 |
+
if self.name not in self.env.queryables:
|
84 |
+
raise NameError(f"name {repr(self.name)} is not defined")
|
85 |
+
return self.name
|
86 |
+
|
87 |
+
# resolve the rhs (and allow it to be None)
|
88 |
+
try:
|
89 |
+
return self.env.resolve(self.name, is_local=False)
|
90 |
+
except UndefinedVariableError:
|
91 |
+
return self.name
|
92 |
+
|
93 |
+
# read-only property overwriting read/write property
|
94 |
+
@property # type: ignore[misc]
|
95 |
+
def value(self):
|
96 |
+
return self._value
|
97 |
+
|
98 |
+
|
99 |
+
class Constant(Term):
|
100 |
+
def __init__(self, name, env: PyTablesScope, side=None, encoding=None) -> None:
|
101 |
+
assert isinstance(env, PyTablesScope), type(env)
|
102 |
+
super().__init__(name, env, side=side, encoding=encoding)
|
103 |
+
|
104 |
+
def _resolve_name(self):
|
105 |
+
return self._name
|
106 |
+
|
107 |
+
|
108 |
+
class BinOp(ops.BinOp):
|
109 |
+
_max_selectors = 31
|
110 |
+
|
111 |
+
op: str
|
112 |
+
queryables: dict[str, Any]
|
113 |
+
condition: str | None
|
114 |
+
|
115 |
+
def __init__(self, op: str, lhs, rhs, queryables: dict[str, Any], encoding) -> None:
|
116 |
+
super().__init__(op, lhs, rhs)
|
117 |
+
self.queryables = queryables
|
118 |
+
self.encoding = encoding
|
119 |
+
self.condition = None
|
120 |
+
|
121 |
+
def _disallow_scalar_only_bool_ops(self) -> None:
|
122 |
+
pass
|
123 |
+
|
124 |
+
def prune(self, klass):
|
125 |
+
def pr(left, right):
|
126 |
+
"""create and return a new specialized BinOp from myself"""
|
127 |
+
if left is None:
|
128 |
+
return right
|
129 |
+
elif right is None:
|
130 |
+
return left
|
131 |
+
|
132 |
+
k = klass
|
133 |
+
if isinstance(left, ConditionBinOp):
|
134 |
+
if isinstance(right, ConditionBinOp):
|
135 |
+
k = JointConditionBinOp
|
136 |
+
elif isinstance(left, k):
|
137 |
+
return left
|
138 |
+
elif isinstance(right, k):
|
139 |
+
return right
|
140 |
+
|
141 |
+
elif isinstance(left, FilterBinOp):
|
142 |
+
if isinstance(right, FilterBinOp):
|
143 |
+
k = JointFilterBinOp
|
144 |
+
elif isinstance(left, k):
|
145 |
+
return left
|
146 |
+
elif isinstance(right, k):
|
147 |
+
return right
|
148 |
+
|
149 |
+
return k(
|
150 |
+
self.op, left, right, queryables=self.queryables, encoding=self.encoding
|
151 |
+
).evaluate()
|
152 |
+
|
153 |
+
left, right = self.lhs, self.rhs
|
154 |
+
|
155 |
+
if is_term(left) and is_term(right):
|
156 |
+
res = pr(left.value, right.value)
|
157 |
+
elif not is_term(left) and is_term(right):
|
158 |
+
res = pr(left.prune(klass), right.value)
|
159 |
+
elif is_term(left) and not is_term(right):
|
160 |
+
res = pr(left.value, right.prune(klass))
|
161 |
+
elif not (is_term(left) or is_term(right)):
|
162 |
+
res = pr(left.prune(klass), right.prune(klass))
|
163 |
+
|
164 |
+
return res
|
165 |
+
|
166 |
+
def conform(self, rhs):
|
167 |
+
"""inplace conform rhs"""
|
168 |
+
if not is_list_like(rhs):
|
169 |
+
rhs = [rhs]
|
170 |
+
if isinstance(rhs, np.ndarray):
|
171 |
+
rhs = rhs.ravel()
|
172 |
+
return rhs
|
173 |
+
|
174 |
+
@property
|
175 |
+
def is_valid(self) -> bool:
|
176 |
+
"""return True if this is a valid field"""
|
177 |
+
return self.lhs in self.queryables
|
178 |
+
|
179 |
+
@property
|
180 |
+
def is_in_table(self) -> bool:
|
181 |
+
"""
|
182 |
+
return True if this is a valid column name for generation (e.g. an
|
183 |
+
actual column in the table)
|
184 |
+
"""
|
185 |
+
return self.queryables.get(self.lhs) is not None
|
186 |
+
|
187 |
+
@property
|
188 |
+
def kind(self):
|
189 |
+
"""the kind of my field"""
|
190 |
+
return getattr(self.queryables.get(self.lhs), "kind", None)
|
191 |
+
|
192 |
+
@property
|
193 |
+
def meta(self):
|
194 |
+
"""the meta of my field"""
|
195 |
+
return getattr(self.queryables.get(self.lhs), "meta", None)
|
196 |
+
|
197 |
+
@property
|
198 |
+
def metadata(self):
|
199 |
+
"""the metadata of my field"""
|
200 |
+
return getattr(self.queryables.get(self.lhs), "metadata", None)
|
201 |
+
|
202 |
+
def generate(self, v) -> str:
|
203 |
+
"""create and return the op string for this TermValue"""
|
204 |
+
val = v.tostring(self.encoding)
|
205 |
+
return f"({self.lhs} {self.op} {val})"
|
206 |
+
|
207 |
+
def convert_value(self, v) -> TermValue:
|
208 |
+
"""
|
209 |
+
convert the expression that is in the term to something that is
|
210 |
+
accepted by pytables
|
211 |
+
"""
|
212 |
+
|
213 |
+
def stringify(value):
|
214 |
+
if self.encoding is not None:
|
215 |
+
return pprint_thing_encoded(value, encoding=self.encoding)
|
216 |
+
return pprint_thing(value)
|
217 |
+
|
218 |
+
kind = ensure_decoded(self.kind)
|
219 |
+
meta = ensure_decoded(self.meta)
|
220 |
+
if kind == "datetime" or (kind and kind.startswith("datetime64")):
|
221 |
+
if isinstance(v, (int, float)):
|
222 |
+
v = stringify(v)
|
223 |
+
v = ensure_decoded(v)
|
224 |
+
v = Timestamp(v).as_unit("ns")
|
225 |
+
if v.tz is not None:
|
226 |
+
v = v.tz_convert("UTC")
|
227 |
+
return TermValue(v, v._value, kind)
|
228 |
+
elif kind in ("timedelta64", "timedelta"):
|
229 |
+
if isinstance(v, str):
|
230 |
+
v = Timedelta(v)
|
231 |
+
else:
|
232 |
+
v = Timedelta(v, unit="s")
|
233 |
+
v = v.as_unit("ns")._value
|
234 |
+
return TermValue(int(v), v, kind)
|
235 |
+
elif meta == "category":
|
236 |
+
metadata = extract_array(self.metadata, extract_numpy=True)
|
237 |
+
result: npt.NDArray[np.intp] | np.intp | int
|
238 |
+
if v not in metadata:
|
239 |
+
result = -1
|
240 |
+
else:
|
241 |
+
result = metadata.searchsorted(v, side="left")
|
242 |
+
return TermValue(result, result, "integer")
|
243 |
+
elif kind == "integer":
|
244 |
+
try:
|
245 |
+
v_dec = Decimal(v)
|
246 |
+
except InvalidOperation:
|
247 |
+
# GH 54186
|
248 |
+
# convert v to float to raise float's ValueError
|
249 |
+
float(v)
|
250 |
+
else:
|
251 |
+
v = int(v_dec.to_integral_exact(rounding="ROUND_HALF_EVEN"))
|
252 |
+
return TermValue(v, v, kind)
|
253 |
+
elif kind == "float":
|
254 |
+
v = float(v)
|
255 |
+
return TermValue(v, v, kind)
|
256 |
+
elif kind == "bool":
|
257 |
+
if isinstance(v, str):
|
258 |
+
v = v.strip().lower() not in [
|
259 |
+
"false",
|
260 |
+
"f",
|
261 |
+
"no",
|
262 |
+
"n",
|
263 |
+
"none",
|
264 |
+
"0",
|
265 |
+
"[]",
|
266 |
+
"{}",
|
267 |
+
"",
|
268 |
+
]
|
269 |
+
else:
|
270 |
+
v = bool(v)
|
271 |
+
return TermValue(v, v, kind)
|
272 |
+
elif isinstance(v, str):
|
273 |
+
# string quoting
|
274 |
+
return TermValue(v, stringify(v), "string")
|
275 |
+
else:
|
276 |
+
raise TypeError(f"Cannot compare {v} of type {type(v)} to {kind} column")
|
277 |
+
|
278 |
+
def convert_values(self) -> None:
|
279 |
+
pass
|
280 |
+
|
281 |
+
|
282 |
+
class FilterBinOp(BinOp):
|
283 |
+
filter: tuple[Any, Any, Index] | None = None
|
284 |
+
|
285 |
+
def __repr__(self) -> str:
|
286 |
+
if self.filter is None:
|
287 |
+
return "Filter: Not Initialized"
|
288 |
+
return pprint_thing(f"[Filter : [{self.filter[0]}] -> [{self.filter[1]}]")
|
289 |
+
|
290 |
+
def invert(self) -> Self:
|
291 |
+
"""invert the filter"""
|
292 |
+
if self.filter is not None:
|
293 |
+
self.filter = (
|
294 |
+
self.filter[0],
|
295 |
+
self.generate_filter_op(invert=True),
|
296 |
+
self.filter[2],
|
297 |
+
)
|
298 |
+
return self
|
299 |
+
|
300 |
+
def format(self):
|
301 |
+
"""return the actual filter format"""
|
302 |
+
return [self.filter]
|
303 |
+
|
304 |
+
# error: Signature of "evaluate" incompatible with supertype "BinOp"
|
305 |
+
def evaluate(self) -> Self | None: # type: ignore[override]
|
306 |
+
if not self.is_valid:
|
307 |
+
raise ValueError(f"query term is not valid [{self}]")
|
308 |
+
|
309 |
+
rhs = self.conform(self.rhs)
|
310 |
+
values = list(rhs)
|
311 |
+
|
312 |
+
if self.is_in_table:
|
313 |
+
# if too many values to create the expression, use a filter instead
|
314 |
+
if self.op in ["==", "!="] and len(values) > self._max_selectors:
|
315 |
+
filter_op = self.generate_filter_op()
|
316 |
+
self.filter = (self.lhs, filter_op, Index(values))
|
317 |
+
|
318 |
+
return self
|
319 |
+
return None
|
320 |
+
|
321 |
+
# equality conditions
|
322 |
+
if self.op in ["==", "!="]:
|
323 |
+
filter_op = self.generate_filter_op()
|
324 |
+
self.filter = (self.lhs, filter_op, Index(values))
|
325 |
+
|
326 |
+
else:
|
327 |
+
raise TypeError(
|
328 |
+
f"passing a filterable condition to a non-table indexer [{self}]"
|
329 |
+
)
|
330 |
+
|
331 |
+
return self
|
332 |
+
|
333 |
+
def generate_filter_op(self, invert: bool = False):
|
334 |
+
if (self.op == "!=" and not invert) or (self.op == "==" and invert):
|
335 |
+
return lambda axis, vals: ~axis.isin(vals)
|
336 |
+
else:
|
337 |
+
return lambda axis, vals: axis.isin(vals)
|
338 |
+
|
339 |
+
|
340 |
+
class JointFilterBinOp(FilterBinOp):
|
341 |
+
def format(self):
|
342 |
+
raise NotImplementedError("unable to collapse Joint Filters")
|
343 |
+
|
344 |
+
# error: Signature of "evaluate" incompatible with supertype "BinOp"
|
345 |
+
def evaluate(self) -> Self: # type: ignore[override]
|
346 |
+
return self
|
347 |
+
|
348 |
+
|
349 |
+
class ConditionBinOp(BinOp):
|
350 |
+
def __repr__(self) -> str:
|
351 |
+
return pprint_thing(f"[Condition : [{self.condition}]]")
|
352 |
+
|
353 |
+
def invert(self):
|
354 |
+
"""invert the condition"""
|
355 |
+
# if self.condition is not None:
|
356 |
+
# self.condition = "~(%s)" % self.condition
|
357 |
+
# return self
|
358 |
+
raise NotImplementedError(
|
359 |
+
"cannot use an invert condition when passing to numexpr"
|
360 |
+
)
|
361 |
+
|
362 |
+
def format(self):
|
363 |
+
"""return the actual ne format"""
|
364 |
+
return self.condition
|
365 |
+
|
366 |
+
# error: Signature of "evaluate" incompatible with supertype "BinOp"
|
367 |
+
def evaluate(self) -> Self | None: # type: ignore[override]
|
368 |
+
if not self.is_valid:
|
369 |
+
raise ValueError(f"query term is not valid [{self}]")
|
370 |
+
|
371 |
+
# convert values if we are in the table
|
372 |
+
if not self.is_in_table:
|
373 |
+
return None
|
374 |
+
|
375 |
+
rhs = self.conform(self.rhs)
|
376 |
+
values = [self.convert_value(v) for v in rhs]
|
377 |
+
|
378 |
+
# equality conditions
|
379 |
+
if self.op in ["==", "!="]:
|
380 |
+
# too many values to create the expression?
|
381 |
+
if len(values) <= self._max_selectors:
|
382 |
+
vs = [self.generate(v) for v in values]
|
383 |
+
self.condition = f"({' | '.join(vs)})"
|
384 |
+
|
385 |
+
# use a filter after reading
|
386 |
+
else:
|
387 |
+
return None
|
388 |
+
else:
|
389 |
+
self.condition = self.generate(values[0])
|
390 |
+
|
391 |
+
return self
|
392 |
+
|
393 |
+
|
394 |
+
class JointConditionBinOp(ConditionBinOp):
|
395 |
+
# error: Signature of "evaluate" incompatible with supertype "BinOp"
|
396 |
+
def evaluate(self) -> Self: # type: ignore[override]
|
397 |
+
self.condition = f"({self.lhs.condition} {self.op} {self.rhs.condition})"
|
398 |
+
return self
|
399 |
+
|
400 |
+
|
401 |
+
class UnaryOp(ops.UnaryOp):
|
402 |
+
def prune(self, klass):
|
403 |
+
if self.op != "~":
|
404 |
+
raise NotImplementedError("UnaryOp only support invert type ops")
|
405 |
+
|
406 |
+
operand = self.operand
|
407 |
+
operand = operand.prune(klass)
|
408 |
+
|
409 |
+
if operand is not None and (
|
410 |
+
issubclass(klass, ConditionBinOp)
|
411 |
+
and operand.condition is not None
|
412 |
+
or not issubclass(klass, ConditionBinOp)
|
413 |
+
and issubclass(klass, FilterBinOp)
|
414 |
+
and operand.filter is not None
|
415 |
+
):
|
416 |
+
return operand.invert()
|
417 |
+
return None
|
418 |
+
|
419 |
+
|
420 |
+
class PyTablesExprVisitor(BaseExprVisitor):
|
421 |
+
const_type: ClassVar[type[ops.Term]] = Constant
|
422 |
+
term_type: ClassVar[type[Term]] = Term
|
423 |
+
|
424 |
+
def __init__(self, env, engine, parser, **kwargs) -> None:
|
425 |
+
super().__init__(env, engine, parser)
|
426 |
+
for bin_op in self.binary_ops:
|
427 |
+
bin_node = self.binary_op_nodes_map[bin_op]
|
428 |
+
setattr(
|
429 |
+
self,
|
430 |
+
f"visit_{bin_node}",
|
431 |
+
lambda node, bin_op=bin_op: partial(BinOp, bin_op, **kwargs),
|
432 |
+
)
|
433 |
+
|
434 |
+
def visit_UnaryOp(self, node, **kwargs) -> ops.Term | UnaryOp | None:
|
435 |
+
if isinstance(node.op, (ast.Not, ast.Invert)):
|
436 |
+
return UnaryOp("~", self.visit(node.operand))
|
437 |
+
elif isinstance(node.op, ast.USub):
|
438 |
+
return self.const_type(-self.visit(node.operand).value, self.env)
|
439 |
+
elif isinstance(node.op, ast.UAdd):
|
440 |
+
raise NotImplementedError("Unary addition not supported")
|
441 |
+
# TODO: return None might never be reached
|
442 |
+
return None
|
443 |
+
|
444 |
+
def visit_Index(self, node, **kwargs):
|
445 |
+
return self.visit(node.value).value
|
446 |
+
|
447 |
+
def visit_Assign(self, node, **kwargs):
|
448 |
+
cmpr = ast.Compare(
|
449 |
+
ops=[ast.Eq()], left=node.targets[0], comparators=[node.value]
|
450 |
+
)
|
451 |
+
return self.visit(cmpr)
|
452 |
+
|
453 |
+
def visit_Subscript(self, node, **kwargs) -> ops.Term:
|
454 |
+
# only allow simple subscripts
|
455 |
+
|
456 |
+
value = self.visit(node.value)
|
457 |
+
slobj = self.visit(node.slice)
|
458 |
+
try:
|
459 |
+
value = value.value
|
460 |
+
except AttributeError:
|
461 |
+
pass
|
462 |
+
|
463 |
+
if isinstance(slobj, Term):
|
464 |
+
# In py39 np.ndarray lookups with Term containing int raise
|
465 |
+
slobj = slobj.value
|
466 |
+
|
467 |
+
try:
|
468 |
+
return self.const_type(value[slobj], self.env)
|
469 |
+
except TypeError as err:
|
470 |
+
raise ValueError(
|
471 |
+
f"cannot subscript {repr(value)} with {repr(slobj)}"
|
472 |
+
) from err
|
473 |
+
|
474 |
+
def visit_Attribute(self, node, **kwargs):
|
475 |
+
attr = node.attr
|
476 |
+
value = node.value
|
477 |
+
|
478 |
+
ctx = type(node.ctx)
|
479 |
+
if ctx == ast.Load:
|
480 |
+
# resolve the value
|
481 |
+
resolved = self.visit(value)
|
482 |
+
|
483 |
+
# try to get the value to see if we are another expression
|
484 |
+
try:
|
485 |
+
resolved = resolved.value
|
486 |
+
except AttributeError:
|
487 |
+
pass
|
488 |
+
|
489 |
+
try:
|
490 |
+
return self.term_type(getattr(resolved, attr), self.env)
|
491 |
+
except AttributeError:
|
492 |
+
# something like datetime.datetime where scope is overridden
|
493 |
+
if isinstance(value, ast.Name) and value.id == attr:
|
494 |
+
return resolved
|
495 |
+
|
496 |
+
raise ValueError(f"Invalid Attribute context {ctx.__name__}")
|
497 |
+
|
498 |
+
def translate_In(self, op):
|
499 |
+
return ast.Eq() if isinstance(op, ast.In) else op
|
500 |
+
|
501 |
+
def _rewrite_membership_op(self, node, left, right):
|
502 |
+
return self.visit(node.op), node.op, left, right
|
503 |
+
|
504 |
+
|
505 |
+
def _validate_where(w):
|
506 |
+
"""
|
507 |
+
Validate that the where statement is of the right type.
|
508 |
+
|
509 |
+
The type may either be String, Expr, or list-like of Exprs.
|
510 |
+
|
511 |
+
Parameters
|
512 |
+
----------
|
513 |
+
w : String term expression, Expr, or list-like of Exprs.
|
514 |
+
|
515 |
+
Returns
|
516 |
+
-------
|
517 |
+
where : The original where clause if the check was successful.
|
518 |
+
|
519 |
+
Raises
|
520 |
+
------
|
521 |
+
TypeError : An invalid data type was passed in for w (e.g. dict).
|
522 |
+
"""
|
523 |
+
if not (isinstance(w, (PyTablesExpr, str)) or is_list_like(w)):
|
524 |
+
raise TypeError(
|
525 |
+
"where must be passed as a string, PyTablesExpr, "
|
526 |
+
"or list-like of PyTablesExpr"
|
527 |
+
)
|
528 |
+
|
529 |
+
return w
|
530 |
+
|
531 |
+
|
532 |
+
class PyTablesExpr(expr.Expr):
|
533 |
+
"""
|
534 |
+
Hold a pytables-like expression, comprised of possibly multiple 'terms'.
|
535 |
+
|
536 |
+
Parameters
|
537 |
+
----------
|
538 |
+
where : string term expression, PyTablesExpr, or list-like of PyTablesExprs
|
539 |
+
queryables : a "kinds" map (dict of column name -> kind), or None if column
|
540 |
+
is non-indexable
|
541 |
+
encoding : an encoding that will encode the query terms
|
542 |
+
|
543 |
+
Returns
|
544 |
+
-------
|
545 |
+
a PyTablesExpr object
|
546 |
+
|
547 |
+
Examples
|
548 |
+
--------
|
549 |
+
'index>=date'
|
550 |
+
"columns=['A', 'D']"
|
551 |
+
'columns=A'
|
552 |
+
'columns==A'
|
553 |
+
"~(columns=['A','B'])"
|
554 |
+
'index>df.index[3] & string="bar"'
|
555 |
+
'(index>df.index[3] & index<=df.index[6]) | string="bar"'
|
556 |
+
"ts>=Timestamp('2012-02-01')"
|
557 |
+
"major_axis>=20130101"
|
558 |
+
"""
|
559 |
+
|
560 |
+
_visitor: PyTablesExprVisitor | None
|
561 |
+
env: PyTablesScope
|
562 |
+
expr: str
|
563 |
+
|
564 |
+
def __init__(
|
565 |
+
self,
|
566 |
+
where,
|
567 |
+
queryables: dict[str, Any] | None = None,
|
568 |
+
encoding=None,
|
569 |
+
scope_level: int = 0,
|
570 |
+
) -> None:
|
571 |
+
where = _validate_where(where)
|
572 |
+
|
573 |
+
self.encoding = encoding
|
574 |
+
self.condition = None
|
575 |
+
self.filter = None
|
576 |
+
self.terms = None
|
577 |
+
self._visitor = None
|
578 |
+
|
579 |
+
# capture the environment if needed
|
580 |
+
local_dict: _scope.DeepChainMap[Any, Any] | None = None
|
581 |
+
|
582 |
+
if isinstance(where, PyTablesExpr):
|
583 |
+
local_dict = where.env.scope
|
584 |
+
_where = where.expr
|
585 |
+
|
586 |
+
elif is_list_like(where):
|
587 |
+
where = list(where)
|
588 |
+
for idx, w in enumerate(where):
|
589 |
+
if isinstance(w, PyTablesExpr):
|
590 |
+
local_dict = w.env.scope
|
591 |
+
else:
|
592 |
+
where[idx] = _validate_where(w)
|
593 |
+
_where = " & ".join([f"({w})" for w in com.flatten(where)])
|
594 |
+
else:
|
595 |
+
# _validate_where ensures we otherwise have a string
|
596 |
+
_where = where
|
597 |
+
|
598 |
+
self.expr = _where
|
599 |
+
self.env = PyTablesScope(scope_level + 1, local_dict=local_dict)
|
600 |
+
|
601 |
+
if queryables is not None and isinstance(self.expr, str):
|
602 |
+
self.env.queryables.update(queryables)
|
603 |
+
self._visitor = PyTablesExprVisitor(
|
604 |
+
self.env,
|
605 |
+
queryables=queryables,
|
606 |
+
parser="pytables",
|
607 |
+
engine="pytables",
|
608 |
+
encoding=encoding,
|
609 |
+
)
|
610 |
+
self.terms = self.parse()
|
611 |
+
|
612 |
+
def __repr__(self) -> str:
|
613 |
+
if self.terms is not None:
|
614 |
+
return pprint_thing(self.terms)
|
615 |
+
return pprint_thing(self.expr)
|
616 |
+
|
617 |
+
def evaluate(self):
|
618 |
+
"""create and return the numexpr condition and filter"""
|
619 |
+
try:
|
620 |
+
self.condition = self.terms.prune(ConditionBinOp)
|
621 |
+
except AttributeError as err:
|
622 |
+
raise ValueError(
|
623 |
+
f"cannot process expression [{self.expr}], [{self}] "
|
624 |
+
"is not a valid condition"
|
625 |
+
) from err
|
626 |
+
try:
|
627 |
+
self.filter = self.terms.prune(FilterBinOp)
|
628 |
+
except AttributeError as err:
|
629 |
+
raise ValueError(
|
630 |
+
f"cannot process expression [{self.expr}], [{self}] "
|
631 |
+
"is not a valid filter"
|
632 |
+
) from err
|
633 |
+
|
634 |
+
return self.condition, self.filter
|
635 |
+
|
636 |
+
|
637 |
+
class TermValue:
|
638 |
+
"""hold a term value the we use to construct a condition/filter"""
|
639 |
+
|
640 |
+
def __init__(self, value, converted, kind: str) -> None:
|
641 |
+
assert isinstance(kind, str), kind
|
642 |
+
self.value = value
|
643 |
+
self.converted = converted
|
644 |
+
self.kind = kind
|
645 |
+
|
646 |
+
def tostring(self, encoding) -> str:
|
647 |
+
"""quote the string if not encoded else encode and return"""
|
648 |
+
if self.kind == "string":
|
649 |
+
if encoding is not None:
|
650 |
+
return str(self.converted)
|
651 |
+
return f'"{self.converted}"'
|
652 |
+
elif self.kind == "float":
|
653 |
+
# python 2 str(float) is not always
|
654 |
+
# round-trippable so use repr()
|
655 |
+
return repr(self.converted)
|
656 |
+
return str(self.converted)
|
657 |
+
|
658 |
+
|
659 |
+
def maybe_expression(s) -> bool:
|
660 |
+
"""loose checking if s is a pytables-acceptable expression"""
|
661 |
+
if not isinstance(s, str):
|
662 |
+
return False
|
663 |
+
operations = PyTablesExprVisitor.binary_ops + PyTablesExprVisitor.unary_ops + ("=",)
|
664 |
+
|
665 |
+
# make sure we have an op at least
|
666 |
+
return any(op in s for op in operations)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexers/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/accessors.cpython-310.pyc
ADDED
Binary file (17.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/api.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/base.cpython-310.pyc
ADDED
Binary file (196 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/category.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimelike.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimes.cpython-310.pyc
ADDED
Binary file (32.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/extension.cpython-310.pyc
ADDED
Binary file (5.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/frozen.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/interval.cpython-310.pyc
ADDED
Binary file (28.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc
ADDED
Binary file (108 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/period.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/range.cpython-310.pyc
ADDED
Binary file (29.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/timedeltas.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/accessors.py
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
datetimelike delegation
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
cast,
|
9 |
+
)
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from pandas._libs import lib
|
15 |
+
from pandas.util._exceptions import find_stack_level
|
16 |
+
|
17 |
+
from pandas.core.dtypes.common import (
|
18 |
+
is_integer_dtype,
|
19 |
+
is_list_like,
|
20 |
+
)
|
21 |
+
from pandas.core.dtypes.dtypes import (
|
22 |
+
ArrowDtype,
|
23 |
+
CategoricalDtype,
|
24 |
+
DatetimeTZDtype,
|
25 |
+
PeriodDtype,
|
26 |
+
)
|
27 |
+
from pandas.core.dtypes.generic import ABCSeries
|
28 |
+
|
29 |
+
from pandas.core.accessor import (
|
30 |
+
PandasDelegate,
|
31 |
+
delegate_names,
|
32 |
+
)
|
33 |
+
from pandas.core.arrays import (
|
34 |
+
DatetimeArray,
|
35 |
+
PeriodArray,
|
36 |
+
TimedeltaArray,
|
37 |
+
)
|
38 |
+
from pandas.core.arrays.arrow.array import ArrowExtensionArray
|
39 |
+
from pandas.core.base import (
|
40 |
+
NoNewAttributesMixin,
|
41 |
+
PandasObject,
|
42 |
+
)
|
43 |
+
from pandas.core.indexes.datetimes import DatetimeIndex
|
44 |
+
from pandas.core.indexes.timedeltas import TimedeltaIndex
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from pandas import (
|
48 |
+
DataFrame,
|
49 |
+
Series,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class Properties(PandasDelegate, PandasObject, NoNewAttributesMixin):
|
54 |
+
_hidden_attrs = PandasObject._hidden_attrs | {
|
55 |
+
"orig",
|
56 |
+
"name",
|
57 |
+
}
|
58 |
+
|
59 |
+
def __init__(self, data: Series, orig) -> None:
|
60 |
+
if not isinstance(data, ABCSeries):
|
61 |
+
raise TypeError(
|
62 |
+
f"cannot convert an object of type {type(data)} to a datetimelike index"
|
63 |
+
)
|
64 |
+
|
65 |
+
self._parent = data
|
66 |
+
self.orig = orig
|
67 |
+
self.name = getattr(data, "name", None)
|
68 |
+
self._freeze()
|
69 |
+
|
70 |
+
def _get_values(self):
|
71 |
+
data = self._parent
|
72 |
+
if lib.is_np_dtype(data.dtype, "M"):
|
73 |
+
return DatetimeIndex(data, copy=False, name=self.name)
|
74 |
+
|
75 |
+
elif isinstance(data.dtype, DatetimeTZDtype):
|
76 |
+
return DatetimeIndex(data, copy=False, name=self.name)
|
77 |
+
|
78 |
+
elif lib.is_np_dtype(data.dtype, "m"):
|
79 |
+
return TimedeltaIndex(data, copy=False, name=self.name)
|
80 |
+
|
81 |
+
elif isinstance(data.dtype, PeriodDtype):
|
82 |
+
return PeriodArray(data, copy=False)
|
83 |
+
|
84 |
+
raise TypeError(
|
85 |
+
f"cannot convert an object of type {type(data)} to a datetimelike index"
|
86 |
+
)
|
87 |
+
|
88 |
+
def _delegate_property_get(self, name: str):
|
89 |
+
from pandas import Series
|
90 |
+
|
91 |
+
values = self._get_values()
|
92 |
+
|
93 |
+
result = getattr(values, name)
|
94 |
+
|
95 |
+
# maybe need to upcast (ints)
|
96 |
+
if isinstance(result, np.ndarray):
|
97 |
+
if is_integer_dtype(result):
|
98 |
+
result = result.astype("int64")
|
99 |
+
elif not is_list_like(result):
|
100 |
+
return result
|
101 |
+
|
102 |
+
result = np.asarray(result)
|
103 |
+
|
104 |
+
if self.orig is not None:
|
105 |
+
index = self.orig.index
|
106 |
+
else:
|
107 |
+
index = self._parent.index
|
108 |
+
# return the result as a Series
|
109 |
+
result = Series(result, index=index, name=self.name).__finalize__(self._parent)
|
110 |
+
|
111 |
+
# setting this object will show a SettingWithCopyWarning/Error
|
112 |
+
result._is_copy = (
|
113 |
+
"modifications to a property of a datetimelike "
|
114 |
+
"object are not supported and are discarded. "
|
115 |
+
"Change values on the original."
|
116 |
+
)
|
117 |
+
|
118 |
+
return result
|
119 |
+
|
120 |
+
def _delegate_property_set(self, name: str, value, *args, **kwargs):
|
121 |
+
raise ValueError(
|
122 |
+
"modifications to a property of a datetimelike object are not supported. "
|
123 |
+
"Change values on the original."
|
124 |
+
)
|
125 |
+
|
126 |
+
def _delegate_method(self, name: str, *args, **kwargs):
|
127 |
+
from pandas import Series
|
128 |
+
|
129 |
+
values = self._get_values()
|
130 |
+
|
131 |
+
method = getattr(values, name)
|
132 |
+
result = method(*args, **kwargs)
|
133 |
+
|
134 |
+
if not is_list_like(result):
|
135 |
+
return result
|
136 |
+
|
137 |
+
result = Series(result, index=self._parent.index, name=self.name).__finalize__(
|
138 |
+
self._parent
|
139 |
+
)
|
140 |
+
|
141 |
+
# setting this object will show a SettingWithCopyWarning/Error
|
142 |
+
result._is_copy = (
|
143 |
+
"modifications to a method of a datetimelike "
|
144 |
+
"object are not supported and are discarded. "
|
145 |
+
"Change values on the original."
|
146 |
+
)
|
147 |
+
|
148 |
+
return result
|
149 |
+
|
150 |
+
|
151 |
+
@delegate_names(
|
152 |
+
delegate=ArrowExtensionArray,
|
153 |
+
accessors=TimedeltaArray._datetimelike_ops,
|
154 |
+
typ="property",
|
155 |
+
accessor_mapping=lambda x: f"_dt_{x}",
|
156 |
+
raise_on_missing=False,
|
157 |
+
)
|
158 |
+
@delegate_names(
|
159 |
+
delegate=ArrowExtensionArray,
|
160 |
+
accessors=TimedeltaArray._datetimelike_methods,
|
161 |
+
typ="method",
|
162 |
+
accessor_mapping=lambda x: f"_dt_{x}",
|
163 |
+
raise_on_missing=False,
|
164 |
+
)
|
165 |
+
@delegate_names(
|
166 |
+
delegate=ArrowExtensionArray,
|
167 |
+
accessors=DatetimeArray._datetimelike_ops,
|
168 |
+
typ="property",
|
169 |
+
accessor_mapping=lambda x: f"_dt_{x}",
|
170 |
+
raise_on_missing=False,
|
171 |
+
)
|
172 |
+
@delegate_names(
|
173 |
+
delegate=ArrowExtensionArray,
|
174 |
+
accessors=DatetimeArray._datetimelike_methods,
|
175 |
+
typ="method",
|
176 |
+
accessor_mapping=lambda x: f"_dt_{x}",
|
177 |
+
raise_on_missing=False,
|
178 |
+
)
|
179 |
+
class ArrowTemporalProperties(PandasDelegate, PandasObject, NoNewAttributesMixin):
|
180 |
+
def __init__(self, data: Series, orig) -> None:
|
181 |
+
if not isinstance(data, ABCSeries):
|
182 |
+
raise TypeError(
|
183 |
+
f"cannot convert an object of type {type(data)} to a datetimelike index"
|
184 |
+
)
|
185 |
+
|
186 |
+
self._parent = data
|
187 |
+
self._orig = orig
|
188 |
+
self._freeze()
|
189 |
+
|
190 |
+
def _delegate_property_get(self, name: str):
|
191 |
+
if not hasattr(self._parent.array, f"_dt_{name}"):
|
192 |
+
raise NotImplementedError(
|
193 |
+
f"dt.{name} is not supported for {self._parent.dtype}"
|
194 |
+
)
|
195 |
+
result = getattr(self._parent.array, f"_dt_{name}")
|
196 |
+
|
197 |
+
if not is_list_like(result):
|
198 |
+
return result
|
199 |
+
|
200 |
+
if self._orig is not None:
|
201 |
+
index = self._orig.index
|
202 |
+
else:
|
203 |
+
index = self._parent.index
|
204 |
+
# return the result as a Series, which is by definition a copy
|
205 |
+
result = type(self._parent)(
|
206 |
+
result, index=index, name=self._parent.name
|
207 |
+
).__finalize__(self._parent)
|
208 |
+
|
209 |
+
return result
|
210 |
+
|
211 |
+
def _delegate_method(self, name: str, *args, **kwargs):
|
212 |
+
if not hasattr(self._parent.array, f"_dt_{name}"):
|
213 |
+
raise NotImplementedError(
|
214 |
+
f"dt.{name} is not supported for {self._parent.dtype}"
|
215 |
+
)
|
216 |
+
|
217 |
+
result = getattr(self._parent.array, f"_dt_{name}")(*args, **kwargs)
|
218 |
+
|
219 |
+
if self._orig is not None:
|
220 |
+
index = self._orig.index
|
221 |
+
else:
|
222 |
+
index = self._parent.index
|
223 |
+
# return the result as a Series, which is by definition a copy
|
224 |
+
result = type(self._parent)(
|
225 |
+
result, index=index, name=self._parent.name
|
226 |
+
).__finalize__(self._parent)
|
227 |
+
|
228 |
+
return result
|
229 |
+
|
230 |
+
def to_pytimedelta(self):
|
231 |
+
return cast(ArrowExtensionArray, self._parent.array)._dt_to_pytimedelta()
|
232 |
+
|
233 |
+
def to_pydatetime(self):
|
234 |
+
# GH#20306
|
235 |
+
warnings.warn(
|
236 |
+
f"The behavior of {type(self).__name__}.to_pydatetime is deprecated, "
|
237 |
+
"in a future version this will return a Series containing python "
|
238 |
+
"datetime objects instead of an ndarray. To retain the old behavior, "
|
239 |
+
"call `np.array` on the result",
|
240 |
+
FutureWarning,
|
241 |
+
stacklevel=find_stack_level(),
|
242 |
+
)
|
243 |
+
return cast(ArrowExtensionArray, self._parent.array)._dt_to_pydatetime()
|
244 |
+
|
245 |
+
def isocalendar(self) -> DataFrame:
|
246 |
+
from pandas import DataFrame
|
247 |
+
|
248 |
+
result = (
|
249 |
+
cast(ArrowExtensionArray, self._parent.array)
|
250 |
+
._dt_isocalendar()
|
251 |
+
._pa_array.combine_chunks()
|
252 |
+
)
|
253 |
+
iso_calendar_df = DataFrame(
|
254 |
+
{
|
255 |
+
col: type(self._parent.array)(result.field(i)) # type: ignore[call-arg]
|
256 |
+
for i, col in enumerate(["year", "week", "day"])
|
257 |
+
}
|
258 |
+
)
|
259 |
+
return iso_calendar_df
|
260 |
+
|
261 |
+
@property
|
262 |
+
def components(self) -> DataFrame:
|
263 |
+
from pandas import DataFrame
|
264 |
+
|
265 |
+
components_df = DataFrame(
|
266 |
+
{
|
267 |
+
col: getattr(self._parent.array, f"_dt_{col}")
|
268 |
+
for col in [
|
269 |
+
"days",
|
270 |
+
"hours",
|
271 |
+
"minutes",
|
272 |
+
"seconds",
|
273 |
+
"milliseconds",
|
274 |
+
"microseconds",
|
275 |
+
"nanoseconds",
|
276 |
+
]
|
277 |
+
}
|
278 |
+
)
|
279 |
+
return components_df
|
280 |
+
|
281 |
+
|
282 |
+
@delegate_names(
|
283 |
+
delegate=DatetimeArray,
|
284 |
+
accessors=DatetimeArray._datetimelike_ops + ["unit"],
|
285 |
+
typ="property",
|
286 |
+
)
|
287 |
+
@delegate_names(
|
288 |
+
delegate=DatetimeArray,
|
289 |
+
accessors=DatetimeArray._datetimelike_methods + ["as_unit"],
|
290 |
+
typ="method",
|
291 |
+
)
|
292 |
+
class DatetimeProperties(Properties):
|
293 |
+
"""
|
294 |
+
Accessor object for datetimelike properties of the Series values.
|
295 |
+
|
296 |
+
Examples
|
297 |
+
--------
|
298 |
+
>>> seconds_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="s"))
|
299 |
+
>>> seconds_series
|
300 |
+
0 2000-01-01 00:00:00
|
301 |
+
1 2000-01-01 00:00:01
|
302 |
+
2 2000-01-01 00:00:02
|
303 |
+
dtype: datetime64[ns]
|
304 |
+
>>> seconds_series.dt.second
|
305 |
+
0 0
|
306 |
+
1 1
|
307 |
+
2 2
|
308 |
+
dtype: int32
|
309 |
+
|
310 |
+
>>> hours_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="h"))
|
311 |
+
>>> hours_series
|
312 |
+
0 2000-01-01 00:00:00
|
313 |
+
1 2000-01-01 01:00:00
|
314 |
+
2 2000-01-01 02:00:00
|
315 |
+
dtype: datetime64[ns]
|
316 |
+
>>> hours_series.dt.hour
|
317 |
+
0 0
|
318 |
+
1 1
|
319 |
+
2 2
|
320 |
+
dtype: int32
|
321 |
+
|
322 |
+
>>> quarters_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="QE"))
|
323 |
+
>>> quarters_series
|
324 |
+
0 2000-03-31
|
325 |
+
1 2000-06-30
|
326 |
+
2 2000-09-30
|
327 |
+
dtype: datetime64[ns]
|
328 |
+
>>> quarters_series.dt.quarter
|
329 |
+
0 1
|
330 |
+
1 2
|
331 |
+
2 3
|
332 |
+
dtype: int32
|
333 |
+
|
334 |
+
Returns a Series indexed like the original Series.
|
335 |
+
Raises TypeError if the Series does not contain datetimelike values.
|
336 |
+
"""
|
337 |
+
|
338 |
+
def to_pydatetime(self) -> np.ndarray:
|
339 |
+
"""
|
340 |
+
Return the data as an array of :class:`datetime.datetime` objects.
|
341 |
+
|
342 |
+
.. deprecated:: 2.1.0
|
343 |
+
|
344 |
+
The current behavior of dt.to_pydatetime is deprecated.
|
345 |
+
In a future version this will return a Series containing python
|
346 |
+
datetime objects instead of a ndarray.
|
347 |
+
|
348 |
+
Timezone information is retained if present.
|
349 |
+
|
350 |
+
.. warning::
|
351 |
+
|
352 |
+
Python's datetime uses microsecond resolution, which is lower than
|
353 |
+
pandas (nanosecond). The values are truncated.
|
354 |
+
|
355 |
+
Returns
|
356 |
+
-------
|
357 |
+
numpy.ndarray
|
358 |
+
Object dtype array containing native Python datetime objects.
|
359 |
+
|
360 |
+
See Also
|
361 |
+
--------
|
362 |
+
datetime.datetime : Standard library value for a datetime.
|
363 |
+
|
364 |
+
Examples
|
365 |
+
--------
|
366 |
+
>>> s = pd.Series(pd.date_range('20180310', periods=2))
|
367 |
+
>>> s
|
368 |
+
0 2018-03-10
|
369 |
+
1 2018-03-11
|
370 |
+
dtype: datetime64[ns]
|
371 |
+
|
372 |
+
>>> s.dt.to_pydatetime()
|
373 |
+
array([datetime.datetime(2018, 3, 10, 0, 0),
|
374 |
+
datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
|
375 |
+
|
376 |
+
pandas' nanosecond precision is truncated to microseconds.
|
377 |
+
|
378 |
+
>>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns'))
|
379 |
+
>>> s
|
380 |
+
0 2018-03-10 00:00:00.000000000
|
381 |
+
1 2018-03-10 00:00:00.000000001
|
382 |
+
dtype: datetime64[ns]
|
383 |
+
|
384 |
+
>>> s.dt.to_pydatetime()
|
385 |
+
array([datetime.datetime(2018, 3, 10, 0, 0),
|
386 |
+
datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)
|
387 |
+
"""
|
388 |
+
# GH#20306
|
389 |
+
warnings.warn(
|
390 |
+
f"The behavior of {type(self).__name__}.to_pydatetime is deprecated, "
|
391 |
+
"in a future version this will return a Series containing python "
|
392 |
+
"datetime objects instead of an ndarray. To retain the old behavior, "
|
393 |
+
"call `np.array` on the result",
|
394 |
+
FutureWarning,
|
395 |
+
stacklevel=find_stack_level(),
|
396 |
+
)
|
397 |
+
return self._get_values().to_pydatetime()
|
398 |
+
|
399 |
+
@property
|
400 |
+
def freq(self):
|
401 |
+
return self._get_values().inferred_freq
|
402 |
+
|
403 |
+
def isocalendar(self) -> DataFrame:
|
404 |
+
"""
|
405 |
+
Calculate year, week, and day according to the ISO 8601 standard.
|
406 |
+
|
407 |
+
Returns
|
408 |
+
-------
|
409 |
+
DataFrame
|
410 |
+
With columns year, week and day.
|
411 |
+
|
412 |
+
See Also
|
413 |
+
--------
|
414 |
+
Timestamp.isocalendar : Function return a 3-tuple containing ISO year,
|
415 |
+
week number, and weekday for the given Timestamp object.
|
416 |
+
datetime.date.isocalendar : Return a named tuple object with
|
417 |
+
three components: year, week and weekday.
|
418 |
+
|
419 |
+
Examples
|
420 |
+
--------
|
421 |
+
>>> ser = pd.to_datetime(pd.Series(["2010-01-01", pd.NaT]))
|
422 |
+
>>> ser.dt.isocalendar()
|
423 |
+
year week day
|
424 |
+
0 2009 53 5
|
425 |
+
1 <NA> <NA> <NA>
|
426 |
+
>>> ser.dt.isocalendar().week
|
427 |
+
0 53
|
428 |
+
1 <NA>
|
429 |
+
Name: week, dtype: UInt32
|
430 |
+
"""
|
431 |
+
return self._get_values().isocalendar().set_index(self._parent.index)
|
432 |
+
|
433 |
+
|
434 |
+
@delegate_names(
|
435 |
+
delegate=TimedeltaArray, accessors=TimedeltaArray._datetimelike_ops, typ="property"
|
436 |
+
)
|
437 |
+
@delegate_names(
|
438 |
+
delegate=TimedeltaArray,
|
439 |
+
accessors=TimedeltaArray._datetimelike_methods,
|
440 |
+
typ="method",
|
441 |
+
)
|
442 |
+
class TimedeltaProperties(Properties):
|
443 |
+
"""
|
444 |
+
Accessor object for datetimelike properties of the Series values.
|
445 |
+
|
446 |
+
Returns a Series indexed like the original Series.
|
447 |
+
Raises TypeError if the Series does not contain datetimelike values.
|
448 |
+
|
449 |
+
Examples
|
450 |
+
--------
|
451 |
+
>>> seconds_series = pd.Series(
|
452 |
+
... pd.timedelta_range(start="1 second", periods=3, freq="s")
|
453 |
+
... )
|
454 |
+
>>> seconds_series
|
455 |
+
0 0 days 00:00:01
|
456 |
+
1 0 days 00:00:02
|
457 |
+
2 0 days 00:00:03
|
458 |
+
dtype: timedelta64[ns]
|
459 |
+
>>> seconds_series.dt.seconds
|
460 |
+
0 1
|
461 |
+
1 2
|
462 |
+
2 3
|
463 |
+
dtype: int32
|
464 |
+
"""
|
465 |
+
|
466 |
+
def to_pytimedelta(self) -> np.ndarray:
|
467 |
+
"""
|
468 |
+
Return an array of native :class:`datetime.timedelta` objects.
|
469 |
+
|
470 |
+
Python's standard `datetime` library uses a different representation
|
471 |
+
timedelta's. This method converts a Series of pandas Timedeltas
|
472 |
+
to `datetime.timedelta` format with the same length as the original
|
473 |
+
Series.
|
474 |
+
|
475 |
+
Returns
|
476 |
+
-------
|
477 |
+
numpy.ndarray
|
478 |
+
Array of 1D containing data with `datetime.timedelta` type.
|
479 |
+
|
480 |
+
See Also
|
481 |
+
--------
|
482 |
+
datetime.timedelta : A duration expressing the difference
|
483 |
+
between two date, time, or datetime.
|
484 |
+
|
485 |
+
Examples
|
486 |
+
--------
|
487 |
+
>>> s = pd.Series(pd.to_timedelta(np.arange(5), unit="d"))
|
488 |
+
>>> s
|
489 |
+
0 0 days
|
490 |
+
1 1 days
|
491 |
+
2 2 days
|
492 |
+
3 3 days
|
493 |
+
4 4 days
|
494 |
+
dtype: timedelta64[ns]
|
495 |
+
|
496 |
+
>>> s.dt.to_pytimedelta()
|
497 |
+
array([datetime.timedelta(0), datetime.timedelta(days=1),
|
498 |
+
datetime.timedelta(days=2), datetime.timedelta(days=3),
|
499 |
+
datetime.timedelta(days=4)], dtype=object)
|
500 |
+
"""
|
501 |
+
return self._get_values().to_pytimedelta()
|
502 |
+
|
503 |
+
@property
|
504 |
+
def components(self):
|
505 |
+
"""
|
506 |
+
Return a Dataframe of the components of the Timedeltas.
|
507 |
+
|
508 |
+
Returns
|
509 |
+
-------
|
510 |
+
DataFrame
|
511 |
+
|
512 |
+
Examples
|
513 |
+
--------
|
514 |
+
>>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s'))
|
515 |
+
>>> s
|
516 |
+
0 0 days 00:00:00
|
517 |
+
1 0 days 00:00:01
|
518 |
+
2 0 days 00:00:02
|
519 |
+
3 0 days 00:00:03
|
520 |
+
4 0 days 00:00:04
|
521 |
+
dtype: timedelta64[ns]
|
522 |
+
>>> s.dt.components
|
523 |
+
days hours minutes seconds milliseconds microseconds nanoseconds
|
524 |
+
0 0 0 0 0 0 0 0
|
525 |
+
1 0 0 0 1 0 0 0
|
526 |
+
2 0 0 0 2 0 0 0
|
527 |
+
3 0 0 0 3 0 0 0
|
528 |
+
4 0 0 0 4 0 0 0
|
529 |
+
"""
|
530 |
+
return (
|
531 |
+
self._get_values()
|
532 |
+
.components.set_index(self._parent.index)
|
533 |
+
.__finalize__(self._parent)
|
534 |
+
)
|
535 |
+
|
536 |
+
@property
|
537 |
+
def freq(self):
|
538 |
+
return self._get_values().inferred_freq
|
539 |
+
|
540 |
+
|
541 |
+
@delegate_names(
|
542 |
+
delegate=PeriodArray, accessors=PeriodArray._datetimelike_ops, typ="property"
|
543 |
+
)
|
544 |
+
@delegate_names(
|
545 |
+
delegate=PeriodArray, accessors=PeriodArray._datetimelike_methods, typ="method"
|
546 |
+
)
|
547 |
+
class PeriodProperties(Properties):
|
548 |
+
"""
|
549 |
+
Accessor object for datetimelike properties of the Series values.
|
550 |
+
|
551 |
+
Returns a Series indexed like the original Series.
|
552 |
+
Raises TypeError if the Series does not contain datetimelike values.
|
553 |
+
|
554 |
+
Examples
|
555 |
+
--------
|
556 |
+
>>> seconds_series = pd.Series(
|
557 |
+
... pd.period_range(
|
558 |
+
... start="2000-01-01 00:00:00", end="2000-01-01 00:00:03", freq="s"
|
559 |
+
... )
|
560 |
+
... )
|
561 |
+
>>> seconds_series
|
562 |
+
0 2000-01-01 00:00:00
|
563 |
+
1 2000-01-01 00:00:01
|
564 |
+
2 2000-01-01 00:00:02
|
565 |
+
3 2000-01-01 00:00:03
|
566 |
+
dtype: period[s]
|
567 |
+
>>> seconds_series.dt.second
|
568 |
+
0 0
|
569 |
+
1 1
|
570 |
+
2 2
|
571 |
+
3 3
|
572 |
+
dtype: int64
|
573 |
+
|
574 |
+
>>> hours_series = pd.Series(
|
575 |
+
... pd.period_range(start="2000-01-01 00:00", end="2000-01-01 03:00", freq="h")
|
576 |
+
... )
|
577 |
+
>>> hours_series
|
578 |
+
0 2000-01-01 00:00
|
579 |
+
1 2000-01-01 01:00
|
580 |
+
2 2000-01-01 02:00
|
581 |
+
3 2000-01-01 03:00
|
582 |
+
dtype: period[h]
|
583 |
+
>>> hours_series.dt.hour
|
584 |
+
0 0
|
585 |
+
1 1
|
586 |
+
2 2
|
587 |
+
3 3
|
588 |
+
dtype: int64
|
589 |
+
|
590 |
+
>>> quarters_series = pd.Series(
|
591 |
+
... pd.period_range(start="2000-01-01", end="2000-12-31", freq="Q-DEC")
|
592 |
+
... )
|
593 |
+
>>> quarters_series
|
594 |
+
0 2000Q1
|
595 |
+
1 2000Q2
|
596 |
+
2 2000Q3
|
597 |
+
3 2000Q4
|
598 |
+
dtype: period[Q-DEC]
|
599 |
+
>>> quarters_series.dt.quarter
|
600 |
+
0 1
|
601 |
+
1 2
|
602 |
+
2 3
|
603 |
+
3 4
|
604 |
+
dtype: int64
|
605 |
+
"""
|
606 |
+
|
607 |
+
|
608 |
+
class CombinedDatetimelikeProperties(
|
609 |
+
DatetimeProperties, TimedeltaProperties, PeriodProperties
|
610 |
+
):
|
611 |
+
def __new__(cls, data: Series): # pyright: ignore[reportInconsistentConstructor]
|
612 |
+
# CombinedDatetimelikeProperties isn't really instantiated. Instead
|
613 |
+
# we need to choose which parent (datetime or timedelta) is
|
614 |
+
# appropriate. Since we're checking the dtypes anyway, we'll just
|
615 |
+
# do all the validation here.
|
616 |
+
|
617 |
+
if not isinstance(data, ABCSeries):
|
618 |
+
raise TypeError(
|
619 |
+
f"cannot convert an object of type {type(data)} to a datetimelike index"
|
620 |
+
)
|
621 |
+
|
622 |
+
orig = data if isinstance(data.dtype, CategoricalDtype) else None
|
623 |
+
if orig is not None:
|
624 |
+
data = data._constructor(
|
625 |
+
orig.array,
|
626 |
+
name=orig.name,
|
627 |
+
copy=False,
|
628 |
+
dtype=orig._values.categories.dtype,
|
629 |
+
index=orig.index,
|
630 |
+
)
|
631 |
+
|
632 |
+
if isinstance(data.dtype, ArrowDtype) and data.dtype.kind in "Mm":
|
633 |
+
return ArrowTemporalProperties(data, orig)
|
634 |
+
if lib.is_np_dtype(data.dtype, "M"):
|
635 |
+
return DatetimeProperties(data, orig)
|
636 |
+
elif isinstance(data.dtype, DatetimeTZDtype):
|
637 |
+
return DatetimeProperties(data, orig)
|
638 |
+
elif lib.is_np_dtype(data.dtype, "m"):
|
639 |
+
return TimedeltaProperties(data, orig)
|
640 |
+
elif isinstance(data.dtype, PeriodDtype):
|
641 |
+
return PeriodProperties(data, orig)
|
642 |
+
|
643 |
+
raise AttributeError("Can only use .dt accessor with datetimelike values")
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/api.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import textwrap
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
cast,
|
7 |
+
)
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from pandas._libs import (
|
12 |
+
NaT,
|
13 |
+
lib,
|
14 |
+
)
|
15 |
+
from pandas.errors import InvalidIndexError
|
16 |
+
|
17 |
+
from pandas.core.dtypes.cast import find_common_type
|
18 |
+
|
19 |
+
from pandas.core.algorithms import safe_sort
|
20 |
+
from pandas.core.indexes.base import (
|
21 |
+
Index,
|
22 |
+
_new_Index,
|
23 |
+
ensure_index,
|
24 |
+
ensure_index_from_sequences,
|
25 |
+
get_unanimous_names,
|
26 |
+
)
|
27 |
+
from pandas.core.indexes.category import CategoricalIndex
|
28 |
+
from pandas.core.indexes.datetimes import DatetimeIndex
|
29 |
+
from pandas.core.indexes.interval import IntervalIndex
|
30 |
+
from pandas.core.indexes.multi import MultiIndex
|
31 |
+
from pandas.core.indexes.period import PeriodIndex
|
32 |
+
from pandas.core.indexes.range import RangeIndex
|
33 |
+
from pandas.core.indexes.timedeltas import TimedeltaIndex
|
34 |
+
|
35 |
+
if TYPE_CHECKING:
|
36 |
+
from pandas._typing import Axis
|
37 |
+
_sort_msg = textwrap.dedent(
|
38 |
+
"""\
|
39 |
+
Sorting because non-concatenation axis is not aligned. A future version
|
40 |
+
of pandas will change to not sort by default.
|
41 |
+
|
42 |
+
To accept the future behavior, pass 'sort=False'.
|
43 |
+
|
44 |
+
To retain the current behavior and silence the warning, pass 'sort=True'.
|
45 |
+
"""
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
"Index",
|
51 |
+
"MultiIndex",
|
52 |
+
"CategoricalIndex",
|
53 |
+
"IntervalIndex",
|
54 |
+
"RangeIndex",
|
55 |
+
"InvalidIndexError",
|
56 |
+
"TimedeltaIndex",
|
57 |
+
"PeriodIndex",
|
58 |
+
"DatetimeIndex",
|
59 |
+
"_new_Index",
|
60 |
+
"NaT",
|
61 |
+
"ensure_index",
|
62 |
+
"ensure_index_from_sequences",
|
63 |
+
"get_objs_combined_axis",
|
64 |
+
"union_indexes",
|
65 |
+
"get_unanimous_names",
|
66 |
+
"all_indexes_same",
|
67 |
+
"default_index",
|
68 |
+
"safe_sort_index",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
def get_objs_combined_axis(
|
73 |
+
objs,
|
74 |
+
intersect: bool = False,
|
75 |
+
axis: Axis = 0,
|
76 |
+
sort: bool = True,
|
77 |
+
copy: bool = False,
|
78 |
+
) -> Index:
|
79 |
+
"""
|
80 |
+
Extract combined index: return intersection or union (depending on the
|
81 |
+
value of "intersect") of indexes on given axis, or None if all objects
|
82 |
+
lack indexes (e.g. they are numpy arrays).
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
objs : list
|
87 |
+
Series or DataFrame objects, may be mix of the two.
|
88 |
+
intersect : bool, default False
|
89 |
+
If True, calculate the intersection between indexes. Otherwise,
|
90 |
+
calculate the union.
|
91 |
+
axis : {0 or 'index', 1 or 'outer'}, default 0
|
92 |
+
The axis to extract indexes from.
|
93 |
+
sort : bool, default True
|
94 |
+
Whether the result index should come out sorted or not.
|
95 |
+
copy : bool, default False
|
96 |
+
If True, return a copy of the combined index.
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
Index
|
101 |
+
"""
|
102 |
+
obs_idxes = [obj._get_axis(axis) for obj in objs]
|
103 |
+
return _get_combined_index(obs_idxes, intersect=intersect, sort=sort, copy=copy)
|
104 |
+
|
105 |
+
|
106 |
+
def _get_distinct_objs(objs: list[Index]) -> list[Index]:
|
107 |
+
"""
|
108 |
+
Return a list with distinct elements of "objs" (different ids).
|
109 |
+
Preserves order.
|
110 |
+
"""
|
111 |
+
ids: set[int] = set()
|
112 |
+
res = []
|
113 |
+
for obj in objs:
|
114 |
+
if id(obj) not in ids:
|
115 |
+
ids.add(id(obj))
|
116 |
+
res.append(obj)
|
117 |
+
return res
|
118 |
+
|
119 |
+
|
120 |
+
def _get_combined_index(
|
121 |
+
indexes: list[Index],
|
122 |
+
intersect: bool = False,
|
123 |
+
sort: bool = False,
|
124 |
+
copy: bool = False,
|
125 |
+
) -> Index:
|
126 |
+
"""
|
127 |
+
Return the union or intersection of indexes.
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
indexes : list of Index or list objects
|
132 |
+
When intersect=True, do not accept list of lists.
|
133 |
+
intersect : bool, default False
|
134 |
+
If True, calculate the intersection between indexes. Otherwise,
|
135 |
+
calculate the union.
|
136 |
+
sort : bool, default False
|
137 |
+
Whether the result index should come out sorted or not.
|
138 |
+
copy : bool, default False
|
139 |
+
If True, return a copy of the combined index.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
Index
|
144 |
+
"""
|
145 |
+
# TODO: handle index names!
|
146 |
+
indexes = _get_distinct_objs(indexes)
|
147 |
+
if len(indexes) == 0:
|
148 |
+
index = Index([])
|
149 |
+
elif len(indexes) == 1:
|
150 |
+
index = indexes[0]
|
151 |
+
elif intersect:
|
152 |
+
index = indexes[0]
|
153 |
+
for other in indexes[1:]:
|
154 |
+
index = index.intersection(other)
|
155 |
+
else:
|
156 |
+
index = union_indexes(indexes, sort=False)
|
157 |
+
index = ensure_index(index)
|
158 |
+
|
159 |
+
if sort:
|
160 |
+
index = safe_sort_index(index)
|
161 |
+
# GH 29879
|
162 |
+
if copy:
|
163 |
+
index = index.copy()
|
164 |
+
|
165 |
+
return index
|
166 |
+
|
167 |
+
|
168 |
+
def safe_sort_index(index: Index) -> Index:
|
169 |
+
"""
|
170 |
+
Returns the sorted index
|
171 |
+
|
172 |
+
We keep the dtypes and the name attributes.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
index : an Index
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
Index
|
181 |
+
"""
|
182 |
+
if index.is_monotonic_increasing:
|
183 |
+
return index
|
184 |
+
|
185 |
+
try:
|
186 |
+
array_sorted = safe_sort(index)
|
187 |
+
except TypeError:
|
188 |
+
pass
|
189 |
+
else:
|
190 |
+
if isinstance(array_sorted, Index):
|
191 |
+
return array_sorted
|
192 |
+
|
193 |
+
array_sorted = cast(np.ndarray, array_sorted)
|
194 |
+
if isinstance(index, MultiIndex):
|
195 |
+
index = MultiIndex.from_tuples(array_sorted, names=index.names)
|
196 |
+
else:
|
197 |
+
index = Index(array_sorted, name=index.name, dtype=index.dtype)
|
198 |
+
|
199 |
+
return index
|
200 |
+
|
201 |
+
|
202 |
+
def union_indexes(indexes, sort: bool | None = True) -> Index:
|
203 |
+
"""
|
204 |
+
Return the union of indexes.
|
205 |
+
|
206 |
+
The behavior of sort and names is not consistent.
|
207 |
+
|
208 |
+
Parameters
|
209 |
+
----------
|
210 |
+
indexes : list of Index or list objects
|
211 |
+
sort : bool, default True
|
212 |
+
Whether the result index should come out sorted or not.
|
213 |
+
|
214 |
+
Returns
|
215 |
+
-------
|
216 |
+
Index
|
217 |
+
"""
|
218 |
+
if len(indexes) == 0:
|
219 |
+
raise AssertionError("Must have at least 1 Index to union")
|
220 |
+
if len(indexes) == 1:
|
221 |
+
result = indexes[0]
|
222 |
+
if isinstance(result, list):
|
223 |
+
if not sort:
|
224 |
+
result = Index(result)
|
225 |
+
else:
|
226 |
+
result = Index(sorted(result))
|
227 |
+
return result
|
228 |
+
|
229 |
+
indexes, kind = _sanitize_and_check(indexes)
|
230 |
+
|
231 |
+
def _unique_indices(inds, dtype) -> Index:
|
232 |
+
"""
|
233 |
+
Concatenate indices and remove duplicates.
|
234 |
+
|
235 |
+
Parameters
|
236 |
+
----------
|
237 |
+
inds : list of Index or list objects
|
238 |
+
dtype : dtype to set for the resulting Index
|
239 |
+
|
240 |
+
Returns
|
241 |
+
-------
|
242 |
+
Index
|
243 |
+
"""
|
244 |
+
if all(isinstance(ind, Index) for ind in inds):
|
245 |
+
inds = [ind.astype(dtype, copy=False) for ind in inds]
|
246 |
+
result = inds[0].unique()
|
247 |
+
other = inds[1].append(inds[2:])
|
248 |
+
diff = other[result.get_indexer_for(other) == -1]
|
249 |
+
if len(diff):
|
250 |
+
result = result.append(diff.unique())
|
251 |
+
if sort:
|
252 |
+
result = result.sort_values()
|
253 |
+
return result
|
254 |
+
|
255 |
+
def conv(i):
|
256 |
+
if isinstance(i, Index):
|
257 |
+
i = i.tolist()
|
258 |
+
return i
|
259 |
+
|
260 |
+
return Index(
|
261 |
+
lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort),
|
262 |
+
dtype=dtype,
|
263 |
+
)
|
264 |
+
|
265 |
+
def _find_common_index_dtype(inds):
|
266 |
+
"""
|
267 |
+
Finds a common type for the indexes to pass through to resulting index.
|
268 |
+
|
269 |
+
Parameters
|
270 |
+
----------
|
271 |
+
inds: list of Index or list objects
|
272 |
+
|
273 |
+
Returns
|
274 |
+
-------
|
275 |
+
The common type or None if no indexes were given
|
276 |
+
"""
|
277 |
+
dtypes = [idx.dtype for idx in indexes if isinstance(idx, Index)]
|
278 |
+
if dtypes:
|
279 |
+
dtype = find_common_type(dtypes)
|
280 |
+
else:
|
281 |
+
dtype = None
|
282 |
+
|
283 |
+
return dtype
|
284 |
+
|
285 |
+
if kind == "special":
|
286 |
+
result = indexes[0]
|
287 |
+
|
288 |
+
dtis = [x for x in indexes if isinstance(x, DatetimeIndex)]
|
289 |
+
dti_tzs = [x for x in dtis if x.tz is not None]
|
290 |
+
if len(dti_tzs) not in [0, len(dtis)]:
|
291 |
+
# TODO: this behavior is not tested (so may not be desired),
|
292 |
+
# but is kept in order to keep behavior the same when
|
293 |
+
# deprecating union_many
|
294 |
+
# test_frame_from_dict_with_mixed_indexes
|
295 |
+
raise TypeError("Cannot join tz-naive with tz-aware DatetimeIndex")
|
296 |
+
|
297 |
+
if len(dtis) == len(indexes):
|
298 |
+
sort = True
|
299 |
+
result = indexes[0]
|
300 |
+
|
301 |
+
elif len(dtis) > 1:
|
302 |
+
# If we have mixed timezones, our casting behavior may depend on
|
303 |
+
# the order of indexes, which we don't want.
|
304 |
+
sort = False
|
305 |
+
|
306 |
+
# TODO: what about Categorical[dt64]?
|
307 |
+
# test_frame_from_dict_with_mixed_indexes
|
308 |
+
indexes = [x.astype(object, copy=False) for x in indexes]
|
309 |
+
result = indexes[0]
|
310 |
+
|
311 |
+
for other in indexes[1:]:
|
312 |
+
result = result.union(other, sort=None if sort else False)
|
313 |
+
return result
|
314 |
+
|
315 |
+
elif kind == "array":
|
316 |
+
dtype = _find_common_index_dtype(indexes)
|
317 |
+
index = indexes[0]
|
318 |
+
if not all(index.equals(other) for other in indexes[1:]):
|
319 |
+
index = _unique_indices(indexes, dtype)
|
320 |
+
|
321 |
+
name = get_unanimous_names(*indexes)[0]
|
322 |
+
if name != index.name:
|
323 |
+
index = index.rename(name)
|
324 |
+
return index
|
325 |
+
else: # kind='list'
|
326 |
+
dtype = _find_common_index_dtype(indexes)
|
327 |
+
return _unique_indices(indexes, dtype)
|
328 |
+
|
329 |
+
|
330 |
+
def _sanitize_and_check(indexes):
|
331 |
+
"""
|
332 |
+
Verify the type of indexes and convert lists to Index.
|
333 |
+
|
334 |
+
Cases:
|
335 |
+
|
336 |
+
- [list, list, ...]: Return ([list, list, ...], 'list')
|
337 |
+
- [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...])
|
338 |
+
Lists are sorted and converted to Index.
|
339 |
+
- [Index, Index, ...]: Return ([Index, Index, ...], TYPE)
|
340 |
+
TYPE = 'special' if at least one special type, 'array' otherwise.
|
341 |
+
|
342 |
+
Parameters
|
343 |
+
----------
|
344 |
+
indexes : list of Index or list objects
|
345 |
+
|
346 |
+
Returns
|
347 |
+
-------
|
348 |
+
sanitized_indexes : list of Index or list objects
|
349 |
+
type : {'list', 'array', 'special'}
|
350 |
+
"""
|
351 |
+
kinds = list({type(index) for index in indexes})
|
352 |
+
|
353 |
+
if list in kinds:
|
354 |
+
if len(kinds) > 1:
|
355 |
+
indexes = [
|
356 |
+
Index(list(x)) if not isinstance(x, Index) else x for x in indexes
|
357 |
+
]
|
358 |
+
kinds.remove(list)
|
359 |
+
else:
|
360 |
+
return indexes, "list"
|
361 |
+
|
362 |
+
if len(kinds) > 1 or Index not in kinds:
|
363 |
+
return indexes, "special"
|
364 |
+
else:
|
365 |
+
return indexes, "array"
|
366 |
+
|
367 |
+
|
368 |
+
def all_indexes_same(indexes) -> bool:
|
369 |
+
"""
|
370 |
+
Determine if all indexes contain the same elements.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
indexes : iterable of Index objects
|
375 |
+
|
376 |
+
Returns
|
377 |
+
-------
|
378 |
+
bool
|
379 |
+
True if all indexes contain the same elements, False otherwise.
|
380 |
+
"""
|
381 |
+
itr = iter(indexes)
|
382 |
+
first = next(itr)
|
383 |
+
return all(first.equals(index) for index in itr)
|
384 |
+
|
385 |
+
|
386 |
+
def default_index(n: int) -> RangeIndex:
|
387 |
+
rng = range(n)
|
388 |
+
return RangeIndex._simple_new(rng, name=None)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/base.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/category.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import (
|
4 |
+
TYPE_CHECKING,
|
5 |
+
Any,
|
6 |
+
Literal,
|
7 |
+
cast,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs import index as libindex
|
13 |
+
from pandas.util._decorators import (
|
14 |
+
cache_readonly,
|
15 |
+
doc,
|
16 |
+
)
|
17 |
+
|
18 |
+
from pandas.core.dtypes.common import is_scalar
|
19 |
+
from pandas.core.dtypes.concat import concat_compat
|
20 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
21 |
+
from pandas.core.dtypes.missing import (
|
22 |
+
is_valid_na_for_dtype,
|
23 |
+
isna,
|
24 |
+
)
|
25 |
+
|
26 |
+
from pandas.core.arrays.categorical import (
|
27 |
+
Categorical,
|
28 |
+
contains,
|
29 |
+
)
|
30 |
+
from pandas.core.construction import extract_array
|
31 |
+
from pandas.core.indexes.base import (
|
32 |
+
Index,
|
33 |
+
maybe_extract_name,
|
34 |
+
)
|
35 |
+
from pandas.core.indexes.extension import (
|
36 |
+
NDArrayBackedExtensionIndex,
|
37 |
+
inherit_names,
|
38 |
+
)
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from collections.abc import Hashable
|
42 |
+
|
43 |
+
from pandas._typing import (
|
44 |
+
Dtype,
|
45 |
+
DtypeObj,
|
46 |
+
Self,
|
47 |
+
npt,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
@inherit_names(
|
52 |
+
[
|
53 |
+
"argsort",
|
54 |
+
"tolist",
|
55 |
+
"codes",
|
56 |
+
"categories",
|
57 |
+
"ordered",
|
58 |
+
"_reverse_indexer",
|
59 |
+
"searchsorted",
|
60 |
+
"min",
|
61 |
+
"max",
|
62 |
+
],
|
63 |
+
Categorical,
|
64 |
+
)
|
65 |
+
@inherit_names(
|
66 |
+
[
|
67 |
+
"rename_categories",
|
68 |
+
"reorder_categories",
|
69 |
+
"add_categories",
|
70 |
+
"remove_categories",
|
71 |
+
"remove_unused_categories",
|
72 |
+
"set_categories",
|
73 |
+
"as_ordered",
|
74 |
+
"as_unordered",
|
75 |
+
],
|
76 |
+
Categorical,
|
77 |
+
wrap=True,
|
78 |
+
)
|
79 |
+
class CategoricalIndex(NDArrayBackedExtensionIndex):
|
80 |
+
"""
|
81 |
+
Index based on an underlying :class:`Categorical`.
|
82 |
+
|
83 |
+
CategoricalIndex, like Categorical, can only take on a limited,
|
84 |
+
and usually fixed, number of possible values (`categories`). Also,
|
85 |
+
like Categorical, it might have an order, but numerical operations
|
86 |
+
(additions, divisions, ...) are not possible.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
data : array-like (1-dimensional)
|
91 |
+
The values of the categorical. If `categories` are given, values not in
|
92 |
+
`categories` will be replaced with NaN.
|
93 |
+
categories : index-like, optional
|
94 |
+
The categories for the categorical. Items need to be unique.
|
95 |
+
If the categories are not given here (and also not in `dtype`), they
|
96 |
+
will be inferred from the `data`.
|
97 |
+
ordered : bool, optional
|
98 |
+
Whether or not this categorical is treated as an ordered
|
99 |
+
categorical. If not given here or in `dtype`, the resulting
|
100 |
+
categorical will be unordered.
|
101 |
+
dtype : CategoricalDtype or "category", optional
|
102 |
+
If :class:`CategoricalDtype`, cannot be used together with
|
103 |
+
`categories` or `ordered`.
|
104 |
+
copy : bool, default False
|
105 |
+
Make a copy of input ndarray.
|
106 |
+
name : object, optional
|
107 |
+
Name to be stored in the index.
|
108 |
+
|
109 |
+
Attributes
|
110 |
+
----------
|
111 |
+
codes
|
112 |
+
categories
|
113 |
+
ordered
|
114 |
+
|
115 |
+
Methods
|
116 |
+
-------
|
117 |
+
rename_categories
|
118 |
+
reorder_categories
|
119 |
+
add_categories
|
120 |
+
remove_categories
|
121 |
+
remove_unused_categories
|
122 |
+
set_categories
|
123 |
+
as_ordered
|
124 |
+
as_unordered
|
125 |
+
map
|
126 |
+
|
127 |
+
Raises
|
128 |
+
------
|
129 |
+
ValueError
|
130 |
+
If the categories do not validate.
|
131 |
+
TypeError
|
132 |
+
If an explicit ``ordered=True`` is given but no `categories` and the
|
133 |
+
`values` are not sortable.
|
134 |
+
|
135 |
+
See Also
|
136 |
+
--------
|
137 |
+
Index : The base pandas Index type.
|
138 |
+
Categorical : A categorical array.
|
139 |
+
CategoricalDtype : Type for categorical data.
|
140 |
+
|
141 |
+
Notes
|
142 |
+
-----
|
143 |
+
See the `user guide
|
144 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`__
|
145 |
+
for more.
|
146 |
+
|
147 |
+
Examples
|
148 |
+
--------
|
149 |
+
>>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"])
|
150 |
+
CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
|
151 |
+
categories=['a', 'b', 'c'], ordered=False, dtype='category')
|
152 |
+
|
153 |
+
``CategoricalIndex`` can also be instantiated from a ``Categorical``:
|
154 |
+
|
155 |
+
>>> c = pd.Categorical(["a", "b", "c", "a", "b", "c"])
|
156 |
+
>>> pd.CategoricalIndex(c)
|
157 |
+
CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
|
158 |
+
categories=['a', 'b', 'c'], ordered=False, dtype='category')
|
159 |
+
|
160 |
+
Ordered ``CategoricalIndex`` can have a min and max value.
|
161 |
+
|
162 |
+
>>> ci = pd.CategoricalIndex(
|
163 |
+
... ["a", "b", "c", "a", "b", "c"], ordered=True, categories=["c", "b", "a"]
|
164 |
+
... )
|
165 |
+
>>> ci
|
166 |
+
CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
|
167 |
+
categories=['c', 'b', 'a'], ordered=True, dtype='category')
|
168 |
+
>>> ci.min()
|
169 |
+
'c'
|
170 |
+
"""
|
171 |
+
|
172 |
+
_typ = "categoricalindex"
|
173 |
+
_data_cls = Categorical
|
174 |
+
|
175 |
+
@property
|
176 |
+
def _can_hold_strings(self):
|
177 |
+
return self.categories._can_hold_strings
|
178 |
+
|
179 |
+
@cache_readonly
|
180 |
+
def _should_fallback_to_positional(self) -> bool:
|
181 |
+
return self.categories._should_fallback_to_positional
|
182 |
+
|
183 |
+
codes: np.ndarray
|
184 |
+
categories: Index
|
185 |
+
ordered: bool | None
|
186 |
+
_data: Categorical
|
187 |
+
_values: Categorical
|
188 |
+
|
189 |
+
@property
|
190 |
+
def _engine_type(self) -> type[libindex.IndexEngine]:
|
191 |
+
# self.codes can have dtype int8, int16, int32 or int64, so we need
|
192 |
+
# to return the corresponding engine type (libindex.Int8Engine, etc.).
|
193 |
+
return {
|
194 |
+
np.int8: libindex.Int8Engine,
|
195 |
+
np.int16: libindex.Int16Engine,
|
196 |
+
np.int32: libindex.Int32Engine,
|
197 |
+
np.int64: libindex.Int64Engine,
|
198 |
+
}[self.codes.dtype.type]
|
199 |
+
|
200 |
+
# --------------------------------------------------------------------
|
201 |
+
# Constructors
|
202 |
+
|
203 |
+
def __new__(
|
204 |
+
cls,
|
205 |
+
data=None,
|
206 |
+
categories=None,
|
207 |
+
ordered=None,
|
208 |
+
dtype: Dtype | None = None,
|
209 |
+
copy: bool = False,
|
210 |
+
name: Hashable | None = None,
|
211 |
+
) -> Self:
|
212 |
+
name = maybe_extract_name(name, data, cls)
|
213 |
+
|
214 |
+
if is_scalar(data):
|
215 |
+
# GH#38944 include None here, which pre-2.0 subbed in []
|
216 |
+
cls._raise_scalar_data_error(data)
|
217 |
+
|
218 |
+
data = Categorical(
|
219 |
+
data, categories=categories, ordered=ordered, dtype=dtype, copy=copy
|
220 |
+
)
|
221 |
+
|
222 |
+
return cls._simple_new(data, name=name)
|
223 |
+
|
224 |
+
# --------------------------------------------------------------------
|
225 |
+
|
226 |
+
def _is_dtype_compat(self, other: Index) -> Categorical:
|
227 |
+
"""
|
228 |
+
*this is an internal non-public method*
|
229 |
+
|
230 |
+
provide a comparison between the dtype of self and other (coercing if
|
231 |
+
needed)
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
----------
|
235 |
+
other : Index
|
236 |
+
|
237 |
+
Returns
|
238 |
+
-------
|
239 |
+
Categorical
|
240 |
+
|
241 |
+
Raises
|
242 |
+
------
|
243 |
+
TypeError if the dtypes are not compatible
|
244 |
+
"""
|
245 |
+
if isinstance(other.dtype, CategoricalDtype):
|
246 |
+
cat = extract_array(other)
|
247 |
+
cat = cast(Categorical, cat)
|
248 |
+
if not cat._categories_match_up_to_permutation(self._values):
|
249 |
+
raise TypeError(
|
250 |
+
"categories must match existing categories when appending"
|
251 |
+
)
|
252 |
+
|
253 |
+
elif other._is_multi:
|
254 |
+
# preempt raising NotImplementedError in isna call
|
255 |
+
raise TypeError("MultiIndex is not dtype-compatible with CategoricalIndex")
|
256 |
+
else:
|
257 |
+
values = other
|
258 |
+
|
259 |
+
cat = Categorical(other, dtype=self.dtype)
|
260 |
+
other = CategoricalIndex(cat)
|
261 |
+
if not other.isin(values).all():
|
262 |
+
raise TypeError(
|
263 |
+
"cannot append a non-category item to a CategoricalIndex"
|
264 |
+
)
|
265 |
+
cat = other._values
|
266 |
+
|
267 |
+
if not ((cat == values) | (isna(cat) & isna(values))).all():
|
268 |
+
# GH#37667 see test_equals_non_category
|
269 |
+
raise TypeError(
|
270 |
+
"categories must match existing categories when appending"
|
271 |
+
)
|
272 |
+
|
273 |
+
return cat
|
274 |
+
|
275 |
+
def equals(self, other: object) -> bool:
|
276 |
+
"""
|
277 |
+
Determine if two CategoricalIndex objects contain the same elements.
|
278 |
+
|
279 |
+
Returns
|
280 |
+
-------
|
281 |
+
bool
|
282 |
+
``True`` if two :class:`pandas.CategoricalIndex` objects have equal
|
283 |
+
elements, ``False`` otherwise.
|
284 |
+
|
285 |
+
Examples
|
286 |
+
--------
|
287 |
+
>>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'])
|
288 |
+
>>> ci2 = pd.CategoricalIndex(pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']))
|
289 |
+
>>> ci.equals(ci2)
|
290 |
+
True
|
291 |
+
|
292 |
+
The order of elements matters.
|
293 |
+
|
294 |
+
>>> ci3 = pd.CategoricalIndex(['c', 'b', 'a', 'a', 'b', 'c'])
|
295 |
+
>>> ci.equals(ci3)
|
296 |
+
False
|
297 |
+
|
298 |
+
The orderedness also matters.
|
299 |
+
|
300 |
+
>>> ci4 = ci.as_ordered()
|
301 |
+
>>> ci.equals(ci4)
|
302 |
+
False
|
303 |
+
|
304 |
+
The categories matter, but the order of the categories matters only when
|
305 |
+
``ordered=True``.
|
306 |
+
|
307 |
+
>>> ci5 = ci.set_categories(['a', 'b', 'c', 'd'])
|
308 |
+
>>> ci.equals(ci5)
|
309 |
+
False
|
310 |
+
|
311 |
+
>>> ci6 = ci.set_categories(['b', 'c', 'a'])
|
312 |
+
>>> ci.equals(ci6)
|
313 |
+
True
|
314 |
+
>>> ci_ordered = pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
|
315 |
+
... ordered=True)
|
316 |
+
>>> ci2_ordered = ci_ordered.set_categories(['b', 'c', 'a'])
|
317 |
+
>>> ci_ordered.equals(ci2_ordered)
|
318 |
+
False
|
319 |
+
"""
|
320 |
+
if self.is_(other):
|
321 |
+
return True
|
322 |
+
|
323 |
+
if not isinstance(other, Index):
|
324 |
+
return False
|
325 |
+
|
326 |
+
try:
|
327 |
+
other = self._is_dtype_compat(other)
|
328 |
+
except (TypeError, ValueError):
|
329 |
+
return False
|
330 |
+
|
331 |
+
return self._data.equals(other)
|
332 |
+
|
333 |
+
# --------------------------------------------------------------------
|
334 |
+
# Rendering Methods
|
335 |
+
|
336 |
+
@property
|
337 |
+
def _formatter_func(self):
|
338 |
+
return self.categories._formatter_func
|
339 |
+
|
340 |
+
def _format_attrs(self):
|
341 |
+
"""
|
342 |
+
Return a list of tuples of the (attr,formatted_value)
|
343 |
+
"""
|
344 |
+
attrs: list[tuple[str, str | int | bool | None]]
|
345 |
+
|
346 |
+
attrs = [
|
347 |
+
(
|
348 |
+
"categories",
|
349 |
+
f"[{', '.join(self._data._repr_categories())}]",
|
350 |
+
),
|
351 |
+
("ordered", self.ordered),
|
352 |
+
]
|
353 |
+
extra = super()._format_attrs()
|
354 |
+
return attrs + extra
|
355 |
+
|
356 |
+
# --------------------------------------------------------------------
|
357 |
+
|
358 |
+
@property
|
359 |
+
def inferred_type(self) -> str:
|
360 |
+
return "categorical"
|
361 |
+
|
362 |
+
@doc(Index.__contains__)
|
363 |
+
def __contains__(self, key: Any) -> bool:
|
364 |
+
# if key is a NaN, check if any NaN is in self.
|
365 |
+
if is_valid_na_for_dtype(key, self.categories.dtype):
|
366 |
+
return self.hasnans
|
367 |
+
|
368 |
+
return contains(self, key, container=self._engine)
|
369 |
+
|
370 |
+
def reindex(
|
371 |
+
self, target, method=None, level=None, limit: int | None = None, tolerance=None
|
372 |
+
) -> tuple[Index, npt.NDArray[np.intp] | None]:
|
373 |
+
"""
|
374 |
+
Create index with target's values (move/add/delete values as necessary)
|
375 |
+
|
376 |
+
Returns
|
377 |
+
-------
|
378 |
+
new_index : pd.Index
|
379 |
+
Resulting index
|
380 |
+
indexer : np.ndarray[np.intp] or None
|
381 |
+
Indices of output values in original index
|
382 |
+
|
383 |
+
"""
|
384 |
+
if method is not None:
|
385 |
+
raise NotImplementedError(
|
386 |
+
"argument method is not implemented for CategoricalIndex.reindex"
|
387 |
+
)
|
388 |
+
if level is not None:
|
389 |
+
raise NotImplementedError(
|
390 |
+
"argument level is not implemented for CategoricalIndex.reindex"
|
391 |
+
)
|
392 |
+
if limit is not None:
|
393 |
+
raise NotImplementedError(
|
394 |
+
"argument limit is not implemented for CategoricalIndex.reindex"
|
395 |
+
)
|
396 |
+
return super().reindex(target)
|
397 |
+
|
398 |
+
# --------------------------------------------------------------------
|
399 |
+
# Indexing Methods
|
400 |
+
|
401 |
+
def _maybe_cast_indexer(self, key) -> int:
|
402 |
+
# GH#41933: we have to do this instead of self._data._validate_scalar
|
403 |
+
# because this will correctly get partial-indexing on Interval categories
|
404 |
+
try:
|
405 |
+
return self._data._unbox_scalar(key)
|
406 |
+
except KeyError:
|
407 |
+
if is_valid_na_for_dtype(key, self.categories.dtype):
|
408 |
+
return -1
|
409 |
+
raise
|
410 |
+
|
411 |
+
def _maybe_cast_listlike_indexer(self, values) -> CategoricalIndex:
|
412 |
+
if isinstance(values, CategoricalIndex):
|
413 |
+
values = values._data
|
414 |
+
if isinstance(values, Categorical):
|
415 |
+
# Indexing on codes is more efficient if categories are the same,
|
416 |
+
# so we can apply some optimizations based on the degree of
|
417 |
+
# dtype-matching.
|
418 |
+
cat = self._data._encode_with_my_categories(values)
|
419 |
+
codes = cat._codes
|
420 |
+
else:
|
421 |
+
codes = self.categories.get_indexer(values)
|
422 |
+
codes = codes.astype(self.codes.dtype, copy=False)
|
423 |
+
cat = self._data._from_backing_data(codes)
|
424 |
+
return type(self)._simple_new(cat)
|
425 |
+
|
426 |
+
# --------------------------------------------------------------------
|
427 |
+
|
428 |
+
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
429 |
+
return self.categories._is_comparable_dtype(dtype)
|
430 |
+
|
431 |
+
def map(self, mapper, na_action: Literal["ignore"] | None = None):
|
432 |
+
"""
|
433 |
+
Map values using input an input mapping or function.
|
434 |
+
|
435 |
+
Maps the values (their categories, not the codes) of the index to new
|
436 |
+
categories. If the mapping correspondence is one-to-one the result is a
|
437 |
+
:class:`~pandas.CategoricalIndex` which has the same order property as
|
438 |
+
the original, otherwise an :class:`~pandas.Index` is returned.
|
439 |
+
|
440 |
+
If a `dict` or :class:`~pandas.Series` is used any unmapped category is
|
441 |
+
mapped to `NaN`. Note that if this happens an :class:`~pandas.Index`
|
442 |
+
will be returned.
|
443 |
+
|
444 |
+
Parameters
|
445 |
+
----------
|
446 |
+
mapper : function, dict, or Series
|
447 |
+
Mapping correspondence.
|
448 |
+
|
449 |
+
Returns
|
450 |
+
-------
|
451 |
+
pandas.CategoricalIndex or pandas.Index
|
452 |
+
Mapped index.
|
453 |
+
|
454 |
+
See Also
|
455 |
+
--------
|
456 |
+
Index.map : Apply a mapping correspondence on an
|
457 |
+
:class:`~pandas.Index`.
|
458 |
+
Series.map : Apply a mapping correspondence on a
|
459 |
+
:class:`~pandas.Series`.
|
460 |
+
Series.apply : Apply more complex functions on a
|
461 |
+
:class:`~pandas.Series`.
|
462 |
+
|
463 |
+
Examples
|
464 |
+
--------
|
465 |
+
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
|
466 |
+
>>> idx
|
467 |
+
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
|
468 |
+
ordered=False, dtype='category')
|
469 |
+
>>> idx.map(lambda x: x.upper())
|
470 |
+
CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],
|
471 |
+
ordered=False, dtype='category')
|
472 |
+
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
|
473 |
+
CategoricalIndex(['first', 'second', 'third'], categories=['first',
|
474 |
+
'second', 'third'], ordered=False, dtype='category')
|
475 |
+
|
476 |
+
If the mapping is one-to-one the ordering of the categories is
|
477 |
+
preserved:
|
478 |
+
|
479 |
+
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
|
480 |
+
>>> idx
|
481 |
+
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
|
482 |
+
ordered=True, dtype='category')
|
483 |
+
>>> idx.map({'a': 3, 'b': 2, 'c': 1})
|
484 |
+
CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,
|
485 |
+
dtype='category')
|
486 |
+
|
487 |
+
If the mapping is not one-to-one an :class:`~pandas.Index` is returned:
|
488 |
+
|
489 |
+
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
|
490 |
+
Index(['first', 'second', 'first'], dtype='object')
|
491 |
+
|
492 |
+
If a `dict` is used, all unmapped categories are mapped to `NaN` and
|
493 |
+
the result is an :class:`~pandas.Index`:
|
494 |
+
|
495 |
+
>>> idx.map({'a': 'first', 'b': 'second'})
|
496 |
+
Index(['first', 'second', nan], dtype='object')
|
497 |
+
"""
|
498 |
+
mapped = self._values.map(mapper, na_action=na_action)
|
499 |
+
return Index(mapped, name=self.name)
|
500 |
+
|
501 |
+
def _concat(self, to_concat: list[Index], name: Hashable) -> Index:
|
502 |
+
# if calling index is category, don't check dtype of others
|
503 |
+
try:
|
504 |
+
cat = Categorical._concat_same_type(
|
505 |
+
[self._is_dtype_compat(c) for c in to_concat]
|
506 |
+
)
|
507 |
+
except TypeError:
|
508 |
+
# not all to_concat elements are among our categories (or NA)
|
509 |
+
|
510 |
+
res = concat_compat([x._values for x in to_concat])
|
511 |
+
return Index(res, name=name)
|
512 |
+
else:
|
513 |
+
return type(self)._simple_new(cat, name=name)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/datetimelike.py
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base and utility classes for tseries type pandas objects.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from abc import (
|
7 |
+
ABC,
|
8 |
+
abstractmethod,
|
9 |
+
)
|
10 |
+
from typing import (
|
11 |
+
TYPE_CHECKING,
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
cast,
|
15 |
+
final,
|
16 |
+
)
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from pandas._config import using_copy_on_write
|
22 |
+
|
23 |
+
from pandas._libs import (
|
24 |
+
NaT,
|
25 |
+
Timedelta,
|
26 |
+
lib,
|
27 |
+
)
|
28 |
+
from pandas._libs.tslibs import (
|
29 |
+
BaseOffset,
|
30 |
+
Resolution,
|
31 |
+
Tick,
|
32 |
+
parsing,
|
33 |
+
to_offset,
|
34 |
+
)
|
35 |
+
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
|
36 |
+
from pandas.compat.numpy import function as nv
|
37 |
+
from pandas.errors import (
|
38 |
+
InvalidIndexError,
|
39 |
+
NullFrequencyError,
|
40 |
+
)
|
41 |
+
from pandas.util._decorators import (
|
42 |
+
Appender,
|
43 |
+
cache_readonly,
|
44 |
+
doc,
|
45 |
+
)
|
46 |
+
from pandas.util._exceptions import find_stack_level
|
47 |
+
|
48 |
+
from pandas.core.dtypes.common import (
|
49 |
+
is_integer,
|
50 |
+
is_list_like,
|
51 |
+
)
|
52 |
+
from pandas.core.dtypes.concat import concat_compat
|
53 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
54 |
+
|
55 |
+
from pandas.core.arrays import (
|
56 |
+
DatetimeArray,
|
57 |
+
ExtensionArray,
|
58 |
+
PeriodArray,
|
59 |
+
TimedeltaArray,
|
60 |
+
)
|
61 |
+
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
|
62 |
+
import pandas.core.common as com
|
63 |
+
import pandas.core.indexes.base as ibase
|
64 |
+
from pandas.core.indexes.base import (
|
65 |
+
Index,
|
66 |
+
_index_shared_docs,
|
67 |
+
)
|
68 |
+
from pandas.core.indexes.extension import NDArrayBackedExtensionIndex
|
69 |
+
from pandas.core.indexes.range import RangeIndex
|
70 |
+
from pandas.core.tools.timedeltas import to_timedelta
|
71 |
+
|
72 |
+
if TYPE_CHECKING:
|
73 |
+
from collections.abc import Sequence
|
74 |
+
from datetime import datetime
|
75 |
+
|
76 |
+
from pandas._typing import (
|
77 |
+
Axis,
|
78 |
+
Self,
|
79 |
+
npt,
|
80 |
+
)
|
81 |
+
|
82 |
+
from pandas import CategoricalIndex
|
83 |
+
|
84 |
+
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
|
85 |
+
|
86 |
+
|
87 |
+
class DatetimeIndexOpsMixin(NDArrayBackedExtensionIndex, ABC):
|
88 |
+
"""
|
89 |
+
Common ops mixin to support a unified interface datetimelike Index.
|
90 |
+
"""
|
91 |
+
|
92 |
+
_can_hold_strings = False
|
93 |
+
_data: DatetimeArray | TimedeltaArray | PeriodArray
|
94 |
+
|
95 |
+
@doc(DatetimeLikeArrayMixin.mean)
|
96 |
+
def mean(self, *, skipna: bool = True, axis: int | None = 0):
|
97 |
+
return self._data.mean(skipna=skipna, axis=axis)
|
98 |
+
|
99 |
+
@property
|
100 |
+
def freq(self) -> BaseOffset | None:
|
101 |
+
return self._data.freq
|
102 |
+
|
103 |
+
@freq.setter
|
104 |
+
def freq(self, value) -> None:
|
105 |
+
# error: Property "freq" defined in "PeriodArray" is read-only [misc]
|
106 |
+
self._data.freq = value # type: ignore[misc]
|
107 |
+
|
108 |
+
@property
|
109 |
+
def asi8(self) -> npt.NDArray[np.int64]:
|
110 |
+
return self._data.asi8
|
111 |
+
|
112 |
+
@property
|
113 |
+
@doc(DatetimeLikeArrayMixin.freqstr)
|
114 |
+
def freqstr(self) -> str:
|
115 |
+
from pandas import PeriodIndex
|
116 |
+
|
117 |
+
if self._data.freqstr is not None and isinstance(
|
118 |
+
self._data, (PeriodArray, PeriodIndex)
|
119 |
+
):
|
120 |
+
freq = freq_to_period_freqstr(self._data.freq.n, self._data.freq.name)
|
121 |
+
return freq
|
122 |
+
else:
|
123 |
+
return self._data.freqstr # type: ignore[return-value]
|
124 |
+
|
125 |
+
@cache_readonly
|
126 |
+
@abstractmethod
|
127 |
+
def _resolution_obj(self) -> Resolution:
|
128 |
+
...
|
129 |
+
|
130 |
+
@cache_readonly
|
131 |
+
@doc(DatetimeLikeArrayMixin.resolution)
|
132 |
+
def resolution(self) -> str:
|
133 |
+
return self._data.resolution
|
134 |
+
|
135 |
+
# ------------------------------------------------------------------------
|
136 |
+
|
137 |
+
@cache_readonly
|
138 |
+
def hasnans(self) -> bool:
|
139 |
+
return self._data._hasna
|
140 |
+
|
141 |
+
def equals(self, other: Any) -> bool:
|
142 |
+
"""
|
143 |
+
Determines if two Index objects contain the same elements.
|
144 |
+
"""
|
145 |
+
if self.is_(other):
|
146 |
+
return True
|
147 |
+
|
148 |
+
if not isinstance(other, Index):
|
149 |
+
return False
|
150 |
+
elif other.dtype.kind in "iufc":
|
151 |
+
return False
|
152 |
+
elif not isinstance(other, type(self)):
|
153 |
+
should_try = False
|
154 |
+
inferable = self._data._infer_matches
|
155 |
+
if other.dtype == object:
|
156 |
+
should_try = other.inferred_type in inferable
|
157 |
+
elif isinstance(other.dtype, CategoricalDtype):
|
158 |
+
other = cast("CategoricalIndex", other)
|
159 |
+
should_try = other.categories.inferred_type in inferable
|
160 |
+
|
161 |
+
if should_try:
|
162 |
+
try:
|
163 |
+
other = type(self)(other)
|
164 |
+
except (ValueError, TypeError, OverflowError):
|
165 |
+
# e.g.
|
166 |
+
# ValueError -> cannot parse str entry, or OutOfBoundsDatetime
|
167 |
+
# TypeError -> trying to convert IntervalIndex to DatetimeIndex
|
168 |
+
# OverflowError -> Index([very_large_timedeltas])
|
169 |
+
return False
|
170 |
+
|
171 |
+
if self.dtype != other.dtype:
|
172 |
+
# have different timezone
|
173 |
+
return False
|
174 |
+
|
175 |
+
return np.array_equal(self.asi8, other.asi8)
|
176 |
+
|
177 |
+
@Appender(Index.__contains__.__doc__)
|
178 |
+
def __contains__(self, key: Any) -> bool:
|
179 |
+
hash(key)
|
180 |
+
try:
|
181 |
+
self.get_loc(key)
|
182 |
+
except (KeyError, TypeError, ValueError, InvalidIndexError):
|
183 |
+
return False
|
184 |
+
return True
|
185 |
+
|
186 |
+
def _convert_tolerance(self, tolerance, target):
|
187 |
+
tolerance = np.asarray(to_timedelta(tolerance).to_numpy())
|
188 |
+
return super()._convert_tolerance(tolerance, target)
|
189 |
+
|
190 |
+
# --------------------------------------------------------------------
|
191 |
+
# Rendering Methods
|
192 |
+
_default_na_rep = "NaT"
|
193 |
+
|
194 |
+
def format(
|
195 |
+
self,
|
196 |
+
name: bool = False,
|
197 |
+
formatter: Callable | None = None,
|
198 |
+
na_rep: str = "NaT",
|
199 |
+
date_format: str | None = None,
|
200 |
+
) -> list[str]:
|
201 |
+
"""
|
202 |
+
Render a string representation of the Index.
|
203 |
+
"""
|
204 |
+
warnings.warn(
|
205 |
+
# GH#55413
|
206 |
+
f"{type(self).__name__}.format is deprecated and will be removed "
|
207 |
+
"in a future version. Convert using index.astype(str) or "
|
208 |
+
"index.map(formatter) instead.",
|
209 |
+
FutureWarning,
|
210 |
+
stacklevel=find_stack_level(),
|
211 |
+
)
|
212 |
+
header = []
|
213 |
+
if name:
|
214 |
+
header.append(
|
215 |
+
ibase.pprint_thing(self.name, escape_chars=("\t", "\r", "\n"))
|
216 |
+
if self.name is not None
|
217 |
+
else ""
|
218 |
+
)
|
219 |
+
|
220 |
+
if formatter is not None:
|
221 |
+
return header + list(self.map(formatter))
|
222 |
+
|
223 |
+
return self._format_with_header(
|
224 |
+
header=header, na_rep=na_rep, date_format=date_format
|
225 |
+
)
|
226 |
+
|
227 |
+
def _format_with_header(
|
228 |
+
self, *, header: list[str], na_rep: str, date_format: str | None = None
|
229 |
+
) -> list[str]:
|
230 |
+
# TODO: not reached in tests 2023-10-11
|
231 |
+
# matches base class except for whitespace padding and date_format
|
232 |
+
return header + list(
|
233 |
+
self._get_values_for_csv(na_rep=na_rep, date_format=date_format)
|
234 |
+
)
|
235 |
+
|
236 |
+
@property
|
237 |
+
def _formatter_func(self):
|
238 |
+
return self._data._formatter()
|
239 |
+
|
240 |
+
def _format_attrs(self):
|
241 |
+
"""
|
242 |
+
Return a list of tuples of the (attr,formatted_value).
|
243 |
+
"""
|
244 |
+
attrs = super()._format_attrs()
|
245 |
+
for attrib in self._attributes:
|
246 |
+
# iterating over _attributes prevents us from doing this for PeriodIndex
|
247 |
+
if attrib == "freq":
|
248 |
+
freq = self.freqstr
|
249 |
+
if freq is not None:
|
250 |
+
freq = repr(freq) # e.g. D -> 'D'
|
251 |
+
attrs.append(("freq", freq))
|
252 |
+
return attrs
|
253 |
+
|
254 |
+
@Appender(Index._summary.__doc__)
|
255 |
+
def _summary(self, name=None) -> str:
|
256 |
+
result = super()._summary(name=name)
|
257 |
+
if self.freq:
|
258 |
+
result += f"\nFreq: {self.freqstr}"
|
259 |
+
|
260 |
+
return result
|
261 |
+
|
262 |
+
# --------------------------------------------------------------------
|
263 |
+
# Indexing Methods
|
264 |
+
|
265 |
+
@final
|
266 |
+
def _can_partial_date_slice(self, reso: Resolution) -> bool:
|
267 |
+
# e.g. test_getitem_setitem_periodindex
|
268 |
+
# History of conversation GH#3452, GH#3931, GH#2369, GH#14826
|
269 |
+
return reso > self._resolution_obj
|
270 |
+
# NB: for DTI/PI, not TDI
|
271 |
+
|
272 |
+
def _parsed_string_to_bounds(self, reso: Resolution, parsed):
|
273 |
+
raise NotImplementedError
|
274 |
+
|
275 |
+
def _parse_with_reso(self, label: str):
|
276 |
+
# overridden by TimedeltaIndex
|
277 |
+
try:
|
278 |
+
if self.freq is None or hasattr(self.freq, "rule_code"):
|
279 |
+
freq = self.freq
|
280 |
+
except NotImplementedError:
|
281 |
+
freq = getattr(self, "freqstr", getattr(self, "inferred_freq", None))
|
282 |
+
|
283 |
+
freqstr: str | None
|
284 |
+
if freq is not None and not isinstance(freq, str):
|
285 |
+
freqstr = freq.rule_code
|
286 |
+
else:
|
287 |
+
freqstr = freq
|
288 |
+
|
289 |
+
if isinstance(label, np.str_):
|
290 |
+
# GH#45580
|
291 |
+
label = str(label)
|
292 |
+
|
293 |
+
parsed, reso_str = parsing.parse_datetime_string_with_reso(label, freqstr)
|
294 |
+
reso = Resolution.from_attrname(reso_str)
|
295 |
+
return parsed, reso
|
296 |
+
|
297 |
+
def _get_string_slice(self, key: str):
|
298 |
+
# overridden by TimedeltaIndex
|
299 |
+
parsed, reso = self._parse_with_reso(key)
|
300 |
+
try:
|
301 |
+
return self._partial_date_slice(reso, parsed)
|
302 |
+
except KeyError as err:
|
303 |
+
raise KeyError(key) from err
|
304 |
+
|
305 |
+
@final
|
306 |
+
def _partial_date_slice(
|
307 |
+
self,
|
308 |
+
reso: Resolution,
|
309 |
+
parsed: datetime,
|
310 |
+
) -> slice | npt.NDArray[np.intp]:
|
311 |
+
"""
|
312 |
+
Parameters
|
313 |
+
----------
|
314 |
+
reso : Resolution
|
315 |
+
parsed : datetime
|
316 |
+
|
317 |
+
Returns
|
318 |
+
-------
|
319 |
+
slice or ndarray[intp]
|
320 |
+
"""
|
321 |
+
if not self._can_partial_date_slice(reso):
|
322 |
+
raise ValueError
|
323 |
+
|
324 |
+
t1, t2 = self._parsed_string_to_bounds(reso, parsed)
|
325 |
+
vals = self._data._ndarray
|
326 |
+
unbox = self._data._unbox
|
327 |
+
|
328 |
+
if self.is_monotonic_increasing:
|
329 |
+
if len(self) and (
|
330 |
+
(t1 < self[0] and t2 < self[0]) or (t1 > self[-1] and t2 > self[-1])
|
331 |
+
):
|
332 |
+
# we are out of range
|
333 |
+
raise KeyError
|
334 |
+
|
335 |
+
# TODO: does this depend on being monotonic _increasing_?
|
336 |
+
|
337 |
+
# a monotonic (sorted) series can be sliced
|
338 |
+
left = vals.searchsorted(unbox(t1), side="left")
|
339 |
+
right = vals.searchsorted(unbox(t2), side="right")
|
340 |
+
return slice(left, right)
|
341 |
+
|
342 |
+
else:
|
343 |
+
lhs_mask = vals >= unbox(t1)
|
344 |
+
rhs_mask = vals <= unbox(t2)
|
345 |
+
|
346 |
+
# try to find the dates
|
347 |
+
return (lhs_mask & rhs_mask).nonzero()[0]
|
348 |
+
|
349 |
+
def _maybe_cast_slice_bound(self, label, side: str):
|
350 |
+
"""
|
351 |
+
If label is a string, cast it to scalar type according to resolution.
|
352 |
+
|
353 |
+
Parameters
|
354 |
+
----------
|
355 |
+
label : object
|
356 |
+
side : {'left', 'right'}
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
label : object
|
361 |
+
|
362 |
+
Notes
|
363 |
+
-----
|
364 |
+
Value of `side` parameter should be validated in caller.
|
365 |
+
"""
|
366 |
+
if isinstance(label, str):
|
367 |
+
try:
|
368 |
+
parsed, reso = self._parse_with_reso(label)
|
369 |
+
except ValueError as err:
|
370 |
+
# DTI -> parsing.DateParseError
|
371 |
+
# TDI -> 'unit abbreviation w/o a number'
|
372 |
+
# PI -> string cannot be parsed as datetime-like
|
373 |
+
self._raise_invalid_indexer("slice", label, err)
|
374 |
+
|
375 |
+
lower, upper = self._parsed_string_to_bounds(reso, parsed)
|
376 |
+
return lower if side == "left" else upper
|
377 |
+
elif not isinstance(label, self._data._recognized_scalars):
|
378 |
+
self._raise_invalid_indexer("slice", label)
|
379 |
+
|
380 |
+
return label
|
381 |
+
|
382 |
+
# --------------------------------------------------------------------
|
383 |
+
# Arithmetic Methods
|
384 |
+
|
385 |
+
def shift(self, periods: int = 1, freq=None) -> Self:
|
386 |
+
"""
|
387 |
+
Shift index by desired number of time frequency increments.
|
388 |
+
|
389 |
+
This method is for shifting the values of datetime-like indexes
|
390 |
+
by a specified time increment a given number of times.
|
391 |
+
|
392 |
+
Parameters
|
393 |
+
----------
|
394 |
+
periods : int, default 1
|
395 |
+
Number of periods (or increments) to shift by,
|
396 |
+
can be positive or negative.
|
397 |
+
freq : pandas.DateOffset, pandas.Timedelta or string, optional
|
398 |
+
Frequency increment to shift by.
|
399 |
+
If None, the index is shifted by its own `freq` attribute.
|
400 |
+
Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc.
|
401 |
+
|
402 |
+
Returns
|
403 |
+
-------
|
404 |
+
pandas.DatetimeIndex
|
405 |
+
Shifted index.
|
406 |
+
|
407 |
+
See Also
|
408 |
+
--------
|
409 |
+
Index.shift : Shift values of Index.
|
410 |
+
PeriodIndex.shift : Shift values of PeriodIndex.
|
411 |
+
"""
|
412 |
+
raise NotImplementedError
|
413 |
+
|
414 |
+
# --------------------------------------------------------------------
|
415 |
+
|
416 |
+
@doc(Index._maybe_cast_listlike_indexer)
|
417 |
+
def _maybe_cast_listlike_indexer(self, keyarr):
|
418 |
+
try:
|
419 |
+
res = self._data._validate_listlike(keyarr, allow_object=True)
|
420 |
+
except (ValueError, TypeError):
|
421 |
+
if not isinstance(keyarr, ExtensionArray):
|
422 |
+
# e.g. we don't want to cast DTA to ndarray[object]
|
423 |
+
res = com.asarray_tuplesafe(keyarr)
|
424 |
+
# TODO: com.asarray_tuplesafe shouldn't cast e.g. DatetimeArray
|
425 |
+
else:
|
426 |
+
res = keyarr
|
427 |
+
return Index(res, dtype=res.dtype)
|
428 |
+
|
429 |
+
|
430 |
+
class DatetimeTimedeltaMixin(DatetimeIndexOpsMixin, ABC):
|
431 |
+
"""
|
432 |
+
Mixin class for methods shared by DatetimeIndex and TimedeltaIndex,
|
433 |
+
but not PeriodIndex
|
434 |
+
"""
|
435 |
+
|
436 |
+
_data: DatetimeArray | TimedeltaArray
|
437 |
+
_comparables = ["name", "freq"]
|
438 |
+
_attributes = ["name", "freq"]
|
439 |
+
|
440 |
+
# Compat for frequency inference, see GH#23789
|
441 |
+
_is_monotonic_increasing = Index.is_monotonic_increasing
|
442 |
+
_is_monotonic_decreasing = Index.is_monotonic_decreasing
|
443 |
+
_is_unique = Index.is_unique
|
444 |
+
|
445 |
+
@property
|
446 |
+
def unit(self) -> str:
|
447 |
+
return self._data.unit
|
448 |
+
|
449 |
+
def as_unit(self, unit: str) -> Self:
|
450 |
+
"""
|
451 |
+
Convert to a dtype with the given unit resolution.
|
452 |
+
|
453 |
+
Parameters
|
454 |
+
----------
|
455 |
+
unit : {'s', 'ms', 'us', 'ns'}
|
456 |
+
|
457 |
+
Returns
|
458 |
+
-------
|
459 |
+
same type as self
|
460 |
+
|
461 |
+
Examples
|
462 |
+
--------
|
463 |
+
For :class:`pandas.DatetimeIndex`:
|
464 |
+
|
465 |
+
>>> idx = pd.DatetimeIndex(['2020-01-02 01:02:03.004005006'])
|
466 |
+
>>> idx
|
467 |
+
DatetimeIndex(['2020-01-02 01:02:03.004005006'],
|
468 |
+
dtype='datetime64[ns]', freq=None)
|
469 |
+
>>> idx.as_unit('s')
|
470 |
+
DatetimeIndex(['2020-01-02 01:02:03'], dtype='datetime64[s]', freq=None)
|
471 |
+
|
472 |
+
For :class:`pandas.TimedeltaIndex`:
|
473 |
+
|
474 |
+
>>> tdelta_idx = pd.to_timedelta(['1 day 3 min 2 us 42 ns'])
|
475 |
+
>>> tdelta_idx
|
476 |
+
TimedeltaIndex(['1 days 00:03:00.000002042'],
|
477 |
+
dtype='timedelta64[ns]', freq=None)
|
478 |
+
>>> tdelta_idx.as_unit('s')
|
479 |
+
TimedeltaIndex(['1 days 00:03:00'], dtype='timedelta64[s]', freq=None)
|
480 |
+
"""
|
481 |
+
arr = self._data.as_unit(unit)
|
482 |
+
return type(self)._simple_new(arr, name=self.name)
|
483 |
+
|
484 |
+
def _with_freq(self, freq):
|
485 |
+
arr = self._data._with_freq(freq)
|
486 |
+
return type(self)._simple_new(arr, name=self._name)
|
487 |
+
|
488 |
+
@property
|
489 |
+
def values(self) -> np.ndarray:
|
490 |
+
# NB: For Datetime64TZ this is lossy
|
491 |
+
data = self._data._ndarray
|
492 |
+
if using_copy_on_write():
|
493 |
+
data = data.view()
|
494 |
+
data.flags.writeable = False
|
495 |
+
return data
|
496 |
+
|
497 |
+
@doc(DatetimeIndexOpsMixin.shift)
|
498 |
+
def shift(self, periods: int = 1, freq=None) -> Self:
|
499 |
+
if freq is not None and freq != self.freq:
|
500 |
+
if isinstance(freq, str):
|
501 |
+
freq = to_offset(freq)
|
502 |
+
offset = periods * freq
|
503 |
+
return self + offset
|
504 |
+
|
505 |
+
if periods == 0 or len(self) == 0:
|
506 |
+
# GH#14811 empty case
|
507 |
+
return self.copy()
|
508 |
+
|
509 |
+
if self.freq is None:
|
510 |
+
raise NullFrequencyError("Cannot shift with no freq")
|
511 |
+
|
512 |
+
start = self[0] + periods * self.freq
|
513 |
+
end = self[-1] + periods * self.freq
|
514 |
+
|
515 |
+
# Note: in the DatetimeTZ case, _generate_range will infer the
|
516 |
+
# appropriate timezone from `start` and `end`, so tz does not need
|
517 |
+
# to be passed explicitly.
|
518 |
+
result = self._data._generate_range(
|
519 |
+
start=start, end=end, periods=None, freq=self.freq, unit=self.unit
|
520 |
+
)
|
521 |
+
return type(self)._simple_new(result, name=self.name)
|
522 |
+
|
523 |
+
@cache_readonly
|
524 |
+
@doc(DatetimeLikeArrayMixin.inferred_freq)
|
525 |
+
def inferred_freq(self) -> str | None:
|
526 |
+
return self._data.inferred_freq
|
527 |
+
|
528 |
+
# --------------------------------------------------------------------
|
529 |
+
# Set Operation Methods
|
530 |
+
|
531 |
+
@cache_readonly
|
532 |
+
def _as_range_index(self) -> RangeIndex:
|
533 |
+
# Convert our i8 representations to RangeIndex
|
534 |
+
# Caller is responsible for checking isinstance(self.freq, Tick)
|
535 |
+
freq = cast(Tick, self.freq)
|
536 |
+
tick = Timedelta(freq).as_unit("ns")._value
|
537 |
+
rng = range(self[0]._value, self[-1]._value + tick, tick)
|
538 |
+
return RangeIndex(rng)
|
539 |
+
|
540 |
+
def _can_range_setop(self, other) -> bool:
|
541 |
+
return isinstance(self.freq, Tick) and isinstance(other.freq, Tick)
|
542 |
+
|
543 |
+
def _wrap_range_setop(self, other, res_i8) -> Self:
|
544 |
+
new_freq = None
|
545 |
+
if not len(res_i8):
|
546 |
+
# RangeIndex defaults to step=1, which we don't want.
|
547 |
+
new_freq = self.freq
|
548 |
+
elif isinstance(res_i8, RangeIndex):
|
549 |
+
new_freq = to_offset(Timedelta(res_i8.step))
|
550 |
+
|
551 |
+
# TODO(GH#41493): we cannot just do
|
552 |
+
# type(self._data)(res_i8.values, dtype=self.dtype, freq=new_freq)
|
553 |
+
# because test_setops_preserve_freq fails with _validate_frequency raising.
|
554 |
+
# This raising is incorrect, as 'on_freq' is incorrect. This will
|
555 |
+
# be fixed by GH#41493
|
556 |
+
res_values = res_i8.values.view(self._data._ndarray.dtype)
|
557 |
+
result = type(self._data)._simple_new(
|
558 |
+
# error: Argument "dtype" to "_simple_new" of "DatetimeArray" has
|
559 |
+
# incompatible type "Union[dtype[Any], ExtensionDtype]"; expected
|
560 |
+
# "Union[dtype[datetime64], DatetimeTZDtype]"
|
561 |
+
res_values,
|
562 |
+
dtype=self.dtype, # type: ignore[arg-type]
|
563 |
+
freq=new_freq, # type: ignore[arg-type]
|
564 |
+
)
|
565 |
+
return cast("Self", self._wrap_setop_result(other, result))
|
566 |
+
|
567 |
+
def _range_intersect(self, other, sort) -> Self:
|
568 |
+
# Dispatch to RangeIndex intersection logic.
|
569 |
+
left = self._as_range_index
|
570 |
+
right = other._as_range_index
|
571 |
+
res_i8 = left.intersection(right, sort=sort)
|
572 |
+
return self._wrap_range_setop(other, res_i8)
|
573 |
+
|
574 |
+
def _range_union(self, other, sort) -> Self:
|
575 |
+
# Dispatch to RangeIndex union logic.
|
576 |
+
left = self._as_range_index
|
577 |
+
right = other._as_range_index
|
578 |
+
res_i8 = left.union(right, sort=sort)
|
579 |
+
return self._wrap_range_setop(other, res_i8)
|
580 |
+
|
581 |
+
def _intersection(self, other: Index, sort: bool = False) -> Index:
|
582 |
+
"""
|
583 |
+
intersection specialized to the case with matching dtypes and both non-empty.
|
584 |
+
"""
|
585 |
+
other = cast("DatetimeTimedeltaMixin", other)
|
586 |
+
|
587 |
+
if self._can_range_setop(other):
|
588 |
+
return self._range_intersect(other, sort=sort)
|
589 |
+
|
590 |
+
if not self._can_fast_intersect(other):
|
591 |
+
result = Index._intersection(self, other, sort=sort)
|
592 |
+
# We need to invalidate the freq because Index._intersection
|
593 |
+
# uses _shallow_copy on a view of self._data, which will preserve
|
594 |
+
# self.freq if we're not careful.
|
595 |
+
# At this point we should have result.dtype == self.dtype
|
596 |
+
# and type(result) is type(self._data)
|
597 |
+
result = self._wrap_setop_result(other, result)
|
598 |
+
return result._with_freq(None)._with_freq("infer")
|
599 |
+
|
600 |
+
else:
|
601 |
+
return self._fast_intersect(other, sort)
|
602 |
+
|
603 |
+
def _fast_intersect(self, other, sort):
|
604 |
+
# to make our life easier, "sort" the two ranges
|
605 |
+
if self[0] <= other[0]:
|
606 |
+
left, right = self, other
|
607 |
+
else:
|
608 |
+
left, right = other, self
|
609 |
+
|
610 |
+
# after sorting, the intersection always starts with the right index
|
611 |
+
# and ends with the index of which the last elements is smallest
|
612 |
+
end = min(left[-1], right[-1])
|
613 |
+
start = right[0]
|
614 |
+
|
615 |
+
if end < start:
|
616 |
+
result = self[:0]
|
617 |
+
else:
|
618 |
+
lslice = slice(*left.slice_locs(start, end))
|
619 |
+
result = left._values[lslice]
|
620 |
+
|
621 |
+
return result
|
622 |
+
|
623 |
+
def _can_fast_intersect(self, other: Self) -> bool:
|
624 |
+
# Note: we only get here with len(self) > 0 and len(other) > 0
|
625 |
+
if self.freq is None:
|
626 |
+
return False
|
627 |
+
|
628 |
+
elif other.freq != self.freq:
|
629 |
+
return False
|
630 |
+
|
631 |
+
elif not self.is_monotonic_increasing:
|
632 |
+
# Because freq is not None, we must then be monotonic decreasing
|
633 |
+
return False
|
634 |
+
|
635 |
+
# this along with matching freqs ensure that we "line up",
|
636 |
+
# so intersection will preserve freq
|
637 |
+
# Note we are assuming away Ticks, as those go through _range_intersect
|
638 |
+
# GH#42104
|
639 |
+
return self.freq.n == 1
|
640 |
+
|
641 |
+
def _can_fast_union(self, other: Self) -> bool:
|
642 |
+
# Assumes that type(self) == type(other), as per the annotation
|
643 |
+
# The ability to fast_union also implies that `freq` should be
|
644 |
+
# retained on union.
|
645 |
+
freq = self.freq
|
646 |
+
|
647 |
+
if freq is None or freq != other.freq:
|
648 |
+
return False
|
649 |
+
|
650 |
+
if not self.is_monotonic_increasing:
|
651 |
+
# Because freq is not None, we must then be monotonic decreasing
|
652 |
+
# TODO: do union on the reversed indexes?
|
653 |
+
return False
|
654 |
+
|
655 |
+
if len(self) == 0 or len(other) == 0:
|
656 |
+
# only reached via union_many
|
657 |
+
return True
|
658 |
+
|
659 |
+
# to make our life easier, "sort" the two ranges
|
660 |
+
if self[0] <= other[0]:
|
661 |
+
left, right = self, other
|
662 |
+
else:
|
663 |
+
left, right = other, self
|
664 |
+
|
665 |
+
right_start = right[0]
|
666 |
+
left_end = left[-1]
|
667 |
+
|
668 |
+
# Only need to "adjoin", not overlap
|
669 |
+
return (right_start == left_end + freq) or right_start in left
|
670 |
+
|
671 |
+
def _fast_union(self, other: Self, sort=None) -> Self:
|
672 |
+
# Caller is responsible for ensuring self and other are non-empty
|
673 |
+
|
674 |
+
# to make our life easier, "sort" the two ranges
|
675 |
+
if self[0] <= other[0]:
|
676 |
+
left, right = self, other
|
677 |
+
elif sort is False:
|
678 |
+
# TDIs are not in the "correct" order and we don't want
|
679 |
+
# to sort but want to remove overlaps
|
680 |
+
left, right = self, other
|
681 |
+
left_start = left[0]
|
682 |
+
loc = right.searchsorted(left_start, side="left")
|
683 |
+
right_chunk = right._values[:loc]
|
684 |
+
dates = concat_compat((left._values, right_chunk))
|
685 |
+
result = type(self)._simple_new(dates, name=self.name)
|
686 |
+
return result
|
687 |
+
else:
|
688 |
+
left, right = other, self
|
689 |
+
|
690 |
+
left_end = left[-1]
|
691 |
+
right_end = right[-1]
|
692 |
+
|
693 |
+
# concatenate
|
694 |
+
if left_end < right_end:
|
695 |
+
loc = right.searchsorted(left_end, side="right")
|
696 |
+
right_chunk = right._values[loc:]
|
697 |
+
dates = concat_compat([left._values, right_chunk])
|
698 |
+
# The can_fast_union check ensures that the result.freq
|
699 |
+
# should match self.freq
|
700 |
+
assert isinstance(dates, type(self._data))
|
701 |
+
# error: Item "ExtensionArray" of "ExtensionArray |
|
702 |
+
# ndarray[Any, Any]" has no attribute "_freq"
|
703 |
+
assert dates._freq == self.freq # type: ignore[union-attr]
|
704 |
+
result = type(self)._simple_new(dates)
|
705 |
+
return result
|
706 |
+
else:
|
707 |
+
return left
|
708 |
+
|
709 |
+
def _union(self, other, sort):
|
710 |
+
# We are called by `union`, which is responsible for this validation
|
711 |
+
assert isinstance(other, type(self))
|
712 |
+
assert self.dtype == other.dtype
|
713 |
+
|
714 |
+
if self._can_range_setop(other):
|
715 |
+
return self._range_union(other, sort=sort)
|
716 |
+
|
717 |
+
if self._can_fast_union(other):
|
718 |
+
result = self._fast_union(other, sort=sort)
|
719 |
+
# in the case with sort=None, the _can_fast_union check ensures
|
720 |
+
# that result.freq == self.freq
|
721 |
+
return result
|
722 |
+
else:
|
723 |
+
return super()._union(other, sort)._with_freq("infer")
|
724 |
+
|
725 |
+
# --------------------------------------------------------------------
|
726 |
+
# Join Methods
|
727 |
+
|
728 |
+
def _get_join_freq(self, other):
|
729 |
+
"""
|
730 |
+
Get the freq to attach to the result of a join operation.
|
731 |
+
"""
|
732 |
+
freq = None
|
733 |
+
if self._can_fast_union(other):
|
734 |
+
freq = self.freq
|
735 |
+
return freq
|
736 |
+
|
737 |
+
def _wrap_joined_index(
|
738 |
+
self, joined, other, lidx: npt.NDArray[np.intp], ridx: npt.NDArray[np.intp]
|
739 |
+
):
|
740 |
+
assert other.dtype == self.dtype, (other.dtype, self.dtype)
|
741 |
+
result = super()._wrap_joined_index(joined, other, lidx, ridx)
|
742 |
+
result._data._freq = self._get_join_freq(other)
|
743 |
+
return result
|
744 |
+
|
745 |
+
def _get_engine_target(self) -> np.ndarray:
|
746 |
+
# engine methods and libjoin methods need dt64/td64 values cast to i8
|
747 |
+
return self._data._ndarray.view("i8")
|
748 |
+
|
749 |
+
def _from_join_target(self, result: np.ndarray):
|
750 |
+
# view e.g. i8 back to M8[ns]
|
751 |
+
result = result.view(self._data._ndarray.dtype)
|
752 |
+
return self._data._from_backing_data(result)
|
753 |
+
|
754 |
+
# --------------------------------------------------------------------
|
755 |
+
# List-like Methods
|
756 |
+
|
757 |
+
def _get_delete_freq(self, loc: int | slice | Sequence[int]):
|
758 |
+
"""
|
759 |
+
Find the `freq` for self.delete(loc).
|
760 |
+
"""
|
761 |
+
freq = None
|
762 |
+
if self.freq is not None:
|
763 |
+
if is_integer(loc):
|
764 |
+
if loc in (0, -len(self), -1, len(self) - 1):
|
765 |
+
freq = self.freq
|
766 |
+
else:
|
767 |
+
if is_list_like(loc):
|
768 |
+
# error: Incompatible types in assignment (expression has
|
769 |
+
# type "Union[slice, ndarray]", variable has type
|
770 |
+
# "Union[int, slice, Sequence[int]]")
|
771 |
+
loc = lib.maybe_indices_to_slice( # type: ignore[assignment]
|
772 |
+
np.asarray(loc, dtype=np.intp), len(self)
|
773 |
+
)
|
774 |
+
if isinstance(loc, slice) and loc.step in (1, None):
|
775 |
+
if loc.start in (0, None) or loc.stop in (len(self), None):
|
776 |
+
freq = self.freq
|
777 |
+
return freq
|
778 |
+
|
779 |
+
def _get_insert_freq(self, loc: int, item):
|
780 |
+
"""
|
781 |
+
Find the `freq` for self.insert(loc, item).
|
782 |
+
"""
|
783 |
+
value = self._data._validate_scalar(item)
|
784 |
+
item = self._data._box_func(value)
|
785 |
+
|
786 |
+
freq = None
|
787 |
+
if self.freq is not None:
|
788 |
+
# freq can be preserved on edge cases
|
789 |
+
if self.size:
|
790 |
+
if item is NaT:
|
791 |
+
pass
|
792 |
+
elif loc in (0, -len(self)) and item + self.freq == self[0]:
|
793 |
+
freq = self.freq
|
794 |
+
elif (loc == len(self)) and item - self.freq == self[-1]:
|
795 |
+
freq = self.freq
|
796 |
+
else:
|
797 |
+
# Adding a single item to an empty index may preserve freq
|
798 |
+
if isinstance(self.freq, Tick):
|
799 |
+
# all TimedeltaIndex cases go through here; is_on_offset
|
800 |
+
# would raise TypeError
|
801 |
+
freq = self.freq
|
802 |
+
elif self.freq.is_on_offset(item):
|
803 |
+
freq = self.freq
|
804 |
+
return freq
|
805 |
+
|
806 |
+
@doc(NDArrayBackedExtensionIndex.delete)
|
807 |
+
def delete(self, loc) -> Self:
|
808 |
+
result = super().delete(loc)
|
809 |
+
result._data._freq = self._get_delete_freq(loc)
|
810 |
+
return result
|
811 |
+
|
812 |
+
@doc(NDArrayBackedExtensionIndex.insert)
|
813 |
+
def insert(self, loc: int, item):
|
814 |
+
result = super().insert(loc, item)
|
815 |
+
if isinstance(result, type(self)):
|
816 |
+
# i.e. parent class method did not cast
|
817 |
+
result._data._freq = self._get_insert_freq(loc, item)
|
818 |
+
return result
|
819 |
+
|
820 |
+
# --------------------------------------------------------------------
|
821 |
+
# NDArray-Like Methods
|
822 |
+
|
823 |
+
@Appender(_index_shared_docs["take"] % _index_doc_kwargs)
|
824 |
+
def take(
|
825 |
+
self,
|
826 |
+
indices,
|
827 |
+
axis: Axis = 0,
|
828 |
+
allow_fill: bool = True,
|
829 |
+
fill_value=None,
|
830 |
+
**kwargs,
|
831 |
+
) -> Self:
|
832 |
+
nv.validate_take((), kwargs)
|
833 |
+
indices = np.asarray(indices, dtype=np.intp)
|
834 |
+
|
835 |
+
result = NDArrayBackedExtensionIndex.take(
|
836 |
+
self, indices, axis, allow_fill, fill_value, **kwargs
|
837 |
+
)
|
838 |
+
|
839 |
+
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
|
840 |
+
if isinstance(maybe_slice, slice):
|
841 |
+
freq = self._data._get_getitem_freq(maybe_slice)
|
842 |
+
result._data._freq = freq
|
843 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/datetimes.py
ADDED
@@ -0,0 +1,1127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime as dt
|
4 |
+
import operator
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytz
|
10 |
+
|
11 |
+
from pandas._libs import (
|
12 |
+
NaT,
|
13 |
+
Period,
|
14 |
+
Timestamp,
|
15 |
+
index as libindex,
|
16 |
+
lib,
|
17 |
+
)
|
18 |
+
from pandas._libs.tslibs import (
|
19 |
+
Resolution,
|
20 |
+
Tick,
|
21 |
+
Timedelta,
|
22 |
+
periods_per_day,
|
23 |
+
timezones,
|
24 |
+
to_offset,
|
25 |
+
)
|
26 |
+
from pandas._libs.tslibs.offsets import prefix_mapping
|
27 |
+
from pandas.util._decorators import (
|
28 |
+
cache_readonly,
|
29 |
+
doc,
|
30 |
+
)
|
31 |
+
from pandas.util._exceptions import find_stack_level
|
32 |
+
|
33 |
+
from pandas.core.dtypes.common import is_scalar
|
34 |
+
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
35 |
+
from pandas.core.dtypes.generic import ABCSeries
|
36 |
+
from pandas.core.dtypes.missing import is_valid_na_for_dtype
|
37 |
+
|
38 |
+
from pandas.core.arrays.datetimes import (
|
39 |
+
DatetimeArray,
|
40 |
+
tz_to_dtype,
|
41 |
+
)
|
42 |
+
import pandas.core.common as com
|
43 |
+
from pandas.core.indexes.base import (
|
44 |
+
Index,
|
45 |
+
maybe_extract_name,
|
46 |
+
)
|
47 |
+
from pandas.core.indexes.datetimelike import DatetimeTimedeltaMixin
|
48 |
+
from pandas.core.indexes.extension import inherit_names
|
49 |
+
from pandas.core.tools.times import to_time
|
50 |
+
|
51 |
+
if TYPE_CHECKING:
|
52 |
+
from collections.abc import Hashable
|
53 |
+
|
54 |
+
from pandas._typing import (
|
55 |
+
Dtype,
|
56 |
+
DtypeObj,
|
57 |
+
Frequency,
|
58 |
+
IntervalClosedType,
|
59 |
+
Self,
|
60 |
+
TimeAmbiguous,
|
61 |
+
TimeNonexistent,
|
62 |
+
npt,
|
63 |
+
)
|
64 |
+
|
65 |
+
from pandas.core.api import (
|
66 |
+
DataFrame,
|
67 |
+
PeriodIndex,
|
68 |
+
)
|
69 |
+
|
70 |
+
from pandas._libs.tslibs.dtypes import OFFSET_TO_PERIOD_FREQSTR
|
71 |
+
|
72 |
+
|
73 |
+
def _new_DatetimeIndex(cls, d):
|
74 |
+
"""
|
75 |
+
This is called upon unpickling, rather than the default which doesn't
|
76 |
+
have arguments and breaks __new__
|
77 |
+
"""
|
78 |
+
if "data" in d and not isinstance(d["data"], DatetimeIndex):
|
79 |
+
# Avoid need to verify integrity by calling simple_new directly
|
80 |
+
data = d.pop("data")
|
81 |
+
if not isinstance(data, DatetimeArray):
|
82 |
+
# For backward compat with older pickles, we may need to construct
|
83 |
+
# a DatetimeArray to adapt to the newer _simple_new signature
|
84 |
+
tz = d.pop("tz")
|
85 |
+
freq = d.pop("freq")
|
86 |
+
dta = DatetimeArray._simple_new(data, dtype=tz_to_dtype(tz), freq=freq)
|
87 |
+
else:
|
88 |
+
dta = data
|
89 |
+
for key in ["tz", "freq"]:
|
90 |
+
# These are already stored in our DatetimeArray; if they are
|
91 |
+
# also in the pickle and don't match, we have a problem.
|
92 |
+
if key in d:
|
93 |
+
assert d[key] == getattr(dta, key)
|
94 |
+
d.pop(key)
|
95 |
+
result = cls._simple_new(dta, **d)
|
96 |
+
else:
|
97 |
+
with warnings.catch_warnings():
|
98 |
+
# TODO: If we knew what was going in to **d, we might be able to
|
99 |
+
# go through _simple_new instead
|
100 |
+
warnings.simplefilter("ignore")
|
101 |
+
result = cls.__new__(cls, **d)
|
102 |
+
|
103 |
+
return result
|
104 |
+
|
105 |
+
|
106 |
+
@inherit_names(
|
107 |
+
DatetimeArray._field_ops
|
108 |
+
+ [
|
109 |
+
method
|
110 |
+
for method in DatetimeArray._datetimelike_methods
|
111 |
+
if method not in ("tz_localize", "tz_convert", "strftime")
|
112 |
+
],
|
113 |
+
DatetimeArray,
|
114 |
+
wrap=True,
|
115 |
+
)
|
116 |
+
@inherit_names(["is_normalized"], DatetimeArray, cache=True)
|
117 |
+
@inherit_names(
|
118 |
+
[
|
119 |
+
"tz",
|
120 |
+
"tzinfo",
|
121 |
+
"dtype",
|
122 |
+
"to_pydatetime",
|
123 |
+
"date",
|
124 |
+
"time",
|
125 |
+
"timetz",
|
126 |
+
"std",
|
127 |
+
]
|
128 |
+
+ DatetimeArray._bool_ops,
|
129 |
+
DatetimeArray,
|
130 |
+
)
|
131 |
+
class DatetimeIndex(DatetimeTimedeltaMixin):
|
132 |
+
"""
|
133 |
+
Immutable ndarray-like of datetime64 data.
|
134 |
+
|
135 |
+
Represented internally as int64, and which can be boxed to Timestamp objects
|
136 |
+
that are subclasses of datetime and carry metadata.
|
137 |
+
|
138 |
+
.. versionchanged:: 2.0.0
|
139 |
+
The various numeric date/time attributes (:attr:`~DatetimeIndex.day`,
|
140 |
+
:attr:`~DatetimeIndex.month`, :attr:`~DatetimeIndex.year` etc.) now have dtype
|
141 |
+
``int32``. Previously they had dtype ``int64``.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
data : array-like (1-dimensional)
|
146 |
+
Datetime-like data to construct index with.
|
147 |
+
freq : str or pandas offset object, optional
|
148 |
+
One of pandas date offset strings or corresponding objects. The string
|
149 |
+
'infer' can be passed in order to set the frequency of the index as the
|
150 |
+
inferred frequency upon creation.
|
151 |
+
tz : pytz.timezone or dateutil.tz.tzfile or datetime.tzinfo or str
|
152 |
+
Set the Timezone of the data.
|
153 |
+
normalize : bool, default False
|
154 |
+
Normalize start/end dates to midnight before generating date range.
|
155 |
+
|
156 |
+
.. deprecated:: 2.1.0
|
157 |
+
|
158 |
+
closed : {'left', 'right'}, optional
|
159 |
+
Set whether to include `start` and `end` that are on the
|
160 |
+
boundary. The default includes boundary points on either end.
|
161 |
+
|
162 |
+
.. deprecated:: 2.1.0
|
163 |
+
|
164 |
+
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
|
165 |
+
When clocks moved backward due to DST, ambiguous times may arise.
|
166 |
+
For example in Central European Time (UTC+01), when going from 03:00
|
167 |
+
DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC
|
168 |
+
and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter
|
169 |
+
dictates how ambiguous times should be handled.
|
170 |
+
|
171 |
+
- 'infer' will attempt to infer fall dst-transition hours based on
|
172 |
+
order
|
173 |
+
- bool-ndarray where True signifies a DST time, False signifies a
|
174 |
+
non-DST time (note that this flag is only applicable for ambiguous
|
175 |
+
times)
|
176 |
+
- 'NaT' will return NaT where there are ambiguous times
|
177 |
+
- 'raise' will raise an AmbiguousTimeError if there are ambiguous times.
|
178 |
+
dayfirst : bool, default False
|
179 |
+
If True, parse dates in `data` with the day first order.
|
180 |
+
yearfirst : bool, default False
|
181 |
+
If True parse dates in `data` with the year first order.
|
182 |
+
dtype : numpy.dtype or DatetimeTZDtype or str, default None
|
183 |
+
Note that the only NumPy dtype allowed is `datetime64[ns]`.
|
184 |
+
copy : bool, default False
|
185 |
+
Make a copy of input ndarray.
|
186 |
+
name : label, default None
|
187 |
+
Name to be stored in the index.
|
188 |
+
|
189 |
+
Attributes
|
190 |
+
----------
|
191 |
+
year
|
192 |
+
month
|
193 |
+
day
|
194 |
+
hour
|
195 |
+
minute
|
196 |
+
second
|
197 |
+
microsecond
|
198 |
+
nanosecond
|
199 |
+
date
|
200 |
+
time
|
201 |
+
timetz
|
202 |
+
dayofyear
|
203 |
+
day_of_year
|
204 |
+
dayofweek
|
205 |
+
day_of_week
|
206 |
+
weekday
|
207 |
+
quarter
|
208 |
+
tz
|
209 |
+
freq
|
210 |
+
freqstr
|
211 |
+
is_month_start
|
212 |
+
is_month_end
|
213 |
+
is_quarter_start
|
214 |
+
is_quarter_end
|
215 |
+
is_year_start
|
216 |
+
is_year_end
|
217 |
+
is_leap_year
|
218 |
+
inferred_freq
|
219 |
+
|
220 |
+
Methods
|
221 |
+
-------
|
222 |
+
normalize
|
223 |
+
strftime
|
224 |
+
snap
|
225 |
+
tz_convert
|
226 |
+
tz_localize
|
227 |
+
round
|
228 |
+
floor
|
229 |
+
ceil
|
230 |
+
to_period
|
231 |
+
to_pydatetime
|
232 |
+
to_series
|
233 |
+
to_frame
|
234 |
+
month_name
|
235 |
+
day_name
|
236 |
+
mean
|
237 |
+
std
|
238 |
+
|
239 |
+
See Also
|
240 |
+
--------
|
241 |
+
Index : The base pandas Index type.
|
242 |
+
TimedeltaIndex : Index of timedelta64 data.
|
243 |
+
PeriodIndex : Index of Period data.
|
244 |
+
to_datetime : Convert argument to datetime.
|
245 |
+
date_range : Create a fixed-frequency DatetimeIndex.
|
246 |
+
|
247 |
+
Notes
|
248 |
+
-----
|
249 |
+
To learn more about the frequency strings, please see `this link
|
250 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
251 |
+
|
252 |
+
Examples
|
253 |
+
--------
|
254 |
+
>>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00", "2/1/2020 11:00:00+00:00"])
|
255 |
+
>>> idx
|
256 |
+
DatetimeIndex(['2020-01-01 10:00:00+00:00', '2020-02-01 11:00:00+00:00'],
|
257 |
+
dtype='datetime64[ns, UTC]', freq=None)
|
258 |
+
"""
|
259 |
+
|
260 |
+
_typ = "datetimeindex"
|
261 |
+
|
262 |
+
_data_cls = DatetimeArray
|
263 |
+
_supports_partial_string_indexing = True
|
264 |
+
|
265 |
+
@property
|
266 |
+
def _engine_type(self) -> type[libindex.DatetimeEngine]:
|
267 |
+
return libindex.DatetimeEngine
|
268 |
+
|
269 |
+
_data: DatetimeArray
|
270 |
+
_values: DatetimeArray
|
271 |
+
tz: dt.tzinfo | None
|
272 |
+
|
273 |
+
# --------------------------------------------------------------------
|
274 |
+
# methods that dispatch to DatetimeArray and wrap result
|
275 |
+
|
276 |
+
@doc(DatetimeArray.strftime)
|
277 |
+
def strftime(self, date_format) -> Index:
|
278 |
+
arr = self._data.strftime(date_format)
|
279 |
+
return Index(arr, name=self.name, dtype=object)
|
280 |
+
|
281 |
+
@doc(DatetimeArray.tz_convert)
|
282 |
+
def tz_convert(self, tz) -> Self:
|
283 |
+
arr = self._data.tz_convert(tz)
|
284 |
+
return type(self)._simple_new(arr, name=self.name, refs=self._references)
|
285 |
+
|
286 |
+
@doc(DatetimeArray.tz_localize)
|
287 |
+
def tz_localize(
|
288 |
+
self,
|
289 |
+
tz,
|
290 |
+
ambiguous: TimeAmbiguous = "raise",
|
291 |
+
nonexistent: TimeNonexistent = "raise",
|
292 |
+
) -> Self:
|
293 |
+
arr = self._data.tz_localize(tz, ambiguous, nonexistent)
|
294 |
+
return type(self)._simple_new(arr, name=self.name)
|
295 |
+
|
296 |
+
@doc(DatetimeArray.to_period)
|
297 |
+
def to_period(self, freq=None) -> PeriodIndex:
|
298 |
+
from pandas.core.indexes.api import PeriodIndex
|
299 |
+
|
300 |
+
arr = self._data.to_period(freq)
|
301 |
+
return PeriodIndex._simple_new(arr, name=self.name)
|
302 |
+
|
303 |
+
@doc(DatetimeArray.to_julian_date)
|
304 |
+
def to_julian_date(self) -> Index:
|
305 |
+
arr = self._data.to_julian_date()
|
306 |
+
return Index._simple_new(arr, name=self.name)
|
307 |
+
|
308 |
+
@doc(DatetimeArray.isocalendar)
|
309 |
+
def isocalendar(self) -> DataFrame:
|
310 |
+
df = self._data.isocalendar()
|
311 |
+
return df.set_index(self)
|
312 |
+
|
313 |
+
@cache_readonly
|
314 |
+
def _resolution_obj(self) -> Resolution:
|
315 |
+
return self._data._resolution_obj
|
316 |
+
|
317 |
+
# --------------------------------------------------------------------
|
318 |
+
# Constructors
|
319 |
+
|
320 |
+
def __new__(
|
321 |
+
cls,
|
322 |
+
data=None,
|
323 |
+
freq: Frequency | lib.NoDefault = lib.no_default,
|
324 |
+
tz=lib.no_default,
|
325 |
+
normalize: bool | lib.NoDefault = lib.no_default,
|
326 |
+
closed=lib.no_default,
|
327 |
+
ambiguous: TimeAmbiguous = "raise",
|
328 |
+
dayfirst: bool = False,
|
329 |
+
yearfirst: bool = False,
|
330 |
+
dtype: Dtype | None = None,
|
331 |
+
copy: bool = False,
|
332 |
+
name: Hashable | None = None,
|
333 |
+
) -> Self:
|
334 |
+
if closed is not lib.no_default:
|
335 |
+
# GH#52628
|
336 |
+
warnings.warn(
|
337 |
+
f"The 'closed' keyword in {cls.__name__} construction is "
|
338 |
+
"deprecated and will be removed in a future version.",
|
339 |
+
FutureWarning,
|
340 |
+
stacklevel=find_stack_level(),
|
341 |
+
)
|
342 |
+
if normalize is not lib.no_default:
|
343 |
+
# GH#52628
|
344 |
+
warnings.warn(
|
345 |
+
f"The 'normalize' keyword in {cls.__name__} construction is "
|
346 |
+
"deprecated and will be removed in a future version.",
|
347 |
+
FutureWarning,
|
348 |
+
stacklevel=find_stack_level(),
|
349 |
+
)
|
350 |
+
|
351 |
+
if is_scalar(data):
|
352 |
+
cls._raise_scalar_data_error(data)
|
353 |
+
|
354 |
+
# - Cases checked above all return/raise before reaching here - #
|
355 |
+
|
356 |
+
name = maybe_extract_name(name, data, cls)
|
357 |
+
|
358 |
+
if (
|
359 |
+
isinstance(data, DatetimeArray)
|
360 |
+
and freq is lib.no_default
|
361 |
+
and tz is lib.no_default
|
362 |
+
and dtype is None
|
363 |
+
):
|
364 |
+
# fastpath, similar logic in TimedeltaIndex.__new__;
|
365 |
+
# Note in this particular case we retain non-nano.
|
366 |
+
if copy:
|
367 |
+
data = data.copy()
|
368 |
+
return cls._simple_new(data, name=name)
|
369 |
+
|
370 |
+
dtarr = DatetimeArray._from_sequence_not_strict(
|
371 |
+
data,
|
372 |
+
dtype=dtype,
|
373 |
+
copy=copy,
|
374 |
+
tz=tz,
|
375 |
+
freq=freq,
|
376 |
+
dayfirst=dayfirst,
|
377 |
+
yearfirst=yearfirst,
|
378 |
+
ambiguous=ambiguous,
|
379 |
+
)
|
380 |
+
refs = None
|
381 |
+
if not copy and isinstance(data, (Index, ABCSeries)):
|
382 |
+
refs = data._references
|
383 |
+
|
384 |
+
subarr = cls._simple_new(dtarr, name=name, refs=refs)
|
385 |
+
return subarr
|
386 |
+
|
387 |
+
# --------------------------------------------------------------------
|
388 |
+
|
389 |
+
@cache_readonly
|
390 |
+
def _is_dates_only(self) -> bool:
|
391 |
+
"""
|
392 |
+
Return a boolean if we are only dates (and don't have a timezone)
|
393 |
+
|
394 |
+
Returns
|
395 |
+
-------
|
396 |
+
bool
|
397 |
+
"""
|
398 |
+
if isinstance(self.freq, Tick):
|
399 |
+
delta = Timedelta(self.freq)
|
400 |
+
|
401 |
+
if delta % dt.timedelta(days=1) != dt.timedelta(days=0):
|
402 |
+
return False
|
403 |
+
|
404 |
+
return self._values._is_dates_only
|
405 |
+
|
406 |
+
def __reduce__(self):
|
407 |
+
d = {"data": self._data, "name": self.name}
|
408 |
+
return _new_DatetimeIndex, (type(self), d), None
|
409 |
+
|
410 |
+
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
411 |
+
"""
|
412 |
+
Can we compare values of the given dtype to our own?
|
413 |
+
"""
|
414 |
+
if self.tz is not None:
|
415 |
+
# If we have tz, we can compare to tzaware
|
416 |
+
return isinstance(dtype, DatetimeTZDtype)
|
417 |
+
# if we dont have tz, we can only compare to tznaive
|
418 |
+
return lib.is_np_dtype(dtype, "M")
|
419 |
+
|
420 |
+
# --------------------------------------------------------------------
|
421 |
+
# Rendering Methods
|
422 |
+
|
423 |
+
@cache_readonly
|
424 |
+
def _formatter_func(self):
|
425 |
+
# Note this is equivalent to the DatetimeIndexOpsMixin method but
|
426 |
+
# uses the maybe-cached self._is_dates_only instead of re-computing it.
|
427 |
+
from pandas.io.formats.format import get_format_datetime64
|
428 |
+
|
429 |
+
formatter = get_format_datetime64(is_dates_only=self._is_dates_only)
|
430 |
+
return lambda x: f"'{formatter(x)}'"
|
431 |
+
|
432 |
+
# --------------------------------------------------------------------
|
433 |
+
# Set Operation Methods
|
434 |
+
|
435 |
+
def _can_range_setop(self, other) -> bool:
|
436 |
+
# GH 46702: If self or other have non-UTC tzs, DST transitions prevent
|
437 |
+
# range representation due to no singular step
|
438 |
+
if (
|
439 |
+
self.tz is not None
|
440 |
+
and not timezones.is_utc(self.tz)
|
441 |
+
and not timezones.is_fixed_offset(self.tz)
|
442 |
+
):
|
443 |
+
return False
|
444 |
+
if (
|
445 |
+
other.tz is not None
|
446 |
+
and not timezones.is_utc(other.tz)
|
447 |
+
and not timezones.is_fixed_offset(other.tz)
|
448 |
+
):
|
449 |
+
return False
|
450 |
+
return super()._can_range_setop(other)
|
451 |
+
|
452 |
+
# --------------------------------------------------------------------
|
453 |
+
|
454 |
+
def _get_time_micros(self) -> npt.NDArray[np.int64]:
|
455 |
+
"""
|
456 |
+
Return the number of microseconds since midnight.
|
457 |
+
|
458 |
+
Returns
|
459 |
+
-------
|
460 |
+
ndarray[int64_t]
|
461 |
+
"""
|
462 |
+
values = self._data._local_timestamps()
|
463 |
+
|
464 |
+
ppd = periods_per_day(self._data._creso)
|
465 |
+
|
466 |
+
frac = values % ppd
|
467 |
+
if self.unit == "ns":
|
468 |
+
micros = frac // 1000
|
469 |
+
elif self.unit == "us":
|
470 |
+
micros = frac
|
471 |
+
elif self.unit == "ms":
|
472 |
+
micros = frac * 1000
|
473 |
+
elif self.unit == "s":
|
474 |
+
micros = frac * 1_000_000
|
475 |
+
else: # pragma: no cover
|
476 |
+
raise NotImplementedError(self.unit)
|
477 |
+
|
478 |
+
micros[self._isnan] = -1
|
479 |
+
return micros
|
480 |
+
|
481 |
+
def snap(self, freq: Frequency = "S") -> DatetimeIndex:
|
482 |
+
"""
|
483 |
+
Snap time stamps to nearest occurring frequency.
|
484 |
+
|
485 |
+
Returns
|
486 |
+
-------
|
487 |
+
DatetimeIndex
|
488 |
+
|
489 |
+
Examples
|
490 |
+
--------
|
491 |
+
>>> idx = pd.DatetimeIndex(['2023-01-01', '2023-01-02',
|
492 |
+
... '2023-02-01', '2023-02-02'])
|
493 |
+
>>> idx
|
494 |
+
DatetimeIndex(['2023-01-01', '2023-01-02', '2023-02-01', '2023-02-02'],
|
495 |
+
dtype='datetime64[ns]', freq=None)
|
496 |
+
>>> idx.snap('MS')
|
497 |
+
DatetimeIndex(['2023-01-01', '2023-01-01', '2023-02-01', '2023-02-01'],
|
498 |
+
dtype='datetime64[ns]', freq=None)
|
499 |
+
"""
|
500 |
+
# Superdumb, punting on any optimizing
|
501 |
+
freq = to_offset(freq)
|
502 |
+
|
503 |
+
dta = self._data.copy()
|
504 |
+
|
505 |
+
for i, v in enumerate(self):
|
506 |
+
s = v
|
507 |
+
if not freq.is_on_offset(s):
|
508 |
+
t0 = freq.rollback(s)
|
509 |
+
t1 = freq.rollforward(s)
|
510 |
+
if abs(s - t0) < abs(t1 - s):
|
511 |
+
s = t0
|
512 |
+
else:
|
513 |
+
s = t1
|
514 |
+
dta[i] = s
|
515 |
+
|
516 |
+
return DatetimeIndex._simple_new(dta, name=self.name)
|
517 |
+
|
518 |
+
# --------------------------------------------------------------------
|
519 |
+
# Indexing Methods
|
520 |
+
|
521 |
+
def _parsed_string_to_bounds(self, reso: Resolution, parsed: dt.datetime):
|
522 |
+
"""
|
523 |
+
Calculate datetime bounds for parsed time string and its resolution.
|
524 |
+
|
525 |
+
Parameters
|
526 |
+
----------
|
527 |
+
reso : Resolution
|
528 |
+
Resolution provided by parsed string.
|
529 |
+
parsed : datetime
|
530 |
+
Datetime from parsed string.
|
531 |
+
|
532 |
+
Returns
|
533 |
+
-------
|
534 |
+
lower, upper: pd.Timestamp
|
535 |
+
"""
|
536 |
+
freq = OFFSET_TO_PERIOD_FREQSTR.get(reso.attr_abbrev, reso.attr_abbrev)
|
537 |
+
per = Period(parsed, freq=freq)
|
538 |
+
start, end = per.start_time, per.end_time
|
539 |
+
|
540 |
+
# GH 24076
|
541 |
+
# If an incoming date string contained a UTC offset, need to localize
|
542 |
+
# the parsed date to this offset first before aligning with the index's
|
543 |
+
# timezone
|
544 |
+
start = start.tz_localize(parsed.tzinfo)
|
545 |
+
end = end.tz_localize(parsed.tzinfo)
|
546 |
+
|
547 |
+
if parsed.tzinfo is not None:
|
548 |
+
if self.tz is None:
|
549 |
+
raise ValueError(
|
550 |
+
"The index must be timezone aware when indexing "
|
551 |
+
"with a date string with a UTC offset"
|
552 |
+
)
|
553 |
+
# The flipped case with parsed.tz is None and self.tz is not None
|
554 |
+
# is ruled out bc parsed and reso are produced by _parse_with_reso,
|
555 |
+
# which localizes parsed.
|
556 |
+
return start, end
|
557 |
+
|
558 |
+
def _parse_with_reso(self, label: str):
|
559 |
+
parsed, reso = super()._parse_with_reso(label)
|
560 |
+
|
561 |
+
parsed = Timestamp(parsed)
|
562 |
+
|
563 |
+
if self.tz is not None and parsed.tzinfo is None:
|
564 |
+
# we special-case timezone-naive strings and timezone-aware
|
565 |
+
# DatetimeIndex
|
566 |
+
# https://github.com/pandas-dev/pandas/pull/36148#issuecomment-687883081
|
567 |
+
parsed = parsed.tz_localize(self.tz)
|
568 |
+
|
569 |
+
return parsed, reso
|
570 |
+
|
571 |
+
def _disallow_mismatched_indexing(self, key) -> None:
|
572 |
+
"""
|
573 |
+
Check for mismatched-tzawareness indexing and re-raise as KeyError.
|
574 |
+
"""
|
575 |
+
# we get here with isinstance(key, self._data._recognized_scalars)
|
576 |
+
try:
|
577 |
+
# GH#36148
|
578 |
+
self._data._assert_tzawareness_compat(key)
|
579 |
+
except TypeError as err:
|
580 |
+
raise KeyError(key) from err
|
581 |
+
|
582 |
+
def get_loc(self, key):
|
583 |
+
"""
|
584 |
+
Get integer location for requested label
|
585 |
+
|
586 |
+
Returns
|
587 |
+
-------
|
588 |
+
loc : int
|
589 |
+
"""
|
590 |
+
self._check_indexing_error(key)
|
591 |
+
|
592 |
+
orig_key = key
|
593 |
+
if is_valid_na_for_dtype(key, self.dtype):
|
594 |
+
key = NaT
|
595 |
+
|
596 |
+
if isinstance(key, self._data._recognized_scalars):
|
597 |
+
# needed to localize naive datetimes
|
598 |
+
self._disallow_mismatched_indexing(key)
|
599 |
+
key = Timestamp(key)
|
600 |
+
|
601 |
+
elif isinstance(key, str):
|
602 |
+
try:
|
603 |
+
parsed, reso = self._parse_with_reso(key)
|
604 |
+
except (ValueError, pytz.NonExistentTimeError) as err:
|
605 |
+
raise KeyError(key) from err
|
606 |
+
self._disallow_mismatched_indexing(parsed)
|
607 |
+
|
608 |
+
if self._can_partial_date_slice(reso):
|
609 |
+
try:
|
610 |
+
return self._partial_date_slice(reso, parsed)
|
611 |
+
except KeyError as err:
|
612 |
+
raise KeyError(key) from err
|
613 |
+
|
614 |
+
key = parsed
|
615 |
+
|
616 |
+
elif isinstance(key, dt.timedelta):
|
617 |
+
# GH#20464
|
618 |
+
raise TypeError(
|
619 |
+
f"Cannot index {type(self).__name__} with {type(key).__name__}"
|
620 |
+
)
|
621 |
+
|
622 |
+
elif isinstance(key, dt.time):
|
623 |
+
return self.indexer_at_time(key)
|
624 |
+
|
625 |
+
else:
|
626 |
+
# unrecognized type
|
627 |
+
raise KeyError(key)
|
628 |
+
|
629 |
+
try:
|
630 |
+
return Index.get_loc(self, key)
|
631 |
+
except KeyError as err:
|
632 |
+
raise KeyError(orig_key) from err
|
633 |
+
|
634 |
+
@doc(DatetimeTimedeltaMixin._maybe_cast_slice_bound)
|
635 |
+
def _maybe_cast_slice_bound(self, label, side: str):
|
636 |
+
# GH#42855 handle date here instead of get_slice_bound
|
637 |
+
if isinstance(label, dt.date) and not isinstance(label, dt.datetime):
|
638 |
+
# Pandas supports slicing with dates, treated as datetimes at midnight.
|
639 |
+
# https://github.com/pandas-dev/pandas/issues/31501
|
640 |
+
label = Timestamp(label).to_pydatetime()
|
641 |
+
|
642 |
+
label = super()._maybe_cast_slice_bound(label, side)
|
643 |
+
self._data._assert_tzawareness_compat(label)
|
644 |
+
return Timestamp(label)
|
645 |
+
|
646 |
+
def slice_indexer(self, start=None, end=None, step=None):
|
647 |
+
"""
|
648 |
+
Return indexer for specified label slice.
|
649 |
+
Index.slice_indexer, customized to handle time slicing.
|
650 |
+
|
651 |
+
In addition to functionality provided by Index.slice_indexer, does the
|
652 |
+
following:
|
653 |
+
|
654 |
+
- if both `start` and `end` are instances of `datetime.time`, it
|
655 |
+
invokes `indexer_between_time`
|
656 |
+
- if `start` and `end` are both either string or None perform
|
657 |
+
value-based selection in non-monotonic cases.
|
658 |
+
|
659 |
+
"""
|
660 |
+
# For historical reasons DatetimeIndex supports slices between two
|
661 |
+
# instances of datetime.time as if it were applying a slice mask to
|
662 |
+
# an array of (self.hour, self.minute, self.seconds, self.microsecond).
|
663 |
+
if isinstance(start, dt.time) and isinstance(end, dt.time):
|
664 |
+
if step is not None and step != 1:
|
665 |
+
raise ValueError("Must have step size of 1 with time slices")
|
666 |
+
return self.indexer_between_time(start, end)
|
667 |
+
|
668 |
+
if isinstance(start, dt.time) or isinstance(end, dt.time):
|
669 |
+
raise KeyError("Cannot mix time and non-time slice keys")
|
670 |
+
|
671 |
+
def check_str_or_none(point) -> bool:
|
672 |
+
return point is not None and not isinstance(point, str)
|
673 |
+
|
674 |
+
# GH#33146 if start and end are combinations of str and None and Index is not
|
675 |
+
# monotonic, we can not use Index.slice_indexer because it does not honor the
|
676 |
+
# actual elements, is only searching for start and end
|
677 |
+
if (
|
678 |
+
check_str_or_none(start)
|
679 |
+
or check_str_or_none(end)
|
680 |
+
or self.is_monotonic_increasing
|
681 |
+
):
|
682 |
+
return Index.slice_indexer(self, start, end, step)
|
683 |
+
|
684 |
+
mask = np.array(True)
|
685 |
+
in_index = True
|
686 |
+
if start is not None:
|
687 |
+
start_casted = self._maybe_cast_slice_bound(start, "left")
|
688 |
+
mask = start_casted <= self
|
689 |
+
in_index &= (start_casted == self).any()
|
690 |
+
|
691 |
+
if end is not None:
|
692 |
+
end_casted = self._maybe_cast_slice_bound(end, "right")
|
693 |
+
mask = (self <= end_casted) & mask
|
694 |
+
in_index &= (end_casted == self).any()
|
695 |
+
|
696 |
+
if not in_index:
|
697 |
+
raise KeyError(
|
698 |
+
"Value based partial slicing on non-monotonic DatetimeIndexes "
|
699 |
+
"with non-existing keys is not allowed.",
|
700 |
+
)
|
701 |
+
indexer = mask.nonzero()[0][::step]
|
702 |
+
if len(indexer) == len(self):
|
703 |
+
return slice(None)
|
704 |
+
else:
|
705 |
+
return indexer
|
706 |
+
|
707 |
+
# --------------------------------------------------------------------
|
708 |
+
|
709 |
+
@property
|
710 |
+
def inferred_type(self) -> str:
|
711 |
+
# b/c datetime is represented as microseconds since the epoch, make
|
712 |
+
# sure we can't have ambiguous indexing
|
713 |
+
return "datetime64"
|
714 |
+
|
715 |
+
def indexer_at_time(self, time, asof: bool = False) -> npt.NDArray[np.intp]:
|
716 |
+
"""
|
717 |
+
Return index locations of values at particular time of day.
|
718 |
+
|
719 |
+
Parameters
|
720 |
+
----------
|
721 |
+
time : datetime.time or str
|
722 |
+
Time passed in either as object (datetime.time) or as string in
|
723 |
+
appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p",
|
724 |
+
"%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p").
|
725 |
+
|
726 |
+
Returns
|
727 |
+
-------
|
728 |
+
np.ndarray[np.intp]
|
729 |
+
|
730 |
+
See Also
|
731 |
+
--------
|
732 |
+
indexer_between_time : Get index locations of values between particular
|
733 |
+
times of day.
|
734 |
+
DataFrame.at_time : Select values at particular time of day.
|
735 |
+
|
736 |
+
Examples
|
737 |
+
--------
|
738 |
+
>>> idx = pd.DatetimeIndex(["1/1/2020 10:00", "2/1/2020 11:00",
|
739 |
+
... "3/1/2020 10:00"])
|
740 |
+
>>> idx.indexer_at_time("10:00")
|
741 |
+
array([0, 2])
|
742 |
+
"""
|
743 |
+
if asof:
|
744 |
+
raise NotImplementedError("'asof' argument is not supported")
|
745 |
+
|
746 |
+
if isinstance(time, str):
|
747 |
+
from dateutil.parser import parse
|
748 |
+
|
749 |
+
time = parse(time).time()
|
750 |
+
|
751 |
+
if time.tzinfo:
|
752 |
+
if self.tz is None:
|
753 |
+
raise ValueError("Index must be timezone aware.")
|
754 |
+
time_micros = self.tz_convert(time.tzinfo)._get_time_micros()
|
755 |
+
else:
|
756 |
+
time_micros = self._get_time_micros()
|
757 |
+
micros = _time_to_micros(time)
|
758 |
+
return (time_micros == micros).nonzero()[0]
|
759 |
+
|
760 |
+
def indexer_between_time(
|
761 |
+
self, start_time, end_time, include_start: bool = True, include_end: bool = True
|
762 |
+
) -> npt.NDArray[np.intp]:
|
763 |
+
"""
|
764 |
+
Return index locations of values between particular times of day.
|
765 |
+
|
766 |
+
Parameters
|
767 |
+
----------
|
768 |
+
start_time, end_time : datetime.time, str
|
769 |
+
Time passed either as object (datetime.time) or as string in
|
770 |
+
appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p",
|
771 |
+
"%H:%M:%S", "%H%M%S", "%I:%M:%S%p","%I%M%S%p").
|
772 |
+
include_start : bool, default True
|
773 |
+
include_end : bool, default True
|
774 |
+
|
775 |
+
Returns
|
776 |
+
-------
|
777 |
+
np.ndarray[np.intp]
|
778 |
+
|
779 |
+
See Also
|
780 |
+
--------
|
781 |
+
indexer_at_time : Get index locations of values at particular time of day.
|
782 |
+
DataFrame.between_time : Select values between particular times of day.
|
783 |
+
|
784 |
+
Examples
|
785 |
+
--------
|
786 |
+
>>> idx = pd.date_range("2023-01-01", periods=4, freq="h")
|
787 |
+
>>> idx
|
788 |
+
DatetimeIndex(['2023-01-01 00:00:00', '2023-01-01 01:00:00',
|
789 |
+
'2023-01-01 02:00:00', '2023-01-01 03:00:00'],
|
790 |
+
dtype='datetime64[ns]', freq='h')
|
791 |
+
>>> idx.indexer_between_time("00:00", "2:00", include_end=False)
|
792 |
+
array([0, 1])
|
793 |
+
"""
|
794 |
+
start_time = to_time(start_time)
|
795 |
+
end_time = to_time(end_time)
|
796 |
+
time_micros = self._get_time_micros()
|
797 |
+
start_micros = _time_to_micros(start_time)
|
798 |
+
end_micros = _time_to_micros(end_time)
|
799 |
+
|
800 |
+
if include_start and include_end:
|
801 |
+
lop = rop = operator.le
|
802 |
+
elif include_start:
|
803 |
+
lop = operator.le
|
804 |
+
rop = operator.lt
|
805 |
+
elif include_end:
|
806 |
+
lop = operator.lt
|
807 |
+
rop = operator.le
|
808 |
+
else:
|
809 |
+
lop = rop = operator.lt
|
810 |
+
|
811 |
+
if start_time <= end_time:
|
812 |
+
join_op = operator.and_
|
813 |
+
else:
|
814 |
+
join_op = operator.or_
|
815 |
+
|
816 |
+
mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros))
|
817 |
+
|
818 |
+
return mask.nonzero()[0]
|
819 |
+
|
820 |
+
|
821 |
+
def date_range(
|
822 |
+
start=None,
|
823 |
+
end=None,
|
824 |
+
periods=None,
|
825 |
+
freq=None,
|
826 |
+
tz=None,
|
827 |
+
normalize: bool = False,
|
828 |
+
name: Hashable | None = None,
|
829 |
+
inclusive: IntervalClosedType = "both",
|
830 |
+
*,
|
831 |
+
unit: str | None = None,
|
832 |
+
**kwargs,
|
833 |
+
) -> DatetimeIndex:
|
834 |
+
"""
|
835 |
+
Return a fixed frequency DatetimeIndex.
|
836 |
+
|
837 |
+
Returns the range of equally spaced time points (where the difference between any
|
838 |
+
two adjacent points is specified by the given frequency) such that they all
|
839 |
+
satisfy `start <[=] x <[=] end`, where the first one and the last one are, resp.,
|
840 |
+
the first and last time points in that range that fall on the boundary of ``freq``
|
841 |
+
(if given as a frequency string) or that are valid for ``freq`` (if given as a
|
842 |
+
:class:`pandas.tseries.offsets.DateOffset`). (If exactly one of ``start``,
|
843 |
+
``end``, or ``freq`` is *not* specified, this missing parameter can be computed
|
844 |
+
given ``periods``, the number of timesteps in the range. See the note below.)
|
845 |
+
|
846 |
+
Parameters
|
847 |
+
----------
|
848 |
+
start : str or datetime-like, optional
|
849 |
+
Left bound for generating dates.
|
850 |
+
end : str or datetime-like, optional
|
851 |
+
Right bound for generating dates.
|
852 |
+
periods : int, optional
|
853 |
+
Number of periods to generate.
|
854 |
+
freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'D'
|
855 |
+
Frequency strings can have multiples, e.g. '5h'. See
|
856 |
+
:ref:`here <timeseries.offset_aliases>` for a list of
|
857 |
+
frequency aliases.
|
858 |
+
tz : str or tzinfo, optional
|
859 |
+
Time zone name for returning localized DatetimeIndex, for example
|
860 |
+
'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is
|
861 |
+
timezone-naive unless timezone-aware datetime-likes are passed.
|
862 |
+
normalize : bool, default False
|
863 |
+
Normalize start/end dates to midnight before generating date range.
|
864 |
+
name : str, default None
|
865 |
+
Name of the resulting DatetimeIndex.
|
866 |
+
inclusive : {"both", "neither", "left", "right"}, default "both"
|
867 |
+
Include boundaries; Whether to set each bound as closed or open.
|
868 |
+
|
869 |
+
.. versionadded:: 1.4.0
|
870 |
+
unit : str, default None
|
871 |
+
Specify the desired resolution of the result.
|
872 |
+
|
873 |
+
.. versionadded:: 2.0.0
|
874 |
+
**kwargs
|
875 |
+
For compatibility. Has no effect on the result.
|
876 |
+
|
877 |
+
Returns
|
878 |
+
-------
|
879 |
+
DatetimeIndex
|
880 |
+
|
881 |
+
See Also
|
882 |
+
--------
|
883 |
+
DatetimeIndex : An immutable container for datetimes.
|
884 |
+
timedelta_range : Return a fixed frequency TimedeltaIndex.
|
885 |
+
period_range : Return a fixed frequency PeriodIndex.
|
886 |
+
interval_range : Return a fixed frequency IntervalIndex.
|
887 |
+
|
888 |
+
Notes
|
889 |
+
-----
|
890 |
+
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
|
891 |
+
exactly three must be specified. If ``freq`` is omitted, the resulting
|
892 |
+
``DatetimeIndex`` will have ``periods`` linearly spaced elements between
|
893 |
+
``start`` and ``end`` (closed on both sides).
|
894 |
+
|
895 |
+
To learn more about the frequency strings, please see `this link
|
896 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
897 |
+
|
898 |
+
Examples
|
899 |
+
--------
|
900 |
+
**Specifying the values**
|
901 |
+
|
902 |
+
The next four examples generate the same `DatetimeIndex`, but vary
|
903 |
+
the combination of `start`, `end` and `periods`.
|
904 |
+
|
905 |
+
Specify `start` and `end`, with the default daily frequency.
|
906 |
+
|
907 |
+
>>> pd.date_range(start='1/1/2018', end='1/08/2018')
|
908 |
+
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
|
909 |
+
'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
|
910 |
+
dtype='datetime64[ns]', freq='D')
|
911 |
+
|
912 |
+
Specify timezone-aware `start` and `end`, with the default daily frequency.
|
913 |
+
|
914 |
+
>>> pd.date_range(
|
915 |
+
... start=pd.to_datetime("1/1/2018").tz_localize("Europe/Berlin"),
|
916 |
+
... end=pd.to_datetime("1/08/2018").tz_localize("Europe/Berlin"),
|
917 |
+
... )
|
918 |
+
DatetimeIndex(['2018-01-01 00:00:00+01:00', '2018-01-02 00:00:00+01:00',
|
919 |
+
'2018-01-03 00:00:00+01:00', '2018-01-04 00:00:00+01:00',
|
920 |
+
'2018-01-05 00:00:00+01:00', '2018-01-06 00:00:00+01:00',
|
921 |
+
'2018-01-07 00:00:00+01:00', '2018-01-08 00:00:00+01:00'],
|
922 |
+
dtype='datetime64[ns, Europe/Berlin]', freq='D')
|
923 |
+
|
924 |
+
Specify `start` and `periods`, the number of periods (days).
|
925 |
+
|
926 |
+
>>> pd.date_range(start='1/1/2018', periods=8)
|
927 |
+
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
|
928 |
+
'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
|
929 |
+
dtype='datetime64[ns]', freq='D')
|
930 |
+
|
931 |
+
Specify `end` and `periods`, the number of periods (days).
|
932 |
+
|
933 |
+
>>> pd.date_range(end='1/1/2018', periods=8)
|
934 |
+
DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
|
935 |
+
'2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
|
936 |
+
dtype='datetime64[ns]', freq='D')
|
937 |
+
|
938 |
+
Specify `start`, `end`, and `periods`; the frequency is generated
|
939 |
+
automatically (linearly spaced).
|
940 |
+
|
941 |
+
>>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3)
|
942 |
+
DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
|
943 |
+
'2018-04-27 00:00:00'],
|
944 |
+
dtype='datetime64[ns]', freq=None)
|
945 |
+
|
946 |
+
**Other Parameters**
|
947 |
+
|
948 |
+
Changed the `freq` (frequency) to ``'ME'`` (month end frequency).
|
949 |
+
|
950 |
+
>>> pd.date_range(start='1/1/2018', periods=5, freq='ME')
|
951 |
+
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
|
952 |
+
'2018-05-31'],
|
953 |
+
dtype='datetime64[ns]', freq='ME')
|
954 |
+
|
955 |
+
Multiples are allowed
|
956 |
+
|
957 |
+
>>> pd.date_range(start='1/1/2018', periods=5, freq='3ME')
|
958 |
+
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
|
959 |
+
'2019-01-31'],
|
960 |
+
dtype='datetime64[ns]', freq='3ME')
|
961 |
+
|
962 |
+
`freq` can also be specified as an Offset object.
|
963 |
+
|
964 |
+
>>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3))
|
965 |
+
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
|
966 |
+
'2019-01-31'],
|
967 |
+
dtype='datetime64[ns]', freq='3ME')
|
968 |
+
|
969 |
+
Specify `tz` to set the timezone.
|
970 |
+
|
971 |
+
>>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo')
|
972 |
+
DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
|
973 |
+
'2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
|
974 |
+
'2018-01-05 00:00:00+09:00'],
|
975 |
+
dtype='datetime64[ns, Asia/Tokyo]', freq='D')
|
976 |
+
|
977 |
+
`inclusive` controls whether to include `start` and `end` that are on the
|
978 |
+
boundary. The default, "both", includes boundary points on either end.
|
979 |
+
|
980 |
+
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both")
|
981 |
+
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
|
982 |
+
dtype='datetime64[ns]', freq='D')
|
983 |
+
|
984 |
+
Use ``inclusive='left'`` to exclude `end` if it falls on the boundary.
|
985 |
+
|
986 |
+
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left')
|
987 |
+
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
|
988 |
+
dtype='datetime64[ns]', freq='D')
|
989 |
+
|
990 |
+
Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and
|
991 |
+
similarly ``inclusive='neither'`` will exclude both `start` and `end`.
|
992 |
+
|
993 |
+
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right')
|
994 |
+
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
|
995 |
+
dtype='datetime64[ns]', freq='D')
|
996 |
+
|
997 |
+
**Specify a unit**
|
998 |
+
|
999 |
+
>>> pd.date_range(start="2017-01-01", periods=10, freq="100YS", unit="s")
|
1000 |
+
DatetimeIndex(['2017-01-01', '2117-01-01', '2217-01-01', '2317-01-01',
|
1001 |
+
'2417-01-01', '2517-01-01', '2617-01-01', '2717-01-01',
|
1002 |
+
'2817-01-01', '2917-01-01'],
|
1003 |
+
dtype='datetime64[s]', freq='100YS-JAN')
|
1004 |
+
"""
|
1005 |
+
if freq is None and com.any_none(periods, start, end):
|
1006 |
+
freq = "D"
|
1007 |
+
|
1008 |
+
dtarr = DatetimeArray._generate_range(
|
1009 |
+
start=start,
|
1010 |
+
end=end,
|
1011 |
+
periods=periods,
|
1012 |
+
freq=freq,
|
1013 |
+
tz=tz,
|
1014 |
+
normalize=normalize,
|
1015 |
+
inclusive=inclusive,
|
1016 |
+
unit=unit,
|
1017 |
+
**kwargs,
|
1018 |
+
)
|
1019 |
+
return DatetimeIndex._simple_new(dtarr, name=name)
|
1020 |
+
|
1021 |
+
|
1022 |
+
def bdate_range(
|
1023 |
+
start=None,
|
1024 |
+
end=None,
|
1025 |
+
periods: int | None = None,
|
1026 |
+
freq: Frequency | dt.timedelta = "B",
|
1027 |
+
tz=None,
|
1028 |
+
normalize: bool = True,
|
1029 |
+
name: Hashable | None = None,
|
1030 |
+
weekmask=None,
|
1031 |
+
holidays=None,
|
1032 |
+
inclusive: IntervalClosedType = "both",
|
1033 |
+
**kwargs,
|
1034 |
+
) -> DatetimeIndex:
|
1035 |
+
"""
|
1036 |
+
Return a fixed frequency DatetimeIndex with business day as the default.
|
1037 |
+
|
1038 |
+
Parameters
|
1039 |
+
----------
|
1040 |
+
start : str or datetime-like, default None
|
1041 |
+
Left bound for generating dates.
|
1042 |
+
end : str or datetime-like, default None
|
1043 |
+
Right bound for generating dates.
|
1044 |
+
periods : int, default None
|
1045 |
+
Number of periods to generate.
|
1046 |
+
freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'B'
|
1047 |
+
Frequency strings can have multiples, e.g. '5h'. The default is
|
1048 |
+
business daily ('B').
|
1049 |
+
tz : str or None
|
1050 |
+
Time zone name for returning localized DatetimeIndex, for example
|
1051 |
+
Asia/Beijing.
|
1052 |
+
normalize : bool, default False
|
1053 |
+
Normalize start/end dates to midnight before generating date range.
|
1054 |
+
name : str, default None
|
1055 |
+
Name of the resulting DatetimeIndex.
|
1056 |
+
weekmask : str or None, default None
|
1057 |
+
Weekmask of valid business days, passed to ``numpy.busdaycalendar``,
|
1058 |
+
only used when custom frequency strings are passed. The default
|
1059 |
+
value None is equivalent to 'Mon Tue Wed Thu Fri'.
|
1060 |
+
holidays : list-like or None, default None
|
1061 |
+
Dates to exclude from the set of valid business days, passed to
|
1062 |
+
``numpy.busdaycalendar``, only used when custom frequency strings
|
1063 |
+
are passed.
|
1064 |
+
inclusive : {"both", "neither", "left", "right"}, default "both"
|
1065 |
+
Include boundaries; Whether to set each bound as closed or open.
|
1066 |
+
|
1067 |
+
.. versionadded:: 1.4.0
|
1068 |
+
**kwargs
|
1069 |
+
For compatibility. Has no effect on the result.
|
1070 |
+
|
1071 |
+
Returns
|
1072 |
+
-------
|
1073 |
+
DatetimeIndex
|
1074 |
+
|
1075 |
+
Notes
|
1076 |
+
-----
|
1077 |
+
Of the four parameters: ``start``, ``end``, ``periods``, and ``freq``,
|
1078 |
+
exactly three must be specified. Specifying ``freq`` is a requirement
|
1079 |
+
for ``bdate_range``. Use ``date_range`` if specifying ``freq`` is not
|
1080 |
+
desired.
|
1081 |
+
|
1082 |
+
To learn more about the frequency strings, please see `this link
|
1083 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
1084 |
+
|
1085 |
+
Examples
|
1086 |
+
--------
|
1087 |
+
Note how the two weekend days are skipped in the result.
|
1088 |
+
|
1089 |
+
>>> pd.bdate_range(start='1/1/2018', end='1/08/2018')
|
1090 |
+
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
|
1091 |
+
'2018-01-05', '2018-01-08'],
|
1092 |
+
dtype='datetime64[ns]', freq='B')
|
1093 |
+
"""
|
1094 |
+
if freq is None:
|
1095 |
+
msg = "freq must be specified for bdate_range; use date_range instead"
|
1096 |
+
raise TypeError(msg)
|
1097 |
+
|
1098 |
+
if isinstance(freq, str) and freq.startswith("C"):
|
1099 |
+
try:
|
1100 |
+
weekmask = weekmask or "Mon Tue Wed Thu Fri"
|
1101 |
+
freq = prefix_mapping[freq](holidays=holidays, weekmask=weekmask)
|
1102 |
+
except (KeyError, TypeError) as err:
|
1103 |
+
msg = f"invalid custom frequency string: {freq}"
|
1104 |
+
raise ValueError(msg) from err
|
1105 |
+
elif holidays or weekmask:
|
1106 |
+
msg = (
|
1107 |
+
"a custom frequency string is required when holidays or "
|
1108 |
+
f"weekmask are passed, got frequency {freq}"
|
1109 |
+
)
|
1110 |
+
raise ValueError(msg)
|
1111 |
+
|
1112 |
+
return date_range(
|
1113 |
+
start=start,
|
1114 |
+
end=end,
|
1115 |
+
periods=periods,
|
1116 |
+
freq=freq,
|
1117 |
+
tz=tz,
|
1118 |
+
normalize=normalize,
|
1119 |
+
name=name,
|
1120 |
+
inclusive=inclusive,
|
1121 |
+
**kwargs,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
|
1125 |
+
def _time_to_micros(time_obj: dt.time) -> int:
|
1126 |
+
seconds = time_obj.hour * 60 * 60 + 60 * time_obj.minute + time_obj.second
|
1127 |
+
return 1_000_000 * seconds + time_obj.microsecond
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/extension.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Shared methods for Index subclasses backed by ExtensionArray.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
Callable,
|
9 |
+
TypeVar,
|
10 |
+
)
|
11 |
+
|
12 |
+
from pandas.util._decorators import cache_readonly
|
13 |
+
|
14 |
+
from pandas.core.dtypes.generic import ABCDataFrame
|
15 |
+
|
16 |
+
from pandas.core.indexes.base import Index
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from pandas._typing import (
|
22 |
+
ArrayLike,
|
23 |
+
npt,
|
24 |
+
)
|
25 |
+
|
26 |
+
from pandas.core.arrays import IntervalArray
|
27 |
+
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
|
28 |
+
|
29 |
+
_ExtensionIndexT = TypeVar("_ExtensionIndexT", bound="ExtensionIndex")
|
30 |
+
|
31 |
+
|
32 |
+
def _inherit_from_data(
|
33 |
+
name: str, delegate: type, cache: bool = False, wrap: bool = False
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Make an alias for a method of the underlying ExtensionArray.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
name : str
|
41 |
+
Name of an attribute the class should inherit from its EA parent.
|
42 |
+
delegate : class
|
43 |
+
cache : bool, default False
|
44 |
+
Whether to convert wrapped properties into cache_readonly
|
45 |
+
wrap : bool, default False
|
46 |
+
Whether to wrap the inherited result in an Index.
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
attribute, method, property, or cache_readonly
|
51 |
+
"""
|
52 |
+
attr = getattr(delegate, name)
|
53 |
+
|
54 |
+
if isinstance(attr, property) or type(attr).__name__ == "getset_descriptor":
|
55 |
+
# getset_descriptor i.e. property defined in cython class
|
56 |
+
if cache:
|
57 |
+
|
58 |
+
def cached(self):
|
59 |
+
return getattr(self._data, name)
|
60 |
+
|
61 |
+
cached.__name__ = name
|
62 |
+
cached.__doc__ = attr.__doc__
|
63 |
+
method = cache_readonly(cached)
|
64 |
+
|
65 |
+
else:
|
66 |
+
|
67 |
+
def fget(self):
|
68 |
+
result = getattr(self._data, name)
|
69 |
+
if wrap:
|
70 |
+
if isinstance(result, type(self._data)):
|
71 |
+
return type(self)._simple_new(result, name=self.name)
|
72 |
+
elif isinstance(result, ABCDataFrame):
|
73 |
+
return result.set_index(self)
|
74 |
+
return Index(result, name=self.name)
|
75 |
+
return result
|
76 |
+
|
77 |
+
def fset(self, value) -> None:
|
78 |
+
setattr(self._data, name, value)
|
79 |
+
|
80 |
+
fget.__name__ = name
|
81 |
+
fget.__doc__ = attr.__doc__
|
82 |
+
|
83 |
+
method = property(fget, fset)
|
84 |
+
|
85 |
+
elif not callable(attr):
|
86 |
+
# just a normal attribute, no wrapping
|
87 |
+
method = attr
|
88 |
+
|
89 |
+
else:
|
90 |
+
# error: Incompatible redefinition (redefinition with type "Callable[[Any,
|
91 |
+
# VarArg(Any), KwArg(Any)], Any]", original type "property")
|
92 |
+
def method(self, *args, **kwargs): # type: ignore[misc]
|
93 |
+
if "inplace" in kwargs:
|
94 |
+
raise ValueError(f"cannot use inplace with {type(self).__name__}")
|
95 |
+
result = attr(self._data, *args, **kwargs)
|
96 |
+
if wrap:
|
97 |
+
if isinstance(result, type(self._data)):
|
98 |
+
return type(self)._simple_new(result, name=self.name)
|
99 |
+
elif isinstance(result, ABCDataFrame):
|
100 |
+
return result.set_index(self)
|
101 |
+
return Index(result, name=self.name)
|
102 |
+
return result
|
103 |
+
|
104 |
+
# error: "property" has no attribute "__name__"
|
105 |
+
method.__name__ = name # type: ignore[attr-defined]
|
106 |
+
method.__doc__ = attr.__doc__
|
107 |
+
return method
|
108 |
+
|
109 |
+
|
110 |
+
def inherit_names(
|
111 |
+
names: list[str], delegate: type, cache: bool = False, wrap: bool = False
|
112 |
+
) -> Callable[[type[_ExtensionIndexT]], type[_ExtensionIndexT]]:
|
113 |
+
"""
|
114 |
+
Class decorator to pin attributes from an ExtensionArray to a Index subclass.
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
----------
|
118 |
+
names : List[str]
|
119 |
+
delegate : class
|
120 |
+
cache : bool, default False
|
121 |
+
wrap : bool, default False
|
122 |
+
Whether to wrap the inherited result in an Index.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def wrapper(cls: type[_ExtensionIndexT]) -> type[_ExtensionIndexT]:
|
126 |
+
for name in names:
|
127 |
+
meth = _inherit_from_data(name, delegate, cache=cache, wrap=wrap)
|
128 |
+
setattr(cls, name, meth)
|
129 |
+
|
130 |
+
return cls
|
131 |
+
|
132 |
+
return wrapper
|
133 |
+
|
134 |
+
|
135 |
+
class ExtensionIndex(Index):
|
136 |
+
"""
|
137 |
+
Index subclass for indexes backed by ExtensionArray.
|
138 |
+
"""
|
139 |
+
|
140 |
+
# The base class already passes through to _data:
|
141 |
+
# size, __len__, dtype
|
142 |
+
|
143 |
+
_data: IntervalArray | NDArrayBackedExtensionArray
|
144 |
+
|
145 |
+
# ---------------------------------------------------------------------
|
146 |
+
|
147 |
+
def _validate_fill_value(self, value):
|
148 |
+
"""
|
149 |
+
Convert value to be insertable to underlying array.
|
150 |
+
"""
|
151 |
+
return self._data._validate_setitem_value(value)
|
152 |
+
|
153 |
+
@cache_readonly
|
154 |
+
def _isnan(self) -> npt.NDArray[np.bool_]:
|
155 |
+
# error: Incompatible return value type (got "ExtensionArray", expected
|
156 |
+
# "ndarray")
|
157 |
+
return self._data.isna() # type: ignore[return-value]
|
158 |
+
|
159 |
+
|
160 |
+
class NDArrayBackedExtensionIndex(ExtensionIndex):
|
161 |
+
"""
|
162 |
+
Index subclass for indexes backed by NDArrayBackedExtensionArray.
|
163 |
+
"""
|
164 |
+
|
165 |
+
_data: NDArrayBackedExtensionArray
|
166 |
+
|
167 |
+
def _get_engine_target(self) -> np.ndarray:
|
168 |
+
return self._data._ndarray
|
169 |
+
|
170 |
+
def _from_join_target(self, result: np.ndarray) -> ArrayLike:
|
171 |
+
assert result.dtype == self._data._ndarray.dtype
|
172 |
+
return self._data._from_backing_data(result)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/frozen.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
frozen (immutable) data structures to support MultiIndexing
|
3 |
+
|
4 |
+
These are used for:
|
5 |
+
|
6 |
+
- .names (FrozenList)
|
7 |
+
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import (
|
12 |
+
TYPE_CHECKING,
|
13 |
+
NoReturn,
|
14 |
+
)
|
15 |
+
|
16 |
+
from pandas.core.base import PandasObject
|
17 |
+
|
18 |
+
from pandas.io.formats.printing import pprint_thing
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from pandas._typing import Self
|
22 |
+
|
23 |
+
|
24 |
+
class FrozenList(PandasObject, list):
|
25 |
+
"""
|
26 |
+
Container that doesn't allow setting item *but*
|
27 |
+
because it's technically hashable, will be used
|
28 |
+
for lookups, appropriately, etc.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Side note: This has to be of type list. Otherwise,
|
32 |
+
# it messes up PyTables type checks.
|
33 |
+
|
34 |
+
def union(self, other) -> FrozenList:
|
35 |
+
"""
|
36 |
+
Returns a FrozenList with other concatenated to the end of self.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
other : array-like
|
41 |
+
The array-like whose elements we are concatenating.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
FrozenList
|
46 |
+
The collection difference between self and other.
|
47 |
+
"""
|
48 |
+
if isinstance(other, tuple):
|
49 |
+
other = list(other)
|
50 |
+
return type(self)(super().__add__(other))
|
51 |
+
|
52 |
+
def difference(self, other) -> FrozenList:
|
53 |
+
"""
|
54 |
+
Returns a FrozenList with elements from other removed from self.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
other : array-like
|
59 |
+
The array-like whose elements we are removing self.
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
FrozenList
|
64 |
+
The collection difference between self and other.
|
65 |
+
"""
|
66 |
+
other = set(other)
|
67 |
+
temp = [x for x in self if x not in other]
|
68 |
+
return type(self)(temp)
|
69 |
+
|
70 |
+
# TODO: Consider deprecating these in favor of `union` (xref gh-15506)
|
71 |
+
# error: Incompatible types in assignment (expression has type
|
72 |
+
# "Callable[[FrozenList, Any], FrozenList]", base class "list" defined the
|
73 |
+
# type as overloaded function)
|
74 |
+
__add__ = __iadd__ = union # type: ignore[assignment]
|
75 |
+
|
76 |
+
def __getitem__(self, n):
|
77 |
+
if isinstance(n, slice):
|
78 |
+
return type(self)(super().__getitem__(n))
|
79 |
+
return super().__getitem__(n)
|
80 |
+
|
81 |
+
def __radd__(self, other) -> Self:
|
82 |
+
if isinstance(other, tuple):
|
83 |
+
other = list(other)
|
84 |
+
return type(self)(other + list(self))
|
85 |
+
|
86 |
+
def __eq__(self, other: object) -> bool:
|
87 |
+
if isinstance(other, (tuple, FrozenList)):
|
88 |
+
other = list(other)
|
89 |
+
return super().__eq__(other)
|
90 |
+
|
91 |
+
__req__ = __eq__
|
92 |
+
|
93 |
+
def __mul__(self, other) -> Self:
|
94 |
+
return type(self)(super().__mul__(other))
|
95 |
+
|
96 |
+
__imul__ = __mul__
|
97 |
+
|
98 |
+
def __reduce__(self):
|
99 |
+
return type(self), (list(self),)
|
100 |
+
|
101 |
+
# error: Signature of "__hash__" incompatible with supertype "list"
|
102 |
+
def __hash__(self) -> int: # type: ignore[override]
|
103 |
+
return hash(tuple(self))
|
104 |
+
|
105 |
+
def _disabled(self, *args, **kwargs) -> NoReturn:
|
106 |
+
"""
|
107 |
+
This method will not function because object is immutable.
|
108 |
+
"""
|
109 |
+
raise TypeError(f"'{type(self).__name__}' does not support mutable operations.")
|
110 |
+
|
111 |
+
def __str__(self) -> str:
|
112 |
+
return pprint_thing(self, quote_strings=True, escape_chars=("\t", "\r", "\n"))
|
113 |
+
|
114 |
+
def __repr__(self) -> str:
|
115 |
+
return f"{type(self).__name__}({str(self)})"
|
116 |
+
|
117 |
+
__setitem__ = __setslice__ = _disabled # type: ignore[assignment]
|
118 |
+
__delitem__ = __delslice__ = _disabled
|
119 |
+
pop = append = extend = _disabled
|
120 |
+
remove = sort = insert = _disabled # type: ignore[assignment]
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/interval.py
ADDED
@@ -0,0 +1,1136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" define the IntervalIndex """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from operator import (
|
5 |
+
le,
|
6 |
+
lt,
|
7 |
+
)
|
8 |
+
import textwrap
|
9 |
+
from typing import (
|
10 |
+
TYPE_CHECKING,
|
11 |
+
Any,
|
12 |
+
Literal,
|
13 |
+
)
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
from pandas._libs import lib
|
18 |
+
from pandas._libs.interval import (
|
19 |
+
Interval,
|
20 |
+
IntervalMixin,
|
21 |
+
IntervalTree,
|
22 |
+
)
|
23 |
+
from pandas._libs.tslibs import (
|
24 |
+
BaseOffset,
|
25 |
+
Period,
|
26 |
+
Timedelta,
|
27 |
+
Timestamp,
|
28 |
+
to_offset,
|
29 |
+
)
|
30 |
+
from pandas.errors import InvalidIndexError
|
31 |
+
from pandas.util._decorators import (
|
32 |
+
Appender,
|
33 |
+
cache_readonly,
|
34 |
+
)
|
35 |
+
from pandas.util._exceptions import rewrite_exception
|
36 |
+
|
37 |
+
from pandas.core.dtypes.cast import (
|
38 |
+
find_common_type,
|
39 |
+
infer_dtype_from_scalar,
|
40 |
+
maybe_box_datetimelike,
|
41 |
+
maybe_downcast_numeric,
|
42 |
+
maybe_upcast_numeric_to_64bit,
|
43 |
+
)
|
44 |
+
from pandas.core.dtypes.common import (
|
45 |
+
ensure_platform_int,
|
46 |
+
is_float_dtype,
|
47 |
+
is_integer,
|
48 |
+
is_integer_dtype,
|
49 |
+
is_list_like,
|
50 |
+
is_number,
|
51 |
+
is_object_dtype,
|
52 |
+
is_scalar,
|
53 |
+
pandas_dtype,
|
54 |
+
)
|
55 |
+
from pandas.core.dtypes.dtypes import (
|
56 |
+
DatetimeTZDtype,
|
57 |
+
IntervalDtype,
|
58 |
+
)
|
59 |
+
from pandas.core.dtypes.missing import is_valid_na_for_dtype
|
60 |
+
|
61 |
+
from pandas.core.algorithms import unique
|
62 |
+
from pandas.core.arrays.datetimelike import validate_periods
|
63 |
+
from pandas.core.arrays.interval import (
|
64 |
+
IntervalArray,
|
65 |
+
_interval_shared_docs,
|
66 |
+
)
|
67 |
+
import pandas.core.common as com
|
68 |
+
from pandas.core.indexers import is_valid_positional_slice
|
69 |
+
import pandas.core.indexes.base as ibase
|
70 |
+
from pandas.core.indexes.base import (
|
71 |
+
Index,
|
72 |
+
_index_shared_docs,
|
73 |
+
ensure_index,
|
74 |
+
maybe_extract_name,
|
75 |
+
)
|
76 |
+
from pandas.core.indexes.datetimes import (
|
77 |
+
DatetimeIndex,
|
78 |
+
date_range,
|
79 |
+
)
|
80 |
+
from pandas.core.indexes.extension import (
|
81 |
+
ExtensionIndex,
|
82 |
+
inherit_names,
|
83 |
+
)
|
84 |
+
from pandas.core.indexes.multi import MultiIndex
|
85 |
+
from pandas.core.indexes.timedeltas import (
|
86 |
+
TimedeltaIndex,
|
87 |
+
timedelta_range,
|
88 |
+
)
|
89 |
+
|
90 |
+
if TYPE_CHECKING:
|
91 |
+
from collections.abc import Hashable
|
92 |
+
|
93 |
+
from pandas._typing import (
|
94 |
+
Dtype,
|
95 |
+
DtypeObj,
|
96 |
+
IntervalClosedType,
|
97 |
+
Self,
|
98 |
+
npt,
|
99 |
+
)
|
100 |
+
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
|
101 |
+
|
102 |
+
_index_doc_kwargs.update(
|
103 |
+
{
|
104 |
+
"klass": "IntervalIndex",
|
105 |
+
"qualname": "IntervalIndex",
|
106 |
+
"target_klass": "IntervalIndex or list of Intervals",
|
107 |
+
"name": textwrap.dedent(
|
108 |
+
"""\
|
109 |
+
name : object, optional
|
110 |
+
Name to be stored in the index.
|
111 |
+
"""
|
112 |
+
),
|
113 |
+
}
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
def _get_next_label(label):
|
118 |
+
# see test_slice_locs_with_ints_and_floats_succeeds
|
119 |
+
dtype = getattr(label, "dtype", type(label))
|
120 |
+
if isinstance(label, (Timestamp, Timedelta)):
|
121 |
+
dtype = "datetime64[ns]"
|
122 |
+
dtype = pandas_dtype(dtype)
|
123 |
+
|
124 |
+
if lib.is_np_dtype(dtype, "mM") or isinstance(dtype, DatetimeTZDtype):
|
125 |
+
return label + np.timedelta64(1, "ns")
|
126 |
+
elif is_integer_dtype(dtype):
|
127 |
+
return label + 1
|
128 |
+
elif is_float_dtype(dtype):
|
129 |
+
return np.nextafter(label, np.inf)
|
130 |
+
else:
|
131 |
+
raise TypeError(f"cannot determine next label for type {repr(type(label))}")
|
132 |
+
|
133 |
+
|
134 |
+
def _get_prev_label(label):
|
135 |
+
# see test_slice_locs_with_ints_and_floats_succeeds
|
136 |
+
dtype = getattr(label, "dtype", type(label))
|
137 |
+
if isinstance(label, (Timestamp, Timedelta)):
|
138 |
+
dtype = "datetime64[ns]"
|
139 |
+
dtype = pandas_dtype(dtype)
|
140 |
+
|
141 |
+
if lib.is_np_dtype(dtype, "mM") or isinstance(dtype, DatetimeTZDtype):
|
142 |
+
return label - np.timedelta64(1, "ns")
|
143 |
+
elif is_integer_dtype(dtype):
|
144 |
+
return label - 1
|
145 |
+
elif is_float_dtype(dtype):
|
146 |
+
return np.nextafter(label, -np.inf)
|
147 |
+
else:
|
148 |
+
raise TypeError(f"cannot determine next label for type {repr(type(label))}")
|
149 |
+
|
150 |
+
|
151 |
+
def _new_IntervalIndex(cls, d):
|
152 |
+
"""
|
153 |
+
This is called upon unpickling, rather than the default which doesn't have
|
154 |
+
arguments and breaks __new__.
|
155 |
+
"""
|
156 |
+
return cls.from_arrays(**d)
|
157 |
+
|
158 |
+
|
159 |
+
@Appender(
|
160 |
+
_interval_shared_docs["class"]
|
161 |
+
% {
|
162 |
+
"klass": "IntervalIndex",
|
163 |
+
"summary": "Immutable index of intervals that are closed on the same side.",
|
164 |
+
"name": _index_doc_kwargs["name"],
|
165 |
+
"extra_attributes": "is_overlapping\nvalues\n",
|
166 |
+
"extra_methods": "",
|
167 |
+
"examples": textwrap.dedent(
|
168 |
+
"""\
|
169 |
+
Examples
|
170 |
+
--------
|
171 |
+
A new ``IntervalIndex`` is typically constructed using
|
172 |
+
:func:`interval_range`:
|
173 |
+
|
174 |
+
>>> pd.interval_range(start=0, end=5)
|
175 |
+
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
|
176 |
+
dtype='interval[int64, right]')
|
177 |
+
|
178 |
+
It may also be constructed using one of the constructor
|
179 |
+
methods: :meth:`IntervalIndex.from_arrays`,
|
180 |
+
:meth:`IntervalIndex.from_breaks`, and :meth:`IntervalIndex.from_tuples`.
|
181 |
+
|
182 |
+
See further examples in the doc strings of ``interval_range`` and the
|
183 |
+
mentioned constructor methods.
|
184 |
+
"""
|
185 |
+
),
|
186 |
+
}
|
187 |
+
)
|
188 |
+
@inherit_names(["set_closed", "to_tuples"], IntervalArray, wrap=True)
|
189 |
+
@inherit_names(
|
190 |
+
[
|
191 |
+
"__array__",
|
192 |
+
"overlaps",
|
193 |
+
"contains",
|
194 |
+
"closed_left",
|
195 |
+
"closed_right",
|
196 |
+
"open_left",
|
197 |
+
"open_right",
|
198 |
+
"is_empty",
|
199 |
+
],
|
200 |
+
IntervalArray,
|
201 |
+
)
|
202 |
+
@inherit_names(["is_non_overlapping_monotonic", "closed"], IntervalArray, cache=True)
|
203 |
+
class IntervalIndex(ExtensionIndex):
|
204 |
+
_typ = "intervalindex"
|
205 |
+
|
206 |
+
# annotate properties pinned via inherit_names
|
207 |
+
closed: IntervalClosedType
|
208 |
+
is_non_overlapping_monotonic: bool
|
209 |
+
closed_left: bool
|
210 |
+
closed_right: bool
|
211 |
+
open_left: bool
|
212 |
+
open_right: bool
|
213 |
+
|
214 |
+
_data: IntervalArray
|
215 |
+
_values: IntervalArray
|
216 |
+
_can_hold_strings = False
|
217 |
+
_data_cls = IntervalArray
|
218 |
+
|
219 |
+
# --------------------------------------------------------------------
|
220 |
+
# Constructors
|
221 |
+
|
222 |
+
def __new__(
|
223 |
+
cls,
|
224 |
+
data,
|
225 |
+
closed: IntervalClosedType | None = None,
|
226 |
+
dtype: Dtype | None = None,
|
227 |
+
copy: bool = False,
|
228 |
+
name: Hashable | None = None,
|
229 |
+
verify_integrity: bool = True,
|
230 |
+
) -> Self:
|
231 |
+
name = maybe_extract_name(name, data, cls)
|
232 |
+
|
233 |
+
with rewrite_exception("IntervalArray", cls.__name__):
|
234 |
+
array = IntervalArray(
|
235 |
+
data,
|
236 |
+
closed=closed,
|
237 |
+
copy=copy,
|
238 |
+
dtype=dtype,
|
239 |
+
verify_integrity=verify_integrity,
|
240 |
+
)
|
241 |
+
|
242 |
+
return cls._simple_new(array, name)
|
243 |
+
|
244 |
+
@classmethod
|
245 |
+
@Appender(
|
246 |
+
_interval_shared_docs["from_breaks"]
|
247 |
+
% {
|
248 |
+
"klass": "IntervalIndex",
|
249 |
+
"name": textwrap.dedent(
|
250 |
+
"""
|
251 |
+
name : str, optional
|
252 |
+
Name of the resulting IntervalIndex."""
|
253 |
+
),
|
254 |
+
"examples": textwrap.dedent(
|
255 |
+
"""\
|
256 |
+
Examples
|
257 |
+
--------
|
258 |
+
>>> pd.IntervalIndex.from_breaks([0, 1, 2, 3])
|
259 |
+
IntervalIndex([(0, 1], (1, 2], (2, 3]],
|
260 |
+
dtype='interval[int64, right]')
|
261 |
+
"""
|
262 |
+
),
|
263 |
+
}
|
264 |
+
)
|
265 |
+
def from_breaks(
|
266 |
+
cls,
|
267 |
+
breaks,
|
268 |
+
closed: IntervalClosedType | None = "right",
|
269 |
+
name: Hashable | None = None,
|
270 |
+
copy: bool = False,
|
271 |
+
dtype: Dtype | None = None,
|
272 |
+
) -> IntervalIndex:
|
273 |
+
with rewrite_exception("IntervalArray", cls.__name__):
|
274 |
+
array = IntervalArray.from_breaks(
|
275 |
+
breaks, closed=closed, copy=copy, dtype=dtype
|
276 |
+
)
|
277 |
+
return cls._simple_new(array, name=name)
|
278 |
+
|
279 |
+
@classmethod
|
280 |
+
@Appender(
|
281 |
+
_interval_shared_docs["from_arrays"]
|
282 |
+
% {
|
283 |
+
"klass": "IntervalIndex",
|
284 |
+
"name": textwrap.dedent(
|
285 |
+
"""
|
286 |
+
name : str, optional
|
287 |
+
Name of the resulting IntervalIndex."""
|
288 |
+
),
|
289 |
+
"examples": textwrap.dedent(
|
290 |
+
"""\
|
291 |
+
Examples
|
292 |
+
--------
|
293 |
+
>>> pd.IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3])
|
294 |
+
IntervalIndex([(0, 1], (1, 2], (2, 3]],
|
295 |
+
dtype='interval[int64, right]')
|
296 |
+
"""
|
297 |
+
),
|
298 |
+
}
|
299 |
+
)
|
300 |
+
def from_arrays(
|
301 |
+
cls,
|
302 |
+
left,
|
303 |
+
right,
|
304 |
+
closed: IntervalClosedType = "right",
|
305 |
+
name: Hashable | None = None,
|
306 |
+
copy: bool = False,
|
307 |
+
dtype: Dtype | None = None,
|
308 |
+
) -> IntervalIndex:
|
309 |
+
with rewrite_exception("IntervalArray", cls.__name__):
|
310 |
+
array = IntervalArray.from_arrays(
|
311 |
+
left, right, closed, copy=copy, dtype=dtype
|
312 |
+
)
|
313 |
+
return cls._simple_new(array, name=name)
|
314 |
+
|
315 |
+
@classmethod
|
316 |
+
@Appender(
|
317 |
+
_interval_shared_docs["from_tuples"]
|
318 |
+
% {
|
319 |
+
"klass": "IntervalIndex",
|
320 |
+
"name": textwrap.dedent(
|
321 |
+
"""
|
322 |
+
name : str, optional
|
323 |
+
Name of the resulting IntervalIndex."""
|
324 |
+
),
|
325 |
+
"examples": textwrap.dedent(
|
326 |
+
"""\
|
327 |
+
Examples
|
328 |
+
--------
|
329 |
+
>>> pd.IntervalIndex.from_tuples([(0, 1), (1, 2)])
|
330 |
+
IntervalIndex([(0, 1], (1, 2]],
|
331 |
+
dtype='interval[int64, right]')
|
332 |
+
"""
|
333 |
+
),
|
334 |
+
}
|
335 |
+
)
|
336 |
+
def from_tuples(
|
337 |
+
cls,
|
338 |
+
data,
|
339 |
+
closed: IntervalClosedType = "right",
|
340 |
+
name: Hashable | None = None,
|
341 |
+
copy: bool = False,
|
342 |
+
dtype: Dtype | None = None,
|
343 |
+
) -> IntervalIndex:
|
344 |
+
with rewrite_exception("IntervalArray", cls.__name__):
|
345 |
+
arr = IntervalArray.from_tuples(data, closed=closed, copy=copy, dtype=dtype)
|
346 |
+
return cls._simple_new(arr, name=name)
|
347 |
+
|
348 |
+
# --------------------------------------------------------------------
|
349 |
+
# error: Return type "IntervalTree" of "_engine" incompatible with return type
|
350 |
+
# "Union[IndexEngine, ExtensionEngine]" in supertype "Index"
|
351 |
+
@cache_readonly
|
352 |
+
def _engine(self) -> IntervalTree: # type: ignore[override]
|
353 |
+
# IntervalTree does not supports numpy array unless they are 64 bit
|
354 |
+
left = self._maybe_convert_i8(self.left)
|
355 |
+
left = maybe_upcast_numeric_to_64bit(left)
|
356 |
+
right = self._maybe_convert_i8(self.right)
|
357 |
+
right = maybe_upcast_numeric_to_64bit(right)
|
358 |
+
return IntervalTree(left, right, closed=self.closed)
|
359 |
+
|
360 |
+
def __contains__(self, key: Any) -> bool:
|
361 |
+
"""
|
362 |
+
return a boolean if this key is IN the index
|
363 |
+
We *only* accept an Interval
|
364 |
+
|
365 |
+
Parameters
|
366 |
+
----------
|
367 |
+
key : Interval
|
368 |
+
|
369 |
+
Returns
|
370 |
+
-------
|
371 |
+
bool
|
372 |
+
"""
|
373 |
+
hash(key)
|
374 |
+
if not isinstance(key, Interval):
|
375 |
+
if is_valid_na_for_dtype(key, self.dtype):
|
376 |
+
return self.hasnans
|
377 |
+
return False
|
378 |
+
|
379 |
+
try:
|
380 |
+
self.get_loc(key)
|
381 |
+
return True
|
382 |
+
except KeyError:
|
383 |
+
return False
|
384 |
+
|
385 |
+
def _getitem_slice(self, slobj: slice) -> IntervalIndex:
|
386 |
+
"""
|
387 |
+
Fastpath for __getitem__ when we know we have a slice.
|
388 |
+
"""
|
389 |
+
res = self._data[slobj]
|
390 |
+
return type(self)._simple_new(res, name=self._name)
|
391 |
+
|
392 |
+
@cache_readonly
|
393 |
+
def _multiindex(self) -> MultiIndex:
|
394 |
+
return MultiIndex.from_arrays([self.left, self.right], names=["left", "right"])
|
395 |
+
|
396 |
+
def __reduce__(self):
|
397 |
+
d = {
|
398 |
+
"left": self.left,
|
399 |
+
"right": self.right,
|
400 |
+
"closed": self.closed,
|
401 |
+
"name": self.name,
|
402 |
+
}
|
403 |
+
return _new_IntervalIndex, (type(self), d), None
|
404 |
+
|
405 |
+
@property
|
406 |
+
def inferred_type(self) -> str:
|
407 |
+
"""Return a string of the type inferred from the values"""
|
408 |
+
return "interval"
|
409 |
+
|
410 |
+
# Cannot determine type of "memory_usage"
|
411 |
+
@Appender(Index.memory_usage.__doc__) # type: ignore[has-type]
|
412 |
+
def memory_usage(self, deep: bool = False) -> int:
|
413 |
+
# we don't use an explicit engine
|
414 |
+
# so return the bytes here
|
415 |
+
return self.left.memory_usage(deep=deep) + self.right.memory_usage(deep=deep)
|
416 |
+
|
417 |
+
# IntervalTree doesn't have a is_monotonic_decreasing, so have to override
|
418 |
+
# the Index implementation
|
419 |
+
@cache_readonly
|
420 |
+
def is_monotonic_decreasing(self) -> bool:
|
421 |
+
"""
|
422 |
+
Return True if the IntervalIndex is monotonic decreasing (only equal or
|
423 |
+
decreasing values), else False
|
424 |
+
"""
|
425 |
+
return self[::-1].is_monotonic_increasing
|
426 |
+
|
427 |
+
@cache_readonly
|
428 |
+
def is_unique(self) -> bool:
|
429 |
+
"""
|
430 |
+
Return True if the IntervalIndex contains unique elements, else False.
|
431 |
+
"""
|
432 |
+
left = self.left
|
433 |
+
right = self.right
|
434 |
+
|
435 |
+
if self.isna().sum() > 1:
|
436 |
+
return False
|
437 |
+
|
438 |
+
if left.is_unique or right.is_unique:
|
439 |
+
return True
|
440 |
+
|
441 |
+
seen_pairs = set()
|
442 |
+
check_idx = np.where(left.duplicated(keep=False))[0]
|
443 |
+
for idx in check_idx:
|
444 |
+
pair = (left[idx], right[idx])
|
445 |
+
if pair in seen_pairs:
|
446 |
+
return False
|
447 |
+
seen_pairs.add(pair)
|
448 |
+
|
449 |
+
return True
|
450 |
+
|
451 |
+
@property
|
452 |
+
def is_overlapping(self) -> bool:
|
453 |
+
"""
|
454 |
+
Return True if the IntervalIndex has overlapping intervals, else False.
|
455 |
+
|
456 |
+
Two intervals overlap if they share a common point, including closed
|
457 |
+
endpoints. Intervals that only have an open endpoint in common do not
|
458 |
+
overlap.
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
bool
|
463 |
+
Boolean indicating if the IntervalIndex has overlapping intervals.
|
464 |
+
|
465 |
+
See Also
|
466 |
+
--------
|
467 |
+
Interval.overlaps : Check whether two Interval objects overlap.
|
468 |
+
IntervalIndex.overlaps : Check an IntervalIndex elementwise for
|
469 |
+
overlaps.
|
470 |
+
|
471 |
+
Examples
|
472 |
+
--------
|
473 |
+
>>> index = pd.IntervalIndex.from_tuples([(0, 2), (1, 3), (4, 5)])
|
474 |
+
>>> index
|
475 |
+
IntervalIndex([(0, 2], (1, 3], (4, 5]],
|
476 |
+
dtype='interval[int64, right]')
|
477 |
+
>>> index.is_overlapping
|
478 |
+
True
|
479 |
+
|
480 |
+
Intervals that share closed endpoints overlap:
|
481 |
+
|
482 |
+
>>> index = pd.interval_range(0, 3, closed='both')
|
483 |
+
>>> index
|
484 |
+
IntervalIndex([[0, 1], [1, 2], [2, 3]],
|
485 |
+
dtype='interval[int64, both]')
|
486 |
+
>>> index.is_overlapping
|
487 |
+
True
|
488 |
+
|
489 |
+
Intervals that only have an open endpoint in common do not overlap:
|
490 |
+
|
491 |
+
>>> index = pd.interval_range(0, 3, closed='left')
|
492 |
+
>>> index
|
493 |
+
IntervalIndex([[0, 1), [1, 2), [2, 3)],
|
494 |
+
dtype='interval[int64, left]')
|
495 |
+
>>> index.is_overlapping
|
496 |
+
False
|
497 |
+
"""
|
498 |
+
# GH 23309
|
499 |
+
return self._engine.is_overlapping
|
500 |
+
|
501 |
+
def _needs_i8_conversion(self, key) -> bool:
|
502 |
+
"""
|
503 |
+
Check if a given key needs i8 conversion. Conversion is necessary for
|
504 |
+
Timestamp, Timedelta, DatetimeIndex, and TimedeltaIndex keys. An
|
505 |
+
Interval-like requires conversion if its endpoints are one of the
|
506 |
+
aforementioned types.
|
507 |
+
|
508 |
+
Assumes that any list-like data has already been cast to an Index.
|
509 |
+
|
510 |
+
Parameters
|
511 |
+
----------
|
512 |
+
key : scalar or Index-like
|
513 |
+
The key that should be checked for i8 conversion
|
514 |
+
|
515 |
+
Returns
|
516 |
+
-------
|
517 |
+
bool
|
518 |
+
"""
|
519 |
+
key_dtype = getattr(key, "dtype", None)
|
520 |
+
if isinstance(key_dtype, IntervalDtype) or isinstance(key, Interval):
|
521 |
+
return self._needs_i8_conversion(key.left)
|
522 |
+
|
523 |
+
i8_types = (Timestamp, Timedelta, DatetimeIndex, TimedeltaIndex)
|
524 |
+
return isinstance(key, i8_types)
|
525 |
+
|
526 |
+
def _maybe_convert_i8(self, key):
|
527 |
+
"""
|
528 |
+
Maybe convert a given key to its equivalent i8 value(s). Used as a
|
529 |
+
preprocessing step prior to IntervalTree queries (self._engine), which
|
530 |
+
expects numeric data.
|
531 |
+
|
532 |
+
Parameters
|
533 |
+
----------
|
534 |
+
key : scalar or list-like
|
535 |
+
The key that should maybe be converted to i8.
|
536 |
+
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
scalar or list-like
|
540 |
+
The original key if no conversion occurred, int if converted scalar,
|
541 |
+
Index with an int64 dtype if converted list-like.
|
542 |
+
"""
|
543 |
+
if is_list_like(key):
|
544 |
+
key = ensure_index(key)
|
545 |
+
key = maybe_upcast_numeric_to_64bit(key)
|
546 |
+
|
547 |
+
if not self._needs_i8_conversion(key):
|
548 |
+
return key
|
549 |
+
|
550 |
+
scalar = is_scalar(key)
|
551 |
+
key_dtype = getattr(key, "dtype", None)
|
552 |
+
if isinstance(key_dtype, IntervalDtype) or isinstance(key, Interval):
|
553 |
+
# convert left/right and reconstruct
|
554 |
+
left = self._maybe_convert_i8(key.left)
|
555 |
+
right = self._maybe_convert_i8(key.right)
|
556 |
+
constructor = Interval if scalar else IntervalIndex.from_arrays
|
557 |
+
# error: "object" not callable
|
558 |
+
return constructor(
|
559 |
+
left, right, closed=self.closed
|
560 |
+
) # type: ignore[operator]
|
561 |
+
|
562 |
+
if scalar:
|
563 |
+
# Timestamp/Timedelta
|
564 |
+
key_dtype, key_i8 = infer_dtype_from_scalar(key)
|
565 |
+
if isinstance(key, Period):
|
566 |
+
key_i8 = key.ordinal
|
567 |
+
elif isinstance(key_i8, Timestamp):
|
568 |
+
key_i8 = key_i8._value
|
569 |
+
elif isinstance(key_i8, (np.datetime64, np.timedelta64)):
|
570 |
+
key_i8 = key_i8.view("i8")
|
571 |
+
else:
|
572 |
+
# DatetimeIndex/TimedeltaIndex
|
573 |
+
key_dtype, key_i8 = key.dtype, Index(key.asi8)
|
574 |
+
if key.hasnans:
|
575 |
+
# convert NaT from its i8 value to np.nan so it's not viewed
|
576 |
+
# as a valid value, maybe causing errors (e.g. is_overlapping)
|
577 |
+
key_i8 = key_i8.where(~key._isnan)
|
578 |
+
|
579 |
+
# ensure consistency with IntervalIndex subtype
|
580 |
+
# error: Item "ExtensionDtype"/"dtype[Any]" of "Union[dtype[Any],
|
581 |
+
# ExtensionDtype]" has no attribute "subtype"
|
582 |
+
subtype = self.dtype.subtype # type: ignore[union-attr]
|
583 |
+
|
584 |
+
if subtype != key_dtype:
|
585 |
+
raise ValueError(
|
586 |
+
f"Cannot index an IntervalIndex of subtype {subtype} with "
|
587 |
+
f"values of dtype {key_dtype}"
|
588 |
+
)
|
589 |
+
|
590 |
+
return key_i8
|
591 |
+
|
592 |
+
def _searchsorted_monotonic(self, label, side: Literal["left", "right"] = "left"):
|
593 |
+
if not self.is_non_overlapping_monotonic:
|
594 |
+
raise KeyError(
|
595 |
+
"can only get slices from an IntervalIndex if bounds are "
|
596 |
+
"non-overlapping and all monotonic increasing or decreasing"
|
597 |
+
)
|
598 |
+
|
599 |
+
if isinstance(label, (IntervalMixin, IntervalIndex)):
|
600 |
+
raise NotImplementedError("Interval objects are not currently supported")
|
601 |
+
|
602 |
+
# GH 20921: "not is_monotonic_increasing" for the second condition
|
603 |
+
# instead of "is_monotonic_decreasing" to account for single element
|
604 |
+
# indexes being both increasing and decreasing
|
605 |
+
if (side == "left" and self.left.is_monotonic_increasing) or (
|
606 |
+
side == "right" and not self.left.is_monotonic_increasing
|
607 |
+
):
|
608 |
+
sub_idx = self.right
|
609 |
+
if self.open_right:
|
610 |
+
label = _get_next_label(label)
|
611 |
+
else:
|
612 |
+
sub_idx = self.left
|
613 |
+
if self.open_left:
|
614 |
+
label = _get_prev_label(label)
|
615 |
+
|
616 |
+
return sub_idx._searchsorted_monotonic(label, side)
|
617 |
+
|
618 |
+
# --------------------------------------------------------------------
|
619 |
+
# Indexing Methods
|
620 |
+
|
621 |
+
def get_loc(self, key) -> int | slice | np.ndarray:
|
622 |
+
"""
|
623 |
+
Get integer location, slice or boolean mask for requested label.
|
624 |
+
|
625 |
+
Parameters
|
626 |
+
----------
|
627 |
+
key : label
|
628 |
+
|
629 |
+
Returns
|
630 |
+
-------
|
631 |
+
int if unique index, slice if monotonic index, else mask
|
632 |
+
|
633 |
+
Examples
|
634 |
+
--------
|
635 |
+
>>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2)
|
636 |
+
>>> index = pd.IntervalIndex([i1, i2])
|
637 |
+
>>> index.get_loc(1)
|
638 |
+
0
|
639 |
+
|
640 |
+
You can also supply a point inside an interval.
|
641 |
+
|
642 |
+
>>> index.get_loc(1.5)
|
643 |
+
1
|
644 |
+
|
645 |
+
If a label is in several intervals, you get the locations of all the
|
646 |
+
relevant intervals.
|
647 |
+
|
648 |
+
>>> i3 = pd.Interval(0, 2)
|
649 |
+
>>> overlapping_index = pd.IntervalIndex([i1, i2, i3])
|
650 |
+
>>> overlapping_index.get_loc(0.5)
|
651 |
+
array([ True, False, True])
|
652 |
+
|
653 |
+
Only exact matches will be returned if an interval is provided.
|
654 |
+
|
655 |
+
>>> index.get_loc(pd.Interval(0, 1))
|
656 |
+
0
|
657 |
+
"""
|
658 |
+
self._check_indexing_error(key)
|
659 |
+
|
660 |
+
if isinstance(key, Interval):
|
661 |
+
if self.closed != key.closed:
|
662 |
+
raise KeyError(key)
|
663 |
+
mask = (self.left == key.left) & (self.right == key.right)
|
664 |
+
elif is_valid_na_for_dtype(key, self.dtype):
|
665 |
+
mask = self.isna()
|
666 |
+
else:
|
667 |
+
# assume scalar
|
668 |
+
op_left = le if self.closed_left else lt
|
669 |
+
op_right = le if self.closed_right else lt
|
670 |
+
try:
|
671 |
+
mask = op_left(self.left, key) & op_right(key, self.right)
|
672 |
+
except TypeError as err:
|
673 |
+
# scalar is not comparable to II subtype --> invalid label
|
674 |
+
raise KeyError(key) from err
|
675 |
+
|
676 |
+
matches = mask.sum()
|
677 |
+
if matches == 0:
|
678 |
+
raise KeyError(key)
|
679 |
+
if matches == 1:
|
680 |
+
return mask.argmax()
|
681 |
+
|
682 |
+
res = lib.maybe_booleans_to_slice(mask.view("u1"))
|
683 |
+
if isinstance(res, slice) and res.stop is None:
|
684 |
+
# TODO: DO this in maybe_booleans_to_slice?
|
685 |
+
res = slice(res.start, len(self), res.step)
|
686 |
+
return res
|
687 |
+
|
688 |
+
def _get_indexer(
|
689 |
+
self,
|
690 |
+
target: Index,
|
691 |
+
method: str | None = None,
|
692 |
+
limit: int | None = None,
|
693 |
+
tolerance: Any | None = None,
|
694 |
+
) -> npt.NDArray[np.intp]:
|
695 |
+
if isinstance(target, IntervalIndex):
|
696 |
+
# We only get here with not self.is_overlapping
|
697 |
+
# -> at most one match per interval in target
|
698 |
+
# want exact matches -> need both left/right to match, so defer to
|
699 |
+
# left/right get_indexer, compare elementwise, equality -> match
|
700 |
+
indexer = self._get_indexer_unique_sides(target)
|
701 |
+
|
702 |
+
elif not is_object_dtype(target.dtype):
|
703 |
+
# homogeneous scalar index: use IntervalTree
|
704 |
+
# we should always have self._should_partial_index(target) here
|
705 |
+
target = self._maybe_convert_i8(target)
|
706 |
+
indexer = self._engine.get_indexer(target.values)
|
707 |
+
else:
|
708 |
+
# heterogeneous scalar index: defer elementwise to get_loc
|
709 |
+
# we should always have self._should_partial_index(target) here
|
710 |
+
return self._get_indexer_pointwise(target)[0]
|
711 |
+
|
712 |
+
return ensure_platform_int(indexer)
|
713 |
+
|
714 |
+
@Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs)
|
715 |
+
def get_indexer_non_unique(
|
716 |
+
self, target: Index
|
717 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
|
718 |
+
target = ensure_index(target)
|
719 |
+
|
720 |
+
if not self._should_compare(target) and not self._should_partial_index(target):
|
721 |
+
# e.g. IntervalIndex with different closed or incompatible subtype
|
722 |
+
# -> no matches
|
723 |
+
return self._get_indexer_non_comparable(target, None, unique=False)
|
724 |
+
|
725 |
+
elif isinstance(target, IntervalIndex):
|
726 |
+
if self.left.is_unique and self.right.is_unique:
|
727 |
+
# fastpath available even if we don't have self._index_as_unique
|
728 |
+
indexer = self._get_indexer_unique_sides(target)
|
729 |
+
missing = (indexer == -1).nonzero()[0]
|
730 |
+
else:
|
731 |
+
return self._get_indexer_pointwise(target)
|
732 |
+
|
733 |
+
elif is_object_dtype(target.dtype) or not self._should_partial_index(target):
|
734 |
+
# target might contain intervals: defer elementwise to get_loc
|
735 |
+
return self._get_indexer_pointwise(target)
|
736 |
+
|
737 |
+
else:
|
738 |
+
# Note: this case behaves differently from other Index subclasses
|
739 |
+
# because IntervalIndex does partial-int indexing
|
740 |
+
target = self._maybe_convert_i8(target)
|
741 |
+
indexer, missing = self._engine.get_indexer_non_unique(target.values)
|
742 |
+
|
743 |
+
return ensure_platform_int(indexer), ensure_platform_int(missing)
|
744 |
+
|
745 |
+
def _get_indexer_unique_sides(self, target: IntervalIndex) -> npt.NDArray[np.intp]:
|
746 |
+
"""
|
747 |
+
_get_indexer specialized to the case where both of our sides are unique.
|
748 |
+
"""
|
749 |
+
# Caller is responsible for checking
|
750 |
+
# `self.left.is_unique and self.right.is_unique`
|
751 |
+
|
752 |
+
left_indexer = self.left.get_indexer(target.left)
|
753 |
+
right_indexer = self.right.get_indexer(target.right)
|
754 |
+
indexer = np.where(left_indexer == right_indexer, left_indexer, -1)
|
755 |
+
return indexer
|
756 |
+
|
757 |
+
def _get_indexer_pointwise(
|
758 |
+
self, target: Index
|
759 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
|
760 |
+
"""
|
761 |
+
pointwise implementation for get_indexer and get_indexer_non_unique.
|
762 |
+
"""
|
763 |
+
indexer, missing = [], []
|
764 |
+
for i, key in enumerate(target):
|
765 |
+
try:
|
766 |
+
locs = self.get_loc(key)
|
767 |
+
if isinstance(locs, slice):
|
768 |
+
# Only needed for get_indexer_non_unique
|
769 |
+
locs = np.arange(locs.start, locs.stop, locs.step, dtype="intp")
|
770 |
+
elif lib.is_integer(locs):
|
771 |
+
locs = np.array(locs, ndmin=1)
|
772 |
+
else:
|
773 |
+
# otherwise we have ndarray[bool]
|
774 |
+
locs = np.where(locs)[0]
|
775 |
+
except KeyError:
|
776 |
+
missing.append(i)
|
777 |
+
locs = np.array([-1])
|
778 |
+
except InvalidIndexError:
|
779 |
+
# i.e. non-scalar key e.g. a tuple.
|
780 |
+
# see test_append_different_columns_types_raises
|
781 |
+
missing.append(i)
|
782 |
+
locs = np.array([-1])
|
783 |
+
|
784 |
+
indexer.append(locs)
|
785 |
+
|
786 |
+
indexer = np.concatenate(indexer)
|
787 |
+
return ensure_platform_int(indexer), ensure_platform_int(missing)
|
788 |
+
|
789 |
+
@cache_readonly
|
790 |
+
def _index_as_unique(self) -> bool:
|
791 |
+
return not self.is_overlapping and self._engine._na_count < 2
|
792 |
+
|
793 |
+
_requires_unique_msg = (
|
794 |
+
"cannot handle overlapping indices; use IntervalIndex.get_indexer_non_unique"
|
795 |
+
)
|
796 |
+
|
797 |
+
def _convert_slice_indexer(self, key: slice, kind: Literal["loc", "getitem"]):
|
798 |
+
if not (key.step is None or key.step == 1):
|
799 |
+
# GH#31658 if label-based, we require step == 1,
|
800 |
+
# if positional, we disallow float start/stop
|
801 |
+
msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
|
802 |
+
if kind == "loc":
|
803 |
+
raise ValueError(msg)
|
804 |
+
if kind == "getitem":
|
805 |
+
if not is_valid_positional_slice(key):
|
806 |
+
# i.e. this cannot be interpreted as a positional slice
|
807 |
+
raise ValueError(msg)
|
808 |
+
|
809 |
+
return super()._convert_slice_indexer(key, kind)
|
810 |
+
|
811 |
+
@cache_readonly
|
812 |
+
def _should_fallback_to_positional(self) -> bool:
|
813 |
+
# integer lookups in Series.__getitem__ are unambiguously
|
814 |
+
# positional in this case
|
815 |
+
# error: Item "ExtensionDtype"/"dtype[Any]" of "Union[dtype[Any],
|
816 |
+
# ExtensionDtype]" has no attribute "subtype"
|
817 |
+
return self.dtype.subtype.kind in "mM" # type: ignore[union-attr]
|
818 |
+
|
819 |
+
def _maybe_cast_slice_bound(self, label, side: str):
|
820 |
+
return getattr(self, side)._maybe_cast_slice_bound(label, side)
|
821 |
+
|
822 |
+
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
823 |
+
if not isinstance(dtype, IntervalDtype):
|
824 |
+
return False
|
825 |
+
common_subtype = find_common_type([self.dtype, dtype])
|
826 |
+
return not is_object_dtype(common_subtype)
|
827 |
+
|
828 |
+
# --------------------------------------------------------------------
|
829 |
+
|
830 |
+
@cache_readonly
|
831 |
+
def left(self) -> Index:
|
832 |
+
return Index(self._data.left, copy=False)
|
833 |
+
|
834 |
+
@cache_readonly
|
835 |
+
def right(self) -> Index:
|
836 |
+
return Index(self._data.right, copy=False)
|
837 |
+
|
838 |
+
@cache_readonly
|
839 |
+
def mid(self) -> Index:
|
840 |
+
return Index(self._data.mid, copy=False)
|
841 |
+
|
842 |
+
@property
|
843 |
+
def length(self) -> Index:
|
844 |
+
return Index(self._data.length, copy=False)
|
845 |
+
|
846 |
+
# --------------------------------------------------------------------
|
847 |
+
# Set Operations
|
848 |
+
|
849 |
+
def _intersection(self, other, sort):
|
850 |
+
"""
|
851 |
+
intersection specialized to the case with matching dtypes.
|
852 |
+
"""
|
853 |
+
# For IntervalIndex we also know other.closed == self.closed
|
854 |
+
if self.left.is_unique and self.right.is_unique:
|
855 |
+
taken = self._intersection_unique(other)
|
856 |
+
elif other.left.is_unique and other.right.is_unique and self.isna().sum() <= 1:
|
857 |
+
# Swap other/self if other is unique and self does not have
|
858 |
+
# multiple NaNs
|
859 |
+
taken = other._intersection_unique(self)
|
860 |
+
else:
|
861 |
+
# duplicates
|
862 |
+
taken = self._intersection_non_unique(other)
|
863 |
+
|
864 |
+
if sort is None:
|
865 |
+
taken = taken.sort_values()
|
866 |
+
|
867 |
+
return taken
|
868 |
+
|
869 |
+
def _intersection_unique(self, other: IntervalIndex) -> IntervalIndex:
|
870 |
+
"""
|
871 |
+
Used when the IntervalIndex does not have any common endpoint,
|
872 |
+
no matter left or right.
|
873 |
+
Return the intersection with another IntervalIndex.
|
874 |
+
Parameters
|
875 |
+
----------
|
876 |
+
other : IntervalIndex
|
877 |
+
Returns
|
878 |
+
-------
|
879 |
+
IntervalIndex
|
880 |
+
"""
|
881 |
+
# Note: this is much more performant than super()._intersection(other)
|
882 |
+
lindexer = self.left.get_indexer(other.left)
|
883 |
+
rindexer = self.right.get_indexer(other.right)
|
884 |
+
|
885 |
+
match = (lindexer == rindexer) & (lindexer != -1)
|
886 |
+
indexer = lindexer.take(match.nonzero()[0])
|
887 |
+
indexer = unique(indexer)
|
888 |
+
|
889 |
+
return self.take(indexer)
|
890 |
+
|
891 |
+
def _intersection_non_unique(self, other: IntervalIndex) -> IntervalIndex:
|
892 |
+
"""
|
893 |
+
Used when the IntervalIndex does have some common endpoints,
|
894 |
+
on either sides.
|
895 |
+
Return the intersection with another IntervalIndex.
|
896 |
+
|
897 |
+
Parameters
|
898 |
+
----------
|
899 |
+
other : IntervalIndex
|
900 |
+
|
901 |
+
Returns
|
902 |
+
-------
|
903 |
+
IntervalIndex
|
904 |
+
"""
|
905 |
+
# Note: this is about 3.25x faster than super()._intersection(other)
|
906 |
+
# in IntervalIndexMethod.time_intersection_both_duplicate(1000)
|
907 |
+
mask = np.zeros(len(self), dtype=bool)
|
908 |
+
|
909 |
+
if self.hasnans and other.hasnans:
|
910 |
+
first_nan_loc = np.arange(len(self))[self.isna()][0]
|
911 |
+
mask[first_nan_loc] = True
|
912 |
+
|
913 |
+
other_tups = set(zip(other.left, other.right))
|
914 |
+
for i, tup in enumerate(zip(self.left, self.right)):
|
915 |
+
if tup in other_tups:
|
916 |
+
mask[i] = True
|
917 |
+
|
918 |
+
return self[mask]
|
919 |
+
|
920 |
+
# --------------------------------------------------------------------
|
921 |
+
|
922 |
+
def _get_engine_target(self) -> np.ndarray:
|
923 |
+
# Note: we _could_ use libjoin functions by either casting to object
|
924 |
+
# dtype or constructing tuples (faster than constructing Intervals)
|
925 |
+
# but the libjoin fastpaths are no longer fast in these cases.
|
926 |
+
raise NotImplementedError(
|
927 |
+
"IntervalIndex does not use libjoin fastpaths or pass values to "
|
928 |
+
"IndexEngine objects"
|
929 |
+
)
|
930 |
+
|
931 |
+
def _from_join_target(self, result):
|
932 |
+
raise NotImplementedError("IntervalIndex does not use libjoin fastpaths")
|
933 |
+
|
934 |
+
# TODO: arithmetic operations
|
935 |
+
|
936 |
+
|
937 |
+
def _is_valid_endpoint(endpoint) -> bool:
|
938 |
+
"""
|
939 |
+
Helper for interval_range to check if start/end are valid types.
|
940 |
+
"""
|
941 |
+
return any(
|
942 |
+
[
|
943 |
+
is_number(endpoint),
|
944 |
+
isinstance(endpoint, Timestamp),
|
945 |
+
isinstance(endpoint, Timedelta),
|
946 |
+
endpoint is None,
|
947 |
+
]
|
948 |
+
)
|
949 |
+
|
950 |
+
|
951 |
+
def _is_type_compatible(a, b) -> bool:
|
952 |
+
"""
|
953 |
+
Helper for interval_range to check type compat of start/end/freq.
|
954 |
+
"""
|
955 |
+
is_ts_compat = lambda x: isinstance(x, (Timestamp, BaseOffset))
|
956 |
+
is_td_compat = lambda x: isinstance(x, (Timedelta, BaseOffset))
|
957 |
+
return (
|
958 |
+
(is_number(a) and is_number(b))
|
959 |
+
or (is_ts_compat(a) and is_ts_compat(b))
|
960 |
+
or (is_td_compat(a) and is_td_compat(b))
|
961 |
+
or com.any_none(a, b)
|
962 |
+
)
|
963 |
+
|
964 |
+
|
965 |
+
def interval_range(
|
966 |
+
start=None,
|
967 |
+
end=None,
|
968 |
+
periods=None,
|
969 |
+
freq=None,
|
970 |
+
name: Hashable | None = None,
|
971 |
+
closed: IntervalClosedType = "right",
|
972 |
+
) -> IntervalIndex:
|
973 |
+
"""
|
974 |
+
Return a fixed frequency IntervalIndex.
|
975 |
+
|
976 |
+
Parameters
|
977 |
+
----------
|
978 |
+
start : numeric or datetime-like, default None
|
979 |
+
Left bound for generating intervals.
|
980 |
+
end : numeric or datetime-like, default None
|
981 |
+
Right bound for generating intervals.
|
982 |
+
periods : int, default None
|
983 |
+
Number of periods to generate.
|
984 |
+
freq : numeric, str, Timedelta, datetime.timedelta, or DateOffset, default None
|
985 |
+
The length of each interval. Must be consistent with the type of start
|
986 |
+
and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1
|
987 |
+
for numeric and 'D' for datetime-like.
|
988 |
+
name : str, default None
|
989 |
+
Name of the resulting IntervalIndex.
|
990 |
+
closed : {'left', 'right', 'both', 'neither'}, default 'right'
|
991 |
+
Whether the intervals are closed on the left-side, right-side, both
|
992 |
+
or neither.
|
993 |
+
|
994 |
+
Returns
|
995 |
+
-------
|
996 |
+
IntervalIndex
|
997 |
+
|
998 |
+
See Also
|
999 |
+
--------
|
1000 |
+
IntervalIndex : An Index of intervals that are all closed on the same side.
|
1001 |
+
|
1002 |
+
Notes
|
1003 |
+
-----
|
1004 |
+
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
|
1005 |
+
exactly three must be specified. If ``freq`` is omitted, the resulting
|
1006 |
+
``IntervalIndex`` will have ``periods`` linearly spaced elements between
|
1007 |
+
``start`` and ``end``, inclusively.
|
1008 |
+
|
1009 |
+
To learn more about datetime-like frequency strings, please see `this link
|
1010 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
1011 |
+
|
1012 |
+
Examples
|
1013 |
+
--------
|
1014 |
+
Numeric ``start`` and ``end`` is supported.
|
1015 |
+
|
1016 |
+
>>> pd.interval_range(start=0, end=5)
|
1017 |
+
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
|
1018 |
+
dtype='interval[int64, right]')
|
1019 |
+
|
1020 |
+
Additionally, datetime-like input is also supported.
|
1021 |
+
|
1022 |
+
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
|
1023 |
+
... end=pd.Timestamp('2017-01-04'))
|
1024 |
+
IntervalIndex([(2017-01-01 00:00:00, 2017-01-02 00:00:00],
|
1025 |
+
(2017-01-02 00:00:00, 2017-01-03 00:00:00],
|
1026 |
+
(2017-01-03 00:00:00, 2017-01-04 00:00:00]],
|
1027 |
+
dtype='interval[datetime64[ns], right]')
|
1028 |
+
|
1029 |
+
The ``freq`` parameter specifies the frequency between the left and right.
|
1030 |
+
endpoints of the individual intervals within the ``IntervalIndex``. For
|
1031 |
+
numeric ``start`` and ``end``, the frequency must also be numeric.
|
1032 |
+
|
1033 |
+
>>> pd.interval_range(start=0, periods=4, freq=1.5)
|
1034 |
+
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
|
1035 |
+
dtype='interval[float64, right]')
|
1036 |
+
|
1037 |
+
Similarly, for datetime-like ``start`` and ``end``, the frequency must be
|
1038 |
+
convertible to a DateOffset.
|
1039 |
+
|
1040 |
+
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
|
1041 |
+
... periods=3, freq='MS')
|
1042 |
+
IntervalIndex([(2017-01-01 00:00:00, 2017-02-01 00:00:00],
|
1043 |
+
(2017-02-01 00:00:00, 2017-03-01 00:00:00],
|
1044 |
+
(2017-03-01 00:00:00, 2017-04-01 00:00:00]],
|
1045 |
+
dtype='interval[datetime64[ns], right]')
|
1046 |
+
|
1047 |
+
Specify ``start``, ``end``, and ``periods``; the frequency is generated
|
1048 |
+
automatically (linearly spaced).
|
1049 |
+
|
1050 |
+
>>> pd.interval_range(start=0, end=6, periods=4)
|
1051 |
+
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
|
1052 |
+
dtype='interval[float64, right]')
|
1053 |
+
|
1054 |
+
The ``closed`` parameter specifies which endpoints of the individual
|
1055 |
+
intervals within the ``IntervalIndex`` are closed.
|
1056 |
+
|
1057 |
+
>>> pd.interval_range(end=5, periods=4, closed='both')
|
1058 |
+
IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
|
1059 |
+
dtype='interval[int64, both]')
|
1060 |
+
"""
|
1061 |
+
start = maybe_box_datetimelike(start)
|
1062 |
+
end = maybe_box_datetimelike(end)
|
1063 |
+
endpoint = start if start is not None else end
|
1064 |
+
|
1065 |
+
if freq is None and com.any_none(periods, start, end):
|
1066 |
+
freq = 1 if is_number(endpoint) else "D"
|
1067 |
+
|
1068 |
+
if com.count_not_none(start, end, periods, freq) != 3:
|
1069 |
+
raise ValueError(
|
1070 |
+
"Of the four parameters: start, end, periods, and "
|
1071 |
+
"freq, exactly three must be specified"
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
if not _is_valid_endpoint(start):
|
1075 |
+
raise ValueError(f"start must be numeric or datetime-like, got {start}")
|
1076 |
+
if not _is_valid_endpoint(end):
|
1077 |
+
raise ValueError(f"end must be numeric or datetime-like, got {end}")
|
1078 |
+
|
1079 |
+
periods = validate_periods(periods)
|
1080 |
+
|
1081 |
+
if freq is not None and not is_number(freq):
|
1082 |
+
try:
|
1083 |
+
freq = to_offset(freq)
|
1084 |
+
except ValueError as err:
|
1085 |
+
raise ValueError(
|
1086 |
+
f"freq must be numeric or convertible to DateOffset, got {freq}"
|
1087 |
+
) from err
|
1088 |
+
|
1089 |
+
# verify type compatibility
|
1090 |
+
if not all(
|
1091 |
+
[
|
1092 |
+
_is_type_compatible(start, end),
|
1093 |
+
_is_type_compatible(start, freq),
|
1094 |
+
_is_type_compatible(end, freq),
|
1095 |
+
]
|
1096 |
+
):
|
1097 |
+
raise TypeError("start, end, freq need to be type compatible")
|
1098 |
+
|
1099 |
+
# +1 to convert interval count to breaks count (n breaks = n-1 intervals)
|
1100 |
+
if periods is not None:
|
1101 |
+
periods += 1
|
1102 |
+
|
1103 |
+
breaks: np.ndarray | TimedeltaIndex | DatetimeIndex
|
1104 |
+
|
1105 |
+
if is_number(endpoint):
|
1106 |
+
if com.all_not_none(start, end, freq):
|
1107 |
+
# 0.1 ensures we capture end
|
1108 |
+
breaks = np.arange(start, end + (freq * 0.1), freq)
|
1109 |
+
else:
|
1110 |
+
# compute the period/start/end if unspecified (at most one)
|
1111 |
+
if periods is None:
|
1112 |
+
periods = int((end - start) // freq) + 1
|
1113 |
+
elif start is None:
|
1114 |
+
start = end - (periods - 1) * freq
|
1115 |
+
elif end is None:
|
1116 |
+
end = start + (periods - 1) * freq
|
1117 |
+
|
1118 |
+
breaks = np.linspace(start, end, periods)
|
1119 |
+
if all(is_integer(x) for x in com.not_none(start, end, freq)):
|
1120 |
+
# np.linspace always produces float output
|
1121 |
+
|
1122 |
+
# error: Argument 1 to "maybe_downcast_numeric" has incompatible type
|
1123 |
+
# "Union[ndarray[Any, Any], TimedeltaIndex, DatetimeIndex]";
|
1124 |
+
# expected "ndarray[Any, Any]" [
|
1125 |
+
breaks = maybe_downcast_numeric(
|
1126 |
+
breaks, # type: ignore[arg-type]
|
1127 |
+
np.dtype("int64"),
|
1128 |
+
)
|
1129 |
+
else:
|
1130 |
+
# delegate to the appropriate range function
|
1131 |
+
if isinstance(endpoint, Timestamp):
|
1132 |
+
breaks = date_range(start=start, end=end, periods=periods, freq=freq)
|
1133 |
+
else:
|
1134 |
+
breaks = timedelta_range(start=start, end=end, periods=periods, freq=freq)
|
1135 |
+
|
1136 |
+
return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/multi.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/period.py
ADDED
@@ -0,0 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from datetime import (
|
4 |
+
datetime,
|
5 |
+
timedelta,
|
6 |
+
)
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs import index as libindex
|
13 |
+
from pandas._libs.tslibs import (
|
14 |
+
BaseOffset,
|
15 |
+
NaT,
|
16 |
+
Period,
|
17 |
+
Resolution,
|
18 |
+
Tick,
|
19 |
+
)
|
20 |
+
from pandas._libs.tslibs.dtypes import OFFSET_TO_PERIOD_FREQSTR
|
21 |
+
from pandas.util._decorators import (
|
22 |
+
cache_readonly,
|
23 |
+
doc,
|
24 |
+
)
|
25 |
+
from pandas.util._exceptions import find_stack_level
|
26 |
+
|
27 |
+
from pandas.core.dtypes.common import is_integer
|
28 |
+
from pandas.core.dtypes.dtypes import PeriodDtype
|
29 |
+
from pandas.core.dtypes.generic import ABCSeries
|
30 |
+
from pandas.core.dtypes.missing import is_valid_na_for_dtype
|
31 |
+
|
32 |
+
from pandas.core.arrays.period import (
|
33 |
+
PeriodArray,
|
34 |
+
period_array,
|
35 |
+
raise_on_incompatible,
|
36 |
+
validate_dtype_freq,
|
37 |
+
)
|
38 |
+
import pandas.core.common as com
|
39 |
+
import pandas.core.indexes.base as ibase
|
40 |
+
from pandas.core.indexes.base import maybe_extract_name
|
41 |
+
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
|
42 |
+
from pandas.core.indexes.datetimes import (
|
43 |
+
DatetimeIndex,
|
44 |
+
Index,
|
45 |
+
)
|
46 |
+
from pandas.core.indexes.extension import inherit_names
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from collections.abc import Hashable
|
50 |
+
|
51 |
+
from pandas._typing import (
|
52 |
+
Dtype,
|
53 |
+
DtypeObj,
|
54 |
+
Self,
|
55 |
+
npt,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
|
60 |
+
_index_doc_kwargs.update({"target_klass": "PeriodIndex or list of Periods"})
|
61 |
+
_shared_doc_kwargs = {
|
62 |
+
"klass": "PeriodArray",
|
63 |
+
}
|
64 |
+
|
65 |
+
# --- Period index sketch
|
66 |
+
|
67 |
+
|
68 |
+
def _new_PeriodIndex(cls, **d):
|
69 |
+
# GH13277 for unpickling
|
70 |
+
values = d.pop("data")
|
71 |
+
if values.dtype == "int64":
|
72 |
+
freq = d.pop("freq", None)
|
73 |
+
dtype = PeriodDtype(freq)
|
74 |
+
values = PeriodArray(values, dtype=dtype)
|
75 |
+
return cls._simple_new(values, **d)
|
76 |
+
else:
|
77 |
+
return cls(values, **d)
|
78 |
+
|
79 |
+
|
80 |
+
@inherit_names(
|
81 |
+
["strftime", "start_time", "end_time"] + PeriodArray._field_ops,
|
82 |
+
PeriodArray,
|
83 |
+
wrap=True,
|
84 |
+
)
|
85 |
+
@inherit_names(["is_leap_year"], PeriodArray)
|
86 |
+
class PeriodIndex(DatetimeIndexOpsMixin):
|
87 |
+
"""
|
88 |
+
Immutable ndarray holding ordinal values indicating regular periods in time.
|
89 |
+
|
90 |
+
Index keys are boxed to Period objects which carries the metadata (eg,
|
91 |
+
frequency information).
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
data : array-like (1d int np.ndarray or PeriodArray), optional
|
96 |
+
Optional period-like data to construct index with.
|
97 |
+
copy : bool
|
98 |
+
Make a copy of input ndarray.
|
99 |
+
freq : str or period object, optional
|
100 |
+
One of pandas period strings or corresponding objects.
|
101 |
+
year : int, array, or Series, default None
|
102 |
+
|
103 |
+
.. deprecated:: 2.2.0
|
104 |
+
Use PeriodIndex.from_fields instead.
|
105 |
+
month : int, array, or Series, default None
|
106 |
+
|
107 |
+
.. deprecated:: 2.2.0
|
108 |
+
Use PeriodIndex.from_fields instead.
|
109 |
+
quarter : int, array, or Series, default None
|
110 |
+
|
111 |
+
.. deprecated:: 2.2.0
|
112 |
+
Use PeriodIndex.from_fields instead.
|
113 |
+
day : int, array, or Series, default None
|
114 |
+
|
115 |
+
.. deprecated:: 2.2.0
|
116 |
+
Use PeriodIndex.from_fields instead.
|
117 |
+
hour : int, array, or Series, default None
|
118 |
+
|
119 |
+
.. deprecated:: 2.2.0
|
120 |
+
Use PeriodIndex.from_fields instead.
|
121 |
+
minute : int, array, or Series, default None
|
122 |
+
|
123 |
+
.. deprecated:: 2.2.0
|
124 |
+
Use PeriodIndex.from_fields instead.
|
125 |
+
second : int, array, or Series, default None
|
126 |
+
|
127 |
+
.. deprecated:: 2.2.0
|
128 |
+
Use PeriodIndex.from_fields instead.
|
129 |
+
dtype : str or PeriodDtype, default None
|
130 |
+
|
131 |
+
Attributes
|
132 |
+
----------
|
133 |
+
day
|
134 |
+
dayofweek
|
135 |
+
day_of_week
|
136 |
+
dayofyear
|
137 |
+
day_of_year
|
138 |
+
days_in_month
|
139 |
+
daysinmonth
|
140 |
+
end_time
|
141 |
+
freq
|
142 |
+
freqstr
|
143 |
+
hour
|
144 |
+
is_leap_year
|
145 |
+
minute
|
146 |
+
month
|
147 |
+
quarter
|
148 |
+
qyear
|
149 |
+
second
|
150 |
+
start_time
|
151 |
+
week
|
152 |
+
weekday
|
153 |
+
weekofyear
|
154 |
+
year
|
155 |
+
|
156 |
+
Methods
|
157 |
+
-------
|
158 |
+
asfreq
|
159 |
+
strftime
|
160 |
+
to_timestamp
|
161 |
+
from_fields
|
162 |
+
from_ordinals
|
163 |
+
|
164 |
+
See Also
|
165 |
+
--------
|
166 |
+
Index : The base pandas Index type.
|
167 |
+
Period : Represents a period of time.
|
168 |
+
DatetimeIndex : Index with datetime64 data.
|
169 |
+
TimedeltaIndex : Index of timedelta64 data.
|
170 |
+
period_range : Create a fixed-frequency PeriodIndex.
|
171 |
+
|
172 |
+
Examples
|
173 |
+
--------
|
174 |
+
>>> idx = pd.PeriodIndex.from_fields(year=[2000, 2002], quarter=[1, 3])
|
175 |
+
>>> idx
|
176 |
+
PeriodIndex(['2000Q1', '2002Q3'], dtype='period[Q-DEC]')
|
177 |
+
"""
|
178 |
+
|
179 |
+
_typ = "periodindex"
|
180 |
+
|
181 |
+
_data: PeriodArray
|
182 |
+
freq: BaseOffset
|
183 |
+
dtype: PeriodDtype
|
184 |
+
|
185 |
+
_data_cls = PeriodArray
|
186 |
+
_supports_partial_string_indexing = True
|
187 |
+
|
188 |
+
@property
|
189 |
+
def _engine_type(self) -> type[libindex.PeriodEngine]:
|
190 |
+
return libindex.PeriodEngine
|
191 |
+
|
192 |
+
@cache_readonly
|
193 |
+
def _resolution_obj(self) -> Resolution:
|
194 |
+
# for compat with DatetimeIndex
|
195 |
+
return self.dtype._resolution_obj
|
196 |
+
|
197 |
+
# --------------------------------------------------------------------
|
198 |
+
# methods that dispatch to array and wrap result in Index
|
199 |
+
# These are defined here instead of via inherit_names for mypy
|
200 |
+
|
201 |
+
@doc(
|
202 |
+
PeriodArray.asfreq,
|
203 |
+
other="pandas.arrays.PeriodArray",
|
204 |
+
other_name="PeriodArray",
|
205 |
+
**_shared_doc_kwargs,
|
206 |
+
)
|
207 |
+
def asfreq(self, freq=None, how: str = "E") -> Self:
|
208 |
+
arr = self._data.asfreq(freq, how)
|
209 |
+
return type(self)._simple_new(arr, name=self.name)
|
210 |
+
|
211 |
+
@doc(PeriodArray.to_timestamp)
|
212 |
+
def to_timestamp(self, freq=None, how: str = "start") -> DatetimeIndex:
|
213 |
+
arr = self._data.to_timestamp(freq, how)
|
214 |
+
return DatetimeIndex._simple_new(arr, name=self.name)
|
215 |
+
|
216 |
+
@property
|
217 |
+
@doc(PeriodArray.hour.fget)
|
218 |
+
def hour(self) -> Index:
|
219 |
+
return Index(self._data.hour, name=self.name)
|
220 |
+
|
221 |
+
@property
|
222 |
+
@doc(PeriodArray.minute.fget)
|
223 |
+
def minute(self) -> Index:
|
224 |
+
return Index(self._data.minute, name=self.name)
|
225 |
+
|
226 |
+
@property
|
227 |
+
@doc(PeriodArray.second.fget)
|
228 |
+
def second(self) -> Index:
|
229 |
+
return Index(self._data.second, name=self.name)
|
230 |
+
|
231 |
+
# ------------------------------------------------------------------------
|
232 |
+
# Index Constructors
|
233 |
+
|
234 |
+
def __new__(
|
235 |
+
cls,
|
236 |
+
data=None,
|
237 |
+
ordinal=None,
|
238 |
+
freq=None,
|
239 |
+
dtype: Dtype | None = None,
|
240 |
+
copy: bool = False,
|
241 |
+
name: Hashable | None = None,
|
242 |
+
**fields,
|
243 |
+
) -> Self:
|
244 |
+
valid_field_set = {
|
245 |
+
"year",
|
246 |
+
"month",
|
247 |
+
"day",
|
248 |
+
"quarter",
|
249 |
+
"hour",
|
250 |
+
"minute",
|
251 |
+
"second",
|
252 |
+
}
|
253 |
+
|
254 |
+
refs = None
|
255 |
+
if not copy and isinstance(data, (Index, ABCSeries)):
|
256 |
+
refs = data._references
|
257 |
+
|
258 |
+
if not set(fields).issubset(valid_field_set):
|
259 |
+
argument = next(iter(set(fields) - valid_field_set))
|
260 |
+
raise TypeError(f"__new__() got an unexpected keyword argument {argument}")
|
261 |
+
elif len(fields):
|
262 |
+
# GH#55960
|
263 |
+
warnings.warn(
|
264 |
+
"Constructing PeriodIndex from fields is deprecated. Use "
|
265 |
+
"PeriodIndex.from_fields instead.",
|
266 |
+
FutureWarning,
|
267 |
+
stacklevel=find_stack_level(),
|
268 |
+
)
|
269 |
+
|
270 |
+
if ordinal is not None:
|
271 |
+
# GH#55960
|
272 |
+
warnings.warn(
|
273 |
+
"The 'ordinal' keyword in PeriodIndex is deprecated and will "
|
274 |
+
"be removed in a future version. Use PeriodIndex.from_ordinals "
|
275 |
+
"instead.",
|
276 |
+
FutureWarning,
|
277 |
+
stacklevel=find_stack_level(),
|
278 |
+
)
|
279 |
+
|
280 |
+
name = maybe_extract_name(name, data, cls)
|
281 |
+
|
282 |
+
if data is None and ordinal is None:
|
283 |
+
# range-based.
|
284 |
+
if not fields:
|
285 |
+
# test_pickle_compat_construction
|
286 |
+
cls._raise_scalar_data_error(None)
|
287 |
+
data = cls.from_fields(**fields, freq=freq)._data
|
288 |
+
copy = False
|
289 |
+
|
290 |
+
elif fields:
|
291 |
+
if data is not None:
|
292 |
+
raise ValueError("Cannot pass both data and fields")
|
293 |
+
raise ValueError("Cannot pass both ordinal and fields")
|
294 |
+
|
295 |
+
else:
|
296 |
+
freq = validate_dtype_freq(dtype, freq)
|
297 |
+
|
298 |
+
# PeriodIndex allow PeriodIndex(period_index, freq=different)
|
299 |
+
# Let's not encourage that kind of behavior in PeriodArray.
|
300 |
+
|
301 |
+
if freq and isinstance(data, cls) and data.freq != freq:
|
302 |
+
# TODO: We can do some of these with no-copy / coercion?
|
303 |
+
# e.g. D -> 2D seems to be OK
|
304 |
+
data = data.asfreq(freq)
|
305 |
+
|
306 |
+
if data is None and ordinal is not None:
|
307 |
+
ordinal = np.asarray(ordinal, dtype=np.int64)
|
308 |
+
dtype = PeriodDtype(freq)
|
309 |
+
data = PeriodArray(ordinal, dtype=dtype)
|
310 |
+
elif data is not None and ordinal is not None:
|
311 |
+
raise ValueError("Cannot pass both data and ordinal")
|
312 |
+
else:
|
313 |
+
# don't pass copy here, since we copy later.
|
314 |
+
data = period_array(data=data, freq=freq)
|
315 |
+
|
316 |
+
if copy:
|
317 |
+
data = data.copy()
|
318 |
+
|
319 |
+
return cls._simple_new(data, name=name, refs=refs)
|
320 |
+
|
321 |
+
@classmethod
|
322 |
+
def from_fields(
|
323 |
+
cls,
|
324 |
+
*,
|
325 |
+
year=None,
|
326 |
+
quarter=None,
|
327 |
+
month=None,
|
328 |
+
day=None,
|
329 |
+
hour=None,
|
330 |
+
minute=None,
|
331 |
+
second=None,
|
332 |
+
freq=None,
|
333 |
+
) -> Self:
|
334 |
+
fields = {
|
335 |
+
"year": year,
|
336 |
+
"quarter": quarter,
|
337 |
+
"month": month,
|
338 |
+
"day": day,
|
339 |
+
"hour": hour,
|
340 |
+
"minute": minute,
|
341 |
+
"second": second,
|
342 |
+
}
|
343 |
+
fields = {key: value for key, value in fields.items() if value is not None}
|
344 |
+
arr = PeriodArray._from_fields(fields=fields, freq=freq)
|
345 |
+
return cls._simple_new(arr)
|
346 |
+
|
347 |
+
@classmethod
|
348 |
+
def from_ordinals(cls, ordinals, *, freq, name=None) -> Self:
|
349 |
+
ordinals = np.asarray(ordinals, dtype=np.int64)
|
350 |
+
dtype = PeriodDtype(freq)
|
351 |
+
data = PeriodArray._simple_new(ordinals, dtype=dtype)
|
352 |
+
return cls._simple_new(data, name=name)
|
353 |
+
|
354 |
+
# ------------------------------------------------------------------------
|
355 |
+
# Data
|
356 |
+
|
357 |
+
@property
|
358 |
+
def values(self) -> npt.NDArray[np.object_]:
|
359 |
+
return np.asarray(self, dtype=object)
|
360 |
+
|
361 |
+
def _maybe_convert_timedelta(self, other) -> int | npt.NDArray[np.int64]:
|
362 |
+
"""
|
363 |
+
Convert timedelta-like input to an integer multiple of self.freq
|
364 |
+
|
365 |
+
Parameters
|
366 |
+
----------
|
367 |
+
other : timedelta, np.timedelta64, DateOffset, int, np.ndarray
|
368 |
+
|
369 |
+
Returns
|
370 |
+
-------
|
371 |
+
converted : int, np.ndarray[int64]
|
372 |
+
|
373 |
+
Raises
|
374 |
+
------
|
375 |
+
IncompatibleFrequency : if the input cannot be written as a multiple
|
376 |
+
of self.freq. Note IncompatibleFrequency subclasses ValueError.
|
377 |
+
"""
|
378 |
+
if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)):
|
379 |
+
if isinstance(self.freq, Tick):
|
380 |
+
# _check_timedeltalike_freq_compat will raise if incompatible
|
381 |
+
delta = self._data._check_timedeltalike_freq_compat(other)
|
382 |
+
return delta
|
383 |
+
elif isinstance(other, BaseOffset):
|
384 |
+
if other.base == self.freq.base:
|
385 |
+
return other.n
|
386 |
+
|
387 |
+
raise raise_on_incompatible(self, other)
|
388 |
+
elif is_integer(other):
|
389 |
+
assert isinstance(other, int)
|
390 |
+
return other
|
391 |
+
|
392 |
+
# raise when input doesn't have freq
|
393 |
+
raise raise_on_incompatible(self, None)
|
394 |
+
|
395 |
+
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
396 |
+
"""
|
397 |
+
Can we compare values of the given dtype to our own?
|
398 |
+
"""
|
399 |
+
return self.dtype == dtype
|
400 |
+
|
401 |
+
# ------------------------------------------------------------------------
|
402 |
+
# Index Methods
|
403 |
+
|
404 |
+
def asof_locs(self, where: Index, mask: npt.NDArray[np.bool_]) -> np.ndarray:
|
405 |
+
"""
|
406 |
+
where : array of timestamps
|
407 |
+
mask : np.ndarray[bool]
|
408 |
+
Array of booleans where data is not NA.
|
409 |
+
"""
|
410 |
+
if isinstance(where, DatetimeIndex):
|
411 |
+
where = PeriodIndex(where._values, freq=self.freq)
|
412 |
+
elif not isinstance(where, PeriodIndex):
|
413 |
+
raise TypeError("asof_locs `where` must be DatetimeIndex or PeriodIndex")
|
414 |
+
|
415 |
+
return super().asof_locs(where, mask)
|
416 |
+
|
417 |
+
@property
|
418 |
+
def is_full(self) -> bool:
|
419 |
+
"""
|
420 |
+
Returns True if this PeriodIndex is range-like in that all Periods
|
421 |
+
between start and end are present, in order.
|
422 |
+
"""
|
423 |
+
if len(self) == 0:
|
424 |
+
return True
|
425 |
+
if not self.is_monotonic_increasing:
|
426 |
+
raise ValueError("Index is not monotonic")
|
427 |
+
values = self.asi8
|
428 |
+
return bool(((values[1:] - values[:-1]) < 2).all())
|
429 |
+
|
430 |
+
@property
|
431 |
+
def inferred_type(self) -> str:
|
432 |
+
# b/c data is represented as ints make sure we can't have ambiguous
|
433 |
+
# indexing
|
434 |
+
return "period"
|
435 |
+
|
436 |
+
# ------------------------------------------------------------------------
|
437 |
+
# Indexing Methods
|
438 |
+
|
439 |
+
def _convert_tolerance(self, tolerance, target):
|
440 |
+
# Returned tolerance must be in dtype/units so that
|
441 |
+
# `|self._get_engine_target() - target._engine_target()| <= tolerance`
|
442 |
+
# is meaningful. Since PeriodIndex returns int64 for engine_target,
|
443 |
+
# we may need to convert timedelta64 tolerance to int64.
|
444 |
+
tolerance = super()._convert_tolerance(tolerance, target)
|
445 |
+
|
446 |
+
if self.dtype == target.dtype:
|
447 |
+
# convert tolerance to i8
|
448 |
+
tolerance = self._maybe_convert_timedelta(tolerance)
|
449 |
+
|
450 |
+
return tolerance
|
451 |
+
|
452 |
+
def get_loc(self, key):
|
453 |
+
"""
|
454 |
+
Get integer location for requested label.
|
455 |
+
|
456 |
+
Parameters
|
457 |
+
----------
|
458 |
+
key : Period, NaT, str, or datetime
|
459 |
+
String or datetime key must be parsable as Period.
|
460 |
+
|
461 |
+
Returns
|
462 |
+
-------
|
463 |
+
loc : int or ndarray[int64]
|
464 |
+
|
465 |
+
Raises
|
466 |
+
------
|
467 |
+
KeyError
|
468 |
+
Key is not present in the index.
|
469 |
+
TypeError
|
470 |
+
If key is listlike or otherwise not hashable.
|
471 |
+
"""
|
472 |
+
orig_key = key
|
473 |
+
|
474 |
+
self._check_indexing_error(key)
|
475 |
+
|
476 |
+
if is_valid_na_for_dtype(key, self.dtype):
|
477 |
+
key = NaT
|
478 |
+
|
479 |
+
elif isinstance(key, str):
|
480 |
+
try:
|
481 |
+
parsed, reso = self._parse_with_reso(key)
|
482 |
+
except ValueError as err:
|
483 |
+
# A string with invalid format
|
484 |
+
raise KeyError(f"Cannot interpret '{key}' as period") from err
|
485 |
+
|
486 |
+
if self._can_partial_date_slice(reso):
|
487 |
+
try:
|
488 |
+
return self._partial_date_slice(reso, parsed)
|
489 |
+
except KeyError as err:
|
490 |
+
raise KeyError(key) from err
|
491 |
+
|
492 |
+
if reso == self._resolution_obj:
|
493 |
+
# the reso < self._resolution_obj case goes
|
494 |
+
# through _get_string_slice
|
495 |
+
key = self._cast_partial_indexing_scalar(parsed)
|
496 |
+
else:
|
497 |
+
raise KeyError(key)
|
498 |
+
|
499 |
+
elif isinstance(key, Period):
|
500 |
+
self._disallow_mismatched_indexing(key)
|
501 |
+
|
502 |
+
elif isinstance(key, datetime):
|
503 |
+
key = self._cast_partial_indexing_scalar(key)
|
504 |
+
|
505 |
+
else:
|
506 |
+
# in particular integer, which Period constructor would cast to string
|
507 |
+
raise KeyError(key)
|
508 |
+
|
509 |
+
try:
|
510 |
+
return Index.get_loc(self, key)
|
511 |
+
except KeyError as err:
|
512 |
+
raise KeyError(orig_key) from err
|
513 |
+
|
514 |
+
def _disallow_mismatched_indexing(self, key: Period) -> None:
|
515 |
+
if key._dtype != self.dtype:
|
516 |
+
raise KeyError(key)
|
517 |
+
|
518 |
+
def _cast_partial_indexing_scalar(self, label: datetime) -> Period:
|
519 |
+
try:
|
520 |
+
period = Period(label, freq=self.freq)
|
521 |
+
except ValueError as err:
|
522 |
+
# we cannot construct the Period
|
523 |
+
raise KeyError(label) from err
|
524 |
+
return period
|
525 |
+
|
526 |
+
@doc(DatetimeIndexOpsMixin._maybe_cast_slice_bound)
|
527 |
+
def _maybe_cast_slice_bound(self, label, side: str):
|
528 |
+
if isinstance(label, datetime):
|
529 |
+
label = self._cast_partial_indexing_scalar(label)
|
530 |
+
|
531 |
+
return super()._maybe_cast_slice_bound(label, side)
|
532 |
+
|
533 |
+
def _parsed_string_to_bounds(self, reso: Resolution, parsed: datetime):
|
534 |
+
freq = OFFSET_TO_PERIOD_FREQSTR.get(reso.attr_abbrev, reso.attr_abbrev)
|
535 |
+
iv = Period(parsed, freq=freq)
|
536 |
+
return (iv.asfreq(self.freq, how="start"), iv.asfreq(self.freq, how="end"))
|
537 |
+
|
538 |
+
@doc(DatetimeIndexOpsMixin.shift)
|
539 |
+
def shift(self, periods: int = 1, freq=None) -> Self:
|
540 |
+
if freq is not None:
|
541 |
+
raise TypeError(
|
542 |
+
f"`freq` argument is not supported for {type(self).__name__}.shift"
|
543 |
+
)
|
544 |
+
return self + periods
|
545 |
+
|
546 |
+
|
547 |
+
def period_range(
|
548 |
+
start=None,
|
549 |
+
end=None,
|
550 |
+
periods: int | None = None,
|
551 |
+
freq=None,
|
552 |
+
name: Hashable | None = None,
|
553 |
+
) -> PeriodIndex:
|
554 |
+
"""
|
555 |
+
Return a fixed frequency PeriodIndex.
|
556 |
+
|
557 |
+
The day (calendar) is the default frequency.
|
558 |
+
|
559 |
+
Parameters
|
560 |
+
----------
|
561 |
+
start : str, datetime, date, pandas.Timestamp, or period-like, default None
|
562 |
+
Left bound for generating periods.
|
563 |
+
end : str, datetime, date, pandas.Timestamp, or period-like, default None
|
564 |
+
Right bound for generating periods.
|
565 |
+
periods : int, default None
|
566 |
+
Number of periods to generate.
|
567 |
+
freq : str or DateOffset, optional
|
568 |
+
Frequency alias. By default the freq is taken from `start` or `end`
|
569 |
+
if those are Period objects. Otherwise, the default is ``"D"`` for
|
570 |
+
daily frequency.
|
571 |
+
name : str, default None
|
572 |
+
Name of the resulting PeriodIndex.
|
573 |
+
|
574 |
+
Returns
|
575 |
+
-------
|
576 |
+
PeriodIndex
|
577 |
+
|
578 |
+
Notes
|
579 |
+
-----
|
580 |
+
Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
|
581 |
+
must be specified.
|
582 |
+
|
583 |
+
To learn more about the frequency strings, please see `this link
|
584 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
585 |
+
|
586 |
+
Examples
|
587 |
+
--------
|
588 |
+
>>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
|
589 |
+
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06',
|
590 |
+
'2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12',
|
591 |
+
'2018-01'],
|
592 |
+
dtype='period[M]')
|
593 |
+
|
594 |
+
If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor
|
595 |
+
endpoints for a ``PeriodIndex`` with frequency matching that of the
|
596 |
+
``period_range`` constructor.
|
597 |
+
|
598 |
+
>>> pd.period_range(start=pd.Period('2017Q1', freq='Q'),
|
599 |
+
... end=pd.Period('2017Q2', freq='Q'), freq='M')
|
600 |
+
PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],
|
601 |
+
dtype='period[M]')
|
602 |
+
"""
|
603 |
+
if com.count_not_none(start, end, periods) != 2:
|
604 |
+
raise ValueError(
|
605 |
+
"Of the three parameters: start, end, and periods, "
|
606 |
+
"exactly two must be specified"
|
607 |
+
)
|
608 |
+
if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)):
|
609 |
+
freq = "D"
|
610 |
+
|
611 |
+
data, freq = PeriodArray._generate_range(start, end, periods, freq)
|
612 |
+
dtype = PeriodDtype(freq)
|
613 |
+
data = PeriodArray(data, dtype=dtype)
|
614 |
+
return PeriodIndex(data, name=name)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/range.py
ADDED
@@ -0,0 +1,1187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from collections.abc import (
|
4 |
+
Hashable,
|
5 |
+
Iterator,
|
6 |
+
)
|
7 |
+
from datetime import timedelta
|
8 |
+
import operator
|
9 |
+
from sys import getsizeof
|
10 |
+
from typing import (
|
11 |
+
TYPE_CHECKING,
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Literal,
|
15 |
+
cast,
|
16 |
+
overload,
|
17 |
+
)
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from pandas._libs import (
|
22 |
+
index as libindex,
|
23 |
+
lib,
|
24 |
+
)
|
25 |
+
from pandas._libs.algos import unique_deltas
|
26 |
+
from pandas._libs.lib import no_default
|
27 |
+
from pandas.compat.numpy import function as nv
|
28 |
+
from pandas.util._decorators import (
|
29 |
+
cache_readonly,
|
30 |
+
deprecate_nonkeyword_arguments,
|
31 |
+
doc,
|
32 |
+
)
|
33 |
+
|
34 |
+
from pandas.core.dtypes.common import (
|
35 |
+
ensure_platform_int,
|
36 |
+
ensure_python_int,
|
37 |
+
is_float,
|
38 |
+
is_integer,
|
39 |
+
is_scalar,
|
40 |
+
is_signed_integer_dtype,
|
41 |
+
)
|
42 |
+
from pandas.core.dtypes.generic import ABCTimedeltaIndex
|
43 |
+
|
44 |
+
from pandas.core import ops
|
45 |
+
import pandas.core.common as com
|
46 |
+
from pandas.core.construction import extract_array
|
47 |
+
import pandas.core.indexes.base as ibase
|
48 |
+
from pandas.core.indexes.base import (
|
49 |
+
Index,
|
50 |
+
maybe_extract_name,
|
51 |
+
)
|
52 |
+
from pandas.core.ops.common import unpack_zerodim_and_defer
|
53 |
+
|
54 |
+
if TYPE_CHECKING:
|
55 |
+
from pandas._typing import (
|
56 |
+
Axis,
|
57 |
+
Dtype,
|
58 |
+
NaPosition,
|
59 |
+
Self,
|
60 |
+
npt,
|
61 |
+
)
|
62 |
+
_empty_range = range(0)
|
63 |
+
_dtype_int64 = np.dtype(np.int64)
|
64 |
+
|
65 |
+
|
66 |
+
class RangeIndex(Index):
|
67 |
+
"""
|
68 |
+
Immutable Index implementing a monotonic integer range.
|
69 |
+
|
70 |
+
RangeIndex is a memory-saving special case of an Index limited to representing
|
71 |
+
monotonic ranges with a 64-bit dtype. Using RangeIndex may in some instances
|
72 |
+
improve computing speed.
|
73 |
+
|
74 |
+
This is the default index type used
|
75 |
+
by DataFrame and Series when no explicit index is provided by the user.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
start : int (default: 0), range, or other RangeIndex instance
|
80 |
+
If int and "stop" is not given, interpreted as "stop" instead.
|
81 |
+
stop : int (default: 0)
|
82 |
+
step : int (default: 1)
|
83 |
+
dtype : np.int64
|
84 |
+
Unused, accepted for homogeneity with other index types.
|
85 |
+
copy : bool, default False
|
86 |
+
Unused, accepted for homogeneity with other index types.
|
87 |
+
name : object, optional
|
88 |
+
Name to be stored in the index.
|
89 |
+
|
90 |
+
Attributes
|
91 |
+
----------
|
92 |
+
start
|
93 |
+
stop
|
94 |
+
step
|
95 |
+
|
96 |
+
Methods
|
97 |
+
-------
|
98 |
+
from_range
|
99 |
+
|
100 |
+
See Also
|
101 |
+
--------
|
102 |
+
Index : The base pandas Index type.
|
103 |
+
|
104 |
+
Examples
|
105 |
+
--------
|
106 |
+
>>> list(pd.RangeIndex(5))
|
107 |
+
[0, 1, 2, 3, 4]
|
108 |
+
|
109 |
+
>>> list(pd.RangeIndex(-2, 4))
|
110 |
+
[-2, -1, 0, 1, 2, 3]
|
111 |
+
|
112 |
+
>>> list(pd.RangeIndex(0, 10, 2))
|
113 |
+
[0, 2, 4, 6, 8]
|
114 |
+
|
115 |
+
>>> list(pd.RangeIndex(2, -10, -3))
|
116 |
+
[2, -1, -4, -7]
|
117 |
+
|
118 |
+
>>> list(pd.RangeIndex(0))
|
119 |
+
[]
|
120 |
+
|
121 |
+
>>> list(pd.RangeIndex(1, 0))
|
122 |
+
[]
|
123 |
+
"""
|
124 |
+
|
125 |
+
_typ = "rangeindex"
|
126 |
+
_dtype_validation_metadata = (is_signed_integer_dtype, "signed integer")
|
127 |
+
_range: range
|
128 |
+
_values: np.ndarray
|
129 |
+
|
130 |
+
@property
|
131 |
+
def _engine_type(self) -> type[libindex.Int64Engine]:
|
132 |
+
return libindex.Int64Engine
|
133 |
+
|
134 |
+
# --------------------------------------------------------------------
|
135 |
+
# Constructors
|
136 |
+
|
137 |
+
def __new__(
|
138 |
+
cls,
|
139 |
+
start=None,
|
140 |
+
stop=None,
|
141 |
+
step=None,
|
142 |
+
dtype: Dtype | None = None,
|
143 |
+
copy: bool = False,
|
144 |
+
name: Hashable | None = None,
|
145 |
+
) -> Self:
|
146 |
+
cls._validate_dtype(dtype)
|
147 |
+
name = maybe_extract_name(name, start, cls)
|
148 |
+
|
149 |
+
# RangeIndex
|
150 |
+
if isinstance(start, cls):
|
151 |
+
return start.copy(name=name)
|
152 |
+
elif isinstance(start, range):
|
153 |
+
return cls._simple_new(start, name=name)
|
154 |
+
|
155 |
+
# validate the arguments
|
156 |
+
if com.all_none(start, stop, step):
|
157 |
+
raise TypeError("RangeIndex(...) must be called with integers")
|
158 |
+
|
159 |
+
start = ensure_python_int(start) if start is not None else 0
|
160 |
+
|
161 |
+
if stop is None:
|
162 |
+
start, stop = 0, start
|
163 |
+
else:
|
164 |
+
stop = ensure_python_int(stop)
|
165 |
+
|
166 |
+
step = ensure_python_int(step) if step is not None else 1
|
167 |
+
if step == 0:
|
168 |
+
raise ValueError("Step must not be zero")
|
169 |
+
|
170 |
+
rng = range(start, stop, step)
|
171 |
+
return cls._simple_new(rng, name=name)
|
172 |
+
|
173 |
+
@classmethod
|
174 |
+
def from_range(cls, data: range, name=None, dtype: Dtype | None = None) -> Self:
|
175 |
+
"""
|
176 |
+
Create :class:`pandas.RangeIndex` from a ``range`` object.
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
RangeIndex
|
181 |
+
|
182 |
+
Examples
|
183 |
+
--------
|
184 |
+
>>> pd.RangeIndex.from_range(range(5))
|
185 |
+
RangeIndex(start=0, stop=5, step=1)
|
186 |
+
|
187 |
+
>>> pd.RangeIndex.from_range(range(2, -10, -3))
|
188 |
+
RangeIndex(start=2, stop=-10, step=-3)
|
189 |
+
"""
|
190 |
+
if not isinstance(data, range):
|
191 |
+
raise TypeError(
|
192 |
+
f"{cls.__name__}(...) must be called with object coercible to a "
|
193 |
+
f"range, {repr(data)} was passed"
|
194 |
+
)
|
195 |
+
cls._validate_dtype(dtype)
|
196 |
+
return cls._simple_new(data, name=name)
|
197 |
+
|
198 |
+
# error: Argument 1 of "_simple_new" is incompatible with supertype "Index";
|
199 |
+
# supertype defines the argument type as
|
200 |
+
# "Union[ExtensionArray, ndarray[Any, Any]]" [override]
|
201 |
+
@classmethod
|
202 |
+
def _simple_new( # type: ignore[override]
|
203 |
+
cls, values: range, name: Hashable | None = None
|
204 |
+
) -> Self:
|
205 |
+
result = object.__new__(cls)
|
206 |
+
|
207 |
+
assert isinstance(values, range)
|
208 |
+
|
209 |
+
result._range = values
|
210 |
+
result._name = name
|
211 |
+
result._cache = {}
|
212 |
+
result._reset_identity()
|
213 |
+
result._references = None
|
214 |
+
return result
|
215 |
+
|
216 |
+
@classmethod
|
217 |
+
def _validate_dtype(cls, dtype: Dtype | None) -> None:
|
218 |
+
if dtype is None:
|
219 |
+
return
|
220 |
+
|
221 |
+
validation_func, expected = cls._dtype_validation_metadata
|
222 |
+
if not validation_func(dtype):
|
223 |
+
raise ValueError(
|
224 |
+
f"Incorrect `dtype` passed: expected {expected}, received {dtype}"
|
225 |
+
)
|
226 |
+
|
227 |
+
# --------------------------------------------------------------------
|
228 |
+
|
229 |
+
# error: Return type "Type[Index]" of "_constructor" incompatible with return
|
230 |
+
# type "Type[RangeIndex]" in supertype "Index"
|
231 |
+
@cache_readonly
|
232 |
+
def _constructor(self) -> type[Index]: # type: ignore[override]
|
233 |
+
"""return the class to use for construction"""
|
234 |
+
return Index
|
235 |
+
|
236 |
+
# error: Signature of "_data" incompatible with supertype "Index"
|
237 |
+
@cache_readonly
|
238 |
+
def _data(self) -> np.ndarray: # type: ignore[override]
|
239 |
+
"""
|
240 |
+
An int array that for performance reasons is created only when needed.
|
241 |
+
|
242 |
+
The constructed array is saved in ``_cache``.
|
243 |
+
"""
|
244 |
+
return np.arange(self.start, self.stop, self.step, dtype=np.int64)
|
245 |
+
|
246 |
+
def _get_data_as_items(self) -> list[tuple[str, int]]:
|
247 |
+
"""return a list of tuples of start, stop, step"""
|
248 |
+
rng = self._range
|
249 |
+
return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)]
|
250 |
+
|
251 |
+
def __reduce__(self):
|
252 |
+
d = {"name": self._name}
|
253 |
+
d.update(dict(self._get_data_as_items()))
|
254 |
+
return ibase._new_Index, (type(self), d), None
|
255 |
+
|
256 |
+
# --------------------------------------------------------------------
|
257 |
+
# Rendering Methods
|
258 |
+
|
259 |
+
def _format_attrs(self):
|
260 |
+
"""
|
261 |
+
Return a list of tuples of the (attr, formatted_value)
|
262 |
+
"""
|
263 |
+
attrs = cast("list[tuple[str, str | int]]", self._get_data_as_items())
|
264 |
+
if self._name is not None:
|
265 |
+
attrs.append(("name", ibase.default_pprint(self._name)))
|
266 |
+
return attrs
|
267 |
+
|
268 |
+
def _format_with_header(self, *, header: list[str], na_rep: str) -> list[str]:
|
269 |
+
# Equivalent to Index implementation, but faster
|
270 |
+
if not len(self._range):
|
271 |
+
return header
|
272 |
+
first_val_str = str(self._range[0])
|
273 |
+
last_val_str = str(self._range[-1])
|
274 |
+
max_length = max(len(first_val_str), len(last_val_str))
|
275 |
+
|
276 |
+
return header + [f"{x:<{max_length}}" for x in self._range]
|
277 |
+
|
278 |
+
# --------------------------------------------------------------------
|
279 |
+
|
280 |
+
@property
|
281 |
+
def start(self) -> int:
|
282 |
+
"""
|
283 |
+
The value of the `start` parameter (``0`` if this was not supplied).
|
284 |
+
|
285 |
+
Examples
|
286 |
+
--------
|
287 |
+
>>> idx = pd.RangeIndex(5)
|
288 |
+
>>> idx.start
|
289 |
+
0
|
290 |
+
|
291 |
+
>>> idx = pd.RangeIndex(2, -10, -3)
|
292 |
+
>>> idx.start
|
293 |
+
2
|
294 |
+
"""
|
295 |
+
# GH 25710
|
296 |
+
return self._range.start
|
297 |
+
|
298 |
+
@property
|
299 |
+
def stop(self) -> int:
|
300 |
+
"""
|
301 |
+
The value of the `stop` parameter.
|
302 |
+
|
303 |
+
Examples
|
304 |
+
--------
|
305 |
+
>>> idx = pd.RangeIndex(5)
|
306 |
+
>>> idx.stop
|
307 |
+
5
|
308 |
+
|
309 |
+
>>> idx = pd.RangeIndex(2, -10, -3)
|
310 |
+
>>> idx.stop
|
311 |
+
-10
|
312 |
+
"""
|
313 |
+
return self._range.stop
|
314 |
+
|
315 |
+
@property
|
316 |
+
def step(self) -> int:
|
317 |
+
"""
|
318 |
+
The value of the `step` parameter (``1`` if this was not supplied).
|
319 |
+
|
320 |
+
Examples
|
321 |
+
--------
|
322 |
+
>>> idx = pd.RangeIndex(5)
|
323 |
+
>>> idx.step
|
324 |
+
1
|
325 |
+
|
326 |
+
>>> idx = pd.RangeIndex(2, -10, -3)
|
327 |
+
>>> idx.step
|
328 |
+
-3
|
329 |
+
|
330 |
+
Even if :class:`pandas.RangeIndex` is empty, ``step`` is still ``1`` if
|
331 |
+
not supplied.
|
332 |
+
|
333 |
+
>>> idx = pd.RangeIndex(1, 0)
|
334 |
+
>>> idx.step
|
335 |
+
1
|
336 |
+
"""
|
337 |
+
# GH 25710
|
338 |
+
return self._range.step
|
339 |
+
|
340 |
+
@cache_readonly
|
341 |
+
def nbytes(self) -> int:
|
342 |
+
"""
|
343 |
+
Return the number of bytes in the underlying data.
|
344 |
+
"""
|
345 |
+
rng = self._range
|
346 |
+
return getsizeof(rng) + sum(
|
347 |
+
getsizeof(getattr(rng, attr_name))
|
348 |
+
for attr_name in ["start", "stop", "step"]
|
349 |
+
)
|
350 |
+
|
351 |
+
def memory_usage(self, deep: bool = False) -> int:
|
352 |
+
"""
|
353 |
+
Memory usage of my values
|
354 |
+
|
355 |
+
Parameters
|
356 |
+
----------
|
357 |
+
deep : bool
|
358 |
+
Introspect the data deeply, interrogate
|
359 |
+
`object` dtypes for system-level memory consumption
|
360 |
+
|
361 |
+
Returns
|
362 |
+
-------
|
363 |
+
bytes used
|
364 |
+
|
365 |
+
Notes
|
366 |
+
-----
|
367 |
+
Memory usage does not include memory consumed by elements that
|
368 |
+
are not components of the array if deep=False
|
369 |
+
|
370 |
+
See Also
|
371 |
+
--------
|
372 |
+
numpy.ndarray.nbytes
|
373 |
+
"""
|
374 |
+
return self.nbytes
|
375 |
+
|
376 |
+
@property
|
377 |
+
def dtype(self) -> np.dtype:
|
378 |
+
return _dtype_int64
|
379 |
+
|
380 |
+
@property
|
381 |
+
def is_unique(self) -> bool:
|
382 |
+
"""return if the index has unique values"""
|
383 |
+
return True
|
384 |
+
|
385 |
+
@cache_readonly
|
386 |
+
def is_monotonic_increasing(self) -> bool:
|
387 |
+
return self._range.step > 0 or len(self) <= 1
|
388 |
+
|
389 |
+
@cache_readonly
|
390 |
+
def is_monotonic_decreasing(self) -> bool:
|
391 |
+
return self._range.step < 0 or len(self) <= 1
|
392 |
+
|
393 |
+
def __contains__(self, key: Any) -> bool:
|
394 |
+
hash(key)
|
395 |
+
try:
|
396 |
+
key = ensure_python_int(key)
|
397 |
+
except TypeError:
|
398 |
+
return False
|
399 |
+
return key in self._range
|
400 |
+
|
401 |
+
@property
|
402 |
+
def inferred_type(self) -> str:
|
403 |
+
return "integer"
|
404 |
+
|
405 |
+
# --------------------------------------------------------------------
|
406 |
+
# Indexing Methods
|
407 |
+
|
408 |
+
@doc(Index.get_loc)
|
409 |
+
def get_loc(self, key) -> int:
|
410 |
+
if is_integer(key) or (is_float(key) and key.is_integer()):
|
411 |
+
new_key = int(key)
|
412 |
+
try:
|
413 |
+
return self._range.index(new_key)
|
414 |
+
except ValueError as err:
|
415 |
+
raise KeyError(key) from err
|
416 |
+
if isinstance(key, Hashable):
|
417 |
+
raise KeyError(key)
|
418 |
+
self._check_indexing_error(key)
|
419 |
+
raise KeyError(key)
|
420 |
+
|
421 |
+
def _get_indexer(
|
422 |
+
self,
|
423 |
+
target: Index,
|
424 |
+
method: str | None = None,
|
425 |
+
limit: int | None = None,
|
426 |
+
tolerance=None,
|
427 |
+
) -> npt.NDArray[np.intp]:
|
428 |
+
if com.any_not_none(method, tolerance, limit):
|
429 |
+
return super()._get_indexer(
|
430 |
+
target, method=method, tolerance=tolerance, limit=limit
|
431 |
+
)
|
432 |
+
|
433 |
+
if self.step > 0:
|
434 |
+
start, stop, step = self.start, self.stop, self.step
|
435 |
+
else:
|
436 |
+
# GH 28678: work on reversed range for simplicity
|
437 |
+
reverse = self._range[::-1]
|
438 |
+
start, stop, step = reverse.start, reverse.stop, reverse.step
|
439 |
+
|
440 |
+
target_array = np.asarray(target)
|
441 |
+
locs = target_array - start
|
442 |
+
valid = (locs % step == 0) & (locs >= 0) & (target_array < stop)
|
443 |
+
locs[~valid] = -1
|
444 |
+
locs[valid] = locs[valid] / step
|
445 |
+
|
446 |
+
if step != self.step:
|
447 |
+
# We reversed this range: transform to original locs
|
448 |
+
locs[valid] = len(self) - 1 - locs[valid]
|
449 |
+
return ensure_platform_int(locs)
|
450 |
+
|
451 |
+
@cache_readonly
|
452 |
+
def _should_fallback_to_positional(self) -> bool:
|
453 |
+
"""
|
454 |
+
Should an integer key be treated as positional?
|
455 |
+
"""
|
456 |
+
return False
|
457 |
+
|
458 |
+
# --------------------------------------------------------------------
|
459 |
+
|
460 |
+
def tolist(self) -> list[int]:
|
461 |
+
return list(self._range)
|
462 |
+
|
463 |
+
@doc(Index.__iter__)
|
464 |
+
def __iter__(self) -> Iterator[int]:
|
465 |
+
yield from self._range
|
466 |
+
|
467 |
+
@doc(Index._shallow_copy)
|
468 |
+
def _shallow_copy(self, values, name: Hashable = no_default):
|
469 |
+
name = self._name if name is no_default else name
|
470 |
+
|
471 |
+
if values.dtype.kind == "f":
|
472 |
+
return Index(values, name=name, dtype=np.float64)
|
473 |
+
# GH 46675 & 43885: If values is equally spaced, return a
|
474 |
+
# more memory-compact RangeIndex instead of Index with 64-bit dtype
|
475 |
+
unique_diffs = unique_deltas(values)
|
476 |
+
if len(unique_diffs) == 1 and unique_diffs[0] != 0:
|
477 |
+
diff = unique_diffs[0]
|
478 |
+
new_range = range(values[0], values[-1] + diff, diff)
|
479 |
+
return type(self)._simple_new(new_range, name=name)
|
480 |
+
else:
|
481 |
+
return self._constructor._simple_new(values, name=name)
|
482 |
+
|
483 |
+
def _view(self) -> Self:
|
484 |
+
result = type(self)._simple_new(self._range, name=self._name)
|
485 |
+
result._cache = self._cache
|
486 |
+
return result
|
487 |
+
|
488 |
+
@doc(Index.copy)
|
489 |
+
def copy(self, name: Hashable | None = None, deep: bool = False) -> Self:
|
490 |
+
name = self._validate_names(name=name, deep=deep)[0]
|
491 |
+
new_index = self._rename(name=name)
|
492 |
+
return new_index
|
493 |
+
|
494 |
+
def _minmax(self, meth: str):
|
495 |
+
no_steps = len(self) - 1
|
496 |
+
if no_steps == -1:
|
497 |
+
return np.nan
|
498 |
+
elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0):
|
499 |
+
return self.start
|
500 |
+
|
501 |
+
return self.start + self.step * no_steps
|
502 |
+
|
503 |
+
def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
|
504 |
+
"""The minimum value of the RangeIndex"""
|
505 |
+
nv.validate_minmax_axis(axis)
|
506 |
+
nv.validate_min(args, kwargs)
|
507 |
+
return self._minmax("min")
|
508 |
+
|
509 |
+
def max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
|
510 |
+
"""The maximum value of the RangeIndex"""
|
511 |
+
nv.validate_minmax_axis(axis)
|
512 |
+
nv.validate_max(args, kwargs)
|
513 |
+
return self._minmax("max")
|
514 |
+
|
515 |
+
def argsort(self, *args, **kwargs) -> npt.NDArray[np.intp]:
|
516 |
+
"""
|
517 |
+
Returns the indices that would sort the index and its
|
518 |
+
underlying data.
|
519 |
+
|
520 |
+
Returns
|
521 |
+
-------
|
522 |
+
np.ndarray[np.intp]
|
523 |
+
|
524 |
+
See Also
|
525 |
+
--------
|
526 |
+
numpy.ndarray.argsort
|
527 |
+
"""
|
528 |
+
ascending = kwargs.pop("ascending", True) # EA compat
|
529 |
+
kwargs.pop("kind", None) # e.g. "mergesort" is irrelevant
|
530 |
+
nv.validate_argsort(args, kwargs)
|
531 |
+
|
532 |
+
if self._range.step > 0:
|
533 |
+
result = np.arange(len(self), dtype=np.intp)
|
534 |
+
else:
|
535 |
+
result = np.arange(len(self) - 1, -1, -1, dtype=np.intp)
|
536 |
+
|
537 |
+
if not ascending:
|
538 |
+
result = result[::-1]
|
539 |
+
return result
|
540 |
+
|
541 |
+
def factorize(
|
542 |
+
self,
|
543 |
+
sort: bool = False,
|
544 |
+
use_na_sentinel: bool = True,
|
545 |
+
) -> tuple[npt.NDArray[np.intp], RangeIndex]:
|
546 |
+
codes = np.arange(len(self), dtype=np.intp)
|
547 |
+
uniques = self
|
548 |
+
if sort and self.step < 0:
|
549 |
+
codes = codes[::-1]
|
550 |
+
uniques = uniques[::-1]
|
551 |
+
return codes, uniques
|
552 |
+
|
553 |
+
def equals(self, other: object) -> bool:
|
554 |
+
"""
|
555 |
+
Determines if two Index objects contain the same elements.
|
556 |
+
"""
|
557 |
+
if isinstance(other, RangeIndex):
|
558 |
+
return self._range == other._range
|
559 |
+
return super().equals(other)
|
560 |
+
|
561 |
+
# error: Signature of "sort_values" incompatible with supertype "Index"
|
562 |
+
@overload # type: ignore[override]
|
563 |
+
def sort_values(
|
564 |
+
self,
|
565 |
+
*,
|
566 |
+
return_indexer: Literal[False] = ...,
|
567 |
+
ascending: bool = ...,
|
568 |
+
na_position: NaPosition = ...,
|
569 |
+
key: Callable | None = ...,
|
570 |
+
) -> Self:
|
571 |
+
...
|
572 |
+
|
573 |
+
@overload
|
574 |
+
def sort_values(
|
575 |
+
self,
|
576 |
+
*,
|
577 |
+
return_indexer: Literal[True],
|
578 |
+
ascending: bool = ...,
|
579 |
+
na_position: NaPosition = ...,
|
580 |
+
key: Callable | None = ...,
|
581 |
+
) -> tuple[Self, np.ndarray | RangeIndex]:
|
582 |
+
...
|
583 |
+
|
584 |
+
@overload
|
585 |
+
def sort_values(
|
586 |
+
self,
|
587 |
+
*,
|
588 |
+
return_indexer: bool = ...,
|
589 |
+
ascending: bool = ...,
|
590 |
+
na_position: NaPosition = ...,
|
591 |
+
key: Callable | None = ...,
|
592 |
+
) -> Self | tuple[Self, np.ndarray | RangeIndex]:
|
593 |
+
...
|
594 |
+
|
595 |
+
@deprecate_nonkeyword_arguments(
|
596 |
+
version="3.0", allowed_args=["self"], name="sort_values"
|
597 |
+
)
|
598 |
+
def sort_values(
|
599 |
+
self,
|
600 |
+
return_indexer: bool = False,
|
601 |
+
ascending: bool = True,
|
602 |
+
na_position: NaPosition = "last",
|
603 |
+
key: Callable | None = None,
|
604 |
+
) -> Self | tuple[Self, np.ndarray | RangeIndex]:
|
605 |
+
if key is not None:
|
606 |
+
return super().sort_values(
|
607 |
+
return_indexer=return_indexer,
|
608 |
+
ascending=ascending,
|
609 |
+
na_position=na_position,
|
610 |
+
key=key,
|
611 |
+
)
|
612 |
+
else:
|
613 |
+
sorted_index = self
|
614 |
+
inverse_indexer = False
|
615 |
+
if ascending:
|
616 |
+
if self.step < 0:
|
617 |
+
sorted_index = self[::-1]
|
618 |
+
inverse_indexer = True
|
619 |
+
else:
|
620 |
+
if self.step > 0:
|
621 |
+
sorted_index = self[::-1]
|
622 |
+
inverse_indexer = True
|
623 |
+
|
624 |
+
if return_indexer:
|
625 |
+
if inverse_indexer:
|
626 |
+
rng = range(len(self) - 1, -1, -1)
|
627 |
+
else:
|
628 |
+
rng = range(len(self))
|
629 |
+
return sorted_index, RangeIndex(rng)
|
630 |
+
else:
|
631 |
+
return sorted_index
|
632 |
+
|
633 |
+
# --------------------------------------------------------------------
|
634 |
+
# Set Operations
|
635 |
+
|
636 |
+
def _intersection(self, other: Index, sort: bool = False):
|
637 |
+
# caller is responsible for checking self and other are both non-empty
|
638 |
+
|
639 |
+
if not isinstance(other, RangeIndex):
|
640 |
+
return super()._intersection(other, sort=sort)
|
641 |
+
|
642 |
+
first = self._range[::-1] if self.step < 0 else self._range
|
643 |
+
second = other._range[::-1] if other.step < 0 else other._range
|
644 |
+
|
645 |
+
# check whether intervals intersect
|
646 |
+
# deals with in- and decreasing ranges
|
647 |
+
int_low = max(first.start, second.start)
|
648 |
+
int_high = min(first.stop, second.stop)
|
649 |
+
if int_high <= int_low:
|
650 |
+
return self._simple_new(_empty_range)
|
651 |
+
|
652 |
+
# Method hint: linear Diophantine equation
|
653 |
+
# solve intersection problem
|
654 |
+
# performance hint: for identical step sizes, could use
|
655 |
+
# cheaper alternative
|
656 |
+
gcd, s, _ = self._extended_gcd(first.step, second.step)
|
657 |
+
|
658 |
+
# check whether element sets intersect
|
659 |
+
if (first.start - second.start) % gcd:
|
660 |
+
return self._simple_new(_empty_range)
|
661 |
+
|
662 |
+
# calculate parameters for the RangeIndex describing the
|
663 |
+
# intersection disregarding the lower bounds
|
664 |
+
tmp_start = first.start + (second.start - first.start) * first.step // gcd * s
|
665 |
+
new_step = first.step * second.step // gcd
|
666 |
+
new_range = range(tmp_start, int_high, new_step)
|
667 |
+
new_index = self._simple_new(new_range)
|
668 |
+
|
669 |
+
# adjust index to limiting interval
|
670 |
+
new_start = new_index._min_fitting_element(int_low)
|
671 |
+
new_range = range(new_start, new_index.stop, new_index.step)
|
672 |
+
new_index = self._simple_new(new_range)
|
673 |
+
|
674 |
+
if (self.step < 0 and other.step < 0) is not (new_index.step < 0):
|
675 |
+
new_index = new_index[::-1]
|
676 |
+
|
677 |
+
if sort is None:
|
678 |
+
new_index = new_index.sort_values()
|
679 |
+
|
680 |
+
return new_index
|
681 |
+
|
682 |
+
def _min_fitting_element(self, lower_limit: int) -> int:
|
683 |
+
"""Returns the smallest element greater than or equal to the limit"""
|
684 |
+
no_steps = -(-(lower_limit - self.start) // abs(self.step))
|
685 |
+
return self.start + abs(self.step) * no_steps
|
686 |
+
|
687 |
+
def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]:
|
688 |
+
"""
|
689 |
+
Extended Euclidean algorithms to solve Bezout's identity:
|
690 |
+
a*x + b*y = gcd(x, y)
|
691 |
+
Finds one particular solution for x, y: s, t
|
692 |
+
Returns: gcd, s, t
|
693 |
+
"""
|
694 |
+
s, old_s = 0, 1
|
695 |
+
t, old_t = 1, 0
|
696 |
+
r, old_r = b, a
|
697 |
+
while r:
|
698 |
+
quotient = old_r // r
|
699 |
+
old_r, r = r, old_r - quotient * r
|
700 |
+
old_s, s = s, old_s - quotient * s
|
701 |
+
old_t, t = t, old_t - quotient * t
|
702 |
+
return old_r, old_s, old_t
|
703 |
+
|
704 |
+
def _range_in_self(self, other: range) -> bool:
|
705 |
+
"""Check if other range is contained in self"""
|
706 |
+
# https://stackoverflow.com/a/32481015
|
707 |
+
if not other:
|
708 |
+
return True
|
709 |
+
if not self._range:
|
710 |
+
return False
|
711 |
+
if len(other) > 1 and other.step % self._range.step:
|
712 |
+
return False
|
713 |
+
return other.start in self._range and other[-1] in self._range
|
714 |
+
|
715 |
+
def _union(self, other: Index, sort: bool | None):
|
716 |
+
"""
|
717 |
+
Form the union of two Index objects and sorts if possible
|
718 |
+
|
719 |
+
Parameters
|
720 |
+
----------
|
721 |
+
other : Index or array-like
|
722 |
+
|
723 |
+
sort : bool or None, default None
|
724 |
+
Whether to sort (monotonically increasing) the resulting index.
|
725 |
+
``sort=None|True`` returns a ``RangeIndex`` if possible or a sorted
|
726 |
+
``Index`` with a int64 dtype if not.
|
727 |
+
``sort=False`` can return a ``RangeIndex`` if self is monotonically
|
728 |
+
increasing and other is fully contained in self. Otherwise, returns
|
729 |
+
an unsorted ``Index`` with an int64 dtype.
|
730 |
+
|
731 |
+
Returns
|
732 |
+
-------
|
733 |
+
union : Index
|
734 |
+
"""
|
735 |
+
if isinstance(other, RangeIndex):
|
736 |
+
if sort in (None, True) or (
|
737 |
+
sort is False and self.step > 0 and self._range_in_self(other._range)
|
738 |
+
):
|
739 |
+
# GH 47557: Can still return a RangeIndex
|
740 |
+
# if other range in self and sort=False
|
741 |
+
start_s, step_s = self.start, self.step
|
742 |
+
end_s = self.start + self.step * (len(self) - 1)
|
743 |
+
start_o, step_o = other.start, other.step
|
744 |
+
end_o = other.start + other.step * (len(other) - 1)
|
745 |
+
if self.step < 0:
|
746 |
+
start_s, step_s, end_s = end_s, -step_s, start_s
|
747 |
+
if other.step < 0:
|
748 |
+
start_o, step_o, end_o = end_o, -step_o, start_o
|
749 |
+
if len(self) == 1 and len(other) == 1:
|
750 |
+
step_s = step_o = abs(self.start - other.start)
|
751 |
+
elif len(self) == 1:
|
752 |
+
step_s = step_o
|
753 |
+
elif len(other) == 1:
|
754 |
+
step_o = step_s
|
755 |
+
start_r = min(start_s, start_o)
|
756 |
+
end_r = max(end_s, end_o)
|
757 |
+
if step_o == step_s:
|
758 |
+
if (
|
759 |
+
(start_s - start_o) % step_s == 0
|
760 |
+
and (start_s - end_o) <= step_s
|
761 |
+
and (start_o - end_s) <= step_s
|
762 |
+
):
|
763 |
+
return type(self)(start_r, end_r + step_s, step_s)
|
764 |
+
if (
|
765 |
+
(step_s % 2 == 0)
|
766 |
+
and (abs(start_s - start_o) == step_s / 2)
|
767 |
+
and (abs(end_s - end_o) == step_s / 2)
|
768 |
+
):
|
769 |
+
# e.g. range(0, 10, 2) and range(1, 11, 2)
|
770 |
+
# but not range(0, 20, 4) and range(1, 21, 4) GH#44019
|
771 |
+
return type(self)(start_r, end_r + step_s / 2, step_s / 2)
|
772 |
+
|
773 |
+
elif step_o % step_s == 0:
|
774 |
+
if (
|
775 |
+
(start_o - start_s) % step_s == 0
|
776 |
+
and (start_o + step_s >= start_s)
|
777 |
+
and (end_o - step_s <= end_s)
|
778 |
+
):
|
779 |
+
return type(self)(start_r, end_r + step_s, step_s)
|
780 |
+
elif step_s % step_o == 0:
|
781 |
+
if (
|
782 |
+
(start_s - start_o) % step_o == 0
|
783 |
+
and (start_s + step_o >= start_o)
|
784 |
+
and (end_s - step_o <= end_o)
|
785 |
+
):
|
786 |
+
return type(self)(start_r, end_r + step_o, step_o)
|
787 |
+
|
788 |
+
return super()._union(other, sort=sort)
|
789 |
+
|
790 |
+
def _difference(self, other, sort=None):
|
791 |
+
# optimized set operation if we have another RangeIndex
|
792 |
+
self._validate_sort_keyword(sort)
|
793 |
+
self._assert_can_do_setop(other)
|
794 |
+
other, result_name = self._convert_can_do_setop(other)
|
795 |
+
|
796 |
+
if not isinstance(other, RangeIndex):
|
797 |
+
return super()._difference(other, sort=sort)
|
798 |
+
|
799 |
+
if sort is not False and self.step < 0:
|
800 |
+
return self[::-1]._difference(other)
|
801 |
+
|
802 |
+
res_name = ops.get_op_result_name(self, other)
|
803 |
+
|
804 |
+
first = self._range[::-1] if self.step < 0 else self._range
|
805 |
+
overlap = self.intersection(other)
|
806 |
+
if overlap.step < 0:
|
807 |
+
overlap = overlap[::-1]
|
808 |
+
|
809 |
+
if len(overlap) == 0:
|
810 |
+
return self.rename(name=res_name)
|
811 |
+
if len(overlap) == len(self):
|
812 |
+
return self[:0].rename(res_name)
|
813 |
+
|
814 |
+
# overlap.step will always be a multiple of self.step (see _intersection)
|
815 |
+
|
816 |
+
if len(overlap) == 1:
|
817 |
+
if overlap[0] == self[0]:
|
818 |
+
return self[1:]
|
819 |
+
|
820 |
+
elif overlap[0] == self[-1]:
|
821 |
+
return self[:-1]
|
822 |
+
|
823 |
+
elif len(self) == 3 and overlap[0] == self[1]:
|
824 |
+
return self[::2]
|
825 |
+
|
826 |
+
else:
|
827 |
+
return super()._difference(other, sort=sort)
|
828 |
+
|
829 |
+
elif len(overlap) == 2 and overlap[0] == first[0] and overlap[-1] == first[-1]:
|
830 |
+
# e.g. range(-8, 20, 7) and range(13, -9, -3)
|
831 |
+
return self[1:-1]
|
832 |
+
|
833 |
+
if overlap.step == first.step:
|
834 |
+
if overlap[0] == first.start:
|
835 |
+
# The difference is everything after the intersection
|
836 |
+
new_rng = range(overlap[-1] + first.step, first.stop, first.step)
|
837 |
+
elif overlap[-1] == first[-1]:
|
838 |
+
# The difference is everything before the intersection
|
839 |
+
new_rng = range(first.start, overlap[0], first.step)
|
840 |
+
elif overlap._range == first[1:-1]:
|
841 |
+
# e.g. range(4) and range(1, 3)
|
842 |
+
step = len(first) - 1
|
843 |
+
new_rng = first[::step]
|
844 |
+
else:
|
845 |
+
# The difference is not range-like
|
846 |
+
# e.g. range(1, 10, 1) and range(3, 7, 1)
|
847 |
+
return super()._difference(other, sort=sort)
|
848 |
+
|
849 |
+
else:
|
850 |
+
# We must have len(self) > 1, bc we ruled out above
|
851 |
+
# len(overlap) == 0 and len(overlap) == len(self)
|
852 |
+
assert len(self) > 1
|
853 |
+
|
854 |
+
if overlap.step == first.step * 2:
|
855 |
+
if overlap[0] == first[0] and overlap[-1] in (first[-1], first[-2]):
|
856 |
+
# e.g. range(1, 10, 1) and range(1, 10, 2)
|
857 |
+
new_rng = first[1::2]
|
858 |
+
|
859 |
+
elif overlap[0] == first[1] and overlap[-1] in (first[-1], first[-2]):
|
860 |
+
# e.g. range(1, 10, 1) and range(2, 10, 2)
|
861 |
+
new_rng = first[::2]
|
862 |
+
|
863 |
+
else:
|
864 |
+
# We can get here with e.g. range(20) and range(0, 10, 2)
|
865 |
+
return super()._difference(other, sort=sort)
|
866 |
+
|
867 |
+
else:
|
868 |
+
# e.g. range(10) and range(0, 10, 3)
|
869 |
+
return super()._difference(other, sort=sort)
|
870 |
+
|
871 |
+
new_index = type(self)._simple_new(new_rng, name=res_name)
|
872 |
+
if first is not self._range:
|
873 |
+
new_index = new_index[::-1]
|
874 |
+
|
875 |
+
return new_index
|
876 |
+
|
877 |
+
def symmetric_difference(
|
878 |
+
self, other, result_name: Hashable | None = None, sort=None
|
879 |
+
):
|
880 |
+
if not isinstance(other, RangeIndex) or sort is not None:
|
881 |
+
return super().symmetric_difference(other, result_name, sort)
|
882 |
+
|
883 |
+
left = self.difference(other)
|
884 |
+
right = other.difference(self)
|
885 |
+
result = left.union(right)
|
886 |
+
|
887 |
+
if result_name is not None:
|
888 |
+
result = result.rename(result_name)
|
889 |
+
return result
|
890 |
+
|
891 |
+
# --------------------------------------------------------------------
|
892 |
+
|
893 |
+
# error: Return type "Index" of "delete" incompatible with return type
|
894 |
+
# "RangeIndex" in supertype "Index"
|
895 |
+
def delete(self, loc) -> Index: # type: ignore[override]
|
896 |
+
# In some cases we can retain RangeIndex, see also
|
897 |
+
# DatetimeTimedeltaMixin._get_delete_Freq
|
898 |
+
if is_integer(loc):
|
899 |
+
if loc in (0, -len(self)):
|
900 |
+
return self[1:]
|
901 |
+
if loc in (-1, len(self) - 1):
|
902 |
+
return self[:-1]
|
903 |
+
if len(self) == 3 and loc in (1, -2):
|
904 |
+
return self[::2]
|
905 |
+
|
906 |
+
elif lib.is_list_like(loc):
|
907 |
+
slc = lib.maybe_indices_to_slice(np.asarray(loc, dtype=np.intp), len(self))
|
908 |
+
|
909 |
+
if isinstance(slc, slice):
|
910 |
+
# defer to RangeIndex._difference, which is optimized to return
|
911 |
+
# a RangeIndex whenever possible
|
912 |
+
other = self[slc]
|
913 |
+
return self.difference(other, sort=False)
|
914 |
+
|
915 |
+
return super().delete(loc)
|
916 |
+
|
917 |
+
def insert(self, loc: int, item) -> Index:
|
918 |
+
if len(self) and (is_integer(item) or is_float(item)):
|
919 |
+
# We can retain RangeIndex is inserting at the beginning or end,
|
920 |
+
# or right in the middle.
|
921 |
+
rng = self._range
|
922 |
+
if loc == 0 and item == self[0] - self.step:
|
923 |
+
new_rng = range(rng.start - rng.step, rng.stop, rng.step)
|
924 |
+
return type(self)._simple_new(new_rng, name=self._name)
|
925 |
+
|
926 |
+
elif loc == len(self) and item == self[-1] + self.step:
|
927 |
+
new_rng = range(rng.start, rng.stop + rng.step, rng.step)
|
928 |
+
return type(self)._simple_new(new_rng, name=self._name)
|
929 |
+
|
930 |
+
elif len(self) == 2 and item == self[0] + self.step / 2:
|
931 |
+
# e.g. inserting 1 into [0, 2]
|
932 |
+
step = int(self.step / 2)
|
933 |
+
new_rng = range(self.start, self.stop, step)
|
934 |
+
return type(self)._simple_new(new_rng, name=self._name)
|
935 |
+
|
936 |
+
return super().insert(loc, item)
|
937 |
+
|
938 |
+
def _concat(self, indexes: list[Index], name: Hashable) -> Index:
|
939 |
+
"""
|
940 |
+
Overriding parent method for the case of all RangeIndex instances.
|
941 |
+
|
942 |
+
When all members of "indexes" are of type RangeIndex: result will be
|
943 |
+
RangeIndex if possible, Index with a int64 dtype otherwise. E.g.:
|
944 |
+
indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6)
|
945 |
+
indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Index([0,1,2,4,5], dtype='int64')
|
946 |
+
"""
|
947 |
+
if not all(isinstance(x, RangeIndex) for x in indexes):
|
948 |
+
return super()._concat(indexes, name)
|
949 |
+
|
950 |
+
elif len(indexes) == 1:
|
951 |
+
return indexes[0]
|
952 |
+
|
953 |
+
rng_indexes = cast(list[RangeIndex], indexes)
|
954 |
+
|
955 |
+
start = step = next_ = None
|
956 |
+
|
957 |
+
# Filter the empty indexes
|
958 |
+
non_empty_indexes = [obj for obj in rng_indexes if len(obj)]
|
959 |
+
|
960 |
+
for obj in non_empty_indexes:
|
961 |
+
rng = obj._range
|
962 |
+
|
963 |
+
if start is None:
|
964 |
+
# This is set by the first non-empty index
|
965 |
+
start = rng.start
|
966 |
+
if step is None and len(rng) > 1:
|
967 |
+
step = rng.step
|
968 |
+
elif step is None:
|
969 |
+
# First non-empty index had only one element
|
970 |
+
if rng.start == start:
|
971 |
+
values = np.concatenate([x._values for x in rng_indexes])
|
972 |
+
result = self._constructor(values)
|
973 |
+
return result.rename(name)
|
974 |
+
|
975 |
+
step = rng.start - start
|
976 |
+
|
977 |
+
non_consecutive = (step != rng.step and len(rng) > 1) or (
|
978 |
+
next_ is not None and rng.start != next_
|
979 |
+
)
|
980 |
+
if non_consecutive:
|
981 |
+
result = self._constructor(
|
982 |
+
np.concatenate([x._values for x in rng_indexes])
|
983 |
+
)
|
984 |
+
return result.rename(name)
|
985 |
+
|
986 |
+
if step is not None:
|
987 |
+
next_ = rng[-1] + step
|
988 |
+
|
989 |
+
if non_empty_indexes:
|
990 |
+
# Get the stop value from "next" or alternatively
|
991 |
+
# from the last non-empty index
|
992 |
+
stop = non_empty_indexes[-1].stop if next_ is None else next_
|
993 |
+
return RangeIndex(start, stop, step).rename(name)
|
994 |
+
|
995 |
+
# Here all "indexes" had 0 length, i.e. were empty.
|
996 |
+
# In this case return an empty range index.
|
997 |
+
return RangeIndex(0, 0).rename(name)
|
998 |
+
|
999 |
+
def __len__(self) -> int:
|
1000 |
+
"""
|
1001 |
+
return the length of the RangeIndex
|
1002 |
+
"""
|
1003 |
+
return len(self._range)
|
1004 |
+
|
1005 |
+
@property
|
1006 |
+
def size(self) -> int:
|
1007 |
+
return len(self)
|
1008 |
+
|
1009 |
+
def __getitem__(self, key):
|
1010 |
+
"""
|
1011 |
+
Conserve RangeIndex type for scalar and slice keys.
|
1012 |
+
"""
|
1013 |
+
if isinstance(key, slice):
|
1014 |
+
return self._getitem_slice(key)
|
1015 |
+
elif is_integer(key):
|
1016 |
+
new_key = int(key)
|
1017 |
+
try:
|
1018 |
+
return self._range[new_key]
|
1019 |
+
except IndexError as err:
|
1020 |
+
raise IndexError(
|
1021 |
+
f"index {key} is out of bounds for axis 0 with size {len(self)}"
|
1022 |
+
) from err
|
1023 |
+
elif is_scalar(key):
|
1024 |
+
raise IndexError(
|
1025 |
+
"only integers, slices (`:`), "
|
1026 |
+
"ellipsis (`...`), numpy.newaxis (`None`) "
|
1027 |
+
"and integer or boolean "
|
1028 |
+
"arrays are valid indices"
|
1029 |
+
)
|
1030 |
+
return super().__getitem__(key)
|
1031 |
+
|
1032 |
+
def _getitem_slice(self, slobj: slice) -> Self:
|
1033 |
+
"""
|
1034 |
+
Fastpath for __getitem__ when we know we have a slice.
|
1035 |
+
"""
|
1036 |
+
res = self._range[slobj]
|
1037 |
+
return type(self)._simple_new(res, name=self._name)
|
1038 |
+
|
1039 |
+
@unpack_zerodim_and_defer("__floordiv__")
|
1040 |
+
def __floordiv__(self, other):
|
1041 |
+
if is_integer(other) and other != 0:
|
1042 |
+
if len(self) == 0 or self.start % other == 0 and self.step % other == 0:
|
1043 |
+
start = self.start // other
|
1044 |
+
step = self.step // other
|
1045 |
+
stop = start + len(self) * step
|
1046 |
+
new_range = range(start, stop, step or 1)
|
1047 |
+
return self._simple_new(new_range, name=self._name)
|
1048 |
+
if len(self) == 1:
|
1049 |
+
start = self.start // other
|
1050 |
+
new_range = range(start, start + 1, 1)
|
1051 |
+
return self._simple_new(new_range, name=self._name)
|
1052 |
+
|
1053 |
+
return super().__floordiv__(other)
|
1054 |
+
|
1055 |
+
# --------------------------------------------------------------------
|
1056 |
+
# Reductions
|
1057 |
+
|
1058 |
+
def all(self, *args, **kwargs) -> bool:
|
1059 |
+
return 0 not in self._range
|
1060 |
+
|
1061 |
+
def any(self, *args, **kwargs) -> bool:
|
1062 |
+
return any(self._range)
|
1063 |
+
|
1064 |
+
# --------------------------------------------------------------------
|
1065 |
+
|
1066 |
+
def _cmp_method(self, other, op):
|
1067 |
+
if isinstance(other, RangeIndex) and self._range == other._range:
|
1068 |
+
# Both are immutable so if ._range attr. are equal, shortcut is possible
|
1069 |
+
return super()._cmp_method(self, op)
|
1070 |
+
return super()._cmp_method(other, op)
|
1071 |
+
|
1072 |
+
def _arith_method(self, other, op):
|
1073 |
+
"""
|
1074 |
+
Parameters
|
1075 |
+
----------
|
1076 |
+
other : Any
|
1077 |
+
op : callable that accepts 2 params
|
1078 |
+
perform the binary op
|
1079 |
+
"""
|
1080 |
+
|
1081 |
+
if isinstance(other, ABCTimedeltaIndex):
|
1082 |
+
# Defer to TimedeltaIndex implementation
|
1083 |
+
return NotImplemented
|
1084 |
+
elif isinstance(other, (timedelta, np.timedelta64)):
|
1085 |
+
# GH#19333 is_integer evaluated True on timedelta64,
|
1086 |
+
# so we need to catch these explicitly
|
1087 |
+
return super()._arith_method(other, op)
|
1088 |
+
elif lib.is_np_dtype(getattr(other, "dtype", None), "m"):
|
1089 |
+
# Must be an np.ndarray; GH#22390
|
1090 |
+
return super()._arith_method(other, op)
|
1091 |
+
|
1092 |
+
if op in [
|
1093 |
+
operator.pow,
|
1094 |
+
ops.rpow,
|
1095 |
+
operator.mod,
|
1096 |
+
ops.rmod,
|
1097 |
+
operator.floordiv,
|
1098 |
+
ops.rfloordiv,
|
1099 |
+
divmod,
|
1100 |
+
ops.rdivmod,
|
1101 |
+
]:
|
1102 |
+
return super()._arith_method(other, op)
|
1103 |
+
|
1104 |
+
step: Callable | None = None
|
1105 |
+
if op in [operator.mul, ops.rmul, operator.truediv, ops.rtruediv]:
|
1106 |
+
step = op
|
1107 |
+
|
1108 |
+
# TODO: if other is a RangeIndex we may have more efficient options
|
1109 |
+
right = extract_array(other, extract_numpy=True, extract_range=True)
|
1110 |
+
left = self
|
1111 |
+
|
1112 |
+
try:
|
1113 |
+
# apply if we have an override
|
1114 |
+
if step:
|
1115 |
+
with np.errstate(all="ignore"):
|
1116 |
+
rstep = step(left.step, right)
|
1117 |
+
|
1118 |
+
# we don't have a representable op
|
1119 |
+
# so return a base index
|
1120 |
+
if not is_integer(rstep) or not rstep:
|
1121 |
+
raise ValueError
|
1122 |
+
|
1123 |
+
# GH#53255
|
1124 |
+
else:
|
1125 |
+
rstep = -left.step if op == ops.rsub else left.step
|
1126 |
+
|
1127 |
+
with np.errstate(all="ignore"):
|
1128 |
+
rstart = op(left.start, right)
|
1129 |
+
rstop = op(left.stop, right)
|
1130 |
+
|
1131 |
+
res_name = ops.get_op_result_name(self, other)
|
1132 |
+
result = type(self)(rstart, rstop, rstep, name=res_name)
|
1133 |
+
|
1134 |
+
# for compat with numpy / Index with int64 dtype
|
1135 |
+
# even if we can represent as a RangeIndex, return
|
1136 |
+
# as a float64 Index if we have float-like descriptors
|
1137 |
+
if not all(is_integer(x) for x in [rstart, rstop, rstep]):
|
1138 |
+
result = result.astype("float64")
|
1139 |
+
|
1140 |
+
return result
|
1141 |
+
|
1142 |
+
except (ValueError, TypeError, ZeroDivisionError):
|
1143 |
+
# test_arithmetic_explicit_conversions
|
1144 |
+
return super()._arith_method(other, op)
|
1145 |
+
|
1146 |
+
# error: Return type "Index" of "take" incompatible with return type
|
1147 |
+
# "RangeIndex" in supertype "Index"
|
1148 |
+
def take( # type: ignore[override]
|
1149 |
+
self,
|
1150 |
+
indices,
|
1151 |
+
axis: Axis = 0,
|
1152 |
+
allow_fill: bool = True,
|
1153 |
+
fill_value=None,
|
1154 |
+
**kwargs,
|
1155 |
+
) -> Index:
|
1156 |
+
if kwargs:
|
1157 |
+
nv.validate_take((), kwargs)
|
1158 |
+
if is_scalar(indices):
|
1159 |
+
raise TypeError("Expected indices to be array-like")
|
1160 |
+
indices = ensure_platform_int(indices)
|
1161 |
+
|
1162 |
+
# raise an exception if allow_fill is True and fill_value is not None
|
1163 |
+
self._maybe_disallow_fill(allow_fill, fill_value, indices)
|
1164 |
+
|
1165 |
+
if len(indices) == 0:
|
1166 |
+
taken = np.array([], dtype=self.dtype)
|
1167 |
+
else:
|
1168 |
+
ind_max = indices.max()
|
1169 |
+
if ind_max >= len(self):
|
1170 |
+
raise IndexError(
|
1171 |
+
f"index {ind_max} is out of bounds for axis 0 with size {len(self)}"
|
1172 |
+
)
|
1173 |
+
ind_min = indices.min()
|
1174 |
+
if ind_min < -len(self):
|
1175 |
+
raise IndexError(
|
1176 |
+
f"index {ind_min} is out of bounds for axis 0 with size {len(self)}"
|
1177 |
+
)
|
1178 |
+
taken = indices.astype(self.dtype, casting="safe")
|
1179 |
+
if ind_min < 0:
|
1180 |
+
taken %= len(self)
|
1181 |
+
if self.step != 1:
|
1182 |
+
taken *= self.step
|
1183 |
+
if self.start != 0:
|
1184 |
+
taken += self.start
|
1185 |
+
|
1186 |
+
# _constructor so RangeIndex-> Index with an int64 dtype
|
1187 |
+
return self._constructor._simple_new(taken, name=self.name)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/indexes/timedeltas.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" implement the TimedeltaIndex """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from pandas._libs import (
|
8 |
+
index as libindex,
|
9 |
+
lib,
|
10 |
+
)
|
11 |
+
from pandas._libs.tslibs import (
|
12 |
+
Resolution,
|
13 |
+
Timedelta,
|
14 |
+
to_offset,
|
15 |
+
)
|
16 |
+
from pandas._libs.tslibs.timedeltas import disallow_ambiguous_unit
|
17 |
+
from pandas.util._exceptions import find_stack_level
|
18 |
+
|
19 |
+
from pandas.core.dtypes.common import (
|
20 |
+
is_scalar,
|
21 |
+
pandas_dtype,
|
22 |
+
)
|
23 |
+
from pandas.core.dtypes.generic import ABCSeries
|
24 |
+
|
25 |
+
from pandas.core.arrays.timedeltas import TimedeltaArray
|
26 |
+
import pandas.core.common as com
|
27 |
+
from pandas.core.indexes.base import (
|
28 |
+
Index,
|
29 |
+
maybe_extract_name,
|
30 |
+
)
|
31 |
+
from pandas.core.indexes.datetimelike import DatetimeTimedeltaMixin
|
32 |
+
from pandas.core.indexes.extension import inherit_names
|
33 |
+
|
34 |
+
if TYPE_CHECKING:
|
35 |
+
from pandas._typing import DtypeObj
|
36 |
+
|
37 |
+
|
38 |
+
@inherit_names(
|
39 |
+
["__neg__", "__pos__", "__abs__", "total_seconds", "round", "floor", "ceil"]
|
40 |
+
+ TimedeltaArray._field_ops,
|
41 |
+
TimedeltaArray,
|
42 |
+
wrap=True,
|
43 |
+
)
|
44 |
+
@inherit_names(
|
45 |
+
[
|
46 |
+
"components",
|
47 |
+
"to_pytimedelta",
|
48 |
+
"sum",
|
49 |
+
"std",
|
50 |
+
"median",
|
51 |
+
],
|
52 |
+
TimedeltaArray,
|
53 |
+
)
|
54 |
+
class TimedeltaIndex(DatetimeTimedeltaMixin):
|
55 |
+
"""
|
56 |
+
Immutable Index of timedelta64 data.
|
57 |
+
|
58 |
+
Represented internally as int64, and scalars returned Timedelta objects.
|
59 |
+
|
60 |
+
Parameters
|
61 |
+
----------
|
62 |
+
data : array-like (1-dimensional), optional
|
63 |
+
Optional timedelta-like data to construct index with.
|
64 |
+
unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional
|
65 |
+
The unit of ``data``.
|
66 |
+
|
67 |
+
.. deprecated:: 2.2.0
|
68 |
+
Use ``pd.to_timedelta`` instead.
|
69 |
+
|
70 |
+
freq : str or pandas offset object, optional
|
71 |
+
One of pandas date offset strings or corresponding objects. The string
|
72 |
+
``'infer'`` can be passed in order to set the frequency of the index as
|
73 |
+
the inferred frequency upon creation.
|
74 |
+
dtype : numpy.dtype or str, default None
|
75 |
+
Valid ``numpy`` dtypes are ``timedelta64[ns]``, ``timedelta64[us]``,
|
76 |
+
``timedelta64[ms]``, and ``timedelta64[s]``.
|
77 |
+
copy : bool
|
78 |
+
Make a copy of input array.
|
79 |
+
name : object
|
80 |
+
Name to be stored in the index.
|
81 |
+
|
82 |
+
Attributes
|
83 |
+
----------
|
84 |
+
days
|
85 |
+
seconds
|
86 |
+
microseconds
|
87 |
+
nanoseconds
|
88 |
+
components
|
89 |
+
inferred_freq
|
90 |
+
|
91 |
+
Methods
|
92 |
+
-------
|
93 |
+
to_pytimedelta
|
94 |
+
to_series
|
95 |
+
round
|
96 |
+
floor
|
97 |
+
ceil
|
98 |
+
to_frame
|
99 |
+
mean
|
100 |
+
|
101 |
+
See Also
|
102 |
+
--------
|
103 |
+
Index : The base pandas Index type.
|
104 |
+
Timedelta : Represents a duration between two dates or times.
|
105 |
+
DatetimeIndex : Index of datetime64 data.
|
106 |
+
PeriodIndex : Index of Period data.
|
107 |
+
timedelta_range : Create a fixed-frequency TimedeltaIndex.
|
108 |
+
|
109 |
+
Notes
|
110 |
+
-----
|
111 |
+
To learn more about the frequency strings, please see `this link
|
112 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
113 |
+
|
114 |
+
Examples
|
115 |
+
--------
|
116 |
+
>>> pd.TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'])
|
117 |
+
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
|
118 |
+
dtype='timedelta64[ns]', freq=None)
|
119 |
+
|
120 |
+
We can also let pandas infer the frequency when possible.
|
121 |
+
|
122 |
+
>>> pd.TimedeltaIndex(np.arange(5) * 24 * 3600 * 1e9, freq='infer')
|
123 |
+
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
|
124 |
+
dtype='timedelta64[ns]', freq='D')
|
125 |
+
"""
|
126 |
+
|
127 |
+
_typ = "timedeltaindex"
|
128 |
+
|
129 |
+
_data_cls = TimedeltaArray
|
130 |
+
|
131 |
+
@property
|
132 |
+
def _engine_type(self) -> type[libindex.TimedeltaEngine]:
|
133 |
+
return libindex.TimedeltaEngine
|
134 |
+
|
135 |
+
_data: TimedeltaArray
|
136 |
+
|
137 |
+
# Use base class method instead of DatetimeTimedeltaMixin._get_string_slice
|
138 |
+
_get_string_slice = Index._get_string_slice
|
139 |
+
|
140 |
+
# error: Signature of "_resolution_obj" incompatible with supertype
|
141 |
+
# "DatetimeIndexOpsMixin"
|
142 |
+
@property
|
143 |
+
def _resolution_obj(self) -> Resolution | None: # type: ignore[override]
|
144 |
+
return self._data._resolution_obj
|
145 |
+
|
146 |
+
# -------------------------------------------------------------------
|
147 |
+
# Constructors
|
148 |
+
|
149 |
+
def __new__(
|
150 |
+
cls,
|
151 |
+
data=None,
|
152 |
+
unit=lib.no_default,
|
153 |
+
freq=lib.no_default,
|
154 |
+
closed=lib.no_default,
|
155 |
+
dtype=None,
|
156 |
+
copy: bool = False,
|
157 |
+
name=None,
|
158 |
+
):
|
159 |
+
if closed is not lib.no_default:
|
160 |
+
# GH#52628
|
161 |
+
warnings.warn(
|
162 |
+
f"The 'closed' keyword in {cls.__name__} construction is "
|
163 |
+
"deprecated and will be removed in a future version.",
|
164 |
+
FutureWarning,
|
165 |
+
stacklevel=find_stack_level(),
|
166 |
+
)
|
167 |
+
|
168 |
+
if unit is not lib.no_default:
|
169 |
+
# GH#55499
|
170 |
+
warnings.warn(
|
171 |
+
f"The 'unit' keyword in {cls.__name__} construction is "
|
172 |
+
"deprecated and will be removed in a future version. "
|
173 |
+
"Use pd.to_timedelta instead.",
|
174 |
+
FutureWarning,
|
175 |
+
stacklevel=find_stack_level(),
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
unit = None
|
179 |
+
|
180 |
+
name = maybe_extract_name(name, data, cls)
|
181 |
+
|
182 |
+
if is_scalar(data):
|
183 |
+
cls._raise_scalar_data_error(data)
|
184 |
+
|
185 |
+
disallow_ambiguous_unit(unit)
|
186 |
+
if dtype is not None:
|
187 |
+
dtype = pandas_dtype(dtype)
|
188 |
+
|
189 |
+
if (
|
190 |
+
isinstance(data, TimedeltaArray)
|
191 |
+
and freq is lib.no_default
|
192 |
+
and (dtype is None or dtype == data.dtype)
|
193 |
+
):
|
194 |
+
if copy:
|
195 |
+
data = data.copy()
|
196 |
+
return cls._simple_new(data, name=name)
|
197 |
+
|
198 |
+
if (
|
199 |
+
isinstance(data, TimedeltaIndex)
|
200 |
+
and freq is lib.no_default
|
201 |
+
and name is None
|
202 |
+
and (dtype is None or dtype == data.dtype)
|
203 |
+
):
|
204 |
+
if copy:
|
205 |
+
return data.copy()
|
206 |
+
else:
|
207 |
+
return data._view()
|
208 |
+
|
209 |
+
# - Cases checked above all return/raise before reaching here - #
|
210 |
+
|
211 |
+
tdarr = TimedeltaArray._from_sequence_not_strict(
|
212 |
+
data, freq=freq, unit=unit, dtype=dtype, copy=copy
|
213 |
+
)
|
214 |
+
refs = None
|
215 |
+
if not copy and isinstance(data, (ABCSeries, Index)):
|
216 |
+
refs = data._references
|
217 |
+
|
218 |
+
return cls._simple_new(tdarr, name=name, refs=refs)
|
219 |
+
|
220 |
+
# -------------------------------------------------------------------
|
221 |
+
|
222 |
+
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
223 |
+
"""
|
224 |
+
Can we compare values of the given dtype to our own?
|
225 |
+
"""
|
226 |
+
return lib.is_np_dtype(dtype, "m") # aka self._data._is_recognized_dtype
|
227 |
+
|
228 |
+
# -------------------------------------------------------------------
|
229 |
+
# Indexing Methods
|
230 |
+
|
231 |
+
def get_loc(self, key):
|
232 |
+
"""
|
233 |
+
Get integer location for requested label
|
234 |
+
|
235 |
+
Returns
|
236 |
+
-------
|
237 |
+
loc : int, slice, or ndarray[int]
|
238 |
+
"""
|
239 |
+
self._check_indexing_error(key)
|
240 |
+
|
241 |
+
try:
|
242 |
+
key = self._data._validate_scalar(key, unbox=False)
|
243 |
+
except TypeError as err:
|
244 |
+
raise KeyError(key) from err
|
245 |
+
|
246 |
+
return Index.get_loc(self, key)
|
247 |
+
|
248 |
+
def _parse_with_reso(self, label: str):
|
249 |
+
# the "with_reso" is a no-op for TimedeltaIndex
|
250 |
+
parsed = Timedelta(label)
|
251 |
+
return parsed, None
|
252 |
+
|
253 |
+
def _parsed_string_to_bounds(self, reso, parsed: Timedelta):
|
254 |
+
# reso is unused, included to match signature of DTI/PI
|
255 |
+
lbound = parsed.round(parsed.resolution_string)
|
256 |
+
rbound = lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns")
|
257 |
+
return lbound, rbound
|
258 |
+
|
259 |
+
# -------------------------------------------------------------------
|
260 |
+
|
261 |
+
@property
|
262 |
+
def inferred_type(self) -> str:
|
263 |
+
return "timedelta64"
|
264 |
+
|
265 |
+
|
266 |
+
def timedelta_range(
|
267 |
+
start=None,
|
268 |
+
end=None,
|
269 |
+
periods: int | None = None,
|
270 |
+
freq=None,
|
271 |
+
name=None,
|
272 |
+
closed=None,
|
273 |
+
*,
|
274 |
+
unit: str | None = None,
|
275 |
+
) -> TimedeltaIndex:
|
276 |
+
"""
|
277 |
+
Return a fixed frequency TimedeltaIndex with day as the default.
|
278 |
+
|
279 |
+
Parameters
|
280 |
+
----------
|
281 |
+
start : str or timedelta-like, default None
|
282 |
+
Left bound for generating timedeltas.
|
283 |
+
end : str or timedelta-like, default None
|
284 |
+
Right bound for generating timedeltas.
|
285 |
+
periods : int, default None
|
286 |
+
Number of periods to generate.
|
287 |
+
freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'D'
|
288 |
+
Frequency strings can have multiples, e.g. '5h'.
|
289 |
+
name : str, default None
|
290 |
+
Name of the resulting TimedeltaIndex.
|
291 |
+
closed : str, default None
|
292 |
+
Make the interval closed with respect to the given frequency to
|
293 |
+
the 'left', 'right', or both sides (None).
|
294 |
+
unit : str, default None
|
295 |
+
Specify the desired resolution of the result.
|
296 |
+
|
297 |
+
.. versionadded:: 2.0.0
|
298 |
+
|
299 |
+
Returns
|
300 |
+
-------
|
301 |
+
TimedeltaIndex
|
302 |
+
|
303 |
+
Notes
|
304 |
+
-----
|
305 |
+
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
|
306 |
+
exactly three must be specified. If ``freq`` is omitted, the resulting
|
307 |
+
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
|
308 |
+
``start`` and ``end`` (closed on both sides).
|
309 |
+
|
310 |
+
To learn more about the frequency strings, please see `this link
|
311 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
312 |
+
|
313 |
+
Examples
|
314 |
+
--------
|
315 |
+
>>> pd.timedelta_range(start='1 day', periods=4)
|
316 |
+
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
|
317 |
+
dtype='timedelta64[ns]', freq='D')
|
318 |
+
|
319 |
+
The ``closed`` parameter specifies which endpoint is included. The default
|
320 |
+
behavior is to include both endpoints.
|
321 |
+
|
322 |
+
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
|
323 |
+
TimedeltaIndex(['2 days', '3 days', '4 days'],
|
324 |
+
dtype='timedelta64[ns]', freq='D')
|
325 |
+
|
326 |
+
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
|
327 |
+
Only fixed frequencies can be passed, non-fixed frequencies such as
|
328 |
+
'M' (month end) will raise.
|
329 |
+
|
330 |
+
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6h')
|
331 |
+
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
|
332 |
+
'1 days 18:00:00', '2 days 00:00:00'],
|
333 |
+
dtype='timedelta64[ns]', freq='6h')
|
334 |
+
|
335 |
+
Specify ``start``, ``end``, and ``periods``; the frequency is generated
|
336 |
+
automatically (linearly spaced).
|
337 |
+
|
338 |
+
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
|
339 |
+
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
|
340 |
+
'5 days 00:00:00'],
|
341 |
+
dtype='timedelta64[ns]', freq=None)
|
342 |
+
|
343 |
+
**Specify a unit**
|
344 |
+
|
345 |
+
>>> pd.timedelta_range("1 Day", periods=3, freq="100000D", unit="s")
|
346 |
+
TimedeltaIndex(['1 days', '100001 days', '200001 days'],
|
347 |
+
dtype='timedelta64[s]', freq='100000D')
|
348 |
+
"""
|
349 |
+
if freq is None and com.any_none(periods, start, end):
|
350 |
+
freq = "D"
|
351 |
+
|
352 |
+
freq = to_offset(freq)
|
353 |
+
tdarr = TimedeltaArray._generate_range(
|
354 |
+
start, end, periods, freq, closed=closed, unit=unit
|
355 |
+
)
|
356 |
+
return TimedeltaIndex._simple_new(tdarr, name=name)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/describe.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/selectn.cpython-310.pyc
ADDED
Binary file (6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/__pycache__/to_dict.cpython-310.pyc
ADDED
Binary file (8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/describe.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module responsible for execution of NDFrame.describe() method.
|
3 |
+
|
4 |
+
Method NDFrame.describe() delegates actual execution to function describe_ndframe().
|
5 |
+
"""
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from abc import (
|
9 |
+
ABC,
|
10 |
+
abstractmethod,
|
11 |
+
)
|
12 |
+
from typing import (
|
13 |
+
TYPE_CHECKING,
|
14 |
+
Callable,
|
15 |
+
cast,
|
16 |
+
)
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
from pandas._libs.tslibs import Timestamp
|
21 |
+
from pandas._typing import (
|
22 |
+
DtypeObj,
|
23 |
+
NDFrameT,
|
24 |
+
npt,
|
25 |
+
)
|
26 |
+
from pandas.util._validators import validate_percentile
|
27 |
+
|
28 |
+
from pandas.core.dtypes.common import (
|
29 |
+
is_bool_dtype,
|
30 |
+
is_numeric_dtype,
|
31 |
+
)
|
32 |
+
from pandas.core.dtypes.dtypes import (
|
33 |
+
ArrowDtype,
|
34 |
+
DatetimeTZDtype,
|
35 |
+
ExtensionDtype,
|
36 |
+
)
|
37 |
+
|
38 |
+
from pandas.core.arrays.floating import Float64Dtype
|
39 |
+
from pandas.core.reshape.concat import concat
|
40 |
+
|
41 |
+
from pandas.io.formats.format import format_percentiles
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from collections.abc import (
|
45 |
+
Hashable,
|
46 |
+
Sequence,
|
47 |
+
)
|
48 |
+
|
49 |
+
from pandas import (
|
50 |
+
DataFrame,
|
51 |
+
Series,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def describe_ndframe(
|
56 |
+
*,
|
57 |
+
obj: NDFrameT,
|
58 |
+
include: str | Sequence[str] | None,
|
59 |
+
exclude: str | Sequence[str] | None,
|
60 |
+
percentiles: Sequence[float] | np.ndarray | None,
|
61 |
+
) -> NDFrameT:
|
62 |
+
"""Describe series or dataframe.
|
63 |
+
|
64 |
+
Called from pandas.core.generic.NDFrame.describe()
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
obj: DataFrame or Series
|
69 |
+
Either dataframe or series to be described.
|
70 |
+
include : 'all', list-like of dtypes or None (default), optional
|
71 |
+
A white list of data types to include in the result. Ignored for ``Series``.
|
72 |
+
exclude : list-like of dtypes or None (default), optional,
|
73 |
+
A black list of data types to omit from the result. Ignored for ``Series``.
|
74 |
+
percentiles : list-like of numbers, optional
|
75 |
+
The percentiles to include in the output. All should fall between 0 and 1.
|
76 |
+
The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and
|
77 |
+
75th percentiles.
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
Dataframe or series description.
|
82 |
+
"""
|
83 |
+
percentiles = _refine_percentiles(percentiles)
|
84 |
+
|
85 |
+
describer: NDFrameDescriberAbstract
|
86 |
+
if obj.ndim == 1:
|
87 |
+
describer = SeriesDescriber(
|
88 |
+
obj=cast("Series", obj),
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
describer = DataFrameDescriber(
|
92 |
+
obj=cast("DataFrame", obj),
|
93 |
+
include=include,
|
94 |
+
exclude=exclude,
|
95 |
+
)
|
96 |
+
|
97 |
+
result = describer.describe(percentiles=percentiles)
|
98 |
+
return cast(NDFrameT, result)
|
99 |
+
|
100 |
+
|
101 |
+
class NDFrameDescriberAbstract(ABC):
|
102 |
+
"""Abstract class for describing dataframe or series.
|
103 |
+
|
104 |
+
Parameters
|
105 |
+
----------
|
106 |
+
obj : Series or DataFrame
|
107 |
+
Object to be described.
|
108 |
+
"""
|
109 |
+
|
110 |
+
def __init__(self, obj: DataFrame | Series) -> None:
|
111 |
+
self.obj = obj
|
112 |
+
|
113 |
+
@abstractmethod
|
114 |
+
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame | Series:
|
115 |
+
"""Do describe either series or dataframe.
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
percentiles : list-like of numbers
|
120 |
+
The percentiles to include in the output.
|
121 |
+
"""
|
122 |
+
|
123 |
+
|
124 |
+
class SeriesDescriber(NDFrameDescriberAbstract):
|
125 |
+
"""Class responsible for creating series description."""
|
126 |
+
|
127 |
+
obj: Series
|
128 |
+
|
129 |
+
def describe(self, percentiles: Sequence[float] | np.ndarray) -> Series:
|
130 |
+
describe_func = select_describe_func(
|
131 |
+
self.obj,
|
132 |
+
)
|
133 |
+
return describe_func(self.obj, percentiles)
|
134 |
+
|
135 |
+
|
136 |
+
class DataFrameDescriber(NDFrameDescriberAbstract):
|
137 |
+
"""Class responsible for creating dataobj description.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
obj : DataFrame
|
142 |
+
DataFrame to be described.
|
143 |
+
include : 'all', list-like of dtypes or None
|
144 |
+
A white list of data types to include in the result.
|
145 |
+
exclude : list-like of dtypes or None
|
146 |
+
A black list of data types to omit from the result.
|
147 |
+
"""
|
148 |
+
|
149 |
+
obj: DataFrame
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
obj: DataFrame,
|
154 |
+
*,
|
155 |
+
include: str | Sequence[str] | None,
|
156 |
+
exclude: str | Sequence[str] | None,
|
157 |
+
) -> None:
|
158 |
+
self.include = include
|
159 |
+
self.exclude = exclude
|
160 |
+
|
161 |
+
if obj.ndim == 2 and obj.columns.size == 0:
|
162 |
+
raise ValueError("Cannot describe a DataFrame without columns")
|
163 |
+
|
164 |
+
super().__init__(obj)
|
165 |
+
|
166 |
+
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame:
|
167 |
+
data = self._select_data()
|
168 |
+
|
169 |
+
ldesc: list[Series] = []
|
170 |
+
for _, series in data.items():
|
171 |
+
describe_func = select_describe_func(series)
|
172 |
+
ldesc.append(describe_func(series, percentiles))
|
173 |
+
|
174 |
+
col_names = reorder_columns(ldesc)
|
175 |
+
d = concat(
|
176 |
+
[x.reindex(col_names, copy=False) for x in ldesc],
|
177 |
+
axis=1,
|
178 |
+
sort=False,
|
179 |
+
)
|
180 |
+
d.columns = data.columns.copy()
|
181 |
+
return d
|
182 |
+
|
183 |
+
def _select_data(self) -> DataFrame:
|
184 |
+
"""Select columns to be described."""
|
185 |
+
if (self.include is None) and (self.exclude is None):
|
186 |
+
# when some numerics are found, keep only numerics
|
187 |
+
default_include: list[npt.DTypeLike] = [np.number, "datetime"]
|
188 |
+
data = self.obj.select_dtypes(include=default_include)
|
189 |
+
if len(data.columns) == 0:
|
190 |
+
data = self.obj
|
191 |
+
elif self.include == "all":
|
192 |
+
if self.exclude is not None:
|
193 |
+
msg = "exclude must be None when include is 'all'"
|
194 |
+
raise ValueError(msg)
|
195 |
+
data = self.obj
|
196 |
+
else:
|
197 |
+
data = self.obj.select_dtypes(
|
198 |
+
include=self.include,
|
199 |
+
exclude=self.exclude,
|
200 |
+
)
|
201 |
+
return data
|
202 |
+
|
203 |
+
|
204 |
+
def reorder_columns(ldesc: Sequence[Series]) -> list[Hashable]:
|
205 |
+
"""Set a convenient order for rows for display."""
|
206 |
+
names: list[Hashable] = []
|
207 |
+
seen_names: set[Hashable] = set()
|
208 |
+
ldesc_indexes = sorted((x.index for x in ldesc), key=len)
|
209 |
+
for idxnames in ldesc_indexes:
|
210 |
+
for name in idxnames:
|
211 |
+
if name not in seen_names:
|
212 |
+
seen_names.add(name)
|
213 |
+
names.append(name)
|
214 |
+
return names
|
215 |
+
|
216 |
+
|
217 |
+
def describe_numeric_1d(series: Series, percentiles: Sequence[float]) -> Series:
|
218 |
+
"""Describe series containing numerical data.
|
219 |
+
|
220 |
+
Parameters
|
221 |
+
----------
|
222 |
+
series : Series
|
223 |
+
Series to be described.
|
224 |
+
percentiles : list-like of numbers
|
225 |
+
The percentiles to include in the output.
|
226 |
+
"""
|
227 |
+
from pandas import Series
|
228 |
+
|
229 |
+
formatted_percentiles = format_percentiles(percentiles)
|
230 |
+
|
231 |
+
stat_index = ["count", "mean", "std", "min"] + formatted_percentiles + ["max"]
|
232 |
+
d = (
|
233 |
+
[series.count(), series.mean(), series.std(), series.min()]
|
234 |
+
+ series.quantile(percentiles).tolist()
|
235 |
+
+ [series.max()]
|
236 |
+
)
|
237 |
+
# GH#48340 - always return float on non-complex numeric data
|
238 |
+
dtype: DtypeObj | None
|
239 |
+
if isinstance(series.dtype, ExtensionDtype):
|
240 |
+
if isinstance(series.dtype, ArrowDtype):
|
241 |
+
if series.dtype.kind == "m":
|
242 |
+
# GH53001: describe timedeltas with object dtype
|
243 |
+
dtype = None
|
244 |
+
else:
|
245 |
+
import pyarrow as pa
|
246 |
+
|
247 |
+
dtype = ArrowDtype(pa.float64())
|
248 |
+
else:
|
249 |
+
dtype = Float64Dtype()
|
250 |
+
elif series.dtype.kind in "iufb":
|
251 |
+
# i.e. numeric but exclude complex dtype
|
252 |
+
dtype = np.dtype("float")
|
253 |
+
else:
|
254 |
+
dtype = None
|
255 |
+
return Series(d, index=stat_index, name=series.name, dtype=dtype)
|
256 |
+
|
257 |
+
|
258 |
+
def describe_categorical_1d(
|
259 |
+
data: Series,
|
260 |
+
percentiles_ignored: Sequence[float],
|
261 |
+
) -> Series:
|
262 |
+
"""Describe series containing categorical data.
|
263 |
+
|
264 |
+
Parameters
|
265 |
+
----------
|
266 |
+
data : Series
|
267 |
+
Series to be described.
|
268 |
+
percentiles_ignored : list-like of numbers
|
269 |
+
Ignored, but in place to unify interface.
|
270 |
+
"""
|
271 |
+
names = ["count", "unique", "top", "freq"]
|
272 |
+
objcounts = data.value_counts()
|
273 |
+
count_unique = len(objcounts[objcounts != 0])
|
274 |
+
if count_unique > 0:
|
275 |
+
top, freq = objcounts.index[0], objcounts.iloc[0]
|
276 |
+
dtype = None
|
277 |
+
else:
|
278 |
+
# If the DataFrame is empty, set 'top' and 'freq' to None
|
279 |
+
# to maintain output shape consistency
|
280 |
+
top, freq = np.nan, np.nan
|
281 |
+
dtype = "object"
|
282 |
+
|
283 |
+
result = [data.count(), count_unique, top, freq]
|
284 |
+
|
285 |
+
from pandas import Series
|
286 |
+
|
287 |
+
return Series(result, index=names, name=data.name, dtype=dtype)
|
288 |
+
|
289 |
+
|
290 |
+
def describe_timestamp_as_categorical_1d(
|
291 |
+
data: Series,
|
292 |
+
percentiles_ignored: Sequence[float],
|
293 |
+
) -> Series:
|
294 |
+
"""Describe series containing timestamp data treated as categorical.
|
295 |
+
|
296 |
+
Parameters
|
297 |
+
----------
|
298 |
+
data : Series
|
299 |
+
Series to be described.
|
300 |
+
percentiles_ignored : list-like of numbers
|
301 |
+
Ignored, but in place to unify interface.
|
302 |
+
"""
|
303 |
+
names = ["count", "unique"]
|
304 |
+
objcounts = data.value_counts()
|
305 |
+
count_unique = len(objcounts[objcounts != 0])
|
306 |
+
result: list[float | Timestamp] = [data.count(), count_unique]
|
307 |
+
dtype = None
|
308 |
+
if count_unique > 0:
|
309 |
+
top, freq = objcounts.index[0], objcounts.iloc[0]
|
310 |
+
tz = data.dt.tz
|
311 |
+
asint = data.dropna().values.view("i8")
|
312 |
+
top = Timestamp(top)
|
313 |
+
if top.tzinfo is not None and tz is not None:
|
314 |
+
# Don't tz_localize(None) if key is already tz-aware
|
315 |
+
top = top.tz_convert(tz)
|
316 |
+
else:
|
317 |
+
top = top.tz_localize(tz)
|
318 |
+
names += ["top", "freq", "first", "last"]
|
319 |
+
result += [
|
320 |
+
top,
|
321 |
+
freq,
|
322 |
+
Timestamp(asint.min(), tz=tz),
|
323 |
+
Timestamp(asint.max(), tz=tz),
|
324 |
+
]
|
325 |
+
|
326 |
+
# If the DataFrame is empty, set 'top' and 'freq' to None
|
327 |
+
# to maintain output shape consistency
|
328 |
+
else:
|
329 |
+
names += ["top", "freq"]
|
330 |
+
result += [np.nan, np.nan]
|
331 |
+
dtype = "object"
|
332 |
+
|
333 |
+
from pandas import Series
|
334 |
+
|
335 |
+
return Series(result, index=names, name=data.name, dtype=dtype)
|
336 |
+
|
337 |
+
|
338 |
+
def describe_timestamp_1d(data: Series, percentiles: Sequence[float]) -> Series:
|
339 |
+
"""Describe series containing datetime64 dtype.
|
340 |
+
|
341 |
+
Parameters
|
342 |
+
----------
|
343 |
+
data : Series
|
344 |
+
Series to be described.
|
345 |
+
percentiles : list-like of numbers
|
346 |
+
The percentiles to include in the output.
|
347 |
+
"""
|
348 |
+
# GH-30164
|
349 |
+
from pandas import Series
|
350 |
+
|
351 |
+
formatted_percentiles = format_percentiles(percentiles)
|
352 |
+
|
353 |
+
stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"]
|
354 |
+
d = (
|
355 |
+
[data.count(), data.mean(), data.min()]
|
356 |
+
+ data.quantile(percentiles).tolist()
|
357 |
+
+ [data.max()]
|
358 |
+
)
|
359 |
+
return Series(d, index=stat_index, name=data.name)
|
360 |
+
|
361 |
+
|
362 |
+
def select_describe_func(
|
363 |
+
data: Series,
|
364 |
+
) -> Callable:
|
365 |
+
"""Select proper function for describing series based on data type.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
----------
|
369 |
+
data : Series
|
370 |
+
Series to be described.
|
371 |
+
"""
|
372 |
+
if is_bool_dtype(data.dtype):
|
373 |
+
return describe_categorical_1d
|
374 |
+
elif is_numeric_dtype(data):
|
375 |
+
return describe_numeric_1d
|
376 |
+
elif data.dtype.kind == "M" or isinstance(data.dtype, DatetimeTZDtype):
|
377 |
+
return describe_timestamp_1d
|
378 |
+
elif data.dtype.kind == "m":
|
379 |
+
return describe_numeric_1d
|
380 |
+
else:
|
381 |
+
return describe_categorical_1d
|
382 |
+
|
383 |
+
|
384 |
+
def _refine_percentiles(
|
385 |
+
percentiles: Sequence[float] | np.ndarray | None,
|
386 |
+
) -> npt.NDArray[np.float64]:
|
387 |
+
"""
|
388 |
+
Ensure that percentiles are unique and sorted.
|
389 |
+
|
390 |
+
Parameters
|
391 |
+
----------
|
392 |
+
percentiles : list-like of numbers, optional
|
393 |
+
The percentiles to include in the output.
|
394 |
+
"""
|
395 |
+
if percentiles is None:
|
396 |
+
return np.array([0.25, 0.5, 0.75])
|
397 |
+
|
398 |
+
# explicit conversion of `percentiles` to list
|
399 |
+
percentiles = list(percentiles)
|
400 |
+
|
401 |
+
# get them all to be in [0, 1]
|
402 |
+
validate_percentile(percentiles)
|
403 |
+
|
404 |
+
# median should always be included
|
405 |
+
if 0.5 not in percentiles:
|
406 |
+
percentiles.append(0.5)
|
407 |
+
|
408 |
+
percentiles = np.asarray(percentiles)
|
409 |
+
|
410 |
+
# sort and check for duplicates
|
411 |
+
unique_pcts = np.unique(percentiles)
|
412 |
+
assert percentiles is not None
|
413 |
+
if len(unique_pcts) < len(percentiles):
|
414 |
+
raise ValueError("percentiles cannot contain duplicates")
|
415 |
+
|
416 |
+
return unique_pcts
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/selectn.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of nlargest and nsmallest.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from collections.abc import (
|
8 |
+
Hashable,
|
9 |
+
Sequence,
|
10 |
+
)
|
11 |
+
from typing import (
|
12 |
+
TYPE_CHECKING,
|
13 |
+
cast,
|
14 |
+
final,
|
15 |
+
)
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from pandas._libs import algos as libalgos
|
20 |
+
|
21 |
+
from pandas.core.dtypes.common import (
|
22 |
+
is_bool_dtype,
|
23 |
+
is_complex_dtype,
|
24 |
+
is_integer_dtype,
|
25 |
+
is_list_like,
|
26 |
+
is_numeric_dtype,
|
27 |
+
needs_i8_conversion,
|
28 |
+
)
|
29 |
+
from pandas.core.dtypes.dtypes import BaseMaskedDtype
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
from pandas._typing import (
|
33 |
+
DtypeObj,
|
34 |
+
IndexLabel,
|
35 |
+
)
|
36 |
+
|
37 |
+
from pandas import (
|
38 |
+
DataFrame,
|
39 |
+
Series,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
class SelectN:
|
44 |
+
def __init__(self, obj, n: int, keep: str) -> None:
|
45 |
+
self.obj = obj
|
46 |
+
self.n = n
|
47 |
+
self.keep = keep
|
48 |
+
|
49 |
+
if self.keep not in ("first", "last", "all"):
|
50 |
+
raise ValueError('keep must be either "first", "last" or "all"')
|
51 |
+
|
52 |
+
def compute(self, method: str) -> DataFrame | Series:
|
53 |
+
raise NotImplementedError
|
54 |
+
|
55 |
+
@final
|
56 |
+
def nlargest(self):
|
57 |
+
return self.compute("nlargest")
|
58 |
+
|
59 |
+
@final
|
60 |
+
def nsmallest(self):
|
61 |
+
return self.compute("nsmallest")
|
62 |
+
|
63 |
+
@final
|
64 |
+
@staticmethod
|
65 |
+
def is_valid_dtype_n_method(dtype: DtypeObj) -> bool:
|
66 |
+
"""
|
67 |
+
Helper function to determine if dtype is valid for
|
68 |
+
nsmallest/nlargest methods
|
69 |
+
"""
|
70 |
+
if is_numeric_dtype(dtype):
|
71 |
+
return not is_complex_dtype(dtype)
|
72 |
+
return needs_i8_conversion(dtype)
|
73 |
+
|
74 |
+
|
75 |
+
class SelectNSeries(SelectN):
|
76 |
+
"""
|
77 |
+
Implement n largest/smallest for Series
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
obj : Series
|
82 |
+
n : int
|
83 |
+
keep : {'first', 'last'}, default 'first'
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
nordered : Series
|
88 |
+
"""
|
89 |
+
|
90 |
+
def compute(self, method: str) -> Series:
|
91 |
+
from pandas.core.reshape.concat import concat
|
92 |
+
|
93 |
+
n = self.n
|
94 |
+
dtype = self.obj.dtype
|
95 |
+
if not self.is_valid_dtype_n_method(dtype):
|
96 |
+
raise TypeError(f"Cannot use method '{method}' with dtype {dtype}")
|
97 |
+
|
98 |
+
if n <= 0:
|
99 |
+
return self.obj[[]]
|
100 |
+
|
101 |
+
dropped = self.obj.dropna()
|
102 |
+
nan_index = self.obj.drop(dropped.index)
|
103 |
+
|
104 |
+
# slow method
|
105 |
+
if n >= len(self.obj):
|
106 |
+
ascending = method == "nsmallest"
|
107 |
+
return self.obj.sort_values(ascending=ascending).head(n)
|
108 |
+
|
109 |
+
# fast method
|
110 |
+
new_dtype = dropped.dtype
|
111 |
+
|
112 |
+
# Similar to algorithms._ensure_data
|
113 |
+
arr = dropped._values
|
114 |
+
if needs_i8_conversion(arr.dtype):
|
115 |
+
arr = arr.view("i8")
|
116 |
+
elif isinstance(arr.dtype, BaseMaskedDtype):
|
117 |
+
arr = arr._data
|
118 |
+
else:
|
119 |
+
arr = np.asarray(arr)
|
120 |
+
if arr.dtype.kind == "b":
|
121 |
+
arr = arr.view(np.uint8)
|
122 |
+
|
123 |
+
if method == "nlargest":
|
124 |
+
arr = -arr
|
125 |
+
if is_integer_dtype(new_dtype):
|
126 |
+
# GH 21426: ensure reverse ordering at boundaries
|
127 |
+
arr -= 1
|
128 |
+
|
129 |
+
elif is_bool_dtype(new_dtype):
|
130 |
+
# GH 26154: ensure False is smaller than True
|
131 |
+
arr = 1 - (-arr)
|
132 |
+
|
133 |
+
if self.keep == "last":
|
134 |
+
arr = arr[::-1]
|
135 |
+
|
136 |
+
nbase = n
|
137 |
+
narr = len(arr)
|
138 |
+
n = min(n, narr)
|
139 |
+
|
140 |
+
# arr passed into kth_smallest must be contiguous. We copy
|
141 |
+
# here because kth_smallest will modify its input
|
142 |
+
# avoid OOB access with kth_smallest_c when n <= 0
|
143 |
+
if len(arr) > 0:
|
144 |
+
kth_val = libalgos.kth_smallest(arr.copy(order="C"), n - 1)
|
145 |
+
else:
|
146 |
+
kth_val = np.nan
|
147 |
+
(ns,) = np.nonzero(arr <= kth_val)
|
148 |
+
inds = ns[arr[ns].argsort(kind="mergesort")]
|
149 |
+
|
150 |
+
if self.keep != "all":
|
151 |
+
inds = inds[:n]
|
152 |
+
findex = nbase
|
153 |
+
else:
|
154 |
+
if len(inds) < nbase <= len(nan_index) + len(inds):
|
155 |
+
findex = len(nan_index) + len(inds)
|
156 |
+
else:
|
157 |
+
findex = len(inds)
|
158 |
+
|
159 |
+
if self.keep == "last":
|
160 |
+
# reverse indices
|
161 |
+
inds = narr - 1 - inds
|
162 |
+
|
163 |
+
return concat([dropped.iloc[inds], nan_index]).iloc[:findex]
|
164 |
+
|
165 |
+
|
166 |
+
class SelectNFrame(SelectN):
|
167 |
+
"""
|
168 |
+
Implement n largest/smallest for DataFrame
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
----------
|
172 |
+
obj : DataFrame
|
173 |
+
n : int
|
174 |
+
keep : {'first', 'last'}, default 'first'
|
175 |
+
columns : list or str
|
176 |
+
|
177 |
+
Returns
|
178 |
+
-------
|
179 |
+
nordered : DataFrame
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, obj: DataFrame, n: int, keep: str, columns: IndexLabel) -> None:
|
183 |
+
super().__init__(obj, n, keep)
|
184 |
+
if not is_list_like(columns) or isinstance(columns, tuple):
|
185 |
+
columns = [columns]
|
186 |
+
|
187 |
+
columns = cast(Sequence[Hashable], columns)
|
188 |
+
columns = list(columns)
|
189 |
+
self.columns = columns
|
190 |
+
|
191 |
+
def compute(self, method: str) -> DataFrame:
|
192 |
+
from pandas.core.api import Index
|
193 |
+
|
194 |
+
n = self.n
|
195 |
+
frame = self.obj
|
196 |
+
columns = self.columns
|
197 |
+
|
198 |
+
for column in columns:
|
199 |
+
dtype = frame[column].dtype
|
200 |
+
if not self.is_valid_dtype_n_method(dtype):
|
201 |
+
raise TypeError(
|
202 |
+
f"Column {repr(column)} has dtype {dtype}, "
|
203 |
+
f"cannot use method {repr(method)} with this dtype"
|
204 |
+
)
|
205 |
+
|
206 |
+
def get_indexer(current_indexer, other_indexer):
|
207 |
+
"""
|
208 |
+
Helper function to concat `current_indexer` and `other_indexer`
|
209 |
+
depending on `method`
|
210 |
+
"""
|
211 |
+
if method == "nsmallest":
|
212 |
+
return current_indexer.append(other_indexer)
|
213 |
+
else:
|
214 |
+
return other_indexer.append(current_indexer)
|
215 |
+
|
216 |
+
# Below we save and reset the index in case index contains duplicates
|
217 |
+
original_index = frame.index
|
218 |
+
cur_frame = frame = frame.reset_index(drop=True)
|
219 |
+
cur_n = n
|
220 |
+
indexer = Index([], dtype=np.int64)
|
221 |
+
|
222 |
+
for i, column in enumerate(columns):
|
223 |
+
# For each column we apply method to cur_frame[column].
|
224 |
+
# If it's the last column or if we have the number of
|
225 |
+
# results desired we are done.
|
226 |
+
# Otherwise there are duplicates of the largest/smallest
|
227 |
+
# value and we need to look at the rest of the columns
|
228 |
+
# to determine which of the rows with the largest/smallest
|
229 |
+
# value in the column to keep.
|
230 |
+
series = cur_frame[column]
|
231 |
+
is_last_column = len(columns) - 1 == i
|
232 |
+
values = getattr(series, method)(
|
233 |
+
cur_n, keep=self.keep if is_last_column else "all"
|
234 |
+
)
|
235 |
+
|
236 |
+
if is_last_column or len(values) <= cur_n:
|
237 |
+
indexer = get_indexer(indexer, values.index)
|
238 |
+
break
|
239 |
+
|
240 |
+
# Now find all values which are equal to
|
241 |
+
# the (nsmallest: largest)/(nlargest: smallest)
|
242 |
+
# from our series.
|
243 |
+
border_value = values == values[values.index[-1]]
|
244 |
+
|
245 |
+
# Some of these values are among the top-n
|
246 |
+
# some aren't.
|
247 |
+
unsafe_values = values[border_value]
|
248 |
+
|
249 |
+
# These values are definitely among the top-n
|
250 |
+
safe_values = values[~border_value]
|
251 |
+
indexer = get_indexer(indexer, safe_values.index)
|
252 |
+
|
253 |
+
# Go on and separate the unsafe_values on the remaining
|
254 |
+
# columns.
|
255 |
+
cur_frame = cur_frame.loc[unsafe_values.index]
|
256 |
+
cur_n = n - len(indexer)
|
257 |
+
|
258 |
+
frame = frame.take(indexer)
|
259 |
+
|
260 |
+
# Restore the index on frame
|
261 |
+
frame.index = original_index.take(indexer)
|
262 |
+
|
263 |
+
# If there is only one column, the frame is already sorted.
|
264 |
+
if len(columns) == 1:
|
265 |
+
return frame
|
266 |
+
|
267 |
+
ascending = method == "nsmallest"
|
268 |
+
|
269 |
+
return frame.sort_values(columns, ascending=ascending, kind="mergesort")
|
env-llmeval/lib/python3.10/site-packages/pandas/core/methods/to_dict.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import (
|
4 |
+
TYPE_CHECKING,
|
5 |
+
Literal,
|
6 |
+
overload,
|
7 |
+
)
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs import (
|
13 |
+
lib,
|
14 |
+
missing as libmissing,
|
15 |
+
)
|
16 |
+
from pandas.util._exceptions import find_stack_level
|
17 |
+
|
18 |
+
from pandas.core.dtypes.cast import maybe_box_native
|
19 |
+
from pandas.core.dtypes.dtypes import (
|
20 |
+
BaseMaskedDtype,
|
21 |
+
ExtensionDtype,
|
22 |
+
)
|
23 |
+
|
24 |
+
from pandas.core import common as com
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from pandas._typing import MutableMappingT
|
28 |
+
|
29 |
+
from pandas import DataFrame
|
30 |
+
|
31 |
+
|
32 |
+
@overload
|
33 |
+
def to_dict(
|
34 |
+
df: DataFrame,
|
35 |
+
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
|
36 |
+
*,
|
37 |
+
into: type[MutableMappingT] | MutableMappingT,
|
38 |
+
index: bool = ...,
|
39 |
+
) -> MutableMappingT:
|
40 |
+
...
|
41 |
+
|
42 |
+
|
43 |
+
@overload
|
44 |
+
def to_dict(
|
45 |
+
df: DataFrame,
|
46 |
+
orient: Literal["records"],
|
47 |
+
*,
|
48 |
+
into: type[MutableMappingT] | MutableMappingT,
|
49 |
+
index: bool = ...,
|
50 |
+
) -> list[MutableMappingT]:
|
51 |
+
...
|
52 |
+
|
53 |
+
|
54 |
+
@overload
|
55 |
+
def to_dict(
|
56 |
+
df: DataFrame,
|
57 |
+
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
|
58 |
+
*,
|
59 |
+
into: type[dict] = ...,
|
60 |
+
index: bool = ...,
|
61 |
+
) -> dict:
|
62 |
+
...
|
63 |
+
|
64 |
+
|
65 |
+
@overload
|
66 |
+
def to_dict(
|
67 |
+
df: DataFrame,
|
68 |
+
orient: Literal["records"],
|
69 |
+
*,
|
70 |
+
into: type[dict] = ...,
|
71 |
+
index: bool = ...,
|
72 |
+
) -> list[dict]:
|
73 |
+
...
|
74 |
+
|
75 |
+
|
76 |
+
# error: Incompatible default for argument "into" (default has type "type[dict
|
77 |
+
# [Any, Any]]", argument has type "type[MutableMappingT] | MutableMappingT")
|
78 |
+
def to_dict(
|
79 |
+
df: DataFrame,
|
80 |
+
orient: Literal[
|
81 |
+
"dict", "list", "series", "split", "tight", "records", "index"
|
82 |
+
] = "dict",
|
83 |
+
*,
|
84 |
+
into: type[MutableMappingT] | MutableMappingT = dict, # type: ignore[assignment]
|
85 |
+
index: bool = True,
|
86 |
+
) -> MutableMappingT | list[MutableMappingT]:
|
87 |
+
"""
|
88 |
+
Convert the DataFrame to a dictionary.
|
89 |
+
|
90 |
+
The type of the key-value pairs can be customized with the parameters
|
91 |
+
(see below).
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}
|
96 |
+
Determines the type of the values of the dictionary.
|
97 |
+
|
98 |
+
- 'dict' (default) : dict like {column -> {index -> value}}
|
99 |
+
- 'list' : dict like {column -> [values]}
|
100 |
+
- 'series' : dict like {column -> Series(values)}
|
101 |
+
- 'split' : dict like
|
102 |
+
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
|
103 |
+
- 'tight' : dict like
|
104 |
+
{'index' -> [index], 'columns' -> [columns], 'data' -> [values],
|
105 |
+
'index_names' -> [index.names], 'column_names' -> [column.names]}
|
106 |
+
- 'records' : list like
|
107 |
+
[{column -> value}, ... , {column -> value}]
|
108 |
+
- 'index' : dict like {index -> {column -> value}}
|
109 |
+
|
110 |
+
.. versionadded:: 1.4.0
|
111 |
+
'tight' as an allowed value for the ``orient`` argument
|
112 |
+
|
113 |
+
into : class, default dict
|
114 |
+
The collections.abc.MutableMapping subclass used for all Mappings
|
115 |
+
in the return value. Can be the actual class or an empty
|
116 |
+
instance of the mapping type you want. If you want a
|
117 |
+
collections.defaultdict, you must pass it initialized.
|
118 |
+
|
119 |
+
index : bool, default True
|
120 |
+
Whether to include the index item (and index_names item if `orient`
|
121 |
+
is 'tight') in the returned dictionary. Can only be ``False``
|
122 |
+
when `orient` is 'split' or 'tight'.
|
123 |
+
|
124 |
+
.. versionadded:: 2.0.0
|
125 |
+
|
126 |
+
Returns
|
127 |
+
-------
|
128 |
+
dict, list or collections.abc.Mapping
|
129 |
+
Return a collections.abc.MutableMapping object representing the
|
130 |
+
DataFrame. The resulting transformation depends on the `orient` parameter.
|
131 |
+
"""
|
132 |
+
if not df.columns.is_unique:
|
133 |
+
warnings.warn(
|
134 |
+
"DataFrame columns are not unique, some columns will be omitted.",
|
135 |
+
UserWarning,
|
136 |
+
stacklevel=find_stack_level(),
|
137 |
+
)
|
138 |
+
# GH16122
|
139 |
+
into_c = com.standardize_mapping(into)
|
140 |
+
|
141 |
+
# error: Incompatible types in assignment (expression has type "str",
|
142 |
+
# variable has type "Literal['dict', 'list', 'series', 'split', 'tight',
|
143 |
+
# 'records', 'index']")
|
144 |
+
orient = orient.lower() # type: ignore[assignment]
|
145 |
+
|
146 |
+
if not index and orient not in ["split", "tight"]:
|
147 |
+
raise ValueError(
|
148 |
+
"'index=False' is only valid when 'orient' is 'split' or 'tight'"
|
149 |
+
)
|
150 |
+
|
151 |
+
if orient == "series":
|
152 |
+
# GH46470 Return quickly if orient series to avoid creating dtype objects
|
153 |
+
return into_c((k, v) for k, v in df.items())
|
154 |
+
|
155 |
+
box_native_indices = [
|
156 |
+
i
|
157 |
+
for i, col_dtype in enumerate(df.dtypes.values)
|
158 |
+
if col_dtype == np.dtype(object) or isinstance(col_dtype, ExtensionDtype)
|
159 |
+
]
|
160 |
+
box_na_values = [
|
161 |
+
lib.no_default if not isinstance(col_dtype, BaseMaskedDtype) else libmissing.NA
|
162 |
+
for i, col_dtype in enumerate(df.dtypes.values)
|
163 |
+
]
|
164 |
+
are_all_object_dtype_cols = len(box_native_indices) == len(df.dtypes)
|
165 |
+
|
166 |
+
if orient == "dict":
|
167 |
+
return into_c((k, v.to_dict(into=into)) for k, v in df.items())
|
168 |
+
|
169 |
+
elif orient == "list":
|
170 |
+
object_dtype_indices_as_set: set[int] = set(box_native_indices)
|
171 |
+
return into_c(
|
172 |
+
(
|
173 |
+
k,
|
174 |
+
list(map(maybe_box_native, v.to_numpy(na_value=box_na_values[i])))
|
175 |
+
if i in object_dtype_indices_as_set
|
176 |
+
else list(map(maybe_box_native, v.to_numpy())),
|
177 |
+
)
|
178 |
+
for i, (k, v) in enumerate(df.items())
|
179 |
+
)
|
180 |
+
|
181 |
+
elif orient == "split":
|
182 |
+
data = df._create_data_for_split_and_tight_to_dict(
|
183 |
+
are_all_object_dtype_cols, box_native_indices
|
184 |
+
)
|
185 |
+
|
186 |
+
return into_c(
|
187 |
+
((("index", df.index.tolist()),) if index else ())
|
188 |
+
+ (
|
189 |
+
("columns", df.columns.tolist()),
|
190 |
+
("data", data),
|
191 |
+
)
|
192 |
+
)
|
193 |
+
|
194 |
+
elif orient == "tight":
|
195 |
+
data = df._create_data_for_split_and_tight_to_dict(
|
196 |
+
are_all_object_dtype_cols, box_native_indices
|
197 |
+
)
|
198 |
+
|
199 |
+
return into_c(
|
200 |
+
((("index", df.index.tolist()),) if index else ())
|
201 |
+
+ (
|
202 |
+
("columns", df.columns.tolist()),
|
203 |
+
(
|
204 |
+
"data",
|
205 |
+
[
|
206 |
+
list(map(maybe_box_native, t))
|
207 |
+
for t in df.itertuples(index=False, name=None)
|
208 |
+
],
|
209 |
+
),
|
210 |
+
)
|
211 |
+
+ ((("index_names", list(df.index.names)),) if index else ())
|
212 |
+
+ (("column_names", list(df.columns.names)),)
|
213 |
+
)
|
214 |
+
|
215 |
+
elif orient == "records":
|
216 |
+
columns = df.columns.tolist()
|
217 |
+
if are_all_object_dtype_cols:
|
218 |
+
rows = (
|
219 |
+
dict(zip(columns, row)) for row in df.itertuples(index=False, name=None)
|
220 |
+
)
|
221 |
+
return [
|
222 |
+
into_c((k, maybe_box_native(v)) for k, v in row.items()) for row in rows
|
223 |
+
]
|
224 |
+
else:
|
225 |
+
data = [
|
226 |
+
into_c(zip(columns, t)) for t in df.itertuples(index=False, name=None)
|
227 |
+
]
|
228 |
+
if box_native_indices:
|
229 |
+
object_dtype_indices_as_set = set(box_native_indices)
|
230 |
+
object_dtype_cols = {
|
231 |
+
col
|
232 |
+
for i, col in enumerate(df.columns)
|
233 |
+
if i in object_dtype_indices_as_set
|
234 |
+
}
|
235 |
+
for row in data:
|
236 |
+
for col in object_dtype_cols:
|
237 |
+
row[col] = maybe_box_native(row[col])
|
238 |
+
return data
|
239 |
+
|
240 |
+
elif orient == "index":
|
241 |
+
if not df.index.is_unique:
|
242 |
+
raise ValueError("DataFrame index must be unique for orient='index'.")
|
243 |
+
columns = df.columns.tolist()
|
244 |
+
if are_all_object_dtype_cols:
|
245 |
+
return into_c(
|
246 |
+
(t[0], dict(zip(df.columns, map(maybe_box_native, t[1:]))))
|
247 |
+
for t in df.itertuples(name=None)
|
248 |
+
)
|
249 |
+
elif box_native_indices:
|
250 |
+
object_dtype_indices_as_set = set(box_native_indices)
|
251 |
+
is_object_dtype_by_index = [
|
252 |
+
i in object_dtype_indices_as_set for i in range(len(df.columns))
|
253 |
+
]
|
254 |
+
return into_c(
|
255 |
+
(
|
256 |
+
t[0],
|
257 |
+
{
|
258 |
+
columns[i]: maybe_box_native(v)
|
259 |
+
if is_object_dtype_by_index[i]
|
260 |
+
else v
|
261 |
+
for i, v in enumerate(t[1:])
|
262 |
+
},
|
263 |
+
)
|
264 |
+
for t in df.itertuples(name=None)
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
return into_c(
|
268 |
+
(t[0], dict(zip(df.columns, t[1:]))) for t in df.itertuples(name=None)
|
269 |
+
)
|
270 |
+
|
271 |
+
else:
|
272 |
+
raise ValueError(f"orient '{orient}' not understood")
|
env-llmeval/lib/python3.10/site-packages/pandas/core/reshape/__init__.py
ADDED
File without changes
|