Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_graphmatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_laplacian.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_modularity.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/__init__.py +18 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/adjlist.py +310 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/edgelist.py +489 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/gexf.py +1065 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/gml.py +878 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/graph6.py +416 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/graphml.py +1052 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__init__.py +18 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/adjacency.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/cytoscape.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/node_link.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/tree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/adjacency.py +156 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/cytoscape.py +178 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/node_link.py +244 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_adjacency.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_cytoscape.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_node_link.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_tree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py +78 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py +78 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py +144 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_tree.py +48 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tree.py +137 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/leda.py +108 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/multiline_adjlist.py +393 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/p2g.py +104 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/pajek.py +286 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/sparse6.py +376 -0
- llmeval-env/lib/python3.10/site-packages/networkx/readwrite/text.py +950 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/backends.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/configs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/decorators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/heaps.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/mapped_queue.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/misc.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/random_sequence.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/rcm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/union_find.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx/utils/backends.py +1553 -0
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc
ADDED
Binary file (1.41 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_graphmatrix.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_laplacian.cpython-310.pyc
ADDED
Binary file (8.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_modularity.cpython-310.pyc
ADDED
Binary file (2.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A package for reading and writing graphs in various formats.
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
from networkx.readwrite.adjlist import *
|
8 |
+
from networkx.readwrite.multiline_adjlist import *
|
9 |
+
from networkx.readwrite.edgelist import *
|
10 |
+
from networkx.readwrite.pajek import *
|
11 |
+
from networkx.readwrite.leda import *
|
12 |
+
from networkx.readwrite.sparse6 import *
|
13 |
+
from networkx.readwrite.graph6 import *
|
14 |
+
from networkx.readwrite.gml import *
|
15 |
+
from networkx.readwrite.graphml import *
|
16 |
+
from networkx.readwrite.gexf import *
|
17 |
+
from networkx.readwrite.json_graph import *
|
18 |
+
from networkx.readwrite.text import *
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/adjlist.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
**************
|
3 |
+
Adjacency List
|
4 |
+
**************
|
5 |
+
Read and write NetworkX graphs as adjacency lists.
|
6 |
+
|
7 |
+
Adjacency list format is useful for graphs without data associated
|
8 |
+
with nodes or edges and for nodes that can be meaningfully represented
|
9 |
+
as strings.
|
10 |
+
|
11 |
+
Format
|
12 |
+
------
|
13 |
+
The adjacency list format consists of lines with node labels. The
|
14 |
+
first label in a line is the source node. Further labels in the line
|
15 |
+
are considered target nodes and are added to the graph along with an edge
|
16 |
+
between the source node and target node.
|
17 |
+
|
18 |
+
The graph with edges a-b, a-c, d-e can be represented as the following
|
19 |
+
adjacency list (anything following the # in a line is a comment)::
|
20 |
+
|
21 |
+
a b c # source target target
|
22 |
+
d e
|
23 |
+
"""
|
24 |
+
|
25 |
+
__all__ = ["generate_adjlist", "write_adjlist", "parse_adjlist", "read_adjlist"]
|
26 |
+
|
27 |
+
import networkx as nx
|
28 |
+
from networkx.utils import open_file
|
29 |
+
|
30 |
+
|
31 |
+
def generate_adjlist(G, delimiter=" "):
|
32 |
+
"""Generate a single line of the graph G in adjacency list format.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
G : NetworkX graph
|
37 |
+
|
38 |
+
delimiter : string, optional
|
39 |
+
Separator for node labels
|
40 |
+
|
41 |
+
Returns
|
42 |
+
-------
|
43 |
+
lines : string
|
44 |
+
Lines of data in adjlist format.
|
45 |
+
|
46 |
+
Examples
|
47 |
+
--------
|
48 |
+
>>> G = nx.lollipop_graph(4, 3)
|
49 |
+
>>> for line in nx.generate_adjlist(G):
|
50 |
+
... print(line)
|
51 |
+
0 1 2 3
|
52 |
+
1 2 3
|
53 |
+
2 3
|
54 |
+
3 4
|
55 |
+
4 5
|
56 |
+
5 6
|
57 |
+
6
|
58 |
+
|
59 |
+
See Also
|
60 |
+
--------
|
61 |
+
write_adjlist, read_adjlist
|
62 |
+
|
63 |
+
Notes
|
64 |
+
-----
|
65 |
+
The default `delimiter=" "` will result in unexpected results if node names contain
|
66 |
+
whitespace characters. To avoid this problem, specify an alternate delimiter when spaces are
|
67 |
+
valid in node names.
|
68 |
+
|
69 |
+
NB: This option is not available for data that isn't user-generated.
|
70 |
+
|
71 |
+
"""
|
72 |
+
directed = G.is_directed()
|
73 |
+
seen = set()
|
74 |
+
for s, nbrs in G.adjacency():
|
75 |
+
line = str(s) + delimiter
|
76 |
+
for t, data in nbrs.items():
|
77 |
+
if not directed and t in seen:
|
78 |
+
continue
|
79 |
+
if G.is_multigraph():
|
80 |
+
for d in data.values():
|
81 |
+
line += str(t) + delimiter
|
82 |
+
else:
|
83 |
+
line += str(t) + delimiter
|
84 |
+
if not directed:
|
85 |
+
seen.add(s)
|
86 |
+
yield line[: -len(delimiter)]
|
87 |
+
|
88 |
+
|
89 |
+
@open_file(1, mode="wb")
|
90 |
+
def write_adjlist(G, path, comments="#", delimiter=" ", encoding="utf-8"):
|
91 |
+
"""Write graph G in single-line adjacency-list format to path.
|
92 |
+
|
93 |
+
|
94 |
+
Parameters
|
95 |
+
----------
|
96 |
+
G : NetworkX graph
|
97 |
+
|
98 |
+
path : string or file
|
99 |
+
Filename or file handle for data output.
|
100 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
101 |
+
|
102 |
+
comments : string, optional
|
103 |
+
Marker for comment lines
|
104 |
+
|
105 |
+
delimiter : string, optional
|
106 |
+
Separator for node labels
|
107 |
+
|
108 |
+
encoding : string, optional
|
109 |
+
Text encoding.
|
110 |
+
|
111 |
+
Examples
|
112 |
+
--------
|
113 |
+
>>> G = nx.path_graph(4)
|
114 |
+
>>> nx.write_adjlist(G, "test.adjlist")
|
115 |
+
|
116 |
+
The path can be a filehandle or a string with the name of the file. If a
|
117 |
+
filehandle is provided, it has to be opened in 'wb' mode.
|
118 |
+
|
119 |
+
>>> fh = open("test.adjlist", "wb")
|
120 |
+
>>> nx.write_adjlist(G, fh)
|
121 |
+
|
122 |
+
Notes
|
123 |
+
-----
|
124 |
+
The default `delimiter=" "` will result in unexpected results if node names contain
|
125 |
+
whitespace characters. To avoid this problem, specify an alternate delimiter when spaces are
|
126 |
+
valid in node names.
|
127 |
+
NB: This option is not available for data that isn't user-generated.
|
128 |
+
|
129 |
+
This format does not store graph, node, or edge data.
|
130 |
+
|
131 |
+
See Also
|
132 |
+
--------
|
133 |
+
read_adjlist, generate_adjlist
|
134 |
+
"""
|
135 |
+
import sys
|
136 |
+
import time
|
137 |
+
|
138 |
+
pargs = comments + " ".join(sys.argv) + "\n"
|
139 |
+
header = (
|
140 |
+
pargs
|
141 |
+
+ comments
|
142 |
+
+ f" GMT {time.asctime(time.gmtime())}\n"
|
143 |
+
+ comments
|
144 |
+
+ f" {G.name}\n"
|
145 |
+
)
|
146 |
+
path.write(header.encode(encoding))
|
147 |
+
|
148 |
+
for line in generate_adjlist(G, delimiter):
|
149 |
+
line += "\n"
|
150 |
+
path.write(line.encode(encoding))
|
151 |
+
|
152 |
+
|
153 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
154 |
+
def parse_adjlist(
|
155 |
+
lines, comments="#", delimiter=None, create_using=None, nodetype=None
|
156 |
+
):
|
157 |
+
"""Parse lines of a graph adjacency list representation.
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
lines : list or iterator of strings
|
162 |
+
Input data in adjlist format
|
163 |
+
|
164 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
165 |
+
Graph type to create. If graph instance, then cleared before populated.
|
166 |
+
|
167 |
+
nodetype : Python type, optional
|
168 |
+
Convert nodes to this type.
|
169 |
+
|
170 |
+
comments : string, optional
|
171 |
+
Marker for comment lines
|
172 |
+
|
173 |
+
delimiter : string, optional
|
174 |
+
Separator for node labels. The default is whitespace.
|
175 |
+
|
176 |
+
Returns
|
177 |
+
-------
|
178 |
+
G: NetworkX graph
|
179 |
+
The graph corresponding to the lines in adjacency list format.
|
180 |
+
|
181 |
+
Examples
|
182 |
+
--------
|
183 |
+
>>> lines = ["1 2 5", "2 3 4", "3 5", "4", "5"]
|
184 |
+
>>> G = nx.parse_adjlist(lines, nodetype=int)
|
185 |
+
>>> nodes = [1, 2, 3, 4, 5]
|
186 |
+
>>> all(node in G for node in nodes)
|
187 |
+
True
|
188 |
+
>>> edges = [(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]
|
189 |
+
>>> all((u, v) in G.edges() or (v, u) in G.edges() for (u, v) in edges)
|
190 |
+
True
|
191 |
+
|
192 |
+
See Also
|
193 |
+
--------
|
194 |
+
read_adjlist
|
195 |
+
|
196 |
+
"""
|
197 |
+
G = nx.empty_graph(0, create_using)
|
198 |
+
for line in lines:
|
199 |
+
p = line.find(comments)
|
200 |
+
if p >= 0:
|
201 |
+
line = line[:p]
|
202 |
+
if not len(line):
|
203 |
+
continue
|
204 |
+
vlist = line.strip().split(delimiter)
|
205 |
+
u = vlist.pop(0)
|
206 |
+
# convert types
|
207 |
+
if nodetype is not None:
|
208 |
+
try:
|
209 |
+
u = nodetype(u)
|
210 |
+
except BaseException as err:
|
211 |
+
raise TypeError(
|
212 |
+
f"Failed to convert node ({u}) to type {nodetype}"
|
213 |
+
) from err
|
214 |
+
G.add_node(u)
|
215 |
+
if nodetype is not None:
|
216 |
+
try:
|
217 |
+
vlist = list(map(nodetype, vlist))
|
218 |
+
except BaseException as err:
|
219 |
+
raise TypeError(
|
220 |
+
f"Failed to convert nodes ({','.join(vlist)}) to type {nodetype}"
|
221 |
+
) from err
|
222 |
+
G.add_edges_from([(u, v) for v in vlist])
|
223 |
+
return G
|
224 |
+
|
225 |
+
|
226 |
+
@open_file(0, mode="rb")
|
227 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
228 |
+
def read_adjlist(
|
229 |
+
path,
|
230 |
+
comments="#",
|
231 |
+
delimiter=None,
|
232 |
+
create_using=None,
|
233 |
+
nodetype=None,
|
234 |
+
encoding="utf-8",
|
235 |
+
):
|
236 |
+
"""Read graph in adjacency list format from path.
|
237 |
+
|
238 |
+
Parameters
|
239 |
+
----------
|
240 |
+
path : string or file
|
241 |
+
Filename or file handle to read.
|
242 |
+
Filenames ending in .gz or .bz2 will be uncompressed.
|
243 |
+
|
244 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
245 |
+
Graph type to create. If graph instance, then cleared before populated.
|
246 |
+
|
247 |
+
nodetype : Python type, optional
|
248 |
+
Convert nodes to this type.
|
249 |
+
|
250 |
+
comments : string, optional
|
251 |
+
Marker for comment lines
|
252 |
+
|
253 |
+
delimiter : string, optional
|
254 |
+
Separator for node labels. The default is whitespace.
|
255 |
+
|
256 |
+
Returns
|
257 |
+
-------
|
258 |
+
G: NetworkX graph
|
259 |
+
The graph corresponding to the lines in adjacency list format.
|
260 |
+
|
261 |
+
Examples
|
262 |
+
--------
|
263 |
+
>>> G = nx.path_graph(4)
|
264 |
+
>>> nx.write_adjlist(G, "test.adjlist")
|
265 |
+
>>> G = nx.read_adjlist("test.adjlist")
|
266 |
+
|
267 |
+
The path can be a filehandle or a string with the name of the file. If a
|
268 |
+
filehandle is provided, it has to be opened in 'rb' mode.
|
269 |
+
|
270 |
+
>>> fh = open("test.adjlist", "rb")
|
271 |
+
>>> G = nx.read_adjlist(fh)
|
272 |
+
|
273 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
274 |
+
|
275 |
+
>>> nx.write_adjlist(G, "test.adjlist.gz")
|
276 |
+
>>> G = nx.read_adjlist("test.adjlist.gz")
|
277 |
+
|
278 |
+
The optional nodetype is a function to convert node strings to nodetype.
|
279 |
+
|
280 |
+
For example
|
281 |
+
|
282 |
+
>>> G = nx.read_adjlist("test.adjlist", nodetype=int)
|
283 |
+
|
284 |
+
will attempt to convert all nodes to integer type.
|
285 |
+
|
286 |
+
Since nodes must be hashable, the function nodetype must return hashable
|
287 |
+
types (e.g. int, float, str, frozenset - or tuples of those, etc.)
|
288 |
+
|
289 |
+
The optional create_using parameter indicates the type of NetworkX graph
|
290 |
+
created. The default is `nx.Graph`, an undirected graph.
|
291 |
+
To read the data as a directed graph use
|
292 |
+
|
293 |
+
>>> G = nx.read_adjlist("test.adjlist", create_using=nx.DiGraph)
|
294 |
+
|
295 |
+
Notes
|
296 |
+
-----
|
297 |
+
This format does not store graph or node data.
|
298 |
+
|
299 |
+
See Also
|
300 |
+
--------
|
301 |
+
write_adjlist
|
302 |
+
"""
|
303 |
+
lines = (line.decode(encoding) for line in path)
|
304 |
+
return parse_adjlist(
|
305 |
+
lines,
|
306 |
+
comments=comments,
|
307 |
+
delimiter=delimiter,
|
308 |
+
create_using=create_using,
|
309 |
+
nodetype=nodetype,
|
310 |
+
)
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/edgelist.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
**********
|
3 |
+
Edge Lists
|
4 |
+
**********
|
5 |
+
Read and write NetworkX graphs as edge lists.
|
6 |
+
|
7 |
+
The multi-line adjacency list format is useful for graphs with nodes
|
8 |
+
that can be meaningfully represented as strings. With the edgelist
|
9 |
+
format simple edge data can be stored but node or graph data is not.
|
10 |
+
There is no way of representing isolated nodes unless the node has a
|
11 |
+
self-loop edge.
|
12 |
+
|
13 |
+
Format
|
14 |
+
------
|
15 |
+
You can read or write three formats of edge lists with these functions.
|
16 |
+
|
17 |
+
Node pairs with no data::
|
18 |
+
|
19 |
+
1 2
|
20 |
+
|
21 |
+
Python dictionary as data::
|
22 |
+
|
23 |
+
1 2 {'weight':7, 'color':'green'}
|
24 |
+
|
25 |
+
Arbitrary data::
|
26 |
+
|
27 |
+
1 2 7 green
|
28 |
+
"""
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
"generate_edgelist",
|
32 |
+
"write_edgelist",
|
33 |
+
"parse_edgelist",
|
34 |
+
"read_edgelist",
|
35 |
+
"read_weighted_edgelist",
|
36 |
+
"write_weighted_edgelist",
|
37 |
+
]
|
38 |
+
|
39 |
+
import networkx as nx
|
40 |
+
from networkx.utils import open_file
|
41 |
+
|
42 |
+
|
43 |
+
def generate_edgelist(G, delimiter=" ", data=True):
|
44 |
+
"""Generate a single line of the graph G in edge list format.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
G : NetworkX graph
|
49 |
+
|
50 |
+
delimiter : string, optional
|
51 |
+
Separator for node labels
|
52 |
+
|
53 |
+
data : bool or list of keys
|
54 |
+
If False generate no edge data. If True use a dictionary
|
55 |
+
representation of edge data. If a list of keys use a list of data
|
56 |
+
values corresponding to the keys.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
lines : string
|
61 |
+
Lines of data in adjlist format.
|
62 |
+
|
63 |
+
Examples
|
64 |
+
--------
|
65 |
+
>>> G = nx.lollipop_graph(4, 3)
|
66 |
+
>>> G[1][2]["weight"] = 3
|
67 |
+
>>> G[3][4]["capacity"] = 12
|
68 |
+
>>> for line in nx.generate_edgelist(G, data=False):
|
69 |
+
... print(line)
|
70 |
+
0 1
|
71 |
+
0 2
|
72 |
+
0 3
|
73 |
+
1 2
|
74 |
+
1 3
|
75 |
+
2 3
|
76 |
+
3 4
|
77 |
+
4 5
|
78 |
+
5 6
|
79 |
+
|
80 |
+
>>> for line in nx.generate_edgelist(G):
|
81 |
+
... print(line)
|
82 |
+
0 1 {}
|
83 |
+
0 2 {}
|
84 |
+
0 3 {}
|
85 |
+
1 2 {'weight': 3}
|
86 |
+
1 3 {}
|
87 |
+
2 3 {}
|
88 |
+
3 4 {'capacity': 12}
|
89 |
+
4 5 {}
|
90 |
+
5 6 {}
|
91 |
+
|
92 |
+
>>> for line in nx.generate_edgelist(G, data=["weight"]):
|
93 |
+
... print(line)
|
94 |
+
0 1
|
95 |
+
0 2
|
96 |
+
0 3
|
97 |
+
1 2 3
|
98 |
+
1 3
|
99 |
+
2 3
|
100 |
+
3 4
|
101 |
+
4 5
|
102 |
+
5 6
|
103 |
+
|
104 |
+
See Also
|
105 |
+
--------
|
106 |
+
write_adjlist, read_adjlist
|
107 |
+
"""
|
108 |
+
if data is True:
|
109 |
+
for u, v, d in G.edges(data=True):
|
110 |
+
e = u, v, dict(d)
|
111 |
+
yield delimiter.join(map(str, e))
|
112 |
+
elif data is False:
|
113 |
+
for u, v in G.edges(data=False):
|
114 |
+
e = u, v
|
115 |
+
yield delimiter.join(map(str, e))
|
116 |
+
else:
|
117 |
+
for u, v, d in G.edges(data=True):
|
118 |
+
e = [u, v]
|
119 |
+
try:
|
120 |
+
e.extend(d[k] for k in data)
|
121 |
+
except KeyError:
|
122 |
+
pass # missing data for this edge, should warn?
|
123 |
+
yield delimiter.join(map(str, e))
|
124 |
+
|
125 |
+
|
126 |
+
@open_file(1, mode="wb")
|
127 |
+
def write_edgelist(G, path, comments="#", delimiter=" ", data=True, encoding="utf-8"):
|
128 |
+
"""Write graph as a list of edges.
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
G : graph
|
133 |
+
A NetworkX graph
|
134 |
+
path : file or string
|
135 |
+
File or filename to write. If a file is provided, it must be
|
136 |
+
opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
|
137 |
+
comments : string, optional
|
138 |
+
The character used to indicate the start of a comment
|
139 |
+
delimiter : string, optional
|
140 |
+
The string used to separate values. The default is whitespace.
|
141 |
+
data : bool or list, optional
|
142 |
+
If False write no edge data.
|
143 |
+
If True write a string representation of the edge data dictionary..
|
144 |
+
If a list (or other iterable) is provided, write the keys specified
|
145 |
+
in the list.
|
146 |
+
encoding: string, optional
|
147 |
+
Specify which encoding to use when writing file.
|
148 |
+
|
149 |
+
Examples
|
150 |
+
--------
|
151 |
+
>>> G = nx.path_graph(4)
|
152 |
+
>>> nx.write_edgelist(G, "test.edgelist")
|
153 |
+
>>> G = nx.path_graph(4)
|
154 |
+
>>> fh = open("test.edgelist", "wb")
|
155 |
+
>>> nx.write_edgelist(G, fh)
|
156 |
+
>>> nx.write_edgelist(G, "test.edgelist.gz")
|
157 |
+
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
|
158 |
+
|
159 |
+
>>> G = nx.Graph()
|
160 |
+
>>> G.add_edge(1, 2, weight=7, color="red")
|
161 |
+
>>> nx.write_edgelist(G, "test.edgelist", data=False)
|
162 |
+
>>> nx.write_edgelist(G, "test.edgelist", data=["color"])
|
163 |
+
>>> nx.write_edgelist(G, "test.edgelist", data=["color", "weight"])
|
164 |
+
|
165 |
+
See Also
|
166 |
+
--------
|
167 |
+
read_edgelist
|
168 |
+
write_weighted_edgelist
|
169 |
+
"""
|
170 |
+
|
171 |
+
for line in generate_edgelist(G, delimiter, data):
|
172 |
+
line += "\n"
|
173 |
+
path.write(line.encode(encoding))
|
174 |
+
|
175 |
+
|
176 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
177 |
+
def parse_edgelist(
|
178 |
+
lines, comments="#", delimiter=None, create_using=None, nodetype=None, data=True
|
179 |
+
):
|
180 |
+
"""Parse lines of an edge list representation of a graph.
|
181 |
+
|
182 |
+
Parameters
|
183 |
+
----------
|
184 |
+
lines : list or iterator of strings
|
185 |
+
Input data in edgelist format
|
186 |
+
comments : string, optional
|
187 |
+
Marker for comment lines. Default is `'#'`. To specify that no character
|
188 |
+
should be treated as a comment, use ``comments=None``.
|
189 |
+
delimiter : string, optional
|
190 |
+
Separator for node labels. Default is `None`, meaning any whitespace.
|
191 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
192 |
+
Graph type to create. If graph instance, then cleared before populated.
|
193 |
+
nodetype : Python type, optional
|
194 |
+
Convert nodes to this type. Default is `None`, meaning no conversion is
|
195 |
+
performed.
|
196 |
+
data : bool or list of (label,type) tuples
|
197 |
+
If `False` generate no edge data or if `True` use a dictionary
|
198 |
+
representation of edge data or a list tuples specifying dictionary
|
199 |
+
key names and types for edge data.
|
200 |
+
|
201 |
+
Returns
|
202 |
+
-------
|
203 |
+
G: NetworkX Graph
|
204 |
+
The graph corresponding to lines
|
205 |
+
|
206 |
+
Examples
|
207 |
+
--------
|
208 |
+
Edgelist with no data:
|
209 |
+
|
210 |
+
>>> lines = ["1 2", "2 3", "3 4"]
|
211 |
+
>>> G = nx.parse_edgelist(lines, nodetype=int)
|
212 |
+
>>> list(G)
|
213 |
+
[1, 2, 3, 4]
|
214 |
+
>>> list(G.edges())
|
215 |
+
[(1, 2), (2, 3), (3, 4)]
|
216 |
+
|
217 |
+
Edgelist with data in Python dictionary representation:
|
218 |
+
|
219 |
+
>>> lines = ["1 2 {'weight': 3}", "2 3 {'weight': 27}", "3 4 {'weight': 3.0}"]
|
220 |
+
>>> G = nx.parse_edgelist(lines, nodetype=int)
|
221 |
+
>>> list(G)
|
222 |
+
[1, 2, 3, 4]
|
223 |
+
>>> list(G.edges(data=True))
|
224 |
+
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
|
225 |
+
|
226 |
+
Edgelist with data in a list:
|
227 |
+
|
228 |
+
>>> lines = ["1 2 3", "2 3 27", "3 4 3.0"]
|
229 |
+
>>> G = nx.parse_edgelist(lines, nodetype=int, data=(("weight", float),))
|
230 |
+
>>> list(G)
|
231 |
+
[1, 2, 3, 4]
|
232 |
+
>>> list(G.edges(data=True))
|
233 |
+
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]
|
234 |
+
|
235 |
+
See Also
|
236 |
+
--------
|
237 |
+
read_weighted_edgelist
|
238 |
+
"""
|
239 |
+
from ast import literal_eval
|
240 |
+
|
241 |
+
G = nx.empty_graph(0, create_using)
|
242 |
+
for line in lines:
|
243 |
+
if comments is not None:
|
244 |
+
p = line.find(comments)
|
245 |
+
if p >= 0:
|
246 |
+
line = line[:p]
|
247 |
+
if not line:
|
248 |
+
continue
|
249 |
+
# split line, should have 2 or more
|
250 |
+
s = line.strip().split(delimiter)
|
251 |
+
if len(s) < 2:
|
252 |
+
continue
|
253 |
+
u = s.pop(0)
|
254 |
+
v = s.pop(0)
|
255 |
+
d = s
|
256 |
+
if nodetype is not None:
|
257 |
+
try:
|
258 |
+
u = nodetype(u)
|
259 |
+
v = nodetype(v)
|
260 |
+
except Exception as err:
|
261 |
+
raise TypeError(
|
262 |
+
f"Failed to convert nodes {u},{v} to type {nodetype}."
|
263 |
+
) from err
|
264 |
+
|
265 |
+
if len(d) == 0 or data is False:
|
266 |
+
# no data or data type specified
|
267 |
+
edgedata = {}
|
268 |
+
elif data is True:
|
269 |
+
# no edge types specified
|
270 |
+
try: # try to evaluate as dictionary
|
271 |
+
if delimiter == ",":
|
272 |
+
edgedata_str = ",".join(d)
|
273 |
+
else:
|
274 |
+
edgedata_str = " ".join(d)
|
275 |
+
edgedata = dict(literal_eval(edgedata_str.strip()))
|
276 |
+
except Exception as err:
|
277 |
+
raise TypeError(
|
278 |
+
f"Failed to convert edge data ({d}) to dictionary."
|
279 |
+
) from err
|
280 |
+
else:
|
281 |
+
# convert edge data to dictionary with specified keys and type
|
282 |
+
if len(d) != len(data):
|
283 |
+
raise IndexError(
|
284 |
+
f"Edge data {d} and data_keys {data} are not the same length"
|
285 |
+
)
|
286 |
+
edgedata = {}
|
287 |
+
for (edge_key, edge_type), edge_value in zip(data, d):
|
288 |
+
try:
|
289 |
+
edge_value = edge_type(edge_value)
|
290 |
+
except Exception as err:
|
291 |
+
raise TypeError(
|
292 |
+
f"Failed to convert {edge_key} data {edge_value} "
|
293 |
+
f"to type {edge_type}."
|
294 |
+
) from err
|
295 |
+
edgedata.update({edge_key: edge_value})
|
296 |
+
G.add_edge(u, v, **edgedata)
|
297 |
+
return G
|
298 |
+
|
299 |
+
|
300 |
+
@open_file(0, mode="rb")
|
301 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
302 |
+
def read_edgelist(
|
303 |
+
path,
|
304 |
+
comments="#",
|
305 |
+
delimiter=None,
|
306 |
+
create_using=None,
|
307 |
+
nodetype=None,
|
308 |
+
data=True,
|
309 |
+
edgetype=None,
|
310 |
+
encoding="utf-8",
|
311 |
+
):
|
312 |
+
"""Read a graph from a list of edges.
|
313 |
+
|
314 |
+
Parameters
|
315 |
+
----------
|
316 |
+
path : file or string
|
317 |
+
File or filename to read. If a file is provided, it must be
|
318 |
+
opened in 'rb' mode.
|
319 |
+
Filenames ending in .gz or .bz2 will be uncompressed.
|
320 |
+
comments : string, optional
|
321 |
+
The character used to indicate the start of a comment. To specify that
|
322 |
+
no character should be treated as a comment, use ``comments=None``.
|
323 |
+
delimiter : string, optional
|
324 |
+
The string used to separate values. The default is whitespace.
|
325 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
326 |
+
Graph type to create. If graph instance, then cleared before populated.
|
327 |
+
nodetype : int, float, str, Python type, optional
|
328 |
+
Convert node data from strings to specified type
|
329 |
+
data : bool or list of (label,type) tuples
|
330 |
+
Tuples specifying dictionary key names and types for edge data
|
331 |
+
edgetype : int, float, str, Python type, optional OBSOLETE
|
332 |
+
Convert edge data from strings to specified type and use as 'weight'
|
333 |
+
encoding: string, optional
|
334 |
+
Specify which encoding to use when reading file.
|
335 |
+
|
336 |
+
Returns
|
337 |
+
-------
|
338 |
+
G : graph
|
339 |
+
A networkx Graph or other type specified with create_using
|
340 |
+
|
341 |
+
Examples
|
342 |
+
--------
|
343 |
+
>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
|
344 |
+
>>> G = nx.read_edgelist("test.edgelist")
|
345 |
+
|
346 |
+
>>> fh = open("test.edgelist", "rb")
|
347 |
+
>>> G = nx.read_edgelist(fh)
|
348 |
+
>>> fh.close()
|
349 |
+
|
350 |
+
>>> G = nx.read_edgelist("test.edgelist", nodetype=int)
|
351 |
+
>>> G = nx.read_edgelist("test.edgelist", create_using=nx.DiGraph)
|
352 |
+
|
353 |
+
Edgelist with data in a list:
|
354 |
+
|
355 |
+
>>> textline = "1 2 3"
|
356 |
+
>>> fh = open("test.edgelist", "w")
|
357 |
+
>>> d = fh.write(textline)
|
358 |
+
>>> fh.close()
|
359 |
+
>>> G = nx.read_edgelist("test.edgelist", nodetype=int, data=(("weight", float),))
|
360 |
+
>>> list(G)
|
361 |
+
[1, 2]
|
362 |
+
>>> list(G.edges(data=True))
|
363 |
+
[(1, 2, {'weight': 3.0})]
|
364 |
+
|
365 |
+
See parse_edgelist() for more examples of formatting.
|
366 |
+
|
367 |
+
See Also
|
368 |
+
--------
|
369 |
+
parse_edgelist
|
370 |
+
write_edgelist
|
371 |
+
|
372 |
+
Notes
|
373 |
+
-----
|
374 |
+
Since nodes must be hashable, the function nodetype must return hashable
|
375 |
+
types (e.g. int, float, str, frozenset - or tuples of those, etc.)
|
376 |
+
"""
|
377 |
+
lines = (line if isinstance(line, str) else line.decode(encoding) for line in path)
|
378 |
+
return parse_edgelist(
|
379 |
+
lines,
|
380 |
+
comments=comments,
|
381 |
+
delimiter=delimiter,
|
382 |
+
create_using=create_using,
|
383 |
+
nodetype=nodetype,
|
384 |
+
data=data,
|
385 |
+
)
|
386 |
+
|
387 |
+
|
388 |
+
def write_weighted_edgelist(G, path, comments="#", delimiter=" ", encoding="utf-8"):
|
389 |
+
"""Write graph G as a list of edges with numeric weights.
|
390 |
+
|
391 |
+
Parameters
|
392 |
+
----------
|
393 |
+
G : graph
|
394 |
+
A NetworkX graph
|
395 |
+
path : file or string
|
396 |
+
File or filename to write. If a file is provided, it must be
|
397 |
+
opened in 'wb' mode.
|
398 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
399 |
+
comments : string, optional
|
400 |
+
The character used to indicate the start of a comment
|
401 |
+
delimiter : string, optional
|
402 |
+
The string used to separate values. The default is whitespace.
|
403 |
+
encoding: string, optional
|
404 |
+
Specify which encoding to use when writing file.
|
405 |
+
|
406 |
+
Examples
|
407 |
+
--------
|
408 |
+
>>> G = nx.Graph()
|
409 |
+
>>> G.add_edge(1, 2, weight=7)
|
410 |
+
>>> nx.write_weighted_edgelist(G, "test.weighted.edgelist")
|
411 |
+
|
412 |
+
See Also
|
413 |
+
--------
|
414 |
+
read_edgelist
|
415 |
+
write_edgelist
|
416 |
+
read_weighted_edgelist
|
417 |
+
"""
|
418 |
+
write_edgelist(
|
419 |
+
G,
|
420 |
+
path,
|
421 |
+
comments=comments,
|
422 |
+
delimiter=delimiter,
|
423 |
+
data=("weight",),
|
424 |
+
encoding=encoding,
|
425 |
+
)
|
426 |
+
|
427 |
+
|
428 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
429 |
+
def read_weighted_edgelist(
|
430 |
+
path,
|
431 |
+
comments="#",
|
432 |
+
delimiter=None,
|
433 |
+
create_using=None,
|
434 |
+
nodetype=None,
|
435 |
+
encoding="utf-8",
|
436 |
+
):
|
437 |
+
"""Read a graph as list of edges with numeric weights.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
path : file or string
|
442 |
+
File or filename to read. If a file is provided, it must be
|
443 |
+
opened in 'rb' mode.
|
444 |
+
Filenames ending in .gz or .bz2 will be uncompressed.
|
445 |
+
comments : string, optional
|
446 |
+
The character used to indicate the start of a comment.
|
447 |
+
delimiter : string, optional
|
448 |
+
The string used to separate values. The default is whitespace.
|
449 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
450 |
+
Graph type to create. If graph instance, then cleared before populated.
|
451 |
+
nodetype : int, float, str, Python type, optional
|
452 |
+
Convert node data from strings to specified type
|
453 |
+
encoding: string, optional
|
454 |
+
Specify which encoding to use when reading file.
|
455 |
+
|
456 |
+
Returns
|
457 |
+
-------
|
458 |
+
G : graph
|
459 |
+
A networkx Graph or other type specified with create_using
|
460 |
+
|
461 |
+
Notes
|
462 |
+
-----
|
463 |
+
Since nodes must be hashable, the function nodetype must return hashable
|
464 |
+
types (e.g. int, float, str, frozenset - or tuples of those, etc.)
|
465 |
+
|
466 |
+
Example edgelist file format.
|
467 |
+
|
468 |
+
With numeric edge data::
|
469 |
+
|
470 |
+
# read with
|
471 |
+
# >>> G=nx.read_weighted_edgelist(fh)
|
472 |
+
# source target data
|
473 |
+
a b 1
|
474 |
+
a c 3.14159
|
475 |
+
d e 42
|
476 |
+
|
477 |
+
See Also
|
478 |
+
--------
|
479 |
+
write_weighted_edgelist
|
480 |
+
"""
|
481 |
+
return read_edgelist(
|
482 |
+
path,
|
483 |
+
comments=comments,
|
484 |
+
delimiter=delimiter,
|
485 |
+
create_using=create_using,
|
486 |
+
nodetype=nodetype,
|
487 |
+
data=(("weight", float),),
|
488 |
+
encoding=encoding,
|
489 |
+
)
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/gexf.py
ADDED
@@ -0,0 +1,1065 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Read and write graphs in GEXF format.
|
2 |
+
|
3 |
+
.. warning::
|
4 |
+
This parser uses the standard xml library present in Python, which is
|
5 |
+
insecure - see :external+python:mod:`xml` for additional information.
|
6 |
+
Only parse GEFX files you trust.
|
7 |
+
|
8 |
+
GEXF (Graph Exchange XML Format) is a language for describing complex
|
9 |
+
network structures, their associated data and dynamics.
|
10 |
+
|
11 |
+
This implementation does not support mixed graphs (directed and
|
12 |
+
undirected edges together).
|
13 |
+
|
14 |
+
Format
|
15 |
+
------
|
16 |
+
GEXF is an XML format. See http://gexf.net/schema.html for the
|
17 |
+
specification and http://gexf.net/basic.html for examples.
|
18 |
+
"""
|
19 |
+
import itertools
|
20 |
+
import time
|
21 |
+
from xml.etree.ElementTree import (
|
22 |
+
Element,
|
23 |
+
ElementTree,
|
24 |
+
SubElement,
|
25 |
+
register_namespace,
|
26 |
+
tostring,
|
27 |
+
)
|
28 |
+
|
29 |
+
import networkx as nx
|
30 |
+
from networkx.utils import open_file
|
31 |
+
|
32 |
+
__all__ = ["write_gexf", "read_gexf", "relabel_gexf_graph", "generate_gexf"]
|
33 |
+
|
34 |
+
|
35 |
+
@open_file(1, mode="wb")
|
36 |
+
def write_gexf(G, path, encoding="utf-8", prettyprint=True, version="1.2draft"):
|
37 |
+
"""Write G in GEXF format to path.
|
38 |
+
|
39 |
+
"GEXF (Graph Exchange XML Format) is a language for describing
|
40 |
+
complex networks structures, their associated data and dynamics" [1]_.
|
41 |
+
|
42 |
+
Node attributes are checked according to the version of the GEXF
|
43 |
+
schemas used for parameters which are not user defined,
|
44 |
+
e.g. visualization 'viz' [2]_. See example for usage.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
G : graph
|
49 |
+
A NetworkX graph
|
50 |
+
path : file or string
|
51 |
+
File or file name to write.
|
52 |
+
File names ending in .gz or .bz2 will be compressed.
|
53 |
+
encoding : string (optional, default: 'utf-8')
|
54 |
+
Encoding for text data.
|
55 |
+
prettyprint : bool (optional, default: True)
|
56 |
+
If True use line breaks and indenting in output XML.
|
57 |
+
version: string (optional, default: '1.2draft')
|
58 |
+
The version of GEXF to be used for nodes attributes checking
|
59 |
+
|
60 |
+
Examples
|
61 |
+
--------
|
62 |
+
>>> G = nx.path_graph(4)
|
63 |
+
>>> nx.write_gexf(G, "test.gexf")
|
64 |
+
|
65 |
+
# visualization data
|
66 |
+
>>> G.nodes[0]["viz"] = {"size": 54}
|
67 |
+
>>> G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1}
|
68 |
+
>>> G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256}
|
69 |
+
|
70 |
+
|
71 |
+
Notes
|
72 |
+
-----
|
73 |
+
This implementation does not support mixed graphs (directed and undirected
|
74 |
+
edges together).
|
75 |
+
|
76 |
+
The node id attribute is set to be the string of the node label.
|
77 |
+
If you want to specify an id use set it as node data, e.g.
|
78 |
+
node['a']['id']=1 to set the id of node 'a' to 1.
|
79 |
+
|
80 |
+
References
|
81 |
+
----------
|
82 |
+
.. [1] GEXF File Format, http://gexf.net/
|
83 |
+
.. [2] GEXF schema, http://gexf.net/schema.html
|
84 |
+
"""
|
85 |
+
writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
|
86 |
+
writer.add_graph(G)
|
87 |
+
writer.write(path)
|
88 |
+
|
89 |
+
|
90 |
+
def generate_gexf(G, encoding="utf-8", prettyprint=True, version="1.2draft"):
|
91 |
+
"""Generate lines of GEXF format representation of G.
|
92 |
+
|
93 |
+
"GEXF (Graph Exchange XML Format) is a language for describing
|
94 |
+
complex networks structures, their associated data and dynamics" [1]_.
|
95 |
+
|
96 |
+
Parameters
|
97 |
+
----------
|
98 |
+
G : graph
|
99 |
+
A NetworkX graph
|
100 |
+
encoding : string (optional, default: 'utf-8')
|
101 |
+
Encoding for text data.
|
102 |
+
prettyprint : bool (optional, default: True)
|
103 |
+
If True use line breaks and indenting in output XML.
|
104 |
+
version : string (default: 1.2draft)
|
105 |
+
Version of GEFX File Format (see http://gexf.net/schema.html)
|
106 |
+
Supported values: "1.1draft", "1.2draft"
|
107 |
+
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
>>> G = nx.path_graph(4)
|
112 |
+
>>> linefeed = chr(10) # linefeed=\n
|
113 |
+
>>> s = linefeed.join(nx.generate_gexf(G))
|
114 |
+
>>> for line in nx.generate_gexf(G): # doctest: +SKIP
|
115 |
+
... print(line)
|
116 |
+
|
117 |
+
Notes
|
118 |
+
-----
|
119 |
+
This implementation does not support mixed graphs (directed and undirected
|
120 |
+
edges together).
|
121 |
+
|
122 |
+
The node id attribute is set to be the string of the node label.
|
123 |
+
If you want to specify an id use set it as node data, e.g.
|
124 |
+
node['a']['id']=1 to set the id of node 'a' to 1.
|
125 |
+
|
126 |
+
References
|
127 |
+
----------
|
128 |
+
.. [1] GEXF File Format, https://gephi.org/gexf/format/
|
129 |
+
"""
|
130 |
+
writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
|
131 |
+
writer.add_graph(G)
|
132 |
+
yield from str(writer).splitlines()
|
133 |
+
|
134 |
+
|
135 |
+
@open_file(0, mode="rb")
|
136 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
137 |
+
def read_gexf(path, node_type=None, relabel=False, version="1.2draft"):
|
138 |
+
"""Read graph in GEXF format from path.
|
139 |
+
|
140 |
+
"GEXF (Graph Exchange XML Format) is a language for describing
|
141 |
+
complex networks structures, their associated data and dynamics" [1]_.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
path : file or string
|
146 |
+
File or file name to read.
|
147 |
+
File names ending in .gz or .bz2 will be decompressed.
|
148 |
+
node_type: Python type (default: None)
|
149 |
+
Convert node ids to this type if not None.
|
150 |
+
relabel : bool (default: False)
|
151 |
+
If True relabel the nodes to use the GEXF node "label" attribute
|
152 |
+
instead of the node "id" attribute as the NetworkX node label.
|
153 |
+
version : string (default: 1.2draft)
|
154 |
+
Version of GEFX File Format (see http://gexf.net/schema.html)
|
155 |
+
Supported values: "1.1draft", "1.2draft"
|
156 |
+
|
157 |
+
Returns
|
158 |
+
-------
|
159 |
+
graph: NetworkX graph
|
160 |
+
If no parallel edges are found a Graph or DiGraph is returned.
|
161 |
+
Otherwise a MultiGraph or MultiDiGraph is returned.
|
162 |
+
|
163 |
+
Notes
|
164 |
+
-----
|
165 |
+
This implementation does not support mixed graphs (directed and undirected
|
166 |
+
edges together).
|
167 |
+
|
168 |
+
References
|
169 |
+
----------
|
170 |
+
.. [1] GEXF File Format, http://gexf.net/
|
171 |
+
"""
|
172 |
+
reader = GEXFReader(node_type=node_type, version=version)
|
173 |
+
if relabel:
|
174 |
+
G = relabel_gexf_graph(reader(path))
|
175 |
+
else:
|
176 |
+
G = reader(path)
|
177 |
+
return G
|
178 |
+
|
179 |
+
|
180 |
+
class GEXF:
|
181 |
+
versions = {
|
182 |
+
"1.1draft": {
|
183 |
+
"NS_GEXF": "http://www.gexf.net/1.1draft",
|
184 |
+
"NS_VIZ": "http://www.gexf.net/1.1draft/viz",
|
185 |
+
"NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
|
186 |
+
"SCHEMALOCATION": " ".join(
|
187 |
+
[
|
188 |
+
"http://www.gexf.net/1.1draft",
|
189 |
+
"http://www.gexf.net/1.1draft/gexf.xsd",
|
190 |
+
]
|
191 |
+
),
|
192 |
+
"VERSION": "1.1",
|
193 |
+
},
|
194 |
+
"1.2draft": {
|
195 |
+
"NS_GEXF": "http://www.gexf.net/1.2draft",
|
196 |
+
"NS_VIZ": "http://www.gexf.net/1.2draft/viz",
|
197 |
+
"NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
|
198 |
+
"SCHEMALOCATION": " ".join(
|
199 |
+
[
|
200 |
+
"http://www.gexf.net/1.2draft",
|
201 |
+
"http://www.gexf.net/1.2draft/gexf.xsd",
|
202 |
+
]
|
203 |
+
),
|
204 |
+
"VERSION": "1.2",
|
205 |
+
},
|
206 |
+
}
|
207 |
+
|
208 |
+
def construct_types(self):
|
209 |
+
types = [
|
210 |
+
(int, "integer"),
|
211 |
+
(float, "float"),
|
212 |
+
(float, "double"),
|
213 |
+
(bool, "boolean"),
|
214 |
+
(list, "string"),
|
215 |
+
(dict, "string"),
|
216 |
+
(int, "long"),
|
217 |
+
(str, "liststring"),
|
218 |
+
(str, "anyURI"),
|
219 |
+
(str, "string"),
|
220 |
+
]
|
221 |
+
|
222 |
+
# These additions to types allow writing numpy types
|
223 |
+
try:
|
224 |
+
import numpy as np
|
225 |
+
except ImportError:
|
226 |
+
pass
|
227 |
+
else:
|
228 |
+
# prepend so that python types are created upon read (last entry wins)
|
229 |
+
types = [
|
230 |
+
(np.float64, "float"),
|
231 |
+
(np.float32, "float"),
|
232 |
+
(np.float16, "float"),
|
233 |
+
(np.int_, "int"),
|
234 |
+
(np.int8, "int"),
|
235 |
+
(np.int16, "int"),
|
236 |
+
(np.int32, "int"),
|
237 |
+
(np.int64, "int"),
|
238 |
+
(np.uint8, "int"),
|
239 |
+
(np.uint16, "int"),
|
240 |
+
(np.uint32, "int"),
|
241 |
+
(np.uint64, "int"),
|
242 |
+
(np.int_, "int"),
|
243 |
+
(np.intc, "int"),
|
244 |
+
(np.intp, "int"),
|
245 |
+
] + types
|
246 |
+
|
247 |
+
self.xml_type = dict(types)
|
248 |
+
self.python_type = dict(reversed(a) for a in types)
|
249 |
+
|
250 |
+
# http://www.w3.org/TR/xmlschema-2/#boolean
|
251 |
+
convert_bool = {
|
252 |
+
"true": True,
|
253 |
+
"false": False,
|
254 |
+
"True": True,
|
255 |
+
"False": False,
|
256 |
+
"0": False,
|
257 |
+
0: False,
|
258 |
+
"1": True,
|
259 |
+
1: True,
|
260 |
+
}
|
261 |
+
|
262 |
+
def set_version(self, version):
|
263 |
+
d = self.versions.get(version)
|
264 |
+
if d is None:
|
265 |
+
raise nx.NetworkXError(f"Unknown GEXF version {version}.")
|
266 |
+
self.NS_GEXF = d["NS_GEXF"]
|
267 |
+
self.NS_VIZ = d["NS_VIZ"]
|
268 |
+
self.NS_XSI = d["NS_XSI"]
|
269 |
+
self.SCHEMALOCATION = d["SCHEMALOCATION"]
|
270 |
+
self.VERSION = d["VERSION"]
|
271 |
+
self.version = version
|
272 |
+
|
273 |
+
|
274 |
+
class GEXFWriter(GEXF):
|
275 |
+
# class for writing GEXF format files
|
276 |
+
# use write_gexf() function
|
277 |
+
def __init__(
|
278 |
+
self, graph=None, encoding="utf-8", prettyprint=True, version="1.2draft"
|
279 |
+
):
|
280 |
+
self.construct_types()
|
281 |
+
self.prettyprint = prettyprint
|
282 |
+
self.encoding = encoding
|
283 |
+
self.set_version(version)
|
284 |
+
self.xml = Element(
|
285 |
+
"gexf",
|
286 |
+
{
|
287 |
+
"xmlns": self.NS_GEXF,
|
288 |
+
"xmlns:xsi": self.NS_XSI,
|
289 |
+
"xsi:schemaLocation": self.SCHEMALOCATION,
|
290 |
+
"version": self.VERSION,
|
291 |
+
},
|
292 |
+
)
|
293 |
+
|
294 |
+
# Make meta element a non-graph element
|
295 |
+
# Also add lastmodifieddate as attribute, not tag
|
296 |
+
meta_element = Element("meta")
|
297 |
+
subelement_text = f"NetworkX {nx.__version__}"
|
298 |
+
SubElement(meta_element, "creator").text = subelement_text
|
299 |
+
meta_element.set("lastmodifieddate", time.strftime("%Y-%m-%d"))
|
300 |
+
self.xml.append(meta_element)
|
301 |
+
|
302 |
+
register_namespace("viz", self.NS_VIZ)
|
303 |
+
|
304 |
+
# counters for edge and attribute identifiers
|
305 |
+
self.edge_id = itertools.count()
|
306 |
+
self.attr_id = itertools.count()
|
307 |
+
self.all_edge_ids = set()
|
308 |
+
# default attributes are stored in dictionaries
|
309 |
+
self.attr = {}
|
310 |
+
self.attr["node"] = {}
|
311 |
+
self.attr["edge"] = {}
|
312 |
+
self.attr["node"]["dynamic"] = {}
|
313 |
+
self.attr["node"]["static"] = {}
|
314 |
+
self.attr["edge"]["dynamic"] = {}
|
315 |
+
self.attr["edge"]["static"] = {}
|
316 |
+
|
317 |
+
if graph is not None:
|
318 |
+
self.add_graph(graph)
|
319 |
+
|
320 |
+
def __str__(self):
|
321 |
+
if self.prettyprint:
|
322 |
+
self.indent(self.xml)
|
323 |
+
s = tostring(self.xml).decode(self.encoding)
|
324 |
+
return s
|
325 |
+
|
326 |
+
def add_graph(self, G):
|
327 |
+
# first pass through G collecting edge ids
|
328 |
+
for u, v, dd in G.edges(data=True):
|
329 |
+
eid = dd.get("id")
|
330 |
+
if eid is not None:
|
331 |
+
self.all_edge_ids.add(str(eid))
|
332 |
+
# set graph attributes
|
333 |
+
if G.graph.get("mode") == "dynamic":
|
334 |
+
mode = "dynamic"
|
335 |
+
else:
|
336 |
+
mode = "static"
|
337 |
+
# Add a graph element to the XML
|
338 |
+
if G.is_directed():
|
339 |
+
default = "directed"
|
340 |
+
else:
|
341 |
+
default = "undirected"
|
342 |
+
name = G.graph.get("name", "")
|
343 |
+
graph_element = Element("graph", defaultedgetype=default, mode=mode, name=name)
|
344 |
+
self.graph_element = graph_element
|
345 |
+
self.add_nodes(G, graph_element)
|
346 |
+
self.add_edges(G, graph_element)
|
347 |
+
self.xml.append(graph_element)
|
348 |
+
|
349 |
+
def add_nodes(self, G, graph_element):
|
350 |
+
nodes_element = Element("nodes")
|
351 |
+
for node, data in G.nodes(data=True):
|
352 |
+
node_data = data.copy()
|
353 |
+
node_id = str(node_data.pop("id", node))
|
354 |
+
kw = {"id": node_id}
|
355 |
+
label = str(node_data.pop("label", node))
|
356 |
+
kw["label"] = label
|
357 |
+
try:
|
358 |
+
pid = node_data.pop("pid")
|
359 |
+
kw["pid"] = str(pid)
|
360 |
+
except KeyError:
|
361 |
+
pass
|
362 |
+
try:
|
363 |
+
start = node_data.pop("start")
|
364 |
+
kw["start"] = str(start)
|
365 |
+
self.alter_graph_mode_timeformat(start)
|
366 |
+
except KeyError:
|
367 |
+
pass
|
368 |
+
try:
|
369 |
+
end = node_data.pop("end")
|
370 |
+
kw["end"] = str(end)
|
371 |
+
self.alter_graph_mode_timeformat(end)
|
372 |
+
except KeyError:
|
373 |
+
pass
|
374 |
+
# add node element with attributes
|
375 |
+
node_element = Element("node", **kw)
|
376 |
+
# add node element and attr subelements
|
377 |
+
default = G.graph.get("node_default", {})
|
378 |
+
node_data = self.add_parents(node_element, node_data)
|
379 |
+
if self.VERSION == "1.1":
|
380 |
+
node_data = self.add_slices(node_element, node_data)
|
381 |
+
else:
|
382 |
+
node_data = self.add_spells(node_element, node_data)
|
383 |
+
node_data = self.add_viz(node_element, node_data)
|
384 |
+
node_data = self.add_attributes("node", node_element, node_data, default)
|
385 |
+
nodes_element.append(node_element)
|
386 |
+
graph_element.append(nodes_element)
|
387 |
+
|
388 |
+
def add_edges(self, G, graph_element):
|
389 |
+
def edge_key_data(G):
|
390 |
+
# helper function to unify multigraph and graph edge iterator
|
391 |
+
if G.is_multigraph():
|
392 |
+
for u, v, key, data in G.edges(data=True, keys=True):
|
393 |
+
edge_data = data.copy()
|
394 |
+
edge_data.update(key=key)
|
395 |
+
edge_id = edge_data.pop("id", None)
|
396 |
+
if edge_id is None:
|
397 |
+
edge_id = next(self.edge_id)
|
398 |
+
while str(edge_id) in self.all_edge_ids:
|
399 |
+
edge_id = next(self.edge_id)
|
400 |
+
self.all_edge_ids.add(str(edge_id))
|
401 |
+
yield u, v, edge_id, edge_data
|
402 |
+
else:
|
403 |
+
for u, v, data in G.edges(data=True):
|
404 |
+
edge_data = data.copy()
|
405 |
+
edge_id = edge_data.pop("id", None)
|
406 |
+
if edge_id is None:
|
407 |
+
edge_id = next(self.edge_id)
|
408 |
+
while str(edge_id) in self.all_edge_ids:
|
409 |
+
edge_id = next(self.edge_id)
|
410 |
+
self.all_edge_ids.add(str(edge_id))
|
411 |
+
yield u, v, edge_id, edge_data
|
412 |
+
|
413 |
+
edges_element = Element("edges")
|
414 |
+
for u, v, key, edge_data in edge_key_data(G):
|
415 |
+
kw = {"id": str(key)}
|
416 |
+
try:
|
417 |
+
edge_label = edge_data.pop("label")
|
418 |
+
kw["label"] = str(edge_label)
|
419 |
+
except KeyError:
|
420 |
+
pass
|
421 |
+
try:
|
422 |
+
edge_weight = edge_data.pop("weight")
|
423 |
+
kw["weight"] = str(edge_weight)
|
424 |
+
except KeyError:
|
425 |
+
pass
|
426 |
+
try:
|
427 |
+
edge_type = edge_data.pop("type")
|
428 |
+
kw["type"] = str(edge_type)
|
429 |
+
except KeyError:
|
430 |
+
pass
|
431 |
+
try:
|
432 |
+
start = edge_data.pop("start")
|
433 |
+
kw["start"] = str(start)
|
434 |
+
self.alter_graph_mode_timeformat(start)
|
435 |
+
except KeyError:
|
436 |
+
pass
|
437 |
+
try:
|
438 |
+
end = edge_data.pop("end")
|
439 |
+
kw["end"] = str(end)
|
440 |
+
self.alter_graph_mode_timeformat(end)
|
441 |
+
except KeyError:
|
442 |
+
pass
|
443 |
+
source_id = str(G.nodes[u].get("id", u))
|
444 |
+
target_id = str(G.nodes[v].get("id", v))
|
445 |
+
edge_element = Element("edge", source=source_id, target=target_id, **kw)
|
446 |
+
default = G.graph.get("edge_default", {})
|
447 |
+
if self.VERSION == "1.1":
|
448 |
+
edge_data = self.add_slices(edge_element, edge_data)
|
449 |
+
else:
|
450 |
+
edge_data = self.add_spells(edge_element, edge_data)
|
451 |
+
edge_data = self.add_viz(edge_element, edge_data)
|
452 |
+
edge_data = self.add_attributes("edge", edge_element, edge_data, default)
|
453 |
+
edges_element.append(edge_element)
|
454 |
+
graph_element.append(edges_element)
|
455 |
+
|
456 |
+
def add_attributes(self, node_or_edge, xml_obj, data, default):
|
457 |
+
# Add attrvalues to node or edge
|
458 |
+
attvalues = Element("attvalues")
|
459 |
+
if len(data) == 0:
|
460 |
+
return data
|
461 |
+
mode = "static"
|
462 |
+
for k, v in data.items():
|
463 |
+
# rename generic multigraph key to avoid any name conflict
|
464 |
+
if k == "key":
|
465 |
+
k = "networkx_key"
|
466 |
+
val_type = type(v)
|
467 |
+
if val_type not in self.xml_type:
|
468 |
+
raise TypeError(f"attribute value type is not allowed: {val_type}")
|
469 |
+
if isinstance(v, list):
|
470 |
+
# dynamic data
|
471 |
+
for val, start, end in v:
|
472 |
+
val_type = type(val)
|
473 |
+
if start is not None or end is not None:
|
474 |
+
mode = "dynamic"
|
475 |
+
self.alter_graph_mode_timeformat(start)
|
476 |
+
self.alter_graph_mode_timeformat(end)
|
477 |
+
break
|
478 |
+
attr_id = self.get_attr_id(
|
479 |
+
str(k), self.xml_type[val_type], node_or_edge, default, mode
|
480 |
+
)
|
481 |
+
for val, start, end in v:
|
482 |
+
e = Element("attvalue")
|
483 |
+
e.attrib["for"] = attr_id
|
484 |
+
e.attrib["value"] = str(val)
|
485 |
+
# Handle nan, inf, -inf differently
|
486 |
+
if val_type == float:
|
487 |
+
if e.attrib["value"] == "inf":
|
488 |
+
e.attrib["value"] = "INF"
|
489 |
+
elif e.attrib["value"] == "nan":
|
490 |
+
e.attrib["value"] = "NaN"
|
491 |
+
elif e.attrib["value"] == "-inf":
|
492 |
+
e.attrib["value"] = "-INF"
|
493 |
+
if start is not None:
|
494 |
+
e.attrib["start"] = str(start)
|
495 |
+
if end is not None:
|
496 |
+
e.attrib["end"] = str(end)
|
497 |
+
attvalues.append(e)
|
498 |
+
else:
|
499 |
+
# static data
|
500 |
+
mode = "static"
|
501 |
+
attr_id = self.get_attr_id(
|
502 |
+
str(k), self.xml_type[val_type], node_or_edge, default, mode
|
503 |
+
)
|
504 |
+
e = Element("attvalue")
|
505 |
+
e.attrib["for"] = attr_id
|
506 |
+
if isinstance(v, bool):
|
507 |
+
e.attrib["value"] = str(v).lower()
|
508 |
+
else:
|
509 |
+
e.attrib["value"] = str(v)
|
510 |
+
# Handle float nan, inf, -inf differently
|
511 |
+
if val_type == float:
|
512 |
+
if e.attrib["value"] == "inf":
|
513 |
+
e.attrib["value"] = "INF"
|
514 |
+
elif e.attrib["value"] == "nan":
|
515 |
+
e.attrib["value"] = "NaN"
|
516 |
+
elif e.attrib["value"] == "-inf":
|
517 |
+
e.attrib["value"] = "-INF"
|
518 |
+
attvalues.append(e)
|
519 |
+
xml_obj.append(attvalues)
|
520 |
+
return data
|
521 |
+
|
522 |
+
def get_attr_id(self, title, attr_type, edge_or_node, default, mode):
|
523 |
+
# find the id of the attribute or generate a new id
|
524 |
+
try:
|
525 |
+
return self.attr[edge_or_node][mode][title]
|
526 |
+
except KeyError:
|
527 |
+
# generate new id
|
528 |
+
new_id = str(next(self.attr_id))
|
529 |
+
self.attr[edge_or_node][mode][title] = new_id
|
530 |
+
attr_kwargs = {"id": new_id, "title": title, "type": attr_type}
|
531 |
+
attribute = Element("attribute", **attr_kwargs)
|
532 |
+
# add subelement for data default value if present
|
533 |
+
default_title = default.get(title)
|
534 |
+
if default_title is not None:
|
535 |
+
default_element = Element("default")
|
536 |
+
default_element.text = str(default_title)
|
537 |
+
attribute.append(default_element)
|
538 |
+
# new insert it into the XML
|
539 |
+
attributes_element = None
|
540 |
+
for a in self.graph_element.findall("attributes"):
|
541 |
+
# find existing attributes element by class and mode
|
542 |
+
a_class = a.get("class")
|
543 |
+
a_mode = a.get("mode", "static")
|
544 |
+
if a_class == edge_or_node and a_mode == mode:
|
545 |
+
attributes_element = a
|
546 |
+
if attributes_element is None:
|
547 |
+
# create new attributes element
|
548 |
+
attr_kwargs = {"mode": mode, "class": edge_or_node}
|
549 |
+
attributes_element = Element("attributes", **attr_kwargs)
|
550 |
+
self.graph_element.insert(0, attributes_element)
|
551 |
+
attributes_element.append(attribute)
|
552 |
+
return new_id
|
553 |
+
|
554 |
+
def add_viz(self, element, node_data):
|
555 |
+
viz = node_data.pop("viz", False)
|
556 |
+
if viz:
|
557 |
+
color = viz.get("color")
|
558 |
+
if color is not None:
|
559 |
+
if self.VERSION == "1.1":
|
560 |
+
e = Element(
|
561 |
+
f"{{{self.NS_VIZ}}}color",
|
562 |
+
r=str(color.get("r")),
|
563 |
+
g=str(color.get("g")),
|
564 |
+
b=str(color.get("b")),
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
e = Element(
|
568 |
+
f"{{{self.NS_VIZ}}}color",
|
569 |
+
r=str(color.get("r")),
|
570 |
+
g=str(color.get("g")),
|
571 |
+
b=str(color.get("b")),
|
572 |
+
a=str(color.get("a", 1.0)),
|
573 |
+
)
|
574 |
+
element.append(e)
|
575 |
+
|
576 |
+
size = viz.get("size")
|
577 |
+
if size is not None:
|
578 |
+
e = Element(f"{{{self.NS_VIZ}}}size", value=str(size))
|
579 |
+
element.append(e)
|
580 |
+
|
581 |
+
thickness = viz.get("thickness")
|
582 |
+
if thickness is not None:
|
583 |
+
e = Element(f"{{{self.NS_VIZ}}}thickness", value=str(thickness))
|
584 |
+
element.append(e)
|
585 |
+
|
586 |
+
shape = viz.get("shape")
|
587 |
+
if shape is not None:
|
588 |
+
if shape.startswith("http"):
|
589 |
+
e = Element(
|
590 |
+
f"{{{self.NS_VIZ}}}shape", value="image", uri=str(shape)
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
e = Element(f"{{{self.NS_VIZ}}}shape", value=str(shape))
|
594 |
+
element.append(e)
|
595 |
+
|
596 |
+
position = viz.get("position")
|
597 |
+
if position is not None:
|
598 |
+
e = Element(
|
599 |
+
f"{{{self.NS_VIZ}}}position",
|
600 |
+
x=str(position.get("x")),
|
601 |
+
y=str(position.get("y")),
|
602 |
+
z=str(position.get("z")),
|
603 |
+
)
|
604 |
+
element.append(e)
|
605 |
+
return node_data
|
606 |
+
|
607 |
+
def add_parents(self, node_element, node_data):
|
608 |
+
parents = node_data.pop("parents", False)
|
609 |
+
if parents:
|
610 |
+
parents_element = Element("parents")
|
611 |
+
for p in parents:
|
612 |
+
e = Element("parent")
|
613 |
+
e.attrib["for"] = str(p)
|
614 |
+
parents_element.append(e)
|
615 |
+
node_element.append(parents_element)
|
616 |
+
return node_data
|
617 |
+
|
618 |
+
def add_slices(self, node_or_edge_element, node_or_edge_data):
|
619 |
+
slices = node_or_edge_data.pop("slices", False)
|
620 |
+
if slices:
|
621 |
+
slices_element = Element("slices")
|
622 |
+
for start, end in slices:
|
623 |
+
e = Element("slice", start=str(start), end=str(end))
|
624 |
+
slices_element.append(e)
|
625 |
+
node_or_edge_element.append(slices_element)
|
626 |
+
return node_or_edge_data
|
627 |
+
|
628 |
+
def add_spells(self, node_or_edge_element, node_or_edge_data):
|
629 |
+
spells = node_or_edge_data.pop("spells", False)
|
630 |
+
if spells:
|
631 |
+
spells_element = Element("spells")
|
632 |
+
for start, end in spells:
|
633 |
+
e = Element("spell")
|
634 |
+
if start is not None:
|
635 |
+
e.attrib["start"] = str(start)
|
636 |
+
self.alter_graph_mode_timeformat(start)
|
637 |
+
if end is not None:
|
638 |
+
e.attrib["end"] = str(end)
|
639 |
+
self.alter_graph_mode_timeformat(end)
|
640 |
+
spells_element.append(e)
|
641 |
+
node_or_edge_element.append(spells_element)
|
642 |
+
return node_or_edge_data
|
643 |
+
|
644 |
+
def alter_graph_mode_timeformat(self, start_or_end):
|
645 |
+
# If 'start' or 'end' appears, alter Graph mode to dynamic and
|
646 |
+
# set timeformat
|
647 |
+
if self.graph_element.get("mode") == "static":
|
648 |
+
if start_or_end is not None:
|
649 |
+
if isinstance(start_or_end, str):
|
650 |
+
timeformat = "date"
|
651 |
+
elif isinstance(start_or_end, float):
|
652 |
+
timeformat = "double"
|
653 |
+
elif isinstance(start_or_end, int):
|
654 |
+
timeformat = "long"
|
655 |
+
else:
|
656 |
+
raise nx.NetworkXError(
|
657 |
+
"timeformat should be of the type int, float or str"
|
658 |
+
)
|
659 |
+
self.graph_element.set("timeformat", timeformat)
|
660 |
+
self.graph_element.set("mode", "dynamic")
|
661 |
+
|
662 |
+
def write(self, fh):
|
663 |
+
# Serialize graph G in GEXF to the open fh
|
664 |
+
if self.prettyprint:
|
665 |
+
self.indent(self.xml)
|
666 |
+
document = ElementTree(self.xml)
|
667 |
+
document.write(fh, encoding=self.encoding, xml_declaration=True)
|
668 |
+
|
669 |
+
def indent(self, elem, level=0):
|
670 |
+
# in-place prettyprint formatter
|
671 |
+
i = "\n" + " " * level
|
672 |
+
if len(elem):
|
673 |
+
if not elem.text or not elem.text.strip():
|
674 |
+
elem.text = i + " "
|
675 |
+
if not elem.tail or not elem.tail.strip():
|
676 |
+
elem.tail = i
|
677 |
+
for elem in elem:
|
678 |
+
self.indent(elem, level + 1)
|
679 |
+
if not elem.tail or not elem.tail.strip():
|
680 |
+
elem.tail = i
|
681 |
+
else:
|
682 |
+
if level and (not elem.tail or not elem.tail.strip()):
|
683 |
+
elem.tail = i
|
684 |
+
|
685 |
+
|
686 |
+
class GEXFReader(GEXF):
|
687 |
+
# Class to read GEXF format files
|
688 |
+
# use read_gexf() function
|
689 |
+
def __init__(self, node_type=None, version="1.2draft"):
|
690 |
+
self.construct_types()
|
691 |
+
self.node_type = node_type
|
692 |
+
# assume simple graph and test for multigraph on read
|
693 |
+
self.simple_graph = True
|
694 |
+
self.set_version(version)
|
695 |
+
|
696 |
+
def __call__(self, stream):
|
697 |
+
self.xml = ElementTree(file=stream)
|
698 |
+
g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
|
699 |
+
if g is not None:
|
700 |
+
return self.make_graph(g)
|
701 |
+
# try all the versions
|
702 |
+
for version in self.versions:
|
703 |
+
self.set_version(version)
|
704 |
+
g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
|
705 |
+
if g is not None:
|
706 |
+
return self.make_graph(g)
|
707 |
+
raise nx.NetworkXError("No <graph> element in GEXF file.")
|
708 |
+
|
709 |
+
def make_graph(self, graph_xml):
|
710 |
+
# start with empty DiGraph or MultiDiGraph
|
711 |
+
edgedefault = graph_xml.get("defaultedgetype", None)
|
712 |
+
if edgedefault == "directed":
|
713 |
+
G = nx.MultiDiGraph()
|
714 |
+
else:
|
715 |
+
G = nx.MultiGraph()
|
716 |
+
|
717 |
+
# graph attributes
|
718 |
+
graph_name = graph_xml.get("name", "")
|
719 |
+
if graph_name != "":
|
720 |
+
G.graph["name"] = graph_name
|
721 |
+
graph_start = graph_xml.get("start")
|
722 |
+
if graph_start is not None:
|
723 |
+
G.graph["start"] = graph_start
|
724 |
+
graph_end = graph_xml.get("end")
|
725 |
+
if graph_end is not None:
|
726 |
+
G.graph["end"] = graph_end
|
727 |
+
graph_mode = graph_xml.get("mode", "")
|
728 |
+
if graph_mode == "dynamic":
|
729 |
+
G.graph["mode"] = "dynamic"
|
730 |
+
else:
|
731 |
+
G.graph["mode"] = "static"
|
732 |
+
|
733 |
+
# timeformat
|
734 |
+
self.timeformat = graph_xml.get("timeformat")
|
735 |
+
if self.timeformat == "date":
|
736 |
+
self.timeformat = "string"
|
737 |
+
|
738 |
+
# node and edge attributes
|
739 |
+
attributes_elements = graph_xml.findall(f"{{{self.NS_GEXF}}}attributes")
|
740 |
+
# dictionaries to hold attributes and attribute defaults
|
741 |
+
node_attr = {}
|
742 |
+
node_default = {}
|
743 |
+
edge_attr = {}
|
744 |
+
edge_default = {}
|
745 |
+
for a in attributes_elements:
|
746 |
+
attr_class = a.get("class")
|
747 |
+
if attr_class == "node":
|
748 |
+
na, nd = self.find_gexf_attributes(a)
|
749 |
+
node_attr.update(na)
|
750 |
+
node_default.update(nd)
|
751 |
+
G.graph["node_default"] = node_default
|
752 |
+
elif attr_class == "edge":
|
753 |
+
ea, ed = self.find_gexf_attributes(a)
|
754 |
+
edge_attr.update(ea)
|
755 |
+
edge_default.update(ed)
|
756 |
+
G.graph["edge_default"] = edge_default
|
757 |
+
else:
|
758 |
+
raise # unknown attribute class
|
759 |
+
|
760 |
+
# Hack to handle Gephi0.7beta bug
|
761 |
+
# add weight attribute
|
762 |
+
ea = {"weight": {"type": "double", "mode": "static", "title": "weight"}}
|
763 |
+
ed = {}
|
764 |
+
edge_attr.update(ea)
|
765 |
+
edge_default.update(ed)
|
766 |
+
G.graph["edge_default"] = edge_default
|
767 |
+
|
768 |
+
# add nodes
|
769 |
+
nodes_element = graph_xml.find(f"{{{self.NS_GEXF}}}nodes")
|
770 |
+
if nodes_element is not None:
|
771 |
+
for node_xml in nodes_element.findall(f"{{{self.NS_GEXF}}}node"):
|
772 |
+
self.add_node(G, node_xml, node_attr)
|
773 |
+
|
774 |
+
# add edges
|
775 |
+
edges_element = graph_xml.find(f"{{{self.NS_GEXF}}}edges")
|
776 |
+
if edges_element is not None:
|
777 |
+
for edge_xml in edges_element.findall(f"{{{self.NS_GEXF}}}edge"):
|
778 |
+
self.add_edge(G, edge_xml, edge_attr)
|
779 |
+
|
780 |
+
# switch to Graph or DiGraph if no parallel edges were found.
|
781 |
+
if self.simple_graph:
|
782 |
+
if G.is_directed():
|
783 |
+
G = nx.DiGraph(G)
|
784 |
+
else:
|
785 |
+
G = nx.Graph(G)
|
786 |
+
return G
|
787 |
+
|
788 |
+
def add_node(self, G, node_xml, node_attr, node_pid=None):
|
789 |
+
# add a single node with attributes to the graph
|
790 |
+
|
791 |
+
# get attributes and subattributues for node
|
792 |
+
data = self.decode_attr_elements(node_attr, node_xml)
|
793 |
+
data = self.add_parents(data, node_xml) # add any parents
|
794 |
+
if self.VERSION == "1.1":
|
795 |
+
data = self.add_slices(data, node_xml) # add slices
|
796 |
+
else:
|
797 |
+
data = self.add_spells(data, node_xml) # add spells
|
798 |
+
data = self.add_viz(data, node_xml) # add viz
|
799 |
+
data = self.add_start_end(data, node_xml) # add start/end
|
800 |
+
|
801 |
+
# find the node id and cast it to the appropriate type
|
802 |
+
node_id = node_xml.get("id")
|
803 |
+
if self.node_type is not None:
|
804 |
+
node_id = self.node_type(node_id)
|
805 |
+
|
806 |
+
# every node should have a label
|
807 |
+
node_label = node_xml.get("label")
|
808 |
+
data["label"] = node_label
|
809 |
+
|
810 |
+
# parent node id
|
811 |
+
node_pid = node_xml.get("pid", node_pid)
|
812 |
+
if node_pid is not None:
|
813 |
+
data["pid"] = node_pid
|
814 |
+
|
815 |
+
# check for subnodes, recursive
|
816 |
+
subnodes = node_xml.find(f"{{{self.NS_GEXF}}}nodes")
|
817 |
+
if subnodes is not None:
|
818 |
+
for node_xml in subnodes.findall(f"{{{self.NS_GEXF}}}node"):
|
819 |
+
self.add_node(G, node_xml, node_attr, node_pid=node_id)
|
820 |
+
|
821 |
+
G.add_node(node_id, **data)
|
822 |
+
|
823 |
+
def add_start_end(self, data, xml):
|
824 |
+
# start and end times
|
825 |
+
ttype = self.timeformat
|
826 |
+
node_start = xml.get("start")
|
827 |
+
if node_start is not None:
|
828 |
+
data["start"] = self.python_type[ttype](node_start)
|
829 |
+
node_end = xml.get("end")
|
830 |
+
if node_end is not None:
|
831 |
+
data["end"] = self.python_type[ttype](node_end)
|
832 |
+
return data
|
833 |
+
|
834 |
+
def add_viz(self, data, node_xml):
|
835 |
+
# add viz element for node
|
836 |
+
viz = {}
|
837 |
+
color = node_xml.find(f"{{{self.NS_VIZ}}}color")
|
838 |
+
if color is not None:
|
839 |
+
if self.VERSION == "1.1":
|
840 |
+
viz["color"] = {
|
841 |
+
"r": int(color.get("r")),
|
842 |
+
"g": int(color.get("g")),
|
843 |
+
"b": int(color.get("b")),
|
844 |
+
}
|
845 |
+
else:
|
846 |
+
viz["color"] = {
|
847 |
+
"r": int(color.get("r")),
|
848 |
+
"g": int(color.get("g")),
|
849 |
+
"b": int(color.get("b")),
|
850 |
+
"a": float(color.get("a", 1)),
|
851 |
+
}
|
852 |
+
|
853 |
+
size = node_xml.find(f"{{{self.NS_VIZ}}}size")
|
854 |
+
if size is not None:
|
855 |
+
viz["size"] = float(size.get("value"))
|
856 |
+
|
857 |
+
thickness = node_xml.find(f"{{{self.NS_VIZ}}}thickness")
|
858 |
+
if thickness is not None:
|
859 |
+
viz["thickness"] = float(thickness.get("value"))
|
860 |
+
|
861 |
+
shape = node_xml.find(f"{{{self.NS_VIZ}}}shape")
|
862 |
+
if shape is not None:
|
863 |
+
viz["shape"] = shape.get("shape")
|
864 |
+
if viz["shape"] == "image":
|
865 |
+
viz["shape"] = shape.get("uri")
|
866 |
+
|
867 |
+
position = node_xml.find(f"{{{self.NS_VIZ}}}position")
|
868 |
+
if position is not None:
|
869 |
+
viz["position"] = {
|
870 |
+
"x": float(position.get("x", 0)),
|
871 |
+
"y": float(position.get("y", 0)),
|
872 |
+
"z": float(position.get("z", 0)),
|
873 |
+
}
|
874 |
+
|
875 |
+
if len(viz) > 0:
|
876 |
+
data["viz"] = viz
|
877 |
+
return data
|
878 |
+
|
879 |
+
def add_parents(self, data, node_xml):
|
880 |
+
parents_element = node_xml.find(f"{{{self.NS_GEXF}}}parents")
|
881 |
+
if parents_element is not None:
|
882 |
+
data["parents"] = []
|
883 |
+
for p in parents_element.findall(f"{{{self.NS_GEXF}}}parent"):
|
884 |
+
parent = p.get("for")
|
885 |
+
data["parents"].append(parent)
|
886 |
+
return data
|
887 |
+
|
888 |
+
def add_slices(self, data, node_or_edge_xml):
|
889 |
+
slices_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}slices")
|
890 |
+
if slices_element is not None:
|
891 |
+
data["slices"] = []
|
892 |
+
for s in slices_element.findall(f"{{{self.NS_GEXF}}}slice"):
|
893 |
+
start = s.get("start")
|
894 |
+
end = s.get("end")
|
895 |
+
data["slices"].append((start, end))
|
896 |
+
return data
|
897 |
+
|
898 |
+
def add_spells(self, data, node_or_edge_xml):
|
899 |
+
spells_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}spells")
|
900 |
+
if spells_element is not None:
|
901 |
+
data["spells"] = []
|
902 |
+
ttype = self.timeformat
|
903 |
+
for s in spells_element.findall(f"{{{self.NS_GEXF}}}spell"):
|
904 |
+
start = self.python_type[ttype](s.get("start"))
|
905 |
+
end = self.python_type[ttype](s.get("end"))
|
906 |
+
data["spells"].append((start, end))
|
907 |
+
return data
|
908 |
+
|
909 |
+
def add_edge(self, G, edge_element, edge_attr):
|
910 |
+
# add an edge to the graph
|
911 |
+
|
912 |
+
# raise error if we find mixed directed and undirected edges
|
913 |
+
edge_direction = edge_element.get("type")
|
914 |
+
if G.is_directed() and edge_direction == "undirected":
|
915 |
+
raise nx.NetworkXError("Undirected edge found in directed graph.")
|
916 |
+
if (not G.is_directed()) and edge_direction == "directed":
|
917 |
+
raise nx.NetworkXError("Directed edge found in undirected graph.")
|
918 |
+
|
919 |
+
# Get source and target and recast type if required
|
920 |
+
source = edge_element.get("source")
|
921 |
+
target = edge_element.get("target")
|
922 |
+
if self.node_type is not None:
|
923 |
+
source = self.node_type(source)
|
924 |
+
target = self.node_type(target)
|
925 |
+
|
926 |
+
data = self.decode_attr_elements(edge_attr, edge_element)
|
927 |
+
data = self.add_start_end(data, edge_element)
|
928 |
+
|
929 |
+
if self.VERSION == "1.1":
|
930 |
+
data = self.add_slices(data, edge_element) # add slices
|
931 |
+
else:
|
932 |
+
data = self.add_spells(data, edge_element) # add spells
|
933 |
+
|
934 |
+
# GEXF stores edge ids as an attribute
|
935 |
+
# NetworkX uses them as keys in multigraphs
|
936 |
+
# if networkx_key is not specified as an attribute
|
937 |
+
edge_id = edge_element.get("id")
|
938 |
+
if edge_id is not None:
|
939 |
+
data["id"] = edge_id
|
940 |
+
|
941 |
+
# check if there is a 'multigraph_key' and use that as edge_id
|
942 |
+
multigraph_key = data.pop("networkx_key", None)
|
943 |
+
if multigraph_key is not None:
|
944 |
+
edge_id = multigraph_key
|
945 |
+
|
946 |
+
weight = edge_element.get("weight")
|
947 |
+
if weight is not None:
|
948 |
+
data["weight"] = float(weight)
|
949 |
+
|
950 |
+
edge_label = edge_element.get("label")
|
951 |
+
if edge_label is not None:
|
952 |
+
data["label"] = edge_label
|
953 |
+
|
954 |
+
if G.has_edge(source, target):
|
955 |
+
# seen this edge before - this is a multigraph
|
956 |
+
self.simple_graph = False
|
957 |
+
G.add_edge(source, target, key=edge_id, **data)
|
958 |
+
if edge_direction == "mutual":
|
959 |
+
G.add_edge(target, source, key=edge_id, **data)
|
960 |
+
|
961 |
+
def decode_attr_elements(self, gexf_keys, obj_xml):
|
962 |
+
# Use the key information to decode the attr XML
|
963 |
+
attr = {}
|
964 |
+
# look for outer '<attvalues>' element
|
965 |
+
attr_element = obj_xml.find(f"{{{self.NS_GEXF}}}attvalues")
|
966 |
+
if attr_element is not None:
|
967 |
+
# loop over <attvalue> elements
|
968 |
+
for a in attr_element.findall(f"{{{self.NS_GEXF}}}attvalue"):
|
969 |
+
key = a.get("for") # for is required
|
970 |
+
try: # should be in our gexf_keys dictionary
|
971 |
+
title = gexf_keys[key]["title"]
|
972 |
+
except KeyError as err:
|
973 |
+
raise nx.NetworkXError(f"No attribute defined for={key}.") from err
|
974 |
+
atype = gexf_keys[key]["type"]
|
975 |
+
value = a.get("value")
|
976 |
+
if atype == "boolean":
|
977 |
+
value = self.convert_bool[value]
|
978 |
+
else:
|
979 |
+
value = self.python_type[atype](value)
|
980 |
+
if gexf_keys[key]["mode"] == "dynamic":
|
981 |
+
# for dynamic graphs use list of three-tuples
|
982 |
+
# [(value1,start1,end1), (value2,start2,end2), etc]
|
983 |
+
ttype = self.timeformat
|
984 |
+
start = self.python_type[ttype](a.get("start"))
|
985 |
+
end = self.python_type[ttype](a.get("end"))
|
986 |
+
if title in attr:
|
987 |
+
attr[title].append((value, start, end))
|
988 |
+
else:
|
989 |
+
attr[title] = [(value, start, end)]
|
990 |
+
else:
|
991 |
+
# for static graphs just assign the value
|
992 |
+
attr[title] = value
|
993 |
+
return attr
|
994 |
+
|
995 |
+
def find_gexf_attributes(self, attributes_element):
|
996 |
+
# Extract all the attributes and defaults
|
997 |
+
attrs = {}
|
998 |
+
defaults = {}
|
999 |
+
mode = attributes_element.get("mode")
|
1000 |
+
for k in attributes_element.findall(f"{{{self.NS_GEXF}}}attribute"):
|
1001 |
+
attr_id = k.get("id")
|
1002 |
+
title = k.get("title")
|
1003 |
+
atype = k.get("type")
|
1004 |
+
attrs[attr_id] = {"title": title, "type": atype, "mode": mode}
|
1005 |
+
# check for the 'default' subelement of key element and add
|
1006 |
+
default = k.find(f"{{{self.NS_GEXF}}}default")
|
1007 |
+
if default is not None:
|
1008 |
+
if atype == "boolean":
|
1009 |
+
value = self.convert_bool[default.text]
|
1010 |
+
else:
|
1011 |
+
value = self.python_type[atype](default.text)
|
1012 |
+
defaults[title] = value
|
1013 |
+
return attrs, defaults
|
1014 |
+
|
1015 |
+
|
1016 |
+
def relabel_gexf_graph(G):
|
1017 |
+
"""Relabel graph using "label" node keyword for node label.
|
1018 |
+
|
1019 |
+
Parameters
|
1020 |
+
----------
|
1021 |
+
G : graph
|
1022 |
+
A NetworkX graph read from GEXF data
|
1023 |
+
|
1024 |
+
Returns
|
1025 |
+
-------
|
1026 |
+
H : graph
|
1027 |
+
A NetworkX graph with relabeled nodes
|
1028 |
+
|
1029 |
+
Raises
|
1030 |
+
------
|
1031 |
+
NetworkXError
|
1032 |
+
If node labels are missing or not unique while relabel=True.
|
1033 |
+
|
1034 |
+
Notes
|
1035 |
+
-----
|
1036 |
+
This function relabels the nodes in a NetworkX graph with the
|
1037 |
+
"label" attribute. It also handles relabeling the specific GEXF
|
1038 |
+
node attributes "parents", and "pid".
|
1039 |
+
"""
|
1040 |
+
# build mapping of node labels, do some error checking
|
1041 |
+
try:
|
1042 |
+
mapping = [(u, G.nodes[u]["label"]) for u in G]
|
1043 |
+
except KeyError as err:
|
1044 |
+
raise nx.NetworkXError(
|
1045 |
+
"Failed to relabel nodes: missing node labels found. Use relabel=False."
|
1046 |
+
) from err
|
1047 |
+
x, y = zip(*mapping)
|
1048 |
+
if len(set(y)) != len(G):
|
1049 |
+
raise nx.NetworkXError(
|
1050 |
+
"Failed to relabel nodes: "
|
1051 |
+
"duplicate node labels found. "
|
1052 |
+
"Use relabel=False."
|
1053 |
+
)
|
1054 |
+
mapping = dict(mapping)
|
1055 |
+
H = nx.relabel_nodes(G, mapping)
|
1056 |
+
# relabel attributes
|
1057 |
+
for n in G:
|
1058 |
+
m = mapping[n]
|
1059 |
+
H.nodes[m]["id"] = n
|
1060 |
+
H.nodes[m].pop("label")
|
1061 |
+
if "pid" in H.nodes[m]:
|
1062 |
+
H.nodes[m]["pid"] = mapping[G.nodes[n]["pid"]]
|
1063 |
+
if "parents" in H.nodes[m]:
|
1064 |
+
H.nodes[m]["parents"] = [mapping[p] for p in G.nodes[n]["parents"]]
|
1065 |
+
return H
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/gml.py
ADDED
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Read graphs in GML format.
|
3 |
+
|
4 |
+
"GML, the Graph Modelling Language, is our proposal for a portable
|
5 |
+
file format for graphs. GML's key features are portability, simple
|
6 |
+
syntax, extensibility and flexibility. A GML file consists of a
|
7 |
+
hierarchical key-value lists. Graphs can be annotated with arbitrary
|
8 |
+
data structures. The idea for a common file format was born at the
|
9 |
+
GD'95; this proposal is the outcome of many discussions. GML is the
|
10 |
+
standard file format in the Graphlet graph editor system. It has been
|
11 |
+
overtaken and adapted by several other systems for drawing graphs."
|
12 |
+
|
13 |
+
GML files are stored using a 7-bit ASCII encoding with any extended
|
14 |
+
ASCII characters (iso8859-1) appearing as HTML character entities.
|
15 |
+
You will need to give some thought into how the exported data should
|
16 |
+
interact with different languages and even different Python versions.
|
17 |
+
Re-importing from gml is also a concern.
|
18 |
+
|
19 |
+
Without specifying a `stringizer`/`destringizer`, the code is capable of
|
20 |
+
writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
|
21 |
+
specification. For writing other data types, and for reading data other
|
22 |
+
than `str` you need to explicitly supply a `stringizer`/`destringizer`.
|
23 |
+
|
24 |
+
For additional documentation on the GML file format, please see the
|
25 |
+
`GML website <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
|
26 |
+
|
27 |
+
Several example graphs in GML format may be found on Mark Newman's
|
28 |
+
`Network data page <http://www-personal.umich.edu/~mejn/netdata/>`_.
|
29 |
+
"""
|
30 |
+
import html.entities as htmlentitydefs
|
31 |
+
import re
|
32 |
+
import warnings
|
33 |
+
from ast import literal_eval
|
34 |
+
from collections import defaultdict
|
35 |
+
from enum import Enum
|
36 |
+
from io import StringIO
|
37 |
+
from typing import Any, NamedTuple
|
38 |
+
|
39 |
+
import networkx as nx
|
40 |
+
from networkx.exception import NetworkXError
|
41 |
+
from networkx.utils import open_file
|
42 |
+
|
43 |
+
__all__ = ["read_gml", "parse_gml", "generate_gml", "write_gml"]
|
44 |
+
|
45 |
+
|
46 |
+
def escape(text):
|
47 |
+
"""Use XML character references to escape characters.
|
48 |
+
|
49 |
+
Use XML character references for unprintable or non-ASCII
|
50 |
+
characters, double quotes and ampersands in a string
|
51 |
+
"""
|
52 |
+
|
53 |
+
def fixup(m):
|
54 |
+
ch = m.group(0)
|
55 |
+
return "&#" + str(ord(ch)) + ";"
|
56 |
+
|
57 |
+
text = re.sub('[^ -~]|[&"]', fixup, text)
|
58 |
+
return text if isinstance(text, str) else str(text)
|
59 |
+
|
60 |
+
|
61 |
+
def unescape(text):
|
62 |
+
"""Replace XML character references with the referenced characters"""
|
63 |
+
|
64 |
+
def fixup(m):
|
65 |
+
text = m.group(0)
|
66 |
+
if text[1] == "#":
|
67 |
+
# Character reference
|
68 |
+
if text[2] == "x":
|
69 |
+
code = int(text[3:-1], 16)
|
70 |
+
else:
|
71 |
+
code = int(text[2:-1])
|
72 |
+
else:
|
73 |
+
# Named entity
|
74 |
+
try:
|
75 |
+
code = htmlentitydefs.name2codepoint[text[1:-1]]
|
76 |
+
except KeyError:
|
77 |
+
return text # leave unchanged
|
78 |
+
try:
|
79 |
+
return chr(code)
|
80 |
+
except (ValueError, OverflowError):
|
81 |
+
return text # leave unchanged
|
82 |
+
|
83 |
+
return re.sub("&(?:[0-9A-Za-z]+|#(?:[0-9]+|x[0-9A-Fa-f]+));", fixup, text)
|
84 |
+
|
85 |
+
|
86 |
+
def literal_destringizer(rep):
|
87 |
+
"""Convert a Python literal to the value it represents.
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
rep : string
|
92 |
+
A Python literal.
|
93 |
+
|
94 |
+
Returns
|
95 |
+
-------
|
96 |
+
value : object
|
97 |
+
The value of the Python literal.
|
98 |
+
|
99 |
+
Raises
|
100 |
+
------
|
101 |
+
ValueError
|
102 |
+
If `rep` is not a Python literal.
|
103 |
+
"""
|
104 |
+
if isinstance(rep, str):
|
105 |
+
orig_rep = rep
|
106 |
+
try:
|
107 |
+
return literal_eval(rep)
|
108 |
+
except SyntaxError as err:
|
109 |
+
raise ValueError(f"{orig_rep!r} is not a valid Python literal") from err
|
110 |
+
else:
|
111 |
+
raise ValueError(f"{rep!r} is not a string")
|
112 |
+
|
113 |
+
|
114 |
+
@open_file(0, mode="rb")
|
115 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
116 |
+
def read_gml(path, label="label", destringizer=None):
|
117 |
+
"""Read graph in GML format from `path`.
|
118 |
+
|
119 |
+
Parameters
|
120 |
+
----------
|
121 |
+
path : filename or filehandle
|
122 |
+
The filename or filehandle to read from.
|
123 |
+
|
124 |
+
label : string, optional
|
125 |
+
If not None, the parsed nodes will be renamed according to node
|
126 |
+
attributes indicated by `label`. Default value: 'label'.
|
127 |
+
|
128 |
+
destringizer : callable, optional
|
129 |
+
A `destringizer` that recovers values stored as strings in GML. If it
|
130 |
+
cannot convert a string to a value, a `ValueError` is raised. Default
|
131 |
+
value : None.
|
132 |
+
|
133 |
+
Returns
|
134 |
+
-------
|
135 |
+
G : NetworkX graph
|
136 |
+
The parsed graph.
|
137 |
+
|
138 |
+
Raises
|
139 |
+
------
|
140 |
+
NetworkXError
|
141 |
+
If the input cannot be parsed.
|
142 |
+
|
143 |
+
See Also
|
144 |
+
--------
|
145 |
+
write_gml, parse_gml
|
146 |
+
literal_destringizer
|
147 |
+
|
148 |
+
Notes
|
149 |
+
-----
|
150 |
+
GML files are stored using a 7-bit ASCII encoding with any extended
|
151 |
+
ASCII characters (iso8859-1) appearing as HTML character entities.
|
152 |
+
Without specifying a `stringizer`/`destringizer`, the code is capable of
|
153 |
+
writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
|
154 |
+
specification. For writing other data types, and for reading data other
|
155 |
+
than `str` you need to explicitly supply a `stringizer`/`destringizer`.
|
156 |
+
|
157 |
+
For additional documentation on the GML file format, please see the
|
158 |
+
`GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
|
159 |
+
|
160 |
+
See the module docstring :mod:`networkx.readwrite.gml` for more details.
|
161 |
+
|
162 |
+
Examples
|
163 |
+
--------
|
164 |
+
>>> G = nx.path_graph(4)
|
165 |
+
>>> nx.write_gml(G, "test.gml")
|
166 |
+
|
167 |
+
GML values are interpreted as strings by default:
|
168 |
+
|
169 |
+
>>> H = nx.read_gml("test.gml")
|
170 |
+
>>> H.nodes
|
171 |
+
NodeView(('0', '1', '2', '3'))
|
172 |
+
|
173 |
+
When a `destringizer` is provided, GML values are converted to the provided type.
|
174 |
+
For example, integer nodes can be recovered as shown below:
|
175 |
+
|
176 |
+
>>> J = nx.read_gml("test.gml", destringizer=int)
|
177 |
+
>>> J.nodes
|
178 |
+
NodeView((0, 1, 2, 3))
|
179 |
+
|
180 |
+
"""
|
181 |
+
|
182 |
+
def filter_lines(lines):
|
183 |
+
for line in lines:
|
184 |
+
try:
|
185 |
+
line = line.decode("ascii")
|
186 |
+
except UnicodeDecodeError as err:
|
187 |
+
raise NetworkXError("input is not ASCII-encoded") from err
|
188 |
+
if not isinstance(line, str):
|
189 |
+
lines = str(lines)
|
190 |
+
if line and line[-1] == "\n":
|
191 |
+
line = line[:-1]
|
192 |
+
yield line
|
193 |
+
|
194 |
+
G = parse_gml_lines(filter_lines(path), label, destringizer)
|
195 |
+
return G
|
196 |
+
|
197 |
+
|
198 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
199 |
+
def parse_gml(lines, label="label", destringizer=None):
|
200 |
+
"""Parse GML graph from a string or iterable.
|
201 |
+
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
lines : string or iterable of strings
|
205 |
+
Data in GML format.
|
206 |
+
|
207 |
+
label : string, optional
|
208 |
+
If not None, the parsed nodes will be renamed according to node
|
209 |
+
attributes indicated by `label`. Default value: 'label'.
|
210 |
+
|
211 |
+
destringizer : callable, optional
|
212 |
+
A `destringizer` that recovers values stored as strings in GML. If it
|
213 |
+
cannot convert a string to a value, a `ValueError` is raised. Default
|
214 |
+
value : None.
|
215 |
+
|
216 |
+
Returns
|
217 |
+
-------
|
218 |
+
G : NetworkX graph
|
219 |
+
The parsed graph.
|
220 |
+
|
221 |
+
Raises
|
222 |
+
------
|
223 |
+
NetworkXError
|
224 |
+
If the input cannot be parsed.
|
225 |
+
|
226 |
+
See Also
|
227 |
+
--------
|
228 |
+
write_gml, read_gml
|
229 |
+
|
230 |
+
Notes
|
231 |
+
-----
|
232 |
+
This stores nested GML attributes as dictionaries in the NetworkX graph,
|
233 |
+
node, and edge attribute structures.
|
234 |
+
|
235 |
+
GML files are stored using a 7-bit ASCII encoding with any extended
|
236 |
+
ASCII characters (iso8859-1) appearing as HTML character entities.
|
237 |
+
Without specifying a `stringizer`/`destringizer`, the code is capable of
|
238 |
+
writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
|
239 |
+
specification. For writing other data types, and for reading data other
|
240 |
+
than `str` you need to explicitly supply a `stringizer`/`destringizer`.
|
241 |
+
|
242 |
+
For additional documentation on the GML file format, please see the
|
243 |
+
`GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
|
244 |
+
|
245 |
+
See the module docstring :mod:`networkx.readwrite.gml` for more details.
|
246 |
+
"""
|
247 |
+
|
248 |
+
def decode_line(line):
|
249 |
+
if isinstance(line, bytes):
|
250 |
+
try:
|
251 |
+
line.decode("ascii")
|
252 |
+
except UnicodeDecodeError as err:
|
253 |
+
raise NetworkXError("input is not ASCII-encoded") from err
|
254 |
+
if not isinstance(line, str):
|
255 |
+
line = str(line)
|
256 |
+
return line
|
257 |
+
|
258 |
+
def filter_lines(lines):
|
259 |
+
if isinstance(lines, str):
|
260 |
+
lines = decode_line(lines)
|
261 |
+
lines = lines.splitlines()
|
262 |
+
yield from lines
|
263 |
+
else:
|
264 |
+
for line in lines:
|
265 |
+
line = decode_line(line)
|
266 |
+
if line and line[-1] == "\n":
|
267 |
+
line = line[:-1]
|
268 |
+
if line.find("\n") != -1:
|
269 |
+
raise NetworkXError("input line contains newline")
|
270 |
+
yield line
|
271 |
+
|
272 |
+
G = parse_gml_lines(filter_lines(lines), label, destringizer)
|
273 |
+
return G
|
274 |
+
|
275 |
+
|
276 |
+
class Pattern(Enum):
|
277 |
+
"""encodes the index of each token-matching pattern in `tokenize`."""
|
278 |
+
|
279 |
+
KEYS = 0
|
280 |
+
REALS = 1
|
281 |
+
INTS = 2
|
282 |
+
STRINGS = 3
|
283 |
+
DICT_START = 4
|
284 |
+
DICT_END = 5
|
285 |
+
COMMENT_WHITESPACE = 6
|
286 |
+
|
287 |
+
|
288 |
+
class Token(NamedTuple):
|
289 |
+
category: Pattern
|
290 |
+
value: Any
|
291 |
+
line: int
|
292 |
+
position: int
|
293 |
+
|
294 |
+
|
295 |
+
LIST_START_VALUE = "_networkx_list_start"
|
296 |
+
|
297 |
+
|
298 |
+
def parse_gml_lines(lines, label, destringizer):
|
299 |
+
"""Parse GML `lines` into a graph."""
|
300 |
+
|
301 |
+
def tokenize():
|
302 |
+
patterns = [
|
303 |
+
r"[A-Za-z][0-9A-Za-z_]*\b", # keys
|
304 |
+
# reals
|
305 |
+
r"[+-]?(?:[0-9]*\.[0-9]+|[0-9]+\.[0-9]*|INF)(?:[Ee][+-]?[0-9]+)?",
|
306 |
+
r"[+-]?[0-9]+", # ints
|
307 |
+
r'".*?"', # strings
|
308 |
+
r"\[", # dict start
|
309 |
+
r"\]", # dict end
|
310 |
+
r"#.*$|\s+", # comments and whitespaces
|
311 |
+
]
|
312 |
+
tokens = re.compile("|".join(f"({pattern})" for pattern in patterns))
|
313 |
+
lineno = 0
|
314 |
+
multilines = [] # entries spread across multiple lines
|
315 |
+
for line in lines:
|
316 |
+
pos = 0
|
317 |
+
|
318 |
+
# deal with entries spread across multiple lines
|
319 |
+
#
|
320 |
+
# should we actually have to deal with escaped "s then do it here
|
321 |
+
if multilines:
|
322 |
+
multilines.append(line.strip())
|
323 |
+
if line[-1] == '"': # closing multiline entry
|
324 |
+
# multiline entries will be joined by space. cannot
|
325 |
+
# reintroduce newlines as this will break the tokenizer
|
326 |
+
line = " ".join(multilines)
|
327 |
+
multilines = []
|
328 |
+
else: # continued multiline entry
|
329 |
+
lineno += 1
|
330 |
+
continue
|
331 |
+
else:
|
332 |
+
if line.count('"') == 1: # opening multiline entry
|
333 |
+
if line.strip()[0] != '"' and line.strip()[-1] != '"':
|
334 |
+
# since we expect something like key "value", the " should not be found at ends
|
335 |
+
# otherwise tokenizer will pick up the formatting mistake.
|
336 |
+
multilines = [line.rstrip()]
|
337 |
+
lineno += 1
|
338 |
+
continue
|
339 |
+
|
340 |
+
length = len(line)
|
341 |
+
|
342 |
+
while pos < length:
|
343 |
+
match = tokens.match(line, pos)
|
344 |
+
if match is None:
|
345 |
+
m = f"cannot tokenize {line[pos:]} at ({lineno + 1}, {pos + 1})"
|
346 |
+
raise NetworkXError(m)
|
347 |
+
for i in range(len(patterns)):
|
348 |
+
group = match.group(i + 1)
|
349 |
+
if group is not None:
|
350 |
+
if i == 0: # keys
|
351 |
+
value = group.rstrip()
|
352 |
+
elif i == 1: # reals
|
353 |
+
value = float(group)
|
354 |
+
elif i == 2: # ints
|
355 |
+
value = int(group)
|
356 |
+
else:
|
357 |
+
value = group
|
358 |
+
if i != 6: # comments and whitespaces
|
359 |
+
yield Token(Pattern(i), value, lineno + 1, pos + 1)
|
360 |
+
pos += len(group)
|
361 |
+
break
|
362 |
+
lineno += 1
|
363 |
+
yield Token(None, None, lineno + 1, 1) # EOF
|
364 |
+
|
365 |
+
def unexpected(curr_token, expected):
|
366 |
+
category, value, lineno, pos = curr_token
|
367 |
+
value = repr(value) if value is not None else "EOF"
|
368 |
+
raise NetworkXError(f"expected {expected}, found {value} at ({lineno}, {pos})")
|
369 |
+
|
370 |
+
def consume(curr_token, category, expected):
|
371 |
+
if curr_token.category == category:
|
372 |
+
return next(tokens)
|
373 |
+
unexpected(curr_token, expected)
|
374 |
+
|
375 |
+
def parse_kv(curr_token):
|
376 |
+
dct = defaultdict(list)
|
377 |
+
while curr_token.category == Pattern.KEYS:
|
378 |
+
key = curr_token.value
|
379 |
+
curr_token = next(tokens)
|
380 |
+
category = curr_token.category
|
381 |
+
if category == Pattern.REALS or category == Pattern.INTS:
|
382 |
+
value = curr_token.value
|
383 |
+
curr_token = next(tokens)
|
384 |
+
elif category == Pattern.STRINGS:
|
385 |
+
value = unescape(curr_token.value[1:-1])
|
386 |
+
if destringizer:
|
387 |
+
try:
|
388 |
+
value = destringizer(value)
|
389 |
+
except ValueError:
|
390 |
+
pass
|
391 |
+
# Special handling for empty lists and tuples
|
392 |
+
if value == "()":
|
393 |
+
value = ()
|
394 |
+
if value == "[]":
|
395 |
+
value = []
|
396 |
+
curr_token = next(tokens)
|
397 |
+
elif category == Pattern.DICT_START:
|
398 |
+
curr_token, value = parse_dict(curr_token)
|
399 |
+
else:
|
400 |
+
# Allow for string convertible id and label values
|
401 |
+
if key in ("id", "label", "source", "target"):
|
402 |
+
try:
|
403 |
+
# String convert the token value
|
404 |
+
value = unescape(str(curr_token.value))
|
405 |
+
if destringizer:
|
406 |
+
try:
|
407 |
+
value = destringizer(value)
|
408 |
+
except ValueError:
|
409 |
+
pass
|
410 |
+
curr_token = next(tokens)
|
411 |
+
except Exception:
|
412 |
+
msg = (
|
413 |
+
"an int, float, string, '[' or string"
|
414 |
+
+ " convertible ASCII value for node id or label"
|
415 |
+
)
|
416 |
+
unexpected(curr_token, msg)
|
417 |
+
# Special handling for nan and infinity. Since the gml language
|
418 |
+
# defines unquoted strings as keys, the numeric and string branches
|
419 |
+
# are skipped and we end up in this special branch, so we need to
|
420 |
+
# convert the current token value to a float for NAN and plain INF.
|
421 |
+
# +/-INF are handled in the pattern for 'reals' in tokenize(). This
|
422 |
+
# allows labels and values to be nan or infinity, but not keys.
|
423 |
+
elif curr_token.value in {"NAN", "INF"}:
|
424 |
+
value = float(curr_token.value)
|
425 |
+
curr_token = next(tokens)
|
426 |
+
else: # Otherwise error out
|
427 |
+
unexpected(curr_token, "an int, float, string or '['")
|
428 |
+
dct[key].append(value)
|
429 |
+
|
430 |
+
def clean_dict_value(value):
|
431 |
+
if not isinstance(value, list):
|
432 |
+
return value
|
433 |
+
if len(value) == 1:
|
434 |
+
return value[0]
|
435 |
+
if value[0] == LIST_START_VALUE:
|
436 |
+
return value[1:]
|
437 |
+
return value
|
438 |
+
|
439 |
+
dct = {key: clean_dict_value(value) for key, value in dct.items()}
|
440 |
+
return curr_token, dct
|
441 |
+
|
442 |
+
def parse_dict(curr_token):
|
443 |
+
# dict start
|
444 |
+
curr_token = consume(curr_token, Pattern.DICT_START, "'['")
|
445 |
+
# dict contents
|
446 |
+
curr_token, dct = parse_kv(curr_token)
|
447 |
+
# dict end
|
448 |
+
curr_token = consume(curr_token, Pattern.DICT_END, "']'")
|
449 |
+
return curr_token, dct
|
450 |
+
|
451 |
+
def parse_graph():
|
452 |
+
curr_token, dct = parse_kv(next(tokens))
|
453 |
+
if curr_token.category is not None: # EOF
|
454 |
+
unexpected(curr_token, "EOF")
|
455 |
+
if "graph" not in dct:
|
456 |
+
raise NetworkXError("input contains no graph")
|
457 |
+
graph = dct["graph"]
|
458 |
+
if isinstance(graph, list):
|
459 |
+
raise NetworkXError("input contains more than one graph")
|
460 |
+
return graph
|
461 |
+
|
462 |
+
tokens = tokenize()
|
463 |
+
graph = parse_graph()
|
464 |
+
|
465 |
+
directed = graph.pop("directed", False)
|
466 |
+
multigraph = graph.pop("multigraph", False)
|
467 |
+
if not multigraph:
|
468 |
+
G = nx.DiGraph() if directed else nx.Graph()
|
469 |
+
else:
|
470 |
+
G = nx.MultiDiGraph() if directed else nx.MultiGraph()
|
471 |
+
graph_attr = {k: v for k, v in graph.items() if k not in ("node", "edge")}
|
472 |
+
G.graph.update(graph_attr)
|
473 |
+
|
474 |
+
def pop_attr(dct, category, attr, i):
|
475 |
+
try:
|
476 |
+
return dct.pop(attr)
|
477 |
+
except KeyError as err:
|
478 |
+
raise NetworkXError(f"{category} #{i} has no {attr!r} attribute") from err
|
479 |
+
|
480 |
+
nodes = graph.get("node", [])
|
481 |
+
mapping = {}
|
482 |
+
node_labels = set()
|
483 |
+
for i, node in enumerate(nodes if isinstance(nodes, list) else [nodes]):
|
484 |
+
id = pop_attr(node, "node", "id", i)
|
485 |
+
if id in G:
|
486 |
+
raise NetworkXError(f"node id {id!r} is duplicated")
|
487 |
+
if label is not None and label != "id":
|
488 |
+
node_label = pop_attr(node, "node", label, i)
|
489 |
+
if node_label in node_labels:
|
490 |
+
raise NetworkXError(f"node label {node_label!r} is duplicated")
|
491 |
+
node_labels.add(node_label)
|
492 |
+
mapping[id] = node_label
|
493 |
+
G.add_node(id, **node)
|
494 |
+
|
495 |
+
edges = graph.get("edge", [])
|
496 |
+
for i, edge in enumerate(edges if isinstance(edges, list) else [edges]):
|
497 |
+
source = pop_attr(edge, "edge", "source", i)
|
498 |
+
target = pop_attr(edge, "edge", "target", i)
|
499 |
+
if source not in G:
|
500 |
+
raise NetworkXError(f"edge #{i} has undefined source {source!r}")
|
501 |
+
if target not in G:
|
502 |
+
raise NetworkXError(f"edge #{i} has undefined target {target!r}")
|
503 |
+
if not multigraph:
|
504 |
+
if not G.has_edge(source, target):
|
505 |
+
G.add_edge(source, target, **edge)
|
506 |
+
else:
|
507 |
+
arrow = "->" if directed else "--"
|
508 |
+
msg = f"edge #{i} ({source!r}{arrow}{target!r}) is duplicated"
|
509 |
+
raise nx.NetworkXError(msg)
|
510 |
+
else:
|
511 |
+
key = edge.pop("key", None)
|
512 |
+
if key is not None and G.has_edge(source, target, key):
|
513 |
+
arrow = "->" if directed else "--"
|
514 |
+
msg = f"edge #{i} ({source!r}{arrow}{target!r}, {key!r})"
|
515 |
+
msg2 = 'Hint: If multigraph add "multigraph 1" to file header.'
|
516 |
+
raise nx.NetworkXError(msg + " is duplicated\n" + msg2)
|
517 |
+
G.add_edge(source, target, key, **edge)
|
518 |
+
|
519 |
+
if label is not None and label != "id":
|
520 |
+
G = nx.relabel_nodes(G, mapping)
|
521 |
+
return G
|
522 |
+
|
523 |
+
|
524 |
+
def literal_stringizer(value):
|
525 |
+
"""Convert a `value` to a Python literal in GML representation.
|
526 |
+
|
527 |
+
Parameters
|
528 |
+
----------
|
529 |
+
value : object
|
530 |
+
The `value` to be converted to GML representation.
|
531 |
+
|
532 |
+
Returns
|
533 |
+
-------
|
534 |
+
rep : string
|
535 |
+
A double-quoted Python literal representing value. Unprintable
|
536 |
+
characters are replaced by XML character references.
|
537 |
+
|
538 |
+
Raises
|
539 |
+
------
|
540 |
+
ValueError
|
541 |
+
If `value` cannot be converted to GML.
|
542 |
+
|
543 |
+
Notes
|
544 |
+
-----
|
545 |
+
The original value can be recovered using the
|
546 |
+
:func:`networkx.readwrite.gml.literal_destringizer` function.
|
547 |
+
"""
|
548 |
+
|
549 |
+
def stringize(value):
|
550 |
+
if isinstance(value, int | bool) or value is None:
|
551 |
+
if value is True: # GML uses 1/0 for boolean values.
|
552 |
+
buf.write(str(1))
|
553 |
+
elif value is False:
|
554 |
+
buf.write(str(0))
|
555 |
+
else:
|
556 |
+
buf.write(str(value))
|
557 |
+
elif isinstance(value, str):
|
558 |
+
text = repr(value)
|
559 |
+
if text[0] != "u":
|
560 |
+
try:
|
561 |
+
value.encode("latin1")
|
562 |
+
except UnicodeEncodeError:
|
563 |
+
text = "u" + text
|
564 |
+
buf.write(text)
|
565 |
+
elif isinstance(value, float | complex | str | bytes):
|
566 |
+
buf.write(repr(value))
|
567 |
+
elif isinstance(value, list):
|
568 |
+
buf.write("[")
|
569 |
+
first = True
|
570 |
+
for item in value:
|
571 |
+
if not first:
|
572 |
+
buf.write(",")
|
573 |
+
else:
|
574 |
+
first = False
|
575 |
+
stringize(item)
|
576 |
+
buf.write("]")
|
577 |
+
elif isinstance(value, tuple):
|
578 |
+
if len(value) > 1:
|
579 |
+
buf.write("(")
|
580 |
+
first = True
|
581 |
+
for item in value:
|
582 |
+
if not first:
|
583 |
+
buf.write(",")
|
584 |
+
else:
|
585 |
+
first = False
|
586 |
+
stringize(item)
|
587 |
+
buf.write(")")
|
588 |
+
elif value:
|
589 |
+
buf.write("(")
|
590 |
+
stringize(value[0])
|
591 |
+
buf.write(",)")
|
592 |
+
else:
|
593 |
+
buf.write("()")
|
594 |
+
elif isinstance(value, dict):
|
595 |
+
buf.write("{")
|
596 |
+
first = True
|
597 |
+
for key, value in value.items():
|
598 |
+
if not first:
|
599 |
+
buf.write(",")
|
600 |
+
else:
|
601 |
+
first = False
|
602 |
+
stringize(key)
|
603 |
+
buf.write(":")
|
604 |
+
stringize(value)
|
605 |
+
buf.write("}")
|
606 |
+
elif isinstance(value, set):
|
607 |
+
buf.write("{")
|
608 |
+
first = True
|
609 |
+
for item in value:
|
610 |
+
if not first:
|
611 |
+
buf.write(",")
|
612 |
+
else:
|
613 |
+
first = False
|
614 |
+
stringize(item)
|
615 |
+
buf.write("}")
|
616 |
+
else:
|
617 |
+
msg = f"{value!r} cannot be converted into a Python literal"
|
618 |
+
raise ValueError(msg)
|
619 |
+
|
620 |
+
buf = StringIO()
|
621 |
+
stringize(value)
|
622 |
+
return buf.getvalue()
|
623 |
+
|
624 |
+
|
625 |
+
def generate_gml(G, stringizer=None):
|
626 |
+
r"""Generate a single entry of the graph `G` in GML format.
|
627 |
+
|
628 |
+
Parameters
|
629 |
+
----------
|
630 |
+
G : NetworkX graph
|
631 |
+
The graph to be converted to GML.
|
632 |
+
|
633 |
+
stringizer : callable, optional
|
634 |
+
A `stringizer` which converts non-int/non-float/non-dict values into
|
635 |
+
strings. If it cannot convert a value into a string, it should raise a
|
636 |
+
`ValueError` to indicate that. Default value: None.
|
637 |
+
|
638 |
+
Returns
|
639 |
+
-------
|
640 |
+
lines: generator of strings
|
641 |
+
Lines of GML data. Newlines are not appended.
|
642 |
+
|
643 |
+
Raises
|
644 |
+
------
|
645 |
+
NetworkXError
|
646 |
+
If `stringizer` cannot convert a value into a string, or the value to
|
647 |
+
convert is not a string while `stringizer` is None.
|
648 |
+
|
649 |
+
See Also
|
650 |
+
--------
|
651 |
+
literal_stringizer
|
652 |
+
|
653 |
+
Notes
|
654 |
+
-----
|
655 |
+
Graph attributes named 'directed', 'multigraph', 'node' or
|
656 |
+
'edge', node attributes named 'id' or 'label', edge attributes
|
657 |
+
named 'source' or 'target' (or 'key' if `G` is a multigraph)
|
658 |
+
are ignored because these attribute names are used to encode the graph
|
659 |
+
structure.
|
660 |
+
|
661 |
+
GML files are stored using a 7-bit ASCII encoding with any extended
|
662 |
+
ASCII characters (iso8859-1) appearing as HTML character entities.
|
663 |
+
Without specifying a `stringizer`/`destringizer`, the code is capable of
|
664 |
+
writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
|
665 |
+
specification. For writing other data types, and for reading data other
|
666 |
+
than `str` you need to explicitly supply a `stringizer`/`destringizer`.
|
667 |
+
|
668 |
+
For additional documentation on the GML file format, please see the
|
669 |
+
`GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
|
670 |
+
|
671 |
+
See the module docstring :mod:`networkx.readwrite.gml` for more details.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
--------
|
675 |
+
>>> G = nx.Graph()
|
676 |
+
>>> G.add_node("1")
|
677 |
+
>>> print("\n".join(nx.generate_gml(G)))
|
678 |
+
graph [
|
679 |
+
node [
|
680 |
+
id 0
|
681 |
+
label "1"
|
682 |
+
]
|
683 |
+
]
|
684 |
+
>>> G = nx.MultiGraph([("a", "b"), ("a", "b")])
|
685 |
+
>>> print("\n".join(nx.generate_gml(G)))
|
686 |
+
graph [
|
687 |
+
multigraph 1
|
688 |
+
node [
|
689 |
+
id 0
|
690 |
+
label "a"
|
691 |
+
]
|
692 |
+
node [
|
693 |
+
id 1
|
694 |
+
label "b"
|
695 |
+
]
|
696 |
+
edge [
|
697 |
+
source 0
|
698 |
+
target 1
|
699 |
+
key 0
|
700 |
+
]
|
701 |
+
edge [
|
702 |
+
source 0
|
703 |
+
target 1
|
704 |
+
key 1
|
705 |
+
]
|
706 |
+
]
|
707 |
+
"""
|
708 |
+
valid_keys = re.compile("^[A-Za-z][0-9A-Za-z_]*$")
|
709 |
+
|
710 |
+
def stringize(key, value, ignored_keys, indent, in_list=False):
|
711 |
+
if not isinstance(key, str):
|
712 |
+
raise NetworkXError(f"{key!r} is not a string")
|
713 |
+
if not valid_keys.match(key):
|
714 |
+
raise NetworkXError(f"{key!r} is not a valid key")
|
715 |
+
if not isinstance(key, str):
|
716 |
+
key = str(key)
|
717 |
+
if key not in ignored_keys:
|
718 |
+
if isinstance(value, int | bool):
|
719 |
+
if key == "label":
|
720 |
+
yield indent + key + ' "' + str(value) + '"'
|
721 |
+
elif value is True:
|
722 |
+
# python bool is an instance of int
|
723 |
+
yield indent + key + " 1"
|
724 |
+
elif value is False:
|
725 |
+
yield indent + key + " 0"
|
726 |
+
# GML only supports signed 32-bit integers
|
727 |
+
elif value < -(2**31) or value >= 2**31:
|
728 |
+
yield indent + key + ' "' + str(value) + '"'
|
729 |
+
else:
|
730 |
+
yield indent + key + " " + str(value)
|
731 |
+
elif isinstance(value, float):
|
732 |
+
text = repr(value).upper()
|
733 |
+
# GML matches INF to keys, so prepend + to INF. Use repr(float(*))
|
734 |
+
# instead of string literal to future proof against changes to repr.
|
735 |
+
if text == repr(float("inf")).upper():
|
736 |
+
text = "+" + text
|
737 |
+
else:
|
738 |
+
# GML requires that a real literal contain a decimal point, but
|
739 |
+
# repr may not output a decimal point when the mantissa is
|
740 |
+
# integral and hence needs fixing.
|
741 |
+
epos = text.rfind("E")
|
742 |
+
if epos != -1 and text.find(".", 0, epos) == -1:
|
743 |
+
text = text[:epos] + "." + text[epos:]
|
744 |
+
if key == "label":
|
745 |
+
yield indent + key + ' "' + text + '"'
|
746 |
+
else:
|
747 |
+
yield indent + key + " " + text
|
748 |
+
elif isinstance(value, dict):
|
749 |
+
yield indent + key + " ["
|
750 |
+
next_indent = indent + " "
|
751 |
+
for key, value in value.items():
|
752 |
+
yield from stringize(key, value, (), next_indent)
|
753 |
+
yield indent + "]"
|
754 |
+
elif isinstance(value, tuple) and key == "label":
|
755 |
+
yield indent + key + f" \"({','.join(repr(v) for v in value)})\""
|
756 |
+
elif isinstance(value, list | tuple) and key != "label" and not in_list:
|
757 |
+
if len(value) == 0:
|
758 |
+
yield indent + key + " " + f'"{value!r}"'
|
759 |
+
if len(value) == 1:
|
760 |
+
yield indent + key + " " + f'"{LIST_START_VALUE}"'
|
761 |
+
for val in value:
|
762 |
+
yield from stringize(key, val, (), indent, True)
|
763 |
+
else:
|
764 |
+
if stringizer:
|
765 |
+
try:
|
766 |
+
value = stringizer(value)
|
767 |
+
except ValueError as err:
|
768 |
+
raise NetworkXError(
|
769 |
+
f"{value!r} cannot be converted into a string"
|
770 |
+
) from err
|
771 |
+
if not isinstance(value, str):
|
772 |
+
raise NetworkXError(f"{value!r} is not a string")
|
773 |
+
yield indent + key + ' "' + escape(value) + '"'
|
774 |
+
|
775 |
+
multigraph = G.is_multigraph()
|
776 |
+
yield "graph ["
|
777 |
+
|
778 |
+
# Output graph attributes
|
779 |
+
if G.is_directed():
|
780 |
+
yield " directed 1"
|
781 |
+
if multigraph:
|
782 |
+
yield " multigraph 1"
|
783 |
+
ignored_keys = {"directed", "multigraph", "node", "edge"}
|
784 |
+
for attr, value in G.graph.items():
|
785 |
+
yield from stringize(attr, value, ignored_keys, " ")
|
786 |
+
|
787 |
+
# Output node data
|
788 |
+
node_id = dict(zip(G, range(len(G))))
|
789 |
+
ignored_keys = {"id", "label"}
|
790 |
+
for node, attrs in G.nodes.items():
|
791 |
+
yield " node ["
|
792 |
+
yield " id " + str(node_id[node])
|
793 |
+
yield from stringize("label", node, (), " ")
|
794 |
+
for attr, value in attrs.items():
|
795 |
+
yield from stringize(attr, value, ignored_keys, " ")
|
796 |
+
yield " ]"
|
797 |
+
|
798 |
+
# Output edge data
|
799 |
+
ignored_keys = {"source", "target"}
|
800 |
+
kwargs = {"data": True}
|
801 |
+
if multigraph:
|
802 |
+
ignored_keys.add("key")
|
803 |
+
kwargs["keys"] = True
|
804 |
+
for e in G.edges(**kwargs):
|
805 |
+
yield " edge ["
|
806 |
+
yield " source " + str(node_id[e[0]])
|
807 |
+
yield " target " + str(node_id[e[1]])
|
808 |
+
if multigraph:
|
809 |
+
yield from stringize("key", e[2], (), " ")
|
810 |
+
for attr, value in e[-1].items():
|
811 |
+
yield from stringize(attr, value, ignored_keys, " ")
|
812 |
+
yield " ]"
|
813 |
+
yield "]"
|
814 |
+
|
815 |
+
|
816 |
+
@open_file(1, mode="wb")
|
817 |
+
def write_gml(G, path, stringizer=None):
|
818 |
+
"""Write a graph `G` in GML format to the file or file handle `path`.
|
819 |
+
|
820 |
+
Parameters
|
821 |
+
----------
|
822 |
+
G : NetworkX graph
|
823 |
+
The graph to be converted to GML.
|
824 |
+
|
825 |
+
path : filename or filehandle
|
826 |
+
The filename or filehandle to write. Files whose names end with .gz or
|
827 |
+
.bz2 will be compressed.
|
828 |
+
|
829 |
+
stringizer : callable, optional
|
830 |
+
A `stringizer` which converts non-int/non-float/non-dict values into
|
831 |
+
strings. If it cannot convert a value into a string, it should raise a
|
832 |
+
`ValueError` to indicate that. Default value: None.
|
833 |
+
|
834 |
+
Raises
|
835 |
+
------
|
836 |
+
NetworkXError
|
837 |
+
If `stringizer` cannot convert a value into a string, or the value to
|
838 |
+
convert is not a string while `stringizer` is None.
|
839 |
+
|
840 |
+
See Also
|
841 |
+
--------
|
842 |
+
read_gml, generate_gml
|
843 |
+
literal_stringizer
|
844 |
+
|
845 |
+
Notes
|
846 |
+
-----
|
847 |
+
Graph attributes named 'directed', 'multigraph', 'node' or
|
848 |
+
'edge', node attributes named 'id' or 'label', edge attributes
|
849 |
+
named 'source' or 'target' (or 'key' if `G` is a multigraph)
|
850 |
+
are ignored because these attribute names are used to encode the graph
|
851 |
+
structure.
|
852 |
+
|
853 |
+
GML files are stored using a 7-bit ASCII encoding with any extended
|
854 |
+
ASCII characters (iso8859-1) appearing as HTML character entities.
|
855 |
+
Without specifying a `stringizer`/`destringizer`, the code is capable of
|
856 |
+
writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
|
857 |
+
specification. For writing other data types, and for reading data other
|
858 |
+
than `str` you need to explicitly supply a `stringizer`/`destringizer`.
|
859 |
+
|
860 |
+
Note that while we allow non-standard GML to be read from a file, we make
|
861 |
+
sure to write GML format. In particular, underscores are not allowed in
|
862 |
+
attribute names.
|
863 |
+
For additional documentation on the GML file format, please see the
|
864 |
+
`GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
|
865 |
+
|
866 |
+
See the module docstring :mod:`networkx.readwrite.gml` for more details.
|
867 |
+
|
868 |
+
Examples
|
869 |
+
--------
|
870 |
+
>>> G = nx.path_graph(4)
|
871 |
+
>>> nx.write_gml(G, "test.gml")
|
872 |
+
|
873 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
874 |
+
|
875 |
+
>>> nx.write_gml(G, "test.gml.gz")
|
876 |
+
"""
|
877 |
+
for line in generate_gml(G, stringizer):
|
878 |
+
path.write((line + "\n").encode("ascii"))
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/graph6.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original author: D. Eppstein, UC Irvine, August 12, 2003.
|
2 |
+
# The original code at http://www.ics.uci.edu/~eppstein/PADS/ is public domain.
|
3 |
+
"""Functions for reading and writing graphs in the *graph6* format.
|
4 |
+
|
5 |
+
The *graph6* file format is suitable for small graphs or large dense
|
6 |
+
graphs. For large sparse graphs, use the *sparse6* format.
|
7 |
+
|
8 |
+
For more information, see the `graph6`_ homepage.
|
9 |
+
|
10 |
+
.. _graph6: http://users.cecs.anu.edu.au/~bdm/data/formats.html
|
11 |
+
|
12 |
+
"""
|
13 |
+
from itertools import islice
|
14 |
+
|
15 |
+
import networkx as nx
|
16 |
+
from networkx.exception import NetworkXError
|
17 |
+
from networkx.utils import not_implemented_for, open_file
|
18 |
+
|
19 |
+
__all__ = ["from_graph6_bytes", "read_graph6", "to_graph6_bytes", "write_graph6"]
|
20 |
+
|
21 |
+
|
22 |
+
def _generate_graph6_bytes(G, nodes, header):
|
23 |
+
"""Yield bytes in the graph6 encoding of a graph.
|
24 |
+
|
25 |
+
`G` is an undirected simple graph. `nodes` is the list of nodes for
|
26 |
+
which the node-induced subgraph will be encoded; if `nodes` is the
|
27 |
+
list of all nodes in the graph, the entire graph will be
|
28 |
+
encoded. `header` is a Boolean that specifies whether to generate
|
29 |
+
the header ``b'>>graph6<<'`` before the remaining data.
|
30 |
+
|
31 |
+
This function generates `bytes` objects in the following order:
|
32 |
+
|
33 |
+
1. the header (if requested),
|
34 |
+
2. the encoding of the number of nodes,
|
35 |
+
3. each character, one-at-a-time, in the encoding of the requested
|
36 |
+
node-induced subgraph,
|
37 |
+
4. a newline character.
|
38 |
+
|
39 |
+
This function raises :exc:`ValueError` if the graph is too large for
|
40 |
+
the graph6 format (that is, greater than ``2 ** 36`` nodes).
|
41 |
+
|
42 |
+
"""
|
43 |
+
n = len(G)
|
44 |
+
if n >= 2**36:
|
45 |
+
raise ValueError(
|
46 |
+
"graph6 is only defined if number of nodes is less than 2 ** 36"
|
47 |
+
)
|
48 |
+
if header:
|
49 |
+
yield b">>graph6<<"
|
50 |
+
for d in n_to_data(n):
|
51 |
+
yield str.encode(chr(d + 63))
|
52 |
+
# This generates the same as `(v in G[u] for u, v in combinations(G, 2))`,
|
53 |
+
# but in "column-major" order instead of "row-major" order.
|
54 |
+
bits = (nodes[j] in G[nodes[i]] for j in range(1, n) for i in range(j))
|
55 |
+
chunk = list(islice(bits, 6))
|
56 |
+
while chunk:
|
57 |
+
d = sum(b << 5 - i for i, b in enumerate(chunk))
|
58 |
+
yield str.encode(chr(d + 63))
|
59 |
+
chunk = list(islice(bits, 6))
|
60 |
+
yield b"\n"
|
61 |
+
|
62 |
+
|
63 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
64 |
+
def from_graph6_bytes(bytes_in):
|
65 |
+
"""Read a simple undirected graph in graph6 format from bytes.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
bytes_in : bytes
|
70 |
+
Data in graph6 format, without a trailing newline.
|
71 |
+
|
72 |
+
Returns
|
73 |
+
-------
|
74 |
+
G : Graph
|
75 |
+
|
76 |
+
Raises
|
77 |
+
------
|
78 |
+
NetworkXError
|
79 |
+
If bytes_in is unable to be parsed in graph6 format
|
80 |
+
|
81 |
+
ValueError
|
82 |
+
If any character ``c`` in bytes_in does not satisfy
|
83 |
+
``63 <= ord(c) < 127``.
|
84 |
+
|
85 |
+
Examples
|
86 |
+
--------
|
87 |
+
>>> G = nx.from_graph6_bytes(b"A_")
|
88 |
+
>>> sorted(G.edges())
|
89 |
+
[(0, 1)]
|
90 |
+
|
91 |
+
See Also
|
92 |
+
--------
|
93 |
+
read_graph6, write_graph6
|
94 |
+
|
95 |
+
References
|
96 |
+
----------
|
97 |
+
.. [1] Graph6 specification
|
98 |
+
<http://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
99 |
+
|
100 |
+
"""
|
101 |
+
|
102 |
+
def bits():
|
103 |
+
"""Returns sequence of individual bits from 6-bit-per-value
|
104 |
+
list of data values."""
|
105 |
+
for d in data:
|
106 |
+
for i in [5, 4, 3, 2, 1, 0]:
|
107 |
+
yield (d >> i) & 1
|
108 |
+
|
109 |
+
if bytes_in.startswith(b">>graph6<<"):
|
110 |
+
bytes_in = bytes_in[10:]
|
111 |
+
|
112 |
+
data = [c - 63 for c in bytes_in]
|
113 |
+
if any(c > 63 for c in data):
|
114 |
+
raise ValueError("each input character must be in range(63, 127)")
|
115 |
+
|
116 |
+
n, data = data_to_n(data)
|
117 |
+
nd = (n * (n - 1) // 2 + 5) // 6
|
118 |
+
if len(data) != nd:
|
119 |
+
raise NetworkXError(
|
120 |
+
f"Expected {n * (n - 1) // 2} bits but got {len(data) * 6} in graph6"
|
121 |
+
)
|
122 |
+
|
123 |
+
G = nx.Graph()
|
124 |
+
G.add_nodes_from(range(n))
|
125 |
+
for (i, j), b in zip(((i, j) for j in range(1, n) for i in range(j)), bits()):
|
126 |
+
if b:
|
127 |
+
G.add_edge(i, j)
|
128 |
+
|
129 |
+
return G
|
130 |
+
|
131 |
+
|
132 |
+
@not_implemented_for("directed")
|
133 |
+
@not_implemented_for("multigraph")
|
134 |
+
def to_graph6_bytes(G, nodes=None, header=True):
|
135 |
+
"""Convert a simple undirected graph to bytes in graph6 format.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
G : Graph (undirected)
|
140 |
+
|
141 |
+
nodes: list or iterable
|
142 |
+
Nodes are labeled 0...n-1 in the order provided. If None the ordering
|
143 |
+
given by ``G.nodes()`` is used.
|
144 |
+
|
145 |
+
header: bool
|
146 |
+
If True add '>>graph6<<' bytes to head of data.
|
147 |
+
|
148 |
+
Raises
|
149 |
+
------
|
150 |
+
NetworkXNotImplemented
|
151 |
+
If the graph is directed or is a multigraph.
|
152 |
+
|
153 |
+
ValueError
|
154 |
+
If the graph has at least ``2 ** 36`` nodes; the graph6 format
|
155 |
+
is only defined for graphs of order less than ``2 ** 36``.
|
156 |
+
|
157 |
+
Examples
|
158 |
+
--------
|
159 |
+
>>> nx.to_graph6_bytes(nx.path_graph(2))
|
160 |
+
b'>>graph6<<A_\\n'
|
161 |
+
|
162 |
+
See Also
|
163 |
+
--------
|
164 |
+
from_graph6_bytes, read_graph6, write_graph6_bytes
|
165 |
+
|
166 |
+
Notes
|
167 |
+
-----
|
168 |
+
The returned bytes end with a newline character.
|
169 |
+
|
170 |
+
The format does not support edge or node labels, parallel edges or
|
171 |
+
self loops. If self loops are present they are silently ignored.
|
172 |
+
|
173 |
+
References
|
174 |
+
----------
|
175 |
+
.. [1] Graph6 specification
|
176 |
+
<http://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
177 |
+
|
178 |
+
"""
|
179 |
+
if nodes is not None:
|
180 |
+
G = G.subgraph(nodes)
|
181 |
+
H = nx.convert_node_labels_to_integers(G)
|
182 |
+
nodes = sorted(H.nodes())
|
183 |
+
return b"".join(_generate_graph6_bytes(H, nodes, header))
|
184 |
+
|
185 |
+
|
186 |
+
@open_file(0, mode="rb")
|
187 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
188 |
+
def read_graph6(path):
|
189 |
+
"""Read simple undirected graphs in graph6 format from path.
|
190 |
+
|
191 |
+
Parameters
|
192 |
+
----------
|
193 |
+
path : file or string
|
194 |
+
File or filename to write.
|
195 |
+
|
196 |
+
Returns
|
197 |
+
-------
|
198 |
+
G : Graph or list of Graphs
|
199 |
+
If the file contains multiple lines then a list of graphs is returned
|
200 |
+
|
201 |
+
Raises
|
202 |
+
------
|
203 |
+
NetworkXError
|
204 |
+
If the string is unable to be parsed in graph6 format
|
205 |
+
|
206 |
+
Examples
|
207 |
+
--------
|
208 |
+
You can read a graph6 file by giving the path to the file::
|
209 |
+
|
210 |
+
>>> import tempfile
|
211 |
+
>>> with tempfile.NamedTemporaryFile(delete=False) as f:
|
212 |
+
... _ = f.write(b">>graph6<<A_\\n")
|
213 |
+
... _ = f.seek(0)
|
214 |
+
... G = nx.read_graph6(f.name)
|
215 |
+
>>> list(G.edges())
|
216 |
+
[(0, 1)]
|
217 |
+
|
218 |
+
You can also read a graph6 file by giving an open file-like object::
|
219 |
+
|
220 |
+
>>> import tempfile
|
221 |
+
>>> with tempfile.NamedTemporaryFile() as f:
|
222 |
+
... _ = f.write(b">>graph6<<A_\\n")
|
223 |
+
... _ = f.seek(0)
|
224 |
+
... G = nx.read_graph6(f)
|
225 |
+
>>> list(G.edges())
|
226 |
+
[(0, 1)]
|
227 |
+
|
228 |
+
See Also
|
229 |
+
--------
|
230 |
+
from_graph6_bytes, write_graph6
|
231 |
+
|
232 |
+
References
|
233 |
+
----------
|
234 |
+
.. [1] Graph6 specification
|
235 |
+
<http://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
236 |
+
|
237 |
+
"""
|
238 |
+
glist = []
|
239 |
+
for line in path:
|
240 |
+
line = line.strip()
|
241 |
+
if not len(line):
|
242 |
+
continue
|
243 |
+
glist.append(from_graph6_bytes(line))
|
244 |
+
if len(glist) == 1:
|
245 |
+
return glist[0]
|
246 |
+
else:
|
247 |
+
return glist
|
248 |
+
|
249 |
+
|
250 |
+
@not_implemented_for("directed")
|
251 |
+
@not_implemented_for("multigraph")
|
252 |
+
@open_file(1, mode="wb")
|
253 |
+
def write_graph6(G, path, nodes=None, header=True):
|
254 |
+
"""Write a simple undirected graph to a path in graph6 format.
|
255 |
+
|
256 |
+
Parameters
|
257 |
+
----------
|
258 |
+
G : Graph (undirected)
|
259 |
+
|
260 |
+
path : str
|
261 |
+
The path naming the file to which to write the graph.
|
262 |
+
|
263 |
+
nodes: list or iterable
|
264 |
+
Nodes are labeled 0...n-1 in the order provided. If None the ordering
|
265 |
+
given by ``G.nodes()`` is used.
|
266 |
+
|
267 |
+
header: bool
|
268 |
+
If True add '>>graph6<<' string to head of data
|
269 |
+
|
270 |
+
Raises
|
271 |
+
------
|
272 |
+
NetworkXNotImplemented
|
273 |
+
If the graph is directed or is a multigraph.
|
274 |
+
|
275 |
+
ValueError
|
276 |
+
If the graph has at least ``2 ** 36`` nodes; the graph6 format
|
277 |
+
is only defined for graphs of order less than ``2 ** 36``.
|
278 |
+
|
279 |
+
Examples
|
280 |
+
--------
|
281 |
+
You can write a graph6 file by giving the path to a file::
|
282 |
+
|
283 |
+
>>> import tempfile
|
284 |
+
>>> with tempfile.NamedTemporaryFile(delete=False) as f:
|
285 |
+
... nx.write_graph6(nx.path_graph(2), f.name)
|
286 |
+
... _ = f.seek(0)
|
287 |
+
... print(f.read())
|
288 |
+
b'>>graph6<<A_\\n'
|
289 |
+
|
290 |
+
See Also
|
291 |
+
--------
|
292 |
+
from_graph6_bytes, read_graph6
|
293 |
+
|
294 |
+
Notes
|
295 |
+
-----
|
296 |
+
The function writes a newline character after writing the encoding
|
297 |
+
of the graph.
|
298 |
+
|
299 |
+
The format does not support edge or node labels, parallel edges or
|
300 |
+
self loops. If self loops are present they are silently ignored.
|
301 |
+
|
302 |
+
References
|
303 |
+
----------
|
304 |
+
.. [1] Graph6 specification
|
305 |
+
<http://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
306 |
+
|
307 |
+
"""
|
308 |
+
return write_graph6_file(G, path, nodes=nodes, header=header)
|
309 |
+
|
310 |
+
|
311 |
+
@not_implemented_for("directed")
|
312 |
+
@not_implemented_for("multigraph")
|
313 |
+
def write_graph6_file(G, f, nodes=None, header=True):
|
314 |
+
"""Write a simple undirected graph to a file-like object in graph6 format.
|
315 |
+
|
316 |
+
Parameters
|
317 |
+
----------
|
318 |
+
G : Graph (undirected)
|
319 |
+
|
320 |
+
f : file-like object
|
321 |
+
The file to write.
|
322 |
+
|
323 |
+
nodes: list or iterable
|
324 |
+
Nodes are labeled 0...n-1 in the order provided. If None the ordering
|
325 |
+
given by ``G.nodes()`` is used.
|
326 |
+
|
327 |
+
header: bool
|
328 |
+
If True add '>>graph6<<' string to head of data
|
329 |
+
|
330 |
+
Raises
|
331 |
+
------
|
332 |
+
NetworkXNotImplemented
|
333 |
+
If the graph is directed or is a multigraph.
|
334 |
+
|
335 |
+
ValueError
|
336 |
+
If the graph has at least ``2 ** 36`` nodes; the graph6 format
|
337 |
+
is only defined for graphs of order less than ``2 ** 36``.
|
338 |
+
|
339 |
+
Examples
|
340 |
+
--------
|
341 |
+
You can write a graph6 file by giving an open file-like object::
|
342 |
+
|
343 |
+
>>> import tempfile
|
344 |
+
>>> with tempfile.NamedTemporaryFile() as f:
|
345 |
+
... nx.write_graph6(nx.path_graph(2), f)
|
346 |
+
... _ = f.seek(0)
|
347 |
+
... print(f.read())
|
348 |
+
b'>>graph6<<A_\\n'
|
349 |
+
|
350 |
+
See Also
|
351 |
+
--------
|
352 |
+
from_graph6_bytes, read_graph6
|
353 |
+
|
354 |
+
Notes
|
355 |
+
-----
|
356 |
+
The function writes a newline character after writing the encoding
|
357 |
+
of the graph.
|
358 |
+
|
359 |
+
The format does not support edge or node labels, parallel edges or
|
360 |
+
self loops. If self loops are present they are silently ignored.
|
361 |
+
|
362 |
+
References
|
363 |
+
----------
|
364 |
+
.. [1] Graph6 specification
|
365 |
+
<http://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
366 |
+
|
367 |
+
"""
|
368 |
+
if nodes is not None:
|
369 |
+
G = G.subgraph(nodes)
|
370 |
+
H = nx.convert_node_labels_to_integers(G)
|
371 |
+
nodes = sorted(H.nodes())
|
372 |
+
for b in _generate_graph6_bytes(H, nodes, header):
|
373 |
+
f.write(b)
|
374 |
+
|
375 |
+
|
376 |
+
def data_to_n(data):
|
377 |
+
"""Read initial one-, four- or eight-unit value from graph6
|
378 |
+
integer sequence.
|
379 |
+
|
380 |
+
Return (value, rest of seq.)"""
|
381 |
+
if data[0] <= 62:
|
382 |
+
return data[0], data[1:]
|
383 |
+
if data[1] <= 62:
|
384 |
+
return (data[1] << 12) + (data[2] << 6) + data[3], data[4:]
|
385 |
+
return (
|
386 |
+
(data[2] << 30)
|
387 |
+
+ (data[3] << 24)
|
388 |
+
+ (data[4] << 18)
|
389 |
+
+ (data[5] << 12)
|
390 |
+
+ (data[6] << 6)
|
391 |
+
+ data[7],
|
392 |
+
data[8:],
|
393 |
+
)
|
394 |
+
|
395 |
+
|
396 |
+
def n_to_data(n):
|
397 |
+
"""Convert an integer to one-, four- or eight-unit graph6 sequence.
|
398 |
+
|
399 |
+
This function is undefined if `n` is not in ``range(2 ** 36)``.
|
400 |
+
|
401 |
+
"""
|
402 |
+
if n <= 62:
|
403 |
+
return [n]
|
404 |
+
elif n <= 258047:
|
405 |
+
return [63, (n >> 12) & 0x3F, (n >> 6) & 0x3F, n & 0x3F]
|
406 |
+
else: # if n <= 68719476735:
|
407 |
+
return [
|
408 |
+
63,
|
409 |
+
63,
|
410 |
+
(n >> 30) & 0x3F,
|
411 |
+
(n >> 24) & 0x3F,
|
412 |
+
(n >> 18) & 0x3F,
|
413 |
+
(n >> 12) & 0x3F,
|
414 |
+
(n >> 6) & 0x3F,
|
415 |
+
n & 0x3F,
|
416 |
+
]
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/graphml.py
ADDED
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
*******
|
3 |
+
GraphML
|
4 |
+
*******
|
5 |
+
Read and write graphs in GraphML format.
|
6 |
+
|
7 |
+
.. warning::
|
8 |
+
|
9 |
+
This parser uses the standard xml library present in Python, which is
|
10 |
+
insecure - see :external+python:mod:`xml` for additional information.
|
11 |
+
Only parse GraphML files you trust.
|
12 |
+
|
13 |
+
This implementation does not support mixed graphs (directed and unidirected
|
14 |
+
edges together), hyperedges, nested graphs, or ports.
|
15 |
+
|
16 |
+
"GraphML is a comprehensive and easy-to-use file format for graphs. It
|
17 |
+
consists of a language core to describe the structural properties of a
|
18 |
+
graph and a flexible extension mechanism to add application-specific
|
19 |
+
data. Its main features include support of
|
20 |
+
|
21 |
+
* directed, undirected, and mixed graphs,
|
22 |
+
* hypergraphs,
|
23 |
+
* hierarchical graphs,
|
24 |
+
* graphical representations,
|
25 |
+
* references to external data,
|
26 |
+
* application-specific attribute data, and
|
27 |
+
* light-weight parsers.
|
28 |
+
|
29 |
+
Unlike many other file formats for graphs, GraphML does not use a
|
30 |
+
custom syntax. Instead, it is based on XML and hence ideally suited as
|
31 |
+
a common denominator for all kinds of services generating, archiving,
|
32 |
+
or processing graphs."
|
33 |
+
|
34 |
+
http://graphml.graphdrawing.org/
|
35 |
+
|
36 |
+
Format
|
37 |
+
------
|
38 |
+
GraphML is an XML format. See
|
39 |
+
http://graphml.graphdrawing.org/specification.html for the specification and
|
40 |
+
http://graphml.graphdrawing.org/primer/graphml-primer.html
|
41 |
+
for examples.
|
42 |
+
"""
|
43 |
+
import warnings
|
44 |
+
from collections import defaultdict
|
45 |
+
|
46 |
+
import networkx as nx
|
47 |
+
from networkx.utils import open_file
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
"write_graphml",
|
51 |
+
"read_graphml",
|
52 |
+
"generate_graphml",
|
53 |
+
"write_graphml_xml",
|
54 |
+
"write_graphml_lxml",
|
55 |
+
"parse_graphml",
|
56 |
+
"GraphMLWriter",
|
57 |
+
"GraphMLReader",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
@open_file(1, mode="wb")
|
62 |
+
def write_graphml_xml(
|
63 |
+
G,
|
64 |
+
path,
|
65 |
+
encoding="utf-8",
|
66 |
+
prettyprint=True,
|
67 |
+
infer_numeric_types=False,
|
68 |
+
named_key_ids=False,
|
69 |
+
edge_id_from_attribute=None,
|
70 |
+
):
|
71 |
+
"""Write G in GraphML XML format to path
|
72 |
+
|
73 |
+
Parameters
|
74 |
+
----------
|
75 |
+
G : graph
|
76 |
+
A networkx graph
|
77 |
+
path : file or string
|
78 |
+
File or filename to write.
|
79 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
80 |
+
encoding : string (optional)
|
81 |
+
Encoding for text data.
|
82 |
+
prettyprint : bool (optional)
|
83 |
+
If True use line breaks and indenting in output XML.
|
84 |
+
infer_numeric_types : boolean
|
85 |
+
Determine if numeric types should be generalized.
|
86 |
+
For example, if edges have both int and float 'weight' attributes,
|
87 |
+
we infer in GraphML that both are floats.
|
88 |
+
named_key_ids : bool (optional)
|
89 |
+
If True use attr.name as value for key elements' id attribute.
|
90 |
+
edge_id_from_attribute : dict key (optional)
|
91 |
+
If provided, the graphml edge id is set by looking up the corresponding
|
92 |
+
edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
|
93 |
+
the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
|
94 |
+
|
95 |
+
Examples
|
96 |
+
--------
|
97 |
+
>>> G = nx.path_graph(4)
|
98 |
+
>>> nx.write_graphml(G, "test.graphml")
|
99 |
+
|
100 |
+
Notes
|
101 |
+
-----
|
102 |
+
This implementation does not support mixed graphs (directed
|
103 |
+
and unidirected edges together) hyperedges, nested graphs, or ports.
|
104 |
+
"""
|
105 |
+
writer = GraphMLWriter(
|
106 |
+
encoding=encoding,
|
107 |
+
prettyprint=prettyprint,
|
108 |
+
infer_numeric_types=infer_numeric_types,
|
109 |
+
named_key_ids=named_key_ids,
|
110 |
+
edge_id_from_attribute=edge_id_from_attribute,
|
111 |
+
)
|
112 |
+
writer.add_graph_element(G)
|
113 |
+
writer.dump(path)
|
114 |
+
|
115 |
+
|
116 |
+
@open_file(1, mode="wb")
|
117 |
+
def write_graphml_lxml(
|
118 |
+
G,
|
119 |
+
path,
|
120 |
+
encoding="utf-8",
|
121 |
+
prettyprint=True,
|
122 |
+
infer_numeric_types=False,
|
123 |
+
named_key_ids=False,
|
124 |
+
edge_id_from_attribute=None,
|
125 |
+
):
|
126 |
+
"""Write G in GraphML XML format to path
|
127 |
+
|
128 |
+
This function uses the LXML framework and should be faster than
|
129 |
+
the version using the xml library.
|
130 |
+
|
131 |
+
Parameters
|
132 |
+
----------
|
133 |
+
G : graph
|
134 |
+
A networkx graph
|
135 |
+
path : file or string
|
136 |
+
File or filename to write.
|
137 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
138 |
+
encoding : string (optional)
|
139 |
+
Encoding for text data.
|
140 |
+
prettyprint : bool (optional)
|
141 |
+
If True use line breaks and indenting in output XML.
|
142 |
+
infer_numeric_types : boolean
|
143 |
+
Determine if numeric types should be generalized.
|
144 |
+
For example, if edges have both int and float 'weight' attributes,
|
145 |
+
we infer in GraphML that both are floats.
|
146 |
+
named_key_ids : bool (optional)
|
147 |
+
If True use attr.name as value for key elements' id attribute.
|
148 |
+
edge_id_from_attribute : dict key (optional)
|
149 |
+
If provided, the graphml edge id is set by looking up the corresponding
|
150 |
+
edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
|
151 |
+
the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
--------
|
155 |
+
>>> G = nx.path_graph(4)
|
156 |
+
>>> nx.write_graphml_lxml(G, "fourpath.graphml")
|
157 |
+
|
158 |
+
Notes
|
159 |
+
-----
|
160 |
+
This implementation does not support mixed graphs (directed
|
161 |
+
and unidirected edges together) hyperedges, nested graphs, or ports.
|
162 |
+
"""
|
163 |
+
try:
|
164 |
+
import lxml.etree as lxmletree
|
165 |
+
except ImportError:
|
166 |
+
return write_graphml_xml(
|
167 |
+
G,
|
168 |
+
path,
|
169 |
+
encoding,
|
170 |
+
prettyprint,
|
171 |
+
infer_numeric_types,
|
172 |
+
named_key_ids,
|
173 |
+
edge_id_from_attribute,
|
174 |
+
)
|
175 |
+
|
176 |
+
writer = GraphMLWriterLxml(
|
177 |
+
path,
|
178 |
+
graph=G,
|
179 |
+
encoding=encoding,
|
180 |
+
prettyprint=prettyprint,
|
181 |
+
infer_numeric_types=infer_numeric_types,
|
182 |
+
named_key_ids=named_key_ids,
|
183 |
+
edge_id_from_attribute=edge_id_from_attribute,
|
184 |
+
)
|
185 |
+
writer.dump()
|
186 |
+
|
187 |
+
|
188 |
+
def generate_graphml(
|
189 |
+
G,
|
190 |
+
encoding="utf-8",
|
191 |
+
prettyprint=True,
|
192 |
+
named_key_ids=False,
|
193 |
+
edge_id_from_attribute=None,
|
194 |
+
):
|
195 |
+
"""Generate GraphML lines for G
|
196 |
+
|
197 |
+
Parameters
|
198 |
+
----------
|
199 |
+
G : graph
|
200 |
+
A networkx graph
|
201 |
+
encoding : string (optional)
|
202 |
+
Encoding for text data.
|
203 |
+
prettyprint : bool (optional)
|
204 |
+
If True use line breaks and indenting in output XML.
|
205 |
+
named_key_ids : bool (optional)
|
206 |
+
If True use attr.name as value for key elements' id attribute.
|
207 |
+
edge_id_from_attribute : dict key (optional)
|
208 |
+
If provided, the graphml edge id is set by looking up the corresponding
|
209 |
+
edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
|
210 |
+
the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
|
211 |
+
|
212 |
+
Examples
|
213 |
+
--------
|
214 |
+
>>> G = nx.path_graph(4)
|
215 |
+
>>> linefeed = chr(10) # linefeed = \n
|
216 |
+
>>> s = linefeed.join(nx.generate_graphml(G))
|
217 |
+
>>> for line in nx.generate_graphml(G): # doctest: +SKIP
|
218 |
+
... print(line)
|
219 |
+
|
220 |
+
Notes
|
221 |
+
-----
|
222 |
+
This implementation does not support mixed graphs (directed and unidirected
|
223 |
+
edges together) hyperedges, nested graphs, or ports.
|
224 |
+
"""
|
225 |
+
writer = GraphMLWriter(
|
226 |
+
encoding=encoding,
|
227 |
+
prettyprint=prettyprint,
|
228 |
+
named_key_ids=named_key_ids,
|
229 |
+
edge_id_from_attribute=edge_id_from_attribute,
|
230 |
+
)
|
231 |
+
writer.add_graph_element(G)
|
232 |
+
yield from str(writer).splitlines()
|
233 |
+
|
234 |
+
|
235 |
+
@open_file(0, mode="rb")
|
236 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
237 |
+
def read_graphml(path, node_type=str, edge_key_type=int, force_multigraph=False):
|
238 |
+
"""Read graph in GraphML format from path.
|
239 |
+
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
path : file or string
|
243 |
+
File or filename to write.
|
244 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
245 |
+
|
246 |
+
node_type: Python type (default: str)
|
247 |
+
Convert node ids to this type
|
248 |
+
|
249 |
+
edge_key_type: Python type (default: int)
|
250 |
+
Convert graphml edge ids to this type. Multigraphs use id as edge key.
|
251 |
+
Non-multigraphs add to edge attribute dict with name "id".
|
252 |
+
|
253 |
+
force_multigraph : bool (default: False)
|
254 |
+
If True, return a multigraph with edge keys. If False (the default)
|
255 |
+
return a multigraph when multiedges are in the graph.
|
256 |
+
|
257 |
+
Returns
|
258 |
+
-------
|
259 |
+
graph: NetworkX graph
|
260 |
+
If parallel edges are present or `force_multigraph=True` then
|
261 |
+
a MultiGraph or MultiDiGraph is returned. Otherwise a Graph/DiGraph.
|
262 |
+
The returned graph is directed if the file indicates it should be.
|
263 |
+
|
264 |
+
Notes
|
265 |
+
-----
|
266 |
+
Default node and edge attributes are not propagated to each node and edge.
|
267 |
+
They can be obtained from `G.graph` and applied to node and edge attributes
|
268 |
+
if desired using something like this:
|
269 |
+
|
270 |
+
>>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP
|
271 |
+
>>> for node, data in G.nodes(data=True): # doctest: +SKIP
|
272 |
+
... if "color" not in data:
|
273 |
+
... data["color"] = default_color
|
274 |
+
>>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP
|
275 |
+
>>> for u, v, data in G.edges(data=True): # doctest: +SKIP
|
276 |
+
... if "color" not in data:
|
277 |
+
... data["color"] = default_color
|
278 |
+
|
279 |
+
This implementation does not support mixed graphs (directed and unidirected
|
280 |
+
edges together), hypergraphs, nested graphs, or ports.
|
281 |
+
|
282 |
+
For multigraphs the GraphML edge "id" will be used as the edge
|
283 |
+
key. If not specified then they "key" attribute will be used. If
|
284 |
+
there is no "key" attribute a default NetworkX multigraph edge key
|
285 |
+
will be provided.
|
286 |
+
|
287 |
+
Files with the yEd "yfiles" extension can be read. The type of the node's
|
288 |
+
shape is preserved in the `shape_type` node attribute.
|
289 |
+
|
290 |
+
yEd compressed files ("file.graphmlz" extension) can be read by renaming
|
291 |
+
the file to "file.graphml.gz".
|
292 |
+
|
293 |
+
"""
|
294 |
+
reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
|
295 |
+
# need to check for multiple graphs
|
296 |
+
glist = list(reader(path=path))
|
297 |
+
if len(glist) == 0:
|
298 |
+
# If no graph comes back, try looking for an incomplete header
|
299 |
+
header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
|
300 |
+
path.seek(0)
|
301 |
+
old_bytes = path.read()
|
302 |
+
new_bytes = old_bytes.replace(b"<graphml>", header)
|
303 |
+
glist = list(reader(string=new_bytes))
|
304 |
+
if len(glist) == 0:
|
305 |
+
raise nx.NetworkXError("file not successfully read as graphml")
|
306 |
+
return glist[0]
|
307 |
+
|
308 |
+
|
309 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
310 |
+
def parse_graphml(
|
311 |
+
graphml_string, node_type=str, edge_key_type=int, force_multigraph=False
|
312 |
+
):
|
313 |
+
"""Read graph in GraphML format from string.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
graphml_string : string
|
318 |
+
String containing graphml information
|
319 |
+
(e.g., contents of a graphml file).
|
320 |
+
|
321 |
+
node_type: Python type (default: str)
|
322 |
+
Convert node ids to this type
|
323 |
+
|
324 |
+
edge_key_type: Python type (default: int)
|
325 |
+
Convert graphml edge ids to this type. Multigraphs use id as edge key.
|
326 |
+
Non-multigraphs add to edge attribute dict with name "id".
|
327 |
+
|
328 |
+
force_multigraph : bool (default: False)
|
329 |
+
If True, return a multigraph with edge keys. If False (the default)
|
330 |
+
return a multigraph when multiedges are in the graph.
|
331 |
+
|
332 |
+
|
333 |
+
Returns
|
334 |
+
-------
|
335 |
+
graph: NetworkX graph
|
336 |
+
If no parallel edges are found a Graph or DiGraph is returned.
|
337 |
+
Otherwise a MultiGraph or MultiDiGraph is returned.
|
338 |
+
|
339 |
+
Examples
|
340 |
+
--------
|
341 |
+
>>> G = nx.path_graph(4)
|
342 |
+
>>> linefeed = chr(10) # linefeed = \n
|
343 |
+
>>> s = linefeed.join(nx.generate_graphml(G))
|
344 |
+
>>> H = nx.parse_graphml(s)
|
345 |
+
|
346 |
+
Notes
|
347 |
+
-----
|
348 |
+
Default node and edge attributes are not propagated to each node and edge.
|
349 |
+
They can be obtained from `G.graph` and applied to node and edge attributes
|
350 |
+
if desired using something like this:
|
351 |
+
|
352 |
+
>>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP
|
353 |
+
>>> for node, data in G.nodes(data=True): # doctest: +SKIP
|
354 |
+
... if "color" not in data:
|
355 |
+
... data["color"] = default_color
|
356 |
+
>>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP
|
357 |
+
>>> for u, v, data in G.edges(data=True): # doctest: +SKIP
|
358 |
+
... if "color" not in data:
|
359 |
+
... data["color"] = default_color
|
360 |
+
|
361 |
+
This implementation does not support mixed graphs (directed and unidirected
|
362 |
+
edges together), hypergraphs, nested graphs, or ports.
|
363 |
+
|
364 |
+
For multigraphs the GraphML edge "id" will be used as the edge
|
365 |
+
key. If not specified then they "key" attribute will be used. If
|
366 |
+
there is no "key" attribute a default NetworkX multigraph edge key
|
367 |
+
will be provided.
|
368 |
+
|
369 |
+
"""
|
370 |
+
reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
|
371 |
+
# need to check for multiple graphs
|
372 |
+
glist = list(reader(string=graphml_string))
|
373 |
+
if len(glist) == 0:
|
374 |
+
# If no graph comes back, try looking for an incomplete header
|
375 |
+
header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
|
376 |
+
new_string = graphml_string.replace("<graphml>", header)
|
377 |
+
glist = list(reader(string=new_string))
|
378 |
+
if len(glist) == 0:
|
379 |
+
raise nx.NetworkXError("file not successfully read as graphml")
|
380 |
+
return glist[0]
|
381 |
+
|
382 |
+
|
383 |
+
class GraphML:
|
384 |
+
NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns"
|
385 |
+
NS_XSI = "http://www.w3.org/2001/XMLSchema-instance"
|
386 |
+
# xmlns:y="http://www.yworks.com/xml/graphml"
|
387 |
+
NS_Y = "http://www.yworks.com/xml/graphml"
|
388 |
+
SCHEMALOCATION = " ".join(
|
389 |
+
[
|
390 |
+
"http://graphml.graphdrawing.org/xmlns",
|
391 |
+
"http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd",
|
392 |
+
]
|
393 |
+
)
|
394 |
+
|
395 |
+
def construct_types(self):
|
396 |
+
types = [
|
397 |
+
(int, "integer"), # for Gephi GraphML bug
|
398 |
+
(str, "yfiles"),
|
399 |
+
(str, "string"),
|
400 |
+
(int, "int"),
|
401 |
+
(int, "long"),
|
402 |
+
(float, "float"),
|
403 |
+
(float, "double"),
|
404 |
+
(bool, "boolean"),
|
405 |
+
]
|
406 |
+
|
407 |
+
# These additions to types allow writing numpy types
|
408 |
+
try:
|
409 |
+
import numpy as np
|
410 |
+
except:
|
411 |
+
pass
|
412 |
+
else:
|
413 |
+
# prepend so that python types are created upon read (last entry wins)
|
414 |
+
types = [
|
415 |
+
(np.float64, "float"),
|
416 |
+
(np.float32, "float"),
|
417 |
+
(np.float16, "float"),
|
418 |
+
(np.int_, "int"),
|
419 |
+
(np.int8, "int"),
|
420 |
+
(np.int16, "int"),
|
421 |
+
(np.int32, "int"),
|
422 |
+
(np.int64, "int"),
|
423 |
+
(np.uint8, "int"),
|
424 |
+
(np.uint16, "int"),
|
425 |
+
(np.uint32, "int"),
|
426 |
+
(np.uint64, "int"),
|
427 |
+
(np.int_, "int"),
|
428 |
+
(np.intc, "int"),
|
429 |
+
(np.intp, "int"),
|
430 |
+
] + types
|
431 |
+
|
432 |
+
self.xml_type = dict(types)
|
433 |
+
self.python_type = dict(reversed(a) for a in types)
|
434 |
+
|
435 |
+
# This page says that data types in GraphML follow Java(TM).
|
436 |
+
# http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition
|
437 |
+
# true and false are the only boolean literals:
|
438 |
+
# http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals
|
439 |
+
convert_bool = {
|
440 |
+
# We use data.lower() in actual use.
|
441 |
+
"true": True,
|
442 |
+
"false": False,
|
443 |
+
# Include integer strings for convenience.
|
444 |
+
"0": False,
|
445 |
+
0: False,
|
446 |
+
"1": True,
|
447 |
+
1: True,
|
448 |
+
}
|
449 |
+
|
450 |
+
def get_xml_type(self, key):
|
451 |
+
"""Wrapper around the xml_type dict that raises a more informative
|
452 |
+
exception message when a user attempts to use data of a type not
|
453 |
+
supported by GraphML."""
|
454 |
+
try:
|
455 |
+
return self.xml_type[key]
|
456 |
+
except KeyError as err:
|
457 |
+
raise TypeError(
|
458 |
+
f"GraphML does not support type {key} as data values."
|
459 |
+
) from err
|
460 |
+
|
461 |
+
|
462 |
+
class GraphMLWriter(GraphML):
|
463 |
+
def __init__(
|
464 |
+
self,
|
465 |
+
graph=None,
|
466 |
+
encoding="utf-8",
|
467 |
+
prettyprint=True,
|
468 |
+
infer_numeric_types=False,
|
469 |
+
named_key_ids=False,
|
470 |
+
edge_id_from_attribute=None,
|
471 |
+
):
|
472 |
+
self.construct_types()
|
473 |
+
from xml.etree.ElementTree import Element
|
474 |
+
|
475 |
+
self.myElement = Element
|
476 |
+
|
477 |
+
self.infer_numeric_types = infer_numeric_types
|
478 |
+
self.prettyprint = prettyprint
|
479 |
+
self.named_key_ids = named_key_ids
|
480 |
+
self.edge_id_from_attribute = edge_id_from_attribute
|
481 |
+
self.encoding = encoding
|
482 |
+
self.xml = self.myElement(
|
483 |
+
"graphml",
|
484 |
+
{
|
485 |
+
"xmlns": self.NS_GRAPHML,
|
486 |
+
"xmlns:xsi": self.NS_XSI,
|
487 |
+
"xsi:schemaLocation": self.SCHEMALOCATION,
|
488 |
+
},
|
489 |
+
)
|
490 |
+
self.keys = {}
|
491 |
+
self.attributes = defaultdict(list)
|
492 |
+
self.attribute_types = defaultdict(set)
|
493 |
+
|
494 |
+
if graph is not None:
|
495 |
+
self.add_graph_element(graph)
|
496 |
+
|
497 |
+
def __str__(self):
|
498 |
+
from xml.etree.ElementTree import tostring
|
499 |
+
|
500 |
+
if self.prettyprint:
|
501 |
+
self.indent(self.xml)
|
502 |
+
s = tostring(self.xml).decode(self.encoding)
|
503 |
+
return s
|
504 |
+
|
505 |
+
def attr_type(self, name, scope, value):
|
506 |
+
"""Infer the attribute type of data named name. Currently this only
|
507 |
+
supports inference of numeric types.
|
508 |
+
|
509 |
+
If self.infer_numeric_types is false, type is used. Otherwise, pick the
|
510 |
+
most general of types found across all values with name and scope. This
|
511 |
+
means edges with data named 'weight' are treated separately from nodes
|
512 |
+
with data named 'weight'.
|
513 |
+
"""
|
514 |
+
if self.infer_numeric_types:
|
515 |
+
types = self.attribute_types[(name, scope)]
|
516 |
+
|
517 |
+
if len(types) > 1:
|
518 |
+
types = {self.get_xml_type(t) for t in types}
|
519 |
+
if "string" in types:
|
520 |
+
return str
|
521 |
+
elif "float" in types or "double" in types:
|
522 |
+
return float
|
523 |
+
else:
|
524 |
+
return int
|
525 |
+
else:
|
526 |
+
return list(types)[0]
|
527 |
+
else:
|
528 |
+
return type(value)
|
529 |
+
|
530 |
+
def get_key(self, name, attr_type, scope, default):
|
531 |
+
keys_key = (name, attr_type, scope)
|
532 |
+
try:
|
533 |
+
return self.keys[keys_key]
|
534 |
+
except KeyError:
|
535 |
+
if self.named_key_ids:
|
536 |
+
new_id = name
|
537 |
+
else:
|
538 |
+
new_id = f"d{len(list(self.keys))}"
|
539 |
+
|
540 |
+
self.keys[keys_key] = new_id
|
541 |
+
key_kwargs = {
|
542 |
+
"id": new_id,
|
543 |
+
"for": scope,
|
544 |
+
"attr.name": name,
|
545 |
+
"attr.type": attr_type,
|
546 |
+
}
|
547 |
+
key_element = self.myElement("key", **key_kwargs)
|
548 |
+
# add subelement for data default value if present
|
549 |
+
if default is not None:
|
550 |
+
default_element = self.myElement("default")
|
551 |
+
default_element.text = str(default)
|
552 |
+
key_element.append(default_element)
|
553 |
+
self.xml.insert(0, key_element)
|
554 |
+
return new_id
|
555 |
+
|
556 |
+
def add_data(self, name, element_type, value, scope="all", default=None):
|
557 |
+
"""
|
558 |
+
Make a data element for an edge or a node. Keep a log of the
|
559 |
+
type in the keys table.
|
560 |
+
"""
|
561 |
+
if element_type not in self.xml_type:
|
562 |
+
raise nx.NetworkXError(
|
563 |
+
f"GraphML writer does not support {element_type} as data values."
|
564 |
+
)
|
565 |
+
keyid = self.get_key(name, self.get_xml_type(element_type), scope, default)
|
566 |
+
data_element = self.myElement("data", key=keyid)
|
567 |
+
data_element.text = str(value)
|
568 |
+
return data_element
|
569 |
+
|
570 |
+
def add_attributes(self, scope, xml_obj, data, default):
|
571 |
+
"""Appends attribute data to edges or nodes, and stores type information
|
572 |
+
to be added later. See add_graph_element.
|
573 |
+
"""
|
574 |
+
for k, v in data.items():
|
575 |
+
self.attribute_types[(str(k), scope)].add(type(v))
|
576 |
+
self.attributes[xml_obj].append([k, v, scope, default.get(k)])
|
577 |
+
|
578 |
+
def add_nodes(self, G, graph_element):
|
579 |
+
default = G.graph.get("node_default", {})
|
580 |
+
for node, data in G.nodes(data=True):
|
581 |
+
node_element = self.myElement("node", id=str(node))
|
582 |
+
self.add_attributes("node", node_element, data, default)
|
583 |
+
graph_element.append(node_element)
|
584 |
+
|
585 |
+
def add_edges(self, G, graph_element):
|
586 |
+
if G.is_multigraph():
|
587 |
+
for u, v, key, data in G.edges(data=True, keys=True):
|
588 |
+
edge_element = self.myElement(
|
589 |
+
"edge",
|
590 |
+
source=str(u),
|
591 |
+
target=str(v),
|
592 |
+
id=str(data.get(self.edge_id_from_attribute))
|
593 |
+
if self.edge_id_from_attribute
|
594 |
+
and self.edge_id_from_attribute in data
|
595 |
+
else str(key),
|
596 |
+
)
|
597 |
+
default = G.graph.get("edge_default", {})
|
598 |
+
self.add_attributes("edge", edge_element, data, default)
|
599 |
+
graph_element.append(edge_element)
|
600 |
+
else:
|
601 |
+
for u, v, data in G.edges(data=True):
|
602 |
+
if self.edge_id_from_attribute and self.edge_id_from_attribute in data:
|
603 |
+
# select attribute to be edge id
|
604 |
+
edge_element = self.myElement(
|
605 |
+
"edge",
|
606 |
+
source=str(u),
|
607 |
+
target=str(v),
|
608 |
+
id=str(data.get(self.edge_id_from_attribute)),
|
609 |
+
)
|
610 |
+
else:
|
611 |
+
# default: no edge id
|
612 |
+
edge_element = self.myElement("edge", source=str(u), target=str(v))
|
613 |
+
default = G.graph.get("edge_default", {})
|
614 |
+
self.add_attributes("edge", edge_element, data, default)
|
615 |
+
graph_element.append(edge_element)
|
616 |
+
|
617 |
+
def add_graph_element(self, G):
|
618 |
+
"""
|
619 |
+
Serialize graph G in GraphML to the stream.
|
620 |
+
"""
|
621 |
+
if G.is_directed():
|
622 |
+
default_edge_type = "directed"
|
623 |
+
else:
|
624 |
+
default_edge_type = "undirected"
|
625 |
+
|
626 |
+
graphid = G.graph.pop("id", None)
|
627 |
+
if graphid is None:
|
628 |
+
graph_element = self.myElement("graph", edgedefault=default_edge_type)
|
629 |
+
else:
|
630 |
+
graph_element = self.myElement(
|
631 |
+
"graph", edgedefault=default_edge_type, id=graphid
|
632 |
+
)
|
633 |
+
default = {}
|
634 |
+
data = {
|
635 |
+
k: v
|
636 |
+
for (k, v) in G.graph.items()
|
637 |
+
if k not in ["node_default", "edge_default"]
|
638 |
+
}
|
639 |
+
self.add_attributes("graph", graph_element, data, default)
|
640 |
+
self.add_nodes(G, graph_element)
|
641 |
+
self.add_edges(G, graph_element)
|
642 |
+
|
643 |
+
# self.attributes contains a mapping from XML Objects to a list of
|
644 |
+
# data that needs to be added to them.
|
645 |
+
# We postpone processing in order to do type inference/generalization.
|
646 |
+
# See self.attr_type
|
647 |
+
for xml_obj, data in self.attributes.items():
|
648 |
+
for k, v, scope, default in data:
|
649 |
+
xml_obj.append(
|
650 |
+
self.add_data(
|
651 |
+
str(k), self.attr_type(k, scope, v), str(v), scope, default
|
652 |
+
)
|
653 |
+
)
|
654 |
+
self.xml.append(graph_element)
|
655 |
+
|
656 |
+
def add_graphs(self, graph_list):
|
657 |
+
"""Add many graphs to this GraphML document."""
|
658 |
+
for G in graph_list:
|
659 |
+
self.add_graph_element(G)
|
660 |
+
|
661 |
+
def dump(self, stream):
|
662 |
+
from xml.etree.ElementTree import ElementTree
|
663 |
+
|
664 |
+
if self.prettyprint:
|
665 |
+
self.indent(self.xml)
|
666 |
+
document = ElementTree(self.xml)
|
667 |
+
document.write(stream, encoding=self.encoding, xml_declaration=True)
|
668 |
+
|
669 |
+
def indent(self, elem, level=0):
|
670 |
+
# in-place prettyprint formatter
|
671 |
+
i = "\n" + level * " "
|
672 |
+
if len(elem):
|
673 |
+
if not elem.text or not elem.text.strip():
|
674 |
+
elem.text = i + " "
|
675 |
+
if not elem.tail or not elem.tail.strip():
|
676 |
+
elem.tail = i
|
677 |
+
for elem in elem:
|
678 |
+
self.indent(elem, level + 1)
|
679 |
+
if not elem.tail or not elem.tail.strip():
|
680 |
+
elem.tail = i
|
681 |
+
else:
|
682 |
+
if level and (not elem.tail or not elem.tail.strip()):
|
683 |
+
elem.tail = i
|
684 |
+
|
685 |
+
|
686 |
+
class IncrementalElement:
|
687 |
+
"""Wrapper for _IncrementalWriter providing an Element like interface.
|
688 |
+
|
689 |
+
This wrapper does not intend to be a complete implementation but rather to
|
690 |
+
deal with those calls used in GraphMLWriter.
|
691 |
+
"""
|
692 |
+
|
693 |
+
def __init__(self, xml, prettyprint):
|
694 |
+
self.xml = xml
|
695 |
+
self.prettyprint = prettyprint
|
696 |
+
|
697 |
+
def append(self, element):
|
698 |
+
self.xml.write(element, pretty_print=self.prettyprint)
|
699 |
+
|
700 |
+
|
701 |
+
class GraphMLWriterLxml(GraphMLWriter):
|
702 |
+
def __init__(
|
703 |
+
self,
|
704 |
+
path,
|
705 |
+
graph=None,
|
706 |
+
encoding="utf-8",
|
707 |
+
prettyprint=True,
|
708 |
+
infer_numeric_types=False,
|
709 |
+
named_key_ids=False,
|
710 |
+
edge_id_from_attribute=None,
|
711 |
+
):
|
712 |
+
self.construct_types()
|
713 |
+
import lxml.etree as lxmletree
|
714 |
+
|
715 |
+
self.myElement = lxmletree.Element
|
716 |
+
|
717 |
+
self._encoding = encoding
|
718 |
+
self._prettyprint = prettyprint
|
719 |
+
self.named_key_ids = named_key_ids
|
720 |
+
self.edge_id_from_attribute = edge_id_from_attribute
|
721 |
+
self.infer_numeric_types = infer_numeric_types
|
722 |
+
|
723 |
+
self._xml_base = lxmletree.xmlfile(path, encoding=encoding)
|
724 |
+
self._xml = self._xml_base.__enter__()
|
725 |
+
self._xml.write_declaration()
|
726 |
+
|
727 |
+
# We need to have a xml variable that support insertion. This call is
|
728 |
+
# used for adding the keys to the document.
|
729 |
+
# We will store those keys in a plain list, and then after the graph
|
730 |
+
# element is closed we will add them to the main graphml element.
|
731 |
+
self.xml = []
|
732 |
+
self._keys = self.xml
|
733 |
+
self._graphml = self._xml.element(
|
734 |
+
"graphml",
|
735 |
+
{
|
736 |
+
"xmlns": self.NS_GRAPHML,
|
737 |
+
"xmlns:xsi": self.NS_XSI,
|
738 |
+
"xsi:schemaLocation": self.SCHEMALOCATION,
|
739 |
+
},
|
740 |
+
)
|
741 |
+
self._graphml.__enter__()
|
742 |
+
self.keys = {}
|
743 |
+
self.attribute_types = defaultdict(set)
|
744 |
+
|
745 |
+
if graph is not None:
|
746 |
+
self.add_graph_element(graph)
|
747 |
+
|
748 |
+
def add_graph_element(self, G):
|
749 |
+
"""
|
750 |
+
Serialize graph G in GraphML to the stream.
|
751 |
+
"""
|
752 |
+
if G.is_directed():
|
753 |
+
default_edge_type = "directed"
|
754 |
+
else:
|
755 |
+
default_edge_type = "undirected"
|
756 |
+
|
757 |
+
graphid = G.graph.pop("id", None)
|
758 |
+
if graphid is None:
|
759 |
+
graph_element = self._xml.element("graph", edgedefault=default_edge_type)
|
760 |
+
else:
|
761 |
+
graph_element = self._xml.element(
|
762 |
+
"graph", edgedefault=default_edge_type, id=graphid
|
763 |
+
)
|
764 |
+
|
765 |
+
# gather attributes types for the whole graph
|
766 |
+
# to find the most general numeric format needed.
|
767 |
+
# Then pass through attributes to create key_id for each.
|
768 |
+
graphdata = {
|
769 |
+
k: v
|
770 |
+
for k, v in G.graph.items()
|
771 |
+
if k not in ("node_default", "edge_default")
|
772 |
+
}
|
773 |
+
node_default = G.graph.get("node_default", {})
|
774 |
+
edge_default = G.graph.get("edge_default", {})
|
775 |
+
# Graph attributes
|
776 |
+
for k, v in graphdata.items():
|
777 |
+
self.attribute_types[(str(k), "graph")].add(type(v))
|
778 |
+
for k, v in graphdata.items():
|
779 |
+
element_type = self.get_xml_type(self.attr_type(k, "graph", v))
|
780 |
+
self.get_key(str(k), element_type, "graph", None)
|
781 |
+
# Nodes and data
|
782 |
+
for node, d in G.nodes(data=True):
|
783 |
+
for k, v in d.items():
|
784 |
+
self.attribute_types[(str(k), "node")].add(type(v))
|
785 |
+
for node, d in G.nodes(data=True):
|
786 |
+
for k, v in d.items():
|
787 |
+
T = self.get_xml_type(self.attr_type(k, "node", v))
|
788 |
+
self.get_key(str(k), T, "node", node_default.get(k))
|
789 |
+
# Edges and data
|
790 |
+
if G.is_multigraph():
|
791 |
+
for u, v, ekey, d in G.edges(keys=True, data=True):
|
792 |
+
for k, v in d.items():
|
793 |
+
self.attribute_types[(str(k), "edge")].add(type(v))
|
794 |
+
for u, v, ekey, d in G.edges(keys=True, data=True):
|
795 |
+
for k, v in d.items():
|
796 |
+
T = self.get_xml_type(self.attr_type(k, "edge", v))
|
797 |
+
self.get_key(str(k), T, "edge", edge_default.get(k))
|
798 |
+
else:
|
799 |
+
for u, v, d in G.edges(data=True):
|
800 |
+
for k, v in d.items():
|
801 |
+
self.attribute_types[(str(k), "edge")].add(type(v))
|
802 |
+
for u, v, d in G.edges(data=True):
|
803 |
+
for k, v in d.items():
|
804 |
+
T = self.get_xml_type(self.attr_type(k, "edge", v))
|
805 |
+
self.get_key(str(k), T, "edge", edge_default.get(k))
|
806 |
+
|
807 |
+
# Now add attribute keys to the xml file
|
808 |
+
for key in self.xml:
|
809 |
+
self._xml.write(key, pretty_print=self._prettyprint)
|
810 |
+
|
811 |
+
# The incremental_writer writes each node/edge as it is created
|
812 |
+
incremental_writer = IncrementalElement(self._xml, self._prettyprint)
|
813 |
+
with graph_element:
|
814 |
+
self.add_attributes("graph", incremental_writer, graphdata, {})
|
815 |
+
self.add_nodes(G, incremental_writer) # adds attributes too
|
816 |
+
self.add_edges(G, incremental_writer) # adds attributes too
|
817 |
+
|
818 |
+
def add_attributes(self, scope, xml_obj, data, default):
|
819 |
+
"""Appends attribute data."""
|
820 |
+
for k, v in data.items():
|
821 |
+
data_element = self.add_data(
|
822 |
+
str(k), self.attr_type(str(k), scope, v), str(v), scope, default.get(k)
|
823 |
+
)
|
824 |
+
xml_obj.append(data_element)
|
825 |
+
|
826 |
+
def __str__(self):
|
827 |
+
return object.__str__(self)
|
828 |
+
|
829 |
+
def dump(self, stream=None):
|
830 |
+
self._graphml.__exit__(None, None, None)
|
831 |
+
self._xml_base.__exit__(None, None, None)
|
832 |
+
|
833 |
+
|
834 |
+
# default is lxml is present.
|
835 |
+
write_graphml = write_graphml_lxml
|
836 |
+
|
837 |
+
|
838 |
+
class GraphMLReader(GraphML):
|
839 |
+
"""Read a GraphML document. Produces NetworkX graph objects."""
|
840 |
+
|
841 |
+
def __init__(self, node_type=str, edge_key_type=int, force_multigraph=False):
|
842 |
+
self.construct_types()
|
843 |
+
self.node_type = node_type
|
844 |
+
self.edge_key_type = edge_key_type
|
845 |
+
self.multigraph = force_multigraph # If False, test for multiedges
|
846 |
+
self.edge_ids = {} # dict mapping (u,v) tuples to edge id attributes
|
847 |
+
|
848 |
+
def __call__(self, path=None, string=None):
|
849 |
+
from xml.etree.ElementTree import ElementTree, fromstring
|
850 |
+
|
851 |
+
if path is not None:
|
852 |
+
self.xml = ElementTree(file=path)
|
853 |
+
elif string is not None:
|
854 |
+
self.xml = fromstring(string)
|
855 |
+
else:
|
856 |
+
raise ValueError("Must specify either 'path' or 'string' as kwarg")
|
857 |
+
(keys, defaults) = self.find_graphml_keys(self.xml)
|
858 |
+
for g in self.xml.findall(f"{{{self.NS_GRAPHML}}}graph"):
|
859 |
+
yield self.make_graph(g, keys, defaults)
|
860 |
+
|
861 |
+
def make_graph(self, graph_xml, graphml_keys, defaults, G=None):
|
862 |
+
# set default graph type
|
863 |
+
edgedefault = graph_xml.get("edgedefault", None)
|
864 |
+
if G is None:
|
865 |
+
if edgedefault == "directed":
|
866 |
+
G = nx.MultiDiGraph()
|
867 |
+
else:
|
868 |
+
G = nx.MultiGraph()
|
869 |
+
# set defaults for graph attributes
|
870 |
+
G.graph["node_default"] = {}
|
871 |
+
G.graph["edge_default"] = {}
|
872 |
+
for key_id, value in defaults.items():
|
873 |
+
key_for = graphml_keys[key_id]["for"]
|
874 |
+
name = graphml_keys[key_id]["name"]
|
875 |
+
python_type = graphml_keys[key_id]["type"]
|
876 |
+
if key_for == "node":
|
877 |
+
G.graph["node_default"].update({name: python_type(value)})
|
878 |
+
if key_for == "edge":
|
879 |
+
G.graph["edge_default"].update({name: python_type(value)})
|
880 |
+
# hyperedges are not supported
|
881 |
+
hyperedge = graph_xml.find(f"{{{self.NS_GRAPHML}}}hyperedge")
|
882 |
+
if hyperedge is not None:
|
883 |
+
raise nx.NetworkXError("GraphML reader doesn't support hyperedges")
|
884 |
+
# add nodes
|
885 |
+
for node_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}node"):
|
886 |
+
self.add_node(G, node_xml, graphml_keys, defaults)
|
887 |
+
# add edges
|
888 |
+
for edge_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}edge"):
|
889 |
+
self.add_edge(G, edge_xml, graphml_keys)
|
890 |
+
# add graph data
|
891 |
+
data = self.decode_data_elements(graphml_keys, graph_xml)
|
892 |
+
G.graph.update(data)
|
893 |
+
|
894 |
+
# switch to Graph or DiGraph if no parallel edges were found
|
895 |
+
if self.multigraph:
|
896 |
+
return G
|
897 |
+
|
898 |
+
G = nx.DiGraph(G) if G.is_directed() else nx.Graph(G)
|
899 |
+
# add explicit edge "id" from file as attribute in NX graph.
|
900 |
+
nx.set_edge_attributes(G, values=self.edge_ids, name="id")
|
901 |
+
return G
|
902 |
+
|
903 |
+
def add_node(self, G, node_xml, graphml_keys, defaults):
|
904 |
+
"""Add a node to the graph."""
|
905 |
+
# warn on finding unsupported ports tag
|
906 |
+
ports = node_xml.find(f"{{{self.NS_GRAPHML}}}port")
|
907 |
+
if ports is not None:
|
908 |
+
warnings.warn("GraphML port tag not supported.")
|
909 |
+
# find the node by id and cast it to the appropriate type
|
910 |
+
node_id = self.node_type(node_xml.get("id"))
|
911 |
+
# get data/attributes for node
|
912 |
+
data = self.decode_data_elements(graphml_keys, node_xml)
|
913 |
+
G.add_node(node_id, **data)
|
914 |
+
# get child nodes
|
915 |
+
if node_xml.attrib.get("yfiles.foldertype") == "group":
|
916 |
+
graph_xml = node_xml.find(f"{{{self.NS_GRAPHML}}}graph")
|
917 |
+
self.make_graph(graph_xml, graphml_keys, defaults, G)
|
918 |
+
|
919 |
+
def add_edge(self, G, edge_element, graphml_keys):
|
920 |
+
"""Add an edge to the graph."""
|
921 |
+
# warn on finding unsupported ports tag
|
922 |
+
ports = edge_element.find(f"{{{self.NS_GRAPHML}}}port")
|
923 |
+
if ports is not None:
|
924 |
+
warnings.warn("GraphML port tag not supported.")
|
925 |
+
|
926 |
+
# raise error if we find mixed directed and undirected edges
|
927 |
+
directed = edge_element.get("directed")
|
928 |
+
if G.is_directed() and directed == "false":
|
929 |
+
msg = "directed=false edge found in directed graph."
|
930 |
+
raise nx.NetworkXError(msg)
|
931 |
+
if (not G.is_directed()) and directed == "true":
|
932 |
+
msg = "directed=true edge found in undirected graph."
|
933 |
+
raise nx.NetworkXError(msg)
|
934 |
+
|
935 |
+
source = self.node_type(edge_element.get("source"))
|
936 |
+
target = self.node_type(edge_element.get("target"))
|
937 |
+
data = self.decode_data_elements(graphml_keys, edge_element)
|
938 |
+
# GraphML stores edge ids as an attribute
|
939 |
+
# NetworkX uses them as keys in multigraphs too if no key
|
940 |
+
# attribute is specified
|
941 |
+
edge_id = edge_element.get("id")
|
942 |
+
if edge_id:
|
943 |
+
# self.edge_ids is used by `make_graph` method for non-multigraphs
|
944 |
+
self.edge_ids[source, target] = edge_id
|
945 |
+
try:
|
946 |
+
edge_id = self.edge_key_type(edge_id)
|
947 |
+
except ValueError: # Could not convert.
|
948 |
+
pass
|
949 |
+
else:
|
950 |
+
edge_id = data.get("key")
|
951 |
+
|
952 |
+
if G.has_edge(source, target):
|
953 |
+
# mark this as a multigraph
|
954 |
+
self.multigraph = True
|
955 |
+
|
956 |
+
# Use add_edges_from to avoid error with add_edge when `'key' in data`
|
957 |
+
# Note there is only one edge here...
|
958 |
+
G.add_edges_from([(source, target, edge_id, data)])
|
959 |
+
|
960 |
+
def decode_data_elements(self, graphml_keys, obj_xml):
|
961 |
+
"""Use the key information to decode the data XML if present."""
|
962 |
+
data = {}
|
963 |
+
for data_element in obj_xml.findall(f"{{{self.NS_GRAPHML}}}data"):
|
964 |
+
key = data_element.get("key")
|
965 |
+
try:
|
966 |
+
data_name = graphml_keys[key]["name"]
|
967 |
+
data_type = graphml_keys[key]["type"]
|
968 |
+
except KeyError as err:
|
969 |
+
raise nx.NetworkXError(f"Bad GraphML data: no key {key}") from err
|
970 |
+
text = data_element.text
|
971 |
+
# assume anything with subelements is a yfiles extension
|
972 |
+
if text is not None and len(list(data_element)) == 0:
|
973 |
+
if data_type == bool:
|
974 |
+
# Ignore cases.
|
975 |
+
# http://docs.oracle.com/javase/6/docs/api/java/lang/
|
976 |
+
# Boolean.html#parseBoolean%28java.lang.String%29
|
977 |
+
data[data_name] = self.convert_bool[text.lower()]
|
978 |
+
else:
|
979 |
+
data[data_name] = data_type(text)
|
980 |
+
elif len(list(data_element)) > 0:
|
981 |
+
# Assume yfiles as subelements, try to extract node_label
|
982 |
+
node_label = None
|
983 |
+
# set GenericNode's configuration as shape type
|
984 |
+
gn = data_element.find(f"{{{self.NS_Y}}}GenericNode")
|
985 |
+
if gn is not None:
|
986 |
+
data["shape_type"] = gn.get("configuration")
|
987 |
+
for node_type in ["GenericNode", "ShapeNode", "SVGNode", "ImageNode"]:
|
988 |
+
pref = f"{{{self.NS_Y}}}{node_type}/{{{self.NS_Y}}}"
|
989 |
+
geometry = data_element.find(f"{pref}Geometry")
|
990 |
+
if geometry is not None:
|
991 |
+
data["x"] = geometry.get("x")
|
992 |
+
data["y"] = geometry.get("y")
|
993 |
+
if node_label is None:
|
994 |
+
node_label = data_element.find(f"{pref}NodeLabel")
|
995 |
+
shape = data_element.find(f"{pref}Shape")
|
996 |
+
if shape is not None:
|
997 |
+
data["shape_type"] = shape.get("type")
|
998 |
+
if node_label is not None:
|
999 |
+
data["label"] = node_label.text
|
1000 |
+
|
1001 |
+
# check all the different types of edges available in yEd.
|
1002 |
+
for edge_type in [
|
1003 |
+
"PolyLineEdge",
|
1004 |
+
"SplineEdge",
|
1005 |
+
"QuadCurveEdge",
|
1006 |
+
"BezierEdge",
|
1007 |
+
"ArcEdge",
|
1008 |
+
]:
|
1009 |
+
pref = f"{{{self.NS_Y}}}{edge_type}/{{{self.NS_Y}}}"
|
1010 |
+
edge_label = data_element.find(f"{pref}EdgeLabel")
|
1011 |
+
if edge_label is not None:
|
1012 |
+
break
|
1013 |
+
if edge_label is not None:
|
1014 |
+
data["label"] = edge_label.text
|
1015 |
+
elif text is None:
|
1016 |
+
data[data_name] = ""
|
1017 |
+
return data
|
1018 |
+
|
1019 |
+
def find_graphml_keys(self, graph_element):
|
1020 |
+
"""Extracts all the keys and key defaults from the xml."""
|
1021 |
+
graphml_keys = {}
|
1022 |
+
graphml_key_defaults = {}
|
1023 |
+
for k in graph_element.findall(f"{{{self.NS_GRAPHML}}}key"):
|
1024 |
+
attr_id = k.get("id")
|
1025 |
+
attr_type = k.get("attr.type")
|
1026 |
+
attr_name = k.get("attr.name")
|
1027 |
+
yfiles_type = k.get("yfiles.type")
|
1028 |
+
if yfiles_type is not None:
|
1029 |
+
attr_name = yfiles_type
|
1030 |
+
attr_type = "yfiles"
|
1031 |
+
if attr_type is None:
|
1032 |
+
attr_type = "string"
|
1033 |
+
warnings.warn(f"No key type for id {attr_id}. Using string")
|
1034 |
+
if attr_name is None:
|
1035 |
+
raise nx.NetworkXError(f"Unknown key for id {attr_id}.")
|
1036 |
+
graphml_keys[attr_id] = {
|
1037 |
+
"name": attr_name,
|
1038 |
+
"type": self.python_type[attr_type],
|
1039 |
+
"for": k.get("for"),
|
1040 |
+
}
|
1041 |
+
# check for "default" sub-element of key element
|
1042 |
+
default = k.find(f"{{{self.NS_GRAPHML}}}default")
|
1043 |
+
if default is not None:
|
1044 |
+
# Handle default values identically to data element values
|
1045 |
+
python_type = graphml_keys[attr_id]["type"]
|
1046 |
+
if python_type == bool:
|
1047 |
+
graphml_key_defaults[attr_id] = self.convert_bool[
|
1048 |
+
default.text.lower()
|
1049 |
+
]
|
1050 |
+
else:
|
1051 |
+
graphml_key_defaults[attr_id] = python_type(default.text)
|
1052 |
+
return graphml_keys, graphml_key_defaults
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
*********
|
3 |
+
JSON data
|
4 |
+
*********
|
5 |
+
Generate and parse JSON serializable data for NetworkX graphs.
|
6 |
+
|
7 |
+
These formats are suitable for use with the d3.js examples https://d3js.org/
|
8 |
+
|
9 |
+
The three formats that you can generate with NetworkX are:
|
10 |
+
|
11 |
+
- node-link like in the d3.js example https://bl.ocks.org/mbostock/4062045
|
12 |
+
- tree like in the d3.js example https://bl.ocks.org/mbostock/4063550
|
13 |
+
- adjacency like in the d3.js example https://bost.ocks.org/mike/miserables/
|
14 |
+
"""
|
15 |
+
from networkx.readwrite.json_graph.node_link import *
|
16 |
+
from networkx.readwrite.json_graph.adjacency import *
|
17 |
+
from networkx.readwrite.json_graph.tree import *
|
18 |
+
from networkx.readwrite.json_graph.cytoscape import *
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/adjacency.cpython-310.pyc
ADDED
Binary file (4.16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/cytoscape.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/node_link.cpython-310.pyc
ADDED
Binary file (7.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/tree.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/adjacency.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
__all__ = ["adjacency_data", "adjacency_graph"]
|
4 |
+
|
5 |
+
_attrs = {"id": "id", "key": "key"}
|
6 |
+
|
7 |
+
|
8 |
+
def adjacency_data(G, attrs=_attrs):
|
9 |
+
"""Returns data in adjacency format that is suitable for JSON serialization
|
10 |
+
and use in JavaScript documents.
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
G : NetworkX graph
|
15 |
+
|
16 |
+
attrs : dict
|
17 |
+
A dictionary that contains two keys 'id' and 'key'. The corresponding
|
18 |
+
values provide the attribute names for storing NetworkX-internal graph
|
19 |
+
data. The values should be unique. Default value:
|
20 |
+
:samp:`dict(id='id', key='key')`.
|
21 |
+
|
22 |
+
If some user-defined graph data use these attribute names as data keys,
|
23 |
+
they may be silently dropped.
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
data : dict
|
28 |
+
A dictionary with adjacency formatted data.
|
29 |
+
|
30 |
+
Raises
|
31 |
+
------
|
32 |
+
NetworkXError
|
33 |
+
If values in attrs are not unique.
|
34 |
+
|
35 |
+
Examples
|
36 |
+
--------
|
37 |
+
>>> from networkx.readwrite import json_graph
|
38 |
+
>>> G = nx.Graph([(1, 2)])
|
39 |
+
>>> data = json_graph.adjacency_data(G)
|
40 |
+
|
41 |
+
To serialize with json
|
42 |
+
|
43 |
+
>>> import json
|
44 |
+
>>> s = json.dumps(data)
|
45 |
+
|
46 |
+
Notes
|
47 |
+
-----
|
48 |
+
Graph, node, and link attributes will be written when using this format
|
49 |
+
but attribute keys must be strings if you want to serialize the resulting
|
50 |
+
data with JSON.
|
51 |
+
|
52 |
+
The default value of attrs will be changed in a future release of NetworkX.
|
53 |
+
|
54 |
+
See Also
|
55 |
+
--------
|
56 |
+
adjacency_graph, node_link_data, tree_data
|
57 |
+
"""
|
58 |
+
multigraph = G.is_multigraph()
|
59 |
+
id_ = attrs["id"]
|
60 |
+
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
|
61 |
+
key = None if not multigraph else attrs["key"]
|
62 |
+
if id_ == key:
|
63 |
+
raise nx.NetworkXError("Attribute names are not unique.")
|
64 |
+
data = {}
|
65 |
+
data["directed"] = G.is_directed()
|
66 |
+
data["multigraph"] = multigraph
|
67 |
+
data["graph"] = list(G.graph.items())
|
68 |
+
data["nodes"] = []
|
69 |
+
data["adjacency"] = []
|
70 |
+
for n, nbrdict in G.adjacency():
|
71 |
+
data["nodes"].append({**G.nodes[n], id_: n})
|
72 |
+
adj = []
|
73 |
+
if multigraph:
|
74 |
+
for nbr, keys in nbrdict.items():
|
75 |
+
for k, d in keys.items():
|
76 |
+
adj.append({**d, id_: nbr, key: k})
|
77 |
+
else:
|
78 |
+
for nbr, d in nbrdict.items():
|
79 |
+
adj.append({**d, id_: nbr})
|
80 |
+
data["adjacency"].append(adj)
|
81 |
+
return data
|
82 |
+
|
83 |
+
|
84 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
85 |
+
def adjacency_graph(data, directed=False, multigraph=True, attrs=_attrs):
|
86 |
+
"""Returns graph from adjacency data format.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
data : dict
|
91 |
+
Adjacency list formatted graph data
|
92 |
+
|
93 |
+
directed : bool
|
94 |
+
If True, and direction not specified in data, return a directed graph.
|
95 |
+
|
96 |
+
multigraph : bool
|
97 |
+
If True, and multigraph not specified in data, return a multigraph.
|
98 |
+
|
99 |
+
attrs : dict
|
100 |
+
A dictionary that contains two keys 'id' and 'key'. The corresponding
|
101 |
+
values provide the attribute names for storing NetworkX-internal graph
|
102 |
+
data. The values should be unique. Default value:
|
103 |
+
:samp:`dict(id='id', key='key')`.
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
G : NetworkX graph
|
108 |
+
A NetworkX graph object
|
109 |
+
|
110 |
+
Examples
|
111 |
+
--------
|
112 |
+
>>> from networkx.readwrite import json_graph
|
113 |
+
>>> G = nx.Graph([(1, 2)])
|
114 |
+
>>> data = json_graph.adjacency_data(G)
|
115 |
+
>>> H = json_graph.adjacency_graph(data)
|
116 |
+
|
117 |
+
Notes
|
118 |
+
-----
|
119 |
+
The default value of attrs will be changed in a future release of NetworkX.
|
120 |
+
|
121 |
+
See Also
|
122 |
+
--------
|
123 |
+
adjacency_graph, node_link_data, tree_data
|
124 |
+
"""
|
125 |
+
multigraph = data.get("multigraph", multigraph)
|
126 |
+
directed = data.get("directed", directed)
|
127 |
+
if multigraph:
|
128 |
+
graph = nx.MultiGraph()
|
129 |
+
else:
|
130 |
+
graph = nx.Graph()
|
131 |
+
if directed:
|
132 |
+
graph = graph.to_directed()
|
133 |
+
id_ = attrs["id"]
|
134 |
+
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
|
135 |
+
key = None if not multigraph else attrs["key"]
|
136 |
+
graph.graph = dict(data.get("graph", []))
|
137 |
+
mapping = []
|
138 |
+
for d in data["nodes"]:
|
139 |
+
node_data = d.copy()
|
140 |
+
node = node_data.pop(id_)
|
141 |
+
mapping.append(node)
|
142 |
+
graph.add_node(node)
|
143 |
+
graph.nodes[node].update(node_data)
|
144 |
+
for i, d in enumerate(data["adjacency"]):
|
145 |
+
source = mapping[i]
|
146 |
+
for tdata in d:
|
147 |
+
target_data = tdata.copy()
|
148 |
+
target = target_data.pop(id_)
|
149 |
+
if not multigraph:
|
150 |
+
graph.add_edge(source, target)
|
151 |
+
graph[source][target].update(target_data)
|
152 |
+
else:
|
153 |
+
ky = target_data.pop(key, None)
|
154 |
+
graph.add_edge(source, target, key=ky)
|
155 |
+
graph[source][target][ky].update(target_data)
|
156 |
+
return graph
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/cytoscape.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
__all__ = ["cytoscape_data", "cytoscape_graph"]
|
4 |
+
|
5 |
+
|
6 |
+
def cytoscape_data(G, name="name", ident="id"):
|
7 |
+
"""Returns data in Cytoscape JSON format (cyjs).
|
8 |
+
|
9 |
+
Parameters
|
10 |
+
----------
|
11 |
+
G : NetworkX Graph
|
12 |
+
The graph to convert to cytoscape format
|
13 |
+
name : string
|
14 |
+
A string which is mapped to the 'name' node element in cyjs format.
|
15 |
+
Must not have the same value as `ident`.
|
16 |
+
ident : string
|
17 |
+
A string which is mapped to the 'id' node element in cyjs format.
|
18 |
+
Must not have the same value as `name`.
|
19 |
+
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
data: dict
|
23 |
+
A dictionary with cyjs formatted data.
|
24 |
+
|
25 |
+
Raises
|
26 |
+
------
|
27 |
+
NetworkXError
|
28 |
+
If the values for `name` and `ident` are identical.
|
29 |
+
|
30 |
+
See Also
|
31 |
+
--------
|
32 |
+
cytoscape_graph: convert a dictionary in cyjs format to a graph
|
33 |
+
|
34 |
+
References
|
35 |
+
----------
|
36 |
+
.. [1] Cytoscape user's manual:
|
37 |
+
http://manual.cytoscape.org/en/stable/index.html
|
38 |
+
|
39 |
+
Examples
|
40 |
+
--------
|
41 |
+
>>> G = nx.path_graph(2)
|
42 |
+
>>> nx.cytoscape_data(G) # doctest: +SKIP
|
43 |
+
{'data': [],
|
44 |
+
'directed': False,
|
45 |
+
'multigraph': False,
|
46 |
+
'elements': {'nodes': [{'data': {'id': '0', 'value': 0, 'name': '0'}},
|
47 |
+
{'data': {'id': '1', 'value': 1, 'name': '1'}}],
|
48 |
+
'edges': [{'data': {'source': 0, 'target': 1}}]}}
|
49 |
+
"""
|
50 |
+
if name == ident:
|
51 |
+
raise nx.NetworkXError("name and ident must be different.")
|
52 |
+
|
53 |
+
jsondata = {"data": list(G.graph.items())}
|
54 |
+
jsondata["directed"] = G.is_directed()
|
55 |
+
jsondata["multigraph"] = G.is_multigraph()
|
56 |
+
jsondata["elements"] = {"nodes": [], "edges": []}
|
57 |
+
nodes = jsondata["elements"]["nodes"]
|
58 |
+
edges = jsondata["elements"]["edges"]
|
59 |
+
|
60 |
+
for i, j in G.nodes.items():
|
61 |
+
n = {"data": j.copy()}
|
62 |
+
n["data"]["id"] = j.get(ident) or str(i)
|
63 |
+
n["data"]["value"] = i
|
64 |
+
n["data"]["name"] = j.get(name) or str(i)
|
65 |
+
nodes.append(n)
|
66 |
+
|
67 |
+
if G.is_multigraph():
|
68 |
+
for e in G.edges(keys=True):
|
69 |
+
n = {"data": G.adj[e[0]][e[1]][e[2]].copy()}
|
70 |
+
n["data"]["source"] = e[0]
|
71 |
+
n["data"]["target"] = e[1]
|
72 |
+
n["data"]["key"] = e[2]
|
73 |
+
edges.append(n)
|
74 |
+
else:
|
75 |
+
for e in G.edges():
|
76 |
+
n = {"data": G.adj[e[0]][e[1]].copy()}
|
77 |
+
n["data"]["source"] = e[0]
|
78 |
+
n["data"]["target"] = e[1]
|
79 |
+
edges.append(n)
|
80 |
+
return jsondata
|
81 |
+
|
82 |
+
|
83 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
84 |
+
def cytoscape_graph(data, name="name", ident="id"):
|
85 |
+
"""
|
86 |
+
Create a NetworkX graph from a dictionary in cytoscape JSON format.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
data : dict
|
91 |
+
A dictionary of data conforming to cytoscape JSON format.
|
92 |
+
name : string
|
93 |
+
A string which is mapped to the 'name' node element in cyjs format.
|
94 |
+
Must not have the same value as `ident`.
|
95 |
+
ident : string
|
96 |
+
A string which is mapped to the 'id' node element in cyjs format.
|
97 |
+
Must not have the same value as `name`.
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
graph : a NetworkX graph instance
|
102 |
+
The `graph` can be an instance of `Graph`, `DiGraph`, `MultiGraph`, or
|
103 |
+
`MultiDiGraph` depending on the input data.
|
104 |
+
|
105 |
+
Raises
|
106 |
+
------
|
107 |
+
NetworkXError
|
108 |
+
If the `name` and `ident` attributes are identical.
|
109 |
+
|
110 |
+
See Also
|
111 |
+
--------
|
112 |
+
cytoscape_data: convert a NetworkX graph to a dict in cyjs format
|
113 |
+
|
114 |
+
References
|
115 |
+
----------
|
116 |
+
.. [1] Cytoscape user's manual:
|
117 |
+
http://manual.cytoscape.org/en/stable/index.html
|
118 |
+
|
119 |
+
Examples
|
120 |
+
--------
|
121 |
+
>>> data_dict = {
|
122 |
+
... "data": [],
|
123 |
+
... "directed": False,
|
124 |
+
... "multigraph": False,
|
125 |
+
... "elements": {
|
126 |
+
... "nodes": [
|
127 |
+
... {"data": {"id": "0", "value": 0, "name": "0"}},
|
128 |
+
... {"data": {"id": "1", "value": 1, "name": "1"}},
|
129 |
+
... ],
|
130 |
+
... "edges": [{"data": {"source": 0, "target": 1}}],
|
131 |
+
... },
|
132 |
+
... }
|
133 |
+
>>> G = nx.cytoscape_graph(data_dict)
|
134 |
+
>>> G.name
|
135 |
+
''
|
136 |
+
>>> G.nodes()
|
137 |
+
NodeView((0, 1))
|
138 |
+
>>> G.nodes(data=True)[0]
|
139 |
+
{'id': '0', 'value': 0, 'name': '0'}
|
140 |
+
>>> G.edges(data=True)
|
141 |
+
EdgeDataView([(0, 1, {'source': 0, 'target': 1})])
|
142 |
+
"""
|
143 |
+
if name == ident:
|
144 |
+
raise nx.NetworkXError("name and ident must be different.")
|
145 |
+
|
146 |
+
multigraph = data.get("multigraph")
|
147 |
+
directed = data.get("directed")
|
148 |
+
if multigraph:
|
149 |
+
graph = nx.MultiGraph()
|
150 |
+
else:
|
151 |
+
graph = nx.Graph()
|
152 |
+
if directed:
|
153 |
+
graph = graph.to_directed()
|
154 |
+
graph.graph = dict(data.get("data"))
|
155 |
+
for d in data["elements"]["nodes"]:
|
156 |
+
node_data = d["data"].copy()
|
157 |
+
node = d["data"]["value"]
|
158 |
+
|
159 |
+
if d["data"].get(name):
|
160 |
+
node_data[name] = d["data"].get(name)
|
161 |
+
if d["data"].get(ident):
|
162 |
+
node_data[ident] = d["data"].get(ident)
|
163 |
+
|
164 |
+
graph.add_node(node)
|
165 |
+
graph.nodes[node].update(node_data)
|
166 |
+
|
167 |
+
for d in data["elements"]["edges"]:
|
168 |
+
edge_data = d["data"].copy()
|
169 |
+
sour = d["data"]["source"]
|
170 |
+
targ = d["data"]["target"]
|
171 |
+
if multigraph:
|
172 |
+
key = d["data"].get("key", 0)
|
173 |
+
graph.add_edge(sour, targ, key=key)
|
174 |
+
graph.edges[sour, targ, key].update(edge_data)
|
175 |
+
else:
|
176 |
+
graph.add_edge(sour, targ)
|
177 |
+
graph.edges[sour, targ].update(edge_data)
|
178 |
+
return graph
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/node_link.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain, count
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
__all__ = ["node_link_data", "node_link_graph"]
|
6 |
+
|
7 |
+
|
8 |
+
_attrs = {
|
9 |
+
"source": "source",
|
10 |
+
"target": "target",
|
11 |
+
"name": "id",
|
12 |
+
"key": "key",
|
13 |
+
"link": "links",
|
14 |
+
}
|
15 |
+
|
16 |
+
|
17 |
+
def _to_tuple(x):
|
18 |
+
"""Converts lists to tuples, including nested lists.
|
19 |
+
|
20 |
+
All other non-list inputs are passed through unmodified. This function is
|
21 |
+
intended to be used to convert potentially nested lists from json files
|
22 |
+
into valid nodes.
|
23 |
+
|
24 |
+
Examples
|
25 |
+
--------
|
26 |
+
>>> _to_tuple([1, 2, [3, 4]])
|
27 |
+
(1, 2, (3, 4))
|
28 |
+
"""
|
29 |
+
if not isinstance(x, tuple | list):
|
30 |
+
return x
|
31 |
+
return tuple(map(_to_tuple, x))
|
32 |
+
|
33 |
+
|
34 |
+
def node_link_data(
|
35 |
+
G,
|
36 |
+
*,
|
37 |
+
source="source",
|
38 |
+
target="target",
|
39 |
+
name="id",
|
40 |
+
key="key",
|
41 |
+
link="links",
|
42 |
+
):
|
43 |
+
"""Returns data in node-link format that is suitable for JSON serialization
|
44 |
+
and use in JavaScript documents.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
G : NetworkX graph
|
49 |
+
source : string
|
50 |
+
A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
|
51 |
+
target : string
|
52 |
+
A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
|
53 |
+
name : string
|
54 |
+
A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
|
55 |
+
key : string
|
56 |
+
A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
|
57 |
+
link : string
|
58 |
+
A string that provides the 'link' attribute name for storing NetworkX-internal graph data.
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
data : dict
|
63 |
+
A dictionary with node-link formatted data.
|
64 |
+
|
65 |
+
Raises
|
66 |
+
------
|
67 |
+
NetworkXError
|
68 |
+
If the values of 'source', 'target' and 'key' are not unique.
|
69 |
+
|
70 |
+
Examples
|
71 |
+
--------
|
72 |
+
>>> G = nx.Graph([("A", "B")])
|
73 |
+
>>> data1 = nx.node_link_data(G)
|
74 |
+
>>> data1
|
75 |
+
{'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]}
|
76 |
+
|
77 |
+
To serialize with JSON
|
78 |
+
|
79 |
+
>>> import json
|
80 |
+
>>> s1 = json.dumps(data1)
|
81 |
+
>>> s1
|
82 |
+
'{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}'
|
83 |
+
|
84 |
+
A graph can also be serialized by passing `node_link_data` as an encoder function. The two methods are equivalent.
|
85 |
+
|
86 |
+
>>> s1 = json.dumps(G, default=nx.node_link_data)
|
87 |
+
>>> s1
|
88 |
+
'{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}'
|
89 |
+
|
90 |
+
The attribute names for storing NetworkX-internal graph data can
|
91 |
+
be specified as keyword options.
|
92 |
+
|
93 |
+
>>> H = nx.gn_graph(2)
|
94 |
+
>>> data2 = nx.node_link_data(H, link="edges", source="from", target="to")
|
95 |
+
>>> data2
|
96 |
+
{'directed': True, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 0}, {'id': 1}], 'edges': [{'from': 1, 'to': 0}]}
|
97 |
+
|
98 |
+
Notes
|
99 |
+
-----
|
100 |
+
Graph, node, and link attributes are stored in this format. Note that
|
101 |
+
attribute keys will be converted to strings in order to comply with JSON.
|
102 |
+
|
103 |
+
Attribute 'key' is only used for multigraphs.
|
104 |
+
|
105 |
+
To use `node_link_data` in conjunction with `node_link_graph`,
|
106 |
+
the keyword names for the attributes must match.
|
107 |
+
|
108 |
+
|
109 |
+
See Also
|
110 |
+
--------
|
111 |
+
node_link_graph, adjacency_data, tree_data
|
112 |
+
"""
|
113 |
+
multigraph = G.is_multigraph()
|
114 |
+
|
115 |
+
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
|
116 |
+
key = None if not multigraph else key
|
117 |
+
if len({source, target, key}) < 3:
|
118 |
+
raise nx.NetworkXError("Attribute names are not unique.")
|
119 |
+
data = {
|
120 |
+
"directed": G.is_directed(),
|
121 |
+
"multigraph": multigraph,
|
122 |
+
"graph": G.graph,
|
123 |
+
"nodes": [{**G.nodes[n], name: n} for n in G],
|
124 |
+
}
|
125 |
+
if multigraph:
|
126 |
+
data[link] = [
|
127 |
+
{**d, source: u, target: v, key: k}
|
128 |
+
for u, v, k, d in G.edges(keys=True, data=True)
|
129 |
+
]
|
130 |
+
else:
|
131 |
+
data[link] = [{**d, source: u, target: v} for u, v, d in G.edges(data=True)]
|
132 |
+
return data
|
133 |
+
|
134 |
+
|
135 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
136 |
+
def node_link_graph(
|
137 |
+
data,
|
138 |
+
directed=False,
|
139 |
+
multigraph=True,
|
140 |
+
*,
|
141 |
+
source="source",
|
142 |
+
target="target",
|
143 |
+
name="id",
|
144 |
+
key="key",
|
145 |
+
link="links",
|
146 |
+
):
|
147 |
+
"""Returns graph from node-link data format.
|
148 |
+
Useful for de-serialization from JSON.
|
149 |
+
|
150 |
+
Parameters
|
151 |
+
----------
|
152 |
+
data : dict
|
153 |
+
node-link formatted graph data
|
154 |
+
|
155 |
+
directed : bool
|
156 |
+
If True, and direction not specified in data, return a directed graph.
|
157 |
+
|
158 |
+
multigraph : bool
|
159 |
+
If True, and multigraph not specified in data, return a multigraph.
|
160 |
+
|
161 |
+
source : string
|
162 |
+
A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
|
163 |
+
target : string
|
164 |
+
A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
|
165 |
+
name : string
|
166 |
+
A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
|
167 |
+
key : string
|
168 |
+
A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
|
169 |
+
link : string
|
170 |
+
A string that provides the 'link' attribute name for storing NetworkX-internal graph data.
|
171 |
+
|
172 |
+
Returns
|
173 |
+
-------
|
174 |
+
G : NetworkX graph
|
175 |
+
A NetworkX graph object
|
176 |
+
|
177 |
+
Examples
|
178 |
+
--------
|
179 |
+
|
180 |
+
Create data in node-link format by converting a graph.
|
181 |
+
|
182 |
+
>>> G = nx.Graph([("A", "B")])
|
183 |
+
>>> data = nx.node_link_data(G)
|
184 |
+
>>> data
|
185 |
+
{'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]}
|
186 |
+
|
187 |
+
Revert data in node-link format to a graph.
|
188 |
+
|
189 |
+
>>> H = nx.node_link_graph(data)
|
190 |
+
>>> print(H.edges)
|
191 |
+
[('A', 'B')]
|
192 |
+
|
193 |
+
To serialize and deserialize a graph with JSON,
|
194 |
+
|
195 |
+
>>> import json
|
196 |
+
>>> d = json.dumps(node_link_data(G))
|
197 |
+
>>> H = node_link_graph(json.loads(d))
|
198 |
+
>>> print(G.edges, H.edges)
|
199 |
+
[('A', 'B')] [('A', 'B')]
|
200 |
+
|
201 |
+
|
202 |
+
Notes
|
203 |
+
-----
|
204 |
+
Attribute 'key' is only used for multigraphs.
|
205 |
+
|
206 |
+
To use `node_link_data` in conjunction with `node_link_graph`,
|
207 |
+
the keyword names for the attributes must match.
|
208 |
+
|
209 |
+
See Also
|
210 |
+
--------
|
211 |
+
node_link_data, adjacency_data, tree_data
|
212 |
+
"""
|
213 |
+
multigraph = data.get("multigraph", multigraph)
|
214 |
+
directed = data.get("directed", directed)
|
215 |
+
if multigraph:
|
216 |
+
graph = nx.MultiGraph()
|
217 |
+
else:
|
218 |
+
graph = nx.Graph()
|
219 |
+
if directed:
|
220 |
+
graph = graph.to_directed()
|
221 |
+
|
222 |
+
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
|
223 |
+
key = None if not multigraph else key
|
224 |
+
graph.graph = data.get("graph", {})
|
225 |
+
c = count()
|
226 |
+
for d in data["nodes"]:
|
227 |
+
node = _to_tuple(d.get(name, next(c)))
|
228 |
+
nodedata = {str(k): v for k, v in d.items() if k != name}
|
229 |
+
graph.add_node(node, **nodedata)
|
230 |
+
for d in data[link]:
|
231 |
+
src = tuple(d[source]) if isinstance(d[source], list) else d[source]
|
232 |
+
tgt = tuple(d[target]) if isinstance(d[target], list) else d[target]
|
233 |
+
if not multigraph:
|
234 |
+
edgedata = {str(k): v for k, v in d.items() if k != source and k != target}
|
235 |
+
graph.add_edge(src, tgt, **edgedata)
|
236 |
+
else:
|
237 |
+
ky = d.get(key, None)
|
238 |
+
edgedata = {
|
239 |
+
str(k): v
|
240 |
+
for k, v in d.items()
|
241 |
+
if k != source and k != target and k != key
|
242 |
+
}
|
243 |
+
graph.add_edge(src, tgt, ky, **edgedata)
|
244 |
+
return graph
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (208 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_adjacency.cpython-310.pyc
ADDED
Binary file (3.19 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_cytoscape.cpython-310.pyc
ADDED
Binary file (2.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_node_link.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/__pycache__/test_tree.cpython-310.pyc
ADDED
Binary file (1.83 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.readwrite.json_graph import adjacency_data, adjacency_graph
|
8 |
+
from networkx.utils import graphs_equal
|
9 |
+
|
10 |
+
|
11 |
+
class TestAdjacency:
|
12 |
+
def test_graph(self):
|
13 |
+
G = nx.path_graph(4)
|
14 |
+
H = adjacency_graph(adjacency_data(G))
|
15 |
+
assert graphs_equal(G, H)
|
16 |
+
|
17 |
+
def test_graph_attributes(self):
|
18 |
+
G = nx.path_graph(4)
|
19 |
+
G.add_node(1, color="red")
|
20 |
+
G.add_edge(1, 2, width=7)
|
21 |
+
G.graph["foo"] = "bar"
|
22 |
+
G.graph[1] = "one"
|
23 |
+
|
24 |
+
H = adjacency_graph(adjacency_data(G))
|
25 |
+
assert graphs_equal(G, H)
|
26 |
+
assert H.graph["foo"] == "bar"
|
27 |
+
assert H.nodes[1]["color"] == "red"
|
28 |
+
assert H[1][2]["width"] == 7
|
29 |
+
|
30 |
+
d = json.dumps(adjacency_data(G))
|
31 |
+
H = adjacency_graph(json.loads(d))
|
32 |
+
assert graphs_equal(G, H)
|
33 |
+
assert H.graph["foo"] == "bar"
|
34 |
+
assert H.graph[1] == "one"
|
35 |
+
assert H.nodes[1]["color"] == "red"
|
36 |
+
assert H[1][2]["width"] == 7
|
37 |
+
|
38 |
+
def test_digraph(self):
|
39 |
+
G = nx.DiGraph()
|
40 |
+
nx.add_path(G, [1, 2, 3])
|
41 |
+
H = adjacency_graph(adjacency_data(G))
|
42 |
+
assert H.is_directed()
|
43 |
+
assert graphs_equal(G, H)
|
44 |
+
|
45 |
+
def test_multidigraph(self):
|
46 |
+
G = nx.MultiDiGraph()
|
47 |
+
nx.add_path(G, [1, 2, 3])
|
48 |
+
H = adjacency_graph(adjacency_data(G))
|
49 |
+
assert H.is_directed()
|
50 |
+
assert H.is_multigraph()
|
51 |
+
assert graphs_equal(G, H)
|
52 |
+
|
53 |
+
def test_multigraph(self):
|
54 |
+
G = nx.MultiGraph()
|
55 |
+
G.add_edge(1, 2, key="first")
|
56 |
+
G.add_edge(1, 2, key="second", color="blue")
|
57 |
+
H = adjacency_graph(adjacency_data(G))
|
58 |
+
assert graphs_equal(G, H)
|
59 |
+
assert H[1][2]["second"]["color"] == "blue"
|
60 |
+
|
61 |
+
def test_input_data_is_not_modified_when_building_graph(self):
|
62 |
+
G = nx.path_graph(4)
|
63 |
+
input_data = adjacency_data(G)
|
64 |
+
orig_data = copy.deepcopy(input_data)
|
65 |
+
# Ensure input is unmodified by deserialisation
|
66 |
+
assert graphs_equal(G, adjacency_graph(input_data))
|
67 |
+
assert input_data == orig_data
|
68 |
+
|
69 |
+
def test_adjacency_form_json_serialisable(self):
|
70 |
+
G = nx.path_graph(4)
|
71 |
+
H = adjacency_graph(json.loads(json.dumps(adjacency_data(G))))
|
72 |
+
assert graphs_equal(G, H)
|
73 |
+
|
74 |
+
def test_exception(self):
|
75 |
+
with pytest.raises(nx.NetworkXError):
|
76 |
+
G = nx.MultiDiGraph()
|
77 |
+
attrs = {"id": "node", "key": "node"}
|
78 |
+
adjacency_data(G, attrs)
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.readwrite.json_graph import cytoscape_data, cytoscape_graph
|
8 |
+
|
9 |
+
|
10 |
+
def test_graph():
|
11 |
+
G = nx.path_graph(4)
|
12 |
+
H = cytoscape_graph(cytoscape_data(G))
|
13 |
+
assert nx.is_isomorphic(G, H)
|
14 |
+
|
15 |
+
|
16 |
+
def test_input_data_is_not_modified_when_building_graph():
|
17 |
+
G = nx.path_graph(4)
|
18 |
+
input_data = cytoscape_data(G)
|
19 |
+
orig_data = copy.deepcopy(input_data)
|
20 |
+
# Ensure input is unmodified by cytoscape_graph (gh-4173)
|
21 |
+
cytoscape_graph(input_data)
|
22 |
+
assert input_data == orig_data
|
23 |
+
|
24 |
+
|
25 |
+
def test_graph_attributes():
|
26 |
+
G = nx.path_graph(4)
|
27 |
+
G.add_node(1, color="red")
|
28 |
+
G.add_edge(1, 2, width=7)
|
29 |
+
G.graph["foo"] = "bar"
|
30 |
+
G.graph[1] = "one"
|
31 |
+
G.add_node(3, name="node", id="123")
|
32 |
+
|
33 |
+
H = cytoscape_graph(cytoscape_data(G))
|
34 |
+
assert H.graph["foo"] == "bar"
|
35 |
+
assert H.nodes[1]["color"] == "red"
|
36 |
+
assert H[1][2]["width"] == 7
|
37 |
+
assert H.nodes[3]["name"] == "node"
|
38 |
+
assert H.nodes[3]["id"] == "123"
|
39 |
+
|
40 |
+
d = json.dumps(cytoscape_data(G))
|
41 |
+
H = cytoscape_graph(json.loads(d))
|
42 |
+
assert H.graph["foo"] == "bar"
|
43 |
+
assert H.graph[1] == "one"
|
44 |
+
assert H.nodes[1]["color"] == "red"
|
45 |
+
assert H[1][2]["width"] == 7
|
46 |
+
assert H.nodes[3]["name"] == "node"
|
47 |
+
assert H.nodes[3]["id"] == "123"
|
48 |
+
|
49 |
+
|
50 |
+
def test_digraph():
|
51 |
+
G = nx.DiGraph()
|
52 |
+
nx.add_path(G, [1, 2, 3])
|
53 |
+
H = cytoscape_graph(cytoscape_data(G))
|
54 |
+
assert H.is_directed()
|
55 |
+
assert nx.is_isomorphic(G, H)
|
56 |
+
|
57 |
+
|
58 |
+
def test_multidigraph():
|
59 |
+
G = nx.MultiDiGraph()
|
60 |
+
nx.add_path(G, [1, 2, 3])
|
61 |
+
H = cytoscape_graph(cytoscape_data(G))
|
62 |
+
assert H.is_directed()
|
63 |
+
assert H.is_multigraph()
|
64 |
+
|
65 |
+
|
66 |
+
def test_multigraph():
|
67 |
+
G = nx.MultiGraph()
|
68 |
+
G.add_edge(1, 2, key="first")
|
69 |
+
G.add_edge(1, 2, key="second", color="blue")
|
70 |
+
H = cytoscape_graph(cytoscape_data(G))
|
71 |
+
assert nx.is_isomorphic(G, H)
|
72 |
+
assert H[1][2]["second"]["color"] == "blue"
|
73 |
+
|
74 |
+
|
75 |
+
def test_exception():
|
76 |
+
with pytest.raises(nx.NetworkXError):
|
77 |
+
G = nx.MultiDiGraph()
|
78 |
+
cytoscape_data(G, name="foo", ident="foo")
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.readwrite.json_graph import node_link_data, node_link_graph
|
7 |
+
|
8 |
+
|
9 |
+
class TestNodeLink:
|
10 |
+
# TODO: To be removed when signature change complete
|
11 |
+
def test_custom_attrs_dep(self):
|
12 |
+
G = nx.path_graph(4)
|
13 |
+
G.add_node(1, color="red")
|
14 |
+
G.add_edge(1, 2, width=7)
|
15 |
+
G.graph[1] = "one"
|
16 |
+
G.graph["foo"] = "bar"
|
17 |
+
|
18 |
+
attrs = {
|
19 |
+
"source": "c_source",
|
20 |
+
"target": "c_target",
|
21 |
+
"name": "c_id",
|
22 |
+
"key": "c_key",
|
23 |
+
"link": "c_links",
|
24 |
+
}
|
25 |
+
|
26 |
+
H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
|
27 |
+
assert nx.is_isomorphic(G, H)
|
28 |
+
assert H.graph["foo"] == "bar"
|
29 |
+
assert H.nodes[1]["color"] == "red"
|
30 |
+
assert H[1][2]["width"] == 7
|
31 |
+
|
32 |
+
# provide only a partial dictionary of keywords.
|
33 |
+
# This is similar to an example in the doc string
|
34 |
+
attrs = {
|
35 |
+
"link": "c_links",
|
36 |
+
"source": "c_source",
|
37 |
+
"target": "c_target",
|
38 |
+
}
|
39 |
+
H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
|
40 |
+
assert nx.is_isomorphic(G, H)
|
41 |
+
assert H.graph["foo"] == "bar"
|
42 |
+
assert H.nodes[1]["color"] == "red"
|
43 |
+
assert H[1][2]["width"] == 7
|
44 |
+
|
45 |
+
def test_exception_dep(self):
|
46 |
+
with pytest.raises(nx.NetworkXError):
|
47 |
+
G = nx.MultiDiGraph()
|
48 |
+
node_link_data(G, name="node", source="node", target="node", key="node")
|
49 |
+
|
50 |
+
def test_graph(self):
|
51 |
+
G = nx.path_graph(4)
|
52 |
+
H = node_link_graph(node_link_data(G))
|
53 |
+
assert nx.is_isomorphic(G, H)
|
54 |
+
|
55 |
+
def test_graph_attributes(self):
|
56 |
+
G = nx.path_graph(4)
|
57 |
+
G.add_node(1, color="red")
|
58 |
+
G.add_edge(1, 2, width=7)
|
59 |
+
G.graph[1] = "one"
|
60 |
+
G.graph["foo"] = "bar"
|
61 |
+
|
62 |
+
H = node_link_graph(node_link_data(G))
|
63 |
+
assert H.graph["foo"] == "bar"
|
64 |
+
assert H.nodes[1]["color"] == "red"
|
65 |
+
assert H[1][2]["width"] == 7
|
66 |
+
|
67 |
+
d = json.dumps(node_link_data(G))
|
68 |
+
H = node_link_graph(json.loads(d))
|
69 |
+
assert H.graph["foo"] == "bar"
|
70 |
+
assert H.graph["1"] == "one"
|
71 |
+
assert H.nodes[1]["color"] == "red"
|
72 |
+
assert H[1][2]["width"] == 7
|
73 |
+
|
74 |
+
def test_digraph(self):
|
75 |
+
G = nx.DiGraph()
|
76 |
+
H = node_link_graph(node_link_data(G))
|
77 |
+
assert H.is_directed()
|
78 |
+
|
79 |
+
def test_multigraph(self):
|
80 |
+
G = nx.MultiGraph()
|
81 |
+
G.add_edge(1, 2, key="first")
|
82 |
+
G.add_edge(1, 2, key="second", color="blue")
|
83 |
+
H = node_link_graph(node_link_data(G))
|
84 |
+
assert nx.is_isomorphic(G, H)
|
85 |
+
assert H[1][2]["second"]["color"] == "blue"
|
86 |
+
|
87 |
+
def test_graph_with_tuple_nodes(self):
|
88 |
+
G = nx.Graph()
|
89 |
+
G.add_edge((0, 0), (1, 0), color=[255, 255, 0])
|
90 |
+
d = node_link_data(G)
|
91 |
+
dumped_d = json.dumps(d)
|
92 |
+
dd = json.loads(dumped_d)
|
93 |
+
H = node_link_graph(dd)
|
94 |
+
assert H.nodes[(0, 0)] == G.nodes[(0, 0)]
|
95 |
+
assert H[(0, 0)][(1, 0)]["color"] == [255, 255, 0]
|
96 |
+
|
97 |
+
def test_unicode_keys(self):
|
98 |
+
q = "qualité"
|
99 |
+
G = nx.Graph()
|
100 |
+
G.add_node(1, **{q: q})
|
101 |
+
s = node_link_data(G)
|
102 |
+
output = json.dumps(s, ensure_ascii=False)
|
103 |
+
data = json.loads(output)
|
104 |
+
H = node_link_graph(data)
|
105 |
+
assert H.nodes[1][q] == q
|
106 |
+
|
107 |
+
def test_exception(self):
|
108 |
+
with pytest.raises(nx.NetworkXError):
|
109 |
+
G = nx.MultiDiGraph()
|
110 |
+
attrs = {"name": "node", "source": "node", "target": "node", "key": "node"}
|
111 |
+
node_link_data(G, **attrs)
|
112 |
+
|
113 |
+
def test_string_ids(self):
|
114 |
+
q = "qualité"
|
115 |
+
G = nx.DiGraph()
|
116 |
+
G.add_node("A")
|
117 |
+
G.add_node(q)
|
118 |
+
G.add_edge("A", q)
|
119 |
+
data = node_link_data(G)
|
120 |
+
assert data["links"][0]["source"] == "A"
|
121 |
+
assert data["links"][0]["target"] == q
|
122 |
+
H = node_link_graph(data)
|
123 |
+
assert nx.is_isomorphic(G, H)
|
124 |
+
|
125 |
+
def test_custom_attrs(self):
|
126 |
+
G = nx.path_graph(4)
|
127 |
+
G.add_node(1, color="red")
|
128 |
+
G.add_edge(1, 2, width=7)
|
129 |
+
G.graph[1] = "one"
|
130 |
+
G.graph["foo"] = "bar"
|
131 |
+
|
132 |
+
attrs = {
|
133 |
+
"source": "c_source",
|
134 |
+
"target": "c_target",
|
135 |
+
"name": "c_id",
|
136 |
+
"key": "c_key",
|
137 |
+
"link": "c_links",
|
138 |
+
}
|
139 |
+
|
140 |
+
H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
|
141 |
+
assert nx.is_isomorphic(G, H)
|
142 |
+
assert H.graph["foo"] == "bar"
|
143 |
+
assert H.nodes[1]["color"] == "red"
|
144 |
+
assert H[1][2]["width"] == 7
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tests/test_tree.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.readwrite.json_graph import tree_data, tree_graph
|
7 |
+
|
8 |
+
|
9 |
+
def test_graph():
|
10 |
+
G = nx.DiGraph()
|
11 |
+
G.add_nodes_from([1, 2, 3], color="red")
|
12 |
+
G.add_edge(1, 2, foo=7)
|
13 |
+
G.add_edge(1, 3, foo=10)
|
14 |
+
G.add_edge(3, 4, foo=10)
|
15 |
+
H = tree_graph(tree_data(G, 1))
|
16 |
+
assert nx.is_isomorphic(G, H)
|
17 |
+
|
18 |
+
|
19 |
+
def test_graph_attributes():
|
20 |
+
G = nx.DiGraph()
|
21 |
+
G.add_nodes_from([1, 2, 3], color="red")
|
22 |
+
G.add_edge(1, 2, foo=7)
|
23 |
+
G.add_edge(1, 3, foo=10)
|
24 |
+
G.add_edge(3, 4, foo=10)
|
25 |
+
H = tree_graph(tree_data(G, 1))
|
26 |
+
assert H.nodes[1]["color"] == "red"
|
27 |
+
|
28 |
+
d = json.dumps(tree_data(G, 1))
|
29 |
+
H = tree_graph(json.loads(d))
|
30 |
+
assert H.nodes[1]["color"] == "red"
|
31 |
+
|
32 |
+
|
33 |
+
def test_exceptions():
|
34 |
+
with pytest.raises(TypeError, match="is not a tree."):
|
35 |
+
G = nx.complete_graph(3)
|
36 |
+
tree_data(G, 0)
|
37 |
+
with pytest.raises(TypeError, match="is not directed."):
|
38 |
+
G = nx.path_graph(3)
|
39 |
+
tree_data(G, 0)
|
40 |
+
with pytest.raises(TypeError, match="is not weakly connected."):
|
41 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
42 |
+
G.add_edge(2, 0)
|
43 |
+
G.add_node(3)
|
44 |
+
tree_data(G, 0)
|
45 |
+
with pytest.raises(nx.NetworkXError, match="must be different."):
|
46 |
+
G = nx.MultiDiGraph()
|
47 |
+
G.add_node(0)
|
48 |
+
tree_data(G, 0, ident="node", children="node")
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/json_graph/tree.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
__all__ = ["tree_data", "tree_graph"]
|
6 |
+
|
7 |
+
|
8 |
+
def tree_data(G, root, ident="id", children="children"):
|
9 |
+
"""Returns data in tree format that is suitable for JSON serialization
|
10 |
+
and use in JavaScript documents.
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
G : NetworkX graph
|
15 |
+
G must be an oriented tree
|
16 |
+
|
17 |
+
root : node
|
18 |
+
The root of the tree
|
19 |
+
|
20 |
+
ident : string
|
21 |
+
Attribute name for storing NetworkX-internal graph data. `ident` must
|
22 |
+
have a different value than `children`. The default is 'id'.
|
23 |
+
|
24 |
+
children : string
|
25 |
+
Attribute name for storing NetworkX-internal graph data. `children`
|
26 |
+
must have a different value than `ident`. The default is 'children'.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
data : dict
|
31 |
+
A dictionary with node-link formatted data.
|
32 |
+
|
33 |
+
Raises
|
34 |
+
------
|
35 |
+
NetworkXError
|
36 |
+
If `children` and `ident` attributes are identical.
|
37 |
+
|
38 |
+
Examples
|
39 |
+
--------
|
40 |
+
>>> from networkx.readwrite import json_graph
|
41 |
+
>>> G = nx.DiGraph([(1, 2)])
|
42 |
+
>>> data = json_graph.tree_data(G, root=1)
|
43 |
+
|
44 |
+
To serialize with json
|
45 |
+
|
46 |
+
>>> import json
|
47 |
+
>>> s = json.dumps(data)
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
Node attributes are stored in this format but keys
|
52 |
+
for attributes must be strings if you want to serialize with JSON.
|
53 |
+
|
54 |
+
Graph and edge attributes are not stored.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
--------
|
58 |
+
tree_graph, node_link_data, adjacency_data
|
59 |
+
"""
|
60 |
+
if G.number_of_nodes() != G.number_of_edges() + 1:
|
61 |
+
raise TypeError("G is not a tree.")
|
62 |
+
if not G.is_directed():
|
63 |
+
raise TypeError("G is not directed.")
|
64 |
+
if not nx.is_weakly_connected(G):
|
65 |
+
raise TypeError("G is not weakly connected.")
|
66 |
+
|
67 |
+
if ident == children:
|
68 |
+
raise nx.NetworkXError("The values for `id` and `children` must be different.")
|
69 |
+
|
70 |
+
def add_children(n, G):
|
71 |
+
nbrs = G[n]
|
72 |
+
if len(nbrs) == 0:
|
73 |
+
return []
|
74 |
+
children_ = []
|
75 |
+
for child in nbrs:
|
76 |
+
d = {**G.nodes[child], ident: child}
|
77 |
+
c = add_children(child, G)
|
78 |
+
if c:
|
79 |
+
d[children] = c
|
80 |
+
children_.append(d)
|
81 |
+
return children_
|
82 |
+
|
83 |
+
return {**G.nodes[root], ident: root, children: add_children(root, G)}
|
84 |
+
|
85 |
+
|
86 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
87 |
+
def tree_graph(data, ident="id", children="children"):
|
88 |
+
"""Returns graph from tree data format.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
data : dict
|
93 |
+
Tree formatted graph data
|
94 |
+
|
95 |
+
ident : string
|
96 |
+
Attribute name for storing NetworkX-internal graph data. `ident` must
|
97 |
+
have a different value than `children`. The default is 'id'.
|
98 |
+
|
99 |
+
children : string
|
100 |
+
Attribute name for storing NetworkX-internal graph data. `children`
|
101 |
+
must have a different value than `ident`. The default is 'children'.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
G : NetworkX DiGraph
|
106 |
+
|
107 |
+
Examples
|
108 |
+
--------
|
109 |
+
>>> from networkx.readwrite import json_graph
|
110 |
+
>>> G = nx.DiGraph([(1, 2)])
|
111 |
+
>>> data = json_graph.tree_data(G, root=1)
|
112 |
+
>>> H = json_graph.tree_graph(data)
|
113 |
+
|
114 |
+
See Also
|
115 |
+
--------
|
116 |
+
tree_data, node_link_data, adjacency_data
|
117 |
+
"""
|
118 |
+
graph = nx.DiGraph()
|
119 |
+
|
120 |
+
def add_children(parent, children_):
|
121 |
+
for data in children_:
|
122 |
+
child = data[ident]
|
123 |
+
graph.add_edge(parent, child)
|
124 |
+
grandchildren = data.get(children, [])
|
125 |
+
if grandchildren:
|
126 |
+
add_children(child, grandchildren)
|
127 |
+
nodedata = {
|
128 |
+
str(k): v for k, v in data.items() if k != ident and k != children
|
129 |
+
}
|
130 |
+
graph.add_node(child, **nodedata)
|
131 |
+
|
132 |
+
root = data[ident]
|
133 |
+
children_ = data.get(children, [])
|
134 |
+
nodedata = {str(k): v for k, v in data.items() if k != ident and k != children}
|
135 |
+
graph.add_node(root, **nodedata)
|
136 |
+
add_children(root, children_)
|
137 |
+
return graph
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/leda.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Read graphs in LEDA format.
|
3 |
+
|
4 |
+
LEDA is a C++ class library for efficient data types and algorithms.
|
5 |
+
|
6 |
+
Format
|
7 |
+
------
|
8 |
+
See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
|
9 |
+
|
10 |
+
"""
|
11 |
+
# Original author: D. Eppstein, UC Irvine, August 12, 2003.
|
12 |
+
# The original code at http://www.ics.uci.edu/~eppstein/PADS/ is public domain.
|
13 |
+
|
14 |
+
__all__ = ["read_leda", "parse_leda"]
|
15 |
+
|
16 |
+
import networkx as nx
|
17 |
+
from networkx.exception import NetworkXError
|
18 |
+
from networkx.utils import open_file
|
19 |
+
|
20 |
+
|
21 |
+
@open_file(0, mode="rb")
|
22 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
23 |
+
def read_leda(path, encoding="UTF-8"):
|
24 |
+
"""Read graph in LEDA format from path.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
path : file or string
|
29 |
+
File or filename to read. Filenames ending in .gz or .bz2 will be
|
30 |
+
uncompressed.
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
G : NetworkX graph
|
35 |
+
|
36 |
+
Examples
|
37 |
+
--------
|
38 |
+
G=nx.read_leda('file.leda')
|
39 |
+
|
40 |
+
References
|
41 |
+
----------
|
42 |
+
.. [1] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
|
43 |
+
"""
|
44 |
+
lines = (line.decode(encoding) for line in path)
|
45 |
+
G = parse_leda(lines)
|
46 |
+
return G
|
47 |
+
|
48 |
+
|
49 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
50 |
+
def parse_leda(lines):
|
51 |
+
"""Read graph in LEDA format from string or iterable.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
lines : string or iterable
|
56 |
+
Data in LEDA format.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
G : NetworkX graph
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
G=nx.parse_leda(string)
|
65 |
+
|
66 |
+
References
|
67 |
+
----------
|
68 |
+
.. [1] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
|
69 |
+
"""
|
70 |
+
if isinstance(lines, str):
|
71 |
+
lines = iter(lines.split("\n"))
|
72 |
+
lines = iter(
|
73 |
+
[
|
74 |
+
line.rstrip("\n")
|
75 |
+
for line in lines
|
76 |
+
if not (line.startswith(("#", "\n")) or line == "")
|
77 |
+
]
|
78 |
+
)
|
79 |
+
for i in range(3):
|
80 |
+
next(lines)
|
81 |
+
# Graph
|
82 |
+
du = int(next(lines)) # -1=directed, -2=undirected
|
83 |
+
if du == -1:
|
84 |
+
G = nx.DiGraph()
|
85 |
+
else:
|
86 |
+
G = nx.Graph()
|
87 |
+
|
88 |
+
# Nodes
|
89 |
+
n = int(next(lines)) # number of nodes
|
90 |
+
node = {}
|
91 |
+
for i in range(1, n + 1): # LEDA counts from 1 to n
|
92 |
+
symbol = next(lines).rstrip().strip("|{}| ")
|
93 |
+
if symbol == "":
|
94 |
+
symbol = str(i) # use int if no label - could be trouble
|
95 |
+
node[i] = symbol
|
96 |
+
|
97 |
+
G.add_nodes_from([s for i, s in node.items()])
|
98 |
+
|
99 |
+
# Edges
|
100 |
+
m = int(next(lines)) # number of edges
|
101 |
+
for i in range(m):
|
102 |
+
try:
|
103 |
+
s, t, reversal, label = next(lines).split()
|
104 |
+
except BaseException as err:
|
105 |
+
raise NetworkXError(f"Too few fields in LEDA.GRAPH edge {i+1}") from err
|
106 |
+
# BEWARE: no handling of reversal edges
|
107 |
+
G.add_edge(node[int(s)], node[int(t)], label=label[2:-2])
|
108 |
+
return G
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/multiline_adjlist.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
*************************
|
3 |
+
Multi-line Adjacency List
|
4 |
+
*************************
|
5 |
+
Read and write NetworkX graphs as multi-line adjacency lists.
|
6 |
+
|
7 |
+
The multi-line adjacency list format is useful for graphs with
|
8 |
+
nodes that can be meaningfully represented as strings. With this format
|
9 |
+
simple edge data can be stored but node or graph data is not.
|
10 |
+
|
11 |
+
Format
|
12 |
+
------
|
13 |
+
The first label in a line is the source node label followed by the node degree
|
14 |
+
d. The next d lines are target node labels and optional edge data.
|
15 |
+
That pattern repeats for all nodes in the graph.
|
16 |
+
|
17 |
+
The graph with edges a-b, a-c, d-e can be represented as the following
|
18 |
+
adjacency list (anything following the # in a line is a comment)::
|
19 |
+
|
20 |
+
# example.multiline-adjlist
|
21 |
+
a 2
|
22 |
+
b
|
23 |
+
c
|
24 |
+
d 1
|
25 |
+
e
|
26 |
+
"""
|
27 |
+
|
28 |
+
__all__ = [
|
29 |
+
"generate_multiline_adjlist",
|
30 |
+
"write_multiline_adjlist",
|
31 |
+
"parse_multiline_adjlist",
|
32 |
+
"read_multiline_adjlist",
|
33 |
+
]
|
34 |
+
|
35 |
+
import networkx as nx
|
36 |
+
from networkx.utils import open_file
|
37 |
+
|
38 |
+
|
39 |
+
def generate_multiline_adjlist(G, delimiter=" "):
|
40 |
+
"""Generate a single line of the graph G in multiline adjacency list format.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
G : NetworkX graph
|
45 |
+
|
46 |
+
delimiter : string, optional
|
47 |
+
Separator for node labels
|
48 |
+
|
49 |
+
Returns
|
50 |
+
-------
|
51 |
+
lines : string
|
52 |
+
Lines of data in multiline adjlist format.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
>>> G = nx.lollipop_graph(4, 3)
|
57 |
+
>>> for line in nx.generate_multiline_adjlist(G):
|
58 |
+
... print(line)
|
59 |
+
0 3
|
60 |
+
1 {}
|
61 |
+
2 {}
|
62 |
+
3 {}
|
63 |
+
1 2
|
64 |
+
2 {}
|
65 |
+
3 {}
|
66 |
+
2 1
|
67 |
+
3 {}
|
68 |
+
3 1
|
69 |
+
4 {}
|
70 |
+
4 1
|
71 |
+
5 {}
|
72 |
+
5 1
|
73 |
+
6 {}
|
74 |
+
6 0
|
75 |
+
|
76 |
+
See Also
|
77 |
+
--------
|
78 |
+
write_multiline_adjlist, read_multiline_adjlist
|
79 |
+
"""
|
80 |
+
if G.is_directed():
|
81 |
+
if G.is_multigraph():
|
82 |
+
for s, nbrs in G.adjacency():
|
83 |
+
nbr_edges = [
|
84 |
+
(u, data)
|
85 |
+
for u, datadict in nbrs.items()
|
86 |
+
for key, data in datadict.items()
|
87 |
+
]
|
88 |
+
deg = len(nbr_edges)
|
89 |
+
yield str(s) + delimiter + str(deg)
|
90 |
+
for u, d in nbr_edges:
|
91 |
+
if d is None:
|
92 |
+
yield str(u)
|
93 |
+
else:
|
94 |
+
yield str(u) + delimiter + str(d)
|
95 |
+
else: # directed single edges
|
96 |
+
for s, nbrs in G.adjacency():
|
97 |
+
deg = len(nbrs)
|
98 |
+
yield str(s) + delimiter + str(deg)
|
99 |
+
for u, d in nbrs.items():
|
100 |
+
if d is None:
|
101 |
+
yield str(u)
|
102 |
+
else:
|
103 |
+
yield str(u) + delimiter + str(d)
|
104 |
+
else: # undirected
|
105 |
+
if G.is_multigraph():
|
106 |
+
seen = set() # helper dict used to avoid duplicate edges
|
107 |
+
for s, nbrs in G.adjacency():
|
108 |
+
nbr_edges = [
|
109 |
+
(u, data)
|
110 |
+
for u, datadict in nbrs.items()
|
111 |
+
if u not in seen
|
112 |
+
for key, data in datadict.items()
|
113 |
+
]
|
114 |
+
deg = len(nbr_edges)
|
115 |
+
yield str(s) + delimiter + str(deg)
|
116 |
+
for u, d in nbr_edges:
|
117 |
+
if d is None:
|
118 |
+
yield str(u)
|
119 |
+
else:
|
120 |
+
yield str(u) + delimiter + str(d)
|
121 |
+
seen.add(s)
|
122 |
+
else: # undirected single edges
|
123 |
+
seen = set() # helper dict used to avoid duplicate edges
|
124 |
+
for s, nbrs in G.adjacency():
|
125 |
+
nbr_edges = [(u, d) for u, d in nbrs.items() if u not in seen]
|
126 |
+
deg = len(nbr_edges)
|
127 |
+
yield str(s) + delimiter + str(deg)
|
128 |
+
for u, d in nbr_edges:
|
129 |
+
if d is None:
|
130 |
+
yield str(u)
|
131 |
+
else:
|
132 |
+
yield str(u) + delimiter + str(d)
|
133 |
+
seen.add(s)
|
134 |
+
|
135 |
+
|
136 |
+
@open_file(1, mode="wb")
|
137 |
+
def write_multiline_adjlist(G, path, delimiter=" ", comments="#", encoding="utf-8"):
|
138 |
+
"""Write the graph G in multiline adjacency list format to path
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
G : NetworkX graph
|
143 |
+
|
144 |
+
path : string or file
|
145 |
+
Filename or file handle to write to.
|
146 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
147 |
+
|
148 |
+
comments : string, optional
|
149 |
+
Marker for comment lines
|
150 |
+
|
151 |
+
delimiter : string, optional
|
152 |
+
Separator for node labels
|
153 |
+
|
154 |
+
encoding : string, optional
|
155 |
+
Text encoding.
|
156 |
+
|
157 |
+
Examples
|
158 |
+
--------
|
159 |
+
>>> G = nx.path_graph(4)
|
160 |
+
>>> nx.write_multiline_adjlist(G, "test.adjlist")
|
161 |
+
|
162 |
+
The path can be a file handle or a string with the name of the file. If a
|
163 |
+
file handle is provided, it has to be opened in 'wb' mode.
|
164 |
+
|
165 |
+
>>> fh = open("test.adjlist", "wb")
|
166 |
+
>>> nx.write_multiline_adjlist(G, fh)
|
167 |
+
|
168 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
169 |
+
|
170 |
+
>>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
|
171 |
+
|
172 |
+
See Also
|
173 |
+
--------
|
174 |
+
read_multiline_adjlist
|
175 |
+
"""
|
176 |
+
import sys
|
177 |
+
import time
|
178 |
+
|
179 |
+
pargs = comments + " ".join(sys.argv)
|
180 |
+
header = (
|
181 |
+
f"{pargs}\n"
|
182 |
+
+ comments
|
183 |
+
+ f" GMT {time.asctime(time.gmtime())}\n"
|
184 |
+
+ comments
|
185 |
+
+ f" {G.name}\n"
|
186 |
+
)
|
187 |
+
path.write(header.encode(encoding))
|
188 |
+
|
189 |
+
for multiline in generate_multiline_adjlist(G, delimiter):
|
190 |
+
multiline += "\n"
|
191 |
+
path.write(multiline.encode(encoding))
|
192 |
+
|
193 |
+
|
194 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
195 |
+
def parse_multiline_adjlist(
|
196 |
+
lines, comments="#", delimiter=None, create_using=None, nodetype=None, edgetype=None
|
197 |
+
):
|
198 |
+
"""Parse lines of a multiline adjacency list representation of a graph.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
----------
|
202 |
+
lines : list or iterator of strings
|
203 |
+
Input data in multiline adjlist format
|
204 |
+
|
205 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
206 |
+
Graph type to create. If graph instance, then cleared before populated.
|
207 |
+
|
208 |
+
nodetype : Python type, optional
|
209 |
+
Convert nodes to this type.
|
210 |
+
|
211 |
+
edgetype : Python type, optional
|
212 |
+
Convert edges to this type.
|
213 |
+
|
214 |
+
comments : string, optional
|
215 |
+
Marker for comment lines
|
216 |
+
|
217 |
+
delimiter : string, optional
|
218 |
+
Separator for node labels. The default is whitespace.
|
219 |
+
|
220 |
+
Returns
|
221 |
+
-------
|
222 |
+
G: NetworkX graph
|
223 |
+
The graph corresponding to the lines in multiline adjacency list format.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
--------
|
227 |
+
>>> lines = [
|
228 |
+
... "1 2",
|
229 |
+
... "2 {'weight':3, 'name': 'Frodo'}",
|
230 |
+
... "3 {}",
|
231 |
+
... "2 1",
|
232 |
+
... "5 {'weight':6, 'name': 'Saruman'}",
|
233 |
+
... ]
|
234 |
+
>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype=int)
|
235 |
+
>>> list(G)
|
236 |
+
[1, 2, 3, 5]
|
237 |
+
|
238 |
+
"""
|
239 |
+
from ast import literal_eval
|
240 |
+
|
241 |
+
G = nx.empty_graph(0, create_using)
|
242 |
+
for line in lines:
|
243 |
+
p = line.find(comments)
|
244 |
+
if p >= 0:
|
245 |
+
line = line[:p]
|
246 |
+
if not line:
|
247 |
+
continue
|
248 |
+
try:
|
249 |
+
(u, deg) = line.strip().split(delimiter)
|
250 |
+
deg = int(deg)
|
251 |
+
except BaseException as err:
|
252 |
+
raise TypeError(f"Failed to read node and degree on line ({line})") from err
|
253 |
+
if nodetype is not None:
|
254 |
+
try:
|
255 |
+
u = nodetype(u)
|
256 |
+
except BaseException as err:
|
257 |
+
raise TypeError(
|
258 |
+
f"Failed to convert node ({u}) to type {nodetype}"
|
259 |
+
) from err
|
260 |
+
G.add_node(u)
|
261 |
+
for i in range(deg):
|
262 |
+
while True:
|
263 |
+
try:
|
264 |
+
line = next(lines)
|
265 |
+
except StopIteration as err:
|
266 |
+
msg = f"Failed to find neighbor for node ({u})"
|
267 |
+
raise TypeError(msg) from err
|
268 |
+
p = line.find(comments)
|
269 |
+
if p >= 0:
|
270 |
+
line = line[:p]
|
271 |
+
if line:
|
272 |
+
break
|
273 |
+
vlist = line.strip().split(delimiter)
|
274 |
+
numb = len(vlist)
|
275 |
+
if numb < 1:
|
276 |
+
continue # isolated node
|
277 |
+
v = vlist.pop(0)
|
278 |
+
data = "".join(vlist)
|
279 |
+
if nodetype is not None:
|
280 |
+
try:
|
281 |
+
v = nodetype(v)
|
282 |
+
except BaseException as err:
|
283 |
+
raise TypeError(
|
284 |
+
f"Failed to convert node ({v}) to type {nodetype}"
|
285 |
+
) from err
|
286 |
+
if edgetype is not None:
|
287 |
+
try:
|
288 |
+
edgedata = {"weight": edgetype(data)}
|
289 |
+
except BaseException as err:
|
290 |
+
raise TypeError(
|
291 |
+
f"Failed to convert edge data ({data}) to type {edgetype}"
|
292 |
+
) from err
|
293 |
+
else:
|
294 |
+
try: # try to evaluate
|
295 |
+
edgedata = literal_eval(data)
|
296 |
+
except:
|
297 |
+
edgedata = {}
|
298 |
+
G.add_edge(u, v, **edgedata)
|
299 |
+
|
300 |
+
return G
|
301 |
+
|
302 |
+
|
303 |
+
@open_file(0, mode="rb")
|
304 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
305 |
+
def read_multiline_adjlist(
|
306 |
+
path,
|
307 |
+
comments="#",
|
308 |
+
delimiter=None,
|
309 |
+
create_using=None,
|
310 |
+
nodetype=None,
|
311 |
+
edgetype=None,
|
312 |
+
encoding="utf-8",
|
313 |
+
):
|
314 |
+
"""Read graph in multi-line adjacency list format from path.
|
315 |
+
|
316 |
+
Parameters
|
317 |
+
----------
|
318 |
+
path : string or file
|
319 |
+
Filename or file handle to read.
|
320 |
+
Filenames ending in .gz or .bz2 will be uncompressed.
|
321 |
+
|
322 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
323 |
+
Graph type to create. If graph instance, then cleared before populated.
|
324 |
+
|
325 |
+
nodetype : Python type, optional
|
326 |
+
Convert nodes to this type.
|
327 |
+
|
328 |
+
edgetype : Python type, optional
|
329 |
+
Convert edge data to this type.
|
330 |
+
|
331 |
+
comments : string, optional
|
332 |
+
Marker for comment lines
|
333 |
+
|
334 |
+
delimiter : string, optional
|
335 |
+
Separator for node labels. The default is whitespace.
|
336 |
+
|
337 |
+
Returns
|
338 |
+
-------
|
339 |
+
G: NetworkX graph
|
340 |
+
|
341 |
+
Examples
|
342 |
+
--------
|
343 |
+
>>> G = nx.path_graph(4)
|
344 |
+
>>> nx.write_multiline_adjlist(G, "test.adjlist")
|
345 |
+
>>> G = nx.read_multiline_adjlist("test.adjlist")
|
346 |
+
|
347 |
+
The path can be a file or a string with the name of the file. If a
|
348 |
+
file s provided, it has to be opened in 'rb' mode.
|
349 |
+
|
350 |
+
>>> fh = open("test.adjlist", "rb")
|
351 |
+
>>> G = nx.read_multiline_adjlist(fh)
|
352 |
+
|
353 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
354 |
+
|
355 |
+
>>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
|
356 |
+
>>> G = nx.read_multiline_adjlist("test.adjlist.gz")
|
357 |
+
|
358 |
+
The optional nodetype is a function to convert node strings to nodetype.
|
359 |
+
|
360 |
+
For example
|
361 |
+
|
362 |
+
>>> G = nx.read_multiline_adjlist("test.adjlist", nodetype=int)
|
363 |
+
|
364 |
+
will attempt to convert all nodes to integer type.
|
365 |
+
|
366 |
+
The optional edgetype is a function to convert edge data strings to
|
367 |
+
edgetype.
|
368 |
+
|
369 |
+
>>> G = nx.read_multiline_adjlist("test.adjlist")
|
370 |
+
|
371 |
+
The optional create_using parameter is a NetworkX graph container.
|
372 |
+
The default is Graph(), an undirected graph. To read the data as
|
373 |
+
a directed graph use
|
374 |
+
|
375 |
+
>>> G = nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph)
|
376 |
+
|
377 |
+
Notes
|
378 |
+
-----
|
379 |
+
This format does not store graph, node, or edge data.
|
380 |
+
|
381 |
+
See Also
|
382 |
+
--------
|
383 |
+
write_multiline_adjlist
|
384 |
+
"""
|
385 |
+
lines = (line.decode(encoding) for line in path)
|
386 |
+
return parse_multiline_adjlist(
|
387 |
+
lines,
|
388 |
+
comments=comments,
|
389 |
+
delimiter=delimiter,
|
390 |
+
create_using=create_using,
|
391 |
+
nodetype=nodetype,
|
392 |
+
edgetype=edgetype,
|
393 |
+
)
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/p2g.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module provides the following: read and write of p2g format
|
3 |
+
used in metabolic pathway studies.
|
4 |
+
|
5 |
+
See https://web.archive.org/web/20080626113807/http://www.cs.purdue.edu/homes/koyuturk/pathway/ for a description.
|
6 |
+
|
7 |
+
The summary is included here:
|
8 |
+
|
9 |
+
A file that describes a uniquely labeled graph (with extension ".gr")
|
10 |
+
format looks like the following:
|
11 |
+
|
12 |
+
|
13 |
+
name
|
14 |
+
3 4
|
15 |
+
a
|
16 |
+
1 2
|
17 |
+
b
|
18 |
+
|
19 |
+
c
|
20 |
+
0 2
|
21 |
+
|
22 |
+
"name" is simply a description of what the graph corresponds to. The
|
23 |
+
second line displays the number of nodes and number of edges,
|
24 |
+
respectively. This sample graph contains three nodes labeled "a", "b",
|
25 |
+
and "c". The rest of the graph contains two lines for each node. The
|
26 |
+
first line for a node contains the node label. After the declaration
|
27 |
+
of the node label, the out-edges of that node in the graph are
|
28 |
+
provided. For instance, "a" is linked to nodes 1 and 2, which are
|
29 |
+
labeled "b" and "c", while the node labeled "b" has no outgoing
|
30 |
+
edges. Observe that node labeled "c" has an outgoing edge to
|
31 |
+
itself. Indeed, self-loops are allowed. Node index starts from 0.
|
32 |
+
|
33 |
+
"""
|
34 |
+
import networkx as nx
|
35 |
+
from networkx.utils import open_file
|
36 |
+
|
37 |
+
|
38 |
+
@open_file(1, mode="w")
|
39 |
+
def write_p2g(G, path, encoding="utf-8"):
|
40 |
+
"""Write NetworkX graph in p2g format.
|
41 |
+
|
42 |
+
Notes
|
43 |
+
-----
|
44 |
+
This format is meant to be used with directed graphs with
|
45 |
+
possible self loops.
|
46 |
+
"""
|
47 |
+
path.write((f"{G.name}\n").encode(encoding))
|
48 |
+
path.write((f"{G.order()} {G.size()}\n").encode(encoding))
|
49 |
+
nodes = list(G)
|
50 |
+
# make dictionary mapping nodes to integers
|
51 |
+
nodenumber = dict(zip(nodes, range(len(nodes))))
|
52 |
+
for n in nodes:
|
53 |
+
path.write((f"{n}\n").encode(encoding))
|
54 |
+
for nbr in G.neighbors(n):
|
55 |
+
path.write((f"{nodenumber[nbr]} ").encode(encoding))
|
56 |
+
path.write("\n".encode(encoding))
|
57 |
+
|
58 |
+
|
59 |
+
@open_file(0, mode="r")
|
60 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
61 |
+
def read_p2g(path, encoding="utf-8"):
|
62 |
+
"""Read graph in p2g format from path.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
-------
|
66 |
+
MultiDiGraph
|
67 |
+
|
68 |
+
Notes
|
69 |
+
-----
|
70 |
+
If you want a DiGraph (with no self loops allowed and no edge data)
|
71 |
+
use D=nx.DiGraph(read_p2g(path))
|
72 |
+
"""
|
73 |
+
lines = (line.decode(encoding) for line in path)
|
74 |
+
G = parse_p2g(lines)
|
75 |
+
return G
|
76 |
+
|
77 |
+
|
78 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
79 |
+
def parse_p2g(lines):
|
80 |
+
"""Parse p2g format graph from string or iterable.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
MultiDiGraph
|
85 |
+
"""
|
86 |
+
description = next(lines).strip()
|
87 |
+
# are multiedges (parallel edges) allowed?
|
88 |
+
G = nx.MultiDiGraph(name=description, selfloops=True)
|
89 |
+
nnodes, nedges = map(int, next(lines).split())
|
90 |
+
nodelabel = {}
|
91 |
+
nbrs = {}
|
92 |
+
# loop over the nodes keeping track of node labels and out neighbors
|
93 |
+
# defer adding edges until all node labels are known
|
94 |
+
for i in range(nnodes):
|
95 |
+
n = next(lines).strip()
|
96 |
+
nodelabel[i] = n
|
97 |
+
G.add_node(n)
|
98 |
+
nbrs[n] = map(int, next(lines).split())
|
99 |
+
# now we know all of the node labels so we can add the edges
|
100 |
+
# with the correct labels
|
101 |
+
for n in G:
|
102 |
+
for nbr in nbrs[n]:
|
103 |
+
G.add_edge(n, nodelabel[nbr])
|
104 |
+
return G
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/pajek.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
*****
|
3 |
+
Pajek
|
4 |
+
*****
|
5 |
+
Read graphs in Pajek format.
|
6 |
+
|
7 |
+
This implementation handles directed and undirected graphs including
|
8 |
+
those with self loops and parallel edges.
|
9 |
+
|
10 |
+
Format
|
11 |
+
------
|
12 |
+
See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
|
13 |
+
for format information.
|
14 |
+
|
15 |
+
"""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
import networkx as nx
|
20 |
+
from networkx.utils import open_file
|
21 |
+
|
22 |
+
__all__ = ["read_pajek", "parse_pajek", "generate_pajek", "write_pajek"]
|
23 |
+
|
24 |
+
|
25 |
+
def generate_pajek(G):
|
26 |
+
"""Generate lines in Pajek graph format.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
G : graph
|
31 |
+
A Networkx graph
|
32 |
+
|
33 |
+
References
|
34 |
+
----------
|
35 |
+
See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
|
36 |
+
for format information.
|
37 |
+
"""
|
38 |
+
if G.name == "":
|
39 |
+
name = "NetworkX"
|
40 |
+
else:
|
41 |
+
name = G.name
|
42 |
+
# Apparently many Pajek format readers can't process this line
|
43 |
+
# So we'll leave it out for now.
|
44 |
+
# yield '*network %s'%name
|
45 |
+
|
46 |
+
# write nodes with attributes
|
47 |
+
yield f"*vertices {G.order()}"
|
48 |
+
nodes = list(G)
|
49 |
+
# make dictionary mapping nodes to integers
|
50 |
+
nodenumber = dict(zip(nodes, range(1, len(nodes) + 1)))
|
51 |
+
for n in nodes:
|
52 |
+
# copy node attributes and pop mandatory attributes
|
53 |
+
# to avoid duplication.
|
54 |
+
na = G.nodes.get(n, {}).copy()
|
55 |
+
x = na.pop("x", 0.0)
|
56 |
+
y = na.pop("y", 0.0)
|
57 |
+
try:
|
58 |
+
id = int(na.pop("id", nodenumber[n]))
|
59 |
+
except ValueError as err:
|
60 |
+
err.args += (
|
61 |
+
(
|
62 |
+
"Pajek format requires 'id' to be an int()."
|
63 |
+
" Refer to the 'Relabeling nodes' section."
|
64 |
+
),
|
65 |
+
)
|
66 |
+
raise
|
67 |
+
nodenumber[n] = id
|
68 |
+
shape = na.pop("shape", "ellipse")
|
69 |
+
s = " ".join(map(make_qstr, (id, n, x, y, shape)))
|
70 |
+
# only optional attributes are left in na.
|
71 |
+
for k, v in na.items():
|
72 |
+
if isinstance(v, str) and v.strip() != "":
|
73 |
+
s += f" {make_qstr(k)} {make_qstr(v)}"
|
74 |
+
else:
|
75 |
+
warnings.warn(
|
76 |
+
f"Node attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
|
77 |
+
)
|
78 |
+
yield s
|
79 |
+
|
80 |
+
# write edges with attributes
|
81 |
+
if G.is_directed():
|
82 |
+
yield "*arcs"
|
83 |
+
else:
|
84 |
+
yield "*edges"
|
85 |
+
for u, v, edgedata in G.edges(data=True):
|
86 |
+
d = edgedata.copy()
|
87 |
+
value = d.pop("weight", 1.0) # use 1 as default edge value
|
88 |
+
s = " ".join(map(make_qstr, (nodenumber[u], nodenumber[v], value)))
|
89 |
+
for k, v in d.items():
|
90 |
+
if isinstance(v, str) and v.strip() != "":
|
91 |
+
s += f" {make_qstr(k)} {make_qstr(v)}"
|
92 |
+
else:
|
93 |
+
warnings.warn(
|
94 |
+
f"Edge attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
|
95 |
+
)
|
96 |
+
yield s
|
97 |
+
|
98 |
+
|
99 |
+
@open_file(1, mode="wb")
|
100 |
+
def write_pajek(G, path, encoding="UTF-8"):
|
101 |
+
"""Write graph in Pajek format to path.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
----------
|
105 |
+
G : graph
|
106 |
+
A Networkx graph
|
107 |
+
path : file or string
|
108 |
+
File or filename to write.
|
109 |
+
Filenames ending in .gz or .bz2 will be compressed.
|
110 |
+
|
111 |
+
Examples
|
112 |
+
--------
|
113 |
+
>>> G = nx.path_graph(4)
|
114 |
+
>>> nx.write_pajek(G, "test.net")
|
115 |
+
|
116 |
+
Warnings
|
117 |
+
--------
|
118 |
+
Optional node attributes and edge attributes must be non-empty strings.
|
119 |
+
Otherwise it will not be written into the file. You will need to
|
120 |
+
convert those attributes to strings if you want to keep them.
|
121 |
+
|
122 |
+
References
|
123 |
+
----------
|
124 |
+
See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
|
125 |
+
for format information.
|
126 |
+
"""
|
127 |
+
for line in generate_pajek(G):
|
128 |
+
line += "\n"
|
129 |
+
path.write(line.encode(encoding))
|
130 |
+
|
131 |
+
|
132 |
+
@open_file(0, mode="rb")
|
133 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
134 |
+
def read_pajek(path, encoding="UTF-8"):
|
135 |
+
"""Read graph in Pajek format from path.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
path : file or string
|
140 |
+
File or filename to write.
|
141 |
+
Filenames ending in .gz or .bz2 will be uncompressed.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
G : NetworkX MultiGraph or MultiDiGraph.
|
146 |
+
|
147 |
+
Examples
|
148 |
+
--------
|
149 |
+
>>> G = nx.path_graph(4)
|
150 |
+
>>> nx.write_pajek(G, "test.net")
|
151 |
+
>>> G = nx.read_pajek("test.net")
|
152 |
+
|
153 |
+
To create a Graph instead of a MultiGraph use
|
154 |
+
|
155 |
+
>>> G1 = nx.Graph(G)
|
156 |
+
|
157 |
+
References
|
158 |
+
----------
|
159 |
+
See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
|
160 |
+
for format information.
|
161 |
+
"""
|
162 |
+
lines = (line.decode(encoding) for line in path)
|
163 |
+
return parse_pajek(lines)
|
164 |
+
|
165 |
+
|
166 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
167 |
+
def parse_pajek(lines):
|
168 |
+
"""Parse Pajek format graph from string or iterable.
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
----------
|
172 |
+
lines : string or iterable
|
173 |
+
Data in Pajek format.
|
174 |
+
|
175 |
+
Returns
|
176 |
+
-------
|
177 |
+
G : NetworkX graph
|
178 |
+
|
179 |
+
See Also
|
180 |
+
--------
|
181 |
+
read_pajek
|
182 |
+
|
183 |
+
"""
|
184 |
+
import shlex
|
185 |
+
|
186 |
+
# multigraph=False
|
187 |
+
if isinstance(lines, str):
|
188 |
+
lines = iter(lines.split("\n"))
|
189 |
+
lines = iter([line.rstrip("\n") for line in lines])
|
190 |
+
G = nx.MultiDiGraph() # are multiedges allowed in Pajek? assume yes
|
191 |
+
labels = [] # in the order of the file, needed for matrix
|
192 |
+
while lines:
|
193 |
+
try:
|
194 |
+
l = next(lines)
|
195 |
+
except: # EOF
|
196 |
+
break
|
197 |
+
if l.lower().startswith("*network"):
|
198 |
+
try:
|
199 |
+
label, name = l.split(None, 1)
|
200 |
+
except ValueError:
|
201 |
+
# Line was not of the form: *network NAME
|
202 |
+
pass
|
203 |
+
else:
|
204 |
+
G.graph["name"] = name
|
205 |
+
elif l.lower().startswith("*vertices"):
|
206 |
+
nodelabels = {}
|
207 |
+
l, nnodes = l.split()
|
208 |
+
for i in range(int(nnodes)):
|
209 |
+
l = next(lines)
|
210 |
+
try:
|
211 |
+
splitline = [
|
212 |
+
x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
|
213 |
+
]
|
214 |
+
except AttributeError:
|
215 |
+
splitline = shlex.split(str(l))
|
216 |
+
id, label = splitline[0:2]
|
217 |
+
labels.append(label)
|
218 |
+
G.add_node(label)
|
219 |
+
nodelabels[id] = label
|
220 |
+
G.nodes[label]["id"] = id
|
221 |
+
try:
|
222 |
+
x, y, shape = splitline[2:5]
|
223 |
+
G.nodes[label].update(
|
224 |
+
{"x": float(x), "y": float(y), "shape": shape}
|
225 |
+
)
|
226 |
+
except:
|
227 |
+
pass
|
228 |
+
extra_attr = zip(splitline[5::2], splitline[6::2])
|
229 |
+
G.nodes[label].update(extra_attr)
|
230 |
+
elif l.lower().startswith("*edges") or l.lower().startswith("*arcs"):
|
231 |
+
if l.lower().startswith("*edge"):
|
232 |
+
# switch from multidigraph to multigraph
|
233 |
+
G = nx.MultiGraph(G)
|
234 |
+
if l.lower().startswith("*arcs"):
|
235 |
+
# switch to directed with multiple arcs for each existing edge
|
236 |
+
G = G.to_directed()
|
237 |
+
for l in lines:
|
238 |
+
try:
|
239 |
+
splitline = [
|
240 |
+
x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
|
241 |
+
]
|
242 |
+
except AttributeError:
|
243 |
+
splitline = shlex.split(str(l))
|
244 |
+
|
245 |
+
if len(splitline) < 2:
|
246 |
+
continue
|
247 |
+
ui, vi = splitline[0:2]
|
248 |
+
u = nodelabels.get(ui, ui)
|
249 |
+
v = nodelabels.get(vi, vi)
|
250 |
+
# parse the data attached to this edge and put in a dictionary
|
251 |
+
edge_data = {}
|
252 |
+
try:
|
253 |
+
# there should always be a single value on the edge?
|
254 |
+
w = splitline[2:3]
|
255 |
+
edge_data.update({"weight": float(w[0])})
|
256 |
+
except:
|
257 |
+
pass
|
258 |
+
# if there isn't, just assign a 1
|
259 |
+
# edge_data.update({'value':1})
|
260 |
+
extra_attr = zip(splitline[3::2], splitline[4::2])
|
261 |
+
edge_data.update(extra_attr)
|
262 |
+
# if G.has_edge(u,v):
|
263 |
+
# multigraph=True
|
264 |
+
G.add_edge(u, v, **edge_data)
|
265 |
+
elif l.lower().startswith("*matrix"):
|
266 |
+
G = nx.DiGraph(G)
|
267 |
+
adj_list = (
|
268 |
+
(labels[row], labels[col], {"weight": int(data)})
|
269 |
+
for (row, line) in enumerate(lines)
|
270 |
+
for (col, data) in enumerate(line.split())
|
271 |
+
if int(data) != 0
|
272 |
+
)
|
273 |
+
G.add_edges_from(adj_list)
|
274 |
+
|
275 |
+
return G
|
276 |
+
|
277 |
+
|
278 |
+
def make_qstr(t):
|
279 |
+
"""Returns the string representation of t.
|
280 |
+
Add outer double-quotes if the string has a space.
|
281 |
+
"""
|
282 |
+
if not isinstance(t, str):
|
283 |
+
t = str(t)
|
284 |
+
if " " in t:
|
285 |
+
t = f'"{t}"'
|
286 |
+
return t
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/sparse6.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original author: D. Eppstein, UC Irvine, August 12, 2003.
|
2 |
+
# The original code at https://www.ics.uci.edu/~eppstein/PADS/ is public domain.
|
3 |
+
"""Functions for reading and writing graphs in the *sparse6* format.
|
4 |
+
|
5 |
+
The *sparse6* file format is a space-efficient format for large sparse
|
6 |
+
graphs. For small graphs or large dense graphs, use the *graph6* file
|
7 |
+
format.
|
8 |
+
|
9 |
+
For more information, see the `sparse6`_ homepage.
|
10 |
+
|
11 |
+
.. _sparse6: https://users.cecs.anu.edu.au/~bdm/data/formats.html
|
12 |
+
|
13 |
+
"""
|
14 |
+
import networkx as nx
|
15 |
+
from networkx.exception import NetworkXError
|
16 |
+
from networkx.readwrite.graph6 import data_to_n, n_to_data
|
17 |
+
from networkx.utils import not_implemented_for, open_file
|
18 |
+
|
19 |
+
__all__ = ["from_sparse6_bytes", "read_sparse6", "to_sparse6_bytes", "write_sparse6"]
|
20 |
+
|
21 |
+
|
22 |
+
def _generate_sparse6_bytes(G, nodes, header):
|
23 |
+
"""Yield bytes in the sparse6 encoding of a graph.
|
24 |
+
|
25 |
+
`G` is an undirected simple graph. `nodes` is the list of nodes for
|
26 |
+
which the node-induced subgraph will be encoded; if `nodes` is the
|
27 |
+
list of all nodes in the graph, the entire graph will be
|
28 |
+
encoded. `header` is a Boolean that specifies whether to generate
|
29 |
+
the header ``b'>>sparse6<<'`` before the remaining data.
|
30 |
+
|
31 |
+
This function generates `bytes` objects in the following order:
|
32 |
+
|
33 |
+
1. the header (if requested),
|
34 |
+
2. the encoding of the number of nodes,
|
35 |
+
3. each character, one-at-a-time, in the encoding of the requested
|
36 |
+
node-induced subgraph,
|
37 |
+
4. a newline character.
|
38 |
+
|
39 |
+
This function raises :exc:`ValueError` if the graph is too large for
|
40 |
+
the graph6 format (that is, greater than ``2 ** 36`` nodes).
|
41 |
+
|
42 |
+
"""
|
43 |
+
n = len(G)
|
44 |
+
if n >= 2**36:
|
45 |
+
raise ValueError(
|
46 |
+
"sparse6 is only defined if number of nodes is less than 2 ** 36"
|
47 |
+
)
|
48 |
+
if header:
|
49 |
+
yield b">>sparse6<<"
|
50 |
+
yield b":"
|
51 |
+
for d in n_to_data(n):
|
52 |
+
yield str.encode(chr(d + 63))
|
53 |
+
|
54 |
+
k = 1
|
55 |
+
while 1 << k < n:
|
56 |
+
k += 1
|
57 |
+
|
58 |
+
def enc(x):
|
59 |
+
"""Big endian k-bit encoding of x"""
|
60 |
+
return [1 if (x & 1 << (k - 1 - i)) else 0 for i in range(k)]
|
61 |
+
|
62 |
+
edges = sorted((max(u, v), min(u, v)) for u, v in G.edges())
|
63 |
+
bits = []
|
64 |
+
curv = 0
|
65 |
+
for v, u in edges:
|
66 |
+
if v == curv: # current vertex edge
|
67 |
+
bits.append(0)
|
68 |
+
bits.extend(enc(u))
|
69 |
+
elif v == curv + 1: # next vertex edge
|
70 |
+
curv += 1
|
71 |
+
bits.append(1)
|
72 |
+
bits.extend(enc(u))
|
73 |
+
else: # skip to vertex v and then add edge to u
|
74 |
+
curv = v
|
75 |
+
bits.append(1)
|
76 |
+
bits.extend(enc(v))
|
77 |
+
bits.append(0)
|
78 |
+
bits.extend(enc(u))
|
79 |
+
if k < 6 and n == (1 << k) and ((-len(bits)) % 6) >= k and curv < (n - 1):
|
80 |
+
# Padding special case: small k, n=2^k,
|
81 |
+
# more than k bits of padding needed,
|
82 |
+
# current vertex is not (n-1) --
|
83 |
+
# appending 1111... would add a loop on (n-1)
|
84 |
+
bits.append(0)
|
85 |
+
bits.extend([1] * ((-len(bits)) % 6))
|
86 |
+
else:
|
87 |
+
bits.extend([1] * ((-len(bits)) % 6))
|
88 |
+
|
89 |
+
data = [
|
90 |
+
(bits[i + 0] << 5)
|
91 |
+
+ (bits[i + 1] << 4)
|
92 |
+
+ (bits[i + 2] << 3)
|
93 |
+
+ (bits[i + 3] << 2)
|
94 |
+
+ (bits[i + 4] << 1)
|
95 |
+
+ (bits[i + 5] << 0)
|
96 |
+
for i in range(0, len(bits), 6)
|
97 |
+
]
|
98 |
+
|
99 |
+
for d in data:
|
100 |
+
yield str.encode(chr(d + 63))
|
101 |
+
yield b"\n"
|
102 |
+
|
103 |
+
|
104 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
105 |
+
def from_sparse6_bytes(string):
|
106 |
+
"""Read an undirected graph in sparse6 format from string.
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
string : string
|
111 |
+
Data in sparse6 format
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
G : Graph
|
116 |
+
|
117 |
+
Raises
|
118 |
+
------
|
119 |
+
NetworkXError
|
120 |
+
If the string is unable to be parsed in sparse6 format
|
121 |
+
|
122 |
+
Examples
|
123 |
+
--------
|
124 |
+
>>> G = nx.from_sparse6_bytes(b":A_")
|
125 |
+
>>> sorted(G.edges())
|
126 |
+
[(0, 1), (0, 1), (0, 1)]
|
127 |
+
|
128 |
+
See Also
|
129 |
+
--------
|
130 |
+
read_sparse6, write_sparse6
|
131 |
+
|
132 |
+
References
|
133 |
+
----------
|
134 |
+
.. [1] Sparse6 specification
|
135 |
+
<https://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
136 |
+
|
137 |
+
"""
|
138 |
+
if string.startswith(b">>sparse6<<"):
|
139 |
+
string = string[11:]
|
140 |
+
if not string.startswith(b":"):
|
141 |
+
raise NetworkXError("Expected leading colon in sparse6")
|
142 |
+
|
143 |
+
chars = [c - 63 for c in string[1:]]
|
144 |
+
n, data = data_to_n(chars)
|
145 |
+
k = 1
|
146 |
+
while 1 << k < n:
|
147 |
+
k += 1
|
148 |
+
|
149 |
+
def parseData():
|
150 |
+
"""Returns stream of pairs b[i], x[i] for sparse6 format."""
|
151 |
+
chunks = iter(data)
|
152 |
+
d = None # partial data word
|
153 |
+
dLen = 0 # how many unparsed bits are left in d
|
154 |
+
|
155 |
+
while 1:
|
156 |
+
if dLen < 1:
|
157 |
+
try:
|
158 |
+
d = next(chunks)
|
159 |
+
except StopIteration:
|
160 |
+
return
|
161 |
+
dLen = 6
|
162 |
+
dLen -= 1
|
163 |
+
b = (d >> dLen) & 1 # grab top remaining bit
|
164 |
+
|
165 |
+
x = d & ((1 << dLen) - 1) # partially built up value of x
|
166 |
+
xLen = dLen # how many bits included so far in x
|
167 |
+
while xLen < k: # now grab full chunks until we have enough
|
168 |
+
try:
|
169 |
+
d = next(chunks)
|
170 |
+
except StopIteration:
|
171 |
+
return
|
172 |
+
dLen = 6
|
173 |
+
x = (x << 6) + d
|
174 |
+
xLen += 6
|
175 |
+
x = x >> (xLen - k) # shift back the extra bits
|
176 |
+
dLen = xLen - k
|
177 |
+
yield b, x
|
178 |
+
|
179 |
+
v = 0
|
180 |
+
|
181 |
+
G = nx.MultiGraph()
|
182 |
+
G.add_nodes_from(range(n))
|
183 |
+
|
184 |
+
multigraph = False
|
185 |
+
for b, x in parseData():
|
186 |
+
if b == 1:
|
187 |
+
v += 1
|
188 |
+
# padding with ones can cause overlarge number here
|
189 |
+
if x >= n or v >= n:
|
190 |
+
break
|
191 |
+
elif x > v:
|
192 |
+
v = x
|
193 |
+
else:
|
194 |
+
if G.has_edge(x, v):
|
195 |
+
multigraph = True
|
196 |
+
G.add_edge(x, v)
|
197 |
+
if not multigraph:
|
198 |
+
G = nx.Graph(G)
|
199 |
+
return G
|
200 |
+
|
201 |
+
|
202 |
+
def to_sparse6_bytes(G, nodes=None, header=True):
|
203 |
+
"""Convert an undirected graph to bytes in sparse6 format.
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
G : Graph (undirected)
|
208 |
+
|
209 |
+
nodes: list or iterable
|
210 |
+
Nodes are labeled 0...n-1 in the order provided. If None the ordering
|
211 |
+
given by ``G.nodes()`` is used.
|
212 |
+
|
213 |
+
header: bool
|
214 |
+
If True add '>>sparse6<<' bytes to head of data.
|
215 |
+
|
216 |
+
Raises
|
217 |
+
------
|
218 |
+
NetworkXNotImplemented
|
219 |
+
If the graph is directed.
|
220 |
+
|
221 |
+
ValueError
|
222 |
+
If the graph has at least ``2 ** 36`` nodes; the sparse6 format
|
223 |
+
is only defined for graphs of order less than ``2 ** 36``.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
--------
|
227 |
+
>>> nx.to_sparse6_bytes(nx.path_graph(2))
|
228 |
+
b'>>sparse6<<:An\\n'
|
229 |
+
|
230 |
+
See Also
|
231 |
+
--------
|
232 |
+
to_sparse6_bytes, read_sparse6, write_sparse6_bytes
|
233 |
+
|
234 |
+
Notes
|
235 |
+
-----
|
236 |
+
The returned bytes end with a newline character.
|
237 |
+
|
238 |
+
The format does not support edge or node labels.
|
239 |
+
|
240 |
+
References
|
241 |
+
----------
|
242 |
+
.. [1] Graph6 specification
|
243 |
+
<https://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
244 |
+
|
245 |
+
"""
|
246 |
+
if nodes is not None:
|
247 |
+
G = G.subgraph(nodes)
|
248 |
+
G = nx.convert_node_labels_to_integers(G, ordering="sorted")
|
249 |
+
return b"".join(_generate_sparse6_bytes(G, nodes, header))
|
250 |
+
|
251 |
+
|
252 |
+
@open_file(0, mode="rb")
|
253 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
254 |
+
def read_sparse6(path):
|
255 |
+
"""Read an undirected graph in sparse6 format from path.
|
256 |
+
|
257 |
+
Parameters
|
258 |
+
----------
|
259 |
+
path : file or string
|
260 |
+
File or filename to write.
|
261 |
+
|
262 |
+
Returns
|
263 |
+
-------
|
264 |
+
G : Graph/Multigraph or list of Graphs/MultiGraphs
|
265 |
+
If the file contains multiple lines then a list of graphs is returned
|
266 |
+
|
267 |
+
Raises
|
268 |
+
------
|
269 |
+
NetworkXError
|
270 |
+
If the string is unable to be parsed in sparse6 format
|
271 |
+
|
272 |
+
Examples
|
273 |
+
--------
|
274 |
+
You can read a sparse6 file by giving the path to the file::
|
275 |
+
|
276 |
+
>>> import tempfile
|
277 |
+
>>> with tempfile.NamedTemporaryFile(delete=False) as f:
|
278 |
+
... _ = f.write(b">>sparse6<<:An\\n")
|
279 |
+
... _ = f.seek(0)
|
280 |
+
... G = nx.read_sparse6(f.name)
|
281 |
+
>>> list(G.edges())
|
282 |
+
[(0, 1)]
|
283 |
+
|
284 |
+
You can also read a sparse6 file by giving an open file-like object::
|
285 |
+
|
286 |
+
>>> import tempfile
|
287 |
+
>>> with tempfile.NamedTemporaryFile() as f:
|
288 |
+
... _ = f.write(b">>sparse6<<:An\\n")
|
289 |
+
... _ = f.seek(0)
|
290 |
+
... G = nx.read_sparse6(f)
|
291 |
+
>>> list(G.edges())
|
292 |
+
[(0, 1)]
|
293 |
+
|
294 |
+
See Also
|
295 |
+
--------
|
296 |
+
read_sparse6, from_sparse6_bytes
|
297 |
+
|
298 |
+
References
|
299 |
+
----------
|
300 |
+
.. [1] Sparse6 specification
|
301 |
+
<https://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
302 |
+
|
303 |
+
"""
|
304 |
+
glist = []
|
305 |
+
for line in path:
|
306 |
+
line = line.strip()
|
307 |
+
if not len(line):
|
308 |
+
continue
|
309 |
+
glist.append(from_sparse6_bytes(line))
|
310 |
+
if len(glist) == 1:
|
311 |
+
return glist[0]
|
312 |
+
else:
|
313 |
+
return glist
|
314 |
+
|
315 |
+
|
316 |
+
@not_implemented_for("directed")
|
317 |
+
@open_file(1, mode="wb")
|
318 |
+
def write_sparse6(G, path, nodes=None, header=True):
|
319 |
+
"""Write graph G to given path in sparse6 format.
|
320 |
+
|
321 |
+
Parameters
|
322 |
+
----------
|
323 |
+
G : Graph (undirected)
|
324 |
+
|
325 |
+
path : file or string
|
326 |
+
File or filename to write
|
327 |
+
|
328 |
+
nodes: list or iterable
|
329 |
+
Nodes are labeled 0...n-1 in the order provided. If None the ordering
|
330 |
+
given by G.nodes() is used.
|
331 |
+
|
332 |
+
header: bool
|
333 |
+
If True add '>>sparse6<<' string to head of data
|
334 |
+
|
335 |
+
Raises
|
336 |
+
------
|
337 |
+
NetworkXError
|
338 |
+
If the graph is directed
|
339 |
+
|
340 |
+
Examples
|
341 |
+
--------
|
342 |
+
You can write a sparse6 file by giving the path to the file::
|
343 |
+
|
344 |
+
>>> import tempfile
|
345 |
+
>>> with tempfile.NamedTemporaryFile(delete=False) as f:
|
346 |
+
... nx.write_sparse6(nx.path_graph(2), f.name)
|
347 |
+
... print(f.read())
|
348 |
+
b'>>sparse6<<:An\\n'
|
349 |
+
|
350 |
+
You can also write a sparse6 file by giving an open file-like object::
|
351 |
+
|
352 |
+
>>> with tempfile.NamedTemporaryFile() as f:
|
353 |
+
... nx.write_sparse6(nx.path_graph(2), f)
|
354 |
+
... _ = f.seek(0)
|
355 |
+
... print(f.read())
|
356 |
+
b'>>sparse6<<:An\\n'
|
357 |
+
|
358 |
+
See Also
|
359 |
+
--------
|
360 |
+
read_sparse6, from_sparse6_bytes
|
361 |
+
|
362 |
+
Notes
|
363 |
+
-----
|
364 |
+
The format does not support edge or node labels.
|
365 |
+
|
366 |
+
References
|
367 |
+
----------
|
368 |
+
.. [1] Sparse6 specification
|
369 |
+
<https://users.cecs.anu.edu.au/~bdm/data/formats.html>
|
370 |
+
|
371 |
+
"""
|
372 |
+
if nodes is not None:
|
373 |
+
G = G.subgraph(nodes)
|
374 |
+
G = nx.convert_node_labels_to_integers(G, ordering="sorted")
|
375 |
+
for b in _generate_sparse6_bytes(G, nodes, header):
|
376 |
+
path.write(b)
|
llmeval-env/lib/python3.10/site-packages/networkx/readwrite/text.py
ADDED
@@ -0,0 +1,950 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Text-based visual representations of graphs
|
3 |
+
"""
|
4 |
+
import sys
|
5 |
+
import warnings
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
import networkx as nx
|
9 |
+
from networkx.utils import open_file
|
10 |
+
|
11 |
+
__all__ = ["forest_str", "generate_network_text", "write_network_text"]
|
12 |
+
|
13 |
+
|
14 |
+
class BaseGlyphs:
|
15 |
+
@classmethod
|
16 |
+
def as_dict(cls):
|
17 |
+
return {
|
18 |
+
a: getattr(cls, a)
|
19 |
+
for a in dir(cls)
|
20 |
+
if not a.startswith("_") and a != "as_dict"
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
class AsciiBaseGlyphs(BaseGlyphs):
|
25 |
+
empty: str = "+"
|
26 |
+
newtree_last: str = "+-- "
|
27 |
+
newtree_mid: str = "+-- "
|
28 |
+
endof_forest: str = " "
|
29 |
+
within_forest: str = ": "
|
30 |
+
within_tree: str = "| "
|
31 |
+
|
32 |
+
|
33 |
+
class AsciiDirectedGlyphs(AsciiBaseGlyphs):
|
34 |
+
last: str = "L-> "
|
35 |
+
mid: str = "|-> "
|
36 |
+
backedge: str = "<-"
|
37 |
+
vertical_edge: str = "!"
|
38 |
+
|
39 |
+
|
40 |
+
class AsciiUndirectedGlyphs(AsciiBaseGlyphs):
|
41 |
+
last: str = "L-- "
|
42 |
+
mid: str = "|-- "
|
43 |
+
backedge: str = "-"
|
44 |
+
vertical_edge: str = "|"
|
45 |
+
|
46 |
+
|
47 |
+
class UtfBaseGlyphs(BaseGlyphs):
|
48 |
+
# Notes on available box and arrow characters
|
49 |
+
# https://en.wikipedia.org/wiki/Box-drawing_character
|
50 |
+
# https://stackoverflow.com/questions/2701192/triangle-arrow
|
51 |
+
empty: str = "╙"
|
52 |
+
newtree_last: str = "╙── "
|
53 |
+
newtree_mid: str = "╟── "
|
54 |
+
endof_forest: str = " "
|
55 |
+
within_forest: str = "╎ "
|
56 |
+
within_tree: str = "│ "
|
57 |
+
|
58 |
+
|
59 |
+
class UtfDirectedGlyphs(UtfBaseGlyphs):
|
60 |
+
last: str = "└─╼ "
|
61 |
+
mid: str = "├─╼ "
|
62 |
+
backedge: str = "╾"
|
63 |
+
vertical_edge: str = "╽"
|
64 |
+
|
65 |
+
|
66 |
+
class UtfUndirectedGlyphs(UtfBaseGlyphs):
|
67 |
+
last: str = "└── "
|
68 |
+
mid: str = "├── "
|
69 |
+
backedge: str = "─"
|
70 |
+
vertical_edge: str = "│"
|
71 |
+
|
72 |
+
|
73 |
+
def generate_network_text(
|
74 |
+
graph,
|
75 |
+
with_labels=True,
|
76 |
+
sources=None,
|
77 |
+
max_depth=None,
|
78 |
+
ascii_only=False,
|
79 |
+
vertical_chains=False,
|
80 |
+
):
|
81 |
+
"""Generate lines in the "network text" format
|
82 |
+
|
83 |
+
This works via a depth-first traversal of the graph and writing a line for
|
84 |
+
each unique node encountered. Non-tree edges are written to the right of
|
85 |
+
each node, and connection to a non-tree edge is indicated with an ellipsis.
|
86 |
+
This representation works best when the input graph is a forest, but any
|
87 |
+
graph can be represented.
|
88 |
+
|
89 |
+
This notation is original to networkx, although it is simple enough that it
|
90 |
+
may be known in existing literature. See #5602 for details. The procedure
|
91 |
+
is summarized as follows:
|
92 |
+
|
93 |
+
1. Given a set of source nodes (which can be specified, or automatically
|
94 |
+
discovered via finding the (strongly) connected components and choosing one
|
95 |
+
node with minimum degree from each), we traverse the graph in depth first
|
96 |
+
order.
|
97 |
+
|
98 |
+
2. Each reachable node will be printed exactly once on it's own line.
|
99 |
+
|
100 |
+
3. Edges are indicated in one of four ways:
|
101 |
+
|
102 |
+
a. a parent "L-style" connection on the upper left. This corresponds to
|
103 |
+
a traversal in the directed DFS tree.
|
104 |
+
|
105 |
+
b. a backref "<-style" connection shown directly on the right. For
|
106 |
+
directed graphs, these are drawn for any incoming edges to a node that
|
107 |
+
is not a parent edge. For undirected graphs, these are drawn for only
|
108 |
+
the non-parent edges that have already been represented (The edges that
|
109 |
+
have not been represented will be handled in the recursive case).
|
110 |
+
|
111 |
+
c. a child "L-style" connection on the lower right. Drawing of the
|
112 |
+
children are handled recursively.
|
113 |
+
|
114 |
+
d. if ``vertical_chains`` is true, and a parent node only has one child
|
115 |
+
a "vertical-style" edge is drawn between them.
|
116 |
+
|
117 |
+
4. The children of each node (wrt the directed DFS tree) are drawn
|
118 |
+
underneath and to the right of it. In the case that a child node has already
|
119 |
+
been drawn the connection is replaced with an ellipsis ("...") to indicate
|
120 |
+
that there is one or more connections represented elsewhere.
|
121 |
+
|
122 |
+
5. If a maximum depth is specified, an edge to nodes past this maximum
|
123 |
+
depth will be represented by an ellipsis.
|
124 |
+
|
125 |
+
6. If a a node has a truthy "collapse" value, then we do not traverse past
|
126 |
+
that node.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
graph : nx.DiGraph | nx.Graph
|
131 |
+
Graph to represent
|
132 |
+
|
133 |
+
with_labels : bool | str
|
134 |
+
If True will use the "label" attribute of a node to display if it
|
135 |
+
exists otherwise it will use the node value itself. If given as a
|
136 |
+
string, then that attribute name will be used instead of "label".
|
137 |
+
Defaults to True.
|
138 |
+
|
139 |
+
sources : List
|
140 |
+
Specifies which nodes to start traversal from. Note: nodes that are not
|
141 |
+
reachable from one of these sources may not be shown. If unspecified,
|
142 |
+
the minimal set of nodes needed to reach all others will be used.
|
143 |
+
|
144 |
+
max_depth : int | None
|
145 |
+
The maximum depth to traverse before stopping. Defaults to None.
|
146 |
+
|
147 |
+
ascii_only : Boolean
|
148 |
+
If True only ASCII characters are used to construct the visualization
|
149 |
+
|
150 |
+
vertical_chains : Boolean
|
151 |
+
If True, chains of nodes will be drawn vertically when possible.
|
152 |
+
|
153 |
+
Yields
|
154 |
+
------
|
155 |
+
str : a line of generated text
|
156 |
+
|
157 |
+
Examples
|
158 |
+
--------
|
159 |
+
>>> graph = nx.path_graph(10)
|
160 |
+
>>> graph.add_node("A")
|
161 |
+
>>> graph.add_node("B")
|
162 |
+
>>> graph.add_node("C")
|
163 |
+
>>> graph.add_node("D")
|
164 |
+
>>> graph.add_edge(9, "A")
|
165 |
+
>>> graph.add_edge(9, "B")
|
166 |
+
>>> graph.add_edge(9, "C")
|
167 |
+
>>> graph.add_edge("C", "D")
|
168 |
+
>>> graph.add_edge("C", "E")
|
169 |
+
>>> graph.add_edge("C", "F")
|
170 |
+
>>> nx.write_network_text(graph)
|
171 |
+
╙── 0
|
172 |
+
└── 1
|
173 |
+
└── 2
|
174 |
+
└── 3
|
175 |
+
└── 4
|
176 |
+
└── 5
|
177 |
+
└── 6
|
178 |
+
└── 7
|
179 |
+
└── 8
|
180 |
+
└── 9
|
181 |
+
├── A
|
182 |
+
├── B
|
183 |
+
└── C
|
184 |
+
├── D
|
185 |
+
├── E
|
186 |
+
└── F
|
187 |
+
>>> nx.write_network_text(graph, vertical_chains=True)
|
188 |
+
╙── 0
|
189 |
+
│
|
190 |
+
1
|
191 |
+
│
|
192 |
+
2
|
193 |
+
│
|
194 |
+
3
|
195 |
+
│
|
196 |
+
4
|
197 |
+
│
|
198 |
+
5
|
199 |
+
│
|
200 |
+
6
|
201 |
+
│
|
202 |
+
7
|
203 |
+
│
|
204 |
+
8
|
205 |
+
│
|
206 |
+
9
|
207 |
+
├── A
|
208 |
+
├── B
|
209 |
+
└── C
|
210 |
+
├── D
|
211 |
+
├── E
|
212 |
+
└── F
|
213 |
+
"""
|
214 |
+
from typing import Any, NamedTuple
|
215 |
+
|
216 |
+
class StackFrame(NamedTuple):
|
217 |
+
parent: Any
|
218 |
+
node: Any
|
219 |
+
indents: list
|
220 |
+
this_islast: bool
|
221 |
+
this_vertical: bool
|
222 |
+
|
223 |
+
collapse_attr = "collapse"
|
224 |
+
|
225 |
+
is_directed = graph.is_directed()
|
226 |
+
|
227 |
+
if is_directed:
|
228 |
+
glyphs = AsciiDirectedGlyphs if ascii_only else UtfDirectedGlyphs
|
229 |
+
succ = graph.succ
|
230 |
+
pred = graph.pred
|
231 |
+
else:
|
232 |
+
glyphs = AsciiUndirectedGlyphs if ascii_only else UtfUndirectedGlyphs
|
233 |
+
succ = graph.adj
|
234 |
+
pred = graph.adj
|
235 |
+
|
236 |
+
if isinstance(with_labels, str):
|
237 |
+
label_attr = with_labels
|
238 |
+
elif with_labels:
|
239 |
+
label_attr = "label"
|
240 |
+
else:
|
241 |
+
label_attr = None
|
242 |
+
|
243 |
+
if max_depth == 0:
|
244 |
+
yield glyphs.empty + " ..."
|
245 |
+
elif len(graph.nodes) == 0:
|
246 |
+
yield glyphs.empty
|
247 |
+
else:
|
248 |
+
# If the nodes to traverse are unspecified, find the minimal set of
|
249 |
+
# nodes that will reach the entire graph
|
250 |
+
if sources is None:
|
251 |
+
sources = _find_sources(graph)
|
252 |
+
|
253 |
+
# Populate the stack with each:
|
254 |
+
# 1. parent node in the DFS tree (or None for root nodes),
|
255 |
+
# 2. the current node in the DFS tree
|
256 |
+
# 2. a list of indentations indicating depth
|
257 |
+
# 3. a flag indicating if the node is the final one to be written.
|
258 |
+
# Reverse the stack so sources are popped in the correct order.
|
259 |
+
last_idx = len(sources) - 1
|
260 |
+
stack = [
|
261 |
+
StackFrame(None, node, [], (idx == last_idx), False)
|
262 |
+
for idx, node in enumerate(sources)
|
263 |
+
][::-1]
|
264 |
+
|
265 |
+
num_skipped_children = defaultdict(lambda: 0)
|
266 |
+
seen_nodes = set()
|
267 |
+
while stack:
|
268 |
+
parent, node, indents, this_islast, this_vertical = stack.pop()
|
269 |
+
|
270 |
+
if node is not Ellipsis:
|
271 |
+
skip = node in seen_nodes
|
272 |
+
if skip:
|
273 |
+
# Mark that we skipped a parent's child
|
274 |
+
num_skipped_children[parent] += 1
|
275 |
+
|
276 |
+
if this_islast:
|
277 |
+
# If we reached the last child of a parent, and we skipped
|
278 |
+
# any of that parents children, then we should emit an
|
279 |
+
# ellipsis at the end after this.
|
280 |
+
if num_skipped_children[parent] and parent is not None:
|
281 |
+
# Append the ellipsis to be emitted last
|
282 |
+
next_islast = True
|
283 |
+
try_frame = StackFrame(
|
284 |
+
node, Ellipsis, indents, next_islast, False
|
285 |
+
)
|
286 |
+
stack.append(try_frame)
|
287 |
+
|
288 |
+
# Redo this frame, but not as a last object
|
289 |
+
next_islast = False
|
290 |
+
try_frame = StackFrame(
|
291 |
+
parent, node, indents, next_islast, this_vertical
|
292 |
+
)
|
293 |
+
stack.append(try_frame)
|
294 |
+
continue
|
295 |
+
|
296 |
+
if skip:
|
297 |
+
continue
|
298 |
+
seen_nodes.add(node)
|
299 |
+
|
300 |
+
if not indents:
|
301 |
+
# Top level items (i.e. trees in the forest) get different
|
302 |
+
# glyphs to indicate they are not actually connected
|
303 |
+
if this_islast:
|
304 |
+
this_vertical = False
|
305 |
+
this_prefix = indents + [glyphs.newtree_last]
|
306 |
+
next_prefix = indents + [glyphs.endof_forest]
|
307 |
+
else:
|
308 |
+
this_prefix = indents + [glyphs.newtree_mid]
|
309 |
+
next_prefix = indents + [glyphs.within_forest]
|
310 |
+
|
311 |
+
else:
|
312 |
+
# Non-top-level items
|
313 |
+
if this_vertical:
|
314 |
+
this_prefix = indents
|
315 |
+
next_prefix = indents
|
316 |
+
else:
|
317 |
+
if this_islast:
|
318 |
+
this_prefix = indents + [glyphs.last]
|
319 |
+
next_prefix = indents + [glyphs.endof_forest]
|
320 |
+
else:
|
321 |
+
this_prefix = indents + [glyphs.mid]
|
322 |
+
next_prefix = indents + [glyphs.within_tree]
|
323 |
+
|
324 |
+
if node is Ellipsis:
|
325 |
+
label = " ..."
|
326 |
+
suffix = ""
|
327 |
+
children = []
|
328 |
+
else:
|
329 |
+
if label_attr is not None:
|
330 |
+
label = str(graph.nodes[node].get(label_attr, node))
|
331 |
+
else:
|
332 |
+
label = str(node)
|
333 |
+
|
334 |
+
# Determine if we want to show the children of this node.
|
335 |
+
if collapse_attr is not None:
|
336 |
+
collapse = graph.nodes[node].get(collapse_attr, False)
|
337 |
+
else:
|
338 |
+
collapse = False
|
339 |
+
|
340 |
+
# Determine:
|
341 |
+
# (1) children to traverse into after showing this node.
|
342 |
+
# (2) parents to immediately show to the right of this node.
|
343 |
+
if is_directed:
|
344 |
+
# In the directed case we must show every successor node
|
345 |
+
# note: it may be skipped later, but we don't have that
|
346 |
+
# information here.
|
347 |
+
children = list(succ[node])
|
348 |
+
# In the directed case we must show every predecessor
|
349 |
+
# except for parent we directly traversed from.
|
350 |
+
handled_parents = {parent}
|
351 |
+
else:
|
352 |
+
# Showing only the unseen children results in a more
|
353 |
+
# concise representation for the undirected case.
|
354 |
+
children = [
|
355 |
+
child for child in succ[node] if child not in seen_nodes
|
356 |
+
]
|
357 |
+
|
358 |
+
# In the undirected case, parents are also children, so we
|
359 |
+
# only need to immediately show the ones we can no longer
|
360 |
+
# traverse
|
361 |
+
handled_parents = {*children, parent}
|
362 |
+
|
363 |
+
if max_depth is not None and len(indents) == max_depth - 1:
|
364 |
+
# Use ellipsis to indicate we have reached maximum depth
|
365 |
+
if children:
|
366 |
+
children = [Ellipsis]
|
367 |
+
handled_parents = {parent}
|
368 |
+
|
369 |
+
if collapse:
|
370 |
+
# Collapsing a node is the same as reaching maximum depth
|
371 |
+
if children:
|
372 |
+
children = [Ellipsis]
|
373 |
+
handled_parents = {parent}
|
374 |
+
|
375 |
+
# The other parents are other predecessors of this node that
|
376 |
+
# are not handled elsewhere.
|
377 |
+
other_parents = [p for p in pred[node] if p not in handled_parents]
|
378 |
+
if other_parents:
|
379 |
+
if label_attr is not None:
|
380 |
+
other_parents_labels = ", ".join(
|
381 |
+
[
|
382 |
+
str(graph.nodes[p].get(label_attr, p))
|
383 |
+
for p in other_parents
|
384 |
+
]
|
385 |
+
)
|
386 |
+
else:
|
387 |
+
other_parents_labels = ", ".join(
|
388 |
+
[str(p) for p in other_parents]
|
389 |
+
)
|
390 |
+
suffix = " ".join(["", glyphs.backedge, other_parents_labels])
|
391 |
+
else:
|
392 |
+
suffix = ""
|
393 |
+
|
394 |
+
# Emit the line for this node, this will be called for each node
|
395 |
+
# exactly once.
|
396 |
+
if this_vertical:
|
397 |
+
yield "".join(this_prefix + [glyphs.vertical_edge])
|
398 |
+
|
399 |
+
yield "".join(this_prefix + [label, suffix])
|
400 |
+
|
401 |
+
if vertical_chains:
|
402 |
+
if is_directed:
|
403 |
+
num_children = len(set(children))
|
404 |
+
else:
|
405 |
+
num_children = len(set(children) - {parent})
|
406 |
+
# The next node can be drawn vertically if it is the only
|
407 |
+
# remaining child of this node.
|
408 |
+
next_is_vertical = num_children == 1
|
409 |
+
else:
|
410 |
+
next_is_vertical = False
|
411 |
+
|
412 |
+
# Push children on the stack in reverse order so they are popped in
|
413 |
+
# the original order.
|
414 |
+
for idx, child in enumerate(children[::-1]):
|
415 |
+
next_islast = idx == 0
|
416 |
+
try_frame = StackFrame(
|
417 |
+
node, child, next_prefix, next_islast, next_is_vertical
|
418 |
+
)
|
419 |
+
stack.append(try_frame)
|
420 |
+
|
421 |
+
|
422 |
+
@open_file(1, "w")
|
423 |
+
def write_network_text(
|
424 |
+
graph,
|
425 |
+
path=None,
|
426 |
+
with_labels=True,
|
427 |
+
sources=None,
|
428 |
+
max_depth=None,
|
429 |
+
ascii_only=False,
|
430 |
+
end="\n",
|
431 |
+
vertical_chains=False,
|
432 |
+
):
|
433 |
+
"""Creates a nice text representation of a graph
|
434 |
+
|
435 |
+
This works via a depth-first traversal of the graph and writing a line for
|
436 |
+
each unique node encountered. Non-tree edges are written to the right of
|
437 |
+
each node, and connection to a non-tree edge is indicated with an ellipsis.
|
438 |
+
This representation works best when the input graph is a forest, but any
|
439 |
+
graph can be represented.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
----------
|
443 |
+
graph : nx.DiGraph | nx.Graph
|
444 |
+
Graph to represent
|
445 |
+
|
446 |
+
path : string or file or callable or None
|
447 |
+
Filename or file handle for data output.
|
448 |
+
if a function, then it will be called for each generated line.
|
449 |
+
if None, this will default to "sys.stdout.write"
|
450 |
+
|
451 |
+
with_labels : bool | str
|
452 |
+
If True will use the "label" attribute of a node to display if it
|
453 |
+
exists otherwise it will use the node value itself. If given as a
|
454 |
+
string, then that attribute name will be used instead of "label".
|
455 |
+
Defaults to True.
|
456 |
+
|
457 |
+
sources : List
|
458 |
+
Specifies which nodes to start traversal from. Note: nodes that are not
|
459 |
+
reachable from one of these sources may not be shown. If unspecified,
|
460 |
+
the minimal set of nodes needed to reach all others will be used.
|
461 |
+
|
462 |
+
max_depth : int | None
|
463 |
+
The maximum depth to traverse before stopping. Defaults to None.
|
464 |
+
|
465 |
+
ascii_only : Boolean
|
466 |
+
If True only ASCII characters are used to construct the visualization
|
467 |
+
|
468 |
+
end : string
|
469 |
+
The line ending character
|
470 |
+
|
471 |
+
vertical_chains : Boolean
|
472 |
+
If True, chains of nodes will be drawn vertically when possible.
|
473 |
+
|
474 |
+
Examples
|
475 |
+
--------
|
476 |
+
>>> graph = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
|
477 |
+
>>> nx.write_network_text(graph)
|
478 |
+
╙── 0
|
479 |
+
├─╼ 1
|
480 |
+
│ ├─╼ 3
|
481 |
+
│ └─╼ 4
|
482 |
+
└─╼ 2
|
483 |
+
├─╼ 5
|
484 |
+
└─╼ 6
|
485 |
+
|
486 |
+
>>> # A near tree with one non-tree edge
|
487 |
+
>>> graph.add_edge(5, 1)
|
488 |
+
>>> nx.write_network_text(graph)
|
489 |
+
╙── 0
|
490 |
+
├─╼ 1 ╾ 5
|
491 |
+
│ ├─╼ 3
|
492 |
+
│ └─╼ 4
|
493 |
+
└─╼ 2
|
494 |
+
├─╼ 5
|
495 |
+
│ └─╼ ...
|
496 |
+
└─╼ 6
|
497 |
+
|
498 |
+
>>> graph = nx.cycle_graph(5)
|
499 |
+
>>> nx.write_network_text(graph)
|
500 |
+
╙── 0
|
501 |
+
├── 1
|
502 |
+
│ └── 2
|
503 |
+
│ └── 3
|
504 |
+
│ └── 4 ─ 0
|
505 |
+
└── ...
|
506 |
+
|
507 |
+
>>> graph = nx.cycle_graph(5, nx.DiGraph)
|
508 |
+
>>> nx.write_network_text(graph, vertical_chains=True)
|
509 |
+
╙── 0 ╾ 4
|
510 |
+
╽
|
511 |
+
1
|
512 |
+
╽
|
513 |
+
2
|
514 |
+
╽
|
515 |
+
3
|
516 |
+
╽
|
517 |
+
4
|
518 |
+
└─╼ ...
|
519 |
+
|
520 |
+
>>> nx.write_network_text(graph, vertical_chains=True, ascii_only=True)
|
521 |
+
+-- 0 <- 4
|
522 |
+
!
|
523 |
+
1
|
524 |
+
!
|
525 |
+
2
|
526 |
+
!
|
527 |
+
3
|
528 |
+
!
|
529 |
+
4
|
530 |
+
L-> ...
|
531 |
+
|
532 |
+
>>> graph = nx.generators.barbell_graph(4, 2)
|
533 |
+
>>> nx.write_network_text(graph, vertical_chains=False)
|
534 |
+
╙── 4
|
535 |
+
├── 5
|
536 |
+
│ └── 6
|
537 |
+
│ ├── 7
|
538 |
+
│ │ ├── 8 ─ 6
|
539 |
+
│ │ │ └── 9 ─ 6, 7
|
540 |
+
│ │ └── ...
|
541 |
+
│ └── ...
|
542 |
+
└── 3
|
543 |
+
├── 0
|
544 |
+
│ ├── 1 ─ 3
|
545 |
+
│ │ └── 2 ─ 0, 3
|
546 |
+
│ └── ...
|
547 |
+
└── ...
|
548 |
+
>>> nx.write_network_text(graph, vertical_chains=True)
|
549 |
+
╙── 4
|
550 |
+
├── 5
|
551 |
+
│ │
|
552 |
+
│ 6
|
553 |
+
│ ├── 7
|
554 |
+
│ │ ├── 8 ─ 6
|
555 |
+
│ │ │ │
|
556 |
+
│ │ │ 9 ─ 6, 7
|
557 |
+
│ │ └── ...
|
558 |
+
│ └── ...
|
559 |
+
└── 3
|
560 |
+
├── 0
|
561 |
+
│ ├── 1 ─ 3
|
562 |
+
│ │ │
|
563 |
+
│ │ 2 ─ 0, 3
|
564 |
+
│ └── ...
|
565 |
+
└── ...
|
566 |
+
|
567 |
+
>>> graph = nx.complete_graph(5, create_using=nx.Graph)
|
568 |
+
>>> nx.write_network_text(graph)
|
569 |
+
╙── 0
|
570 |
+
├── 1
|
571 |
+
│ ├── 2 ─ 0
|
572 |
+
│ │ ├── 3 ─ 0, 1
|
573 |
+
│ │ │ └── 4 ─ 0, 1, 2
|
574 |
+
│ │ └── ...
|
575 |
+
│ └── ...
|
576 |
+
└── ...
|
577 |
+
|
578 |
+
>>> graph = nx.complete_graph(3, create_using=nx.DiGraph)
|
579 |
+
>>> nx.write_network_text(graph)
|
580 |
+
╙── 0 ╾ 1, 2
|
581 |
+
├─╼ 1 ╾ 2
|
582 |
+
│ ├─╼ 2 ╾ 0
|
583 |
+
│ │ └─╼ ...
|
584 |
+
│ └─╼ ...
|
585 |
+
└─╼ ...
|
586 |
+
"""
|
587 |
+
if path is None:
|
588 |
+
# The path is unspecified, write to stdout
|
589 |
+
_write = sys.stdout.write
|
590 |
+
elif hasattr(path, "write"):
|
591 |
+
# The path is already an open file
|
592 |
+
_write = path.write
|
593 |
+
elif callable(path):
|
594 |
+
# The path is a custom callable
|
595 |
+
_write = path
|
596 |
+
else:
|
597 |
+
raise TypeError(type(path))
|
598 |
+
|
599 |
+
for line in generate_network_text(
|
600 |
+
graph,
|
601 |
+
with_labels=with_labels,
|
602 |
+
sources=sources,
|
603 |
+
max_depth=max_depth,
|
604 |
+
ascii_only=ascii_only,
|
605 |
+
vertical_chains=vertical_chains,
|
606 |
+
):
|
607 |
+
_write(line + end)
|
608 |
+
|
609 |
+
|
610 |
+
def _find_sources(graph):
|
611 |
+
"""
|
612 |
+
Determine a minimal set of nodes such that the entire graph is reachable
|
613 |
+
"""
|
614 |
+
# For each connected part of the graph, choose at least
|
615 |
+
# one node as a starting point, preferably without a parent
|
616 |
+
if graph.is_directed():
|
617 |
+
# Choose one node from each SCC with minimum in_degree
|
618 |
+
sccs = list(nx.strongly_connected_components(graph))
|
619 |
+
# condensing the SCCs forms a dag, the nodes in this graph with
|
620 |
+
# 0 in-degree correspond to the SCCs from which the minimum set
|
621 |
+
# of nodes from which all other nodes can be reached.
|
622 |
+
scc_graph = nx.condensation(graph, sccs)
|
623 |
+
supernode_to_nodes = {sn: [] for sn in scc_graph.nodes()}
|
624 |
+
# Note: the order of mapping differs between pypy and cpython
|
625 |
+
# so we have to loop over graph nodes for consistency
|
626 |
+
mapping = scc_graph.graph["mapping"]
|
627 |
+
for n in graph.nodes:
|
628 |
+
sn = mapping[n]
|
629 |
+
supernode_to_nodes[sn].append(n)
|
630 |
+
sources = []
|
631 |
+
for sn in scc_graph.nodes():
|
632 |
+
if scc_graph.in_degree[sn] == 0:
|
633 |
+
scc = supernode_to_nodes[sn]
|
634 |
+
node = min(scc, key=lambda n: graph.in_degree[n])
|
635 |
+
sources.append(node)
|
636 |
+
else:
|
637 |
+
# For undirected graph, the entire graph will be reachable as
|
638 |
+
# long as we consider one node from every connected component
|
639 |
+
sources = [
|
640 |
+
min(cc, key=lambda n: graph.degree[n])
|
641 |
+
for cc in nx.connected_components(graph)
|
642 |
+
]
|
643 |
+
sources = sorted(sources, key=lambda n: graph.degree[n])
|
644 |
+
return sources
|
645 |
+
|
646 |
+
|
647 |
+
def forest_str(graph, with_labels=True, sources=None, write=None, ascii_only=False):
|
648 |
+
"""Creates a nice utf8 representation of a forest
|
649 |
+
|
650 |
+
This function has been superseded by
|
651 |
+
:func:`nx.readwrite.text.generate_network_text`, which should be used
|
652 |
+
instead.
|
653 |
+
|
654 |
+
Parameters
|
655 |
+
----------
|
656 |
+
graph : nx.DiGraph | nx.Graph
|
657 |
+
Graph to represent (must be a tree, forest, or the empty graph)
|
658 |
+
|
659 |
+
with_labels : bool
|
660 |
+
If True will use the "label" attribute of a node to display if it
|
661 |
+
exists otherwise it will use the node value itself. Defaults to True.
|
662 |
+
|
663 |
+
sources : List
|
664 |
+
Mainly relevant for undirected forests, specifies which nodes to list
|
665 |
+
first. If unspecified the root nodes of each tree will be used for
|
666 |
+
directed forests; for undirected forests this defaults to the nodes
|
667 |
+
with the smallest degree.
|
668 |
+
|
669 |
+
write : callable
|
670 |
+
Function to use to write to, if None new lines are appended to
|
671 |
+
a list and returned. If set to the `print` function, lines will
|
672 |
+
be written to stdout as they are generated. If specified,
|
673 |
+
this function will return None. Defaults to None.
|
674 |
+
|
675 |
+
ascii_only : Boolean
|
676 |
+
If True only ASCII characters are used to construct the visualization
|
677 |
+
|
678 |
+
Returns
|
679 |
+
-------
|
680 |
+
str | None :
|
681 |
+
utf8 representation of the tree / forest
|
682 |
+
|
683 |
+
Examples
|
684 |
+
--------
|
685 |
+
>>> graph = nx.balanced_tree(r=2, h=3, create_using=nx.DiGraph)
|
686 |
+
>>> print(nx.forest_str(graph))
|
687 |
+
╙── 0
|
688 |
+
├─╼ 1
|
689 |
+
│ ├─╼ 3
|
690 |
+
│ │ ├─╼ 7
|
691 |
+
│ │ └─╼ 8
|
692 |
+
│ └─╼ 4
|
693 |
+
│ ├─╼ 9
|
694 |
+
│ └─╼ 10
|
695 |
+
└─╼ 2
|
696 |
+
├─╼ 5
|
697 |
+
│ ├─╼ 11
|
698 |
+
│ └─╼ 12
|
699 |
+
└─╼ 6
|
700 |
+
├─╼ 13
|
701 |
+
└─╼ 14
|
702 |
+
|
703 |
+
|
704 |
+
>>> graph = nx.balanced_tree(r=1, h=2, create_using=nx.Graph)
|
705 |
+
>>> print(nx.forest_str(graph))
|
706 |
+
╙── 0
|
707 |
+
└── 1
|
708 |
+
└── 2
|
709 |
+
|
710 |
+
>>> print(nx.forest_str(graph, ascii_only=True))
|
711 |
+
+-- 0
|
712 |
+
L-- 1
|
713 |
+
L-- 2
|
714 |
+
"""
|
715 |
+
msg = (
|
716 |
+
"\nforest_str is deprecated as of version 3.1 and will be removed "
|
717 |
+
"in version 3.3. Use generate_network_text or write_network_text "
|
718 |
+
"instead.\n"
|
719 |
+
)
|
720 |
+
warnings.warn(msg, DeprecationWarning)
|
721 |
+
|
722 |
+
if len(graph.nodes) > 0:
|
723 |
+
if not nx.is_forest(graph):
|
724 |
+
raise nx.NetworkXNotImplemented("input must be a forest or the empty graph")
|
725 |
+
|
726 |
+
printbuf = []
|
727 |
+
if write is None:
|
728 |
+
_write = printbuf.append
|
729 |
+
else:
|
730 |
+
_write = write
|
731 |
+
|
732 |
+
write_network_text(
|
733 |
+
graph,
|
734 |
+
_write,
|
735 |
+
with_labels=with_labels,
|
736 |
+
sources=sources,
|
737 |
+
ascii_only=ascii_only,
|
738 |
+
end="",
|
739 |
+
)
|
740 |
+
|
741 |
+
if write is None:
|
742 |
+
# Only return a string if the custom write function was not specified
|
743 |
+
return "\n".join(printbuf)
|
744 |
+
|
745 |
+
|
746 |
+
def _parse_network_text(lines):
|
747 |
+
"""Reconstructs a graph from a network text representation.
|
748 |
+
|
749 |
+
This is mainly used for testing. Network text is for display, not
|
750 |
+
serialization, as such this cannot parse all network text representations
|
751 |
+
because node labels can be ambiguous with the glyphs and indentation used
|
752 |
+
to represent edge structure. Additionally, there is no way to determine if
|
753 |
+
disconnected graphs were originally directed or undirected.
|
754 |
+
|
755 |
+
Parameters
|
756 |
+
----------
|
757 |
+
lines : list or iterator of strings
|
758 |
+
Input data in network text format
|
759 |
+
|
760 |
+
Returns
|
761 |
+
-------
|
762 |
+
G: NetworkX graph
|
763 |
+
The graph corresponding to the lines in network text format.
|
764 |
+
"""
|
765 |
+
from itertools import chain
|
766 |
+
from typing import Any, NamedTuple, Union
|
767 |
+
|
768 |
+
class ParseStackFrame(NamedTuple):
|
769 |
+
node: Any
|
770 |
+
indent: int
|
771 |
+
has_vertical_child: int | None
|
772 |
+
|
773 |
+
initial_line_iter = iter(lines)
|
774 |
+
|
775 |
+
is_ascii = None
|
776 |
+
is_directed = None
|
777 |
+
|
778 |
+
##############
|
779 |
+
# Initial Pass
|
780 |
+
##############
|
781 |
+
|
782 |
+
# Do an initial pass over the lines to determine what type of graph it is.
|
783 |
+
# Remember what these lines were, so we can reiterate over them in the
|
784 |
+
# parsing pass.
|
785 |
+
initial_lines = []
|
786 |
+
try:
|
787 |
+
first_line = next(initial_line_iter)
|
788 |
+
except StopIteration:
|
789 |
+
...
|
790 |
+
else:
|
791 |
+
initial_lines.append(first_line)
|
792 |
+
# The first character indicates if it is an ASCII or UTF graph
|
793 |
+
first_char = first_line[0]
|
794 |
+
if first_char in {
|
795 |
+
UtfBaseGlyphs.empty,
|
796 |
+
UtfBaseGlyphs.newtree_mid[0],
|
797 |
+
UtfBaseGlyphs.newtree_last[0],
|
798 |
+
}:
|
799 |
+
is_ascii = False
|
800 |
+
elif first_char in {
|
801 |
+
AsciiBaseGlyphs.empty,
|
802 |
+
AsciiBaseGlyphs.newtree_mid[0],
|
803 |
+
AsciiBaseGlyphs.newtree_last[0],
|
804 |
+
}:
|
805 |
+
is_ascii = True
|
806 |
+
else:
|
807 |
+
raise AssertionError(f"Unexpected first character: {first_char}")
|
808 |
+
|
809 |
+
if is_ascii:
|
810 |
+
directed_glyphs = AsciiDirectedGlyphs.as_dict()
|
811 |
+
undirected_glyphs = AsciiUndirectedGlyphs.as_dict()
|
812 |
+
else:
|
813 |
+
directed_glyphs = UtfDirectedGlyphs.as_dict()
|
814 |
+
undirected_glyphs = UtfUndirectedGlyphs.as_dict()
|
815 |
+
|
816 |
+
# For both directed / undirected glyphs, determine which glyphs never
|
817 |
+
# appear as substrings in the other undirected / directed glyphs. Glyphs
|
818 |
+
# with this property unambiguously indicates if a graph is directed /
|
819 |
+
# undirected.
|
820 |
+
directed_items = set(directed_glyphs.values())
|
821 |
+
undirected_items = set(undirected_glyphs.values())
|
822 |
+
unambiguous_directed_items = []
|
823 |
+
for item in directed_items:
|
824 |
+
other_items = undirected_items
|
825 |
+
other_supersets = [other for other in other_items if item in other]
|
826 |
+
if not other_supersets:
|
827 |
+
unambiguous_directed_items.append(item)
|
828 |
+
unambiguous_undirected_items = []
|
829 |
+
for item in undirected_items:
|
830 |
+
other_items = directed_items
|
831 |
+
other_supersets = [other for other in other_items if item in other]
|
832 |
+
if not other_supersets:
|
833 |
+
unambiguous_undirected_items.append(item)
|
834 |
+
|
835 |
+
for line in initial_line_iter:
|
836 |
+
initial_lines.append(line)
|
837 |
+
if any(item in line for item in unambiguous_undirected_items):
|
838 |
+
is_directed = False
|
839 |
+
break
|
840 |
+
elif any(item in line for item in unambiguous_directed_items):
|
841 |
+
is_directed = True
|
842 |
+
break
|
843 |
+
|
844 |
+
if is_directed is None:
|
845 |
+
# Not enough information to determine, choose undirected by default
|
846 |
+
is_directed = False
|
847 |
+
|
848 |
+
glyphs = directed_glyphs if is_directed else undirected_glyphs
|
849 |
+
|
850 |
+
# the backedge symbol by itself can be ambiguous, but with spaces around it
|
851 |
+
# becomes unambiguous.
|
852 |
+
backedge_symbol = " " + glyphs["backedge"] + " "
|
853 |
+
|
854 |
+
# Reconstruct an iterator over all of the lines.
|
855 |
+
parsing_line_iter = chain(initial_lines, initial_line_iter)
|
856 |
+
|
857 |
+
##############
|
858 |
+
# Parsing Pass
|
859 |
+
##############
|
860 |
+
|
861 |
+
edges = []
|
862 |
+
nodes = []
|
863 |
+
is_empty = None
|
864 |
+
|
865 |
+
noparent = object() # sentinel value
|
866 |
+
|
867 |
+
# keep a stack of previous nodes that could be parents of subsequent nodes
|
868 |
+
stack = [ParseStackFrame(noparent, -1, None)]
|
869 |
+
|
870 |
+
for line in parsing_line_iter:
|
871 |
+
if line == glyphs["empty"]:
|
872 |
+
# If the line is the empty glyph, we are done.
|
873 |
+
# There shouldn't be anything else after this.
|
874 |
+
is_empty = True
|
875 |
+
continue
|
876 |
+
|
877 |
+
if backedge_symbol in line:
|
878 |
+
# This line has one or more backedges, separate those out
|
879 |
+
node_part, backedge_part = line.split(backedge_symbol)
|
880 |
+
backedge_nodes = [u.strip() for u in backedge_part.split(", ")]
|
881 |
+
# Now the node can be parsed
|
882 |
+
node_part = node_part.rstrip()
|
883 |
+
prefix, node = node_part.rsplit(" ", 1)
|
884 |
+
node = node.strip()
|
885 |
+
# Add the backedges to the edge list
|
886 |
+
edges.extend([(u, node) for u in backedge_nodes])
|
887 |
+
else:
|
888 |
+
# No backedge, the tail of this line is the node
|
889 |
+
prefix, node = line.rsplit(" ", 1)
|
890 |
+
node = node.strip()
|
891 |
+
|
892 |
+
prev = stack.pop()
|
893 |
+
|
894 |
+
if node in glyphs["vertical_edge"]:
|
895 |
+
# Previous node is still the previous node, but we know it will
|
896 |
+
# have exactly one child, which will need to have its nesting level
|
897 |
+
# adjusted.
|
898 |
+
modified_prev = ParseStackFrame(
|
899 |
+
prev.node,
|
900 |
+
prev.indent,
|
901 |
+
True,
|
902 |
+
)
|
903 |
+
stack.append(modified_prev)
|
904 |
+
continue
|
905 |
+
|
906 |
+
# The length of the string before the node characters give us a hint
|
907 |
+
# about our nesting level. The only case where this doesn't work is
|
908 |
+
# when there are vertical chains, which is handled explicitly.
|
909 |
+
indent = len(prefix)
|
910 |
+
curr = ParseStackFrame(node, indent, None)
|
911 |
+
|
912 |
+
if prev.has_vertical_child:
|
913 |
+
# In this case we know prev must be the parent of our current line,
|
914 |
+
# so we don't have to search the stack. (which is good because the
|
915 |
+
# indentation check wouldn't work in this case).
|
916 |
+
...
|
917 |
+
else:
|
918 |
+
# If the previous node nesting-level is greater than the current
|
919 |
+
# nodes nesting-level than the previous node was the end of a path,
|
920 |
+
# and is not our parent. We can safely pop nodes off the stack
|
921 |
+
# until we find one with a comparable nesting-level, which is our
|
922 |
+
# parent.
|
923 |
+
while curr.indent <= prev.indent:
|
924 |
+
prev = stack.pop()
|
925 |
+
|
926 |
+
if node == "...":
|
927 |
+
# The current previous node is no longer a valid parent,
|
928 |
+
# keep it popped from the stack.
|
929 |
+
stack.append(prev)
|
930 |
+
else:
|
931 |
+
# The previous and current nodes may still be parents, so add them
|
932 |
+
# back onto the stack.
|
933 |
+
stack.append(prev)
|
934 |
+
stack.append(curr)
|
935 |
+
|
936 |
+
# Add the node and the edge to its parent to the node / edge lists.
|
937 |
+
nodes.append(curr.node)
|
938 |
+
if prev.node is not noparent:
|
939 |
+
edges.append((prev.node, curr.node))
|
940 |
+
|
941 |
+
if is_empty:
|
942 |
+
# Sanity check
|
943 |
+
assert len(nodes) == 0
|
944 |
+
|
945 |
+
# Reconstruct the graph
|
946 |
+
cls = nx.DiGraph if is_directed else nx.Graph
|
947 |
+
new = cls()
|
948 |
+
new.add_nodes_from(nodes)
|
949 |
+
new.add_edges_from(edges)
|
950 |
+
return new
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (470 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/backends.cpython-310.pyc
ADDED
Binary file (41.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/configs.cpython-310.pyc
ADDED
Binary file (9.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/decorators.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/heaps.cpython-310.pyc
ADDED
Binary file (8.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/mapped_queue.cpython-310.pyc
ADDED
Binary file (8.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/misc.cpython-310.pyc
ADDED
Binary file (17.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/random_sequence.cpython-310.pyc
ADDED
Binary file (4.46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/rcm.cpython-310.pyc
ADDED
Binary file (5.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/__pycache__/union_find.cpython-310.pyc
ADDED
Binary file (3.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/networkx/utils/backends.py
ADDED
@@ -0,0 +1,1553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NetworkX utilizes a plugin-dispatch architecture, which means we can plug in and
|
3 |
+
out of backends with minimal code changes. A valid NetworkX backend specifies
|
4 |
+
`entry points <https://packaging.python.org/en/latest/specifications/entry-points>`_,
|
5 |
+
named ``networkx.backends`` and an optional ``networkx.backend_info`` when it is
|
6 |
+
installed (not imported). This allows NetworkX to dispatch (redirect) function calls
|
7 |
+
to the backend so the execution flows to the designated backend
|
8 |
+
implementation, similar to how plugging a charger into a socket redirects the
|
9 |
+
electricity to your phone. This design enhances flexibility and integration, making
|
10 |
+
NetworkX more adaptable and efficient.
|
11 |
+
|
12 |
+
There are three main ways to use a backend after the package is installed.
|
13 |
+
You can set environment variables and run the exact same code you run for
|
14 |
+
NetworkX. You can use a keyword argument ``backend=...`` with the NetworkX
|
15 |
+
function. Or, you can convert the NetworkX Graph to a backend graph type and
|
16 |
+
call a NetworkX function supported by that backend. Environment variables
|
17 |
+
and backend keywords automatically convert your NetworkX Graph to the
|
18 |
+
backend type. Manually converting it yourself allows you to use that same
|
19 |
+
backend graph for more than one function call, reducing conversion time.
|
20 |
+
|
21 |
+
For example, you can set an environment variable before starting python to request
|
22 |
+
all dispatchable functions automatically dispatch to the given backend::
|
23 |
+
|
24 |
+
bash> NETWORKX_AUTOMATIC_BACKENDS=cugraph python my_networkx_script.py
|
25 |
+
|
26 |
+
or you can specify the backend as a kwarg::
|
27 |
+
|
28 |
+
nx.betweenness_centrality(G, k=10, backend="parallel")
|
29 |
+
|
30 |
+
or you can convert the NetworkX Graph object ``G`` into a Graph-like
|
31 |
+
object specific to the backend and then pass that in the NetworkX function::
|
32 |
+
|
33 |
+
H = nx_parallel.ParallelGraph(G)
|
34 |
+
nx.betweenness_centrality(H, k=10)
|
35 |
+
|
36 |
+
How it works: You might have seen the ``@nx._dispatchable`` decorator on
|
37 |
+
many of the NetworkX functions in the codebase. It decorates the function
|
38 |
+
with code that redirects execution to the function's backend implementation.
|
39 |
+
The code also manages any ``backend_kwargs`` you provide to the backend
|
40 |
+
version of the function. The code looks for the environment variable or
|
41 |
+
a ``backend`` keyword argument and if found, converts the input NetworkX
|
42 |
+
graph to the backend format before calling the backend's version of the
|
43 |
+
function. If no environment variable or backend keyword are found, the
|
44 |
+
dispatching code checks the input graph object for an attribute
|
45 |
+
called ``__networkx_backend__`` which tells it which backend provides this
|
46 |
+
graph type. That backend's version of the function is then called.
|
47 |
+
The backend system relies on Python ``entry_point`` system to signal
|
48 |
+
NetworkX that a backend is installed (even if not imported yet). Thus no
|
49 |
+
code needs to be changed between running with NetworkX and running with
|
50 |
+
a backend to NetworkX. The attribute ``__networkx_backend__`` holds a
|
51 |
+
string with the name of the ``entry_point``. If none of these options
|
52 |
+
are being used, the decorator code simply calls the NetworkX function
|
53 |
+
on the NetworkX graph as usual.
|
54 |
+
|
55 |
+
The NetworkX library does not need to know that a backend exists for it
|
56 |
+
to work. So long as the backend package creates the entry_point, and
|
57 |
+
provides the correct interface, it will be called when the user requests
|
58 |
+
it using one of the three approaches described above. Some backends have
|
59 |
+
been working with the NetworkX developers to ensure smooth operation.
|
60 |
+
They are the following::
|
61 |
+
|
62 |
+
- `graphblas <https://github.com/python-graphblas/graphblas-algorithms>`_
|
63 |
+
- `cugraph <https://github.com/rapidsai/cugraph/tree/branch-24.04/python/nx-cugraph>`_
|
64 |
+
- `parallel <https://github.com/networkx/nx-parallel>`_
|
65 |
+
- ``loopback`` is for testing purposes only and is not a real backend.
|
66 |
+
|
67 |
+
Note that the ``backend_name`` is e.g. ``parallel``, the package installed
|
68 |
+
is ``nx-parallel``, and we use ``nx_parallel`` while importing the package.
|
69 |
+
|
70 |
+
Creating a Custom backend
|
71 |
+
-------------------------
|
72 |
+
|
73 |
+
1. To be a valid backend that is discoverable by NetworkX, your package must
|
74 |
+
register an `entry-point <https://packaging.python.org/en/latest/specifications/entry-points/#entry-points>`_
|
75 |
+
``networkx.backends`` in the package's metadata, with a `key pointing to your
|
76 |
+
dispatch object <https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata>`_ .
|
77 |
+
For example, if you are using ``setuptools`` to manage your backend package,
|
78 |
+
you can `add the following to your pyproject.toml file <https://setuptools.pypa.io/en/latest/userguide/entry_point.html>`_::
|
79 |
+
|
80 |
+
[project.entry-points."networkx.backends"]
|
81 |
+
backend_name = "your_dispatcher_class"
|
82 |
+
|
83 |
+
You can also add the ``backend_info`` entry-point. It points towards the ``get_info``
|
84 |
+
function that returns all the backend information, which is then used to build the
|
85 |
+
"Additional Backend Implementation" box at the end of algorithm's documentation
|
86 |
+
page (e.g. `nx-cugraph's get_info function <https://github.com/rapidsai/cugraph/blob/branch-24.04/python/nx-cugraph/_nx_cugraph/__init__.py>`_)::
|
87 |
+
|
88 |
+
[project.entry-points."networkx.backend_info"]
|
89 |
+
backend_name = "your_get_info_function"
|
90 |
+
|
91 |
+
Note that this would only work if your backend is a trusted backend of NetworkX,
|
92 |
+
and is present in the `.circleci/config.yml` and
|
93 |
+
`.github/workflows/deploy-docs.yml` files in the NetworkX repository.
|
94 |
+
|
95 |
+
2. The backend must create an ``nx.Graph``-like object which contains an attribute
|
96 |
+
``__networkx_backend__`` with a value of the entry point name::
|
97 |
+
|
98 |
+
class BackendGraph:
|
99 |
+
__networkx_backend__ = "backend_name"
|
100 |
+
...
|
101 |
+
|
102 |
+
|
103 |
+
Testing the Custom backend
|
104 |
+
--------------------------
|
105 |
+
|
106 |
+
To test your custom backend, you can run the NetworkX test suite with your backend.
|
107 |
+
This also ensures that the custom backend is compatible with NetworkX's API.
|
108 |
+
|
109 |
+
Testing Environment Setup
|
110 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~
|
111 |
+
|
112 |
+
To enable automatic testing with your custom backend, follow these steps:
|
113 |
+
|
114 |
+
1. Set Backend Environment Variables:
|
115 |
+
- ``NETWORKX_TEST_BACKEND`` : Setting this to your registered backend key will let
|
116 |
+
the NetworkX's dispatch machinery automatically convert a regular NetworkX
|
117 |
+
``Graph``, ``DiGraph``, ``MultiGraph``, etc. to their backend equivalents, using
|
118 |
+
``your_dispatcher_class.convert_from_nx(G, ...)`` function.
|
119 |
+
- ``NETWORKX_FALLBACK_TO_NX`` (default=False) : Setting this variable to `True` will
|
120 |
+
instruct tests to use a NetworkX ``Graph`` for algorithms not implemented by your
|
121 |
+
custom backend. Setting this to `False` will only run the tests for algorithms
|
122 |
+
implemented by your custom backend and tests for other algorithms will ``xfail``.
|
123 |
+
|
124 |
+
2. Defining ``convert_from_nx`` and ``convert_to_nx`` methods:
|
125 |
+
The arguments to ``convert_from_nx`` are:
|
126 |
+
|
127 |
+
- ``G`` : NetworkX Graph
|
128 |
+
- ``edge_attrs`` : dict, optional
|
129 |
+
Dictionary mapping edge attributes to default values if missing in ``G``.
|
130 |
+
If None, then no edge attributes will be converted and default may be 1.
|
131 |
+
- ``node_attrs``: dict, optional
|
132 |
+
Dictionary mapping node attributes to default values if missing in ``G``.
|
133 |
+
If None, then no node attributes will be converted.
|
134 |
+
- ``preserve_edge_attrs`` : bool
|
135 |
+
Whether to preserve all edge attributes.
|
136 |
+
- ``preserve_node_attrs`` : bool
|
137 |
+
Whether to preserve all node attributes.
|
138 |
+
- ``preserve_graph_attrs`` : bool
|
139 |
+
Whether to preserve all graph attributes.
|
140 |
+
- ``preserve_all_attrs`` : bool
|
141 |
+
Whether to preserve all graph, node, and edge attributes.
|
142 |
+
- ``name`` : str
|
143 |
+
The name of the algorithm.
|
144 |
+
- ``graph_name`` : str
|
145 |
+
The name of the graph argument being converted.
|
146 |
+
|
147 |
+
Running Tests
|
148 |
+
~~~~~~~~~~~~~
|
149 |
+
|
150 |
+
You can invoke NetworkX tests for your custom backend with the following commands::
|
151 |
+
|
152 |
+
NETWORKX_TEST_BACKEND=<backend_name>
|
153 |
+
NETWORKX_FALLBACK_TO_NX=True # or False
|
154 |
+
pytest --pyargs networkx
|
155 |
+
|
156 |
+
Conversions while running tests :
|
157 |
+
|
158 |
+
- Convert NetworkX graphs using ``<your_dispatcher_class>.convert_from_nx(G, ...)`` into
|
159 |
+
the backend graph.
|
160 |
+
- Pass the backend graph objects to the backend implementation of the algorithm.
|
161 |
+
- Convert the result back to a form expected by NetworkX tests using
|
162 |
+
``<your_dispatcher_class>.convert_to_nx(result, ...)``.
|
163 |
+
|
164 |
+
Notes
|
165 |
+
~~~~~
|
166 |
+
|
167 |
+
- Dispatchable algorithms that are not implemented by the backend
|
168 |
+
will cause a ``pytest.xfail``, giving some indication that not all
|
169 |
+
tests are running, while avoiding causing an explicit failure.
|
170 |
+
|
171 |
+
- If a backend only partially implements some algorithms, it can define
|
172 |
+
a ``can_run(name, args, kwargs)`` function that returns True or False
|
173 |
+
indicating whether it can run the algorithm with the given arguments.
|
174 |
+
It may also return a string indicating why the algorithm can't be run;
|
175 |
+
this string may be used in the future to give helpful info to the user.
|
176 |
+
|
177 |
+
- A backend may also define ``should_run(name, args, kwargs)`` that is similar
|
178 |
+
to ``can_run``, but answers whether the backend *should* be run (converting
|
179 |
+
if necessary). Like ``can_run``, it receives the original arguments so it
|
180 |
+
can decide whether it should be run by inspecting the arguments. ``can_run``
|
181 |
+
runs before ``should_run``, so ``should_run`` may assume ``can_run`` is True.
|
182 |
+
If not implemented by the backend, ``can_run`` and ``should_run`` are
|
183 |
+
assumed to always return True if the backend implements the algorithm.
|
184 |
+
|
185 |
+
- A special ``on_start_tests(items)`` function may be defined by the backend.
|
186 |
+
It will be called with the list of NetworkX tests discovered. Each item
|
187 |
+
is a test object that can be marked as xfail if the backend does not support
|
188 |
+
the test using ``item.add_marker(pytest.mark.xfail(reason=...))``.
|
189 |
+
|
190 |
+
- A backend graph instance may have a ``G.__networkx_cache__`` dict to enable
|
191 |
+
caching, and care should be taken to clear the cache when appropriate.
|
192 |
+
"""
|
193 |
+
|
194 |
+
import inspect
|
195 |
+
import itertools
|
196 |
+
import os
|
197 |
+
import warnings
|
198 |
+
from functools import partial
|
199 |
+
from importlib.metadata import entry_points
|
200 |
+
|
201 |
+
import networkx as nx
|
202 |
+
|
203 |
+
from .decorators import argmap
|
204 |
+
|
205 |
+
__all__ = ["_dispatchable"]
|
206 |
+
|
207 |
+
|
208 |
+
def _do_nothing():
|
209 |
+
"""This does nothing at all, yet it helps turn `_dispatchable` into functions."""
|
210 |
+
|
211 |
+
|
212 |
+
def _get_backends(group, *, load_and_call=False):
|
213 |
+
"""
|
214 |
+
Retrieve NetworkX ``backends`` and ``backend_info`` from the entry points.
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
-----------
|
218 |
+
group : str
|
219 |
+
The entry_point to be retrieved.
|
220 |
+
load_and_call : bool, optional
|
221 |
+
If True, load and call the backend. Defaults to False.
|
222 |
+
|
223 |
+
Returns
|
224 |
+
--------
|
225 |
+
dict
|
226 |
+
A dictionary mapping backend names to their respective backend objects.
|
227 |
+
|
228 |
+
Notes
|
229 |
+
------
|
230 |
+
If a backend is defined more than once, a warning is issued.
|
231 |
+
The `nx-loopback` backend is removed if it exists, as it is only available during testing.
|
232 |
+
A warning is displayed if an error occurs while loading a backend.
|
233 |
+
"""
|
234 |
+
items = entry_points(group=group)
|
235 |
+
rv = {}
|
236 |
+
for ep in items:
|
237 |
+
if ep.name in rv:
|
238 |
+
warnings.warn(
|
239 |
+
f"networkx backend defined more than once: {ep.name}",
|
240 |
+
RuntimeWarning,
|
241 |
+
stacklevel=2,
|
242 |
+
)
|
243 |
+
elif load_and_call:
|
244 |
+
try:
|
245 |
+
rv[ep.name] = ep.load()()
|
246 |
+
except Exception as exc:
|
247 |
+
warnings.warn(
|
248 |
+
f"Error encountered when loading info for backend {ep.name}: {exc}",
|
249 |
+
RuntimeWarning,
|
250 |
+
stacklevel=2,
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
rv[ep.name] = ep
|
254 |
+
rv.pop("nx-loopback", None)
|
255 |
+
return rv
|
256 |
+
|
257 |
+
|
258 |
+
backends = _get_backends("networkx.backends")
|
259 |
+
backend_info = _get_backends("networkx.backend_info", load_and_call=True)
|
260 |
+
|
261 |
+
# We must import from config after defining `backends` above
|
262 |
+
from .configs import Config, config
|
263 |
+
|
264 |
+
# Get default configuration from environment variables at import time
|
265 |
+
config.backend_priority = [
|
266 |
+
x.strip()
|
267 |
+
for x in os.environ.get(
|
268 |
+
"NETWORKX_BACKEND_PRIORITY",
|
269 |
+
os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", ""),
|
270 |
+
).split(",")
|
271 |
+
if x.strip()
|
272 |
+
]
|
273 |
+
# Initialize default configuration for backends
|
274 |
+
config.backends = Config(
|
275 |
+
**{
|
276 |
+
backend: (
|
277 |
+
cfg if isinstance(cfg := info["default_config"], Config) else Config(**cfg)
|
278 |
+
)
|
279 |
+
if "default_config" in info
|
280 |
+
else Config()
|
281 |
+
for backend, info in backend_info.items()
|
282 |
+
}
|
283 |
+
)
|
284 |
+
type(config.backends).__doc__ = "All installed NetworkX backends and their configs."
|
285 |
+
|
286 |
+
# Load and cache backends on-demand
|
287 |
+
_loaded_backends = {} # type: ignore[var-annotated]
|
288 |
+
|
289 |
+
|
290 |
+
def _always_run(name, args, kwargs):
|
291 |
+
return True
|
292 |
+
|
293 |
+
|
294 |
+
def _load_backend(backend_name):
|
295 |
+
if backend_name in _loaded_backends:
|
296 |
+
return _loaded_backends[backend_name]
|
297 |
+
rv = _loaded_backends[backend_name] = backends[backend_name].load()
|
298 |
+
if not hasattr(rv, "can_run"):
|
299 |
+
rv.can_run = _always_run
|
300 |
+
if not hasattr(rv, "should_run"):
|
301 |
+
rv.should_run = _always_run
|
302 |
+
return rv
|
303 |
+
|
304 |
+
|
305 |
+
_registered_algorithms = {}
|
306 |
+
|
307 |
+
|
308 |
+
class _dispatchable:
|
309 |
+
"""Allow any of the following decorator forms:
|
310 |
+
- @_dispatchable
|
311 |
+
- @_dispatchable()
|
312 |
+
- @_dispatchable(name="override_name")
|
313 |
+
- @_dispatchable(graphs="graph")
|
314 |
+
- @_dispatchable(edge_attrs="weight")
|
315 |
+
- @_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})
|
316 |
+
|
317 |
+
These class attributes are currently used to allow backends to run networkx tests.
|
318 |
+
For example: `PYTHONPATH=. pytest --backend graphblas --fallback-to-nx`
|
319 |
+
Future work: add configuration to control these.
|
320 |
+
"""
|
321 |
+
|
322 |
+
_is_testing = False
|
323 |
+
_fallback_to_nx = (
|
324 |
+
os.environ.get("NETWORKX_FALLBACK_TO_NX", "true").strip().lower() == "true"
|
325 |
+
)
|
326 |
+
|
327 |
+
def __new__(
|
328 |
+
cls,
|
329 |
+
func=None,
|
330 |
+
*,
|
331 |
+
name=None,
|
332 |
+
graphs="G",
|
333 |
+
edge_attrs=None,
|
334 |
+
node_attrs=None,
|
335 |
+
preserve_edge_attrs=False,
|
336 |
+
preserve_node_attrs=False,
|
337 |
+
preserve_graph_attrs=False,
|
338 |
+
preserve_all_attrs=False,
|
339 |
+
mutates_input=False,
|
340 |
+
returns_graph=False,
|
341 |
+
):
|
342 |
+
"""A decorator that makes certain input graph types dispatch to ``func``'s
|
343 |
+
backend implementation.
|
344 |
+
|
345 |
+
Usage can be any of the following decorator forms:
|
346 |
+
- @_dispatchable
|
347 |
+
- @_dispatchable()
|
348 |
+
- @_dispatchable(name="override_name")
|
349 |
+
- @_dispatchable(graphs="graph_var_name")
|
350 |
+
- @_dispatchable(edge_attrs="weight")
|
351 |
+
- @_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})
|
352 |
+
with 0 and 1 giving the position in the signature function for graph objects.
|
353 |
+
When edge_attrs is a dict, keys are keyword names and values are defaults.
|
354 |
+
|
355 |
+
The class attributes are used to allow backends to run networkx tests.
|
356 |
+
For example: `PYTHONPATH=. pytest --backend graphblas --fallback-to-nx`
|
357 |
+
Future work: add configuration to control these.
|
358 |
+
|
359 |
+
Parameters
|
360 |
+
----------
|
361 |
+
func : callable, optional
|
362 |
+
The function to be decorated. If ``func`` is not provided, returns a
|
363 |
+
partial object that can be used to decorate a function later. If ``func``
|
364 |
+
is provided, returns a new callable object that dispatches to a backend
|
365 |
+
algorithm based on input graph types.
|
366 |
+
|
367 |
+
name : str, optional
|
368 |
+
The name of the algorithm to use for dispatching. If not provided,
|
369 |
+
the name of ``func`` will be used. ``name`` is useful to avoid name
|
370 |
+
conflicts, as all dispatched algorithms live in a single namespace.
|
371 |
+
For example, ``tournament.is_strongly_connected`` had a name conflict
|
372 |
+
with the standard ``nx.is_strongly_connected``, so we used
|
373 |
+
``@_dispatchable(name="tournament_is_strongly_connected")``.
|
374 |
+
|
375 |
+
graphs : str or dict or None, default "G"
|
376 |
+
If a string, the parameter name of the graph, which must be the first
|
377 |
+
argument of the wrapped function. If more than one graph is required
|
378 |
+
for the algorithm (or if the graph is not the first argument), provide
|
379 |
+
a dict of parameter name to argument position for each graph argument.
|
380 |
+
For example, ``@_dispatchable(graphs={"G": 0, "auxiliary?": 4})``
|
381 |
+
indicates the 0th parameter ``G`` of the function is a required graph,
|
382 |
+
and the 4th parameter ``auxiliary`` is an optional graph.
|
383 |
+
To indicate an argument is a list of graphs, do e.g. ``"[graphs]"``.
|
384 |
+
Use ``graphs=None`` if *no* arguments are NetworkX graphs such as for
|
385 |
+
graph generators, readers, and conversion functions.
|
386 |
+
|
387 |
+
edge_attrs : str or dict, optional
|
388 |
+
``edge_attrs`` holds information about edge attribute arguments
|
389 |
+
and default values for those edge attributes.
|
390 |
+
If a string, ``edge_attrs`` holds the function argument name that
|
391 |
+
indicates a single edge attribute to include in the converted graph.
|
392 |
+
The default value for this attribute is 1. To indicate that an argument
|
393 |
+
is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``.
|
394 |
+
If a dict, ``edge_attrs`` holds a dict keyed by argument names, with
|
395 |
+
values that are either the default value or, if a string, the argument
|
396 |
+
name that indicates the default value.
|
397 |
+
|
398 |
+
node_attrs : str or dict, optional
|
399 |
+
Like ``edge_attrs``, but for node attributes.
|
400 |
+
|
401 |
+
preserve_edge_attrs : bool or str or dict, optional
|
402 |
+
For bool, whether to preserve all edge attributes.
|
403 |
+
For str, the parameter name that may indicate (with ``True`` or a
|
404 |
+
callable argument) whether all edge attributes should be preserved
|
405 |
+
when converting.
|
406 |
+
For dict of ``{graph_name: {attr: default}}``, indicate pre-determined
|
407 |
+
edge attributes (and defaults) to preserve for input graphs.
|
408 |
+
|
409 |
+
preserve_node_attrs : bool or str or dict, optional
|
410 |
+
Like ``preserve_edge_attrs``, but for node attributes.
|
411 |
+
|
412 |
+
preserve_graph_attrs : bool or set
|
413 |
+
For bool, whether to preserve all graph attributes.
|
414 |
+
For set, which input graph arguments to preserve graph attributes.
|
415 |
+
|
416 |
+
preserve_all_attrs : bool
|
417 |
+
Whether to preserve all edge, node and graph attributes.
|
418 |
+
This overrides all the other preserve_*_attrs.
|
419 |
+
|
420 |
+
mutates_input : bool or dict, default False
|
421 |
+
For bool, whether the functions mutates an input graph argument.
|
422 |
+
For dict of ``{arg_name: arg_pos}``, arguments that indicates whether an
|
423 |
+
input graph will be mutated, and ``arg_name`` may begin with ``"not "``
|
424 |
+
to negate the logic (for example, this is used by ``copy=`` arguments).
|
425 |
+
By default, dispatching doesn't convert input graphs to a different
|
426 |
+
backend for functions that mutate input graphs.
|
427 |
+
|
428 |
+
returns_graph : bool, default False
|
429 |
+
Whether the function can return or yield a graph object. By default,
|
430 |
+
dispatching doesn't convert input graphs to a different backend for
|
431 |
+
functions that return graphs.
|
432 |
+
"""
|
433 |
+
if func is None:
|
434 |
+
return partial(
|
435 |
+
_dispatchable,
|
436 |
+
name=name,
|
437 |
+
graphs=graphs,
|
438 |
+
edge_attrs=edge_attrs,
|
439 |
+
node_attrs=node_attrs,
|
440 |
+
preserve_edge_attrs=preserve_edge_attrs,
|
441 |
+
preserve_node_attrs=preserve_node_attrs,
|
442 |
+
preserve_graph_attrs=preserve_graph_attrs,
|
443 |
+
preserve_all_attrs=preserve_all_attrs,
|
444 |
+
mutates_input=mutates_input,
|
445 |
+
returns_graph=returns_graph,
|
446 |
+
)
|
447 |
+
if isinstance(func, str):
|
448 |
+
raise TypeError("'name' and 'graphs' must be passed by keyword") from None
|
449 |
+
# If name not provided, use the name of the function
|
450 |
+
if name is None:
|
451 |
+
name = func.__name__
|
452 |
+
|
453 |
+
self = object.__new__(cls)
|
454 |
+
|
455 |
+
# standard function-wrapping stuff
|
456 |
+
# __annotations__ not used
|
457 |
+
self.__name__ = func.__name__
|
458 |
+
# self.__doc__ = func.__doc__ # __doc__ handled as cached property
|
459 |
+
self.__defaults__ = func.__defaults__
|
460 |
+
# We "magically" add `backend=` keyword argument to allow backend to be specified
|
461 |
+
if func.__kwdefaults__:
|
462 |
+
self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None}
|
463 |
+
else:
|
464 |
+
self.__kwdefaults__ = {"backend": None}
|
465 |
+
self.__module__ = func.__module__
|
466 |
+
self.__qualname__ = func.__qualname__
|
467 |
+
self.__dict__.update(func.__dict__)
|
468 |
+
self.__wrapped__ = func
|
469 |
+
|
470 |
+
# Supplement docstring with backend info; compute and cache when needed
|
471 |
+
self._orig_doc = func.__doc__
|
472 |
+
self._cached_doc = None
|
473 |
+
|
474 |
+
self.orig_func = func
|
475 |
+
self.name = name
|
476 |
+
self.edge_attrs = edge_attrs
|
477 |
+
self.node_attrs = node_attrs
|
478 |
+
self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs
|
479 |
+
self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs
|
480 |
+
self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs
|
481 |
+
self.mutates_input = mutates_input
|
482 |
+
# Keep `returns_graph` private for now, b/c we may extend info on return types
|
483 |
+
self._returns_graph = returns_graph
|
484 |
+
|
485 |
+
if edge_attrs is not None and not isinstance(edge_attrs, str | dict):
|
486 |
+
raise TypeError(
|
487 |
+
f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict."
|
488 |
+
) from None
|
489 |
+
if node_attrs is not None and not isinstance(node_attrs, str | dict):
|
490 |
+
raise TypeError(
|
491 |
+
f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict."
|
492 |
+
) from None
|
493 |
+
if not isinstance(self.preserve_edge_attrs, bool | str | dict):
|
494 |
+
raise TypeError(
|
495 |
+
f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}."
|
496 |
+
" Expected bool, str, or dict."
|
497 |
+
) from None
|
498 |
+
if not isinstance(self.preserve_node_attrs, bool | str | dict):
|
499 |
+
raise TypeError(
|
500 |
+
f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}."
|
501 |
+
" Expected bool, str, or dict."
|
502 |
+
) from None
|
503 |
+
if not isinstance(self.preserve_graph_attrs, bool | set):
|
504 |
+
raise TypeError(
|
505 |
+
f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}."
|
506 |
+
" Expected bool or set."
|
507 |
+
) from None
|
508 |
+
if not isinstance(self.mutates_input, bool | dict):
|
509 |
+
raise TypeError(
|
510 |
+
f"Bad type for mutates_input: {type(self.mutates_input)}."
|
511 |
+
" Expected bool or dict."
|
512 |
+
) from None
|
513 |
+
if not isinstance(self._returns_graph, bool):
|
514 |
+
raise TypeError(
|
515 |
+
f"Bad type for returns_graph: {type(self._returns_graph)}."
|
516 |
+
" Expected bool."
|
517 |
+
) from None
|
518 |
+
|
519 |
+
if isinstance(graphs, str):
|
520 |
+
graphs = {graphs: 0}
|
521 |
+
elif graphs is None:
|
522 |
+
pass
|
523 |
+
elif not isinstance(graphs, dict):
|
524 |
+
raise TypeError(
|
525 |
+
f"Bad type for graphs: {type(graphs)}. Expected str or dict."
|
526 |
+
) from None
|
527 |
+
elif len(graphs) == 0:
|
528 |
+
raise KeyError("'graphs' must contain at least one variable name") from None
|
529 |
+
|
530 |
+
# This dict comprehension is complicated for better performance; equivalent shown below.
|
531 |
+
self.optional_graphs = set()
|
532 |
+
self.list_graphs = set()
|
533 |
+
if graphs is None:
|
534 |
+
self.graphs = {}
|
535 |
+
else:
|
536 |
+
self.graphs = {
|
537 |
+
self.optional_graphs.add(val := k[:-1]) or val
|
538 |
+
if (last := k[-1]) == "?"
|
539 |
+
else self.list_graphs.add(val := k[1:-1]) or val
|
540 |
+
if last == "]"
|
541 |
+
else k: v
|
542 |
+
for k, v in graphs.items()
|
543 |
+
}
|
544 |
+
# The above is equivalent to:
|
545 |
+
# self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"}
|
546 |
+
# self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"}
|
547 |
+
# self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()}
|
548 |
+
|
549 |
+
# Compute and cache the signature on-demand
|
550 |
+
self._sig = None
|
551 |
+
|
552 |
+
# Which backends implement this function?
|
553 |
+
self.backends = {
|
554 |
+
backend
|
555 |
+
for backend, info in backend_info.items()
|
556 |
+
if "functions" in info and name in info["functions"]
|
557 |
+
}
|
558 |
+
|
559 |
+
if name in _registered_algorithms:
|
560 |
+
raise KeyError(
|
561 |
+
f"Algorithm already exists in dispatch registry: {name}"
|
562 |
+
) from None
|
563 |
+
# Use the magic of `argmap` to turn `self` into a function. This does result
|
564 |
+
# in small additional overhead compared to calling `_dispatchable` directly,
|
565 |
+
# but `argmap` has the magical property that it can stack with other `argmap`
|
566 |
+
# decorators "for free". Being a function is better for REPRs and type-checkers.
|
567 |
+
self = argmap(_do_nothing)(self)
|
568 |
+
_registered_algorithms[name] = self
|
569 |
+
return self
|
570 |
+
|
571 |
+
@property
|
572 |
+
def __doc__(self):
|
573 |
+
"""If the cached documentation exists, it is returned.
|
574 |
+
Otherwise, the documentation is generated using _make_doc() method,
|
575 |
+
cached, and then returned."""
|
576 |
+
|
577 |
+
if (rv := self._cached_doc) is not None:
|
578 |
+
return rv
|
579 |
+
rv = self._cached_doc = self._make_doc()
|
580 |
+
return rv
|
581 |
+
|
582 |
+
@__doc__.setter
|
583 |
+
def __doc__(self, val):
|
584 |
+
"""Sets the original documentation to the given value and resets the
|
585 |
+
cached documentation."""
|
586 |
+
|
587 |
+
self._orig_doc = val
|
588 |
+
self._cached_doc = None
|
589 |
+
|
590 |
+
@property
|
591 |
+
def __signature__(self):
|
592 |
+
"""Return the signature of the original function, with the addition of
|
593 |
+
the `backend` and `backend_kwargs` parameters."""
|
594 |
+
|
595 |
+
if self._sig is None:
|
596 |
+
sig = inspect.signature(self.orig_func)
|
597 |
+
# `backend` is now a reserved argument used by dispatching.
|
598 |
+
# assert "backend" not in sig.parameters
|
599 |
+
if not any(
|
600 |
+
p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values()
|
601 |
+
):
|
602 |
+
sig = sig.replace(
|
603 |
+
parameters=[
|
604 |
+
*sig.parameters.values(),
|
605 |
+
inspect.Parameter(
|
606 |
+
"backend", inspect.Parameter.KEYWORD_ONLY, default=None
|
607 |
+
),
|
608 |
+
inspect.Parameter(
|
609 |
+
"backend_kwargs", inspect.Parameter.VAR_KEYWORD
|
610 |
+
),
|
611 |
+
]
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
*parameters, var_keyword = sig.parameters.values()
|
615 |
+
sig = sig.replace(
|
616 |
+
parameters=[
|
617 |
+
*parameters,
|
618 |
+
inspect.Parameter(
|
619 |
+
"backend", inspect.Parameter.KEYWORD_ONLY, default=None
|
620 |
+
),
|
621 |
+
var_keyword,
|
622 |
+
]
|
623 |
+
)
|
624 |
+
self._sig = sig
|
625 |
+
return self._sig
|
626 |
+
|
627 |
+
def __call__(self, /, *args, backend=None, **kwargs):
|
628 |
+
"""Returns the result of the original function, or the backend function if
|
629 |
+
the backend is specified and that backend implements `func`."""
|
630 |
+
|
631 |
+
if not backends:
|
632 |
+
# Fast path if no backends are installed
|
633 |
+
return self.orig_func(*args, **kwargs)
|
634 |
+
|
635 |
+
# Use `backend_name` in this function instead of `backend`
|
636 |
+
backend_name = backend
|
637 |
+
if backend_name is not None and backend_name not in backends:
|
638 |
+
raise ImportError(f"Unable to load backend: {backend_name}")
|
639 |
+
|
640 |
+
graphs_resolved = {}
|
641 |
+
for gname, pos in self.graphs.items():
|
642 |
+
if pos < len(args):
|
643 |
+
if gname in kwargs:
|
644 |
+
raise TypeError(f"{self.name}() got multiple values for {gname!r}")
|
645 |
+
val = args[pos]
|
646 |
+
elif gname in kwargs:
|
647 |
+
val = kwargs[gname]
|
648 |
+
elif gname not in self.optional_graphs:
|
649 |
+
raise TypeError(
|
650 |
+
f"{self.name}() missing required graph argument: {gname}"
|
651 |
+
)
|
652 |
+
else:
|
653 |
+
continue
|
654 |
+
if val is None:
|
655 |
+
if gname not in self.optional_graphs:
|
656 |
+
raise TypeError(
|
657 |
+
f"{self.name}() required graph argument {gname!r} is None; must be a graph"
|
658 |
+
)
|
659 |
+
else:
|
660 |
+
graphs_resolved[gname] = val
|
661 |
+
|
662 |
+
# Alternative to the above that does not check duplicated args or missing required graphs.
|
663 |
+
# graphs_resolved = {
|
664 |
+
# val
|
665 |
+
# for gname, pos in self.graphs.items()
|
666 |
+
# if (val := args[pos] if pos < len(args) else kwargs.get(gname)) is not None
|
667 |
+
# }
|
668 |
+
|
669 |
+
# Check if any graph comes from a backend
|
670 |
+
if self.list_graphs:
|
671 |
+
# Make sure we don't lose values by consuming an iterator
|
672 |
+
args = list(args)
|
673 |
+
for gname in self.list_graphs & graphs_resolved.keys():
|
674 |
+
val = list(graphs_resolved[gname])
|
675 |
+
graphs_resolved[gname] = val
|
676 |
+
if gname in kwargs:
|
677 |
+
kwargs[gname] = val
|
678 |
+
else:
|
679 |
+
args[self.graphs[gname]] = val
|
680 |
+
|
681 |
+
has_backends = any(
|
682 |
+
hasattr(g, "__networkx_backend__")
|
683 |
+
if gname not in self.list_graphs
|
684 |
+
else any(hasattr(g2, "__networkx_backend__") for g2 in g)
|
685 |
+
for gname, g in graphs_resolved.items()
|
686 |
+
)
|
687 |
+
if has_backends:
|
688 |
+
graph_backend_names = {
|
689 |
+
getattr(g, "__networkx_backend__", "networkx")
|
690 |
+
for gname, g in graphs_resolved.items()
|
691 |
+
if gname not in self.list_graphs
|
692 |
+
}
|
693 |
+
for gname in self.list_graphs & graphs_resolved.keys():
|
694 |
+
graph_backend_names.update(
|
695 |
+
getattr(g, "__networkx_backend__", "networkx")
|
696 |
+
for g in graphs_resolved[gname]
|
697 |
+
)
|
698 |
+
else:
|
699 |
+
has_backends = any(
|
700 |
+
hasattr(g, "__networkx_backend__") for g in graphs_resolved.values()
|
701 |
+
)
|
702 |
+
if has_backends:
|
703 |
+
graph_backend_names = {
|
704 |
+
getattr(g, "__networkx_backend__", "networkx")
|
705 |
+
for g in graphs_resolved.values()
|
706 |
+
}
|
707 |
+
|
708 |
+
backend_priority = config.backend_priority
|
709 |
+
if self._is_testing and backend_priority and backend_name is None:
|
710 |
+
# Special path if we are running networkx tests with a backend.
|
711 |
+
# This even runs for (and handles) functions that mutate input graphs.
|
712 |
+
return self._convert_and_call_for_tests(
|
713 |
+
backend_priority[0],
|
714 |
+
args,
|
715 |
+
kwargs,
|
716 |
+
fallback_to_nx=self._fallback_to_nx,
|
717 |
+
)
|
718 |
+
|
719 |
+
if has_backends:
|
720 |
+
# Dispatchable graphs found! Dispatch to backend function.
|
721 |
+
# We don't handle calls with different backend graphs yet,
|
722 |
+
# but we may be able to convert additional networkx graphs.
|
723 |
+
backend_names = graph_backend_names - {"networkx"}
|
724 |
+
if len(backend_names) != 1:
|
725 |
+
# Future work: convert between backends and run if multiple backends found
|
726 |
+
raise TypeError(
|
727 |
+
f"{self.name}() graphs must all be from the same backend, found {backend_names}"
|
728 |
+
)
|
729 |
+
[graph_backend_name] = backend_names
|
730 |
+
if backend_name is not None and backend_name != graph_backend_name:
|
731 |
+
# Future work: convert between backends to `backend_name` backend
|
732 |
+
raise TypeError(
|
733 |
+
f"{self.name}() is unable to convert graph from backend {graph_backend_name!r} "
|
734 |
+
f"to the specified backend {backend_name!r}."
|
735 |
+
)
|
736 |
+
if graph_backend_name not in backends:
|
737 |
+
raise ImportError(f"Unable to load backend: {graph_backend_name}")
|
738 |
+
if (
|
739 |
+
"networkx" in graph_backend_names
|
740 |
+
and graph_backend_name not in backend_priority
|
741 |
+
):
|
742 |
+
# Not configured to convert networkx graphs to this backend
|
743 |
+
raise TypeError(
|
744 |
+
f"Unable to convert inputs and run {self.name}. "
|
745 |
+
f"{self.name}() has networkx and {graph_backend_name} graphs, but NetworkX is not "
|
746 |
+
f"configured to automatically convert graphs from networkx to {graph_backend_name}."
|
747 |
+
)
|
748 |
+
backend = _load_backend(graph_backend_name)
|
749 |
+
if hasattr(backend, self.name):
|
750 |
+
if "networkx" in graph_backend_names:
|
751 |
+
# We need to convert networkx graphs to backend graphs.
|
752 |
+
# There is currently no need to check `self.mutates_input` here.
|
753 |
+
return self._convert_and_call(
|
754 |
+
graph_backend_name,
|
755 |
+
args,
|
756 |
+
kwargs,
|
757 |
+
fallback_to_nx=self._fallback_to_nx,
|
758 |
+
)
|
759 |
+
# All graphs are backend graphs--no need to convert!
|
760 |
+
return getattr(backend, self.name)(*args, **kwargs)
|
761 |
+
# Future work: try to convert and run with other backends in backend_priority
|
762 |
+
raise nx.NetworkXNotImplemented(
|
763 |
+
f"'{self.name}' not implemented by {graph_backend_name}"
|
764 |
+
)
|
765 |
+
|
766 |
+
# If backend was explicitly given by the user, so we need to use it no matter what
|
767 |
+
if backend_name is not None:
|
768 |
+
return self._convert_and_call(
|
769 |
+
backend_name, args, kwargs, fallback_to_nx=False
|
770 |
+
)
|
771 |
+
|
772 |
+
# Only networkx graphs; try to convert and run with a backend with automatic
|
773 |
+
# conversion, but don't do this by default for graph generators or loaders,
|
774 |
+
# or if the functions mutates an input graph or returns a graph.
|
775 |
+
# Only convert and run if `backend.should_run(...)` returns True.
|
776 |
+
if (
|
777 |
+
not self._returns_graph
|
778 |
+
and (
|
779 |
+
not self.mutates_input
|
780 |
+
or isinstance(self.mutates_input, dict)
|
781 |
+
# If `mutates_input` begins with "not ", then assume the argument is boolean,
|
782 |
+
# otherwise treat it as a node or edge attribute if it's not None.
|
783 |
+
and any(
|
784 |
+
not (
|
785 |
+
args[arg_pos]
|
786 |
+
if len(args) > arg_pos
|
787 |
+
else kwargs.get(arg_name[4:], True)
|
788 |
+
)
|
789 |
+
if arg_name.startswith("not ")
|
790 |
+
else (
|
791 |
+
args[arg_pos] if len(args) > arg_pos else kwargs.get(arg_name)
|
792 |
+
)
|
793 |
+
is not None
|
794 |
+
for arg_name, arg_pos in self.mutates_input.items()
|
795 |
+
)
|
796 |
+
)
|
797 |
+
):
|
798 |
+
# Should we warn or log if we don't convert b/c the input will be mutated?
|
799 |
+
for backend_name in backend_priority:
|
800 |
+
if self._should_backend_run(backend_name, *args, **kwargs):
|
801 |
+
return self._convert_and_call(
|
802 |
+
backend_name,
|
803 |
+
args,
|
804 |
+
kwargs,
|
805 |
+
fallback_to_nx=self._fallback_to_nx,
|
806 |
+
)
|
807 |
+
# Default: run with networkx on networkx inputs
|
808 |
+
return self.orig_func(*args, **kwargs)
|
809 |
+
|
810 |
+
def _can_backend_run(self, backend_name, /, *args, **kwargs):
|
811 |
+
"""Can the specified backend run this algorithm with these arguments?"""
|
812 |
+
backend = _load_backend(backend_name)
|
813 |
+
# `backend.can_run` and `backend.should_run` may return strings that describe
|
814 |
+
# why they can't or shouldn't be run. We plan to use the strings in the future.
|
815 |
+
return (
|
816 |
+
hasattr(backend, self.name)
|
817 |
+
and (can_run := backend.can_run(self.name, args, kwargs))
|
818 |
+
and not isinstance(can_run, str)
|
819 |
+
)
|
820 |
+
|
821 |
+
def _should_backend_run(self, backend_name, /, *args, **kwargs):
|
822 |
+
"""Can/should the specified backend run this algorithm with these arguments?"""
|
823 |
+
backend = _load_backend(backend_name)
|
824 |
+
# `backend.can_run` and `backend.should_run` may return strings that describe
|
825 |
+
# why they can't or shouldn't be run. We plan to use the strings in the future.
|
826 |
+
return (
|
827 |
+
hasattr(backend, self.name)
|
828 |
+
and (can_run := backend.can_run(self.name, args, kwargs))
|
829 |
+
and not isinstance(can_run, str)
|
830 |
+
and (should_run := backend.should_run(self.name, args, kwargs))
|
831 |
+
and not isinstance(should_run, str)
|
832 |
+
)
|
833 |
+
|
834 |
+
def _convert_arguments(self, backend_name, args, kwargs, *, use_cache):
|
835 |
+
"""Convert graph arguments to the specified backend.
|
836 |
+
|
837 |
+
Returns
|
838 |
+
-------
|
839 |
+
args tuple and kwargs dict
|
840 |
+
"""
|
841 |
+
bound = self.__signature__.bind(*args, **kwargs)
|
842 |
+
bound.apply_defaults()
|
843 |
+
if not self.graphs:
|
844 |
+
bound_kwargs = bound.kwargs
|
845 |
+
del bound_kwargs["backend"]
|
846 |
+
return bound.args, bound_kwargs
|
847 |
+
# Convert graphs into backend graph-like object
|
848 |
+
# Include the edge and/or node labels if provided to the algorithm
|
849 |
+
preserve_edge_attrs = self.preserve_edge_attrs
|
850 |
+
edge_attrs = self.edge_attrs
|
851 |
+
if preserve_edge_attrs is False:
|
852 |
+
# e.g. `preserve_edge_attrs=False`
|
853 |
+
pass
|
854 |
+
elif preserve_edge_attrs is True:
|
855 |
+
# e.g. `preserve_edge_attrs=True`
|
856 |
+
edge_attrs = None
|
857 |
+
elif isinstance(preserve_edge_attrs, str):
|
858 |
+
if bound.arguments[preserve_edge_attrs] is True or callable(
|
859 |
+
bound.arguments[preserve_edge_attrs]
|
860 |
+
):
|
861 |
+
# e.g. `preserve_edge_attrs="attr"` and `func(attr=True)`
|
862 |
+
# e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)`
|
863 |
+
preserve_edge_attrs = True
|
864 |
+
edge_attrs = None
|
865 |
+
elif bound.arguments[preserve_edge_attrs] is False and (
|
866 |
+
isinstance(edge_attrs, str)
|
867 |
+
and edge_attrs == preserve_edge_attrs
|
868 |
+
or isinstance(edge_attrs, dict)
|
869 |
+
and preserve_edge_attrs in edge_attrs
|
870 |
+
):
|
871 |
+
# e.g. `preserve_edge_attrs="attr"` and `func(attr=False)`
|
872 |
+
# Treat `False` argument as meaning "preserve_edge_data=False"
|
873 |
+
# and not `False` as the edge attribute to use.
|
874 |
+
preserve_edge_attrs = False
|
875 |
+
edge_attrs = None
|
876 |
+
else:
|
877 |
+
# e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")`
|
878 |
+
preserve_edge_attrs = False
|
879 |
+
# Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}`
|
880 |
+
|
881 |
+
if edge_attrs is None:
|
882 |
+
# May have been set to None above b/c all attributes are preserved
|
883 |
+
pass
|
884 |
+
elif isinstance(edge_attrs, str):
|
885 |
+
if edge_attrs[0] == "[":
|
886 |
+
# e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes)
|
887 |
+
# e.g. `func(edge_attributes=["foo", "bar"])`
|
888 |
+
edge_attrs = {
|
889 |
+
edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]]
|
890 |
+
}
|
891 |
+
elif callable(bound.arguments[edge_attrs]):
|
892 |
+
# e.g. `edge_attrs="weight"` and `func(weight=myfunc)`
|
893 |
+
preserve_edge_attrs = True
|
894 |
+
edge_attrs = None
|
895 |
+
elif bound.arguments[edge_attrs] is not None:
|
896 |
+
# e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1)
|
897 |
+
edge_attrs = {bound.arguments[edge_attrs]: 1}
|
898 |
+
elif self.name == "to_numpy_array" and hasattr(
|
899 |
+
bound.arguments["dtype"], "names"
|
900 |
+
):
|
901 |
+
# Custom handling: attributes may be obtained from `dtype`
|
902 |
+
edge_attrs = {
|
903 |
+
edge_attr: 1 for edge_attr in bound.arguments["dtype"].names
|
904 |
+
}
|
905 |
+
else:
|
906 |
+
# e.g. `edge_attrs="weight"` and `func(weight=None)`
|
907 |
+
edge_attrs = None
|
908 |
+
else:
|
909 |
+
# e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
|
910 |
+
# e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")`
|
911 |
+
edge_attrs = {
|
912 |
+
edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val
|
913 |
+
for key, val in edge_attrs.items()
|
914 |
+
if (edge_attr := bound.arguments[key]) is not None
|
915 |
+
}
|
916 |
+
|
917 |
+
preserve_node_attrs = self.preserve_node_attrs
|
918 |
+
node_attrs = self.node_attrs
|
919 |
+
if preserve_node_attrs is False:
|
920 |
+
# e.g. `preserve_node_attrs=False`
|
921 |
+
pass
|
922 |
+
elif preserve_node_attrs is True:
|
923 |
+
# e.g. `preserve_node_attrs=True`
|
924 |
+
node_attrs = None
|
925 |
+
elif isinstance(preserve_node_attrs, str):
|
926 |
+
if bound.arguments[preserve_node_attrs] is True or callable(
|
927 |
+
bound.arguments[preserve_node_attrs]
|
928 |
+
):
|
929 |
+
# e.g. `preserve_node_attrs="attr"` and `func(attr=True)`
|
930 |
+
# e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)`
|
931 |
+
preserve_node_attrs = True
|
932 |
+
node_attrs = None
|
933 |
+
elif bound.arguments[preserve_node_attrs] is False and (
|
934 |
+
isinstance(node_attrs, str)
|
935 |
+
and node_attrs == preserve_node_attrs
|
936 |
+
or isinstance(node_attrs, dict)
|
937 |
+
and preserve_node_attrs in node_attrs
|
938 |
+
):
|
939 |
+
# e.g. `preserve_node_attrs="attr"` and `func(attr=False)`
|
940 |
+
# Treat `False` argument as meaning "preserve_node_data=False"
|
941 |
+
# and not `False` as the node attribute to use. Is this used?
|
942 |
+
preserve_node_attrs = False
|
943 |
+
node_attrs = None
|
944 |
+
else:
|
945 |
+
# e.g. `preserve_node_attrs="attr"` and `func(attr="weight")`
|
946 |
+
preserve_node_attrs = False
|
947 |
+
# Else: e.g. `preserve_node_attrs={"G": {"pos": None}}`
|
948 |
+
|
949 |
+
if node_attrs is None:
|
950 |
+
# May have been set to None above b/c all attributes are preserved
|
951 |
+
pass
|
952 |
+
elif isinstance(node_attrs, str):
|
953 |
+
if node_attrs[0] == "[":
|
954 |
+
# e.g. `node_attrs="[node_attributes]"` (argument of list of attributes)
|
955 |
+
# e.g. `func(node_attributes=["foo", "bar"])`
|
956 |
+
node_attrs = {
|
957 |
+
node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]]
|
958 |
+
}
|
959 |
+
elif callable(bound.arguments[node_attrs]):
|
960 |
+
# e.g. `node_attrs="weight"` and `func(weight=myfunc)`
|
961 |
+
preserve_node_attrs = True
|
962 |
+
node_attrs = None
|
963 |
+
elif bound.arguments[node_attrs] is not None:
|
964 |
+
# e.g. `node_attrs="weight"` and `func(weight="foo")`
|
965 |
+
node_attrs = {bound.arguments[node_attrs]: None}
|
966 |
+
else:
|
967 |
+
# e.g. `node_attrs="weight"` and `func(weight=None)`
|
968 |
+
node_attrs = None
|
969 |
+
else:
|
970 |
+
# e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
|
971 |
+
# e.g. `node_attrs={"attr": 0}` and `func(attr="foo")`
|
972 |
+
node_attrs = {
|
973 |
+
node_attr: bound.arguments.get(val) if isinstance(val, str) else val
|
974 |
+
for key, val in node_attrs.items()
|
975 |
+
if (node_attr := bound.arguments[key]) is not None
|
976 |
+
}
|
977 |
+
|
978 |
+
preserve_graph_attrs = self.preserve_graph_attrs
|
979 |
+
|
980 |
+
# It should be safe to assume that we either have networkx graphs or backend graphs.
|
981 |
+
# Future work: allow conversions between backends.
|
982 |
+
for gname in self.graphs:
|
983 |
+
if gname in self.list_graphs:
|
984 |
+
bound.arguments[gname] = [
|
985 |
+
self._convert_graph(
|
986 |
+
backend_name,
|
987 |
+
g,
|
988 |
+
edge_attrs=edge_attrs,
|
989 |
+
node_attrs=node_attrs,
|
990 |
+
preserve_edge_attrs=preserve_edge_attrs,
|
991 |
+
preserve_node_attrs=preserve_node_attrs,
|
992 |
+
preserve_graph_attrs=preserve_graph_attrs,
|
993 |
+
graph_name=gname,
|
994 |
+
use_cache=use_cache,
|
995 |
+
)
|
996 |
+
if getattr(g, "__networkx_backend__", "networkx") == "networkx"
|
997 |
+
else g
|
998 |
+
for g in bound.arguments[gname]
|
999 |
+
]
|
1000 |
+
else:
|
1001 |
+
graph = bound.arguments[gname]
|
1002 |
+
if graph is None:
|
1003 |
+
if gname in self.optional_graphs:
|
1004 |
+
continue
|
1005 |
+
raise TypeError(
|
1006 |
+
f"Missing required graph argument `{gname}` in {self.name} function"
|
1007 |
+
)
|
1008 |
+
if isinstance(preserve_edge_attrs, dict):
|
1009 |
+
preserve_edges = False
|
1010 |
+
edges = preserve_edge_attrs.get(gname, edge_attrs)
|
1011 |
+
else:
|
1012 |
+
preserve_edges = preserve_edge_attrs
|
1013 |
+
edges = edge_attrs
|
1014 |
+
if isinstance(preserve_node_attrs, dict):
|
1015 |
+
preserve_nodes = False
|
1016 |
+
nodes = preserve_node_attrs.get(gname, node_attrs)
|
1017 |
+
else:
|
1018 |
+
preserve_nodes = preserve_node_attrs
|
1019 |
+
nodes = node_attrs
|
1020 |
+
if isinstance(preserve_graph_attrs, set):
|
1021 |
+
preserve_graph = gname in preserve_graph_attrs
|
1022 |
+
else:
|
1023 |
+
preserve_graph = preserve_graph_attrs
|
1024 |
+
if getattr(graph, "__networkx_backend__", "networkx") == "networkx":
|
1025 |
+
bound.arguments[gname] = self._convert_graph(
|
1026 |
+
backend_name,
|
1027 |
+
graph,
|
1028 |
+
edge_attrs=edges,
|
1029 |
+
node_attrs=nodes,
|
1030 |
+
preserve_edge_attrs=preserve_edges,
|
1031 |
+
preserve_node_attrs=preserve_nodes,
|
1032 |
+
preserve_graph_attrs=preserve_graph,
|
1033 |
+
graph_name=gname,
|
1034 |
+
use_cache=use_cache,
|
1035 |
+
)
|
1036 |
+
bound_kwargs = bound.kwargs
|
1037 |
+
del bound_kwargs["backend"]
|
1038 |
+
return bound.args, bound_kwargs
|
1039 |
+
|
1040 |
+
def _convert_graph(
|
1041 |
+
self,
|
1042 |
+
backend_name,
|
1043 |
+
graph,
|
1044 |
+
*,
|
1045 |
+
edge_attrs,
|
1046 |
+
node_attrs,
|
1047 |
+
preserve_edge_attrs,
|
1048 |
+
preserve_node_attrs,
|
1049 |
+
preserve_graph_attrs,
|
1050 |
+
graph_name,
|
1051 |
+
use_cache,
|
1052 |
+
):
|
1053 |
+
if (
|
1054 |
+
use_cache
|
1055 |
+
and (nx_cache := getattr(graph, "__networkx_cache__", None)) is not None
|
1056 |
+
):
|
1057 |
+
cache = nx_cache.setdefault("backends", {}).setdefault(backend_name, {})
|
1058 |
+
# edge_attrs: dict | None
|
1059 |
+
# node_attrs: dict | None
|
1060 |
+
# preserve_edge_attrs: bool (False if edge_attrs is not None)
|
1061 |
+
# preserve_node_attrs: bool (False if node_attrs is not None)
|
1062 |
+
# preserve_graph_attrs: bool
|
1063 |
+
key = edge_key, node_key, graph_key = (
|
1064 |
+
frozenset(edge_attrs.items())
|
1065 |
+
if edge_attrs is not None
|
1066 |
+
else preserve_edge_attrs,
|
1067 |
+
frozenset(node_attrs.items())
|
1068 |
+
if node_attrs is not None
|
1069 |
+
else preserve_node_attrs,
|
1070 |
+
preserve_graph_attrs,
|
1071 |
+
)
|
1072 |
+
if cache:
|
1073 |
+
warning_message = (
|
1074 |
+
f"Using cached graph for {backend_name!r} backend in "
|
1075 |
+
f"call to {self.name}.\n\nFor the cache to be consistent "
|
1076 |
+
"(i.e., correct), the input graph must not have been "
|
1077 |
+
"manually mutated since the cached graph was created. "
|
1078 |
+
"Examples of manually mutating the graph data structures "
|
1079 |
+
"resulting in an inconsistent cache include:\n\n"
|
1080 |
+
" >>> G[u][v][key] = val\n\n"
|
1081 |
+
"and\n\n"
|
1082 |
+
" >>> for u, v, d in G.edges(data=True):\n"
|
1083 |
+
" ... d[key] = val\n\n"
|
1084 |
+
"Using methods such as `G.add_edge(u, v, weight=val)` "
|
1085 |
+
"will correctly clear the cache to keep it consistent. "
|
1086 |
+
"You may also use `G.__networkx_cache__.clear()` to "
|
1087 |
+
"manually clear the cache, or set `G.__networkx_cache__` "
|
1088 |
+
"to None to disable caching for G. Enable or disable "
|
1089 |
+
"caching via `nx.config.cache_converted_graphs` config."
|
1090 |
+
)
|
1091 |
+
# Do a simple search for a cached graph with compatible data.
|
1092 |
+
# For example, if we need a single attribute, then it's okay
|
1093 |
+
# to use a cached graph that preserved all attributes.
|
1094 |
+
# This looks for an exact match first.
|
1095 |
+
for compat_key in itertools.product(
|
1096 |
+
(edge_key, True) if edge_key is not True else (True,),
|
1097 |
+
(node_key, True) if node_key is not True else (True,),
|
1098 |
+
(graph_key, True) if graph_key is not True else (True,),
|
1099 |
+
):
|
1100 |
+
if (rv := cache.get(compat_key)) is not None:
|
1101 |
+
warnings.warn(warning_message)
|
1102 |
+
return rv
|
1103 |
+
if edge_key is not True and node_key is not True:
|
1104 |
+
# Iterate over the items in `cache` to see if any are compatible.
|
1105 |
+
# For example, if no edge attributes are needed, then a graph
|
1106 |
+
# with any edge attribute will suffice. We use the same logic
|
1107 |
+
# below (but switched) to clear unnecessary items from the cache.
|
1108 |
+
# Use `list(cache.items())` to be thread-safe.
|
1109 |
+
for (ekey, nkey, gkey), val in list(cache.items()):
|
1110 |
+
if edge_key is False or ekey is True:
|
1111 |
+
pass
|
1112 |
+
elif (
|
1113 |
+
edge_key is True
|
1114 |
+
or ekey is False
|
1115 |
+
or not edge_key.issubset(ekey)
|
1116 |
+
):
|
1117 |
+
continue
|
1118 |
+
if node_key is False or nkey is True:
|
1119 |
+
pass
|
1120 |
+
elif (
|
1121 |
+
node_key is True
|
1122 |
+
or nkey is False
|
1123 |
+
or not node_key.issubset(nkey)
|
1124 |
+
):
|
1125 |
+
continue
|
1126 |
+
if graph_key and not gkey:
|
1127 |
+
continue
|
1128 |
+
warnings.warn(warning_message)
|
1129 |
+
return val
|
1130 |
+
|
1131 |
+
backend = _load_backend(backend_name)
|
1132 |
+
rv = backend.convert_from_nx(
|
1133 |
+
graph,
|
1134 |
+
edge_attrs=edge_attrs,
|
1135 |
+
node_attrs=node_attrs,
|
1136 |
+
preserve_edge_attrs=preserve_edge_attrs,
|
1137 |
+
preserve_node_attrs=preserve_node_attrs,
|
1138 |
+
preserve_graph_attrs=preserve_graph_attrs,
|
1139 |
+
name=self.name,
|
1140 |
+
graph_name=graph_name,
|
1141 |
+
)
|
1142 |
+
if use_cache and nx_cache is not None:
|
1143 |
+
# Remove old cached items that are no longer necessary since they
|
1144 |
+
# are dominated/subsumed/outdated by what was just calculated.
|
1145 |
+
# This uses the same logic as above, but with keys switched.
|
1146 |
+
cache[key] = rv # Set at beginning to be thread-safe
|
1147 |
+
for cur_key in list(cache):
|
1148 |
+
if cur_key == key:
|
1149 |
+
continue
|
1150 |
+
ekey, nkey, gkey = cur_key
|
1151 |
+
if ekey is False or edge_key is True:
|
1152 |
+
pass
|
1153 |
+
elif ekey is True or edge_key is False or not ekey.issubset(edge_key):
|
1154 |
+
continue
|
1155 |
+
if nkey is False or node_key is True:
|
1156 |
+
pass
|
1157 |
+
elif nkey is True or node_key is False or not nkey.issubset(node_key):
|
1158 |
+
continue
|
1159 |
+
if gkey and not graph_key:
|
1160 |
+
continue
|
1161 |
+
cache.pop(cur_key, None) # Use pop instead of del to be thread-safe
|
1162 |
+
|
1163 |
+
return rv
|
1164 |
+
|
1165 |
+
def _convert_and_call(self, backend_name, args, kwargs, *, fallback_to_nx=False):
|
1166 |
+
"""Call this dispatchable function with a backend, converting graphs if necessary."""
|
1167 |
+
backend = _load_backend(backend_name)
|
1168 |
+
if not self._can_backend_run(backend_name, *args, **kwargs):
|
1169 |
+
if fallback_to_nx:
|
1170 |
+
return self.orig_func(*args, **kwargs)
|
1171 |
+
msg = f"'{self.name}' not implemented by {backend_name}"
|
1172 |
+
if hasattr(backend, self.name):
|
1173 |
+
msg += " with the given arguments"
|
1174 |
+
raise RuntimeError(msg)
|
1175 |
+
|
1176 |
+
try:
|
1177 |
+
converted_args, converted_kwargs = self._convert_arguments(
|
1178 |
+
backend_name, args, kwargs, use_cache=config.cache_converted_graphs
|
1179 |
+
)
|
1180 |
+
result = getattr(backend, self.name)(*converted_args, **converted_kwargs)
|
1181 |
+
except (NotImplementedError, nx.NetworkXNotImplemented) as exc:
|
1182 |
+
if fallback_to_nx:
|
1183 |
+
return self.orig_func(*args, **kwargs)
|
1184 |
+
raise
|
1185 |
+
|
1186 |
+
return result
|
1187 |
+
|
1188 |
+
def _convert_and_call_for_tests(
|
1189 |
+
self, backend_name, args, kwargs, *, fallback_to_nx=False
|
1190 |
+
):
|
1191 |
+
"""Call this dispatchable function with a backend; for use with testing."""
|
1192 |
+
backend = _load_backend(backend_name)
|
1193 |
+
if not self._can_backend_run(backend_name, *args, **kwargs):
|
1194 |
+
if fallback_to_nx or not self.graphs:
|
1195 |
+
return self.orig_func(*args, **kwargs)
|
1196 |
+
|
1197 |
+
import pytest
|
1198 |
+
|
1199 |
+
msg = f"'{self.name}' not implemented by {backend_name}"
|
1200 |
+
if hasattr(backend, self.name):
|
1201 |
+
msg += " with the given arguments"
|
1202 |
+
pytest.xfail(msg)
|
1203 |
+
|
1204 |
+
from collections.abc import Iterable, Iterator, Mapping
|
1205 |
+
from copy import copy
|
1206 |
+
from io import BufferedReader, BytesIO, StringIO, TextIOWrapper
|
1207 |
+
from itertools import tee
|
1208 |
+
from random import Random
|
1209 |
+
|
1210 |
+
import numpy as np
|
1211 |
+
from numpy.random import Generator, RandomState
|
1212 |
+
from scipy.sparse import sparray
|
1213 |
+
|
1214 |
+
# We sometimes compare the backend result to the original result,
|
1215 |
+
# so we need two sets of arguments. We tee iterators and copy
|
1216 |
+
# random state so that they may be used twice.
|
1217 |
+
if not args:
|
1218 |
+
args1 = args2 = args
|
1219 |
+
else:
|
1220 |
+
args1, args2 = zip(
|
1221 |
+
*(
|
1222 |
+
(arg, copy(arg))
|
1223 |
+
if isinstance(
|
1224 |
+
arg, BytesIO | StringIO | Random | Generator | RandomState
|
1225 |
+
)
|
1226 |
+
else tee(arg)
|
1227 |
+
if isinstance(arg, Iterator)
|
1228 |
+
and not isinstance(arg, BufferedReader | TextIOWrapper)
|
1229 |
+
else (arg, arg)
|
1230 |
+
for arg in args
|
1231 |
+
)
|
1232 |
+
)
|
1233 |
+
if not kwargs:
|
1234 |
+
kwargs1 = kwargs2 = kwargs
|
1235 |
+
else:
|
1236 |
+
kwargs1, kwargs2 = zip(
|
1237 |
+
*(
|
1238 |
+
((k, v), (k, copy(v)))
|
1239 |
+
if isinstance(
|
1240 |
+
v, BytesIO | StringIO | Random | Generator | RandomState
|
1241 |
+
)
|
1242 |
+
else ((k, (teed := tee(v))[0]), (k, teed[1]))
|
1243 |
+
if isinstance(v, Iterator)
|
1244 |
+
and not isinstance(v, BufferedReader | TextIOWrapper)
|
1245 |
+
else ((k, v), (k, v))
|
1246 |
+
for k, v in kwargs.items()
|
1247 |
+
)
|
1248 |
+
)
|
1249 |
+
kwargs1 = dict(kwargs1)
|
1250 |
+
kwargs2 = dict(kwargs2)
|
1251 |
+
try:
|
1252 |
+
converted_args, converted_kwargs = self._convert_arguments(
|
1253 |
+
backend_name, args1, kwargs1, use_cache=False
|
1254 |
+
)
|
1255 |
+
result = getattr(backend, self.name)(*converted_args, **converted_kwargs)
|
1256 |
+
except (NotImplementedError, nx.NetworkXNotImplemented) as exc:
|
1257 |
+
if fallback_to_nx:
|
1258 |
+
return self.orig_func(*args2, **kwargs2)
|
1259 |
+
import pytest
|
1260 |
+
|
1261 |
+
pytest.xfail(
|
1262 |
+
exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}"
|
1263 |
+
)
|
1264 |
+
# Verify that `self._returns_graph` is correct. This compares the return type
|
1265 |
+
# to the type expected from `self._returns_graph`. This handles tuple and list
|
1266 |
+
# return types, but *does not* catch functions that yield graphs.
|
1267 |
+
if (
|
1268 |
+
self._returns_graph
|
1269 |
+
!= (
|
1270 |
+
isinstance(result, nx.Graph)
|
1271 |
+
or hasattr(result, "__networkx_backend__")
|
1272 |
+
or isinstance(result, tuple | list)
|
1273 |
+
and any(
|
1274 |
+
isinstance(x, nx.Graph) or hasattr(x, "__networkx_backend__")
|
1275 |
+
for x in result
|
1276 |
+
)
|
1277 |
+
)
|
1278 |
+
and not (
|
1279 |
+
# May return Graph or None
|
1280 |
+
self.name in {"check_planarity", "check_planarity_recursive"}
|
1281 |
+
and any(x is None for x in result)
|
1282 |
+
)
|
1283 |
+
and not (
|
1284 |
+
# May return Graph or dict
|
1285 |
+
self.name in {"held_karp_ascent"}
|
1286 |
+
and any(isinstance(x, dict) for x in result)
|
1287 |
+
)
|
1288 |
+
and self.name
|
1289 |
+
not in {
|
1290 |
+
# yields graphs
|
1291 |
+
"all_triads",
|
1292 |
+
"general_k_edge_subgraphs",
|
1293 |
+
# yields graphs or arrays
|
1294 |
+
"nonisomorphic_trees",
|
1295 |
+
}
|
1296 |
+
):
|
1297 |
+
raise RuntimeError(f"`returns_graph` is incorrect for {self.name}")
|
1298 |
+
|
1299 |
+
def check_result(val, depth=0):
|
1300 |
+
if isinstance(val, np.number):
|
1301 |
+
raise RuntimeError(
|
1302 |
+
f"{self.name} returned a numpy scalar {val} ({type(val)}, depth={depth})"
|
1303 |
+
)
|
1304 |
+
if isinstance(val, np.ndarray | sparray):
|
1305 |
+
return
|
1306 |
+
if isinstance(val, nx.Graph):
|
1307 |
+
check_result(val._node, depth=depth + 1)
|
1308 |
+
check_result(val._adj, depth=depth + 1)
|
1309 |
+
return
|
1310 |
+
if isinstance(val, Iterator):
|
1311 |
+
raise NotImplementedError
|
1312 |
+
if isinstance(val, Iterable) and not isinstance(val, str):
|
1313 |
+
for x in val:
|
1314 |
+
check_result(x, depth=depth + 1)
|
1315 |
+
if isinstance(val, Mapping):
|
1316 |
+
for x in val.values():
|
1317 |
+
check_result(x, depth=depth + 1)
|
1318 |
+
|
1319 |
+
def check_iterator(it):
|
1320 |
+
for val in it:
|
1321 |
+
try:
|
1322 |
+
check_result(val)
|
1323 |
+
except RuntimeError as exc:
|
1324 |
+
raise RuntimeError(
|
1325 |
+
f"{self.name} returned a numpy scalar {val} ({type(val)})"
|
1326 |
+
) from exc
|
1327 |
+
yield val
|
1328 |
+
|
1329 |
+
if self.name in {"from_edgelist"}:
|
1330 |
+
# numpy scalars are explicitly given as values in some tests
|
1331 |
+
pass
|
1332 |
+
elif isinstance(result, Iterator):
|
1333 |
+
result = check_iterator(result)
|
1334 |
+
else:
|
1335 |
+
try:
|
1336 |
+
check_result(result)
|
1337 |
+
except RuntimeError as exc:
|
1338 |
+
raise RuntimeError(
|
1339 |
+
f"{self.name} returned a numpy scalar {result} ({type(result)})"
|
1340 |
+
) from exc
|
1341 |
+
check_result(result)
|
1342 |
+
|
1343 |
+
if self.name in {
|
1344 |
+
"edmonds_karp",
|
1345 |
+
"barycenter",
|
1346 |
+
"contracted_edge",
|
1347 |
+
"contracted_nodes",
|
1348 |
+
"stochastic_graph",
|
1349 |
+
"relabel_nodes",
|
1350 |
+
"maximum_branching",
|
1351 |
+
"incremental_closeness_centrality",
|
1352 |
+
"minimal_branching",
|
1353 |
+
"minimum_spanning_arborescence",
|
1354 |
+
"recursive_simple_cycles",
|
1355 |
+
"connected_double_edge_swap",
|
1356 |
+
}:
|
1357 |
+
# Special-case algorithms that mutate input graphs
|
1358 |
+
bound = self.__signature__.bind(*converted_args, **converted_kwargs)
|
1359 |
+
bound.apply_defaults()
|
1360 |
+
bound2 = self.__signature__.bind(*args2, **kwargs2)
|
1361 |
+
bound2.apply_defaults()
|
1362 |
+
if self.name in {
|
1363 |
+
"minimal_branching",
|
1364 |
+
"minimum_spanning_arborescence",
|
1365 |
+
"recursive_simple_cycles",
|
1366 |
+
"connected_double_edge_swap",
|
1367 |
+
}:
|
1368 |
+
G1 = backend.convert_to_nx(bound.arguments["G"])
|
1369 |
+
G2 = bound2.arguments["G"]
|
1370 |
+
G2._adj = G1._adj
|
1371 |
+
nx._clear_cache(G2)
|
1372 |
+
elif self.name == "edmonds_karp":
|
1373 |
+
R1 = backend.convert_to_nx(bound.arguments["residual"])
|
1374 |
+
R2 = bound2.arguments["residual"]
|
1375 |
+
if R1 is not None and R2 is not None:
|
1376 |
+
for k, v in R1.edges.items():
|
1377 |
+
R2.edges[k]["flow"] = v["flow"]
|
1378 |
+
R2.graph.update(R1.graph)
|
1379 |
+
nx._clear_cache(R2)
|
1380 |
+
elif self.name == "barycenter" and bound.arguments["attr"] is not None:
|
1381 |
+
G1 = backend.convert_to_nx(bound.arguments["G"])
|
1382 |
+
G2 = bound2.arguments["G"]
|
1383 |
+
attr = bound.arguments["attr"]
|
1384 |
+
for k, v in G1.nodes.items():
|
1385 |
+
G2.nodes[k][attr] = v[attr]
|
1386 |
+
nx._clear_cache(G2)
|
1387 |
+
elif (
|
1388 |
+
self.name in {"contracted_nodes", "contracted_edge"}
|
1389 |
+
and not bound.arguments["copy"]
|
1390 |
+
):
|
1391 |
+
# Edges and nodes changed; node "contraction" and edge "weight" attrs
|
1392 |
+
G1 = backend.convert_to_nx(bound.arguments["G"])
|
1393 |
+
G2 = bound2.arguments["G"]
|
1394 |
+
G2.__dict__.update(G1.__dict__)
|
1395 |
+
nx._clear_cache(G2)
|
1396 |
+
elif self.name == "stochastic_graph" and not bound.arguments["copy"]:
|
1397 |
+
G1 = backend.convert_to_nx(bound.arguments["G"])
|
1398 |
+
G2 = bound2.arguments["G"]
|
1399 |
+
for k, v in G1.edges.items():
|
1400 |
+
G2.edges[k]["weight"] = v["weight"]
|
1401 |
+
nx._clear_cache(G2)
|
1402 |
+
elif (
|
1403 |
+
self.name == "relabel_nodes"
|
1404 |
+
and not bound.arguments["copy"]
|
1405 |
+
or self.name in {"incremental_closeness_centrality"}
|
1406 |
+
):
|
1407 |
+
G1 = backend.convert_to_nx(bound.arguments["G"])
|
1408 |
+
G2 = bound2.arguments["G"]
|
1409 |
+
if G1 is G2:
|
1410 |
+
return G2
|
1411 |
+
G2._node.clear()
|
1412 |
+
G2._node.update(G1._node)
|
1413 |
+
G2._adj.clear()
|
1414 |
+
G2._adj.update(G1._adj)
|
1415 |
+
if hasattr(G1, "_pred") and hasattr(G2, "_pred"):
|
1416 |
+
G2._pred.clear()
|
1417 |
+
G2._pred.update(G1._pred)
|
1418 |
+
if hasattr(G1, "_succ") and hasattr(G2, "_succ"):
|
1419 |
+
G2._succ.clear()
|
1420 |
+
G2._succ.update(G1._succ)
|
1421 |
+
nx._clear_cache(G2)
|
1422 |
+
if self.name == "relabel_nodes":
|
1423 |
+
return G2
|
1424 |
+
return backend.convert_to_nx(result)
|
1425 |
+
|
1426 |
+
converted_result = backend.convert_to_nx(result)
|
1427 |
+
if isinstance(converted_result, nx.Graph) and self.name not in {
|
1428 |
+
"boykov_kolmogorov",
|
1429 |
+
"preflow_push",
|
1430 |
+
"quotient_graph",
|
1431 |
+
"shortest_augmenting_path",
|
1432 |
+
"spectral_graph_forge",
|
1433 |
+
# We don't handle tempfile.NamedTemporaryFile arguments
|
1434 |
+
"read_gml",
|
1435 |
+
"read_graph6",
|
1436 |
+
"read_sparse6",
|
1437 |
+
# We don't handle io.BufferedReader or io.TextIOWrapper arguments
|
1438 |
+
"bipartite_read_edgelist",
|
1439 |
+
"read_adjlist",
|
1440 |
+
"read_edgelist",
|
1441 |
+
"read_graphml",
|
1442 |
+
"read_multiline_adjlist",
|
1443 |
+
"read_pajek",
|
1444 |
+
"from_pydot",
|
1445 |
+
"pydot_read_dot",
|
1446 |
+
"agraph_read_dot",
|
1447 |
+
# graph comparison fails b/c of nan values
|
1448 |
+
"read_gexf",
|
1449 |
+
}:
|
1450 |
+
# For graph return types (e.g. generators), we compare that results are
|
1451 |
+
# the same between the backend and networkx, then return the original
|
1452 |
+
# networkx result so the iteration order will be consistent in tests.
|
1453 |
+
G = self.orig_func(*args2, **kwargs2)
|
1454 |
+
if not nx.utils.graphs_equal(G, converted_result):
|
1455 |
+
assert G.number_of_nodes() == converted_result.number_of_nodes()
|
1456 |
+
assert G.number_of_edges() == converted_result.number_of_edges()
|
1457 |
+
assert G.graph == converted_result.graph
|
1458 |
+
assert G.nodes == converted_result.nodes
|
1459 |
+
assert G.adj == converted_result.adj
|
1460 |
+
assert type(G) is type(converted_result)
|
1461 |
+
raise AssertionError("Graphs are not equal")
|
1462 |
+
return G
|
1463 |
+
return converted_result
|
1464 |
+
|
1465 |
+
def _make_doc(self):
|
1466 |
+
"""Generate the backends section at the end for functions having an alternate
|
1467 |
+
backend implementation(s) using the `backend_info` entry-point."""
|
1468 |
+
|
1469 |
+
if not self.backends:
|
1470 |
+
return self._orig_doc
|
1471 |
+
lines = [
|
1472 |
+
"Backends",
|
1473 |
+
"--------",
|
1474 |
+
]
|
1475 |
+
for backend in sorted(self.backends):
|
1476 |
+
info = backend_info[backend]
|
1477 |
+
if "short_summary" in info:
|
1478 |
+
lines.append(f"{backend} : {info['short_summary']}")
|
1479 |
+
else:
|
1480 |
+
lines.append(backend)
|
1481 |
+
if "functions" not in info or self.name not in info["functions"]:
|
1482 |
+
lines.append("")
|
1483 |
+
continue
|
1484 |
+
|
1485 |
+
func_info = info["functions"][self.name]
|
1486 |
+
|
1487 |
+
# Renaming extra_docstring to additional_docs
|
1488 |
+
if func_docs := (
|
1489 |
+
func_info.get("additional_docs") or func_info.get("extra_docstring")
|
1490 |
+
):
|
1491 |
+
lines.extend(
|
1492 |
+
f" {line}" if line else line for line in func_docs.split("\n")
|
1493 |
+
)
|
1494 |
+
add_gap = True
|
1495 |
+
else:
|
1496 |
+
add_gap = False
|
1497 |
+
|
1498 |
+
# Renaming extra_parameters to additional_parameters
|
1499 |
+
if extra_parameters := (
|
1500 |
+
func_info.get("extra_parameters")
|
1501 |
+
or func_info.get("additional_parameters")
|
1502 |
+
):
|
1503 |
+
if add_gap:
|
1504 |
+
lines.append("")
|
1505 |
+
lines.append(" Additional parameters:")
|
1506 |
+
for param in sorted(extra_parameters):
|
1507 |
+
lines.append(f" {param}")
|
1508 |
+
if desc := extra_parameters[param]:
|
1509 |
+
lines.append(f" {desc}")
|
1510 |
+
lines.append("")
|
1511 |
+
else:
|
1512 |
+
lines.append("")
|
1513 |
+
|
1514 |
+
if func_url := func_info.get("url"):
|
1515 |
+
lines.append(f"[`Source <{func_url}>`_]")
|
1516 |
+
lines.append("")
|
1517 |
+
|
1518 |
+
lines.pop() # Remove last empty line
|
1519 |
+
to_add = "\n ".join(lines)
|
1520 |
+
return f"{self._orig_doc.rstrip()}\n\n {to_add}"
|
1521 |
+
|
1522 |
+
def __reduce__(self):
|
1523 |
+
"""Allow this object to be serialized with pickle.
|
1524 |
+
|
1525 |
+
This uses the global registry `_registered_algorithms` to deserialize.
|
1526 |
+
"""
|
1527 |
+
return _restore_dispatchable, (self.name,)
|
1528 |
+
|
1529 |
+
|
1530 |
+
def _restore_dispatchable(name):
|
1531 |
+
return _registered_algorithms[name]
|
1532 |
+
|
1533 |
+
|
1534 |
+
if os.environ.get("_NETWORKX_BUILDING_DOCS_"):
|
1535 |
+
# When building docs with Sphinx, use the original function with the
|
1536 |
+
# dispatched __doc__, b/c Sphinx renders normal Python functions better.
|
1537 |
+
# This doesn't show e.g. `*, backend=None, **backend_kwargs` in the
|
1538 |
+
# signatures, which is probably okay. It does allow the docstring to be
|
1539 |
+
# updated based on the installed backends.
|
1540 |
+
_orig_dispatchable = _dispatchable
|
1541 |
+
|
1542 |
+
def _dispatchable(func=None, **kwargs): # type: ignore[no-redef]
|
1543 |
+
if func is None:
|
1544 |
+
return partial(_dispatchable, **kwargs)
|
1545 |
+
dispatched_func = _orig_dispatchable(func, **kwargs)
|
1546 |
+
func.__doc__ = dispatched_func.__doc__
|
1547 |
+
return func
|
1548 |
+
|
1549 |
+
_dispatchable.__doc__ = _orig_dispatchable.__new__.__doc__ # type: ignore[method-assign,assignment]
|
1550 |
+
_sig = inspect.signature(_orig_dispatchable.__new__)
|
1551 |
+
_dispatchable.__signature__ = _sig.replace( # type: ignore[method-assign,assignment]
|
1552 |
+
parameters=[v for k, v in _sig.parameters.items() if k != "cls"]
|
1553 |
+
)
|