applied-ai-018 commited on
Commit
5e7eb69
·
verified ·
1 Parent(s): e2b465d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/scipy/signal/__init__.py +346 -0
  2. env-llmeval/lib/python3.10/site-packages/scipy/signal/_arraytools.py +264 -0
  3. env-llmeval/lib/python3.10/site-packages/scipy/signal/_bsplines.py +519 -0
  4. env-llmeval/lib/python3.10/site-packages/scipy/signal/_max_len_seq.py +139 -0
  5. env-llmeval/lib/python3.10/site-packages/scipy/signal/_max_len_seq_inner.cpython-310-x86_64-linux-gnu.so +0 -0
  6. env-llmeval/lib/python3.10/site-packages/scipy/signal/_short_time_fft.py +1676 -0
  7. env-llmeval/lib/python3.10/site-packages/scipy/signal/_signaltools.py +0 -0
  8. env-llmeval/lib/python3.10/site-packages/scipy/signal/_sosfilt.cpython-310-x86_64-linux-gnu.so +0 -0
  9. env-llmeval/lib/python3.10/site-packages/scipy/signal/_spectral_py.py +2101 -0
  10. env-llmeval/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so +0 -0
  11. env-llmeval/lib/python3.10/site-packages/scipy/signal/ltisys.py +30 -0
  12. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py +0 -0
  19. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__plotutils.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__procrustes.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_distance.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_hausdorff.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_kdtree.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_qhull.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_slerp.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_spherical_voronoi.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt +10 -0
  29. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X2.txt +20 -0
  30. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/iris.txt +150 -0
  31. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  32. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +0 -0
  33. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  34. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +0 -0
  35. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  36. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +0 -0
  37. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  38. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +0 -0
  39. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  40. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  41. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +0 -0
  42. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  43. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  44. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  45. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +0 -0
  46. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  47. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +0 -0
  48. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  49. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +0 -0
  50. env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +0 -0
env-llmeval/lib/python3.10/site-packages/scipy/signal/__init__.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ =======================================
3
+ Signal processing (:mod:`scipy.signal`)
4
+ =======================================
5
+
6
+ Convolution
7
+ ===========
8
+
9
+ .. autosummary::
10
+ :toctree: generated/
11
+
12
+ convolve -- N-D convolution.
13
+ correlate -- N-D correlation.
14
+ fftconvolve -- N-D convolution using the FFT.
15
+ oaconvolve -- N-D convolution using the overlap-add method.
16
+ convolve2d -- 2-D convolution (more options).
17
+ correlate2d -- 2-D correlation (more options).
18
+ sepfir2d -- Convolve with a 2-D separable FIR filter.
19
+ choose_conv_method -- Chooses faster of FFT and direct convolution methods.
20
+ correlation_lags -- Determines lag indices for 1D cross-correlation.
21
+
22
+ B-splines
23
+ =========
24
+
25
+ .. autosummary::
26
+ :toctree: generated/
27
+
28
+ gauss_spline -- Gaussian approximation to the B-spline basis function.
29
+ cspline1d -- Coefficients for 1-D cubic (3rd order) B-spline.
30
+ qspline1d -- Coefficients for 1-D quadratic (2nd order) B-spline.
31
+ cspline2d -- Coefficients for 2-D cubic (3rd order) B-spline.
32
+ qspline2d -- Coefficients for 2-D quadratic (2nd order) B-spline.
33
+ cspline1d_eval -- Evaluate a cubic spline at the given points.
34
+ qspline1d_eval -- Evaluate a quadratic spline at the given points.
35
+ spline_filter -- Smoothing spline (cubic) filtering of a rank-2 array.
36
+
37
+ Filtering
38
+ =========
39
+
40
+ .. autosummary::
41
+ :toctree: generated/
42
+
43
+ order_filter -- N-D order filter.
44
+ medfilt -- N-D median filter.
45
+ medfilt2d -- 2-D median filter (faster).
46
+ wiener -- N-D Wiener filter.
47
+
48
+ symiirorder1 -- 2nd-order IIR filter (cascade of first-order systems).
49
+ symiirorder2 -- 4th-order IIR filter (cascade of second-order systems).
50
+ lfilter -- 1-D FIR and IIR digital linear filtering.
51
+ lfiltic -- Construct initial conditions for `lfilter`.
52
+ lfilter_zi -- Compute an initial state zi for the lfilter function that
53
+ -- corresponds to the steady state of the step response.
54
+ filtfilt -- A forward-backward filter.
55
+ savgol_filter -- Filter a signal using the Savitzky-Golay filter.
56
+
57
+ deconvolve -- 1-D deconvolution using lfilter.
58
+
59
+ sosfilt -- 1-D IIR digital linear filtering using
60
+ -- a second-order sections filter representation.
61
+ sosfilt_zi -- Compute an initial state zi for the sosfilt function that
62
+ -- corresponds to the steady state of the step response.
63
+ sosfiltfilt -- A forward-backward filter for second-order sections.
64
+ hilbert -- Compute 1-D analytic signal, using the Hilbert transform.
65
+ hilbert2 -- Compute 2-D analytic signal, using the Hilbert transform.
66
+
67
+ decimate -- Downsample a signal.
68
+ detrend -- Remove linear and/or constant trends from data.
69
+ resample -- Resample using Fourier method.
70
+ resample_poly -- Resample using polyphase filtering method.
71
+ upfirdn -- Upsample, apply FIR filter, downsample.
72
+
73
+ Filter design
74
+ =============
75
+
76
+ .. autosummary::
77
+ :toctree: generated/
78
+
79
+ bilinear -- Digital filter from an analog filter using
80
+ -- the bilinear transform.
81
+ bilinear_zpk -- Digital filter from an analog filter using
82
+ -- the bilinear transform.
83
+ findfreqs -- Find array of frequencies for computing filter response.
84
+ firls -- FIR filter design using least-squares error minimization.
85
+ firwin -- Windowed FIR filter design, with frequency response
86
+ -- defined as pass and stop bands.
87
+ firwin2 -- Windowed FIR filter design, with arbitrary frequency
88
+ -- response.
89
+ freqs -- Analog filter frequency response from TF coefficients.
90
+ freqs_zpk -- Analog filter frequency response from ZPK coefficients.
91
+ freqz -- Digital filter frequency response from TF coefficients.
92
+ freqz_zpk -- Digital filter frequency response from ZPK coefficients.
93
+ sosfreqz -- Digital filter frequency response for SOS format filter.
94
+ gammatone -- FIR and IIR gammatone filter design.
95
+ group_delay -- Digital filter group delay.
96
+ iirdesign -- IIR filter design given bands and gains.
97
+ iirfilter -- IIR filter design given order and critical frequencies.
98
+ kaiser_atten -- Compute the attenuation of a Kaiser FIR filter, given
99
+ -- the number of taps and the transition width at
100
+ -- discontinuities in the frequency response.
101
+ kaiser_beta -- Compute the Kaiser parameter beta, given the desired
102
+ -- FIR filter attenuation.
103
+ kaiserord -- Design a Kaiser window to limit ripple and width of
104
+ -- transition region.
105
+ minimum_phase -- Convert a linear phase FIR filter to minimum phase.
106
+ savgol_coeffs -- Compute the FIR filter coefficients for a Savitzky-Golay
107
+ -- filter.
108
+ remez -- Optimal FIR filter design.
109
+
110
+ unique_roots -- Unique roots and their multiplicities.
111
+ residue -- Partial fraction expansion of b(s) / a(s).
112
+ residuez -- Partial fraction expansion of b(z) / a(z).
113
+ invres -- Inverse partial fraction expansion for analog filter.
114
+ invresz -- Inverse partial fraction expansion for digital filter.
115
+ BadCoefficients -- Warning on badly conditioned filter coefficients.
116
+
117
+ Lower-level filter design functions:
118
+
119
+ .. autosummary::
120
+ :toctree: generated/
121
+
122
+ abcd_normalize -- Check state-space matrices and ensure they are rank-2.
123
+ band_stop_obj -- Band Stop Objective Function for order minimization.
124
+ besselap -- Return (z,p,k) for analog prototype of Bessel filter.
125
+ buttap -- Return (z,p,k) for analog prototype of Butterworth filter.
126
+ cheb1ap -- Return (z,p,k) for type I Chebyshev filter.
127
+ cheb2ap -- Return (z,p,k) for type II Chebyshev filter.
128
+ cmplx_sort -- Sort roots based on magnitude.
129
+ ellipap -- Return (z,p,k) for analog prototype of elliptic filter.
130
+ lp2bp -- Transform a lowpass filter prototype to a bandpass filter.
131
+ lp2bp_zpk -- Transform a lowpass filter prototype to a bandpass filter.
132
+ lp2bs -- Transform a lowpass filter prototype to a bandstop filter.
133
+ lp2bs_zpk -- Transform a lowpass filter prototype to a bandstop filter.
134
+ lp2hp -- Transform a lowpass filter prototype to a highpass filter.
135
+ lp2hp_zpk -- Transform a lowpass filter prototype to a highpass filter.
136
+ lp2lp -- Transform a lowpass filter prototype to a lowpass filter.
137
+ lp2lp_zpk -- Transform a lowpass filter prototype to a lowpass filter.
138
+ normalize -- Normalize polynomial representation of a transfer function.
139
+
140
+
141
+
142
+ Matlab-style IIR filter design
143
+ ==============================
144
+
145
+ .. autosummary::
146
+ :toctree: generated/
147
+
148
+ butter -- Butterworth
149
+ buttord
150
+ cheby1 -- Chebyshev Type I
151
+ cheb1ord
152
+ cheby2 -- Chebyshev Type II
153
+ cheb2ord
154
+ ellip -- Elliptic (Cauer)
155
+ ellipord
156
+ bessel -- Bessel (no order selection available -- try butterod)
157
+ iirnotch -- Design second-order IIR notch digital filter.
158
+ iirpeak -- Design second-order IIR peak (resonant) digital filter.
159
+ iircomb -- Design IIR comb filter.
160
+
161
+ Continuous-time linear systems
162
+ ==============================
163
+
164
+ .. autosummary::
165
+ :toctree: generated/
166
+
167
+ lti -- Continuous-time linear time invariant system base class.
168
+ StateSpace -- Linear time invariant system in state space form.
169
+ TransferFunction -- Linear time invariant system in transfer function form.
170
+ ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
171
+ lsim -- Continuous-time simulation of output to linear system.
172
+ impulse -- Impulse response of linear, time-invariant (LTI) system.
173
+ step -- Step response of continuous-time LTI system.
174
+ freqresp -- Frequency response of a continuous-time LTI system.
175
+ bode -- Bode magnitude and phase data (continuous-time LTI).
176
+
177
+ Discrete-time linear systems
178
+ ============================
179
+
180
+ .. autosummary::
181
+ :toctree: generated/
182
+
183
+ dlti -- Discrete-time linear time invariant system base class.
184
+ StateSpace -- Linear time invariant system in state space form.
185
+ TransferFunction -- Linear time invariant system in transfer function form.
186
+ ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
187
+ dlsim -- Simulation of output to a discrete-time linear system.
188
+ dimpulse -- Impulse response of a discrete-time LTI system.
189
+ dstep -- Step response of a discrete-time LTI system.
190
+ dfreqresp -- Frequency response of a discrete-time LTI system.
191
+ dbode -- Bode magnitude and phase data (discrete-time LTI).
192
+
193
+ LTI representations
194
+ ===================
195
+
196
+ .. autosummary::
197
+ :toctree: generated/
198
+
199
+ tf2zpk -- Transfer function to zero-pole-gain.
200
+ tf2sos -- Transfer function to second-order sections.
201
+ tf2ss -- Transfer function to state-space.
202
+ zpk2tf -- Zero-pole-gain to transfer function.
203
+ zpk2sos -- Zero-pole-gain to second-order sections.
204
+ zpk2ss -- Zero-pole-gain to state-space.
205
+ ss2tf -- State-pace to transfer function.
206
+ ss2zpk -- State-space to pole-zero-gain.
207
+ sos2zpk -- Second-order sections to zero-pole-gain.
208
+ sos2tf -- Second-order sections to transfer function.
209
+ cont2discrete -- Continuous-time to discrete-time LTI conversion.
210
+ place_poles -- Pole placement.
211
+
212
+ Waveforms
213
+ =========
214
+
215
+ .. autosummary::
216
+ :toctree: generated/
217
+
218
+ chirp -- Frequency swept cosine signal, with several freq functions.
219
+ gausspulse -- Gaussian modulated sinusoid.
220
+ max_len_seq -- Maximum length sequence.
221
+ sawtooth -- Periodic sawtooth.
222
+ square -- Square wave.
223
+ sweep_poly -- Frequency swept cosine signal; freq is arbitrary polynomial.
224
+ unit_impulse -- Discrete unit impulse.
225
+
226
+ Window functions
227
+ ================
228
+
229
+ For window functions, see the `scipy.signal.windows` namespace.
230
+
231
+ In the `scipy.signal` namespace, there is a convenience function to
232
+ obtain these windows by name:
233
+
234
+ .. autosummary::
235
+ :toctree: generated/
236
+
237
+ get_window -- Return a window of a given length and type.
238
+
239
+ Wavelets
240
+ ========
241
+
242
+ .. autosummary::
243
+ :toctree: generated/
244
+
245
+ cascade -- Compute scaling function and wavelet from coefficients.
246
+ daub -- Return low-pass.
247
+ morlet -- Complex Morlet wavelet.
248
+ qmf -- Return quadrature mirror filter from low-pass.
249
+ ricker -- Return ricker wavelet.
250
+ morlet2 -- Return Morlet wavelet, compatible with cwt.
251
+ cwt -- Perform continuous wavelet transform.
252
+
253
+ Peak finding
254
+ ============
255
+
256
+ .. autosummary::
257
+ :toctree: generated/
258
+
259
+ argrelmin -- Calculate the relative minima of data.
260
+ argrelmax -- Calculate the relative maxima of data.
261
+ argrelextrema -- Calculate the relative extrema of data.
262
+ find_peaks -- Find a subset of peaks inside a signal.
263
+ find_peaks_cwt -- Find peaks in a 1-D array with wavelet transformation.
264
+ peak_prominences -- Calculate the prominence of each peak in a signal.
265
+ peak_widths -- Calculate the width of each peak in a signal.
266
+
267
+ Spectral analysis
268
+ =================
269
+
270
+ .. autosummary::
271
+ :toctree: generated/
272
+
273
+ periodogram -- Compute a (modified) periodogram.
274
+ welch -- Compute a periodogram using Welch's method.
275
+ csd -- Compute the cross spectral density, using Welch's method.
276
+ coherence -- Compute the magnitude squared coherence, using Welch's method.
277
+ spectrogram -- Compute the spectrogram (legacy).
278
+ lombscargle -- Computes the Lomb-Scargle periodogram.
279
+ vectorstrength -- Computes the vector strength.
280
+ ShortTimeFFT -- Interface for calculating the \
281
+ :ref:`Short Time Fourier Transform <tutorial_stft>` and \
282
+ its inverse.
283
+ stft -- Compute the Short Time Fourier Transform (legacy).
284
+ istft -- Compute the Inverse Short Time Fourier Transform (legacy).
285
+ check_COLA -- Check the COLA constraint for iSTFT reconstruction.
286
+ check_NOLA -- Check the NOLA constraint for iSTFT reconstruction.
287
+
288
+ Chirp Z-transform and Zoom FFT
289
+ ============================================
290
+
291
+ .. autosummary::
292
+ :toctree: generated/
293
+
294
+ czt - Chirp z-transform convenience function
295
+ zoom_fft - Zoom FFT convenience function
296
+ CZT - Chirp z-transform function generator
297
+ ZoomFFT - Zoom FFT function generator
298
+ czt_points - Output the z-plane points sampled by a chirp z-transform
299
+
300
+ The functions are simpler to use than the classes, but are less efficient when
301
+ using the same transform on many arrays of the same length, since they
302
+ repeatedly generate the same chirp signal with every call. In these cases,
303
+ use the classes to create a reusable function instead.
304
+
305
+ """
306
+
307
+ from . import _sigtools, windows
308
+ from ._waveforms import *
309
+ from ._max_len_seq import max_len_seq
310
+ from ._upfirdn import upfirdn
311
+
312
+ from ._spline import (
313
+ cspline2d,
314
+ qspline2d,
315
+ sepfir2d,
316
+ symiirorder1,
317
+ symiirorder2,
318
+ )
319
+
320
+ from ._bsplines import *
321
+ from ._filter_design import *
322
+ from ._fir_filter_design import *
323
+ from ._ltisys import *
324
+ from ._lti_conversion import *
325
+ from ._signaltools import *
326
+ from ._savitzky_golay import savgol_coeffs, savgol_filter
327
+ from ._spectral_py import *
328
+ from ._short_time_fft import *
329
+ from ._wavelets import *
330
+ from ._peak_finding import *
331
+ from ._czt import *
332
+ from .windows import get_window # keep this one in signal namespace
333
+
334
+ # Deprecated namespaces, to be removed in v2.0.0
335
+ from . import (
336
+ bsplines, filter_design, fir_filter_design, lti_conversion, ltisys,
337
+ spectral, signaltools, waveforms, wavelets, spline
338
+ )
339
+
340
+ __all__ = [
341
+ s for s in dir() if not s.startswith("_")
342
+ ]
343
+
344
+ from scipy._lib._testutils import PytestTester
345
+ test = PytestTester(__name__)
346
+ del PytestTester
env-llmeval/lib/python3.10/site-packages/scipy/signal/_arraytools.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Functions for acting on a axis of an array.
3
+ """
4
+ import numpy as np
5
+
6
+
7
+ def axis_slice(a, start=None, stop=None, step=None, axis=-1):
8
+ """Take a slice along axis 'axis' from 'a'.
9
+
10
+ Parameters
11
+ ----------
12
+ a : numpy.ndarray
13
+ The array to be sliced.
14
+ start, stop, step : int or None
15
+ The slice parameters.
16
+ axis : int, optional
17
+ The axis of `a` to be sliced.
18
+
19
+ Examples
20
+ --------
21
+ >>> import numpy as np
22
+ >>> from scipy.signal._arraytools import axis_slice
23
+ >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
24
+ >>> axis_slice(a, start=0, stop=1, axis=1)
25
+ array([[1],
26
+ [4],
27
+ [7]])
28
+ >>> axis_slice(a, start=1, axis=0)
29
+ array([[4, 5, 6],
30
+ [7, 8, 9]])
31
+
32
+ Notes
33
+ -----
34
+ The keyword arguments start, stop and step are used by calling
35
+ slice(start, stop, step). This implies axis_slice() does not
36
+ handle its arguments the exactly the same as indexing. To select
37
+ a single index k, for example, use
38
+ axis_slice(a, start=k, stop=k+1)
39
+ In this case, the length of the axis 'axis' in the result will
40
+ be 1; the trivial dimension is not removed. (Use numpy.squeeze()
41
+ to remove trivial axes.)
42
+ """
43
+ a_slice = [slice(None)] * a.ndim
44
+ a_slice[axis] = slice(start, stop, step)
45
+ b = a[tuple(a_slice)]
46
+ return b
47
+
48
+
49
+ def axis_reverse(a, axis=-1):
50
+ """Reverse the 1-D slices of `a` along axis `axis`.
51
+
52
+ Returns axis_slice(a, step=-1, axis=axis).
53
+ """
54
+ return axis_slice(a, step=-1, axis=axis)
55
+
56
+
57
+ def odd_ext(x, n, axis=-1):
58
+ """
59
+ Odd extension at the boundaries of an array
60
+
61
+ Generate a new ndarray by making an odd extension of `x` along an axis.
62
+
63
+ Parameters
64
+ ----------
65
+ x : ndarray
66
+ The array to be extended.
67
+ n : int
68
+ The number of elements by which to extend `x` at each end of the axis.
69
+ axis : int, optional
70
+ The axis along which to extend `x`. Default is -1.
71
+
72
+ Examples
73
+ --------
74
+ >>> import numpy as np
75
+ >>> from scipy.signal._arraytools import odd_ext
76
+ >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
77
+ >>> odd_ext(a, 2)
78
+ array([[-1, 0, 1, 2, 3, 4, 5, 6, 7],
79
+ [-4, -1, 0, 1, 4, 9, 16, 23, 28]])
80
+
81
+ Odd extension is a "180 degree rotation" at the endpoints of the original
82
+ array:
83
+
84
+ >>> t = np.linspace(0, 1.5, 100)
85
+ >>> a = 0.9 * np.sin(2 * np.pi * t**2)
86
+ >>> b = odd_ext(a, 40)
87
+ >>> import matplotlib.pyplot as plt
88
+ >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension')
89
+ >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
90
+ >>> plt.legend(loc='best')
91
+ >>> plt.show()
92
+ """
93
+ if n < 1:
94
+ return x
95
+ if n > x.shape[axis] - 1:
96
+ raise ValueError(("The extension length n (%d) is too big. " +
97
+ "It must not exceed x.shape[axis]-1, which is %d.")
98
+ % (n, x.shape[axis] - 1))
99
+ left_end = axis_slice(x, start=0, stop=1, axis=axis)
100
+ left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
101
+ right_end = axis_slice(x, start=-1, axis=axis)
102
+ right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
103
+ ext = np.concatenate((2 * left_end - left_ext,
104
+ x,
105
+ 2 * right_end - right_ext),
106
+ axis=axis)
107
+ return ext
108
+
109
+
110
+ def even_ext(x, n, axis=-1):
111
+ """
112
+ Even extension at the boundaries of an array
113
+
114
+ Generate a new ndarray by making an even extension of `x` along an axis.
115
+
116
+ Parameters
117
+ ----------
118
+ x : ndarray
119
+ The array to be extended.
120
+ n : int
121
+ The number of elements by which to extend `x` at each end of the axis.
122
+ axis : int, optional
123
+ The axis along which to extend `x`. Default is -1.
124
+
125
+ Examples
126
+ --------
127
+ >>> import numpy as np
128
+ >>> from scipy.signal._arraytools import even_ext
129
+ >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
130
+ >>> even_ext(a, 2)
131
+ array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3],
132
+ [ 4, 1, 0, 1, 4, 9, 16, 9, 4]])
133
+
134
+ Even extension is a "mirror image" at the boundaries of the original array:
135
+
136
+ >>> t = np.linspace(0, 1.5, 100)
137
+ >>> a = 0.9 * np.sin(2 * np.pi * t**2)
138
+ >>> b = even_ext(a, 40)
139
+ >>> import matplotlib.pyplot as plt
140
+ >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension')
141
+ >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
142
+ >>> plt.legend(loc='best')
143
+ >>> plt.show()
144
+ """
145
+ if n < 1:
146
+ return x
147
+ if n > x.shape[axis] - 1:
148
+ raise ValueError(("The extension length n (%d) is too big. " +
149
+ "It must not exceed x.shape[axis]-1, which is %d.")
150
+ % (n, x.shape[axis] - 1))
151
+ left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
152
+ right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
153
+ ext = np.concatenate((left_ext,
154
+ x,
155
+ right_ext),
156
+ axis=axis)
157
+ return ext
158
+
159
+
160
+ def const_ext(x, n, axis=-1):
161
+ """
162
+ Constant extension at the boundaries of an array
163
+
164
+ Generate a new ndarray that is a constant extension of `x` along an axis.
165
+
166
+ The extension repeats the values at the first and last element of
167
+ the axis.
168
+
169
+ Parameters
170
+ ----------
171
+ x : ndarray
172
+ The array to be extended.
173
+ n : int
174
+ The number of elements by which to extend `x` at each end of the axis.
175
+ axis : int, optional
176
+ The axis along which to extend `x`. Default is -1.
177
+
178
+ Examples
179
+ --------
180
+ >>> import numpy as np
181
+ >>> from scipy.signal._arraytools import const_ext
182
+ >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
183
+ >>> const_ext(a, 2)
184
+ array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5],
185
+ [ 0, 0, 0, 1, 4, 9, 16, 16, 16]])
186
+
187
+ Constant extension continues with the same values as the endpoints of the
188
+ array:
189
+
190
+ >>> t = np.linspace(0, 1.5, 100)
191
+ >>> a = 0.9 * np.sin(2 * np.pi * t**2)
192
+ >>> b = const_ext(a, 40)
193
+ >>> import matplotlib.pyplot as plt
194
+ >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension')
195
+ >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
196
+ >>> plt.legend(loc='best')
197
+ >>> plt.show()
198
+ """
199
+ if n < 1:
200
+ return x
201
+ left_end = axis_slice(x, start=0, stop=1, axis=axis)
202
+ ones_shape = [1] * x.ndim
203
+ ones_shape[axis] = n
204
+ ones = np.ones(ones_shape, dtype=x.dtype)
205
+ left_ext = ones * left_end
206
+ right_end = axis_slice(x, start=-1, axis=axis)
207
+ right_ext = ones * right_end
208
+ ext = np.concatenate((left_ext,
209
+ x,
210
+ right_ext),
211
+ axis=axis)
212
+ return ext
213
+
214
+
215
+ def zero_ext(x, n, axis=-1):
216
+ """
217
+ Zero padding at the boundaries of an array
218
+
219
+ Generate a new ndarray that is a zero-padded extension of `x` along
220
+ an axis.
221
+
222
+ Parameters
223
+ ----------
224
+ x : ndarray
225
+ The array to be extended.
226
+ n : int
227
+ The number of elements by which to extend `x` at each end of the
228
+ axis.
229
+ axis : int, optional
230
+ The axis along which to extend `x`. Default is -1.
231
+
232
+ Examples
233
+ --------
234
+ >>> import numpy as np
235
+ >>> from scipy.signal._arraytools import zero_ext
236
+ >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
237
+ >>> zero_ext(a, 2)
238
+ array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0],
239
+ [ 0, 0, 0, 1, 4, 9, 16, 0, 0]])
240
+ """
241
+ if n < 1:
242
+ return x
243
+ zeros_shape = list(x.shape)
244
+ zeros_shape[axis] = n
245
+ zeros = np.zeros(zeros_shape, dtype=x.dtype)
246
+ ext = np.concatenate((zeros, x, zeros), axis=axis)
247
+ return ext
248
+
249
+
250
+ def _validate_fs(fs, allow_none=True):
251
+ """
252
+ Check if the given sampling frequency is a scalar and raises an exception
253
+ otherwise. If allow_none is False, also raises an exception for none
254
+ sampling rates. Returns the sampling frequency as float or none if the
255
+ input is none.
256
+ """
257
+ if fs is None:
258
+ if not allow_none:
259
+ raise ValueError("Sampling frequency can not be none.")
260
+ else: # should be float
261
+ if not np.isscalar(fs):
262
+ raise ValueError("Sampling frequency fs must be a single scalar.")
263
+ fs = float(fs)
264
+ return fs
env-llmeval/lib/python3.10/site-packages/scipy/signal/_bsplines.py ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import (asarray, pi, zeros_like,
2
+ array, arctan2, tan, ones, arange, floor,
3
+ r_, atleast_1d, sqrt, exp, greater, cos, add, sin)
4
+
5
+ # From splinemodule.c
6
+ from ._spline import cspline2d, sepfir2d
7
+ from ._signaltools import lfilter, sosfilt, lfiltic
8
+
9
+ from scipy.interpolate import BSpline
10
+
11
+ __all__ = ['spline_filter', 'gauss_spline',
12
+ 'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval']
13
+
14
+
15
+ def spline_filter(Iin, lmbda=5.0):
16
+ """Smoothing spline (cubic) filtering of a rank-2 array.
17
+
18
+ Filter an input data set, `Iin`, using a (cubic) smoothing spline of
19
+ fall-off `lmbda`.
20
+
21
+ Parameters
22
+ ----------
23
+ Iin : array_like
24
+ input data set
25
+ lmbda : float, optional
26
+ spline smooghing fall-off value, default is `5.0`.
27
+
28
+ Returns
29
+ -------
30
+ res : ndarray
31
+ filtered input data
32
+
33
+ Examples
34
+ --------
35
+ We can filter an multi dimensional signal (ex: 2D image) using cubic
36
+ B-spline filter:
37
+
38
+ >>> import numpy as np
39
+ >>> from scipy.signal import spline_filter
40
+ >>> import matplotlib.pyplot as plt
41
+ >>> orig_img = np.eye(20) # create an image
42
+ >>> orig_img[10, :] = 1.0
43
+ >>> sp_filter = spline_filter(orig_img, lmbda=0.1)
44
+ >>> f, ax = plt.subplots(1, 2, sharex=True)
45
+ >>> for ind, data in enumerate([[orig_img, "original image"],
46
+ ... [sp_filter, "spline filter"]]):
47
+ ... ax[ind].imshow(data[0], cmap='gray_r')
48
+ ... ax[ind].set_title(data[1])
49
+ >>> plt.tight_layout()
50
+ >>> plt.show()
51
+
52
+ """
53
+ intype = Iin.dtype.char
54
+ hcol = array([1.0, 4.0, 1.0], 'f') / 6.0
55
+ if intype in ['F', 'D']:
56
+ Iin = Iin.astype('F')
57
+ ckr = cspline2d(Iin.real, lmbda)
58
+ cki = cspline2d(Iin.imag, lmbda)
59
+ outr = sepfir2d(ckr, hcol, hcol)
60
+ outi = sepfir2d(cki, hcol, hcol)
61
+ out = (outr + 1j * outi).astype(intype)
62
+ elif intype in ['f', 'd']:
63
+ ckr = cspline2d(Iin, lmbda)
64
+ out = sepfir2d(ckr, hcol, hcol)
65
+ out = out.astype(intype)
66
+ else:
67
+ raise TypeError("Invalid data type for Iin")
68
+ return out
69
+
70
+
71
+ _splinefunc_cache = {}
72
+
73
+
74
+ def gauss_spline(x, n):
75
+ r"""Gaussian approximation to B-spline basis function of order n.
76
+
77
+ Parameters
78
+ ----------
79
+ x : array_like
80
+ a knot vector
81
+ n : int
82
+ The order of the spline. Must be non-negative, i.e., n >= 0
83
+
84
+ Returns
85
+ -------
86
+ res : ndarray
87
+ B-spline basis function values approximated by a zero-mean Gaussian
88
+ function.
89
+
90
+ Notes
91
+ -----
92
+ The B-spline basis function can be approximated well by a zero-mean
93
+ Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12`
94
+ for large `n` :
95
+
96
+ .. math:: \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma})
97
+
98
+ References
99
+ ----------
100
+ .. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
101
+ F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In:
102
+ Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
103
+ Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
104
+ Science, vol 4485. Springer, Berlin, Heidelberg
105
+ .. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html
106
+
107
+ Examples
108
+ --------
109
+ We can calculate B-Spline basis functions approximated by a gaussian
110
+ distribution:
111
+
112
+ >>> import numpy as np
113
+ >>> from scipy.signal import gauss_spline
114
+ >>> knots = np.array([-1.0, 0.0, -1.0])
115
+ >>> gauss_spline(knots, 3)
116
+ array([0.15418033, 0.6909883, 0.15418033]) # may vary
117
+
118
+ """
119
+ x = asarray(x)
120
+ signsq = (n + 1) / 12.0
121
+ return 1 / sqrt(2 * pi * signsq) * exp(-x ** 2 / 2 / signsq)
122
+
123
+
124
+ def _cubic(x):
125
+ x = asarray(x, dtype=float)
126
+ b = BSpline.basis_element([-2, -1, 0, 1, 2], extrapolate=False)
127
+ out = b(x)
128
+ out[(x < -2) | (x > 2)] = 0
129
+ return out
130
+
131
+
132
+ def _quadratic(x):
133
+ x = abs(asarray(x, dtype=float))
134
+ b = BSpline.basis_element([-1.5, -0.5, 0.5, 1.5], extrapolate=False)
135
+ out = b(x)
136
+ out[(x < -1.5) | (x > 1.5)] = 0
137
+ return out
138
+
139
+
140
+ def _coeff_smooth(lam):
141
+ xi = 1 - 96 * lam + 24 * lam * sqrt(3 + 144 * lam)
142
+ omeg = arctan2(sqrt(144 * lam - 1), sqrt(xi))
143
+ rho = (24 * lam - 1 - sqrt(xi)) / (24 * lam)
144
+ rho = rho * sqrt((48 * lam + 24 * lam * sqrt(3 + 144 * lam)) / xi)
145
+ return rho, omeg
146
+
147
+
148
+ def _hc(k, cs, rho, omega):
149
+ return (cs / sin(omega) * (rho ** k) * sin(omega * (k + 1)) *
150
+ greater(k, -1))
151
+
152
+
153
+ def _hs(k, cs, rho, omega):
154
+ c0 = (cs * cs * (1 + rho * rho) / (1 - rho * rho) /
155
+ (1 - 2 * rho * rho * cos(2 * omega) + rho ** 4))
156
+ gamma = (1 - rho * rho) / (1 + rho * rho) / tan(omega)
157
+ ak = abs(k)
158
+ return c0 * rho ** ak * (cos(omega * ak) + gamma * sin(omega * ak))
159
+
160
+
161
+ def _cubic_smooth_coeff(signal, lamb):
162
+ rho, omega = _coeff_smooth(lamb)
163
+ cs = 1 - 2 * rho * cos(omega) + rho * rho
164
+ K = len(signal)
165
+ k = arange(K)
166
+
167
+ zi_2 = (_hc(0, cs, rho, omega) * signal[0] +
168
+ add.reduce(_hc(k + 1, cs, rho, omega) * signal))
169
+ zi_1 = (_hc(0, cs, rho, omega) * signal[0] +
170
+ _hc(1, cs, rho, omega) * signal[1] +
171
+ add.reduce(_hc(k + 2, cs, rho, omega) * signal))
172
+
173
+ # Forward filter:
174
+ # for n in range(2, K):
175
+ # yp[n] = (cs * signal[n] + 2 * rho * cos(omega) * yp[n - 1] -
176
+ # rho * rho * yp[n - 2])
177
+ zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
178
+ zi = zi.reshape(1, -1)
179
+
180
+ sos = r_[cs, 0, 0, 1, -2 * rho * cos(omega), rho * rho]
181
+ sos = sos.reshape(1, -1)
182
+
183
+ yp, _ = sosfilt(sos, signal[2:], zi=zi)
184
+ yp = r_[zi_2, zi_1, yp]
185
+
186
+ # Reverse filter:
187
+ # for n in range(K - 3, -1, -1):
188
+ # y[n] = (cs * yp[n] + 2 * rho * cos(omega) * y[n + 1] -
189
+ # rho * rho * y[n + 2])
190
+
191
+ zi_2 = add.reduce((_hs(k, cs, rho, omega) +
192
+ _hs(k + 1, cs, rho, omega)) * signal[::-1])
193
+ zi_1 = add.reduce((_hs(k - 1, cs, rho, omega) +
194
+ _hs(k + 2, cs, rho, omega)) * signal[::-1])
195
+
196
+ zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
197
+ zi = zi.reshape(1, -1)
198
+ y, _ = sosfilt(sos, yp[-3::-1], zi=zi)
199
+ y = r_[y[::-1], zi_1, zi_2]
200
+ return y
201
+
202
+
203
+ def _cubic_coeff(signal):
204
+ zi = -2 + sqrt(3)
205
+ K = len(signal)
206
+ powers = zi ** arange(K)
207
+
208
+ if K == 1:
209
+ yplus = signal[0] + zi * add.reduce(powers * signal)
210
+ output = zi / (zi - 1) * yplus
211
+ return atleast_1d(output)
212
+
213
+ # Forward filter:
214
+ # yplus[0] = signal[0] + zi * add.reduce(powers * signal)
215
+ # for k in range(1, K):
216
+ # yplus[k] = signal[k] + zi * yplus[k - 1]
217
+
218
+ state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal)))
219
+
220
+ b = ones(1)
221
+ a = r_[1, -zi]
222
+ yplus, _ = lfilter(b, a, signal, zi=state)
223
+
224
+ # Reverse filter:
225
+ # output[K - 1] = zi / (zi - 1) * yplus[K - 1]
226
+ # for k in range(K - 2, -1, -1):
227
+ # output[k] = zi * (output[k + 1] - yplus[k])
228
+ out_last = zi / (zi - 1) * yplus[K - 1]
229
+ state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last))
230
+
231
+ b = asarray([-zi])
232
+ output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
233
+ output = r_[output[::-1], out_last]
234
+ return output * 6.0
235
+
236
+
237
+ def _quadratic_coeff(signal):
238
+ zi = -3 + 2 * sqrt(2.0)
239
+ K = len(signal)
240
+ powers = zi ** arange(K)
241
+
242
+ if K == 1:
243
+ yplus = signal[0] + zi * add.reduce(powers * signal)
244
+ output = zi / (zi - 1) * yplus
245
+ return atleast_1d(output)
246
+
247
+ # Forward filter:
248
+ # yplus[0] = signal[0] + zi * add.reduce(powers * signal)
249
+ # for k in range(1, K):
250
+ # yplus[k] = signal[k] + zi * yplus[k - 1]
251
+
252
+ state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal)))
253
+
254
+ b = ones(1)
255
+ a = r_[1, -zi]
256
+ yplus, _ = lfilter(b, a, signal, zi=state)
257
+
258
+ # Reverse filter:
259
+ # output[K - 1] = zi / (zi - 1) * yplus[K - 1]
260
+ # for k in range(K - 2, -1, -1):
261
+ # output[k] = zi * (output[k + 1] - yplus[k])
262
+ out_last = zi / (zi - 1) * yplus[K - 1]
263
+ state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last))
264
+
265
+ b = asarray([-zi])
266
+ output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
267
+ output = r_[output[::-1], out_last]
268
+ return output * 8.0
269
+
270
+
271
+ def cspline1d(signal, lamb=0.0):
272
+ """
273
+ Compute cubic spline coefficients for rank-1 array.
274
+
275
+ Find the cubic spline coefficients for a 1-D signal assuming
276
+ mirror-symmetric boundary conditions. To obtain the signal back from the
277
+ spline representation mirror-symmetric-convolve these coefficients with a
278
+ length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .
279
+
280
+ Parameters
281
+ ----------
282
+ signal : ndarray
283
+ A rank-1 array representing samples of a signal.
284
+ lamb : float, optional
285
+ Smoothing coefficient, default is 0.0.
286
+
287
+ Returns
288
+ -------
289
+ c : ndarray
290
+ Cubic spline coefficients.
291
+
292
+ See Also
293
+ --------
294
+ cspline1d_eval : Evaluate a cubic spline at the new set of points.
295
+
296
+ Examples
297
+ --------
298
+ We can filter a signal to reduce and smooth out high-frequency noise with
299
+ a cubic spline:
300
+
301
+ >>> import numpy as np
302
+ >>> import matplotlib.pyplot as plt
303
+ >>> from scipy.signal import cspline1d, cspline1d_eval
304
+ >>> rng = np.random.default_rng()
305
+ >>> sig = np.repeat([0., 1., 0.], 100)
306
+ >>> sig += rng.standard_normal(len(sig))*0.05 # add noise
307
+ >>> time = np.linspace(0, len(sig))
308
+ >>> filtered = cspline1d_eval(cspline1d(sig), time)
309
+ >>> plt.plot(sig, label="signal")
310
+ >>> plt.plot(time, filtered, label="filtered")
311
+ >>> plt.legend()
312
+ >>> plt.show()
313
+
314
+ """
315
+ if lamb != 0.0:
316
+ return _cubic_smooth_coeff(signal, lamb)
317
+ else:
318
+ return _cubic_coeff(signal)
319
+
320
+
321
+ def qspline1d(signal, lamb=0.0):
322
+ """Compute quadratic spline coefficients for rank-1 array.
323
+
324
+ Parameters
325
+ ----------
326
+ signal : ndarray
327
+ A rank-1 array representing samples of a signal.
328
+ lamb : float, optional
329
+ Smoothing coefficient (must be zero for now).
330
+
331
+ Returns
332
+ -------
333
+ c : ndarray
334
+ Quadratic spline coefficients.
335
+
336
+ See Also
337
+ --------
338
+ qspline1d_eval : Evaluate a quadratic spline at the new set of points.
339
+
340
+ Notes
341
+ -----
342
+ Find the quadratic spline coefficients for a 1-D signal assuming
343
+ mirror-symmetric boundary conditions. To obtain the signal back from the
344
+ spline representation mirror-symmetric-convolve these coefficients with a
345
+ length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .
346
+
347
+ Examples
348
+ --------
349
+ We can filter a signal to reduce and smooth out high-frequency noise with
350
+ a quadratic spline:
351
+
352
+ >>> import numpy as np
353
+ >>> import matplotlib.pyplot as plt
354
+ >>> from scipy.signal import qspline1d, qspline1d_eval
355
+ >>> rng = np.random.default_rng()
356
+ >>> sig = np.repeat([0., 1., 0.], 100)
357
+ >>> sig += rng.standard_normal(len(sig))*0.05 # add noise
358
+ >>> time = np.linspace(0, len(sig))
359
+ >>> filtered = qspline1d_eval(qspline1d(sig), time)
360
+ >>> plt.plot(sig, label="signal")
361
+ >>> plt.plot(time, filtered, label="filtered")
362
+ >>> plt.legend()
363
+ >>> plt.show()
364
+
365
+ """
366
+ if lamb != 0.0:
367
+ raise ValueError("Smoothing quadratic splines not supported yet.")
368
+ else:
369
+ return _quadratic_coeff(signal)
370
+
371
+
372
+ def cspline1d_eval(cj, newx, dx=1.0, x0=0):
373
+ """Evaluate a cubic spline at the new set of points.
374
+
375
+ `dx` is the old sample-spacing while `x0` was the old origin. In
376
+ other-words the old-sample points (knot-points) for which the `cj`
377
+ represent spline coefficients were at equally-spaced points of:
378
+
379
+ oldx = x0 + j*dx j=0...N-1, with N=len(cj)
380
+
381
+ Edges are handled using mirror-symmetric boundary conditions.
382
+
383
+ Parameters
384
+ ----------
385
+ cj : ndarray
386
+ cublic spline coefficients
387
+ newx : ndarray
388
+ New set of points.
389
+ dx : float, optional
390
+ Old sample-spacing, the default value is 1.0.
391
+ x0 : int, optional
392
+ Old origin, the default value is 0.
393
+
394
+ Returns
395
+ -------
396
+ res : ndarray
397
+ Evaluated a cubic spline points.
398
+
399
+ See Also
400
+ --------
401
+ cspline1d : Compute cubic spline coefficients for rank-1 array.
402
+
403
+ Examples
404
+ --------
405
+ We can filter a signal to reduce and smooth out high-frequency noise with
406
+ a cubic spline:
407
+
408
+ >>> import numpy as np
409
+ >>> import matplotlib.pyplot as plt
410
+ >>> from scipy.signal import cspline1d, cspline1d_eval
411
+ >>> rng = np.random.default_rng()
412
+ >>> sig = np.repeat([0., 1., 0.], 100)
413
+ >>> sig += rng.standard_normal(len(sig))*0.05 # add noise
414
+ >>> time = np.linspace(0, len(sig))
415
+ >>> filtered = cspline1d_eval(cspline1d(sig), time)
416
+ >>> plt.plot(sig, label="signal")
417
+ >>> plt.plot(time, filtered, label="filtered")
418
+ >>> plt.legend()
419
+ >>> plt.show()
420
+
421
+ """
422
+ newx = (asarray(newx) - x0) / float(dx)
423
+ res = zeros_like(newx, dtype=cj.dtype)
424
+ if res.size == 0:
425
+ return res
426
+ N = len(cj)
427
+ cond1 = newx < 0
428
+ cond2 = newx > (N - 1)
429
+ cond3 = ~(cond1 | cond2)
430
+ # handle general mirror-symmetry
431
+ res[cond1] = cspline1d_eval(cj, -newx[cond1])
432
+ res[cond2] = cspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
433
+ newx = newx[cond3]
434
+ if newx.size == 0:
435
+ return res
436
+ result = zeros_like(newx, dtype=cj.dtype)
437
+ jlower = floor(newx - 2).astype(int) + 1
438
+ for i in range(4):
439
+ thisj = jlower + i
440
+ indj = thisj.clip(0, N - 1) # handle edge cases
441
+ result += cj[indj] * _cubic(newx - thisj)
442
+ res[cond3] = result
443
+ return res
444
+
445
+
446
+ def qspline1d_eval(cj, newx, dx=1.0, x0=0):
447
+ """Evaluate a quadratic spline at the new set of points.
448
+
449
+ Parameters
450
+ ----------
451
+ cj : ndarray
452
+ Quadratic spline coefficients
453
+ newx : ndarray
454
+ New set of points.
455
+ dx : float, optional
456
+ Old sample-spacing, the default value is 1.0.
457
+ x0 : int, optional
458
+ Old origin, the default value is 0.
459
+
460
+ Returns
461
+ -------
462
+ res : ndarray
463
+ Evaluated a quadratic spline points.
464
+
465
+ See Also
466
+ --------
467
+ qspline1d : Compute quadratic spline coefficients for rank-1 array.
468
+
469
+ Notes
470
+ -----
471
+ `dx` is the old sample-spacing while `x0` was the old origin. In
472
+ other-words the old-sample points (knot-points) for which the `cj`
473
+ represent spline coefficients were at equally-spaced points of::
474
+
475
+ oldx = x0 + j*dx j=0...N-1, with N=len(cj)
476
+
477
+ Edges are handled using mirror-symmetric boundary conditions.
478
+
479
+ Examples
480
+ --------
481
+ We can filter a signal to reduce and smooth out high-frequency noise with
482
+ a quadratic spline:
483
+
484
+ >>> import numpy as np
485
+ >>> import matplotlib.pyplot as plt
486
+ >>> from scipy.signal import qspline1d, qspline1d_eval
487
+ >>> rng = np.random.default_rng()
488
+ >>> sig = np.repeat([0., 1., 0.], 100)
489
+ >>> sig += rng.standard_normal(len(sig))*0.05 # add noise
490
+ >>> time = np.linspace(0, len(sig))
491
+ >>> filtered = qspline1d_eval(qspline1d(sig), time)
492
+ >>> plt.plot(sig, label="signal")
493
+ >>> plt.plot(time, filtered, label="filtered")
494
+ >>> plt.legend()
495
+ >>> plt.show()
496
+
497
+ """
498
+ newx = (asarray(newx) - x0) / dx
499
+ res = zeros_like(newx)
500
+ if res.size == 0:
501
+ return res
502
+ N = len(cj)
503
+ cond1 = newx < 0
504
+ cond2 = newx > (N - 1)
505
+ cond3 = ~(cond1 | cond2)
506
+ # handle general mirror-symmetry
507
+ res[cond1] = qspline1d_eval(cj, -newx[cond1])
508
+ res[cond2] = qspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
509
+ newx = newx[cond3]
510
+ if newx.size == 0:
511
+ return res
512
+ result = zeros_like(newx)
513
+ jlower = floor(newx - 1.5).astype(int) + 1
514
+ for i in range(3):
515
+ thisj = jlower + i
516
+ indj = thisj.clip(0, N - 1) # handle edge cases
517
+ result += cj[indj] * _quadratic(newx - thisj)
518
+ res[cond3] = result
519
+ return res
env-llmeval/lib/python3.10/site-packages/scipy/signal/_max_len_seq.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Eric Larson
2
+ # 2014
3
+
4
+ """Tools for MLS generation"""
5
+
6
+ import numpy as np
7
+
8
+ from ._max_len_seq_inner import _max_len_seq_inner
9
+
10
+ __all__ = ['max_len_seq']
11
+
12
+
13
+ # These are definitions of linear shift register taps for use in max_len_seq()
14
+ _mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
15
+ 9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
16
+ 14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
17
+ 18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
18
+ 23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
19
+ 27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
20
+ 31: [28], 32: [31, 30, 10]}
21
+
22
+ def max_len_seq(nbits, state=None, length=None, taps=None):
23
+ """
24
+ Maximum length sequence (MLS) generator.
25
+
26
+ Parameters
27
+ ----------
28
+ nbits : int
29
+ Number of bits to use. Length of the resulting sequence will
30
+ be ``(2**nbits) - 1``. Note that generating long sequences
31
+ (e.g., greater than ``nbits == 16``) can take a long time.
32
+ state : array_like, optional
33
+ If array, must be of length ``nbits``, and will be cast to binary
34
+ (bool) representation. If None, a seed of ones will be used,
35
+ producing a repeatable representation. If ``state`` is all
36
+ zeros, an error is raised as this is invalid. Default: None.
37
+ length : int, optional
38
+ Number of samples to compute. If None, the entire length
39
+ ``(2**nbits) - 1`` is computed.
40
+ taps : array_like, optional
41
+ Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
42
+ If None, taps will be automatically selected (for up to
43
+ ``nbits == 32``).
44
+
45
+ Returns
46
+ -------
47
+ seq : array
48
+ Resulting MLS sequence of 0's and 1's.
49
+ state : array
50
+ The final state of the shift register.
51
+
52
+ Notes
53
+ -----
54
+ The algorithm for MLS generation is generically described in:
55
+
56
+ https://en.wikipedia.org/wiki/Maximum_length_sequence
57
+
58
+ The default values for taps are specifically taken from the first
59
+ option listed for each value of ``nbits`` in:
60
+
61
+ https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
62
+
63
+ .. versionadded:: 0.15.0
64
+
65
+ Examples
66
+ --------
67
+ MLS uses binary convention:
68
+
69
+ >>> from scipy.signal import max_len_seq
70
+ >>> max_len_seq(4)[0]
71
+ array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
72
+
73
+ MLS has a white spectrum (except for DC):
74
+
75
+ >>> import numpy as np
76
+ >>> import matplotlib.pyplot as plt
77
+ >>> from numpy.fft import fft, ifft, fftshift, fftfreq
78
+ >>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
79
+ >>> spec = fft(seq)
80
+ >>> N = len(seq)
81
+ >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
82
+ >>> plt.margins(0.1, 0.1)
83
+ >>> plt.grid(True)
84
+ >>> plt.show()
85
+
86
+ Circular autocorrelation of MLS is an impulse:
87
+
88
+ >>> acorrcirc = ifft(spec * np.conj(spec)).real
89
+ >>> plt.figure()
90
+ >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
91
+ >>> plt.margins(0.1, 0.1)
92
+ >>> plt.grid(True)
93
+ >>> plt.show()
94
+
95
+ Linear autocorrelation of MLS is approximately an impulse:
96
+
97
+ >>> acorr = np.correlate(seq, seq, 'full')
98
+ >>> plt.figure()
99
+ >>> plt.plot(np.arange(-N+1, N), acorr, '.-')
100
+ >>> plt.margins(0.1, 0.1)
101
+ >>> plt.grid(True)
102
+ >>> plt.show()
103
+
104
+ """
105
+ taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
106
+ if taps is None:
107
+ if nbits not in _mls_taps:
108
+ known_taps = np.array(list(_mls_taps.keys()))
109
+ raise ValueError(f'nbits must be between {known_taps.min()} and '
110
+ f'{known_taps.max()} if taps is None')
111
+ taps = np.array(_mls_taps[nbits], taps_dtype)
112
+ else:
113
+ taps = np.unique(np.array(taps, taps_dtype))[::-1]
114
+ if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
115
+ raise ValueError('taps must be non-empty with values between '
116
+ 'zero and nbits (inclusive)')
117
+ taps = np.array(taps) # needed for Cython and Pythran
118
+ n_max = (2**nbits) - 1
119
+ if length is None:
120
+ length = n_max
121
+ else:
122
+ length = int(length)
123
+ if length < 0:
124
+ raise ValueError('length must be greater than or equal to 0')
125
+ # We use int8 instead of bool here because NumPy arrays of bools
126
+ # don't seem to work nicely with Cython
127
+ if state is None:
128
+ state = np.ones(nbits, dtype=np.int8, order='c')
129
+ else:
130
+ # makes a copy if need be, ensuring it's 0's and 1's
131
+ state = np.array(state, dtype=bool, order='c').astype(np.int8)
132
+ if state.ndim != 1 or state.size != nbits:
133
+ raise ValueError('state must be a 1-D array of size nbits')
134
+ if np.all(state == 0):
135
+ raise ValueError('state must not be all zeros')
136
+
137
+ seq = np.empty(length, dtype=np.int8, order='c')
138
+ state = _max_len_seq_inner(taps, state, nbits, length, seq)
139
+ return seq, state
env-llmeval/lib/python3.10/site-packages/scipy/signal/_max_len_seq_inner.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (77.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/signal/_short_time_fft.py ADDED
@@ -0,0 +1,1676 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of an FFT-based Short-time Fourier Transform. """
2
+
3
+ # Implementation Notes for this file (as of 2023-07)
4
+ # --------------------------------------------------
5
+ # * MyPy version 1.1.1 does not seem to support decorated property methods
6
+ # properly. Hence, applying ``@property`` to methods decorated with `@cache``
7
+ # (as tried with the ``lower_border_end`` method) causes a mypy error when
8
+ # accessing it as an index (e.g., ``SFT.lower_border_end[0]``).
9
+ # * Since the method `stft` and `istft` have identical names as the legacy
10
+ # functions in the signal module, referencing them as HTML link in the
11
+ # docstrings has to be done by an explicit `~ShortTimeFFT.stft` instead of an
12
+ # ambiguous `stft` (The ``~`` hides the class / module name).
13
+ # * The HTML documentation currently renders each method/property on a separate
14
+ # page without reference to the parent class. Thus, a link to `ShortTimeFFT`
15
+ # was added to the "See Also" section of each method/property. These links
16
+ # can be removed, when SciPy updates ``pydata-sphinx-theme`` to >= 0.13.3
17
+ # (currently 0.9). Consult Issue 18512 and PR 16660 for further details.
18
+ #
19
+
20
+ # Provides typing union operator ``|`` in Python 3.9:
21
+ from __future__ import annotations
22
+ # Linter does not allow to import ``Generator`` from ``typing`` module:
23
+ from collections.abc import Generator
24
+ from functools import cache, lru_cache, partial
25
+ from typing import Callable, get_args, Literal
26
+
27
+ import numpy as np
28
+
29
+ import scipy.fft as fft_lib
30
+ from scipy.signal import detrend
31
+ from scipy.signal.windows import get_window
32
+
33
+ __all__ = ['ShortTimeFFT']
34
+
35
+
36
+ #: Allowed values for parameter `padding` of method `ShortTimeFFT.stft()`:
37
+ PAD_TYPE = Literal['zeros', 'edge', 'even', 'odd']
38
+
39
+ #: Allowed values for property `ShortTimeFFT.fft_mode`:
40
+ FFT_MODE_TYPE = Literal['twosided', 'centered', 'onesided', 'onesided2X']
41
+
42
+
43
+ def _calc_dual_canonical_window(win: np.ndarray, hop: int) -> np.ndarray:
44
+ """Calculate canonical dual window for 1d window `win` and a time step
45
+ of `hop` samples.
46
+
47
+ A ``ValueError`` is raised, if the inversion fails.
48
+
49
+ This is a separate function not a method, since it is also used in the
50
+ class method ``ShortTimeFFT.from_dual()``.
51
+ """
52
+ if hop > len(win):
53
+ raise ValueError(f"{hop=} is larger than window length of {len(win)}" +
54
+ " => STFT not invertible!")
55
+ if issubclass(win.dtype.type, np.integer):
56
+ raise ValueError("Parameter 'win' cannot be of integer type, but " +
57
+ f"{win.dtype=} => STFT not invertible!")
58
+ # The calculation of `relative_resolution` does not work for ints.
59
+ # Furthermore, `win / DD` casts the integers away, thus an implicit
60
+ # cast is avoided, which can always cause confusion when using 32-Bit
61
+ # floats.
62
+
63
+ w2 = win.real**2 + win.imag**2 # win*win.conj() does not ensure w2 is real
64
+ DD = w2.copy()
65
+ for k_ in range(hop, len(win), hop):
66
+ DD[k_:] += w2[:-k_]
67
+ DD[:-k_] += w2[k_:]
68
+
69
+ # check DD > 0:
70
+ relative_resolution = np.finfo(win.dtype).resolution * max(DD)
71
+ if not np.all(DD >= relative_resolution):
72
+ raise ValueError("Short-time Fourier Transform not invertible!")
73
+
74
+ return win / DD
75
+
76
+
77
+ # noinspection PyShadowingNames
78
+ class ShortTimeFFT:
79
+ r"""Provide a parametrized discrete Short-time Fourier transform (stft)
80
+ and its inverse (istft).
81
+
82
+ .. currentmodule:: scipy.signal.ShortTimeFFT
83
+
84
+ The `~ShortTimeFFT.stft` calculates sequential FFTs by sliding a
85
+ window (`win`) over an input signal by `hop` increments. It can be used to
86
+ quantify the change of the spectrum over time.
87
+
88
+ The `~ShortTimeFFT.stft` is represented by a complex-valued matrix S[q,p]
89
+ where the p-th column represents an FFT with the window centered at the
90
+ time t[p] = p * `delta_t` = p * `hop` * `T` where `T` is the sampling
91
+ interval of the input signal. The q-th row represents the values at the
92
+ frequency f[q] = q * `delta_f` with `delta_f` = 1 / (`mfft` * `T`) being
93
+ the bin width of the FFT.
94
+
95
+ The inverse STFT `~ShortTimeFFT.istft` is calculated by reversing the steps
96
+ of the STFT: Take the IFFT of the p-th slice of S[q,p] and multiply the
97
+ result with the so-called dual window (see `dual_win`). Shift the result by
98
+ p * `delta_t` and add the result to previous shifted results to reconstruct
99
+ the signal. If only the dual window is known and the STFT is invertible,
100
+ `from_dual` can be used to instantiate this class.
101
+
102
+ Due to the convention of time t = 0 being at the first sample of the input
103
+ signal, the STFT values typically have negative time slots. Hence,
104
+ negative indexes like `p_min` or `k_min` do not indicate counting
105
+ backwards from an array's end like in standard Python indexing but being
106
+ left of t = 0.
107
+
108
+ More detailed information can be found in the :ref:`tutorial_stft` section
109
+ of the :ref:`user_guide`.
110
+
111
+ Note that all parameters of the initializer, except `scale_to` (which uses
112
+ `scaling`) have identical named attributes.
113
+
114
+ Parameters
115
+ ----------
116
+ win : np.ndarray
117
+ The window must be a real- or complex-valued 1d array.
118
+ hop : int
119
+ The increment in samples, by which the window is shifted in each step.
120
+ fs : float
121
+ Sampling frequency of input signal and window. Its relation to the
122
+ sampling interval `T` is ``T = 1 / fs``.
123
+ fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
124
+ Mode of FFT to be used (default 'onesided').
125
+ See property `fft_mode` for details.
126
+ mfft: int | None
127
+ Length of the FFT used, if a zero padded FFT is desired.
128
+ If ``None`` (default), the length of the window `win` is used.
129
+ dual_win : np.ndarray | None
130
+ The dual window of `win`. If set to ``None``, it is calculated if
131
+ needed.
132
+ scale_to : 'magnitude', 'psd' | None
133
+ If not ``None`` (default) the window function is scaled, so each STFT
134
+ column represents either a 'magnitude' or a power spectral density
135
+ ('psd') spectrum. This parameter sets the property `scaling` to the
136
+ same value. See method `scale_to` for details.
137
+ phase_shift : int | None
138
+ If set, add a linear phase `phase_shift` / `mfft` * `f` to each
139
+ frequency `f`. The default value 0 ensures that there is no phase shift
140
+ on the zeroth slice (in which t=0 is centered). See property
141
+ `phase_shift` for more details.
142
+
143
+ Examples
144
+ --------
145
+ The following example shows the magnitude of the STFT of a sine with
146
+ varying frequency :math:`f_i(t)` (marked by a red dashed line in the plot):
147
+
148
+ >>> import numpy as np
149
+ >>> import matplotlib.pyplot as plt
150
+ >>> from scipy.signal import ShortTimeFFT
151
+ >>> from scipy.signal.windows import gaussian
152
+ ...
153
+ >>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
154
+ >>> t_x = np.arange(N) * T_x # time indexes for signal
155
+ >>> f_i = 1 * np.arctan((t_x - t_x[N // 2]) / 2) + 5 # varying frequency
156
+ >>> x = np.sin(2*np.pi*np.cumsum(f_i)*T_x) # the signal
157
+
158
+ The utilized Gaussian window is 50 samples or 2.5 s long. The parameter
159
+ ``mfft=200`` in `ShortTimeFFT` causes the spectrum to be oversampled
160
+ by a factor of 4:
161
+
162
+ >>> g_std = 8 # standard deviation for Gaussian window in samples
163
+ >>> w = gaussian(50, std=g_std, sym=True) # symmetric Gaussian window
164
+ >>> SFT = ShortTimeFFT(w, hop=10, fs=1/T_x, mfft=200, scale_to='magnitude')
165
+ >>> Sx = SFT.stft(x) # perform the STFT
166
+
167
+ In the plot, the time extent of the signal `x` is marked by vertical dashed
168
+ lines. Note that the SFT produces values outside the time range of `x`. The
169
+ shaded areas on the left and the right indicate border effects caused
170
+ by the window slices in that area not fully being inside time range of
171
+ `x`:
172
+
173
+ >>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
174
+ >>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
175
+ >>> ax1.set_title(rf"STFT ({SFT.m_num*SFT.T:g}$\,s$ Gaussian window, " +
176
+ ... rf"$\sigma_t={g_std*SFT.T}\,$s)")
177
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
178
+ ... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
179
+ ... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
180
+ ... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
181
+ ... xlim=(t_lo, t_hi))
182
+ ...
183
+ >>> im1 = ax1.imshow(abs(Sx), origin='lower', aspect='auto',
184
+ ... extent=SFT.extent(N), cmap='viridis')
185
+ >>> ax1.plot(t_x, f_i, 'r--', alpha=.5, label='$f_i(t)$')
186
+ >>> fig1.colorbar(im1, label="Magnitude $|S_x(t, f)|$")
187
+ ...
188
+ >>> # Shade areas where window slices stick out to the side:
189
+ >>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
190
+ ... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
191
+ ... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.2)
192
+ >>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line:
193
+ ... ax1.axvline(t_, color='y', linestyle='--', alpha=0.5)
194
+ >>> ax1.legend()
195
+ >>> fig1.tight_layout()
196
+ >>> plt.show()
197
+
198
+ Reconstructing the signal with the `~ShortTimeFFT.istft` is
199
+ straightforward, but note that the length of `x1` should be specified,
200
+ since the SFT length increases in `hop` steps:
201
+
202
+ >>> SFT.invertible # check if invertible
203
+ True
204
+ >>> x1 = SFT.istft(Sx, k1=N)
205
+ >>> np.allclose(x, x1)
206
+ True
207
+
208
+ It is possible to calculate the SFT of signal parts:
209
+
210
+ >>> p_q = SFT.nearest_k_p(N // 2)
211
+ >>> Sx0 = SFT.stft(x[:p_q])
212
+ >>> Sx1 = SFT.stft(x[p_q:])
213
+
214
+ When assembling sequential STFT parts together, the overlap needs to be
215
+ considered:
216
+
217
+ >>> p0_ub = SFT.upper_border_begin(p_q)[1] - SFT.p_min
218
+ >>> p1_le = SFT.lower_border_end[1] - SFT.p_min
219
+ >>> Sx01 = np.hstack((Sx0[:, :p0_ub],
220
+ ... Sx0[:, p0_ub:] + Sx1[:, :p1_le],
221
+ ... Sx1[:, p1_le:]))
222
+ >>> np.allclose(Sx01, Sx) # Compare with SFT of complete signal
223
+ True
224
+
225
+ It is also possible to calculate the `itsft` for signal parts:
226
+
227
+ >>> y_p = SFT.istft(Sx, N//3, N//2)
228
+ >>> np.allclose(y_p, x[N//3:N//2])
229
+ True
230
+
231
+ """
232
+ # immutable attributes (only have getters but no setters):
233
+ _win: np.ndarray # window
234
+ _dual_win: np.ndarray | None = None # canonical dual window
235
+ _hop: int # Step of STFT in number of samples
236
+
237
+ # mutable attributes:
238
+ _fs: float # sampling frequency of input signal and window
239
+ _fft_mode: FFT_MODE_TYPE = 'onesided' # Mode of FFT to use
240
+ _mfft: int # length of FFT used - defaults to len(win)
241
+ _scaling: Literal['magnitude', 'psd'] | None = None # Scaling of _win
242
+ _phase_shift: int | None # amount to shift phase of FFT in samples
243
+
244
+ # attributes for caching calculated values:
245
+ _fac_mag: float | None = None
246
+ _fac_psd: float | None = None
247
+ _lower_border_end: tuple[int, int] | None = None
248
+
249
+ def __init__(self, win: np.ndarray, hop: int, fs: float, *,
250
+ fft_mode: FFT_MODE_TYPE = 'onesided',
251
+ mfft: int | None = None,
252
+ dual_win: np.ndarray | None = None,
253
+ scale_to: Literal['magnitude', 'psd'] | None = None,
254
+ phase_shift: int | None = 0):
255
+ if not (win.ndim == 1 and win.size > 0):
256
+ raise ValueError(f"Parameter win must be 1d, but {win.shape=}!")
257
+ if not all(np.isfinite(win)):
258
+ raise ValueError("Parameter win must have finite entries!")
259
+ if not (hop >= 1 and isinstance(hop, int)):
260
+ raise ValueError(f"Parameter {hop=} is not an integer >= 1!")
261
+ self._win, self._hop, self.fs = win, hop, fs
262
+
263
+ self.mfft = len(win) if mfft is None else mfft
264
+
265
+ if dual_win is not None:
266
+ if dual_win.shape != win.shape:
267
+ raise ValueError(f"{dual_win.shape=} must equal {win.shape=}!")
268
+ if not all(np.isfinite(dual_win)):
269
+ raise ValueError("Parameter dual_win must be a finite array!")
270
+ self._dual_win = dual_win # needs to be set before scaling
271
+
272
+ if scale_to is not None: # needs to be set before fft_mode
273
+ self.scale_to(scale_to)
274
+
275
+ self.fft_mode, self.phase_shift = fft_mode, phase_shift
276
+
277
+ @classmethod
278
+ def from_dual(cls, dual_win: np.ndarray, hop: int, fs: float, *,
279
+ fft_mode: FFT_MODE_TYPE = 'onesided',
280
+ mfft: int | None = None,
281
+ scale_to: Literal['magnitude', 'psd'] | None = None,
282
+ phase_shift: int | None = 0):
283
+ r"""Instantiate a `ShortTimeFFT` by only providing a dual window.
284
+
285
+ If an STFT is invertible, it is possible to calculate the window `win`
286
+ from a given dual window `dual_win`. All other parameters have the
287
+ same meaning as in the initializer of `ShortTimeFFT`.
288
+
289
+ As explained in the :ref:`tutorial_stft` section of the
290
+ :ref:`user_guide`, an invertible STFT can be interpreted as series
291
+ expansion of time-shifted and frequency modulated dual windows. E.g.,
292
+ the series coefficient S[q,p] belongs to the term, which shifted
293
+ `dual_win` by p * `delta_t` and multiplied it by
294
+ exp( 2 * j * pi * t * q * `delta_f`).
295
+
296
+
297
+ Examples
298
+ --------
299
+ The following example discusses decomposing a signal into time- and
300
+ frequency-shifted Gaussians. A Gaussian with standard deviation of
301
+ one made up of 51 samples will be used:
302
+
303
+ >>> import numpy as np
304
+ >>> import matplotlib.pyplot as plt
305
+ >>> from scipy.signal import ShortTimeFFT
306
+ >>> from scipy.signal.windows import gaussian
307
+ ...
308
+ >>> T, N = 0.1, 51
309
+ >>> d_win = gaussian(N, std=1/T, sym=True) # symmetric Gaussian window
310
+ >>> t = T * (np.arange(N) - N//2)
311
+ ...
312
+ >>> fg1, ax1 = plt.subplots()
313
+ >>> ax1.set_title(r"Dual Window: Gaussian with $\sigma_t=1$")
314
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
315
+ ... xlim=(t[0], t[-1]), ylim=(0, 1.1*max(d_win)))
316
+ >>> ax1.plot(t, d_win, 'C0-')
317
+
318
+ The following plot with the overlap of 41, 11 and 2 samples show how
319
+ the `hop` interval affects the shape of the window `win`:
320
+
321
+ >>> fig2, axx = plt.subplots(3, 1, sharex='all')
322
+ ...
323
+ >>> axx[0].set_title(r"Windows for hop$\in\{10, 40, 49\}$")
324
+ >>> for c_, h_ in enumerate([10, 40, 49]):
325
+ ... SFT = ShortTimeFFT.from_dual(d_win, h_, 1/T)
326
+ ... axx[c_].plot(t + h_ * T, SFT.win, 'k--', alpha=.3, label=None)
327
+ ... axx[c_].plot(t - h_ * T, SFT.win, 'k:', alpha=.3, label=None)
328
+ ... axx[c_].plot(t, SFT.win, f'C{c_+1}',
329
+ ... label=r"$\Delta t=%0.1f\,$s" % SFT.delta_t)
330
+ ... axx[c_].set_ylim(0, 1.1*max(SFT.win))
331
+ ... axx[c_].legend(loc='center')
332
+ >>> axx[-1].set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
333
+ ... xlim=(t[0], t[-1]))
334
+ >>> plt.show()
335
+
336
+ Beside the window `win` centered at t = 0 the previous (t = -`delta_t`)
337
+ and following window (t = `delta_t`) are depicted. It can be seen that
338
+ for small `hop` intervals, the window is compact and smooth, having a
339
+ good time-frequency concentration in the STFT. For the large `hop`
340
+ interval of 4.9 s, the window has small values around t = 0, which are
341
+ not covered by the overlap of the adjacent windows, which could lead to
342
+ numeric inaccuracies. Furthermore, the peaky shape at the beginning and
343
+ the end of the window points to a higher bandwidth, resulting in a
344
+ poorer time-frequency resolution of the STFT.
345
+ Hence, the choice of the `hop` interval will be a compromise between
346
+ a time-frequency resolution and memory requirements demanded by small
347
+ `hop` sizes.
348
+
349
+ See Also
350
+ --------
351
+ from_window: Create instance by wrapping `get_window`.
352
+ ShortTimeFFT: Create instance using standard initializer.
353
+ """
354
+ win = _calc_dual_canonical_window(dual_win, hop)
355
+ return cls(win=win, hop=hop, fs=fs, fft_mode=fft_mode, mfft=mfft,
356
+ dual_win=dual_win, scale_to=scale_to,
357
+ phase_shift=phase_shift)
358
+
359
+ @classmethod
360
+ def from_window(cls, win_param: str | tuple | float,
361
+ fs: float, nperseg: int, noverlap: int, *,
362
+ symmetric_win: bool = False,
363
+ fft_mode: FFT_MODE_TYPE = 'onesided',
364
+ mfft: int | None = None,
365
+ scale_to: Literal['magnitude', 'psd'] | None = None,
366
+ phase_shift: int | None = 0):
367
+ """Instantiate `ShortTimeFFT` by using `get_window`.
368
+
369
+ The method `get_window` is used to create a window of length
370
+ `nperseg`. The parameter names `noverlap`, and `nperseg` are used here,
371
+ since they more inline with other classical STFT libraries.
372
+
373
+ Parameters
374
+ ----------
375
+ win_param: Union[str, tuple, float],
376
+ Parameters passed to `get_window`. For windows with no parameters,
377
+ it may be a string (e.g., ``'hann'``), for parametrized windows a
378
+ tuple, (e.g., ``('gaussian', 2.)``) or a single float specifying
379
+ the shape parameter of a kaiser window (i.e. ``4.`` and
380
+ ``('kaiser', 4.)`` are equal. See `get_window` for more details.
381
+ fs : float
382
+ Sampling frequency of input signal. Its relation to the
383
+ sampling interval `T` is ``T = 1 / fs``.
384
+ nperseg: int
385
+ Window length in samples, which corresponds to the `m_num`.
386
+ noverlap: int
387
+ Window overlap in samples. It relates to the `hop` increment by
388
+ ``hop = npsereg - noverlap``.
389
+ symmetric_win: bool
390
+ If ``True`` then a symmetric window is generated, else a periodic
391
+ window is generated (default). Though symmetric windows seem for
392
+ most applications to be more sensible, the default of a periodic
393
+ windows was chosen to correspond to the default of `get_window`.
394
+ fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
395
+ Mode of FFT to be used (default 'onesided').
396
+ See property `fft_mode` for details.
397
+ mfft: int | None
398
+ Length of the FFT used, if a zero padded FFT is desired.
399
+ If ``None`` (default), the length of the window `win` is used.
400
+ scale_to : 'magnitude', 'psd' | None
401
+ If not ``None`` (default) the window function is scaled, so each
402
+ STFT column represents either a 'magnitude' or a power spectral
403
+ density ('psd') spectrum. This parameter sets the property
404
+ `scaling` to the same value. See method `scale_to` for details.
405
+ phase_shift : int | None
406
+ If set, add a linear phase `phase_shift` / `mfft` * `f` to each
407
+ frequency `f`. The default value 0 ensures that there is no phase
408
+ shift on the zeroth slice (in which t=0 is centered). See property
409
+ `phase_shift` for more details.
410
+
411
+ Examples
412
+ --------
413
+ The following instances ``SFT0`` and ``SFT1`` are equivalent:
414
+
415
+ >>> from scipy.signal import ShortTimeFFT, get_window
416
+ >>> nperseg = 9 # window length
417
+ >>> w = get_window(('gaussian', 2.), nperseg)
418
+ >>> fs = 128 # sampling frequency
419
+ >>> hop = 3 # increment of STFT time slice
420
+ >>> SFT0 = ShortTimeFFT(w, hop, fs=fs)
421
+ >>> SFT1 = ShortTimeFFT.from_window(('gaussian', 2.), fs, nperseg,
422
+ ... noverlap=nperseg-hop)
423
+
424
+ See Also
425
+ --------
426
+ scipy.signal.get_window: Return a window of a given length and type.
427
+ from_dual: Create instance using dual window.
428
+ ShortTimeFFT: Create instance using standard initializer.
429
+ """
430
+ win = get_window(win_param, nperseg, fftbins=not symmetric_win)
431
+ return cls(win, hop=nperseg-noverlap, fs=fs, fft_mode=fft_mode,
432
+ mfft=mfft, scale_to=scale_to, phase_shift=phase_shift)
433
+
434
+ @property
435
+ def win(self) -> np.ndarray:
436
+ """Window function as real- or complex-valued 1d array.
437
+
438
+ This attribute is read only, since `dual_win` depends on it.
439
+
440
+ See Also
441
+ --------
442
+ dual_win: Canonical dual window.
443
+ m_num: Number of samples in window `win`.
444
+ m_num_mid: Center index of window `win`.
445
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
446
+ hop: ime increment in signal samples for sliding window.
447
+ win: Window function as real- or complex-valued 1d array.
448
+ ShortTimeFFT: Class this property belongs to.
449
+ """
450
+ return self._win
451
+
452
+ @property
453
+ def hop(self) -> int:
454
+ """Time increment in signal samples for sliding window.
455
+
456
+ This attribute is read only, since `dual_win` depends on it.
457
+
458
+ See Also
459
+ --------
460
+ delta_t: Time increment of STFT (``hop*T``)
461
+ m_num: Number of samples in window `win`.
462
+ m_num_mid: Center index of window `win`.
463
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
464
+ T: Sampling interval of input signal and of the window.
465
+ win: Window function as real- or complex-valued 1d array.
466
+ ShortTimeFFT: Class this property belongs to.
467
+ """
468
+ return self._hop
469
+
470
+ @property
471
+ def T(self) -> float:
472
+ """Sampling interval of input signal and of the window.
473
+
474
+ A ``ValueError`` is raised if it is set to a non-positive value.
475
+
476
+ See Also
477
+ --------
478
+ delta_t: Time increment of STFT (``hop*T``)
479
+ hop: Time increment in signal samples for sliding window.
480
+ fs: Sampling frequency (being ``1/T``)
481
+ t: Times of STFT for an input signal with `n` samples.
482
+ ShortTimeFFT: Class this property belongs to.
483
+ """
484
+ return 1 / self._fs
485
+
486
+ @T.setter
487
+ def T(self, v: float):
488
+ """Sampling interval of input signal and of the window.
489
+
490
+ A ``ValueError`` is raised if it is set to a non-positive value.
491
+ """
492
+ if not (v > 0):
493
+ raise ValueError(f"Sampling interval T={v} must be positive!")
494
+ self._fs = 1 / v
495
+
496
+ @property
497
+ def fs(self) -> float:
498
+ """Sampling frequency of input signal and of the window.
499
+
500
+ The sampling frequency is the inverse of the sampling interval `T`.
501
+ A ``ValueError`` is raised if it is set to a non-positive value.
502
+
503
+ See Also
504
+ --------
505
+ delta_t: Time increment of STFT (``hop*T``)
506
+ hop: Time increment in signal samples for sliding window.
507
+ T: Sampling interval of input signal and of the window (``1/fs``).
508
+ ShortTimeFFT: Class this property belongs to.
509
+ """
510
+ return self._fs
511
+
512
+ @fs.setter
513
+ def fs(self, v: float):
514
+ """Sampling frequency of input signal and of the window.
515
+
516
+ The sampling frequency is the inverse of the sampling interval `T`.
517
+ A ``ValueError`` is raised if it is set to a non-positive value.
518
+ """
519
+ if not (v > 0):
520
+ raise ValueError(f"Sampling frequency fs={v} must be positive!")
521
+ self._fs = v
522
+
523
+ @property
524
+ def fft_mode(self) -> FFT_MODE_TYPE:
525
+ """Mode of utilized FFT ('twosided', 'centered', 'onesided' or
526
+ 'onesided2X').
527
+
528
+ It can have the following values:
529
+
530
+ 'twosided':
531
+ Two-sided FFT, where values for the negative frequencies are in
532
+ upper half of the array. Corresponds to :func:`~scipy.fft.fft()`.
533
+ 'centered':
534
+ Two-sided FFT with the values being ordered along monotonically
535
+ increasing frequencies. Corresponds to applying
536
+ :func:`~scipy.fft.fftshift()` to :func:`~scipy.fft.fft()`.
537
+ 'onesided':
538
+ Calculates only values for non-negative frequency values.
539
+ Corresponds to :func:`~scipy.fft.rfft()`.
540
+ 'onesided2X':
541
+ Like `onesided`, but the non-zero frequencies are doubled if
542
+ `scaling` is set to 'magnitude' or multiplied by ``sqrt(2)`` if
543
+ set to 'psd'. If `scaling` is ``None``, setting `fft_mode` to
544
+ `onesided2X` is not allowed.
545
+ If the FFT length `mfft` is even, the last FFT value is not paired,
546
+ and thus it is not scaled.
547
+
548
+ Note that `onesided` and `onesided2X` do not work for complex-valued signals or
549
+ complex-valued windows. Furthermore, the frequency values can be obtained by
550
+ reading the `f` property, and the number of samples by accessing the `f_pts`
551
+ property.
552
+
553
+ See Also
554
+ --------
555
+ delta_f: Width of the frequency bins of the STFT.
556
+ f: Frequencies values of the STFT.
557
+ f_pts: Width of the frequency bins of the STFT.
558
+ onesided_fft: True if a one-sided FFT is used.
559
+ scaling: Normalization applied to the window function
560
+ ShortTimeFFT: Class this property belongs to.
561
+ """
562
+ return self._fft_mode
563
+
564
+ @fft_mode.setter
565
+ def fft_mode(self, t: FFT_MODE_TYPE):
566
+ """Set mode of FFT.
567
+
568
+ Allowed values are 'twosided', 'centered', 'onesided', 'onesided2X'.
569
+ See the property `fft_mode` for more details.
570
+ """
571
+ if t not in (fft_mode_types := get_args(FFT_MODE_TYPE)):
572
+ raise ValueError(f"fft_mode='{t}' not in {fft_mode_types}!")
573
+
574
+ if t in {'onesided', 'onesided2X'} and np.iscomplexobj(self.win):
575
+ raise ValueError(f"One-sided spectra, i.e., fft_mode='{t}', " +
576
+ "are not allowed for complex-valued windows!")
577
+
578
+ if t == 'onesided2X' and self.scaling is None:
579
+ raise ValueError(f"For scaling is None, fft_mode='{t}' is invalid!"
580
+ "Do scale_to('psd') or scale_to('magnitude')!")
581
+ self._fft_mode = t
582
+
583
+ @property
584
+ def mfft(self) -> int:
585
+ """Length of input for the FFT used - may be larger than window
586
+ length `m_num`.
587
+
588
+ If not set, `mfft` defaults to the window length `m_num`.
589
+
590
+ See Also
591
+ --------
592
+ f_pts: Number of points along the frequency axis.
593
+ f: Frequencies values of the STFT.
594
+ m_num: Number of samples in window `win`.
595
+ ShortTimeFFT: Class this property belongs to.
596
+ """
597
+ return self._mfft
598
+
599
+ @mfft.setter
600
+ def mfft(self, n_: int):
601
+ """Setter for the length of FFT utilized.
602
+
603
+ See the property `mfft` for further details.
604
+ """
605
+ if not (n_ >= self.m_num):
606
+ raise ValueError(f"Attribute mfft={n_} needs to be at least the " +
607
+ f"window length m_num={self.m_num}!")
608
+ self._mfft = n_
609
+
610
+ @property
611
+ def scaling(self) -> Literal['magnitude', 'psd'] | None:
612
+ """Normalization applied to the window function
613
+ ('magnitude', 'psd' or ``None``).
614
+
615
+ If not ``None``, the FFTs can be either interpreted as a magnitude or
616
+ a power spectral density spectrum.
617
+
618
+ The window function can be scaled by calling the `scale_to` method,
619
+ or it is set by the initializer parameter ``scale_to``.
620
+
621
+ See Also
622
+ --------
623
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
624
+ fac_psd: Scaling factor for to a power spectral density spectrum.
625
+ fft_mode: Mode of utilized FFT
626
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
627
+ ShortTimeFFT: Class this property belongs to.
628
+ """
629
+ return self._scaling
630
+
631
+ def scale_to(self, scaling: Literal['magnitude', 'psd']):
632
+ """Scale window to obtain 'magnitude' or 'psd' scaling for the STFT.
633
+
634
+ The window of a 'magnitude' spectrum has an integral of one, i.e., unit
635
+ area for non-negative windows. This ensures that absolute the values of
636
+ spectrum does not change if the length of the window changes (given
637
+ the input signal is stationary).
638
+
639
+ To represent the power spectral density ('psd') for varying length
640
+ windows the area of the absolute square of the window needs to be
641
+ unity.
642
+
643
+ The `scaling` property shows the current scaling. The properties
644
+ `fac_magnitude` and `fac_psd` show the scaling factors required to
645
+ scale the STFT values to a magnitude or a psd spectrum.
646
+
647
+ This method is called, if the initializer parameter `scale_to` is set.
648
+
649
+ See Also
650
+ --------
651
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
652
+ fac_psd: Scaling factor for to a power spectral density spectrum.
653
+ fft_mode: Mode of utilized FFT
654
+ scaling: Normalization applied to the window function.
655
+ ShortTimeFFT: Class this method belongs to.
656
+ """
657
+ if scaling not in (scaling_values := {'magnitude', 'psd'}):
658
+ raise ValueError(f"{scaling=} not in {scaling_values}!")
659
+ if self._scaling == scaling: # do nothing
660
+ return
661
+
662
+ s_fac = self.fac_psd if scaling == 'psd' else self.fac_magnitude
663
+ self._win = self._win * s_fac
664
+ if self._dual_win is not None:
665
+ self._dual_win = self._dual_win / s_fac
666
+ self._fac_mag, self._fac_psd = None, None # reset scaling factors
667
+ self._scaling = scaling
668
+
669
+ @property
670
+ def phase_shift(self) -> int | None:
671
+ """If set, add linear phase `phase_shift` / `mfft` * `f` to each FFT
672
+ slice of frequency `f`.
673
+
674
+ Shifting (more precisely `rolling`) an `mfft`-point FFT input by
675
+ `phase_shift` samples results in a multiplication of the output by
676
+ ``np.exp(2j*np.pi*q*phase_shift/mfft)`` at the frequency q * `delta_f`.
677
+
678
+ The default value 0 ensures that there is no phase shift on the
679
+ zeroth slice (in which t=0 is centered).
680
+ No phase shift (``phase_shift is None``) is equivalent to
681
+ ``phase_shift = -mfft//2``. In this case slices are not shifted
682
+ before calculating the FFT.
683
+
684
+ The absolute value of `phase_shift` is limited to be less than `mfft`.
685
+
686
+ See Also
687
+ --------
688
+ delta_f: Width of the frequency bins of the STFT.
689
+ f: Frequencies values of the STFT.
690
+ mfft: Length of input for the FFT used
691
+ ShortTimeFFT: Class this property belongs to.
692
+ """
693
+ return self._phase_shift
694
+
695
+ @phase_shift.setter
696
+ def phase_shift(self, v: int | None):
697
+ """The absolute value of the phase shift needs to be less than mfft
698
+ samples.
699
+
700
+ See the `phase_shift` getter method for more details.
701
+ """
702
+ if v is None:
703
+ self._phase_shift = v
704
+ return
705
+ if not isinstance(v, int):
706
+ raise ValueError(f"phase_shift={v} has the unit samples. Hence " +
707
+ "it needs to be an int or it may be None!")
708
+ if not (-self.mfft < v < self.mfft):
709
+ raise ValueError("-mfft < phase_shift < mfft does not hold " +
710
+ f"for mfft={self.mfft}, phase_shift={v}!")
711
+ self._phase_shift = v
712
+
713
+ def _x_slices(self, x: np.ndarray, k_off: int, p0: int, p1: int,
714
+ padding: PAD_TYPE) -> Generator[np.ndarray, None, None]:
715
+ """Generate signal slices along last axis of `x`.
716
+
717
+ This method is only used by `stft_detrend`. The parameters are
718
+ described in `~ShortTimeFFT.stft`.
719
+ """
720
+ if padding not in (padding_types := get_args(PAD_TYPE)):
721
+ raise ValueError(f"Parameter {padding=} not in {padding_types}!")
722
+ pad_kws: dict[str, dict] = { # possible keywords to pass to np.pad:
723
+ 'zeros': dict(mode='constant', constant_values=(0, 0)),
724
+ 'edge': dict(mode='edge'),
725
+ 'even': dict(mode='reflect', reflect_type='even'),
726
+ 'odd': dict(mode='reflect', reflect_type='odd'),
727
+ } # typing of pad_kws is needed to make mypy happy
728
+
729
+ n, n1 = x.shape[-1], (p1 - p0) * self.hop
730
+ k0 = p0 * self.hop - self.m_num_mid + k_off # start sample
731
+ k1 = k0 + n1 + self.m_num # end sample
732
+
733
+ i0, i1 = max(k0, 0), min(k1, n) # indexes to shorten x
734
+ # dimensions for padding x:
735
+ pad_width = [(0, 0)] * (x.ndim-1) + [(-min(k0, 0), max(k1 - n, 0))]
736
+
737
+ x1 = np.pad(x[..., i0:i1], pad_width, **pad_kws[padding])
738
+ for k_ in range(0, n1, self.hop):
739
+ yield x1[..., k_:k_ + self.m_num]
740
+
741
+ def stft(self, x: np.ndarray, p0: int | None = None,
742
+ p1: int | None = None, *, k_offset: int = 0,
743
+ padding: PAD_TYPE = 'zeros', axis: int = -1) \
744
+ -> np.ndarray:
745
+ """Perform the short-time Fourier transform.
746
+
747
+ A two-dimensional matrix with ``p1-p0`` columns is calculated.
748
+ The `f_pts` rows represent value at the frequencies `f`. The q-th
749
+ column of the windowed FFT with the window `win` is centered at t[q].
750
+ The columns represent the values at the frequencies `f`.
751
+
752
+ Parameters
753
+ ----------
754
+ x
755
+ The input signal as real or complex valued array. For complex values, the
756
+ property `fft_mode` must be set to 'twosided' or 'centered'.
757
+ p0
758
+ The first element of the range of slices to calculate. If ``None``
759
+ then it is set to :attr:`p_min`, which is the smallest possible
760
+ slice.
761
+ p1
762
+ The end of the array. If ``None`` then `p_max(n)` is used.
763
+ k_offset
764
+ Index of first sample (t = 0) in `x`.
765
+ padding
766
+ Kind of values which are added, when the sliding window sticks out
767
+ on either the lower or upper end of the input `x`. Zeros are added
768
+ if the default 'zeros' is set. For 'edge' either the first or the
769
+ last value of `x` is used. 'even' pads by reflecting the
770
+ signal on the first or last sample and 'odd' additionally
771
+ multiplies it with -1.
772
+ axis
773
+ The axis of `x` over which to compute the STFT.
774
+ If not given, the last axis is used.
775
+
776
+ Returns
777
+ -------
778
+ S
779
+ A complex array is returned with the dimension always being larger
780
+ by one than of `x`. The last axis always represent the time slices
781
+ of the STFT. `axis` defines the frequency axis (default second to
782
+ last). E.g., for a one-dimensional `x`, a complex 2d array is
783
+ returned, with axis 0 representing frequency and axis 1 the time
784
+ slices.
785
+
786
+ See Also
787
+ --------
788
+ delta_f: Width of the frequency bins of the STFT.
789
+ delta_t: Time increment of STFT
790
+ f: Frequencies values of the STFT.
791
+ invertible: Check if STFT is invertible.
792
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
793
+ p_range: Determine and validate slice index range.
794
+ stft_detrend: STFT with detrended segments.
795
+ t: Times of STFT for an input signal with `n` samples.
796
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
797
+ """
798
+ return self.stft_detrend(x, None, p0, p1, k_offset=k_offset,
799
+ padding=padding, axis=axis)
800
+
801
+ def stft_detrend(self, x: np.ndarray,
802
+ detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None, # noqa: E501
803
+ p0: int | None = None, p1: int | None = None, *,
804
+ k_offset: int = 0, padding: PAD_TYPE = 'zeros',
805
+ axis: int = -1) \
806
+ -> np.ndarray:
807
+ """Short-time Fourier transform with a trend being subtracted from each
808
+ segment beforehand.
809
+
810
+ If `detr` is set to 'constant', the mean is subtracted, if set to
811
+ "linear", the linear trend is removed. This is achieved by calling
812
+ :func:`scipy.signal.detrend`. If `detr` is a function, `detr` is
813
+ applied to each segment.
814
+ All other parameters have the same meaning as in `~ShortTimeFFT.stft`.
815
+
816
+ Note that due to the detrending, the original signal cannot be
817
+ reconstructed by the `~ShortTimeFFT.istft`.
818
+
819
+ See Also
820
+ --------
821
+ invertible: Check if STFT is invertible.
822
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
823
+ :meth:`~ShortTimeFFT.stft`: Short-time Fourier transform
824
+ (without detrending).
825
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
826
+ """
827
+ if self.onesided_fft and np.iscomplexobj(x):
828
+ raise ValueError(f"Complex-valued `x` not allowed for {self.fft_mode=}'! "
829
+ "Set property `fft_mode` to 'twosided' or 'centered'.")
830
+ if isinstance(detr, str):
831
+ detr = partial(detrend, type=detr)
832
+ elif not (detr is None or callable(detr)):
833
+ raise ValueError(f"Parameter {detr=} is not a str, function or " +
834
+ "None!")
835
+ n = x.shape[axis]
836
+ if not (n >= (m2p := self.m_num-self.m_num_mid)):
837
+ e_str = f'{len(x)=}' if x.ndim == 1 else f'of {axis=} of {x.shape}'
838
+ raise ValueError(f"{e_str} must be >= ceil(m_num/2) = {m2p}!")
839
+
840
+ if x.ndim > 1: # motivated by the NumPy broadcasting mechanisms:
841
+ x = np.moveaxis(x, axis, -1)
842
+ # determine slice index range:
843
+ p0, p1 = self.p_range(n, p0, p1)
844
+ S_shape_1d = (self.f_pts, p1 - p0)
845
+ S_shape = x.shape[:-1] + S_shape_1d if x.ndim > 1 else S_shape_1d
846
+ S = np.zeros(S_shape, dtype=complex)
847
+ for p_, x_ in enumerate(self._x_slices(x, k_offset, p0, p1, padding)):
848
+ if detr is not None:
849
+ x_ = detr(x_)
850
+ S[..., :, p_] = self._fft_func(x_ * self.win.conj())
851
+ if x.ndim > 1:
852
+ return np.moveaxis(S, -2, axis if axis >= 0 else axis-1)
853
+ return S
854
+
855
+ def spectrogram(self, x: np.ndarray, y: np.ndarray | None = None,
856
+ detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None = None, # noqa: E501
857
+ *,
858
+ p0: int | None = None, p1: int | None = None,
859
+ k_offset: int = 0, padding: PAD_TYPE = 'zeros',
860
+ axis: int = -1) \
861
+ -> np.ndarray:
862
+ r"""Calculate spectrogram or cross-spectrogram.
863
+
864
+ The spectrogram is the absolute square of the STFT, i.e, it is
865
+ ``abs(S[q,p])**2`` for given ``S[q,p]`` and thus is always
866
+ non-negative.
867
+ For two STFTs ``Sx[q,p], Sy[q,p]``, the cross-spectrogram is defined
868
+ as ``Sx[q,p] * np.conj(Sx[q,p])`` and is complex-valued.
869
+ This is a convenience function for calling `~ShortTimeFFT.stft` /
870
+ `stft_detrend`, hence all parameters are discussed there. If `y` is not
871
+ ``None`` it needs to have the same shape as `x`.
872
+
873
+ Examples
874
+ --------
875
+ The following example shows the spectrogram of a square wave with
876
+ varying frequency :math:`f_i(t)` (marked by a green dashed line in the
877
+ plot) sampled with 20 Hz:
878
+
879
+ >>> import matplotlib.pyplot as plt
880
+ >>> import numpy as np
881
+ >>> from scipy.signal import square, ShortTimeFFT
882
+ >>> from scipy.signal.windows import gaussian
883
+ ...
884
+ >>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
885
+ >>> t_x = np.arange(N) * T_x # time indexes for signal
886
+ >>> f_i = 5e-3*(t_x - t_x[N // 3])**2 + 1 # varying frequency
887
+ >>> x = square(2*np.pi*np.cumsum(f_i)*T_x) # the signal
888
+
889
+ The utitlized Gaussian window is 50 samples or 2.5 s long. The
890
+ parameter ``mfft=800`` (oversampling factor 16) and the `hop` interval
891
+ of 2 in `ShortTimeFFT` was chosen to produce a sufficient number of
892
+ points:
893
+
894
+ >>> g_std = 12 # standard deviation for Gaussian window in samples
895
+ >>> win = gaussian(50, std=g_std, sym=True) # symmetric Gaussian wind.
896
+ >>> SFT = ShortTimeFFT(win, hop=2, fs=1/T_x, mfft=800, scale_to='psd')
897
+ >>> Sx2 = SFT.spectrogram(x) # calculate absolute square of STFT
898
+
899
+ The plot's colormap is logarithmically scaled as the power spectral
900
+ density is in dB. The time extent of the signal `x` is marked by
901
+ vertical dashed lines and the shaded areas mark the presence of border
902
+ effects:
903
+
904
+ >>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
905
+ >>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
906
+ >>> ax1.set_title(rf"Spectrogram ({SFT.m_num*SFT.T:g}$\,s$ Gaussian " +
907
+ ... rf"window, $\sigma_t={g_std*SFT.T:g}\,$s)")
908
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
909
+ ... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
910
+ ... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
911
+ ... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
912
+ ... xlim=(t_lo, t_hi))
913
+ >>> Sx_dB = 10 * np.log10(np.fmax(Sx2, 1e-4)) # limit range to -40 dB
914
+ >>> im1 = ax1.imshow(Sx_dB, origin='lower', aspect='auto',
915
+ ... extent=SFT.extent(N), cmap='magma')
916
+ >>> ax1.plot(t_x, f_i, 'g--', alpha=.5, label='$f_i(t)$')
917
+ >>> fig1.colorbar(im1, label='Power Spectral Density ' +
918
+ ... r"$20\,\log_{10}|S_x(t, f)|$ in dB")
919
+ ...
920
+ >>> # Shade areas where window slices stick out to the side:
921
+ >>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
922
+ ... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
923
+ ... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.3)
924
+ >>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line
925
+ ... ax1.axvline(t_, color='c', linestyle='--', alpha=0.5)
926
+ >>> ax1.legend()
927
+ >>> fig1.tight_layout()
928
+ >>> plt.show()
929
+
930
+ The logarithmic scaling reveals the odd harmonics of the square wave,
931
+ which are reflected at the Nyquist frequency of 10 Hz. This aliasing
932
+ is also the main source of the noise artifacts in the plot.
933
+
934
+
935
+ See Also
936
+ --------
937
+ :meth:`~ShortTimeFFT.stft`: Perform the short-time Fourier transform.
938
+ stft_detrend: STFT with a trend subtracted from each segment.
939
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
940
+ """
941
+ Sx = self.stft_detrend(x, detr, p0, p1, k_offset=k_offset,
942
+ padding=padding, axis=axis)
943
+ if y is None or y is x: # do spectrogram:
944
+ return Sx.real**2 + Sx.imag**2
945
+ # Cross-spectrogram:
946
+ Sy = self.stft_detrend(y, detr, p0, p1, k_offset=k_offset,
947
+ padding=padding, axis=axis)
948
+ return Sx * Sy.conj()
949
+
950
+ @property
951
+ def dual_win(self) -> np.ndarray:
952
+ """Canonical dual window.
953
+
954
+ A STFT can be interpreted as the input signal being expressed as a
955
+ weighted sum of modulated and time-shifted dual windows. Note that for
956
+ a given window there exist many dual windows. The canonical window is
957
+ the one with the minimal energy (i.e., :math:`L_2` norm).
958
+
959
+ `dual_win` has same length as `win`, namely `m_num` samples.
960
+
961
+ If the dual window cannot be calculated a ``ValueError`` is raised.
962
+ This attribute is read only and calculated lazily.
963
+
964
+ See Also
965
+ --------
966
+ dual_win: Canonical dual window.
967
+ m_num: Number of samples in window `win`.
968
+ win: Window function as real- or complex-valued 1d array.
969
+ ShortTimeFFT: Class this property belongs to.
970
+ """
971
+ if self._dual_win is None:
972
+ self._dual_win = _calc_dual_canonical_window(self.win, self.hop)
973
+ return self._dual_win
974
+
975
+ @property
976
+ def invertible(self) -> bool:
977
+ """Check if STFT is invertible.
978
+
979
+ This is achieved by trying to calculate the canonical dual window.
980
+
981
+ See Also
982
+ --------
983
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
984
+ m_num: Number of samples in window `win` and `dual_win`.
985
+ dual_win: Canonical dual window.
986
+ win: Window for STFT.
987
+ ShortTimeFFT: Class this property belongs to.
988
+ """
989
+ try:
990
+ return len(self.dual_win) > 0 # call self.dual_win()
991
+ except ValueError:
992
+ return False
993
+
994
+ def istft(self, S: np.ndarray, k0: int = 0, k1: int | None = None, *,
995
+ f_axis: int = -2, t_axis: int = -1) \
996
+ -> np.ndarray:
997
+ """Inverse short-time Fourier transform.
998
+
999
+ It returns an array of dimension ``S.ndim - 1`` which is real
1000
+ if `onesided_fft` is set, else complex. If the STFT is not
1001
+ `invertible`, or the parameters are out of bounds a ``ValueError`` is
1002
+ raised.
1003
+
1004
+ Parameters
1005
+ ----------
1006
+ S
1007
+ A complex valued array where `f_axis` denotes the frequency
1008
+ values and the `t-axis` dimension the temporal values of the
1009
+ STFT values.
1010
+ k0, k1
1011
+ The start and the end index of the reconstructed signal. The
1012
+ default (``k0 = 0``, ``k1 = None``) assumes that the maximum length
1013
+ signal should be reconstructed.
1014
+ f_axis, t_axis
1015
+ The axes in `S` denoting the frequency and the time dimension.
1016
+
1017
+ Notes
1018
+ -----
1019
+ It is required that `S` has `f_pts` entries along the `f_axis`. For
1020
+ the `t_axis` it is assumed that the first entry corresponds to
1021
+ `p_min` * `delta_t` (being <= 0). The length of `t_axis` needs to be
1022
+ compatible with `k1`. I.e., ``S.shape[t_axis] >= self.p_max(k1)`` must
1023
+ hold, if `k1` is not ``None``. Else `k1` is set to `k_max` with::
1024
+
1025
+ q_max = S.shape[t_range] + self.p_min
1026
+ k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
1027
+
1028
+ The :ref:`tutorial_stft` section of the :ref:`user_guide` discussed the
1029
+ slicing behavior by means of an example.
1030
+
1031
+ See Also
1032
+ --------
1033
+ invertible: Check if STFT is invertible.
1034
+ :meth:`~ShortTimeFFT.stft`: Perform Short-time Fourier transform.
1035
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1036
+ """
1037
+ if f_axis == t_axis:
1038
+ raise ValueError(f"{f_axis=} may not be equal to {t_axis=}!")
1039
+ if S.shape[f_axis] != self.f_pts:
1040
+ raise ValueError(f"{S.shape[f_axis]=} must be equal to " +
1041
+ f"{self.f_pts=} ({S.shape=})!")
1042
+ n_min = self.m_num-self.m_num_mid # minimum signal length
1043
+ if not (S.shape[t_axis] >= (q_num := self.p_num(n_min))):
1044
+ raise ValueError(f"{S.shape[t_axis]=} needs to have at least " +
1045
+ f"{q_num} slices ({S.shape=})!")
1046
+ if t_axis != S.ndim - 1 or f_axis != S.ndim - 2:
1047
+ t_axis = S.ndim + t_axis if t_axis < 0 else t_axis
1048
+ f_axis = S.ndim + f_axis if f_axis < 0 else f_axis
1049
+ S = np.moveaxis(S, (f_axis, t_axis), (-2, -1))
1050
+
1051
+ q_max = S.shape[-1] + self.p_min
1052
+ k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
1053
+
1054
+ k1 = k_max if k1 is None else k1
1055
+ if not (self.k_min <= k0 < k1 <= k_max):
1056
+ raise ValueError(f"({self.k_min=}) <= ({k0=}) < ({k1=}) <= " +
1057
+ f"({k_max=}) is false!")
1058
+ if not (num_pts := k1 - k0) >= n_min:
1059
+ raise ValueError(f"({k1=}) - ({k0=}) = {num_pts} has to be at " +
1060
+ f"least the half the window length {n_min}!")
1061
+
1062
+ q0 = (k0 // self.hop + self.p_min if k0 >= 0 else # p_min always <= 0
1063
+ k0 // self.hop)
1064
+ q1 = min(self.p_max(k1), q_max)
1065
+ k_q0, k_q1 = self.nearest_k_p(k0), self.nearest_k_p(k1, left=False)
1066
+ n_pts = k_q1 - k_q0 + self.m_num - self.m_num_mid
1067
+ x = np.zeros(S.shape[:-2] + (n_pts,),
1068
+ dtype=float if self.onesided_fft else complex)
1069
+ for q_ in range(q0, q1):
1070
+ xs = self._ifft_func(S[..., :, q_ - self.p_min]) * self.dual_win
1071
+ i0 = q_ * self.hop - self.m_num_mid
1072
+ i1 = min(i0 + self.m_num, n_pts+k0)
1073
+ j0, j1 = 0, i1 - i0
1074
+ if i0 < k0: # xs sticks out to the left on x:
1075
+ j0 += k0 - i0
1076
+ i0 = k0
1077
+ x[..., i0-k0:i1-k0] += xs[..., j0:j1]
1078
+ x = x[..., :k1-k0]
1079
+ if x.ndim > 1:
1080
+ x = np.moveaxis(x, -1, f_axis if f_axis < x.ndim else t_axis)
1081
+ return x
1082
+
1083
+ @property
1084
+ def fac_magnitude(self) -> float:
1085
+ """Factor to multiply the STFT values by to scale each frequency slice
1086
+ to a magnitude spectrum.
1087
+
1088
+ It is 1 if attribute ``scaling == 'magnitude'``.
1089
+ The window can be scaled to a magnitude spectrum by using the method
1090
+ `scale_to`.
1091
+
1092
+ See Also
1093
+ --------
1094
+ fac_psd: Scaling factor for to a power spectral density spectrum.
1095
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
1096
+ scaling: Normalization applied to the window function.
1097
+ ShortTimeFFT: Class this property belongs to.
1098
+ """
1099
+ if self.scaling == 'magnitude':
1100
+ return 1
1101
+ if self._fac_mag is None:
1102
+ self._fac_mag = 1 / abs(sum(self.win))
1103
+ return self._fac_mag
1104
+
1105
+ @property
1106
+ def fac_psd(self) -> float:
1107
+ """Factor to multiply the STFT values by to scale each frequency slice
1108
+ to a power spectral density (PSD).
1109
+
1110
+ It is 1 if attribute ``scaling == 'psd'``.
1111
+ The window can be scaled to a psd spectrum by using the method
1112
+ `scale_to`.
1113
+
1114
+ See Also
1115
+ --------
1116
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
1117
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
1118
+ scaling: Normalization applied to the window function.
1119
+ ShortTimeFFT: Class this property belongs to.
1120
+ """
1121
+ if self.scaling == 'psd':
1122
+ return 1
1123
+ if self._fac_psd is None:
1124
+ self._fac_psd = 1 / np.sqrt(
1125
+ sum(self.win.real**2+self.win.imag**2) / self.T)
1126
+ return self._fac_psd
1127
+
1128
+ @property
1129
+ def m_num(self) -> int:
1130
+ """Number of samples in window `win`.
1131
+
1132
+ Note that the FFT can be oversampled by zero-padding. This is achieved
1133
+ by setting the `mfft` property.
1134
+
1135
+ See Also
1136
+ --------
1137
+ m_num_mid: Center index of window `win`.
1138
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
1139
+ hop: Time increment in signal samples for sliding window.
1140
+ win: Window function as real- or complex-valued 1d array.
1141
+ ShortTimeFFT: Class this property belongs to.
1142
+ """
1143
+ return len(self.win)
1144
+
1145
+ @property
1146
+ def m_num_mid(self) -> int:
1147
+ """Center index of window `win`.
1148
+
1149
+ For odd `m_num`, ``(m_num - 1) / 2`` is returned and
1150
+ for even `m_num` (per definition) ``m_num / 2`` is returned.
1151
+
1152
+ See Also
1153
+ --------
1154
+ m_num: Number of samples in window `win`.
1155
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
1156
+ hop: ime increment in signal samples for sliding window.
1157
+ win: Window function as real- or complex-valued 1d array.
1158
+ ShortTimeFFT: Class this property belongs to.
1159
+ """
1160
+ return self.m_num // 2
1161
+
1162
+ @cache
1163
+ def _pre_padding(self) -> tuple[int, int]:
1164
+ """Smallest signal index and slice index due to padding.
1165
+
1166
+ Since, per convention, for time t=0, n,q is zero, the returned values
1167
+ are negative or zero.
1168
+ """
1169
+ w2 = self.win.real**2 + self.win.imag**2
1170
+ # move window to the left until the overlap with t >= 0 vanishes:
1171
+ n0 = -self.m_num_mid
1172
+ for q_, n_ in enumerate(range(n0, n0-self.m_num-1, -self.hop)):
1173
+ n_next = n_ - self.hop
1174
+ if n_next + self.m_num <= 0 or all(w2[n_next:] == 0):
1175
+ return n_, -q_
1176
+ raise RuntimeError("This is code line should not have been reached!")
1177
+ # If this case is reached, it probably means the first slice should be
1178
+ # returned, i.e.: return n0, 0
1179
+
1180
+ @property
1181
+ def k_min(self) -> int:
1182
+ """The smallest possible signal index of the STFT.
1183
+
1184
+ `k_min` is the index of the left-most non-zero value of the lowest
1185
+ slice `p_min`. Since the zeroth slice is centered over the zeroth
1186
+ sample of the input signal, `k_min` is never positive.
1187
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1188
+ section of the :ref:`user_guide`.
1189
+
1190
+ See Also
1191
+ --------
1192
+ k_max: First sample index after signal end not touched by a time slice.
1193
+ lower_border_end: Where pre-padding effects end.
1194
+ p_min: The smallest possible slice index.
1195
+ p_max: Index of first non-overlapping upper time slice.
1196
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1197
+ p_range: Determine and validate slice index range.
1198
+ upper_border_begin: Where post-padding effects start.
1199
+ ShortTimeFFT: Class this property belongs to.
1200
+ """
1201
+ return self._pre_padding()[0]
1202
+
1203
+ @property
1204
+ def p_min(self) -> int:
1205
+ """The smallest possible slice index.
1206
+
1207
+ `p_min` is the index of the left-most slice, where the window still
1208
+ sticks into the signal, i.e., has non-zero part for t >= 0.
1209
+ `k_min` is the smallest index where the window function of the slice
1210
+ `p_min` is non-zero.
1211
+
1212
+ Since, per convention the zeroth slice is centered at t=0,
1213
+ `p_min` <= 0 always holds.
1214
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1215
+ section of the :ref:`user_guide`.
1216
+
1217
+ See Also
1218
+ --------
1219
+ k_min: The smallest possible signal index.
1220
+ k_max: First sample index after signal end not touched by a time slice.
1221
+ p_max: Index of first non-overlapping upper time slice.
1222
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1223
+ p_range: Determine and validate slice index range.
1224
+ ShortTimeFFT: Class this property belongs to.
1225
+ """
1226
+ return self._pre_padding()[1]
1227
+
1228
+ @lru_cache(maxsize=256)
1229
+ def _post_padding(self, n: int) -> tuple[int, int]:
1230
+ """Largest signal index and slice index due to padding."""
1231
+ w2 = self.win.real**2 + self.win.imag**2
1232
+ # move window to the right until the overlap for t < t[n] vanishes:
1233
+ q1 = n // self.hop # last slice index with t[p1] <= t[n]
1234
+ k1 = q1 * self.hop - self.m_num_mid
1235
+ for q_, k_ in enumerate(range(k1, n+self.m_num, self.hop), start=q1):
1236
+ n_next = k_ + self.hop
1237
+ if n_next >= n or all(w2[:n-n_next] == 0):
1238
+ return k_ + self.m_num, q_ + 1
1239
+ raise RuntimeError("This is code line should not have been reached!")
1240
+ # If this case is reached, it probably means the last slice should be
1241
+ # returned, i.e.: return k1 + self.m_num - self.m_num_mid, q1 + 1
1242
+
1243
+ def k_max(self, n: int) -> int:
1244
+ """First sample index after signal end not touched by a time slice.
1245
+
1246
+ `k_max` - 1 is the largest sample index of the slice `p_max` for a
1247
+ given input signal of `n` samples.
1248
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1249
+ section of the :ref:`user_guide`.
1250
+
1251
+ See Also
1252
+ --------
1253
+ k_min: The smallest possible signal index.
1254
+ p_min: The smallest possible slice index.
1255
+ p_max: Index of first non-overlapping upper time slice.
1256
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1257
+ p_range: Determine and validate slice index range.
1258
+ ShortTimeFFT: Class this method belongs to.
1259
+ """
1260
+ return self._post_padding(n)[0]
1261
+
1262
+ def p_max(self, n: int) -> int:
1263
+ """Index of first non-overlapping upper time slice for `n` sample
1264
+ input.
1265
+
1266
+ Note that center point t[p_max] = (p_max(n)-1) * `delta_t` is typically
1267
+ larger than last time index t[n-1] == (`n`-1) * `T`. The upper border
1268
+ of samples indexes covered by the window slices is given by `k_max`.
1269
+ Furthermore, `p_max` does not denote the number of slices `p_num` since
1270
+ `p_min` is typically less than zero.
1271
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1272
+ section of the :ref:`user_guide`.
1273
+
1274
+ See Also
1275
+ --------
1276
+ k_min: The smallest possible signal index.
1277
+ k_max: First sample index after signal end not touched by a time slice.
1278
+ p_min: The smallest possible slice index.
1279
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1280
+ p_range: Determine and validate slice index range.
1281
+ ShortTimeFFT: Class this method belongs to.
1282
+ """
1283
+ return self._post_padding(n)[1]
1284
+
1285
+ def p_num(self, n: int) -> int:
1286
+ """Number of time slices for an input signal with `n` samples.
1287
+
1288
+ It is given by `p_num` = `p_max` - `p_min` with `p_min` typically
1289
+ being negative.
1290
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1291
+ section of the :ref:`user_guide`.
1292
+
1293
+ See Also
1294
+ --------
1295
+ k_min: The smallest possible signal index.
1296
+ k_max: First sample index after signal end not touched by a time slice.
1297
+ lower_border_end: Where pre-padding effects end.
1298
+ p_min: The smallest possible slice index.
1299
+ p_max: Index of first non-overlapping upper time slice.
1300
+ p_range: Determine and validate slice index range.
1301
+ upper_border_begin: Where post-padding effects start.
1302
+ ShortTimeFFT: Class this method belongs to.
1303
+ """
1304
+ return self.p_max(n) - self.p_min
1305
+
1306
+ @property
1307
+ def lower_border_end(self) -> tuple[int, int]:
1308
+ """First signal index and first slice index unaffected by pre-padding.
1309
+
1310
+ Describes the point where the window does not stick out to the left
1311
+ of the signal domain.
1312
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1313
+ section of the :ref:`user_guide`.
1314
+
1315
+ See Also
1316
+ --------
1317
+ k_min: The smallest possible signal index.
1318
+ k_max: First sample index after signal end not touched by a time slice.
1319
+ lower_border_end: Where pre-padding effects end.
1320
+ p_min: The smallest possible slice index.
1321
+ p_max: Index of first non-overlapping upper time slice.
1322
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1323
+ p_range: Determine and validate slice index range.
1324
+ upper_border_begin: Where post-padding effects start.
1325
+ ShortTimeFFT: Class this property belongs to.
1326
+ """
1327
+ # not using @cache decorator due to MyPy limitations
1328
+ if self._lower_border_end is not None:
1329
+ return self._lower_border_end
1330
+
1331
+ # first non-zero element in self.win:
1332
+ m0 = np.flatnonzero(self.win.real**2 + self.win.imag**2)[0]
1333
+
1334
+ # move window to the right until does not stick out to the left:
1335
+ k0 = -self.m_num_mid + m0
1336
+ for q_, k_ in enumerate(range(k0, self.hop + 1, self.hop)):
1337
+ if k_ + self.hop >= 0: # next entry does not stick out anymore
1338
+ self._lower_border_end = (k_ + self.m_num, q_ + 1)
1339
+ return self._lower_border_end
1340
+ self._lower_border_end = (0, max(self.p_min, 0)) # ends at first slice
1341
+ return self._lower_border_end
1342
+
1343
+ @lru_cache(maxsize=256)
1344
+ def upper_border_begin(self, n: int) -> tuple[int, int]:
1345
+ """First signal index and first slice index affected by post-padding.
1346
+
1347
+ Describes the point where the window does begin stick out to the right
1348
+ of the signal domain.
1349
+ A detailed example is given :ref:`tutorial_stft_sliding_win` section
1350
+ of the :ref:`user_guide`.
1351
+
1352
+ See Also
1353
+ --------
1354
+ k_min: The smallest possible signal index.
1355
+ k_max: First sample index after signal end not touched by a time slice.
1356
+ lower_border_end: Where pre-padding effects end.
1357
+ p_min: The smallest possible slice index.
1358
+ p_max: Index of first non-overlapping upper time slice.
1359
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1360
+ p_range: Determine and validate slice index range.
1361
+ ShortTimeFFT: Class this method belongs to.
1362
+ """
1363
+ w2 = self.win.real**2 + self.win.imag**2
1364
+ q2 = n // self.hop + 1 # first t[q] >= t[n]
1365
+ q1 = max((n-self.m_num) // self.hop - 1, -1)
1366
+ # move window left until does not stick out to the right:
1367
+ for q_ in range(q2, q1, -1):
1368
+ k_ = q_ * self.hop + (self.m_num - self.m_num_mid)
1369
+ if k_ < n or all(w2[n-k_:] == 0):
1370
+ return (q_ + 1) * self.hop - self.m_num_mid, q_ + 1
1371
+ return 0, 0 # border starts at first slice
1372
+
1373
+ @property
1374
+ def delta_t(self) -> float:
1375
+ """Time increment of STFT.
1376
+
1377
+ The time increment `delta_t` = `T` * `hop` represents the sample
1378
+ increment `hop` converted to time based on the sampling interval `T`.
1379
+
1380
+ See Also
1381
+ --------
1382
+ delta_f: Width of the frequency bins of the STFT.
1383
+ hop: Hop size in signal samples for sliding window.
1384
+ t: Times of STFT for an input signal with `n` samples.
1385
+ T: Sampling interval of input signal and window `win`.
1386
+ ShortTimeFFT: Class this property belongs to
1387
+ """
1388
+ return self.T * self.hop
1389
+
1390
+ def p_range(self, n: int, p0: int | None = None,
1391
+ p1: int | None = None) -> tuple[int, int]:
1392
+ """Determine and validate slice index range.
1393
+
1394
+ Parameters
1395
+ ----------
1396
+ n : int
1397
+ Number of samples of input signal, assuming t[0] = 0.
1398
+ p0 : int | None
1399
+ First slice index. If 0 then the first slice is centered at t = 0.
1400
+ If ``None`` then `p_min` is used. Note that p0 may be < 0 if
1401
+ slices are left of t = 0.
1402
+ p1 : int | None
1403
+ End of interval (last value is p1-1).
1404
+ If ``None`` then `p_max(n)` is used.
1405
+
1406
+
1407
+ Returns
1408
+ -------
1409
+ p0_ : int
1410
+ The fist slice index
1411
+ p1_ : int
1412
+ End of interval (last value is p1-1).
1413
+
1414
+ Notes
1415
+ -----
1416
+ A ``ValueError`` is raised if ``p_min <= p0 < p1 <= p_max(n)`` does not
1417
+ hold.
1418
+
1419
+ See Also
1420
+ --------
1421
+ k_min: The smallest possible signal index.
1422
+ k_max: First sample index after signal end not touched by a time slice.
1423
+ lower_border_end: Where pre-padding effects end.
1424
+ p_min: The smallest possible slice index.
1425
+ p_max: Index of first non-overlapping upper time slice.
1426
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1427
+ upper_border_begin: Where post-padding effects start.
1428
+ ShortTimeFFT: Class this property belongs to.
1429
+ """
1430
+ p_max = self.p_max(n) # shorthand
1431
+ p0_ = self.p_min if p0 is None else p0
1432
+ p1_ = p_max if p1 is None else p1
1433
+ if not (self.p_min <= p0_ < p1_ <= p_max):
1434
+ raise ValueError(f"Invalid Parameter {p0=}, {p1=}, i.e., " +
1435
+ f"{self.p_min=} <= p0 < p1 <= {p_max=} " +
1436
+ f"does not hold for signal length {n=}!")
1437
+ return p0_, p1_
1438
+
1439
+ @lru_cache(maxsize=1)
1440
+ def t(self, n: int, p0: int | None = None, p1: int | None = None,
1441
+ k_offset: int = 0) -> np.ndarray:
1442
+ """Times of STFT for an input signal with `n` samples.
1443
+
1444
+ Returns a 1d array with times of the `~ShortTimeFFT.stft` values with
1445
+ the same parametrization. Note that the slices are
1446
+ ``delta_t = hop * T`` time units apart.
1447
+
1448
+ Parameters
1449
+ ----------
1450
+ n
1451
+ Number of sample of the input signal.
1452
+ p0
1453
+ The first element of the range of slices to calculate. If ``None``
1454
+ then it is set to :attr:`p_min`, which is the smallest possible
1455
+ slice.
1456
+ p1
1457
+ The end of the array. If ``None`` then `p_max(n)` is used.
1458
+ k_offset
1459
+ Index of first sample (t = 0) in `x`.
1460
+
1461
+
1462
+ See Also
1463
+ --------
1464
+ delta_t: Time increment of STFT (``hop*T``)
1465
+ hop: Time increment in signal samples for sliding window.
1466
+ nearest_k_p: Nearest sample index k_p for which t[k_p] == t[p] holds.
1467
+ T: Sampling interval of input signal and of the window (``1/fs``).
1468
+ fs: Sampling frequency (being ``1/T``)
1469
+ ShortTimeFFT: Class this method belongs to.
1470
+ """
1471
+ p0, p1 = self.p_range(n, p0, p1)
1472
+ return np.arange(p0, p1) * self.delta_t + k_offset * self.T
1473
+
1474
+ def nearest_k_p(self, k: int, left: bool = True) -> int:
1475
+ """Return nearest sample index k_p for which t[k_p] == t[p] holds.
1476
+
1477
+ The nearest next smaller time sample p (where t[p] is the center
1478
+ position of the window of the p-th slice) is p_k = k // `hop`.
1479
+ If `hop` is a divisor of `k` than `k` is returned.
1480
+ If `left` is set than p_k * `hop` is returned else (p_k+1) * `hop`.
1481
+
1482
+ This method can be used to slice an input signal into chunks for
1483
+ calculating the STFT and iSTFT incrementally.
1484
+
1485
+ See Also
1486
+ --------
1487
+ delta_t: Time increment of STFT (``hop*T``)
1488
+ hop: Time increment in signal samples for sliding window.
1489
+ T: Sampling interval of input signal and of the window (``1/fs``).
1490
+ fs: Sampling frequency (being ``1/T``)
1491
+ t: Times of STFT for an input signal with `n` samples.
1492
+ ShortTimeFFT: Class this method belongs to.
1493
+ """
1494
+ p_q, remainder = divmod(k, self.hop)
1495
+ if remainder == 0:
1496
+ return k
1497
+ return p_q * self.hop if left else (p_q + 1) * self.hop
1498
+
1499
+ @property
1500
+ def delta_f(self) -> float:
1501
+ """Width of the frequency bins of the STFT.
1502
+
1503
+ Return the frequency interval `delta_f` = 1 / (`mfft` * `T`).
1504
+
1505
+ See Also
1506
+ --------
1507
+ delta_t: Time increment of STFT.
1508
+ f_pts: Number of points along the frequency axis.
1509
+ f: Frequencies values of the STFT.
1510
+ mfft: Length of the input for FFT used.
1511
+ T: Sampling interval.
1512
+ t: Times of STFT for an input signal with `n` samples.
1513
+ ShortTimeFFT: Class this property belongs to.
1514
+ """
1515
+ return 1 / (self.mfft * self.T)
1516
+
1517
+ @property
1518
+ def f_pts(self) -> int:
1519
+ """Number of points along the frequency axis.
1520
+
1521
+ See Also
1522
+ --------
1523
+ delta_f: Width of the frequency bins of the STFT.
1524
+ f: Frequencies values of the STFT.
1525
+ mfft: Length of the input for FFT used.
1526
+ ShortTimeFFT: Class this property belongs to.
1527
+ """
1528
+ return self.mfft // 2 + 1 if self.onesided_fft else self.mfft
1529
+
1530
+ @property
1531
+ def onesided_fft(self) -> bool:
1532
+ """Return True if a one-sided FFT is used.
1533
+
1534
+ Returns ``True`` if `fft_mode` is either 'onesided' or 'onesided2X'.
1535
+
1536
+ See Also
1537
+ --------
1538
+ fft_mode: Utilized FFT ('twosided', 'centered', 'onesided' or
1539
+ 'onesided2X')
1540
+ ShortTimeFFT: Class this property belongs to.
1541
+ """
1542
+ return self.fft_mode in {'onesided', 'onesided2X'}
1543
+
1544
+ @property
1545
+ def f(self) -> np.ndarray:
1546
+ """Frequencies values of the STFT.
1547
+
1548
+ A 1d array of length `f_pts` with `delta_f` spaced entries is returned.
1549
+
1550
+ See Also
1551
+ --------
1552
+ delta_f: Width of the frequency bins of the STFT.
1553
+ f_pts: Number of points along the frequency axis.
1554
+ mfft: Length of the input for FFT used.
1555
+ ShortTimeFFT: Class this property belongs to.
1556
+ """
1557
+ if self.fft_mode in {'onesided', 'onesided2X'}:
1558
+ return fft_lib.rfftfreq(self.mfft, self.T)
1559
+ elif self.fft_mode == 'twosided':
1560
+ return fft_lib.fftfreq(self.mfft, self.T)
1561
+ elif self.fft_mode == 'centered':
1562
+ return fft_lib.fftshift(fft_lib.fftfreq(self.mfft, self.T))
1563
+ # This should never happen but makes the Linters happy:
1564
+ fft_modes = get_args(FFT_MODE_TYPE)
1565
+ raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
1566
+
1567
+ def _fft_func(self, x: np.ndarray) -> np.ndarray:
1568
+ """FFT based on the `fft_mode`, `mfft`, `scaling` and `phase_shift`
1569
+ attributes.
1570
+
1571
+ For multidimensional arrays the transformation is carried out on the
1572
+ last axis.
1573
+ """
1574
+ if self.phase_shift is not None:
1575
+ if x.shape[-1] < self.mfft: # zero pad if needed
1576
+ z_shape = list(x.shape)
1577
+ z_shape[-1] = self.mfft - x.shape[-1]
1578
+ x = np.hstack((x, np.zeros(z_shape, dtype=x.dtype)))
1579
+ p_s = (self.phase_shift + self.m_num_mid) % self.m_num
1580
+ x = np.roll(x, -p_s, axis=-1)
1581
+
1582
+ if self.fft_mode == 'twosided':
1583
+ return fft_lib.fft(x, n=self.mfft, axis=-1)
1584
+ if self.fft_mode == 'centered':
1585
+ return fft_lib.fftshift(fft_lib.fft(x, self.mfft, axis=-1), axes=-1)
1586
+ if self.fft_mode == 'onesided':
1587
+ return fft_lib.rfft(x, n=self.mfft, axis=-1)
1588
+ if self.fft_mode == 'onesided2X':
1589
+ X = fft_lib.rfft(x, n=self.mfft, axis=-1)
1590
+ # Either squared magnitude (psd) or magnitude is doubled:
1591
+ fac = np.sqrt(2) if self.scaling == 'psd' else 2
1592
+ # For even input length, the last entry is unpaired:
1593
+ X[..., 1: -1 if self.mfft % 2 == 0 else None] *= fac
1594
+ return X
1595
+ # This should never happen but makes the Linter happy:
1596
+ fft_modes = get_args(FFT_MODE_TYPE)
1597
+ raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
1598
+
1599
+ def _ifft_func(self, X: np.ndarray) -> np.ndarray:
1600
+ """Inverse to `_fft_func`.
1601
+
1602
+ Returned is an array of length `m_num`. If the FFT is `onesided`
1603
+ then a float array is returned else a complex array is returned.
1604
+ For multidimensional arrays the transformation is carried out on the
1605
+ last axis.
1606
+ """
1607
+ if self.fft_mode == 'twosided':
1608
+ x = fft_lib.ifft(X, n=self.mfft, axis=-1)
1609
+ elif self.fft_mode == 'centered':
1610
+ x = fft_lib.ifft(fft_lib.ifftshift(X, axes=-1), n=self.mfft, axis=-1)
1611
+ elif self.fft_mode == 'onesided':
1612
+ x = fft_lib.irfft(X, n=self.mfft, axis=-1)
1613
+ elif self.fft_mode == 'onesided2X':
1614
+ Xc = X.copy() # we do not want to modify function parameters
1615
+ fac = np.sqrt(2) if self.scaling == 'psd' else 2
1616
+ # For even length X the last value is not paired with a negative
1617
+ # value on the two-sided FFT:
1618
+ q1 = -1 if self.mfft % 2 == 0 else None
1619
+ Xc[..., 1:q1] /= fac
1620
+ x = fft_lib.irfft(Xc, n=self.mfft, axis=-1)
1621
+ else: # This should never happen but makes the Linter happy:
1622
+ error_str = f"{self.fft_mode=} not in {get_args(FFT_MODE_TYPE)}!"
1623
+ raise RuntimeError(error_str)
1624
+
1625
+ if self.phase_shift is None:
1626
+ return x[:self.m_num]
1627
+ p_s = (self.phase_shift + self.m_num_mid) % self.m_num
1628
+ return np.roll(x, p_s, axis=-1)[:self.m_num]
1629
+
1630
+ def extent(self, n: int, axes_seq: Literal['tf', 'ft'] = 'tf',
1631
+ center_bins: bool = False) -> tuple[float, float, float, float]:
1632
+ """Return minimum and maximum values time-frequency values.
1633
+
1634
+ A tuple with four floats ``(t0, t1, f0, f1)`` for 'tf' and
1635
+ ``(f0, f1, t0, t1)`` for 'ft' is returned describing the corners
1636
+ of the time-frequency domain of the `~ShortTimeFFT.stft`.
1637
+ That tuple can be passed to `matplotlib.pyplot.imshow` as a parameter
1638
+ with the same name.
1639
+
1640
+ Parameters
1641
+ ----------
1642
+ n : int
1643
+ Number of samples in input signal.
1644
+ axes_seq : {'tf', 'ft'}
1645
+ Return time extent first and then frequency extent or vice-versa.
1646
+ center_bins: bool
1647
+ If set (default ``False``), the values of the time slots and
1648
+ frequency bins are moved from the side the middle. This is useful,
1649
+ when plotting the `~ShortTimeFFT.stft` values as step functions,
1650
+ i.e., with no interpolation.
1651
+
1652
+ See Also
1653
+ --------
1654
+ :func:`matplotlib.pyplot.imshow`: Display data as an image.
1655
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1656
+ """
1657
+ if axes_seq not in ('tf', 'ft'):
1658
+ raise ValueError(f"Parameter {axes_seq=} not in ['tf', 'ft']!")
1659
+
1660
+ if self.onesided_fft:
1661
+ q0, q1 = 0, self.f_pts
1662
+ elif self.fft_mode == 'centered':
1663
+ q0 = -self.mfft // 2
1664
+ q1 = self.mfft // 2 - 1 if self.mfft % 2 == 0 else self.mfft // 2
1665
+ else:
1666
+ raise ValueError(f"Attribute fft_mode={self.fft_mode} must be " +
1667
+ "in ['centered', 'onesided', 'onesided2X']")
1668
+
1669
+ p0, p1 = self.p_min, self.p_max(n) # shorthand
1670
+ if center_bins:
1671
+ t0, t1 = self.delta_t * (p0 - 0.5), self.delta_t * (p1 - 0.5)
1672
+ f0, f1 = self.delta_f * (q0 - 0.5), self.delta_f * (q1 - 0.5)
1673
+ else:
1674
+ t0, t1 = self.delta_t * p0, self.delta_t * p1
1675
+ f0, f1 = self.delta_f * q0, self.delta_f * q1
1676
+ return (t0, t1, f0, f1) if axes_seq == 'tf' else (f0, f1, t0, t1)
env-llmeval/lib/python3.10/site-packages/scipy/signal/_signaltools.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/signal/_sosfilt.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (303 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/signal/_spectral_py.py ADDED
@@ -0,0 +1,2101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for spectral analysis.
2
+ """
3
+ import numpy as np
4
+ from scipy import fft as sp_fft
5
+ from . import _signaltools
6
+ from .windows import get_window
7
+ from ._spectral import _lombscargle
8
+ from ._arraytools import const_ext, even_ext, odd_ext, zero_ext
9
+ import warnings
10
+
11
+
12
+ __all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
13
+ 'spectrogram', 'stft', 'istft', 'check_COLA', 'check_NOLA']
14
+
15
+
16
+ def lombscargle(x,
17
+ y,
18
+ freqs,
19
+ precenter=False,
20
+ normalize=False):
21
+ """
22
+ lombscargle(x, y, freqs)
23
+
24
+ Computes the Lomb-Scargle periodogram.
25
+
26
+ The Lomb-Scargle periodogram was developed by Lomb [1]_ and further
27
+ extended by Scargle [2]_ to find, and test the significance of weak
28
+ periodic signals with uneven temporal sampling.
29
+
30
+ When *normalize* is False (default) the computed periodogram
31
+ is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic
32
+ signal with amplitude A for sufficiently large N.
33
+
34
+ When *normalize* is True the computed periodogram is normalized by
35
+ the residuals of the data around a constant reference model (at zero).
36
+
37
+ Input arrays should be 1-D and will be cast to float64.
38
+
39
+ Parameters
40
+ ----------
41
+ x : array_like
42
+ Sample times.
43
+ y : array_like
44
+ Measurement values.
45
+ freqs : array_like
46
+ Angular frequencies for output periodogram.
47
+ precenter : bool, optional
48
+ Pre-center measurement values by subtracting the mean.
49
+ normalize : bool, optional
50
+ Compute normalized periodogram.
51
+
52
+ Returns
53
+ -------
54
+ pgram : array_like
55
+ Lomb-Scargle periodogram.
56
+
57
+ Raises
58
+ ------
59
+ ValueError
60
+ If the input arrays `x` and `y` do not have the same shape.
61
+
62
+ See Also
63
+ --------
64
+ istft: Inverse Short Time Fourier Transform
65
+ check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
66
+ welch: Power spectral density by Welch's method
67
+ spectrogram: Spectrogram by Welch's method
68
+ csd: Cross spectral density by Welch's method
69
+
70
+ Notes
71
+ -----
72
+ This subroutine calculates the periodogram using a slightly
73
+ modified algorithm due to Townsend [3]_ which allows the
74
+ periodogram to be calculated using only a single pass through
75
+ the input arrays for each frequency.
76
+
77
+ The algorithm running time scales roughly as O(x * freqs) or O(N^2)
78
+ for a large number of samples and frequencies.
79
+
80
+ References
81
+ ----------
82
+ .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced
83
+ data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976
84
+
85
+ .. [2] J.D. Scargle "Studies in astronomical time series analysis. II -
86
+ Statistical aspects of spectral analysis of unevenly spaced data",
87
+ The Astrophysical Journal, vol 263, pp. 835-853, 1982
88
+
89
+ .. [3] R.H.D. Townsend, "Fast calculation of the Lomb-Scargle
90
+ periodogram using graphics processing units.", The Astrophysical
91
+ Journal Supplement Series, vol 191, pp. 247-253, 2010
92
+
93
+ Examples
94
+ --------
95
+ >>> import numpy as np
96
+ >>> import matplotlib.pyplot as plt
97
+ >>> rng = np.random.default_rng()
98
+
99
+ First define some input parameters for the signal:
100
+
101
+ >>> A = 2.
102
+ >>> w0 = 1. # rad/sec
103
+ >>> nin = 150
104
+ >>> nout = 100000
105
+
106
+ Randomly generate sample times:
107
+
108
+ >>> x = rng.uniform(0, 10*np.pi, nin)
109
+
110
+ Plot a sine wave for the selected times:
111
+
112
+ >>> y = A * np.cos(w0*x)
113
+
114
+ Define the array of frequencies for which to compute the periodogram:
115
+
116
+ >>> w = np.linspace(0.01, 10, nout)
117
+
118
+ Calculate Lomb-Scargle periodogram:
119
+
120
+ >>> import scipy.signal as signal
121
+ >>> pgram = signal.lombscargle(x, y, w, normalize=True)
122
+
123
+ Now make a plot of the input data:
124
+
125
+ >>> fig, (ax_t, ax_w) = plt.subplots(2, 1, constrained_layout=True)
126
+ >>> ax_t.plot(x, y, 'b+')
127
+ >>> ax_t.set_xlabel('Time [s]')
128
+
129
+ Then plot the normalized periodogram:
130
+
131
+ >>> ax_w.plot(w, pgram)
132
+ >>> ax_w.set_xlabel('Angular frequency [rad/s]')
133
+ >>> ax_w.set_ylabel('Normalized amplitude')
134
+ >>> plt.show()
135
+
136
+ """
137
+ x = np.ascontiguousarray(x, dtype=np.float64)
138
+ y = np.ascontiguousarray(y, dtype=np.float64)
139
+ freqs = np.ascontiguousarray(freqs, dtype=np.float64)
140
+
141
+ assert x.ndim == 1
142
+ assert y.ndim == 1
143
+ assert freqs.ndim == 1
144
+
145
+ if precenter:
146
+ pgram = _lombscargle(x, y - y.mean(), freqs)
147
+ else:
148
+ pgram = _lombscargle(x, y, freqs)
149
+
150
+ if normalize:
151
+ pgram *= 2 / np.dot(y, y)
152
+
153
+ return pgram
154
+
155
+
156
+ def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
157
+ return_onesided=True, scaling='density', axis=-1):
158
+ """
159
+ Estimate power spectral density using a periodogram.
160
+
161
+ Parameters
162
+ ----------
163
+ x : array_like
164
+ Time series of measurement values
165
+ fs : float, optional
166
+ Sampling frequency of the `x` time series. Defaults to 1.0.
167
+ window : str or tuple or array_like, optional
168
+ Desired window to use. If `window` is a string or tuple, it is
169
+ passed to `get_window` to generate the window values, which are
170
+ DFT-even by default. See `get_window` for a list of windows and
171
+ required parameters. If `window` is array_like it will be used
172
+ directly as the window and its length must be equal to the length
173
+ of the axis over which the periodogram is computed. Defaults
174
+ to 'boxcar'.
175
+ nfft : int, optional
176
+ Length of the FFT used. If `None` the length of `x` will be
177
+ used.
178
+ detrend : str or function or `False`, optional
179
+ Specifies how to detrend each segment. If `detrend` is a
180
+ string, it is passed as the `type` argument to the `detrend`
181
+ function. If it is a function, it takes a segment and returns a
182
+ detrended segment. If `detrend` is `False`, no detrending is
183
+ done. Defaults to 'constant'.
184
+ return_onesided : bool, optional
185
+ If `True`, return a one-sided spectrum for real data. If
186
+ `False` return a two-sided spectrum. Defaults to `True`, but for
187
+ complex data, a two-sided spectrum is always returned.
188
+ scaling : { 'density', 'spectrum' }, optional
189
+ Selects between computing the power spectral density ('density')
190
+ where `Pxx` has units of V**2/Hz and computing the squared magnitude
191
+ spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
192
+ is measured in V and `fs` is measured in Hz. Defaults to
193
+ 'density'
194
+ axis : int, optional
195
+ Axis along which the periodogram is computed; the default is
196
+ over the last axis (i.e. ``axis=-1``).
197
+
198
+ Returns
199
+ -------
200
+ f : ndarray
201
+ Array of sample frequencies.
202
+ Pxx : ndarray
203
+ Power spectral density or power spectrum of `x`.
204
+
205
+ See Also
206
+ --------
207
+ welch: Estimate power spectral density using Welch's method
208
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
209
+
210
+ Notes
211
+ -----
212
+ Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
213
+ for a discussion of the scalings of the power spectral density and
214
+ the magnitude (squared) spectrum.
215
+
216
+ .. versionadded:: 0.12.0
217
+
218
+ Examples
219
+ --------
220
+ >>> import numpy as np
221
+ >>> from scipy import signal
222
+ >>> import matplotlib.pyplot as plt
223
+ >>> rng = np.random.default_rng()
224
+
225
+ Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
226
+ 0.001 V**2/Hz of white noise sampled at 10 kHz.
227
+
228
+ >>> fs = 10e3
229
+ >>> N = 1e5
230
+ >>> amp = 2*np.sqrt(2)
231
+ >>> freq = 1234.0
232
+ >>> noise_power = 0.001 * fs / 2
233
+ >>> time = np.arange(N) / fs
234
+ >>> x = amp*np.sin(2*np.pi*freq*time)
235
+ >>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
236
+
237
+ Compute and plot the power spectral density.
238
+
239
+ >>> f, Pxx_den = signal.periodogram(x, fs)
240
+ >>> plt.semilogy(f, Pxx_den)
241
+ >>> plt.ylim([1e-7, 1e2])
242
+ >>> plt.xlabel('frequency [Hz]')
243
+ >>> plt.ylabel('PSD [V**2/Hz]')
244
+ >>> plt.show()
245
+
246
+ If we average the last half of the spectral density, to exclude the
247
+ peak, we can recover the noise power on the signal.
248
+
249
+ >>> np.mean(Pxx_den[25000:])
250
+ 0.000985320699252543
251
+
252
+ Now compute and plot the power spectrum.
253
+
254
+ >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
255
+ >>> plt.figure()
256
+ >>> plt.semilogy(f, np.sqrt(Pxx_spec))
257
+ >>> plt.ylim([1e-4, 1e1])
258
+ >>> plt.xlabel('frequency [Hz]')
259
+ >>> plt.ylabel('Linear spectrum [V RMS]')
260
+ >>> plt.show()
261
+
262
+ The peak height in the power spectrum is an estimate of the RMS
263
+ amplitude.
264
+
265
+ >>> np.sqrt(Pxx_spec.max())
266
+ 2.0077340678640727
267
+
268
+ """
269
+ x = np.asarray(x)
270
+
271
+ if x.size == 0:
272
+ return np.empty(x.shape), np.empty(x.shape)
273
+
274
+ if window is None:
275
+ window = 'boxcar'
276
+
277
+ if nfft is None:
278
+ nperseg = x.shape[axis]
279
+ elif nfft == x.shape[axis]:
280
+ nperseg = nfft
281
+ elif nfft > x.shape[axis]:
282
+ nperseg = x.shape[axis]
283
+ elif nfft < x.shape[axis]:
284
+ s = [np.s_[:]]*len(x.shape)
285
+ s[axis] = np.s_[:nfft]
286
+ x = x[tuple(s)]
287
+ nperseg = nfft
288
+ nfft = None
289
+
290
+ if hasattr(window, 'size'):
291
+ if window.size != nperseg:
292
+ raise ValueError('the size of the window must be the same size '
293
+ 'of the input on the specified axis')
294
+
295
+ return welch(x, fs=fs, window=window, nperseg=nperseg, noverlap=0,
296
+ nfft=nfft, detrend=detrend, return_onesided=return_onesided,
297
+ scaling=scaling, axis=axis)
298
+
299
+
300
+ def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
301
+ detrend='constant', return_onesided=True, scaling='density',
302
+ axis=-1, average='mean'):
303
+ r"""
304
+ Estimate power spectral density using Welch's method.
305
+
306
+ Welch's method [1]_ computes an estimate of the power spectral
307
+ density by dividing the data into overlapping segments, computing a
308
+ modified periodogram for each segment and averaging the
309
+ periodograms.
310
+
311
+ Parameters
312
+ ----------
313
+ x : array_like
314
+ Time series of measurement values
315
+ fs : float, optional
316
+ Sampling frequency of the `x` time series. Defaults to 1.0.
317
+ window : str or tuple or array_like, optional
318
+ Desired window to use. If `window` is a string or tuple, it is
319
+ passed to `get_window` to generate the window values, which are
320
+ DFT-even by default. See `get_window` for a list of windows and
321
+ required parameters. If `window` is array_like it will be used
322
+ directly as the window and its length must be nperseg. Defaults
323
+ to a Hann window.
324
+ nperseg : int, optional
325
+ Length of each segment. Defaults to None, but if window is str or
326
+ tuple, is set to 256, and if window is array_like, is set to the
327
+ length of the window.
328
+ noverlap : int, optional
329
+ Number of points to overlap between segments. If `None`,
330
+ ``noverlap = nperseg // 2``. Defaults to `None`.
331
+ nfft : int, optional
332
+ Length of the FFT used, if a zero padded FFT is desired. If
333
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
334
+ detrend : str or function or `False`, optional
335
+ Specifies how to detrend each segment. If `detrend` is a
336
+ string, it is passed as the `type` argument to the `detrend`
337
+ function. If it is a function, it takes a segment and returns a
338
+ detrended segment. If `detrend` is `False`, no detrending is
339
+ done. Defaults to 'constant'.
340
+ return_onesided : bool, optional
341
+ If `True`, return a one-sided spectrum for real data. If
342
+ `False` return a two-sided spectrum. Defaults to `True`, but for
343
+ complex data, a two-sided spectrum is always returned.
344
+ scaling : { 'density', 'spectrum' }, optional
345
+ Selects between computing the power spectral density ('density')
346
+ where `Pxx` has units of V**2/Hz and computing the squared magnitude
347
+ spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
348
+ is measured in V and `fs` is measured in Hz. Defaults to
349
+ 'density'
350
+ axis : int, optional
351
+ Axis along which the periodogram is computed; the default is
352
+ over the last axis (i.e. ``axis=-1``).
353
+ average : { 'mean', 'median' }, optional
354
+ Method to use when averaging periodograms. Defaults to 'mean'.
355
+
356
+ .. versionadded:: 1.2.0
357
+
358
+ Returns
359
+ -------
360
+ f : ndarray
361
+ Array of sample frequencies.
362
+ Pxx : ndarray
363
+ Power spectral density or power spectrum of x.
364
+
365
+ See Also
366
+ --------
367
+ periodogram: Simple, optionally modified periodogram
368
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
369
+
370
+ Notes
371
+ -----
372
+ An appropriate amount of overlap will depend on the choice of window
373
+ and on your requirements. For the default Hann window an overlap of
374
+ 50% is a reasonable trade off between accurately estimating the
375
+ signal power, while not over counting any of the data. Narrower
376
+ windows may require a larger overlap.
377
+
378
+ If `noverlap` is 0, this method is equivalent to Bartlett's method
379
+ [2]_.
380
+
381
+ Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
382
+ for a discussion of the scalings of the power spectral density and
383
+ the (squared) magnitude spectrum.
384
+
385
+ .. versionadded:: 0.12.0
386
+
387
+ References
388
+ ----------
389
+ .. [1] P. Welch, "The use of the fast Fourier transform for the
390
+ estimation of power spectra: A method based on time averaging
391
+ over short, modified periodograms", IEEE Trans. Audio
392
+ Electroacoust. vol. 15, pp. 70-73, 1967.
393
+ .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
394
+ Biometrika, vol. 37, pp. 1-16, 1950.
395
+
396
+ Examples
397
+ --------
398
+ >>> import numpy as np
399
+ >>> from scipy import signal
400
+ >>> import matplotlib.pyplot as plt
401
+ >>> rng = np.random.default_rng()
402
+
403
+ Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
404
+ 0.001 V**2/Hz of white noise sampled at 10 kHz.
405
+
406
+ >>> fs = 10e3
407
+ >>> N = 1e5
408
+ >>> amp = 2*np.sqrt(2)
409
+ >>> freq = 1234.0
410
+ >>> noise_power = 0.001 * fs / 2
411
+ >>> time = np.arange(N) / fs
412
+ >>> x = amp*np.sin(2*np.pi*freq*time)
413
+ >>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
414
+
415
+ Compute and plot the power spectral density.
416
+
417
+ >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
418
+ >>> plt.semilogy(f, Pxx_den)
419
+ >>> plt.ylim([0.5e-3, 1])
420
+ >>> plt.xlabel('frequency [Hz]')
421
+ >>> plt.ylabel('PSD [V**2/Hz]')
422
+ >>> plt.show()
423
+
424
+ If we average the last half of the spectral density, to exclude the
425
+ peak, we can recover the noise power on the signal.
426
+
427
+ >>> np.mean(Pxx_den[256:])
428
+ 0.0009924865443739191
429
+
430
+ Now compute and plot the power spectrum.
431
+
432
+ >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
433
+ >>> plt.figure()
434
+ >>> plt.semilogy(f, np.sqrt(Pxx_spec))
435
+ >>> plt.xlabel('frequency [Hz]')
436
+ >>> plt.ylabel('Linear spectrum [V RMS]')
437
+ >>> plt.show()
438
+
439
+ The peak height in the power spectrum is an estimate of the RMS
440
+ amplitude.
441
+
442
+ >>> np.sqrt(Pxx_spec.max())
443
+ 2.0077340678640727
444
+
445
+ If we now introduce a discontinuity in the signal, by increasing the
446
+ amplitude of a small portion of the signal by 50, we can see the
447
+ corruption of the mean average power spectral density, but using a
448
+ median average better estimates the normal behaviour.
449
+
450
+ >>> x[int(N//2):int(N//2)+10] *= 50.
451
+ >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
452
+ >>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median')
453
+ >>> plt.semilogy(f, Pxx_den, label='mean')
454
+ >>> plt.semilogy(f_med, Pxx_den_med, label='median')
455
+ >>> plt.ylim([0.5e-3, 1])
456
+ >>> plt.xlabel('frequency [Hz]')
457
+ >>> plt.ylabel('PSD [V**2/Hz]')
458
+ >>> plt.legend()
459
+ >>> plt.show()
460
+
461
+ """
462
+ freqs, Pxx = csd(x, x, fs=fs, window=window, nperseg=nperseg,
463
+ noverlap=noverlap, nfft=nfft, detrend=detrend,
464
+ return_onesided=return_onesided, scaling=scaling,
465
+ axis=axis, average=average)
466
+
467
+ return freqs, Pxx.real
468
+
469
+
470
+ def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
471
+ detrend='constant', return_onesided=True, scaling='density',
472
+ axis=-1, average='mean'):
473
+ r"""
474
+ Estimate the cross power spectral density, Pxy, using Welch's method.
475
+
476
+ Parameters
477
+ ----------
478
+ x : array_like
479
+ Time series of measurement values
480
+ y : array_like
481
+ Time series of measurement values
482
+ fs : float, optional
483
+ Sampling frequency of the `x` and `y` time series. Defaults
484
+ to 1.0.
485
+ window : str or tuple or array_like, optional
486
+ Desired window to use. If `window` is a string or tuple, it is
487
+ passed to `get_window` to generate the window values, which are
488
+ DFT-even by default. See `get_window` for a list of windows and
489
+ required parameters. If `window` is array_like it will be used
490
+ directly as the window and its length must be nperseg. Defaults
491
+ to a Hann window.
492
+ nperseg : int, optional
493
+ Length of each segment. Defaults to None, but if window is str or
494
+ tuple, is set to 256, and if window is array_like, is set to the
495
+ length of the window.
496
+ noverlap: int, optional
497
+ Number of points to overlap between segments. If `None`,
498
+ ``noverlap = nperseg // 2``. Defaults to `None`.
499
+ nfft : int, optional
500
+ Length of the FFT used, if a zero padded FFT is desired. If
501
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
502
+ detrend : str or function or `False`, optional
503
+ Specifies how to detrend each segment. If `detrend` is a
504
+ string, it is passed as the `type` argument to the `detrend`
505
+ function. If it is a function, it takes a segment and returns a
506
+ detrended segment. If `detrend` is `False`, no detrending is
507
+ done. Defaults to 'constant'.
508
+ return_onesided : bool, optional
509
+ If `True`, return a one-sided spectrum for real data. If
510
+ `False` return a two-sided spectrum. Defaults to `True`, but for
511
+ complex data, a two-sided spectrum is always returned.
512
+ scaling : { 'density', 'spectrum' }, optional
513
+ Selects between computing the cross spectral density ('density')
514
+ where `Pxy` has units of V**2/Hz and computing the cross spectrum
515
+ ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
516
+ measured in V and `fs` is measured in Hz. Defaults to 'density'
517
+ axis : int, optional
518
+ Axis along which the CSD is computed for both inputs; the
519
+ default is over the last axis (i.e. ``axis=-1``).
520
+ average : { 'mean', 'median' }, optional
521
+ Method to use when averaging periodograms. If the spectrum is
522
+ complex, the average is computed separately for the real and
523
+ imaginary parts. Defaults to 'mean'.
524
+
525
+ .. versionadded:: 1.2.0
526
+
527
+ Returns
528
+ -------
529
+ f : ndarray
530
+ Array of sample frequencies.
531
+ Pxy : ndarray
532
+ Cross spectral density or cross power spectrum of x,y.
533
+
534
+ See Also
535
+ --------
536
+ periodogram: Simple, optionally modified periodogram
537
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
538
+ welch: Power spectral density by Welch's method. [Equivalent to
539
+ csd(x,x)]
540
+ coherence: Magnitude squared coherence by Welch's method.
541
+
542
+ Notes
543
+ -----
544
+ By convention, Pxy is computed with the conjugate FFT of X
545
+ multiplied by the FFT of Y.
546
+
547
+ If the input series differ in length, the shorter series will be
548
+ zero-padded to match.
549
+
550
+ An appropriate amount of overlap will depend on the choice of window
551
+ and on your requirements. For the default Hann window an overlap of
552
+ 50% is a reasonable trade off between accurately estimating the
553
+ signal power, while not over counting any of the data. Narrower
554
+ windows may require a larger overlap.
555
+
556
+ Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
557
+ for a discussion of the scalings of a spectral density and an (amplitude) spectrum.
558
+
559
+ .. versionadded:: 0.16.0
560
+
561
+ References
562
+ ----------
563
+ .. [1] P. Welch, "The use of the fast Fourier transform for the
564
+ estimation of power spectra: A method based on time averaging
565
+ over short, modified periodograms", IEEE Trans. Audio
566
+ Electroacoust. vol. 15, pp. 70-73, 1967.
567
+ .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
568
+ Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975
569
+
570
+ Examples
571
+ --------
572
+ >>> import numpy as np
573
+ >>> from scipy import signal
574
+ >>> import matplotlib.pyplot as plt
575
+ >>> rng = np.random.default_rng()
576
+
577
+ Generate two test signals with some common features.
578
+
579
+ >>> fs = 10e3
580
+ >>> N = 1e5
581
+ >>> amp = 20
582
+ >>> freq = 1234.0
583
+ >>> noise_power = 0.001 * fs / 2
584
+ >>> time = np.arange(N) / fs
585
+ >>> b, a = signal.butter(2, 0.25, 'low')
586
+ >>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
587
+ >>> y = signal.lfilter(b, a, x)
588
+ >>> x += amp*np.sin(2*np.pi*freq*time)
589
+ >>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
590
+
591
+ Compute and plot the magnitude of the cross spectral density.
592
+
593
+ >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
594
+ >>> plt.semilogy(f, np.abs(Pxy))
595
+ >>> plt.xlabel('frequency [Hz]')
596
+ >>> plt.ylabel('CSD [V**2/Hz]')
597
+ >>> plt.show()
598
+
599
+ """
600
+ freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap,
601
+ nfft, detrend, return_onesided, scaling,
602
+ axis, mode='psd')
603
+
604
+ # Average over windows.
605
+ if len(Pxy.shape) >= 2 and Pxy.size > 0:
606
+ if Pxy.shape[-1] > 1:
607
+ if average == 'median':
608
+ # np.median must be passed real arrays for the desired result
609
+ bias = _median_bias(Pxy.shape[-1])
610
+ if np.iscomplexobj(Pxy):
611
+ Pxy = (np.median(np.real(Pxy), axis=-1)
612
+ + 1j * np.median(np.imag(Pxy), axis=-1))
613
+ else:
614
+ Pxy = np.median(Pxy, axis=-1)
615
+ Pxy /= bias
616
+ elif average == 'mean':
617
+ Pxy = Pxy.mean(axis=-1)
618
+ else:
619
+ raise ValueError(f'average must be "median" or "mean", got {average}')
620
+ else:
621
+ Pxy = np.reshape(Pxy, Pxy.shape[:-1])
622
+
623
+ return freqs, Pxy
624
+
625
+
626
+ def spectrogram(x, fs=1.0, window=('tukey', .25), nperseg=None, noverlap=None,
627
+ nfft=None, detrend='constant', return_onesided=True,
628
+ scaling='density', axis=-1, mode='psd'):
629
+ """Compute a spectrogram with consecutive Fourier transforms (legacy function).
630
+
631
+ Spectrograms can be used as a way of visualizing the change of a
632
+ nonstationary signal's frequency content over time.
633
+
634
+ .. legacy:: function
635
+
636
+ :class:`ShortTimeFFT` is a newer STFT / ISTFT implementation with more
637
+ features also including a :meth:`~ShortTimeFFT.spectrogram` method.
638
+ A :ref:`comparison <tutorial_stft_legacy_stft>` between the
639
+ implementations can be found in the :ref:`tutorial_stft` section of
640
+ the :ref:`user_guide`.
641
+
642
+ Parameters
643
+ ----------
644
+ x : array_like
645
+ Time series of measurement values
646
+ fs : float, optional
647
+ Sampling frequency of the `x` time series. Defaults to 1.0.
648
+ window : str or tuple or array_like, optional
649
+ Desired window to use. If `window` is a string or tuple, it is
650
+ passed to `get_window` to generate the window values, which are
651
+ DFT-even by default. See `get_window` for a list of windows and
652
+ required parameters. If `window` is array_like it will be used
653
+ directly as the window and its length must be nperseg.
654
+ Defaults to a Tukey window with shape parameter of 0.25.
655
+ nperseg : int, optional
656
+ Length of each segment. Defaults to None, but if window is str or
657
+ tuple, is set to 256, and if window is array_like, is set to the
658
+ length of the window.
659
+ noverlap : int, optional
660
+ Number of points to overlap between segments. If `None`,
661
+ ``noverlap = nperseg // 8``. Defaults to `None`.
662
+ nfft : int, optional
663
+ Length of the FFT used, if a zero padded FFT is desired. If
664
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
665
+ detrend : str or function or `False`, optional
666
+ Specifies how to detrend each segment. If `detrend` is a
667
+ string, it is passed as the `type` argument to the `detrend`
668
+ function. If it is a function, it takes a segment and returns a
669
+ detrended segment. If `detrend` is `False`, no detrending is
670
+ done. Defaults to 'constant'.
671
+ return_onesided : bool, optional
672
+ If `True`, return a one-sided spectrum for real data. If
673
+ `False` return a two-sided spectrum. Defaults to `True`, but for
674
+ complex data, a two-sided spectrum is always returned.
675
+ scaling : { 'density', 'spectrum' }, optional
676
+ Selects between computing the power spectral density ('density')
677
+ where `Sxx` has units of V**2/Hz and computing the power
678
+ spectrum ('spectrum') where `Sxx` has units of V**2, if `x`
679
+ is measured in V and `fs` is measured in Hz. Defaults to
680
+ 'density'.
681
+ axis : int, optional
682
+ Axis along which the spectrogram is computed; the default is over
683
+ the last axis (i.e. ``axis=-1``).
684
+ mode : str, optional
685
+ Defines what kind of return values are expected. Options are
686
+ ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is
687
+ equivalent to the output of `stft` with no padding or boundary
688
+ extension. 'magnitude' returns the absolute magnitude of the
689
+ STFT. 'angle' and 'phase' return the complex angle of the STFT,
690
+ with and without unwrapping, respectively.
691
+
692
+ Returns
693
+ -------
694
+ f : ndarray
695
+ Array of sample frequencies.
696
+ t : ndarray
697
+ Array of segment times.
698
+ Sxx : ndarray
699
+ Spectrogram of x. By default, the last axis of Sxx corresponds
700
+ to the segment times.
701
+
702
+ See Also
703
+ --------
704
+ periodogram: Simple, optionally modified periodogram
705
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
706
+ welch: Power spectral density by Welch's method.
707
+ csd: Cross spectral density by Welch's method.
708
+ ShortTimeFFT: Newer STFT/ISTFT implementation providing more features,
709
+ which also includes a :meth:`~ShortTimeFFT.spectrogram`
710
+ method.
711
+
712
+ Notes
713
+ -----
714
+ An appropriate amount of overlap will depend on the choice of window
715
+ and on your requirements. In contrast to welch's method, where the
716
+ entire data stream is averaged over, one may wish to use a smaller
717
+ overlap (or perhaps none at all) when computing a spectrogram, to
718
+ maintain some statistical independence between individual segments.
719
+ It is for this reason that the default window is a Tukey window with
720
+ 1/8th of a window's length overlap at each end.
721
+
722
+
723
+ .. versionadded:: 0.16.0
724
+
725
+ References
726
+ ----------
727
+ .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
728
+ "Discrete-Time Signal Processing", Prentice Hall, 1999.
729
+
730
+ Examples
731
+ --------
732
+ >>> import numpy as np
733
+ >>> from scipy import signal
734
+ >>> from scipy.fft import fftshift
735
+ >>> import matplotlib.pyplot as plt
736
+ >>> rng = np.random.default_rng()
737
+
738
+ Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
739
+ modulated around 3kHz, corrupted by white noise of exponentially
740
+ decreasing magnitude sampled at 10 kHz.
741
+
742
+ >>> fs = 10e3
743
+ >>> N = 1e5
744
+ >>> amp = 2 * np.sqrt(2)
745
+ >>> noise_power = 0.01 * fs / 2
746
+ >>> time = np.arange(N) / float(fs)
747
+ >>> mod = 500*np.cos(2*np.pi*0.25*time)
748
+ >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
749
+ >>> noise = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
750
+ >>> noise *= np.exp(-time/5)
751
+ >>> x = carrier + noise
752
+
753
+ Compute and plot the spectrogram.
754
+
755
+ >>> f, t, Sxx = signal.spectrogram(x, fs)
756
+ >>> plt.pcolormesh(t, f, Sxx, shading='gouraud')
757
+ >>> plt.ylabel('Frequency [Hz]')
758
+ >>> plt.xlabel('Time [sec]')
759
+ >>> plt.show()
760
+
761
+ Note, if using output that is not one sided, then use the following:
762
+
763
+ >>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
764
+ >>> plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0), shading='gouraud')
765
+ >>> plt.ylabel('Frequency [Hz]')
766
+ >>> plt.xlabel('Time [sec]')
767
+ >>> plt.show()
768
+
769
+ """
770
+ modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase']
771
+ if mode not in modelist:
772
+ raise ValueError(f'unknown value for mode {mode}, must be one of {modelist}')
773
+
774
+ # need to set default for nperseg before setting default for noverlap below
775
+ window, nperseg = _triage_segments(window, nperseg,
776
+ input_length=x.shape[axis])
777
+
778
+ # Less overlap than welch, so samples are more statisically independent
779
+ if noverlap is None:
780
+ noverlap = nperseg // 8
781
+
782
+ if mode == 'psd':
783
+ freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
784
+ noverlap, nfft, detrend,
785
+ return_onesided, scaling, axis,
786
+ mode='psd')
787
+
788
+ else:
789
+ freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
790
+ noverlap, nfft, detrend,
791
+ return_onesided, scaling, axis,
792
+ mode='stft')
793
+
794
+ if mode == 'magnitude':
795
+ Sxx = np.abs(Sxx)
796
+ elif mode in ['angle', 'phase']:
797
+ Sxx = np.angle(Sxx)
798
+ if mode == 'phase':
799
+ # Sxx has one additional dimension for time strides
800
+ if axis < 0:
801
+ axis -= 1
802
+ Sxx = np.unwrap(Sxx, axis=axis)
803
+
804
+ # mode =='complex' is same as `stft`, doesn't need modification
805
+
806
+ return freqs, time, Sxx
807
+
808
+
809
+ def check_COLA(window, nperseg, noverlap, tol=1e-10):
810
+ r"""Check whether the Constant OverLap Add (COLA) constraint is met.
811
+
812
+ Parameters
813
+ ----------
814
+ window : str or tuple or array_like
815
+ Desired window to use. If `window` is a string or tuple, it is
816
+ passed to `get_window` to generate the window values, which are
817
+ DFT-even by default. See `get_window` for a list of windows and
818
+ required parameters. If `window` is array_like it will be used
819
+ directly as the window and its length must be nperseg.
820
+ nperseg : int
821
+ Length of each segment.
822
+ noverlap : int
823
+ Number of points to overlap between segments.
824
+ tol : float, optional
825
+ The allowed variance of a bin's weighted sum from the median bin
826
+ sum.
827
+
828
+ Returns
829
+ -------
830
+ verdict : bool
831
+ `True` if chosen combination satisfies COLA within `tol`,
832
+ `False` otherwise
833
+
834
+ See Also
835
+ --------
836
+ check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
837
+ stft: Short Time Fourier Transform
838
+ istft: Inverse Short Time Fourier Transform
839
+
840
+ Notes
841
+ -----
842
+ In order to enable inversion of an STFT via the inverse STFT in
843
+ `istft`, it is sufficient that the signal windowing obeys the constraint of
844
+ "Constant OverLap Add" (COLA). This ensures that every point in the input
845
+ data is equally weighted, thereby avoiding aliasing and allowing full
846
+ reconstruction.
847
+
848
+ Some examples of windows that satisfy COLA:
849
+ - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ...
850
+ - Bartlett window at overlap of 1/2, 3/4, 5/6, ...
851
+ - Hann window at 1/2, 2/3, 3/4, ...
852
+ - Any Blackman family window at 2/3 overlap
853
+ - Any window with ``noverlap = nperseg-1``
854
+
855
+ A very comprehensive list of other windows may be found in [2]_,
856
+ wherein the COLA condition is satisfied when the "Amplitude
857
+ Flatness" is unity.
858
+
859
+ .. versionadded:: 0.19.0
860
+
861
+ References
862
+ ----------
863
+ .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
864
+ Publishing, 2011,ISBN 978-0-9745607-3-1.
865
+ .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
866
+ spectral density estimation by the Discrete Fourier transform
867
+ (DFT), including a comprehensive list of window functions and
868
+ some new at-top windows", 2002,
869
+ http://hdl.handle.net/11858/00-001M-0000-0013-557A-5
870
+
871
+ Examples
872
+ --------
873
+ >>> from scipy import signal
874
+
875
+ Confirm COLA condition for rectangular window of 75% (3/4) overlap:
876
+
877
+ >>> signal.check_COLA(signal.windows.boxcar(100), 100, 75)
878
+ True
879
+
880
+ COLA is not true for 25% (1/4) overlap, though:
881
+
882
+ >>> signal.check_COLA(signal.windows.boxcar(100), 100, 25)
883
+ False
884
+
885
+ "Symmetrical" Hann window (for filter design) is not COLA:
886
+
887
+ >>> signal.check_COLA(signal.windows.hann(120, sym=True), 120, 60)
888
+ False
889
+
890
+ "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for
891
+ overlap of 1/2, 2/3, 3/4, etc.:
892
+
893
+ >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 60)
894
+ True
895
+
896
+ >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 80)
897
+ True
898
+
899
+ >>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 90)
900
+ True
901
+
902
+ """
903
+ nperseg = int(nperseg)
904
+
905
+ if nperseg < 1:
906
+ raise ValueError('nperseg must be a positive integer')
907
+
908
+ if noverlap >= nperseg:
909
+ raise ValueError('noverlap must be less than nperseg.')
910
+ noverlap = int(noverlap)
911
+
912
+ if isinstance(window, str) or type(window) is tuple:
913
+ win = get_window(window, nperseg)
914
+ else:
915
+ win = np.asarray(window)
916
+ if len(win.shape) != 1:
917
+ raise ValueError('window must be 1-D')
918
+ if win.shape[0] != nperseg:
919
+ raise ValueError('window must have length of nperseg')
920
+
921
+ step = nperseg - noverlap
922
+ binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step))
923
+
924
+ if nperseg % step != 0:
925
+ binsums[:nperseg % step] += win[-(nperseg % step):]
926
+
927
+ deviation = binsums - np.median(binsums)
928
+ return np.max(np.abs(deviation)) < tol
929
+
930
+
931
+ def check_NOLA(window, nperseg, noverlap, tol=1e-10):
932
+ r"""Check whether the Nonzero Overlap Add (NOLA) constraint is met.
933
+
934
+ Parameters
935
+ ----------
936
+ window : str or tuple or array_like
937
+ Desired window to use. If `window` is a string or tuple, it is
938
+ passed to `get_window` to generate the window values, which are
939
+ DFT-even by default. See `get_window` for a list of windows and
940
+ required parameters. If `window` is array_like it will be used
941
+ directly as the window and its length must be nperseg.
942
+ nperseg : int
943
+ Length of each segment.
944
+ noverlap : int
945
+ Number of points to overlap between segments.
946
+ tol : float, optional
947
+ The allowed variance of a bin's weighted sum from the median bin
948
+ sum.
949
+
950
+ Returns
951
+ -------
952
+ verdict : bool
953
+ `True` if chosen combination satisfies the NOLA constraint within
954
+ `tol`, `False` otherwise
955
+
956
+ See Also
957
+ --------
958
+ check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
959
+ stft: Short Time Fourier Transform
960
+ istft: Inverse Short Time Fourier Transform
961
+
962
+ Notes
963
+ -----
964
+ In order to enable inversion of an STFT via the inverse STFT in
965
+ `istft`, the signal windowing must obey the constraint of "nonzero
966
+ overlap add" (NOLA):
967
+
968
+ .. math:: \sum_{t}w^{2}[n-tH] \ne 0
969
+
970
+ for all :math:`n`, where :math:`w` is the window function, :math:`t` is the
971
+ frame index, and :math:`H` is the hop size (:math:`H` = `nperseg` -
972
+ `noverlap`).
973
+
974
+ This ensures that the normalization factors in the denominator of the
975
+ overlap-add inversion equation are not zero. Only very pathological windows
976
+ will fail the NOLA constraint.
977
+
978
+ .. versionadded:: 1.2.0
979
+
980
+ References
981
+ ----------
982
+ .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
983
+ Publishing, 2011,ISBN 978-0-9745607-3-1.
984
+ .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
985
+ spectral density estimation by the Discrete Fourier transform
986
+ (DFT), including a comprehensive list of window functions and
987
+ some new at-top windows", 2002,
988
+ http://hdl.handle.net/11858/00-001M-0000-0013-557A-5
989
+
990
+ Examples
991
+ --------
992
+ >>> import numpy as np
993
+ >>> from scipy import signal
994
+
995
+ Confirm NOLA condition for rectangular window of 75% (3/4) overlap:
996
+
997
+ >>> signal.check_NOLA(signal.windows.boxcar(100), 100, 75)
998
+ True
999
+
1000
+ NOLA is also true for 25% (1/4) overlap:
1001
+
1002
+ >>> signal.check_NOLA(signal.windows.boxcar(100), 100, 25)
1003
+ True
1004
+
1005
+ "Symmetrical" Hann window (for filter design) is also NOLA:
1006
+
1007
+ >>> signal.check_NOLA(signal.windows.hann(120, sym=True), 120, 60)
1008
+ True
1009
+
1010
+ As long as there is overlap, it takes quite a pathological window to fail
1011
+ NOLA:
1012
+
1013
+ >>> w = np.ones(64, dtype="float")
1014
+ >>> w[::2] = 0
1015
+ >>> signal.check_NOLA(w, 64, 32)
1016
+ False
1017
+
1018
+ If there is not enough overlap, a window with zeros at the ends will not
1019
+ work:
1020
+
1021
+ >>> signal.check_NOLA(signal.windows.hann(64), 64, 0)
1022
+ False
1023
+ >>> signal.check_NOLA(signal.windows.hann(64), 64, 1)
1024
+ False
1025
+ >>> signal.check_NOLA(signal.windows.hann(64), 64, 2)
1026
+ True
1027
+
1028
+ """
1029
+ nperseg = int(nperseg)
1030
+
1031
+ if nperseg < 1:
1032
+ raise ValueError('nperseg must be a positive integer')
1033
+
1034
+ if noverlap >= nperseg:
1035
+ raise ValueError('noverlap must be less than nperseg')
1036
+ if noverlap < 0:
1037
+ raise ValueError('noverlap must be a nonnegative integer')
1038
+ noverlap = int(noverlap)
1039
+
1040
+ if isinstance(window, str) or type(window) is tuple:
1041
+ win = get_window(window, nperseg)
1042
+ else:
1043
+ win = np.asarray(window)
1044
+ if len(win.shape) != 1:
1045
+ raise ValueError('window must be 1-D')
1046
+ if win.shape[0] != nperseg:
1047
+ raise ValueError('window must have length of nperseg')
1048
+
1049
+ step = nperseg - noverlap
1050
+ binsums = sum(win[ii*step:(ii+1)*step]**2 for ii in range(nperseg//step))
1051
+
1052
+ if nperseg % step != 0:
1053
+ binsums[:nperseg % step] += win[-(nperseg % step):]**2
1054
+
1055
+ return np.min(binsums) > tol
1056
+
1057
+
1058
+ def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
1059
+ detrend=False, return_onesided=True, boundary='zeros', padded=True,
1060
+ axis=-1, scaling='spectrum'):
1061
+ r"""Compute the Short Time Fourier Transform (legacy function).
1062
+
1063
+ STFTs can be used as a way of quantifying the change of a
1064
+ nonstationary signal's frequency and phase content over time.
1065
+
1066
+ .. legacy:: function
1067
+
1068
+ `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
1069
+ features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
1070
+ implementations can be found in the :ref:`tutorial_stft` section of the
1071
+ :ref:`user_guide`.
1072
+
1073
+ Parameters
1074
+ ----------
1075
+ x : array_like
1076
+ Time series of measurement values
1077
+ fs : float, optional
1078
+ Sampling frequency of the `x` time series. Defaults to 1.0.
1079
+ window : str or tuple or array_like, optional
1080
+ Desired window to use. If `window` is a string or tuple, it is
1081
+ passed to `get_window` to generate the window values, which are
1082
+ DFT-even by default. See `get_window` for a list of windows and
1083
+ required parameters. If `window` is array_like it will be used
1084
+ directly as the window and its length must be nperseg. Defaults
1085
+ to a Hann window.
1086
+ nperseg : int, optional
1087
+ Length of each segment. Defaults to 256.
1088
+ noverlap : int, optional
1089
+ Number of points to overlap between segments. If `None`,
1090
+ ``noverlap = nperseg // 2``. Defaults to `None`. When
1091
+ specified, the COLA constraint must be met (see Notes below).
1092
+ nfft : int, optional
1093
+ Length of the FFT used, if a zero padded FFT is desired. If
1094
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
1095
+ detrend : str or function or `False`, optional
1096
+ Specifies how to detrend each segment. If `detrend` is a
1097
+ string, it is passed as the `type` argument to the `detrend`
1098
+ function. If it is a function, it takes a segment and returns a
1099
+ detrended segment. If `detrend` is `False`, no detrending is
1100
+ done. Defaults to `False`.
1101
+ return_onesided : bool, optional
1102
+ If `True`, return a one-sided spectrum for real data. If
1103
+ `False` return a two-sided spectrum. Defaults to `True`, but for
1104
+ complex data, a two-sided spectrum is always returned.
1105
+ boundary : str or None, optional
1106
+ Specifies whether the input signal is extended at both ends, and
1107
+ how to generate the new values, in order to center the first
1108
+ windowed segment on the first input point. This has the benefit
1109
+ of enabling reconstruction of the first input point when the
1110
+ employed window function starts at zero. Valid options are
1111
+ ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
1112
+ 'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is
1113
+ extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``.
1114
+ padded : bool, optional
1115
+ Specifies whether the input signal is zero-padded at the end to
1116
+ make the signal fit exactly into an integer number of window
1117
+ segments, so that all of the signal is included in the output.
1118
+ Defaults to `True`. Padding occurs after boundary extension, if
1119
+ `boundary` is not `None`, and `padded` is `True`, as is the
1120
+ default.
1121
+ axis : int, optional
1122
+ Axis along which the STFT is computed; the default is over the
1123
+ last axis (i.e. ``axis=-1``).
1124
+ scaling: {'spectrum', 'psd'}
1125
+ The default 'spectrum' scaling allows each frequency line of `Zxx` to
1126
+ be interpreted as a magnitude spectrum. The 'psd' option scales each
1127
+ line to a power spectral density - it allows to calculate the signal's
1128
+ energy by numerically integrating over ``abs(Zxx)**2``.
1129
+
1130
+ .. versionadded:: 1.9.0
1131
+
1132
+ Returns
1133
+ -------
1134
+ f : ndarray
1135
+ Array of sample frequencies.
1136
+ t : ndarray
1137
+ Array of segment times.
1138
+ Zxx : ndarray
1139
+ STFT of `x`. By default, the last axis of `Zxx` corresponds
1140
+ to the segment times.
1141
+
1142
+ See Also
1143
+ --------
1144
+ istft: Inverse Short Time Fourier Transform
1145
+ ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
1146
+ check_COLA: Check whether the Constant OverLap Add (COLA) constraint
1147
+ is met
1148
+ check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
1149
+ welch: Power spectral density by Welch's method.
1150
+ spectrogram: Spectrogram by Welch's method.
1151
+ csd: Cross spectral density by Welch's method.
1152
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
1153
+
1154
+ Notes
1155
+ -----
1156
+ In order to enable inversion of an STFT via the inverse STFT in
1157
+ `istft`, the signal windowing must obey the constraint of "Nonzero
1158
+ OverLap Add" (NOLA), and the input signal must have complete
1159
+ windowing coverage (i.e. ``(x.shape[axis] - nperseg) %
1160
+ (nperseg-noverlap) == 0``). The `padded` argument may be used to
1161
+ accomplish this.
1162
+
1163
+ Given a time-domain signal :math:`x[n]`, a window :math:`w[n]`, and a hop
1164
+ size :math:`H` = `nperseg - noverlap`, the windowed frame at time index
1165
+ :math:`t` is given by
1166
+
1167
+ .. math:: x_{t}[n]=x[n]w[n-tH]
1168
+
1169
+ The overlap-add (OLA) reconstruction equation is given by
1170
+
1171
+ .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}
1172
+
1173
+ The NOLA constraint ensures that every normalization term that appears
1174
+ in the denomimator of the OLA reconstruction equation is nonzero. Whether a
1175
+ choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can
1176
+ be tested with `check_NOLA`.
1177
+
1178
+
1179
+ .. versionadded:: 0.19.0
1180
+
1181
+ References
1182
+ ----------
1183
+ .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
1184
+ "Discrete-Time Signal Processing", Prentice Hall, 1999.
1185
+ .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
1186
+ Modified Short-Time Fourier Transform", IEEE 1984,
1187
+ 10.1109/TASSP.1984.1164317
1188
+
1189
+ Examples
1190
+ --------
1191
+ >>> import numpy as np
1192
+ >>> from scipy import signal
1193
+ >>> import matplotlib.pyplot as plt
1194
+ >>> rng = np.random.default_rng()
1195
+
1196
+ Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
1197
+ modulated around 3kHz, corrupted by white noise of exponentially
1198
+ decreasing magnitude sampled at 10 kHz.
1199
+
1200
+ >>> fs = 10e3
1201
+ >>> N = 1e5
1202
+ >>> amp = 2 * np.sqrt(2)
1203
+ >>> noise_power = 0.01 * fs / 2
1204
+ >>> time = np.arange(N) / float(fs)
1205
+ >>> mod = 500*np.cos(2*np.pi*0.25*time)
1206
+ >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
1207
+ >>> noise = rng.normal(scale=np.sqrt(noise_power),
1208
+ ... size=time.shape)
1209
+ >>> noise *= np.exp(-time/5)
1210
+ >>> x = carrier + noise
1211
+
1212
+ Compute and plot the STFT's magnitude.
1213
+
1214
+ >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
1215
+ >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
1216
+ >>> plt.title('STFT Magnitude')
1217
+ >>> plt.ylabel('Frequency [Hz]')
1218
+ >>> plt.xlabel('Time [sec]')
1219
+ >>> plt.show()
1220
+
1221
+ Compare the energy of the signal `x` with the energy of its STFT:
1222
+
1223
+ >>> E_x = sum(x**2) / fs # Energy of x
1224
+ >>> # Calculate a two-sided STFT with PSD scaling:
1225
+ >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000, return_onesided=False,
1226
+ ... scaling='psd')
1227
+ >>> # Integrate numerically over abs(Zxx)**2:
1228
+ >>> df, dt = f[1] - f[0], t[1] - t[0]
1229
+ >>> E_Zxx = sum(np.sum(Zxx.real**2 + Zxx.imag**2, axis=0) * df) * dt
1230
+ >>> # The energy is the same, but the numerical errors are quite large:
1231
+ >>> np.isclose(E_x, E_Zxx, rtol=1e-2)
1232
+ True
1233
+
1234
+ """
1235
+ if scaling == 'psd':
1236
+ scaling = 'density'
1237
+ elif scaling != 'spectrum':
1238
+ raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
1239
+
1240
+ freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap,
1241
+ nfft, detrend, return_onesided,
1242
+ scaling=scaling, axis=axis,
1243
+ mode='stft', boundary=boundary,
1244
+ padded=padded)
1245
+
1246
+ return freqs, time, Zxx
1247
+
1248
+
1249
+ def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
1250
+ input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2,
1251
+ scaling='spectrum'):
1252
+ r"""Perform the inverse Short Time Fourier transform (legacy function).
1253
+
1254
+ .. legacy:: function
1255
+
1256
+ `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
1257
+ features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
1258
+ implementations can be found in the :ref:`tutorial_stft` section of the
1259
+ :ref:`user_guide`.
1260
+
1261
+ Parameters
1262
+ ----------
1263
+ Zxx : array_like
1264
+ STFT of the signal to be reconstructed. If a purely real array
1265
+ is passed, it will be cast to a complex data type.
1266
+ fs : float, optional
1267
+ Sampling frequency of the time series. Defaults to 1.0.
1268
+ window : str or tuple or array_like, optional
1269
+ Desired window to use. If `window` is a string or tuple, it is
1270
+ passed to `get_window` to generate the window values, which are
1271
+ DFT-even by default. See `get_window` for a list of windows and
1272
+ required parameters. If `window` is array_like it will be used
1273
+ directly as the window and its length must be nperseg. Defaults
1274
+ to a Hann window. Must match the window used to generate the
1275
+ STFT for faithful inversion.
1276
+ nperseg : int, optional
1277
+ Number of data points corresponding to each STFT segment. This
1278
+ parameter must be specified if the number of data points per
1279
+ segment is odd, or if the STFT was padded via ``nfft >
1280
+ nperseg``. If `None`, the value depends on the shape of
1281
+ `Zxx` and `input_onesided`. If `input_onesided` is `True`,
1282
+ ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise,
1283
+ ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`.
1284
+ noverlap : int, optional
1285
+ Number of points to overlap between segments. If `None`, half
1286
+ of the segment length. Defaults to `None`. When specified, the
1287
+ COLA constraint must be met (see Notes below), and should match
1288
+ the parameter used to generate the STFT. Defaults to `None`.
1289
+ nfft : int, optional
1290
+ Number of FFT points corresponding to each STFT segment. This
1291
+ parameter must be specified if the STFT was padded via ``nfft >
1292
+ nperseg``. If `None`, the default values are the same as for
1293
+ `nperseg`, detailed above, with one exception: if
1294
+ `input_onesided` is True and
1295
+ ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on
1296
+ that value. This case allows the proper inversion of an
1297
+ odd-length unpadded STFT using ``nfft=None``. Defaults to
1298
+ `None`.
1299
+ input_onesided : bool, optional
1300
+ If `True`, interpret the input array as one-sided FFTs, such
1301
+ as is returned by `stft` with ``return_onesided=True`` and
1302
+ `numpy.fft.rfft`. If `False`, interpret the input as a a
1303
+ two-sided FFT. Defaults to `True`.
1304
+ boundary : bool, optional
1305
+ Specifies whether the input signal was extended at its
1306
+ boundaries by supplying a non-`None` ``boundary`` argument to
1307
+ `stft`. Defaults to `True`.
1308
+ time_axis : int, optional
1309
+ Where the time segments of the STFT is located; the default is
1310
+ the last axis (i.e. ``axis=-1``).
1311
+ freq_axis : int, optional
1312
+ Where the frequency axis of the STFT is located; the default is
1313
+ the penultimate axis (i.e. ``axis=-2``).
1314
+ scaling: {'spectrum', 'psd'}
1315
+ The default 'spectrum' scaling allows each frequency line of `Zxx` to
1316
+ be interpreted as a magnitude spectrum. The 'psd' option scales each
1317
+ line to a power spectral density - it allows to calculate the signal's
1318
+ energy by numerically integrating over ``abs(Zxx)**2``.
1319
+
1320
+ Returns
1321
+ -------
1322
+ t : ndarray
1323
+ Array of output data times.
1324
+ x : ndarray
1325
+ iSTFT of `Zxx`.
1326
+
1327
+ See Also
1328
+ --------
1329
+ stft: Short Time Fourier Transform
1330
+ ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
1331
+ check_COLA: Check whether the Constant OverLap Add (COLA) constraint
1332
+ is met
1333
+ check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
1334
+
1335
+ Notes
1336
+ -----
1337
+ In order to enable inversion of an STFT via the inverse STFT with
1338
+ `istft`, the signal windowing must obey the constraint of "nonzero
1339
+ overlap add" (NOLA):
1340
+
1341
+ .. math:: \sum_{t}w^{2}[n-tH] \ne 0
1342
+
1343
+ This ensures that the normalization factors that appear in the denominator
1344
+ of the overlap-add reconstruction equation
1345
+
1346
+ .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}
1347
+
1348
+ are not zero. The NOLA constraint can be checked with the `check_NOLA`
1349
+ function.
1350
+
1351
+ An STFT which has been modified (via masking or otherwise) is not
1352
+ guaranteed to correspond to a exactly realizible signal. This
1353
+ function implements the iSTFT via the least-squares estimation
1354
+ algorithm detailed in [2]_, which produces a signal that minimizes
1355
+ the mean squared error between the STFT of the returned signal and
1356
+ the modified STFT.
1357
+
1358
+
1359
+ .. versionadded:: 0.19.0
1360
+
1361
+ References
1362
+ ----------
1363
+ .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
1364
+ "Discrete-Time Signal Processing", Prentice Hall, 1999.
1365
+ .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
1366
+ Modified Short-Time Fourier Transform", IEEE 1984,
1367
+ 10.1109/TASSP.1984.1164317
1368
+
1369
+ Examples
1370
+ --------
1371
+ >>> import numpy as np
1372
+ >>> from scipy import signal
1373
+ >>> import matplotlib.pyplot as plt
1374
+ >>> rng = np.random.default_rng()
1375
+
1376
+ Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
1377
+ 0.001 V**2/Hz of white noise sampled at 1024 Hz.
1378
+
1379
+ >>> fs = 1024
1380
+ >>> N = 10*fs
1381
+ >>> nperseg = 512
1382
+ >>> amp = 2 * np.sqrt(2)
1383
+ >>> noise_power = 0.001 * fs / 2
1384
+ >>> time = np.arange(N) / float(fs)
1385
+ >>> carrier = amp * np.sin(2*np.pi*50*time)
1386
+ >>> noise = rng.normal(scale=np.sqrt(noise_power),
1387
+ ... size=time.shape)
1388
+ >>> x = carrier + noise
1389
+
1390
+ Compute the STFT, and plot its magnitude
1391
+
1392
+ >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
1393
+ >>> plt.figure()
1394
+ >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
1395
+ >>> plt.ylim([f[1], f[-1]])
1396
+ >>> plt.title('STFT Magnitude')
1397
+ >>> plt.ylabel('Frequency [Hz]')
1398
+ >>> plt.xlabel('Time [sec]')
1399
+ >>> plt.yscale('log')
1400
+ >>> plt.show()
1401
+
1402
+ Zero the components that are 10% or less of the carrier magnitude,
1403
+ then convert back to a time series via inverse STFT
1404
+
1405
+ >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
1406
+ >>> _, xrec = signal.istft(Zxx, fs)
1407
+
1408
+ Compare the cleaned signal with the original and true carrier signals.
1409
+
1410
+ >>> plt.figure()
1411
+ >>> plt.plot(time, x, time, xrec, time, carrier)
1412
+ >>> plt.xlim([2, 2.1])
1413
+ >>> plt.xlabel('Time [sec]')
1414
+ >>> plt.ylabel('Signal')
1415
+ >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
1416
+ >>> plt.show()
1417
+
1418
+ Note that the cleaned signal does not start as abruptly as the original,
1419
+ since some of the coefficients of the transient were also removed:
1420
+
1421
+ >>> plt.figure()
1422
+ >>> plt.plot(time, x, time, xrec, time, carrier)
1423
+ >>> plt.xlim([0, 0.1])
1424
+ >>> plt.xlabel('Time [sec]')
1425
+ >>> plt.ylabel('Signal')
1426
+ >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
1427
+ >>> plt.show()
1428
+
1429
+ """
1430
+ # Make sure input is an ndarray of appropriate complex dtype
1431
+ Zxx = np.asarray(Zxx) + 0j
1432
+ freq_axis = int(freq_axis)
1433
+ time_axis = int(time_axis)
1434
+
1435
+ if Zxx.ndim < 2:
1436
+ raise ValueError('Input stft must be at least 2d!')
1437
+
1438
+ if freq_axis == time_axis:
1439
+ raise ValueError('Must specify differing time and frequency axes!')
1440
+
1441
+ nseg = Zxx.shape[time_axis]
1442
+
1443
+ if input_onesided:
1444
+ # Assume even segment length
1445
+ n_default = 2*(Zxx.shape[freq_axis] - 1)
1446
+ else:
1447
+ n_default = Zxx.shape[freq_axis]
1448
+
1449
+ # Check windowing parameters
1450
+ if nperseg is None:
1451
+ nperseg = n_default
1452
+ else:
1453
+ nperseg = int(nperseg)
1454
+ if nperseg < 1:
1455
+ raise ValueError('nperseg must be a positive integer')
1456
+
1457
+ if nfft is None:
1458
+ if (input_onesided) and (nperseg == n_default + 1):
1459
+ # Odd nperseg, no FFT padding
1460
+ nfft = nperseg
1461
+ else:
1462
+ nfft = n_default
1463
+ elif nfft < nperseg:
1464
+ raise ValueError('nfft must be greater than or equal to nperseg.')
1465
+ else:
1466
+ nfft = int(nfft)
1467
+
1468
+ if noverlap is None:
1469
+ noverlap = nperseg//2
1470
+ else:
1471
+ noverlap = int(noverlap)
1472
+ if noverlap >= nperseg:
1473
+ raise ValueError('noverlap must be less than nperseg.')
1474
+ nstep = nperseg - noverlap
1475
+
1476
+ # Rearrange axes if necessary
1477
+ if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2:
1478
+ # Turn negative indices to positive for the call to transpose
1479
+ if freq_axis < 0:
1480
+ freq_axis = Zxx.ndim + freq_axis
1481
+ if time_axis < 0:
1482
+ time_axis = Zxx.ndim + time_axis
1483
+ zouter = list(range(Zxx.ndim))
1484
+ for ax in sorted([time_axis, freq_axis], reverse=True):
1485
+ zouter.pop(ax)
1486
+ Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis])
1487
+
1488
+ # Get window as array
1489
+ if isinstance(window, str) or type(window) is tuple:
1490
+ win = get_window(window, nperseg)
1491
+ else:
1492
+ win = np.asarray(window)
1493
+ if len(win.shape) != 1:
1494
+ raise ValueError('window must be 1-D')
1495
+ if win.shape[0] != nperseg:
1496
+ raise ValueError(f'window must have length of {nperseg}')
1497
+
1498
+ ifunc = sp_fft.irfft if input_onesided else sp_fft.ifft
1499
+ xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :]
1500
+
1501
+ # Initialize output and normalization arrays
1502
+ outputlength = nperseg + (nseg-1)*nstep
1503
+ x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype)
1504
+ norm = np.zeros(outputlength, dtype=xsubs.dtype)
1505
+
1506
+ if np.result_type(win, xsubs) != xsubs.dtype:
1507
+ win = win.astype(xsubs.dtype)
1508
+
1509
+ if scaling == 'spectrum':
1510
+ xsubs *= win.sum()
1511
+ elif scaling == 'psd':
1512
+ xsubs *= np.sqrt(fs * sum(win**2))
1513
+ else:
1514
+ raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
1515
+
1516
+ # Construct the output from the ifft segments
1517
+ # This loop could perhaps be vectorized/strided somehow...
1518
+ for ii in range(nseg):
1519
+ # Window the ifft
1520
+ x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win
1521
+ norm[..., ii*nstep:ii*nstep+nperseg] += win**2
1522
+
1523
+ # Remove extension points
1524
+ if boundary:
1525
+ x = x[..., nperseg//2:-(nperseg//2)]
1526
+ norm = norm[..., nperseg//2:-(nperseg//2)]
1527
+
1528
+ # Divide out normalization where non-tiny
1529
+ if np.sum(norm > 1e-10) != len(norm):
1530
+ warnings.warn(
1531
+ "NOLA condition failed, STFT may not be invertible."
1532
+ + (" Possibly due to missing boundary" if not boundary else ""),
1533
+ stacklevel=2
1534
+ )
1535
+ x /= np.where(norm > 1e-10, norm, 1.0)
1536
+
1537
+ if input_onesided:
1538
+ x = x.real
1539
+
1540
+ # Put axes back
1541
+ if x.ndim > 1:
1542
+ if time_axis != Zxx.ndim-1:
1543
+ if freq_axis < time_axis:
1544
+ time_axis -= 1
1545
+ x = np.moveaxis(x, -1, time_axis)
1546
+
1547
+ time = np.arange(x.shape[0])/float(fs)
1548
+ return time, x
1549
+
1550
+
1551
+ def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
1552
+ nfft=None, detrend='constant', axis=-1):
1553
+ r"""
1554
+ Estimate the magnitude squared coherence estimate, Cxy, of
1555
+ discrete-time signals X and Y using Welch's method.
1556
+
1557
+ ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power
1558
+ spectral density estimates of X and Y, and `Pxy` is the cross
1559
+ spectral density estimate of X and Y.
1560
+
1561
+ Parameters
1562
+ ----------
1563
+ x : array_like
1564
+ Time series of measurement values
1565
+ y : array_like
1566
+ Time series of measurement values
1567
+ fs : float, optional
1568
+ Sampling frequency of the `x` and `y` time series. Defaults
1569
+ to 1.0.
1570
+ window : str or tuple or array_like, optional
1571
+ Desired window to use. If `window` is a string or tuple, it is
1572
+ passed to `get_window` to generate the window values, which are
1573
+ DFT-even by default. See `get_window` for a list of windows and
1574
+ required parameters. If `window` is array_like it will be used
1575
+ directly as the window and its length must be nperseg. Defaults
1576
+ to a Hann window.
1577
+ nperseg : int, optional
1578
+ Length of each segment. Defaults to None, but if window is str or
1579
+ tuple, is set to 256, and if window is array_like, is set to the
1580
+ length of the window.
1581
+ noverlap: int, optional
1582
+ Number of points to overlap between segments. If `None`,
1583
+ ``noverlap = nperseg // 2``. Defaults to `None`.
1584
+ nfft : int, optional
1585
+ Length of the FFT used, if a zero padded FFT is desired. If
1586
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
1587
+ detrend : str or function or `False`, optional
1588
+ Specifies how to detrend each segment. If `detrend` is a
1589
+ string, it is passed as the `type` argument to the `detrend`
1590
+ function. If it is a function, it takes a segment and returns a
1591
+ detrended segment. If `detrend` is `False`, no detrending is
1592
+ done. Defaults to 'constant'.
1593
+ axis : int, optional
1594
+ Axis along which the coherence is computed for both inputs; the
1595
+ default is over the last axis (i.e. ``axis=-1``).
1596
+
1597
+ Returns
1598
+ -------
1599
+ f : ndarray
1600
+ Array of sample frequencies.
1601
+ Cxy : ndarray
1602
+ Magnitude squared coherence of x and y.
1603
+
1604
+ See Also
1605
+ --------
1606
+ periodogram: Simple, optionally modified periodogram
1607
+ lombscargle: Lomb-Scargle periodogram for unevenly sampled data
1608
+ welch: Power spectral density by Welch's method.
1609
+ csd: Cross spectral density by Welch's method.
1610
+
1611
+ Notes
1612
+ -----
1613
+ An appropriate amount of overlap will depend on the choice of window
1614
+ and on your requirements. For the default Hann window an overlap of
1615
+ 50% is a reasonable trade off between accurately estimating the
1616
+ signal power, while not over counting any of the data. Narrower
1617
+ windows may require a larger overlap.
1618
+
1619
+ .. versionadded:: 0.16.0
1620
+
1621
+ References
1622
+ ----------
1623
+ .. [1] P. Welch, "The use of the fast Fourier transform for the
1624
+ estimation of power spectra: A method based on time averaging
1625
+ over short, modified periodograms", IEEE Trans. Audio
1626
+ Electroacoust. vol. 15, pp. 70-73, 1967.
1627
+ .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of
1628
+ Signals" Prentice Hall, 2005
1629
+
1630
+ Examples
1631
+ --------
1632
+ >>> import numpy as np
1633
+ >>> from scipy import signal
1634
+ >>> import matplotlib.pyplot as plt
1635
+ >>> rng = np.random.default_rng()
1636
+
1637
+ Generate two test signals with some common features.
1638
+
1639
+ >>> fs = 10e3
1640
+ >>> N = 1e5
1641
+ >>> amp = 20
1642
+ >>> freq = 1234.0
1643
+ >>> noise_power = 0.001 * fs / 2
1644
+ >>> time = np.arange(N) / fs
1645
+ >>> b, a = signal.butter(2, 0.25, 'low')
1646
+ >>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
1647
+ >>> y = signal.lfilter(b, a, x)
1648
+ >>> x += amp*np.sin(2*np.pi*freq*time)
1649
+ >>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
1650
+
1651
+ Compute and plot the coherence.
1652
+
1653
+ >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
1654
+ >>> plt.semilogy(f, Cxy)
1655
+ >>> plt.xlabel('frequency [Hz]')
1656
+ >>> plt.ylabel('Coherence')
1657
+ >>> plt.show()
1658
+
1659
+ """
1660
+ freqs, Pxx = welch(x, fs=fs, window=window, nperseg=nperseg,
1661
+ noverlap=noverlap, nfft=nfft, detrend=detrend,
1662
+ axis=axis)
1663
+ _, Pyy = welch(y, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
1664
+ nfft=nfft, detrend=detrend, axis=axis)
1665
+ _, Pxy = csd(x, y, fs=fs, window=window, nperseg=nperseg,
1666
+ noverlap=noverlap, nfft=nfft, detrend=detrend, axis=axis)
1667
+
1668
+ Cxy = np.abs(Pxy)**2 / Pxx / Pyy
1669
+
1670
+ return freqs, Cxy
1671
+
1672
+
1673
+ def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
1674
+ nfft=None, detrend='constant', return_onesided=True,
1675
+ scaling='density', axis=-1, mode='psd', boundary=None,
1676
+ padded=False):
1677
+ """Calculate various forms of windowed FFTs for PSD, CSD, etc.
1678
+
1679
+ This is a helper function that implements the commonality between
1680
+ the stft, psd, csd, and spectrogram functions. It is not designed to
1681
+ be called externally. The windows are not averaged over; the result
1682
+ from each window is returned.
1683
+
1684
+ Parameters
1685
+ ----------
1686
+ x : array_like
1687
+ Array or sequence containing the data to be analyzed.
1688
+ y : array_like
1689
+ Array or sequence containing the data to be analyzed. If this is
1690
+ the same object in memory as `x` (i.e. ``_spectral_helper(x,
1691
+ x, ...)``), the extra computations are spared.
1692
+ fs : float, optional
1693
+ Sampling frequency of the time series. Defaults to 1.0.
1694
+ window : str or tuple or array_like, optional
1695
+ Desired window to use. If `window` is a string or tuple, it is
1696
+ passed to `get_window` to generate the window values, which are
1697
+ DFT-even by default. See `get_window` for a list of windows and
1698
+ required parameters. If `window` is array_like it will be used
1699
+ directly as the window and its length must be nperseg. Defaults
1700
+ to a Hann window.
1701
+ nperseg : int, optional
1702
+ Length of each segment. Defaults to None, but if window is str or
1703
+ tuple, is set to 256, and if window is array_like, is set to the
1704
+ length of the window.
1705
+ noverlap : int, optional
1706
+ Number of points to overlap between segments. If `None`,
1707
+ ``noverlap = nperseg // 2``. Defaults to `None`.
1708
+ nfft : int, optional
1709
+ Length of the FFT used, if a zero padded FFT is desired. If
1710
+ `None`, the FFT length is `nperseg`. Defaults to `None`.
1711
+ detrend : str or function or `False`, optional
1712
+ Specifies how to detrend each segment. If `detrend` is a
1713
+ string, it is passed as the `type` argument to the `detrend`
1714
+ function. If it is a function, it takes a segment and returns a
1715
+ detrended segment. If `detrend` is `False`, no detrending is
1716
+ done. Defaults to 'constant'.
1717
+ return_onesided : bool, optional
1718
+ If `True`, return a one-sided spectrum for real data. If
1719
+ `False` return a two-sided spectrum. Defaults to `True`, but for
1720
+ complex data, a two-sided spectrum is always returned.
1721
+ scaling : { 'density', 'spectrum' }, optional
1722
+ Selects between computing the cross spectral density ('density')
1723
+ where `Pxy` has units of V**2/Hz and computing the cross
1724
+ spectrum ('spectrum') where `Pxy` has units of V**2, if `x`
1725
+ and `y` are measured in V and `fs` is measured in Hz.
1726
+ Defaults to 'density'
1727
+ axis : int, optional
1728
+ Axis along which the FFTs are computed; the default is over the
1729
+ last axis (i.e. ``axis=-1``).
1730
+ mode: str {'psd', 'stft'}, optional
1731
+ Defines what kind of return values are expected. Defaults to
1732
+ 'psd'.
1733
+ boundary : str or None, optional
1734
+ Specifies whether the input signal is extended at both ends, and
1735
+ how to generate the new values, in order to center the first
1736
+ windowed segment on the first input point. This has the benefit
1737
+ of enabling reconstruction of the first input point when the
1738
+ employed window function starts at zero. Valid options are
1739
+ ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
1740
+ `None`.
1741
+ padded : bool, optional
1742
+ Specifies whether the input signal is zero-padded at the end to
1743
+ make the signal fit exactly into an integer number of window
1744
+ segments, so that all of the signal is included in the output.
1745
+ Defaults to `False`. Padding occurs after boundary extension, if
1746
+ `boundary` is not `None`, and `padded` is `True`.
1747
+
1748
+ Returns
1749
+ -------
1750
+ freqs : ndarray
1751
+ Array of sample frequencies.
1752
+ t : ndarray
1753
+ Array of times corresponding to each data segment
1754
+ result : ndarray
1755
+ Array of output data, contents dependent on *mode* kwarg.
1756
+
1757
+ Notes
1758
+ -----
1759
+ Adapted from matplotlib.mlab
1760
+
1761
+ .. versionadded:: 0.16.0
1762
+ """
1763
+ if mode not in ['psd', 'stft']:
1764
+ raise ValueError("Unknown value for mode %s, must be one of: "
1765
+ "{'psd', 'stft'}" % mode)
1766
+
1767
+ boundary_funcs = {'even': even_ext,
1768
+ 'odd': odd_ext,
1769
+ 'constant': const_ext,
1770
+ 'zeros': zero_ext,
1771
+ None: None}
1772
+
1773
+ if boundary not in boundary_funcs:
1774
+ raise ValueError("Unknown boundary option '{}', must be one of: {}"
1775
+ .format(boundary, list(boundary_funcs.keys())))
1776
+
1777
+ # If x and y are the same object we can save ourselves some computation.
1778
+ same_data = y is x
1779
+
1780
+ if not same_data and mode != 'psd':
1781
+ raise ValueError("x and y must be equal if mode is 'stft'")
1782
+
1783
+ axis = int(axis)
1784
+
1785
+ # Ensure we have np.arrays, get outdtype
1786
+ x = np.asarray(x)
1787
+ if not same_data:
1788
+ y = np.asarray(y)
1789
+ outdtype = np.result_type(x, y, np.complex64)
1790
+ else:
1791
+ outdtype = np.result_type(x, np.complex64)
1792
+
1793
+ if not same_data:
1794
+ # Check if we can broadcast the outer axes together
1795
+ xouter = list(x.shape)
1796
+ youter = list(y.shape)
1797
+ xouter.pop(axis)
1798
+ youter.pop(axis)
1799
+ try:
1800
+ outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
1801
+ except ValueError as e:
1802
+ raise ValueError('x and y cannot be broadcast together.') from e
1803
+
1804
+ if same_data:
1805
+ if x.size == 0:
1806
+ return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
1807
+ else:
1808
+ if x.size == 0 or y.size == 0:
1809
+ outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
1810
+ emptyout = np.moveaxis(np.empty(outshape), -1, axis)
1811
+ return emptyout, emptyout, emptyout
1812
+
1813
+ if x.ndim > 1:
1814
+ if axis != -1:
1815
+ x = np.moveaxis(x, axis, -1)
1816
+ if not same_data and y.ndim > 1:
1817
+ y = np.moveaxis(y, axis, -1)
1818
+
1819
+ # Check if x and y are the same length, zero-pad if necessary
1820
+ if not same_data:
1821
+ if x.shape[-1] != y.shape[-1]:
1822
+ if x.shape[-1] < y.shape[-1]:
1823
+ pad_shape = list(x.shape)
1824
+ pad_shape[-1] = y.shape[-1] - x.shape[-1]
1825
+ x = np.concatenate((x, np.zeros(pad_shape)), -1)
1826
+ else:
1827
+ pad_shape = list(y.shape)
1828
+ pad_shape[-1] = x.shape[-1] - y.shape[-1]
1829
+ y = np.concatenate((y, np.zeros(pad_shape)), -1)
1830
+
1831
+ if nperseg is not None: # if specified by user
1832
+ nperseg = int(nperseg)
1833
+ if nperseg < 1:
1834
+ raise ValueError('nperseg must be a positive integer')
1835
+
1836
+ # parse window; if array like, then set nperseg = win.shape
1837
+ win, nperseg = _triage_segments(window, nperseg, input_length=x.shape[-1])
1838
+
1839
+ if nfft is None:
1840
+ nfft = nperseg
1841
+ elif nfft < nperseg:
1842
+ raise ValueError('nfft must be greater than or equal to nperseg.')
1843
+ else:
1844
+ nfft = int(nfft)
1845
+
1846
+ if noverlap is None:
1847
+ noverlap = nperseg//2
1848
+ else:
1849
+ noverlap = int(noverlap)
1850
+ if noverlap >= nperseg:
1851
+ raise ValueError('noverlap must be less than nperseg.')
1852
+ nstep = nperseg - noverlap
1853
+
1854
+ # Padding occurs after boundary extension, so that the extended signal ends
1855
+ # in zeros, instead of introducing an impulse at the end.
1856
+ # I.e. if x = [..., 3, 2]
1857
+ # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
1858
+ # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]
1859
+
1860
+ if boundary is not None:
1861
+ ext_func = boundary_funcs[boundary]
1862
+ x = ext_func(x, nperseg//2, axis=-1)
1863
+ if not same_data:
1864
+ y = ext_func(y, nperseg//2, axis=-1)
1865
+
1866
+ if padded:
1867
+ # Pad to integer number of windowed segments
1868
+ # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
1869
+ nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
1870
+ zeros_shape = list(x.shape[:-1]) + [nadd]
1871
+ x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
1872
+ if not same_data:
1873
+ zeros_shape = list(y.shape[:-1]) + [nadd]
1874
+ y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1)
1875
+
1876
+ # Handle detrending and window functions
1877
+ if not detrend:
1878
+ def detrend_func(d):
1879
+ return d
1880
+ elif not hasattr(detrend, '__call__'):
1881
+ def detrend_func(d):
1882
+ return _signaltools.detrend(d, type=detrend, axis=-1)
1883
+ elif axis != -1:
1884
+ # Wrap this function so that it receives a shape that it could
1885
+ # reasonably expect to receive.
1886
+ def detrend_func(d):
1887
+ d = np.moveaxis(d, -1, axis)
1888
+ d = detrend(d)
1889
+ return np.moveaxis(d, axis, -1)
1890
+ else:
1891
+ detrend_func = detrend
1892
+
1893
+ if np.result_type(win, np.complex64) != outdtype:
1894
+ win = win.astype(outdtype)
1895
+
1896
+ if scaling == 'density':
1897
+ scale = 1.0 / (fs * (win*win).sum())
1898
+ elif scaling == 'spectrum':
1899
+ scale = 1.0 / win.sum()**2
1900
+ else:
1901
+ raise ValueError('Unknown scaling: %r' % scaling)
1902
+
1903
+ if mode == 'stft':
1904
+ scale = np.sqrt(scale)
1905
+
1906
+ if return_onesided:
1907
+ if np.iscomplexobj(x):
1908
+ sides = 'twosided'
1909
+ warnings.warn('Input data is complex, switching to return_onesided=False',
1910
+ stacklevel=3)
1911
+ else:
1912
+ sides = 'onesided'
1913
+ if not same_data:
1914
+ if np.iscomplexobj(y):
1915
+ sides = 'twosided'
1916
+ warnings.warn('Input data is complex, switching to '
1917
+ 'return_onesided=False',
1918
+ stacklevel=3)
1919
+ else:
1920
+ sides = 'twosided'
1921
+
1922
+ if sides == 'twosided':
1923
+ freqs = sp_fft.fftfreq(nfft, 1/fs)
1924
+ elif sides == 'onesided':
1925
+ freqs = sp_fft.rfftfreq(nfft, 1/fs)
1926
+
1927
+ # Perform the windowed FFTs
1928
+ result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides)
1929
+
1930
+ if not same_data:
1931
+ # All the same operations on the y data
1932
+ result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft,
1933
+ sides)
1934
+ result = np.conjugate(result) * result_y
1935
+ elif mode == 'psd':
1936
+ result = np.conjugate(result) * result
1937
+
1938
+ result *= scale
1939
+ if sides == 'onesided' and mode == 'psd':
1940
+ if nfft % 2:
1941
+ result[..., 1:] *= 2
1942
+ else:
1943
+ # Last point is unpaired Nyquist freq point, don't double
1944
+ result[..., 1:-1] *= 2
1945
+
1946
+ time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1,
1947
+ nperseg - noverlap)/float(fs)
1948
+ if boundary is not None:
1949
+ time -= (nperseg/2) / fs
1950
+
1951
+ result = result.astype(outdtype)
1952
+
1953
+ # All imaginary parts are zero anyways
1954
+ if same_data and mode != 'stft':
1955
+ result = result.real
1956
+
1957
+ # Output is going to have new last axis for time/window index, so a
1958
+ # negative axis index shifts down one
1959
+ if axis < 0:
1960
+ axis -= 1
1961
+
1962
+ # Roll frequency axis back to axis where the data came from
1963
+ result = np.moveaxis(result, -1, axis)
1964
+
1965
+ return freqs, time, result
1966
+
1967
+
1968
+ def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides):
1969
+ """
1970
+ Calculate windowed FFT, for internal use by
1971
+ `scipy.signal._spectral_helper`.
1972
+
1973
+ This is a helper function that does the main FFT calculation for
1974
+ `_spectral helper`. All input validation is performed there, and the
1975
+ data axis is assumed to be the last axis of x. It is not designed to
1976
+ be called externally. The windows are not averaged over; the result
1977
+ from each window is returned.
1978
+
1979
+ Returns
1980
+ -------
1981
+ result : ndarray
1982
+ Array of FFT data
1983
+
1984
+ Notes
1985
+ -----
1986
+ Adapted from matplotlib.mlab
1987
+
1988
+ .. versionadded:: 0.16.0
1989
+ """
1990
+ # Created sliding window view of array
1991
+ if nperseg == 1 and noverlap == 0:
1992
+ result = x[..., np.newaxis]
1993
+ else:
1994
+ step = nperseg - noverlap
1995
+ result = np.lib.stride_tricks.sliding_window_view(
1996
+ x, window_shape=nperseg, axis=-1, writeable=True
1997
+ )
1998
+ result = result[..., 0::step, :]
1999
+
2000
+ # Detrend each data segment individually
2001
+ result = detrend_func(result)
2002
+
2003
+ # Apply window by multiplication
2004
+ result = win * result
2005
+
2006
+ # Perform the fft. Acts on last axis by default. Zero-pads automatically
2007
+ if sides == 'twosided':
2008
+ func = sp_fft.fft
2009
+ else:
2010
+ result = result.real
2011
+ func = sp_fft.rfft
2012
+ result = func(result, n=nfft)
2013
+
2014
+ return result
2015
+
2016
+
2017
+ def _triage_segments(window, nperseg, input_length):
2018
+ """
2019
+ Parses window and nperseg arguments for spectrogram and _spectral_helper.
2020
+ This is a helper function, not meant to be called externally.
2021
+
2022
+ Parameters
2023
+ ----------
2024
+ window : string, tuple, or ndarray
2025
+ If window is specified by a string or tuple and nperseg is not
2026
+ specified, nperseg is set to the default of 256 and returns a window of
2027
+ that length.
2028
+ If instead the window is array_like and nperseg is not specified, then
2029
+ nperseg is set to the length of the window. A ValueError is raised if
2030
+ the user supplies both an array_like window and a value for nperseg but
2031
+ nperseg does not equal the length of the window.
2032
+
2033
+ nperseg : int
2034
+ Length of each segment
2035
+
2036
+ input_length: int
2037
+ Length of input signal, i.e. x.shape[-1]. Used to test for errors.
2038
+
2039
+ Returns
2040
+ -------
2041
+ win : ndarray
2042
+ window. If function was called with string or tuple than this will hold
2043
+ the actual array used as a window.
2044
+
2045
+ nperseg : int
2046
+ Length of each segment. If window is str or tuple, nperseg is set to
2047
+ 256. If window is array_like, nperseg is set to the length of the
2048
+ window.
2049
+ """
2050
+ # parse window; if array like, then set nperseg = win.shape
2051
+ if isinstance(window, str) or isinstance(window, tuple):
2052
+ # if nperseg not specified
2053
+ if nperseg is None:
2054
+ nperseg = 256 # then change to default
2055
+ if nperseg > input_length:
2056
+ warnings.warn(f'nperseg = {nperseg:d} is greater than input length '
2057
+ f' = {input_length:d}, using nperseg = {input_length:d}',
2058
+ stacklevel=3)
2059
+ nperseg = input_length
2060
+ win = get_window(window, nperseg)
2061
+ else:
2062
+ win = np.asarray(window)
2063
+ if len(win.shape) != 1:
2064
+ raise ValueError('window must be 1-D')
2065
+ if input_length < win.shape[-1]:
2066
+ raise ValueError('window is longer than input signal')
2067
+ if nperseg is None:
2068
+ nperseg = win.shape[0]
2069
+ elif nperseg is not None:
2070
+ if nperseg != win.shape[0]:
2071
+ raise ValueError("value specified for nperseg is different"
2072
+ " from length of window")
2073
+ return win, nperseg
2074
+
2075
+
2076
+ def _median_bias(n):
2077
+ """
2078
+ Returns the bias of the median of a set of periodograms relative to
2079
+ the mean.
2080
+
2081
+ See Appendix B from [1]_ for details.
2082
+
2083
+ Parameters
2084
+ ----------
2085
+ n : int
2086
+ Numbers of periodograms being averaged.
2087
+
2088
+ Returns
2089
+ -------
2090
+ bias : float
2091
+ Calculated bias.
2092
+
2093
+ References
2094
+ ----------
2095
+ .. [1] B. Allen, W.G. Anderson, P.R. Brady, D.A. Brown, J.D.E. Creighton.
2096
+ "FINDCHIRP: an algorithm for detection of gravitational waves from
2097
+ inspiraling compact binaries", Physical Review D 85, 2012,
2098
+ :arxiv:`gr-qc/0509116`
2099
+ """
2100
+ ii_2 = 2 * np.arange(1., (n-1) // 2 + 1)
2101
+ return 1 + np.sum(1. / (ii_2 + 1) - 1. / ii_2)
env-llmeval/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (395 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/signal/ltisys.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.signal` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace',
9
+ 'lsim', 'impulse', 'step', 'bode',
10
+ 'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse',
11
+ 'dfreqresp', 'dbode', 's_qr', 'linalg',
12
+ 'tf2zpk', 'zpk2tf', 'normalize', 'freqs',
13
+ 'freqz', 'freqs_zpk', 'freqz_zpk', 'tf2ss', 'abcd_normalize',
14
+ 'ss2tf', 'zpk2ss', 'ss2zpk', 'cont2discrete', 'atleast_1d',
15
+ 'squeeze', 'transpose', 'linspace',
16
+ 'LinearTimeInvariant', 'TransferFunctionContinuous',
17
+ 'TransferFunctionDiscrete', 'ZerosPolesGainContinuous',
18
+ 'ZerosPolesGainDiscrete', 'StateSpaceContinuous',
19
+ 'StateSpaceDiscrete', 'Bunch'
20
+ ]
21
+
22
+
23
+ def __dir__():
24
+ return __all__
25
+
26
+
27
+ def __getattr__(name):
28
+ return _sub_module_deprecation(sub_package="signal", module="ltisys",
29
+ private_modules=["_ltisys"], all=__all__,
30
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.97 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc ADDED
Binary file (6.67 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc ADDED
Binary file (4.27 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc ADDED
Binary file (11.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc ADDED
Binary file (676 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc ADDED
Binary file (80.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__plotutils.cpython-310.pyc ADDED
Binary file (2.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__procrustes.cpython-310.pyc ADDED
Binary file (3.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_distance.cpython-310.pyc ADDED
Binary file (70.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_hausdorff.cpython-310.pyc ADDED
Binary file (5.36 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_kdtree.cpython-310.pyc ADDED
Binary file (50 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_qhull.cpython-310.pyc ADDED
Binary file (32.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_slerp.cpython-310.pyc ADDED
Binary file (9.33 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_spherical_voronoi.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ 1.147593763490969421e-01 8.926156143344999849e-01 1.437758624645746330e-02 1.803435962879929022e-02 5.533046214065578949e-01 5.554315640747428118e-01 4.497546637814608950e-02 4.438089247948049376e-01 7.984582810220538507e-01 2.752880789161644692e-01 1.344667112315823809e-01 9.230479561452992199e-01 6.040471462941819913e-01 3.797251652770228247e-01 4.316042735592399149e-01 5.312356915348823705e-01 4.348143005129563310e-01 3.111531488508799681e-01 9.531194313908697424e-04 8.212995023500069269e-02 6.689953269869852726e-01 9.914864535288493430e-01 8.037556036341153565e-01
2
+ 9.608925123801395074e-01 2.974451233678974127e-01 9.001110330654185088e-01 5.824163330415995654e-01 7.308574928293812834e-01 2.276154562412870952e-01 7.306791076039623745e-01 8.677244866905511333e-01 9.160806456176984192e-01 6.157216959991280714e-01 5.149053524695440531e-01 3.056427344890983999e-01 9.790557366933895223e-01 4.484995861076724877e-01 4.776550391081165747e-01 7.210436977670631187e-01 9.136399501661039979e-01 4.260275733550000776e-02 5.943900041968954717e-01 3.864571606342745991e-01 9.442027665110838131e-01 4.779949058608601309e-02 6.107551944250865228e-01
3
+ 3.297286578103622023e-01 5.980207401936733502e-01 3.673301293561567205e-01 2.585830520887681949e-01 4.660558746104259686e-01 6.083795956610364986e-01 4.535206368070313632e-01 6.873989778785424276e-01 5.130152688495458468e-01 7.665877846542720198e-01 3.444402973525138023e-01 3.583658123644906102e-02 7.924818220986856732e-01 8.746685720522412444e-01 3.010105569182431884e-01 6.012239357385538163e-01 6.233737362204671006e-01 4.830438698668915176e-01 2.317286885842551047e-02 7.585989958123050547e-01 7.108257632278830451e-01 1.551024884178199281e-01 2.665485998155288083e-01
4
+ 2.456278068903017253e-02 4.148739837711815648e-01 1.986372227934196655e-01 6.920408530298168825e-01 1.003067576685774398e-01 7.421560456480125190e-01 1.808453980608998313e-01 4.251297882537475870e-01 6.773002683522370004e-01 4.084108792570182445e-01 7.462888013191590897e-01 8.069930220529277776e-01 9.211110587681808903e-01 4.141491046181076108e-01 7.486318689260342829e-01 9.515405507589296263e-01 4.634288892577109742e-03 8.027593488166355762e-01 3.010346805217798405e-01 8.663248877242523127e-01 2.479968181181605447e-01 5.619851096054278017e-01 3.903886764590250857e-01
5
+ 7.122019976035700584e-01 6.188878051047785878e-01 7.290897087051201320e-01 6.334802157757637442e-01 5.523084734954342156e-01 5.614937129563645213e-01 2.496741051791574462e-01 5.972227939599233926e-01 1.786590597761109622e-01 2.609525984850900038e-01 7.210438943286010538e-01 2.211429064605652250e-01 9.140497572472672250e-02 1.430242193668443962e-01 7.856446942916397447e-01 4.635256358156553125e-01 5.278744289813760426e-01 3.702808015407184072e-01 5.527073830480792038e-01 6.370732917599846168e-01 9.953487928925482953e-01 3.021789770611936765e-01 3.354901923998221402e-02
6
+ 6.509638560895427695e-01 8.387598220902757751e-01 7.761375971745763103e-01 1.481627639227802717e-01 3.529474982902305324e-01 4.883093646287851586e-01 9.652923033658690199e-01 9.500680513565308294e-01 3.061885005078281985e-01 7.271902818906019750e-01 2.358962978196710303e-03 7.359889703223099211e-01 8.988893768074724955e-01 4.135279653937307121e-02 8.516441856688283796e-01 4.889597623270667270e-01 5.575909822114655245e-01 9.010853652261575641e-01 2.912844516556202246e-01 9.088759383368658629e-01 8.104351227460024898e-01 8.080695436776826890e-01 1.430530913253185155e-01
7
+ 8.048001196608134400e-01 3.066089444418462762e-02 9.021887554292090661e-01 6.154331491807940591e-02 1.378912575206647784e-02 5.775720193142440673e-01 1.219298963069791464e-01 1.883270243412101808e-01 5.569262398688379356e-02 8.964817777510125651e-02 7.977092785346929782e-01 4.878149375226197293e-01 4.511973131518809410e-02 1.858690046801604323e-01 6.947686471083162063e-01 5.884058794291086025e-01 8.638884676612634816e-01 3.855470871341656336e-01 3.495049047300468059e-01 2.767740932353948136e-01 4.731087031714035218e-01 6.679001673437914288e-01 7.502944200696660682e-01
8
+ 6.527328264244687261e-01 8.289483383553154505e-01 9.179741348282299818e-01 1.065639864466713105e-01 6.253616929058514184e-01 5.927750325266062381e-01 3.039157425463192563e-01 2.452766763359194302e-01 6.514027700704632107e-01 5.529218485487964463e-01 4.941158239308394151e-01 6.605306467722642516e-01 2.273688037050677346e-01 4.282616592244774534e-01 2.956128257930247250e-01 1.154803628237965896e-01 9.228220410235263849e-01 6.663525307676617659e-01 1.908852615936970087e-01 9.921383408926374159e-01 4.988716450388516188e-01 1.014900352736023414e-01 3.363930180244284474e-01
9
+ 2.914369076275757919e-01 5.196673601143533272e-01 7.420144907858341465e-01 1.768984185504740569e-01 5.296766993228564369e-01 5.922023566159900776e-01 5.965161262020234334e-01 3.810272333046110793e-01 8.368797246118340194e-01 7.896422363801189892e-01 9.655797561098209414e-01 4.430034032346981121e-01 2.780869795706976122e-01 3.047310845416009162e-01 8.051138863500326703e-01 6.731468634690835895e-01 4.743383036815584930e-01 9.530709614322225853e-01 7.753587619850917934e-01 2.801137109357491051e-01 6.182543660889736614e-01 5.005218857766725593e-01 9.071447804755052857e-01
10
+ 2.075071644012620453e-01 4.834950086973934802e-01 3.037011473860764532e-01 6.476084284887700937e-01 8.107195771564194020e-01 7.869075869075803364e-01 6.851234019375299633e-01 3.544187468104398331e-02 4.847673235908021017e-01 5.690262846164507726e-01 1.663354142616256803e-01 9.692796809752548537e-01 4.133441725866372485e-01 6.729167604487583665e-01 3.998813427407297283e-01 8.272617414104491695e-01 2.129248316324727774e-01 6.517004761357130249e-01 7.363013506605019520e-01 4.072375306356985636e-01 4.463336683526665238e-01 5.485059309728204102e-01 1.981745754527846071e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X2.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 7.680465556300619667e-02 4.675022344069014180e-01 8.955498989131543963e-01 3.816236071436276411e-01 1.109030077070989329e-01 2.318928815459808668e-02 7.477394240984251983e-01 1.202289789304434864e-01 8.007290497575981769e-01 6.795195698871731027e-01 6.568225762396605605e-01 2.231475263228478445e-01 7.064624077661341151e-02 1.081656666815267176e-02 1.592069359090128033e-01 1.363392203645097389e-01 9.277020735447568667e-01 8.103136564528209407e-01 5.229467676276455812e-02 7.708020259874025504e-01 6.527954747473352359e-02 5.516397414886525796e-01 3.653371861367954443e-01
2
+ 8.144399106025798085e-01 7.731852525462976633e-01 6.909477620673205589e-01 9.696063817000286633e-01 4.297887511677249694e-01 6.989600553425188156e-01 7.310201335033380543e-01 3.135256147868910048e-01 5.715578037275241829e-01 3.935000744675094531e-01 2.057715781268398825e-01 5.892508589665171881e-01 8.512951599236765476e-01 9.569808799061578775e-01 6.164885878024699561e-01 4.714185430004367294e-01 6.128831737628155363e-01 6.641799309623502845e-01 6.001985185338730711e-01 4.231922889723856995e-01 7.605249308075449077e-01 1.064530958018087281e-01 6.306470691957204444e-01
3
+ 4.265470127256254518e-01 5.933766716280767239e-01 3.698589270536845053e-02 2.173799740537294412e-01 3.032679325475639009e-01 4.271831790058847611e-01 1.828944535901013690e-01 4.772333422710156592e-01 2.564773455194128138e-01 7.120329875362141347e-01 8.952243430110462530e-01 1.808777012183288013e-01 3.612151871458374464e-01 3.960999167923041631e-01 1.821669970670747318e-02 8.835474857189200559e-01 1.353104648821573663e-01 3.457291739160937016e-01 1.126467375304566199e-01 4.107293162402323450e-01 4.051719311053743056e-01 4.007382985250427243e-01 1.286905671428811848e-01
4
+ 2.910657003883979632e-01 9.616259180685315933e-03 2.033032441536681834e-01 1.096599110293863255e-01 4.191101704605176836e-01 5.462131536027151624e-01 8.393047907010142694e-01 9.046805198676335369e-01 7.009863472176891541e-01 2.508215985039629059e-01 6.754410796667598138e-01 6.740895474032024826e-01 1.358993708621679675e-01 8.219861775211464439e-01 6.322220445623235596e-01 2.766813559002430090e-01 6.575983861590951607e-01 9.515869708336625044e-01 8.654526462353933081e-01 3.450245117834797037e-01 5.649032890631299209e-01 4.717687914789682191e-01 3.296483580510030098e-01
5
+ 9.172477457635394016e-01 3.057396583041891436e-01 7.335332344225760082e-01 8.370236206345178509e-01 3.765464253115927695e-01 5.089680319287778199e-01 1.202325719268168003e-01 9.717771065272349240e-01 5.907820104019682050e-01 9.809211614977710880e-01 9.064285003671219698e-01 8.848841466121748489e-01 2.043407730734815297e-01 9.157600394927275511e-01 4.532260315147775831e-01 4.241077335005828397e-01 1.751730149568804240e-01 4.090412146081819911e-01 3.632197861847064058e-02 5.832539334970230360e-01 4.041848151536805434e-01 3.603643989086504629e-01 1.838411383882069261e-01
6
+ 2.508806403290032572e-01 4.381403985282813496e-01 4.694787405018008286e-02 6.353900562024634713e-01 1.200813444244532846e-01 6.072397042913001419e-01 9.937255904754030977e-01 4.916670237677555066e-01 3.473845913923001572e-01 3.526875922864345370e-01 5.448595548197197047e-01 2.245096010156972799e-01 9.003258279804994269e-01 3.534560469735994470e-01 2.989266066346342177e-01 4.621024982808636938e-01 9.626538866576676012e-01 9.791401720716153001e-01 7.138514287330390840e-01 9.832862333928654719e-01 3.233999591031431198e-01 5.406467224926423398e-01 9.581890295057201579e-01
7
+ 5.210583601680578436e-01 4.598159993059653949e-01 2.111497132057748027e-01 5.949977700916546652e-01 6.342618461422359077e-01 9.888228769705599275e-01 6.096770711536318998e-01 7.548431368960863974e-01 7.490858664860100546e-01 3.186213496546415058e-01 7.895687083231245351e-01 4.178326793268141159e-01 8.095818334534051752e-01 7.886271673523481684e-01 4.038905626506847923e-01 3.652649247094948981e-01 8.267205959224892542e-01 6.433617243328785262e-01 3.117681563249452559e-01 9.675995575054980868e-01 3.675673836358472890e-01 5.863757289184046151e-01 9.099029857959717305e-02
8
+ 4.024573981231733821e-01 3.578997554002771864e-01 3.519299868071553705e-01 7.417747693762357653e-01 2.963713903285800644e-01 9.602967989298948348e-01 3.811392331739601458e-01 5.493237898295448840e-01 6.835113342793640578e-01 2.304506220807415184e-01 3.727299857731285471e-01 5.450263991912108752e-01 6.951521210987908761e-01 6.474582745861203747e-01 6.316089475403589004e-01 5.672043967425510758e-02 9.034937506977609445e-01 2.332567550780038079e-01 1.096955741449157085e-02 8.870663813493575578e-01 4.384385452180562526e-01 7.100898998169548060e-01 3.245358176196319056e-01
9
+ 9.162009194452818139e-01 5.572224742426723498e-02 3.445910686865658601e-01 9.683564008127462097e-01 9.375063149031520604e-01 9.128188852869822956e-02 9.613605414326487075e-01 5.298598697556915482e-01 6.724799695520149445e-01 1.269103938571825019e-02 1.008406153387807480e-01 8.951105272379104028e-01 1.585460318853607609e-01 6.739986455059543413e-01 5.345419321702655768e-01 6.248843899572337213e-01 3.050288488994817859e-01 1.423645553465189284e-01 1.802121190541096096e-01 9.474646822694763326e-01 2.345716438587298613e-01 9.688281784764296578e-01 1.845165243240991515e-01
10
+ 2.548297646910531178e-01 2.580877375379494465e-01 1.355482532666937301e-01 6.478812986505504412e-01 9.971695982152032345e-01 2.606721082477282403e-01 5.483439686378906996e-01 4.409612606704470528e-01 4.396442074915688503e-01 7.414262832597111608e-01 7.308840725375539416e-01 8.072095530497225280e-02 6.829509968656330976e-01 5.700030854230387911e-01 3.801845336730320657e-01 2.481059916867158766e-01 3.977295094395927322e-03 5.749480512407895150e-01 4.112033136603401307e-01 8.676159710377848722e-01 9.062646588480167686e-01 3.326691167317923359e-01 8.498307982774666591e-01
11
+ 4.464338109330643345e-01 8.546516760817471914e-01 7.384800352329814466e-01 3.692485164984804502e-02 2.915662689505471583e-02 9.010049994217171898e-01 8.622900253010918892e-01 9.786230638032608065e-01 6.546824077297251909e-01 6.342297560006789903e-01 2.230339826582647955e-01 7.658846744185553446e-01 4.603043831539479491e-01 2.017100469861691225e-01 4.891590639893540482e-01 1.937140918314912419e-01 8.161582138652878626e-01 5.597293607114051106e-02 8.423261093326828153e-02 5.105392204475533990e-02 8.234193902673621057e-01 1.784268309975372002e-01 9.118997881986501408e-02
12
+ 8.588746913421980711e-01 1.479641118621310980e-02 1.375875301146138874e-01 7.533888774725254756e-01 5.782592791549248101e-01 9.128573037619659436e-01 1.831275762880391067e-01 3.471382864827737835e-01 4.859524740929310749e-02 8.955146541561730400e-01 4.787220791101074457e-01 4.222803577759057791e-01 8.469923964908064873e-01 6.300290047587608910e-02 1.020873237837905956e-01 3.585612487182909813e-02 6.320107119904569970e-01 5.891245970008752719e-01 1.104698053665007507e-01 4.233226558073774903e-01 4.432217054386708988e-01 2.864765416628194394e-01 2.489777211814803159e-02
13
+ 5.343810659756068615e-01 4.829076396403546578e-01 8.364480888953172988e-01 8.931374995414760321e-01 6.034161442354715188e-01 3.578336000768178593e-03 4.100579775972763574e-01 3.968667908067096128e-01 5.897163653686778861e-01 3.003241263928478899e-01 2.520935203143799264e-01 3.112129371563532310e-02 9.052865295974613646e-01 1.172285124002711010e-01 4.840001666149388315e-01 3.424620676348436588e-01 5.526057133826853818e-01 6.346139530261846184e-01 5.747945930485597321e-01 1.389915612177697879e-01 2.413801217666421417e-01 7.829900796662081497e-01 7.213528084845653998e-01
14
+ 9.384509283406079483e-01 6.303019601671526750e-01 1.787921522728125323e-01 1.556003868047917127e-02 5.662397078816850948e-01 3.437473614806091371e-01 8.615844972800188462e-01 7.624380237306396246e-01 1.096468347898514883e-01 1.276566836610887323e-01 8.479188493443535757e-01 3.634713454428405432e-01 7.478112314318967613e-01 9.856395696968375253e-01 6.250293654177319080e-02 1.919327272501809567e-01 1.415594476031050153e-01 7.224057351041784925e-01 8.452145259310355208e-01 5.434318833772002755e-01 5.177620959731277228e-02 3.358977598185840518e-01 2.542654881527960375e-01
15
+ 4.800909104006243489e-01 3.651345393613150137e-01 3.657093052788148446e-01 8.579662326651369408e-01 5.787694361240260932e-01 6.491966196891312268e-01 3.252508517294879775e-01 8.639694334693422961e-01 3.028097078756678551e-01 6.295814666338699350e-01 7.305627351548695803e-01 6.975931849120264872e-03 8.321205159004851915e-01 2.681809305821257761e-01 3.628869474597150591e-01 9.598981434716586936e-01 5.947913523332928332e-01 7.794864238003402779e-01 2.819511239444029149e-01 5.134200958476284882e-01 7.284684743064278045e-01 3.099571109539331903e-01 1.502222882866774967e-01
16
+ 2.463382654375219083e-01 4.465700737264240994e-01 7.180855317941433613e-01 5.056099420785193921e-01 6.182117344332578313e-01 2.370453793561340117e-01 9.831748018047525850e-01 6.397098184531551102e-01 8.260469782208745837e-02 7.474671691560941245e-01 9.963429983418570224e-02 5.450078811081275898e-01 5.370188678062637333e-02 2.774024442708808991e-01 2.082643088545442778e-01 2.704155352788065736e-01 7.225035580445194894e-01 4.866791976239246420e-01 1.357043111201584606e-01 7.911335827987711067e-01 7.278977102006007893e-01 6.880892094410231419e-01 1.029231496520791600e-01
17
+ 6.901796117735281566e-01 1.558248977395644275e-01 4.241818789360329855e-01 5.055658246392458199e-01 1.756288758075611467e-01 4.215083703818177652e-01 7.809231602323289945e-01 1.170053878686481141e-01 6.497026323614403243e-01 5.733120641440232479e-01 4.407703406152092551e-01 5.608677124532297498e-01 7.471045703286000039e-01 3.334604336022076732e-01 8.927208811415126011e-01 9.794565286182396191e-01 9.621542824973521313e-01 3.945825239405253981e-01 8.338963875792834157e-01 9.310552325082104286e-01 7.688283033784242271e-01 3.798823731047119567e-01 1.459993613028365278e-02
18
+ 7.848623555505630511e-01 2.681039365355797344e-03 7.833208051794043891e-01 8.184381915171493604e-01 4.682581645582317709e-01 2.391069309436419932e-01 1.765377537168698607e-01 9.863494676539893424e-01 4.378412300863872009e-01 7.494505491149090481e-01 1.942180356195394308e-01 9.981402467222395547e-01 7.992190944052800505e-01 1.350875702852057936e-01 4.950149186748543650e-01 7.243422481248201761e-01 3.544596746353472216e-01 8.320192561472177228e-01 9.776840296475269865e-01 7.733852731914863110e-01 2.305732998099923048e-01 9.746878189802981041e-01 7.747723331200035979e-01
19
+ 6.521099013127149568e-01 5.452399443648201505e-01 8.146707517183656710e-01 3.827256063695345656e-01 7.954832091744263867e-01 7.834427643148527132e-01 9.661317930643520402e-02 9.215673965718058636e-01 4.914305728788055383e-01 4.105628408027649501e-01 9.844647830893304974e-02 3.974831165301851987e-01 3.857608898053827007e-01 5.520210781401946321e-01 3.445787541654143915e-03 4.552922057017416702e-01 7.456544561760444223e-01 4.753985092154335845e-01 2.821385239833401615e-01 7.560136035104459973e-01 8.453142510471420845e-01 6.679627143276523071e-01 6.910882868284401459e-01
20
+ 8.526493480446283302e-01 1.183917973068240315e-01 6.163988861865119517e-01 5.751899460059114455e-01 1.638797964925038375e-01 8.214597298784013235e-01 5.424670654187370156e-01 1.806631819658732763e-01 9.268107278221827672e-01 4.127397378597359445e-01 7.529877485901653733e-01 1.714251090083847018e-01 2.601487784245806179e-01 2.028326156742237263e-01 5.299879450122358948e-01 7.587877062981395193e-01 4.070738595375062996e-01 3.546903049793261875e-01 8.695365138547607176e-01 1.447085661525142619e-01 3.193366245820845606e-01 8.797841086211429795e-01 2.666562188639977071e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/iris.txt ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01
2
+ 4.900000000000000355e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01
3
+ 4.700000000000000178e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01
4
+ 4.599999999999999645e+00 3.100000000000000089e+00 1.500000000000000000e+00 2.000000000000000111e-01
5
+ 5.000000000000000000e+00 3.600000000000000089e+00 1.399999999999999911e+00 2.000000000000000111e-01
6
+ 5.400000000000000355e+00 3.899999999999999911e+00 1.699999999999999956e+00 4.000000000000000222e-01
7
+ 4.599999999999999645e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.999999999999999889e-01
8
+ 5.000000000000000000e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01
9
+ 4.400000000000000355e+00 2.899999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01
10
+ 4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
11
+ 5.400000000000000355e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01
12
+ 4.799999999999999822e+00 3.399999999999999911e+00 1.600000000000000089e+00 2.000000000000000111e-01
13
+ 4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 1.000000000000000056e-01
14
+ 4.299999999999999822e+00 3.000000000000000000e+00 1.100000000000000089e+00 1.000000000000000056e-01
15
+ 5.799999999999999822e+00 4.000000000000000000e+00 1.199999999999999956e+00 2.000000000000000111e-01
16
+ 5.700000000000000178e+00 4.400000000000000355e+00 1.500000000000000000e+00 4.000000000000000222e-01
17
+ 5.400000000000000355e+00 3.899999999999999911e+00 1.300000000000000044e+00 4.000000000000000222e-01
18
+ 5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01
19
+ 5.700000000000000178e+00 3.799999999999999822e+00 1.699999999999999956e+00 2.999999999999999889e-01
20
+ 5.099999999999999645e+00 3.799999999999999822e+00 1.500000000000000000e+00 2.999999999999999889e-01
21
+ 5.400000000000000355e+00 3.399999999999999911e+00 1.699999999999999956e+00 2.000000000000000111e-01
22
+ 5.099999999999999645e+00 3.700000000000000178e+00 1.500000000000000000e+00 4.000000000000000222e-01
23
+ 4.599999999999999645e+00 3.600000000000000089e+00 1.000000000000000000e+00 2.000000000000000111e-01
24
+ 5.099999999999999645e+00 3.299999999999999822e+00 1.699999999999999956e+00 5.000000000000000000e-01
25
+ 4.799999999999999822e+00 3.399999999999999911e+00 1.899999999999999911e+00 2.000000000000000111e-01
26
+ 5.000000000000000000e+00 3.000000000000000000e+00 1.600000000000000089e+00 2.000000000000000111e-01
27
+ 5.000000000000000000e+00 3.399999999999999911e+00 1.600000000000000089e+00 4.000000000000000222e-01
28
+ 5.200000000000000178e+00 3.500000000000000000e+00 1.500000000000000000e+00 2.000000000000000111e-01
29
+ 5.200000000000000178e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01
30
+ 4.700000000000000178e+00 3.200000000000000178e+00 1.600000000000000089e+00 2.000000000000000111e-01
31
+ 4.799999999999999822e+00 3.100000000000000089e+00 1.600000000000000089e+00 2.000000000000000111e-01
32
+ 5.400000000000000355e+00 3.399999999999999911e+00 1.500000000000000000e+00 4.000000000000000222e-01
33
+ 5.200000000000000178e+00 4.099999999999999645e+00 1.500000000000000000e+00 1.000000000000000056e-01
34
+ 5.500000000000000000e+00 4.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01
35
+ 4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
36
+ 5.000000000000000000e+00 3.200000000000000178e+00 1.199999999999999956e+00 2.000000000000000111e-01
37
+ 5.500000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01
38
+ 4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
39
+ 4.400000000000000355e+00 3.000000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01
40
+ 5.099999999999999645e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01
41
+ 5.000000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.999999999999999889e-01
42
+ 4.500000000000000000e+00 2.299999999999999822e+00 1.300000000000000044e+00 2.999999999999999889e-01
43
+ 4.400000000000000355e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01
44
+ 5.000000000000000000e+00 3.500000000000000000e+00 1.600000000000000089e+00 5.999999999999999778e-01
45
+ 5.099999999999999645e+00 3.799999999999999822e+00 1.899999999999999911e+00 4.000000000000000222e-01
46
+ 4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01
47
+ 5.099999999999999645e+00 3.799999999999999822e+00 1.600000000000000089e+00 2.000000000000000111e-01
48
+ 4.599999999999999645e+00 3.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01
49
+ 5.299999999999999822e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01
50
+ 5.000000000000000000e+00 3.299999999999999822e+00 1.399999999999999911e+00 2.000000000000000111e-01
51
+ 7.000000000000000000e+00 3.200000000000000178e+00 4.700000000000000178e+00 1.399999999999999911e+00
52
+ 6.400000000000000355e+00 3.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00
53
+ 6.900000000000000355e+00 3.100000000000000089e+00 4.900000000000000355e+00 1.500000000000000000e+00
54
+ 5.500000000000000000e+00 2.299999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00
55
+ 6.500000000000000000e+00 2.799999999999999822e+00 4.599999999999999645e+00 1.500000000000000000e+00
56
+ 5.700000000000000178e+00 2.799999999999999822e+00 4.500000000000000000e+00 1.300000000000000044e+00
57
+ 6.299999999999999822e+00 3.299999999999999822e+00 4.700000000000000178e+00 1.600000000000000089e+00
58
+ 4.900000000000000355e+00 2.399999999999999911e+00 3.299999999999999822e+00 1.000000000000000000e+00
59
+ 6.599999999999999645e+00 2.899999999999999911e+00 4.599999999999999645e+00 1.300000000000000044e+00
60
+ 5.200000000000000178e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.399999999999999911e+00
61
+ 5.000000000000000000e+00 2.000000000000000000e+00 3.500000000000000000e+00 1.000000000000000000e+00
62
+ 5.900000000000000355e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.500000000000000000e+00
63
+ 6.000000000000000000e+00 2.200000000000000178e+00 4.000000000000000000e+00 1.000000000000000000e+00
64
+ 6.099999999999999645e+00 2.899999999999999911e+00 4.700000000000000178e+00 1.399999999999999911e+00
65
+ 5.599999999999999645e+00 2.899999999999999911e+00 3.600000000000000089e+00 1.300000000000000044e+00
66
+ 6.700000000000000178e+00 3.100000000000000089e+00 4.400000000000000355e+00 1.399999999999999911e+00
67
+ 5.599999999999999645e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00
68
+ 5.799999999999999822e+00 2.700000000000000178e+00 4.099999999999999645e+00 1.000000000000000000e+00
69
+ 6.200000000000000178e+00 2.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00
70
+ 5.599999999999999645e+00 2.500000000000000000e+00 3.899999999999999911e+00 1.100000000000000089e+00
71
+ 5.900000000000000355e+00 3.200000000000000178e+00 4.799999999999999822e+00 1.800000000000000044e+00
72
+ 6.099999999999999645e+00 2.799999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00
73
+ 6.299999999999999822e+00 2.500000000000000000e+00 4.900000000000000355e+00 1.500000000000000000e+00
74
+ 6.099999999999999645e+00 2.799999999999999822e+00 4.700000000000000178e+00 1.199999999999999956e+00
75
+ 6.400000000000000355e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00
76
+ 6.599999999999999645e+00 3.000000000000000000e+00 4.400000000000000355e+00 1.399999999999999911e+00
77
+ 6.799999999999999822e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.399999999999999911e+00
78
+ 6.700000000000000178e+00 3.000000000000000000e+00 5.000000000000000000e+00 1.699999999999999956e+00
79
+ 6.000000000000000000e+00 2.899999999999999911e+00 4.500000000000000000e+00 1.500000000000000000e+00
80
+ 5.700000000000000178e+00 2.600000000000000089e+00 3.500000000000000000e+00 1.000000000000000000e+00
81
+ 5.500000000000000000e+00 2.399999999999999911e+00 3.799999999999999822e+00 1.100000000000000089e+00
82
+ 5.500000000000000000e+00 2.399999999999999911e+00 3.700000000000000178e+00 1.000000000000000000e+00
83
+ 5.799999999999999822e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.199999999999999956e+00
84
+ 6.000000000000000000e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.600000000000000089e+00
85
+ 5.400000000000000355e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00
86
+ 6.000000000000000000e+00 3.399999999999999911e+00 4.500000000000000000e+00 1.600000000000000089e+00
87
+ 6.700000000000000178e+00 3.100000000000000089e+00 4.700000000000000178e+00 1.500000000000000000e+00
88
+ 6.299999999999999822e+00 2.299999999999999822e+00 4.400000000000000355e+00 1.300000000000000044e+00
89
+ 5.599999999999999645e+00 3.000000000000000000e+00 4.099999999999999645e+00 1.300000000000000044e+00
90
+ 5.500000000000000000e+00 2.500000000000000000e+00 4.000000000000000000e+00 1.300000000000000044e+00
91
+ 5.500000000000000000e+00 2.600000000000000089e+00 4.400000000000000355e+00 1.199999999999999956e+00
92
+ 6.099999999999999645e+00 3.000000000000000000e+00 4.599999999999999645e+00 1.399999999999999911e+00
93
+ 5.799999999999999822e+00 2.600000000000000089e+00 4.000000000000000000e+00 1.199999999999999956e+00
94
+ 5.000000000000000000e+00 2.299999999999999822e+00 3.299999999999999822e+00 1.000000000000000000e+00
95
+ 5.599999999999999645e+00 2.700000000000000178e+00 4.200000000000000178e+00 1.300000000000000044e+00
96
+ 5.700000000000000178e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.199999999999999956e+00
97
+ 5.700000000000000178e+00 2.899999999999999911e+00 4.200000000000000178e+00 1.300000000000000044e+00
98
+ 6.200000000000000178e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00
99
+ 5.099999999999999645e+00 2.500000000000000000e+00 3.000000000000000000e+00 1.100000000000000089e+00
100
+ 5.700000000000000178e+00 2.799999999999999822e+00 4.099999999999999645e+00 1.300000000000000044e+00
101
+ 6.299999999999999822e+00 3.299999999999999822e+00 6.000000000000000000e+00 2.500000000000000000e+00
102
+ 5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00
103
+ 7.099999999999999645e+00 3.000000000000000000e+00 5.900000000000000355e+00 2.100000000000000089e+00
104
+ 6.299999999999999822e+00 2.899999999999999911e+00 5.599999999999999645e+00 1.800000000000000044e+00
105
+ 6.500000000000000000e+00 3.000000000000000000e+00 5.799999999999999822e+00 2.200000000000000178e+00
106
+ 7.599999999999999645e+00 3.000000000000000000e+00 6.599999999999999645e+00 2.100000000000000089e+00
107
+ 4.900000000000000355e+00 2.500000000000000000e+00 4.500000000000000000e+00 1.699999999999999956e+00
108
+ 7.299999999999999822e+00 2.899999999999999911e+00 6.299999999999999822e+00 1.800000000000000044e+00
109
+ 6.700000000000000178e+00 2.500000000000000000e+00 5.799999999999999822e+00 1.800000000000000044e+00
110
+ 7.200000000000000178e+00 3.600000000000000089e+00 6.099999999999999645e+00 2.500000000000000000e+00
111
+ 6.500000000000000000e+00 3.200000000000000178e+00 5.099999999999999645e+00 2.000000000000000000e+00
112
+ 6.400000000000000355e+00 2.700000000000000178e+00 5.299999999999999822e+00 1.899999999999999911e+00
113
+ 6.799999999999999822e+00 3.000000000000000000e+00 5.500000000000000000e+00 2.100000000000000089e+00
114
+ 5.700000000000000178e+00 2.500000000000000000e+00 5.000000000000000000e+00 2.000000000000000000e+00
115
+ 5.799999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 2.399999999999999911e+00
116
+ 6.400000000000000355e+00 3.200000000000000178e+00 5.299999999999999822e+00 2.299999999999999822e+00
117
+ 6.500000000000000000e+00 3.000000000000000000e+00 5.500000000000000000e+00 1.800000000000000044e+00
118
+ 7.700000000000000178e+00 3.799999999999999822e+00 6.700000000000000178e+00 2.200000000000000178e+00
119
+ 7.700000000000000178e+00 2.600000000000000089e+00 6.900000000000000355e+00 2.299999999999999822e+00
120
+ 6.000000000000000000e+00 2.200000000000000178e+00 5.000000000000000000e+00 1.500000000000000000e+00
121
+ 6.900000000000000355e+00 3.200000000000000178e+00 5.700000000000000178e+00 2.299999999999999822e+00
122
+ 5.599999999999999645e+00 2.799999999999999822e+00 4.900000000000000355e+00 2.000000000000000000e+00
123
+ 7.700000000000000178e+00 2.799999999999999822e+00 6.700000000000000178e+00 2.000000000000000000e+00
124
+ 6.299999999999999822e+00 2.700000000000000178e+00 4.900000000000000355e+00 1.800000000000000044e+00
125
+ 6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.100000000000000089e+00
126
+ 7.200000000000000178e+00 3.200000000000000178e+00 6.000000000000000000e+00 1.800000000000000044e+00
127
+ 6.200000000000000178e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.800000000000000044e+00
128
+ 6.099999999999999645e+00 3.000000000000000000e+00 4.900000000000000355e+00 1.800000000000000044e+00
129
+ 6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.100000000000000089e+00
130
+ 7.200000000000000178e+00 3.000000000000000000e+00 5.799999999999999822e+00 1.600000000000000089e+00
131
+ 7.400000000000000355e+00 2.799999999999999822e+00 6.099999999999999645e+00 1.899999999999999911e+00
132
+ 7.900000000000000355e+00 3.799999999999999822e+00 6.400000000000000355e+00 2.000000000000000000e+00
133
+ 6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.200000000000000178e+00
134
+ 6.299999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 1.500000000000000000e+00
135
+ 6.099999999999999645e+00 2.600000000000000089e+00 5.599999999999999645e+00 1.399999999999999911e+00
136
+ 7.700000000000000178e+00 3.000000000000000000e+00 6.099999999999999645e+00 2.299999999999999822e+00
137
+ 6.299999999999999822e+00 3.399999999999999911e+00 5.599999999999999645e+00 2.399999999999999911e+00
138
+ 6.400000000000000355e+00 3.100000000000000089e+00 5.500000000000000000e+00 1.800000000000000044e+00
139
+ 6.000000000000000000e+00 3.000000000000000000e+00 4.799999999999999822e+00 1.800000000000000044e+00
140
+ 6.900000000000000355e+00 3.100000000000000089e+00 5.400000000000000355e+00 2.100000000000000089e+00
141
+ 6.700000000000000178e+00 3.100000000000000089e+00 5.599999999999999645e+00 2.399999999999999911e+00
142
+ 6.900000000000000355e+00 3.100000000000000089e+00 5.099999999999999645e+00 2.299999999999999822e+00
143
+ 5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00
144
+ 6.799999999999999822e+00 3.200000000000000178e+00 5.900000000000000355e+00 2.299999999999999822e+00
145
+ 6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.500000000000000000e+00
146
+ 6.700000000000000178e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.299999999999999822e+00
147
+ 6.299999999999999822e+00 2.500000000000000000e+00 5.000000000000000000e+00 1.899999999999999911e+00
148
+ 6.500000000000000000e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.000000000000000000e+00
149
+ 6.200000000000000178e+00 3.399999999999999911e+00 5.400000000000000355e+00 2.299999999999999822e+00
150
+ 5.900000000000000355e+00 3.000000000000000000e+00 5.099999999999999645e+00 1.800000000000000044e+00
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
2
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
3
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
4
+ 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
5
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
6
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
7
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
8
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
9
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
10
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
11
+ 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
12
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
13
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
14
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
15
+ 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
16
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
17
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
18
+ 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
19
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
20
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 8.9084734e-01 9.3573853e-01 9.3507398e-01 9.6040691e-01 9.2918157e-01 9.6617342e-01 9.0430930e-01 9.5753424e-01 8.7106898e-01 9.2169905e-01 9.7401159e-01 8.9013416e-01 9.3956689e-01 9.0041896e-01 9.2588355e-01 9.3849417e-01 8.9713468e-01 9.1481804e-01 9.7500539e-01 9.0012586e-01 9.0962559e-01 8.5860091e-01 8.6981095e-01 8.9995771e-01 8.8070172e-01 9.1456657e-01 8.6711474e-01 9.2593917e-01 8.7560376e-01 8.5193121e-01 9.0898542e-01 8.7765302e-01 8.6555584e-01 8.6093485e-01 9.0447028e-01 8.7614405e-01 9.4803522e-01 8.4998062e-01 7.8398996e-01 8.9538612e-01 8.3902291e-01 9.9039470e-01 9.5480519e-01 8.9152195e-01 9.1623329e-01 7.9094921e-01 9.1777100e-01 9.8972335e-01 9.0429093e-01 8.7646362e-01 9.2136649e-01 9.7178177e-01 8.9610979e-01 9.4710327e-01 9.3612450e-01 9.0241499e-01 7.7992538e-01 8.7262126e-01 9.3325183e-01 8.5796531e-01 9.4267977e-01 6.7224167e-01 7.9568368e-01 8.6411267e-01 9.3311642e-01 9.0160114e-01 9.0698887e-01 8.5833256e-01 9.6902830e-01 9.5072298e-01 8.6808495e-01 9.7879599e-01 8.8060729e-01 8.2818573e-01 8.4366706e-01 8.4506700e-01 9.4532981e-01 9.1792306e-01 7.8917825e-01 9.8337805e-01 8.1751613e-01 9.3037855e-01 9.1618832e-01 8.6568874e-01 8.9751397e-01 8.7923710e-01 8.6814329e-01 9.0330164e-01 8.2426213e-01 9.4644643e-01 8.8431293e-01 8.8497426e-01 9.0633818e-01 9.5537161e-01 8.2167575e-01 8.7771053e-01 9.0681167e-01 8.7626143e-01 8.7463464e-01 9.8033940e-01 9.2920881e-01 9.5108549e-01 9.1287466e-01 8.0052218e-01 9.2409517e-01 8.8252650e-01 8.7873923e-01 9.2989402e-01 9.1985043e-01 9.6172646e-01 8.8223856e-01 9.4477822e-01 8.8310948e-01 9.4461306e-01 9.1875210e-01 9.1233363e-01 9.2124013e-01 9.5460897e-01 8.4640982e-01 9.0882657e-01 9.8169468e-01 9.7828355e-01 8.4150533e-01 8.6888923e-01 9.7138825e-01 8.7988144e-01 9.6720910e-01 8.9450147e-01 9.5331584e-01 8.8871809e-01 8.9736685e-01 8.6258146e-01 9.1331565e-01 9.0968870e-01 9.4833654e-01 9.0536967e-01 9.5099871e-01 8.0251958e-01 9.2526150e-01 9.8971957e-01 9.0340947e-01 9.4955892e-01 9.6838162e-01 8.7534901e-01 9.1178797e-01 9.2649154e-01 9.5260993e-01 9.3178143e-01 9.4943000e-01 8.7816171e-01 9.6506542e-01 8.3422958e-01 9.3443585e-01 9.3220084e-01 8.5706573e-01 8.4666325e-01 9.0474744e-01 9.1080644e-01 9.2406899e-01 8.7901768e-01 9.3265263e-01 9.5992829e-01 9.5696271e-01 9.1932272e-01 8.0937044e-01 9.0904917e-01 8.9516756e-01 9.4797906e-01 8.4159421e-01 9.6773901e-01 9.7099825e-01 9.6941820e-01 9.8174088e-01 9.7569951e-01 9.3655362e-01 8.4130333e-01 9.5994549e-01 8.4235414e-01 9.1429418e-01 9.3418117e-01 8.4600977e-01 8.8166496e-01 8.7594776e-01 8.8571112e-01 9.6308174e-01 9.5315927e-01 8.6997519e-01 8.9383032e-01 9.4686804e-01 9.4399596e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 3.2420590e+01 3.3246607e+01 3.0526910e+01 3.5166573e+01 3.1868301e+01 3.6025002e+01 3.2513623e+01 3.6557796e+01 3.3752212e+01 3.4422130e+01 3.2526018e+01 3.2581161e+01 3.3743555e+01 3.6960777e+01 3.4225270e+01 3.2965308e+01 3.4591031e+01 3.4204203e+01 3.4678123e+01 3.5728720e+01 3.0830047e+01 3.1550681e+01 3.3304790e+01 3.2676753e+01 3.2742330e+01 3.1684556e+01 3.2830915e+01 3.2956614e+01 2.7365639e+01 3.3207307e+01 3.3420925e+01 3.4357941e+01 2.8280126e+01 3.4523458e+01 3.2705274e+01 3.2455891e+01 3.1636060e+01 3.1594957e+01 3.1805202e+01 3.3886574e+01 3.3438829e+01 3.3330030e+01 3.4168514e+01 3.0637353e+01 4.2149167e+01 3.6340559e+01 2.9315308e+01 3.5778314e+01 3.7693050e+01 3.2598714e+01 3.2990836e+01 3.4967659e+01 3.9748920e+01 3.6745043e+01 2.7117550e+01 3.6014760e+01 2.9367558e+01 3.3845350e+01 3.5477339e+01 3.1513372e+01 3.2517953e+01 2.4755097e+01 3.0229897e+01 3.4799343e+01 3.3371710e+01 2.9600910e+01 3.3275088e+01 3.3567110e+01 3.4527016e+01 3.4942320e+01 3.2359383e+01 3.2607100e+01 3.1467914e+01 2.9032039e+01 3.3122878e+01 2.8496709e+01 2.9908448e+01 2.9962886e+01 3.0345299e+01 3.1737613e+01 2.8551485e+01 3.2610551e+01 3.3082660e+01 3.3719298e+01 3.6434018e+01 3.6589278e+01 3.3889586e+01 3.8036774e+01 3.1483497e+01 3.4196794e+01 3.5154035e+01 3.5488608e+01 3.6143183e+01 3.3473491e+01 3.4686446e+01 2.8687495e+01 3.5725742e+01 3.0188298e+01 3.3084534e+01 3.3538519e+01 3.6226849e+01 2.9052099e+01 3.6032733e+01 3.0811503e+01 3.2616190e+01 3.3888566e+01 3.3074570e+01 2.9683515e+01 3.0600771e+01 3.4345247e+01 3.6983843e+01 3.3692824e+01 3.3762461e+01 3.4024582e+01 3.3698854e+01 3.1238613e+01 3.4978833e+01 3.4991078e+01 3.4577741e+01 3.3749227e+01 3.4982272e+01 3.0487868e+01 3.2317632e+01 3.1125588e+01 3.4413791e+01 3.1881871e+01 3.1373821e+01 3.0416864e+01 3.2066187e+01 3.1128313e+01 3.0240249e+01 3.0125198e+01 3.1343454e+01 3.5479092e+01 3.4450767e+01 3.2953507e+01 3.4456795e+01 3.0136375e+01 3.3462150e+01 2.9894274e+01 3.1367432e+01 3.2839320e+01 3.1440398e+01 2.9400374e+01 3.1106338e+01 3.1242624e+01 3.5537892e+01 3.3056459e+01 2.8610281e+01 3.4296217e+01 3.5819772e+01 3.2503922e+01 3.0963029e+01 3.4762112e+01 3.4796284e+01 2.9645345e+01 3.4468088e+01 2.6975590e+01 3.3738555e+01 2.8825009e+01 3.2663999e+01 3.2547878e+01 3.2308091e+01 3.2489966e+01 3.0868597e+01 3.2974220e+01 3.0866111e+01 3.8197342e+01 3.0609568e+01 3.5478978e+01 2.9249184e+01 3.6185622e+01 3.1948258e+01 3.2649719e+01 3.3305650e+01 3.4643955e+01 3.6566241e+01 3.4968484e+01 3.2632218e+01 3.6741383e+01 3.5700008e+01 3.1962468e+01 3.1410623e+01 3.0412061e+01 3.3749077e+01 3.5649661e+01 3.7649263e+01 3.2832574e+01 3.1783914e+01 2.8264292e+01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 9.2507465e-01 9.6528566e-01 8.7255441e-01 1.1287379e+00 8.7318727e-01 1.0767102e+00 9.1419676e-01 1.1503304e+00 9.8074509e-01 1.0135025e+00 1.0495025e+00 9.4794536e-01 9.6829273e-01 1.1345767e+00 1.1048008e+00 9.2407796e-01 1.0228634e+00 9.3853195e-01 9.9377619e-01 1.0407662e+00 9.5048989e-01 9.0465688e-01 9.8056930e-01 8.9777156e-01 9.6357127e-01 9.3864452e-01 9.9754613e-01 9.7271356e-01 8.4383151e-01 9.6981983e-01 9.7510267e-01 1.0112663e+00 7.8730400e-01 1.0299498e+00 9.9307979e-01 9.0239520e-01 8.5428231e-01 8.8972742e-01 8.5933162e-01 9.6625934e-01 9.4175449e-01 9.9120729e-01 1.0503963e+00 8.8223053e-01 1.3261434e+00 1.1063209e+00 8.4058398e-01 1.0844267e+00 1.1153093e+00 1.0092643e+00 8.9585237e-01 1.0599818e+00 1.2321707e+00 1.1359624e+00 8.3503556e-01 1.1792243e+00 7.9159781e-01 1.0830419e+00 1.2181870e+00 9.9888500e-01 1.0227144e+00 6.8557277e-01 9.6836193e-01 1.1061227e+00 1.0883453e+00 9.5681974e-01 9.9436299e-01 1.0304323e+00 1.1273949e+00 1.0735563e+00 1.0582583e+00 9.6040272e-01 1.0032137e+00 8.4900547e-01 1.1035351e+00 8.7867480e-01 9.6433176e-01 9.1850122e-01 8.9337435e-01 1.0449390e+00 8.9639384e-01 9.6704971e-01 1.0084258e+00 1.0528587e+00 1.1764481e+00 1.0913280e+00 1.0136672e+00 1.2737156e+00 9.5130359e-01 1.0367909e+00 1.1983402e+00 1.1319901e+00 1.1117462e+00 1.0343695e+00 1.0838628e+00 7.5266057e-01 1.0763316e+00 8.8067924e-01 9.6734383e-01 9.8800551e-01 1.2265742e+00 7.8833055e-01 1.0338670e+00 8.6666625e-01 9.9039950e-01 9.7142684e-01 9.3138616e-01 8.5849977e-01 8.5486301e-01 1.0516028e+00 1.1105313e+00 9.5943505e-01 9.8845171e-01 1.0566288e+00 9.9712198e-01 9.5545756e-01 1.1817974e+00 9.9128482e-01 1.0117892e+00 1.0979115e+00 1.0493943e+00 9.1318848e-01 9.3157311e-01 8.7073304e-01 1.2459441e+00 9.3412689e-01 1.0482297e+00 9.4224032e-01 9.5134153e-01 9.0857493e-01 9.7264161e-01 8.2900820e-01 9.3140549e-01 1.1330242e+00 1.0333002e+00 1.0117861e+00 1.2053255e+00 8.5291396e-01 1.0148928e+00 8.6641379e-01 9.7080819e-01 9.5457159e-01 9.5207457e-01 9.3539674e-01 9.0769069e-01 9.5322590e-01 1.1181803e+00 9.9765614e-01 7.5370610e-01 1.0807114e+00 1.0804601e+00 9.0214124e-01 8.7101998e-01 1.0167435e+00 1.2045936e+00 8.7300539e-01 1.1054300e+00 7.9145574e-01 1.0279340e+00 8.7623462e-01 1.0034756e+00 1.0386933e+00 9.3910970e-01 1.0028455e+00 9.9868824e-01 9.8752945e-01 9.8319327e-01 1.3110209e+00 8.6180633e-01 1.0993856e+00 8.5912563e-01 1.1303979e+00 9.8690459e-01 9.6910090e-01 9.1456819e-01 1.1525339e+00 1.1064552e+00 1.1062255e+00 9.7226683e-01 1.1091447e+00 1.1072238e+00 9.6544444e-01 9.6681036e-01 9.3247685e-01 9.6854634e-01 1.1035119e+00 1.1317148e+00 9.5557793e-01 9.8908485e-01 7.4873648e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.5695885e-01 2.6882042e-01 2.3470353e-01 2.9299329e-01 2.2742702e-01 3.1253572e-01 2.4986352e-01 3.0770122e-01 2.5191977e-01 2.7931567e-01 2.8133743e-01 2.6316239e-01 2.6067201e-01 3.2982339e-01 2.8993002e-01 2.5506356e-01 2.8728051e-01 2.4952121e-01 2.8613379e-01 2.6894157e-01 2.3606353e-01 2.1670935e-01 2.3470242e-01 2.4294172e-01 2.4376454e-01 2.3228195e-01 2.3554918e-01 2.4851241e-01 2.0917546e-01 2.4971488e-01 2.4264224e-01 2.7405461e-01 1.9086415e-01 2.6346574e-01 2.5908801e-01 2.2138495e-01 2.2910721e-01 2.2169919e-01 2.0660065e-01 2.3207102e-01 2.5554688e-01 2.5153751e-01 2.6073682e-01 2.0919640e-01 3.3984433e-01 2.7503792e-01 2.1709889e-01 2.7068095e-01 3.0307041e-01 2.4529612e-01 2.2987015e-01 2.7736967e-01 3.0310708e-01 3.0544316e-01 1.9205388e-01 2.7098021e-01 2.0722466e-01 2.6387343e-01 2.8998308e-01 2.2633010e-01 2.5177075e-01 1.6347011e-01 2.4036389e-01 2.6485871e-01 2.8491965e-01 2.2273619e-01 2.4511873e-01 2.5930533e-01 2.6589995e-01 2.7797191e-01 2.3357373e-01 2.4279909e-01 2.3544532e-01 1.9447286e-01 2.3993534e-01 2.0856243e-01 2.2125251e-01 2.1988206e-01 2.0590152e-01 2.6441952e-01 2.0052739e-01 2.2978496e-01 2.4483670e-01 2.3879510e-01 2.9398425e-01 2.7541852e-01 2.3777469e-01 2.9151131e-01 2.0672752e-01 2.4584031e-01 2.7475025e-01 2.7064343e-01 2.5603684e-01 2.6165327e-01 2.4233155e-01 1.7892657e-01 2.6111203e-01 1.9965682e-01 2.4201634e-01 2.6281353e-01 3.1928221e-01 1.9731963e-01 2.7752862e-01 2.2633080e-01 2.6783167e-01 2.5447186e-01 2.6424243e-01 2.1960672e-01 2.2984242e-01 2.8788736e-01 2.8681630e-01 2.6949787e-01 2.3993685e-01 2.4440073e-01 2.5010397e-01 2.3230769e-01 2.9879682e-01 2.4200592e-01 2.6957748e-01 2.6073240e-01 2.6355347e-01 2.3403674e-01 2.2411413e-01 2.2956729e-01 2.8105976e-01 2.2913304e-01 2.4898608e-01 2.3304000e-01 2.2692988e-01 2.3728251e-01 2.2552243e-01 2.0364084e-01 2.3359511e-01 2.6619167e-01 2.6666588e-01 2.3666880e-01 2.7239113e-01 2.0146697e-01 2.3045559e-01 2.1695523e-01 2.1387991e-01 2.2366404e-01 2.2809635e-01 2.0901297e-01 2.2441100e-01 2.3418882e-01 2.8552218e-01 2.4609015e-01 2.0282492e-01 2.5940295e-01 2.7407006e-01 2.3344890e-01 2.1179142e-01 2.7047821e-01 2.9832768e-01 2.0859082e-01 2.8881331e-01 1.8384598e-01 2.5286491e-01 2.2012615e-01 2.3615775e-01 2.6845565e-01 2.3356355e-01 2.7164193e-01 2.4179380e-01 2.5247973e-01 2.5637548e-01 3.2126483e-01 2.3100774e-01 2.8832546e-01 2.0043257e-01 2.7918333e-01 2.4884522e-01 2.2904723e-01 2.3738940e-01 2.9461278e-01 2.9782005e-01 3.0332073e-01 2.5175971e-01 3.1203784e-01 2.6611535e-01 2.3713507e-01 2.2203585e-01 2.3602325e-01 2.5093670e-01 2.6860434e-01 3.0137874e-01 2.3759606e-01 2.6840346e-01 1.9200556e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-double-inp.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 8.278938049410748956e-01 9.035293984476246987e-01 1.862188994679486731e-01 8.921151312310462433e-01 2.061859119379583216e-02 3.440636727385729676e-01 1.533779912830328662e-01 5.701372300009802663e-01 5.510020730211558915e-01 1.792362258426003496e-01 8.086175120876580857e-01 6.115487184317183189e-01 1.233471787164852618e-02 1.441643531871039663e-03 4.044309209045688913e-01 3.561398959499905148e-01 1.281985712929750720e-01 8.663300833847481508e-01 8.696027786291581352e-01 3.611727370363766454e-01 5.283537658772616830e-01 1.440241088090119526e-01 3.112457227138950566e-01 6.031280796897889873e-01 9.230324792742518047e-01 2.332121881136874908e-01 3.192652267403439659e-02 3.466206294995559656e-01 2.988687728046366399e-01 5.116749542048093513e-02 2.584975830914494344e-01 4.302023478042227289e-01 8.003972751713522849e-01 9.364931911368097328e-01 9.737098649964673891e-01 4.718038453972229762e-01 4.526591686607864817e-01 1.056485678520797666e-01 5.883019714285405710e-01 3.846092237676981274e-01 6.461500053435473845e-01 1.013239729848824933e-01 1.216151561651189761e-01 5.159668929484659827e-01 8.452074473510227115e-01 9.885170962247968873e-01 7.623883073490128615e-01 2.291163243615434997e-02 5.775530980802381364e-01 7.820699896828091635e-01 8.239186345842965942e-01 3.391800105260227571e-01 9.546318451614538292e-01 3.789677917867695367e-01 4.526533399649290690e-02 8.366786473238587707e-01 3.082636811049858094e-01 1.173936820793450853e-01 7.631994969169442200e-02 2.997416650722183329e-01 5.795208655160232203e-01 3.942350892542011431e-01 1.175126383297261379e-01 4.928232513950027149e-01 9.421293996225950096e-01 8.365391053841342295e-02 6.868059693571844093e-01 3.589527962429440722e-01 7.592939427166059962e-01 5.623849466131448649e-01 2.110746828032050715e-01 9.824683704668600859e-01 2.661230142246236996e-01 6.162272315007123469e-01 5.023254536607497656e-01 5.202854476669782624e-02 5.835090668842095596e-01 7.864642118889143552e-01 2.504012386867506823e-01 6.728308641135989365e-01 4.610793534576096420e-01 4.820508770515909980e-01 9.720403251022265989e-01 3.100069285263498120e-01 7.681017126461753275e-01 7.956539306007082146e-02 2.593389637887737464e-01 1.137852590403054531e-01 3.885303073284454012e-01 8.599094660075957686e-01 5.215167875918280682e-02 1.620908248572288102e-01 1.859236090457663249e-01 6.247716512610480555e-01 3.415128495520775020e-01 7.034903368378029320e-01 6.037564640019568163e-01 2.338969434423310290e-01 1.002104885609900187e-02 7.866058403969036217e-01
2
+ 8.033694116033356369e-01 8.653264545544031572e-01 7.468340410754038539e-01 6.362430919910603278e-01 5.120006306625468628e-02 9.503348372633585450e-01 4.697732609626817935e-01 4.221305288459429317e-01 3.153452119838391354e-01 2.991014843442657556e-01 1.190667967280257811e-01 3.486567714509342109e-01 8.289493649885054660e-01 8.454811050800014049e-01 9.149673018211901265e-01 7.708707837193897738e-01 2.640157732122547785e-01 2.107897022189605396e-01 4.207633055054439408e-01 6.719500284654699174e-01 1.458031684893063007e-01 1.800412735886125493e-02 8.402733435220011149e-02 4.206760156883160295e-02 1.376933515041314227e-01 1.716717341022133692e-01 1.788220727652158892e-01 8.224310433402118869e-01 7.729093666867475898e-01 2.064223621025984556e-01 9.592092036227207741e-01 8.312490243754996344e-01 6.673289360369902834e-01 4.632847903690773261e-02 7.643954098358983762e-01 9.359341525615098023e-01 1.914966319163026176e-01 4.536590469402868031e-01 8.640836016538007147e-01 3.941529178175462444e-02 5.602101995205478469e-01 9.263806161941660067e-01 1.555995325944817820e-01 6.172208102950116348e-01 6.335576752812099866e-01 9.766975460368043649e-02 4.475795689539874278e-02 3.248842796104995934e-01 5.700377122149502540e-01 9.066962967256807504e-01 5.458460621505676347e-01 6.833401285581487405e-01 2.887244409544044155e-01 1.316338647016834784e-01 2.325673305245992140e-01 4.150121963188406760e-01 3.834845466366055833e-01 8.149365773968725302e-01 1.867003849450201702e-01 3.170322173543018707e-01 6.832093662682684476e-01 1.729728518929105618e-01 9.236557359702636250e-01 9.152941252150086360e-01 7.224879983096620384e-01 8.557920626598064517e-01 5.344883059251644974e-01 4.876873274449112783e-01 8.308277804506420949e-01 3.916624489322212410e-01 3.459695122273966916e-01 4.033512499027409604e-01 6.555726444913008155e-01 7.138452409380238173e-01 1.683937314599968094e-01 1.769382143486440961e-01 7.588683655178136700e-01 3.750589892880819010e-01 7.525176245126207197e-01 6.083961152538303052e-01 1.145972309907993258e-01 6.239614485809552580e-01 1.307655482065895880e-01 8.530458750670916190e-01 4.801602070124768584e-01 8.168122189863546989e-02 3.793139622744635675e-01 1.496986997776840189e-01 7.129023878302899186e-01 6.830979237438047358e-01 7.635375943876505644e-01 1.824004963251233402e-01 5.764695848992339444e-01 8.865113248731604223e-01 5.784337085544002388e-01 9.700026628755119562e-01 7.318207347905059112e-01 3.851401393936705331e-01 1.774291851193399161e-01 9.763423229242296220e-01
3
+ 9.287178470949695175e-01 1.748282433617460718e-01 9.238531711586964734e-01 8.291274445125006443e-01 9.513259272578692416e-01 7.486316801165745494e-01 6.257378457524477300e-01 2.062711693536473101e-01 3.970721244184766130e-01 2.738325225026445597e-01 8.735038948299954642e-01 5.415282140033768066e-01 5.176317904298315398e-01 5.347036264518250093e-01 7.482056965410627258e-01 4.140672582824351800e-01 8.709067272363142376e-01 9.499605569181273079e-01 5.380266748336398619e-01 4.369252161707162241e-01 8.235722216228258397e-03 4.308187193646527691e-01 6.030581482859224129e-01 7.316831195156517920e-01 5.540499846834291420e-01 2.044203040111662872e-01 8.645251782981867583e-01 1.816095717570278545e-01 9.639119168018674966e-01 3.572031072322333634e-01 5.580226816834680248e-01 5.586629875016585478e-01 7.213854320902782780e-01 8.513998260042524580e-01 6.308764347277173723e-02 4.299855362100638567e-01 8.789303907444128150e-01 9.178850359236285783e-01 2.275205845091231582e-01 1.899395443939643213e-01 7.103070862773533944e-01 9.450015289553428399e-01 1.691856364522159595e-01 7.368719616877857925e-01 9.600189536623833231e-01 5.128846522932454244e-01 6.209162727118655578e-02 7.992250598838029907e-01 9.141050280518014937e-01 1.471297785256820978e-01 7.466162372930541524e-01 4.656107650642931084e-01 6.399324135161845728e-01 2.023617619481610230e-01 1.019104648900100996e-01 4.390693688536728700e-02 9.822620353006089600e-01 2.881951852926285529e-01 6.191575015960482098e-02 8.989580763251467932e-01 4.635958631890454429e-01 1.781973138114967270e-02 7.906911683818984571e-02 6.525270776225711167e-02 3.620583622807886925e-01 2.651673718940715796e-01 5.829372395929610651e-01 2.118159824373908595e-01 5.900287159143694504e-01 9.405929925178391215e-01 9.262415619063500971e-01 5.639581506302312475e-01 4.529556154689695635e-02 2.873819210518682166e-01 5.718545934306838996e-01 9.877670791317306742e-01 4.120364488714320927e-01 9.896078045634184583e-01 3.796586997026456523e-01 1.178183652203194098e-01 6.641068305236120795e-01 4.045960610587706618e-03 2.262690437428437340e-01 7.839938005832693957e-01 7.695391333937223743e-01 3.713918392552509884e-01 4.245533341514018399e-01 1.475072494020331915e-01 6.011975181419888514e-01 5.158174017998343741e-01 1.788706151398071764e-01 8.880707130134481986e-01 6.463351030474082659e-01 6.499920635615744624e-01 8.570273676455353318e-01 6.055019270899113515e-01 2.123561211054603159e-02 2.027688787664126968e-01 1.930834215328548487e-01 5.131906052747271518e-01
4
+ 2.599990881903107010e-01 6.767857524909899336e-01 7.188217446352963558e-01 3.037178903357997672e-01 4.252381412838680541e-01 4.070924411439535984e-02 8.426710493038247485e-02 8.301517457289483426e-01 8.254603255702420705e-01 7.258533909453509514e-01 9.958706809470796451e-01 1.323408451651194584e-01 8.523995455245143571e-01 2.572405385832454705e-02 4.715363690065482727e-01 7.920130365690022378e-01 7.613745641534582775e-01 5.108305991695683002e-01 7.908714335912382376e-01 4.641131983754837043e-01 3.112627109831845873e-01 4.218013908715474436e-01 3.291577909008427394e-01 2.538715054071232213e-01 1.362470842487485401e-01 2.716429790290709745e-01 1.485325814161112534e-01 4.514539027544387517e-01 6.900835128673067365e-01 7.793407072946112457e-02 5.938024345270752624e-01 1.497853829906865553e-01 5.399567982652856424e-01 1.419209916759478496e-03 7.719776132867679497e-01 3.130795105576239523e-01 6.670071611167494030e-01 8.900596881158256979e-01 8.011158503301568645e-01 7.089295605187424520e-01 4.671116382997058114e-01 6.682965170673403899e-01 6.524835265739736823e-02 5.454288420771494783e-01 7.751910790556310049e-01 8.192595541387335256e-01 3.098855848167891835e-01 3.689971355659119601e-01 8.666507475054133769e-01 2.749042684253171220e-01 3.566565602478318775e-01 4.838173174723044978e-01 1.032975933616413489e-01 5.063065339610417492e-02 5.791168455729079900e-01 3.573337411289496668e-01 6.714098909652352898e-01 2.917057662433912846e-01 2.654964332620638467e-01 7.171804039048814694e-01 3.314488637898249657e-01 5.230399837442840649e-01 6.866534136026025692e-02 1.252966394621071178e-01 5.349397882659551184e-01 2.841423847455760709e-01 4.158473635710734362e-01 7.197062989831272128e-01 5.123869045047864113e-01 8.675622821594339840e-01 8.097441845042540054e-01 7.317178252133832439e-01 3.300847596465853462e-01 5.922311859141077273e-01 8.852619511417836318e-02 2.673412917259408994e-01 6.878259052441990651e-01 3.223000927116328462e-01 8.859387123976615319e-01 5.722722388300067742e-01 8.254877606669521750e-01 5.705299682290687624e-01 7.046478734972855262e-01 1.316324413616759559e-01 3.056358395675535800e-01 2.396516834600909140e-01 2.041201422493257311e-01 1.610755140653103989e-01 1.617012564641111538e-01 4.449920510036902144e-01 2.731012972755201274e-01 7.826874666257994662e-01 5.193612375350010746e-01 8.688804522977213729e-01 3.742157602758655610e-02 6.649628920608219307e-01 5.978149424619171315e-01 5.345645500553952711e-01 9.443202650415919441e-01 6.105837075491723498e-01
5
+ 6.387761328141735584e-01 4.210087412162694109e-01 3.777306694964789324e-01 3.576349403292201634e-01 7.272699618880260619e-01 9.173392803607671731e-02 1.212535698300880593e-01 3.871229381194544183e-01 7.735150198351389284e-01 4.687200483013695962e-01 5.161778571874678923e-01 9.839646447226980674e-01 8.626932748911960713e-01 9.618485576577924245e-01 2.997996427525421170e-01 3.955404657388794654e-01 8.480126027102616870e-01 8.194992325050480808e-01 2.800213436873294492e-01 7.188391466620779324e-01 2.289766105875049584e-01 3.838547514028287644e-01 1.363553401061209369e-01 2.131328253542326134e-01 2.666779468144075960e-02 3.252883844200405994e-01 4.207860197469600605e-01 2.991365385037647595e-01 9.180779845534067229e-01 8.787338732192649937e-01 5.404510999105649471e-01 1.735493827761729335e-01 7.405224640747264386e-01 3.927355563629583157e-01 3.957109873399460298e-01 1.313029813325972128e-01 6.434498219738993274e-01 7.162213694578050127e-01 6.454998257494671821e-01 3.808124530008022424e-01 2.027201015737234435e-01 6.667632842770417900e-01 1.609491052365198405e-01 1.192413785409307536e-02 4.546773323526854815e-01 7.733541911050207940e-01 3.902525737195561284e-01 4.006023779897505133e-01 5.156517815815246930e-01 6.135685498584592112e-01 7.062153114980724844e-01 5.505858882117883324e-01 3.541308807182554919e-01 5.237151122342533771e-01 5.230649229131387745e-01 1.973541027697351957e-01 7.940327858595511712e-01 9.998588700623055603e-01 3.878271015153827994e-01 4.455006584967207139e-01 8.376414508056347907e-01 3.310833863524501597e-01 8.020469097392601832e-01 1.890327633084128989e-01 3.830289472395409511e-01 8.605040171046141051e-02 9.978185524023941433e-01 8.333890591892906263e-01 4.509013468741837061e-01 6.355778557686052599e-01 1.422515991097305088e-01 9.549891485963732940e-01 7.535776302868563148e-01 9.306005301880662106e-01 2.444330347211679522e-01 5.828218427569508142e-01 1.261938242968304591e-01 2.829188731405173352e-01 8.100246952078660190e-01 2.032739130996042975e-01 3.997268448390065565e-01 3.882777703107541667e-01 1.102505652624736765e-01 5.826634725328041498e-01 6.508734477956333864e-01 1.777287661702166011e-01 4.857051012052149286e-02 6.850537712379254351e-01 5.012281307761055071e-01 3.329154880061502286e-01 5.006261767216675374e-01 4.542081454976160115e-01 6.777801995399822532e-01 4.271303586474960445e-01 7.820470659692947413e-01 5.143462618485082904e-01 4.071273891563575997e-02 8.503383643856671226e-01 6.877485768345151795e-01 6.498843855014626580e-01
6
+ 5.539512747016193117e-01 6.329206647391879548e-01 2.798533500321682688e-01 4.825977295850051307e-01 7.625297023172977751e-01 9.081309101427640362e-01 4.124792086535029600e-01 3.647019658319609059e-01 7.529595202332928228e-02 3.072404010876803593e-01 7.890673660964639957e-01 4.079781478915127657e-01 1.440519120695739064e-01 2.538968953804546791e-01 1.595028243568367143e-01 9.066545851872198636e-02 6.367601114674349416e-01 7.622263643880089479e-02 3.015728236404162654e-01 2.424070469873378375e-01 5.711440390241000475e-01 5.717001375511508998e-01 2.237853674032181939e-01 7.112101625753678436e-01 4.321054197012103026e-01 2.505322169010260058e-02 5.877307077139551916e-01 4.415771174397812304e-01 3.766022855145171322e-01 9.803490652619811785e-01 1.229258314111529860e-01 8.108351868714478439e-01 8.558595456964329662e-01 2.168217533833206589e-01 2.034022719386595623e-01 8.687457137579783772e-01 9.013327195854559104e-01 8.156766512673154779e-01 2.717576187546973943e-01 1.756417893371479133e-01 7.555856977566548505e-01 6.708809351312817748e-01 8.998789237886926085e-01 1.936367585946979775e-01 7.949724635465026390e-01 3.164799312763589834e-01 5.493048513173155456e-01 1.608917269168268493e-01 3.048667492191803330e-01 5.599401537727016764e-01 5.779501360842279611e-01 1.296714605309662316e-01 9.160752328055997706e-01 8.058674476110374574e-01 4.385508937505578908e-01 9.212419718012100356e-01 2.249887451242467140e-01 6.283927745352599903e-01 3.778992451536005159e-01 3.571958698867505611e-03 7.276526470528231760e-01 9.051678673805297892e-01 8.465837072484881931e-01 4.548317505393462135e-02 3.189318261926020748e-01 4.446388607398673587e-01 4.292356336344156365e-01 4.203980977718795309e-01 4.698059253071955599e-01 6.151991200848159203e-01 8.479986139404802614e-01 9.870993262459623052e-01 3.164206525899861955e-01 6.464672171639846976e-01 8.508781429592480183e-01 4.733667503354813677e-01 8.076014176740163863e-01 6.671443255679101458e-01 6.639213267047979761e-01 3.681688930741919830e-01 4.679870252651611162e-01 1.790041740686979521e-01 8.446070273663058847e-01 3.350737544979878191e-01 6.600272349677447359e-01 4.356083218487936115e-01 7.995134167346013010e-01 9.083660261041469619e-01 9.743975306734570241e-01 8.144839650654719376e-01 6.865011984586443239e-01 1.709747281999153268e-01 8.534933687161740945e-01 9.494753729726415070e-01 8.140124992294850426e-01 8.936241255316055287e-01 9.087976860818796077e-01 9.030687493451383663e-02 4.025785149840914734e-01 9.592005611533803711e-01
7
+ 5.714058727476275523e-01 7.913573761505965365e-02 9.301773447377043036e-01 4.302822433307075256e-01 4.618892554175407783e-01 1.882471300213742760e-01 6.231472878215863487e-01 2.350437450940777717e-01 8.483410480771292894e-01 8.580803842040533036e-01 4.246398783388435350e-01 5.667321565946502604e-01 7.247417018955526480e-02 5.373984417482219333e-01 8.794242091541510931e-01 9.699025554453030162e-01 8.254197752548814160e-01 7.739723972867470492e-01 6.365819416181199841e-01 3.451230687021222820e-02 1.829102490094791644e-02 9.179618383026147965e-01 4.481667270072077214e-01 4.771270250445739380e-01 1.588469404953456454e-01 3.766332499200618633e-01 5.057026248713025751e-02 9.125900914275182352e-01 8.438133644246305076e-01 3.282972411719701222e-01 6.042003956122835584e-01 7.423456085393266290e-01 1.389012737541106546e-02 3.674754266702850991e-02 2.126646727703802586e-01 3.085666164246750887e-01 4.303440338750976757e-01 1.749037978865556342e-01 2.177699993322510519e-01 6.675614739991906355e-01 1.926533336347433512e-01 8.032010572660308600e-01 4.611412981769049679e-01 9.907201268457492827e-01 8.973785930837320235e-01 6.286342392657409128e-01 8.111266245859546364e-01 1.154230969025437092e-01 8.382880466301794176e-01 1.053753927827069115e-01 9.921712862234919328e-01 9.041662667920956631e-01 3.626267376021269362e-01 2.262225368932846425e-02 8.669003741626111204e-01 7.597054897704164089e-01 4.700318514995387442e-01 4.338185014241978665e-01 1.205425463362067573e-01 2.413879270602589111e-01 5.483334840461459025e-01 2.042653841254596925e-01 5.452588940366013270e-01 3.164646091706100339e-01 1.878958248945691301e-01 2.188622304737641855e-01 2.970982599823450698e-01 5.952148400199362976e-01 9.614251220149501176e-01 5.446813400697393392e-01 5.900748097930779146e-01 2.653062526715309621e-01 5.459933097767216692e-01 3.174185404661935550e-01 1.412133354129242457e-01 1.487441669790685594e-01 3.953776242211952674e-01 5.274261039692862418e-01 1.756132307607755072e-01 4.481942852746899630e-01 6.390660088765629521e-01 2.860380430081067571e-01 5.866902519902850166e-03 3.026687645174785946e-02 1.952533570196290924e-01 2.154769096186736066e-01 8.920573593276575064e-01 5.644513191915436767e-01 5.551464696654353492e-01 4.378199413349500579e-01 8.685737643974280608e-01 7.493934764293597173e-02 9.556749726352036234e-01 6.386433482536227890e-01 8.714694524097754691e-02 1.722786161701279628e-01 6.526867532768643176e-01 8.950304705281527662e-01 6.158198776753203152e-01 9.587176904005377809e-01
8
+ 7.705718397401561948e-01 3.165816092999733655e-01 4.334200859975760878e-01 8.639807015515663657e-01 5.576514209532534849e-03 2.456745447057938625e-01 1.664686313299922338e-01 9.637084729617834133e-01 1.083448720752323569e-01 1.865218070380464388e-01 3.730358890475884426e-01 5.015351872138350542e-01 7.420710795841709562e-01 4.919420674769692248e-01 3.426558201886464872e-02 8.669984854934246199e-01 2.204243734202966376e-01 4.109792246853891662e-01 4.361732572946559472e-01 6.819306998053020763e-02 9.986304248057148447e-01 4.119289455392274313e-01 8.533050041845835487e-01 3.416914861912183632e-01 6.522191951039880697e-01 4.162803668786793088e-01 9.051674379917418189e-02 4.552378661306888397e-02 2.122677193466918633e-01 7.461518531655018105e-01 4.654688019259497489e-01 7.877564083548750373e-01 4.518328005682387127e-01 7.173857464237374248e-01 6.940056370290903498e-02 2.804574410412373764e-01 6.095681113112718652e-01 3.680596478602831123e-01 1.814569150719304025e-01 6.505055517979729807e-01 2.759585245701871026e-01 1.429501104786028431e-01 7.813891153083207808e-02 8.925314279991185540e-01 6.692056941902108091e-01 1.915141341107173822e-01 5.750233129581091562e-01 2.051961006251528108e-01 3.849013692629975614e-01 9.503788222043518807e-01 7.690419386411734282e-01 9.978147530014782607e-01 1.719584162437415298e-01 4.890758882401113894e-01 7.195660736040896399e-01 2.485818040997200828e-01 9.706486601870933928e-01 5.182604282071262558e-01 8.082072245463804983e-01 4.889961284821118248e-01 8.042893959057633158e-01 3.200685313413229593e-01 8.983245016887355661e-01 2.811495336955205371e-01 3.986095833814048417e-01 8.607229214132059436e-01 4.827620119717191960e-01 6.715610252037491623e-01 9.330824374137768329e-01 7.537710530085762750e-01 9.840804224010484269e-01 2.319352541177217564e-01 9.569114943157627229e-01 5.821928104654411351e-01 6.700479524814679788e-01 5.663434680086896211e-01 8.851091082101365526e-01 6.800562815862243315e-01 3.578475213752868589e-01 2.900164669281133367e-01 8.379170683569914235e-02 9.929972839740475177e-02 5.946248553621906741e-01 1.991332889320840405e-01 8.115065723822508792e-01 2.023388190440008616e-01 4.056545651129230823e-01 2.966825350250481552e-01 7.457176343507545546e-01 9.856015771246517954e-01 2.264338016147812160e-01 8.366528670045663141e-01 6.116829813603242849e-01 2.605933184296719274e-01 5.765962146558850643e-01 5.064075092266390188e-01 5.499615769589756287e-01 9.240234698632640020e-01 7.169900155229913530e-02 3.544181364560751168e-01
9
+ 8.154844535553099627e-01 4.797965609394789777e-01 7.476703385713100447e-01 9.086708404761600910e-01 3.191752505450355937e-01 7.611128630021511965e-01 6.246790343299296611e-01 1.942001426217137006e-01 2.789860414631386565e-01 3.236359785042408621e-02 3.178191288741717413e-01 8.372264298357038337e-01 8.872692914664047636e-01 9.589758852077276963e-01 3.123722260380168425e-01 8.980164015338999439e-01 7.260784140459818348e-01 6.567013512265649222e-01 1.028743505926521529e-01 6.821705410750319443e-01 6.889838995316139858e-01 5.587525493094736007e-02 6.921487028366646310e-01 3.616312929861494885e-01 1.673758008792780583e-01 6.626504595920326146e-01 9.125680913222075086e-01 1.424077784972291871e-01 6.508496429060767197e-01 6.615417385775157477e-01 9.654167310675311198e-01 5.536662974550183858e-01 7.092622144968085962e-03 6.694595400455760625e-01 1.828533619119211417e-01 3.421514408394116247e-01 1.242580151818144518e-01 9.888774797458224075e-01 9.777955172739735135e-01 4.271370765628749178e-01 1.211608384809655936e-01 1.580132417172936954e-01 3.242705395708289640e-01 3.268994391754735940e-01 5.213767653645562383e-03 4.475169480357120699e-01 9.593245219293577986e-01 6.994304536782350867e-01 7.063863152769014331e-01 8.381620829497931080e-01 2.760441799736219615e-01 3.755200946645842475e-01 3.627729621737311172e-01 9.518310606719182498e-01 3.577273025276901386e-01 3.991159901003488164e-01 4.187060513068554535e-01 7.422605403637314581e-01 6.697944269780702342e-01 6.020599837037767799e-01 1.571185850817550245e-01 7.519860911185742847e-01 6.635775704496444938e-01 9.487848173531471252e-01 7.900030232338028924e-01 4.143783957270819052e-01 5.618429740858444932e-01 3.737804619062014000e-01 6.179941187802344693e-01 6.553638605616040058e-01 1.009709416658691739e-01 4.935037098582963910e-01 5.485489972455533936e-01 1.024147956480448984e-01 1.195764707555347917e-01 4.910516327810896531e-01 3.551185778630389089e-01 3.857601645798814927e-01 2.074975219600547760e-01 2.084038664460790002e-01 5.268616653491025037e-01 6.948014877618717833e-01 6.179744044618615817e-01 7.063658085955483168e-01 7.925757227686872630e-01 6.199016959584816577e-01 1.163676037434490107e-01 7.425752264755586252e-01 5.403115665133301215e-01 2.546191951391015840e-01 6.961300925345208501e-01 4.003013072125547467e-01 5.906120962720950995e-02 5.879915846330325824e-01 1.213602408288709800e-01 3.801780679842765576e-01 1.731477742402802722e-01 4.624568816669496485e-01 3.304453744619206823e-01 8.810445876116090869e-02
10
+ 5.140190515373614932e-01 1.419225260054487459e-01 7.777845802285945354e-01 3.327562899409282071e-01 8.916875699762913943e-01 7.212852862736146564e-01 5.727327199433507321e-01 5.897820225918504189e-01 7.318614954542906892e-01 7.393985144455500480e-01 4.531340740296823100e-01 9.903061584426188224e-01 4.213350938331624773e-01 4.542342471963995987e-01 9.788786426453045530e-01 1.881707000343846303e-02 8.005433413647761176e-01 1.523502822273363755e-01 5.630164732287495921e-01 5.946603842470724599e-01 1.225547698678740582e-01 1.531136594724622491e-01 8.157973612638946825e-02 2.752046015644330490e-01 6.809045821946161370e-01 6.455289724528190387e-01 3.830356726830793646e-01 4.446144649678575034e-01 4.969038423960672191e-01 5.497873820641221432e-01 9.471879627821714331e-01 5.933046675329255448e-01 4.099233758501530378e-02 5.790409810134594659e-01 9.546095885251496549e-01 2.608616052375664074e-01 6.910160339170060562e-01 1.293709850476291168e-01 6.407264616302255078e-03 6.186037089828009261e-01 5.537861302543241049e-01 3.527421038298221845e-01 8.033232052121624944e-01 8.128114152830284711e-01 8.319982582278713235e-01 5.939566376046836460e-01 2.291090283499520597e-01 5.438101817725821130e-01 6.881146379117278888e-01 2.421968586304659166e-01 5.874047918543783275e-01 6.210102709484541794e-01 7.041387566450251212e-01 6.959223476278774134e-01 9.133877300988062498e-01 9.230647706207778525e-01 6.856884219815310155e-01 6.997988808693775820e-01 6.177944932528769417e-01 5.512902545683161515e-01 5.818280341729102911e-01 6.538267999985679646e-01 6.946673485935980219e-01 4.817938258357623571e-02 9.352008817207906333e-01 4.774162142215661042e-01 5.768063588692976529e-01 4.589648891483899540e-02 7.998946815651652997e-01 4.434260476954369201e-01 9.850053510925722566e-01 6.648626681529369309e-01 4.606293826856903140e-01 3.309042418210563774e-01 1.438901922508034614e-01 7.986559119276418484e-01 7.037818421334554042e-01 3.605119534240813772e-01 3.785959549258922641e-01 9.562491516841659100e-01 4.997955143590974147e-01 1.029540300938682762e-01 1.819017177001992502e-01 3.665425750262368831e-01 1.688063588370778412e-01 7.030735208313992901e-01 8.922375654244527610e-01 1.055706412056253152e-01 2.664739907746691561e-01 9.906029568647586325e-01 6.043845090140997911e-03 3.495786295043534775e-01 5.989441999519146131e-01 6.776147193866479679e-01 7.012991789852640601e-01 1.825838783477321536e-01 7.612293578749116385e-01 1.564769891240175292e-01 2.762157292905387251e-01 7.641900040015234818e-01
11
+ 4.746013333880729768e-01 7.609202966712714788e-01 2.537820854162747830e-01 1.709362234877408460e-01 1.886635378734374813e-01 2.439567014093724229e-02 7.640304718272151741e-01 3.483216170435471382e-01 7.744289278738043514e-01 4.190437573644867353e-01 5.319091476394965934e-02 8.580130976087452233e-01 6.259446446786639529e-01 8.793213970773006150e-01 2.441023074890465994e-01 7.753405549489799098e-01 8.760187573193888300e-01 5.946480724009295393e-02 2.873093046571124631e-01 8.710837851946537924e-01 9.103181731924696596e-01 6.534637257615111272e-01 4.128420398577182793e-01 4.905858108576378607e-01 6.178275806701372108e-02 6.368043900016381320e-01 2.865296941219959148e-01 6.371773028539067241e-01 4.924322796636745325e-01 1.709313290387282080e-01 1.856892551689268700e-01 9.592782603102242289e-01 5.402593764193130976e-02 7.287312244390512506e-01 5.679467572000697073e-01 6.255587794305905724e-02 3.069660218141317953e-01 1.089960430557104232e-01 5.550748245336984965e-01 2.555948886689661803e-01 4.140925514039996980e-01 1.180376445052062628e-01 8.832322629884041820e-01 7.784546946701487169e-02 3.177678935473182698e-01 6.681804863429485764e-02 7.047099396645268854e-01 4.133897376851528582e-01 5.600656990480865627e-01 3.883995683475501837e-01 4.459430113152932362e-01 4.214077227574740681e-01 4.763369230200156235e-01 2.701480661168440545e-01 4.296286564389811824e-01 9.601402258758658936e-01 6.326999441846863359e-01 2.442086919688498670e-01 8.407708423957936938e-01 3.626867985638081437e-01 3.641441713291436733e-01 7.932397565989488530e-01 8.902073520619256941e-01 1.929173010337000838e-01 7.309376779324568973e-01 7.305852858337777977e-01 6.510197444582447313e-01 9.512661608643838695e-01 8.461467164366111016e-01 9.245490147941206605e-01 2.658844813385705663e-01 9.538758859344749208e-01 8.215517204998477041e-01 8.217795540390903097e-01 7.569662091300560780e-01 6.262685322871274218e-01 5.597770510574888725e-01 8.155720175123675197e-01 8.545688745180864965e-01 8.986051518529034610e-01 2.477911506572628708e-01 8.462580108996445860e-01 6.065941220995090255e-01 6.500490804973033665e-01 1.120463882674053169e-01 9.299049132942927010e-02 1.388364074229719858e-02 5.901199124540731367e-01 2.795110110544174464e-02 1.644097083463245124e-01 5.341029647603202646e-01 5.276816677181681570e-01 5.439849107754858304e-01 5.371677986392331405e-02 4.515163125788429488e-01 5.036243367087100964e-01 5.721818679625961801e-01 5.271368612400184617e-03 7.720961020546839304e-01 9.015383457479009266e-01
12
+ 8.301526916287945701e-01 8.704609696144033348e-01 2.955689129581380303e-01 1.762209253489944727e-01 2.698172933050072553e-01 1.138095349991521399e-01 4.092588531860634760e-01 8.202978121681584467e-01 2.822241377079557356e-01 6.117376205659387223e-01 7.169923068016897938e-01 9.310256256264415331e-02 3.989664052931106708e-01 1.651874953308862803e-02 7.890202597932294282e-02 9.068686774810821305e-01 5.203866694486933842e-01 4.297748572844445336e-01 5.208786995443430712e-01 2.163224881365530816e-01 7.274307306357226111e-01 1.675784956180090823e-01 5.969822786565782691e-01 8.959750832846602453e-02 1.253794151891943764e-01 5.352628522116801291e-01 2.562706125890066300e-01 6.030433202137867044e-01 8.330717547440393833e-01 9.603613683422040914e-02 7.569714244468559450e-01 3.184801677796517128e-01 1.667069341164499896e-01 3.132470247801235619e-01 6.417752836394801097e-01 6.433909425912354152e-02 4.056860213146201710e-01 3.166772891331335327e-01 9.574059746098845247e-01 1.492907964460536974e-01 8.311513764927496162e-01 6.652928354977717396e-01 2.396804722185036374e-01 5.812361618600220270e-01 9.724228681350225445e-01 2.853983236378453414e-01 5.337719354896472979e-01 6.779446197712412081e-01 5.485102006140557540e-01 9.010109155962182648e-01 5.724439967467525037e-01 5.965540527411405947e-01 1.598667990086183321e-01 1.363934512727023041e-01 5.327536522697270405e-01 4.123866715061276222e-01 4.617251396918636841e-01 6.935944951381239898e-01 4.300337419593377453e-01 1.892407993760835128e-01 1.666936825594794724e-01 4.625634184864588772e-01 4.805197636774838355e-02 7.003542850133466224e-01 2.130226006716084974e-03 8.678863343041013367e-01 4.874478520451258623e-01 7.043560228741558848e-01 6.317719270475393722e-01 5.372392256296196766e-01 2.982649812986511995e-01 1.272558612133412037e-01 2.467337555730741983e-01 6.546893200021091097e-01 6.291921159383098150e-01 8.505920470407707379e-01 4.046520490181828578e-01 3.875732096593392795e-01 8.551517214319142024e-01 4.152602284179877090e-01 9.587779137989138611e-01 6.977437468944928112e-01 3.240620775541913634e-02 4.025873770391376061e-01 5.485549335619134270e-01 7.146066156157020455e-01 3.012702534568838519e-01 3.526414480395153594e-01 3.309707144485515284e-01 4.315687014460974913e-01 6.641934530697197747e-01 2.172886798352815507e-01 4.807480925564590057e-01 5.006795397998469177e-01 5.818100901154411586e-01 2.107716091585690732e-01 6.606606051140029301e-01 9.317629042790995797e-01 9.840326342340242061e-01 5.752000964817773898e-01
13
+ 9.843444595454536872e-01 1.339523968066913540e-02 6.082172659959028671e-03 7.828244785439336662e-01 5.069653703872761819e-01 2.804896494365415327e-01 2.112385836660957139e-02 6.016479440778699228e-02 7.457477935084961818e-01 3.445503949245375397e-01 4.063494277166557200e-01 8.630275274433116817e-01 5.948396018456146850e-01 1.400867933474212457e-01 6.997522422654076646e-01 5.766519767930851081e-01 5.419976500582250889e-01 7.474121304089603735e-01 2.951600193008566686e-01 7.980170422334191827e-01 1.829036799578199757e-01 6.317636496261300749e-01 2.812612231140887431e-02 5.464747656105657381e-01 3.909873503320924204e-01 4.940850205957293406e-01 8.157850130814222611e-01 5.111092739445756150e-01 9.336823640685747439e-01 7.157105167170837445e-01 7.778989455994214097e-01 1.398722535910470466e-01 5.642653936300449091e-01 3.218717164845980028e-01 9.717427501967056402e-01 3.665791984428700134e-01 3.874321311211759156e-02 9.437600858738082188e-02 5.679526822961932231e-01 5.141385991358327079e-01 7.497840799582222715e-02 5.736515309094968318e-01 1.928132849879083954e-01 6.924244068001785823e-01 1.748389677952593146e-01 4.469577663506929532e-01 1.738527450963387455e-01 7.195287763517190793e-01 8.861150811892871682e-01 1.058443750714600506e-01 1.941789362229970894e-01 9.188374820700584422e-02 7.706736301449305104e-01 6.718642548609364828e-01 5.981029087121966237e-01 4.832880127232569434e-01 3.073688779938709148e-01 5.156312334804930009e-01 1.777418420119527553e-01 8.885462205165685079e-01 4.486254681289014723e-02 1.345398129556140132e-01 7.467627984379916484e-01 4.384565546058830643e-01 7.217750080760946263e-01 3.949550352625393890e-01 4.307950907642028593e-01 6.087680934849041270e-01 3.294516167246774874e-01 1.316682090209408962e-01 1.824857738754404046e-01 5.332379826483617524e-01 3.567136182864261151e-02 1.976220743086236631e-01 5.849349042822560296e-01 1.133174406357483344e-01 7.711522754393199675e-01 8.557306786807005183e-01 3.038353471344266143e-01 4.422747047768413875e-01 2.537160404215925702e-01 2.372714099723788328e-01 5.906462765375103396e-01 4.849909323133470007e-01 2.692576210504484813e-01 4.540849506602829821e-01 9.664935719107857759e-01 2.044371576459835804e-01 4.505417469690352616e-01 7.110722322201217249e-01 3.051357995214963870e-01 8.978937034341526457e-01 6.090501112506481185e-01 6.595415779178889215e-01 6.565426836745864581e-01 6.565608489824376059e-01 2.679102664248229626e-01 3.819533138204529443e-01 6.609794961162380744e-01 2.289558446859882856e-01
14
+ 9.274935298374649140e-01 1.174096651033715855e-01 3.030761852629033637e-01 1.605508209527917174e-01 9.601854834873225775e-01 4.341959513718630648e-01 6.320768160802121560e-01 4.213429090614078110e-01 3.695553969042019160e-01 5.965457437116089556e-01 3.520335041155040479e-01 7.702703502247409961e-01 8.571112772962534709e-01 7.904077282532658844e-01 2.247339318352784554e-01 6.823720204503556097e-01 5.883435710582129996e-02 6.786037033312407596e-01 9.721137137641507886e-01 2.042576970668320557e-01 8.394085754806240862e-01 7.433082729552867862e-01 4.072614159870893147e-01 7.451483066617257123e-01 1.699472962789440045e-01 1.753052015584344314e-01 2.255269204788400428e-01 7.794755643807432799e-01 8.407732260470973662e-01 9.301182862857163558e-01 3.701995309382508648e-01 4.481909027604019657e-01 1.261889085033987001e-01 5.600591735875248833e-01 8.244692493969552061e-01 8.969188061645969601e-01 4.802217973423368313e-01 3.556164122713412201e-02 3.393317823164623270e-01 2.491242957582864292e-01 9.863253789366602797e-01 5.585415885291432625e-01 3.702350606362231344e-01 6.766101432620400535e-01 6.999259389475386284e-01 6.676108316872160220e-01 7.870681827507105544e-01 8.746765411259082024e-01 9.125268371282718727e-01 6.638849997061806452e-01 3.253268113800632522e-01 7.968625619248901337e-01 7.584122525443606211e-01 9.028886850768532701e-01 5.381622293189292083e-02 8.097562873320752752e-01 7.092942088208666895e-01 9.915538877968065323e-01 4.319294903327922652e-01 4.307127933969153721e-01 2.768507739641907772e-01 8.076253078288621046e-01 2.569233696442670967e-01 7.595893829724666979e-01 5.768081727897018673e-01 2.537536777625452045e-01 8.874419624636734616e-01 5.091705681832693342e-01 4.811826624992353585e-01 2.794462461940371290e-01 3.846927898276129021e-01 5.129562951959991679e-01 8.515004062224775794e-01 7.103144978683579858e-01 9.526388607201888847e-01 2.367905569592337889e-01 9.137336039323161740e-01 5.722969943101696710e-02 2.019723935481291255e-01 3.098764675203513619e-02 1.121146613918624357e-01 9.937693067724532314e-01 8.476717958861412772e-02 2.059652110343795917e-01 2.139791918759540446e-01 9.137860316709250919e-01 9.530862653366889425e-03 2.027843281683039400e-03 2.506229951837134484e-01 6.244523528392044165e-01 5.523937894075592325e-01 3.712168074031840792e-01 4.218847794299319665e-01 4.827576239387890711e-01 5.244634168840578425e-01 5.182241092381567604e-01 3.308639956263292881e-03 9.370528021570383448e-01 4.694554875029453012e-01 4.950447554541728135e-01
15
+ 1.525818111800841814e-01 4.708012184002630107e-02 3.899035965341954846e-01 3.928304521031263929e-01 5.602286661727436945e-01 9.738256658043862313e-01 9.404465779766183475e-01 5.750862754958349088e-01 9.547546956257608741e-01 2.750275291553152535e-01 1.682773435862793265e-01 5.865928471016079726e-04 8.543378154943809255e-01 3.547649971465383079e-01 5.058056647397523031e-01 9.116332486700751137e-02 7.534666421106954726e-01 3.082429494433007733e-01 4.527145111847344916e-01 5.456680635225539255e-01 2.504131242494785914e-01 2.509240770568589296e-01 3.949236999582302898e-01 8.782959620323271821e-03 2.474641132111736752e-01 8.229417958971670943e-01 3.444225768479134420e-01 4.000027489436257522e-01 4.247741954177396417e-01 2.497745404169693373e-02 4.325768602588443423e-01 7.336592463477830117e-01 7.667663267650381975e-02 4.179022553581047683e-01 8.745172741480690126e-01 9.417705509525042817e-02 2.807522782799587446e-01 8.212710101351362590e-01 2.211181944001613386e-01 4.319929503523877168e-01 1.858636923768219873e-02 6.737037795085246694e-01 7.997187114913413275e-01 2.976552505976116647e-01 3.272347030789168887e-01 5.550935453236346406e-01 9.224109746648162522e-01 3.192827922106745708e-01 3.500098324549234530e-01 7.821988386980260888e-01 4.478417135239194380e-01 1.580956175222456572e-01 5.300807813550156844e-01 5.806154798468634581e-01 9.456842911054151868e-01 7.688127895655872956e-01 8.456527833650537840e-01 1.784229089865225770e-01 8.114517450321339087e-01 8.062506298824222428e-01 2.113482500442499523e-01 2.629226789210241666e-01 6.478686221690072022e-01 6.006672861605766300e-02 7.013679843242253131e-01 8.784753961212666828e-01 3.487138165323044880e-02 4.928426758517070461e-01 5.976224683315064512e-01 7.629063997052759616e-01 2.761721278953045422e-01 7.240740503283805696e-01 6.131065729985127888e-01 1.630885615792579957e-01 8.473783868551159060e-01 8.347614542399306448e-02 8.137265626844719657e-01 8.512508664918938539e-01 2.777097816703766320e-01 1.729154355214796990e-01 2.203382750835449766e-01 6.134780912629795857e-01 3.524352564238901753e-01 5.370314860129862256e-01 8.013986113284543578e-02 2.555842138998117852e-01 6.553915758947851389e-01 9.679125599178584061e-01 2.549566319678178150e-01 4.008180804370896633e-01 9.145789951670967310e-01 2.787926039163850511e-01 8.599455912576436933e-02 9.637558000691170967e-02 8.274101203974880692e-01 1.803747268179315411e-01 2.175735407836230095e-01 7.825994939720237742e-01 7.928519890958951599e-02 8.707949373106749213e-01
16
+ 6.398420210047787160e-01 5.739624494012524059e-01 3.359672805578653998e-01 1.130399363175038641e-02 3.349439685346782269e-01 2.315484030880912147e-01 4.575228302577399875e-01 1.149494135594463229e-01 2.888244352925943836e-01 3.625470995156252485e-01 3.795973190611611203e-01 6.567047810450010736e-01 1.484039742710284715e-01 9.273251916560719676e-01 4.334256728976307871e-01 6.734771102219323513e-01 9.125080197222198430e-01 4.974393931097168542e-01 8.301481563280355136e-01 4.526450714147856047e-01 2.414236092573898151e-01 8.070129698367667359e-02 7.260400697427102923e-01 1.396509691839398215e-02 2.496450588391967429e-01 4.335741205447194435e-01 3.089314419194891803e-01 9.543503534526003307e-01 5.457977547458532364e-01 3.139663643587058406e-01 5.034762326753475792e-01 4.756788330475764104e-01 6.849334942793482428e-01 3.880666613022351052e-01 6.483446580176778218e-01 5.217503801099343530e-01 5.371145824070304720e-01 3.121260159429154468e-01 8.314121854062171968e-01 4.538695969561833410e-01 8.598896961203845724e-01 9.961993522734106099e-01 8.865717795946430613e-01 7.828987966783660379e-01 3.412415531643435695e-01 7.421170530151157685e-01 4.484104178639959359e-01 6.793217012099640462e-01 3.756179958191659951e-01 7.821287098222597933e-01 6.227726265188193722e-02 8.552983413221663112e-01 4.824668768009222619e-01 2.241531065858231031e-01 4.939536577599041856e-01 5.129566641128722182e-01 1.057984177672518511e-01 9.541452507300716146e-01 3.396646181755047511e-01 7.452588103611947901e-01 5.315559265659929311e-01 5.493475179850665358e-01 5.214824278139198466e-01 5.150075718147916204e-01 1.196075368500321146e-01 9.035665331176232495e-01 7.522653903639873185e-01 6.638708679914825384e-01 5.584174553800479446e-01 5.015819402508836511e-01 5.507698483308445248e-01 5.978677577011723976e-01 8.450418028759657529e-01 3.266677322748618995e-01 1.321610045897971819e-01 2.394354042746985600e-01 2.723972163557076831e-01 5.523301747352814539e-01 5.518043850608547185e-01 5.283968096837132755e-02 8.192733312104071297e-01 2.277106024970321219e-02 1.414998099027269252e-01 6.517281615256080851e-01 1.811694734825117781e-01 9.472370614713256920e-01 5.454497319021770485e-01 1.364119913158231556e-01 8.446142008509562871e-01 7.671725984742419069e-01 2.461161648406858804e-01 1.421724627107351369e-01 6.290652581179481118e-01 7.094144689448004248e-01 4.419656923472803367e-02 6.614741876652251440e-01 8.712193265403500586e-02 4.734931280852430202e-01 5.382037050480286133e-01 1.396459758005891283e-01
17
+ 9.709329844415439670e-01 8.998575745276288229e-01 9.151313462895852568e-01 6.920489275523904471e-01 2.892231405199537919e-01 6.750679746268205550e-01 5.515642485826798280e-01 1.065253097812824956e-01 2.957026803465776510e-01 8.937347659632134400e-01 9.800016515925590310e-01 7.745900896182087436e-01 1.570977683146633774e-01 1.482028765821026273e-01 2.111147779712029271e-01 9.683759902485811200e-01 6.550951580826911425e-01 8.728324682592377703e-01 5.044803166579884257e-01 8.285704754811143991e-01 1.693574499337324735e-02 6.032669995180495182e-02 1.687026879086964692e-01 7.701554026145973619e-01 1.429888016593102718e-01 5.881172815379975827e-02 9.704206919487038396e-01 4.450807650730836951e-01 1.597445784258376689e-01 9.849229394397314152e-01 4.220083573536804744e-01 9.357693600374825671e-01 2.313199262338369033e-01 4.556443403861323294e-01 2.590791012828855822e-01 8.438664994487065085e-01 5.519045677502344427e-01 4.702170125676508050e-01 6.814723205638187897e-01 7.418295483665861001e-01 3.684921032028853904e-01 1.501895844844561845e-01 4.214513377519605308e-01 8.600279963652578408e-01 6.625616611189292238e-01 5.200151456470966105e-01 7.881072743086801058e-01 2.771703241081423519e-01 9.034135930616548071e-01 5.848441705791300738e-01 8.341698181274771473e-01 1.966638677318299777e-01 7.059747894371543042e-01 7.013854316067694716e-01 1.828430942760242983e-01 4.745548949934464966e-01 6.306422394641082452e-01 7.760751707194470939e-01 9.813187212598396547e-01 2.293595795266353266e-01 7.749261876107090830e-01 2.384106107787011819e-01 9.721209688979495223e-01 2.715569353686980714e-01 2.915573577694993146e-01 3.579601509630966349e-01 3.085697512342830962e-01 4.070219981627976047e-01 1.989632411372218579e-01 7.330003339460906542e-01 5.397259604481572381e-01 6.931009942216573849e-01 1.385457419653816080e-01 1.140339999976658358e-01 3.980752590866034613e-01 9.471822621683767540e-01 5.476643721405823895e-01 6.824131903515884279e-02 5.844099130744569992e-01 2.346881692012994236e-01 9.436439228519653000e-01 4.855518260479008141e-02 8.157036123302675579e-01 1.169761256455048581e-01 5.532962903488753970e-01 1.100965596251435308e-01 9.789490602992410029e-01 8.433487462016989733e-01 1.272410782852178013e-01 2.885715258680641160e-01 7.990943955388217779e-01 1.565305358979097727e-01 9.160846960406943129e-02 8.521842244411678147e-01 4.474243106736998099e-01 3.843945818845087015e-01 4.710645906071458944e-01 2.398348154123419729e-01 6.435351435258193087e-01 7.656897921129046658e-01
18
+ 4.894328120406804539e-01 7.881019629214267574e-01 6.974585354155089512e-01 2.023858939857701156e-01 1.660984914264745926e-01 4.854517801734643534e-01 2.789848572630315715e-01 2.311636522410289718e-01 9.821076233980715608e-01 1.220641257408076052e-01 2.614036146663852866e-01 7.657560715165320220e-01 3.968360577545695378e-01 4.566023622802184434e-02 1.049701948619241598e-02 9.281162949127452766e-01 4.490137965769909201e-01 2.095846458383606725e-01 9.195504656719085679e-01 9.683515436855471004e-01 9.800174878114910060e-01 5.517610861380117804e-01 6.711570559348770670e-01 5.125258050287277989e-01 2.105581493613526423e-01 8.281813206544574868e-01 4.964783994807770995e-01 7.284974208756571645e-01 1.320629592816270348e-01 6.652194518096135045e-01 9.430156297917950958e-01 7.477263137894260003e-01 2.054087806450300979e-01 4.248209124837907247e-01 7.657518666018259257e-02 1.031614100713345028e-01 4.122242287567021712e-01 4.919658859336810686e-01 3.752650167259050651e-01 4.175771429986683270e-01 6.131376293448997927e-01 5.463797405837259591e-01 3.119918548921774004e-01 6.331762507678504459e-01 5.484632429281035559e-01 6.815448032785871302e-01 8.065695507425107991e-02 8.720129122297424207e-01 8.318188557125294480e-03 2.199323537180564170e-02 8.933872719887463454e-01 1.953120287872067706e-02 2.478721941404590234e-01 5.994061179859005994e-01 6.588362611693047155e-01 6.332808851020984564e-01 3.823849348043323326e-01 5.111091324899629251e-01 7.034808459110406531e-01 4.347681568463539481e-01 4.316973576672314961e-01 9.620411080123215664e-01 6.247837467655984467e-01 8.196961678222113301e-01 5.574601810887074294e-01 8.800635018469276094e-01 8.772255241161972528e-01 5.075275933138404527e-01 8.022583187266906224e-01 2.320670802521890286e-01 1.165626629103270195e-01 4.623759662685936744e-01 7.938327000737943617e-02 7.986374689793115378e-01 6.728842751465858862e-01 8.133909095059230765e-01 1.202639390769081329e-01 1.052937257108800262e-01 8.717600467040409473e-02 2.163819956545051104e-01 6.596483385763984852e-01 1.202843170392309258e-02 1.538789195854695091e-01 3.120247727263308901e-01 3.408168327248596308e-01 3.241861797851740556e-01 3.637074533655986208e-01 1.533669345890729119e-01 4.455921334699539660e-01 5.619140093874478437e-01 1.881731359879111887e-01 9.416670800570559052e-01 1.740018593664415247e-01 7.030242331869680505e-01 5.922055553954849172e-01 9.326211623391688077e-01 6.608322881013140027e-01 7.009721551241574478e-01 1.079126054675583202e-01 6.158176671761947940e-01
19
+ 5.185079639625639336e-01 9.613742991518259284e-01 5.555312825626229634e-01 2.647628827924735084e-01 6.003697207460141350e-01 5.392112376769145898e-01 6.781186965667050925e-01 9.908971748181496508e-01 4.124155872095397468e-01 9.814941401724619485e-02 2.684237785531295994e-02 1.774652505962848181e-01 1.707589529595294753e-01 4.640932098465534450e-01 2.882179883914587348e-01 7.276822905806898945e-01 6.145789546745269449e-01 1.100959863917608805e-01 6.798859723042820491e-01 9.096984032948918220e-01 3.971368455178179158e-01 2.959494950971321980e-01 3.742088799298171065e-02 1.960739526210202310e-01 7.536102695342027369e-01 6.680915510628401277e-01 4.136507204312135366e-01 3.613996339406737590e-01 3.605422038261204554e-01 7.098503555159476619e-01 8.093719147087541366e-01 6.344097009128880638e-01 3.990082448083617228e-01 2.805918009906902544e-01 7.078488167363675698e-01 9.969917259866583059e-01 9.442054998992396309e-01 1.329075240769165278e-01 6.810681350588387861e-02 8.503491437913293094e-01 8.347117439165431252e-01 2.381858201903953587e-01 7.884260706938626129e-01 7.109907917419661105e-01 6.390916681983604963e-02 6.174365227062991179e-01 5.085733343630816083e-01 1.716846139694149231e-01 9.065664924270055991e-02 5.625330757196970177e-01 3.539663480209681579e-01 8.937139525947165319e-01 3.981380511900556307e-02 7.403597927449541150e-01 3.803872284089604427e-02 6.729519695709765825e-01 5.306080908840085097e-01 2.091237680402112664e-01 5.902903662907804661e-01 2.094778612095482551e-01 7.323447855684165342e-01 3.644574495843493356e-01 2.006215478057034041e-01 3.737617545555030896e-01 5.253471759602216240e-01 4.287889547869583318e-01 7.086098806190446187e-01 4.510792335515292351e-01 6.383187180169215269e-01 8.779355722397681472e-01 4.221338898667141848e-01 6.375840144651815367e-01 8.683057298299173832e-01 6.093730356952498095e-01 9.297141161056151626e-01 7.770838342807246946e-01 6.549661287008456956e-02 2.835060738158660110e-01 4.474138867374952699e-01 8.530336387421445510e-01 3.160209657891883683e-01 8.301538680518486535e-01 6.646903097549101691e-01 7.187130118106234145e-01 1.651862041735395747e-01 9.578252676762609719e-01 6.490273812885494209e-02 9.777273484666341163e-01 8.930729829254262508e-01 9.851054752118463265e-01 4.094323402286751401e-01 1.139176240124337713e-01 7.612865863899589414e-01 2.266379302491570158e-01 6.998882496157835531e-01 9.945043379099228753e-01 7.111578056749194854e-01 7.806190603886183910e-01 3.410170920712443099e-01 9.446084168886822452e-01
20
+ 5.015172758330755931e-01 5.569527971282052237e-01 1.122406928736449094e-01 8.960352822124777461e-01 6.049568585854003810e-02 1.202196001338627918e-01 1.870314295763603196e-01 9.017590029396971296e-01 3.597904628087450485e-01 2.130941062746317671e-01 2.556281834629479111e-01 5.123669364829196438e-01 4.754061129282013409e-01 9.764470380372083369e-01 8.038663983900646848e-01 6.960491266420890666e-01 2.940135977911654264e-01 2.857282759910040326e-03 4.599343225832352999e-02 5.597554495210212977e-01 7.445266674304001908e-01 3.387528030535971180e-01 6.429542922125383031e-01 2.123331785532429627e-01 5.302332654117811739e-01 7.262555377662539557e-01 3.982425859900724507e-01 3.243388301740235402e-01 6.191064123738921898e-01 8.988047781373914580e-01 7.819700328765150088e-01 7.664269102804815992e-01 6.734095355422575757e-03 2.904762329148526945e-01 5.097537644843168625e-01 9.524734606001823423e-01 4.812869576591960463e-01 6.236868013640477493e-01 1.459170943214320726e-01 9.874505139403206844e-01 7.561708982837871407e-01 3.798591332432484924e-01 6.056633451375117438e-01 7.935708170258731764e-01 1.458141583518740569e-01 7.082511296391911237e-01 1.098798009731616343e-02 3.655618484905173160e-01 9.551862303858617009e-01 8.148959351152762487e-02 4.739306219219985294e-02 7.963357515359494876e-01 6.208332695202813944e-01 3.884182264923189409e-01 4.589167647950288531e-01 6.496652974138312775e-01 2.467528128074852889e-01 5.309593064844935206e-01 5.364606369543487574e-01 2.421352989851309756e-01 3.776834556696828660e-02 1.564861233558080267e-01 5.197231021782636740e-01 8.725375120634637494e-01 2.441225493455024820e-01 2.320363366041028330e-01 5.026358683423555185e-01 7.035766000474735771e-01 8.347805591467084563e-01 2.303229841813967393e-01 6.908373419683054850e-01 2.646662377366995056e-01 1.259467197942290007e-01 9.372770922994989595e-01 6.674216272867254940e-01 1.027944489143072238e-01 5.686267290346079806e-01 3.948222804451942958e-01 4.689706944496729868e-01 4.446117700449114807e-02 6.817992275557515081e-01 9.084821829413957106e-01 9.184021015315092518e-01 3.045815734169987632e-01 2.204958624923980537e-03 7.542672057172502553e-01 9.460844786545006269e-01 3.373139094575949848e-02 9.059565314915285494e-01 9.938525461318854504e-01 2.542072661725306437e-01 9.685734112479216229e-02 8.223629541824816203e-01 1.057429056898460118e-01 8.080679390260248063e-01 5.823014244609205914e-01 6.413551528031806725e-01 1.787341975438894170e-01 1.250471413912357388e-01 8.390281297596062782e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-euclidean-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 4.0515260e+00 4.2121458e+00 3.7357405e+00 4.2313317e+00 3.9136009e+00 4.3843298e+00 3.9811426e+00 4.3624182e+00 4.0642508e+00 4.2105933e+00 4.0747226e+00 3.9068586e+00 4.1637004e+00 4.4303203e+00 4.1841564e+00 4.1063279e+00 4.1862390e+00 4.0719925e+00 4.2227579e+00 4.3173531e+00 3.8811067e+00 3.7577567e+00 4.0623722e+00 3.9882453e+00 4.0432671e+00 3.9085109e+00 4.0283414e+00 4.0846110e+00 3.6459235e+00 3.9544001e+00 4.1134244e+00 4.1805752e+00 3.5121011e+00 4.2747789e+00 4.1048323e+00 3.9269426e+00 3.8932032e+00 3.8281172e+00 3.7288430e+00 4.0863477e+00 4.1527428e+00 4.1646409e+00 4.2027433e+00 3.8441594e+00 4.8419117e+00 4.2455384e+00 3.7622220e+00 4.3967923e+00 4.4663183e+00 4.0435853e+00 4.0421692e+00 4.3124625e+00 4.6499961e+00 4.5595743e+00 3.4230430e+00 4.2612266e+00 3.5676603e+00 4.0866580e+00 4.2307103e+00 3.8521940e+00 3.9951183e+00 3.1022409e+00 3.7290193e+00 4.1931517e+00 4.1127027e+00 3.6633651e+00 4.0235815e+00 3.9729858e+00 4.1980132e+00 4.1579993e+00 3.9948955e+00 3.9081966e+00 3.9031152e+00 3.5069036e+00 4.0015727e+00 3.6763496e+00 3.6614339e+00 3.6227109e+00 3.7357992e+00 4.0170026e+00 3.5216829e+00 3.9322227e+00 3.9094621e+00 4.0170286e+00 4.3264246e+00 4.3435483e+00 4.0788635e+00 4.4761765e+00 3.8468186e+00 4.1490333e+00 4.2800007e+00 4.2260191e+00 4.3031858e+00 4.1897413e+00 4.0530244e+00 3.5893641e+00 4.2186615e+00 3.7979503e+00 4.0915473e+00 4.1343073e+00 4.5063851e+00 3.6394889e+00 4.2508448e+00 3.7160826e+00 4.0105262e+00 4.1578269e+00 4.0290590e+00 3.6971819e+00 3.9414087e+00 4.2522313e+00 4.4091714e+00 4.1542292e+00 3.9594691e+00 4.0923600e+00 4.0855497e+00 3.8253075e+00 4.3034717e+00 4.0976731e+00 4.1316523e+00 4.0872717e+00 4.2643353e+00 3.8887280e+00 3.9411273e+00 3.8848001e+00 4.3481996e+00 3.8716733e+00 3.9084684e+00 3.7546361e+00 3.9354816e+00 3.8293694e+00 3.7568515e+00 3.7184961e+00 3.8404278e+00 4.2570811e+00 4.1423777e+00 4.0291411e+00 4.2094682e+00 3.6127418e+00 4.0459839e+00 3.7737985e+00 3.7647653e+00 3.9762006e+00 3.8999512e+00 3.8509090e+00 3.8975941e+00 3.8432839e+00 4.2109046e+00 4.1339124e+00 3.5898873e+00 4.0794519e+00 4.3504966e+00 3.8862612e+00 3.8332931e+00 4.2190310e+00 4.1366595e+00 3.7220268e+00 4.1250795e+00 3.3169452e+00 4.0757181e+00 3.6487114e+00 3.9513724e+00 4.0735549e+00 3.9137880e+00 3.9656942e+00 3.7724953e+00 4.0505153e+00 3.9062302e+00 4.5671852e+00 3.7542175e+00 4.3731708e+00 3.6733907e+00 4.4667545e+00 4.1004635e+00 4.0530038e+00 4.0346958e+00 4.2145752e+00 4.4298637e+00 4.2982360e+00 4.0878239e+00 4.4061563e+00 4.2115971e+00 3.8263277e+00 3.8603258e+00 3.8572375e+00 4.1051910e+00 4.3787786e+00 4.5309659e+00 4.0047055e+00 4.1308854e+00 3.6283561e+00
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-hamming-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 4.6000000e-01 4.3000000e-01 4.3000000e-01 5.4000000e-01 4.1000000e-01 5.3000000e-01 4.3000000e-01 5.9000000e-01 4.8000000e-01 4.7000000e-01 4.6000000e-01 4.9000000e-01 4.5000000e-01 5.5000000e-01 5.3000000e-01 4.5000000e-01 4.8000000e-01 4.7000000e-01 4.8000000e-01 5.1000000e-01 4.9000000e-01 4.4000000e-01 4.9000000e-01 4.7000000e-01 4.9000000e-01 4.7000000e-01 5.2000000e-01 4.7000000e-01 4.2000000e-01 4.9000000e-01 4.7000000e-01 5.5000000e-01 3.9000000e-01 5.5000000e-01 4.6000000e-01 4.5000000e-01 4.0000000e-01 4.8000000e-01 4.5000000e-01 4.8000000e-01 4.8000000e-01 5.0000000e-01 4.8000000e-01 4.5000000e-01 6.4000000e-01 5.7000000e-01 4.6000000e-01 5.4000000e-01 5.6000000e-01 4.8000000e-01 4.8000000e-01 5.3000000e-01 5.4000000e-01 5.3000000e-01 4.5000000e-01 5.8000000e-01 4.2000000e-01 5.4000000e-01 6.0000000e-01 5.1000000e-01 4.6000000e-01 4.1000000e-01 4.4000000e-01 5.6000000e-01 5.4000000e-01 4.8000000e-01 4.8000000e-01 5.1000000e-01 5.2000000e-01 5.5000000e-01 4.5000000e-01 4.3000000e-01 4.7000000e-01 4.7000000e-01 5.6000000e-01 4.9000000e-01 4.8000000e-01 4.5000000e-01 4.9000000e-01 4.7000000e-01 4.5000000e-01 4.5000000e-01 5.6000000e-01 4.9000000e-01 5.8000000e-01 5.4000000e-01 4.6000000e-01 5.8000000e-01 5.3000000e-01 5.4000000e-01 5.5000000e-01 5.0000000e-01 5.2000000e-01 4.8000000e-01 5.0000000e-01 3.8000000e-01 5.3000000e-01 4.8000000e-01 5.1000000e-01 4.8000000e-01 5.2000000e-01 4.7000000e-01 5.0000000e-01 4.3000000e-01 4.8000000e-01 5.2000000e-01 5.0000000e-01 4.2000000e-01 4.2000000e-01 4.7000000e-01 5.4000000e-01 5.1000000e-01 5.4000000e-01 5.1000000e-01 4.8000000e-01 4.7000000e-01 5.2000000e-01 5.2000000e-01 5.4000000e-01 5.4000000e-01 5.0000000e-01 4.5000000e-01 4.4000000e-01 4.1000000e-01 5.7000000e-01 4.6000000e-01 5.1000000e-01 5.2000000e-01 5.0000000e-01 4.8000000e-01 5.0000000e-01 4.4000000e-01 5.3000000e-01 5.2000000e-01 4.9000000e-01 5.7000000e-01 5.8000000e-01 4.9000000e-01 5.1000000e-01 4.5000000e-01 5.3000000e-01 4.5000000e-01 4.4000000e-01 3.5000000e-01 4.2000000e-01 5.3000000e-01 5.2000000e-01 5.0000000e-01 3.8000000e-01 5.2000000e-01 5.6000000e-01 4.7000000e-01 4.4000000e-01 5.1000000e-01 5.7000000e-01 4.5000000e-01 5.7000000e-01 4.3000000e-01 5.1000000e-01 3.8000000e-01 5.3000000e-01 4.8000000e-01 4.4000000e-01 5.0000000e-01 4.8000000e-01 5.0000000e-01 4.7000000e-01 6.4000000e-01 4.9000000e-01 5.2000000e-01 4.8000000e-01 5.6000000e-01 4.3000000e-01 4.8000000e-01 4.7000000e-01 6.0000000e-01 5.4000000e-01 5.5000000e-01 4.0000000e-01 5.5000000e-01 5.6000000e-01 4.9000000e-01 5.0000000e-01 4.3000000e-01 5.7000000e-01 5.0000000e-01 5.7000000e-01 4.9000000e-01 4.2000000e-01 3.9000000e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jaccard-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 6.5714286e-01 6.0563380e-01 6.3235294e-01 7.3972603e-01 6.0294118e-01 7.3611111e-01 6.4179104e-01 7.7631579e-01 6.4000000e-01 6.6197183e-01 6.6666667e-01 7.0000000e-01 6.4285714e-01 7.7464789e-01 7.1621622e-01 6.4285714e-01 6.8571429e-01 6.4383562e-01 6.6666667e-01 6.5384615e-01 6.6216216e-01 6.1971831e-01 6.5333333e-01 6.5277778e-01 6.7123288e-01 6.4383562e-01 6.5000000e-01 6.3513514e-01 6.0000000e-01 6.7123288e-01 6.3513514e-01 7.4324324e-01 5.5714286e-01 7.0512821e-01 6.3888889e-01 6.0000000e-01 5.6338028e-01 6.3157895e-01 6.0810811e-01 6.2337662e-01 6.4000000e-01 6.5789474e-01 6.3157895e-01 5.6962025e-01 7.5294118e-01 7.1250000e-01 6.2162162e-01 6.7500000e-01 7.2727273e-01 6.2337662e-01 6.2337662e-01 6.7948718e-01 6.5853659e-01 6.6250000e-01 6.3380282e-01 7.3417722e-01 6.0869565e-01 7.2000000e-01 7.5949367e-01 6.4556962e-01 6.3013699e-01 5.9420290e-01 6.2857143e-01 7.1794872e-01 7.3972603e-01 6.4864865e-01 6.4864865e-01 6.8918919e-01 6.6666667e-01 7.0512821e-01 6.2500000e-01 6.2318841e-01 6.6197183e-01 6.5277778e-01 6.9135802e-01 6.6216216e-01 6.6666667e-01 6.4285714e-01 6.6216216e-01 6.8115942e-01 6.2500000e-01 6.2500000e-01 7.3684211e-01 6.4473684e-01 7.3417722e-01 7.1052632e-01 6.3888889e-01 7.3417722e-01 6.5432099e-01 6.9230769e-01 7.1428571e-01 6.7567568e-01 6.7532468e-01 6.7605634e-01 6.5789474e-01 5.4285714e-01 6.9736842e-01 6.2337662e-01 6.6233766e-01 6.7605634e-01 7.0270270e-01 6.1842105e-01 6.7567568e-01 6.2318841e-01 6.7605634e-01 6.9333333e-01 7.1428571e-01 6.0000000e-01 6.0000000e-01 6.6197183e-01 6.9230769e-01 6.8000000e-01 7.2000000e-01 6.5384615e-01 6.5753425e-01 6.6197183e-01 7.1232877e-01 6.9333333e-01 7.5000000e-01 7.1052632e-01 6.7567568e-01 6.4285714e-01 6.0273973e-01 5.8571429e-01 6.9512195e-01 6.3013699e-01 6.8918919e-01 7.0270270e-01 6.6666667e-01 6.8571429e-01 6.6666667e-01 6.1111111e-01 7.0666667e-01 6.6666667e-01 6.5333333e-01 6.8674699e-01 7.0731707e-01 6.3636364e-01 6.3750000e-01 6.1643836e-01 6.5432099e-01 5.8441558e-01 5.8666667e-01 4.7297297e-01 5.5263158e-01 6.9736842e-01 6.9333333e-01 6.5789474e-01 5.7575758e-01 6.7532468e-01 7.0886076e-01 6.4383562e-01 5.8666667e-01 6.6233766e-01 7.5000000e-01 6.2500000e-01 7.7027027e-01 6.0563380e-01 6.8000000e-01 5.6716418e-01 6.7948718e-01 6.4864865e-01 6.1971831e-01 7.1428571e-01 6.5753425e-01 6.7567568e-01 6.6197183e-01 7.7108434e-01 6.6216216e-01 7.1232877e-01 6.4000000e-01 7.0886076e-01 6.0563380e-01 6.2337662e-01 6.2666667e-01 7.7922078e-01 7.2972973e-01 7.5342466e-01 5.7971014e-01 7.3333333e-01 7.0886076e-01 6.6216216e-01 6.4102564e-01 5.8904110e-01 7.3076923e-01 6.4102564e-01 7.1250000e-01 6.4473684e-01 5.9154930e-01 5.3424658e-01
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jensenshannon-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.320369972991 0.338972466 0.308199372323 0.3452431902 0.310024768313 0.357115225615 0.311131096357 0.357391534414 0.329718053755 0.347365921475 0.335272625287 0.336451560653 0.33015370606 0.369628769749 0.344499490029 0.321622508707 0.345377707016 0.321007207534 0.350728979121 0.32809430086 0.30207071308 0.291663252492 0.30760470102 0.315976639534 0.308132467187 0.313014586878 0.310463895925 0.321091616502 0.290044394125 0.322213459935 0.315509196522 0.3331114403 0.281071919202 0.320854431887 0.332190658438 0.299342730178 0.313528775154 0.310049073937 0.288821516545 0.307662081954 0.328387688508 0.317185603454 0.332046170365 0.291912213887 0.37870970117 0.336080073379 0.304593343921 0.330138983604 0.355071759299 0.311946140607 0.302025400768 0.330940761586 0.351140062502 0.354772884287 0.272605322053 0.327957349848 0.28871110366 0.320821172951 0.340976919806 0.30757488831 0.320975346884 0.252776262329 0.314549731907 0.326876483 0.337684418756 0.296520013735 0.31493077245 0.327721982167 0.325802862624 0.341908184107 0.300481749419 0.312499767894 0.301061762121 0.27665157989 0.3082566692 0.287466396145 0.288313694552 0.296629698731 0.283556095025 0.322489360684 0.280765581604 0.297958166613 0.313189657041 0.303470399659 0.348652898212 0.331594734387 0.299446687464 0.339047458559 0.286979246044 0.316326095312 0.321618884109 0.330065896317 0.324500638067 0.328300795872 0.309002568222 0.262587468469 0.31974123777 0.286316182293 0.321162329165 0.328160620315 0.356618051635 0.289733970648 0.344507756538 0.301485561986 0.335785898715 0.322635066518 0.331480718646 0.297897604494 0.306942928189 0.350843442517 0.342585296966 0.341311053315 0.306780105123 0.313401804298 0.319978145568 0.302460397612 0.346105758567 0.312802351189 0.331552275517 0.321624157344 0.318798118247 0.301906095501 0.301585920138 0.314556178985 0.333215221158 0.306929663844 0.317083256901 0.309667679181 0.306529028004 0.30865993751 0.296031907986 0.28742420979 0.311584483038 0.319043629504 0.330278008622 0.314466433681 0.327937382021 0.296448162218 0.307033121385 0.296391953011 0.292691206116 0.297146209653 0.307929858983 0.291863681454 0.307300188104 0.306597817799 0.34718100163 0.317436210259 0.29952626739 0.330762834707 0.334951064852 0.323806678898 0.296203706701 0.33398466797 0.344931265559 0.293948734727 0.332764639313 0.272651853935 0.317324315923 0.300493570867 0.307008231016 0.333263322802 0.31390648462 0.332416491248 0.314766869708 0.321015549211 0.322909289307 0.356882966656 0.310596945263 0.343939748528 0.286269629586 0.33173459898 0.323848483719 0.305841388975 0.319266258167 0.34012363898 0.3443280395 0.353885654057 0.320544729867 0.353280499623 0.315621795536 0.312176062734 0.301562130879 0.312061680573 0.312642847966 0.326222109701 0.357417912858 0.313083593142 0.334033412713 0.295630506074
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0215050e+00 2.0988154e+00 1.8614681e+00 2.0510161e+00 1.9210911e+00 2.1323516e+00 1.9565454e+00 2.1029889e+00 1.9617871e+00 2.0544792e+00 2.0357408e+00 1.8811414e+00 2.0694693e+00 2.1245977e+00 2.0632165e+00 2.0452823e+00 2.0249330e+00 1.9635489e+00 2.0508580e+00 2.0838578e+00 1.9324052e+00 1.8224609e+00 1.9795343e+00 1.9536534e+00 1.9694910e+00 1.9075569e+00 1.9590397e+00 2.0022087e+00 1.8814000e+00 1.8884208e+00 1.9961121e+00 2.0215351e+00 1.7515769e+00 2.0756437e+00 2.0109476e+00 1.9234849e+00 1.9160076e+00 1.8550862e+00 1.7733640e+00 2.0071906e+00 2.0209542e+00 2.0616569e+00 2.0565503e+00 1.9083573e+00 2.2732431e+00 1.9975503e+00 1.9080072e+00 2.1437809e+00 2.1296295e+00 1.9739085e+00 1.9834166e+00 2.1078664e+00 2.2016840e+00 2.2080962e+00 1.7340579e+00 2.0549287e+00 1.7331748e+00 1.9559688e+00 2.0343364e+00 1.8736929e+00 1.9730416e+00 1.5308944e+00 1.8421831e+00 2.0174240e+00 2.0137378e+00 1.7956151e+00 1.9606596e+00 1.9074857e+00 2.0413879e+00 2.0070305e+00 1.9584677e+00 1.8977851e+00 1.9176239e+00 1.7067419e+00 1.9461927e+00 1.8431700e+00 1.8284576e+00 1.7778704e+00 1.8350329e+00 2.0175415e+00 1.7459063e+00 1.9242505e+00 1.8757370e+00 1.9312506e+00 2.0574808e+00 2.0894636e+00 1.9780203e+00 2.1374036e+00 1.8900436e+00 2.0273032e+00 2.0681953e+00 2.0234699e+00 2.0666449e+00 2.0663485e+00 1.9281402e+00 1.7846314e+00 2.0372479e+00 1.8831230e+00 2.0186015e+00 2.0193231e+00 2.2022665e+00 1.8145737e+00 2.0466545e+00 1.8092421e+00 1.9600687e+00 2.0322961e+00 1.9556364e+00 1.8266422e+00 1.9950345e+00 2.1038429e+00 2.1164145e+00 2.0188062e+00 1.8863331e+00 2.0006971e+00 1.9971068e+00 1.8771862e+00 2.1148855e+00 1.9570638e+00 1.9859615e+00 2.0030854e+00 2.0737344e+00 1.9739259e+00 1.9266524e+00 1.9200535e+00 2.1376689e+00 1.8944425e+00 1.9330553e+00 1.8561590e+00 1.9422954e+00 1.8874178e+00 1.8624808e+00 1.8265563e+00 1.8840519e+00 2.0515092e+00 2.0174226e+00 1.9771196e+00 2.0635988e+00 1.7334466e+00 1.9912604e+00 1.8915711e+00 1.8262636e+00 1.9369173e+00 1.9560446e+00 1.9549934e+00 1.9279230e+00 1.9021073e+00 2.0113391e+00 2.0305786e+00 1.8066806e+00 1.9656739e+00 2.1219217e+00 1.8820250e+00 1.8936826e+00 2.0565131e+00 1.9839441e+00 1.8553479e+00 1.9923760e+00 1.6393276e+00 1.9786440e+00 1.8274394e+00 1.9322611e+00 2.0404318e+00 1.9216532e+00 1.9361171e+00 1.8401373e+00 1.9908059e+00 1.9495117e+00 2.1975655e+00 1.8413913e+00 2.1528773e+00 1.8434374e+00 2.1668863e+00 2.0429273e+00 1.9980016e+00 1.9790129e+00 2.0264829e+00 2.1478843e+00 2.0899600e+00 2.0280670e+00 2.1210881e+00 1.9993891e+00 1.8646871e+00 1.9099983e+00 1.9263353e+00 2.0042495e+00 2.1365919e+00 2.1830279e+00 1.9631961e+00 2.0880004e+00 1.8348369e+00
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff