diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9882fc2b9733554026cacebece8637f25002f985
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__init__.py
@@ -0,0 +1,142 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_sentencepiece_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig", "CamembertOnnxConfig"],
+}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_camembert"] = ["CamembertTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_camembert"] = [
+ "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "CamembertForCausalLM",
+ "CamembertForMaskedLM",
+ "CamembertForMultipleChoice",
+ "CamembertForQuestionAnswering",
+ "CamembertForSequenceClassification",
+ "CamembertForTokenClassification",
+ "CamembertModel",
+ "CamembertPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_camembert"] = [
+ "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFCamembertForCausalLM",
+ "TFCamembertForMaskedLM",
+ "TFCamembertForMultipleChoice",
+ "TFCamembertForQuestionAnswering",
+ "TFCamembertForSequenceClassification",
+ "TFCamembertForTokenClassification",
+ "TFCamembertModel",
+ "TFCamembertPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig, CamembertOnnxConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_camembert import CamembertTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_camembert_fast import CamembertTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_camembert import (
+ CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ CamembertForCausalLM,
+ CamembertForMaskedLM,
+ CamembertForMultipleChoice,
+ CamembertForQuestionAnswering,
+ CamembertForSequenceClassification,
+ CamembertForTokenClassification,
+ CamembertModel,
+ CamembertPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_camembert import (
+ TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFCamembertForCausalLM,
+ TFCamembertForMaskedLM,
+ TFCamembertForMultipleChoice,
+ TFCamembertForQuestionAnswering,
+ TFCamembertForSequenceClassification,
+ TFCamembertForTokenClassification,
+ TFCamembertModel,
+ TFCamembertPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/configuration_camembert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/configuration_camembert.py
new file mode 100644
index 0000000000000000000000000000000000000000..d29ca067db27901e1cde473dd0bc4c0372783331
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/configuration_camembert.py
@@ -0,0 +1,155 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" CamemBERT configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class CamembertConfig(PretrainedConfig):
+ """
+ This is the configuration class to store the configuration of a [`CamembertModel`] or a [`TFCamembertModel`]. It is
+ used to instantiate a Camembert model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Camembert
+ [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ is_decoder (`bool`, *optional*, defaults to `False`):
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Example:
+
+ ```python
+ >>> from transformers import CamembertConfig, CamembertModel
+
+ >>> # Initializing a Camembert almanach/camembert-base style configuration
+ >>> configuration = CamembertConfig()
+
+ >>> # Initializing a model (with random weights) from the almanach/camembert-base style configuration
+ >>> model = CamembertModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "camembert"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+
+
+class CamembertOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ]
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_camembert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_camembert.py
new file mode 100644
index 0000000000000000000000000000000000000000..26250896b23d8a4e4a6e0b3e025d8f76d12720b5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_camembert.py
@@ -0,0 +1,1571 @@
+# coding=utf-8
+# Copyright 2019 Inria, Facebook AI Research and the HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch CamemBERT model."""
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_camembert import CamembertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "almanach/camembert-base"
+_CONFIG_FOR_DOC = "CamembertConfig"
+
+
+from ..deprecated._archive_maps import CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+CAMEMBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`CamembertConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Camembert
+class CamembertEmbeddings(nn.Module):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ # End copy
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ def forward(
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Camembert
+class CamembertSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in CamembertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->Camembert
+class CamembertSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->Camembert
+class CamembertAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = CamembertSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = CamembertSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Roberta->Camembert
+class CamembertIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Roberta->Camembert
+class CamembertOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->Camembert
+class CamembertLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = CamembertAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = CamembertAttention(config, position_embedding_type="absolute")
+ self.intermediate = CamembertIntermediate(config)
+ self.output = CamembertOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->Camembert
+class CamembertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([CamembertLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class CamembertPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class CamembertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CamembertConfig
+ base_model_prefix = "roberta"
+ supports_gradient_checkpointing = True
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+CAMEMBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Camembert
+class CamembertClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = torch.tanh(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Camembert
+class CamembertLMHead(nn.Module):
+ """Camembert Head for masked language modeling."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, features, **kwargs):
+ x = self.dense(features)
+ x = gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ x = self.decoder(x)
+
+ return x
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ # For accelerate compatibility and to not break backward compatibility
+ if self.decoder.bias.device.type == "meta":
+ self.decoder.bias = self.bias
+ else:
+ self.bias = self.decoder.bias
+
+
+@add_start_docstrings(
+ "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
+ CAMEMBERT_START_DOCSTRING,
+)
+class CamembertModel(CamembertPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
+ Kaiser and Illia Polosukhin.
+
+ To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to
+ `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
+
+ """
+
+ _no_split_modules = []
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Camembert
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = CamembertEmbeddings(config)
+ self.encoder = CamembertEncoder(config)
+
+ self.pooler = CamembertPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ # Copied from transformers.models.bert.modeling_bert.BertModel.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """CamemBERT Model with a `language modeling` head on top.""",
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
+class CamembertForMaskedLM(CamembertPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `CamembertForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
+ self.lm_head = CamembertLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ expected_output="' Paris'",
+ expected_loss=0.1,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Used to hide legacy arguments that have been deprecated.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(prediction_scores.device)
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
+class CamembertForSequenceClassification(CamembertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
+ self.classifier = CamembertClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'optimism'",
+ expected_loss=0.08,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT
+class CamembertForMultipleChoice(CamembertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.roberta = CamembertModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ flat_inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.roberta(
+ flat_input_ids,
+ position_ids=flat_position_ids,
+ token_type_ids=flat_token_type_ids,
+ attention_mask=flat_attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(reshaped_logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
+ for Named-Entity-Recognition (NER) tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
+class CamembertForTokenClassification(CamembertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="Jean-Baptiste/roberta-large-ner-english",
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
+ expected_loss=0.01,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT
+class CamembertForQuestionAnswering(CamembertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="deepset/roberta-base-squad2",
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="' puppet'",
+ expected_loss=0.86,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING
+)
+# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT, FacebookAI/roberta-base->almanach/camembert-base
+class CamembertForCausalLM(CamembertPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `CamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
+
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
+ self.lm_head = CamembertLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
+ >>> config = AutoConfig.from_pretrained("almanach/camembert-base")
+ >>> config.is_decoder = True
+ >>> model = CamembertForCausalLM.from_pretrained("almanach/camembert-base", config=config)
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(prediction_scores.device)
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_tf_camembert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_tf_camembert.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ec998593d51b9e3bc1199d7c05b7c7304894cd0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_tf_camembert.py
@@ -0,0 +1,1793 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 CamemBERT model."""
+
+
+from __future__ import annotations
+
+import math
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFBaseModelOutputWithPoolingAndCrossAttentions,
+ TFCausalLMOutputWithCrossAttentions,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_camembert import CamembertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "almanach/camembert-base"
+_CONFIG_FOR_DOC = "CamembertConfig"
+
+
+from ..deprecated._archive_maps import TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+CAMEMBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`CamembertConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CAMEMBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings
+class TFCamembertEmbeddings(keras.layers.Layer):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.padding_idx = 1
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+ def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ input_ids: tf.Tensor
+ Returns: tf.Tensor
+ """
+ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
+ incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
+
+ return incremental_indices + self.padding_idx
+
+ def call(
+ self,
+ input_ids=None,
+ position_ids=None,
+ token_type_ids=None,
+ inputs_embeds=None,
+ past_key_values_length=0,
+ training=False,
+ ):
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = self.create_position_ids_from_input_ids(
+ input_ids=input_ids, past_key_values_length=past_key_values_length
+ )
+ else:
+ position_ids = tf.expand_dims(
+ tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Camembert
+class TFCamembertPooler(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Camembert
+class TFCamembertSelfAttention(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+
+ self.is_decoder = config.is_decoder
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(inputs=hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+ key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
+ value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFCamembertModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Camembert
+class TFCamembertSelfOutput(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Camembert
+class TFCamembertAttention(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFCamembertSelfAttention(config, name="self")
+ self.dense_output = TFCamembertSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self_attention(
+ hidden_states=input_tensor,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
+ )
+ # add attentions (possibly with past_key_value) if we output them
+ outputs = (attention_output,) + self_outputs[1:]
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Camembert
+class TFCamembertIntermediate(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Camembert
+class TFCamembertOutput(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Camembert
+class TFCamembertLayer(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFCamembertAttention(config, name="attention")
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = TFCamembertAttention(config, name="crossattention")
+ self.intermediate = TFCamembertIntermediate(config, name="intermediate")
+ self.bert_output = TFCamembertOutput(config, name="output")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_value: Tuple[tf.Tensor] | None,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=self_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ input_tensor=attention_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ intermediate_output = self.intermediate(hidden_states=attention_output)
+ layer_output = self.bert_output(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + outputs # add attentions if we output them
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "bert_output", None) is not None:
+ with tf.name_scope(self.bert_output.name):
+ self.bert_output.build(None)
+ if getattr(self, "crossattention", None) is not None:
+ with tf.name_scope(self.crossattention.name):
+ self.crossattention.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Camembert
+class TFCamembertEncoder(keras.layers.Layer):
+ def __init__(self, config: CamembertConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.layer = [TFCamembertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_values: Tuple[Tuple[tf.Tensor]] | None,
+ use_cache: Optional[bool],
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask[i],
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
+ )
+
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->Camembert
+class TFCamembertMainLayer(keras.layers.Layer):
+ config_class = CamembertConfig
+
+ def __init__(self, config, add_pooling_layer=True, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.is_decoder = config.is_decoder
+
+ self.num_hidden_layers = config.num_hidden_layers
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.return_dict = config.use_return_dict
+ self.encoder = TFCamembertEncoder(config, name="encoder")
+ self.pooler = TFCamembertPooler(config, name="pooler") if add_pooling_layer else None
+ # The embeddings must be the last declaration in order to follow the weights order
+ self.embeddings = TFCamembertEmbeddings(config, name="embeddings")
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
+ if not self.config.is_decoder:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+
+ if past_key_values is None:
+ past_key_values_length = 0
+ past_key_values = [None] * len(self.encoder.layer)
+ else:
+ past_key_values_length = shape_list(past_key_values[0][0])[-2]
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ training=training,
+ )
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ attention_mask_shape = shape_list(attention_mask)
+
+ mask_seq_length = seq_length + past_key_values_length
+ # Copied from `modeling_tf_t5.py`
+ # Provided a padding mask of dimensions [batch_size, mask_seq_length]
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ if self.is_decoder:
+ seq_ids = tf.range(mask_seq_length)
+ causal_mask = tf.less_equal(
+ tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
+ seq_ids[None, :, None],
+ )
+ causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
+ extended_attention_mask = causal_mask * attention_mask[:, None, :]
+ attention_mask_shape = shape_list(extended_attention_mask)
+ extended_attention_mask = tf.reshape(
+ extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
+ )
+ if past_key_values[0] is not None:
+ # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
+ extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
+ else:
+ extended_attention_mask = tf.reshape(
+ attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
+ )
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
+ if self.is_decoder and encoder_attention_mask is not None:
+ # If a 2D ou 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
+ num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
+ if num_dims_encoder_attention_mask == 3:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
+ if num_dims_encoder_attention_mask == 2:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
+
+ # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
+ # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
+ # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
+ # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
+
+ encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (
+ sequence_output,
+ pooled_output,
+ ) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+
+
+class TFCamembertPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CamembertConfig
+ base_model_prefix = "roberta"
+
+
+@add_start_docstrings(
+ "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertModel(TFCamembertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.roberta = TFCamembertMainLayer(config, name="roberta")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ """
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+
+
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Camembert
+class TFCamembertLMHead(keras.layers.Layer):
+ """Camembert Head for masked language modeling."""
+
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ self.act = get_tf_activation("gelu")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.hidden_size])
+
+ def get_output_embeddings(self):
+ return self.decoder
+
+ def set_output_embeddings(self, value):
+ self.decoder.weight = value
+ self.decoder.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+
+ # project back to size of vocabulary with bias
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+@add_start_docstrings(
+ """CamemBERT Model with a `language modeling` head on top.""",
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForMaskedLM(TFCamembertPreTrainedModel, TFMaskedLanguageModelingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.lm_head = TFCamembertLMHead(config, self.roberta.embeddings, name="lm_head")
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_head.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ expected_output="' Paris'",
+ expected_loss=0.1,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
+
+
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead
+class TFCamembertClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+ self.config = config
+
+ def call(self, features, training=False):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, training=training)
+ x = self.dense(x)
+ x = self.dropout(x, training=training)
+ x = self.out_proj(x)
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForSequenceClassification(TFCamembertPreTrainedModel, TFSequenceClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.classifier = TFCamembertClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'optimism'",
+ expected_loss=0.08,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, training=training)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
+ for Named-Entity-Recognition (NER) tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForTokenClassification(TFCamembertPreTrainedModel, TFTokenClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="ydshieh/roberta-large-ner-english",
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
+ expected_loss=0.01,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForMultipleChoice(TFCamembertPreTrainedModel, TFMultipleChoiceLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"lm_head"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roberta = TFCamembertMainLayer(config, name="roberta")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(
+ CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
+ outputs = self.roberta(
+ flat_input_ids,
+ flat_attention_mask,
+ flat_token_type_ids,
+ flat_position_ids,
+ head_mask,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, training=training)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ CAMEMBERT_START_DOCSTRING,
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForQuestionAnswering(TFCamembertPreTrainedModel, TFQuestionAnsweringLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="ydshieh/roberta-base-squad2",
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="' puppet'",
+ expected_loss=0.86,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+
+ loss = None
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING
+)
+# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT
+class TFCamembertForCausalLM(TFCamembertPreTrainedModel, TFCausalLanguageModelingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
+
+ def __init__(self, config: CamembertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `TFCamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
+
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.lm_head = TFCamembertLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_head.name
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = tf.ones(input_shape)
+
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ input_ids = input_ids[:, -1:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFCausalLMOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.lm_head(hidden_states=sequence_output, training=training)
+ loss = None
+
+ if labels is not None:
+ # shift labels to the left and cut last logit token
+ shifted_logits = logits[:, :-1]
+ labels = labels[:, 1:]
+ loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFCausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert.py
new file mode 100644
index 0000000000000000000000000000000000000000..51d70b198bba4aebcb544c7a4f1c0c1548fb7731
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert.py
@@ -0,0 +1,319 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Tokenization classes for Camembert model."""
+
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+class CamembertTokenizer(PreTrainedTokenizer):
+ """
+ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Construct a CamemBERT tokenizer. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `['NOTUSED', 'NOTUSED', 'NOTUSED']`):
+ Additional special tokens used by the tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ additional_special_tokens=["NOTUSED", "NOTUSED", "NOTUSED"],
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False, special=True)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ self.vocab_file = vocab_file
+
+ # HACK: These tokens were added by the author for an obscure reason as they were already part of the
+ # sentencepiece vocabulary (this is the case for and and ).
+ # In this case it is recommended to properly set the tokens by hand.
+ self._added_tokens_decoder = {
+ 0: AddedToken("NOTUSED", special=True),
+ 1: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
+ 2: AddedToken("NOTUSED", special=True),
+ 3: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
+ 4: AddedToken("NOTUSED", special=True),
+ }
+
+ self.fairseq_offset = 4 # 3 tokens are newly added, but the offset starts from 4
+
+ # legacy: camemebert is a particular case were we have to make sure `"NOTUSED"` is here
+ if "added_tokens_decoder" in kwargs:
+ # this is the only class that requires this unfortunately.....
+ # the reason is that the fast version has a whole.
+ kwargs["added_tokens_decoder"].update(self._added_tokens_decoder)
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ additional_special_tokens=additional_special_tokens,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ # The length of the vocabulary without added tokens is len(self.sp_model) but the added tokens are added at the beginning.
+ return len(self.sp_model)
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.fairseq_offset)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text: str) -> List[str]:
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ # specifi to camembert, both 3 and 4 point to the unk token.
+ if self.sp_model.PieceToId(token) == 0:
+ # Convert sentence piece unk token to fairseq unk token index
+ return self.unk_token_id
+ return self.fairseq_offset + self.sp_model.PieceToId(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ # TODO decode outputs do not match between fast and slow
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An CamemBERT sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like
+ RoBERTa, does not make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1f0db688a464aa9c2358673096bc9af9a06942a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert_fast.py
@@ -0,0 +1,199 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Fast tokenization classes for Camembert model."""
+
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_camembert import CamembertTokenizer
+else:
+ CamembertTokenizer = None
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+class CamembertTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
+ [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
+ [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`):
+ Additional special tokens used by the tokenizer.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = CamembertTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ additional_special_tokens=["NOTUSED", "NOTUSED", "NOTUSED"],
+ **kwargs,
+ ):
+ # Mask token behave like a normal word, i.e. include the space before it. Will have normalized = False
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An CamemBERT sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like
+ RoBERTa, does not make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..868c46616e9b330ebbf9dcdff44ead1795edf4d0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__init__.py
@@ -0,0 +1,183 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_clip": [
+ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "CLIPConfig",
+ "CLIPOnnxConfig",
+ "CLIPTextConfig",
+ "CLIPVisionConfig",
+ ],
+ "processing_clip": ["CLIPProcessor"],
+ "tokenization_clip": ["CLIPTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_clip_fast"] = ["CLIPTokenizerFast"]
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_clip"] = ["CLIPFeatureExtractor"]
+ _import_structure["image_processing_clip"] = ["CLIPImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_clip"] = [
+ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "CLIPModel",
+ "CLIPPreTrainedModel",
+ "CLIPTextModel",
+ "CLIPTextModelWithProjection",
+ "CLIPVisionModel",
+ "CLIPVisionModelWithProjection",
+ "CLIPForImageClassification",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_clip"] = [
+ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFCLIPModel",
+ "TFCLIPPreTrainedModel",
+ "TFCLIPTextModel",
+ "TFCLIPVisionModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_clip"] = [
+ "FlaxCLIPModel",
+ "FlaxCLIPPreTrainedModel",
+ "FlaxCLIPTextModel",
+ "FlaxCLIPTextPreTrainedModel",
+ "FlaxCLIPTextModelWithProjection",
+ "FlaxCLIPVisionModel",
+ "FlaxCLIPVisionPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_clip import (
+ CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ CLIPConfig,
+ CLIPOnnxConfig,
+ CLIPTextConfig,
+ CLIPVisionConfig,
+ )
+ from .processing_clip import CLIPProcessor
+ from .tokenization_clip import CLIPTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_clip_fast import CLIPTokenizerFast
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_clip import CLIPFeatureExtractor
+ from .image_processing_clip import CLIPImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_clip import (
+ CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
+ CLIPForImageClassification,
+ CLIPModel,
+ CLIPPreTrainedModel,
+ CLIPTextModel,
+ CLIPTextModelWithProjection,
+ CLIPVisionModel,
+ CLIPVisionModelWithProjection,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_clip import (
+ TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFCLIPModel,
+ TFCLIPPreTrainedModel,
+ TFCLIPTextModel,
+ TFCLIPVisionModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_clip import (
+ FlaxCLIPModel,
+ FlaxCLIPPreTrainedModel,
+ FlaxCLIPTextModel,
+ FlaxCLIPTextModelWithProjection,
+ FlaxCLIPTextPreTrainedModel,
+ FlaxCLIPVisionModel,
+ FlaxCLIPVisionPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ff03b24f9bc6cc9b17b300d98c7bb8902d647d1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/configuration_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/configuration_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4a818ca721756649e78a3bd82c40e9c680ff5aee
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/configuration_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/convert_clip_original_pytorch_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/convert_clip_original_pytorch_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a64ac0752408b0e49533be03981cb412fd496fde
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/convert_clip_original_pytorch_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/feature_extraction_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/feature_extraction_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..842736097922f54ba4ae2d079a360399f7b887d2
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/feature_extraction_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/image_processing_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/image_processing_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..11702016b64dba94807e3e0dc4d5b7026b2f5982
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/image_processing_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f0120fc53a2a2cf4f2722027af4b7f3a1dcc9126
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_flax_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_flax_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dd17f9b0e087c8b7df164d8c2893bd76550668a0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_flax_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_tf_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_tf_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56fbd12919fc5a95d17b177198e0866a5b6a1fa1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_tf_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/processing_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/processing_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6ba878e573deaf8a0eb15c6975eed83b7b75b38a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/processing_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dc6ab9af5af28fb1b67dc1643f67fb256d6b3511
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d5800bb26e3d76119703c5bd7476bcbf63aaaebf
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..a48cb73a9715ba85f4081df6d15be3c2a5a9c9b3
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.py
@@ -0,0 +1,456 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" CLIP model configuration"""
+
+import os
+from collections import OrderedDict
+from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
+
+
+if TYPE_CHECKING:
+ from ...processing_utils import ProcessorMixin
+ from ...utils import TensorType
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class CLIPTextConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
+ text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the text encoder of the CLIP
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 49408):
+ Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`CLIPModel`].
+ hidden_size (`int`, *optional*, defaults to 512):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and vision projection layers.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ max_position_embeddings (`int`, *optional*, defaults to 77):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ pad_token_id (`int`, *optional*, defaults to 1):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 49406):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 49407):
+ End of stream token id.
+
+ Example:
+
+ ```python
+ >>> from transformers import CLIPTextConfig, CLIPTextModel
+
+ >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
+ >>> configuration = CLIPTextConfig()
+
+ >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
+ >>> model = CLIPTextModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clip_text_model"
+
+ def __init__(
+ self,
+ vocab_size=49408,
+ hidden_size=512,
+ intermediate_size=2048,
+ projection_dim=512,
+ num_hidden_layers=12,
+ num_attention_heads=8,
+ max_position_embeddings=77,
+ hidden_act="quick_gelu",
+ layer_norm_eps=1e-5,
+ attention_dropout=0.0,
+ initializer_range=0.02,
+ initializer_factor=1.0,
+ # This differs from `CLIPTokenizer`'s default and from openai/clip
+ # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
+ pad_token_id=1,
+ bos_token_id=49406,
+ eos_token_id=49407,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.projection_dim = projection_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.max_position_embeddings = max_position_embeddings
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the text config dict if we are loading from CLIPConfig
+ if config_dict.get("model_type") == "clip":
+ config_dict = config_dict["text_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class CLIPVisionConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
+ CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and vision projection layers.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 32):
+ The size (resolution) of each patch.
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+
+ Example:
+
+ ```python
+ >>> from transformers import CLIPVisionConfig, CLIPVisionModel
+
+ >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
+ >>> configuration = CLIPVisionConfig()
+
+ >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
+ >>> model = CLIPVisionModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clip_vision_model"
+
+ def __init__(
+ self,
+ hidden_size=768,
+ intermediate_size=3072,
+ projection_dim=512,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ num_channels=3,
+ image_size=224,
+ patch_size=32,
+ hidden_act="quick_gelu",
+ layer_norm_eps=1e-5,
+ attention_dropout=0.0,
+ initializer_range=0.02,
+ initializer_factor=1.0,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.projection_dim = projection_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_channels = num_channels
+ self.patch_size = patch_size
+ self.image_size = image_size
+ self.initializer_range = initializer_range
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the vision config dict if we are loading from CLIPConfig
+ if config_dict.get("model_type") == "clip":
+ config_dict = config_dict["vision_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class CLIPConfig(PretrainedConfig):
+ r"""
+ [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
+ a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
+ a configuration with the defaults will yield a similar configuration to that of the CLIP
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`CLIPTextConfig`].
+ vision_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and vision projection layers.
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import CLIPConfig, CLIPModel
+
+ >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
+ >>> configuration = CLIPConfig()
+
+ >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
+ >>> model = CLIPModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
+ >>> from transformers import CLIPTextConfig, CLIPVisionConfig
+
+ >>> # Initializing a CLIPText and CLIPVision configuration
+ >>> config_text = CLIPTextConfig()
+ >>> config_vision = CLIPVisionConfig()
+
+ >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
+ ```"""
+
+ model_type = "clip"
+
+ def __init__(
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
+ ):
+ # If `_config_dict` exist, we use them for the backward compatibility.
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
+ # of confusion!).
+ text_config_dict = kwargs.pop("text_config_dict", None)
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
+
+ super().__init__(**kwargs)
+
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
+ if text_config_dict is not None:
+ if text_config is None:
+ text_config = {}
+
+ # This is the complete result when using `text_config_dict`.
+ _text_config_dict = CLIPTextConfig(**text_config_dict).to_dict()
+
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
+ for key, value in _text_config_dict.items():
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
+ # If specified in `text_config_dict`
+ if key in text_config_dict:
+ message = (
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
+ f'The value `text_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
+ f'value `text_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
+ text_config.update(_text_config_dict)
+
+ if vision_config_dict is not None:
+ if vision_config is None:
+ vision_config = {}
+
+ # This is the complete result when using `vision_config_dict`.
+ _vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
+ # convert keys to string instead of integer
+ if "id2label" in _vision_config_dict:
+ _vision_config_dict["id2label"] = {
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
+ }
+
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
+ for key, value in _vision_config_dict.items():
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
+ # If specified in `vision_config_dict`
+ if key in vision_config_dict:
+ message = (
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
+ f'The value `vision_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
+ vision_config.update(_vision_config_dict)
+
+ if text_config is None:
+ text_config = {}
+ logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
+
+ if vision_config is None:
+ vision_config = {}
+ logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
+
+ self.text_config = CLIPTextConfig(**text_config)
+ self.vision_config = CLIPVisionConfig(**vision_config)
+
+ self.projection_dim = projection_dim
+ self.logit_scale_init_value = logit_scale_init_value
+ self.initializer_factor = 1.0
+
+ @classmethod
+ def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
+ r"""
+ Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
+ configuration.
+
+ Returns:
+ [`CLIPConfig`]: An instance of a configuration object
+ """
+
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
+
+
+class CLIPOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "sequence"}),
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ("attention_mask", {0: "batch", 1: "sequence"}),
+ ]
+ )
+
+ @property
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("logits_per_image", {0: "batch"}),
+ ("logits_per_text", {0: "batch"}),
+ ("text_embeds", {0: "batch"}),
+ ("image_embeds", {0: "batch"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-4
+
+ def generate_dummy_inputs(
+ self,
+ processor: "ProcessorMixin",
+ batch_size: int = -1,
+ seq_length: int = -1,
+ framework: Optional["TensorType"] = None,
+ ) -> Mapping[str, Any]:
+ text_input_dict = super().generate_dummy_inputs(
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
+ )
+ image_input_dict = super().generate_dummy_inputs(
+ processor.image_processor, batch_size=batch_size, framework=framework
+ )
+ return {**text_input_dict, **image_input_dict}
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 14
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/convert_clip_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/convert_clip_original_pytorch_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..2127da4f6cf90274b76b20ec6c6c3d6247538cd2
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/convert_clip_original_pytorch_to_hf.py
@@ -0,0 +1,148 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+
+import torch
+from clip import load
+
+from transformers import CLIPConfig, CLIPModel
+
+
+def copy_attn_layer(hf_attn_layer, pt_attn_layer):
+ q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0)
+ q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0)
+
+ out_proj_weights = pt_attn_layer.out_proj.weight
+ out_proj_bias = pt_attn_layer.out_proj.bias
+
+ hf_attn_layer.q_proj.weight.data = q_proj
+ hf_attn_layer.q_proj.bias.data = q_proj_bias
+
+ hf_attn_layer.k_proj.weight.data = k_proj
+ hf_attn_layer.k_proj.bias.data = k_proj_bias
+
+ hf_attn_layer.v_proj.weight.data = v_proj
+ hf_attn_layer.v_proj.bias.data = v_proj_bias
+
+ hf_attn_layer.out_proj.weight = out_proj_weights
+ hf_attn_layer.out_proj.bias = out_proj_bias
+
+
+def copy_mlp(hf_mlp, pt_mlp):
+ copy_linear(hf_mlp.fc1, pt_mlp.c_fc)
+ copy_linear(hf_mlp.fc2, pt_mlp.c_proj)
+
+
+def copy_linear(hf_linear, pt_linear):
+ hf_linear.weight = pt_linear.weight
+ hf_linear.bias = pt_linear.bias
+
+
+def copy_layer(hf_layer, pt_layer):
+ # copy layer norms
+ copy_linear(hf_layer.layer_norm1, pt_layer.ln_1)
+ copy_linear(hf_layer.layer_norm2, pt_layer.ln_2)
+
+ # copy MLP
+ copy_mlp(hf_layer.mlp, pt_layer.mlp)
+
+ # copy attn
+ copy_attn_layer(hf_layer.self_attn, pt_layer.attn)
+
+
+def copy_layers(hf_layers, pt_layers):
+ for hf_layer, pt_layer in zip(hf_layers, pt_layers):
+ copy_layer(hf_layer, pt_layer)
+
+
+def copy_encoder(hf_encoder, pt_model):
+ # copy embeds
+ hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight
+ hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding
+
+ # copy layer norm
+ copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final)
+
+ # copy hidden layers
+ copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks)
+
+
+def copy_text_model_and_projection(hf_model, pt_model):
+ # copy projection
+ hf_model.text_projection.weight.data = pt_model.text_projection.data.T
+
+ # copy text encoder
+ copy_encoder(hf_model.text_model, pt_model)
+
+
+def copy_vison_model_and_projection(hf_model, pt_model):
+ # copy projection
+ hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T
+
+ # copy layer norms
+ copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre)
+ copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post)
+
+ # copy embeds
+ hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data
+ hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding
+ hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data
+
+ # copy encoder
+ copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks)
+
+
+@torch.no_grad()
+def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ if config_path is not None:
+ config = CLIPConfig.from_pretrained(config_path)
+ else:
+ config = CLIPConfig(projection_dim=512, text_config={}, vision_config={})
+
+ hf_model = CLIPModel(config).eval()
+
+ pt_model, _ = load(checkpoint_path, device="cpu", jit=False)
+ pt_model = pt_model.eval()
+
+ copy_text_model_and_projection(hf_model, pt_model)
+ copy_vison_model_and_projection(hf_model, pt_model)
+ hf_model.logit_scale = pt_model.logit_scale
+
+ input_ids = torch.arange(0, 77).unsqueeze(0)
+ pixel_values = torch.randn(1, 3, 224, 224)
+
+ hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True)
+ hf_logits_per_image = hf_outputs.logits_per_image
+ hf_logits_per_text = hf_outputs.logits_per_text
+ pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids)
+
+ assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3)
+ assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3)
+
+ hf_model.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
+ args = parser.parse_args()
+
+ convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..5696a63abe621e360b7e681b86454faa302c4a78
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for CLIP."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_clip import CLIPImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class CLIPFeatureExtractor(CLIPImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
+ " use CLIPImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/image_processing_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/image_processing_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd2f8b3d532bbbc5a6b5c385b33d0c0b67518b98
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/image_processing_clip.py
@@ -0,0 +1,346 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for CLIP."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ convert_to_rgb,
+ get_resize_output_image_size,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ OPENAI_CLIP_MEAN,
+ OPENAI_CLIP_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+if is_vision_available():
+ import PIL
+
+
+class CLIPImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a CLIP image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
+ `do_resize` in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
+ do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
+ `preprocess` method.
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
+ method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
+ the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
+ method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
+ Whether to convert the image to RGB.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ do_center_crop: bool = True,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = True,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"shortest_edge": 224}
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
+ crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
+
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_center_crop = do_center_crop
+ self.crop_size = crop_size
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
+ self.do_convert_rgb = do_convert_rgb
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_center_crop",
+ "crop_size",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "do_convert_rgb",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ # for backwards compatibility of KOSMOS-2
+ if "use_square_size" in kwargs:
+ self.size = {"height": size["shortest_edge"], "width": size["shortest_edge"]}
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
+ resized to keep the input aspect ratio.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ default_to_square = True
+ if "shortest_edge" in size:
+ size = size["shortest_edge"]
+ default_to_square = False
+ elif "height" in size and "width" in size:
+ size = (size["height"], size["width"])
+ else:
+ raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
+
+ output_size = get_resize_output_image_size(
+ image,
+ size=size,
+ default_to_square=default_to_square,
+ input_data_format=input_data_format,
+ )
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: int = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio.
+ resample (`int`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
+ has an effect if `do_resize` is set to `True`.
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
+ Whether to center crop the image.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
+ `True`.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ size = get_size_dict(size, param_name="size", default_to_square=False)
+ resample = resample if resample is not None else self.resample
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
+ crop_size = crop_size if crop_size is not None else self.crop_size
+ crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ images = make_list_of_images(images)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ if do_convert_rgb:
+ images = [convert_to_rgb(image) for image in images]
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_center_crop:
+ images = [
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4ce51625ebf761ef094845cfe7cf17f0a845517
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_clip.py
@@ -0,0 +1,1416 @@
+# coding=utf-8
+# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch CLIP model."""
+
+
+from dataclasses import dataclass
+from typing import Any, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
+from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "CLIPConfig"
+_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"
+
+
+from ..deprecated._archive_maps import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# contrastive loss function, adapted from
+# https://sachinruk.github.io/blog/2021-03-07-clip.html
+def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
+
+
+def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
+ caption_loss = contrastive_loss(similarity)
+ image_loss = contrastive_loss(similarity.t())
+ return (caption_loss + image_loss) / 2.0
+
+
+@dataclass
+class CLIPVisionModelOutput(ModelOutput):
+ """
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
+
+ Args:
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
+ The image embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ image_embeds: Optional[torch.FloatTensor] = None
+ last_hidden_state: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class CLIPTextModelOutput(ModelOutput):
+ """
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
+
+ Args:
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
+ The text embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ text_embeds: Optional[torch.FloatTensor] = None
+ last_hidden_state: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class CLIPOutput(ModelOutput):
+ """
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
+ Contrastive loss for image-text similarity.
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
+ similarity scores.
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
+ similarity scores.
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
+ text_model_output(`BaseModelOutputWithPooling`):
+ The output of the [`CLIPTextModel`].
+ vision_model_output(`BaseModelOutputWithPooling`):
+ The output of the [`CLIPVisionModel`].
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits_per_image: torch.FloatTensor = None
+ logits_per_text: torch.FloatTensor = None
+ text_embeds: torch.FloatTensor = None
+ image_embeds: torch.FloatTensor = None
+ text_model_output: BaseModelOutputWithPooling = None
+ vision_model_output: BaseModelOutputWithPooling = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+class CLIPVisionEmbeddings(nn.Module):
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.image_size = config.image_size
+ self.patch_size = config.patch_size
+
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
+
+ self.patch_embedding = nn.Conv2d(
+ in_channels=config.num_channels,
+ out_channels=self.embed_dim,
+ kernel_size=self.patch_size,
+ stride=self.patch_size,
+ bias=False,
+ )
+
+ self.num_patches = (self.image_size // self.patch_size) ** 2
+ self.num_positions = self.num_patches + 1
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ batch_size = pixel_values.shape[0]
+ target_dtype = self.patch_embedding.weight.dtype
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
+
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
+ embeddings = embeddings + self.position_embedding(self.position_ids)
+ return embeddings
+
+
+class CLIPTextEmbeddings(nn.Module):
+ def __init__(self, config: CLIPTextConfig):
+ super().__init__()
+ embed_dim = config.hidden_size
+
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ ) -> torch.Tensor:
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.token_embedding(input_ids)
+
+ position_embeddings = self.position_embedding(position_ids)
+ embeddings = inputs_embeds + position_embeddings
+
+ return embeddings
+
+
+class CLIPAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ causal_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ bsz, tgt_len, embed_dim = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scale
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ # apply the causal_attention_mask first
+ if causal_attention_mask is not None:
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {causal_attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit akward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped
+
+
+class CLIPMLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.activation_fn = ACT2FN[config.hidden_act]
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+class CLIPEncoderLayer(nn.Module):
+ def __init__(self, config: CLIPConfig):
+ super().__init__()
+ self.embed_dim = config.hidden_size
+ self.self_attn = CLIPAttention(config)
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+ self.mlp = CLIPMLP(config)
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ causal_attention_mask: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ `(config.encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class CLIPPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CLIPConfig
+ base_model_prefix = "clip"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor
+ if isinstance(module, CLIPTextEmbeddings):
+ module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
+ module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
+ elif isinstance(module, CLIPVisionEmbeddings):
+ factor = self.config.initializer_factor
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
+ elif isinstance(module, CLIPAttention):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ out_proj_std = (module.embed_dim**-0.5) * factor
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
+ elif isinstance(module, CLIPMLP):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
+ nn.init.normal_(module.fc1.weight, std=fc_std)
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
+ elif isinstance(module, CLIPModel):
+ nn.init.normal_(
+ module.text_projection.weight,
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+ nn.init.normal_(
+ module.visual_projection.weight,
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+ elif isinstance(module, CLIPVisionModelWithProjection):
+ nn.init.normal_(
+ module.visual_projection.weight,
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
+ )
+ elif isinstance(module, CLIPTextModelWithProjection):
+ nn.init.normal_(
+ module.text_projection.weight,
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
+ )
+
+ if isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ if isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+
+
+CLIP_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CLIP_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CLIP_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CLIP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
+ return_loss (`bool`, *optional*):
+ Whether or not to return the contrastive loss.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class CLIPEncoder(nn.Module):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`CLIPEncoderLayer`].
+
+ Args:
+ config: CLIPConfig
+ """
+
+ def __init__(self, config: CLIPConfig):
+ super().__init__()
+ self.config = config
+ self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ inputs_embeds,
+ attention_mask: Optional[torch.Tensor] = None,
+ causal_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class CLIPTextTransformer(nn.Module):
+ def __init__(self, config: CLIPTextConfig):
+ super().__init__()
+ self.config = config
+ embed_dim = config.hidden_size
+ self.embeddings = CLIPTextEmbeddings(config)
+ self.encoder = CLIPEncoder(config)
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ # For `pooled_output` computation
+ self.eos_token_id = config.eos_token_id
+
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is None:
+ raise ValueError("You have to specify input_ids")
+
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
+
+ # CLIP's text model uses causal mask, prepare it here.
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
+ causal_attention_mask = _create_4d_causal_attention_mask(
+ input_shape, hidden_states.dtype, device=hidden_states.device
+ )
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ if self.eos_token_id == 2:
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
+ # ------------------------------------------------------------
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
+ # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
+ pooled_output = last_hidden_state[
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
+ input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
+ ]
+ else:
+ # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
+ pooled_output = last_hidden_state[
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
+ # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
+ (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
+ .int()
+ .argmax(dim=-1),
+ ]
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """The text model from CLIP without any head or projection on top.""",
+ CLIP_START_DOCSTRING,
+)
+class CLIPTextModel(CLIPPreTrainedModel):
+ config_class = CLIPTextConfig
+
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
+
+ def __init__(self, config: CLIPTextConfig):
+ super().__init__(config)
+ self.text_model = CLIPTextTransformer(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.text_model.embeddings.token_embedding
+
+ def set_input_embeddings(self, value):
+ self.text_model.embeddings.token_embedding = value
+
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, CLIPTextModel
+
+ >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ return self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class CLIPVisionTransformer(nn.Module):
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = CLIPVisionEmbeddings(config)
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.encoder = CLIPEncoder(config)
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.embeddings(pixel_values)
+ hidden_states = self.pre_layrnorm(hidden_states)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ pooled_output = last_hidden_state[:, 0, :]
+ pooled_output = self.post_layernorm(pooled_output)
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """The vision model from CLIP without any head or projection on top.""",
+ CLIP_START_DOCSTRING,
+)
+class CLIPVisionModel(CLIPPreTrainedModel):
+ config_class = CLIPVisionConfig
+ main_input_name = "pixel_values"
+ _no_split_modules = ["CLIPEncoderLayer"]
+
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__(config)
+ self.vision_model = CLIPVisionTransformer(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.vision_model.embeddings.patch_embedding
+
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, CLIPVisionModel
+
+ >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ return self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+@add_start_docstrings(CLIP_START_DOCSTRING)
+class CLIPModel(CLIPPreTrainedModel):
+ config_class = CLIPConfig
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
+
+ def __init__(self, config: CLIPConfig):
+ super().__init__(config)
+
+ if not isinstance(config.text_config, CLIPTextConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type CLIPTextConfig but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ if not isinstance(config.vision_config, CLIPVisionConfig):
+ raise ValueError(
+ "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
+ f" {type(config.vision_config)}."
+ )
+
+ text_config = config.text_config
+ vision_config = config.vision_config
+
+ self.projection_dim = config.projection_dim
+ self.text_embed_dim = text_config.hidden_size
+ self.vision_embed_dim = vision_config.hidden_size
+
+ self.text_model = CLIPTextTransformer(text_config)
+ self.vision_model = CLIPVisionTransformer(vision_config)
+
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
+ applying the projection layer to the pooled output of [`CLIPTextModel`].
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, CLIPModel
+
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
+ >>> text_features = model.get_text_features(**inputs)
+ ```"""
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[1]
+ text_features = self.text_projection(pooled_output)
+
+ return text_features
+
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ def get_image_features(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
+ applying the projection layer to the pooled output of [`CLIPVisionModel`].
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, CLIPModel
+
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> image_features = model.get_image_features(**inputs)
+ ```"""
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = vision_outputs[1] # pooled_output
+ image_features = self.visual_projection(pooled_output)
+
+ return image_features
+
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ return_loss: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CLIPOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, CLIPModel
+
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
+ ... )
+
+ >>> outputs = model(**inputs)
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
+ ```"""
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ image_embeds = vision_outputs[1]
+ image_embeds = self.visual_projection(image_embeds)
+
+ text_embeds = text_outputs[1]
+ text_embeds = self.text_projection(text_embeds)
+
+ # normalized features
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
+
+ # cosine similarity as logits
+ logit_scale = self.logit_scale.exp()
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
+ logits_per_image = logits_per_text.t()
+
+ loss = None
+ if return_loss:
+ loss = clip_loss(logits_per_text)
+
+ if not return_dict:
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
+ return ((loss,) + output) if loss is not None else output
+
+ return CLIPOutput(
+ loss=loss,
+ logits_per_image=logits_per_image,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ image_embeds=image_embeds,
+ text_model_output=text_outputs,
+ vision_model_output=vision_outputs,
+ )
+
+
+@add_start_docstrings(
+ """
+ CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
+ """,
+ CLIP_START_DOCSTRING,
+)
+class CLIPTextModelWithProjection(CLIPPreTrainedModel):
+ config_class = CLIPTextConfig
+
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
+
+ def __init__(self, config: CLIPTextConfig):
+ super().__init__(config)
+
+ self.text_model = CLIPTextTransformer(config)
+
+ self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.text_model.embeddings.token_embedding
+
+ def set_input_embeddings(self, value):
+ self.text_model.embeddings.token_embedding = value
+
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CLIPTextModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
+
+ >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> text_embeds = outputs.text_embeds
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[1]
+
+ text_embeds = self.text_projection(pooled_output)
+
+ if not return_dict:
+ outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
+ return tuple(output for output in outputs if output is not None)
+
+ return CLIPTextModelOutput(
+ text_embeds=text_embeds,
+ last_hidden_state=text_outputs.last_hidden_state,
+ hidden_states=text_outputs.hidden_states,
+ attentions=text_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
+ """,
+ CLIP_START_DOCSTRING,
+)
+class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
+ config_class = CLIPVisionConfig
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__(config)
+
+ self.vision_model = CLIPVisionTransformer(config)
+
+ self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.vision_model.embeddings.patch_embedding
+
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CLIPVisionModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
+
+ >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> image_embeds = outputs.image_embeds
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = vision_outputs[1] # pooled_output
+
+ image_embeds = self.visual_projection(pooled_output)
+
+ if not return_dict:
+ outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
+ return tuple(output for output in outputs if output is not None)
+
+ return CLIPVisionModelOutput(
+ image_embeds=image_embeds,
+ last_hidden_state=vision_outputs.last_hidden_state,
+ hidden_states=vision_outputs.hidden_states,
+ attentions=vision_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
+ the patch tokens) e.g. for ImageNet.
+ """,
+ CLIP_START_DOCSTRING,
+)
+class CLIPForImageClassification(CLIPPreTrainedModel):
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: CLIPConfig) -> None:
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vision_model = CLIPVisionTransformer(config.vision_config)
+
+ # Classifier head
+ self.classifier = (
+ nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vision_model(
+ pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # average pool the patch tokens
+ sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
+ # apply classifier
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_flax_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_flax_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..265e7005b74e0e18a05cfa95eb3aa3675cb45f00
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_flax_clip.py
@@ -0,0 +1,1295 @@
+# coding=utf-8
+# Copyright 2021 The OpenAI Team Authors, The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Any, Optional, Tuple, Union
+
+import flax
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import ModelOutput, add_start_docstrings, logging
+from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+CLIP_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+CLIP_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CLIP_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CLIP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@flax.struct.dataclass
+class FlaxCLIPTextModelOutput(ModelOutput):
+ """
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
+
+ Args:
+ text_embeds (`jnp.ndarray` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of
+ [`FlaxCLIPTextModel`].
+ last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ text_embeds: jnp.ndarray = None
+ last_hidden_state: jnp.ndarray = None
+ hidden_states: Optional[Tuple[jnp.ndarray, ...]] = None
+ attentions: Optional[Tuple[jnp.ndarray, ...]] = None
+
+
+@flax.struct.dataclass
+class FlaxCLIPOutput(ModelOutput):
+ """
+ Args:
+ logits_per_image:(`jnp.ndarray` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
+ similarity scores.
+ logits_per_text:(`jnp.ndarray` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
+ similarity scores.
+ text_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of
+ [`FlaxCLIPTextModel`].
+ image_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
+ The image embeddings obtained by applying the projection layer to the pooled output of
+ [`FlaxCLIPVisionModel`].
+ text_model_output(`FlaxBaseModelOutputWithPooling`):
+ The output of the [`FlaxCLIPTextModel`].
+ vision_model_output(`FlaxBaseModelOutputWithPooling`):
+ The output of the [`FlaxCLIPVisionModel`].
+ """
+
+ logits_per_image: jnp.ndarray = None
+ logits_per_text: jnp.ndarray = None
+ text_embeds: jnp.ndarray = None
+ image_embeds: jnp.ndarray = None
+ text_model_output: FlaxBaseModelOutputWithPooling = None
+ vision_model_output: FlaxBaseModelOutputWithPooling = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+class FlaxCLIPVisionEmbeddings(nn.Module):
+ config: CLIPVisionConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ embed_dim = self.config.hidden_size
+ image_size = self.config.image_size
+ patch_size = self.config.patch_size
+
+ self.class_embedding = self.param("class_embedding", jax.nn.initializers.normal(stddev=0.02), (embed_dim,))
+
+ self.patch_embedding = nn.Conv(
+ embed_dim,
+ kernel_size=(patch_size, patch_size),
+ strides=(patch_size, patch_size),
+ padding="VALID",
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(),
+ )
+
+ self.num_patches = (image_size // patch_size) ** 2
+ num_positions = self.num_patches + 1
+ self.position_embedding = nn.Embed(num_positions, embed_dim, embedding_init=jax.nn.initializers.normal())
+ self.position_ids = jnp.expand_dims(jnp.arange(0, num_positions, dtype="i4"), axis=0)
+
+ def __call__(self, pixel_values):
+ patch_embeds = self.patch_embedding(pixel_values)
+ batch_size, height, width, channels = patch_embeds.shape
+ patch_embeds = jnp.reshape(patch_embeds, (batch_size, height * width, channels))
+
+ class_embeds = jnp.expand_dims(self.class_embedding, axis=(0, 1))
+ class_embeds = jnp.tile(class_embeds, (batch_size, 1, 1))
+ embeddings = jnp.concatenate([class_embeds, patch_embeds], axis=1)
+ embeddings = embeddings + self.position_embedding(self.position_ids)
+ return embeddings
+
+
+class FlaxCLIPTextEmbeddings(nn.Module):
+ config: CLIPTextConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ embed_dim = self.config.hidden_size
+
+ self.token_embedding = nn.Embed(self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal())
+ self.position_embedding = nn.Embed(
+ self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal()
+ )
+ self.position_ids = jnp.expand_dims(
+ jnp.arange(0, self.config.max_position_embeddings, dtype="i4"), axis=(0, 1)
+ )
+
+ def __call__(self, input_ids, position_ids):
+ input_embeds = self.token_embedding(input_ids.astype("i4"))
+ position_embeds = self.position_embedding(position_ids.astype("i4"))
+
+ embeddings = input_embeds + position_embeds
+ return embeddings
+
+
+class FlaxCLIPAttention(nn.Module):
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.embed_dim = self.config.hidden_size
+ self.num_heads = self.config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = self.config.attention_dropout
+
+ self.k_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
+ self.v_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
+ self.q_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
+ self.out_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
+
+ self.causal = isinstance(self.config, CLIPTextConfig)
+ if self.causal:
+ self.causal_mask = make_causal_mask(jnp.ones((1, self.config.max_position_embeddings), dtype="i4"))
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ query = self.q_proj(hidden_states)
+ key = self.k_proj(hidden_states)
+ value = self.v_proj(hidden_states)
+
+ query = self._split_heads(query)
+ key = self._split_heads(key)
+ value = self._split_heads(value)
+
+ causal_attention_mask = None
+ if self.causal:
+ query_length, key_length = query.shape[1], key.shape[1]
+ causal_attention_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
+
+ if attention_mask is not None and causal_attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+ attention_mask = combine_masks(attention_mask, causal_attention_mask, dtype="i4")
+ elif causal_attention_mask is not None:
+ attention_mask = causal_attention_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ if attention_mask is not None:
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query,
+ key,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.dropout,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.out_proj(attn_output)
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+class FlaxCLIPMLP(nn.Module):
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.activation_fn = ACT2FN[self.config.hidden_act]
+ self.fc1 = nn.Dense(
+ self.config.intermediate_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(0.01),
+ )
+ self.fc2 = nn.Dense(self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
+
+ def __call__(self, hidden_states):
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+class FlaxCLIPEncoderLayer(nn.Module):
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.self_attn = FlaxCLIPAttention(self.config, dtype=self.dtype)
+ self.layer_norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.mlp = FlaxCLIPMLP(self.config, dtype=self.dtype)
+ self.layer_norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ attn_outputs = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ hidden_states = attn_outputs[0]
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += attn_outputs[1:]
+
+ return outputs
+
+
+class FlaxCLIPLayerCollection(nn.Module):
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.layers = [
+ FlaxCLIPEncoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(
+ hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class FlaxCLIPEncoder(nn.Module):
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.layers = FlaxCLIPLayerCollection(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ inputs_embeds,
+ attention_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layers(
+ hidden_states=inputs_embeds,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxCLIPTextTransformer(nn.Module):
+ config: CLIPTextConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.embeddings = FlaxCLIPTextEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
+ self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ # For `pooled_output` computation
+ self.eos_token_id = self.config.eos_token_id
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ if self.eos_token_id == 2:
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
+ # ------------------------------------------------------------
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
+ # take features from the EOS embedding (eos_token_id is the highest number in each sequence)
+ pooled_output = last_hidden_state[jnp.arange(last_hidden_state.shape[0]), input_ids.argmax(axis=-1)]
+ else:
+ # (no need to cast from bool to int after comparing to `eos_token_id`)
+ pooled_output = last_hidden_state[
+ jnp.arange(last_hidden_state.shape[0]), (input_ids == self.eos_token_id).argmax(axis=-1)
+ ]
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return FlaxBaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class FlaxCLIPVisionTransformer(nn.Module):
+ config: CLIPVisionConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.embeddings = FlaxCLIPVisionEmbeddings(self.config, dtype=self.dtype)
+ self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
+ self.post_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(
+ self,
+ pixel_values=None,
+ deterministic: bool = True,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict: bool = True,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = self.embeddings(pixel_values)
+ hidden_states = self.pre_layrnorm(hidden_states)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ pooled_output = last_hidden_state[:, 0, :]
+ pooled_output = self.post_layernorm(pooled_output)
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return FlaxBaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel):
+ config_class = CLIPTextConfig
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: CLIPTextConfig,
+ input_shape=(1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensor
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
+ attention_mask = jnp.ones_like(input_ids)
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, input_ids, attention_mask, position_ids)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ position_ids=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ jnp.array(position_ids, dtype="i4"),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel):
+ config_class = CLIPVisionConfig
+ main_input_name = "pixel_values"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: CLIPVisionConfig,
+ input_shape: Optional[Tuple] = None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ if input_shape is None:
+ input_shape = (1, config.image_size, config.image_size, 3)
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensor
+ pixel_values = jax.random.normal(rng, input_shape)
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, pixel_values)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def __call__(
+ self,
+ pixel_values,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(pixel_values, dtype=jnp.float32),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
+ config_class = CLIPConfig
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: CLIPConfig,
+ input_shape: Optional[Tuple] = None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ if input_shape is None:
+ input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensor
+ input_ids = jnp.zeros(input_shape[0], dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
+ attention_mask = jnp.ones_like(input_ids)
+
+ pixel_values = jax.random.normal(rng, input_shape[1])
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def __call__(
+ self,
+ input_ids,
+ pixel_values,
+ attention_mask=None,
+ position_ids=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(pixel_values, dtype=jnp.float32),
+ jnp.array(attention_mask, dtype="i4"),
+ jnp.array(position_ids, dtype="i4"),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+ def get_text_features(
+ self,
+ input_ids,
+ attention_mask=None,
+ position_ids=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train=False,
+ ):
+ r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ Returns:
+ text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
+ the projection layer to the pooled output of [`FlaxCLIPTextModel`].
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxCLIPModel
+
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
+ >>> text_features = model.get_text_features(**inputs)
+ ```"""
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ def _get_features(module, input_ids, attention_mask, position_ids, deterministic):
+ text_outputs = module.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ deterministic=deterministic,
+ )
+ pooled_output = text_outputs[1]
+ text_features = module.text_projection(pooled_output)
+ return text_features
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ jnp.array(position_ids, dtype="i4"),
+ not train,
+ method=_get_features,
+ rngs=rngs,
+ )
+
+ def get_image_features(
+ self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False
+ ):
+ r"""
+ Args:
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
+ using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
+
+ Returns:
+ image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by
+ applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`]
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, FlaxCLIPModel
+
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="np")
+
+ >>> image_features = model.get_image_features(**inputs)
+ ```"""
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ def _get_features(module, pixel_values, deterministic):
+ vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
+ pooled_output = vision_outputs[1] # pooled_output
+ image_features = module.visual_projection(pooled_output)
+ return image_features
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(pixel_values, dtype=jnp.float32),
+ not train,
+ method=_get_features,
+ rngs=rngs,
+ )
+
+
+class FlaxCLIPTextModule(nn.Module):
+ config: CLIPTextConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxCLIPTextModel(FlaxCLIPTextPreTrainedModel):
+ module_class = FlaxCLIPTextModule
+
+
+FLAX_CLIP_TEXT_MODEL_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxCLIPTextModel
+
+ >>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooler_output = outputs.pooler_output # pooled (EOS token) states
+ ```
+"""
+
+overwrite_call_docstring(FlaxCLIPTextModel, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_DOCSTRING)
+append_replace_return_docstrings(
+ FlaxCLIPTextModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPTextConfig
+)
+
+
+class FlaxCLIPTextModelWithProjectionModule(nn.Module):
+ config: CLIPTextConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
+ self.text_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[1]
+ text_embeds = self.text_projection(pooled_output)
+
+ if not return_dict:
+ return (text_embeds, text_outputs[0]) + text_outputs[2:]
+
+ return FlaxCLIPTextModelOutput(
+ text_embeds=text_embeds,
+ last_hidden_state=text_outputs.last_hidden_state,
+ hidden_states=text_outputs.hidden_states,
+ attentions=text_outputs.attentions,
+ )
+
+
+class FlaxCLIPTextModelWithProjection(FlaxCLIPTextPreTrainedModel):
+ module_class = FlaxCLIPTextModelWithProjectionModule
+
+
+FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxCLIPTextModelWithProjection
+
+ >>> model = FlaxCLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
+
+ >>> outputs = model(**inputs)
+ >>> text_embeds = outputs.text_embeds
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxCLIPTextModelWithProjection, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING
+)
+append_replace_return_docstrings(
+ FlaxCLIPTextModelWithProjection, output_type=FlaxCLIPTextModelOutput, config_class=CLIPTextConfig
+)
+
+
+class FlaxCLIPVisionModule(nn.Module):
+ config: CLIPVisionConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.vision_model = FlaxCLIPVisionTransformer(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ pixel_values,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.vision_model(
+ pixel_values=pixel_values,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxCLIPVisionModel(FlaxCLIPVisionPreTrainedModel):
+ module_class = FlaxCLIPVisionModule
+
+
+FLAX_CLIP_VISION_MODEL_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, FlaxCLIPVisionModel
+
+ >>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="np")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooler_output = outputs.pooler_output # pooled CLS states
+ ```
+"""
+
+overwrite_call_docstring(FlaxCLIPVisionModel, CLIP_VISION_INPUTS_DOCSTRING + FLAX_CLIP_VISION_MODEL_DOCSTRING)
+append_replace_return_docstrings(
+ FlaxCLIPVisionModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPVisionConfig
+)
+
+
+class FlaxCLIPModule(nn.Module):
+ config: CLIPConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ text_config = self.config.text_config
+ vision_config = self.config.vision_config
+
+ self.projection_dim = self.config.projection_dim
+ self.text_embed_dim = text_config.hidden_size
+ self.vision_embed_dim = vision_config.hidden_size
+
+ self.text_model = FlaxCLIPTextTransformer(text_config, dtype=self.dtype)
+ self.vision_model = FlaxCLIPVisionTransformer(vision_config, dtype=self.dtype)
+
+ self.visual_projection = nn.Dense(
+ self.projection_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(0.02),
+ use_bias=False,
+ )
+ self.text_projection = nn.Dense(
+ self.projection_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(0.02),
+ use_bias=False,
+ )
+
+ self.logit_scale = self.param(
+ "logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, []
+ )
+
+ def __call__(
+ self,
+ input_ids=None,
+ pixel_values=None,
+ attention_mask=None,
+ position_ids=None,
+ deterministic: bool = True,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ image_embeds = vision_outputs[1]
+ image_embeds = self.visual_projection(image_embeds)
+
+ text_embeds = text_outputs[1]
+ text_embeds = self.text_projection(text_embeds)
+
+ # normalized features
+ image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
+ text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
+
+ # cosine similarity as logits
+ logit_scale = jnp.exp(self.logit_scale)
+ logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
+ logits_per_image = logits_per_text.T
+
+ if not return_dict:
+ return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
+
+ return FlaxCLIPOutput(
+ logits_per_image=logits_per_image,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ image_embeds=image_embeds,
+ text_model_output=text_outputs,
+ vision_model_output=vision_outputs,
+ )
+
+
+@add_start_docstrings(CLIP_START_DOCSTRING)
+class FlaxCLIPModel(FlaxCLIPPreTrainedModel):
+ module_class = FlaxCLIPModule
+
+
+FLAX_CLIP_MODEL_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, FlaxCLIPModel
+
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True
+ ... )
+
+ >>> outputs = model(**inputs)
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
+ >>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
+ ```
+"""
+
+overwrite_call_docstring(FlaxCLIPModel, CLIP_INPUTS_DOCSTRING + FLAX_CLIP_MODEL_DOCSTRING)
+append_replace_return_docstrings(FlaxCLIPModel, output_type=FlaxCLIPOutput, config_class=CLIPConfig)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_tf_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_tf_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..c7e8ba7f5c954e95de08d39966b7a3fd934f9f93
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_tf_clip.py
@@ -0,0 +1,1461 @@
+# coding=utf-8
+# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 CLIP model."""
+
+
+from __future__ import annotations
+
+import math
+from dataclasses import dataclass
+from typing import Any, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
+
+# Public API
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
+
+
+from ..deprecated._archive_maps import TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+LARGE_NEGATIVE = -1e8
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
+def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ src_len = shape_list(mask)[1]
+ tgt_len = tgt_len if tgt_len is not None else src_len
+ one_cst = tf.constant(1.0)
+ mask = tf.cast(mask, dtype=one_cst.dtype)
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
+
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
+
+
+# contrastive loss function, adapted from
+# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
+def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
+ return tf.math.reduce_mean(
+ keras.metrics.sparse_categorical_crossentropy(
+ y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
+ )
+ )
+
+
+def clip_loss(similarity: tf.Tensor) -> tf.Tensor:
+ caption_loss = contrastive_loss(similarity)
+ image_loss = contrastive_loss(tf.transpose(similarity))
+ return (caption_loss + image_loss) / 2.0
+
+
+@dataclass
+class TFCLIPOutput(ModelOutput):
+ """
+ Args:
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
+ Contrastive loss for image-text similarity.
+ logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
+ similarity scores.
+ logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
+ similarity scores.
+ text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`].
+ image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
+ The image embeddings obtained by applying the projection layer to the pooled output of
+ [`TFCLIPVisionModel`].
+ text_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
+ The output of the [`TFCLIPTextModel`].
+ vision_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
+ The output of the [`TFCLIPVisionModel`].
+ """
+
+ loss: tf.Tensor | None = None
+ logits_per_image: tf.Tensor = None
+ logits_per_text: tf.Tensor = None
+ text_embeds: tf.Tensor = None
+ image_embeds: tf.Tensor = None
+ text_model_output: TFBaseModelOutputWithPooling = None
+ vision_model_output: TFBaseModelOutputWithPooling = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+class TFCLIPVisionEmbeddings(keras.layers.Layer):
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embed_dim = config.hidden_size
+ self.image_size = config.image_size
+ self.patch_size = config.patch_size
+
+ self.num_patches = (self.image_size // self.patch_size) ** 2
+ self.num_positions = self.num_patches + 1
+
+ self.config = config
+
+ self.patch_embedding = keras.layers.Conv2D(
+ filters=self.embed_dim,
+ kernel_size=self.patch_size,
+ strides=self.patch_size,
+ padding="valid",
+ data_format="channels_last",
+ use_bias=False,
+ kernel_initializer=get_initializer(self.config.initializer_range * self.config.initializer_factor),
+ name="patch_embedding",
+ )
+
+ def build(self, input_shape: tf.TensorShape = None):
+ factor = self.config.initializer_factor
+
+ self.class_embedding = self.add_weight(
+ shape=(self.embed_dim,),
+ initializer=get_initializer(self.embed_dim**-0.5 * factor),
+ trainable=True,
+ name="class_embedding",
+ )
+
+ with tf.name_scope("position_embedding"):
+ self.position_embedding = self.add_weight(
+ shape=(self.num_positions, self.embed_dim),
+ initializer=get_initializer(self.config.initializer_range * factor),
+ trainable=True,
+ name="embeddings",
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "patch_embedding", None) is not None:
+ with tf.name_scope(self.patch_embedding.name):
+ self.patch_embedding.build([None, None, None, self.config.num_channels])
+
+ def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
+ """`pixel_values` is expected to be of NCHW format."""
+
+ batch_size, num_channels, height, width = shape_list(pixel_values)
+
+ # When running on CPU, `tf.nn.conv2d` doesn't support `NCHW` format.
+ # So change the input format from `NCHW` to `NHWC`.
+ # shape = (batch_size, in_height, in_width, in_channels=num_channels)
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
+
+ patch_embeds = self.patch_embedding(pixel_values)
+
+ # Change the 2D spatial dimensions to a single temporal dimension.
+ # shape = (batch_size, num_patches, out_channels=embed_dim)
+ patch_embeds = tf.reshape(tensor=patch_embeds, shape=(batch_size, self.num_patches, -1))
+
+ # add the [CLS] token to the embedded patch tokens
+ class_embeds = tf.broadcast_to(self.class_embedding, shape=(batch_size, 1, self.embed_dim))
+ embeddings = tf.concat((class_embeds, patch_embeds), axis=1)
+
+ embeddings = embeddings + self.position_embedding
+
+ return embeddings
+
+
+class TFCLIPTextEmbeddings(keras.layers.Layer):
+ def __init__(self, config: CLIPTextConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embed_dim = config.hidden_size
+
+ self.config = config
+
+ def build(self, input_shape: tf.TensorShape = None):
+ with tf.name_scope("token_embedding"):
+ self.weight = self.add_weight(
+ shape=(self.config.vocab_size, self.embed_dim),
+ initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
+ trainable=True,
+ name="weight",
+ )
+
+ with tf.name_scope("position_embedding"):
+ self.position_embedding = self.add_weight(
+ shape=(self.config.max_position_embeddings, self.embed_dim),
+ initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
+ trainable=True,
+ name="embeddings",
+ )
+
+ super().build(input_shape)
+
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ position_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if position_ids is None:
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
+
+ position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
+ position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
+ final_embeddings = inputs_embeds + position_embeds
+
+ return final_embeddings
+
+
+class TFCLIPAttention(keras.layers.Layer):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: CLIPConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embed_dim = config.hidden_size
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = self.embed_dim // self.num_attention_heads
+ if self.attention_head_size * self.num_attention_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_attention_heads})."
+ )
+
+ factor = config.initializer_factor
+ in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
+ out_proj_std = (self.embed_dim**-0.5) * factor
+
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.q_proj = keras.layers.Dense(
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
+ )
+ self.k_proj = keras.layers.Dense(
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
+ )
+ self.v_proj = keras.layers.Dense(
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
+ )
+
+ self.dropout = keras.layers.Dropout(rate=config.attention_dropout)
+
+ self.out_proj = keras.layers.Dense(
+ units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
+ )
+
+ # copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ causal_attention_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ """Input shape: Batch x Time x Channel"""
+
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.q_proj(inputs=hidden_states)
+ mixed_key_layer = self.k_proj(inputs=hidden_states)
+ mixed_value_layer = self.v_proj(inputs=hidden_states)
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ # apply the causal_attention_mask first
+ if causal_attention_mask is not None:
+ # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
+ attention_scores = tf.add(attention_scores, causal_attention_mask)
+
+ if attention_mask is not None:
+ # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ _attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=_attention_probs, training=training)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, embed_dim)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))
+
+ attention_output = self.out_proj(attention_output, training=training)
+ # In TFBert, attention weights are returned after dropout.
+ # However, in CLIP, they are returned before dropout.
+ outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.embed_dim])
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.embed_dim])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.embed_dim])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.embed_dim])
+
+
+class TFCLIPMLP(keras.layers.Layer):
+ def __init__(self, config: CLIPConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.activation_fn = get_tf_activation(config.hidden_act)
+
+ factor = config.initializer_factor
+ in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
+ fc_std = (2 * config.hidden_size) ** -0.5 * factor
+
+ self.fc1 = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
+ )
+ self.fc2 = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.fc1(inputs=hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(inputs=hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.config.hidden_size])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.intermediate_size])
+
+
+class TFCLIPEncoderLayer(keras.layers.Layer):
+ def __init__(self, config: CLIPConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embed_dim = config.hidden_size
+ self.self_attn = TFCLIPAttention(config, name="self_attn")
+ self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
+ self.mlp = TFCLIPMLP(config, name="mlp")
+ self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ causal_attention_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`tf.Tensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ causal_attention_mask (`tf.Tensor`): causal attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ output_attentions (`bool`):
+ Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
+ tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(inputs=hidden_states)
+ attention_outputs = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = attention_outputs[0]
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(inputs=hidden_states)
+ hidden_states = self.mlp(hidden_states=hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "layer_norm1", None) is not None:
+ with tf.name_scope(self.layer_norm1.name):
+ self.layer_norm1.build([None, None, self.embed_dim])
+ if getattr(self, "mlp", None) is not None:
+ with tf.name_scope(self.mlp.name):
+ self.mlp.build(None)
+ if getattr(self, "layer_norm2", None) is not None:
+ with tf.name_scope(self.layer_norm2.name):
+ self.layer_norm2.build([None, None, self.embed_dim])
+
+
+class TFCLIPEncoder(keras.layers.Layer):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`TFCLIPEncoderLayer`].
+
+ Args:
+ config: CLIPConfig
+ """
+
+ def __init__(self, config: CLIPConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.layers = [TFCLIPEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ causal_attention_mask: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFCLIPTextTransformer(keras.layers.Layer):
+ def __init__(self, config: CLIPTextConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embeddings = TFCLIPTextEmbeddings(config, name="embeddings")
+ self.encoder = TFCLIPEncoder(config, name="encoder")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
+
+ # For `pooled_output` computation
+ self.eos_token_id = config.eos_token_id
+ self.embed_dim = config.hidden_size
+
+ def call(
+ self,
+ input_ids: TFModelInputType,
+ attention_mask: tf.Tensor,
+ position_ids: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ input_shape = shape_list(input_ids)
+
+ embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
+
+ batch_size, seq_length = input_shape
+ # CLIP's text model uses causal mask, prepare it here.
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
+ causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)
+
+ # check attention mask and invert
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask)
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.final_layer_norm(inputs=sequence_output)
+
+ if self.eos_token_id == 2:
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
+ # ------------------------------------------------------------
+ # text_embeds.shape = [batch_size, n_ctx, transformer.width]
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
+ pooled_output = tf.gather_nd(
+ params=sequence_output,
+ indices=tf.stack(
+ values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
+ ),
+ )
+ else:
+ # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
+ pooled_output = tf.gather_nd(
+ params=sequence_output,
+ indices=tf.stack(
+ values=(
+ tf.range(input_shape[0], dtype=tf.int64),
+ tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
+ ),
+ axis=1,
+ ),
+ )
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
+ # It is possible with an unspecified sequence length for seq_length to be
+ # a runtime value, which is unsupported by tf.constant. Per the TensorFlow
+ # docs, tf.fill can handle runtime dynamic shapes:
+ # https://www.tensorflow.org/api_docs/python/tf/fill
+ diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)
+
+ # set an additive 2D attention mask with all places being masked
+ to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)
+
+ # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
+ # TIP: think the 2D matrix as the space of (query_seq, key_seq)
+ to_mask = tf.linalg.band_part(to_mask, 0, -1)
+ # to_mask = tf.linalg.band_part(to_mask, -1, 0)
+ to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)
+
+ return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+@keras_serializable
+class TFCLIPTextMainLayer(keras.layers.Layer):
+ config_class = CLIPTextConfig
+
+ def __init__(self, config: CLIPTextConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.text_model = TFCLIPTextTransformer(config, name="text_model")
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.text_model.embeddings
+
+ def set_input_embeddings(self, value: tf.Variable):
+ self.text_model.embeddings.weight = value
+ self.text_model.embeddings.vocab_size = shape_list(value)[0]
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ if input_ids is None:
+ raise ValueError("You have to specify input_ids")
+
+ input_shape = shape_list(input_ids)
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ text_model_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return text_model_outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "text_model", None) is not None:
+ with tf.name_scope(self.text_model.name):
+ self.text_model.build(None)
+
+
+class TFCLIPVisionTransformer(keras.layers.Layer):
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embeddings = TFCLIPVisionEmbeddings(config, name="embeddings")
+ self.pre_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
+ self.encoder = TFCLIPEncoder(config, name="encoder")
+ self.post_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
+ self.embed_dim = config.hidden_size
+
+ def call(
+ self,
+ pixel_values: TFModelInputType,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ embedding_output = self.embeddings(pixel_values=pixel_values)
+ embedding_output = self.pre_layernorm(inputs=embedding_output)
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=None,
+ causal_attention_mask=None,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = sequence_output[:, 0, :]
+ pooled_output = self.post_layernorm(inputs=pooled_output)
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "pre_layernorm", None) is not None:
+ with tf.name_scope(self.pre_layernorm.name):
+ self.pre_layernorm.build([None, None, self.embed_dim])
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "post_layernorm", None) is not None:
+ with tf.name_scope(self.post_layernorm.name):
+ self.post_layernorm.build([None, self.embed_dim])
+
+
+@keras_serializable
+class TFCLIPVisionMainLayer(keras.layers.Layer):
+ config_class = CLIPVisionConfig
+
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.vision_model = TFCLIPVisionTransformer(config, name="vision_model")
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.vision_model.embeddings
+
+ @unpack_inputs
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ vision_model_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return vision_model_outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "vision_model", None) is not None:
+ with tf.name_scope(self.vision_model.name):
+ self.vision_model.build(None)
+
+
+@keras_serializable
+class TFCLIPMainLayer(keras.layers.Layer):
+ config_class = CLIPConfig
+
+ def __init__(self, config: CLIPConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if not isinstance(config.text_config, CLIPTextConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type CLIPTextConfig but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ if not isinstance(config.vision_config, CLIPVisionConfig):
+ raise ValueError(
+ "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
+ f" {type(config.vision_config)}."
+ )
+
+ self.config = config
+
+ text_config = config.text_config
+ vision_config = config.vision_config
+
+ self.projection_dim = config.projection_dim
+
+ self.text_model = TFCLIPTextTransformer(text_config, name="text_model")
+ self.vision_model = TFCLIPVisionTransformer(vision_config, name="vision_model")
+
+ self.visual_projection = keras.layers.Dense(
+ units=self.projection_dim,
+ kernel_initializer=get_initializer(vision_config.hidden_size**-0.5 * self.config.initializer_factor),
+ use_bias=False,
+ name="visual_projection",
+ )
+
+ self.text_projection = keras.layers.Dense(
+ units=self.projection_dim,
+ kernel_initializer=get_initializer(text_config.hidden_size**-0.5 * self.config.initializer_factor),
+ use_bias=False,
+ name="text_projection",
+ )
+ self.text_embed_dim = text_config.hidden_size
+ self.vision_embed_dim = vision_config.hidden_size
+
+ def build(self, input_shape: tf.TensorShape = None):
+ self.logit_scale = self.add_weight(
+ shape=(1,),
+ initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
+ trainable=True,
+ name="logit_scale",
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "text_model", None) is not None:
+ with tf.name_scope(self.text_model.name):
+ self.text_model.build(None)
+ if getattr(self, "vision_model", None) is not None:
+ with tf.name_scope(self.vision_model.name):
+ self.vision_model.build(None)
+ if getattr(self, "visual_projection", None) is not None:
+ with tf.name_scope(self.visual_projection.name):
+ self.visual_projection.build([None, None, self.vision_embed_dim])
+ if getattr(self, "text_projection", None) is not None:
+ with tf.name_scope(self.text_projection.name):
+ self.text_projection.build([None, None, self.text_embed_dim])
+
+ @unpack_inputs
+ def get_text_features(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ if input_ids is None:
+ raise ValueError("You have to specify either input_ids")
+
+ input_shape = shape_list(input_ids)
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ pooled_output = text_outputs[1]
+ text_features = self.text_projection(inputs=pooled_output)
+
+ return text_features
+
+ @unpack_inputs
+ def get_image_features(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ pooled_output = vision_outputs[1] # pooled_output
+ image_features = self.visual_projection(inputs=pooled_output)
+
+ return image_features
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ pixel_values: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ return_loss: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
+ if input_ids is None:
+ raise ValueError("You have to specify either input_ids")
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ input_shape = shape_list(input_ids)
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ image_embeds = vision_outputs[1]
+ image_embeds = self.visual_projection(inputs=image_embeds)
+
+ text_embeds = text_outputs[1]
+ text_embeds = self.text_projection(inputs=text_embeds)
+
+ # normalized features
+ image_embeds = image_embeds / tf.norm(tensor=image_embeds, ord="euclidean", axis=-1, keepdims=True)
+ text_embeds = text_embeds / tf.norm(tensor=text_embeds, ord="euclidean", axis=-1, keepdims=True)
+
+ # cosine similarity as logits
+ logit_scale = tf.math.exp(self.logit_scale)
+ logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
+ logits_per_image = tf.transpose(logits_per_text)
+
+ loss = None
+ if return_loss:
+ loss = clip_loss(logits_per_text)
+ loss = tf.reshape(loss, (1,))
+
+ if not return_dict:
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
+ return (loss,) + output if loss is not None else output
+
+ return TFCLIPOutput(
+ loss=loss,
+ logits_per_image=logits_per_image,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ image_embeds=image_embeds,
+ text_model_output=text_outputs,
+ vision_model_output=vision_outputs,
+ )
+
+
+class TFCLIPPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CLIPConfig
+ base_model_prefix = "clip"
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+ _keys_to_ignore_on_load_unexpected = [r"position_ids"]
+
+
+CLIP_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CLIP_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+CLIP_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to
+ return the attentions tensors of all attention layers. See `attentions` under returned tensors for more
+ detail. This argument can be used only in eager mode, in graph mode the value in the config will be used
+ instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+CLIP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`CLIPImageProcessor.__call__`] for details.
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ return_loss (`bool`, *optional*):
+ Whether or not to return the contrastive loss.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+class TFCLIPTextModel(TFCLIPPreTrainedModel):
+ config_class = CLIPTextConfig
+
+ def __init__(self, config: CLIPTextConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.clip = TFCLIPTextMainLayer(config, name="clip")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPTextConfig)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, TFCLIPTextModel
+
+ >>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
+ ```"""
+
+ outputs = self.clip(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "clip", None) is not None:
+ with tf.name_scope(self.clip.name):
+ self.clip.build(None)
+
+
+class TFCLIPVisionModel(TFCLIPPreTrainedModel):
+ config_class = CLIPVisionConfig
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: CLIPVisionConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.clip = TFCLIPVisionMainLayer(config, name="clip")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPVisionConfig)
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, TFCLIPVisionModel
+
+ >>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="tf")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
+ ```"""
+
+ outputs = self.clip(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "clip", None) is not None:
+ with tf.name_scope(self.clip.name):
+ self.clip.build(None)
+
+
+@add_start_docstrings(CLIP_START_DOCSTRING)
+class TFCLIPModel(TFCLIPPreTrainedModel):
+ config_class = CLIPConfig
+
+ def __init__(self, config: CLIPConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.clip = TFCLIPMainLayer(config, name="clip")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def get_text_features(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ r"""
+ Returns:
+ text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
+ the projection layer to the pooled output of [`TFCLIPTextModel`].
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, TFCLIPModel
+
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
+ >>> text_features = model.get_text_features(**inputs)
+ ```"""
+
+ text_features = self.clip.get_text_features(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return text_features
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
+ def get_image_features(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ r"""
+ Returns:
+ image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
+ the projection layer to the pooled output of [`TFCLIPVisionModel`].
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, TFCLIPModel
+
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="tf")
+
+ >>> image_features = model.get_image_features(**inputs)
+ ```"""
+
+ image_features = self.clip.get_image_features(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return image_features
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFCLIPOutput, config_class=CLIPConfig)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ pixel_values: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ return_loss: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import tensorflow as tf
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, TFCLIPModel
+
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
+ ... )
+
+ >>> outputs = model(**inputs)
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
+ >>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
+ ```"""
+
+ outputs = self.clip(
+ input_ids=input_ids,
+ pixel_values=pixel_values,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ return_loss=return_loss,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return outputs
+
+ def serving_output(self, output: TFCLIPOutput) -> TFCLIPOutput:
+ # TODO: As is this currently fails with saved_model=True, because
+ # TensorFlow cannot trace through nested dataclasses. Reference:
+ # https://github.com/huggingface/transformers/pull/16886
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "clip", None) is not None:
+ with tf.name_scope(self.clip.name):
+ self.clip.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/processing_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/processing_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..60805402b4cea7d6da9f4852a48f960564a8f4ce
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/processing_clip.py
@@ -0,0 +1,153 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Image/Text processor class for CLIP
+"""
+
+import warnings
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding
+
+
+class CLIPProcessor(ProcessorMixin):
+ r"""
+ Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
+
+ [`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the
+ [`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information.
+
+ Args:
+ image_processor ([`CLIPImageProcessor`], *optional*):
+ The image processor is a required input.
+ tokenizer ([`CLIPTokenizerFast`], *optional*):
+ The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "CLIPImageProcessor"
+ tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
+
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
+ feature_extractor = None
+ if "feature_extractor" in kwargs:
+ warnings.warn(
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
+ " instead.",
+ FutureWarning,
+ )
+ feature_extractor = kwargs.pop("feature_extractor")
+
+ image_processor = image_processor if image_processor is not None else feature_extractor
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(image_processor, tokenizer)
+
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
+ """
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
+ and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
+ of the above two methods for more information.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
+ tensor. Both channels-first and channels-last formats are supported.
+
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors of a particular framework. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return NumPy `np.ndarray` objects.
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
+
+ Returns:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
+ `None`).
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
+ """
+ tokenizer_kwargs, image_processor_kwargs = {}, {}
+ if kwargs:
+ tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in self.image_processor._valid_processor_keys}
+ image_processor_kwargs = {
+ k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
+ }
+
+ if text is None and images is None:
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
+
+ if text is not None:
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **tokenizer_kwargs)
+
+ if images is not None:
+ image_features = self.image_processor(images, return_tensors=return_tensors, **image_processor_kwargs)
+
+ if text is not None and images is not None:
+ encoding["pixel_values"] = image_features.pixel_values
+ return encoding
+ elif text is not None:
+ return encoding
+ else:
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
+
+ @property
+ def feature_extractor_class(self):
+ warnings.warn(
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
+ FutureWarning,
+ )
+ return self.image_processor_class
+
+ @property
+ def feature_extractor(self):
+ warnings.warn(
+ "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
+ FutureWarning,
+ )
+ return self.image_processor
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b4ad88b80a9e096106f946445212c71adfd9cf9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip.py
@@ -0,0 +1,516 @@
+# coding=utf-8
+# Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for CLIP."""
+
+import json
+import os
+import unicodedata
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+}
+
+
+@lru_cache()
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+def whitespace_clean(text):
+ text = re.sub(r"\s+", " ", text)
+ text = text.strip()
+ return text
+
+
+# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+class CLIPTokenizer(PreTrainedTokenizer):
+ """
+ Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
+ The beginning of sequence token.
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The end of sequence token.
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ unk_token="<|endoftext|>",
+ bos_token="<|startoftext|>",
+ eos_token="<|endoftext|>",
+ pad_token="<|endoftext|>", # hack to enable padding
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ try:
+ import ftfy
+
+ self.fix_text = ftfy.fix_text
+ except ImportError:
+ logger.info("ftfy or spacy is not installed using custom BasicTokenizer instead of ftfy.")
+ self.nlp = BasicTokenizer(strip_accents=False, do_split_on_punc=False)
+ self.fix_text = None
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"}
+
+ self.pat = re.compile(
+ r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
+ re.IGNORECASE,
+ )
+
+ super().__init__(
+ errors=errors,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ def get_vocab(self):
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A CLIP sequence has the following format:
+
+ - single sequence: `<|startoftext|> X <|endoftext|>`
+
+ Pairs of sequences are not the expected use case, but they will be handled without a separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ bos_token = [self.bos_token_id]
+ eos_token = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return bos_token + token_ids_0 + eos_token
+ return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1] + [1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
+ zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ bos_token = [self.bos_token_id]
+ eos_token = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return len(bos_token + token_ids_0 + eos_token) * [0]
+ return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
+
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token[:-1]) + (token[-1] + "",)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token + ""
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ if self.fix_text is None:
+ text = " ".join(self.nlp.tokenize(text))
+ else:
+ text = whitespace_clean(self.fix_text(text)).lower()
+
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
+ return bpe_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ byte_array = bytearray([self.byte_decoder[c] for c in text])
+ text = byte_array.decode("utf-8", errors=self.errors).replace("", " ").strip()
+ return text
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ "Saving vocabulary to {}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!".format(merge_file)
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..6198958a034f433be6ce9fe522c02947f2835d92
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip_fast.py
@@ -0,0 +1,159 @@
+# coding=utf-8
+# Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for OpenAI GPT."""
+
+
+from typing import List, Optional, Tuple
+
+from tokenizers import pre_tokenizers
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_clip import CLIPTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class CLIPTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
+ Byte-Pair-Encoding.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`, *optional*):
+ Path to the vocabulary file.
+ merges_file (`str`, *optional*):
+ Path to the merges file.
+ tokenizer_file (`str`, *optional*):
+ The path to a tokenizer file to use instead of the vocab file.
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
+ The beginning of sequence token.
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The end of sequence token.
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = CLIPTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ tokenizer_file=None,
+ unk_token="<|endoftext|>",
+ bos_token="<|startoftext|>",
+ eos_token="<|endoftext|>",
+ pad_token="<|endoftext|>", # hack to enable padding
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ merges_file,
+ tokenizer_file=tokenizer_file,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ **kwargs,
+ )
+
+ if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence):
+ raise ValueError(
+ "The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been"
+ " heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using"
+ " to be compatible with this version.The easiest way to do so is"
+ ' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want'
+ " to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of"
+ " transformers."
+ )
+
+ self._wrap_decode_method_backend_tokenizer()
+
+ # Very ugly hack to enable padding to have a correct decoding see https://github.com/huggingface/tokenizers/issues/872
+ def _wrap_decode_method_backend_tokenizer(self):
+ orig_decode_method = self.backend_tokenizer.decode
+
+ def new_decode_method(*args, **kwargs):
+ text = orig_decode_method(*args, **kwargs)
+ text = text.replace(self.backend_tokenizer.model.end_of_word_suffix, " ").strip()
+ return text
+
+ self.backend_tokenizer.decode = new_decode_method
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A CLIP sequence has the following format:
+
+ - single sequence: `<|startoftext|> X <|endoftext|>`
+
+ Pairs of sequences are not the expected use case, but they will be handled without a separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ bos_token = [self.bos_token_id]
+ eos_token = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return bos_token + token_ids_0 + eos_token
+ return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
+ zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ bos_token = [self.bos_token_id]
+ eos_token = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return len(bos_token + token_ids_0 + eos_token) * [0]
+ return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb1b20a331fe11dfa687c7550685de296ebafbe0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__init__.py
@@ -0,0 +1,127 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config", "DebertaV2OnnxConfig"],
+ "tokenization_deberta_v2": ["DebertaV2Tokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_deberta_v2_fast"] = ["DebertaV2TokenizerFast"]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_deberta_v2"] = [
+ "TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFDebertaV2ForMaskedLM",
+ "TFDebertaV2ForQuestionAnswering",
+ "TFDebertaV2ForMultipleChoice",
+ "TFDebertaV2ForSequenceClassification",
+ "TFDebertaV2ForTokenClassification",
+ "TFDebertaV2Model",
+ "TFDebertaV2PreTrainedModel",
+ ]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_deberta_v2"] = [
+ "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "DebertaV2ForMaskedLM",
+ "DebertaV2ForMultipleChoice",
+ "DebertaV2ForQuestionAnswering",
+ "DebertaV2ForSequenceClassification",
+ "DebertaV2ForTokenClassification",
+ "DebertaV2Model",
+ "DebertaV2PreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_deberta_v2 import (
+ DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ DebertaV2Config,
+ DebertaV2OnnxConfig,
+ )
+ from .tokenization_deberta_v2 import DebertaV2Tokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_deberta_v2_fast import DebertaV2TokenizerFast
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_deberta_v2 import (
+ TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFDebertaV2ForMaskedLM,
+ TFDebertaV2ForMultipleChoice,
+ TFDebertaV2ForQuestionAnswering,
+ TFDebertaV2ForSequenceClassification,
+ TFDebertaV2ForTokenClassification,
+ TFDebertaV2Model,
+ TFDebertaV2PreTrainedModel,
+ )
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_deberta_v2 import (
+ DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
+ DebertaV2ForMaskedLM,
+ DebertaV2ForMultipleChoice,
+ DebertaV2ForQuestionAnswering,
+ DebertaV2ForSequenceClassification,
+ DebertaV2ForTokenClassification,
+ DebertaV2Model,
+ DebertaV2PreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..df8cea02b1c594f0b544e17cdf53d9ae96605701
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/configuration_deberta_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/configuration_deberta_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69999060aeaf12dbf1367a58f7c1342c6c1ee8fb
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/configuration_deberta_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_deberta_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_deberta_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6971bcb51beaead7268bd5ce277be9c79a023f80
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_deberta_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_tf_deberta_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_tf_deberta_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..68fbecbb913e11123572f636001d8df768f6d158
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_tf_deberta_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9711994521a9dcd39cb30c527381a3ea426707c8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..39c7424be9faeaa133462e9bc472877630596443
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/configuration_deberta_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/configuration_deberta_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..25348849e2f240e2e284d501282b9cf9266b8b00
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/configuration_deberta_v2.py
@@ -0,0 +1,192 @@
+# coding=utf-8
+# Copyright 2020, Microsoft and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" DeBERTa-v2 model configuration"""
+from collections import OrderedDict
+from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+if TYPE_CHECKING:
+ from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class DebertaV2Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`DebertaV2Model`]. It is used to instantiate a
+ DeBERTa-v2 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the DeBERTa
+ [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Arguments:
+ vocab_size (`int`, *optional*, defaults to 128100):
+ Vocabulary size of the DeBERTa-v2 model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`DebertaV2Model`].
+ hidden_size (`int`, *optional*, defaults to 1536):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 24):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 6144):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
+ are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 0):
+ The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-7):
+ The epsilon used by the layer normalization layers.
+ relative_attention (`bool`, *optional*, defaults to `True`):
+ Whether use relative position encoding.
+ max_relative_positions (`int`, *optional*, defaults to -1):
+ The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
+ as `max_position_embeddings`.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The value used to pad input_ids.
+ position_biased_input (`bool`, *optional*, defaults to `True`):
+ Whether add absolute position embedding to content embedding.
+ pos_att_type (`List[str]`, *optional*):
+ The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
+ `["p2c", "c2p"]`, `["p2c", "c2p"]`.
+ layer_norm_eps (`float`, optional, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+
+ Example:
+
+ ```python
+ >>> from transformers import DebertaV2Config, DebertaV2Model
+
+ >>> # Initializing a DeBERTa-v2 microsoft/deberta-v2-xlarge style configuration
+ >>> configuration = DebertaV2Config()
+
+ >>> # Initializing a model (with random weights) from the microsoft/deberta-v2-xlarge style configuration
+ >>> model = DebertaV2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "deberta-v2"
+
+ def __init__(
+ self,
+ vocab_size=128100,
+ hidden_size=1536,
+ num_hidden_layers=24,
+ num_attention_heads=24,
+ intermediate_size=6144,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=0,
+ initializer_range=0.02,
+ layer_norm_eps=1e-7,
+ relative_attention=False,
+ max_relative_positions=-1,
+ pad_token_id=0,
+ position_biased_input=True,
+ pos_att_type=None,
+ pooler_dropout=0,
+ pooler_hidden_act="gelu",
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.relative_attention = relative_attention
+ self.max_relative_positions = max_relative_positions
+ self.pad_token_id = pad_token_id
+ self.position_biased_input = position_biased_input
+
+ # Backwards compatibility
+ if isinstance(pos_att_type, str):
+ pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
+
+ self.pos_att_type = pos_att_type
+ self.vocab_size = vocab_size
+ self.layer_norm_eps = layer_norm_eps
+
+ self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
+ self.pooler_dropout = pooler_dropout
+ self.pooler_hidden_act = pooler_hidden_act
+
+
+class DebertaV2OnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ if self._config.type_vocab_size > 0:
+ return OrderedDict(
+ [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
+ )
+ else:
+ return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 12
+
+ def generate_dummy_inputs(
+ self,
+ preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
+ batch_size: int = -1,
+ seq_length: int = -1,
+ num_choices: int = -1,
+ is_pair: bool = False,
+ framework: Optional["TensorType"] = None,
+ num_channels: int = 3,
+ image_width: int = 40,
+ image_height: int = 40,
+ tokenizer: "PreTrainedTokenizerBase" = None,
+ ) -> Mapping[str, Any]:
+ dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
+ if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
+ del dummy_inputs["token_type_ids"]
+ return dummy_inputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_deberta_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_deberta_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..dfe18b0d4964af94a2790c0d76b56ed3caacaeff
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_deberta_v2.py
@@ -0,0 +1,1629 @@
+# coding=utf-8
+# Copyright 2020 Microsoft and the Hugging Face Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch DeBERTa-v2 model."""
+
+from collections.abc import Sequence
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import softmax_backward_data
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_deberta_v2 import DebertaV2Config
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "DebertaV2Config"
+_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
+_QA_TARGET_START_INDEX = 2
+_QA_TARGET_END_INDEX = 9
+
+
+from ..deprecated._archive_maps import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
+class ContextPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
+ self.dropout = StableDropout(config.pooler_dropout)
+ self.config = config
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+
+ context_token = hidden_states[:, 0]
+ context_token = self.dropout(context_token)
+ pooled_output = self.dense(context_token)
+ pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
+ return pooled_output
+
+ @property
+ def output_dim(self):
+ return self.config.hidden_size
+
+
+# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
+class XSoftmax(torch.autograd.Function):
+ """
+ Masked Softmax which is optimized for saving memory
+
+ Args:
+ input (`torch.tensor`): The input tensor that will apply softmax.
+ mask (`torch.IntTensor`):
+ The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
+ dim (int): The dimension that will apply softmax
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
+
+ >>> # Make a tensor
+ >>> x = torch.randn([4, 20, 100])
+
+ >>> # Create a mask
+ >>> mask = (x > 0).int()
+
+ >>> # Specify the dimension to apply softmax
+ >>> dim = -1
+
+ >>> y = XSoftmax.apply(x, mask, dim)
+ ```"""
+
+ @staticmethod
+ def forward(self, input, mask, dim):
+ self.dim = dim
+ rmask = ~(mask.to(torch.bool))
+
+ output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
+ output = torch.softmax(output, self.dim)
+ output.masked_fill_(rmask, 0)
+ self.save_for_backward(output)
+ return output
+
+ @staticmethod
+ def backward(self, grad_output):
+ (output,) = self.saved_tensors
+ inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
+ return inputGrad, None, None
+
+ @staticmethod
+ def symbolic(g, self, mask, dim):
+ import torch.onnx.symbolic_helper as sym_help
+ from torch.onnx.symbolic_opset9 import masked_fill, softmax
+
+ mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
+ r_mask = g.op(
+ "Cast",
+ g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
+ to_i=sym_help.cast_pytorch_to_onnx["Bool"],
+ )
+ output = masked_fill(
+ g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
+ )
+ output = softmax(g, output, dim)
+ return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
+class DropoutContext(object):
+ def __init__(self):
+ self.dropout = 0
+ self.mask = None
+ self.scale = 1
+ self.reuse_mask = True
+
+
+# Copied from transformers.models.deberta.modeling_deberta.get_mask
+def get_mask(input, local_context):
+ if not isinstance(local_context, DropoutContext):
+ dropout = local_context
+ mask = None
+ else:
+ dropout = local_context.dropout
+ dropout *= local_context.scale
+ mask = local_context.mask if local_context.reuse_mask else None
+
+ if dropout > 0 and mask is None:
+ mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
+
+ if isinstance(local_context, DropoutContext):
+ if local_context.mask is None:
+ local_context.mask = mask
+
+ return mask, dropout
+
+
+# Copied from transformers.models.deberta.modeling_deberta.XDropout
+class XDropout(torch.autograd.Function):
+ """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
+
+ @staticmethod
+ def forward(ctx, input, local_ctx):
+ mask, dropout = get_mask(input, local_ctx)
+ ctx.scale = 1.0 / (1 - dropout)
+ if dropout > 0:
+ ctx.save_for_backward(mask)
+ return input.masked_fill(mask, 0) * ctx.scale
+ else:
+ return input
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ if ctx.scale > 1:
+ (mask,) = ctx.saved_tensors
+ return grad_output.masked_fill(mask, 0) * ctx.scale, None
+ else:
+ return grad_output, None
+
+ @staticmethod
+ def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
+ from torch.onnx import symbolic_opset12
+
+ dropout_p = local_ctx
+ if isinstance(local_ctx, DropoutContext):
+ dropout_p = local_ctx.dropout
+ # StableDropout only calls this function when training.
+ train = True
+ # TODO: We should check if the opset_version being used to export
+ # is > 12 here, but there's no good way to do that. As-is, if the
+ # opset_version < 12, export will fail with a CheckerError.
+ # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
+ # if opset_version < 12:
+ # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
+ return symbolic_opset12.dropout(g, input, dropout_p, train)
+
+
+# Copied from transformers.models.deberta.modeling_deberta.StableDropout
+class StableDropout(nn.Module):
+ """
+ Optimized dropout module for stabilizing the training
+
+ Args:
+ drop_prob (float): the dropout probabilities
+ """
+
+ def __init__(self, drop_prob):
+ super().__init__()
+ self.drop_prob = drop_prob
+ self.count = 0
+ self.context_stack = None
+
+ def forward(self, x):
+ """
+ Call the module
+
+ Args:
+ x (`torch.tensor`): The input tensor to apply dropout
+ """
+ if self.training and self.drop_prob > 0:
+ return XDropout.apply(x, self.get_context())
+ return x
+
+ def clear_context(self):
+ self.count = 0
+ self.context_stack = None
+
+ def init_context(self, reuse_mask=True, scale=1):
+ if self.context_stack is None:
+ self.context_stack = []
+ self.count = 0
+ for c in self.context_stack:
+ c.reuse_mask = reuse_mask
+ c.scale = scale
+
+ def get_context(self):
+ if self.context_stack is not None:
+ if self.count >= len(self.context_stack):
+ self.context_stack.append(DropoutContext())
+ ctx = self.context_stack[self.count]
+ ctx.dropout = self.drop_prob
+ self.count += 1
+ return ctx
+ else:
+ return self.drop_prob
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
+class DebertaV2SelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
+ self.dropout = StableDropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
+class DebertaV2Attention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = DisentangledSelfAttention(config)
+ self.output = DebertaV2SelfOutput(config)
+ self.config = config
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask,
+ output_attentions=False,
+ query_states=None,
+ relative_pos=None,
+ rel_embeddings=None,
+ ):
+ self_output = self.self(
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ )
+ if output_attentions:
+ self_output, att_matrix = self_output
+ if query_states is None:
+ query_states = hidden_states
+ attention_output = self.output(self_output, query_states)
+
+ if output_attentions:
+ return (attention_output, att_matrix)
+ else:
+ return attention_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
+class DebertaV2Intermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
+class DebertaV2Output(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
+ self.dropout = StableDropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
+class DebertaV2Layer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = DebertaV2Attention(config)
+ self.intermediate = DebertaV2Intermediate(config)
+ self.output = DebertaV2Output(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask,
+ query_states=None,
+ relative_pos=None,
+ rel_embeddings=None,
+ output_attentions=False,
+ ):
+ attention_output = self.attention(
+ hidden_states,
+ attention_mask,
+ output_attentions=output_attentions,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ )
+ if output_attentions:
+ attention_output, att_matrix = attention_output
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ if output_attentions:
+ return (layer_output, att_matrix)
+ else:
+ return layer_output
+
+
+class ConvLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ kernel_size = getattr(config, "conv_kernel_size", 3)
+ groups = getattr(config, "conv_groups", 1)
+ self.conv_act = getattr(config, "conv_act", "tanh")
+ self.conv = nn.Conv1d(
+ config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
+ )
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
+ self.dropout = StableDropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def forward(self, hidden_states, residual_states, input_mask):
+ out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
+ rmask = (1 - input_mask).bool()
+ out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
+ out = ACT2FN[self.conv_act](self.dropout(out))
+
+ layer_norm_input = residual_states + out
+ output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
+
+ if input_mask is None:
+ output_states = output
+ else:
+ if input_mask.dim() != layer_norm_input.dim():
+ if input_mask.dim() == 4:
+ input_mask = input_mask.squeeze(1).squeeze(1)
+ input_mask = input_mask.unsqueeze(2)
+
+ input_mask = input_mask.to(output.dtype)
+ output_states = output * input_mask
+
+ return output_states
+
+
+class DebertaV2Encoder(nn.Module):
+ """Modified BertEncoder with relative position bias support"""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
+ self.relative_attention = getattr(config, "relative_attention", False)
+
+ if self.relative_attention:
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
+ if self.max_relative_positions < 1:
+ self.max_relative_positions = config.max_position_embeddings
+
+ self.position_buckets = getattr(config, "position_buckets", -1)
+ pos_ebd_size = self.max_relative_positions * 2
+
+ if self.position_buckets > 0:
+ pos_ebd_size = self.position_buckets * 2
+
+ self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
+
+ self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
+
+ if "layer_norm" in self.norm_rel_ebd:
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
+
+ self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
+ self.gradient_checkpointing = False
+
+ def get_rel_embedding(self):
+ rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
+ if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
+ rel_embeddings = self.LayerNorm(rel_embeddings)
+ return rel_embeddings
+
+ def get_attention_mask(self, attention_mask):
+ if attention_mask.dim() <= 2:
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+ attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
+ elif attention_mask.dim() == 3:
+ attention_mask = attention_mask.unsqueeze(1)
+
+ return attention_mask
+
+ def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
+ if self.relative_attention and relative_pos is None:
+ q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
+ relative_pos = build_relative_position(
+ q,
+ hidden_states.size(-2),
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ device=hidden_states.device,
+ )
+ return relative_pos
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask,
+ output_hidden_states=True,
+ output_attentions=False,
+ query_states=None,
+ relative_pos=None,
+ return_dict=True,
+ ):
+ if attention_mask.dim() <= 2:
+ input_mask = attention_mask
+ else:
+ input_mask = attention_mask.sum(-2) > 0
+ attention_mask = self.get_attention_mask(attention_mask)
+ relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
+
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ if isinstance(hidden_states, Sequence):
+ next_kv = hidden_states[0]
+ else:
+ next_kv = hidden_states
+ rel_embeddings = self.get_rel_embedding()
+ output_states = next_kv
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (output_states,)
+
+ if self.gradient_checkpointing and self.training:
+ output_states = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ next_kv,
+ attention_mask,
+ query_states,
+ relative_pos,
+ rel_embeddings,
+ output_attentions,
+ )
+ else:
+ output_states = layer_module(
+ next_kv,
+ attention_mask,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ output_states, att_m = output_states
+
+ if i == 0 and self.conv is not None:
+ output_states = self.conv(hidden_states, output_states, input_mask)
+
+ if query_states is not None:
+ query_states = output_states
+ if isinstance(hidden_states, Sequence):
+ next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
+ else:
+ next_kv = output_states
+
+ if output_attentions:
+ all_attentions = all_attentions + (att_m,)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (output_states,)
+
+ if not return_dict:
+ return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+def make_log_bucket_position(relative_pos, bucket_size, max_position):
+ sign = torch.sign(relative_pos)
+ mid = bucket_size // 2
+ abs_pos = torch.where(
+ (relative_pos < mid) & (relative_pos > -mid),
+ torch.tensor(mid - 1).type_as(relative_pos),
+ torch.abs(relative_pos),
+ )
+ log_pos = (
+ torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
+ )
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
+ return bucket_pos
+
+
+def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
+ """
+ Build relative position according to the query and key
+
+ We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
+ \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
+ P_k\\)
+
+ Args:
+ query_size (int): the length of query
+ key_size (int): the length of key
+ bucket_size (int): the size of position bucket
+ max_position (int): the maximum allowed absolute position
+ device (`torch.device`): the device on which tensors will be created.
+
+ Return:
+ `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
+ """
+
+ q_ids = torch.arange(0, query_size, device=device)
+ k_ids = torch.arange(0, key_size, device=device)
+ rel_pos_ids = q_ids[:, None] - k_ids[None, :]
+ if bucket_size > 0 and max_position > 0:
+ rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
+ rel_pos_ids = rel_pos_ids.to(torch.long)
+ rel_pos_ids = rel_pos_ids[:query_size, :]
+ rel_pos_ids = rel_pos_ids.unsqueeze(0)
+ return rel_pos_ids
+
+
+@torch.jit.script
+# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
+def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
+
+
+@torch.jit.script
+# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
+def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
+
+
+@torch.jit.script
+# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
+def pos_dynamic_expand(pos_index, p2c_att, key_layer):
+ return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
+
+
+class DisentangledSelfAttention(nn.Module):
+ """
+ Disentangled self-attention module
+
+ Parameters:
+ config (`DebertaV2Config`):
+ A model config class instance with the configuration to build a new model. The schema is similar to
+ *BertConfig*, for more details, please refer [`DebertaV2Config`]
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.num_attention_heads = config.num_attention_heads
+ _attention_head_size = config.hidden_size // config.num_attention_heads
+ self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
+ self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
+ self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
+
+ self.share_att_key = getattr(config, "share_att_key", False)
+ self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
+ self.relative_attention = getattr(config, "relative_attention", False)
+
+ if self.relative_attention:
+ self.position_buckets = getattr(config, "position_buckets", -1)
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
+ if self.max_relative_positions < 1:
+ self.max_relative_positions = config.max_position_embeddings
+ self.pos_ebd_size = self.max_relative_positions
+ if self.position_buckets > 0:
+ self.pos_ebd_size = self.position_buckets
+
+ self.pos_dropout = StableDropout(config.hidden_dropout_prob)
+
+ if not self.share_att_key:
+ if "c2p" in self.pos_att_type:
+ self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
+ if "p2c" in self.pos_att_type:
+ self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = StableDropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x, attention_heads):
+ new_x_shape = x.size()[:-1] + (attention_heads, -1)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask,
+ output_attentions=False,
+ query_states=None,
+ relative_pos=None,
+ rel_embeddings=None,
+ ):
+ """
+ Call the module
+
+ Args:
+ hidden_states (`torch.FloatTensor`):
+ Input states to the module usually the output from previous layer, it will be the Q,K and V in
+ *Attention(Q,K,V)*
+
+ attention_mask (`torch.BoolTensor`):
+ An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
+ sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
+ th token.
+
+ output_attentions (`bool`, optional):
+ Whether return the attention matrix.
+
+ query_states (`torch.FloatTensor`, optional):
+ The *Q* state in *Attention(Q,K,V)*.
+
+ relative_pos (`torch.LongTensor`):
+ The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
+ values ranging in [*-max_relative_positions*, *max_relative_positions*].
+
+ rel_embeddings (`torch.FloatTensor`):
+ The embedding of relative distances. It's a tensor of shape [\\(2 \\times
+ \\text{max_relative_positions}\\), *hidden_size*].
+
+
+ """
+ if query_states is None:
+ query_states = hidden_states
+ query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
+ key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
+ value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
+
+ rel_att = None
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ scale_factor = 1
+ if "c2p" in self.pos_att_type:
+ scale_factor += 1
+ if "p2c" in self.pos_att_type:
+ scale_factor += 1
+ scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
+ attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
+ if self.relative_attention:
+ rel_embeddings = self.pos_dropout(rel_embeddings)
+ rel_att = self.disentangled_attention_bias(
+ query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
+ )
+
+ if rel_att is not None:
+ attention_scores = attention_scores + rel_att
+ attention_scores = attention_scores
+ attention_scores = attention_scores.view(
+ -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
+ )
+
+ # bsz x height x length x dimension
+ attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
+ attention_probs = self.dropout(attention_probs)
+ context_layer = torch.bmm(
+ attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
+ )
+ context_layer = (
+ context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
+ .permute(0, 2, 1, 3)
+ .contiguous()
+ )
+ new_context_layer_shape = context_layer.size()[:-2] + (-1,)
+ context_layer = context_layer.view(new_context_layer_shape)
+ if output_attentions:
+ return (context_layer, attention_probs)
+ else:
+ return context_layer
+
+ def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
+ if relative_pos is None:
+ q = query_layer.size(-2)
+ relative_pos = build_relative_position(
+ q,
+ key_layer.size(-2),
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ device=query_layer.device,
+ )
+ if relative_pos.dim() == 2:
+ relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
+ elif relative_pos.dim() == 3:
+ relative_pos = relative_pos.unsqueeze(1)
+ # bsz x height x query x key
+ elif relative_pos.dim() != 4:
+ raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
+
+ att_span = self.pos_ebd_size
+ relative_pos = relative_pos.long().to(query_layer.device)
+
+ rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
+ if self.share_att_key:
+ pos_query_layer = self.transpose_for_scores(
+ self.query_proj(rel_embeddings), self.num_attention_heads
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
+ pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
+ query_layer.size(0) // self.num_attention_heads, 1, 1
+ )
+ else:
+ if "c2p" in self.pos_att_type:
+ pos_key_layer = self.transpose_for_scores(
+ self.pos_key_proj(rel_embeddings), self.num_attention_heads
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
+ if "p2c" in self.pos_att_type:
+ pos_query_layer = self.transpose_for_scores(
+ self.pos_query_proj(rel_embeddings), self.num_attention_heads
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
+
+ score = 0
+ # content->position
+ if "c2p" in self.pos_att_type:
+ scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
+ c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
+ c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
+ c2p_att = torch.gather(
+ c2p_att,
+ dim=-1,
+ index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
+ )
+ score += c2p_att / scale.to(dtype=c2p_att.dtype)
+
+ # position->content
+ if "p2c" in self.pos_att_type:
+ scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
+ if key_layer.size(-2) != query_layer.size(-2):
+ r_pos = build_relative_position(
+ key_layer.size(-2),
+ key_layer.size(-2),
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ device=query_layer.device,
+ )
+ r_pos = r_pos.unsqueeze(0)
+ else:
+ r_pos = relative_pos
+
+ p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
+ p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
+ p2c_att = torch.gather(
+ p2c_att,
+ dim=-1,
+ index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
+ ).transpose(-1, -2)
+ score += p2c_att / scale.to(dtype=p2c_att.dtype)
+
+ return score
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
+class DebertaV2Embeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ pad_token_id = getattr(config, "pad_token_id", 0)
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
+
+ self.position_biased_input = getattr(config, "position_biased_input", True)
+ if not self.position_biased_input:
+ self.position_embeddings = None
+ else:
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
+
+ if config.type_vocab_size > 0:
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
+
+ if self.embedding_size != config.hidden_size:
+ self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
+ self.dropout = StableDropout(config.hidden_dropout_prob)
+ self.config = config
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if self.position_embeddings is not None:
+ position_embeddings = self.position_embeddings(position_ids.long())
+ else:
+ position_embeddings = torch.zeros_like(inputs_embeds)
+
+ embeddings = inputs_embeds
+ if self.position_biased_input:
+ embeddings += position_embeddings
+ if self.config.type_vocab_size > 0:
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+ embeddings += token_type_embeddings
+
+ if self.embedding_size != self.config.hidden_size:
+ embeddings = self.embed_proj(embeddings)
+
+ embeddings = self.LayerNorm(embeddings)
+
+ if mask is not None:
+ if mask.dim() != embeddings.dim():
+ if mask.dim() == 4:
+ mask = mask.squeeze(1).squeeze(1)
+ mask = mask.unsqueeze(2)
+ mask = mask.to(embeddings.dtype)
+
+ embeddings = embeddings * mask
+
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
+class DebertaV2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = DebertaV2Config
+ base_model_prefix = "deberta"
+ _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights."""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+DEBERTA_START_DOCSTRING = r"""
+ The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
+ Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
+ on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
+ improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+
+ Parameters:
+ config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+DEBERTA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
+class DebertaV2Model(DebertaV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.embeddings = DebertaV2Embeddings(config)
+ self.encoder = DebertaV2Encoder(config)
+ self.z_steps = 0
+ self.config = config
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embeddings.word_embeddings = new_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask,
+ output_hidden_states=True,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+ encoded_layers = encoder_outputs[1]
+
+ if self.z_steps > 1:
+ hidden_states = encoded_layers[-2]
+ layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
+ query_states = encoded_layers[-1]
+ rel_embeddings = self.encoder.get_rel_embedding()
+ attention_mask = self.encoder.get_attention_mask(attention_mask)
+ rel_pos = self.encoder.get_rel_pos(embedding_output)
+ for layer in layers[1:]:
+ query_states = layer(
+ hidden_states,
+ attention_mask,
+ output_attentions=False,
+ query_states=query_states,
+ relative_pos=rel_pos,
+ rel_embeddings=rel_embeddings,
+ )
+ encoded_layers.append(query_states)
+
+ sequence_output = encoded_layers[-1]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
+class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.deberta = DebertaV2Model(config)
+ self.cls = DebertaV2OnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="[MASK]",
+ )
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward with Deberta->DebertaV2
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.deberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform with Deberta->DebertaV2
+class DebertaV2PredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+
+ self.dense = nn.Linear(config.hidden_size, self.embedding_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead with Deberta->DebertaV2
+class DebertaV2LMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = DebertaV2PredictionHeadTransform(config)
+
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
+class DebertaV2OnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = DebertaV2LMPredictionHead(config)
+
+ def forward(self, sequence_output):
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ num_labels = getattr(config, "num_labels", 2)
+ self.num_labels = num_labels
+
+ self.deberta = DebertaV2Model(config)
+ self.pooler = ContextPooler(config)
+ output_dim = self.pooler.output_dim
+
+ self.classifier = nn.Linear(output_dim, num_labels)
+ drop_out = getattr(config, "cls_dropout", None)
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
+ self.dropout = StableDropout(drop_out)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.deberta.get_input_embeddings()
+
+ def set_input_embeddings(self, new_embeddings):
+ self.deberta.set_input_embeddings(new_embeddings)
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.forward with Deberta->DebertaV2
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.deberta(
+ input_ids,
+ token_type_ids=token_type_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ encoder_layer = outputs[0]
+ pooled_output = self.pooler(encoder_layer)
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ # regression task
+ loss_fn = nn.MSELoss()
+ logits = logits.view(-1).to(labels.dtype)
+ loss = loss_fn(logits, labels.view(-1))
+ elif labels.dim() == 1 or labels.size(-1) == 1:
+ label_index = (labels >= 0).nonzero()
+ labels = labels.long()
+ if label_index.size(0) > 0:
+ labeled_logits = torch.gather(
+ logits, 0, label_index.expand(label_index.size(0), logits.size(1))
+ )
+ labels = torch.gather(labels, 0, label_index.view(-1))
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
+ else:
+ loss = torch.tensor(0).to(logits)
+ else:
+ log_softmax = nn.LogSoftmax(-1)
+ loss = -((log_softmax(logits) * labels).sum(-1)).mean()
+ elif self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
+class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.deberta = DebertaV2Model(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.deberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.deberta = DebertaV2Model(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ qa_target_start_index=_QA_TARGET_START_INDEX,
+ qa_target_end_index=_QA_TARGET_END_INDEX,
+ )
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.forward with Deberta->DebertaV2
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.deberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ num_labels = getattr(config, "num_labels", 2)
+ self.num_labels = num_labels
+
+ self.deberta = DebertaV2Model(config)
+ self.pooler = ContextPooler(config)
+ output_dim = self.pooler.output_dim
+
+ self.classifier = nn.Linear(output_dim, 1)
+ drop_out = getattr(config, "cls_dropout", None)
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
+ self.dropout = StableDropout(drop_out)
+
+ self.init_weights()
+
+ def get_input_embeddings(self):
+ return self.deberta.get_input_embeddings()
+
+ def set_input_embeddings(self, new_embeddings):
+ self.deberta.set_input_embeddings(new_embeddings)
+
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ flat_inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.deberta(
+ flat_input_ids,
+ position_ids=flat_position_ids,
+ token_type_ids=flat_token_type_ids,
+ attention_mask=flat_attention_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ encoder_layer = outputs[0]
+ pooled_output = self.pooler(encoder_layer)
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_tf_deberta_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_tf_deberta_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..546e7f1a8d003857ad31d70728b4fc0bc1d99744
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_tf_deberta_v2.py
@@ -0,0 +1,1874 @@
+# coding=utf-8
+# Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 DeBERTa-v2 model."""
+
+from __future__ import annotations
+
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_deberta_v2 import DebertaV2Config
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "DebertaV2Config"
+_CHECKPOINT_FOR_DOC = "kamalkraj/deberta-v2-xlarge"
+
+
+from ..deprecated._archive_maps import TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaContextPooler with Deberta->DebertaV2
+class TFDebertaV2ContextPooler(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense")
+ self.dropout = TFDebertaV2StableDropout(config.pooler_dropout, name="dropout")
+ self.config = config
+
+ def call(self, hidden_states, training: bool = False):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ context_token = hidden_states[:, 0]
+ context_token = self.dropout(context_token, training=training)
+ pooled_output = self.dense(context_token)
+ pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output)
+ return pooled_output
+
+ @property
+ def output_dim(self) -> int:
+ return self.config.hidden_size
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.pooler_hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaXSoftmax with Deberta->DebertaV2
+class TFDebertaV2XSoftmax(keras.layers.Layer):
+ """
+ Masked Softmax which is optimized for saving memory
+
+ Args:
+ input (`tf.Tensor`): The input tensor that will apply softmax.
+ mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
+ dim (int): The dimension that will apply softmax
+ """
+
+ def __init__(self, axis=-1, **kwargs):
+ super().__init__(**kwargs)
+ self.axis = axis
+
+ def call(self, inputs: tf.Tensor, mask: tf.Tensor):
+ rmask = tf.logical_not(tf.cast(mask, tf.bool))
+ output = tf.where(rmask, float("-inf"), inputs)
+ output = stable_softmax(output, self.axis)
+ output = tf.where(rmask, 0.0, output)
+ return output
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaStableDropout with Deberta->DebertaV2
+class TFDebertaV2StableDropout(keras.layers.Layer):
+ """
+ Optimized dropout module for stabilizing the training
+
+ Args:
+ drop_prob (float): the dropout probabilities
+ """
+
+ def __init__(self, drop_prob, **kwargs):
+ super().__init__(**kwargs)
+ self.drop_prob = drop_prob
+
+ @tf.custom_gradient
+ def xdropout(self, inputs):
+ """
+ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob.
+ """
+ mask = tf.cast(
+ 1
+ - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)),
+ tf.bool,
+ )
+ scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32)
+ if self.drop_prob > 0:
+ inputs = tf.where(mask, 0.0, inputs) * scale
+
+ def grad(upstream):
+ if self.drop_prob > 0:
+ return tf.where(mask, 0.0, upstream) * scale
+ else:
+ return upstream
+
+ return inputs, grad
+
+ def call(self, inputs: tf.Tensor, training: tf.Tensor = False):
+ if training:
+ return self.xdropout(inputs)
+ return inputs
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaSelfOutput with Deberta->DebertaV2
+class TFDebertaV2SelfOutput(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(config.hidden_size, name="dense")
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training: bool = False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaAttention with Deberta->DebertaV2
+class TFDebertaV2Attention(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+ self.self = TFDebertaV2DisentangledSelfAttention(config, name="self")
+ self.dense_output = TFDebertaV2SelfOutput(config, name="output")
+ self.config = config
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ query_states: tf.Tensor = None,
+ relative_pos: tf.Tensor = None,
+ rel_embeddings: tf.Tensor = None,
+ output_attentions: bool = False,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self(
+ hidden_states=input_tensor,
+ attention_mask=attention_mask,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ if query_states is None:
+ query_states = input_tensor
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=query_states, training=training
+ )
+
+ output = (attention_output,) + self_outputs[1:]
+
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self", None) is not None:
+ with tf.name_scope(self.self.name):
+ self.self.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaIntermediate with Deberta->DebertaV2
+class TFDebertaV2Intermediate(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOutput with Deberta->DebertaV2
+class TFDebertaV2Output(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLayer with Deberta->DebertaV2
+class TFDebertaV2Layer(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFDebertaV2Attention(config, name="attention")
+ self.intermediate = TFDebertaV2Intermediate(config, name="intermediate")
+ self.bert_output = TFDebertaV2Output(config, name="output")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ query_states: tf.Tensor = None,
+ relative_pos: tf.Tensor = None,
+ rel_embeddings: tf.Tensor = None,
+ output_attentions: bool = False,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = attention_outputs[0]
+ intermediate_output = self.intermediate(hidden_states=attention_output)
+ layer_output = self.bert_output(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "bert_output", None) is not None:
+ with tf.name_scope(self.bert_output.name):
+ self.bert_output.build(None)
+
+
+class TFDebertaV2ConvLayer(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.kernel_size = getattr(config, "conv_kernel_size", 3)
+ # groups = getattr(config, "conv_groups", 1)
+ self.conv_act = get_tf_activation(getattr(config, "conv_act", "tanh"))
+ self.padding = (self.kernel_size - 1) // 2
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
+ self.config = config
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ with tf.name_scope("conv"):
+ self.conv_kernel = self.add_weight(
+ name="kernel",
+ shape=[self.kernel_size, self.config.hidden_size, self.config.hidden_size],
+ initializer=get_initializer(self.config.initializer_range),
+ )
+ self.conv_bias = self.add_weight(
+ name="bias", shape=[self.config.hidden_size], initializer=tf.zeros_initializer()
+ )
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+
+ def call(
+ self, hidden_states: tf.Tensor, residual_states: tf.Tensor, input_mask: tf.Tensor, training: bool = False
+ ) -> tf.Tensor:
+ out = tf.nn.conv2d(
+ tf.expand_dims(hidden_states, 1),
+ tf.expand_dims(self.conv_kernel, 0),
+ strides=1,
+ padding=[[0, 0], [0, 0], [self.padding, self.padding], [0, 0]],
+ )
+ out = tf.squeeze(tf.nn.bias_add(out, self.conv_bias), 1)
+ rmask = tf.cast(1 - input_mask, tf.bool)
+ out = tf.where(tf.broadcast_to(tf.expand_dims(rmask, -1), shape_list(out)), 0.0, out)
+ out = self.dropout(out, training=training)
+ out = self.conv_act(out)
+
+ layer_norm_input = residual_states + out
+ output = self.LayerNorm(layer_norm_input)
+
+ if input_mask is None:
+ output_states = output
+ else:
+ if len(shape_list(input_mask)) != len(shape_list(layer_norm_input)):
+ if len(shape_list(input_mask)) == 4:
+ input_mask = tf.squeeze(tf.squeeze(input_mask, axis=1), axis=1)
+ input_mask = tf.cast(tf.expand_dims(input_mask, axis=2), tf.float32)
+
+ output_states = output * input_mask
+
+ return output_states
+
+
+class TFDebertaV2Encoder(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.layer = [TFDebertaV2Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+ self.relative_attention = getattr(config, "relative_attention", False)
+ self.config = config
+ if self.relative_attention:
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
+ if self.max_relative_positions < 1:
+ self.max_relative_positions = config.max_position_embeddings
+
+ self.position_buckets = getattr(config, "position_buckets", -1)
+ self.pos_ebd_size = self.max_relative_positions * 2
+
+ if self.position_buckets > 0:
+ self.pos_ebd_size = self.position_buckets * 2
+
+ self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
+
+ if "layer_norm" in self.norm_rel_ebd:
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+
+ self.conv = TFDebertaV2ConvLayer(config, name="conv") if getattr(config, "conv_kernel_size", 0) > 0 else None
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if self.relative_attention:
+ self.rel_embeddings = self.add_weight(
+ name="rel_embeddings.weight",
+ shape=[self.pos_ebd_size, self.config.hidden_size],
+ initializer=get_initializer(self.config.initializer_range),
+ )
+ if getattr(self, "conv", None) is not None:
+ with tf.name_scope(self.conv.name):
+ self.conv.build(None)
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, self.config.hidden_size])
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+ def get_rel_embedding(self):
+ rel_embeddings = self.rel_embeddings if self.relative_attention else None
+ if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
+ rel_embeddings = self.LayerNorm(rel_embeddings)
+ return rel_embeddings
+
+ def get_attention_mask(self, attention_mask):
+ if len(shape_list(attention_mask)) <= 2:
+ extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2)
+ attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1)
+ attention_mask = tf.cast(attention_mask, tf.uint8)
+ elif len(shape_list(attention_mask)) == 3:
+ attention_mask = tf.expand_dims(attention_mask, 1)
+
+ return attention_mask
+
+ def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
+ if self.relative_attention and relative_pos is None:
+ q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2]
+ relative_pos = build_relative_position(
+ q,
+ shape_list(hidden_states)[-2],
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ )
+ return relative_pos
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ query_states: tf.Tensor = None,
+ relative_pos: tf.Tensor = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ if len(shape_list(attention_mask)) <= 2:
+ input_mask = attention_mask
+ else:
+ input_mask = tf.cast(tf.math.reduce_sum(attention_mask, axis=-2) > 0, dtype=tf.uint8)
+
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ attention_mask = self.get_attention_mask(attention_mask)
+ relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
+
+ next_kv = hidden_states
+
+ rel_embeddings = self.get_rel_embedding()
+ output_states = next_kv
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (output_states,)
+
+ layer_outputs = layer_module(
+ hidden_states=next_kv,
+ attention_mask=attention_mask,
+ query_states=query_states,
+ relative_pos=relative_pos,
+ rel_embeddings=rel_embeddings,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ output_states = layer_outputs[0]
+
+ if i == 0 and self.conv is not None:
+ output_states = self.conv(hidden_states, output_states, input_mask)
+
+ next_kv = output_states
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (output_states,)
+
+ if not return_dict:
+ return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+def make_log_bucket_position(relative_pos, bucket_size, max_position):
+ sign = tf.math.sign(relative_pos)
+ mid = bucket_size // 2
+ abs_pos = tf.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, tf.math.abs(relative_pos))
+ log_pos = (
+ tf.math.ceil(
+ tf.cast(tf.math.log(abs_pos / mid), tf.float32) / tf.math.log((max_position - 1) / mid) * (mid - 1)
+ )
+ + mid
+ )
+ bucket_pos = tf.cast(
+ tf.where(abs_pos <= mid, tf.cast(relative_pos, tf.float32), log_pos * tf.cast(sign, tf.float32)), tf.int32
+ )
+ return bucket_pos
+
+
+def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
+ """
+ Build relative position according to the query and key
+
+ We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
+ \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
+ P_k\\)
+
+ Args:
+ query_size (int): the length of query
+ key_size (int): the length of key
+ bucket_size (int): the size of position bucket
+ max_position (int): the maximum allowed absolute position
+
+ Return:
+ `tf.Tensor`: A tensor with shape [1, query_size, key_size]
+
+ """
+ q_ids = tf.range(query_size, dtype=tf.int32)
+ k_ids = tf.range(key_size, dtype=tf.int32)
+ rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1])
+ if bucket_size > 0 and max_position > 0:
+ rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
+ rel_pos_ids = rel_pos_ids[:query_size, :]
+ rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0)
+ return tf.cast(rel_pos_ids, tf.int64)
+
+
+def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
+ shapes = [
+ shape_list(query_layer)[0],
+ shape_list(query_layer)[1],
+ shape_list(query_layer)[2],
+ shape_list(relative_pos)[-1],
+ ]
+ return tf.broadcast_to(c2p_pos, shapes)
+
+
+def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
+ shapes = [
+ shape_list(query_layer)[0],
+ shape_list(query_layer)[1],
+ shape_list(key_layer)[-2],
+ shape_list(key_layer)[-2],
+ ]
+ return tf.broadcast_to(c2p_pos, shapes)
+
+
+def pos_dynamic_expand(pos_index, p2c_att, key_layer):
+ shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]]
+ return tf.broadcast_to(pos_index, shapes)
+
+
+def take_along_axis(x, indices):
+ # Only a valid port of np.take_along_axis when the gather axis is -1
+
+ # TPU + gathers and reshapes don't go along well -- see https://github.com/huggingface/transformers/issues/18239
+ if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy):
+ # [B, S, P] -> [B, S, P, D]
+ one_hot_indices = tf.one_hot(indices, depth=x.shape[-1], dtype=x.dtype)
+
+ # if we ignore the first two dims, this is equivalent to multiplying a matrix (one hot) by a vector (x)
+ # grossly abusing notation: [B, S, P, D] . [B, S, D] = [B, S, P]
+ gathered = tf.einsum("ijkl,ijl->ijk", one_hot_indices, x)
+
+ # GPUs, on the other hand, prefer gathers instead of large one-hot+matmuls
+ else:
+ gathered = tf.gather(x, indices, batch_dims=2)
+
+ return gathered
+
+
+class TFDebertaV2DisentangledSelfAttention(keras.layers.Layer):
+ """
+ Disentangled self-attention module
+
+ Parameters:
+ config (`DebertaV2Config`):
+ A model config class instance with the configuration to build a new model. The schema is similar to
+ *BertConfig*, for more details, please refer [`DebertaV2Config`]
+
+ """
+
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.num_attention_heads = config.num_attention_heads
+ _attention_head_size = config.hidden_size // config.num_attention_heads
+ self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.query_proj = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="query_proj",
+ use_bias=True,
+ )
+ self.key_proj = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="key_proj",
+ use_bias=True,
+ )
+ self.value_proj = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="value_proj",
+ use_bias=True,
+ )
+
+ self.share_att_key = getattr(config, "share_att_key", False)
+ self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
+ self.relative_attention = getattr(config, "relative_attention", False)
+
+ if self.relative_attention:
+ self.position_buckets = getattr(config, "position_buckets", -1)
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
+ if self.max_relative_positions < 1:
+ self.max_relative_positions = config.max_position_embeddings
+ self.pos_ebd_size = self.max_relative_positions
+ if self.position_buckets > 0:
+ self.pos_ebd_size = self.position_buckets
+
+ self.pos_dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="pos_dropout")
+
+ if not self.share_att_key:
+ if "c2p" in self.pos_att_type:
+ self.pos_key_proj = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="pos_proj",
+ use_bias=True,
+ )
+ if "p2c" in self.pos_att_type:
+ self.pos_query_proj = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="pos_q_proj",
+ )
+ self.softmax = TFDebertaV2XSoftmax(axis=-1)
+ self.dropout = TFDebertaV2StableDropout(config.attention_probs_dropout_prob, name="dropout")
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, attention_heads: int) -> tf.Tensor:
+ tensor_shape = shape_list(tensor)
+ # In graph mode mode, we can't reshape with -1 as the final dimension if the first dimension (batch size) is None
+ shape = tensor_shape[:-1] + [attention_heads, tensor_shape[-1] // attention_heads]
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=shape)
+ tensor = tf.transpose(tensor, perm=[0, 2, 1, 3])
+ x_shape = shape_list(tensor)
+ tensor = tf.reshape(tensor, shape=[-1, x_shape[-2], x_shape[-1]])
+ return tensor
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ query_states: tf.Tensor = None,
+ relative_pos: tf.Tensor = None,
+ rel_embeddings: tf.Tensor = None,
+ output_attentions: bool = False,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ """
+ Call the module
+
+ Args:
+ hidden_states (`tf.Tensor`):
+ Input states to the module usually the output from previous layer, it will be the Q,K and V in
+ *Attention(Q,K,V)*
+
+ attention_mask (`tf.Tensor`):
+ An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
+ sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
+ th token.
+
+ return_att (`bool`, optional):
+ Whether return the attention matrix.
+
+ query_states (`tf.Tensor`, optional):
+ The *Q* state in *Attention(Q,K,V)*.
+
+ relative_pos (`tf.Tensor`):
+ The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
+ values ranging in [*-max_relative_positions*, *max_relative_positions*].
+
+ rel_embeddings (`tf.Tensor`):
+ The embedding of relative distances. It's a tensor of shape [\\(2 \\times
+ \\text{max_relative_positions}\\), *hidden_size*].
+
+
+ """
+ if query_states is None:
+ query_states = hidden_states
+ query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
+ key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
+ value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
+
+ rel_att = None
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ scale_factor = 1
+ if "c2p" in self.pos_att_type:
+ scale_factor += 1
+ if "p2c" in self.pos_att_type:
+ scale_factor += 1
+ scale = tf.math.sqrt(tf.cast(shape_list(query_layer)[-1] * scale_factor, tf.float32))
+ attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 2, 1]) / scale)
+ if self.relative_attention:
+ rel_embeddings = self.pos_dropout(rel_embeddings)
+ rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
+
+ if rel_att is not None:
+ attention_scores = attention_scores + rel_att
+ attention_scores = tf.reshape(
+ attention_scores,
+ (-1, self.num_attention_heads, shape_list(attention_scores)[-2], shape_list(attention_scores)[-1]),
+ )
+
+ # bsz x height x length x dimension
+ attention_probs = self.softmax(attention_scores, attention_mask)
+ attention_probs = self.dropout(attention_probs, training=training)
+ context_layer = tf.matmul(
+ tf.reshape(attention_probs, [-1, shape_list(attention_probs)[-2], shape_list(attention_probs)[-1]]),
+ value_layer,
+ )
+ context_layer = tf.transpose(
+ tf.reshape(
+ context_layer,
+ [-1, self.num_attention_heads, shape_list(context_layer)[-2], shape_list(context_layer)[-1]],
+ ),
+ [0, 2, 1, 3],
+ )
+ # Set the final dimension here explicitly.
+ # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing
+ # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput
+ # requires final input dimension to be defined
+ context_layer_shape = shape_list(context_layer)
+ new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]]
+ context_layer = tf.reshape(context_layer, new_context_layer_shape)
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+ def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
+ if relative_pos is None:
+ q = shape_list(query_layer)[-2]
+ relative_pos = build_relative_position(
+ q,
+ shape_list(key_layer)[-2],
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ )
+ shape_list_pos = shape_list(relative_pos)
+ if len(shape_list_pos) == 2:
+ relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0)
+ elif len(shape_list_pos) == 3:
+ relative_pos = tf.expand_dims(relative_pos, 1)
+ # bsz x height x query x key
+ elif len(shape_list_pos) != 4:
+ raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}")
+
+ att_span = self.pos_ebd_size
+ rel_embeddings = tf.expand_dims(
+ rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :], 0
+ )
+ if self.share_att_key:
+ pos_query_layer = tf.tile(
+ self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads),
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
+ )
+ pos_key_layer = tf.tile(
+ self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads),
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
+ )
+ else:
+ if "c2p" in self.pos_att_type:
+ pos_key_layer = tf.tile(
+ self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads),
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
+ ) # .split(self.all_head_size, dim=-1)
+ if "p2c" in self.pos_att_type:
+ pos_query_layer = tf.tile(
+ self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads),
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
+ ) # .split(self.all_head_size, dim=-1)
+
+ score = 0
+ # content->position
+ if "c2p" in self.pos_att_type:
+ scale = tf.math.sqrt(tf.cast(shape_list(pos_key_layer)[-1] * scale_factor, tf.float32))
+ c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 2, 1]))
+ c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1)
+ c2p_att = take_along_axis(
+ c2p_att,
+ tf.broadcast_to(
+ tf.squeeze(c2p_pos, 0),
+ [shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(relative_pos)[-1]],
+ ),
+ )
+ score += c2p_att / scale
+
+ # position->content
+ if "p2c" in self.pos_att_type:
+ scale = tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, tf.float32))
+ if shape_list(key_layer)[-2] != shape_list(query_layer)[-2]:
+ r_pos = build_relative_position(
+ shape_list(key_layer)[-2],
+ shape_list(key_layer)[-2],
+ bucket_size=self.position_buckets,
+ max_position=self.max_relative_positions,
+ )
+ r_pos = tf.expand_dims(r_pos, 0)
+ else:
+ r_pos = relative_pos
+
+ p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1)
+
+ p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 2, 1]))
+ p2c_att = tf.transpose(
+ take_along_axis(
+ p2c_att,
+ tf.broadcast_to(
+ tf.squeeze(p2c_pos, 0),
+ [shape_list(query_layer)[0], shape_list(key_layer)[-2], shape_list(key_layer)[-2]],
+ ),
+ ),
+ [0, 2, 1],
+ )
+ score += p2c_att / scale
+
+ return score
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query_proj", None) is not None:
+ with tf.name_scope(self.query_proj.name):
+ self.query_proj.build([None, None, self.config.hidden_size])
+ if getattr(self, "key_proj", None) is not None:
+ with tf.name_scope(self.key_proj.name):
+ self.key_proj.build([None, None, self.config.hidden_size])
+ if getattr(self, "value_proj", None) is not None:
+ with tf.name_scope(self.value_proj.name):
+ self.value_proj.build([None, None, self.config.hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+ if getattr(self, "pos_dropout", None) is not None:
+ with tf.name_scope(self.pos_dropout.name):
+ self.pos_dropout.build(None)
+ if getattr(self, "pos_key_proj", None) is not None:
+ with tf.name_scope(self.pos_key_proj.name):
+ self.pos_key_proj.build([None, None, self.config.hidden_size])
+ if getattr(self, "pos_query_proj", None) is not None:
+ with tf.name_scope(self.pos_query_proj.name):
+ self.pos_query_proj.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaEmbeddings Deberta->DebertaV2
+class TFDebertaV2Embeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.position_biased_input = getattr(config, "position_biased_input", True)
+ self.initializer_range = config.initializer_range
+ if self.embedding_size != config.hidden_size:
+ self.embed_proj = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="embed_proj",
+ use_bias=False,
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ if self.config.type_vocab_size > 0:
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+ else:
+ self.token_type_embeddings = None
+
+ with tf.name_scope("position_embeddings"):
+ if self.position_biased_input:
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+ else:
+ self.position_embeddings = None
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+ if getattr(self, "embed_proj", None) is not None:
+ with tf.name_scope(self.embed_proj.name):
+ self.embed_proj.build([None, None, self.embedding_size])
+
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ position_ids: tf.Tensor = None,
+ token_type_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ mask: tf.Tensor = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
+
+ final_embeddings = inputs_embeds
+ if self.position_biased_input:
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ final_embeddings += position_embeds
+ if self.config.type_vocab_size > 0:
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings += token_type_embeds
+
+ if self.embedding_size != self.hidden_size:
+ final_embeddings = self.embed_proj(final_embeddings)
+
+ final_embeddings = self.LayerNorm(final_embeddings)
+
+ if mask is not None:
+ if len(shape_list(mask)) != len(shape_list(final_embeddings)):
+ if len(shape_list(mask)) == 4:
+ mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1)
+ mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32)
+
+ final_embeddings = final_embeddings * mask
+
+ final_embeddings = self.dropout(final_embeddings, training=training)
+
+ return final_embeddings
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPredictionHeadTransform with Deberta->DebertaV2
+class TFDebertaV2PredictionHeadTransform(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+
+ self.dense = keras.layers.Dense(
+ units=self.embedding_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.embedding_size])
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLMPredictionHead with Deberta->DebertaV2
+class TFDebertaV2LMPredictionHead(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
+
+ self.transform = TFDebertaV2PredictionHeadTransform(config, name="transform")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+
+ def get_output_embeddings(self) -> keras.layers.Layer:
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value: tf.Variable):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self) -> Dict[str, tf.Variable]:
+ return {"bias": self.bias}
+
+ def set_bias(self, value: tf.Variable):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.transform(hidden_states=hidden_states)
+ seq_length = shape_list(hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOnlyMLMHead with Deberta->DebertaV2
+class TFDebertaV2OnlyMLMHead(keras.layers.Layer):
+ def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+ self.predictions = TFDebertaV2LMPredictionHead(config, input_embeddings, name="predictions")
+
+ def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
+ prediction_scores = self.predictions(hidden_states=sequence_output)
+
+ return prediction_scores
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaMainLayer with Deberta->DebertaV2
+class TFDebertaV2MainLayer(keras.layers.Layer):
+ config_class = DebertaV2Config
+
+ def __init__(self, config: DebertaV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+
+ self.embeddings = TFDebertaV2Embeddings(config, name="embeddings")
+ self.encoder = TFDebertaV2Encoder(config, name="encoder")
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ mask=attention_mask,
+ training=training,
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return TFBaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+
+
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPreTrainedModel with Deberta->DebertaV2
+class TFDebertaV2PreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = DebertaV2Config
+ base_model_prefix = "deberta"
+
+
+DEBERTA_START_DOCSTRING = r"""
+ The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
+ Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
+ on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
+ improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+DEBERTA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaModel with Deberta->DebertaV2
+class TFDebertaV2Model(TFDebertaV2PreTrainedModel):
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ outputs = self.deberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+
+
+@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForMaskedLM with Deberta->DebertaV2
+class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelingLoss):
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `TFDebertaV2ForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+ self.mlm = TFDebertaV2OnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls")
+
+ def get_lm_head(self) -> keras.layers.Layer:
+ return self.mlm.predictions
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ outputs = self.deberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+ if getattr(self, "mlm", None) is not None:
+ with tf.name_scope(self.mlm.name):
+ self.mlm.build(None)
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForSequenceClassification with Deberta->DebertaV2
+class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+ self.pooler = TFDebertaV2ContextPooler(config, name="pooler")
+
+ drop_out = getattr(config, "cls_dropout", None)
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
+ self.dropout = TFDebertaV2StableDropout(drop_out, name="cls_dropout")
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="classifier",
+ )
+ self.output_dim = self.pooler.output_dim
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.deberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ pooled_output = self.pooler(sequence_output, training=training)
+ pooled_output = self.dropout(pooled_output, training=training)
+ logits = self.classifier(pooled_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "dropout", None) is not None:
+ with tf.name_scope(self.dropout.name):
+ self.dropout.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.output_dim])
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForTokenClassification with Deberta->DebertaV2
+class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClassificationLoss):
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.deberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(inputs=sequence_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+# Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForQuestionAnswering with Deberta->DebertaV2
+class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsweringLoss):
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+ self.qa_outputs = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.deberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.qa_outputs(inputs=sequence_output)
+ start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
+ start_logits = tf.squeeze(input=start_logits, axis=-1)
+ end_logits = tf.squeeze(input=end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ DEBERTA_START_DOCSTRING,
+)
+class TFDebertaV2ForMultipleChoice(TFDebertaV2PreTrainedModel, TFMultipleChoiceLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ # _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
+ # _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.pooler = TFDebertaV2ContextPooler(config, name="pooler")
+ self.classifier = keras.layers.Dense(
+ units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.output_dim = self.pooler.output_dim
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = (
+ tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
+ )
+ flat_token_type_ids = (
+ tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
+ )
+ flat_position_ids = (
+ tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
+ )
+ flat_inputs_embeds = (
+ tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.deberta(
+ input_ids=flat_input_ids,
+ attention_mask=flat_attention_mask,
+ token_type_ids=flat_token_type_ids,
+ position_ids=flat_position_ids,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ pooled_output = self.pooler(sequence_output, training=training)
+ pooled_output = self.dropout(pooled_output, training=training)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "deberta", None) is not None:
+ with tf.name_scope(self.deberta.name):
+ self.deberta.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.output_dim])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..a92103945416d78c24d7f77b541eac9c4d6b62e6
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2.py
@@ -0,0 +1,521 @@
+# coding=utf-8
+# Copyright 2020 Microsoft and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model DeBERTa."""
+
+import os
+import unicodedata
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as sp
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
+
+
+class DebertaV2Tokenizer(PreTrainedTokenizer):
+ r"""
+ Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `False`):
+ Whether or not to lowercase the input when tokenizing.
+ bos_token (`string`, *optional*, defaults to `"[CLS]"`):
+ The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+ eos_token (`string`, *optional*, defaults to `"[SEP]"`):
+ The end of sequence token. When building a sequence using special tokens, this is not the token that is
+ used for the end of sequence. The token used is the `sep_token`.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=False,
+ split_by_punct=False,
+ bos_token="[CLS]",
+ eos_token="[SEP]",
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.do_lower_case = do_lower_case
+ self.split_by_punct = split_by_punct
+ self.vocab_file = vocab_file
+ self._tokenizer = SPMTokenizer(
+ vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs
+ )
+ unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token
+ super().__init__(
+ do_lower_case=do_lower_case,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ split_by_punct=split_by_punct,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+ self._tokenizer.special_tokens = self.all_special_tokens
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ @property
+ def vocab(self):
+ return self._tokenizer.vocab
+
+ def get_vocab(self):
+ vocab = self.vocab.copy()
+ vocab.update(self.get_added_vocab())
+ return vocab
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ if self.do_lower_case:
+ text = text.lower()
+ return self._tokenizer.tokenize(text)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self._tokenizer.spm.PieceToId(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ return self._tokenizer.decode(tokens)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A DeBERTa sequence has the following format:
+
+ - single sequence: [CLS] X [SEP]
+ - pair of sequences: [CLS] A [SEP] B [SEP]
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
+ add_prefix_space = kwargs.pop("add_prefix_space", False)
+ if is_split_into_words or add_prefix_space:
+ text = " " + text
+ return (text, kwargs)
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix)
+
+
+class SPMTokenizer:
+ r"""
+ Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ def __init__(
+ self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None
+ ):
+ self.split_by_punct = split_by_punct
+ self.vocab_file = vocab_file
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
+ if not os.path.exists(vocab_file):
+ raise FileNotFoundError(f"{vocab_file} does not exist!")
+ spm.load(vocab_file)
+ bpe_vocab_size = spm.GetPieceSize()
+ # Token map
+ # 0+1
+ # 1+1
+ # 2+1
+ self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)}
+ self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
+ # self.vocab['[PAD]'] = 0
+ # self.vocab['[CLS]'] = 1
+ # self.vocab['[SEP]'] = 2
+ # self.vocab['[UNK]'] = 3
+
+ self.spm = spm
+ self.special_tokens = special_tokens
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["spm"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.spm.Load(self.vocab_file)
+
+ def tokenize(self, text):
+ return self._encode_as_pieces(text)
+
+ def convert_ids_to_tokens(self, ids):
+ tokens = []
+ for i in ids:
+ tokens.append(self.ids_to_tokens[i])
+ return tokens
+
+ def decode(self, tokens, start=-1, end=-1, raw_text=None):
+ if raw_text is None:
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.spm.decode_pieces(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.spm.decode_pieces(current_sub_tokens)
+ return out_string.strip()
+ else:
+ words = self.split_to_words(raw_text)
+ word_tokens = [self.tokenize(w) for w in words]
+ token2words = [0] * len(tokens)
+ tid = 0
+ for i, w in enumerate(word_tokens):
+ for k, t in enumerate(w):
+ token2words[tid] = i
+ tid += 1
+ word_start = token2words[start]
+ word_end = token2words[end] if end < len(tokens) else len(words)
+ text = "".join(words[word_start:word_end])
+ return text
+
+ # TODO add a deprecation cycle as this can have different behaviour from our API
+ def add_special_token(self, token):
+ if token not in self.special_tokens:
+ self.special_tokens.append(token)
+ if token not in self.vocab:
+ self.vocab[token] = len(self.vocab) - 1
+ self.ids_to_tokens.append(token)
+ return self.id(token)
+
+ def part_of_whole_word(self, token, is_bos=False):
+ logger.warning_once(
+ "The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`"
+ )
+ if is_bos:
+ return True
+ if (
+ len(token) == 1
+ and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))
+ ) or token in self.special_tokens:
+ return False
+
+ word_start = b"\xe2\x96\x81".decode("utf-8")
+ return not token.startswith(word_start)
+
+ def pad(self):
+ return "[PAD]"
+
+ def bos(self):
+ return "[CLS]"
+
+ def eos(self):
+ return "[SEP]"
+
+ def unk(self):
+ return "[UNK]"
+
+ def mask(self):
+ return "[MASK]"
+
+ def sym(self, id):
+ return self.ids_to_tokens[id]
+
+ def id(self, sym):
+ logger.warning_once(
+ "The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`"
+ )
+ return self.vocab[sym] if sym in self.vocab else 1
+
+ def _encode_as_pieces(self, text):
+ text = convert_to_unicode(text)
+ if self.split_by_punct:
+ words = self._run_split_on_punc(text)
+ pieces = [self.spm.encode(w, out_type=str) for w in words]
+ return [p for w in pieces for p in w]
+ else:
+ return self.spm.encode(text, out_type=str)
+
+ def split_to_words(self, text):
+ pieces = self._encode_as_pieces(text)
+ word_start = b"\xe2\x96\x81".decode("utf-8")
+ words = []
+ offset = 0
+ prev_end = 0
+ for i, p in enumerate(pieces):
+ if p.startswith(word_start):
+ if offset > prev_end:
+ words.append(text[prev_end:offset])
+ prev_end = offset
+ w = p.replace(word_start, "")
+ else:
+ w = p
+ try:
+ s = text.index(w, offset)
+ pn = ""
+ k = i + 1
+ while k < len(pieces):
+ pn = pieces[k].replace(word_start, "")
+ if len(pn) > 0:
+ break
+ k += 1
+
+ if len(pn) > 0 and pn in text[offset:s]:
+ offset = offset + 1
+ else:
+ offset = s + len(w)
+ except Exception:
+ offset = offset + 1
+
+ if prev_end < offset:
+ words.append(text[prev_end:offset])
+
+ return words
+
+ def _run_split_on_punc(self, text):
+ """Splits punctuation on a piece of text."""
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def save_pretrained(self, path: str, filename_prefix: str = None):
+ filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]]
+ if filename_prefix is not None:
+ filename = filename_prefix + "-" + filename
+ full_path = os.path.join(path, filename)
+ with open(full_path, "wb") as fs:
+ fs.write(self.spm.serialized_model_proto())
+ return (full_path,)
+
+
+def _is_whitespace(char):
+ """Checks whether `chars` is a whitespace character."""
+ # \t, \n, and \r are technically control characters but we treat them
+ # as whitespace since they are generally considered as such.
+ if char == " " or char == "\t" or char == "\n" or char == "\r":
+ return True
+ cat = unicodedata.category(char)
+ if cat == "Zs":
+ return True
+ return False
+
+
+def _is_control(char):
+ """Checks whether `chars` is a control character."""
+ # These are technically control characters but we count them as whitespace
+ # characters.
+ if char == "\t" or char == "\n" or char == "\r":
+ return False
+ cat = unicodedata.category(char)
+ if cat.startswith("C"):
+ return True
+ return False
+
+
+def _is_punctuation(char):
+ """Checks whether `chars` is a punctuation character."""
+ cp = ord(char)
+ # We treat all non-letter/number ASCII as punctuation.
+ # Characters such as "^", "$", and "`" are not in the Unicode
+ # Punctuation class but we treat them as punctuation anyways, for
+ # consistency.
+ if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
+ return True
+ cat = unicodedata.category(char)
+ if cat.startswith("P"):
+ return True
+ return False
+
+
+def convert_to_unicode(text):
+ """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
+ if isinstance(text, str):
+ return text
+ elif isinstance(text, bytes):
+ return text.decode("utf-8", "ignore")
+ else:
+ raise ValueError(f"Unsupported string type: {type(text)}")
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb92a61edf1afbde7c21f4be7130bb649ef3a8ab
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py
@@ -0,0 +1,220 @@
+# coding=utf-8
+# Copyright 2020 Microsoft and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization class for model DeBERTa."""
+
+import os
+from shutil import copyfile
+from typing import Optional, Tuple
+
+from ...file_utils import is_sentencepiece_available
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_deberta_v2 import DebertaV2Tokenizer
+else:
+ DebertaV2Tokenizer = None
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spm.model", "tokenizer_file": "tokenizer.json"}
+
+
+class DebertaV2TokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Constructs a DeBERTa-v2 fast tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `False`):
+ Whether or not to lowercase the input when tokenizing.
+ bos_token (`string`, *optional*, defaults to `"[CLS]"`):
+ The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+ eos_token (`string`, *optional*, defaults to `"[SEP]"`):
+ The end of sequence token. When building a sequence using special tokens, this is not the token that is
+ used for the end of sequence. The token used is the `sep_token`.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = DebertaV2Tokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=False,
+ split_by_punct=False,
+ bos_token="[CLS]",
+ eos_token="[SEP]",
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ **kwargs,
+ ) -> None:
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ split_by_punct=split_by_punct,
+ **kwargs,
+ )
+
+ self.do_lower_case = do_lower_case
+ self.split_by_punct = split_by_punct
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A DeBERTa sequence has the following format:
+
+ - single sequence: [CLS] X [SEP]
+ - pair of sequences: [CLS] A [SEP] B [SEP]
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/configuration_persimmon.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/configuration_persimmon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..95281a2281e4be6c515d5e885592576938c66e21
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/configuration_persimmon.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/convert_persimmon_weights_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/convert_persimmon_weights_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8d5f6d4ad4340e21728ea617b646718e9d4b3859
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/convert_persimmon_weights_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/modeling_persimmon.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/modeling_persimmon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8527c47f830ef445da4e6347d64908af3fdb1094
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/modeling_persimmon.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..08b1e732b7df894afb11a8e04e9685c6a7c708fa
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py
@@ -0,0 +1,122 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_essentia_available,
+ is_librosa_available,
+ is_pretty_midi_available,
+ is_scipy_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_pop2piano": ["POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pop2PianoConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_pop2piano"] = [
+ "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Pop2PianoForConditionalGeneration",
+ "Pop2PianoPreTrainedModel",
+ ]
+
+try:
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_pop2piano"] = ["Pop2PianoFeatureExtractor"]
+
+try:
+ if not (is_pretty_midi_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_pop2piano"] = ["Pop2PianoTokenizer"]
+
+try:
+ if not (
+ is_pretty_midi_available()
+ and is_torch_available()
+ and is_librosa_available()
+ and is_essentia_available()
+ and is_scipy_available()
+ ):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["processing_pop2piano"] = ["Pop2PianoProcessor"]
+
+
+if TYPE_CHECKING:
+ from .configuration_pop2piano import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP, Pop2PianoConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_pop2piano import (
+ POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Pop2PianoForConditionalGeneration,
+ Pop2PianoPreTrainedModel,
+ )
+
+ try:
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_pop2piano import Pop2PianoFeatureExtractor
+
+ try:
+ if not (is_pretty_midi_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_pop2piano import Pop2PianoTokenizer
+
+ try:
+ if not (
+ is_pretty_midi_available()
+ and is_torch_available()
+ and is_librosa_available()
+ and is_essentia_available()
+ and is_scipy_available()
+ ):
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .processing_pop2piano import Pop2PianoProcessor
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ebe3d5754dc3bf4b1e56924c7d026e8f6b9b47d0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7e9b5d072ec5dd929d2f772b54f7f22ac7654416
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a291b023d61b339fb63a10c0375456d4b068efba
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9601303ef075fd5f58cedb18d229f3f206bb7068
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..caf8bf6431ab22256a36ff95a28a2fccc771ae07
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..35487c3ed973a24e5a0cfc7f207102303fc066c0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/tokenization_pop2piano.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/tokenization_pop2piano.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8985910eec81d83d4fdc22bdc22cdcc11d4fad56
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/tokenization_pop2piano.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/configuration_pop2piano.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/configuration_pop2piano.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff0d4f37b23e0b7cc20a136f014575f0fbba7f8b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/configuration_pop2piano.py
@@ -0,0 +1,128 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Pop2Piano model configuration"""
+
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class Pop2PianoConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
+ to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
+ Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Arguments:
+ vocab_size (`int`, *optional*, defaults to 2400):
+ Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
+ that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
+ composer_vocab_size (`int`, *optional*, defaults to 21):
+ Denotes the number of composers.
+ d_model (`int`, *optional*, defaults to 512):
+ Size of the encoder layers and the pooler layer.
+ d_kv (`int`, *optional*, defaults to 64):
+ Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
+ be defined as `num_heads * d_kv`.
+ d_ff (`int`, *optional*, defaults to 2048):
+ Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
+ num_layers (`int`, *optional*, defaults to 6):
+ Number of hidden layers in the Transformer encoder.
+ num_decoder_layers (`int`, *optional*):
+ Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
+ num_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
+ The number of buckets to use for each attention layer.
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
+ The maximum distance of the longer sequences for the bucket separation.
+ dropout_rate (`float`, *optional*, defaults to 0.1):
+ The ratio for all dropout layers.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
+ The epsilon used by the layer normalization layers.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
+ Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ dense_act_fn (`string`, *optional*, defaults to `"relu"`):
+ Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
+ """
+
+ model_type = "pop2piano"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=2400,
+ composer_vocab_size=21,
+ d_model=512,
+ d_kv=64,
+ d_ff=2048,
+ num_layers=6,
+ num_decoder_layers=None,
+ num_heads=8,
+ relative_attention_num_buckets=32,
+ relative_attention_max_distance=128,
+ dropout_rate=0.1,
+ layer_norm_epsilon=1e-6,
+ initializer_factor=1.0,
+ feed_forward_proj="gated-gelu", # noqa
+ is_encoder_decoder=True,
+ use_cache=True,
+ pad_token_id=0,
+ eos_token_id=1,
+ dense_act_fn="relu",
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.composer_vocab_size = composer_vocab_size
+ self.d_model = d_model
+ self.d_kv = d_kv
+ self.d_ff = d_ff
+ self.num_layers = num_layers
+ self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
+ self.num_heads = num_heads
+ self.relative_attention_num_buckets = relative_attention_num_buckets
+ self.relative_attention_max_distance = relative_attention_max_distance
+ self.dropout_rate = dropout_rate
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_factor = initializer_factor
+ self.feed_forward_proj = feed_forward_proj
+ self.use_cache = use_cache
+ self.dense_act_fn = dense_act_fn
+ self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
+ self.hidden_size = self.d_model
+ self.num_attention_heads = num_heads
+ self.num_hidden_layers = num_layers
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ **kwargs,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/convert_pop2piano_weights_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/convert_pop2piano_weights_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..a73c57886da96e8528d6404052992a9b3b60347a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/convert_pop2piano_weights_to_hf.py
@@ -0,0 +1,190 @@
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+""" File for loading the Pop2Piano model weights from the official repository and to show how tokenizer vocab was
+ constructed"""
+
+import json
+
+import torch
+
+from transformers import Pop2PianoConfig, Pop2PianoForConditionalGeneration
+
+
+########################## MODEL WEIGHTS ##########################
+
+# This weights were downloaded from the official pop2piano repository
+# https://huggingface.co/sweetcocoa/pop2piano/blob/main/model-1999-val_0.67311615.ckpt
+official_weights = torch.load("./model-1999-val_0.67311615.ckpt")
+state_dict = {}
+
+
+# load the config and init the model
+cfg = Pop2PianoConfig.from_pretrained("sweetcocoa/pop2piano")
+model = Pop2PianoForConditionalGeneration(cfg)
+
+
+# load relative attention bias
+state_dict["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = official_weights["state_dict"][
+ "transformer.encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"
+]
+state_dict["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = official_weights["state_dict"][
+ "transformer.decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"
+]
+
+# load embed tokens and final layer norm for both encoder and decoder
+state_dict["encoder.embed_tokens.weight"] = official_weights["state_dict"]["transformer.encoder.embed_tokens.weight"]
+state_dict["decoder.embed_tokens.weight"] = official_weights["state_dict"]["transformer.decoder.embed_tokens.weight"]
+
+state_dict["encoder.final_layer_norm.weight"] = official_weights["state_dict"][
+ "transformer.encoder.final_layer_norm.weight"
+]
+state_dict["decoder.final_layer_norm.weight"] = official_weights["state_dict"][
+ "transformer.decoder.final_layer_norm.weight"
+]
+
+# load lm_head, mel_conditioner.emb and shared
+state_dict["lm_head.weight"] = official_weights["state_dict"]["transformer.lm_head.weight"]
+state_dict["mel_conditioner.embedding.weight"] = official_weights["state_dict"]["mel_conditioner.embedding.weight"]
+state_dict["shared.weight"] = official_weights["state_dict"]["transformer.shared.weight"]
+
+# load each encoder blocks
+for i in range(cfg.num_layers):
+ # layer 0
+ state_dict[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.0.SelfAttention.q.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.0.SelfAttention.k.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.0.SelfAttention.v.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.0.SelfAttention.o.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.0.layer_norm.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.0.layer_norm.weight"
+ ]
+
+ # layer 1
+ state_dict[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.1.DenseReluDense.wo.weight"
+ ]
+ state_dict[f"encoder.block.{i}.layer.1.layer_norm.weight"] = official_weights["state_dict"][
+ f"transformer.encoder.block.{i}.layer.1.layer_norm.weight"
+ ]
+
+# load each decoder blocks
+for i in range(6):
+ # layer 0
+ state_dict[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.0.SelfAttention.q.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.0.SelfAttention.k.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.0.SelfAttention.v.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.0.SelfAttention.o.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.0.layer_norm.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.0.layer_norm.weight"
+ ]
+
+ # layer 1
+ state_dict[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.1.EncDecAttention.q.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.1.EncDecAttention.k.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.1.EncDecAttention.v.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.1.EncDecAttention.o.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.1.layer_norm.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.1.layer_norm.weight"
+ ]
+
+ # layer 2
+ state_dict[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.2.DenseReluDense.wo.weight"
+ ]
+ state_dict[f"decoder.block.{i}.layer.2.layer_norm.weight"] = official_weights["state_dict"][
+ f"transformer.decoder.block.{i}.layer.2.layer_norm.weight"
+ ]
+
+model.load_state_dict(state_dict, strict=True)
+
+# save the weights
+torch.save(state_dict, "./pytorch_model.bin")
+
+########################## TOKENIZER ##########################
+
+# the tokenize and detokenize methods are taken from the official implementation
+
+
+# link : https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L34
+def tokenize(idx, token_type, n_special=4, n_note=128, n_velocity=2):
+ if token_type == "TOKEN_TIME":
+ return n_special + n_note + n_velocity + idx
+ elif token_type == "TOKEN_VELOCITY":
+ return n_special + n_note + idx
+ elif token_type == "TOKEN_NOTE":
+ return n_special + idx
+ elif token_type == "TOKEN_SPECIAL":
+ return idx
+ else:
+ return -1
+
+
+# link : https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L48
+def detokenize(idx, n_special=4, n_note=128, n_velocity=2, time_idx_offset=0):
+ if idx >= n_special + n_note + n_velocity:
+ return "TOKEN_TIME", (idx - (n_special + n_note + n_velocity)) + time_idx_offset
+ elif idx >= n_special + n_note:
+ return "TOKEN_VELOCITY", idx - (n_special + n_note)
+ elif idx >= n_special:
+ return "TOKEN_NOTE", idx - n_special
+ else:
+ return "TOKEN_SPECIAL", idx
+
+
+# crate the decoder and then the encoder of the tokenizer
+decoder = {}
+for i in range(cfg.vocab_size):
+ decoder.update({i: f"{detokenize(i)[1]}_{detokenize(i)[0]}"})
+
+encoder = {v: k for k, v in decoder.items()}
+
+# save the vocab
+with open("./vocab.json", "w") as file:
+ file.write(json.dumps(encoder))
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/feature_extraction_pop2piano.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/feature_extraction_pop2piano.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bf5326c0b6ef816b0eb08d9694921f4716b0d10
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/feature_extraction_pop2piano.py
@@ -0,0 +1,450 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Feature extractor class for Pop2Piano"""
+
+import warnings
+from typing import List, Optional, Union
+
+import numpy
+import numpy as np
+
+from ...audio_utils import mel_filter_bank, spectrogram
+from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
+from ...feature_extraction_utils import BatchFeature
+from ...utils import (
+ TensorType,
+ is_essentia_available,
+ is_librosa_available,
+ is_scipy_available,
+ logging,
+ requires_backends,
+)
+
+
+if is_essentia_available():
+ import essentia
+ import essentia.standard
+
+if is_librosa_available():
+ import librosa
+
+if is_scipy_available():
+ import scipy
+
+
+logger = logging.get_logger(__name__)
+
+
+class Pop2PianoFeatureExtractor(SequenceFeatureExtractor):
+ r"""
+ Constructs a Pop2Piano feature extractor.
+
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
+ most of the main methods. Users should refer to this superclass for more information regarding those methods.
+
+ This class extracts rhythm and preprocesses the audio before it is passed to the model. First the audio is passed
+ to `RhythmExtractor2013` algorithm which extracts the beat_times, beat positions and estimates their confidence as
+ well as tempo in bpm, then beat_times is interpolated and to get beatsteps. Later we calculate
+ extrapolated_beatsteps from it to be used in tokenizer. On the other hand audio is resampled to self.sampling_rate
+ and preprocessed and then log mel spectogram is computed from that to be used in our transformer model.
+
+ Args:
+ sampling_rate (`int`, *optional*, defaults to 22050):
+ Target Sampling rate of audio signal. It's the sampling rate that we forward to the model.
+ padding_value (`int`, *optional*, defaults to 0):
+ Padding value used to pad the audio. Should correspond to silences.
+ window_size (`int`, *optional*, defaults to 4096):
+ Length of the window in samples to which the Fourier transform is applied.
+ hop_length (`int`, *optional*, defaults to 1024):
+ Step size between each window of the waveform, in samples.
+ min_frequency (`float`, *optional*, defaults to 10.0):
+ Lowest frequency that will be used in the log-mel spectrogram.
+ feature_size (`int`, *optional*, defaults to 512):
+ The feature dimension of the extracted features.
+ num_bars (`int`, *optional*, defaults to 2):
+ Determines interval between each sequence.
+ """
+
+ model_input_names = ["input_features", "beatsteps", "extrapolated_beatstep"]
+
+ def __init__(
+ self,
+ sampling_rate: int = 22050,
+ padding_value: int = 0,
+ window_size: int = 4096,
+ hop_length: int = 1024,
+ min_frequency: float = 10.0,
+ feature_size: int = 512,
+ num_bars: int = 2,
+ **kwargs,
+ ):
+ super().__init__(
+ feature_size=feature_size,
+ sampling_rate=sampling_rate,
+ padding_value=padding_value,
+ **kwargs,
+ )
+ self.sampling_rate = sampling_rate
+ self.padding_value = padding_value
+ self.window_size = window_size
+ self.hop_length = hop_length
+ self.min_frequency = min_frequency
+ self.feature_size = feature_size
+ self.num_bars = num_bars
+ self.mel_filters = mel_filter_bank(
+ num_frequency_bins=(self.window_size // 2) + 1,
+ num_mel_filters=self.feature_size,
+ min_frequency=self.min_frequency,
+ max_frequency=float(self.sampling_rate // 2),
+ sampling_rate=self.sampling_rate,
+ norm=None,
+ mel_scale="htk",
+ )
+
+ def mel_spectrogram(self, sequence: np.ndarray):
+ """
+ Generates MelSpectrogram.
+
+ Args:
+ sequence (`numpy.ndarray`):
+ The sequence of which the mel-spectrogram will be computed.
+ """
+ mel_specs = []
+ for seq in sequence:
+ window = np.hanning(self.window_size + 1)[:-1]
+ mel_specs.append(
+ spectrogram(
+ waveform=seq,
+ window=window,
+ frame_length=self.window_size,
+ hop_length=self.hop_length,
+ power=2.0,
+ mel_filters=self.mel_filters,
+ )
+ )
+ mel_specs = np.array(mel_specs)
+
+ return mel_specs
+
+ def extract_rhythm(self, audio: np.ndarray):
+ """
+ This algorithm(`RhythmExtractor2013`) extracts the beat positions and estimates their confidence as well as
+ tempo in bpm for an audio signal. For more information please visit
+ https://essentia.upf.edu/reference/std_RhythmExtractor2013.html .
+
+ Args:
+ audio(`numpy.ndarray`):
+ raw audio waveform which is passed to the Rhythm Extractor.
+ """
+ requires_backends(self, ["essentia"])
+ essentia_tracker = essentia.standard.RhythmExtractor2013(method="multifeature")
+ bpm, beat_times, confidence, estimates, essentia_beat_intervals = essentia_tracker(audio)
+
+ return bpm, beat_times, confidence, estimates, essentia_beat_intervals
+
+ def interpolate_beat_times(
+ self, beat_times: numpy.ndarray, steps_per_beat: numpy.ndarray, n_extend: numpy.ndarray
+ ):
+ """
+ This method takes beat_times and then interpolates that using `scipy.interpolate.interp1d` and the output is
+ then used to convert raw audio to log-mel-spectrogram.
+
+ Args:
+ beat_times (`numpy.ndarray`):
+ beat_times is passed into `scipy.interpolate.interp1d` for processing.
+ steps_per_beat (`int`):
+ used as an parameter to control the interpolation.
+ n_extend (`int`):
+ used as an parameter to control the interpolation.
+ """
+
+ requires_backends(self, ["scipy"])
+ beat_times_function = scipy.interpolate.interp1d(
+ np.arange(beat_times.size),
+ beat_times,
+ bounds_error=False,
+ fill_value="extrapolate",
+ )
+
+ ext_beats = beat_times_function(
+ np.linspace(0, beat_times.size + n_extend - 1, beat_times.size * steps_per_beat + n_extend)
+ )
+
+ return ext_beats
+
+ def preprocess_mel(self, audio: np.ndarray, beatstep: np.ndarray):
+ """
+ Preprocessing for log-mel-spectrogram
+
+ Args:
+ audio (`numpy.ndarray` of shape `(audio_length, )` ):
+ Raw audio waveform to be processed.
+ beatstep (`numpy.ndarray`):
+ Interpolated values of the raw audio. If beatstep[0] is greater than 0.0, then it will be shifted by
+ the value at beatstep[0].
+ """
+
+ if audio is not None and len(audio.shape) != 1:
+ raise ValueError(
+ f"Expected `audio` to be a single channel audio input of shape `(n, )` but found shape {audio.shape}."
+ )
+ if beatstep[0] > 0.0:
+ beatstep = beatstep - beatstep[0]
+
+ num_steps = self.num_bars * 4
+ num_target_steps = len(beatstep)
+ extrapolated_beatstep = self.interpolate_beat_times(
+ beat_times=beatstep, steps_per_beat=1, n_extend=(self.num_bars + 1) * 4 + 1
+ )
+
+ sample_indices = []
+ max_feature_length = 0
+ for i in range(0, num_target_steps, num_steps):
+ start_idx = i
+ end_idx = min(i + num_steps, num_target_steps)
+ start_sample = int(extrapolated_beatstep[start_idx] * self.sampling_rate)
+ end_sample = int(extrapolated_beatstep[end_idx] * self.sampling_rate)
+ sample_indices.append((start_sample, end_sample))
+ max_feature_length = max(max_feature_length, end_sample - start_sample)
+ padded_batch = []
+ for start_sample, end_sample in sample_indices:
+ feature = audio[start_sample:end_sample]
+ padded_feature = np.pad(
+ feature,
+ ((0, max_feature_length - feature.shape[0]),),
+ "constant",
+ constant_values=0,
+ )
+ padded_batch.append(padded_feature)
+
+ padded_batch = np.asarray(padded_batch)
+ return padded_batch, extrapolated_beatstep
+
+ def _pad(self, features: np.ndarray, add_zero_line=True):
+ features_shapes = [each_feature.shape for each_feature in features]
+ attention_masks, padded_features = [], []
+ for i, each_feature in enumerate(features):
+ # To pad "input_features".
+ if len(each_feature.shape) == 3:
+ features_pad_value = max([*zip(*features_shapes)][1]) - features_shapes[i][1]
+ attention_mask = np.ones(features_shapes[i][:2], dtype=np.int64)
+ feature_padding = ((0, 0), (0, features_pad_value), (0, 0))
+ attention_mask_padding = (feature_padding[0], feature_padding[1])
+
+ # To pad "beatsteps" and "extrapolated_beatstep".
+ else:
+ each_feature = each_feature.reshape(1, -1)
+ features_pad_value = max([*zip(*features_shapes)][0]) - features_shapes[i][0]
+ attention_mask = np.ones(features_shapes[i], dtype=np.int64).reshape(1, -1)
+ feature_padding = attention_mask_padding = ((0, 0), (0, features_pad_value))
+
+ each_padded_feature = np.pad(each_feature, feature_padding, "constant", constant_values=self.padding_value)
+ attention_mask = np.pad(
+ attention_mask, attention_mask_padding, "constant", constant_values=self.padding_value
+ )
+
+ if add_zero_line:
+ # if it is batched then we seperate each examples using zero array
+ zero_array_len = max([*zip(*features_shapes)][1])
+
+ # we concatenate the zero array line here
+ each_padded_feature = np.concatenate(
+ [each_padded_feature, np.zeros([1, zero_array_len, self.feature_size])], axis=0
+ )
+ attention_mask = np.concatenate(
+ [attention_mask, np.zeros([1, zero_array_len], dtype=attention_mask.dtype)], axis=0
+ )
+
+ padded_features.append(each_padded_feature)
+ attention_masks.append(attention_mask)
+
+ padded_features = np.concatenate(padded_features, axis=0).astype(np.float32)
+ attention_masks = np.concatenate(attention_masks, axis=0).astype(np.int64)
+
+ return padded_features, attention_masks
+
+ def pad(
+ self,
+ inputs: BatchFeature,
+ is_batched: bool,
+ return_attention_mask: bool,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ ):
+ """
+ Pads the inputs to same length and returns attention_mask.
+
+ Args:
+ inputs (`BatchFeature`):
+ Processed audio features.
+ is_batched (`bool`):
+ Whether inputs are batched or not.
+ return_attention_mask (`bool`):
+ Whether to return attention mask or not.
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ If nothing is specified, it will return list of `np.ndarray` arrays.
+ Return:
+ `BatchFeature` with attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep added
+ to it:
+ - **attention_mask** numpy.ndarray of shape `(batch_size, max_input_features_seq_length)` --
+ Example :
+ 1, 1, 1, 0, 0 (audio 1, also here it is padded to max length of 5 thats why there are 2 zeros at
+ the end indicating they are padded)
+
+ 0, 0, 0, 0, 0 (zero pad to seperate audio 1 and 2)
+
+ 1, 1, 1, 1, 1 (audio 2)
+
+ 0, 0, 0, 0, 0 (zero pad to seperate audio 2 and 3)
+
+ 1, 1, 1, 1, 1 (audio 3)
+ - **attention_mask_beatsteps** numpy.ndarray of shape `(batch_size, max_beatsteps_seq_length)`
+ - **attention_mask_extrapolated_beatstep** numpy.ndarray of shape `(batch_size,
+ max_extrapolated_beatstep_seq_length)`
+ """
+
+ processed_features_dict = {}
+ for feature_name, feature_value in inputs.items():
+ if feature_name == "input_features":
+ padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=True)
+ processed_features_dict[feature_name] = padded_feature_values
+ if return_attention_mask:
+ processed_features_dict["attention_mask"] = attention_mask
+ else:
+ padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=False)
+ processed_features_dict[feature_name] = padded_feature_values
+ if return_attention_mask:
+ processed_features_dict[f"attention_mask_{feature_name}"] = attention_mask
+
+ # If we are processing only one example, we should remove the zero array line since we don't need it to
+ # seperate examples from each other.
+ if not is_batched and not return_attention_mask:
+ processed_features_dict["input_features"] = processed_features_dict["input_features"][:-1, ...]
+
+ outputs = BatchFeature(processed_features_dict, tensor_type=return_tensors)
+
+ return outputs
+
+ def __call__(
+ self,
+ audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
+ sampling_rate: Union[int, List[int]],
+ steps_per_beat: int = 2,
+ resample: Optional[bool] = True,
+ return_attention_mask: Optional[bool] = False,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Main method to featurize and prepare for the model.
+
+ Args:
+ audio (`np.ndarray`, `List`):
+ The audio or batch of audio to be processed. Each audio can be a numpy array, a list of float values, a
+ list of numpy arrays or a list of list of float values.
+ sampling_rate (`int`):
+ The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
+ `sampling_rate` at the forward call to prevent silent errors.
+ steps_per_beat (`int`, *optional*, defaults to 2):
+ This is used in interpolating `beat_times`.
+ resample (`bool`, *optional*, defaults to `True`):
+ Determines whether to resample the audio to `sampling_rate` or not before processing. Must be True
+ during inference.
+ return_attention_mask (`bool` *optional*, defaults to `False`):
+ Denotes if attention_mask for input_features, beatsteps and extrapolated_beatstep will be given as
+ output or not. Automatically set to True for batched inputs.
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ If nothing is specified, it will return list of `np.ndarray` arrays.
+ """
+
+ requires_backends(self, ["librosa"])
+ is_batched = bool(isinstance(audio, (list, tuple)) and isinstance(audio[0], (np.ndarray, tuple, list)))
+ if is_batched:
+ # This enables the user to process files of different sampling_rate at same time
+ if not isinstance(sampling_rate, list):
+ raise ValueError(
+ "Please give sampling_rate of each audio separately when you are passing multiple raw_audios at the same time. "
+ f"Received {sampling_rate}, expected [audio_1_sr, ..., audio_n_sr]."
+ )
+ return_attention_mask = True if return_attention_mask is None else return_attention_mask
+ else:
+ audio = [audio]
+ sampling_rate = [sampling_rate]
+ return_attention_mask = False if return_attention_mask is None else return_attention_mask
+
+ batch_input_features, batch_beatsteps, batch_ext_beatstep = [], [], []
+ for single_raw_audio, single_sampling_rate in zip(audio, sampling_rate):
+ bpm, beat_times, confidence, estimates, essentia_beat_intervals = self.extract_rhythm(
+ audio=single_raw_audio
+ )
+ beatsteps = self.interpolate_beat_times(beat_times=beat_times, steps_per_beat=steps_per_beat, n_extend=1)
+
+ if self.sampling_rate != single_sampling_rate and self.sampling_rate is not None:
+ if resample:
+ # Change sampling_rate to self.sampling_rate
+ single_raw_audio = librosa.core.resample(
+ single_raw_audio,
+ orig_sr=single_sampling_rate,
+ target_sr=self.sampling_rate,
+ res_type="kaiser_best",
+ )
+ else:
+ warnings.warn(
+ f"The sampling_rate of the provided audio is different from the target sampling_rate "
+ f"of the Feature Extractor, {self.sampling_rate} vs {single_sampling_rate}. "
+ f"In these cases it is recommended to use `resample=True` in the `__call__` method to "
+ f"get the optimal behaviour."
+ )
+
+ single_sampling_rate = self.sampling_rate
+ start_sample = int(beatsteps[0] * single_sampling_rate)
+ end_sample = int(beatsteps[-1] * single_sampling_rate)
+
+ input_features, extrapolated_beatstep = self.preprocess_mel(
+ single_raw_audio[start_sample:end_sample], beatsteps - beatsteps[0]
+ )
+
+ mel_specs = self.mel_spectrogram(input_features.astype(np.float32))
+
+ # apply np.log to get log mel-spectrograms
+ log_mel_specs = np.log(np.clip(mel_specs, a_min=1e-6, a_max=None))
+
+ input_features = np.transpose(log_mel_specs, (0, -1, -2))
+
+ batch_input_features.append(input_features)
+ batch_beatsteps.append(beatsteps)
+ batch_ext_beatstep.append(extrapolated_beatstep)
+
+ output = BatchFeature(
+ {
+ "input_features": batch_input_features,
+ "beatsteps": batch_beatsteps,
+ "extrapolated_beatstep": batch_ext_beatstep,
+ }
+ )
+
+ output = self.pad(
+ output,
+ is_batched=is_batched,
+ return_attention_mask=return_attention_mask,
+ return_tensors=return_tensors,
+ )
+
+ return output
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/modeling_pop2piano.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/modeling_pop2piano.py
new file mode 100644
index 0000000000000000000000000000000000000000..c85135ccfea2d9b9b66b09528ae9795514447868
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/modeling_pop2piano.py
@@ -0,0 +1,1363 @@
+# coding=utf-8
+# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Pop2Piano model."""
+
+
+import copy
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from transformers.generation import GenerationConfig
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ Seq2SeqLMOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_torch_fx_proxy,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_pop2piano import Pop2PianoConfig
+
+
+logger = logging.get_logger(__name__)
+
+_load_pop2piano_layer_norm = True
+
+try:
+ from apex.normalization import FusedRMSNorm
+
+ _load_pop2piano_layer_norm = False
+
+ logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pop2PianoLayerNorm")
+except ImportError:
+ # using the normal Pop2PianoLayerNorm
+ pass
+except Exception:
+ logger.warning("Discovered apex but it failed to load, falling back to Pop2PianoLayerNorm")
+ pass
+
+
+_CONFIG_FOR_DOC = "Pop2PianoConfig"
+_CHECKPOINT_FOR_DOC = "sweetcocoa/pop2piano"
+
+
+from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+POP2PIANO_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Pop2Piano is a model with relative position embeddings
+ so you should be able to pad the inputs on both the right and the left. Indices can be obtained using
+ [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail.
+ [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining
+ take a look a [Pop2Pianp Training](./Pop2Piano#training).
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
+ [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+ [What are decoder input IDs?](../glossary#decoder-input-ids) Pop2Piano uses the `pad_token_id` as the
+ starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last
+ `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
+ 1]`:
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
+ `[0, 1]`:
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
+ the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Does the same task as `inputs_embeds`. If `inputs_embeds` is not present but `input_features` is present
+ then `input_features` will be considered as `inputs_embeds`.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If
+ `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of
+ `inputs_embeds`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pop2Piano
+class Pop2PianoLayerNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Construct a layernorm module in the Pop2Piano style. No bias and no subtraction of mean.
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ # Pop2Piano uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
+ # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
+ # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
+ # half-precision inputs is done in fp32
+
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+
+ # convert into half-precision if necessary
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
+ hidden_states = hidden_states.to(self.weight.dtype)
+
+ return self.weight * hidden_states
+
+
+if not _load_pop2piano_layer_norm:
+ Pop2PianoLayerNorm = FusedRMSNorm # noqa
+
+ALL_LAYERNORM_LAYERS.append(Pop2PianoLayerNorm)
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->Pop2Piano,t5->pop2piano
+class Pop2PianoDenseActDense(nn.Module):
+ def __init__(self, config: Pop2PianoConfig):
+ super().__init__()
+ self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_states = self.wi(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pop2Piano
+class Pop2PianoDenseGatedActDense(nn.Module):
+ def __init__(self, config: Pop2PianoConfig):
+ super().__init__()
+ self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_gelu = self.act(self.wi_0(hidden_states))
+ hidden_linear = self.wi_1(hidden_states)
+ hidden_states = hidden_gelu * hidden_linear
+ hidden_states = self.dropout(hidden_states)
+
+ # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
+ # See https://github.com/huggingface/transformers/issues/20287
+ # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->Pop2Piano
+class Pop2PianoLayerFF(nn.Module):
+ def __init__(self, config: Pop2PianoConfig):
+ super().__init__()
+ if config.is_gated_act:
+ self.DenseReluDense = Pop2PianoDenseGatedActDense(config)
+ else:
+ self.DenseReluDense = Pop2PianoDenseActDense(config)
+
+ self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(self, hidden_states):
+ forwarded_states = self.layer_norm(hidden_states)
+ forwarded_states = self.DenseReluDense(forwarded_states)
+ hidden_states = hidden_states + self.dropout(forwarded_states)
+ return hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->Pop2Piano,t5->pop2piano
+class Pop2PianoAttention(nn.Module):
+ def __init__(self, config: Pop2PianoConfig, has_relative_attention_bias=False):
+ super().__init__()
+ self.is_decoder = config.is_decoder
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
+ self.relative_attention_max_distance = config.relative_attention_max_distance
+ self.d_model = config.d_model
+ self.key_value_proj_dim = config.d_kv
+ self.n_heads = config.num_heads
+ self.dropout = config.dropout_rate
+ self.inner_dim = self.n_heads * self.key_value_proj_dim
+
+ # Mesh TensorFlow initialization to avoid scaling before softmax
+ self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
+
+ if self.has_relative_attention_bias:
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
+ self.pruned_heads = set()
+ self.gradient_checkpointing = False
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
+ )
+ # Prune linear layers
+ self.q = prune_linear_layer(self.q, index)
+ self.k = prune_linear_layer(self.k, index)
+ self.v = prune_linear_layer(self.v, index)
+ self.o = prune_linear_layer(self.o, index, dim=1)
+ # Update hyper params
+ self.n_heads = self.n_heads - len(heads)
+ self.inner_dim = self.key_value_proj_dim * self.n_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ @staticmethod
+ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
+ """
+ Adapted from Mesh Tensorflow:
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
+
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
+ small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
+ positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
+ This should allow for more graceful generalization to longer sequences than the model has been trained on
+
+ Args:
+ relative_position: an int32 Tensor
+ bidirectional: a boolean - whether the attention is bidirectional
+ num_buckets: an integer
+ max_distance: an integer
+
+ Returns:
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
+ """
+ relative_buckets = 0
+ if bidirectional:
+ num_buckets //= 2
+ relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
+ relative_position = torch.abs(relative_position)
+ else:
+ relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
+ # now relative_position is in the range [0, inf)
+
+ # half of the buckets are for exact increments in positions
+ max_exact = num_buckets // 2
+ is_small = relative_position < max_exact
+
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
+ relative_position_if_large = max_exact + (
+ torch.log(relative_position.float() / max_exact)
+ / math.log(max_distance / max_exact)
+ * (num_buckets - max_exact)
+ ).to(torch.long)
+ relative_position_if_large = torch.min(
+ relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
+ )
+
+ relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
+ return relative_buckets
+
+ def compute_bias(self, query_length, key_length, device=None):
+ """Compute binned relative position bias"""
+ if device is None:
+ device = self.relative_attention_bias.weight.device
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
+ relative_position = memory_position - context_position # shape (query_length, key_length)
+ relative_position_bucket = self._relative_position_bucket(
+ relative_position, # shape (query_length, key_length)
+ bidirectional=(not self.is_decoder),
+ num_buckets=self.relative_attention_num_buckets,
+ max_distance=self.relative_attention_max_distance,
+ )
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
+ return values
+
+ def forward(
+ self,
+ hidden_states,
+ mask=None,
+ key_value_states=None,
+ position_bias=None,
+ past_key_value=None,
+ layer_head_mask=None,
+ query_length=None,
+ use_cache=False,
+ output_attentions=False,
+ ):
+ """
+ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
+ """
+ # Input is (batch_size, seq_length, dim)
+ # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
+ # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
+ batch_size, seq_length = hidden_states.shape[:2]
+
+ real_seq_length = seq_length
+
+ if past_key_value is not None:
+ if len(past_key_value) != 2:
+ raise ValueError(
+ f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
+ )
+ real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
+
+ key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
+
+ def shape(states):
+ """projection"""
+ return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
+
+ def unshape(states):
+ """reshape"""
+ return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
+
+ def project(hidden_states, proj_layer, key_value_states, past_key_value):
+ """projects hidden states correctly to key/query states"""
+ if key_value_states is None:
+ # self-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = shape(proj_layer(hidden_states))
+ elif past_key_value is None:
+ # cross-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = shape(proj_layer(key_value_states))
+
+ if past_key_value is not None:
+ if key_value_states is None:
+ # self-attn
+ # (batch_size, n_heads, key_length, dim_per_head)
+ hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
+ elif past_key_value.shape[2] != key_value_states.shape[1]:
+ # checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ # cross-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = shape(proj_layer(key_value_states))
+ else:
+ # cross-attn
+ hidden_states = past_key_value
+ return hidden_states
+
+ # get query states
+ query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
+
+ # get key/value states
+ key_states = project(
+ hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
+ )
+ value_states = project(
+ hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
+ )
+
+ # compute scores
+ scores = torch.matmul(
+ query_states, key_states.transpose(3, 2)
+ ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
+
+ if position_bias is None:
+ if not self.has_relative_attention_bias:
+ position_bias = torch.zeros(
+ (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
+ )
+ if self.gradient_checkpointing and self.training:
+ position_bias.requires_grad = True
+ else:
+ position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
+
+ # if key and values are already calculated
+ # we want only the last query position bias
+ if past_key_value is not None:
+ position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
+
+ if mask is not None:
+ position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
+
+ if self.pruned_heads:
+ mask = torch.ones(position_bias.shape[1])
+ mask[list(self.pruned_heads)] = 0
+ position_bias_masked = position_bias[:, mask.bool()]
+ else:
+ position_bias_masked = position_bias
+
+ scores += position_bias_masked
+ attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
+ scores
+ ) # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.dropout(
+ attn_weights, p=self.dropout, training=self.training
+ ) # (batch_size, n_heads, seq_length, key_length)
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = attn_weights * layer_head_mask
+
+ attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
+ attn_output = self.o(attn_output)
+
+ present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
+
+ if output_attentions:
+ outputs = outputs + (attn_weights,)
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->Pop2Piano,t5->pop2piano
+class Pop2PianoLayerSelfAttention(nn.Module):
+ def __init__(self, config, has_relative_attention_bias=False):
+ super().__init__()
+ self.SelfAttention = Pop2PianoAttention(config, has_relative_attention_bias=has_relative_attention_bias)
+ self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ position_bias=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ output_attentions=False,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.SelfAttention(
+ normed_hidden_states,
+ mask=attention_mask,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states = hidden_states + self.dropout(attention_output[0])
+ outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->Pop2Piano,t5->pop2piano
+class Pop2PianoLayerCrossAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.EncDecAttention = Pop2PianoAttention(config, has_relative_attention_bias=False)
+ self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ key_value_states,
+ attention_mask=None,
+ position_bias=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ query_length=None,
+ output_attentions=False,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.EncDecAttention(
+ normed_hidden_states,
+ mask=attention_mask,
+ key_value_states=key_value_states,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ query_length=query_length,
+ output_attentions=output_attentions,
+ )
+ layer_output = hidden_states + self.dropout(attention_output[0])
+ outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5Block with T5->Pop2Piano,t5->pop2piano
+class Pop2PianoBlock(nn.Module):
+ def __init__(self, config, has_relative_attention_bias=False):
+ super().__init__()
+ self.is_decoder = config.is_decoder
+ self.layer = nn.ModuleList()
+ self.layer.append(Pop2PianoLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
+ if self.is_decoder:
+ self.layer.append(Pop2PianoLayerCrossAttention(config))
+
+ self.layer.append(Pop2PianoLayerFF(config))
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ position_bias=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ encoder_decoder_position_bias=None,
+ layer_head_mask=None,
+ cross_attn_layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ output_attentions=False,
+ return_dict=True,
+ ):
+ if past_key_value is not None:
+ if not self.is_decoder:
+ logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
+ expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
+
+ if len(past_key_value) != expected_num_past_key_values:
+ raise ValueError(
+ f"There should be {expected_num_past_key_values} past states. "
+ f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
+ f"Got {len(past_key_value)} past key / value states"
+ )
+
+ self_attn_past_key_value = past_key_value[:2]
+ cross_attn_past_key_value = past_key_value[2:]
+ else:
+ self_attn_past_key_value, cross_attn_past_key_value = None, None
+
+ self_attention_outputs = self.layer[0](
+ hidden_states,
+ attention_mask=attention_mask,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=self_attn_past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states, present_key_value_state = self_attention_outputs[:2]
+ attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ clamp_value = torch.where(
+ torch.isinf(hidden_states).any(),
+ torch.finfo(hidden_states.dtype).max - 1000,
+ torch.finfo(hidden_states.dtype).max,
+ )
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ do_cross_attention = self.is_decoder and encoder_hidden_states is not None
+ if do_cross_attention:
+ # the actual query length is unknown for cross attention
+ # if using past key value states. Need to inject it here
+ if present_key_value_state is not None:
+ query_length = present_key_value_state[0].shape[2]
+ else:
+ query_length = None
+
+ cross_attention_outputs = self.layer[1](
+ hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ position_bias=encoder_decoder_position_bias,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ query_length=query_length,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states = cross_attention_outputs[0]
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ clamp_value = torch.where(
+ torch.isinf(hidden_states).any(),
+ torch.finfo(hidden_states.dtype).max - 1000,
+ torch.finfo(hidden_states.dtype).max,
+ )
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ # Combine self attn and cross attn key value states
+ if present_key_value_state is not None:
+ present_key_value_state = present_key_value_state + cross_attention_outputs[1]
+
+ # Keep cross-attention outputs and relative position weights
+ attention_outputs = attention_outputs + cross_attention_outputs[2:]
+
+ # Apply Feed Forward layer
+ hidden_states = self.layer[-1](hidden_states)
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ clamp_value = torch.where(
+ torch.isinf(hidden_states).any(),
+ torch.finfo(hidden_states.dtype).max - 1000,
+ torch.finfo(hidden_states.dtype).max,
+ )
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if use_cache:
+ outputs = outputs + (present_key_value_state,) + attention_outputs
+ else:
+ outputs = outputs + attention_outputs
+
+ return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
+
+
+class Pop2PianoPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = Pop2PianoConfig
+ base_model_prefix = "transformer"
+ is_parallelizable = False
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Pop2PianoBlock"]
+ _keep_in_fp32_modules = ["wo"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor # Used for testing weights initialization
+ if isinstance(module, Pop2PianoLayerNorm):
+ module.weight.data.fill_(factor * 1.0)
+ elif isinstance(module, Pop2PianoConcatEmbeddingToMel):
+ module.embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ elif isinstance(module, Pop2PianoForConditionalGeneration):
+ # Mesh TensorFlow embeddings initialization
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
+ module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
+ module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ elif isinstance(module, Pop2PianoDenseActDense):
+ # Mesh TensorFlow FF initialization
+ # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
+ # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
+ module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi, "bias") and module.wi.bias is not None:
+ module.wi.bias.data.zero_()
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
+ module.wo.bias.data.zero_()
+ elif isinstance(module, Pop2PianoDenseGatedActDense):
+ module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
+ module.wi_0.bias.data.zero_()
+ module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
+ module.wi_1.bias.data.zero_()
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
+ module.wo.bias.data.zero_()
+ elif isinstance(module, Pop2PianoAttention):
+ # Mesh TensorFlow attention initialization to avoid scaling before softmax
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
+ d_model = self.config.d_model
+ key_value_proj_dim = self.config.d_kv
+ n_heads = self.config.num_heads
+ module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
+ module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
+ module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
+ module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
+ if module.has_relative_attention_bias:
+ module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
+
+ def _shift_right(self, input_ids):
+ decoder_start_token_id = self.config.decoder_start_token_id
+ pad_token_id = self.config.pad_token_id
+
+ if decoder_start_token_id is None:
+ raise ValueError(
+ "self.model.config.decoder_start_token_id has to be defined. In Pop2Piano it is usually set to the pad_token_id."
+ )
+
+ # shift inputs to the right
+ if is_torch_fx_proxy(input_ids):
+ # Item assignment is not supported natively for proxies.
+ shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
+ shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
+ else:
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
+ shifted_input_ids[..., 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+class Pop2PianoStack(Pop2PianoPreTrainedModel):
+ # Copied from transformers.models.t5.modeling_t5.T5Stack.__init__ with T5->Pop2Piano,t5->pop2piano
+ def __init__(self, config, embed_tokens=None):
+ super().__init__(config)
+
+ self.embed_tokens = embed_tokens
+ self.is_decoder = config.is_decoder
+
+ self.block = nn.ModuleList(
+ [Pop2PianoBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
+ )
+ self.final_layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+ # Model parallel
+ self.model_parallel = False
+ self.device_map = None
+ self.gradient_checkpointing = False
+
+ # Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ # Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
+ def set_input_embeddings(self, new_embeddings):
+ self.embed_tokens = new_embeddings
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ inputs_embeds=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
+ raise ValueError(
+ f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
+ )
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
+ raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
+
+ if inputs_embeds is None:
+ if self.embed_tokens is None:
+ raise ValueError("You have to initialize the model with valid token embeddings")
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ batch_size, seq_length = input_shape
+
+ # required mask seq length can be calculated via length of past
+ mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
+
+ if use_cache is True:
+ if not self.is_decoder:
+ raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
+
+ if attention_mask is None:
+ attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
+ if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
+ encoder_seq_length = encoder_hidden_states.shape[1]
+ encoder_attention_mask = torch.ones(
+ batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
+ )
+
+ # initialize past_key_values with `None` if past does not exist
+ if past_key_values is None:
+ past_key_values = [None] * len(self.block)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # Prepare head mask if needed
+ head_mask = self.get_head_mask(head_mask, self.config.num_layers)
+ cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
+ present_key_value_states = () if use_cache else None
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and self.is_decoder) else None
+ position_bias = None
+ encoder_decoder_position_bias = None
+
+ hidden_states = self.dropout(inputs_embeds)
+
+ for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
+ layer_head_mask = head_mask[i]
+ cross_attn_layer_head_mask = cross_attn_head_mask[i]
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.forward,
+ hidden_states,
+ extended_attention_mask,
+ position_bias,
+ encoder_hidden_states,
+ encoder_extended_attention_mask,
+ encoder_decoder_position_bias,
+ layer_head_mask,
+ cross_attn_layer_head_mask,
+ None, # past_key_value is always None with gradient checkpointing
+ use_cache,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ position_bias=position_bias,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
+ layer_head_mask=layer_head_mask,
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ # layer_outputs is a tuple with:
+ # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
+ if use_cache is False:
+ layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
+
+ hidden_states, present_key_value_state = layer_outputs[:2]
+
+ # We share the position biases between the layers - the first layer store them
+ # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
+ # (cross-attention position bias), (cross-attention weights)
+ position_bias = layer_outputs[2]
+ if self.is_decoder and encoder_hidden_states is not None:
+ encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
+ # append next layer key value states
+ if use_cache:
+ present_key_value_states = present_key_value_states + (present_key_value_state,)
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[3],)
+ if self.is_decoder:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
+
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ present_key_value_states,
+ all_hidden_states,
+ all_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_value_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class Pop2PianoConcatEmbeddingToMel(nn.Module):
+ """Embedding Matrix for `composer` tokens."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.embedding = nn.Embedding(num_embeddings=config.composer_vocab_size, embedding_dim=config.d_model)
+
+ def forward(self, feature, index_value, embedding_offset):
+ index_shifted = index_value - embedding_offset
+ composer_embedding = self.embedding(index_shifted).unsqueeze(1)
+ inputs_embeds = torch.cat([composer_embedding, feature], dim=1)
+ return inputs_embeds
+
+
+Pop2Piano_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Pop2PianoConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings("""Pop2Piano Model with a `language modeling` head on top.""", Pop2Piano_START_DOCSTRING)
+class Pop2PianoForConditionalGeneration(Pop2PianoPreTrainedModel):
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(self, config: Pop2PianoConfig):
+ super().__init__(config)
+ self.config = config
+ self.model_dim = config.d_model
+
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
+
+ self.mel_conditioner = Pop2PianoConcatEmbeddingToMel(config)
+
+ encoder_config = copy.deepcopy(config)
+ encoder_config.is_decoder = False
+ encoder_config.use_cache = False
+ encoder_config.is_encoder_decoder = False
+
+ self.encoder = Pop2PianoStack(encoder_config, self.shared)
+
+ decoder_config = copy.deepcopy(config)
+ decoder_config.is_decoder = True
+ decoder_config.is_encoder_decoder = False
+ decoder_config.num_layers = config.num_decoder_layers
+ self.decoder = Pop2PianoStack(decoder_config, self.shared)
+
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.set_input_embeddings(new_embeddings)
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def get_mel_conditioner_outputs(
+ self,
+ input_features: torch.FloatTensor,
+ composer: str,
+ generation_config: GenerationConfig,
+ attention_mask: torch.FloatTensor = None,
+ ):
+ """
+ This method is used to concatenate mel conditioner tokens at the front of the input_features in order to
+ control the type of MIDI token generated by the model.
+
+ Args:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ input features extracted from the feature extractor.
+ composer (`str`):
+ composer token which determines the type of MIDI tokens to be generated.
+ generation_config (`~generation.GenerationConfig`):
+ The generation is used to get the composer-feature_token pair.
+ attention_mask (``, *optional*):
+ For batched generation `input_features` are padded to have the same shape across all examples.
+ `attention_mask` helps to determine which areas were padded and which were not.
+ - 1 for tokens that are **not padded**,
+ - 0 for tokens that are **padded**.
+ """
+ composer_to_feature_token = generation_config.composer_to_feature_token
+ if composer not in composer_to_feature_token.keys():
+ raise ValueError(
+ f"Please choose a composer from {list(composer_to_feature_token.keys())}. Composer received - {composer}"
+ )
+ composer_value = composer_to_feature_token[composer]
+ composer_value = torch.tensor(composer_value, device=self.device)
+ composer_value = composer_value.repeat(input_features.shape[0])
+
+ embedding_offset = min(composer_to_feature_token.values())
+
+ input_features = self.mel_conditioner(
+ feature=input_features,
+ index_value=composer_value,
+ embedding_offset=embedding_offset,
+ )
+ if attention_mask is not None:
+ input_features[~attention_mask[:, 0].bool()] = 0.0
+
+ # since self.mel_conditioner adds a new array at the front of inputs_embeds we need to do the same for attention_mask to keep the shapes same
+ attention_mask = torch.concatenate([attention_mask[:, 0].view(-1, 1), attention_mask], axis=1)
+ return input_features, attention_mask
+
+ return input_features, None
+
+ @add_start_docstrings_to_model_forward(POP2PIANO_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ input_features: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
+ labels in `[0, ..., config.vocab_size]`
+ Returns:
+ """
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if inputs_embeds is not None and input_features is not None:
+ raise ValueError("Both `inputs_embeds` and `input_features` received! Please provide only one of them")
+ elif input_features is not None and inputs_embeds is None:
+ inputs_embeds = input_features
+
+ # Encode if needed (training, first prediction pass)
+ if encoder_outputs is None:
+ # Convert encoder inputs in embeddings if needed
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
+ # get decoder inputs from shifting lm labels to the right
+ decoder_input_ids = self._shift_right(labels)
+
+ # Decode
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ inputs_embeds=decoder_inputs_embeds,
+ past_key_values=past_key_values,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = decoder_outputs[0]
+
+ if self.config.tie_word_embeddings:
+ # Rescale output before projecting on vocab
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
+ sequence_output = sequence_output * (self.model_dim**-0.5)
+
+ lm_logits = self.lm_head(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
+ loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
+ return ((loss,) + output) if loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_features,
+ attention_mask=None,
+ composer="composer1",
+ generation_config=None,
+ **kwargs,
+ ):
+ """
+ Generates token ids for midi outputs.
+
+
+
+ Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
+ model's default generation configuration. You can override any `generation_config` by passing the corresponding
+ parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation
+ strategies and code examples, check out the [following guide](./generation_strategies).
+
+
+
+ Parameters:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ This is the featurized version of audio generated by `Pop2PianoFeatureExtractor`.
+ attention_mask:
+ For batched generation `input_features` are padded to have the same shape across all examples.
+ `attention_mask` helps to determine which areas were padded and which were not.
+ - 1 for tokens that are **not padded**,
+ - 0 for tokens that are **padded**.
+ composer (`str`, *optional*, defaults to `"composer1"`):
+ This value is passed to `Pop2PianoConcatEmbeddingToMel` to generate different embeddings for each
+ `"composer"`. Please make sure that the composet value is present in `composer_to_feature_token` in
+ `generation_config`. For an example please see
+ https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json .
+ generation_config (`~generation.GenerationConfig`, *optional*):
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
+ passed to generate matching the attributes of `generation_config` will override them. If
+ `generation_config` is not provided, the default will be used, which had the following loading
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
+ default values, whose documentation should be checked to parameterize generation.
+ kwargs:
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
+ forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
+ specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
+ Return:
+ [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
+ or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
+ Since Pop2Piano is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
+ [`~utils.ModelOutput`] types are:
+ - [`~generation.GenerateEncoderDecoderOutput`],
+ - [`~generation.GenerateBeamEncoderDecoderOutput`]
+ """
+
+ if generation_config is None:
+ generation_config = self.generation_config
+ generation_config.update(**kwargs)
+
+ # check for composer_to_feature_token
+ if not hasattr(generation_config, "composer_to_feature_token"):
+ raise ValueError(
+ "`composer_to_feature_token` was not found! Please refer to "
+ "https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json"
+ "and parse a dict like that."
+ )
+
+ if len(generation_config.composer_to_feature_token) != self.config.composer_vocab_size:
+ raise ValueError(
+ "config.composer_vocab_size must be same as the number of keys in "
+ f"generation_config.composer_to_feature_token! "
+ f"Found {self.config.composer_vocab_size} vs {len(generation_config.composer_to_feature_token)}."
+ )
+
+ # to control the variation of generated MIDI tokens we concatenate mel-conditioner tokens(which depends on composer_token)
+ # at the front of input_features.
+ input_features, attention_mask = self.get_mel_conditioner_outputs(
+ input_features=input_features,
+ attention_mask=attention_mask,
+ composer=composer,
+ generation_config=generation_config,
+ )
+
+ return super().generate(
+ inputs=None,
+ inputs_embeds=input_features,
+ attention_mask=attention_mask,
+ generation_config=generation_config,
+ **kwargs,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ input_ids = input_ids[:, -1:]
+
+ return {
+ "decoder_input_ids": input_ids,
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "attention_mask": attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache,
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return self._shift_right(labels)
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ # if decoder past is not included in output
+ # speedy decoding is disabled and no need to reorder
+ if past_key_values is None:
+ logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
+ return past_key_values
+
+ reordered_decoder_past = ()
+ for layer_past_states in past_key_values:
+ # get the correct batch idx from layer past batch dim
+ # batch dim of `past` is at 2nd position
+ reordered_layer_past_states = ()
+ for layer_past_state in layer_past_states:
+ # need to set correct `past` for each of the four key / value states
+ reordered_layer_past_states = reordered_layer_past_states + (
+ layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
+ )
+
+ if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
+ raise ValueError(
+ f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
+ )
+ if len(reordered_layer_past_states) != len(layer_past_states):
+ raise ValueError(
+ f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
+ )
+
+ reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
+ return reordered_decoder_past
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/processing_pop2piano.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/processing_pop2piano.py
new file mode 100644
index 0000000000000000000000000000000000000000..639d2e7aea4bad7dbfd09e761dbc4a5bd610d228
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/processing_pop2piano.py
@@ -0,0 +1,139 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Processor class for Pop2Piano."""
+
+import os
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...feature_extraction_utils import BatchFeature
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy
+from ...utils import TensorType
+
+
+class Pop2PianoProcessor(ProcessorMixin):
+ r"""
+ Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single
+ processor.
+
+ [`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`].
+ See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information.
+
+ Args:
+ feature_extractor (`Pop2PianoFeatureExtractor`):
+ An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer (`Pop2PianoTokenizer`):
+ An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input.
+ """
+
+ attributes = ["feature_extractor", "tokenizer"]
+ feature_extractor_class = "Pop2PianoFeatureExtractor"
+ tokenizer_class = "Pop2PianoTokenizer"
+
+ def __init__(self, feature_extractor, tokenizer):
+ super().__init__(feature_extractor, tokenizer)
+
+ def __call__(
+ self,
+ audio: Union[np.ndarray, List[float], List[np.ndarray]] = None,
+ sampling_rate: Union[int, List[int]] = None,
+ steps_per_beat: int = 2,
+ resample: Optional[bool] = True,
+ notes: Union[List, TensorType] = None,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ pad_to_multiple_of: Optional[int] = None,
+ verbose: bool = True,
+ **kwargs,
+ ) -> Union[BatchFeature, BatchEncoding]:
+ """
+ This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model,
+ and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+
+ # Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and
+ # feature_extractor_output, we must check for both.
+ if (audio is None and sampling_rate is None) and (notes is None):
+ raise ValueError(
+ "You have to specify at least audios and sampling_rate in order to use feature extractor or "
+ "notes to use the tokenizer part."
+ )
+
+ if audio is not None and sampling_rate is not None:
+ inputs = self.feature_extractor(
+ audio=audio,
+ sampling_rate=sampling_rate,
+ steps_per_beat=steps_per_beat,
+ resample=resample,
+ **kwargs,
+ )
+ if notes is not None:
+ encoded_token_ids = self.tokenizer(
+ notes=notes,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ if notes is None:
+ return inputs
+
+ elif audio is None or sampling_rate is None:
+ return encoded_token_ids
+
+ else:
+ inputs["token_ids"] = encoded_token_ids["token_ids"]
+ return inputs
+
+ def batch_decode(
+ self,
+ token_ids,
+ feature_extractor_output: BatchFeature,
+ return_midi: bool = True,
+ ) -> BatchEncoding:
+ """
+ This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+
+ return self.tokenizer.batch_decode(
+ token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi
+ )
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ feature_extractor_input_names = self.feature_extractor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
+
+ def save_pretrained(self, save_directory, **kwargs):
+ if os.path.isfile(save_directory):
+ raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
+ os.makedirs(save_directory, exist_ok=True)
+ return super().save_pretrained(save_directory, **kwargs)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
+ args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
+ return cls(*args)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/tokenization_pop2piano.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/tokenization_pop2piano.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ad0996c15a47e1e26ebcfe9adf01c06e9b3a9b7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/tokenization_pop2piano.py
@@ -0,0 +1,716 @@
+# coding=utf-8
+# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for Pop2Piano."""
+
+import json
+import os
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+
+from ...feature_extraction_utils import BatchFeature
+from ...tokenization_utils import AddedToken, BatchEncoding, PaddingStrategy, PreTrainedTokenizer, TruncationStrategy
+from ...utils import TensorType, is_pretty_midi_available, logging, requires_backends, to_numpy
+
+
+if is_pretty_midi_available():
+ import pretty_midi
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {
+ "vocab": "vocab.json",
+}
+
+
+def token_time_to_note(number, cutoff_time_idx, current_idx):
+ current_idx += number
+ if cutoff_time_idx is not None:
+ current_idx = min(current_idx, cutoff_time_idx)
+
+ return current_idx
+
+
+def token_note_to_note(number, current_velocity, default_velocity, note_onsets_ready, current_idx, notes):
+ if note_onsets_ready[number] is not None:
+ # offset with onset
+ onset_idx = note_onsets_ready[number]
+ if onset_idx < current_idx:
+ # Time shift after previous note_on
+ offset_idx = current_idx
+ notes.append([onset_idx, offset_idx, number, default_velocity])
+ onsets_ready = None if current_velocity == 0 else current_idx
+ note_onsets_ready[number] = onsets_ready
+ else:
+ note_onsets_ready[number] = current_idx
+ return notes
+
+
+class Pop2PianoTokenizer(PreTrainedTokenizer):
+ """
+ Constructs a Pop2Piano tokenizer. This tokenizer does not require training.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab (`str`):
+ Path to the vocab file which contains the vocabulary.
+ default_velocity (`int`, *optional*, defaults to 77):
+ Determines the default velocity to be used while creating midi Notes.
+ num_bars (`int`, *optional*, defaults to 2):
+ Determines cutoff_time_idx in for each token.
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"-1"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 1):
+ The end of sequence token.
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 0):
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
+ attention mechanisms or loss computation.
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 2):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+ """
+
+ model_input_names = ["token_ids", "attention_mask"]
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab,
+ default_velocity=77,
+ num_bars=2,
+ unk_token="-1",
+ eos_token="1",
+ pad_token="0",
+ bos_token="2",
+ **kwargs,
+ ):
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+
+ self.default_velocity = default_velocity
+ self.num_bars = num_bars
+
+ # Load the vocab
+ with open(vocab, "rb") as file:
+ self.encoder = json.load(file)
+
+ # create mappings for encoder
+ self.decoder = {v: k for k, v in self.encoder.items()}
+
+ super().__init__(
+ unk_token=unk_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ bos_token=bos_token,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ """Returns the vocabulary size of the tokenizer."""
+ return len(self.encoder)
+
+ def get_vocab(self):
+ """Returns the vocabulary of the tokenizer."""
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ def _convert_id_to_token(self, token_id: int) -> list:
+ """
+ Decodes the token ids generated by the transformer into notes.
+
+ Args:
+ token_id (`int`):
+ This denotes the ids generated by the transformers to be converted to Midi tokens.
+
+ Returns:
+ `List`: A list consists of token_type (`str`) and value (`int`).
+ """
+
+ token_type_value = self.decoder.get(token_id, f"{self.unk_token}_TOKEN_TIME")
+ token_type_value = token_type_value.split("_")
+ token_type, value = "_".join(token_type_value[1:]), int(token_type_value[0])
+
+ return [token_type, value]
+
+ def _convert_token_to_id(self, token, token_type="TOKEN_TIME") -> int:
+ """
+ Encodes the Midi tokens to transformer generated token ids.
+
+ Args:
+ token (`int`):
+ This denotes the token value.
+ token_type (`str`):
+ This denotes the type of the token. There are four types of midi tokens such as "TOKEN_TIME",
+ "TOKEN_VELOCITY", "TOKEN_NOTE" and "TOKEN_SPECIAL".
+
+ Returns:
+ `int`: returns the id of the token.
+ """
+ return self.encoder.get(f"{token}_{token_type}", int(self.unk_token))
+
+ def relative_batch_tokens_ids_to_notes(
+ self,
+ tokens: np.ndarray,
+ beat_offset_idx: int,
+ bars_per_batch: int,
+ cutoff_time_idx: int,
+ ):
+ """
+ Converts relative tokens to notes which are then used to generate pretty midi object.
+
+ Args:
+ tokens (`numpy.ndarray`):
+ Tokens to be converted to notes.
+ beat_offset_idx (`int`):
+ Denotes beat offset index for each note in generated Midi.
+ bars_per_batch (`int`):
+ A parameter to control the Midi output generation.
+ cutoff_time_idx (`int`):
+ Denotes the cutoff time index for each note in generated Midi.
+ """
+
+ notes = None
+
+ for index in range(len(tokens)):
+ _tokens = tokens[index]
+ _start_idx = beat_offset_idx + index * bars_per_batch * 4
+ _cutoff_time_idx = cutoff_time_idx + _start_idx
+ _notes = self.relative_tokens_ids_to_notes(
+ _tokens,
+ start_idx=_start_idx,
+ cutoff_time_idx=_cutoff_time_idx,
+ )
+
+ if len(_notes) == 0:
+ pass
+ elif notes is None:
+ notes = _notes
+ else:
+ notes = np.concatenate((notes, _notes), axis=0)
+
+ if notes is None:
+ return []
+ return notes
+
+ def relative_batch_tokens_ids_to_midi(
+ self,
+ tokens: np.ndarray,
+ beatstep: np.ndarray,
+ beat_offset_idx: int = 0,
+ bars_per_batch: int = 2,
+ cutoff_time_idx: int = 12,
+ ):
+ """
+ Converts tokens to Midi. This method calls `relative_batch_tokens_ids_to_notes` method to convert batch tokens
+ to notes then uses `notes_to_midi` method to convert them to Midi.
+
+ Args:
+ tokens (`numpy.ndarray`):
+ Denotes tokens which alongside beatstep will be converted to Midi.
+ beatstep (`np.ndarray`):
+ We get beatstep from feature extractor which is also used to get Midi.
+ beat_offset_idx (`int`, *optional*, defaults to 0):
+ Denotes beat offset index for each note in generated Midi.
+ bars_per_batch (`int`, *optional*, defaults to 2):
+ A parameter to control the Midi output generation.
+ cutoff_time_idx (`int`, *optional*, defaults to 12):
+ Denotes the cutoff time index for each note in generated Midi.
+ """
+ beat_offset_idx = 0 if beat_offset_idx is None else beat_offset_idx
+ notes = self.relative_batch_tokens_ids_to_notes(
+ tokens=tokens,
+ beat_offset_idx=beat_offset_idx,
+ bars_per_batch=bars_per_batch,
+ cutoff_time_idx=cutoff_time_idx,
+ )
+ midi = self.notes_to_midi(notes, beatstep, offset_sec=beatstep[beat_offset_idx])
+ return midi
+
+ # Taken from the original code
+ # Please see https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L257
+ def relative_tokens_ids_to_notes(self, tokens: np.ndarray, start_idx: float, cutoff_time_idx: float = None):
+ """
+ Converts relative tokens to notes which will then be used to create Pretty Midi objects.
+
+ Args:
+ tokens (`numpy.ndarray`):
+ Relative Tokens which will be converted to notes.
+ start_idx (`float`):
+ A parameter which denotes the starting index.
+ cutoff_time_idx (`float`, *optional*):
+ A parameter used while converting tokens to notes.
+ """
+ words = [self._convert_id_to_token(token) for token in tokens]
+
+ current_idx = start_idx
+ current_velocity = 0
+ note_onsets_ready = [None for i in range(sum([k.endswith("NOTE") for k in self.encoder.keys()]) + 1)]
+ notes = []
+ for token_type, number in words:
+ if token_type == "TOKEN_SPECIAL":
+ if number == 1:
+ break
+ elif token_type == "TOKEN_TIME":
+ current_idx = token_time_to_note(
+ number=number, cutoff_time_idx=cutoff_time_idx, current_idx=current_idx
+ )
+ elif token_type == "TOKEN_VELOCITY":
+ current_velocity = number
+
+ elif token_type == "TOKEN_NOTE":
+ notes = token_note_to_note(
+ number=number,
+ current_velocity=current_velocity,
+ default_velocity=self.default_velocity,
+ note_onsets_ready=note_onsets_ready,
+ current_idx=current_idx,
+ notes=notes,
+ )
+ else:
+ raise ValueError("Token type not understood!")
+
+ for pitch, note_onset in enumerate(note_onsets_ready):
+ # force offset if no offset for each pitch
+ if note_onset is not None:
+ if cutoff_time_idx is None:
+ cutoff = note_onset + 1
+ else:
+ cutoff = max(cutoff_time_idx, note_onset + 1)
+
+ offset_idx = max(current_idx, cutoff)
+ notes.append([note_onset, offset_idx, pitch, self.default_velocity])
+
+ if len(notes) == 0:
+ return []
+ else:
+ notes = np.array(notes)
+ note_order = notes[:, 0] * 128 + notes[:, 1]
+ notes = notes[note_order.argsort()]
+ return notes
+
+ def notes_to_midi(self, notes: np.ndarray, beatstep: np.ndarray, offset_sec: int = 0.0):
+ """
+ Converts notes to Midi.
+
+ Args:
+ notes (`numpy.ndarray`):
+ This is used to create Pretty Midi objects.
+ beatstep (`numpy.ndarray`):
+ This is the extrapolated beatstep that we get from feature extractor.
+ offset_sec (`int`, *optional*, defaults to 0.0):
+ This represents the offset seconds which is used while creating each Pretty Midi Note.
+ """
+
+ requires_backends(self, ["pretty_midi"])
+
+ new_pm = pretty_midi.PrettyMIDI(resolution=384, initial_tempo=120.0)
+ new_inst = pretty_midi.Instrument(program=0)
+ new_notes = []
+
+ for onset_idx, offset_idx, pitch, velocity in notes:
+ new_note = pretty_midi.Note(
+ velocity=velocity,
+ pitch=pitch,
+ start=beatstep[onset_idx] - offset_sec,
+ end=beatstep[offset_idx] - offset_sec,
+ )
+ new_notes.append(new_note)
+ new_inst.notes = new_notes
+ new_pm.instruments.append(new_inst)
+ new_pm.remove_invalid_notes()
+ return new_pm
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ """
+ Saves the tokenizer's vocabulary dictionary to the provided save_directory.
+
+ Args:
+ save_directory (`str`):
+ A path to the directory where to saved. It will be created if it doesn't exist.
+ filename_prefix (`Optional[str]`, *optional*):
+ A prefix to add to the names of the files saved by the tokenizer.
+ """
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+
+ # Save the encoder.
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
+ )
+ with open(out_vocab_file, "w") as file:
+ file.write(json.dumps(self.encoder))
+
+ return (out_vocab_file,)
+
+ def encode_plus(
+ self,
+ notes: Union[np.ndarray, List[pretty_midi.Note]],
+ truncation_strategy: Optional[TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ r"""
+ This is the `encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
+ generated token ids. It only works on a single batch, to process multiple batches please use
+ `batch_encode_plus` or `__call__` method.
+
+ Args:
+ notes (`numpy.ndarray` of shape `[sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
+ This represents the midi notes. If `notes` is a `numpy.ndarray`:
+ - Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
+ If `notes` is a `list` containing `pretty_midi.Note` objects:
+ - Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
+ truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
+ Indicates the truncation strategy that is going to be used during truncation.
+ max_length (`int`, *optional*):
+ Maximum length of the returned list and optionally padding length (see above).
+
+ Returns:
+ `BatchEncoding` containing the tokens ids.
+ """
+
+ requires_backends(self, ["pretty_midi"])
+
+ # check if notes is a pretty_midi object or not, if yes then extract the attributes and put them into a numpy
+ # array.
+ if isinstance(notes[0], pretty_midi.Note):
+ notes = np.array(
+ [[each_note.start, each_note.end, each_note.pitch, each_note.velocity] for each_note in notes]
+ ).reshape(-1, 4)
+
+ # to round up all the values to the closest int values.
+ notes = np.round(notes).astype(np.int32)
+ max_time_idx = notes[:, :2].max()
+
+ times = [[] for i in range((max_time_idx + 1))]
+ for onset, offset, pitch, velocity in notes:
+ times[onset].append([pitch, velocity])
+ times[offset].append([pitch, 0])
+
+ tokens = []
+ current_velocity = 0
+ for i, time in enumerate(times):
+ if len(time) == 0:
+ continue
+ tokens.append(self._convert_token_to_id(i, "TOKEN_TIME"))
+ for pitch, velocity in time:
+ velocity = int(velocity > 0)
+ if current_velocity != velocity:
+ current_velocity = velocity
+ tokens.append(self._convert_token_to_id(velocity, "TOKEN_VELOCITY"))
+ tokens.append(self._convert_token_to_id(pitch, "TOKEN_NOTE"))
+
+ total_len = len(tokens)
+
+ # truncation
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
+ tokens, _, _ = self.truncate_sequences(
+ ids=tokens,
+ num_tokens_to_remove=total_len - max_length,
+ truncation_strategy=truncation_strategy,
+ **kwargs,
+ )
+
+ return BatchEncoding({"token_ids": tokens})
+
+ def batch_encode_plus(
+ self,
+ notes: Union[np.ndarray, List[pretty_midi.Note]],
+ truncation_strategy: Optional[TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ r"""
+ This is the `batch_encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
+ generated token ids. It works on multiple batches by calling `encode_plus` multiple times in a loop.
+
+ Args:
+ notes (`numpy.ndarray` of shape `[batch_size, sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
+ This represents the midi notes. If `notes` is a `numpy.ndarray`:
+ - Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
+ If `notes` is a `list` containing `pretty_midi.Note` objects:
+ - Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
+ truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
+ Indicates the truncation strategy that is going to be used during truncation.
+ max_length (`int`, *optional*):
+ Maximum length of the returned list and optionally padding length (see above).
+
+ Returns:
+ `BatchEncoding` containing the tokens ids.
+ """
+
+ encoded_batch_token_ids = []
+ for i in range(len(notes)):
+ encoded_batch_token_ids.append(
+ self.encode_plus(
+ notes[i],
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ **kwargs,
+ )["token_ids"]
+ )
+
+ return BatchEncoding({"token_ids": encoded_batch_token_ids})
+
+ def __call__(
+ self,
+ notes: Union[
+ np.ndarray,
+ List[pretty_midi.Note],
+ List[List[pretty_midi.Note]],
+ ],
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ r"""
+ This is the `__call__` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer generated
+ token ids.
+
+ Args:
+ notes (`numpy.ndarray` of shape `[batch_size, max_sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
+ This represents the midi notes.
+
+ If `notes` is a `numpy.ndarray`:
+ - Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
+ If `notes` is a `list` containing `pretty_midi.Note` objects:
+ - Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
+ padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
+ Activates and controls padding. Accepts the following values:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
+ Activates and controls truncation. Accepts the following values:
+
+ - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
+ to the maximum acceptable input length for the model if that argument is not provided. This will
+ truncate token by token, removing a token from the longest sequence in the pair if a pair of
+ sequences (or a batch of pairs) is provided.
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
+ greater than the model maximum admissible input size).
+ max_length (`int`, *optional*):
+ Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
+ `None`, this will use the predefined model maximum length if a maximum length is required by one of the
+ truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
+ truncation/padding to a maximum length will be deactivated.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+
+ Returns:
+ `BatchEncoding` containing the token_ids.
+ """
+
+ # check if it is batched or not
+ # it is batched if its a list containing a list of `pretty_midi.Notes` where the outer list contains all the
+ # batches and the inner list contains all Notes for a single batch. Otherwise if np.ndarray is passed it will be
+ # considered batched if it has shape of `[batch_size, seqence_length, 4]` or ndim=3.
+ is_batched = notes.ndim == 3 if isinstance(notes, np.ndarray) else isinstance(notes[0], list)
+
+ # get the truncation and padding strategy
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ if is_batched:
+ # If the user has not explicitly mentioned `return_attention_mask` as False, we change it to True
+ return_attention_mask = True if return_attention_mask is None else return_attention_mask
+ token_ids = self.batch_encode_plus(
+ notes=notes,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ **kwargs,
+ )
+ else:
+ token_ids = self.encode_plus(
+ notes=notes,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ **kwargs,
+ )
+
+ # since we already have truncated sequnences we are just left to do padding
+ token_ids = self.pad(
+ token_ids,
+ padding=padding_strategy,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_tensors=return_tensors,
+ verbose=verbose,
+ )
+
+ return token_ids
+
+ def batch_decode(
+ self,
+ token_ids,
+ feature_extractor_output: BatchFeature,
+ return_midi: bool = True,
+ ):
+ r"""
+ This is the `batch_decode` method for `Pop2PianoTokenizer`. It converts the token_ids generated by the
+ transformer to midi_notes and returns them.
+
+ Args:
+ token_ids (`Union[np.ndarray, torch.Tensor, tf.Tensor]`):
+ Output token_ids of `Pop2PianoConditionalGeneration` model.
+ feature_extractor_output (`BatchFeature`):
+ Denotes the output of `Pop2PianoFeatureExtractor.__call__`. It must contain `"beatstep"` and
+ `"extrapolated_beatstep"`. Also `"attention_mask_beatsteps"` and
+ `"attention_mask_extrapolated_beatstep"`
+ should be present if they were returned by the feature extractor.
+ return_midi (`bool`, *optional*, defaults to `True`):
+ Whether to return midi object or not.
+ Returns:
+ If `return_midi` is True:
+ - `BatchEncoding` containing both `notes` and `pretty_midi.pretty_midi.PrettyMIDI` objects.
+ If `return_midi` is False:
+ - `BatchEncoding` containing `notes`.
+ """
+
+ # check if they have attention_masks(attention_mask, attention_mask_beatsteps, attention_mask_extrapolated_beatstep) or not
+ attention_masks_present = bool(
+ hasattr(feature_extractor_output, "attention_mask")
+ and hasattr(feature_extractor_output, "attention_mask_beatsteps")
+ and hasattr(feature_extractor_output, "attention_mask_extrapolated_beatstep")
+ )
+
+ # if we are processing batched inputs then we must need attention_masks
+ if not attention_masks_present and feature_extractor_output["beatsteps"].shape[0] > 1:
+ raise ValueError(
+ "attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep must be present "
+ "for batched inputs! But one of them were not present."
+ )
+
+ # check for length mismatch between inputs_embeds, beatsteps and extrapolated_beatstep
+ if attention_masks_present:
+ # since we know about the number of examples in token_ids from attention_mask
+ if (
+ sum(feature_extractor_output["attention_mask"][:, 0] == 0)
+ != feature_extractor_output["beatsteps"].shape[0]
+ or feature_extractor_output["beatsteps"].shape[0]
+ != feature_extractor_output["extrapolated_beatstep"].shape[0]
+ ):
+ raise ValueError(
+ "Length mistamtch between token_ids, beatsteps and extrapolated_beatstep! Found "
+ f"token_ids length - {token_ids.shape[0]}, beatsteps shape - {feature_extractor_output['beatsteps'].shape[0]} "
+ f"and extrapolated_beatsteps shape - {feature_extractor_output['extrapolated_beatstep'].shape[0]}"
+ )
+ if feature_extractor_output["attention_mask"].shape[0] != token_ids.shape[0]:
+ raise ValueError(
+ f"Found attention_mask of length - {feature_extractor_output['attention_mask'].shape[0]} but token_ids of length - {token_ids.shape[0]}"
+ )
+ else:
+ # if there is no attention mask present then it's surely a single example
+ if (
+ feature_extractor_output["beatsteps"].shape[0] != 1
+ or feature_extractor_output["extrapolated_beatstep"].shape[0] != 1
+ ):
+ raise ValueError(
+ "Length mistamtch of beatsteps and extrapolated_beatstep! Since attention_mask is not present the number of examples must be 1, "
+ f"But found beatsteps length - {feature_extractor_output['beatsteps'].shape[0]}, extrapolated_beatsteps length - {feature_extractor_output['extrapolated_beatstep'].shape[0]}."
+ )
+
+ if attention_masks_present:
+ # check for zeros(since token_ids are seperated by zero arrays)
+ batch_idx = np.where(feature_extractor_output["attention_mask"][:, 0] == 0)[0]
+ else:
+ batch_idx = [token_ids.shape[0]]
+
+ notes_list = []
+ pretty_midi_objects_list = []
+ start_idx = 0
+ for index, end_idx in enumerate(batch_idx):
+ each_tokens_ids = token_ids[start_idx:end_idx]
+ # check where the whole example ended by searching for eos_token_id and getting the upper bound
+ each_tokens_ids = each_tokens_ids[:, : np.max(np.where(each_tokens_ids == int(self.eos_token))[1]) + 1]
+ beatsteps = feature_extractor_output["beatsteps"][index]
+ extrapolated_beatstep = feature_extractor_output["extrapolated_beatstep"][index]
+
+ # if attention mask is present then mask out real array/tensor
+ if attention_masks_present:
+ attention_mask_beatsteps = feature_extractor_output["attention_mask_beatsteps"][index]
+ attention_mask_extrapolated_beatstep = feature_extractor_output[
+ "attention_mask_extrapolated_beatstep"
+ ][index]
+ beatsteps = beatsteps[: np.max(np.where(attention_mask_beatsteps == 1)[0]) + 1]
+ extrapolated_beatstep = extrapolated_beatstep[
+ : np.max(np.where(attention_mask_extrapolated_beatstep == 1)[0]) + 1
+ ]
+
+ each_tokens_ids = to_numpy(each_tokens_ids)
+ beatsteps = to_numpy(beatsteps)
+ extrapolated_beatstep = to_numpy(extrapolated_beatstep)
+
+ pretty_midi_object = self.relative_batch_tokens_ids_to_midi(
+ tokens=each_tokens_ids,
+ beatstep=extrapolated_beatstep,
+ bars_per_batch=self.num_bars,
+ cutoff_time_idx=(self.num_bars + 1) * 4,
+ )
+
+ for note in pretty_midi_object.instruments[0].notes:
+ note.start += beatsteps[0]
+ note.end += beatsteps[0]
+ notes_list.append(note)
+
+ pretty_midi_objects_list.append(pretty_midi_object)
+ start_idx += end_idx + 1 # 1 represents the zero array
+
+ if return_midi:
+ return BatchEncoding({"notes": notes_list, "pretty_midi_objects": pretty_midi_objects_list})
+
+ return BatchEncoding({"notes": notes_list})
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..30f913055bd0216d3a8ff2f32a14ed769bd91072
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..371198b91c1156ff4c68503b703d80b58ad95f4e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8807aa757665670468a09ac3c75f952236d02dd6
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f2c758d77bc07ce926655c824772d67dd730538e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..35081cfcdef97b99e1a3cc29461fa07c80f31ab8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__init__.py
@@ -0,0 +1,70 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_wav2vec2_conformer": [
+ "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "Wav2Vec2ConformerConfig",
+ ],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_wav2vec2_conformer"] = [
+ "WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Wav2Vec2ConformerForAudioFrameClassification",
+ "Wav2Vec2ConformerForCTC",
+ "Wav2Vec2ConformerForPreTraining",
+ "Wav2Vec2ConformerForSequenceClassification",
+ "Wav2Vec2ConformerForXVector",
+ "Wav2Vec2ConformerModel",
+ "Wav2Vec2ConformerPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_wav2vec2_conformer import (
+ WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ Wav2Vec2ConformerConfig,
+ )
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_wav2vec2_conformer import (
+ WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Wav2Vec2ConformerForAudioFrameClassification,
+ Wav2Vec2ConformerForCTC,
+ Wav2Vec2ConformerForPreTraining,
+ Wav2Vec2ConformerForSequenceClassification,
+ Wav2Vec2ConformerForXVector,
+ Wav2Vec2ConformerModel,
+ Wav2Vec2ConformerPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d9eb0f1cc841c3b20812176639bd3024db630a61
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/configuration_wav2vec2_conformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/configuration_wav2vec2_conformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32bb06523c1e13f9a32931951bd5f04d6e89c436
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/configuration_wav2vec2_conformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ec8d864e459aeb8dcdd9af524c8749c68656094e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/modeling_wav2vec2_conformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/modeling_wav2vec2_conformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..924ed6a082a4ab198be51af7a18309b501ef828b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/__pycache__/modeling_wav2vec2_conformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b99edcece527b96f96c42847734579be1912ac2
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py
@@ -0,0 +1,360 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Wav2Vec2Conformer model configuration"""
+
+import functools
+import operator
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class Wav2Vec2ConformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Wav2Vec2ConformerModel`]. It is used to
+ instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
+ [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*):
+ Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be
+ represented by the `inputs_ids` passed when calling [`Wav2Vec2ConformerModel`]. Vocabulary size of the
+ model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
+ method of [`Wav2Vec2ConformerModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for activations inside the fully connected layer.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ final_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the final projection layer of [`Wav2Vec2ConformerForCTC`].
+ layerdrop (`float`, *optional*, defaults to 0.1):
+ The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
+ details.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ feat_extract_norm (`str`, *optional*, defaults to `"group"`):
+ The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
+ normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
+ convolutional layers.
+ feat_proj_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for output of the feature encoder.
+ feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the 1D convolutional layers of the feature
+ extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for quantized feature encoder states.
+ conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
+ A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
+ feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
+ conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
+ A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
+ of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
+ conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
+ length of *conv_kernel* defines the number of convolutional layers and has to match the length of
+ *conv_dim*.
+ conv_bias (`bool`, *optional*, defaults to `False`):
+ Whether the 1D convolutional layers have a bias.
+ num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
+ Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
+ embeddings layer.
+ num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
+ Number of groups of 1D convolutional positional embeddings layer.
+ apply_spec_augment (`bool`, *optional*, defaults to `True`):
+ Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
+ [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
+ Recognition](https://arxiv.org/abs/1904.08779).
+ mask_time_prob (`float`, *optional*, defaults to 0.05):
+ Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
+ procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
+ reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
+ masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
+ actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
+ mask_time_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the time axis.
+ mask_time_min_masks (`int`, *optional*, defaults to 2),:
+ The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
+ irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
+ mask_time_min_masks''
+ mask_feature_prob (`float`, *optional*, defaults to 0.0):
+ Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
+ masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
+ the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
+ span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
+ may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
+ True`.
+ mask_feature_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the feature axis.
+ mask_feature_min_masks (`int`, *optional*, defaults to 0),:
+ The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
+ step, irrespectively of `mask_feature_prob`. Only relevant if
+ ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
+ num_codevectors_per_group (`int`, *optional*, defaults to 320):
+ Number of entries in each quantization codebook (group).
+ num_codevector_groups (`int`, *optional*, defaults to 2):
+ Number of codevector groups for product codevector quantization.
+ contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
+ The temperature *kappa* in the contrastive loss.
+ feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for the output of the feature encoder that's used by the quantizer.
+ num_negatives (`int`, *optional*, defaults to 100):
+ Number of negative samples for the contrastive loss.
+ codevector_dim (`int`, *optional*, defaults to 256):
+ Dimensionality of the quantized feature vectors.
+ proj_codevector_dim (`int`, *optional*, defaults to 256):
+ Dimensionality of the final projection of both the quantized and the transformer features.
+ diversity_loss_weight (`int`, *optional*, defaults to 0.1):
+ The weight of the codebook diversity loss component.
+ ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
+ Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
+ instance of [`Wav2Vec2ConformerForCTC`].
+ ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
+ Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
+ occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
+ of [`Wav2Vec2ConformerForCTC`].
+ use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
+ Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
+ instance of [`Wav2Vec2ConformerForSequenceClassification`].
+ classifier_proj_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the projection before token mean-pooling for classification.
+ tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
+ A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
+ module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
+ tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
+ *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
+ tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
+ A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
+ *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
+ xvector_output_dim (`int`, *optional*, defaults to 512):
+ Dimensionality of the *XVector* embedding vectors.
+ add_adapter (`bool`, *optional*, defaults to `False`):
+ Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very
+ useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.
+ adapter_kernel_size (`int`, *optional*, defaults to 3):
+ Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ adapter_stride (`int`, *optional*, defaults to 2):
+ Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ num_adapter_layers (`int`, *optional*, defaults to 3):
+ Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
+ True`.
+ output_hidden_size (`int`, *optional*):
+ Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
+ if `add_adapter is True`.
+ position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
+ Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
+ `None` no relative position embedding is applied.
+ rotary_embedding_base (`int`, *optional*, defaults to 10000):
+ If `"rotary"` position embeddings are used, defines the size of the embedding base.
+ max_source_positions (`int`, *optional*, defaults to 5000):
+ if `"relative"` position embeddings are used, defines the maximum source input positions.
+ conv_depthwise_kernel_size (`int`, defaults to 31):
+ Kernel size of convolutional depthwise 1D layer in Conformer blocks.
+ conformer_conv_dropout (`float`, defaults to 0.1):
+ The dropout probability for all convolutional layers in Conformer blocks.
+
+ Example:
+
+ ```python
+ >>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
+
+ >>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
+ >>> configuration = Wav2Vec2ConformerConfig()
+
+ >>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
+ >>> model = Wav2Vec2ConformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "wav2vec2-conformer"
+
+ def __init__(
+ self,
+ vocab_size=None,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout=0.1,
+ activation_dropout=0.1,
+ attention_dropout=0.1,
+ feat_proj_dropout=0.0,
+ feat_quantizer_dropout=0.0,
+ final_dropout=0.1,
+ layerdrop=0.1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-5,
+ feat_extract_norm="group",
+ feat_extract_activation="gelu",
+ conv_dim=(512, 512, 512, 512, 512, 512, 512),
+ conv_stride=(5, 2, 2, 2, 2, 2, 2),
+ conv_kernel=(10, 3, 3, 3, 3, 2, 2),
+ conv_bias=False,
+ num_conv_pos_embeddings=128,
+ num_conv_pos_embedding_groups=16,
+ apply_spec_augment=True,
+ mask_time_prob=0.05,
+ mask_time_length=10,
+ mask_time_min_masks=2,
+ mask_feature_prob=0.0,
+ mask_feature_length=10,
+ mask_feature_min_masks=0,
+ num_codevectors_per_group=320,
+ num_codevector_groups=2,
+ contrastive_logits_temperature=0.1,
+ num_negatives=100,
+ codevector_dim=256,
+ proj_codevector_dim=256,
+ diversity_loss_weight=0.1,
+ ctc_loss_reduction="sum",
+ ctc_zero_infinity=False,
+ use_weighted_layer_sum=False,
+ classifier_proj_size=256,
+ tdnn_dim=(512, 512, 512, 512, 1500),
+ tdnn_kernel=(5, 3, 3, 1, 1),
+ tdnn_dilation=(1, 2, 3, 1, 1),
+ xvector_output_dim=512,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ add_adapter=False,
+ adapter_kernel_size=3,
+ adapter_stride=2,
+ num_adapter_layers=3,
+ output_hidden_size=None,
+ position_embeddings_type="relative",
+ rotary_embedding_base=10000,
+ max_source_positions=5000,
+ conv_depthwise_kernel_size=31,
+ conformer_conv_dropout=0.1,
+ **kwargs,
+ ):
+ super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
+ self.hidden_size = hidden_size
+ self.feat_extract_norm = feat_extract_norm
+ self.feat_extract_activation = feat_extract_activation
+ self.conv_dim = list(conv_dim)
+ self.conv_stride = list(conv_stride)
+ self.conv_kernel = list(conv_kernel)
+ self.conv_bias = conv_bias
+ self.num_conv_pos_embeddings = num_conv_pos_embeddings
+ self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
+ self.num_feat_extract_layers = len(self.conv_dim)
+ self.num_hidden_layers = num_hidden_layers
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.num_attention_heads = num_attention_heads
+ self.hidden_dropout = hidden_dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.feat_proj_dropout = feat_proj_dropout
+ self.final_dropout = final_dropout
+ self.layerdrop = layerdrop
+ self.layer_norm_eps = layer_norm_eps
+ self.initializer_range = initializer_range
+ self.vocab_size = vocab_size
+ self.use_weighted_layer_sum = use_weighted_layer_sum
+ self.max_source_positions = max_source_positions
+ self.position_embeddings_type = position_embeddings_type
+ self.rotary_embedding_base = rotary_embedding_base
+
+ if (
+ (len(self.conv_stride) != self.num_feat_extract_layers)
+ or (len(self.conv_kernel) != self.num_feat_extract_layers)
+ or (len(self.conv_dim) != self.num_feat_extract_layers)
+ ):
+ raise ValueError(
+ "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
+ " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
+ f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
+ f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
+ )
+
+ # Conformer-block related
+ self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
+ self.conformer_conv_dropout = conformer_conv_dropout
+
+ # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
+ self.apply_spec_augment = apply_spec_augment
+ self.mask_time_prob = mask_time_prob
+ self.mask_time_length = mask_time_length
+ self.mask_time_min_masks = mask_time_min_masks
+ self.mask_feature_prob = mask_feature_prob
+ self.mask_feature_length = mask_feature_length
+ self.mask_feature_min_masks = mask_feature_min_masks
+
+ # parameters for pretraining with codevector quantized representations
+ self.num_codevectors_per_group = num_codevectors_per_group
+ self.num_codevector_groups = num_codevector_groups
+ self.contrastive_logits_temperature = contrastive_logits_temperature
+ self.feat_quantizer_dropout = feat_quantizer_dropout
+ self.num_negatives = num_negatives
+ self.codevector_dim = codevector_dim
+ self.proj_codevector_dim = proj_codevector_dim
+ self.diversity_loss_weight = diversity_loss_weight
+
+ # ctc loss
+ self.ctc_loss_reduction = ctc_loss_reduction
+ self.ctc_zero_infinity = ctc_zero_infinity
+
+ # adapter
+ self.add_adapter = add_adapter
+ self.adapter_kernel_size = adapter_kernel_size
+ self.adapter_stride = adapter_stride
+ self.num_adapter_layers = num_adapter_layers
+ self.output_hidden_size = output_hidden_size or hidden_size
+
+ # SequenceClassification-specific parameter. Feel free to ignore for other classes.
+ self.classifier_proj_size = classifier_proj_size
+
+ # XVector-specific parameters. Feel free to ignore for other classes.
+ self.tdnn_dim = list(tdnn_dim)
+ self.tdnn_kernel = list(tdnn_kernel)
+ self.tdnn_dilation = list(tdnn_dilation)
+ self.xvector_output_dim = xvector_output_dim
+
+ @property
+ def inputs_to_logits_ratio(self):
+ return functools.reduce(operator.mul, self.conv_stride, 1)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a882e95aba533ae1d37497ca74acd232ac39bc5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,310 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Wav2Vec2Conformer checkpoint."""
+
+
+import argparse
+import json
+import os
+
+import fairseq
+import torch
+from fairseq.data import Dictionary
+
+from transformers import (
+ Wav2Vec2ConformerConfig,
+ Wav2Vec2ConformerForCTC,
+ Wav2Vec2ConformerForPreTraining,
+ Wav2Vec2CTCTokenizer,
+ Wav2Vec2FeatureExtractor,
+ Wav2Vec2Processor,
+ logging,
+)
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+MAPPING = {
+ "post_extract_proj": "feature_projection.projection",
+ "encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
+ "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
+ "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
+ "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
+ "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
+ "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
+ "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
+ "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
+ "self_attn.rotary_emb": "encoder.embed_positions",
+ "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
+ "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
+ "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
+ "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
+ "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
+ "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
+ "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
+ "ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
+ "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
+ "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
+ "ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
+ "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
+ "final_layer_norm": "encoder.layers.*.final_layer_norm",
+ "encoder.layer_norm": "encoder.layer_norm",
+ "w2v_model.layer_norm": "feature_projection.layer_norm",
+ "quantizer.weight_proj": "quantizer.weight_proj",
+ "quantizer.vars": "quantizer.codevectors",
+ "project_q": "project_q",
+ "final_proj": "project_hid",
+ "w2v_encoder.proj": "lm_head",
+ "mask_emb": "masked_spec_embed",
+}
+TOP_LEVEL_KEYS = [
+ "lm_head",
+ "quantizer.weight_proj",
+ "quantizer.codevectors",
+ "project_q",
+ "project_hid",
+]
+
+
+def set_recursively(hf_pointer, key, value, full_name, weight_type):
+ for attribute in key.split("."):
+ hf_pointer = getattr(hf_pointer, attribute)
+
+ if weight_type is not None:
+ hf_shape = getattr(hf_pointer, weight_type).shape
+ else:
+ hf_shape = hf_pointer.shape
+
+ if hf_shape != value.shape:
+ raise ValueError(
+ f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
+ f" {value.shape} for {full_name}"
+ )
+
+ if weight_type == "weight":
+ hf_pointer.weight.data = value
+ elif weight_type == "weight_g":
+ hf_pointer.weight_g.data = value
+ elif weight_type == "weight_v":
+ hf_pointer.weight_v.data = value
+ elif weight_type == "bias":
+ hf_pointer.bias.data = value
+ elif weight_type == "running_mean":
+ hf_pointer.running_mean.data = value
+ elif weight_type == "running_var":
+ hf_pointer.running_var.data = value
+ elif weight_type == "num_batches_tracked":
+ hf_pointer.num_batches_tracked.data = value
+ elif weight_type == "inv_freq":
+ hf_pointer.inv_freq.data = value
+ else:
+ hf_pointer.data = value
+
+ logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
+
+
+def recursively_load_weights(fairseq_model, hf_model, is_headless):
+ unused_weights = []
+ fairseq_dict = fairseq_model.state_dict()
+
+ feature_extractor = hf_model.wav2vec2_conformer.feature_extractor
+
+ for name, value in fairseq_dict.items():
+ is_used = False
+ if "conv_layers" in name:
+ load_conv_layer(
+ name,
+ value,
+ feature_extractor,
+ unused_weights,
+ hf_model.config.feat_extract_norm == "group",
+ )
+ is_used = True
+ else:
+ for key, mapped_key in MAPPING.items():
+ mapped_key = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
+ if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
+ is_used = True
+ if "*" in mapped_key:
+ layer_index = name.split(key)[0].split(".")[-2]
+ mapped_key = mapped_key.replace("*", layer_index)
+ if "pos_bias_u" in name:
+ weight_type = None
+ elif "pos_bias_v" in name:
+ weight_type = None
+ elif "weight_g" in name:
+ weight_type = "weight_g"
+ elif "weight_v" in name:
+ weight_type = "weight_v"
+ elif "bias" in name:
+ weight_type = "bias"
+ elif "weight" in name:
+ # TODO: don't match quantizer.weight_proj
+ weight_type = "weight"
+ elif "running_mean" in name:
+ weight_type = "running_mean"
+ elif "inv_freq" in name:
+ weight_type = "inv_freq"
+ elif "running_var" in name:
+ weight_type = "running_var"
+ elif "num_batches_tracked" in name:
+ weight_type = "num_batches_tracked"
+ else:
+ weight_type = None
+ set_recursively(hf_model, mapped_key, value, name, weight_type)
+ continue
+ if not is_used:
+ unused_weights.append(name)
+
+ logger.warning(f"Unused weights: {unused_weights}")
+
+
+# Copied from transformers.models.wav2vec2.convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.load_conv_layer
+def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
+ name = full_name.split("conv_layers.")[-1]
+ items = name.split(".")
+ layer_id = int(items[0])
+ type_id = int(items[1])
+
+ if type_id == 0:
+ if "bias" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].conv.bias.data = value
+ logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
+ elif "weight" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].conv.weight.data = value
+ logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
+ elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
+ if "bias" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
+ logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
+ elif "weight" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
+ logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
+ else:
+ unused_weights.append(full_name)
+
+
+@torch.no_grad()
+def convert_wav2vec2_conformer_checkpoint(
+ checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
+):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ if config_path is not None:
+ config = Wav2Vec2ConformerConfig.from_pretrained(config_path, hidden_act="swish")
+ else:
+ config = Wav2Vec2ConformerConfig()
+
+ if "rope" in checkpoint_path:
+ config.position_embeddings_type = "rotary"
+
+ if is_finetuned:
+ if dict_path:
+ target_dict = Dictionary.load(dict_path)
+
+ # important change bos & pad token id since CTC symbol is and
+ # not as in fairseq
+ config.bos_token_id = target_dict.pad_index
+ config.pad_token_id = target_dict.bos_index
+ config.eos_token_id = target_dict.eos_index
+ config.vocab_size = len(target_dict.symbols)
+ vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
+ if not os.path.isdir(pytorch_dump_folder_path):
+ logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path))
+ return
+ os.makedirs(pytorch_dump_folder_path, exist_ok=True)
+ vocab_dict = target_dict.indices
+
+ # fairseq has the and switched
+ vocab_dict[""] = 0
+ vocab_dict[""] = 1
+ with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
+ json.dump(vocab_dict, vocab_handle)
+ tokenizer = Wav2Vec2CTCTokenizer(
+ vocab_path,
+ unk_token=target_dict.unk_word,
+ pad_token=target_dict.pad_word,
+ bos_token=target_dict.bos_word,
+ eos_token=target_dict.eos_word,
+ word_delimiter_token="|",
+ do_lower_case=False,
+ )
+ return_attention_mask = True if config.feat_extract_norm == "layer" else False
+ feature_extractor = Wav2Vec2FeatureExtractor(
+ feature_size=1,
+ sampling_rate=16000,
+ padding_value=0,
+ do_normalize=True,
+ return_attention_mask=return_attention_mask,
+ )
+ processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ hf_wav2vec = Wav2Vec2ConformerForCTC(config)
+ else:
+ hf_wav2vec = Wav2Vec2ConformerForPreTraining(config)
+
+ if is_finetuned:
+ model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
+ [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
+ )
+ else:
+ task_arg = argparse.Namespace(task="audio_pretraining")
+ task = fairseq.tasks.setup_task(task_arg)
+
+ model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task)
+
+ model = model[0].eval()
+
+ recursively_load_weights(model, hf_wav2vec, not is_finetuned)
+
+ hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
+ parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
+ parser.add_argument(
+ "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
+ )
+ args = parser.parse_args()
+ convert_wav2vec2_conformer_checkpoint(
+ args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..8354a88a517fa9176e5ae20c5f79a7cde98777f0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
@@ -0,0 +1,2110 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Wav2Vec2-Conformer model."""
+
+import math
+import warnings
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...integrations.deepspeed import is_deepspeed_zero3_enabled
+from ...modeling_outputs import (
+ BaseModelOutput,
+ CausalLMOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+ Wav2Vec2BaseModelOutput,
+ XVectorOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_peft_available,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_wav2vec2_conformer import Wav2Vec2ConformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+_HIDDEN_STATES_START_POSITION = 2
+
+# General docstring
+_CONFIG_FOR_DOC = "Wav2Vec2ConformerConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-conformer-rope-large-960h-ft"
+_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024]
+
+# CTC docstring
+_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
+_CTC_EXPECTED_LOSS = 64.21
+
+
+from ..deprecated._archive_maps import WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions.
+
+ Args:
+ loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
+ paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
+ projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
+ Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
+ projected quantized states.
+ projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
+ Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
+ target vectors for contrastive loss.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
+ The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
+ diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
+ The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ projected_states: torch.FloatTensor = None
+ projected_quantized_states: torch.FloatTensor = None
+ codevector_perplexity: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+ contrastive_loss: Optional[torch.FloatTensor] = None
+ diversity_loss: Optional[torch.FloatTensor] = None
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
+def _compute_mask_indices(
+ shape: Tuple[int, int],
+ mask_prob: float,
+ mask_length: int,
+ attention_mask: Optional[torch.LongTensor] = None,
+ min_masks: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
+ ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
+ CPU as part of the preprocessing during training.
+
+ Args:
+ shape: The shape for which to compute masks. This should be of a tuple of size 2 where
+ the first element is the batch size and the second element is the length of the axis to span.
+ mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
+ independently generated mask spans of length `mask_length` is computed by
+ `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
+ actual percentage will be smaller.
+ mask_length: size of the mask
+ min_masks: minimum number of masked spans
+ attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
+ each batch dimension.
+ """
+ batch_size, sequence_length = shape
+
+ if mask_length < 1:
+ raise ValueError("`mask_length` has to be bigger than 0.")
+
+ if mask_length > sequence_length:
+ raise ValueError(
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
+ f" and `sequence_length`: {sequence_length}`"
+ )
+
+ # epsilon is used for probabilistic rounding
+ epsilon = np.random.rand(1).item()
+
+ def compute_num_masked_span(input_length):
+ """Given input length, compute how many spans should be masked"""
+ num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
+ num_masked_span = max(num_masked_span, min_masks)
+
+ # make sure num masked span <= sequence_length
+ if num_masked_span * mask_length > sequence_length:
+ num_masked_span = sequence_length // mask_length
+
+ # make sure num_masked span is also <= input_length - (mask_length - 1)
+ if input_length - (mask_length - 1) < num_masked_span:
+ num_masked_span = max(input_length - (mask_length - 1), 0)
+
+ return num_masked_span
+
+ # compute number of masked spans in batch
+ input_lengths = (
+ attention_mask.sum(-1).detach().tolist()
+ if attention_mask is not None
+ else [sequence_length for _ in range(batch_size)]
+ )
+
+ # SpecAugment mask to fill
+ spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
+ spec_aug_mask_idxs = []
+
+ max_num_masked_span = compute_num_masked_span(sequence_length)
+
+ if max_num_masked_span == 0:
+ return spec_aug_mask
+
+ for input_length in input_lengths:
+ # compute num of masked spans for this input
+ num_masked_span = compute_num_masked_span(input_length)
+
+ # get random indices to mask
+ spec_aug_mask_idx = np.random.choice(
+ np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
+ )
+
+ # pick first sampled index that will serve as a dummy index to pad vector
+ # to ensure same dimension for all batches due to probabilistic rounding
+ # Picking first sample just pads those vectors twice.
+ if len(spec_aug_mask_idx) == 0:
+ # this case can only happen if `input_length` is strictly smaller then
+ # `sequence_length` in which case the last token has to be a padding
+ # token which we can use as a dummy mask id
+ dummy_mask_idx = sequence_length - 1
+ else:
+ dummy_mask_idx = spec_aug_mask_idx[0]
+
+ spec_aug_mask_idx = np.concatenate(
+ [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
+ )
+ spec_aug_mask_idxs.append(spec_aug_mask_idx)
+
+ spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
+
+ # expand masked indices to masked spans
+ spec_aug_mask_idxs = np.broadcast_to(
+ spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
+
+ # add offset to the starting indexes so that indexes now create a span
+ offsets = np.arange(mask_length)[None, None, :]
+ offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
+ batch_size, max_num_masked_span * mask_length
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
+
+ # ensure that we cannot have indices larger than sequence_length
+ if spec_aug_mask_idxs.max() > sequence_length - 1:
+ spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
+
+ # scatter indices to mask
+ np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
+
+ return spec_aug_mask
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices
+def _sample_negative_indices(
+ features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
+):
+ """
+ Sample `num_negatives` vectors from feature vectors.
+ """
+ batch_size, sequence_length = features_shape
+
+ # generate indices of the positive vectors themselves, repeat them `num_negatives` times
+ sequence_length_range = np.arange(sequence_length)
+
+ # get `num_negatives` random vector indices from the same utterance
+ sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
+
+ mask_time_indices = (
+ mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
+ )
+
+ for batch_idx in range(batch_size):
+ high = mask_time_indices[batch_idx].sum() - 1
+ mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
+
+ feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
+ sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
+ # avoid sampling the same positive vector, but keep the distribution uniform
+ sampled_indices[sampled_indices >= feature_indices] += 1
+
+ # remap to actual indices
+ sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
+
+ # correct for batch size
+ sampled_negative_indices[batch_idx] += batch_idx * sequence_length
+
+ return sampled_negative_indices
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerNoLayerNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerLayerNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+
+ hidden_states = hidden_states.transpose(-2, -1)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = hidden_states.transpose(-2, -1)
+
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerGroupNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerPositionalConvEmbedding(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ kernel_size=config.num_conv_pos_embeddings,
+ padding=config.num_conv_pos_embeddings // 2,
+ groups=config.num_conv_pos_embedding_groups,
+ )
+
+ weight_norm = nn.utils.weight_norm
+ if hasattr(nn.utils.parametrizations, "weight_norm"):
+ weight_norm = nn.utils.parametrizations.weight_norm
+
+ if is_deepspeed_zero3_enabled():
+ import deepspeed
+
+ with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
+ else:
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+
+ self.padding = Wav2Vec2ConformerSamePadLayer(config.num_conv_pos_embeddings)
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.padding(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module):
+ """Rotary positional embedding
+ Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ dim = config.hidden_size // config.num_attention_heads
+ base = config.rotary_embedding_base
+
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
+ self.register_buffer("inv_freq", inv_freq)
+ self.cached_sequence_length = None
+ self.cached_rotary_positional_embedding = None
+
+ def forward(self, hidden_states):
+ sequence_length = hidden_states.shape[1]
+
+ if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
+ return self.cached_rotary_positional_embedding
+
+ self.cached_sequence_length = sequence_length
+ # Embeddings are computed in the dtype of the inv_freq constant
+ time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
+ freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
+ embeddings = torch.cat((freqs, freqs), dim=-1)
+
+ cos_embeddings = embeddings.cos()[:, None, None, :]
+ sin_embeddings = embeddings.sin()[:, None, None, :]
+ # Computed embeddings are cast to the dtype of the hidden state inputs
+ self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
+ return self.cached_rotary_positional_embedding
+
+
+class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
+ """Relative positional encoding module."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.max_len = config.max_source_positions
+ self.d_model = config.hidden_size
+ self.pe = None
+ self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
+
+ def extend_pe(self, x):
+ # Reset the positional encodings
+ if self.pe is not None:
+ # self.pe contains both positive and negative parts
+ # the length of self.pe is 2 * input_len - 1
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ # Suppose `i` is the position of query vector and `j` is the
+ # position of key vector. We use positive relative positions when keys
+ # are to the left (i>j) and negative relative positions otherwise (iWav2Vec2Conformer
+class Wav2Vec2ConformerSamePadLayer(nn.Module):
+ def __init__(self, num_conv_pos_embeddings):
+ super().__init__()
+ self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
+
+ def forward(self, hidden_states):
+ if self.num_pad_remove > 0:
+ hidden_states = hidden_states[:, :, : -self.num_pad_remove]
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerFeatureEncoder(nn.Module):
+ """Construct the features from raw audio waveform"""
+
+ def __init__(self, config):
+ super().__init__()
+
+ if config.feat_extract_norm == "group":
+ conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [
+ Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1)
+ for i in range(config.num_feat_extract_layers - 1)
+ ]
+ elif config.feat_extract_norm == "layer":
+ conv_layers = [
+ Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
+ ]
+ else:
+ raise ValueError(
+ f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
+ )
+ self.conv_layers = nn.ModuleList(conv_layers)
+ self.gradient_checkpointing = False
+ self._requires_grad = True
+
+ def _freeze_parameters(self):
+ for param in self.parameters():
+ param.requires_grad = False
+ self._requires_grad = False
+
+ def forward(self, input_values):
+ hidden_states = input_values[:, None]
+
+ # make sure hidden_states require grad for gradient_checkpointing
+ if self._requires_grad and self.training:
+ hidden_states.requires_grad = True
+
+ for conv_layer in self.conv_layers:
+ if self._requires_grad and self.gradient_checkpointing and self.training:
+ hidden_states = self._gradient_checkpointing_func(
+ conv_layer.__call__,
+ hidden_states,
+ )
+ else:
+ hidden_states = conv_layer(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerFeatureProjection(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
+ self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
+ self.dropout = nn.Dropout(config.feat_proj_dropout)
+
+ def forward(self, hidden_states):
+ # non-projected hidden states are needed for quantization
+ norm_hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.projection(norm_hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states, norm_hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerFeedForward(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.intermediate_dropout = nn.Dropout(config.activation_dropout)
+
+ self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.output_dropout = nn.Dropout(config.hidden_dropout)
+
+ def forward(self, hidden_states):
+ hidden_states = self.intermediate_dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ hidden_states = self.intermediate_dropout(hidden_states)
+
+ hidden_states = self.output_dense(hidden_states)
+ hidden_states = self.output_dropout(hidden_states)
+ return hidden_states
+
+
+class Wav2Vec2ConformerConvolutionModule(nn.Module):
+ """Convolution block used in the conformer block"""
+
+ def __init__(self, config):
+ super().__init__()
+ if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
+ raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
+ self.layer_norm = nn.LayerNorm(config.hidden_size)
+ self.pointwise_conv1 = nn.Conv1d(
+ config.hidden_size,
+ 2 * config.hidden_size,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=False,
+ )
+ self.glu = nn.GLU(dim=1)
+ self.depthwise_conv = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ config.conv_depthwise_kernel_size,
+ stride=1,
+ padding=(config.conv_depthwise_kernel_size - 1) // 2,
+ groups=config.hidden_size,
+ bias=False,
+ )
+ self.batch_norm = nn.BatchNorm1d(config.hidden_size)
+ self.activation = ACT2FN[config.hidden_act]
+ self.pointwise_conv2 = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=False,
+ )
+ self.dropout = nn.Dropout(config.conformer_conv_dropout)
+
+ def forward(self, hidden_states):
+ hidden_states = self.layer_norm(hidden_states)
+ # exchange the temporal dimension and the feature dimension
+ hidden_states = hidden_states.transpose(1, 2)
+
+ # GLU mechanism
+ # => (batch, 2*channel, dim)
+ hidden_states = self.pointwise_conv1(hidden_states)
+ # => (batch, channel, dim)
+ hidden_states = self.glu(hidden_states)
+
+ # 1D Depthwise Conv
+ hidden_states = self.depthwise_conv(hidden_states)
+ hidden_states = self.batch_norm(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = self.pointwise_conv2(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+class Wav2Vec2ConformerSelfAttention(nn.Module):
+ """Construct an Wav2Vec2ConformerSelfAttention object.
+ Can be enhanced with rotary or relative position embeddings.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.head_size = config.hidden_size // config.num_attention_heads
+ self.num_heads = config.num_attention_heads
+ self.position_embeddings_type = config.position_embeddings_type
+
+ self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)
+
+ self.dropout = nn.Dropout(p=config.attention_dropout)
+
+ if self.position_embeddings_type == "relative":
+ # linear transformation for positional encoding
+ self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
+ # these two learnable bias are used in matrix c and matrix d
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+ self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # self-attention mechanism
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ # make sure query/key states can be != value states
+ query_key_states = hidden_states
+ value_states = hidden_states
+
+ if self.position_embeddings_type == "rotary":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
+ )
+ query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
+
+ # project query_key_states and value_states
+ query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
+
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ key = key.transpose(1, 2)
+ value = value.transpose(1, 2)
+
+ if self.position_embeddings_type == "relative":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
+ " 'relative'"
+ )
+ # apply relative_position_embeddings to qk scores
+ # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
+ scores = self._apply_relative_embeddings(
+ query=query, key=key, relative_position_embeddings=relative_position_embeddings
+ )
+ else:
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
+
+ # apply attention_mask if necessary
+ if attention_mask is not None:
+ scores = scores + attention_mask
+
+ # => (batch, head, time1, time2)
+ probs = torch.softmax(scores, dim=-1)
+ probs = self.dropout(probs)
+
+ # => (batch, head, time1, d_k)
+ hidden_states = torch.matmul(probs, value)
+
+ # => (batch, time1, hidden_size)
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
+ hidden_states = self.linear_out(hidden_states)
+
+ return hidden_states, probs
+
+ def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
+
+ cos = relative_position_embeddings[0, :sequence_length, ...]
+ sin = relative_position_embeddings[1, :sequence_length, ...]
+
+ # rotate hidden_states with rotary embeddings
+ hidden_states = hidden_states.transpose(0, 1)
+ rotated_states_begin = hidden_states[..., : self.head_size // 2]
+ rotated_states_end = hidden_states[..., self.head_size // 2 :]
+ rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
+ hidden_states = (hidden_states * cos) + (rotated_states * sin)
+ hidden_states = hidden_states.transpose(0, 1)
+
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
+
+ return hidden_states
+
+ def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
+ # 1. project positional embeddings
+ # => (batch, head, 2*time1-1, d_k)
+ proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.view(
+ relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
+ )
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
+
+ # 2. Add bias to query
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
+ q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
+
+ # 3. attention score: first compute matrix a and matrix c
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ # => (batch, head, time1, time2)
+ scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
+
+ # 4. then compute matrix b and matrix d
+ # => (batch, head, time1, 2*time1-1)
+ scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
+
+ # 5. shift matrix b and matrix d
+ zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
+ scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
+ scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
+ scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
+ scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
+ scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
+
+ # 6. sum matrices
+ # => (batch, head, time1, time2)
+ scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
+
+ return scores
+
+
+class Wav2Vec2ConformerEncoderLayer(nn.Module):
+ """Conformer block based on https://arxiv.org/abs/2005.08100."""
+
+ def __init__(self, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ dropout = config.attention_dropout
+
+ # Feed-forward 1
+ self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
+ self.ffn1 = Wav2Vec2ConformerFeedForward(config)
+
+ # Self-Attention
+ self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
+ self.self_attn_dropout = nn.Dropout(dropout)
+ self.self_attn = Wav2Vec2ConformerSelfAttention(config)
+
+ # Conformer Convolution
+ self.conv_module = Wav2Vec2ConformerConvolutionModule(config)
+
+ # Feed-forward 2
+ self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
+ self.ffn2 = Wav2Vec2ConformerFeedForward(config)
+ self.final_layer_norm = nn.LayerNorm(embed_dim)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ):
+ hidden_states = hidden_states
+
+ # 1. Feed-Forward 1 layer
+ residual = hidden_states
+ hidden_states = self.ffn1_layer_norm(hidden_states)
+ hidden_states = self.ffn1(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ residual = hidden_states
+
+ # 2. Self-Attention layer
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weigts = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.self_attn_dropout(hidden_states)
+ hidden_states = hidden_states + residual
+
+ # 3. Convolutional Layer
+ residual = hidden_states
+ hidden_states = self.conv_module(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # 4. Feed-Forward 2 Layer
+ residual = hidden_states
+ hidden_states = self.ffn2_layer_norm(hidden_states)
+ hidden_states = self.ffn2(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return hidden_states, attn_weigts
+
+
+class Wav2Vec2ConformerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ if config.position_embeddings_type == "relative":
+ self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config)
+ elif config.position_embeddings_type == "rotary":
+ self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config)
+ else:
+ self.embed_positions = None
+
+ self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layers = nn.ModuleList([Wav2Vec2ConformerEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ if attention_mask is not None:
+ # make sure padded tokens output 0
+ hidden_states[~attention_mask] = 0.0
+
+ # extend attention_mask
+ attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
+ attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
+ attention_mask = attention_mask.expand(
+ attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
+ )
+
+ hidden_states = self.dropout(hidden_states)
+
+ if self.embed_positions is not None:
+ relative_position_embeddings = self.embed_positions(hidden_states)
+ else:
+ relative_position_embeddings = None
+
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = torch.rand([])
+
+ skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
+ # under deepspeed zero3 all gpus must run in sync
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer.__call__,
+ hidden_states,
+ attention_mask,
+ relative_position_embeddings,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ )
+ hidden_states = layer_outputs[0]
+
+ if skip_the_layer:
+ layer_outputs = (None, None)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ hidden_states = self.layer_norm(hidden_states)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GumbelVectorQuantizer with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module):
+ """
+ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
+ GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.num_groups = config.num_codevector_groups
+ self.num_vars = config.num_codevectors_per_group
+
+ if config.codevector_dim % self.num_groups != 0:
+ raise ValueError(
+ f"`config.codevector_dim {config.codevector_dim} must be divisible "
+ f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
+ )
+
+ # storage for codebook variables (codewords)
+ self.codevectors = nn.Parameter(
+ torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
+ )
+ self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
+
+ # can be decayed for training
+ self.temperature = 2
+
+ @staticmethod
+ def _compute_perplexity(probs, mask=None):
+ if mask is not None:
+ mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
+ probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
+ marginal_probs = probs.sum(dim=0) / mask.sum()
+ else:
+ marginal_probs = probs.mean(dim=0)
+
+ perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
+ return perplexity
+
+ def forward(self, hidden_states, mask_time_indices=None):
+ batch_size, sequence_length, hidden_size = hidden_states.shape
+
+ # project to codevector dim
+ hidden_states = self.weight_proj(hidden_states)
+ hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
+
+ if self.training:
+ # sample code vector probs via gumbel in differentiateable way
+ codevector_probs = nn.functional.gumbel_softmax(
+ hidden_states.float(), tau=self.temperature, hard=True
+ ).type_as(hidden_states)
+
+ # compute perplexity
+ codevector_soft_dist = torch.softmax(
+ hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
+ )
+ perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
+ else:
+ # take argmax in non-differentiable way
+ # comptute hard codevector distribution (one hot)
+ codevector_idx = hidden_states.argmax(dim=-1)
+ codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_(
+ -1, codevector_idx.view(-1, 1), 1.0
+ )
+ codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
+
+ perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
+
+ codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
+ # use probs to retrieve codevectors
+ codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
+ codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
+ codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
+
+ return codevectors, perplexity
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerAdapter(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ # feature dim might need to be down-projected
+ if config.output_hidden_size != config.hidden_size:
+ self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
+ self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
+ else:
+ self.proj = self.proj_layer_norm = None
+
+ self.layers = nn.ModuleList(Wav2Vec2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers))
+ self.layerdrop = config.layerdrop
+
+ def forward(self, hidden_states):
+ # down project hidden_states if necessary
+ if self.proj is not None and self.proj_layer_norm is not None:
+ hidden_states = self.proj(hidden_states)
+ hidden_states = self.proj_layer_norm(hidden_states)
+
+ hidden_states = hidden_states.transpose(1, 2)
+
+ for layer in self.layers:
+ layerdrop_prob = np.random.random()
+ if not self.training or (layerdrop_prob > self.layerdrop):
+ hidden_states = layer(hidden_states)
+
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Wav2Vec2Conformer
+class Wav2Vec2ConformerAdapterLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ config.output_hidden_size,
+ 2 * config.output_hidden_size,
+ config.adapter_kernel_size,
+ stride=config.adapter_stride,
+ padding=1,
+ )
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+ hidden_states = nn.functional.glu(hidden_states, dim=1)
+
+ return hidden_states
+
+
+class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = Wav2Vec2ConformerConfig
+ base_model_prefix = "wav2vec2_conformer"
+ main_input_name = "input_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
+ if isinstance(module, Wav2Vec2ConformerForPreTraining):
+ module.project_hid.reset_parameters()
+ module.project_q.reset_parameters()
+ module.project_hid._is_hf_initialized = True
+ module.project_q._is_hf_initialized = True
+ # gumbel softmax requires special init
+ elif isinstance(module, Wav2Vec2ConformerGumbelVectorQuantizer):
+ module.weight_proj.weight.data.normal_(mean=0.0, std=1)
+ module.weight_proj.bias.data.zero_()
+ nn.init.uniform_(module.codevectors)
+ elif isinstance(module, Wav2Vec2ConformerSelfAttention):
+ if hasattr(module, "pos_bias_u"):
+ nn.init.xavier_uniform_(module.pos_bias_u)
+ if hasattr(module, "pos_bias_v"):
+ nn.init.xavier_uniform_(module.pos_bias_v)
+ elif isinstance(module, Wav2Vec2ConformerPositionalConvEmbedding):
+ nn.init.normal_(
+ module.conv.weight,
+ mean=0,
+ std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
+ )
+ nn.init.constant_(module.conv.bias, 0)
+ elif isinstance(module, Wav2Vec2ConformerFeatureProjection):
+ k = math.sqrt(1 / module.projection.in_features)
+ nn.init.uniform_(module.projection.weight, a=-k, b=k)
+ nn.init.uniform_(module.projection.bias, a=-k, b=k)
+ elif isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Conv1d):
+ nn.init.kaiming_normal_(module.weight)
+
+ if module.bias is not None:
+ k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
+ nn.init.uniform_(module.bias, a=-k, b=k)
+
+ def _get_feat_extract_output_lengths(
+ self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
+ ):
+ """
+ Computes the output length of the convolutional layers
+ """
+
+ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
+
+ def _conv_out_length(input_length, kernel_size, stride):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
+
+ for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
+ input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
+
+ if add_adapter:
+ for _ in range(self.config.num_adapter_layers):
+ input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
+
+ return input_lengths
+
+ def _get_feature_vector_attention_mask(
+ self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
+ ):
+ # Effectively attention_mask.sum(-1), but not inplace to be able to run
+ # on inference mode.
+ non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
+
+ output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
+ output_lengths = output_lengths.to(torch.long)
+
+ batch_size = attention_mask.shape[0]
+
+ attention_mask = torch.zeros(
+ (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ # these two operations makes sure that all values before the output lengths idxs are attended to
+ attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
+ attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
+ return attention_mask
+
+
+WAV2VEC2_CONFORMER_START_DOCSTRING = r"""
+ Wav2Vec2Conformer was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
+ Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
+ Auli.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving etc.).
+
+ This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a
+ regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
+
+ Parameters:
+ config ([`Wav2Vec2ConformerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+WAV2VEC2_CONFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
+ into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
+ soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
+ conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
+ 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+
+
+ `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
+ True`. For all models whose processor has `config.return_attention_mask == False`, such as
+ [wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large),
+ `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For
+ such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware
+ that these models also yield slightly different results depending on whether `input_values` is padded or
+ not.
+
+
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Wav2Vec2Conformer Model transformer outputting raw hidden-states without any specific head on top.",
+ WAV2VEC2_CONFORMER_START_DOCSTRING,
+)
+class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel):
+ def __init__(self, config: Wav2Vec2ConformerConfig):
+ super().__init__(config)
+ self.config = config
+ self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config)
+ self.feature_projection = Wav2Vec2ConformerFeatureProjection(config)
+
+ # model only needs masking vector if mask prob is > 0.0
+ if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
+
+ self.encoder = Wav2Vec2ConformerEncoder(config)
+
+ self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.feature_extractor._freeze_parameters()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
+ def _mask_hidden_states(
+ self,
+ hidden_states: torch.FloatTensor,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ ):
+ """
+ Masks extracted features along time axis and/or along feature axis according to
+ [SpecAugment](https://arxiv.org/abs/1904.08779).
+ """
+
+ # `config.apply_spec_augment` can set masking to False
+ if not getattr(self.config, "apply_spec_augment", True):
+ return hidden_states
+
+ # generate indices & apply SpecAugment along time axis
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ if mask_time_indices is not None:
+ # apply SpecAugment along time axis with given mask_time_indices
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+ elif self.config.mask_time_prob > 0 and self.training:
+ mask_time_indices = _compute_mask_indices(
+ (batch_size, sequence_length),
+ mask_prob=self.config.mask_time_prob,
+ mask_length=self.config.mask_time_length,
+ attention_mask=attention_mask,
+ min_masks=self.config.mask_time_min_masks,
+ )
+ mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+
+ if self.config.mask_feature_prob > 0 and self.training:
+ # generate indices & apply SpecAugment along feature axis
+ mask_feature_indices = _compute_mask_indices(
+ (batch_size, hidden_size),
+ mask_prob=self.config.mask_feature_prob,
+ mask_length=self.config.mask_feature_length,
+ min_masks=self.config.mask_feature_min_masks,
+ )
+ mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
+ mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
+ hidden_states[mask_feature_indices] = 0
+
+ return hidden_states
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=Wav2Vec2BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ extract_features = self.feature_extractor(input_values)
+ extract_features = extract_features.transpose(1, 2)
+
+ if attention_mask is not None:
+ # compute reduced attention_mask corresponding to feature vectors
+ attention_mask = self._get_feature_vector_attention_mask(
+ extract_features.shape[1], attention_mask, add_adapter=False
+ )
+
+ hidden_states, extract_features = self.feature_projection(extract_features)
+ hidden_states = self._mask_hidden_states(
+ hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if self.adapter is not None:
+ hidden_states = self.adapter(hidden_states)
+
+ if not return_dict:
+ return (hidden_states, extract_features) + encoder_outputs[1:]
+
+ return Wav2Vec2BaseModelOutput(
+ last_hidden_state=hidden_states,
+ extract_features=extract_features,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """Wav2Vec2Conformer Model with a quantizer and `VQ` head on top.""", WAV2VEC2_CONFORMER_START_DOCSTRING
+)
+class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel):
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
+ def __init__(self, config: Wav2Vec2ConformerConfig):
+ super().__init__(config)
+ self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
+ self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
+
+ self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config)
+
+ self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
+ self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature
+ def set_gumbel_temperature(self, temperature: int):
+ """
+ Set the Gumbel softmax temperature to a given value. Only necessary for training
+ """
+ self.quantizer.temperature = temperature
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2_conformer.feature_extractor._freeze_parameters()
+
+ @staticmethod
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits
+ def compute_contrastive_logits(
+ target_features: torch.FloatTensor,
+ negative_features: torch.FloatTensor,
+ predicted_features: torch.FloatTensor,
+ temperature: int = 0.1,
+ ):
+ """
+ Compute logits for contrastive loss based using cosine similarity as the distance measure between
+ `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
+ """
+ target_features = torch.cat([target_features, negative_features], dim=0)
+
+ logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
+ target_features
+ )
+
+ # apply temperature
+ logits = logits / temperature
+ return logits
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Wav2Vec2ConformerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ mask_time_indices: Optional[torch.BoolTensor] = None,
+ sampled_negative_indices: Optional[torch.BoolTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]:
+ r"""
+ mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
+ masked extracted features in *config.proj_codevector_dim* space.
+ sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
+ Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
+ Required input for pre-training.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
+ >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices
+ >>> from datasets import load_dataset
+
+ >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
+ >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
+
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+ >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
+
+ >>> # compute masked indices
+ >>> batch_size, raw_sequence_length = input_values.shape
+ >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
+ >>> mask_time_indices = _compute_mask_indices(
+ ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
+ ... )
+ >>> sampled_negative_indices = _sample_negative_indices(
+ ... features_shape=(batch_size, sequence_length),
+ ... num_negatives=model.config.num_negatives,
+ ... mask_time_indices=mask_time_indices,
+ ... )
+ >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long)
+ >>> sampled_negative_indices = torch.tensor(
+ ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long
+ ... )
+
+ >>> with torch.no_grad():
+ ... outputs = model(input_values, mask_time_indices=mask_time_indices)
+
+ >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
+ >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
+
+ >>> # show that cosine similarity is much higher than random
+ >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5
+ tensor(True)
+
+ >>> # for contrastive loss training model should be put into train mode
+ >>> model = model.train()
+ >>> loss = model(
+ ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
+ ... ).loss
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if mask_time_indices is not None:
+ mask_time_indices = mask_time_indices.to(torch.bool)
+
+ outputs = self.wav2vec2_conformer(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ mask_time_indices=mask_time_indices,
+ return_dict=return_dict,
+ )
+
+ # 1. project all transformed features (including masked) to final vq dim
+ transformer_features = self.project_hid(outputs[0])
+
+ # 2. quantize all (unmasked) extracted features and project to final vq dim
+ extract_features = self.dropout_features(outputs[1])
+
+ if attention_mask is not None:
+ # compute reduced attention_mask correponding to feature vectors
+ attention_mask = self._get_feature_vector_attention_mask(
+ extract_features.shape[1], attention_mask, add_adapter=False
+ )
+
+ quantized_features, codevector_perplexity = self.quantizer(
+ extract_features, mask_time_indices=mask_time_indices
+ )
+ quantized_features = self.project_q(quantized_features)
+
+ loss = contrastive_loss = diversity_loss = None
+ if sampled_negative_indices is not None:
+ batch_size, sequence_length, hidden_size = quantized_features.shape
+
+ # for training, we sample negatives
+ # 3. sample K negatives (distractors) quantized states for contrastive loss
+ # if attention_mask is passed, make sure that padded feature vectors cannot be sampled
+ # sample negative quantized vectors BTC => (BxT)C
+ negative_quantized_features = quantized_features.view(-1, hidden_size)[
+ sampled_negative_indices.long().view(-1)
+ ]
+ negative_quantized_features = negative_quantized_features.view(
+ batch_size, sequence_length, -1, hidden_size
+ ).permute(2, 0, 1, 3)
+
+ # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
+ # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
+ logits = self.compute_contrastive_logits(
+ quantized_features[None, :],
+ negative_quantized_features,
+ transformer_features,
+ self.config.contrastive_logits_temperature,
+ )
+
+ # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
+ # its cosine similarity will be masked
+ neg_is_pos = (quantized_features == negative_quantized_features).all(-1)
+
+ if neg_is_pos.any():
+ logits[1:][neg_is_pos] = float("-inf")
+
+ # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
+ # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
+ logits = logits.transpose(0, 2).reshape(-1, logits.size(0))
+ target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten()
+
+ contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum")
+ # 7. compute diversity loss: \mathbf{L}_d
+ num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
+ diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()
+
+ # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
+ loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss
+
+ if not return_dict:
+ if loss is not None:
+ return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
+ return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
+
+ return Wav2Vec2ConformerForPreTrainingOutput(
+ loss=loss,
+ projected_states=transformer_features,
+ projected_quantized_states=quantized_features,
+ codevector_perplexity=codevector_perplexity,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ contrastive_loss=contrastive_loss,
+ diversity_loss=diversity_loss,
+ )
+
+
+@add_start_docstrings(
+ """Wav2Vec2Conformer Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
+ WAV2VEC2_CONFORMER_START_DOCSTRING,
+)
+class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel):
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
+ def __init__(self, config, target_lang: Optional[str] = None):
+ super().__init__(config)
+
+ self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
+ self.dropout = nn.Dropout(config.final_dropout)
+
+ self.target_lang = target_lang
+
+ if config.vocab_size is None:
+ raise ValueError(
+ f"You are trying to instantiate {self.__class__} with a configuration that "
+ "does not define the vocabulary size of the language model head. Please "
+ "instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
+ "or define `vocab_size` of your model's configuration."
+ )
+ output_hidden_size = (
+ config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
+ )
+ self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2_conformer.feature_extractor._freeze_parameters()
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_CTC_EXPECTED_OUTPUT,
+ expected_loss=_CTC_EXPECTED_LOSS,
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
+ Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
+ the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
+ All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.wav2vec2_conformer(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states)
+
+ logits = self.lm_head(hidden_states)
+
+ loss = None
+ if labels is not None:
+ if labels.max() >= self.config.vocab_size:
+ raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
+
+ # retrieve loss input_lengths from attention_mask
+ attention_mask = (
+ attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
+ )
+ input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
+
+ # assuming that padded tokens are filled with -100
+ # when not being attended to
+ labels_mask = labels >= 0
+ target_lengths = labels_mask.sum(-1)
+ flattened_targets = labels.masked_select(labels_mask)
+
+ # ctc_loss doesn't support fp16
+ log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
+
+ with torch.backends.cudnn.flags(enabled=False):
+ loss = nn.functional.ctc_loss(
+ log_probs,
+ flattened_targets,
+ input_lengths,
+ target_lengths,
+ blank=self.config.pad_token_id,
+ reduction=self.config.ctc_loss_reduction,
+ zero_infinity=self.config.ctc_zero_infinity,
+ )
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutput(
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Conformer Model with a sequence classification head on top (a linear layer over the pooled output) for
+ tasks like SUPERB Keyword Spotting.
+ """,
+ WAV2VEC2_CONFORMER_START_DOCSTRING,
+)
+class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel):
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)"
+ )
+ self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
+ self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2_conformer.feature_extractor._freeze_parameters()
+
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_conformer.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_conformer(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+ if attention_mask is None:
+ pooled_output = hidden_states.mean(dim=1)
+ else:
+ padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
+ hidden_states[~padding_mask] = 0.0
+ pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
+
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Conformer Model with a frame classification head on top for tasks like Speaker Diarization.
+ """,
+ WAV2VEC2_CONFORMER_START_DOCSTRING,
+)
+class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel):
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)"
+ )
+ self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+ self.num_labels = config.num_labels
+
+ self.init_weights()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2_conformer.feature_extractor._freeze_parameters()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_conformer.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_conformer(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ logits = self.classifier(hidden_states)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
+class AMSoftmaxLoss(nn.Module):
+ def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
+ super(AMSoftmaxLoss, self).__init__()
+ self.scale = scale
+ self.margin = margin
+ self.num_labels = num_labels
+ self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
+ self.loss = nn.CrossEntropyLoss()
+
+ def forward(self, hidden_states, labels):
+ labels = labels.flatten()
+ weight = nn.functional.normalize(self.weight, dim=0)
+ hidden_states = nn.functional.normalize(hidden_states, dim=1)
+ cos_theta = torch.mm(hidden_states, weight)
+ psi = cos_theta - self.margin
+
+ onehot = nn.functional.one_hot(labels, self.num_labels)
+ logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
+ loss = self.loss(logits, labels)
+
+ return loss
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
+class TDNNLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
+ self.out_conv_dim = config.tdnn_dim[layer_id]
+ self.kernel_size = config.tdnn_kernel[layer_id]
+ self.dilation = config.tdnn_dilation[layer_id]
+
+ self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
+ self.activation = nn.ReLU()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ if is_peft_available():
+ from peft.tuners.lora import LoraLayer
+
+ if isinstance(self.kernel, LoraLayer):
+ warnings.warn(
+ "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
+ "You should exclude TDNNLayer from LoRA's target modules.",
+ )
+
+ # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
+ hidden_states = hidden_states.transpose(1, 2)
+ weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
+ hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Conformer Model with an XVector feature extraction head on top for tasks like Speaker Verification.
+ """,
+ WAV2VEC2_CONFORMER_START_DOCSTRING,
+)
+class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
+
+ tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
+ self.tdnn = nn.ModuleList(tdnn_layers)
+
+ self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
+ self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
+
+ self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
+
+ self.init_weights()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2_conformer.feature_extractor._freeze_parameters()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_conformer.parameters():
+ param.requires_grad = False
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer
+ def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
+ """
+ Computes the output length of the TDNN layers
+ """
+
+ def _conv_out_length(input_length, kernel_size, stride):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return (input_length - kernel_size) // stride + 1
+
+ for kernel_size in self.config.tdnn_kernel:
+ input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
+
+ return input_lengths
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XVectorOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, XVectorOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_conformer(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+
+ for tdnn_layer in self.tdnn:
+ hidden_states = tdnn_layer(hidden_states)
+
+ # Statistic Pooling
+ if attention_mask is None:
+ mean_features = hidden_states.mean(dim=1)
+ std_features = hidden_states.std(dim=1)
+ else:
+ feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
+ tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
+ mean_features = []
+ std_features = []
+ for i, length in enumerate(tdnn_output_lengths):
+ mean_features.append(hidden_states[i, :length].mean(dim=0))
+ std_features.append(hidden_states[i, :length].std(dim=0))
+ mean_features = torch.stack(mean_features)
+ std_features = torch.stack(std_features)
+ statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
+
+ output_embeddings = self.feature_extractor(statistic_pooling)
+ logits = self.classifier(output_embeddings)
+
+ loss = None
+ if labels is not None:
+ loss = self.objective(logits, labels)
+
+ if not return_dict:
+ output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XVectorOutput(
+ loss=loss,
+ logits=logits,
+ embeddings=output_embeddings,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e1f89d73ac47c588d20ba9eccc6186af0f01781e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__init__.py
@@ -0,0 +1,65 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {"configuration_yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"]}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_yoso"] = [
+ "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "YosoForMaskedLM",
+ "YosoForMultipleChoice",
+ "YosoForQuestionAnswering",
+ "YosoForSequenceClassification",
+ "YosoForTokenClassification",
+ "YosoLayer",
+ "YosoModel",
+ "YosoPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_yoso import (
+ YOSO_PRETRAINED_MODEL_ARCHIVE_LIST,
+ YosoForMaskedLM,
+ YosoForMultipleChoice,
+ YosoForQuestionAnswering,
+ YosoForSequenceClassification,
+ YosoForTokenClassification,
+ YosoLayer,
+ YosoModel,
+ YosoPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..df1087c0d59ef1f9dcc7d6041f9c6ca51ed0b682
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..00707e840694c4ecf23a10f96247770e2fc6c6fe
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe2d4d4403780ad12d3b58edce28cef71ba5c40a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py
@@ -0,0 +1,144 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" YOSO model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class YosoConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the YOSO
+ [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`YosoModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
+ use_expectation (`bool`, *optional*, defaults to `True`):
+ Whether or not to use YOSO Expectation. Overrides any effect of num_hash.
+ hash_code_len (`int`, *optional*, defaults to 9):
+ The length of hashes generated by the hash functions.
+ num_hash (`int`, *optional*, defaults to 64):
+ Number of hash functions used in [`YosoSelfAttention`].
+ conv_window (`int`, *optional*):
+ Kernel size of depth-wise convolution.
+ use_fast_hash (`bool`, *optional*, defaults to `False`):
+ Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.
+ lsh_backward (`bool`, *optional*, defaults to `True`):
+ Whether or not to perform backpropagation using Locality Sensitive Hashing.
+
+ Example:
+
+ ```python
+ >>> from transformers import YosoConfig, YosoModel
+
+ >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration
+ >>> configuration = YosoConfig()
+
+ >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration
+ >>> model = YosoModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "yoso"
+
+ def __init__(
+ self,
+ vocab_size=50265,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=4096,
+ type_vocab_size=1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ position_embedding_type="absolute",
+ use_expectation=True,
+ hash_code_len=9,
+ num_hash=64,
+ conv_window=None,
+ use_fast_hash=True,
+ lsh_backward=True,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_expectation = use_expectation
+ self.hash_code_len = hash_code_len
+ self.num_hash = num_hash
+ self.conv_window = conv_window
+ self.use_fast_hash = use_fast_hash
+ self.lsh_backward = lsh_backward
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..be46a4de81b30cff5c826bd9f298b2ee7a8fecbb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py
@@ -0,0 +1,108 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert YOSO checkpoints from the original repository. URL: https://github.com/mlpen/YOSO"""
+
+import argparse
+
+import torch
+
+from transformers import YosoConfig, YosoForMaskedLM
+
+
+def rename_key(orig_key):
+ if "model" in orig_key:
+ orig_key = orig_key.replace("model.", "")
+ if "norm1" in orig_key:
+ orig_key = orig_key.replace("norm1", "attention.output.LayerNorm")
+ if "norm2" in orig_key:
+ orig_key = orig_key.replace("norm2", "output.LayerNorm")
+ if "norm" in orig_key:
+ orig_key = orig_key.replace("norm", "LayerNorm")
+ if "transformer" in orig_key:
+ layer_num = orig_key.split(".")[0].split("_")[-1]
+ orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}")
+ if "mha.attn" in orig_key:
+ orig_key = orig_key.replace("mha.attn", "attention.self")
+ if "mha" in orig_key:
+ orig_key = orig_key.replace("mha", "attention")
+ if "W_q" in orig_key:
+ orig_key = orig_key.replace("W_q", "self.query")
+ if "W_k" in orig_key:
+ orig_key = orig_key.replace("W_k", "self.key")
+ if "W_v" in orig_key:
+ orig_key = orig_key.replace("W_v", "self.value")
+ if "ff1" in orig_key:
+ orig_key = orig_key.replace("ff1", "intermediate.dense")
+ if "ff2" in orig_key:
+ orig_key = orig_key.replace("ff2", "output.dense")
+ if "ff" in orig_key:
+ orig_key = orig_key.replace("ff", "output.dense")
+ if "mlm_class" in orig_key:
+ orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder")
+ if "mlm" in orig_key:
+ orig_key = orig_key.replace("mlm", "cls.predictions.transform")
+ if "cls" not in orig_key:
+ orig_key = "yoso." + orig_key
+
+ return orig_key
+
+
+def convert_checkpoint_helper(max_position_embeddings, orig_state_dict):
+ for key in orig_state_dict.copy().keys():
+ val = orig_state_dict.pop(key)
+
+ if ("pooler" in key) or ("sen_class" in key):
+ continue
+ else:
+ orig_state_dict[rename_key(key)] = val
+
+ orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"]
+ orig_state_dict["yoso.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2
+
+ return orig_state_dict
+
+
+def convert_yoso_checkpoint(checkpoint_path, yoso_config_file, pytorch_dump_path):
+ orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
+ config = YosoConfig.from_json_file(yoso_config_file)
+ model = YosoForMaskedLM(config)
+
+ new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict)
+
+ print(model.load_state_dict(new_state_dict))
+ model.eval()
+ model.save_pretrained(pytorch_dump_path)
+
+ print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help="The json file for YOSO model config.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1fed0acc468df8b75c4fd54c3597c0cd1e8bf62
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py
@@ -0,0 +1,1308 @@
+# coding=utf-8
+# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch YOSO model."""
+
+
+import math
+from pathlib import Path
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_ninja_available,
+ is_torch_cuda_available,
+ logging,
+)
+from .configuration_yoso import YosoConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096"
+_CONFIG_FOR_DOC = "YosoConfig"
+
+
+from ..deprecated._archive_maps import YOSO_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+lsh_cumulation = None
+
+
+def load_cuda_kernels():
+ global lsh_cumulation
+ from torch.utils.cpp_extension import load
+
+ def append_root(files):
+ src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso"
+ return [src_folder / file for file in files]
+
+ src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"])
+
+ load("fast_lsh_cumulation", src_files, verbose=True)
+
+ import fast_lsh_cumulation as lsh_cumulation
+
+
+def to_contiguous(input_tensors):
+ if isinstance(input_tensors, list):
+ out = []
+ for tensor in input_tensors:
+ if not tensor.is_contiguous():
+ tensor = tensor.contiguous()
+ out.append(tensor)
+ return out
+ else:
+ if not input_tensors.is_contiguous():
+ input_tensors = input_tensors.contiguous()
+ return input_tensors
+
+
+def normalize(input_tensors):
+ if isinstance(input_tensors, list):
+ out = []
+ for tensor in input_tensors:
+ out.append(nn.functional.normalize(tensor, p=2, dim=-1))
+ return out
+ else:
+ return nn.functional.normalize(input_tensors, p=2, dim=-1)
+
+
+def hashing(query, key, num_hash, hash_len):
+ if len(query.size()) != 3:
+ raise ValueError("Query has incorrect size.")
+ if len(key.size()) != 3:
+ raise ValueError("Key has incorrect size.")
+
+ rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device)
+ raise_pow = 2 ** torch.arange(hash_len, device=query.device)
+
+ query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len)
+ key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len)
+ query_binary = (query_projection > 0).int()
+ key_binary = (key_projection > 0).int()
+ query_hash = torch.sum(query_binary * raise_pow, dim=-1)
+ query_hash = torch.sum(key_binary * raise_pow, dim=-1)
+
+ return query_hash.int(), query_hash.int()
+
+
+class YosoCumulation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, query_mask, key_mask, query, key, value, config):
+ hash_code_len = config["hash_code_len"]
+
+ expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
+ expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
+ cumulation_value = torch.matmul(expectation, value)
+
+ ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value)
+ ctx.config = config
+
+ return cumulation_value
+
+ @staticmethod
+ def backward(ctx, grad):
+ grad = to_contiguous(grad)
+
+ query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors
+ config = ctx.config
+
+ hash_code_len = config["hash_code_len"]
+
+ weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
+ grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
+ grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
+ grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
+
+ return None, None, grad_query, grad_key, grad_value, None
+
+
+class YosoLSHCumulation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, query_mask, key_mask, query, key, value, config):
+ if query_mask.size(0) != key_mask.size(0):
+ raise ValueError("Query mask and Key mask differ in sizes in dimension 0")
+ if query_mask.size(0) != query.size(0):
+ raise ValueError("Query mask and Query differ in sizes in dimension 0")
+ if query_mask.size(0) != key.size(0):
+ raise ValueError("Query mask and Key differ in sizes in dimension 0")
+ if query_mask.size(0) != value.size(0):
+ raise ValueError("Query mask and Value mask differ in sizes in dimension 0")
+ if key.size(1) != value.size(1):
+ raise ValueError("Key and Value differ in sizes in dimension 1")
+ if query.size(2) != key.size(2):
+ raise ValueError("Query and Key differ in sizes in dimension 2")
+
+ query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value])
+
+ use_cuda = query_mask.is_cuda
+ num_hash = config["num_hash"]
+ hash_code_len = config["hash_code_len"]
+ hashtable_capacity = int(2**hash_code_len)
+
+ if config["use_fast_hash"]:
+ query_hash_code, key_hash_code = lsh_cumulation.fast_hash(
+ query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1
+ )
+ else:
+ query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len)
+
+ cumulation_value = lsh_cumulation.lsh_cumulation(
+ query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1
+ )
+
+ ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value)
+ ctx.config = config
+
+ return cumulation_value
+
+ @staticmethod
+ def backward(ctx, grad):
+ grad = to_contiguous(grad)
+
+ query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors
+ config = ctx.config
+
+ use_cuda = grad.is_cuda
+ hash_code_len = config["hash_code_len"]
+ hashtable_capacity = int(2**hash_code_len)
+
+ if config["lsh_backward"]:
+ grad_value = lsh_cumulation.lsh_cumulation(
+ key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1
+ )
+ grad_query = lsh_cumulation.lsh_weighted_cumulation(
+ query_mask,
+ query_hash_code,
+ grad,
+ key_mask,
+ key_hash_code,
+ value,
+ (hash_code_len / 2) * key,
+ hashtable_capacity,
+ use_cuda,
+ 4,
+ )
+ grad_key = lsh_cumulation.lsh_weighted_cumulation(
+ key_mask,
+ key_hash_code,
+ value,
+ query_mask,
+ query_hash_code,
+ grad,
+ (hash_code_len / 2) * query,
+ hashtable_capacity,
+ use_cuda,
+ 4,
+ )
+ else:
+ expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
+ expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
+ weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
+ grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
+ grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
+ grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
+
+ return None, None, grad_query, grad_key, grad_value, None
+
+
+# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings
+class YosoEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "token_type_ids",
+ torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
+ persistent=False,
+ )
+
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class YosoSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ kernel_loaded = lsh_cumulation is not None
+ if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
+ try:
+ load_cuda_kernels()
+ except Exception as e:
+ logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = (
+ position_embedding_type if position_embedding_type is not None else config.position_embedding_type
+ )
+
+ self.use_expectation = config.use_expectation
+ self.hash_code_len = config.hash_code_len
+ self.use_conv = config.conv_window is not None
+ self.use_fast_hash = config.use_fast_hash
+ self.num_hash = config.num_hash
+ self.lsh_backward = config.lsh_backward
+
+ self.lsh_config = {
+ "hash_code_len": self.hash_code_len,
+ "use_fast_hash": self.use_fast_hash,
+ "num_hash": self.num_hash,
+ "lsh_backward": self.lsh_backward,
+ }
+
+ if config.conv_window is not None:
+ self.conv = nn.Conv2d(
+ in_channels=config.num_attention_heads,
+ out_channels=config.num_attention_heads,
+ kernel_size=(config.conv_window, 1),
+ padding=(config.conv_window // 2, 0),
+ bias=False,
+ groups=config.num_attention_heads,
+ )
+
+ def transpose_for_scores(self, layer):
+ new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ layer = layer.view(*new_layer_shape)
+ return layer.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ if self.use_conv:
+ conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None])
+
+ batch_size, num_heads, seq_len, head_dim = query_layer.size()
+
+ query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+ key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+ value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+
+ attention_mask = 1.0 + attention_mask / 10000.0
+ attention_mask = (
+ attention_mask.unsqueeze(1)
+ .repeat_interleave(num_heads, dim=1)
+ .reshape(batch_size * num_heads, seq_len)
+ .int()
+ )
+
+ # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
+ # smaller than this are padded with zeros.
+ gpu_warp_size = 32
+
+ if (not self.use_expectation) and head_dim < gpu_warp_size:
+ pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim
+
+ query_layer = torch.cat(
+ [
+ query_layer,
+ torch.zeros(pad_size, device=query_layer.device),
+ ],
+ dim=-1,
+ )
+ key_layer = torch.cat(
+ [
+ key_layer,
+ torch.zeros(pad_size, device=key_layer.device),
+ ],
+ dim=-1,
+ )
+ value_layer = torch.cat(
+ [
+ value_layer,
+ torch.zeros(pad_size, device=value_layer.device),
+ ],
+ dim=-1,
+ )
+
+ if self.use_expectation or self.training:
+ query_layer, key_layer = normalize([query_layer, key_layer])
+
+ if self.use_expectation:
+ context_layer = YosoCumulation.apply(
+ attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
+ )
+ else:
+ context_layer = YosoLSHCumulation.apply(
+ attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
+ )
+
+ if (not self.use_expectation) and head_dim < gpu_warp_size:
+ context_layer = context_layer[:, :, :head_dim]
+
+ context_layer = normalize(context_layer)
+
+ context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
+
+ if self.use_conv:
+ context_layer += conv_value_layer
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, context_layer) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class YosoSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class YosoAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = YosoSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ self_outputs = self.self(hidden_states, attention_mask, output_attentions)
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class YosoIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class YosoOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class YosoLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = YosoAttention(config)
+ self.add_cross_attention = config.add_cross_attention
+ self.intermediate = YosoIntermediate(config)
+ self.output = YosoOutput(config)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
+ attention_output = self_attention_outputs[0]
+
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class YosoEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutputWithCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
+class YosoPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso
+class YosoLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = YosoPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso
+class YosoOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = YosoLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+class YosoPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = YosoConfig
+ base_model_prefix = "yoso"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+YOSO_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`YosoConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+YOSO_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.",
+ YOSO_START_DOCSTRING,
+)
+class YosoModel(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = YosoEmbeddings(config)
+ self.encoder = YosoEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithCrossAttentions(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING)
+class YosoForMaskedLM(YosoPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.yoso = YosoModel(config)
+ self.cls = YosoOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class YosoClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.config = config
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of
+ the pooled output) e.g. for GLUE tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForSequenceClassification(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.yoso = YosoModel(config)
+ self.classifier = YosoClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a multiple choice classification head on top (a linear layer on top of
+ the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForMultipleChoice(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.yoso = YosoModel(config)
+ self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
+ pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
+ pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
+ pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a token classification head on top (a linear layer on top of
+ the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForTokenClassification(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.yoso = YosoModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ # Only keep active parts of the loss
+ if attention_mask is not None:
+ active_loss = attention_mask.view(-1) == 1
+ active_logits = logits.view(-1, self.num_labels)
+ active_labels = torch.where(
+ active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
+ )
+ loss = loss_fct(active_logits, active_labels)
+ else:
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForQuestionAnswering(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ config.num_labels = 2
+ self.num_labels = config.num_labels
+
+ self.yoso = YosoModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )