Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/custom_ops.py +131 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/et_cpp.py +368 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/unboxing.py +213 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/model.py +220 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/executorch/parse.py +151 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/CET +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EET +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EST +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EST5EDT +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Amsterdam +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Andorra +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Astrakhan +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Athens +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Belfast +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Belgrade +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Berlin +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Bratislava +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Brussels +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Bucharest +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Dublin +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Helsinki +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kaliningrad +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kirov +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kyiv +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/London +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Luxembourg +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Madrid +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Mariehamn +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Minsk +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Monaco +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Nicosia +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Oslo +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Paris +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Podgorica +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Prague +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Rome +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Samara +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Sarajevo +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Saratov +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Skopje +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Sofia +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Stockholm +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Tiraspol +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Ulyanovsk +0 -0
- env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Uzhgorod +0 -0
env-llmeval/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc
ADDED
Binary file (64.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/custom_ops.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, List, Optional, Sequence, Tuple
|
5 |
+
|
6 |
+
from torchgen import dest
|
7 |
+
|
8 |
+
# disable import sorting to avoid circular dependency.
|
9 |
+
from torchgen.api.types import DispatcherSignature # isort:skip
|
10 |
+
from torchgen.context import method_with_native_function
|
11 |
+
from torchgen.executorch.model import ETKernelIndex
|
12 |
+
from torchgen.model import DispatchKey, NativeFunction, Variant
|
13 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
14 |
+
from torchgen.utils import concatMap, Target
|
15 |
+
|
16 |
+
|
17 |
+
# Generates RegisterKernelStub.cpp, which provides placeholder kernels for custom operators. This will be used at
|
18 |
+
# model authoring side.
|
19 |
+
@dataclass(frozen=True)
|
20 |
+
class ComputeNativeFunctionStub:
|
21 |
+
@method_with_native_function
|
22 |
+
def __call__(self, f: NativeFunction) -> Optional[str]:
|
23 |
+
if Variant.function not in f.variants:
|
24 |
+
return None
|
25 |
+
|
26 |
+
sig = DispatcherSignature.from_schema(
|
27 |
+
f.func, prefix=f"wrapper_CPU_{f.func.name.overload_name}_", symint=False
|
28 |
+
)
|
29 |
+
assert sig is not None
|
30 |
+
if len(f.func.returns) == 0:
|
31 |
+
ret_name = ""
|
32 |
+
elif len(f.func.returns) == 1:
|
33 |
+
if f.func.arguments.out:
|
34 |
+
ret_name = f.func.arguments.out[0].name
|
35 |
+
else:
|
36 |
+
ret_name = next(
|
37 |
+
(
|
38 |
+
a.name
|
39 |
+
for a in f.func.arguments.flat_non_out
|
40 |
+
if a.type == f.func.returns[0].type
|
41 |
+
),
|
42 |
+
"",
|
43 |
+
)
|
44 |
+
if not ret_name:
|
45 |
+
raise Exception(f"Can't handle this return type {f.func}")
|
46 |
+
else:
|
47 |
+
assert len(f.func.arguments.out) == len(f.func.returns), (
|
48 |
+
"Out variant number of returns need to match the number of out arguments."
|
49 |
+
f" Got outs {str(f.func.arguments.out)} but returns {str(f.func.returns)}"
|
50 |
+
)
|
51 |
+
# returns a tuple of out arguments
|
52 |
+
tensor_type = "at::Tensor &"
|
53 |
+
comma = ", "
|
54 |
+
ret_name = f"""::std::tuple<{comma.join([tensor_type] * len(f.func.returns))}>(
|
55 |
+
{comma.join([r.name for r in f.func.arguments.out])}
|
56 |
+
)"""
|
57 |
+
ret_str = f"return {ret_name};" if len(f.func.returns) > 0 else ""
|
58 |
+
return f"""
|
59 |
+
{sig.defn()} {{
|
60 |
+
{ret_str}
|
61 |
+
}}
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
+
def gen_custom_ops_registration(
|
66 |
+
*,
|
67 |
+
native_functions: Sequence[NativeFunction],
|
68 |
+
selector: SelectiveBuilder,
|
69 |
+
kernel_index: ETKernelIndex,
|
70 |
+
rocm: bool,
|
71 |
+
) -> Tuple[str, str]:
|
72 |
+
"""
|
73 |
+
Generate custom ops registration code for dest.RegisterDispatchKey.
|
74 |
+
|
75 |
+
:param native_functions: a sequence of `NativeFunction`
|
76 |
+
:param selector: for selective build.
|
77 |
+
:param kernel_index: kernels for all the ops.
|
78 |
+
:param rocm: bool for dest.RegisterDispatchKey.
|
79 |
+
:return: generated C++ code to register custom operators into PyTorch
|
80 |
+
"""
|
81 |
+
|
82 |
+
# convert kernel index to BackendIndex. This is because we can't handle ETKernelIndex yet.
|
83 |
+
# TODO larryliu: evaluate if this code is still needed. If yes let it handle ETKernelIndex.
|
84 |
+
|
85 |
+
dispatch_key = DispatchKey.CPU
|
86 |
+
backend_index = kernel_index._to_backend_index()
|
87 |
+
static_init_dispatch_registrations = ""
|
88 |
+
ns_grouped_native_functions: Dict[str, List[NativeFunction]] = defaultdict(list)
|
89 |
+
for native_function in native_functions:
|
90 |
+
ns_grouped_native_functions[native_function.namespace].append(native_function)
|
91 |
+
|
92 |
+
for namespace, functions in ns_grouped_native_functions.items():
|
93 |
+
if len(functions) == 0:
|
94 |
+
continue
|
95 |
+
dispatch_registrations_body = "\n".join(
|
96 |
+
list(
|
97 |
+
concatMap(
|
98 |
+
dest.RegisterDispatchKey(
|
99 |
+
backend_index,
|
100 |
+
Target.REGISTRATION,
|
101 |
+
selector,
|
102 |
+
rocm=rocm,
|
103 |
+
symint=False,
|
104 |
+
class_method_name=None,
|
105 |
+
skip_dispatcher_op_registration=False,
|
106 |
+
),
|
107 |
+
functions,
|
108 |
+
)
|
109 |
+
)
|
110 |
+
)
|
111 |
+
static_init_dispatch_registrations += f"""
|
112 |
+
TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{
|
113 |
+
{dispatch_registrations_body}
|
114 |
+
}};"""
|
115 |
+
anonymous_definition = "\n".join(
|
116 |
+
list(
|
117 |
+
concatMap(
|
118 |
+
dest.RegisterDispatchKey(
|
119 |
+
backend_index,
|
120 |
+
Target.ANONYMOUS_DEFINITION,
|
121 |
+
selector,
|
122 |
+
rocm=rocm,
|
123 |
+
symint=False,
|
124 |
+
class_method_name=None,
|
125 |
+
skip_dispatcher_op_registration=False,
|
126 |
+
),
|
127 |
+
native_functions,
|
128 |
+
)
|
129 |
+
)
|
130 |
+
)
|
131 |
+
return anonymous_definition, static_init_dispatch_registrations
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/et_cpp.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Sequence, Set, Union
|
2 |
+
|
3 |
+
from torchgen import local
|
4 |
+
from torchgen.api.types import (
|
5 |
+
ArgName,
|
6 |
+
ArrayCType,
|
7 |
+
BaseCType,
|
8 |
+
Binding,
|
9 |
+
ConstRefCType,
|
10 |
+
CType,
|
11 |
+
MutRefCType,
|
12 |
+
NamedCType,
|
13 |
+
SpecialArgName,
|
14 |
+
TupleCType,
|
15 |
+
VectorCType,
|
16 |
+
voidT,
|
17 |
+
)
|
18 |
+
from torchgen.model import (
|
19 |
+
Argument,
|
20 |
+
Arguments,
|
21 |
+
BaseTy,
|
22 |
+
BaseType,
|
23 |
+
ListType,
|
24 |
+
NativeFunction,
|
25 |
+
OptionalType,
|
26 |
+
Return,
|
27 |
+
SelfArgument,
|
28 |
+
TensorOptionsArguments,
|
29 |
+
Type,
|
30 |
+
)
|
31 |
+
from torchgen.utils import assert_never
|
32 |
+
from .types import (
|
33 |
+
ArrayRefCType,
|
34 |
+
BaseTypeToCppMapping,
|
35 |
+
OptionalCType,
|
36 |
+
scalarT,
|
37 |
+
tensorListT,
|
38 |
+
tensorT,
|
39 |
+
)
|
40 |
+
|
41 |
+
"""
|
42 |
+
This file describes the translation of JIT schema to the public C++ API, which is what people use when they call
|
43 |
+
functions like at::add. It also serves as a native function API, which is the signature of kernels,
|
44 |
+
since in Executorch CppSignature is the same as NativeSignature.
|
45 |
+
|
46 |
+
Difference between this file and torchgen.api.cpp.py:
|
47 |
+
|
48 |
+
- Executorch doesn't support TensorOptions, however in this file we still keep the logic here to be compatible with
|
49 |
+
torchgen.api.cpp, so that we can do stuff like ATen mode (running ATen kernels in Executorch).
|
50 |
+
|
51 |
+
- Executorch doesn't support Dimname.
|
52 |
+
|
53 |
+
- Executorch runtime doesn't support SymInt, will treat it as int.
|
54 |
+
"""
|
55 |
+
|
56 |
+
|
57 |
+
# Translation of "value types" in JIT schema to C++ API type. Value
|
58 |
+
# types look the same no matter if they are argument types or return
|
59 |
+
# types. Returns None if the type in question is not a value type.
|
60 |
+
def valuetype_type(
|
61 |
+
t: Type,
|
62 |
+
*,
|
63 |
+
binds: ArgName,
|
64 |
+
remove_non_owning_ref_types: bool = False,
|
65 |
+
) -> Optional[NamedCType]:
|
66 |
+
if isinstance(t, BaseType):
|
67 |
+
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
|
68 |
+
return None
|
69 |
+
# For SymInt we simply treat it as int.
|
70 |
+
elif str(t) == "SymInt":
|
71 |
+
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[BaseTy.int]))
|
72 |
+
if remove_non_owning_ref_types:
|
73 |
+
if t.name == BaseTy.str:
|
74 |
+
raise AssertionError(
|
75 |
+
"string ref->value conversion: not implemented yet"
|
76 |
+
)
|
77 |
+
# All other BaseType currently map directly to BaseCppTypes.
|
78 |
+
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
|
79 |
+
elif isinstance(t, OptionalType):
|
80 |
+
elem = valuetype_type(t.elem, binds=binds)
|
81 |
+
if elem is None:
|
82 |
+
return None
|
83 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
84 |
+
elif isinstance(t, ListType):
|
85 |
+
if str(t.elem) == "bool":
|
86 |
+
assert t.size is not None
|
87 |
+
return NamedCType(
|
88 |
+
binds, ArrayCType(BaseCType(BaseTypeToCppMapping[BaseTy.bool]), t.size)
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
return None
|
92 |
+
else:
|
93 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
94 |
+
|
95 |
+
|
96 |
+
# Translation of types occurring in JIT arguments to a C++ argument type.
|
97 |
+
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
98 |
+
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
99 |
+
# See Note [translation from C++ reference to value types]
|
100 |
+
def argumenttype_type(
|
101 |
+
t: Type,
|
102 |
+
*,
|
103 |
+
mutable: bool,
|
104 |
+
binds: ArgName,
|
105 |
+
remove_non_owning_ref_types: bool = False,
|
106 |
+
) -> NamedCType:
|
107 |
+
# If it's a value type, do the value type translation
|
108 |
+
r = valuetype_type(
|
109 |
+
t,
|
110 |
+
binds=binds,
|
111 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
112 |
+
)
|
113 |
+
if r is not None:
|
114 |
+
return r
|
115 |
+
if isinstance(t, BaseType):
|
116 |
+
if t.name == BaseTy.Tensor:
|
117 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
118 |
+
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
|
119 |
+
else:
|
120 |
+
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
121 |
+
elif t.name == BaseTy.Scalar:
|
122 |
+
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
123 |
+
else:
|
124 |
+
raise AssertionError(f"base type should have been value type {t}")
|
125 |
+
elif isinstance(t, OptionalType):
|
126 |
+
if str(t.elem) == "Tensor":
|
127 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
128 |
+
return NamedCType(
|
129 |
+
binds, MutRefCType(BaseCType(tensorT))
|
130 |
+
) # TODO: fix this discrepancy
|
131 |
+
else:
|
132 |
+
return NamedCType(
|
133 |
+
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
|
134 |
+
)
|
135 |
+
elif str(t.elem) == "Scalar":
|
136 |
+
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
|
137 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
138 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
139 |
+
elif isinstance(t, ListType):
|
140 |
+
# TODO: keeping these special cases for Tensor[] and Tensor?[] so that we can hookup with ATen kernels.
|
141 |
+
if str(t.elem) == "Tensor":
|
142 |
+
return NamedCType(binds, BaseCType(tensorListT))
|
143 |
+
elif str(t.elem) == "Dimname":
|
144 |
+
raise NotImplementedError("Executorch doesn't support Dimname")
|
145 |
+
elif str(t.elem) == "Tensor?":
|
146 |
+
return NamedCType(binds, ArrayRefCType(OptionalCType(BaseCType(tensorT))))
|
147 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
148 |
+
return NamedCType(binds, ArrayRefCType(elem.type))
|
149 |
+
else:
|
150 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
151 |
+
|
152 |
+
|
153 |
+
# Translate a JIT argument into its C++ type
|
154 |
+
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
|
155 |
+
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
156 |
+
|
157 |
+
|
158 |
+
# Translation of a (non-multi) return type from JIT to C++
|
159 |
+
# N.B: returntype_type returns a CType, not a NamedCType.
|
160 |
+
# This is mostly because of the mismatch between return types and return names.
|
161 |
+
# e.g. a function with a return type of 'void' has 0 return names,
|
162 |
+
# and a function with a return type of 'std::tuple' has >1 return name.
|
163 |
+
def returntype_type(t: Type, *, mutable: bool) -> CType:
|
164 |
+
# placeholder is ignored
|
165 |
+
r = valuetype_type(t, binds="__placeholder__")
|
166 |
+
if r is not None:
|
167 |
+
return r.type
|
168 |
+
|
169 |
+
if isinstance(t, BaseType):
|
170 |
+
if t.name == BaseTy.Tensor:
|
171 |
+
if mutable:
|
172 |
+
if local.use_const_ref_for_mutable_tensors():
|
173 |
+
return ConstRefCType(BaseCType(tensorT))
|
174 |
+
else:
|
175 |
+
return MutRefCType(BaseCType(tensorT))
|
176 |
+
else:
|
177 |
+
# Note [Tensor Copy Returns]
|
178 |
+
# Currently, we use "Argument.is_write" to determine
|
179 |
+
# whether or not Tensor return types should be copies or references.
|
180 |
+
# If that ever changes, take a look at other locations of this note!
|
181 |
+
return BaseCType(tensorT)
|
182 |
+
elif t.name == BaseTy.Scalar:
|
183 |
+
return BaseCType(scalarT)
|
184 |
+
elif isinstance(t, ListType):
|
185 |
+
assert (
|
186 |
+
not mutable
|
187 |
+
), "Native functions should never return a mutable tensor list. They should return void."
|
188 |
+
elem = returntype_type(t.elem, mutable=False)
|
189 |
+
assert t.size is None, f"fixed size list returns not supported: {t}"
|
190 |
+
return VectorCType(elem)
|
191 |
+
|
192 |
+
raise AssertionError(f"unrecognized return type {t}")
|
193 |
+
|
194 |
+
|
195 |
+
# Translation of a single return to its C++ type
|
196 |
+
def return_type(r: Return) -> CType:
|
197 |
+
return returntype_type(r.type, mutable=r.is_write)
|
198 |
+
|
199 |
+
|
200 |
+
# Translation of a full (possibly multi) return from JIT to its C++ type
|
201 |
+
def returns_type(rs: Sequence[Return]) -> CType:
|
202 |
+
if len(rs) == 0:
|
203 |
+
return BaseCType(voidT)
|
204 |
+
elif len(rs) == 1:
|
205 |
+
return return_type(rs[0])
|
206 |
+
else:
|
207 |
+
return TupleCType([return_type(r) for r in rs])
|
208 |
+
|
209 |
+
|
210 |
+
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
|
211 |
+
returns: List[str] = []
|
212 |
+
for i, r in enumerate(f.func.returns):
|
213 |
+
# If we have an inplace function, the return argument is
|
214 |
+
# implicitly named self.
|
215 |
+
# TODO: Consider incorporating this into the data model
|
216 |
+
if f.func.name.name.inplace:
|
217 |
+
assert i == 0, "illegal inplace function with multiple returns"
|
218 |
+
name = "self"
|
219 |
+
# If we are out function, the name is the name of the
|
220 |
+
# corresponding output function (r.name will get recorded
|
221 |
+
# in field_name later.)
|
222 |
+
elif f.func.is_out_fn():
|
223 |
+
name = f.func.arguments.out[i].name
|
224 |
+
# If the return argument is explicitly named...
|
225 |
+
elif r.name:
|
226 |
+
name_conflict = any(
|
227 |
+
r.name == a.name for a in f.func.schema_order_arguments()
|
228 |
+
)
|
229 |
+
if name_conflict and not f.func.is_out_fn():
|
230 |
+
name = f"{r.name}_return"
|
231 |
+
else:
|
232 |
+
name = r.name
|
233 |
+
# If there is no explicit name and no fallback name was passed in, we just name the output result,
|
234 |
+
# unless it's a multi-return, in which case it's result0,
|
235 |
+
# result1, etc (zero-indexed)
|
236 |
+
else:
|
237 |
+
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
|
238 |
+
returns.append(name)
|
239 |
+
return returns
|
240 |
+
|
241 |
+
|
242 |
+
JIT_TO_CPP_DEFAULT = {
|
243 |
+
"False": "false",
|
244 |
+
"True": "true",
|
245 |
+
"None": "torch::executorch::nullopt", # UGH this one is type directed
|
246 |
+
"[]": "{}",
|
247 |
+
"contiguous_format": "torch::executorch::MemoryFormat::Contiguous",
|
248 |
+
"long": "torch::executorch::kLong",
|
249 |
+
}
|
250 |
+
|
251 |
+
|
252 |
+
# Convert a JIT default into C++ expression representing the default
|
253 |
+
def default_expr(d: str, t: Type) -> str:
|
254 |
+
if d == "None" and str(t) == "Tensor?":
|
255 |
+
return "{}"
|
256 |
+
if isinstance(t, BaseType) and t.name is BaseTy.str:
|
257 |
+
# Schema allows single quotes but C++ needs double
|
258 |
+
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
|
259 |
+
s = ""
|
260 |
+
i = 1
|
261 |
+
while i + 1 < len(d):
|
262 |
+
if d[i] != "\\":
|
263 |
+
if d[i] == '"':
|
264 |
+
s += '\\"'
|
265 |
+
else:
|
266 |
+
s += d[i]
|
267 |
+
i += 1
|
268 |
+
else:
|
269 |
+
if d[i + 1] == "'":
|
270 |
+
s += "'"
|
271 |
+
else:
|
272 |
+
s += d[i : i + 2]
|
273 |
+
i += 2
|
274 |
+
|
275 |
+
return f'"{s}"'
|
276 |
+
|
277 |
+
if isinstance(t, OptionalType):
|
278 |
+
if d == "None":
|
279 |
+
return "torch::executor::nullopt"
|
280 |
+
|
281 |
+
return default_expr(d, t.elem)
|
282 |
+
|
283 |
+
if isinstance(t, ListType):
|
284 |
+
if d.startswith("[") and d.endswith("]"):
|
285 |
+
return "{" + d[1:-1] + "}"
|
286 |
+
elif t.size is None:
|
287 |
+
# NOTE: Sized lists can have scalar defaults
|
288 |
+
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
|
289 |
+
|
290 |
+
return JIT_TO_CPP_DEFAULT.get(d, d)
|
291 |
+
|
292 |
+
|
293 |
+
# Convert an argument into its C++ API form
|
294 |
+
|
295 |
+
|
296 |
+
def argument(
|
297 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument],
|
298 |
+
*,
|
299 |
+
cpp_no_default_args: Set[str],
|
300 |
+
method: bool,
|
301 |
+
faithful: bool,
|
302 |
+
has_tensor_options: bool,
|
303 |
+
) -> List[Binding]:
|
304 |
+
def sub_argument(
|
305 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument]
|
306 |
+
) -> List[Binding]:
|
307 |
+
return argument(
|
308 |
+
a,
|
309 |
+
cpp_no_default_args=cpp_no_default_args,
|
310 |
+
method=method,
|
311 |
+
faithful=faithful,
|
312 |
+
has_tensor_options=has_tensor_options,
|
313 |
+
)
|
314 |
+
|
315 |
+
if isinstance(a, Argument):
|
316 |
+
binds: ArgName
|
317 |
+
if a.name == "memory_format" and has_tensor_options:
|
318 |
+
binds = SpecialArgName.possibly_redundant_memory_format
|
319 |
+
else:
|
320 |
+
binds = a.name
|
321 |
+
default: Optional[str] = None
|
322 |
+
if a.name not in cpp_no_default_args and a.default is not None:
|
323 |
+
default = default_expr(a.default, a.type)
|
324 |
+
return [
|
325 |
+
Binding(
|
326 |
+
nctype=argument_type(a, binds=binds),
|
327 |
+
name=a.name,
|
328 |
+
default=default,
|
329 |
+
argument=a,
|
330 |
+
)
|
331 |
+
]
|
332 |
+
elif isinstance(a, TensorOptionsArguments):
|
333 |
+
raise NotImplementedError("Need to implement type resolution for TensorOptions")
|
334 |
+
elif isinstance(a, SelfArgument):
|
335 |
+
if method:
|
336 |
+
# Caller is responsible for installing implicit this in context!
|
337 |
+
return []
|
338 |
+
else:
|
339 |
+
return sub_argument(a.argument)
|
340 |
+
else:
|
341 |
+
assert_never(a)
|
342 |
+
|
343 |
+
|
344 |
+
def arguments(
|
345 |
+
arguments: Arguments,
|
346 |
+
*,
|
347 |
+
faithful: bool,
|
348 |
+
method: bool,
|
349 |
+
cpp_no_default_args: Set[str],
|
350 |
+
) -> List[Binding]:
|
351 |
+
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
352 |
+
if faithful:
|
353 |
+
args.extend(arguments.non_out)
|
354 |
+
args.extend(arguments.out)
|
355 |
+
else:
|
356 |
+
args.extend(arguments.out)
|
357 |
+
args.extend(arguments.non_out)
|
358 |
+
return [
|
359 |
+
r.no_default() if faithful else r
|
360 |
+
for a in args
|
361 |
+
for r in argument(
|
362 |
+
a,
|
363 |
+
faithful=faithful,
|
364 |
+
method=method,
|
365 |
+
has_tensor_options=arguments.tensor_options is not None,
|
366 |
+
cpp_no_default_args=cpp_no_default_args,
|
367 |
+
)
|
368 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/api/unboxing.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Callable, List, Sequence, Tuple
|
3 |
+
|
4 |
+
from torchgen.api.types import Binding, CType, NamedCType
|
5 |
+
from torchgen.model import (
|
6 |
+
Argument,
|
7 |
+
BaseTy,
|
8 |
+
BaseType,
|
9 |
+
ListType,
|
10 |
+
NativeFunction,
|
11 |
+
OptionalType,
|
12 |
+
Type,
|
13 |
+
)
|
14 |
+
|
15 |
+
connector = "\n\t"
|
16 |
+
|
17 |
+
|
18 |
+
# Return unboxing function name for a NativeFunction
|
19 |
+
def name(f: NativeFunction) -> str:
|
20 |
+
return f.func.name.unambiguous_name()
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass(frozen=True)
|
24 |
+
class Unboxing:
|
25 |
+
"""
|
26 |
+
Takes a sequence of Bindings and unbox EValues to these Bindings. Return generated code that performs correct unboxing.
|
27 |
+
A sample generated code:
|
28 |
+
// aten::mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
29 |
+
void mul_out(EValue** stack) {
|
30 |
+
EValue& self = *stack[0];
|
31 |
+
EValue& other = *stack[1];
|
32 |
+
EValue& out = *stack[2];
|
33 |
+
const torch::executor::Tensor & self_base = self.to<torch::executor::Tensor>();
|
34 |
+
const torch::executor::Tensor & other_base = other.to<torch::executor::Tensor>();
|
35 |
+
torch::executor::Tensor & out_base = out.to<torch::executor::Tensor>();
|
36 |
+
|
37 |
+
EXECUTORCH_SCOPE_PROF("native_call_mul.out");
|
38 |
+
torch::executor::mul_outf(self_base, other_base, out_base);
|
39 |
+
|
40 |
+
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
# this is a callable that converts a JIT argument, into its C++ type.
|
45 |
+
# Translates (type, mutability, binds) to NamedCType. E.g., torchgen.api.cpp.argumenttype_type.
|
46 |
+
argument_type_gen: Callable[
|
47 |
+
...,
|
48 |
+
NamedCType,
|
49 |
+
]
|
50 |
+
|
51 |
+
# Convert all the arguments in a NativeFunction to C++ code
|
52 |
+
def convert_arguments(
|
53 |
+
self, args: Sequence[Binding]
|
54 |
+
) -> Tuple[List[Binding], List[str]]:
|
55 |
+
code_list = [f"EValue& {args[i].name} = *stack[{i}];" for i in range(len(args))]
|
56 |
+
binding_list = []
|
57 |
+
for arg in args:
|
58 |
+
# expecting only Argument
|
59 |
+
if not isinstance(arg.argument, Argument):
|
60 |
+
raise Exception(
|
61 |
+
f"Unexpected argument type, expecting `Argument` but got {arg}"
|
62 |
+
)
|
63 |
+
argument: Argument = arg.argument
|
64 |
+
unboxed_name, _, code, decl = self.argumenttype_evalue_convert(
|
65 |
+
argument.type, argument.name, mutable=argument.is_write
|
66 |
+
)
|
67 |
+
code_list.extend(decl)
|
68 |
+
code_list.extend(code)
|
69 |
+
binding_list.append(arg.with_name(unboxed_name))
|
70 |
+
return binding_list, code_list
|
71 |
+
|
72 |
+
def argumenttype_evalue_convert(
|
73 |
+
self, t: Type, arg_name: str, *, mutable: bool = False
|
74 |
+
) -> Tuple[str, CType, List[str], List[str]]:
|
75 |
+
"""
|
76 |
+
Takes in the type, name and mutability corresponding to an argument, and generates a tuple of:
|
77 |
+
(1) the C++ code necessary to unbox the argument
|
78 |
+
(2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType
|
79 |
+
:param t: a `Type` of an argument
|
80 |
+
:param arg_name: argument name
|
81 |
+
:param mutable: boolean for whether this argument type is mutable
|
82 |
+
:return: unboxed result
|
83 |
+
"""
|
84 |
+
ctype = self.argument_type_gen(t, mutable=mutable, binds=arg_name).type
|
85 |
+
|
86 |
+
if isinstance(t, BaseType):
|
87 |
+
out_name = f"{arg_name}_base"
|
88 |
+
code, decl = self._gen_code_base_type(
|
89 |
+
arg_name=arg_name, out_name=out_name, ctype=ctype
|
90 |
+
)
|
91 |
+
elif isinstance(t, OptionalType):
|
92 |
+
out_name = f"{arg_name}_opt_out"
|
93 |
+
code, decl = self._gen_code_optional_type(
|
94 |
+
arg_name=arg_name, out_name=out_name, t=t, ctype=ctype
|
95 |
+
)
|
96 |
+
elif isinstance(t, ListType):
|
97 |
+
out_name = f"{arg_name}_list_out"
|
98 |
+
code, decl = self._gen_code_list_type(
|
99 |
+
arg_name=arg_name, out_name=out_name, t=t, ctype=ctype
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}")
|
103 |
+
return out_name, ctype, code, decl
|
104 |
+
|
105 |
+
def _gen_code_base_type(
|
106 |
+
self, arg_name: str, out_name: str, ctype: CType
|
107 |
+
) -> Tuple[List[str], List[str]]:
|
108 |
+
return [
|
109 |
+
f"{ctype.cpp_type()} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();"
|
110 |
+
], []
|
111 |
+
|
112 |
+
def _gen_code_optional_type(
|
113 |
+
self, arg_name: str, out_name: str, t: OptionalType, ctype: CType
|
114 |
+
) -> Tuple[List[str], List[str]]:
|
115 |
+
in_name = f"{arg_name}_opt_in"
|
116 |
+
res_name, base_type, res_code, decl = self.argumenttype_evalue_convert(
|
117 |
+
t.elem, in_name
|
118 |
+
)
|
119 |
+
return (
|
120 |
+
f"""
|
121 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toOptional<{base_type.cpp_type(strip_ref=True)}>();
|
122 |
+
""".split(
|
123 |
+
"\n"
|
124 |
+
),
|
125 |
+
decl,
|
126 |
+
)
|
127 |
+
|
128 |
+
def _gen_code_list_type(
|
129 |
+
self, arg_name: str, out_name: str, t: ListType, ctype: CType
|
130 |
+
) -> Tuple[List[str], List[str]]:
|
131 |
+
in_name = f"{arg_name}_list_in"
|
132 |
+
elem_name = f"{arg_name}_elem"
|
133 |
+
code = []
|
134 |
+
res_name, res_ctype, res_code, decl = self.argumenttype_evalue_convert(
|
135 |
+
t.elem, elem_name
|
136 |
+
)
|
137 |
+
|
138 |
+
if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.Tensor:
|
139 |
+
code.extend(
|
140 |
+
f"""
|
141 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toTensorList();
|
142 |
+
""".split(
|
143 |
+
"\n"
|
144 |
+
)
|
145 |
+
)
|
146 |
+
elif isinstance(t.elem, BaseType) and (
|
147 |
+
t.elem.name == BaseTy.int or t.elem.name == BaseTy.SymInt
|
148 |
+
):
|
149 |
+
code.extend(
|
150 |
+
f"""
|
151 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toIntList();
|
152 |
+
""".split(
|
153 |
+
"\n"
|
154 |
+
)
|
155 |
+
)
|
156 |
+
elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.float:
|
157 |
+
code.extend(
|
158 |
+
f"""
|
159 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toDoubleList();
|
160 |
+
""".split(
|
161 |
+
"\n"
|
162 |
+
)
|
163 |
+
)
|
164 |
+
elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool:
|
165 |
+
# handle list type with size, e.g., bool[4]
|
166 |
+
code.extend(
|
167 |
+
f"""
|
168 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toBoolList();
|
169 |
+
""".split(
|
170 |
+
"\n"
|
171 |
+
)
|
172 |
+
)
|
173 |
+
# pytorch codegen:
|
174 |
+
# we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>>
|
175 |
+
elif (
|
176 |
+
isinstance(t.elem, OptionalType)
|
177 |
+
and isinstance(t.elem.elem, BaseType)
|
178 |
+
and t.elem.elem.name == BaseTy.Tensor
|
179 |
+
):
|
180 |
+
code.extend(
|
181 |
+
f"""
|
182 |
+
#ifdef USE_ATEN_LIB
|
183 |
+
at::ArrayRef<c10::optional<at::Tensor>> {in_name} = {arg_name}.toListOptionalTensor();
|
184 |
+
c10::List<c10::optional<at::Tensor>> {out_name};
|
185 |
+
for (auto {elem_name}: {in_name}) {{
|
186 |
+
{out_name}.push_back({elem_name});
|
187 |
+
}}
|
188 |
+
#else
|
189 |
+
torch::executor::ArrayRef<torch::executor::optional<torch::executor::Tensor>> {out_name} = {arg_name}.toListOptionalTensor();
|
190 |
+
#endif
|
191 |
+
""".split(
|
192 |
+
"\n"
|
193 |
+
)
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
# use ArrayRef as default.
|
197 |
+
vec_name = arg_name + "_vec"
|
198 |
+
# need to bring vector instantiation out of scope so that ArrayRef has valid data
|
199 |
+
decl.append(
|
200 |
+
f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};"
|
201 |
+
)
|
202 |
+
code.extend(
|
203 |
+
f"""
|
204 |
+
for (EValue {elem_name}: {in_name}) {{
|
205 |
+
{connector.join(res_code)}
|
206 |
+
{vec_name}.push_back({res_name});
|
207 |
+
}}
|
208 |
+
{ctype.cpp_type(strip_ref=True)} {out_name}({vec_name});
|
209 |
+
""".split(
|
210 |
+
"\n"
|
211 |
+
)
|
212 |
+
)
|
213 |
+
return code, decl
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/model.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Represents all kernels used by an Executorch model.
|
2 |
+
# It maintains a Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]] structure.
|
3 |
+
|
4 |
+
import itertools
|
5 |
+
from collections import defaultdict, namedtuple
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from enum import IntEnum
|
8 |
+
from typing import Dict, List, Tuple, Union
|
9 |
+
|
10 |
+
from torchgen.model import (
|
11 |
+
BackendIndex,
|
12 |
+
BackendMetadata,
|
13 |
+
DispatchKey,
|
14 |
+
NativeFunction,
|
15 |
+
NativeFunctionsGroup,
|
16 |
+
OperatorName,
|
17 |
+
)
|
18 |
+
from torchgen.utils import assert_never
|
19 |
+
|
20 |
+
KERNEL_KEY_VERSION = 1
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: Duplicated Subset from codegen.tool.gen_oplist, remove declaration in codegen
|
24 |
+
class ScalarType(IntEnum):
|
25 |
+
Byte = 0
|
26 |
+
Char = 1
|
27 |
+
Short = 2
|
28 |
+
Int = 3
|
29 |
+
Long = 4
|
30 |
+
Float = 6
|
31 |
+
Double = 7
|
32 |
+
Bool = 11
|
33 |
+
|
34 |
+
|
35 |
+
ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "kernel_index"])
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass(frozen=True)
|
39 |
+
class ETKernelKeyOpArgMeta:
|
40 |
+
arg_name: str
|
41 |
+
dtype: str
|
42 |
+
# The order of the dimensions if entry is a Tensor
|
43 |
+
dim_order: Tuple[int, ...]
|
44 |
+
|
45 |
+
def to_native_string(self) -> str:
|
46 |
+
dtype_str = ScalarType[self.dtype].value
|
47 |
+
dim_str = str(self.dim_order)[1:-1].replace(" ", "")
|
48 |
+
return f"{dtype_str};{dim_str}"
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass(frozen=True)
|
52 |
+
class ETKernelKey:
|
53 |
+
# Field undefined is default = True
|
54 |
+
arg_meta: Tuple[ETKernelKeyOpArgMeta, ...] = ()
|
55 |
+
|
56 |
+
# Indicator for this kernel being used as a catch all
|
57 |
+
default: bool = False
|
58 |
+
|
59 |
+
version: int = KERNEL_KEY_VERSION
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def gen_from_yaml(
|
63 |
+
args: Dict[str, Tuple[str, str]],
|
64 |
+
type_alias_map: Dict[str, List[str]], # TODO: Support unwrapped str val
|
65 |
+
dim_order_alias_map: Dict[str, List[int]],
|
66 |
+
) -> List["ETKernelKey"]:
|
67 |
+
"""Generate ETKernelKeys from arg kernel specs
|
68 |
+
Multiple ETKernelKeys are returned due to dtype permutations from utilizing
|
69 |
+
type_alias_map (actualizing each potential type permutation as a KernelKey)
|
70 |
+
|
71 |
+
Args:
|
72 |
+
args: Mapping from argument name to kernel specs
|
73 |
+
Kernel specs are a tuple of (dtype, dim_order).
|
74 |
+
Currently tuple entries must be aliased via the alias map arguments
|
75 |
+
type_alias_map: Mapping from type alias to potential type enums
|
76 |
+
i.e { T0 : [Double, Int] } means T0 can be either Double or Int
|
77 |
+
Used for lookup by args
|
78 |
+
dim_order_alias_map: Mapping from alias to a list of dimension orders
|
79 |
+
Used for lookup by args
|
80 |
+
"""
|
81 |
+
# Cast to dim order to int
|
82 |
+
dim_order_alias_map = {
|
83 |
+
k: [int(alias) for alias in v] for k, v in dim_order_alias_map.items()
|
84 |
+
}
|
85 |
+
kernel_keys = []
|
86 |
+
|
87 |
+
# Get all used Dtype Alias
|
88 |
+
dtype_alias_used = set()
|
89 |
+
for type_alias, dim_order in args.values():
|
90 |
+
# Enforce usage of alias initially
|
91 |
+
# TODO: Support inlined arguments
|
92 |
+
assert type_alias in type_alias_map, "Undefined type alias: " + str(
|
93 |
+
type_alias
|
94 |
+
)
|
95 |
+
assert (
|
96 |
+
dim_order in dim_order_alias_map
|
97 |
+
), "Undefined dim_order alias: " + str(dim_order)
|
98 |
+
dtype_alias_used.add(type_alias)
|
99 |
+
|
100 |
+
# Generate all permutations of dtype alias values
|
101 |
+
alias_dtypes = [
|
102 |
+
[(alias, dtype) for dtype in type_alias_map[alias]]
|
103 |
+
for alias in dtype_alias_used
|
104 |
+
]
|
105 |
+
alias_permutations = [
|
106 |
+
dict(permutation) for permutation in list(itertools.product(*alias_dtypes))
|
107 |
+
]
|
108 |
+
|
109 |
+
# Using each alias value permutation, generate kernel keys
|
110 |
+
op_arg_cache = {}
|
111 |
+
for permutation in alias_permutations:
|
112 |
+
arg_list = []
|
113 |
+
for arg_name, arg_spec in args.items():
|
114 |
+
dtype = permutation[arg_spec[0]]
|
115 |
+
dim_order = dim_order_alias_map[arg_spec[1]] # type: ignore[assignment]
|
116 |
+
if (
|
117 |
+
cache_key := (arg_name, dtype, tuple(dim_order))
|
118 |
+
) not in op_arg_cache:
|
119 |
+
op_arg_cache[cache_key] = ETKernelKeyOpArgMeta(*cache_key) # type: ignore[arg-type]
|
120 |
+
|
121 |
+
arg_list.append(op_arg_cache[cache_key])
|
122 |
+
kernel_keys.append(ETKernelKey(tuple(arg_list)))
|
123 |
+
|
124 |
+
return kernel_keys
|
125 |
+
|
126 |
+
def to_native_string(self) -> str:
|
127 |
+
if self.default:
|
128 |
+
return "default"
|
129 |
+
return (
|
130 |
+
"v"
|
131 |
+
+ str(KERNEL_KEY_VERSION)
|
132 |
+
+ "/"
|
133 |
+
+ "|".join([arg.to_native_string() for arg in self.arg_meta])
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
@dataclass(frozen=True)
|
138 |
+
class ETKernelIndex:
|
139 |
+
index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]]
|
140 |
+
|
141 |
+
def has_kernels(self, g: Union[NativeFunction, NativeFunctionsGroup]) -> bool:
|
142 |
+
m = self.get_kernels(g)
|
143 |
+
return m is not None
|
144 |
+
|
145 |
+
def get_kernels(
|
146 |
+
self, g: Union[NativeFunction, NativeFunctionsGroup]
|
147 |
+
) -> Dict[ETKernelKey, BackendMetadata]:
|
148 |
+
if isinstance(g, NativeFunction):
|
149 |
+
f = g
|
150 |
+
elif isinstance(g, NativeFunctionsGroup):
|
151 |
+
f = g.functional
|
152 |
+
else:
|
153 |
+
assert_never(g)
|
154 |
+
if f.func.name not in self.index:
|
155 |
+
return {}
|
156 |
+
return self.index[f.func.name]
|
157 |
+
|
158 |
+
@staticmethod
|
159 |
+
def grow_from_backend_indices(
|
160 |
+
kernel_index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]],
|
161 |
+
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
162 |
+
) -> None:
|
163 |
+
for dk in backend_indices:
|
164 |
+
index = backend_indices[dk]
|
165 |
+
for op, backend_metadata in index.items():
|
166 |
+
if op in kernel_index:
|
167 |
+
kernel_index[op][ETKernelKey(default=True)] = backend_metadata
|
168 |
+
else:
|
169 |
+
kernel_index[op] = {ETKernelKey(default=True): backend_metadata}
|
170 |
+
|
171 |
+
@staticmethod
|
172 |
+
def from_backend_indices(
|
173 |
+
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
174 |
+
) -> "ETKernelIndex":
|
175 |
+
kernel_index: Dict[
|
176 |
+
OperatorName, Dict[ETKernelKey, BackendMetadata]
|
177 |
+
] = defaultdict(dict)
|
178 |
+
ETKernelIndex.grow_from_backend_indices(kernel_index, backend_indices)
|
179 |
+
return ETKernelIndex(kernel_index)
|
180 |
+
|
181 |
+
def grow(
|
182 |
+
self, backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
183 |
+
) -> "ETKernelIndex":
|
184 |
+
ETKernelIndex.grow_from_backend_indices(self.index, backend_indices)
|
185 |
+
return self
|
186 |
+
|
187 |
+
def _to_backend_index(self) -> BackendIndex:
|
188 |
+
"""
|
189 |
+
WARNING: this will be deprecated once all the codegen places know how to handle ETKernelIndex.
|
190 |
+
"""
|
191 |
+
index: Dict[OperatorName, BackendMetadata] = {}
|
192 |
+
for op in self.index:
|
193 |
+
kernel_dict = self.index[op]
|
194 |
+
assert (
|
195 |
+
len(kernel_dict.values()) == 1
|
196 |
+
), f"Can't convert ETKernelIndex to BackendIndex because {op} has more than one kernels. Got {kernel_dict}"
|
197 |
+
index[op] = kernel_dict.get(
|
198 |
+
ETKernelKey(default=True),
|
199 |
+
BackendMetadata(kernel="", structured=False, cpp_namespace=""),
|
200 |
+
)
|
201 |
+
return BackendIndex(
|
202 |
+
dispatch_key=DispatchKey.CPU,
|
203 |
+
use_out_as_primary=False,
|
204 |
+
device_guard=False,
|
205 |
+
external=False,
|
206 |
+
index=index,
|
207 |
+
)
|
208 |
+
|
209 |
+
# Note duplicate ETKernelKey from index_b will clobber the metadata from index_a
|
210 |
+
@staticmethod
|
211 |
+
def merge_indices(
|
212 |
+
index_a: "ETKernelIndex", index_b: "ETKernelIndex"
|
213 |
+
) -> "ETKernelIndex":
|
214 |
+
combined = defaultdict(dict, index_a.index.copy())
|
215 |
+
|
216 |
+
for op, entry in index_b.index.items():
|
217 |
+
for key, metadata in entry.items():
|
218 |
+
combined[op][key] = metadata
|
219 |
+
|
220 |
+
return ETKernelIndex(combined)
|
env-llmeval/lib/python3.10/site-packages/torchgen/executorch/parse.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict, namedtuple
|
2 |
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
3 |
+
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
from torchgen.executorch.model import ETKernelIndex, ETKernelKey
|
7 |
+
|
8 |
+
from torchgen.gen import LineLoader, parse_native_yaml
|
9 |
+
from torchgen.model import (
|
10 |
+
BackendMetadata,
|
11 |
+
DispatchKey,
|
12 |
+
FunctionSchema,
|
13 |
+
NativeFunction,
|
14 |
+
OperatorName,
|
15 |
+
)
|
16 |
+
from torchgen.utils import NamespaceHelper
|
17 |
+
|
18 |
+
# Parse native_functions.yaml into a sequence of NativeFunctions and ET Backend Indices.
|
19 |
+
ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "et_kernel_indices"])
|
20 |
+
|
21 |
+
# Fields in native_functions.yaml used to determine which kernels should be used
|
22 |
+
ET_FIELDS = ["kernels", "type_alias", "dim_order_alias"]
|
23 |
+
|
24 |
+
|
25 |
+
def parse_from_yaml(ei: Dict[str, object]) -> Dict[ETKernelKey, BackendMetadata]:
|
26 |
+
"""Given a loaded yaml representing kernel assignment information, extract the
|
27 |
+
mapping from `kernel keys` to `BackendMetadata` (the latter representing the kernel instance)
|
28 |
+
|
29 |
+
Args:
|
30 |
+
ei: Dict keys {kernels, type_alias, dim_order_alias}
|
31 |
+
See ETKernelKey for description of arguments
|
32 |
+
"""
|
33 |
+
e = ei.copy()
|
34 |
+
if (kernels := e.pop("kernels", None)) is None:
|
35 |
+
return {}
|
36 |
+
|
37 |
+
type_alias: Dict[str, List[str]] = e.pop("type_alias", {}) # type: ignore[assignment]
|
38 |
+
dim_order_alias: Dict[str, List[str]] = e.pop("dim_order_alias", {}) # type: ignore[assignment]
|
39 |
+
dim_order_alias.pop("__line__", None)
|
40 |
+
|
41 |
+
kernel_mapping: Dict[ETKernelKey, BackendMetadata] = {}
|
42 |
+
|
43 |
+
for entry in kernels: # type: ignore[attr-defined]
|
44 |
+
arg_meta = entry.get("arg_meta")
|
45 |
+
if arg_meta is not None:
|
46 |
+
arg_meta.pop("__line__")
|
47 |
+
|
48 |
+
kernel_name = entry.get("kernel_name")
|
49 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
50 |
+
kernel_name, max_level=3
|
51 |
+
)
|
52 |
+
kernel_namespace = namespace_helper.get_cpp_namespace(default="at")
|
53 |
+
backend_metadata = BackendMetadata(
|
54 |
+
kernel=namespace_helper.entity_name,
|
55 |
+
structured=False,
|
56 |
+
cpp_namespace=(kernel_namespace + "::native"),
|
57 |
+
)
|
58 |
+
|
59 |
+
kernel_keys = (
|
60 |
+
[ETKernelKey((), default=True)]
|
61 |
+
if arg_meta is None
|
62 |
+
else ETKernelKey.gen_from_yaml(arg_meta, type_alias, dim_order_alias) # type: ignore[arg-type]
|
63 |
+
)
|
64 |
+
|
65 |
+
for kernel_key in kernel_keys:
|
66 |
+
assert kernel_key not in kernel_mapping, (
|
67 |
+
"Duplicate kernel key: " + str(kernel_key) + " " + str(e)
|
68 |
+
)
|
69 |
+
kernel_mapping[kernel_key] = backend_metadata
|
70 |
+
|
71 |
+
return kernel_mapping
|
72 |
+
|
73 |
+
|
74 |
+
def parse_et_yaml_struct(es: object) -> ETKernelIndex:
|
75 |
+
"""Given a loaded yaml representing a list of operators, for each op extract the mapping
|
76 |
+
of `kernel keys` to `BackendMetadata` (the latter representing the kernel instance
|
77 |
+
that should be used by the kernel key).
|
78 |
+
"""
|
79 |
+
indices: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]] = {}
|
80 |
+
for ei in es: # type: ignore[attr-defined]
|
81 |
+
e = ei.copy()
|
82 |
+
|
83 |
+
funcs = e.pop("func")
|
84 |
+
assert isinstance(funcs, str), f"not a str: {funcs}"
|
85 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
86 |
+
namespaced_entity=funcs, max_level=1
|
87 |
+
)
|
88 |
+
opname = FunctionSchema.parse(namespace_helper.entity_name).name
|
89 |
+
|
90 |
+
assert opname not in indices, f"Duplicate func found in yaml: {opname} already"
|
91 |
+
|
92 |
+
if len(index := parse_from_yaml(e)) != 0:
|
93 |
+
indices[opname] = index
|
94 |
+
|
95 |
+
return ETKernelIndex(indices)
|
96 |
+
|
97 |
+
|
98 |
+
def extract_kernel_fields(es: object) -> Dict[OperatorName, Dict[str, Any]]:
|
99 |
+
"""Given a loaded yaml representing a list of operators, extract the
|
100 |
+
kernel key related fields indexed by the operator name.
|
101 |
+
"""
|
102 |
+
fields: Dict[OperatorName, Dict[str, Any]] = defaultdict(dict)
|
103 |
+
for ei in es: # type: ignore[attr-defined]
|
104 |
+
funcs = ei.get("func")
|
105 |
+
assert isinstance(funcs, str), f"not a str: {funcs}"
|
106 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
107 |
+
namespaced_entity=funcs, max_level=1
|
108 |
+
)
|
109 |
+
opname = FunctionSchema.parse(namespace_helper.entity_name).name
|
110 |
+
|
111 |
+
for field in ET_FIELDS:
|
112 |
+
if (value := ei.get(field)) is not None:
|
113 |
+
fields[opname][field] = value
|
114 |
+
|
115 |
+
return fields
|
116 |
+
|
117 |
+
|
118 |
+
def parse_et_yaml(
|
119 |
+
path: str,
|
120 |
+
tags_yaml_path: str,
|
121 |
+
ignore_keys: Optional[Set[DispatchKey]] = None,
|
122 |
+
skip_native_fns_gen: bool = False,
|
123 |
+
) -> Tuple[List[NativeFunction], Dict[OperatorName, Dict[str, Any]]]:
|
124 |
+
"""Parse native_functions.yaml into NativeFunctions and an Operator Indexed Dict
|
125 |
+
of fields to persist from native_functions.yaml to functions.yaml
|
126 |
+
"""
|
127 |
+
with open(path) as f:
|
128 |
+
es = yaml.load(f, Loader=LineLoader)
|
129 |
+
|
130 |
+
et_kernel = extract_kernel_fields(es)
|
131 |
+
|
132 |
+
# Remove ET specific fields from entries for BC compatibility
|
133 |
+
strip_et_fields(es)
|
134 |
+
|
135 |
+
native_yaml = parse_native_yaml(
|
136 |
+
path,
|
137 |
+
tags_yaml_path,
|
138 |
+
ignore_keys,
|
139 |
+
skip_native_fns_gen=skip_native_fns_gen,
|
140 |
+
loaded_yaml=es,
|
141 |
+
)
|
142 |
+
return native_yaml.native_functions, et_kernel
|
143 |
+
|
144 |
+
|
145 |
+
def strip_et_fields(es: object) -> None:
|
146 |
+
"""Given a loaded yaml representing a list of operators,
|
147 |
+
remove ET specific fields from every entries for BC compatibility
|
148 |
+
"""
|
149 |
+
for entry in es: # type: ignore[attr-defined]
|
150 |
+
for field in ET_FIELDS:
|
151 |
+
entry.pop(field, None)
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/CET
ADDED
Binary file (621 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EET
ADDED
Binary file (497 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EST
ADDED
Binary file (111 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/EST5EDT
ADDED
Binary file (951 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Amsterdam
ADDED
Binary file (1.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Andorra
ADDED
Binary file (389 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Astrakhan
ADDED
Binary file (726 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Athens
ADDED
Binary file (682 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Belfast
ADDED
Binary file (1.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Belgrade
ADDED
Binary file (478 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Berlin
ADDED
Binary file (705 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Bratislava
ADDED
Binary file (723 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Brussels
ADDED
Binary file (1.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Bucharest
ADDED
Binary file (661 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Dublin
ADDED
Binary file (1.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Helsinki
ADDED
Binary file (481 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kaliningrad
ADDED
Binary file (904 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kirov
ADDED
Binary file (735 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Kyiv
ADDED
Binary file (558 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/London
ADDED
Binary file (1.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Luxembourg
ADDED
Binary file (1.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Madrid
ADDED
Binary file (897 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Mariehamn
ADDED
Binary file (481 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Minsk
ADDED
Binary file (808 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Monaco
ADDED
Binary file (1.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Nicosia
ADDED
Binary file (597 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Oslo
ADDED
Binary file (705 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Paris
ADDED
Binary file (1.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Podgorica
ADDED
Binary file (478 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Prague
ADDED
Binary file (723 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Rome
ADDED
Binary file (947 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Samara
ADDED
Binary file (732 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Sarajevo
ADDED
Binary file (478 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Saratov
ADDED
Binary file (726 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Skopje
ADDED
Binary file (478 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Sofia
ADDED
Binary file (592 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Stockholm
ADDED
Binary file (705 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Tiraspol
ADDED
Binary file (755 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Ulyanovsk
ADDED
Binary file (760 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tzdata/zoneinfo/Europe/Uzhgorod
ADDED
Binary file (558 Bytes). View file
|
|