diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c2c311fafe7ac6765e2b7a61d2ded73141e6dc61 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_apply_relabeling.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_apply_relabeling.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40f73cef8671ec7507b700cd360f984db4b1b5b0 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_apply_relabeling.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_transform.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_transform.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8807aee25b97494f6f8d1bad81a182b9c28c6439 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_frame_transform.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_invalid_arg.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_invalid_arg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0698b7d5bbc9128310716382ec04fda97172d514 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_invalid_arg.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b442dcd5301cf6cb469b56b3e3dc85f01253de9d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply_relabeling.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply_relabeling.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..63eae1232d896354b6d4d34075c849eb6b99e2a4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply_relabeling.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_transform.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_transform.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed07b54e614497fdca8b53260e6cdbd63024dbd0 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_transform.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bcb0d30f405e2079a1ff21d838f52cd5f659fd93 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py @@ -0,0 +1,7 @@ +""" +Test files dedicated to individual (stand-alone) Series methods + +Ideally these files/tests should correspond 1-to-1 with tests.frame.methods + +These may also present opportunities for sharing/de-duplicating test code. +""" diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e44e62cef7f6a6a23d68b10d108fcab6748bac3 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e2ca96e175d0370df63d61e8621c0562e114925b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py new file mode 100644 index 0000000000000000000000000000000000000000..289a56b98b7e123fb1c1edf5cc9ff41369d51122 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py @@ -0,0 +1,41 @@ +import pytest + +from pandas import Index +import pandas._testing as tm + + +def test_add_prefix_suffix(string_series): + with_prefix = string_series.add_prefix("foo#") + expected = Index([f"foo#{c}" for c in string_series.index]) + tm.assert_index_equal(with_prefix.index, expected) + + with_suffix = string_series.add_suffix("#foo") + expected = Index([f"{c}#foo" for c in string_series.index]) + tm.assert_index_equal(with_suffix.index, expected) + + with_pct_prefix = string_series.add_prefix("%") + expected = Index([f"%{c}" for c in string_series.index]) + tm.assert_index_equal(with_pct_prefix.index, expected) + + with_pct_suffix = string_series.add_suffix("%") + expected = Index([f"{c}%" for c in string_series.index]) + tm.assert_index_equal(with_pct_suffix.index, expected) + + +def test_add_prefix_suffix_axis(string_series): + # GH 47819 + with_prefix = string_series.add_prefix("foo#", axis=0) + expected = Index([f"foo#{c}" for c in string_series.index]) + tm.assert_index_equal(with_prefix.index, expected) + + with_pct_suffix = string_series.add_suffix("#foo", axis=0) + expected = Index([f"{c}#foo" for c in string_series.index]) + tm.assert_index_equal(with_pct_suffix.index, expected) + + +def test_add_prefix_suffix_invalid_axis(string_series): + with pytest.raises(ValueError, match="No axis named 1 for object type Series"): + string_series.add_prefix("foo#", axis=1) + + with pytest.raises(ValueError, match="No axis named 1 for object type Series"): + string_series.add_suffix("foo#", axis=1) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py new file mode 100644 index 0000000000000000000000000000000000000000..cb60cd2e5bcf33c259ed8c5f8506eb11384d2d79 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py @@ -0,0 +1,249 @@ +from datetime import timezone + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, + period_range, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "first_slice,second_slice", + [ + [[2, None], [None, -5]], + [[None, 0], [None, -5]], + [[None, -5], [None, 0]], + [[None, 0], [None, 0]], + ], +) +@pytest.mark.parametrize("fill", [None, -1]) +def test_align(datetime_series, first_slice, second_slice, join_type, fill): + a = datetime_series[slice(*first_slice)] + b = datetime_series[slice(*second_slice)] + + aa, ab = a.align(b, join=join_type, fill_value=fill) + + join_index = a.index.join(b.index, how=join_type) + if fill is not None: + diff_a = aa.index.difference(join_index) + diff_b = ab.index.difference(join_index) + if len(diff_a) > 0: + assert (aa.reindex(diff_a) == fill).all() + if len(diff_b) > 0: + assert (ab.reindex(diff_b) == fill).all() + + ea = a.reindex(join_index) + eb = b.reindex(join_index) + + if fill is not None: + ea = ea.fillna(fill) + eb = eb.fillna(fill) + + tm.assert_series_equal(aa, ea) + tm.assert_series_equal(ab, eb) + assert aa.name == "ts" + assert ea.name == "ts" + assert ab.name == "ts" + assert eb.name == "ts" + + +@pytest.mark.parametrize( + "first_slice,second_slice", + [ + [[2, None], [None, -5]], + [[None, 0], [None, -5]], + [[None, -5], [None, 0]], + [[None, 0], [None, 0]], + ], +) +@pytest.mark.parametrize("method", ["pad", "bfill"]) +@pytest.mark.parametrize("limit", [None, 1]) +def test_align_fill_method( + datetime_series, first_slice, second_slice, join_type, method, limit +): + a = datetime_series[slice(*first_slice)] + b = datetime_series[slice(*second_slice)] + + msg = ( + "The 'method', 'limit', and 'fill_axis' keywords in Series.align " + "are deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + aa, ab = a.align(b, join=join_type, method=method, limit=limit) + + join_index = a.index.join(b.index, how=join_type) + ea = a.reindex(join_index) + eb = b.reindex(join_index) + + msg2 = "Series.fillna with 'method' is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg2): + ea = ea.fillna(method=method, limit=limit) + eb = eb.fillna(method=method, limit=limit) + + tm.assert_series_equal(aa, ea) + tm.assert_series_equal(ab, eb) + + +def test_align_nocopy(datetime_series, using_copy_on_write): + b = datetime_series[:5].copy() + + # do copy + a = datetime_series.copy() + ra, _ = a.align(b, join="left") + ra[:5] = 5 + assert not (a[:5] == 5).any() + + # do not copy + a = datetime_series.copy() + ra, _ = a.align(b, join="left", copy=False) + ra[:5] = 5 + if using_copy_on_write: + assert not (a[:5] == 5).any() + else: + assert (a[:5] == 5).all() + + # do copy + a = datetime_series.copy() + b = datetime_series[:5].copy() + _, rb = a.align(b, join="right") + rb[:3] = 5 + assert not (b[:3] == 5).any() + + # do not copy + a = datetime_series.copy() + b = datetime_series[:5].copy() + _, rb = a.align(b, join="right", copy=False) + rb[:2] = 5 + if using_copy_on_write: + assert not (b[:2] == 5).any() + else: + assert (b[:2] == 5).all() + + +def test_align_same_index(datetime_series, using_copy_on_write): + a, b = datetime_series.align(datetime_series, copy=False) + if not using_copy_on_write: + assert a.index is datetime_series.index + assert b.index is datetime_series.index + else: + assert a.index.is_(datetime_series.index) + assert b.index.is_(datetime_series.index) + + a, b = datetime_series.align(datetime_series, copy=True) + assert a.index is not datetime_series.index + assert b.index is not datetime_series.index + assert a.index.is_(datetime_series.index) + assert b.index.is_(datetime_series.index) + + +def test_align_multiindex(): + # GH 10665 + + midx = pd.MultiIndex.from_product( + [range(2), range(3), range(2)], names=("a", "b", "c") + ) + idx = pd.Index(range(2), name="b") + s1 = Series(np.arange(12, dtype="int64"), index=midx) + s2 = Series(np.arange(2, dtype="int64"), index=idx) + + # these must be the same results (but flipped) + res1l, res1r = s1.align(s2, join="left") + res2l, res2r = s2.align(s1, join="right") + + expl = s1 + tm.assert_series_equal(expl, res1l) + tm.assert_series_equal(expl, res2r) + expr = Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) + tm.assert_series_equal(expr, res1r) + tm.assert_series_equal(expr, res2l) + + res1l, res1r = s1.align(s2, join="right") + res2l, res2r = s2.align(s1, join="left") + + exp_idx = pd.MultiIndex.from_product( + [range(2), range(2), range(2)], names=("a", "b", "c") + ) + expl = Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) + tm.assert_series_equal(expl, res1l) + tm.assert_series_equal(expl, res2r) + expr = Series([0, 0, 1, 1] * 2, index=exp_idx) + tm.assert_series_equal(expr, res1r) + tm.assert_series_equal(expr, res2l) + + +@pytest.mark.parametrize("method", ["backfill", "bfill", "pad", "ffill", None]) +def test_align_with_dataframe_method(method): + # GH31788 + ser = Series(range(3), index=range(3)) + df = pd.DataFrame(0.0, index=range(3), columns=range(3)) + + msg = ( + "The 'method', 'limit', and 'fill_axis' keywords in Series.align " + "are deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result_ser, result_df = ser.align(df, method=method) + tm.assert_series_equal(result_ser, ser) + tm.assert_frame_equal(result_df, df) + + +def test_align_dt64tzindex_mismatched_tzs(): + idx1 = date_range("2001", periods=5, freq="h", tz="US/Eastern") + ser = Series(np.random.default_rng(2).standard_normal(len(idx1)), index=idx1) + ser_central = ser.tz_convert("US/Central") + # different timezones convert to UTC + + new1, new2 = ser.align(ser_central) + assert new1.index.tz is timezone.utc + assert new2.index.tz is timezone.utc + + +def test_align_periodindex(join_type): + rng = period_range("1/1/2000", "1/1/2010", freq="Y") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + # TODO: assert something? + ts.align(ts[::2], join=join_type) + + +def test_align_left_fewer_levels(): + # GH#45224 + left = Series([2], index=pd.MultiIndex.from_tuples([(1, 3)], names=["a", "c"])) + right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]) + ) + result_left, result_right = left.align(right) + + expected_right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"]) + ) + expected_left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"]) + ) + tm.assert_series_equal(result_left, expected_left) + tm.assert_series_equal(result_right, expected_right) + + +def test_align_left_different_named_levels(): + # GH#45224 + left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 4, 3)], names=["a", "d", "c"]) + ) + right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]) + ) + result_left, result_right = left.align(right) + + expected_left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"]) + ) + expected_right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"]) + ) + tm.assert_series_equal(result_left, expected_left) + tm.assert_series_equal(result_right, expected_right) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py new file mode 100644 index 0000000000000000000000000000000000000000..432c0eceee01107cdcd23056a39e0ef4bd55545b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py @@ -0,0 +1,84 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + Timestamp, + isna, +) +import pandas._testing as tm + + +class TestSeriesArgsort: + def test_argsort_axis(self): + # GH#54257 + ser = Series(range(3)) + + msg = "No axis named 2 for object type Series" + with pytest.raises(ValueError, match=msg): + ser.argsort(axis=2) + + def test_argsort_numpy(self, datetime_series): + ser = datetime_series + + res = np.argsort(ser).values + expected = np.argsort(np.array(ser)) + tm.assert_numpy_array_equal(res, expected) + + # with missing values + ts = ser.copy() + ts[::2] = np.nan + + msg = "The behavior of Series.argsort in the presence of NA values" + with tm.assert_produces_warning( + FutureWarning, match=msg, check_stacklevel=False + ): + result = np.argsort(ts)[1::2] + expected = np.argsort(np.array(ts.dropna())) + + tm.assert_numpy_array_equal(result.values, expected) + + def test_argsort(self, datetime_series): + argsorted = datetime_series.argsort() + assert issubclass(argsorted.dtype.type, np.integer) + + def test_argsort_dt64(self, unit): + # GH#2967 (introduced bug in 0.11-dev I think) + ser = Series( + [Timestamp(f"201301{i:02d}") for i in range(1, 6)], dtype=f"M8[{unit}]" + ) + assert ser.dtype == f"datetime64[{unit}]" + shifted = ser.shift(-1) + assert shifted.dtype == f"datetime64[{unit}]" + assert isna(shifted[4]) + + result = ser.argsort() + expected = Series(range(5), dtype=np.intp) + tm.assert_series_equal(result, expected) + + msg = "The behavior of Series.argsort in the presence of NA values" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = shifted.argsort() + expected = Series(list(range(4)) + [-1], dtype=np.intp) + tm.assert_series_equal(result, expected) + + def test_argsort_stable(self): + ser = Series(np.random.default_rng(2).integers(0, 100, size=10000)) + mindexer = ser.argsort(kind="mergesort") + qindexer = ser.argsort() + + mexpected = np.argsort(ser.values, kind="mergesort") + qexpected = np.argsort(ser.values, kind="quicksort") + + tm.assert_series_equal(mindexer.astype(np.intp), Series(mexpected)) + tm.assert_series_equal(qindexer.astype(np.intp), Series(qexpected)) + msg = ( + r"ndarray Expected type , " + r"found instead" + ) + with pytest.raises(AssertionError, match=msg): + tm.assert_numpy_array_equal(qindexer, mindexer) + + def test_argsort_preserve_name(self, datetime_series): + result = datetime_series.argsort() + assert result.name == datetime_series.name diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py new file mode 100644 index 0000000000000000000000000000000000000000..2acc2921e5efc089b1dd4ed7aa9a6cebc1a3d0fe --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py @@ -0,0 +1,205 @@ +import numpy as np +import pytest + +from pandas._libs.tslibs import IncompatibleFrequency + +from pandas import ( + DatetimeIndex, + PeriodIndex, + Series, + Timestamp, + date_range, + isna, + notna, + offsets, + period_range, +) +import pandas._testing as tm + + +class TestSeriesAsof: + def test_asof_nanosecond_index_access(self): + ts = Timestamp("20130101").as_unit("ns")._value + dti = DatetimeIndex([ts + 50 + i for i in range(100)]) + ser = Series(np.random.default_rng(2).standard_normal(100), index=dti) + + first_value = ser.asof(ser.index[0]) + + # GH#46903 previously incorrectly was "day" + assert dti.resolution == "nanosecond" + + # this used to not work bc parsing was done by dateutil that didn't + # handle nanoseconds + assert first_value == ser["2013-01-01 00:00:00.000000050"] + + expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns") + assert first_value == ser[Timestamp(expected_ts)] + + def test_basic(self): + # array or list or dates + N = 50 + rng = date_range("1/1/1990", periods=N, freq="53s") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + ts.iloc[15:30] = np.nan + dates = date_range("1/1/1990", periods=N * 3, freq="25s") + + result = ts.asof(dates) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + result = ts.asof(list(dates)) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + mask = (result.index >= lb) & (result.index < ub) + rs = result[mask] + assert (rs == ts[lb]).all() + + val = result[result.index[result.index >= ub][0]] + assert ts[ub] == val + + def test_scalar(self): + N = 30 + rng = date_range("1/1/1990", periods=N, freq="53s") + # Explicit cast to float avoid implicit cast when setting nan + ts = Series(np.arange(N), index=rng, dtype="float") + ts.iloc[5:10] = np.nan + ts.iloc[15:20] = np.nan + + val1 = ts.asof(ts.index[7]) + val2 = ts.asof(ts.index[19]) + + assert val1 == ts.iloc[4] + assert val2 == ts.iloc[14] + + # accepts strings + val1 = ts.asof(str(ts.index[7])) + assert val1 == ts.iloc[4] + + # in there + result = ts.asof(ts.index[3]) + assert result == ts.iloc[3] + + # no as of value + d = ts.index[0] - offsets.BDay() + assert np.isnan(ts.asof(d)) + + def test_with_nan(self): + # basic asof test + rng = date_range("1/1/2000", "1/2/2000", freq="4h") + s = Series(np.arange(len(rng)), index=rng) + r = s.resample("2h").mean() + + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + r.iloc[3:5] = np.nan + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + r.iloc[-3:] = np.nan + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + def test_periodindex(self): + # array or list or dates + N = 50 + rng = period_range("1/1/1990", periods=N, freq="h") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + ts.iloc[15:30] = np.nan + dates = date_range("1/1/1990", periods=N * 3, freq="37min") + + result = ts.asof(dates) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + result = ts.asof(list(dates)) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + pix = PeriodIndex(result.index.values, freq="h") + mask = (pix >= lb) & (pix < ub) + rs = result[mask] + assert (rs == ts[lb]).all() + + ts.iloc[5:10] = np.nan + ts.iloc[15:20] = np.nan + + val1 = ts.asof(ts.index[7]) + val2 = ts.asof(ts.index[19]) + + assert val1 == ts.iloc[4] + assert val2 == ts.iloc[14] + + # accepts strings + val1 = ts.asof(str(ts.index[7])) + assert val1 == ts.iloc[4] + + # in there + assert ts.asof(ts.index[3]) == ts.iloc[3] + + # no as of value + d = ts.index[0].to_timestamp() - offsets.BDay() + assert isna(ts.asof(d)) + + # Mismatched freq + msg = "Input has different freq" + with pytest.raises(IncompatibleFrequency, match=msg): + ts.asof(rng.asfreq("D")) + + def test_errors(self): + s = Series( + [1, 2, 3], + index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")], + ) + + # non-monotonic + assert not s.index.is_monotonic_increasing + with pytest.raises(ValueError, match="requires a sorted index"): + s.asof(s.index[0]) + + # subset with Series + N = 10 + rng = date_range("1/1/1990", periods=N, freq="53s") + s = Series(np.random.default_rng(2).standard_normal(N), index=rng) + with pytest.raises(ValueError, match="not valid for Series"): + s.asof(s.index[0], subset="foo") + + def test_all_nans(self): + # GH 15713 + # series is all nans + + # testing non-default indexes + N = 50 + rng = date_range("1/1/1990", periods=N, freq="53s") + + dates = date_range("1/1/1990", periods=N * 3, freq="25s") + result = Series(np.nan, index=rng).asof(dates) + expected = Series(np.nan, index=dates) + tm.assert_series_equal(result, expected) + + # testing scalar input + date = date_range("1/1/1990", periods=N * 3, freq="25s")[0] + result = Series(np.nan, index=rng).asof(date) + assert isna(result) + + # test name is propagated + result = Series(np.nan, index=[1, 2, 3, 4], name="test").asof([4, 5]) + expected = Series(np.nan, index=[4, 5], name="test") + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py new file mode 100644 index 0000000000000000000000000000000000000000..4c8028e74ee5518ec97c1e571c9cb04fa0045c85 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py @@ -0,0 +1,683 @@ +from datetime import ( + datetime, + timedelta, +) +from importlib import reload +import string +import sys + +import numpy as np +import pytest + +from pandas._libs.tslibs import iNaT +import pandas.util._test_decorators as td + +from pandas import ( + NA, + Categorical, + CategoricalDtype, + DatetimeTZDtype, + Index, + Interval, + NaT, + Series, + Timedelta, + Timestamp, + cut, + date_range, + to_datetime, +) +import pandas._testing as tm + + +def rand_str(nchars: int) -> str: + """ + Generate one random byte string. + """ + RANDS_CHARS = np.array( + list(string.ascii_letters + string.digits), dtype=(np.str_, 1) + ) + return "".join(np.random.default_rng(2).choice(RANDS_CHARS, nchars)) + + +class TestAstypeAPI: + def test_astype_unitless_dt64_raises(self): + # GH#47844 + ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]") + df = ser.to_frame() + + msg = "Casting to unit-less dtype 'datetime64' is not supported" + with pytest.raises(TypeError, match=msg): + ser.astype(np.datetime64) + with pytest.raises(TypeError, match=msg): + df.astype(np.datetime64) + with pytest.raises(TypeError, match=msg): + ser.astype("datetime64") + with pytest.raises(TypeError, match=msg): + df.astype("datetime64") + + def test_arg_for_errors_in_astype(self): + # see GH#14878 + ser = Series([1, 2, 3]) + + msg = ( + r"Expected value of kwarg 'errors' to be one of \['raise', " + r"'ignore'\]\. Supplied value is 'False'" + ) + with pytest.raises(ValueError, match=msg): + ser.astype(np.float64, errors=False) + + ser.astype(np.int8, errors="raise") + + @pytest.mark.parametrize("dtype_class", [dict, Series]) + def test_astype_dict_like(self, dtype_class): + # see GH#7271 + ser = Series(range(0, 10, 2), name="abc") + + dt1 = dtype_class({"abc": str}) + result = ser.astype(dt1) + expected = Series(["0", "2", "4", "6", "8"], name="abc", dtype=object) + tm.assert_series_equal(result, expected) + + dt2 = dtype_class({"abc": "float64"}) + result = ser.astype(dt2) + expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") + tm.assert_series_equal(result, expected) + + dt3 = dtype_class({"abc": str, "def": str}) + msg = ( + "Only the Series name can be used for the key in Series dtype " + r"mappings\." + ) + with pytest.raises(KeyError, match=msg): + ser.astype(dt3) + + dt4 = dtype_class({0: str}) + with pytest.raises(KeyError, match=msg): + ser.astype(dt4) + + # GH#16717 + # if dtypes provided is empty, it should error + if dtype_class is Series: + dt5 = dtype_class({}, dtype=object) + else: + dt5 = dtype_class({}) + + with pytest.raises(KeyError, match=msg): + ser.astype(dt5) + + +class TestAstype: + @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) + def test_astype_object_to_dt64_non_nano(self, tz): + # GH#55756, GH#54620 + ts = Timestamp("2999-01-01") + dtype = "M8[us]" + if tz is not None: + dtype = f"M8[us, {tz}]" + vals = [ts, "2999-01-02 03:04:05.678910", 2500] + ser = Series(vals, dtype=object) + result = ser.astype(dtype) + + # The 2500 is interpreted as microseconds, consistent with what + # we would get if we created DatetimeIndexes from vals[:2] and vals[2:] + # and concated the results. + pointwise = [ + vals[0].tz_localize(tz), + Timestamp(vals[1], tz=tz), + to_datetime(vals[2], unit="us", utc=True).tz_convert(tz), + ] + exp_vals = [x.as_unit("us").asm8 for x in pointwise] + exp_arr = np.array(exp_vals, dtype="M8[us]") + expected = Series(exp_arr, dtype="M8[us]") + if tz is not None: + expected = expected.dt.tz_localize("UTC").dt.tz_convert(tz) + tm.assert_series_equal(result, expected) + + def test_astype_mixed_object_to_dt64tz(self): + # pre-2.0 this raised ValueError bc of tz mismatch + # xref GH#32581 + ts = Timestamp("2016-01-04 05:06:07", tz="US/Pacific") + ts2 = ts.tz_convert("Asia/Tokyo") + + ser = Series([ts, ts2], dtype=object) + res = ser.astype("datetime64[ns, Europe/Brussels]") + expected = Series( + [ts.tz_convert("Europe/Brussels"), ts2.tz_convert("Europe/Brussels")], + dtype="datetime64[ns, Europe/Brussels]", + ) + tm.assert_series_equal(res, expected) + + @pytest.mark.parametrize("dtype", np.typecodes["All"]) + def test_astype_empty_constructor_equality(self, dtype): + # see GH#15524 + + if dtype not in ( + "S", + "V", # poor support (if any) currently + "M", + "m", # Generic timestamps raise a ValueError. Already tested. + ): + init_empty = Series([], dtype=dtype) + as_type_empty = Series([]).astype(dtype) + tm.assert_series_equal(init_empty, as_type_empty) + + @pytest.mark.parametrize("dtype", [str, np.str_]) + @pytest.mark.parametrize( + "series", + [ + Series([string.digits * 10, rand_str(63), rand_str(64), rand_str(1000)]), + Series([string.digits * 10, rand_str(63), rand_str(64), np.nan, 1.0]), + ], + ) + def test_astype_str_map(self, dtype, series, using_infer_string): + # see GH#4405 + result = series.astype(dtype) + expected = series.map(str) + if using_infer_string: + expected = expected.astype(object) + tm.assert_series_equal(result, expected) + + def test_astype_float_to_period(self): + result = Series([np.nan]).astype("period[D]") + expected = Series([NaT], dtype="period[D]") + tm.assert_series_equal(result, expected) + + def test_astype_no_pandas_dtype(self): + # https://github.com/pandas-dev/pandas/pull/24866 + ser = Series([1, 2], dtype="int64") + # Don't have NumpyEADtype in the public API, so we use `.array.dtype`, + # which is a NumpyEADtype. + result = ser.astype(ser.array.dtype) + tm.assert_series_equal(result, ser) + + @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) + def test_astype_generic_timestamp_no_frequency(self, dtype, request): + # see GH#15524, GH#15987 + data = [1] + ser = Series(data) + + if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: + mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") + request.applymarker(mark) + + msg = ( + rf"The '{dtype.__name__}' dtype has no unit\. " + rf"Please pass in '{dtype.__name__}\[ns\]' instead." + ) + with pytest.raises(ValueError, match=msg): + ser.astype(dtype) + + def test_astype_dt64_to_str(self): + # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex + dti = date_range("2012-01-01", periods=3) + result = Series(dti).astype(str) + expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) + tm.assert_series_equal(result, expected) + + def test_astype_dt64tz_to_str(self): + # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex + dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") + result = Series(dti_tz).astype(str) + expected = Series( + [ + "2012-01-01 00:00:00-05:00", + "2012-01-02 00:00:00-05:00", + "2012-01-03 00:00:00-05:00", + ], + dtype=object, + ) + tm.assert_series_equal(result, expected) + + def test_astype_datetime(self, unit): + ser = Series(iNaT, dtype=f"M8[{unit}]", index=range(5)) + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + ser = Series([datetime(2001, 1, 2, 0, 0)]) + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + ser = Series( + [datetime(2001, 1, 2, 0, 0) for i in range(3)], dtype=f"M8[{unit}]" + ) + + ser[1] = np.nan + assert ser.dtype == f"M8[{unit}]" + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + def test_astype_datetime64tz(self): + ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) + + # astype + result = ser.astype(object) + expected = Series(ser.astype(object), dtype=object) + tm.assert_series_equal(result, expected) + + result = Series(ser.values).dt.tz_localize("UTC").dt.tz_convert(ser.dt.tz) + tm.assert_series_equal(result, ser) + + # astype - object, preserves on construction + result = Series(ser.astype(object)) + expected = ser.astype(object) + tm.assert_series_equal(result, expected) + + # astype - datetime64[ns, tz] + msg = "Cannot use .astype to convert from timezone-naive" + with pytest.raises(TypeError, match=msg): + # dt64->dt64tz astype deprecated + Series(ser.values).astype("datetime64[ns, US/Eastern]") + + with pytest.raises(TypeError, match=msg): + # dt64->dt64tz astype deprecated + Series(ser.values).astype(ser.dtype) + + result = ser.astype("datetime64[ns, CET]") + expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) + tm.assert_series_equal(result, expected) + + def test_astype_str_cast_dt64(self): + # see GH#9757 + ts = Series([Timestamp("2010-01-04 00:00:00")]) + res = ts.astype(str) + + expected = Series(["2010-01-04"], dtype=object) + tm.assert_series_equal(res, expected) + + ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) + res = ts.astype(str) + + expected = Series(["2010-01-04 00:00:00-05:00"], dtype=object) + tm.assert_series_equal(res, expected) + + def test_astype_str_cast_td64(self): + # see GH#9757 + + td = Series([Timedelta(1, unit="d")]) + ser = td.astype(str) + + expected = Series(["1 days"], dtype=object) + tm.assert_series_equal(ser, expected) + + def test_dt64_series_astype_object(self): + dt64ser = Series(date_range("20130101", periods=3)) + result = dt64ser.astype(object) + assert isinstance(result.iloc[0], datetime) + assert result.dtype == np.object_ + + def test_td64_series_astype_object(self): + tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") + result = tdser.astype(object) + assert isinstance(result.iloc[0], timedelta) + assert result.dtype == np.object_ + + @pytest.mark.parametrize( + "data, dtype", + [ + (["x", "y", "z"], "string[python]"), + pytest.param( + ["x", "y", "z"], + "string[pyarrow]", + marks=td.skip_if_no("pyarrow"), + ), + (["x", "y", "z"], "category"), + (3 * [Timestamp("2020-01-01", tz="UTC")], None), + (3 * [Interval(0, 1)], None), + ], + ) + @pytest.mark.parametrize("errors", ["raise", "ignore"]) + def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): + # https://github.com/pandas-dev/pandas/issues/35471 + ser = Series(data, dtype=dtype) + if errors == "ignore": + expected = ser + result = ser.astype(float, errors="ignore") + tm.assert_series_equal(result, expected) + else: + msg = "(Cannot cast)|(could not convert)" + with pytest.raises((ValueError, TypeError), match=msg): + ser.astype(float, errors=errors) + + @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) + def test_astype_from_float_to_str(self, dtype): + # https://github.com/pandas-dev/pandas/issues/36451 + ser = Series([0.1], dtype=dtype) + result = ser.astype(str) + expected = Series(["0.1"], dtype=object) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "value, string_value", + [ + (None, "None"), + (np.nan, "nan"), + (NA, ""), + ], + ) + def test_astype_to_str_preserves_na(self, value, string_value): + # https://github.com/pandas-dev/pandas/issues/36904 + ser = Series(["a", "b", value], dtype=object) + result = ser.astype(str) + expected = Series(["a", "b", string_value], dtype=object) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) + def test_astype(self, dtype): + ser = Series(np.random.default_rng(2).standard_normal(5), name="foo") + as_typed = ser.astype(dtype) + + assert as_typed.dtype == dtype + assert as_typed.name == ser.name + + @pytest.mark.parametrize("value", [np.nan, np.inf]) + @pytest.mark.parametrize("dtype", [np.int32, np.int64]) + def test_astype_cast_nan_inf_int(self, dtype, value): + # gh-14265: check NaN and inf raise error when converting to int + msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" + ser = Series([value]) + + with pytest.raises(ValueError, match=msg): + ser.astype(dtype) + + @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) + def test_astype_cast_object_int_fail(self, dtype): + arr = Series(["car", "house", "tree", "1"]) + msg = r"invalid literal for int\(\) with base 10: 'car'" + with pytest.raises(ValueError, match=msg): + arr.astype(dtype) + + def test_astype_float_to_uint_negatives_raise( + self, float_numpy_dtype, any_unsigned_int_numpy_dtype + ): + # GH#45151 We don't cast negative numbers to nonsense values + # TODO: same for EA float/uint dtypes, signed integers? + arr = np.arange(5).astype(float_numpy_dtype) - 3 # includes negatives + ser = Series(arr) + + msg = "Cannot losslessly cast from .* to .*" + with pytest.raises(ValueError, match=msg): + ser.astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + ser.to_frame().astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + # We currently catch and re-raise in Index.astype + Index(ser).astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + ser.array.astype(any_unsigned_int_numpy_dtype) + + def test_astype_cast_object_int(self): + arr = Series(["1", "2", "3", "4"], dtype=object) + result = arr.astype(int) + + tm.assert_series_equal(result, Series(np.arange(1, 5))) + + def test_astype_unicode(self, using_infer_string): + # see GH#7758: A bit of magic is required to set + # default encoding to utf-8 + digits = string.digits + test_series = [ + Series([digits * 10, rand_str(63), rand_str(64), rand_str(1000)]), + Series(["データーサイエンス、お前はもう死んでいる"]), + ] + + former_encoding = None + + if sys.getdefaultencoding() == "utf-8": + # GH#45326 as of 2.0 Series.astype matches Index.astype by handling + # bytes with obj.decode() instead of str(obj) + item = "野菜食べないとやばい" + ser = Series([item.encode()]) + result = ser.astype(np.str_) + expected = Series([item], dtype=object) + tm.assert_series_equal(result, expected) + + for ser in test_series: + res = ser.astype(np.str_) + expec = ser.map(str) + if using_infer_string: + expec = expec.astype(object) + tm.assert_series_equal(res, expec) + + # Restore the former encoding + if former_encoding is not None and former_encoding != "utf-8": + reload(sys) + sys.setdefaultencoding(former_encoding) + + def test_astype_bytes(self): + # GH#39474 + result = Series(["foo", "bar", "baz"]).astype(bytes) + assert result.dtypes == np.dtype("S3") + + def test_astype_nan_to_bool(self): + # GH#43018 + ser = Series(np.nan, dtype="object") + result = ser.astype("bool") + expected = Series(True, dtype="bool") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "dtype", + tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES, + ) + def test_astype_ea_to_datetimetzdtype(self, dtype): + # GH37553 + ser = Series([4, 0, 9], dtype=dtype) + result = ser.astype(DatetimeTZDtype(tz="US/Pacific")) + + expected = Series( + { + 0: Timestamp("1969-12-31 16:00:00.000000004-08:00", tz="US/Pacific"), + 1: Timestamp("1969-12-31 16:00:00.000000000-08:00", tz="US/Pacific"), + 2: Timestamp("1969-12-31 16:00:00.000000009-08:00", tz="US/Pacific"), + } + ) + + tm.assert_series_equal(result, expected) + + def test_astype_retain_attrs(self, any_numpy_dtype): + # GH#44414 + ser = Series([0, 1, 2, 3]) + ser.attrs["Location"] = "Michigan" + + result = ser.astype(any_numpy_dtype).attrs + expected = ser.attrs + + tm.assert_dict_equal(expected, result) + + +class TestAstypeString: + @pytest.mark.parametrize( + "data, dtype", + [ + ([True, NA], "boolean"), + (["A", NA], "category"), + (["2020-10-10", "2020-10-10"], "datetime64[ns]"), + (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), + ( + ["2012-01-01 00:00:00-05:00", NaT], + "datetime64[ns, US/Eastern]", + ), + ([1, None], "UInt16"), + (["1/1/2021", "2/1/2021"], "period[M]"), + (["1/1/2021", "2/1/2021", NaT], "period[M]"), + (["1 Day", "59 Days", NaT], "timedelta64[ns]"), + # currently no way to parse IntervalArray from a list of strings + ], + ) + def test_astype_string_to_extension_dtype_roundtrip( + self, data, dtype, request, nullable_string_dtype + ): + if dtype == "boolean": + mark = pytest.mark.xfail( + reason="TODO StringArray.astype() with missing values #GH40566" + ) + request.applymarker(mark) + # GH-40351 + ser = Series(data, dtype=dtype) + + # Note: just passing .astype(dtype) fails for dtype="category" + # with bc ser.dtype.categories will be object dtype whereas + # result.dtype.categories will have string dtype + result = ser.astype(nullable_string_dtype).astype(ser.dtype) + tm.assert_series_equal(result, ser) + + +class TestAstypeCategorical: + def test_astype_categorical_to_other(self): + cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) + ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values() + ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) + + expected = ser + tm.assert_series_equal(ser.astype("category"), expected) + tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) + msg = r"Cannot cast object|string dtype to float64" + with pytest.raises(ValueError, match=msg): + ser.astype("float64") + + cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) + exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"], dtype=object) + tm.assert_series_equal(cat.astype("str"), exp) + s2 = Series(Categorical(["1", "2", "3", "4"])) + exp2 = Series([1, 2, 3, 4]).astype("int") + tm.assert_series_equal(s2.astype("int"), exp2) + + # object don't sort correctly, so just compare that we have the same + # values + def cmp(a, b): + tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) + + expected = Series(np.array(ser.values), name="value_group") + cmp(ser.astype("object"), expected) + cmp(ser.astype(np.object_), expected) + + # array conversion + tm.assert_almost_equal(np.array(ser), np.array(ser.values)) + + tm.assert_series_equal(ser.astype("category"), ser) + tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) + + roundtrip_expected = ser.cat.set_categories( + ser.cat.categories.sort_values() + ).cat.remove_unused_categories() + result = ser.astype("object").astype("category") + tm.assert_series_equal(result, roundtrip_expected) + result = ser.astype("object").astype(CategoricalDtype()) + tm.assert_series_equal(result, roundtrip_expected) + + def test_astype_categorical_invalid_conversions(self): + # invalid conversion (these are NOT a dtype) + cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) + ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values() + ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) + + msg = ( + "dtype '' " + "not understood" + ) + with pytest.raises(TypeError, match=msg): + ser.astype(Categorical) + with pytest.raises(TypeError, match=msg): + ser.astype("object").astype(Categorical) + + def test_astype_categoricaldtype(self): + ser = Series(["a", "b", "a"]) + result = ser.astype(CategoricalDtype(["a", "b"], ordered=True)) + expected = Series(Categorical(["a", "b", "a"], ordered=True)) + tm.assert_series_equal(result, expected) + + result = ser.astype(CategoricalDtype(["a", "b"], ordered=False)) + expected = Series(Categorical(["a", "b", "a"], ordered=False)) + tm.assert_series_equal(result, expected) + + result = ser.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) + expected = Series( + Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) + ) + tm.assert_series_equal(result, expected) + tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) + + @pytest.mark.parametrize("name", [None, "foo"]) + @pytest.mark.parametrize("dtype_ordered", [True, False]) + @pytest.mark.parametrize("series_ordered", [True, False]) + def test_astype_categorical_to_categorical( + self, name, dtype_ordered, series_ordered + ): + # GH#10696, GH#18593 + s_data = list("abcaacbab") + s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) + ser = Series(s_data, dtype=s_dtype, name=name) + + # unspecified categories + dtype = CategoricalDtype(ordered=dtype_ordered) + result = ser.astype(dtype) + exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) + expected = Series(s_data, name=name, dtype=exp_dtype) + tm.assert_series_equal(result, expected) + + # different categories + dtype = CategoricalDtype(list("adc"), dtype_ordered) + result = ser.astype(dtype) + expected = Series(s_data, name=name, dtype=dtype) + tm.assert_series_equal(result, expected) + + if dtype_ordered is False: + # not specifying ordered, so only test once + expected = ser + result = ser.astype("category") + tm.assert_series_equal(result, expected) + + def test_astype_bool_missing_to_categorical(self): + # GH-19182 + ser = Series([True, False, np.nan]) + assert ser.dtypes == np.object_ + + result = ser.astype(CategoricalDtype(categories=[True, False])) + expected = Series(Categorical([True, False, np.nan], categories=[True, False])) + tm.assert_series_equal(result, expected) + + def test_astype_categories_raises(self): + # deprecated GH#17636, removed in GH#27141 + ser = Series(["a", "b", "a"]) + with pytest.raises(TypeError, match="got an unexpected"): + ser.astype("category", categories=["a", "b"], ordered=True) + + @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) + def test_astype_from_categorical(self, items): + ser = Series(items) + exp = Series(Categorical(items)) + res = ser.astype("category") + tm.assert_series_equal(res, exp) + + def test_astype_from_categorical_with_keywords(self): + # with keywords + lst = ["a", "b", "c", "a"] + ser = Series(lst) + exp = Series(Categorical(lst, ordered=True)) + res = ser.astype(CategoricalDtype(None, ordered=True)) + tm.assert_series_equal(res, exp) + + exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) + res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True)) + tm.assert_series_equal(res, exp) + + def test_astype_timedelta64_with_np_nan(self): + # GH45798 + result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]") + expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]") + tm.assert_series_equal(result, expected) + + @td.skip_if_no("pyarrow") + def test_astype_int_na_string(self): + # GH#57418 + ser = Series([12, NA], dtype="Int64[pyarrow]") + result = ser.astype("string[pyarrow]") + expected = Series(["12", NA], dtype="string[pyarrow]") + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py new file mode 100644 index 0000000000000000000000000000000000000000..c1d768cf02f37baceb01b9ef39b91e419cef1e0f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py @@ -0,0 +1,30 @@ +import numpy as np + + +class TestAutoCorr: + def test_autocorr(self, datetime_series): + # Just run the function + corr1 = datetime_series.autocorr() + + # Now run it with the lag parameter + corr2 = datetime_series.autocorr(lag=1) + + # corr() with lag needs Series of at least length 2 + if len(datetime_series) <= 2: + assert np.isnan(corr1) + assert np.isnan(corr2) + else: + assert corr1 == corr2 + + # Choose a random lag between 1 and length of Series - 2 + # and compare the result with the Series corr() function + n = 1 + np.random.default_rng(2).integers(max(1, len(datetime_series) - 2)) + corr1 = datetime_series.corr(datetime_series.shift(n)) + corr2 = datetime_series.autocorr(lag=n) + + # corr() with lag needs Series of at least length 2 + if len(datetime_series) <= 2: + assert np.isnan(corr1) + assert np.isnan(corr2) + else: + assert corr1 == corr2 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py new file mode 100644 index 0000000000000000000000000000000000000000..3913419038876938c9538ef435a7eb02c37f62a6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py @@ -0,0 +1,75 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + bdate_range, + date_range, + period_range, +) +import pandas._testing as tm + + +class TestBetween: + def test_between(self): + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + result = series.between(left, right) + expected = (series >= left) & (series <= right) + tm.assert_series_equal(result, expected) + + def test_between_datetime_object_dtype(self): + ser = Series(bdate_range("1/1/2000", periods=20), dtype=object) + ser[::2] = np.nan + + result = ser[ser.between(ser[3], ser[17])] + expected = ser[3:18].dropna() + tm.assert_series_equal(result, expected) + + result = ser[ser.between(ser[3], ser[17], inclusive="neither")] + expected = ser[5:16].dropna() + tm.assert_series_equal(result, expected) + + def test_between_period_values(self): + ser = Series(period_range("2000-01-01", periods=10, freq="D")) + left, right = ser[[2, 7]] + result = ser.between(left, right) + expected = (ser >= left) & (ser <= right) + tm.assert_series_equal(result, expected) + + def test_between_inclusive_string(self): + # GH 40628 + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + result = series.between(left, right, inclusive="both") + expected = (series >= left) & (series <= right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="left") + expected = (series >= left) & (series < right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="right") + expected = (series > left) & (series <= right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="neither") + expected = (series > left) & (series < right) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("inclusive", ["yes", True, False]) + def test_between_error_args(self, inclusive): + # GH 40628 + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + value_error_msg = ( + "Inclusive has to be either string of 'both'," + "'left', 'right', or 'neither'." + ) + + with pytest.raises(ValueError, match=value_error_msg): + series = Series(date_range("1/1/2000", periods=10)) + series.between(left, right, inclusive=inclusive) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py new file mode 100644 index 0000000000000000000000000000000000000000..7cb60a11644a357811136c991143554c4477d485 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py @@ -0,0 +1,148 @@ +import numpy as np +import pytest + +from pandas import ( + DataFrame, + Series, + array as pd_array, + date_range, +) +import pandas._testing as tm + + +@pytest.fixture +def df(): + """ + base dataframe for testing + """ + return DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) + + +def test_case_when_caselist_is_not_a_list(df): + """ + Raise ValueError if caselist is not a list. + """ + msg = "The caselist argument should be a list; " + msg += "instead got.+" + with pytest.raises(TypeError, match=msg): # GH39154 + df["a"].case_when(caselist=()) + + +def test_case_when_no_caselist(df): + """ + Raise ValueError if no caselist is provided. + """ + msg = "provide at least one boolean condition, " + msg += "with a corresponding replacement." + with pytest.raises(ValueError, match=msg): # GH39154 + df["a"].case_when([]) + + +def test_case_when_odd_caselist(df): + """ + Raise ValueError if no of caselist is odd. + """ + msg = "Argument 0 must have length 2; " + msg += "a condition and replacement; instead got length 3." + + with pytest.raises(ValueError, match=msg): + df["a"].case_when([(df["a"].eq(1), 1, df.a.gt(1))]) + + +def test_case_when_raise_error_from_mask(df): + """ + Raise Error from within Series.mask + """ + msg = "Failed to apply condition0 and replacement0." + with pytest.raises(ValueError, match=msg): + df["a"].case_when([(df["a"].eq(1), [1, 2])]) + + +def test_case_when_single_condition(df): + """ + Test output on a single condition. + """ + result = Series([np.nan, np.nan, np.nan]).case_when([(df.a.eq(1), 1)]) + expected = Series([1, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions(df): + """ + Test output when booleans are derived from a computation + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [(df.a.eq(1), 1), (Series([False, True, False]), 2)] + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_list(df): + """ + Test output when replacement is a list + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [([True, False, False], 1), (df["a"].gt(1) & df["b"].eq(5), [1, 2, 3])] + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_extension_dtype(df): + """ + Test output when replacement has an extension dtype + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [ + ([True, False, False], 1), + (df["a"].gt(1) & df["b"].eq(5), pd_array([1, 2, 3], dtype="Int64")), + ], + ) + expected = Series([1, 2, np.nan], dtype="Float64") + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_series(df): + """ + Test output when replacement is a Series + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [ + (np.array([True, False, False]), 1), + (df["a"].gt(1) & df["b"].eq(5), Series([1, 2, 3])), + ], + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_non_range_index(): + """ + Test output if index is not RangeIndex + """ + rng = np.random.default_rng(seed=123) + dates = date_range("1/1/2000", periods=8) + df = DataFrame( + rng.standard_normal(size=(8, 4)), index=dates, columns=["A", "B", "C", "D"] + ) + result = Series(5, index=df.index, name="A").case_when([(df.A.gt(0), df.B)]) + expected = df.A.mask(df.A.gt(0), df.B).where(df.A.gt(0), 5) + tm.assert_series_equal(result, expected) + + +def test_case_when_callable(): + """ + Test output on a callable + """ + # https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html + x = np.linspace(-2.5, 2.5, 6) + ser = Series(x) + result = ser.case_when( + caselist=[ + (lambda df: df < 0, lambda df: -df), + (lambda df: df >= 0, lambda df: df), + ] + ) + expected = np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) + tm.assert_series_equal(result, Series(expected)) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py new file mode 100644 index 0000000000000000000000000000000000000000..75d47e3daa10339f4c4cc7b35c52f24bbb20277a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py @@ -0,0 +1,17 @@ +from pandas import Series +import pandas._testing as tm + + +class TestCombine: + def test_combine_scalar(self): + # GH#21248 + # Note - combine() with another Series is tested elsewhere because + # it is used when testing operators + ser = Series([i * 10 for i in range(5)]) + result = ser.combine(3, lambda x, y: x + y) + expected = Series([i * 10 + 3 for i in range(5)]) + tm.assert_series_equal(result, expected) + + result = ser.combine(22, lambda x, y: min(x, y)) + expected = Series([min(i * 10, 22) for i in range(5)]) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py new file mode 100644 index 0000000000000000000000000000000000000000..fe2016a245ec7c1373c72f40c7b6e7d899cf4f96 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py @@ -0,0 +1,141 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + + +@pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) +def test_compare_axis(align_axis): + # GH#30429 + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", "z"]) + + result = s1.compare(s2, align_axis=align_axis) + + if align_axis in (1, "columns"): + indices = pd.Index([0, 2]) + columns = pd.Index(["self", "other"]) + expected = pd.DataFrame( + [["a", "x"], ["c", "z"]], index=indices, columns=columns + ) + tm.assert_frame_equal(result, expected) + else: + indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) + expected = pd.Series(["a", "x", "c", "z"], index=indices) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "keep_shape, keep_equal", + [ + (True, False), + (False, True), + (True, True), + # False, False case is already covered in test_compare_axis + ], +) +def test_compare_various_formats(keep_shape, keep_equal): + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", "z"]) + + result = s1.compare(s2, keep_shape=keep_shape, keep_equal=keep_equal) + + if keep_shape: + indices = pd.Index([0, 1, 2]) + columns = pd.Index(["self", "other"]) + if keep_equal: + expected = pd.DataFrame( + [["a", "x"], ["b", "b"], ["c", "z"]], index=indices, columns=columns + ) + else: + expected = pd.DataFrame( + [["a", "x"], [np.nan, np.nan], ["c", "z"]], + index=indices, + columns=columns, + ) + else: + indices = pd.Index([0, 2]) + columns = pd.Index(["self", "other"]) + expected = pd.DataFrame( + [["a", "x"], ["c", "z"]], index=indices, columns=columns + ) + tm.assert_frame_equal(result, expected) + + +def test_compare_with_equal_nulls(): + # We want to make sure two NaNs are considered the same + # and dropped where applicable + s1 = pd.Series(["a", "b", np.nan]) + s2 = pd.Series(["x", "b", np.nan]) + + result = s1.compare(s2) + expected = pd.DataFrame([["a", "x"]], columns=["self", "other"]) + tm.assert_frame_equal(result, expected) + + +def test_compare_with_non_equal_nulls(): + # We want to make sure the relevant NaNs do not get dropped + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", np.nan]) + + result = s1.compare(s2, align_axis=0) + + indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) + expected = pd.Series(["a", "x", "c", np.nan], index=indices) + tm.assert_series_equal(result, expected) + + +def test_compare_multi_index(): + index = pd.MultiIndex.from_arrays([[0, 0, 1], [0, 1, 2]]) + s1 = pd.Series(["a", "b", "c"], index=index) + s2 = pd.Series(["x", "b", "z"], index=index) + + result = s1.compare(s2, align_axis=0) + + indices = pd.MultiIndex.from_arrays( + [[0, 0, 1, 1], [0, 0, 2, 2], ["self", "other", "self", "other"]] + ) + expected = pd.Series(["a", "x", "c", "z"], index=indices) + tm.assert_series_equal(result, expected) + + +def test_compare_unaligned_objects(): + # test Series with different indices + msg = "Can only compare identically-labeled Series objects" + with pytest.raises(ValueError, match=msg): + ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"]) + ser2 = pd.Series([1, 2, 3], index=["a", "b", "d"]) + ser1.compare(ser2) + + # test Series with different lengths + msg = "Can only compare identically-labeled Series objects" + with pytest.raises(ValueError, match=msg): + ser1 = pd.Series([1, 2, 3]) + ser2 = pd.Series([1, 2, 3, 4]) + ser1.compare(ser2) + + +def test_compare_datetime64_and_string(): + # Issue https://github.com/pandas-dev/pandas/issues/45506 + # Catch OverflowError when comparing datetime64 and string + data = [ + {"a": "2015-07-01", "b": "08335394550"}, + {"a": "2015-07-02", "b": "+49 (0) 0345 300033"}, + {"a": "2015-07-03", "b": "+49(0)2598 04457"}, + {"a": "2015-07-04", "b": "0741470003"}, + {"a": "2015-07-05", "b": "04181 83668"}, + ] + dtypes = {"a": "datetime64[ns]", "b": "string"} + df = pd.DataFrame(data=data).astype(dtypes) + + result_eq1 = df["a"].eq(df["b"]) + result_eq2 = df["a"] == df["b"] + result_neq = df["a"] != df["b"] + + expected_eq = pd.Series([False] * 5) # For .eq and == + expected_neq = pd.Series([True] * 5) # For != + + tm.assert_series_equal(result_eq1, expected_eq) + tm.assert_series_equal(result_eq2, expected_eq) + tm.assert_series_equal(result_neq, expected_neq) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py new file mode 100644 index 0000000000000000000000000000000000000000..b0a920ba02cadeb21a7c0cc93f615cb1bc49dcbb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py @@ -0,0 +1,306 @@ +from itertools import product + +import numpy as np +import pytest + +from pandas._libs import lib + +import pandas as pd +import pandas._testing as tm + +# Each test case consists of a tuple with the data and dtype to create the +# test Series, the default dtype for the expected result (which is valid +# for most cases), and the specific cases where the result deviates from +# this default. Those overrides are defined as a dict with (keyword, val) as +# dictionary key. In case of multiple items, the last override takes precedence. + + +@pytest.fixture( + params=[ + ( + # data + [1, 2, 3], + # original dtype + np.dtype("int32"), + # default expected dtype + "Int32", + # exceptions on expected dtype + {("convert_integer", False): np.dtype("int32")}, + ), + ( + [1, 2, 3], + np.dtype("int64"), + "Int64", + {("convert_integer", False): np.dtype("int64")}, + ), + ( + ["x", "y", "z"], + np.dtype("O"), + pd.StringDtype(), + {("convert_string", False): np.dtype("O")}, + ), + ( + [True, False, np.nan], + np.dtype("O"), + pd.BooleanDtype(), + {("convert_boolean", False): np.dtype("O")}, + ), + ( + ["h", "i", np.nan], + np.dtype("O"), + pd.StringDtype(), + {("convert_string", False): np.dtype("O")}, + ), + ( # GH32117 + ["h", "i", 1], + np.dtype("O"), + np.dtype("O"), + {}, + ), + ( + [10, np.nan, 20], + np.dtype("float"), + "Int64", + { + ("convert_integer", False, "convert_floating", True): "Float64", + ("convert_integer", False, "convert_floating", False): np.dtype( + "float" + ), + }, + ), + ( + [np.nan, 100.5, 200], + np.dtype("float"), + "Float64", + {("convert_floating", False): np.dtype("float")}, + ), + ( + [3, 4, 5], + "Int8", + "Int8", + {}, + ), + ( + [[1, 2], [3, 4], [5]], + None, + np.dtype("O"), + {}, + ), + ( + [4, 5, 6], + np.dtype("uint32"), + "UInt32", + {("convert_integer", False): np.dtype("uint32")}, + ), + ( + [-10, 12, 13], + np.dtype("i1"), + "Int8", + {("convert_integer", False): np.dtype("i1")}, + ), + ( + [1.2, 1.3], + np.dtype("float32"), + "Float32", + {("convert_floating", False): np.dtype("float32")}, + ), + ( + [1, 2.0], + object, + "Int64", + { + ("convert_integer", False): "Float64", + ("convert_integer", False, "convert_floating", False): np.dtype( + "float" + ), + ("infer_objects", False): np.dtype("object"), + }, + ), + ( + [1, 2.5], + object, + "Float64", + { + ("convert_floating", False): np.dtype("float"), + ("infer_objects", False): np.dtype("object"), + }, + ), + (["a", "b"], pd.CategoricalDtype(), pd.CategoricalDtype(), {}), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("s"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ms"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("us"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + "datetime64[ns]", + np.dtype("datetime64[ns]"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + object, + np.dtype("datetime64[ns]"), + {("infer_objects", False): np.dtype("object")}, + ), + ( + pd.period_range("1/1/2011", freq="M", periods=3), + None, + pd.PeriodDtype("M"), + {}, + ), + ( + pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]), + None, + pd.IntervalDtype("int64", "right"), + {}, + ), + ] +) +def test_cases(request): + return request.param + + +class TestSeriesConvertDtypes: + @pytest.mark.parametrize("params", product(*[(True, False)] * 5)) + def test_convert_dtypes( + self, + test_cases, + params, + using_infer_string, + ): + data, maindtype, expected_default, expected_other = test_cases + if ( + hasattr(data, "dtype") + and lib.is_np_dtype(data.dtype, "M") + and isinstance(maindtype, pd.DatetimeTZDtype) + ): + # this astype is deprecated in favor of tz_localize + msg = "Cannot use .astype to convert from timezone-naive dtype" + with pytest.raises(TypeError, match=msg): + pd.Series(data, dtype=maindtype) + return + + if maindtype is not None: + series = pd.Series(data, dtype=maindtype) + else: + series = pd.Series(data) + + result = series.convert_dtypes(*params) + + param_names = [ + "infer_objects", + "convert_string", + "convert_integer", + "convert_boolean", + "convert_floating", + ] + params_dict = dict(zip(param_names, params)) + + expected_dtype = expected_default + for spec, dtype in expected_other.items(): + if all(params_dict[key] is val for key, val in zip(spec[::2], spec[1::2])): + expected_dtype = dtype + if ( + using_infer_string + and expected_default == "string" + and expected_dtype == object + and params[0] + and not params[1] + ): + # If we would convert with convert strings then infer_objects converts + # with the option + expected_dtype = "string[pyarrow_numpy]" + + expected = pd.Series(data, dtype=expected_dtype) + tm.assert_series_equal(result, expected) + + # Test that it is a copy + copy = series.copy(deep=True) + + if result.notna().sum() > 0 and result.dtype in ["interval[int64, right]"]: + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + result[result.notna()] = np.nan + else: + result[result.notna()] = np.nan + + # Make sure original not changed + tm.assert_series_equal(series, copy) + + def test_convert_string_dtype(self, nullable_string_dtype): + # https://github.com/pandas-dev/pandas/issues/31731 -> converting columns + # that are already string dtype + df = pd.DataFrame( + {"A": ["a", "b", pd.NA], "B": ["ä", "ö", "ü"]}, dtype=nullable_string_dtype + ) + result = df.convert_dtypes() + tm.assert_frame_equal(df, result) + + def test_convert_bool_dtype(self): + # GH32287 + df = pd.DataFrame({"A": pd.array([True])}) + tm.assert_frame_equal(df, df.convert_dtypes()) + + def test_convert_byte_string_dtype(self): + # GH-43183 + byte_str = b"binary-string" + + df = pd.DataFrame(data={"A": byte_str}, index=[0]) + result = df.convert_dtypes() + expected = df + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "infer_objects, dtype", [(True, "Int64"), (False, "object")] + ) + def test_convert_dtype_object_with_na(self, infer_objects, dtype): + # GH#48791 + ser = pd.Series([1, pd.NA]) + result = ser.convert_dtypes(infer_objects=infer_objects) + expected = pd.Series([1, pd.NA], dtype=dtype) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "infer_objects, dtype", [(True, "Float64"), (False, "object")] + ) + def test_convert_dtype_object_with_na_float(self, infer_objects, dtype): + # GH#48791 + ser = pd.Series([1.5, pd.NA]) + result = ser.convert_dtypes(infer_objects=infer_objects) + expected = pd.Series([1.5, pd.NA], dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_convert_dtypes_pyarrow_to_np_nullable(self): + # GH 53648 + pytest.importorskip("pyarrow") + ser = pd.Series(range(2), dtype="int32[pyarrow]") + result = ser.convert_dtypes(dtype_backend="numpy_nullable") + expected = pd.Series(range(2), dtype="Int32") + tm.assert_series_equal(result, expected) + + def test_convert_dtypes_pyarrow_null(self): + # GH#55346 + pa = pytest.importorskip("pyarrow") + ser = pd.Series([None, None]) + result = ser.convert_dtypes(dtype_backend="pyarrow") + expected = pd.Series([None, None], dtype=pd.ArrowDtype(pa.null())) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py new file mode 100644 index 0000000000000000000000000000000000000000..23dbe85075916dbb901afdcf8267c8877db3b3f8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py @@ -0,0 +1,91 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + Timestamp, +) +import pandas._testing as tm + + +class TestCopy: + @pytest.mark.parametrize("deep", ["default", None, False, True]) + def test_copy(self, deep, using_copy_on_write, warn_copy_on_write): + ser = Series(np.arange(10), dtype="float64") + + # default deep is True + if deep == "default": + ser2 = ser.copy() + else: + ser2 = ser.copy(deep=deep) + + if using_copy_on_write: + # INFO(CoW) a shallow copy doesn't yet copy the data + # but parent will not be modified (CoW) + if deep is None or deep is False: + assert np.may_share_memory(ser.values, ser2.values) + else: + assert not np.may_share_memory(ser.values, ser2.values) + + with tm.assert_cow_warning(warn_copy_on_write and deep is False): + ser2[::2] = np.nan + + if deep is not False or using_copy_on_write: + # Did not modify original Series + assert np.isnan(ser2[0]) + assert not np.isnan(ser[0]) + else: + # we DID modify the original Series + assert np.isnan(ser2[0]) + assert np.isnan(ser[0]) + + @pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning") + @pytest.mark.parametrize("deep", ["default", None, False, True]) + def test_copy_tzaware(self, deep, using_copy_on_write): + # GH#11794 + # copy of tz-aware + expected = Series([Timestamp("2012/01/01", tz="UTC")]) + expected2 = Series([Timestamp("1999/01/01", tz="UTC")]) + + ser = Series([Timestamp("2012/01/01", tz="UTC")]) + + if deep == "default": + ser2 = ser.copy() + else: + ser2 = ser.copy(deep=deep) + + if using_copy_on_write: + # INFO(CoW) a shallow copy doesn't yet copy the data + # but parent will not be modified (CoW) + if deep is None or deep is False: + assert np.may_share_memory(ser.values, ser2.values) + else: + assert not np.may_share_memory(ser.values, ser2.values) + + ser2[0] = Timestamp("1999/01/01", tz="UTC") + + # default deep is True + if deep is not False or using_copy_on_write: + # Did not modify original Series + tm.assert_series_equal(ser2, expected2) + tm.assert_series_equal(ser, expected) + else: + # we DID modify the original Series + tm.assert_series_equal(ser2, expected2) + tm.assert_series_equal(ser, expected2) + + def test_copy_name(self, datetime_series): + result = datetime_series.copy() + assert result.name == datetime_series.name + + def test_copy_index_name_checking(self, datetime_series): + # don't want to be able to modify the index stored elsewhere after + # making a copy + + datetime_series.index.name = None + assert datetime_series.index.name is None + assert datetime_series is datetime_series + + cp = datetime_series.copy() + cp.index.name = "foo" + assert datetime_series.index.name is None diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py new file mode 100644 index 0000000000000000000000000000000000000000..9ba163f347198a5533c67fdeffeb4012a804066f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py @@ -0,0 +1,34 @@ +import numpy as np + +import pandas as pd +from pandas import ( + Categorical, + Series, +) +import pandas._testing as tm + + +class TestSeriesCount: + def test_count(self, datetime_series): + assert datetime_series.count() == len(datetime_series) + + datetime_series[::2] = np.nan + + assert datetime_series.count() == np.isfinite(datetime_series).sum() + + def test_count_inf_as_na(self): + # GH#29478 + ser = Series([pd.Timestamp("1990/1/1")]) + msg = "use_inf_as_na option is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + with pd.option_context("use_inf_as_na", True): + assert ser.count() == 1 + + def test_count_categorical(self): + ser = Series( + Categorical( + [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True + ) + ) + result = ser.count() + assert result == 2 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py new file mode 100644 index 0000000000000000000000000000000000000000..79ec11feb530817e735cf1d45cd7985839cd4d05 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py @@ -0,0 +1,203 @@ +import numpy as np +import pytest + +from pandas.compat.numpy import np_version_gte1p25 + +from pandas.core.dtypes.common import ( + is_complex_dtype, + is_extension_array_dtype, +) + +from pandas import ( + NA, + Period, + Series, + Timedelta, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestSeriesDescribe: + def test_describe_ints(self): + ser = Series([0, 1, 2, 3, 4], name="int_data") + result = ser.describe() + expected = Series( + [5, 2, ser.std(), 0, 1, 2, 3, 4], + name="int_data", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_bools(self): + ser = Series([True, True, False, False, False], name="bool_data") + result = ser.describe() + expected = Series( + [5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"] + ) + tm.assert_series_equal(result, expected) + + def test_describe_strs(self): + ser = Series(["a", "a", "b", "c", "d"], name="str_data") + result = ser.describe() + expected = Series( + [5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"] + ) + tm.assert_series_equal(result, expected) + + def test_describe_timedelta64(self): + ser = Series( + [ + Timedelta("1 days"), + Timedelta("2 days"), + Timedelta("3 days"), + Timedelta("4 days"), + Timedelta("5 days"), + ], + name="timedelta_data", + ) + result = ser.describe() + expected = Series( + [5, ser[2], ser.std(), ser[0], ser[1], ser[2], ser[3], ser[4]], + name="timedelta_data", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_period(self): + ser = Series( + [Period("2020-01", "M"), Period("2020-01", "M"), Period("2019-12", "M")], + name="period_data", + ) + result = ser.describe() + expected = Series( + [3, 2, ser[0], 2], + name="period_data", + index=["count", "unique", "top", "freq"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_empty_object(self): + # https://github.com/pandas-dev/pandas/issues/27183 + s = Series([None, None], dtype=object) + result = s.describe() + expected = Series( + [0, 0, np.nan, np.nan], + dtype=object, + index=["count", "unique", "top", "freq"], + ) + tm.assert_series_equal(result, expected) + + result = s[:0].describe() + tm.assert_series_equal(result, expected) + # ensure NaN, not None + assert np.isnan(result.iloc[2]) + assert np.isnan(result.iloc[3]) + + def test_describe_with_tz(self, tz_naive_fixture): + # GH 21332 + tz = tz_naive_fixture + name = str(tz_naive_fixture) + start = Timestamp(2018, 1, 1) + end = Timestamp(2018, 1, 5) + s = Series(date_range(start, end, tz=tz), name=name) + result = s.describe() + expected = Series( + [ + 5, + Timestamp(2018, 1, 3).tz_localize(tz), + start.tz_localize(tz), + s[1], + s[2], + s[3], + end.tz_localize(tz), + ], + name=name, + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_with_tz_numeric(self): + name = tz = "CET" + start = Timestamp(2018, 1, 1) + end = Timestamp(2018, 1, 5) + s = Series(date_range(start, end, tz=tz), name=name) + + result = s.describe() + + expected = Series( + [ + 5, + Timestamp("2018-01-03 00:00:00", tz=tz), + Timestamp("2018-01-01 00:00:00", tz=tz), + Timestamp("2018-01-02 00:00:00", tz=tz), + Timestamp("2018-01-03 00:00:00", tz=tz), + Timestamp("2018-01-04 00:00:00", tz=tz), + Timestamp("2018-01-05 00:00:00", tz=tz), + ], + name=name, + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_datetime_is_numeric_includes_datetime(self): + s = Series(date_range("2012", periods=3)) + result = s.describe() + expected = Series( + [ + 3, + Timestamp("2012-01-02"), + Timestamp("2012-01-01"), + Timestamp("2012-01-01T12:00:00"), + Timestamp("2012-01-02"), + Timestamp("2012-01-02T12:00:00"), + Timestamp("2012-01-03"), + ], + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.filterwarnings("ignore:Casting complex values to real discards") + def test_numeric_result_dtype(self, any_numeric_dtype): + # GH#48340 - describe should always return float on non-complex numeric input + if is_extension_array_dtype(any_numeric_dtype): + dtype = "Float64" + else: + dtype = "complex128" if is_complex_dtype(any_numeric_dtype) else None + + ser = Series([0, 1], dtype=any_numeric_dtype) + if dtype == "complex128" and np_version_gte1p25: + with pytest.raises( + TypeError, match=r"^a must be an array of real numbers$" + ): + ser.describe() + return + result = ser.describe() + expected = Series( + [ + 2.0, + 0.5, + ser.std(), + 0, + 0.25, + 0.5, + 0.75, + 1.0, + ], + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + dtype=dtype, + ) + tm.assert_series_equal(result, expected) + + def test_describe_one_element_ea(self): + # GH#52515 + ser = Series([0.0], dtype="Float64") + with tm.assert_produces_warning(None): + result = ser.describe() + expected = Series( + [1, 0, NA, 0, 0, 0, 0, 0], + dtype="Float64", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py new file mode 100644 index 0000000000000000000000000000000000000000..18de81a927c3a7697ee67290c8a6c73336de5643 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py @@ -0,0 +1,88 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + TimedeltaIndex, + date_range, +) +import pandas._testing as tm + + +class TestSeriesDiff: + def test_diff_np(self): + # TODO(__array_function__): could make np.diff return a Series + # matching ser.diff() + + ser = Series(np.arange(5)) + + res = np.diff(ser) + expected = np.array([1, 1, 1, 1]) + tm.assert_numpy_array_equal(res, expected) + + def test_diff_int(self): + # int dtype + a = 10000000000000000 + b = a + 1 + ser = Series([a, b]) + + result = ser.diff() + assert result[1] == 1 + + def test_diff_tz(self): + # Combined datetime diff, normal diff and boolean diff test + ts = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10), + name="ts", + ) + ts.diff() + + # neg n + result = ts.diff(-1) + expected = ts - ts.shift(-1) + tm.assert_series_equal(result, expected) + + # 0 + result = ts.diff(0) + expected = ts - ts + tm.assert_series_equal(result, expected) + + def test_diff_dt64(self): + # datetime diff (GH#3100) + ser = Series(date_range("20130102", periods=5)) + result = ser.diff() + expected = ser - ser.shift(1) + tm.assert_series_equal(result, expected) + + # timedelta diff + result = result - result.shift(1) # previous result + expected = expected.diff() # previously expected + tm.assert_series_equal(result, expected) + + def test_diff_dt64tz(self): + # with tz + ser = Series( + date_range("2000-01-01 09:00:00", periods=5, tz="US/Eastern"), name="foo" + ) + result = ser.diff() + expected = Series(TimedeltaIndex(["NaT"] + ["1 days"] * 4), name="foo") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "input,output,diff", + [([False, True, True, False, False], [np.nan, True, False, True, False], 1)], + ) + def test_diff_bool(self, input, output, diff): + # boolean series (test for fixing #17294) + ser = Series(input) + result = ser.diff() + expected = Series(output) + tm.assert_series_equal(result, expected) + + def test_diff_object_dtype(self): + # object series + ser = Series([False, True, 5.0, np.nan, True, False]) + result = ser.diff() + expected = ser - ser.shift(1) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py new file mode 100644 index 0000000000000000000000000000000000000000..10b2e98586365929e4ff05df0d93660d55cf8850 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py @@ -0,0 +1,267 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Categorical, + Series, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, False, False, True, True, False])), + ("last", Series([False, True, True, False, False, False, False])), + (False, Series([False, True, True, False, True, True, False])), + ], +) +def test_drop_duplicates(any_numpy_dtype, keep, expected): + tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) + + if tc.dtype == "bool": + pytest.skip("tested separately in test_drop_duplicates_bool") + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=keep, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, True, True])), + ("last", Series([True, True, False, False])), + (False, Series([True, True, True, True])), + ], +) +def test_drop_duplicates_bool(keep, expected): + tc = Series([True, False, True, False]) + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=keep, inplace=True) + tm.assert_series_equal(sc, tc[~expected]) + assert return_value is None + + +@pytest.mark.parametrize("values", [[], list(range(5))]) +def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values): + tc = Series(values, dtype=np.dtype(any_numpy_dtype)) + expected = Series([False] * len(tc), dtype="bool") + + if tc.dtype == "bool": + # 0 -> False and 1-> True + # any other value would be duplicated + tc = tc[:2] + expected = expected[:2] + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + + result_dropped = tc.drop_duplicates(keep=keep) + tm.assert_series_equal(result_dropped, tc) + + # validate shallow copy + assert result_dropped is not tc + + +class TestSeriesDropDuplicates: + @pytest.fixture( + params=["int_", "uint", "float64", "str_", "timedelta64[h]", "datetime64[D]"] + ) + def dtype(self, request): + return request.param + + @pytest.fixture + def cat_series_unused_category(self, dtype, ordered): + # Test case 1 + cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) + + input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) + cat = Categorical(input1, categories=cat_array, ordered=ordered) + tc1 = Series(cat) + return tc1 + + def test_drop_duplicates_categorical_non_bool(self, cat_series_unused_category): + tc1 = cat_series_unused_category + + expected = Series([False, False, False, True]) + + result = tc1.duplicated() + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates() + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + def test_drop_duplicates_categorical_non_bool_keeplast( + self, cat_series_unused_category + ): + tc1 = cat_series_unused_category + + expected = Series([False, False, True, False]) + + result = tc1.duplicated(keep="last") + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates(keep="last") + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + def test_drop_duplicates_categorical_non_bool_keepfalse( + self, cat_series_unused_category + ): + tc1 = cat_series_unused_category + + expected = Series([False, False, True, True]) + + result = tc1.duplicated(keep=False) + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates(keep=False) + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + @pytest.fixture + def cat_series(self, dtype, ordered): + # no unused categories, unlike cat_series_unused_category + cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) + + input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype)) + cat = Categorical(input2, categories=cat_array, ordered=ordered) + tc2 = Series(cat) + return tc2 + + def test_drop_duplicates_categorical_non_bool2(self, cat_series): + tc2 = cat_series + + expected = Series([False, False, False, False, True, True, False]) + + result = tc2.duplicated() + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates() + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_non_bool2_keeplast(self, cat_series): + tc2 = cat_series + + expected = Series([False, True, True, False, False, False, False]) + + result = tc2.duplicated(keep="last") + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates(keep="last") + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_non_bool2_keepfalse(self, cat_series): + tc2 = cat_series + + expected = Series([False, True, True, False, True, True, False]) + + result = tc2.duplicated(keep=False) + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates(keep=False) + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_bool(self, ordered): + tc = Series( + Categorical( + [True, False, True, False], categories=[True, False], ordered=ordered + ) + ) + + expected = Series([False, False, True, True]) + tm.assert_series_equal(tc.duplicated(), expected) + tm.assert_series_equal(tc.drop_duplicates(), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + expected = Series([True, True, False, False]) + tm.assert_series_equal(tc.duplicated(keep="last"), expected) + tm.assert_series_equal(tc.drop_duplicates(keep="last"), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + expected = Series([True, True, True, True]) + tm.assert_series_equal(tc.duplicated(keep=False), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=False), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + def test_drop_duplicates_categorical_bool_na(self, nulls_fixture): + # GH#44351 + ser = Series( + Categorical( + [True, False, True, False, nulls_fixture], + categories=[True, False], + ordered=True, + ) + ) + result = ser.drop_duplicates() + expected = Series( + Categorical([True, False, np.nan], categories=[True, False], ordered=True), + index=[0, 1, 4], + ) + tm.assert_series_equal(result, expected) + + def test_drop_duplicates_ignore_index(self): + # GH#48304 + ser = Series([1, 2, 2, 3]) + result = ser.drop_duplicates(ignore_index=True) + expected = Series([1, 2, 3]) + tm.assert_series_equal(result, expected) + + def test_duplicated_arrow_dtype(self): + pytest.importorskip("pyarrow") + ser = Series([True, False, None, False], dtype="bool[pyarrow]") + result = ser.drop_duplicates() + expected = Series([True, False, None], dtype="bool[pyarrow]") + tm.assert_series_equal(result, expected) + + def test_drop_duplicates_arrow_strings(self): + # GH#54904 + pa = pytest.importorskip("pyarrow") + ser = Series(["a", "a"], dtype=pd.ArrowDtype(pa.string())) + result = ser.drop_duplicates() + expecetd = Series(["a"], dtype=pd.ArrowDtype(pa.string())) + tm.assert_series_equal(result, expecetd) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py new file mode 100644 index 0000000000000000000000000000000000000000..d03fcac24003e99b724a2e7ac43b66d3d9b51bcf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py @@ -0,0 +1,117 @@ +import numpy as np +import pytest + +from pandas import ( + DatetimeIndex, + IntervalIndex, + NaT, + Period, + Series, + Timestamp, +) +import pandas._testing as tm + + +class TestDropna: + def test_dropna_empty(self): + ser = Series([], dtype=object) + + assert len(ser.dropna()) == 0 + return_value = ser.dropna(inplace=True) + assert return_value is None + assert len(ser) == 0 + + # invalid axis + msg = "No axis named 1 for object type Series" + with pytest.raises(ValueError, match=msg): + ser.dropna(axis=1) + + def test_dropna_preserve_name(self, datetime_series): + datetime_series[:5] = np.nan + result = datetime_series.dropna() + assert result.name == datetime_series.name + name = datetime_series.name + ts = datetime_series.copy() + return_value = ts.dropna(inplace=True) + assert return_value is None + assert ts.name == name + + def test_dropna_no_nan(self): + for ser in [ + Series([1, 2, 3], name="x"), + Series([False, True, False], name="x"), + ]: + result = ser.dropna() + tm.assert_series_equal(result, ser) + assert result is not ser + + s2 = ser.copy() + return_value = s2.dropna(inplace=True) + assert return_value is None + tm.assert_series_equal(s2, ser) + + def test_dropna_intervals(self): + ser = Series( + [np.nan, 1, 2, 3], + IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]), + ) + + result = ser.dropna() + expected = ser.iloc[1:] + tm.assert_series_equal(result, expected) + + def test_dropna_period_dtype(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + result = ser.dropna() + expected = Series([Period("2011-01", freq="M")]) + + tm.assert_series_equal(result, expected) + + def test_datetime64_tz_dropna(self, unit): + # DatetimeLikeBlock + ser = Series( + [ + Timestamp("2011-01-01 10:00"), + NaT, + Timestamp("2011-01-03 10:00"), + NaT, + ], + dtype=f"M8[{unit}]", + ) + result = ser.dropna() + expected = Series( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")], + index=[0, 2], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(result, expected) + + # DatetimeTZBlock + idx = DatetimeIndex( + ["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz="Asia/Tokyo" + ).as_unit(unit) + ser = Series(idx) + assert ser.dtype == f"datetime64[{unit}, Asia/Tokyo]" + result = ser.dropna() + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"), + ], + index=[0, 2], + dtype=f"datetime64[{unit}, Asia/Tokyo]", + ) + assert result.dtype == f"datetime64[{unit}, Asia/Tokyo]" + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val", [1, 1.5]) + def test_dropna_ignore_index(self, val): + # GH#31725 + ser = Series([1, 2, val], index=[3, 2, 1]) + result = ser.dropna(ignore_index=True) + expected = Series([1, 2, val]) + tm.assert_series_equal(result, expected) + + ser.dropna(ignore_index=True, inplace=True) + tm.assert_series_equal(ser, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py new file mode 100644 index 0000000000000000000000000000000000000000..82260bc2a65b9f7e387532b380b9ce013d29cbb7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py @@ -0,0 +1,7 @@ +import numpy as np + + +class TestSeriesDtypes: + def test_dtype(self, datetime_series): + assert datetime_series.dtype == np.dtype("float64") + assert datetime_series.dtypes == np.dtype("float64") diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py new file mode 100644 index 0000000000000000000000000000000000000000..5a0188585ef30c12f7222a054714957df4ed2ff2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py @@ -0,0 +1,175 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + + +def test_basic(): + s = pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd"), name="foo") + result = s.explode() + expected = pd.Series( + [0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object, name="foo" + ) + tm.assert_series_equal(result, expected) + + +def test_mixed_type(): + s = pd.Series( + [[0, 1, 2], np.nan, None, np.array([]), pd.Series(["a", "b"])], name="foo" + ) + result = s.explode() + expected = pd.Series( + [0, 1, 2, np.nan, None, np.nan, "a", "b"], + index=[0, 0, 0, 1, 2, 3, 4, 4], + dtype=object, + name="foo", + ) + tm.assert_series_equal(result, expected) + + +def test_empty(): + s = pd.Series(dtype=object) + result = s.explode() + expected = s.copy() + tm.assert_series_equal(result, expected) + + +def test_nested_lists(): + s = pd.Series([[[1, 2, 3]], [1, 2], 1]) + result = s.explode() + expected = pd.Series([[1, 2, 3], 1, 2, 1], index=[0, 1, 1, 2]) + tm.assert_series_equal(result, expected) + + +def test_multi_index(): + s = pd.Series( + [[0, 1, 2], np.nan, [], (3, 4)], + name="foo", + index=pd.MultiIndex.from_product([list("ab"), range(2)], names=["foo", "bar"]), + ) + result = s.explode() + index = pd.MultiIndex.from_tuples( + [("a", 0), ("a", 0), ("a", 0), ("a", 1), ("b", 0), ("b", 1), ("b", 1)], + names=["foo", "bar"], + ) + expected = pd.Series( + [0, 1, 2, np.nan, np.nan, 3, 4], index=index, dtype=object, name="foo" + ) + tm.assert_series_equal(result, expected) + + +def test_large(): + s = pd.Series([range(256)]).explode() + result = s.explode() + tm.assert_series_equal(result, s) + + +def test_invert_array(): + df = pd.DataFrame({"a": pd.date_range("20190101", periods=3, tz="UTC")}) + + listify = df.apply(lambda x: x.array, axis=1) + result = listify.explode() + tm.assert_series_equal(result, df["a"].rename()) + + +@pytest.mark.parametrize( + "s", [pd.Series([1, 2, 3]), pd.Series(pd.date_range("2019", periods=3, tz="UTC"))] +) +def test_non_object_dtype(s): + result = s.explode() + tm.assert_series_equal(result, s) + + +def test_typical_usecase(): + df = pd.DataFrame( + [{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}], + columns=["var1", "var2"], + ) + exploded = df.var1.str.split(",").explode() + result = df[["var2"]].join(exploded) + expected = pd.DataFrame( + {"var2": [1, 1, 1, 2, 2, 2], "var1": list("abcdef")}, + columns=["var2", "var1"], + index=[0, 0, 0, 1, 1, 1], + ) + tm.assert_frame_equal(result, expected) + + +def test_nested_EA(): + # a nested EA array + s = pd.Series( + [ + pd.date_range("20170101", periods=3, tz="UTC"), + pd.date_range("20170104", periods=3, tz="UTC"), + ] + ) + result = s.explode() + expected = pd.Series( + pd.date_range("20170101", periods=6, tz="UTC"), index=[0, 0, 0, 1, 1, 1] + ) + tm.assert_series_equal(result, expected) + + +def test_duplicate_index(): + # GH 28005 + s = pd.Series([[1, 2], [3, 4]], index=[0, 0]) + result = s.explode() + expected = pd.Series([1, 2, 3, 4], index=[0, 0, 0, 0], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_ignore_index(): + # GH 34932 + s = pd.Series([[1, 2], [3, 4]]) + result = s.explode(ignore_index=True) + expected = pd.Series([1, 2, 3, 4], index=[0, 1, 2, 3], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_explode_sets(): + # https://github.com/pandas-dev/pandas/issues/35614 + s = pd.Series([{"a", "b", "c"}], index=[1]) + result = s.explode().sort_values() + expected = pd.Series(["a", "b", "c"], index=[1, 1, 1]) + tm.assert_series_equal(result, expected) + + +def test_explode_scalars_can_ignore_index(): + # https://github.com/pandas-dev/pandas/issues/40487 + s = pd.Series([1, 2, 3], index=["a", "b", "c"]) + result = s.explode(ignore_index=True) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("ignore_index", [True, False]) +def test_explode_pyarrow_list_type(ignore_index): + # GH 53602 + pa = pytest.importorskip("pyarrow") + + data = [ + [None, None], + [1], + [], + [2, 3], + None, + ] + ser = pd.Series(data, dtype=pd.ArrowDtype(pa.list_(pa.int64()))) + result = ser.explode(ignore_index=ignore_index) + expected = pd.Series( + data=[None, None, 1, None, 2, 3, None], + index=None if ignore_index else [0, 0, 1, 2, 3, 3, 4], + dtype=pd.ArrowDtype(pa.int64()), + ) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("ignore_index", [True, False]) +def test_explode_pyarrow_non_list_type(ignore_index): + pa = pytest.importorskip("pyarrow") + data = [1, 2, 3] + ser = pd.Series(data, dtype=pd.ArrowDtype(pa.int64())) + result = ser.explode(ignore_index=ignore_index) + expected = pd.Series([1, 2, 3], dtype="int64[pyarrow]", index=[0, 1, 2]) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py new file mode 100644 index 0000000000000000000000000000000000000000..293259661cd9a107eb4ad8e33c0b73dfb4010a14 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py @@ -0,0 +1,1155 @@ +from datetime import ( + datetime, + timedelta, + timezone, +) + +import numpy as np +import pytest +import pytz + +from pandas import ( + Categorical, + DataFrame, + DatetimeIndex, + NaT, + Period, + Series, + Timedelta, + Timestamp, + date_range, + isna, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.arrays import period_array + + +@pytest.mark.filterwarnings( + "ignore:(Series|DataFrame).fillna with 'method' is deprecated:FutureWarning" +) +class TestSeriesFillNA: + def test_fillna_nat(self): + series = Series([0, 1, 2, NaT._value], dtype="M8[ns]") + + filled = series.fillna(method="pad") + filled2 = series.fillna(value=series.values[2]) + + expected = series.copy() + expected.iloc[3] = expected.iloc[2] + + tm.assert_series_equal(filled, expected) + tm.assert_series_equal(filled2, expected) + + df = DataFrame({"A": series}) + filled = df.fillna(method="pad") + filled2 = df.fillna(value=series.values[2]) + expected = DataFrame({"A": expected}) + tm.assert_frame_equal(filled, expected) + tm.assert_frame_equal(filled2, expected) + + series = Series([NaT._value, 0, 1, 2], dtype="M8[ns]") + + filled = series.fillna(method="bfill") + filled2 = series.fillna(value=series[1]) + + expected = series.copy() + expected[0] = expected[1] + + tm.assert_series_equal(filled, expected) + tm.assert_series_equal(filled2, expected) + + df = DataFrame({"A": series}) + filled = df.fillna(method="bfill") + filled2 = df.fillna(value=series[1]) + expected = DataFrame({"A": expected}) + tm.assert_frame_equal(filled, expected) + tm.assert_frame_equal(filled2, expected) + + def test_fillna_value_or_method(self, datetime_series): + msg = "Cannot specify both 'value' and 'method'" + with pytest.raises(ValueError, match=msg): + datetime_series.fillna(value=0, method="ffill") + + def test_fillna(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + + tm.assert_series_equal(ts, ts.fillna(method="ffill")) + + ts.iloc[2] = np.nan + + exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(method="ffill"), exp) + + exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(method="backfill"), exp) + + exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(value=5), exp) + + msg = "Must specify a fill 'value' or 'method'" + with pytest.raises(ValueError, match=msg): + ts.fillna() + + def test_fillna_nonscalar(self): + # GH#5703 + s1 = Series([np.nan]) + s2 = Series([1]) + result = s1.fillna(s2) + expected = Series([1.0]) + tm.assert_series_equal(result, expected) + result = s1.fillna({}) + tm.assert_series_equal(result, s1) + result = s1.fillna(Series((), dtype=object)) + tm.assert_series_equal(result, s1) + result = s2.fillna(s1) + tm.assert_series_equal(result, s2) + result = s1.fillna({0: 1}) + tm.assert_series_equal(result, expected) + result = s1.fillna({1: 1}) + tm.assert_series_equal(result, Series([np.nan])) + result = s1.fillna({0: 1, 1: 1}) + tm.assert_series_equal(result, expected) + result = s1.fillna(Series({0: 1, 1: 1})) + tm.assert_series_equal(result, expected) + result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) + tm.assert_series_equal(result, s1) + + def test_fillna_aligns(self): + s1 = Series([0, 1, 2], list("abc")) + s2 = Series([0, np.nan, 2], list("bac")) + result = s2.fillna(s1) + expected = Series([0, 0, 2.0], list("bac")) + tm.assert_series_equal(result, expected) + + def test_fillna_limit(self): + ser = Series(np.nan, index=[0, 1, 2]) + result = ser.fillna(999, limit=1) + expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) + tm.assert_series_equal(result, expected) + + result = ser.fillna(999, limit=2) + expected = Series([999, 999, np.nan], index=[0, 1, 2]) + tm.assert_series_equal(result, expected) + + def test_fillna_dont_cast_strings(self): + # GH#9043 + # make sure a string representation of int/float values can be filled + # correctly without raising errors or being converted + vals = ["0", "1.5", "-0.3"] + for val in vals: + ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") + result = ser.fillna(val) + expected = Series([0, 1, val, val, 4], dtype="object") + tm.assert_series_equal(result, expected) + + def test_fillna_consistency(self): + # GH#16402 + # fillna with a tz aware to a tz-naive, should result in object + + ser = Series([Timestamp("20130101"), NaT]) + + result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) + expected = Series( + [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], + dtype="object", + ) + tm.assert_series_equal(result, expected) + + result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern")) + tm.assert_series_equal(result, expected) + + result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern")) + tm.assert_series_equal(result, expected) + + # with a non-datetime + result = ser.fillna("foo") + expected = Series([Timestamp("20130101"), "foo"]) + tm.assert_series_equal(result, expected) + + # assignment + ser2 = ser.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser2[1] = "foo" + tm.assert_series_equal(ser2, expected) + + def test_fillna_downcast(self): + # GH#15277 + # infer int64 from float64 + ser = Series([1.0, np.nan]) + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.fillna(0, downcast="infer") + expected = Series([1, 0]) + tm.assert_series_equal(result, expected) + + # infer int64 from float64 when fillna value is a dict + ser = Series([1.0, np.nan]) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.fillna({1: 0}, downcast="infer") + expected = Series([1, 0]) + tm.assert_series_equal(result, expected) + + def test_fillna_downcast_infer_objects_to_numeric(self): + # GH#44241 if we have object-dtype, 'downcast="infer"' should + # _actually_ infer + + arr = np.arange(5).astype(object) + arr[3] = np.nan + + ser = Series(arr) + + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.fillna(3, downcast="infer") + expected = Series(np.arange(5), dtype=np.int64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in ffill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.ffill(downcast="infer") + expected = Series([0, 1, 2, 2, 4], dtype=np.int64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in bfill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.bfill(downcast="infer") + expected = Series([0, 1, 2, 4, 4], dtype=np.int64) + tm.assert_series_equal(res, expected) + + # with a non-round float present, we will downcast to float64 + ser[2] = 2.5 + + expected = Series([0, 1, 2.5, 3, 4], dtype=np.float64) + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.fillna(3, downcast="infer") + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in ffill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.ffill(downcast="infer") + expected = Series([0, 1, 2.5, 2.5, 4], dtype=np.float64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in bfill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.bfill(downcast="infer") + expected = Series([0, 1, 2.5, 4, 4], dtype=np.float64) + tm.assert_series_equal(res, expected) + + def test_timedelta_fillna(self, frame_or_series, unit): + # GH#3371 + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ], + dtype=f"M8[{unit}]", + ) + td = ser.diff() + obj = frame_or_series(td).copy() + + # reg fillna + result = obj.fillna(Timedelta(seconds=0)) + expected = Series( + [ + timedelta(0), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + # GH#45746 pre-1.? ints were interpreted as seconds. then that was + # deprecated and changed to raise. In 2.0 it casts to common dtype, + # consistent with every other dtype's behavior + res = obj.fillna(1) + expected = obj.astype(object).fillna(1) + tm.assert_equal(res, expected) + + result = obj.fillna(Timedelta(seconds=1)) + expected = Series( + [ + timedelta(seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(timedelta(days=1, seconds=1)) + expected = Series( + [ + timedelta(days=1, seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(np.timedelta64(10**9)) + expected = Series( + [ + timedelta(seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(NaT) + expected = Series( + [ + NaT, + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + # ffill + td[2] = np.nan + obj = frame_or_series(td).copy() + result = obj.ffill() + expected = td.fillna(Timedelta(seconds=0)) + expected[0] = np.nan + expected = frame_or_series(expected) + + tm.assert_equal(result, expected) + + # bfill + td[2] = np.nan + obj = frame_or_series(td) + result = obj.bfill() + expected = td.fillna(Timedelta(seconds=0)) + expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + def test_datetime64_fillna(self): + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ] + ) + ser[2] = np.nan + + # ffill + result = ser.ffill() + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130103 9:01:01"), + ] + ) + tm.assert_series_equal(result, expected) + + # bfill + result = ser.bfill() + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130103 9:01:01"), + Timestamp("20130103 9:01:01"), + ] + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "scalar", + [ + False, + pytest.param( + True, + marks=pytest.mark.xfail( + reason="GH#56410 scalar case not yet addressed" + ), + ), + ], + ) + @pytest.mark.parametrize("tz", [None, "UTC"]) + def test_datetime64_fillna_mismatched_reso_no_rounding(self, tz, scalar): + # GH#56410 + dti = date_range("2016-01-01", periods=3, unit="s", tz=tz) + item = Timestamp("2016-02-03 04:05:06.789", tz=tz) + vec = date_range(item, periods=3, unit="ms") + + exp_dtype = "M8[ms]" if tz is None else "M8[ms, UTC]" + expected = Series([item, dti[1], dti[2]], dtype=exp_dtype) + + ser = Series(dti) + ser[0] = NaT + ser2 = ser.copy() + + res = ser.fillna(item) + res2 = ser2.fillna(Series(vec)) + + if scalar: + tm.assert_series_equal(res, expected) + else: + tm.assert_series_equal(res2, expected) + + @pytest.mark.parametrize( + "scalar", + [ + False, + pytest.param( + True, + marks=pytest.mark.xfail( + reason="GH#56410 scalar case not yet addressed" + ), + ), + ], + ) + def test_timedelta64_fillna_mismatched_reso_no_rounding(self, scalar): + # GH#56410 + tdi = date_range("2016-01-01", periods=3, unit="s") - Timestamp("1970-01-01") + item = Timestamp("2016-02-03 04:05:06.789") - Timestamp("1970-01-01") + vec = timedelta_range(item, periods=3, unit="ms") + + expected = Series([item, tdi[1], tdi[2]], dtype="m8[ms]") + + ser = Series(tdi) + ser[0] = NaT + ser2 = ser.copy() + + res = ser.fillna(item) + res2 = ser2.fillna(Series(vec)) + + if scalar: + tm.assert_series_equal(res, expected) + else: + tm.assert_series_equal(res2, expected) + + def test_datetime64_fillna_backfill(self): + # GH#6587 + # make sure that we are treating as integer when filling + ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"], dtype="M8[ns]") + + expected = Series( + [ + "2013-08-05 15:30:00.000001", + "2013-08-05 15:30:00.000001", + "2013-08-05 15:30:00.000001", + ], + dtype="M8[ns]", + ) + result = ser.fillna(method="backfill") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) + def test_datetime64_tz_fillna(self, tz, unit): + # DatetimeLikeBlock + ser = Series( + [ + Timestamp("2011-01-01 10:00"), + NaT, + Timestamp("2011-01-03 10:00"), + NaT, + ], + dtype=f"M8[{unit}]", + ) + null_loc = Series([False, True, False, True]) + + result = ser.fillna(Timestamp("2011-01-02 10:00")) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-02 10:00"), + ], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(expected, result) + # check s is not changed + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna("AAA") + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + "AAA", + Timestamp("2011-01-03 10:00"), + "AAA", + ], + dtype=object, + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00"), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-04 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-04 10:00"), + ], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # DatetimeTZBlock + idx = DatetimeIndex( + ["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz + ).as_unit(unit) + ser = Series(idx) + assert ser.dtype == f"datetime64[{unit}, {tz}]" + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-02 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) + idx = DatetimeIndex( + [ + "2011-01-01 10:00", + "2011-01-02 10:00", + "2011-01-03 10:00", + "2011-01-02 10:00", + ], + tz=tz, + ).as_unit(unit) + expected = Series(idx) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) + idx = DatetimeIndex( + [ + "2011-01-01 10:00", + "2011-01-02 10:00", + "2011-01-03 10:00", + "2011-01-02 10:00", + ], + tz=tz, + ).as_unit(unit) + expected = Series(idx) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna("AAA") + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + "AAA", + Timestamp("2011-01-03 10:00", tz=tz), + "AAA", + ], + dtype=object, + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00"), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-04 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00", tz=tz), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-04 10:00", tz=tz), + ] + ).dt.as_unit(unit) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # filling with a naive/other zone, coerce to object + result = ser.fillna(Timestamp("20130101")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2013-01-01"), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2013-01-01"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # pre-2.0 fillna with mixed tzs would cast to object, in 2.0 + # it retains dtype. + result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz), + ] + ).dt.as_unit(unit) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + def test_fillna_dt64tz_with_method(self): + # with timezone + # GH#15855 + ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT]) + exp = Series( + [ + Timestamp("2012-11-11 00:00:00+01:00"), + Timestamp("2012-11-11 00:00:00+01:00"), + ] + ) + tm.assert_series_equal(ser.fillna(method="pad"), exp) + + ser = Series([NaT, Timestamp("2012-11-11 00:00:00+01:00")]) + exp = Series( + [ + Timestamp("2012-11-11 00:00:00+01:00"), + Timestamp("2012-11-11 00:00:00+01:00"), + ] + ) + tm.assert_series_equal(ser.fillna(method="bfill"), exp) + + def test_fillna_pytimedelta(self): + # GH#8209 + ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"]) + + result = ser.fillna(timedelta(1)) + expected = Series(Timedelta("1 days"), index=["A", "B"]) + tm.assert_series_equal(result, expected) + + def test_fillna_period(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + + res = ser.fillna(Period("2012-01", freq="M")) + exp = Series([Period("2011-01", freq="M"), Period("2012-01", freq="M")]) + tm.assert_series_equal(res, exp) + assert res.dtype == "Period[M]" + + def test_fillna_dt64_timestamp(self, frame_or_series): + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ] + ) + ser[2] = np.nan + obj = frame_or_series(ser) + + # reg fillna + result = obj.fillna(Timestamp("20130104")) + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130104"), + Timestamp("20130103 9:01:01"), + ] + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(NaT) + expected = obj + tm.assert_equal(result, expected) + + def test_fillna_dt64_non_nao(self): + # GH#27419 + ser = Series([Timestamp("2010-01-01"), NaT, Timestamp("2000-01-01")]) + val = np.datetime64("1975-04-05", "ms") + + result = ser.fillna(val) + expected = Series( + [Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")] + ) + tm.assert_series_equal(result, expected) + + def test_fillna_numeric_inplace(self): + x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) + y = x.copy() + + return_value = y.fillna(value=0, inplace=True) + assert return_value is None + + expected = x.fillna(value=0) + tm.assert_series_equal(y, expected) + + # --------------------------------------------------------------- + # CategoricalDtype + + @pytest.mark.parametrize( + "fill_value, expected_output", + [ + ("a", ["a", "a", "b", "a", "a"]), + ({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]), + ({1: "a"}, ["a", "a", "b", np.nan, np.nan]), + ({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]), + (Series("a"), ["a", np.nan, "b", np.nan, np.nan]), + (Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]), + (Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]), + (Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]), + ], + ) + def test_fillna_categorical(self, fill_value, expected_output): + # GH#17033 + # Test fillna for a Categorical series + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b"])) + exp = Series(Categorical(expected_output, categories=["a", "b"])) + result = ser.fillna(fill_value) + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize( + "fill_value, expected_output", + [ + (Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]), + (Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]), + ( + Series( + Categorical( + ["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"] + ) + ), + ["a", "d", "b", "d", "a"], + ), + ], + ) + def test_fillna_categorical_with_new_categories(self, fill_value, expected_output): + # GH#26215 + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b", "c", "d", "e"])) + exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"])) + result = ser.fillna(fill_value) + tm.assert_series_equal(result, exp) + + def test_fillna_categorical_raises(self): + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b"])) + cat = ser._values + + msg = "Cannot setitem on a Categorical with a new category" + with pytest.raises(TypeError, match=msg): + ser.fillna("d") + + msg2 = "Length of 'value' does not match." + with pytest.raises(ValueError, match=msg2): + cat.fillna(Series("d")) + + with pytest.raises(TypeError, match=msg): + ser.fillna({1: "d", 3: "a"}) + + msg = '"value" parameter must be a scalar or dict, but you passed a "list"' + with pytest.raises(TypeError, match=msg): + ser.fillna(["a", "b"]) + + msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' + with pytest.raises(TypeError, match=msg): + ser.fillna(("a", "b")) + + msg = ( + '"value" parameter must be a scalar, dict ' + 'or Series, but you passed a "DataFrame"' + ) + with pytest.raises(TypeError, match=msg): + ser.fillna(DataFrame({1: ["a"], 3: ["b"]})) + + @pytest.mark.parametrize("dtype", [float, "float32", "float64"]) + @pytest.mark.parametrize("fill_type", tm.ALL_REAL_NUMPY_DTYPES) + @pytest.mark.parametrize("scalar", [True, False]) + def test_fillna_float_casting(self, dtype, fill_type, scalar): + # GH-43424 + ser = Series([np.nan, 1.2], dtype=dtype) + fill_values = Series([2, 2], dtype=fill_type) + if scalar: + fill_values = fill_values.dtype.type(2) + + result = ser.fillna(fill_values) + expected = Series([2.0, 1.2], dtype=dtype) + tm.assert_series_equal(result, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + mask = ser.isna().to_numpy() + ser[mask] = fill_values + tm.assert_series_equal(ser, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + ser.mask(mask, fill_values, inplace=True) + tm.assert_series_equal(ser, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + res = ser.where(~mask, fill_values) + tm.assert_series_equal(res, expected) + + def test_fillna_f32_upcast_with_dict(self): + # GH-43424 + ser = Series([np.nan, 1.2], dtype=np.float32) + result = ser.fillna({0: 1}) + expected = Series([1.0, 1.2], dtype=np.float32) + tm.assert_series_equal(result, expected) + + # --------------------------------------------------------------- + # Invalid Usages + + def test_fillna_invalid_method(self, datetime_series): + try: + datetime_series.fillna(method="ffil") + except ValueError as inst: + assert "ffil" in str(inst) + + def test_fillna_listlike_invalid(self): + ser = Series(np.random.default_rng(2).integers(-100, 100, 50)) + msg = '"value" parameter must be a scalar or dict, but you passed a "list"' + with pytest.raises(TypeError, match=msg): + ser.fillna([1, 2]) + + msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' + with pytest.raises(TypeError, match=msg): + ser.fillna((1, 2)) + + def test_fillna_method_and_limit_invalid(self): + # related GH#9217, make sure limit is an int and greater than 0 + ser = Series([1, 2, 3, None]) + msg = "|".join( + [ + r"Cannot specify both 'value' and 'method'\.", + "Limit must be greater than 0", + "Limit must be an integer", + ] + ) + for limit in [-1, 0, 1.0, 2.0]: + for method in ["backfill", "bfill", "pad", "ffill", None]: + with pytest.raises(ValueError, match=msg): + ser.fillna(1, limit=limit, method=method) + + def test_fillna_datetime64_with_timezone_tzinfo(self): + # https://github.com/pandas-dev/pandas/issues/38851 + # different tzinfos representing UTC treated as equal + ser = Series(date_range("2020", periods=3, tz="UTC")) + expected = ser.copy() + ser[1] = NaT + result = ser.fillna(datetime(2020, 1, 2, tzinfo=timezone.utc)) + tm.assert_series_equal(result, expected) + + # pre-2.0 we cast to object with mixed tzs, in 2.0 we retain dtype + ts = Timestamp("2000-01-01", tz="US/Pacific") + ser2 = Series(ser._values.tz_convert("dateutil/US/Pacific")) + assert ser2.dtype.kind == "M" + result = ser2.fillna(ts) + expected = Series( + [ser2[0], ts.tz_convert(ser2.dtype.tz), ser2[2]], + dtype=ser2.dtype, + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "input, input_fillna, expected_data, expected_categories", + [ + (["A", "B", None, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), + (["A", "B", np.nan, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), + ], + ) + def test_fillna_categorical_accept_same_type( + self, input, input_fillna, expected_data, expected_categories + ): + # GH32414 + cat = Categorical(input) + ser = Series(cat).fillna(input_fillna) + filled = cat.fillna(ser) + result = cat.fillna(filled) + expected = Categorical(expected_data, categories=expected_categories) + tm.assert_categorical_equal(result, expected) + + +@pytest.mark.filterwarnings( + "ignore:Series.fillna with 'method' is deprecated:FutureWarning" +) +class TestFillnaPad: + def test_fillna_bug(self): + ser = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) + filled = ser.fillna(method="ffill") + expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ser.index) + tm.assert_series_equal(filled, expected) + + filled = ser.fillna(method="bfill") + expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], ser.index) + tm.assert_series_equal(filled, expected) + + def test_ffill(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + ts.iloc[2] = np.nan + tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill")) + + def test_ffill_mixed_dtypes_without_missing_data(self): + # GH#14956 + series = Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1]) + result = series.ffill() + tm.assert_series_equal(series, result) + + def test_bfill(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + ts.iloc[2] = np.nan + tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill")) + + def test_pad_nan(self): + x = Series( + [np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float + ) + + return_value = x.fillna(method="pad", inplace=True) + assert return_value is None + + expected = Series( + [np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float + ) + tm.assert_series_equal(x[1:], expected[1:]) + assert np.isnan(x.iloc[0]), np.isnan(expected.iloc[0]) + + def test_series_fillna_limit(self): + index = np.arange(10) + s = Series(np.random.default_rng(2).standard_normal(10), index=index) + + result = s[:2].reindex(index) + result = result.fillna(method="pad", limit=5) + + expected = s[:2].reindex(index).fillna(method="pad") + expected[-3:] = np.nan + tm.assert_series_equal(result, expected) + + result = s[-2:].reindex(index) + result = result.fillna(method="bfill", limit=5) + + expected = s[-2:].reindex(index).fillna(method="backfill") + expected[:3] = np.nan + tm.assert_series_equal(result, expected) + + def test_series_pad_backfill_limit(self): + index = np.arange(10) + s = Series(np.random.default_rng(2).standard_normal(10), index=index) + + result = s[:2].reindex(index, method="pad", limit=5) + + expected = s[:2].reindex(index).fillna(method="pad") + expected[-3:] = np.nan + tm.assert_series_equal(result, expected) + + result = s[-2:].reindex(index, method="backfill", limit=5) + + expected = s[-2:].reindex(index).fillna(method="backfill") + expected[:3] = np.nan + tm.assert_series_equal(result, expected) + + def test_fillna_int(self): + ser = Series(np.random.default_rng(2).integers(-100, 100, 50)) + return_value = ser.fillna(method="ffill", inplace=True) + assert return_value is None + tm.assert_series_equal(ser.fillna(method="ffill", inplace=False), ser) + + def test_datetime64tz_fillna_round_issue(self): + # GH#14872 + + data = Series( + [NaT, NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)] + ) + + filled = data.bfill() + + expected = Series( + [ + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + ] + ) + + tm.assert_series_equal(filled, expected) + + def test_fillna_parr(self): + # GH-24537 + dti = date_range( + Timestamp.max - Timedelta(nanoseconds=10), periods=5, freq="ns" + ) + ser = Series(dti.to_period("ns")) + ser[2] = NaT + arr = period_array( + [ + Timestamp("2262-04-11 23:47:16.854775797"), + Timestamp("2262-04-11 23:47:16.854775798"), + Timestamp("2262-04-11 23:47:16.854775798"), + Timestamp("2262-04-11 23:47:16.854775800"), + Timestamp("2262-04-11 23:47:16.854775801"), + ], + freq="ns", + ) + expected = Series(arr) + + filled = ser.ffill() + + tm.assert_series_equal(filled, expected) + + @pytest.mark.parametrize("func", ["pad", "backfill"]) + def test_pad_backfill_deprecated(self, func): + # GH#33396 + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning): + getattr(ser, func)() + + +@pytest.mark.parametrize( + "data, expected_data, method, kwargs", + ( + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan], + "ffill", + {"limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan], + "ffill", + {"limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0], + "ffill", + {"limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan], + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + range(5), + range(5), + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "outside", "limit": 1}, + ), + ), +) +def test_ffill_bfill_limit_area(data, expected_data, method, kwargs): + # GH#56492 + s = Series(data) + expected = Series(expected_data) + result = getattr(s, method)(**kwargs) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py new file mode 100644 index 0000000000000000000000000000000000000000..29abac6b3780ec500ef0c635785c9624e4264934 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py @@ -0,0 +1,56 @@ +import numpy as np + +from pandas import ( + Series, + interval_range, +) +import pandas._testing as tm + + +class TestInferObjects: + def test_copy(self, index_or_series): + # GH#50096 + # case where we don't need to do inference because it is already non-object + obj = index_or_series(np.array([1, 2, 3], dtype="int64")) + + result = obj.infer_objects(copy=False) + assert tm.shares_memory(result, obj) + + # case where we try to do inference but can't do better than object + obj2 = index_or_series(np.array(["foo", 2], dtype=object)) + result2 = obj2.infer_objects(copy=False) + assert tm.shares_memory(result2, obj2) + + def test_infer_objects_series(self, index_or_series): + # GH#11221 + actual = index_or_series(np.array([1, 2, 3], dtype="O")).infer_objects() + expected = index_or_series([1, 2, 3]) + tm.assert_equal(actual, expected) + + actual = index_or_series(np.array([1, 2, 3, None], dtype="O")).infer_objects() + expected = index_or_series([1.0, 2.0, 3.0, np.nan]) + tm.assert_equal(actual, expected) + + # only soft conversions, unconvertible pass thru unchanged + + obj = index_or_series(np.array([1, 2, 3, None, "a"], dtype="O")) + actual = obj.infer_objects() + expected = index_or_series([1, 2, 3, None, "a"], dtype=object) + + assert actual.dtype == "object" + tm.assert_equal(actual, expected) + + def test_infer_objects_interval(self, index_or_series): + # GH#50090 + ii = interval_range(1, 10) + obj = index_or_series(ii) + + result = obj.astype(object).infer_objects() + tm.assert_equal(result, obj) + + def test_infer_objects_bytes(self): + # GH#49650 + ser = Series([b"a"], dtype="bytes") + expected = ser.copy() + result = ser.infer_objects() + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py new file mode 100644 index 0000000000000000000000000000000000000000..29dd704f6efa97804d4d18ceceb0e160fde6948c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py @@ -0,0 +1,181 @@ +from io import StringIO +from string import ascii_uppercase +import textwrap + +import numpy as np +import pytest + +from pandas.compat import PYPY + +from pandas import ( + CategoricalIndex, + MultiIndex, + Series, + date_range, +) + + +def test_info_categorical_column_just_works(): + n = 2500 + data = np.array(list("abcdefghij")).take( + np.random.default_rng(2).integers(0, 10, size=n, dtype=int) + ) + s = Series(data).astype("category") + s.isna() + buf = StringIO() + s.info(buf=buf) + + s2 = s[s == "d"] + buf = StringIO() + s2.info(buf=buf) + + +def test_info_categorical(): + # GH14298 + idx = CategoricalIndex(["a", "b"]) + s = Series(np.zeros(2), index=idx) + buf = StringIO() + s.info(buf=buf) + + +@pytest.mark.parametrize("verbose", [True, False]) +def test_info_series(lexsorted_two_level_string_multiindex, verbose): + index = lexsorted_two_level_string_multiindex + ser = Series(range(len(index)), index=index, name="sth") + buf = StringIO() + ser.info(verbose=verbose, buf=buf) + result = buf.getvalue() + + expected = textwrap.dedent( + """\ + + MultiIndex: 10 entries, ('foo', 'one') to ('qux', 'three') + """ + ) + if verbose: + expected += textwrap.dedent( + """\ + Series name: sth + Non-Null Count Dtype + -------------- ----- + 10 non-null int64 + """ + ) + expected += textwrap.dedent( + f"""\ + dtypes: int64(1) + memory usage: {ser.memory_usage()}.0+ bytes + """ + ) + assert result == expected + + +def test_info_memory(): + s = Series([1, 2], dtype="i8") + buf = StringIO() + s.info(buf=buf) + result = buf.getvalue() + memory_bytes = float(s.memory_usage()) + expected = textwrap.dedent( + f"""\ + + RangeIndex: 2 entries, 0 to 1 + Series name: None + Non-Null Count Dtype + -------------- ----- + 2 non-null int64 + dtypes: int64(1) + memory usage: {memory_bytes} bytes + """ + ) + assert result == expected + + +def test_info_wide(): + s = Series(np.random.default_rng(2).standard_normal(101)) + msg = "Argument `max_cols` can only be passed in DataFrame.info, not Series.info" + with pytest.raises(ValueError, match=msg): + s.info(max_cols=1) + + +def test_info_shows_dtypes(): + dtypes = [ + "int64", + "float64", + "datetime64[ns]", + "timedelta64[ns]", + "complex128", + "object", + "bool", + ] + n = 10 + for dtype in dtypes: + s = Series(np.random.default_rng(2).integers(2, size=n).astype(dtype)) + buf = StringIO() + s.info(buf=buf) + res = buf.getvalue() + name = f"{n:d} non-null {dtype}" + assert name in res + + +@pytest.mark.xfail(PYPY, reason="on PyPy deep=True doesn't change result") +def test_info_memory_usage_deep_not_pypy(): + s_with_object_index = Series({"a": [1]}, index=["foo"]) + assert s_with_object_index.memory_usage( + index=True, deep=True + ) > s_with_object_index.memory_usage(index=True) + + s_object = Series({"a": ["a"]}) + assert s_object.memory_usage(deep=True) > s_object.memory_usage() + + +@pytest.mark.xfail(not PYPY, reason="on PyPy deep=True does not change result") +def test_info_memory_usage_deep_pypy(): + s_with_object_index = Series({"a": [1]}, index=["foo"]) + assert s_with_object_index.memory_usage( + index=True, deep=True + ) == s_with_object_index.memory_usage(index=True) + + s_object = Series({"a": ["a"]}) + assert s_object.memory_usage(deep=True) == s_object.memory_usage() + + +@pytest.mark.parametrize( + "series, plus", + [ + (Series(1, index=[1, 2, 3]), False), + (Series(1, index=list("ABC")), True), + (Series(1, index=MultiIndex.from_product([range(3), range(3)])), False), + ( + Series(1, index=MultiIndex.from_product([range(3), ["foo", "bar"]])), + True, + ), + ], +) +def test_info_memory_usage_qualified(series, plus): + buf = StringIO() + series.info(buf=buf) + if plus: + assert "+" in buf.getvalue() + else: + assert "+" not in buf.getvalue() + + +def test_info_memory_usage_bug_on_multiindex(): + # GH 14308 + # memory usage introspection should not materialize .values + N = 100 + M = len(ascii_uppercase) + index = MultiIndex.from_product( + [list(ascii_uppercase), date_range("20160101", periods=N)], + names=["id", "date"], + ) + s = Series(np.random.default_rng(2).standard_normal(N * M), index=index) + + unstacked = s.unstack("id") + assert s.values.nbytes == unstacked.values.nbytes + assert s.memory_usage(deep=True) > unstacked.memory_usage(deep=True).sum() + + # high upper bound + diff = unstacked.memory_usage(deep=True).sum() - s.memory_usage(deep=True) + assert diff < 2000 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py new file mode 100644 index 0000000000000000000000000000000000000000..073ec4172aff6b041d29011bc3151f84f3cbeb19 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py @@ -0,0 +1,26 @@ +import numpy as np + +from pandas import ( + Series, + date_range, +) + + +class TestIsMonotonic: + def test_is_monotonic_numeric(self): + ser = Series(np.random.default_rng(2).integers(0, 10, size=1000)) + assert not ser.is_monotonic_increasing + ser = Series(np.arange(1000)) + assert ser.is_monotonic_increasing is True + assert ser.is_monotonic_increasing is True + ser = Series(np.arange(1000, 0, -1)) + assert ser.is_monotonic_decreasing is True + + def test_is_monotonic_dt64(self): + ser = Series(date_range("20130101", periods=10)) + assert ser.is_monotonic_increasing is True + assert ser.is_monotonic_increasing is True + + ser = Series(list(reversed(ser))) + assert ser.is_monotonic_increasing is False + assert ser.is_monotonic_decreasing is True diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py new file mode 100644 index 0000000000000000000000000000000000000000..7e324aa86a052246a074950082e272fee7e505e3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py @@ -0,0 +1,35 @@ +""" +We also test Series.notna in this file. +""" +import numpy as np + +from pandas import ( + Period, + Series, +) +import pandas._testing as tm + + +class TestIsna: + def test_isna_period_dtype(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + + expected = Series([False, True]) + + result = ser.isna() + tm.assert_series_equal(result, expected) + + result = ser.notna() + tm.assert_series_equal(result, ~expected) + + def test_isna(self): + ser = Series([0, 5.4, 3, np.nan, -0.001]) + expected = Series([False, False, False, True, False]) + tm.assert_series_equal(ser.isna(), expected) + tm.assert_series_equal(ser.notna(), ~expected) + + ser = Series(["hi", "", np.nan]) + expected = Series([False, False, True]) + tm.assert_series_equal(ser.isna(), expected) + tm.assert_series_equal(ser.notna(), ~expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py new file mode 100644 index 0000000000000000000000000000000000000000..8e8c33619d564ef87d51416748b8fdc9058e5a41 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py @@ -0,0 +1,59 @@ +""" +Series.item method, mainly testing that we get python scalars as opposed to +numpy scalars. +""" +import pytest + +from pandas import ( + Series, + Timedelta, + Timestamp, + date_range, +) + + +class TestItem: + def test_item(self): + # We are testing that we get python scalars as opposed to numpy scalars + ser = Series([1]) + result = ser.item() + assert result == 1 + assert result == ser.iloc[0] + assert isinstance(result, int) # i.e. not np.int64 + + ser = Series([0.5], index=[3]) + result = ser.item() + assert isinstance(result, float) + assert result == 0.5 + + ser = Series([1, 2]) + msg = "can only convert an array of size 1" + with pytest.raises(ValueError, match=msg): + ser.item() + + dti = date_range("2016-01-01", periods=2) + with pytest.raises(ValueError, match=msg): + dti.item() + with pytest.raises(ValueError, match=msg): + Series(dti).item() + + val = dti[:1].item() + assert isinstance(val, Timestamp) + val = Series(dti)[:1].item() + assert isinstance(val, Timestamp) + + tdi = dti - dti + with pytest.raises(ValueError, match=msg): + tdi.item() + with pytest.raises(ValueError, match=msg): + Series(tdi).item() + + val = tdi[:1].item() + assert isinstance(val, Timedelta) + val = Series(tdi)[:1].item() + assert isinstance(val, Timedelta) + + # Case where ser[0] would not work + ser = Series(dti, index=[5, 6]) + val = ser.iloc[:1].item() + assert val == dti[0] diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py new file mode 100644 index 0000000000000000000000000000000000000000..e8de1cd89e3974f2dff0d775f35655b8caa02a08 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py @@ -0,0 +1,248 @@ +""" +Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo" +but are implicitly also testing nsmallest_foo. +""" +from itertools import product + +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + +main_dtypes = [ + "datetime", + "datetimetz", + "timedelta", + "int8", + "int16", + "int32", + "int64", + "float32", + "float64", + "uint8", + "uint16", + "uint32", + "uint64", +] + + +@pytest.fixture +def s_main_dtypes(): + """ + A DataFrame with many dtypes + + * datetime + * datetimetz + * timedelta + * [u]int{8,16,32,64} + * float{32,64} + + The columns are the name of the dtype. + """ + df = pd.DataFrame( + { + "datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]), + "datetimetz": pd.to_datetime( + ["2003", "2002", "2001", "2002", "2005"] + ).tz_localize("US/Eastern"), + "timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]), + } + ) + + for dtype in [ + "int8", + "int16", + "int32", + "int64", + "float32", + "float64", + "uint8", + "uint16", + "uint32", + "uint64", + ]: + df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype) + + return df + + +@pytest.fixture(params=main_dtypes) +def s_main_dtypes_split(request, s_main_dtypes): + """Each series in s_main_dtypes.""" + return s_main_dtypes[request.param] + + +def assert_check_nselect_boundary(vals, dtype, method): + # helper function for 'test_boundary_{dtype}' tests + ser = Series(vals, dtype=dtype) + result = getattr(ser, method)(3) + expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1] + expected = ser.loc[expected_idxr] + tm.assert_series_equal(result, expected) + + +class TestSeriesNLargestNSmallest: + @pytest.mark.parametrize( + "r", + [ + Series([3.0, 2, 1, 2, "5"], dtype="object"), + Series([3.0, 2, 1, 2, 5], dtype="object"), + # not supported on some archs + # Series([3., 2, 1, 2, 5], dtype='complex256'), + Series([3.0, 2, 1, 2, 5], dtype="complex128"), + Series(list("abcde")), + Series(list("abcde"), dtype="category"), + ], + ) + def test_nlargest_error(self, r): + dt = r.dtype + msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}" + args = 2, len(r), 0, -1 + methods = r.nlargest, r.nsmallest + for method, arg in product(methods, args): + with pytest.raises(TypeError, match=msg): + method(arg) + + def test_nsmallest_nlargest(self, s_main_dtypes_split): + # float, int, datetime64 (use i8), timedelts64 (same), + # object that are numbers, object that are strings + ser = s_main_dtypes_split + + tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]]) + tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]]) + + empty = ser.iloc[0:0] + tm.assert_series_equal(ser.nsmallest(0), empty) + tm.assert_series_equal(ser.nsmallest(-1), empty) + tm.assert_series_equal(ser.nlargest(0), empty) + tm.assert_series_equal(ser.nlargest(-1), empty) + + tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values()) + tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values()) + tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]]) + tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]]) + + def test_nlargest_misc(self): + ser = Series([3.0, np.nan, 1, 2, 5]) + result = ser.nlargest() + expected = ser.iloc[[4, 0, 3, 2, 1]] + tm.assert_series_equal(result, expected) + result = ser.nsmallest() + expected = ser.iloc[[2, 3, 0, 4, 1]] + tm.assert_series_equal(result, expected) + + msg = 'keep must be either "first", "last"' + with pytest.raises(ValueError, match=msg): + ser.nsmallest(keep="invalid") + with pytest.raises(ValueError, match=msg): + ser.nlargest(keep="invalid") + + # GH#15297 + ser = Series([1] * 5, index=[1, 2, 3, 4, 5]) + expected_first = Series([1] * 3, index=[1, 2, 3]) + expected_last = Series([1] * 3, index=[5, 4, 3]) + + result = ser.nsmallest(3) + tm.assert_series_equal(result, expected_first) + + result = ser.nsmallest(3, keep="last") + tm.assert_series_equal(result, expected_last) + + result = ser.nlargest(3) + tm.assert_series_equal(result, expected_first) + + result = ser.nlargest(3, keep="last") + tm.assert_series_equal(result, expected_last) + + @pytest.mark.parametrize("n", range(1, 5)) + def test_nlargest_n(self, n): + # GH 13412 + ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1]) + result = ser.nlargest(n) + expected = ser.sort_values(ascending=False).head(n) + tm.assert_series_equal(result, expected) + + result = ser.nsmallest(n) + expected = ser.sort_values().head(n) + tm.assert_series_equal(result, expected) + + def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype): + # GH#21426 + dtype_info = np.iinfo(any_int_numpy_dtype) + min_val, max_val = dtype_info.min, dtype_info.max + vals = [min_val, min_val + 1, max_val - 1, max_val] + assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method) + + def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype): + # GH#21426 + dtype_info = np.finfo(float_numpy_dtype) + min_val, max_val = dtype_info.min, dtype_info.max + min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype) + vals = [min_val, min_2nd, max_2nd, max_val] + assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method) + + @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"]) + def test_nlargest_boundary_datetimelike(self, nselect_method, dtype): + # GH#21426 + # use int64 bounds and +1 to min_val since true minimum is NaT + # (include min_val/NaT at end to maintain same expected_idxr) + dtype_info = np.iinfo("int64") + min_val, max_val = dtype_info.min, dtype_info.max + vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val] + assert_check_nselect_boundary(vals, dtype, nselect_method) + + def test_nlargest_duplicate_keep_all_ties(self): + # see GH#16818 + ser = Series([10, 9, 8, 7, 7, 7, 7, 6]) + result = ser.nlargest(4, keep="all") + expected = Series([10, 9, 8, 7, 7, 7, 7]) + tm.assert_series_equal(result, expected) + + result = ser.nsmallest(2, keep="all") + expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "data,expected", [([True, False], [True]), ([True, False, True, True], [True])] + ) + def test_nlargest_boolean(self, data, expected): + # GH#26154 : ensure True > False + ser = Series(data) + result = ser.nlargest(1) + expected = Series(expected) + tm.assert_series_equal(result, expected) + + def test_nlargest_nullable(self, any_numeric_ea_dtype): + # GH#42816 + dtype = any_numeric_ea_dtype + if dtype.startswith("UInt"): + # Can't cast from negative float to uint on some platforms + arr = np.random.default_rng(2).integers(1, 10, 10) + else: + arr = np.random.default_rng(2).standard_normal(10) + arr = arr.astype(dtype.lower(), copy=False) + + ser = Series(arr.copy(), dtype=dtype) + ser[1] = pd.NA + result = ser.nlargest(5) + + expected = ( + Series(np.delete(arr, 1), index=ser.index.delete(1)) + .nlargest(5) + .astype(dtype) + ) + tm.assert_series_equal(result, expected) + + def test_nsmallest_nan_when_keep_is_all(self): + # GH#46589 + s = Series([1, 2, 3, 3, 3, None]) + result = s.nsmallest(3, keep="all") + expected = Series([1.0, 2.0, 3.0, 3.0, 3.0]) + tm.assert_series_equal(result, expected) + + s = Series([1, 2, None, None, None]) + result = s.nsmallest(3, keep="all") + expected = Series([1, 2, None, None, None]) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py new file mode 100644 index 0000000000000000000000000000000000000000..826132eb28162603d03635add59c3ea3da569256 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py @@ -0,0 +1,24 @@ +import numpy as np + +from pandas import ( + Categorical, + Series, +) + + +def test_nunique(): + # basics.rst doc example + series = Series(np.random.default_rng(2).standard_normal(500)) + series[20:500] = np.nan + series[10:20] = 5000 + result = series.nunique() + assert result == 11 + + +def test_nunique_categorical(): + # GH#18051 + ser = Series(Categorical([])) + assert ser.nunique() == 0 + + ser = Series(Categorical([np.nan])) + assert ser.nunique() == 0 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py new file mode 100644 index 0000000000000000000000000000000000000000..6c80e711c36846e565014c1d1c001ae2ba3cf929 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py @@ -0,0 +1,128 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + date_range, +) +import pandas._testing as tm + + +class TestSeriesPctChange: + def test_pct_change(self, datetime_series): + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + + rs = datetime_series.pct_change(fill_method=None) + tm.assert_series_equal(rs, datetime_series / datetime_series.shift(1) - 1) + + rs = datetime_series.pct_change(2) + filled = datetime_series.ffill() + tm.assert_series_equal(rs, filled / filled.shift(2) - 1) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = datetime_series.pct_change(fill_method="bfill", limit=1) + filled = datetime_series.bfill(limit=1) + tm.assert_series_equal(rs, filled / filled.shift(1) - 1) + + rs = datetime_series.pct_change(freq="5D") + filled = datetime_series.ffill() + tm.assert_series_equal( + rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled) + ) + + def test_pct_change_with_duplicate_axis(self): + # GH#28664 + common_idx = date_range("2019-11-14", periods=5, freq="D") + result = Series(range(5), common_idx).pct_change(freq="B") + + # the reason that the expected should be like this is documented at PR 28681 + expected = Series([np.nan, np.inf, np.nan, np.nan, 3.0], common_idx) + + tm.assert_series_equal(result, expected) + + def test_pct_change_shift_over_nas(self): + s = Series([1.0, 1.5, np.nan, 2.5, 3.0]) + + msg = "The default fill_method='pad' in Series.pct_change is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + chg = s.pct_change() + + expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2]) + tm.assert_series_equal(chg, expected) + + @pytest.mark.parametrize( + "freq, periods, fill_method, limit", + [ + ("5B", 5, None, None), + ("3B", 3, None, None), + ("3B", 3, "bfill", None), + ("7B", 7, "pad", 1), + ("7B", 7, "bfill", 3), + ("14B", 14, None, None), + ], + ) + def test_pct_change_periods_freq( + self, freq, periods, fill_method, limit, datetime_series + ): + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + + # GH#7292 + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_freq = datetime_series.pct_change( + freq=freq, fill_method=fill_method, limit=limit + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_periods = datetime_series.pct_change( + periods, fill_method=fill_method, limit=limit + ) + tm.assert_series_equal(rs_freq, rs_periods) + + empty_ts = Series(index=datetime_series.index, dtype=object) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_freq = empty_ts.pct_change( + freq=freq, fill_method=fill_method, limit=limit + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_periods = empty_ts.pct_change( + periods, fill_method=fill_method, limit=limit + ) + tm.assert_series_equal(rs_freq, rs_periods) + + +@pytest.mark.parametrize("fill_method", ["pad", "ffill", None]) +def test_pct_change_with_duplicated_indices(fill_method): + # GH30463 + s = Series([np.nan, 1, 2, 3, 9, 18], index=["a", "b"] * 3) + + warn = None if fill_method is None else FutureWarning + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + with tm.assert_produces_warning(warn, match=msg): + result = s.pct_change(fill_method=fill_method) + + expected = Series([np.nan, np.nan, 1.0, 0.5, 2.0, 1.0], index=["a", "b"] * 3) + tm.assert_series_equal(result, expected) + + +def test_pct_change_no_warning_na_beginning(): + # GH#54981 + ser = Series([None, None, 1, 2, 3]) + result = ser.pct_change() + expected = Series([np.nan, np.nan, np.nan, 1, 0.5]) + tm.assert_series_equal(result, expected) + + +def test_pct_change_empty(): + # GH 57056 + ser = Series([], dtype="float64") + expected = ser.copy() + result = ser.pct_change(periods=0) + tm.assert_series_equal(expected, result) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py new file mode 100644 index 0000000000000000000000000000000000000000..7453f98ab3735e924dd7601622d23b4bafdd2176 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py @@ -0,0 +1,13 @@ +from pandas import Series +import pandas._testing as tm + + +def test_pop(): + # GH#6600 + ser = Series([0, 4, 0], index=["A", "B", "C"], name=4) + + result = ser.pop("B") + assert result == 4 + + expected = Series([0, 0], index=["A", "C"], name=4) + tm.assert_series_equal(ser, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py new file mode 100644 index 0000000000000000000000000000000000000000..fa0563271d7df7cb6fdb3f2f7ad807057313f4c2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py @@ -0,0 +1,247 @@ +import numpy as np +import pytest + +from pandas.core.dtypes.common import is_integer + +import pandas as pd +from pandas import ( + Index, + Series, +) +import pandas._testing as tm +from pandas.core.indexes.datetimes import Timestamp + + +class TestSeriesQuantile: + def test_quantile(self, datetime_series): + q = datetime_series.quantile(0.1) + assert q == np.percentile(datetime_series.dropna(), 10) + + q = datetime_series.quantile(0.9) + assert q == np.percentile(datetime_series.dropna(), 90) + + # object dtype + q = Series(datetime_series, dtype=object).quantile(0.9) + assert q == np.percentile(datetime_series.dropna(), 90) + + # datetime64[ns] dtype + dts = datetime_series.index.to_series() + q = dts.quantile(0.2) + assert q == Timestamp("2000-01-10 19:12:00") + + # timedelta64[ns] dtype + tds = dts.diff() + q = tds.quantile(0.25) + assert q == pd.to_timedelta("24:00:00") + + # GH7661 + result = Series([np.timedelta64("NaT")]).sum() + assert result == pd.Timedelta(0) + + msg = "percentiles should all be in the interval \\[0, 1\\]" + for invalid in [-1, 2, [0.5, -1], [0.5, 2]]: + with pytest.raises(ValueError, match=msg): + datetime_series.quantile(invalid) + + s = Series(np.random.default_rng(2).standard_normal(100)) + percentile_array = [-0.5, 0.25, 1.5] + with pytest.raises(ValueError, match=msg): + s.quantile(percentile_array) + + def test_quantile_multi(self, datetime_series, unit): + datetime_series.index = datetime_series.index.as_unit(unit) + qs = [0.1, 0.9] + result = datetime_series.quantile(qs) + expected = Series( + [ + np.percentile(datetime_series.dropna(), 10), + np.percentile(datetime_series.dropna(), 90), + ], + index=qs, + name=datetime_series.name, + ) + tm.assert_series_equal(result, expected) + + dts = datetime_series.index.to_series() + dts.name = "xxx" + result = dts.quantile((0.2, 0.2)) + expected = Series( + [Timestamp("2000-01-10 19:12:00"), Timestamp("2000-01-10 19:12:00")], + index=[0.2, 0.2], + name="xxx", + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(result, expected) + + result = datetime_series.quantile([]) + expected = Series( + [], name=datetime_series.name, index=Index([], dtype=float), dtype="float64" + ) + tm.assert_series_equal(result, expected) + + def test_quantile_interpolation(self, datetime_series): + # see gh-10174 + + # interpolation = linear (default case) + q = datetime_series.quantile(0.1, interpolation="linear") + assert q == np.percentile(datetime_series.dropna(), 10) + q1 = datetime_series.quantile(0.1) + assert q1 == np.percentile(datetime_series.dropna(), 10) + + # test with and without interpolation keyword + assert q == q1 + + def test_quantile_interpolation_dtype(self): + # GH #10174 + + # interpolation = linear (default case) + q = Series([1, 3, 4]).quantile(0.5, interpolation="lower") + assert q == np.percentile(np.array([1, 3, 4]), 50) + assert is_integer(q) + + q = Series([1, 3, 4]).quantile(0.5, interpolation="higher") + assert q == np.percentile(np.array([1, 3, 4]), 50) + assert is_integer(q) + + def test_quantile_nan(self): + # GH 13098 + ser = Series([1, 2, 3, 4, np.nan]) + result = ser.quantile(0.5) + expected = 2.5 + assert result == expected + + # all nan/empty + s1 = Series([], dtype=object) + cases = [s1, Series([np.nan, np.nan])] + + for ser in cases: + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + tm.assert_series_equal(res, Series([np.nan], index=[0.5])) + + res = ser.quantile([0.2, 0.3]) + tm.assert_series_equal(res, Series([np.nan, np.nan], index=[0.2, 0.3])) + + @pytest.mark.parametrize( + "case", + [ + [ + Timestamp("2011-01-01"), + Timestamp("2011-01-02"), + Timestamp("2011-01-03"), + ], + [ + Timestamp("2011-01-01", tz="US/Eastern"), + Timestamp("2011-01-02", tz="US/Eastern"), + Timestamp("2011-01-03", tz="US/Eastern"), + ], + [pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")], + # NaT + [ + Timestamp("2011-01-01"), + Timestamp("2011-01-02"), + Timestamp("2011-01-03"), + pd.NaT, + ], + [ + Timestamp("2011-01-01", tz="US/Eastern"), + Timestamp("2011-01-02", tz="US/Eastern"), + Timestamp("2011-01-03", tz="US/Eastern"), + pd.NaT, + ], + [ + pd.Timedelta("1 days"), + pd.Timedelta("2 days"), + pd.Timedelta("3 days"), + pd.NaT, + ], + ], + ) + def test_quantile_box(self, case): + ser = Series(case, name="XXX") + res = ser.quantile(0.5) + assert res == case[1] + + res = ser.quantile([0.5]) + exp = Series([case[1]], index=[0.5], name="XXX") + tm.assert_series_equal(res, exp) + + def test_datetime_timedelta_quantiles(self): + # covers #9694 + assert pd.isna(Series([], dtype="M8[ns]").quantile(0.5)) + assert pd.isna(Series([], dtype="m8[ns]").quantile(0.5)) + + def test_quantile_nat(self): + res = Series([pd.NaT, pd.NaT]).quantile(0.5) + assert res is pd.NaT + + res = Series([pd.NaT, pd.NaT]).quantile([0.5]) + tm.assert_series_equal(res, Series([pd.NaT], index=[0.5])) + + @pytest.mark.parametrize( + "values, dtype", + [([0, 0, 0, 1, 2, 3], "Sparse[int]"), ([0.0, None, 1.0, 2.0], "Sparse[float]")], + ) + def test_quantile_sparse(self, values, dtype): + ser = Series(values, dtype=dtype) + result = ser.quantile([0.5]) + expected = Series(np.asarray(ser)).quantile([0.5]).astype("Sparse[float]") + tm.assert_series_equal(result, expected) + + def test_quantile_empty_float64(self): + # floats + ser = Series([], dtype="float64") + + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + exp = Series([np.nan], index=[0.5]) + tm.assert_series_equal(res, exp) + + def test_quantile_empty_int64(self): + # int + ser = Series([], dtype="int64") + + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + exp = Series([np.nan], index=[0.5]) + tm.assert_series_equal(res, exp) + + def test_quantile_empty_dt64(self): + # datetime + ser = Series([], dtype="datetime64[ns]") + + res = ser.quantile(0.5) + assert res is pd.NaT + + res = ser.quantile([0.5]) + exp = Series([pd.NaT], index=[0.5], dtype=ser.dtype) + tm.assert_series_equal(res, exp) + + @pytest.mark.parametrize("dtype", [int, float, "Int64"]) + def test_quantile_dtypes(self, dtype): + result = Series([1, 2, 3], dtype=dtype).quantile(np.arange(0, 1, 0.25)) + expected = Series(np.arange(1, 3, 0.5), index=np.arange(0, 1, 0.25)) + if dtype == "Int64": + expected = expected.astype("Float64") + tm.assert_series_equal(result, expected) + + def test_quantile_all_na(self, any_int_ea_dtype): + # GH#50681 + ser = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) + with tm.assert_produces_warning(None): + result = ser.quantile([0.1, 0.5]) + expected = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype, index=[0.1, 0.5]) + tm.assert_series_equal(result, expected) + + def test_quantile_dtype_size(self, any_int_ea_dtype): + # GH#50681 + ser = Series([pd.NA, pd.NA, 1], dtype=any_int_ea_dtype) + result = ser.quantile([0.1, 0.5]) + expected = Series([1, 1], dtype=any_int_ea_dtype, index=[0.1, 0.5]) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py new file mode 100644 index 0000000000000000000000000000000000000000..24cf97c05c0a810bac00a8843b21d0ee88a1c00d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py @@ -0,0 +1,519 @@ +from itertools import chain +import operator + +import numpy as np +import pytest + +from pandas._libs.algos import ( + Infinity, + NegInfinity, +) +import pandas.util._test_decorators as td + +from pandas import ( + NA, + NaT, + Series, + Timestamp, + date_range, +) +import pandas._testing as tm +from pandas.api.types import CategoricalDtype + + +@pytest.fixture +def ser(): + return Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]) + + +@pytest.fixture( + params=[ + ["average", np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5])], + ["min", np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5])], + ["max", np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6])], + ["first", np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6])], + ["dense", np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])], + ] +) +def results(request): + return request.param + + +@pytest.fixture( + params=[ + "object", + "float64", + "int64", + "Float64", + "Int64", + pytest.param("float64[pyarrow]", marks=td.skip_if_no("pyarrow")), + pytest.param("int64[pyarrow]", marks=td.skip_if_no("pyarrow")), + ] +) +def dtype(request): + return request.param + + +class TestSeriesRank: + def test_rank(self, datetime_series): + sp_stats = pytest.importorskip("scipy.stats") + + datetime_series[::2] = np.nan + datetime_series[:10:3] = 4.0 + + ranks = datetime_series.rank() + oranks = datetime_series.astype("O").rank() + + tm.assert_series_equal(ranks, oranks) + + mask = np.isnan(datetime_series) + filled = datetime_series.fillna(np.inf) + + # rankdata returns a ndarray + exp = Series(sp_stats.rankdata(filled), index=filled.index, name="ts") + exp[mask] = np.nan + + tm.assert_series_equal(ranks, exp) + + iseries = Series(np.arange(5).repeat(2)) + + iranks = iseries.rank() + exp = iseries.astype(float).rank() + tm.assert_series_equal(iranks, exp) + iseries = Series(np.arange(5)) + 1.0 + exp = iseries / 5.0 + iranks = iseries.rank(pct=True) + + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.repeat(1, 100)) + exp = Series(np.repeat(0.505, 100)) + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + # Explicit cast to float to avoid implicit cast when setting nan + iseries = iseries.astype("float") + iseries[1] = np.nan + exp = Series(np.repeat(50.0 / 99.0, 100)) + exp[1] = np.nan + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.arange(5)) + 1.0 + iseries[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.repeat(np.nan, 100)) + exp = iseries.copy() + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + # Explicit cast to float to avoid implicit cast when setting nan + iseries = Series(np.arange(5), dtype="float") + 1 + iseries[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + rng = date_range("1/1/1990", periods=5) + # Explicit cast to float to avoid implicit cast when setting nan + iseries = Series(np.arange(5), rng, dtype="float") + 1 + iseries.iloc[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1]) + exp = Series([2, 1, 3, 5, 4, 6.0]) + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + # GH 5968 + iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]") + exp = Series([3, 2, 1, np.nan]) + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + values = np.array( + [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40], + dtype="float64", + ) + random_order = np.random.default_rng(2).permutation(len(values)) + iseries = Series(values[random_order]) + exp = Series(random_order + 1.0, dtype="float64") + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + def test_rank_categorical(self): + # GH issue #15420 rank incorrectly orders ordered categories + + # Test ascending/descending ranking for ordered categoricals + exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) + exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) + ordered = Series( + ["first", "second", "third", "fourth", "fifth", "sixth"] + ).astype( + CategoricalDtype( + categories=["first", "second", "third", "fourth", "fifth", "sixth"], + ordered=True, + ) + ) + tm.assert_series_equal(ordered.rank(), exp) + tm.assert_series_equal(ordered.rank(ascending=False), exp_desc) + + # Unordered categoricals should be ranked as objects + unordered = Series( + ["first", "second", "third", "fourth", "fifth", "sixth"] + ).astype( + CategoricalDtype( + categories=["first", "second", "third", "fourth", "fifth", "sixth"], + ordered=False, + ) + ) + exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0]) + res = unordered.rank() + tm.assert_series_equal(res, exp_unordered) + + unordered1 = Series([1, 2, 3, 4, 5, 6]).astype( + CategoricalDtype([1, 2, 3, 4, 5, 6], False) + ) + exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) + res1 = unordered1.rank() + tm.assert_series_equal(res1, exp_unordered1) + + # Test na_option for rank data + na_ser = Series( + ["first", "second", "third", "fourth", "fifth", "sixth", np.nan] + ).astype( + CategoricalDtype( + ["first", "second", "third", "fourth", "fifth", "sixth", "seventh"], + True, + ) + ) + + exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0]) + exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) + exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top) + tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot) + tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep) + + # Test na_option for rank data with ascending False + exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) + exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0]) + exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top) + tm.assert_series_equal( + na_ser.rank(na_option="bottom", ascending=False), exp_bot + ) + tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep) + + # Test invalid values for na_option + msg = "na_option must be one of 'keep', 'top', or 'bottom'" + + with pytest.raises(ValueError, match=msg): + na_ser.rank(na_option="bad", ascending=False) + + # invalid type + with pytest.raises(ValueError, match=msg): + na_ser.rank(na_option=True, ascending=False) + + # Test with pct=True + na_ser = Series(["first", "second", "third", "fourth", np.nan]).astype( + CategoricalDtype(["first", "second", "third", "fourth"], True) + ) + exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2]) + exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0]) + exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top) + tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot) + tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep) + + def test_rank_signature(self): + s = Series([0, 1]) + s.rank(method="average") + msg = "No axis named average for object type Series" + with pytest.raises(ValueError, match=msg): + s.rank("average") + + @pytest.mark.parametrize("dtype", [None, object]) + def test_rank_tie_methods(self, ser, results, dtype): + method, exp = results + ser = ser if dtype is None else ser.astype(dtype) + result = ser.rank(method=method) + tm.assert_series_equal(result, Series(exp)) + + @pytest.mark.parametrize("ascending", [True, False]) + @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) + @pytest.mark.parametrize("na_option", ["top", "bottom", "keep"]) + @pytest.mark.parametrize( + "dtype, na_value, pos_inf, neg_inf", + [ + ("object", None, Infinity(), NegInfinity()), + ("float64", np.nan, np.inf, -np.inf), + ("Float64", NA, np.inf, -np.inf), + pytest.param( + "float64[pyarrow]", + NA, + np.inf, + -np.inf, + marks=td.skip_if_no("pyarrow"), + ), + ], + ) + def test_rank_tie_methods_on_infs_nans( + self, method, na_option, ascending, dtype, na_value, pos_inf, neg_inf + ): + pytest.importorskip("scipy") + if dtype == "float64[pyarrow]": + if method == "average": + exp_dtype = "float64[pyarrow]" + else: + exp_dtype = "uint64[pyarrow]" + else: + exp_dtype = "float64" + + chunk = 3 + in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk + iseries = Series(in_arr, dtype=dtype) + exp_ranks = { + "average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]), + "min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]), + "max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]), + "first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]), + "dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]), + } + ranks = exp_ranks[method] + if na_option == "top": + order = [ranks[1], ranks[0], ranks[2]] + elif na_option == "bottom": + order = [ranks[0], ranks[2], ranks[1]] + else: + order = [ranks[0], [np.nan] * chunk, ranks[1]] + expected = order if ascending else order[::-1] + expected = list(chain.from_iterable(expected)) + result = iseries.rank(method=method, na_option=na_option, ascending=ascending) + tm.assert_series_equal(result, Series(expected, dtype=exp_dtype)) + + def test_rank_desc_mix_nans_infs(self): + # GH 19538 + # check descending ranking when mix nans and infs + iseries = Series([1, np.nan, np.inf, -np.inf, 25]) + result = iseries.rank(ascending=False) + exp = Series([3, np.nan, 1, 4, 2], dtype="float64") + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) + @pytest.mark.parametrize( + "op, value", + [ + [operator.add, 0], + [operator.add, 1e6], + [operator.mul, 1e-6], + ], + ) + def test_rank_methods_series(self, method, op, value): + sp_stats = pytest.importorskip("scipy.stats") + + xs = np.random.default_rng(2).standard_normal(9) + xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates + np.random.default_rng(2).shuffle(xs) + + index = [chr(ord("a") + i) for i in range(len(xs))] + vals = op(xs, value) + ts = Series(vals, index=index) + result = ts.rank(method=method) + sprank = sp_stats.rankdata(vals, method if method != "first" else "ordinal") + expected = Series(sprank, index=index).astype("float64") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1]), + ([2], [1]), + ([0], [1]), + ([2, 2], [1, 1]), + ([1, 2, 3], [1, 2, 3]), + ([4, 2, 1], [3, 2, 1]), + ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]), + ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]), + ], + ) + def test_rank_dense_method(self, dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="dense") + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + def test_rank_descending(self, ser, results, dtype): + method, _ = results + if "i" in dtype: + s = ser.dropna() + else: + s = ser.astype(dtype) + + res = s.rank(ascending=False) + expected = (s.max() - s).rank() + tm.assert_series_equal(res, expected) + + expected = (s.max() - s).rank(method=method) + res2 = s.rank(method=method, ascending=False) + tm.assert_series_equal(res2, expected) + + def test_rank_int(self, ser, results): + method, exp = results + s = ser.dropna().astype("i8") + + result = s.rank(method=method) + expected = Series(exp).dropna() + expected.index = result.index + tm.assert_series_equal(result, expected) + + def test_rank_object_bug(self): + # GH 13445 + + # smoke tests + Series([np.nan] * 32).astype(object).rank(ascending=True) + Series([np.nan] * 32).astype(object).rank(ascending=False) + + def test_rank_modify_inplace(self): + # GH 18521 + # Check rank does not mutate series + s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT]) + expected = s.copy() + + s.rank() + result = s + tm.assert_series_equal(result, expected) + + def test_rank_ea_small_values(self): + # GH#52471 + ser = Series( + [5.4954145e29, -9.791984e-21, 9.3715776e-26, NA, 1.8790257e-28], + dtype="Float64", + ) + result = ser.rank(method="min") + expected = Series([4, 1, 3, np.nan, 2]) + tm.assert_series_equal(result, expected) + + +# GH15630, pct should be on 100% basis when method='dense' + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0, 1.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]), + ([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_dense_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="dense", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0 / 2, 1.0 / 2]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_min_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="min", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0, 1.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_max_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="max", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.5 / 2, 1.5 / 2]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_average_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="average", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0 / 2, 2.0 / 2.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_first_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="first", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.single_cpu +def test_pct_max_many_rows(): + # GH 18271 + s = Series(np.arange(2**24 + 1)) + result = s.rank(pct=True).max() + assert result == 1 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py new file mode 100644 index 0000000000000000000000000000000000000000..7f24c778feb1b4556587773f711e21521efc537c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py @@ -0,0 +1,41 @@ +from datetime import datetime + +import numpy as np + +from pandas import Series +import pandas._testing as tm + + +def test_reindex_like(datetime_series): + other = datetime_series[::2] + tm.assert_series_equal( + datetime_series.reindex(other.index), datetime_series.reindex_like(other) + ) + + # GH#7179 + day1 = datetime(2013, 3, 5) + day2 = datetime(2013, 5, 5) + day3 = datetime(2014, 3, 5) + + series1 = Series([5, None, None], [day1, day2, day3]) + series2 = Series([None, None], [day1, day3]) + + result = series1.reindex_like(series2, method="pad") + expected = Series([5, np.nan], index=[day1, day3]) + tm.assert_series_equal(result, expected) + + +def test_reindex_like_nearest(): + ser = Series(np.arange(10, dtype="int64")) + + target = [0.1, 0.9, 1.5, 2.0] + other = ser.reindex(target, method="nearest") + expected = Series(np.around(target).astype("int64"), target) + + result = ser.reindex_like(other, method="nearest") + tm.assert_series_equal(expected, result) + + result = ser.reindex_like(other, method="nearest", tolerance=1) + tm.assert_series_equal(expected, result) + result = ser.reindex_like(other, method="nearest", tolerance=[1, 2, 3, 4]) + tm.assert_series_equal(expected, result) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py new file mode 100644 index 0000000000000000000000000000000000000000..58c095d697ede213be5c730e305bf1789810ac4a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py @@ -0,0 +1,47 @@ +import pytest + +from pandas import ( + Index, + MultiIndex, + Series, +) +import pandas._testing as tm + + +class TestSeriesRenameAxis: + def test_rename_axis_mapper(self): + # GH 19978 + mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) + ser = Series(list(range(len(mi))), index=mi) + + result = ser.rename_axis(index={"ll": "foo"}) + assert result.index.names == ["foo", "nn"] + + result = ser.rename_axis(index=str.upper, axis=0) + assert result.index.names == ["LL", "NN"] + + result = ser.rename_axis(index=["foo", "goo"]) + assert result.index.names == ["foo", "goo"] + + with pytest.raises(TypeError, match="unexpected"): + ser.rename_axis(columns="wrong") + + def test_rename_axis_inplace(self, datetime_series): + # GH 15704 + expected = datetime_series.rename_axis("foo") + result = datetime_series + no_return = result.rename_axis("foo", inplace=True) + + assert no_return is None + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("kwargs", [{"mapper": None}, {"index": None}, {}]) + def test_rename_axis_none(self, kwargs): + # GH 25034 + index = Index(list("abc"), name="foo") + ser = Series([1, 2, 3], index=index) + + result = ser.rename_axis(**kwargs) + expected_index = index.rename(None) if kwargs else index + expected = Series([1, 2, 3], index=expected_index) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py new file mode 100644 index 0000000000000000000000000000000000000000..b0f4e233ba5eba4de29b320bb7592c6b2671ebcd --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py @@ -0,0 +1,813 @@ +import re + +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +import pandas as pd +import pandas._testing as tm +from pandas.core.arrays import IntervalArray + + +class TestSeriesReplace: + def test_replace_explicit_none(self): + # GH#36984 if the user explicitly passes value=None, give it to them + ser = pd.Series([0, 0, ""], dtype=object) + result = ser.replace("", None) + expected = pd.Series([0, 0, None], dtype=object) + tm.assert_series_equal(result, expected) + + # Cast column 2 to object to avoid implicit cast when setting entry to "" + df = pd.DataFrame(np.zeros((3, 3))).astype({2: object}) + df.iloc[2, 2] = "" + result = df.replace("", None) + expected = pd.DataFrame( + { + 0: np.zeros(3), + 1: np.zeros(3), + 2: np.array([0.0, 0.0, None], dtype=object), + } + ) + assert expected.iloc[2, 2] is None + tm.assert_frame_equal(result, expected) + + # GH#19998 same thing with object dtype + ser = pd.Series([10, 20, 30, "a", "a", "b", "a"]) + result = ser.replace("a", None) + expected = pd.Series([10, 20, 30, None, None, "b", None]) + assert expected.iloc[-1] is None + tm.assert_series_equal(result, expected) + + def test_replace_noop_doesnt_downcast(self): + # GH#44498 + ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object) + res = ser.replace({np.nan: None}) # should be a no-op + tm.assert_series_equal(res, ser) + assert res.dtype == object + + # same thing but different calling convention + res = ser.replace(np.nan, None) + tm.assert_series_equal(res, ser) + assert res.dtype == object + + def test_replace(self): + N = 50 + ser = pd.Series(np.random.default_rng(2).standard_normal(N)) + ser[0:4] = np.nan + ser[6:10] = 0 + + # replace list with a single value + return_value = ser.replace([np.nan], -1, inplace=True) + assert return_value is None + + exp = ser.fillna(-1) + tm.assert_series_equal(ser, exp) + + rs = ser.replace(0.0, np.nan) + ser[ser == 0.0] = np.nan + tm.assert_series_equal(rs, ser) + + ser = pd.Series( + np.fabs(np.random.default_rng(2).standard_normal(N)), + pd.date_range("2020-01-01", periods=N), + dtype=object, + ) + ser[:5] = np.nan + ser[6:10] = "foo" + ser[20:30] = "bar" + + # replace list with a single value + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace([np.nan, "foo", "bar"], -1) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -1).all() + assert (rs[20:30] == -1).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -2).all() + assert (rs[20:30] == -3).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values with 2 lists + with tm.assert_produces_warning(FutureWarning, match=msg): + rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) + tm.assert_series_equal(rs, rs2) + + # replace inplace + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) + assert return_value is None + + assert (ser[:5] == -1).all() + assert (ser[6:10] == -1).all() + assert (ser[20:30] == -1).all() + + def test_replace_nan_with_inf(self): + ser = pd.Series([np.nan, 0, np.inf]) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + + ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT]) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + filled = ser.copy() + filled[4] = 0 + tm.assert_series_equal(ser.replace(np.inf, 0), filled) + + def test_replace_listlike_value_listlike_target(self, datetime_series): + ser = pd.Series(datetime_series.index) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + + # malformed + msg = r"Replacement lists must match in length\. Expecting 3 got 2" + with pytest.raises(ValueError, match=msg): + ser.replace([1, 2, 3], [np.nan, 0]) + + # ser is dt64 so can't hold 1 or 2, so this replace is a no-op + result = ser.replace([1, 2], [np.nan, 0]) + tm.assert_series_equal(result, ser) + + ser = pd.Series([0, 1, 2, 3, 4]) + result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) + tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0])) + + def test_replace_gh5319(self): + # API change from 0.12? + # GH 5319 + ser = pd.Series([0, np.nan, 2, 3, 4]) + expected = ser.ffill() + msg = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace([np.nan]) + tm.assert_series_equal(result, expected) + + ser = pd.Series([0, np.nan, 2, 3, 4]) + expected = ser.ffill() + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace(np.nan) + tm.assert_series_equal(result, expected) + + def test_replace_datetime64(self): + # GH 5797 + ser = pd.Series(pd.date_range("20130101", periods=5)) + expected = ser.copy() + expected.loc[2] = pd.Timestamp("20120101") + result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")}) + tm.assert_series_equal(result, expected) + result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101")) + tm.assert_series_equal(result, expected) + + def test_replace_nat_with_tz(self): + # GH 11792: Test with replacing NaT in a list with tz data + ts = pd.Timestamp("2015/01/01", tz="UTC") + s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")]) + result = s.replace([np.nan, pd.NaT], pd.Timestamp.min) + expected = pd.Series([pd.Timestamp.min, ts], dtype=object) + tm.assert_series_equal(expected, result) + + def test_replace_timedelta_td64(self): + tdi = pd.timedelta_range(0, periods=5) + ser = pd.Series(tdi) + + # Using a single dict argument means we go through replace_list + result = ser.replace({ser[1]: ser[3]}) + + expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]]) + tm.assert_series_equal(result, expected) + + def test_replace_with_single_list(self): + ser = pd.Series([0, 1, 2, 3, 4]) + msg2 = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg2): + result = ser.replace([1, 2, 3]) + tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4])) + + s = ser.copy() + with tm.assert_produces_warning(FutureWarning, match=msg2): + return_value = s.replace([1, 2, 3], inplace=True) + assert return_value is None + tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4])) + + # make sure things don't get corrupted when fillna call fails + s = ser.copy() + msg = ( + r"Invalid fill method\. Expecting pad \(ffill\) or backfill " + r"\(bfill\)\. Got crash_cymbal" + ) + msg3 = "The 'method' keyword in Series.replace is deprecated" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg3): + return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal") + assert return_value is None + tm.assert_series_equal(s, ser) + + def test_replace_mixed_types(self): + ser = pd.Series(np.arange(5), dtype="int64") + + def check_replace(to_rep, val, expected): + sc = ser.copy() + result = ser.replace(to_rep, val) + return_value = sc.replace(to_rep, val, inplace=True) + assert return_value is None + tm.assert_series_equal(expected, result) + tm.assert_series_equal(expected, sc) + + # 3.0 can still be held in our int64 series, so we do not upcast GH#44940 + tr, v = [3], [3.0] + check_replace(tr, v, ser) + # Note this matches what we get with the scalars 3 and 3.0 + check_replace(tr[0], v[0], ser) + + # MUST upcast to float + e = pd.Series([0, 1, 2, 3.5, 4]) + tr, v = [3], [3.5] + check_replace(tr, v, e) + + # casts to object + e = pd.Series([0, 1, 2, 3.5, "a"]) + tr, v = [3, 4], [3.5, "a"] + check_replace(tr, v, e) + + # again casts to object + e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")]) + tr, v = [3, 4], [3.5, pd.Timestamp("20130101")] + check_replace(tr, v, e) + + # casts to object + e = pd.Series([0, 1, 2, 3.5, True], dtype="object") + tr, v = [3, 4], [3.5, True] + check_replace(tr, v, e) + + # test an object with dates + floats + integers + strings + dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D")) + result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"]) + expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object) + tm.assert_series_equal(result, expected) + + def test_replace_bool_with_string_no_op(self): + s = pd.Series([True, False, True]) + result = s.replace("fun", "in-the-sun") + tm.assert_series_equal(s, result) + + def test_replace_bool_with_string(self): + # nonexistent elements + s = pd.Series([True, False, True]) + result = s.replace(True, "2u") + expected = pd.Series(["2u", False, "2u"]) + tm.assert_series_equal(expected, result) + + def test_replace_bool_with_bool(self): + s = pd.Series([True, False, True]) + result = s.replace(True, False) + expected = pd.Series([False] * len(s)) + tm.assert_series_equal(expected, result) + + def test_replace_with_dict_with_bool_keys(self): + s = pd.Series([True, False, True]) + result = s.replace({"asdf": "asdb", True: "yes"}) + expected = pd.Series(["yes", False, "yes"]) + tm.assert_series_equal(result, expected) + + def test_replace_Int_with_na(self, any_int_ea_dtype): + # GH 38267 + result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA) + expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) + tm.assert_series_equal(result, expected) + result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA) + result.replace(1, pd.NA, inplace=True) + tm.assert_series_equal(result, expected) + + def test_replace2(self): + N = 50 + ser = pd.Series( + np.fabs(np.random.default_rng(2).standard_normal(N)), + pd.date_range("2020-01-01", periods=N), + dtype=object, + ) + ser[:5] = np.nan + ser[6:10] = "foo" + ser[20:30] = "bar" + + # replace list with a single value + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace([np.nan, "foo", "bar"], -1) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -1).all() + assert (rs[20:30] == -1).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -2).all() + assert (rs[20:30] == -3).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values with 2 lists + with tm.assert_produces_warning(FutureWarning, match=msg): + rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) + tm.assert_series_equal(rs, rs2) + + # replace inplace + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) + assert return_value is None + assert (ser[:5] == -1).all() + assert (ser[6:10] == -1).all() + assert (ser[20:30] == -1).all() + + @pytest.mark.parametrize("inplace", [True, False]) + def test_replace_cascade(self, inplace): + # Test that replaced values are not replaced again + # GH #50778 + ser = pd.Series([1, 2, 3]) + expected = pd.Series([2, 3, 4]) + + res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace) + if inplace: + tm.assert_series_equal(ser, expected) + else: + tm.assert_series_equal(res, expected) + + def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype): + # GH 32621, GH#44940 + ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype) + expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype) + result = ser.replace({"one": "1", "two": "2"}) + tm.assert_series_equal(expected, result) + + def test_replace_with_empty_dictlike(self): + # GH 15289 + s = pd.Series(list("abcd")) + tm.assert_series_equal(s, s.replace({})) + + empty_series = pd.Series([]) + tm.assert_series_equal(s, s.replace(empty_series)) + + def test_replace_string_with_number(self): + # GH 15743 + s = pd.Series([1, 2, 3]) + result = s.replace("2", np.nan) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(expected, result) + + def test_replace_replacer_equals_replacement(self): + # GH 20656 + # make sure all replacers are matching against original values + s = pd.Series(["a", "b"]) + expected = pd.Series(["b", "a"]) + result = s.replace({"a": "b", "b": "a"}) + tm.assert_series_equal(expected, result) + + def test_replace_unicode_with_number(self): + # GH 15743 + s = pd.Series([1, 2, 3]) + result = s.replace("2", np.nan) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(expected, result) + + def test_replace_mixed_types_with_string(self): + # Testing mixed + s = pd.Series([1, 2, 3, "4", 4, 5]) + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.replace([2, "4"], np.nan) + expected = pd.Series([1, np.nan, 3, np.nan, 4, 5]) + tm.assert_series_equal(expected, result) + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string") + @pytest.mark.parametrize( + "categorical, numeric", + [ + (pd.Categorical(["A"], categories=["A", "B"]), [1]), + (pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]), + ], + ) + def test_replace_categorical(self, categorical, numeric): + # GH 24971, GH#23305 + ser = pd.Series(categorical) + msg = "Downcasting behavior in `replace`" + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace({"A": 1, "B": 2}) + expected = pd.Series(numeric).astype("category") + if 2 not in expected.cat.categories: + # i.e. categories should be [1, 2] even if there are no "B"s present + # GH#44940 + expected = expected.cat.add_categories(2) + tm.assert_series_equal(expected, result) + + @pytest.mark.parametrize( + "data, data_exp", [(["a", "b", "c"], ["b", "b", "c"]), (["a"], ["b"])] + ) + def test_replace_categorical_inplace(self, data, data_exp): + # GH 53358 + result = pd.Series(data, dtype="category") + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result.replace(to_replace="a", value="b", inplace=True) + expected = pd.Series(data_exp, dtype="category") + tm.assert_series_equal(result, expected) + + def test_replace_categorical_single(self): + # GH 26988 + dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific") + s = pd.Series(dti) + c = s.astype("category") + + expected = c.copy() + expected = expected.cat.add_categories("foo") + expected[2] = "foo" + expected = expected.cat.remove_unused_categories() + assert c[2] != "foo" + + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = c.replace(c[2], "foo") + tm.assert_series_equal(expected, result) + assert c[2] != "foo" # ensure non-inplace call does not alter original + + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = c.replace(c[2], "foo", inplace=True) + assert return_value is None + tm.assert_series_equal(expected, c) + + first_value = c[0] + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = c.replace(c[1], c[0], inplace=True) + assert return_value is None + assert c[0] == c[1] == first_value # test replacing with existing value + + def test_replace_with_no_overflowerror(self): + # GH 25616 + # casts to object without Exception from OverflowError + s = pd.Series([0, 1, 2, 3, 4]) + result = s.replace([3], ["100000000000000000000"]) + expected = pd.Series([0, 1, 2, "100000000000000000000", 4]) + tm.assert_series_equal(result, expected) + + s = pd.Series([0, "100000000000000000000", "100000000000000000001"]) + result = s.replace(["100000000000000000000"], [1]) + expected = pd.Series([0, 1, "100000000000000000001"]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, to_replace, exp", + [ + ([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]), + (["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]), + ], + ) + def test_replace_commutative(self, ser, to_replace, exp): + # GH 16051 + # DataFrame.replace() overwrites when values are non-numeric + + series = pd.Series(ser) + + expected = pd.Series(exp) + result = series.replace(to_replace) + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])] + ) + def test_replace_no_cast(self, ser, exp): + # GH 9113 + # BUG: replace int64 dtype with bool coerces to int64 + + series = pd.Series(ser) + result = series.replace(2, True) + expected = pd.Series(exp) + + tm.assert_series_equal(result, expected) + + def test_replace_invalid_to_replace(self): + # GH 18634 + # API: replace() should raise an exception if invalid argument is given + series = pd.Series(["a", "b", "c "]) + msg = ( + r"Expecting 'to_replace' to be either a scalar, array-like, " + r"dict or None, got invalid type.*" + ) + msg2 = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with pytest.raises(TypeError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg2): + series.replace(lambda x: x.strip()) + + @pytest.mark.parametrize("frame", [False, True]) + def test_replace_nonbool_regex(self, frame): + obj = pd.Series(["a", "b", "c "]) + if frame: + obj = obj.to_frame() + + msg = "'to_replace' must be 'None' if 'regex' is not a bool" + with pytest.raises(ValueError, match=msg): + obj.replace(to_replace=["a"], regex="foo") + + @pytest.mark.parametrize("frame", [False, True]) + def test_replace_empty_copy(self, frame): + obj = pd.Series([], dtype=np.float64) + if frame: + obj = obj.to_frame() + + res = obj.replace(4, 5, inplace=True) + assert res is None + + res = obj.replace(4, 5, inplace=False) + tm.assert_equal(res, obj) + assert res is not obj + + def test_replace_only_one_dictlike_arg(self, fixed_now_ts): + # GH#33340 + + ser = pd.Series([1, 2, "A", fixed_now_ts, True]) + to_replace = {0: 1, 2: "A"} + value = "foo" + msg = "Series.replace cannot use dict-like to_replace and non-None value" + with pytest.raises(ValueError, match=msg): + ser.replace(to_replace, value) + + to_replace = 1 + value = {0: "foo", 2: "bar"} + msg = "Series.replace cannot use dict-value and non-None to_replace" + with pytest.raises(ValueError, match=msg): + ser.replace(to_replace, value) + + def test_replace_extension_other(self, frame_or_series): + # https://github.com/pandas-dev/pandas/issues/34530 + obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64")) + result = obj.replace("", "") # no exception + # should not have changed dtype + tm.assert_equal(obj, result) + + def _check_replace_with_method(self, ser: pd.Series): + df = ser.to_frame() + + msg1 = "The 'method' keyword in Series.replace is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg1): + res = ser.replace(ser[1], method="pad") + expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype) + tm.assert_series_equal(res, expected) + + msg2 = "The 'method' keyword in DataFrame.replace is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg2): + res_df = df.replace(ser[1], method="pad") + tm.assert_frame_equal(res_df, expected.to_frame()) + + ser2 = ser.copy() + with tm.assert_produces_warning(FutureWarning, match=msg1): + res2 = ser2.replace(ser[1], method="pad", inplace=True) + assert res2 is None + tm.assert_series_equal(ser2, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg2): + res_df2 = df.replace(ser[1], method="pad", inplace=True) + assert res_df2 is None + tm.assert_frame_equal(df, expected.to_frame()) + + def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype): + arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype) + ser = pd.Series(arr) + + self._check_replace_with_method(ser) + + @pytest.mark.parametrize("as_categorical", [True, False]) + def test_replace_interval_with_method(self, as_categorical): + # in particular interval that can't hold NA + + idx = pd.IntervalIndex.from_breaks(range(4)) + ser = pd.Series(idx) + if as_categorical: + ser = ser.astype("category") + + self._check_replace_with_method(ser) + + @pytest.mark.parametrize("as_period", [True, False]) + @pytest.mark.parametrize("as_categorical", [True, False]) + def test_replace_datetimelike_with_method(self, as_period, as_categorical): + idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific") + if as_period: + idx = idx.tz_localize(None).to_period("D") + + ser = pd.Series(idx) + ser.iloc[-2] = pd.NaT + if as_categorical: + ser = ser.astype("category") + + self._check_replace_with_method(ser) + + def test_replace_with_compiled_regex(self): + # https://github.com/pandas-dev/pandas/issues/35680 + s = pd.Series(["a", "b", "c"]) + regex = re.compile("^a$") + result = s.replace({regex: "z"}, regex=True) + expected = pd.Series(["z", "b", "c"]) + tm.assert_series_equal(result, expected) + + def test_pandas_replace_na(self): + # GH#43344 + ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string") + regex_mapping = { + "AA": "CC", + "BB": "CC", + "EE": "CC", + "CC": "CC-REPL", + } + result = ser.replace(regex_mapping, regex=True) + exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string") + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize( + "dtype, input_data, to_replace, expected_data", + [ + ("bool", [True, False], {True: False}, [False, False]), + ("int64", [1, 2], {1: 10, 2: 20}, [10, 20]), + ("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]), + ("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]), + ("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]), + ("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]), + ( + pd.IntervalDtype("int64"), + IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]), + {pd.Interval(1, 2): pd.Interval(10, 20)}, + IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]), + ), + ( + pd.IntervalDtype("float64"), + IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]), + {pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)}, + IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]), + ), + ( + pd.PeriodDtype("M"), + [pd.Period("2020-05", freq="M")], + {pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")}, + [pd.Period("2020-06", freq="M")], + ), + ], + ) + def test_replace_dtype(self, dtype, input_data, to_replace, expected_data): + # GH#33484 + ser = pd.Series(input_data, dtype=dtype) + result = ser.replace(to_replace) + expected = pd.Series(expected_data, dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_replace_string_dtype(self): + # GH#40732, GH#44940 + ser = pd.Series(["one", "two", np.nan], dtype="string") + res = ser.replace({"one": "1", "two": "2"}) + expected = pd.Series(["1", "2", np.nan], dtype="string") + tm.assert_series_equal(res, expected) + + # GH#31644 + ser2 = pd.Series(["A", np.nan], dtype="string") + res2 = ser2.replace("A", "B") + expected2 = pd.Series(["B", np.nan], dtype="string") + tm.assert_series_equal(res2, expected2) + + ser3 = pd.Series(["A", "B"], dtype="string") + res3 = ser3.replace("A", pd.NA) + expected3 = pd.Series([pd.NA, "B"], dtype="string") + tm.assert_series_equal(res3, expected3) + + def test_replace_string_dtype_list_to_replace(self): + # GH#41215, GH#44940 + ser = pd.Series(["abc", "def"], dtype="string") + res = ser.replace(["abc", "any other string"], "xyz") + expected = pd.Series(["xyz", "def"], dtype="string") + tm.assert_series_equal(res, expected) + + def test_replace_string_dtype_regex(self): + # GH#31644 + ser = pd.Series(["A", "B"], dtype="string") + res = ser.replace(r".", "C", regex=True) + expected = pd.Series(["C", "C"], dtype="string") + tm.assert_series_equal(res, expected) + + def test_replace_nullable_numeric(self): + # GH#40732, GH#44940 + + floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype()) + assert floats.replace({1.0: 9}).dtype == floats.dtype + assert floats.replace(1.0, 9).dtype == floats.dtype + assert floats.replace({1.0: 9.0}).dtype == floats.dtype + assert floats.replace(1.0, 9.0).dtype == floats.dtype + + res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0]) + assert res.dtype == floats.dtype + + ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype()) + assert ints.replace({1: 9}).dtype == ints.dtype + assert ints.replace(1, 9).dtype == ints.dtype + assert ints.replace({1: 9.0}).dtype == ints.dtype + assert ints.replace(1, 9.0).dtype == ints.dtype + + # nullable (for now) raises instead of casting + with pytest.raises(TypeError, match="Invalid value"): + ints.replace({1: 9.5}) + with pytest.raises(TypeError, match="Invalid value"): + ints.replace(1, 9.5) + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 1 in string") + @pytest.mark.parametrize("regex", [False, True]) + def test_replace_regex_dtype_series(self, regex): + # GH-48644 + series = pd.Series(["0"]) + expected = pd.Series([1]) + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = series.replace(to_replace="0", value=1, regex=regex) + tm.assert_series_equal(result, expected) + + def test_replace_different_int_types(self, any_int_numpy_dtype): + # GH#45311 + labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype) + + maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype) + map_dict = dict(zip(maps.values, maps.index)) + + result = labs.replace(map_dict) + expected = labs.replace({0: 0, 2: 1, 1: 2}) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val", [2, np.nan, 2.0]) + def test_replace_value_none_dtype_numeric(self, val): + # GH#48231 + ser = pd.Series([1, val]) + result = ser.replace(val, None) + expected = pd.Series([1, None], dtype=object) + tm.assert_series_equal(result, expected) + + def test_replace_change_dtype_series(self, using_infer_string): + # GH#25797 + df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]}) + warn = FutureWarning if using_infer_string else None + with tm.assert_produces_warning(warn, match="Downcasting"): + df["Test"] = df["Test"].replace([True], [np.nan]) + expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]}) + tm.assert_frame_equal(df, expected) + + df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]}) + df["Test"] = df["Test"].replace([None], [np.nan]) + tm.assert_frame_equal(df, expected) + + df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]}) + df["Test"] = df["Test"].fillna(np.nan) + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize("dtype", ["object", "Int64"]) + def test_replace_na_in_obj_column(self, dtype): + # GH#47480 + ser = pd.Series([0, 1, pd.NA], dtype=dtype) + expected = pd.Series([0, 2, pd.NA], dtype=dtype) + result = ser.replace(to_replace=1, value=2) + tm.assert_series_equal(result, expected) + + ser.replace(to_replace=1, value=2, inplace=True) + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize("val", [0, 0.5]) + def test_replace_numeric_column_with_na(self, val): + # GH#50758 + ser = pd.Series([val, 1]) + expected = pd.Series([val, pd.NA]) + result = ser.replace(to_replace=1, value=pd.NA) + tm.assert_series_equal(result, expected) + + ser.replace(to_replace=1, value=pd.NA, inplace=True) + tm.assert_series_equal(ser, expected) + + def test_replace_ea_float_with_bool(self): + # GH#55398 + ser = pd.Series([0.0], dtype="Float64") + expected = ser.copy() + result = ser.replace(False, 1.0) + tm.assert_series_equal(result, expected) + + ser = pd.Series([False], dtype="boolean") + expected = ser.copy() + result = ser.replace(0.0, True) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py new file mode 100644 index 0000000000000000000000000000000000000000..48e2608a1032a0664f7b6b3cb2c354e7f7c531f6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py @@ -0,0 +1,225 @@ +from datetime import datetime + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + RangeIndex, + Series, + date_range, + option_context, +) +import pandas._testing as tm + + +class TestResetIndex: + def test_reset_index_dti_round_trip(self): + dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) + d1 = DataFrame({"v": np.random.default_rng(2).random(len(dti))}, index=dti) + d2 = d1.reset_index() + assert d2.dtypes.iloc[0] == np.dtype("M8[ns]") + d3 = d2.set_index("index") + tm.assert_frame_equal(d1, d3, check_names=False) + + # GH#2329 + stamp = datetime(2012, 11, 22) + df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) + df = df.set_index("Date") + + assert df.index[0] == stamp + assert df.reset_index()["Date"].iloc[0] == stamp + + def test_reset_index(self): + df = DataFrame( + 1.1 * np.arange(120).reshape((30, 4)), + columns=Index(list("ABCD"), dtype=object), + index=Index([f"i-{i}" for i in range(30)], dtype=object), + )[:5] + ser = df.stack(future_stack=True) + ser.index.names = ["hash", "category"] + + ser.name = "value" + df = ser.reset_index() + assert "value" in df + + df = ser.reset_index(name="value2") + assert "value2" in df + + # check inplace + s = ser.reset_index(drop=True) + s2 = ser + return_value = s2.reset_index(drop=True, inplace=True) + assert return_value is None + tm.assert_series_equal(s, s2) + + # level + index = MultiIndex( + levels=[["bar"], ["one", "two", "three"], [0, 1]], + codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + s = Series(np.random.default_rng(2).standard_normal(6), index=index) + rs = s.reset_index(level=1) + assert len(rs.columns) == 2 + + rs = s.reset_index(level=[0, 2], drop=True) + tm.assert_index_equal(rs.index, Index(index.get_level_values(1))) + assert isinstance(rs, Series) + + def test_reset_index_name(self): + s = Series([1, 2, 3], index=Index(range(3), name="x")) + assert s.reset_index().index.name is None + assert s.reset_index(drop=True).index.name is None + + def test_reset_index_level(self): + df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) + + for levels in ["A", "B"], [0, 1]: + # With MultiIndex + s = df.set_index(["A", "B"])["C"] + + result = s.reset_index(level=levels[0]) + tm.assert_frame_equal(result, df.set_index("B")) + + result = s.reset_index(level=levels[:1]) + tm.assert_frame_equal(result, df.set_index("B")) + + result = s.reset_index(level=levels) + tm.assert_frame_equal(result, df) + + result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) + tm.assert_frame_equal(result, df[["C"]]) + + with pytest.raises(KeyError, match="Level E "): + s.reset_index(level=["A", "E"]) + + # With single-level Index + s = df.set_index("A")["B"] + + result = s.reset_index(level=levels[0]) + tm.assert_frame_equal(result, df[["A", "B"]]) + + result = s.reset_index(level=levels[:1]) + tm.assert_frame_equal(result, df[["A", "B"]]) + + result = s.reset_index(level=levels[0], drop=True) + tm.assert_series_equal(result, df["B"]) + + with pytest.raises(IndexError, match="Too many levels"): + s.reset_index(level=[0, 1, 2]) + + # Check that .reset_index([],drop=True) doesn't fail + result = Series(range(4)).reset_index([], drop=True) + expected = Series(range(4)) + tm.assert_series_equal(result, expected) + + def test_reset_index_range(self): + # GH 12071 + s = Series(range(2), name="A", dtype="int64") + series_result = s.reset_index() + assert isinstance(series_result.index, RangeIndex) + series_expected = DataFrame( + [[0, 0], [1, 1]], columns=["index", "A"], index=RangeIndex(stop=2) + ) + tm.assert_frame_equal(series_result, series_expected) + + def test_reset_index_drop_errors(self): + # GH 20925 + + # KeyError raised for series index when passed level name is missing + s = Series(range(4)) + with pytest.raises(KeyError, match="does not match index name"): + s.reset_index("wrong", drop=True) + with pytest.raises(KeyError, match="does not match index name"): + s.reset_index("wrong") + + # KeyError raised for series when level to be dropped is missing + s = Series(range(4), index=MultiIndex.from_product([[1, 2]] * 2)) + with pytest.raises(KeyError, match="not found"): + s.reset_index("wrong", drop=True) + + def test_reset_index_with_drop(self): + arrays = [ + ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + tuples = zip(*arrays) + index = MultiIndex.from_tuples(tuples) + data = np.random.default_rng(2).standard_normal(8) + ser = Series(data, index=index) + ser.iloc[3] = np.nan + + deleveled = ser.reset_index() + assert isinstance(deleveled, DataFrame) + assert len(deleveled.columns) == len(ser.index.levels) + 1 + assert deleveled.index.name == ser.index.name + + deleveled = ser.reset_index(drop=True) + assert isinstance(deleveled, Series) + assert deleveled.index.name == ser.index.name + + def test_reset_index_inplace_and_drop_ignore_name(self): + # GH#44575 + ser = Series(range(2), name="old") + ser.reset_index(name="new", drop=True, inplace=True) + expected = Series(range(2), name="old") + tm.assert_series_equal(ser, expected) + + def test_reset_index_drop_infer_string(self): + # GH#56160 + pytest.importorskip("pyarrow") + ser = Series(["a", "b", "c"], dtype=object) + with option_context("future.infer_string", True): + result = ser.reset_index(drop=True) + tm.assert_series_equal(result, ser) + + +@pytest.mark.parametrize( + "array, dtype", + [ + (["a", "b"], object), + ( + pd.period_range("12-1-2000", periods=2, freq="Q-DEC"), + pd.PeriodDtype(freq="Q-DEC"), + ), + ], +) +def test_reset_index_dtypes_on_empty_series_with_multiindex( + array, dtype, using_infer_string +): + # GH 19602 - Preserve dtype on empty Series with MultiIndex + idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array]) + result = Series(dtype=object, index=idx)[:0].reset_index().dtypes + exp = "string" if using_infer_string else object + expected = Series( + { + "level_0": np.int64, + "level_1": np.float64, + "level_2": exp if dtype == object else dtype, + 0: object, + } + ) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "names, expected_names", + [ + (["A", "A"], ["A", "A"]), + (["level_1", None], ["level_1", "level_1"]), + ], +) +@pytest.mark.parametrize("allow_duplicates", [False, True]) +def test_column_name_duplicates(names, expected_names, allow_duplicates): + # GH#44755 reset_index with duplicate column labels + s = Series([1], index=MultiIndex.from_arrays([[1], [1]], names=names)) + if allow_duplicates: + result = s.reset_index(allow_duplicates=True) + expected = DataFrame([[1, 1, 1]], columns=expected_names + [0]) + tm.assert_frame_equal(result, expected) + else: + with pytest.raises(ValueError, match="cannot insert"): + s.reset_index() diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py new file mode 100644 index 0000000000000000000000000000000000000000..c330b7a7dfbbba7f68d5da6d038e6f85f9eedcb4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py @@ -0,0 +1,74 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + + +class TestSeriesRound: + def test_round(self, datetime_series): + datetime_series.index.name = "index_name" + result = datetime_series.round(2) + expected = Series( + np.round(datetime_series.values, 2), index=datetime_series.index, name="ts" + ) + tm.assert_series_equal(result, expected) + assert result.name == datetime_series.name + + def test_round_numpy(self, any_float_dtype): + # See GH#12600 + ser = Series([1.53, 1.36, 0.06], dtype=any_float_dtype) + out = np.round(ser, decimals=0) + expected = Series([2.0, 1.0, 0.0], dtype=any_float_dtype) + tm.assert_series_equal(out, expected) + + msg = "the 'out' parameter is not supported" + with pytest.raises(ValueError, match=msg): + np.round(ser, decimals=0, out=ser) + + def test_round_numpy_with_nan(self, any_float_dtype): + # See GH#14197 + ser = Series([1.53, np.nan, 0.06], dtype=any_float_dtype) + with tm.assert_produces_warning(None): + result = ser.round() + expected = Series([2.0, np.nan, 0.0], dtype=any_float_dtype) + tm.assert_series_equal(result, expected) + + def test_round_builtin(self, any_float_dtype): + ser = Series( + [1.123, 2.123, 3.123], + index=range(3), + dtype=any_float_dtype, + ) + result = round(ser) + expected_rounded0 = Series( + [1.0, 2.0, 3.0], index=range(3), dtype=any_float_dtype + ) + tm.assert_series_equal(result, expected_rounded0) + + decimals = 2 + expected_rounded = Series( + [1.12, 2.12, 3.12], index=range(3), dtype=any_float_dtype + ) + result = round(ser, decimals) + tm.assert_series_equal(result, expected_rounded) + + @pytest.mark.parametrize("method", ["round", "floor", "ceil"]) + @pytest.mark.parametrize("freq", ["s", "5s", "min", "5min", "h", "5h"]) + def test_round_nat(self, method, freq, unit): + # GH14940, GH#56158 + ser = Series([pd.NaT], dtype=f"M8[{unit}]") + expected = Series(pd.NaT, dtype=f"M8[{unit}]") + round_method = getattr(ser.dt, method) + result = round_method(freq) + tm.assert_series_equal(result, expected) + + def test_round_ea_boolean(self): + # GH#55936 + ser = Series([True, False], dtype="boolean") + expected = ser.copy() + result = ser.round(2) + tm.assert_series_equal(result, expected) + result.iloc[0] = False + tm.assert_series_equal(ser, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py new file mode 100644 index 0000000000000000000000000000000000000000..239496052b99b42df262262a9ac89b71c93e0a26 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py @@ -0,0 +1,77 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + Timestamp, + date_range, +) +import pandas._testing as tm +from pandas.api.types import is_scalar + + +class TestSeriesSearchSorted: + def test_searchsorted(self): + ser = Series([1, 2, 3]) + + result = ser.searchsorted(1, side="left") + assert is_scalar(result) + assert result == 0 + + result = ser.searchsorted(1, side="right") + assert is_scalar(result) + assert result == 1 + + def test_searchsorted_numeric_dtypes_scalar(self): + ser = Series([1, 2, 90, 1000, 3e9]) + res = ser.searchsorted(30) + assert is_scalar(res) + assert res == 2 + + res = ser.searchsorted([30]) + exp = np.array([2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_numeric_dtypes_vector(self): + ser = Series([1, 2, 90, 1000, 3e9]) + res = ser.searchsorted([91, 2e6]) + exp = np.array([3, 4], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_datetime64_scalar(self): + ser = Series(date_range("20120101", periods=10, freq="2D")) + val = Timestamp("20120102") + res = ser.searchsorted(val) + assert is_scalar(res) + assert res == 1 + + def test_searchsorted_datetime64_scalar_mixed_timezones(self): + # GH 30086 + ser = Series(date_range("20120101", periods=10, freq="2D", tz="UTC")) + val = Timestamp("20120102", tz="America/New_York") + res = ser.searchsorted(val) + assert is_scalar(res) + assert res == 1 + + def test_searchsorted_datetime64_list(self): + ser = Series(date_range("20120101", periods=10, freq="2D")) + vals = [Timestamp("20120102"), Timestamp("20120104")] + res = ser.searchsorted(vals) + exp = np.array([1, 2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_sorter(self): + # GH8490 + ser = Series([3, 1, 2]) + res = ser.searchsorted([0, 3], sorter=np.argsort(ser)) + exp = np.array([0, 2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_dataframe_fail(self): + # GH#49620 + ser = Series([1, 2, 3, 4, 5]) + vals = pd.DataFrame([[1, 2], [3, 4]]) + msg = "Value must be 1-D array-like or scalar, DataFrame is not supported" + with pytest.raises(ValueError, match=msg): + ser.searchsorted(vals) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py new file mode 100644 index 0000000000000000000000000000000000000000..cbc8ebde7a8ab79fabe94781123844c856c9c78b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py @@ -0,0 +1,21 @@ +from datetime import datetime + +from pandas import Series + + +class TestSetName: + def test_set_name(self): + ser = Series([1, 2, 3]) + ser2 = ser._set_name("foo") + assert ser2.name == "foo" + assert ser.name is None + assert ser is not ser2 + + def test_set_name_attribute(self): + ser = Series([1, 2, 3]) + ser2 = Series([1, 2, 3], name="bar") + for name in [7, 7.0, "name", datetime(2001, 1, 1), (1,), "\u05D0"]: + ser.name = name + assert ser.name == name + ser2.name = name + assert ser2.name == name diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py new file mode 100644 index 0000000000000000000000000000000000000000..20a454996fa4488501d6f623ad3afc6fa38e5634 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py @@ -0,0 +1,22 @@ +import pytest + +from pandas import Series + + +@pytest.mark.parametrize( + "data, index, expected", + [ + ([1, 2, 3], None, 3), + ({"a": 1, "b": 2, "c": 3}, None, 3), + ([1, 2, 3], ["x", "y", "z"], 3), + ([1, 2, 3, 4, 5], ["x", "y", "z", "w", "n"], 5), + ([1, 2, 3], None, 3), + ([1, 2, 3], ["x", "y", "z"], 3), + ([1, 2, 3, 4], ["x", "y", "z", "w"], 4), + ], +) +def test_series(data, index, expected): + # GH#52897 + ser = Series(data, index=index) + assert ser.size == expected + assert isinstance(ser.size, int) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py new file mode 100644 index 0000000000000000000000000000000000000000..1c17013d621c7f78c1e8ae7e1346660aebe79b1e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py @@ -0,0 +1,182 @@ +from datetime import datetime +from io import StringIO + +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + +from pandas.io.common import get_handle + + +class TestSeriesToCSV: + def read_csv(self, path, **kwargs): + params = {"index_col": 0, "header": None} + params.update(**kwargs) + + header = params.get("header") + out = pd.read_csv(path, **params).squeeze("columns") + + if header is None: + out.name = out.index.name = None + + return out + + def test_from_csv(self, datetime_series, string_series): + # freq doesn't round-trip + datetime_series.index = datetime_series.index._with_freq(None) + + with tm.ensure_clean() as path: + datetime_series.to_csv(path, header=False) + ts = self.read_csv(path, parse_dates=True) + tm.assert_series_equal(datetime_series, ts, check_names=False) + + assert ts.name is None + assert ts.index.name is None + + # see gh-10483 + datetime_series.to_csv(path, header=True) + ts_h = self.read_csv(path, header=0) + assert ts_h.name == "ts" + + string_series.to_csv(path, header=False) + series = self.read_csv(path) + tm.assert_series_equal(string_series, series, check_names=False) + + assert series.name is None + assert series.index.name is None + + string_series.to_csv(path, header=True) + series_h = self.read_csv(path, header=0) + assert series_h.name == "series" + + with open(path, "w", encoding="utf-8") as outfile: + outfile.write("1998-01-01|1.0\n1999-01-01|2.0") + + series = self.read_csv(path, sep="|", parse_dates=True) + check_series = Series( + {datetime(1998, 1, 1): 1.0, datetime(1999, 1, 1): 2.0} + ) + tm.assert_series_equal(check_series, series) + + series = self.read_csv(path, sep="|", parse_dates=False) + check_series = Series({"1998-01-01": 1.0, "1999-01-01": 2.0}) + tm.assert_series_equal(check_series, series) + + def test_to_csv(self, datetime_series): + with tm.ensure_clean() as path: + datetime_series.to_csv(path, header=False) + + with open(path, newline=None, encoding="utf-8") as f: + lines = f.readlines() + assert lines[1] != "\n" + + datetime_series.to_csv(path, index=False, header=False) + arr = np.loadtxt(path) + tm.assert_almost_equal(arr, datetime_series.values) + + def test_to_csv_unicode_index(self): + buf = StringIO() + s = Series(["\u05d0", "d2"], index=["\u05d0", "\u05d1"]) + + s.to_csv(buf, encoding="UTF-8", header=False) + buf.seek(0) + + s2 = self.read_csv(buf, index_col=0, encoding="UTF-8") + tm.assert_series_equal(s, s2) + + def test_to_csv_float_format(self): + with tm.ensure_clean() as filename: + ser = Series([0.123456, 0.234567, 0.567567]) + ser.to_csv(filename, float_format="%.2f", header=False) + + rs = self.read_csv(filename) + xp = Series([0.12, 0.23, 0.57]) + tm.assert_series_equal(rs, xp) + + def test_to_csv_list_entries(self): + s = Series(["jack and jill", "jesse and frank"]) + + split = s.str.split(r"\s+and\s+") + + buf = StringIO() + split.to_csv(buf, header=False) + + def test_to_csv_path_is_none(self): + # GH 8215 + # Series.to_csv() was returning None, inconsistent with + # DataFrame.to_csv() which returned string + s = Series([1, 2, 3]) + csv_str = s.to_csv(path_or_buf=None, header=False) + assert isinstance(csv_str, str) + + @pytest.mark.parametrize( + "s,encoding", + [ + ( + Series([0.123456, 0.234567, 0.567567], index=["A", "B", "C"], name="X"), + None, + ), + # GH 21241, 21118 + (Series(["abc", "def", "ghi"], name="X"), "ascii"), + (Series(["123", "你好", "世界"], name="中文"), "gb2312"), + ( + Series(["123", "Γειά σου", "Κόσμε"], name="Ελληνικά"), # noqa: RUF001 + "cp737", + ), + ], + ) + def test_to_csv_compression(self, s, encoding, compression): + with tm.ensure_clean() as filename: + s.to_csv(filename, compression=compression, encoding=encoding, header=True) + # test the round trip - to_csv -> read_csv + result = pd.read_csv( + filename, + compression=compression, + encoding=encoding, + index_col=0, + ).squeeze("columns") + tm.assert_series_equal(s, result) + + # test the round trip using file handle - to_csv -> read_csv + with get_handle( + filename, "w", compression=compression, encoding=encoding + ) as handles: + s.to_csv(handles.handle, encoding=encoding, header=True) + + result = pd.read_csv( + filename, + compression=compression, + encoding=encoding, + index_col=0, + ).squeeze("columns") + tm.assert_series_equal(s, result) + + # explicitly ensure file was compressed + with tm.decompress_file(filename, compression) as fh: + text = fh.read().decode(encoding or "utf8") + assert s.name in text + + with tm.decompress_file(filename, compression) as fh: + tm.assert_series_equal( + s, + pd.read_csv(fh, index_col=0, encoding=encoding).squeeze("columns"), + ) + + def test_to_csv_interval_index(self, using_infer_string): + # GH 28210 + s = Series(["foo", "bar", "baz"], index=pd.interval_range(0, 3)) + + with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: + s.to_csv(path, header=False) + result = self.read_csv(path, index_col=0) + + # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) + expected = s.copy() + if using_infer_string: + expected.index = expected.index.astype("string[pyarrow_numpy]") + else: + expected.index = expected.index.astype(str) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py new file mode 100644 index 0000000000000000000000000000000000000000..41c01f4537f23fdb90110685d2e774427916aee1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py @@ -0,0 +1,38 @@ +import collections + +import numpy as np +import pytest + +from pandas import Series +import pandas._testing as tm + + +class TestSeriesToDict: + @pytest.mark.parametrize( + "mapping", (dict, collections.defaultdict(list), collections.OrderedDict) + ) + def test_to_dict(self, mapping, datetime_series): + # GH#16122 + result = Series(datetime_series.to_dict(into=mapping), name="ts") + expected = datetime_series.copy() + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + from_method = Series(datetime_series.to_dict(into=collections.Counter)) + from_constructor = Series(collections.Counter(datetime_series.items())) + tm.assert_series_equal(from_method, from_constructor) + + @pytest.mark.parametrize( + "input", + ( + {"a": np.int64(64), "b": 10}, + {"a": np.int64(64), "b": 10, "c": "ABC"}, + {"a": np.uint64(64), "b": 10, "c": "ABC"}, + ), + ) + def test_to_dict_return_types(self, input): + # GH25969 + + d = Series(input).to_dict() + assert isinstance(d["a"], int) + assert isinstance(d["b"], int) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py new file mode 100644 index 0000000000000000000000000000000000000000..0eadf696b34cc034d2be76ce5daba2cff679da74 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py @@ -0,0 +1,63 @@ +import pytest + +from pandas import ( + DataFrame, + Index, + Series, +) +import pandas._testing as tm + + +class TestToFrame: + def test_to_frame_respects_name_none(self): + # GH#44212 if we explicitly pass name=None, then that should be respected, + # not changed to 0 + # GH-45448 this is first deprecated & enforced in 2.0 + ser = Series(range(3)) + result = ser.to_frame(None) + + exp_index = Index([None], dtype=object) + tm.assert_index_equal(result.columns, exp_index) + + result = ser.rename("foo").to_frame(None) + exp_index = Index([None], dtype=object) + tm.assert_index_equal(result.columns, exp_index) + + def test_to_frame(self, datetime_series): + datetime_series.name = None + rs = datetime_series.to_frame() + xp = DataFrame(datetime_series.values, index=datetime_series.index) + tm.assert_frame_equal(rs, xp) + + datetime_series.name = "testname" + rs = datetime_series.to_frame() + xp = DataFrame( + {"testname": datetime_series.values}, index=datetime_series.index + ) + tm.assert_frame_equal(rs, xp) + + rs = datetime_series.to_frame(name="testdifferent") + xp = DataFrame( + {"testdifferent": datetime_series.values}, index=datetime_series.index + ) + tm.assert_frame_equal(rs, xp) + + @pytest.mark.filterwarnings( + "ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning" + ) + def test_to_frame_expanddim(self): + # GH#9762 + + class SubclassedSeries(Series): + @property + def _constructor_expanddim(self): + return SubclassedFrame + + class SubclassedFrame(DataFrame): + pass + + ser = SubclassedSeries([1, 2, 3], name="X") + result = ser.to_frame() + assert isinstance(result, SubclassedFrame) + expected = SubclassedFrame({"X": [1, 2, 3]}) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..4bc7631090761e720c61049f9b8fd2a7fadd89af --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py @@ -0,0 +1,49 @@ +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + NA, + Series, + Timedelta, +) +import pandas._testing as tm + + +@pytest.mark.parametrize("dtype", ["int64", "float64"]) +def test_to_numpy_na_value(dtype): + # GH#48951 + ser = Series([1, 2, NA, 4]) + result = ser.to_numpy(dtype=dtype, na_value=0) + expected = np.array([1, 2, 0, 4], dtype=dtype) + tm.assert_numpy_array_equal(result, expected) + + +def test_to_numpy_cast_before_setting_na(): + # GH#50600 + ser = Series([1]) + result = ser.to_numpy(dtype=np.float64, na_value=np.nan) + expected = np.array([1.0]) + tm.assert_numpy_array_equal(result, expected) + + +@td.skip_if_no("pyarrow") +def test_to_numpy_arrow_dtype_given(): + # GH#57121 + ser = Series([1, NA], dtype="int64[pyarrow]") + result = ser.to_numpy(dtype="float64") + expected = np.array([1.0, np.nan]) + tm.assert_numpy_array_equal(result, expected) + + +def test_astype_ea_int_to_td_ts(): + # GH#57093 + ser = Series([1, None], dtype="Int64") + result = ser.astype("m8[ns]") + expected = Series([1, Timedelta("nat")], dtype="m8[ns]") + tm.assert_series_equal(result, expected) + + result = ser.astype("M8[ns]") + expected = Series([1, Timedelta("nat")], dtype="M8[ns]") + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py new file mode 100644 index 0000000000000000000000000000000000000000..4af473528e23850794139ac563cc04c6d3c54617 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py @@ -0,0 +1,36 @@ +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + Interval, + Period, + Series, + Timedelta, + Timestamp, +) + + +@pytest.mark.parametrize( + "values, dtype, expected_dtype", + ( + ([1], "int64", int), + ([1], "Int64", int), + ([1.0], "float64", float), + ([1.0], "Float64", float), + (["abc"], "object", str), + (["abc"], "string", str), + ([Interval(1, 3)], "interval", Interval), + ([Period("2000-01-01", "D")], "period[D]", Period), + ([Timedelta(days=1)], "timedelta64[ns]", Timedelta), + ([Timestamp("2000-01-01")], "datetime64[ns]", Timestamp), + pytest.param([1], "int64[pyarrow]", int, marks=td.skip_if_no("pyarrow")), + pytest.param([1.0], "float64[pyarrow]", float, marks=td.skip_if_no("pyarrow")), + pytest.param(["abc"], "string[pyarrow]", str, marks=td.skip_if_no("pyarrow")), + ), +) +def test_tolist_scalar_dtype(values, dtype, expected_dtype): + # GH49890 + ser = Series(values, dtype=dtype) + result_dtype = type(ser.tolist()[0]) + assert result_dtype == expected_dtype diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py new file mode 100644 index 0000000000000000000000000000000000000000..33eb5c10ae163862e342b1871669d64d74602e4e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py @@ -0,0 +1,67 @@ +from datetime import datetime + +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, +) +import pandas._testing as tm + + +class TestTruncate: + def test_truncate_datetimeindex_tz(self): + # GH 9243 + idx = date_range("4/1/2005", "4/30/2005", freq="D", tz="US/Pacific") + s = Series(range(len(idx)), index=idx) + with pytest.raises(TypeError, match="Cannot compare tz-naive"): + # GH#36148 as of 2.0 we require tzawareness compat + s.truncate(datetime(2005, 4, 2), datetime(2005, 4, 4)) + + lb = idx[1] + ub = idx[3] + result = s.truncate(lb.to_pydatetime(), ub.to_pydatetime()) + expected = Series([1, 2, 3], index=idx[1:4]) + tm.assert_series_equal(result, expected) + + def test_truncate_periodindex(self): + # GH 17717 + idx1 = pd.PeriodIndex( + [pd.Period("2017-09-02"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] + ) + series1 = Series([1, 2, 3], index=idx1) + result1 = series1.truncate(after="2017-09-02") + + expected_idx1 = pd.PeriodIndex( + [pd.Period("2017-09-02"), pd.Period("2017-09-02")] + ) + tm.assert_series_equal(result1, Series([1, 2], index=expected_idx1)) + + idx2 = pd.PeriodIndex( + [pd.Period("2017-09-03"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] + ) + series2 = Series([1, 2, 3], index=idx2) + result2 = series2.sort_index().truncate(after="2017-09-02") + + expected_idx2 = pd.PeriodIndex([pd.Period("2017-09-02")]) + tm.assert_series_equal(result2, Series([2], index=expected_idx2)) + + def test_truncate_one_element_series(self): + # GH 35544 + series = Series([0.1], index=pd.DatetimeIndex(["2020-08-04"])) + before = pd.Timestamp("2020-08-02") + after = pd.Timestamp("2020-08-04") + + result = series.truncate(before=before, after=after) + + # the input Series and the expected Series are the same + tm.assert_series_equal(result, series) + + def test_truncate_index_only_one_unique_value(self): + # GH 42365 + obj = Series(0, index=date_range("2021-06-30", "2021-06-30")).repeat(5) + + truncated = obj.truncate("2021-06-28", "2021-07-01") + + tm.assert_series_equal(truncated, obj) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py new file mode 100644 index 0000000000000000000000000000000000000000..45620a721f442ee038569cdd69c1341ac56fd858 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py @@ -0,0 +1,123 @@ +from datetime import timezone + +import pytest +import pytz + +from pandas._libs.tslibs import timezones + +from pandas import ( + DatetimeIndex, + NaT, + Series, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestTZLocalize: + def test_series_tz_localize_ambiguous_bool(self): + # make sure that we are correctly accepting bool values as ambiguous + + # GH#14402 + ts = Timestamp("2015-11-01 01:00:03") + expected0 = Timestamp("2015-11-01 01:00:03-0500", tz="US/Central") + expected1 = Timestamp("2015-11-01 01:00:03-0600", tz="US/Central") + + ser = Series([ts]) + expected0 = Series([expected0]) + expected1 = Series([expected1]) + + with tm.external_error_raised(pytz.AmbiguousTimeError): + ser.dt.tz_localize("US/Central") + + result = ser.dt.tz_localize("US/Central", ambiguous=True) + tm.assert_series_equal(result, expected0) + + result = ser.dt.tz_localize("US/Central", ambiguous=[True]) + tm.assert_series_equal(result, expected0) + + result = ser.dt.tz_localize("US/Central", ambiguous=False) + tm.assert_series_equal(result, expected1) + + result = ser.dt.tz_localize("US/Central", ambiguous=[False]) + tm.assert_series_equal(result, expected1) + + def test_series_tz_localize_matching_index(self): + # Matching the index of the result with that of the original series + # GH 43080 + dt_series = Series( + date_range(start="2021-01-01T02:00:00", periods=5, freq="1D"), + index=[2, 6, 7, 8, 11], + dtype="category", + ) + result = dt_series.dt.tz_localize("Europe/Berlin") + expected = Series( + date_range( + start="2021-01-01T02:00:00", periods=5, freq="1D", tz="Europe/Berlin" + ), + index=[2, 6, 7, 8, 11], + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "method, exp", + [ + ["shift_forward", "2015-03-29 03:00:00"], + ["shift_backward", "2015-03-29 01:59:59.999999999"], + ["NaT", NaT], + ["raise", None], + ["foo", "invalid"], + ], + ) + def test_tz_localize_nonexistent(self, warsaw, method, exp, unit): + # GH 8917 + tz = warsaw + n = 60 + dti = date_range(start="2015-03-29 02:00:00", periods=n, freq="min", unit=unit) + ser = Series(1, index=dti) + df = ser.to_frame() + + if method == "raise": + with tm.external_error_raised(pytz.NonExistentTimeError): + dti.tz_localize(tz, nonexistent=method) + with tm.external_error_raised(pytz.NonExistentTimeError): + ser.tz_localize(tz, nonexistent=method) + with tm.external_error_raised(pytz.NonExistentTimeError): + df.tz_localize(tz, nonexistent=method) + + elif exp == "invalid": + msg = ( + "The nonexistent argument must be one of " + "'raise', 'NaT', 'shift_forward', 'shift_backward' " + "or a timedelta object" + ) + with pytest.raises(ValueError, match=msg): + dti.tz_localize(tz, nonexistent=method) + with pytest.raises(ValueError, match=msg): + ser.tz_localize(tz, nonexistent=method) + with pytest.raises(ValueError, match=msg): + df.tz_localize(tz, nonexistent=method) + + else: + result = ser.tz_localize(tz, nonexistent=method) + expected = Series(1, index=DatetimeIndex([exp] * n, tz=tz).as_unit(unit)) + tm.assert_series_equal(result, expected) + + result = df.tz_localize(tz, nonexistent=method) + expected = expected.to_frame() + tm.assert_frame_equal(result, expected) + + res_index = dti.tz_localize(tz, nonexistent=method) + tm.assert_index_equal(res_index, expected.index) + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_series_tz_localize_empty(self, tzstr): + # GH#2248 + ser = Series(dtype=object) + + ser2 = ser.tz_localize("utc") + assert ser2.index.tz == timezone.utc + + ser2 = ser.tz_localize(tzstr) + timezones.tz_compare(ser2.index.tz, timezones.maybe_get_tz(tzstr)) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py new file mode 100644 index 0000000000000000000000000000000000000000..14e247332503253ede23e94fe1335e712a2675e7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py @@ -0,0 +1,76 @@ +import numpy as np + +from pandas import ( + Categorical, + IntervalIndex, + Series, + date_range, +) +import pandas._testing as tm + + +class TestUnique: + def test_unique_uint64(self): + ser = Series([1, 2, 2**63, 2**63], dtype=np.uint64) + res = ser.unique() + exp = np.array([1, 2, 2**63], dtype=np.uint64) + tm.assert_numpy_array_equal(res, exp) + + def test_unique_data_ownership(self): + # it works! GH#1807 + Series(Series(["a", "c", "b"]).unique()).sort_values() + + def test_unique(self): + # GH#714 also, dtype=float + ser = Series([1.2345] * 100) + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + # explicit f4 dtype + ser = Series([1.2345] * 100, dtype="f4") + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + def test_unique_nan_object_dtype(self): + # NAs in object arrays GH#714 + ser = Series(["foo"] * 100, dtype="O") + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + def test_unique_none(self): + # decision about None + ser = Series([1, 2, 3, None, None, None], dtype=object) + result = ser.unique() + expected = np.array([1, 2, 3, None], dtype=object) + tm.assert_numpy_array_equal(result, expected) + + def test_unique_categorical(self): + # GH#18051 + cat = Categorical([]) + ser = Series(cat) + result = ser.unique() + tm.assert_categorical_equal(result, cat) + + cat = Categorical([np.nan]) + ser = Series(cat) + result = ser.unique() + tm.assert_categorical_equal(result, cat) + + def test_tz_unique(self): + # GH 46128 + dti1 = date_range("2016-01-01", periods=3) + ii1 = IntervalIndex.from_breaks(dti1) + ser1 = Series(ii1) + uni1 = ser1.unique() + tm.assert_interval_array_equal(ser1.array, uni1) + + dti2 = date_range("2016-01-01", periods=3, tz="US/Eastern") + ii2 = IntervalIndex.from_breaks(dti2) + ser2 = Series(ii2) + uni2 = ser2.unique() + tm.assert_interval_array_equal(ser2.array, uni2) + + assert uni1.dtype != uni2.dtype diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py new file mode 100644 index 0000000000000000000000000000000000000000..3c70e839c8e206c0b0e07a1046132666643329aa --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py @@ -0,0 +1,169 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + Series, + date_range, +) +import pandas._testing as tm + + +def test_unstack_preserves_object(): + mi = MultiIndex.from_product([["bar", "foo"], ["one", "two"]]) + + ser = Series(np.arange(4.0), index=mi, dtype=object) + + res1 = ser.unstack() + assert (res1.dtypes == object).all() + + res2 = ser.unstack(level=0) + assert (res2.dtypes == object).all() + + +def test_unstack(): + index = MultiIndex( + levels=[["bar", "foo"], ["one", "three", "two"]], + codes=[[1, 1, 0, 0], [0, 1, 0, 2]], + ) + + s = Series(np.arange(4.0), index=index) + unstacked = s.unstack() + + expected = DataFrame( + [[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]], + index=["bar", "foo"], + columns=["one", "three", "two"], + ) + + tm.assert_frame_equal(unstacked, expected) + + unstacked = s.unstack(level=0) + tm.assert_frame_equal(unstacked, expected.T) + + index = MultiIndex( + levels=[["bar"], ["one", "two", "three"], [0, 1]], + codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + s = Series(np.random.default_rng(2).standard_normal(6), index=index) + exp_index = MultiIndex( + levels=[["one", "two", "three"], [0, 1]], + codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0) + unstacked = s.unstack(0).sort_index() + tm.assert_frame_equal(unstacked, expected) + + # GH5873 + idx = MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) + ts = Series([1, 2], index=idx) + left = ts.unstack() + right = DataFrame( + [[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5] + ) + tm.assert_frame_equal(left, right) + + idx = MultiIndex.from_arrays( + [ + ["cat", "cat", "cat", "dog", "dog"], + ["a", "a", "b", "a", "b"], + [1, 2, 1, 1, np.nan], + ] + ) + ts = Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) + right = DataFrame( + [[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]], + columns=["cat", "dog"], + ) + tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)] + right.index = MultiIndex.from_tuples(tpls) + tm.assert_frame_equal(ts.unstack(level=0), right) + + +def test_unstack_tuplename_in_multiindex(): + # GH 19966 + idx = MultiIndex.from_product( + [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] + ) + ser = Series(1, index=idx) + result = ser.unstack(("A", "a")) + + expected = DataFrame( + [[1, 1, 1], [1, 1, 1], [1, 1, 1]], + columns=MultiIndex.from_tuples([("a",), ("b",), ("c",)], names=[("A", "a")]), + index=Index([1, 2, 3], name=("B", "b")), + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "unstack_idx, expected_values, expected_index, expected_columns", + [ + ( + ("A", "a"), + [[1, 1], [1, 1], [1, 1], [1, 1]], + MultiIndex.from_tuples([(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"]), + MultiIndex.from_tuples([("a",), ("b",)], names=[("A", "a")]), + ), + ( + (("A", "a"), "B"), + [[1, 1, 1, 1], [1, 1, 1, 1]], + Index([3, 4], name="C"), + MultiIndex.from_tuples( + [("a", 1), ("a", 2), ("b", 1), ("b", 2)], names=[("A", "a"), "B"] + ), + ), + ], +) +def test_unstack_mixed_type_name_in_multiindex( + unstack_idx, expected_values, expected_index, expected_columns +): + # GH 19966 + idx = MultiIndex.from_product( + [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] + ) + ser = Series(1, index=idx) + result = ser.unstack(unstack_idx) + + expected = DataFrame( + expected_values, columns=expected_columns, index=expected_index + ) + tm.assert_frame_equal(result, expected) + + +def test_unstack_multi_index_categorical_values(): + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + mi = df.stack(future_stack=True).index.rename(["major", "minor"]) + ser = Series(["foo"] * len(mi), index=mi, name="category", dtype="category") + + result = ser.unstack() + + dti = ser.index.levels[0] + c = pd.Categorical(["foo"] * len(dti)) + expected = DataFrame( + {"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()}, + columns=Index(list("ABCD"), name="minor"), + index=dti.rename("major"), + ) + tm.assert_frame_equal(result, expected) + + +def test_unstack_mixed_level_names(): + # GH#48763 + arrays = [["a", "a"], [1, 2], ["red", "blue"]] + idx = MultiIndex.from_arrays(arrays, names=("x", 0, "y")) + ser = Series([1, 2], index=idx) + result = ser.unstack("x") + expected = DataFrame( + [[1], [2]], + columns=Index(["a"], name="x"), + index=MultiIndex.from_tuples([(1, "red"), (2, "blue")], names=[0, "y"]), + ) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py new file mode 100644 index 0000000000000000000000000000000000000000..cb1595e68264fbe5f07b014be4975657fa2fa8cf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py @@ -0,0 +1,29 @@ +import numpy as np +import pytest + +from pandas import ( + IntervalIndex, + Series, + period_range, +) +import pandas._testing as tm + + +class TestValues: + @pytest.mark.parametrize( + "data", + [ + period_range("2000", periods=4), + IntervalIndex.from_breaks([1, 2, 3, 4]), + ], + ) + def test_values_object_extension_dtypes(self, data): + # https://github.com/pandas-dev/pandas/issues/23995 + result = Series(data).values + expected = np.array(data.astype(object)) + tm.assert_numpy_array_equal(result, expected) + + def test_values(self, datetime_series): + tm.assert_almost_equal( + datetime_series.values, list(datetime_series), check_dtype=False + ) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py new file mode 100644 index 0000000000000000000000000000000000000000..7e0ac372cd443cf9a468b469df1c22818f10aad2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py @@ -0,0 +1,61 @@ +import numpy as np +import pytest + +from pandas import ( + Index, + Series, + array, + date_range, +) +import pandas._testing as tm + +pytestmark = pytest.mark.filterwarnings( + "ignore:Series.view is deprecated and will be removed in a future version.:FutureWarning" # noqa: E501 +) + + +class TestView: + def test_view_i8_to_datetimelike(self): + dti = date_range("2000", periods=4, tz="US/Central") + ser = Series(dti.asi8) + + result = ser.view(dti.dtype) + tm.assert_datetime_array_equal(result._values, dti._data._with_freq(None)) + + pi = dti.tz_localize(None).to_period("D") + ser = Series(pi.asi8) + result = ser.view(pi.dtype) + tm.assert_period_array_equal(result._values, pi._data) + + def test_view_tz(self): + # GH#24024 + ser = Series(date_range("2000", periods=4, tz="US/Central")) + result = ser.view("i8") + expected = Series( + [ + 946706400000000000, + 946792800000000000, + 946879200000000000, + 946965600000000000, + ] + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "first", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"] + ) + @pytest.mark.parametrize( + "second", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"] + ) + @pytest.mark.parametrize("box", [Series, Index, array]) + def test_view_between_datetimelike(self, first, second, box): + dti = date_range("2016-01-01", periods=3) + + orig = box(dti) + obj = orig.view(first) + assert obj.dtype == first + tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8) + + res = obj.view(second) + assert res.dtype == second + tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_api.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_api.py new file mode 100644 index 0000000000000000000000000000000000000000..29d6e2036476ef62ed1a7eea734400915d71f0ab --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_api.py @@ -0,0 +1,300 @@ +import inspect +import pydoc + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + Series, + date_range, + period_range, + timedelta_range, +) +import pandas._testing as tm + + +class TestSeriesMisc: + def test_tab_completion(self): + # GH 9910 + s = Series(list("abcd")) + # Series of str values should have .str but not .dt/.cat in __dir__ + assert "str" in dir(s) + assert "dt" not in dir(s) + assert "cat" not in dir(s) + + def test_tab_completion_dt(self): + # similarly for .dt + s = Series(date_range("1/1/2015", periods=5)) + assert "dt" in dir(s) + assert "str" not in dir(s) + assert "cat" not in dir(s) + + def test_tab_completion_cat(self): + # Similarly for .cat, but with the twist that str and dt should be + # there if the categories are of that type first cat and str. + s = Series(list("abbcd"), dtype="category") + assert "cat" in dir(s) + assert "str" in dir(s) # as it is a string categorical + assert "dt" not in dir(s) + + def test_tab_completion_cat_str(self): + # similar to cat and str + s = Series(date_range("1/1/2015", periods=5)).astype("category") + assert "cat" in dir(s) + assert "str" not in dir(s) + assert "dt" in dir(s) # as it is a datetime categorical + + def test_tab_completion_with_categorical(self): + # test the tab completion display + ok_for_cat = [ + "categories", + "codes", + "ordered", + "set_categories", + "add_categories", + "remove_categories", + "rename_categories", + "reorder_categories", + "remove_unused_categories", + "as_ordered", + "as_unordered", + ] + + s = Series(list("aabbcde")).astype("category") + results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")}) + tm.assert_almost_equal(results, sorted(set(ok_for_cat))) + + @pytest.mark.parametrize( + "index", + [ + Index(list("ab") * 5, dtype="category"), + Index([str(i) for i in range(10)]), + Index(["foo", "bar", "baz"] * 2), + date_range("2020-01-01", periods=10), + period_range("2020-01-01", periods=10, freq="D"), + timedelta_range("1 day", periods=10), + Index(np.arange(10), dtype=np.uint64), + Index(np.arange(10), dtype=np.int64), + Index(np.arange(10), dtype=np.float64), + Index([True, False]), + Index([f"a{i}" for i in range(101)]), + pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")), + pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")), + ], + ) + def test_index_tab_completion(self, index): + # dir contains string-like values of the Index. + s = Series(index=index, dtype=object) + dir_s = dir(s) + for i, x in enumerate(s.index.unique(level=0)): + if i < 100: + assert not isinstance(x, str) or not x.isidentifier() or x in dir_s + else: + assert x not in dir_s + + @pytest.mark.parametrize("ser", [Series(dtype=object), Series([1])]) + def test_not_hashable(self, ser): + msg = "unhashable type: 'Series'" + with pytest.raises(TypeError, match=msg): + hash(ser) + + def test_contains(self, datetime_series): + tm.assert_contains_all(datetime_series.index, datetime_series) + + def test_axis_alias(self): + s = Series([1, 2, np.nan]) + tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) + assert s.dropna().sum("rows") == 3 + assert s._get_axis_number("rows") == 0 + assert s._get_axis_name("rows") == "index" + + def test_class_axis(self): + # https://github.com/pandas-dev/pandas/issues/18147 + # no exception and no empty docstring + assert pydoc.getdoc(Series.index) + + def test_ndarray_compat(self): + # test numpy compat with Series as sub-class of NDFrame + tsdf = DataFrame( + np.random.default_rng(2).standard_normal((1000, 3)), + columns=["A", "B", "C"], + index=date_range("1/1/2000", periods=1000), + ) + + def f(x): + return x[x.idxmax()] + + result = tsdf.apply(f) + expected = tsdf.max() + tm.assert_series_equal(result, expected) + + def test_ndarray_compat_like_func(self): + # using an ndarray like function + s = Series(np.random.default_rng(2).standard_normal(10)) + result = Series(np.ones_like(s)) + expected = Series(1, index=range(10), dtype="float64") + tm.assert_series_equal(result, expected) + + def test_ndarray_compat_ravel(self): + # ravel + s = Series(np.random.default_rng(2).standard_normal(10)) + with tm.assert_produces_warning(FutureWarning, match="ravel is deprecated"): + result = s.ravel(order="F") + tm.assert_almost_equal(result, s.values.ravel(order="F")) + + def test_empty_method(self): + s_empty = Series(dtype=object) + assert s_empty.empty + + @pytest.mark.parametrize("dtype", ["int64", object]) + def test_empty_method_full_series(self, dtype): + full_series = Series(index=[1], dtype=dtype) + assert not full_series.empty + + @pytest.mark.parametrize("dtype", [None, "Int64"]) + def test_integer_series_size(self, dtype): + # GH 25580 + s = Series(range(9), dtype=dtype) + assert s.size == 9 + + def test_attrs(self): + s = Series([0, 1], name="abc") + assert s.attrs == {} + s.attrs["version"] = 1 + result = s + 1 + assert result.attrs == {"version": 1} + + def test_inspect_getmembers(self): + # GH38782 + pytest.importorskip("jinja2") + ser = Series(dtype=object) + msg = "Series._data is deprecated" + with tm.assert_produces_warning( + DeprecationWarning, match=msg, check_stacklevel=False + ): + inspect.getmembers(ser) + + def test_unknown_attribute(self): + # GH#9680 + tdi = timedelta_range(start=0, periods=10, freq="1s") + ser = Series(np.random.default_rng(2).normal(size=10), index=tdi) + assert "foo" not in ser.__dict__ + msg = "'Series' object has no attribute 'foo'" + with pytest.raises(AttributeError, match=msg): + ser.foo + + @pytest.mark.parametrize("op", ["year", "day", "second", "weekday"]) + def test_datetime_series_no_datelike_attrs(self, op, datetime_series): + # GH#7206 + msg = f"'Series' object has no attribute '{op}'" + with pytest.raises(AttributeError, match=msg): + getattr(datetime_series, op) + + def test_series_datetimelike_attribute_access(self): + # attribute access should still work! + ser = Series({"year": 2000, "month": 1, "day": 10}) + assert ser.year == 2000 + assert ser.month == 1 + assert ser.day == 10 + + def test_series_datetimelike_attribute_access_invalid(self): + ser = Series({"year": 2000, "month": 1, "day": 10}) + msg = "'Series' object has no attribute 'weekday'" + with pytest.raises(AttributeError, match=msg): + ser.weekday + + @pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning") + @pytest.mark.parametrize( + "kernel, has_numeric_only", + [ + ("skew", True), + ("var", True), + ("all", False), + ("prod", True), + ("any", False), + ("idxmin", False), + ("quantile", False), + ("idxmax", False), + ("min", True), + ("sem", True), + ("mean", True), + ("nunique", False), + ("max", True), + ("sum", True), + ("count", False), + ("median", True), + ("std", True), + ("backfill", False), + ("rank", True), + ("pct_change", False), + ("cummax", False), + ("shift", False), + ("diff", False), + ("cumsum", False), + ("cummin", False), + ("cumprod", False), + ("fillna", False), + ("ffill", False), + ("pad", False), + ("bfill", False), + ("sample", False), + ("tail", False), + ("take", False), + ("head", False), + ("cov", False), + ("corr", False), + ], + ) + @pytest.mark.parametrize("dtype", [bool, int, float, object]) + def test_numeric_only(self, kernel, has_numeric_only, dtype): + # GH#47500 + ser = Series([0, 1, 1], dtype=dtype) + if kernel == "corrwith": + args = (ser,) + elif kernel == "corr": + args = (ser,) + elif kernel == "cov": + args = (ser,) + elif kernel == "nth": + args = (0,) + elif kernel == "fillna": + args = (True,) + elif kernel == "fillna": + args = ("ffill",) + elif kernel == "take": + args = ([0],) + elif kernel == "quantile": + args = (0.5,) + else: + args = () + method = getattr(ser, kernel) + if not has_numeric_only: + msg = ( + "(got an unexpected keyword argument 'numeric_only'" + "|too many arguments passed in)" + ) + with pytest.raises(TypeError, match=msg): + method(*args, numeric_only=True) + elif dtype is object: + msg = f"Series.{kernel} does not allow numeric_only=True with non-numeric" + with pytest.raises(TypeError, match=msg): + method(*args, numeric_only=True) + else: + result = method(*args, numeric_only=True) + expected = method(*args, numeric_only=False) + if isinstance(expected, Series): + # transformer + tm.assert_series_equal(result, expected) + else: + # reducer + assert result == expected + + +@pytest.mark.parametrize("converter", [int, float, complex]) +def test_float_int_deprecated(converter): + # GH 51101 + with tm.assert_produces_warning(FutureWarning): + assert converter(Series([1])) == converter(1) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_arithmetic.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_arithmetic.py new file mode 100644 index 0000000000000000000000000000000000000000..b40e2e99dae2eed2d1673797fcb9810bb412de0c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_arithmetic.py @@ -0,0 +1,984 @@ +from datetime import ( + date, + timedelta, + timezone, +) +from decimal import Decimal +import operator + +import numpy as np +import pytest + +from pandas._libs import lib +from pandas._libs.tslibs import IncompatibleFrequency + +import pandas as pd +from pandas import ( + Categorical, + DatetimeTZDtype, + Index, + Series, + Timedelta, + bdate_range, + date_range, + isna, +) +import pandas._testing as tm +from pandas.core import ops +from pandas.core.computation import expressions as expr +from pandas.core.computation.check import NUMEXPR_INSTALLED + + +@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"]) +def switch_numexpr_min_elements(request, monkeypatch): + with monkeypatch.context() as m: + m.setattr(expr, "_MIN_ELEMENTS", request.param) + yield + + +def _permute(obj): + return obj.take(np.random.default_rng(2).permutation(len(obj))) + + +class TestSeriesFlexArithmetic: + @pytest.mark.parametrize( + "ts", + [ + (lambda x: x, lambda x: x * 2, False), + (lambda x: x, lambda x: x[::2], False), + (lambda x: x, lambda x: 5, True), + ( + lambda x: Series(range(10), dtype=np.float64), + lambda x: Series(range(10), dtype=np.float64), + True, + ), + ], + ) + @pytest.mark.parametrize( + "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"] + ) + def test_flex_method_equivalence(self, opname, ts): + # check that Series.{opname} behaves like Series.__{opname}__, + tser = Series( + np.arange(20, dtype=np.float64), + index=date_range("2020-01-01", periods=20), + name="ts", + ) + + series = ts[0](tser) + other = ts[1](tser) + check_reverse = ts[2] + + op = getattr(Series, opname) + alt = getattr(operator, opname) + + result = op(series, other) + expected = alt(series, other) + tm.assert_almost_equal(result, expected) + if check_reverse: + rop = getattr(Series, "r" + opname) + result = rop(series, other) + expected = alt(other, series) + tm.assert_almost_equal(result, expected) + + def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators): + # GH 13208 + class MySeries(Series): + _metadata = ["x"] + + @property + def _constructor(self): + return MySeries + + opname = all_arithmetic_operators + op = getattr(Series, opname) + m = MySeries([1, 2, 3], name="test") + m.x = 42 + result = op(m, 1) + assert result.x == 42 + + def test_flex_add_scalar_fill_value(self): + # GH12723 + ser = Series([0, 1, np.nan, 3, 4, 5]) + + exp = ser.fillna(0).add(2) + res = ser.add(2, fill_value=0) + tm.assert_series_equal(res, exp) + + pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)] + for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]: + fv = 0 + lop = getattr(Series, op) + lequiv = getattr(operator, op) + rop = getattr(Series, "r" + op) + # bind op at definition time... + requiv = lambda x, y, op=op: getattr(operator, op)(y, x) + pairings.append((lop, lequiv, fv)) + pairings.append((rop, requiv, fv)) + + @pytest.mark.parametrize("op, equiv_op, fv", pairings) + def test_operators_combine(self, op, equiv_op, fv): + def _check_fill(meth, op, a, b, fill_value=0): + exp_index = a.index.union(b.index) + a = a.reindex(exp_index) + b = b.reindex(exp_index) + + amask = isna(a) + bmask = isna(b) + + exp_values = [] + for i in range(len(exp_index)): + with np.errstate(all="ignore"): + if amask[i]: + if bmask[i]: + exp_values.append(np.nan) + continue + exp_values.append(op(fill_value, b[i])) + elif bmask[i]: + if amask[i]: + exp_values.append(np.nan) + continue + exp_values.append(op(a[i], fill_value)) + else: + exp_values.append(op(a[i], b[i])) + + result = meth(a, b, fill_value=fill_value) + expected = Series(exp_values, exp_index) + tm.assert_series_equal(result, expected) + + a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5)) + b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6)) + + result = op(a, b) + exp = equiv_op(a, b) + tm.assert_series_equal(result, exp) + _check_fill(op, equiv_op, a, b, fill_value=fv) + # should accept axis=0 or axis='rows' + op(a, b, axis=0) + + +class TestSeriesArithmetic: + # Some of these may end up in tests/arithmetic, but are not yet sorted + + def test_add_series_with_period_index(self): + rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + result = ts + ts[::2] + expected = ts + ts + expected.iloc[1::2] = np.nan + tm.assert_series_equal(result, expected) + + result = ts + _permute(ts[::2]) + tm.assert_series_equal(result, expected) + + msg = "Input has different freq=D from Period\\(freq=Y-DEC\\)" + with pytest.raises(IncompatibleFrequency, match=msg): + ts + ts.asfreq("D", how="end") + + @pytest.mark.parametrize( + "target_add,input_value,expected_value", + [ + ("!", ["hello", "world"], ["hello!", "world!"]), + ("m", ["hello", "world"], ["hellom", "worldm"]), + ], + ) + def test_string_addition(self, target_add, input_value, expected_value): + # GH28658 - ensure adding 'm' does not raise an error + a = Series(input_value) + + result = a + target_add + expected = Series(expected_value) + tm.assert_series_equal(result, expected) + + def test_divmod(self): + # GH#25557 + a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"]) + b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"]) + + result = a.divmod(b) + expected = divmod(a, b) + tm.assert_series_equal(result[0], expected[0]) + tm.assert_series_equal(result[1], expected[1]) + + result = a.rdivmod(b) + expected = divmod(b, a) + tm.assert_series_equal(result[0], expected[0]) + tm.assert_series_equal(result[1], expected[1]) + + @pytest.mark.parametrize("index", [None, range(9)]) + def test_series_integer_mod(self, index): + # GH#24396 + s1 = Series(range(1, 10)) + s2 = Series("foo", index=index) + + msg = "not all arguments converted during string formatting|mod not" + + with pytest.raises((TypeError, NotImplementedError), match=msg): + s2 % s1 + + def test_add_with_duplicate_index(self): + # GH14227 + s1 = Series([1, 2], index=[1, 1]) + s2 = Series([10, 10], index=[1, 2]) + result = s1 + s2 + expected = Series([11, 12, np.nan], index=[1, 1, 2]) + tm.assert_series_equal(result, expected) + + def test_add_na_handling(self): + ser = Series( + [Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)] + ) + + result = ser + ser.shift(1) + result2 = ser.shift(1) + ser + assert isna(result.iloc[0]) + assert isna(result2.iloc[0]) + + def test_add_corner_cases(self, datetime_series): + empty = Series([], index=Index([]), dtype=np.float64) + + result = datetime_series + empty + assert np.isnan(result).all() + + result = empty + empty.copy() + assert len(result) == 0 + + def test_add_float_plus_int(self, datetime_series): + # float + int + int_ts = datetime_series.astype(int)[:-5] + added = datetime_series + int_ts + expected = Series( + datetime_series.values[:-5] + int_ts.values, + index=datetime_series.index[:-5], + name="ts", + ) + tm.assert_series_equal(added[:-5], expected) + + def test_mul_empty_int_corner_case(self): + s1 = Series([], [], dtype=np.int32) + s2 = Series({"x": 0.0}) + tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"])) + + def test_sub_datetimelike_align(self): + # GH#7500 + # datetimelike ops need to align + dt = Series(date_range("2012-1-1", periods=3, freq="D")) + dt.iloc[2] = np.nan + dt2 = dt[::-1] + + expected = Series([timedelta(0), timedelta(0), pd.NaT]) + # name is reset + result = dt2 - dt + tm.assert_series_equal(result, expected) + + expected = Series(expected, name=0) + result = (dt2.to_frame() - dt.to_frame())[0] + tm.assert_series_equal(result, expected) + + def test_alignment_doesnt_change_tz(self): + # GH#33671 + dti = date_range("2016-01-01", periods=10, tz="CET") + dti_utc = dti.tz_convert("UTC") + ser = Series(10, index=dti) + ser_utc = Series(10, index=dti_utc) + + # we don't care about the result, just that original indexes are unchanged + ser * ser_utc + + assert ser.index is dti + assert ser_utc.index is dti_utc + + def test_alignment_categorical(self): + # GH13365 + cat = Categorical(["3z53", "3z53", "LoJG", "LoJG", "LoJG", "N503"]) + ser1 = Series(2, index=cat) + ser2 = Series(2, index=cat[:-1]) + result = ser1 * ser2 + + exp_index = ["3z53"] * 4 + ["LoJG"] * 9 + ["N503"] + exp_index = pd.CategoricalIndex(exp_index, categories=cat.categories) + exp_values = [4.0] * 13 + [np.nan] + expected = Series(exp_values, exp_index) + + tm.assert_series_equal(result, expected) + + def test_arithmetic_with_duplicate_index(self): + # GH#8363 + # integer ops with a non-unique index + index = [2, 2, 3, 3, 4] + ser = Series(np.arange(1, 6, dtype="int64"), index=index) + other = Series(np.arange(5, dtype="int64"), index=index) + result = ser - other + expected = Series(1, index=[2, 2, 3, 3, 4]) + tm.assert_series_equal(result, expected) + + # GH#8363 + # datetime ops with a non-unique index + ser = Series(date_range("20130101 09:00:00", periods=5), index=index) + other = Series(date_range("20130101", periods=5), index=index) + result = ser - other + expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4]) + tm.assert_series_equal(result, expected) + + def test_masked_and_non_masked_propagate_na(self): + # GH#45810 + ser1 = Series([0, np.nan], dtype="float") + ser2 = Series([0, 1], dtype="Int64") + result = ser1 * ser2 + expected = Series([0, pd.NA], dtype="Float64") + tm.assert_series_equal(result, expected) + + def test_mask_div_propagate_na_for_non_na_dtype(self): + # GH#42630 + ser1 = Series([15, pd.NA, 5, 4], dtype="Int64") + ser2 = Series([15, 5, np.nan, 4]) + result = ser1 / ser2 + expected = Series([1.0, pd.NA, pd.NA, 1.0], dtype="Float64") + tm.assert_series_equal(result, expected) + + result = ser2 / ser1 + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val, dtype", [(3, "Int64"), (3.5, "Float64")]) + def test_add_list_to_masked_array(self, val, dtype): + # GH#22962 + ser = Series([1, None, 3], dtype="Int64") + result = ser + [1, None, val] + expected = Series([2, None, 3 + val], dtype=dtype) + tm.assert_series_equal(result, expected) + + result = [1, None, val] + ser + tm.assert_series_equal(result, expected) + + def test_add_list_to_masked_array_boolean(self, request): + # GH#22962 + warning = ( + UserWarning + if request.node.callspec.id == "numexpr" and NUMEXPR_INSTALLED + else None + ) + ser = Series([True, None, False], dtype="boolean") + with tm.assert_produces_warning(warning): + result = ser + [True, None, True] + expected = Series([True, None, True], dtype="boolean") + tm.assert_series_equal(result, expected) + + with tm.assert_produces_warning(warning): + result = [True, None, True] + ser + tm.assert_series_equal(result, expected) + + +# ------------------------------------------------------------------ +# Comparisons + + +class TestSeriesFlexComparison: + @pytest.mark.parametrize("axis", [0, None, "index"]) + def test_comparison_flex_basic(self, axis, comparison_op): + left = Series(np.random.default_rng(2).standard_normal(10)) + right = Series(np.random.default_rng(2).standard_normal(10)) + result = getattr(left, comparison_op.__name__)(right, axis=axis) + expected = comparison_op(left, right) + tm.assert_series_equal(result, expected) + + def test_comparison_bad_axis(self, comparison_op): + left = Series(np.random.default_rng(2).standard_normal(10)) + right = Series(np.random.default_rng(2).standard_normal(10)) + + msg = "No axis named 1 for object type" + with pytest.raises(ValueError, match=msg): + getattr(left, comparison_op.__name__)(right, axis=1) + + @pytest.mark.parametrize( + "values, op", + [ + ([False, False, True, False], "eq"), + ([True, True, False, True], "ne"), + ([False, False, True, False], "le"), + ([False, False, False, False], "lt"), + ([False, True, True, False], "ge"), + ([False, True, False, False], "gt"), + ], + ) + def test_comparison_flex_alignment(self, values, op): + left = Series([1, 3, 2], index=list("abc")) + right = Series([2, 2, 2], index=list("bcd")) + result = getattr(left, op)(right) + expected = Series(values, index=list("abcd")) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "values, op, fill_value", + [ + ([False, False, True, True], "eq", 2), + ([True, True, False, False], "ne", 2), + ([False, False, True, True], "le", 0), + ([False, False, False, True], "lt", 0), + ([True, True, True, False], "ge", 0), + ([True, True, False, False], "gt", 0), + ], + ) + def test_comparison_flex_alignment_fill(self, values, op, fill_value): + left = Series([1, 3, 2], index=list("abc")) + right = Series([2, 2, 2], index=list("bcd")) + result = getattr(left, op)(right, fill_value=fill_value) + expected = Series(values, index=list("abcd")) + tm.assert_series_equal(result, expected) + + +class TestSeriesComparison: + def test_comparison_different_length(self): + a = Series(["a", "b", "c"]) + b = Series(["b", "a"]) + msg = "only compare identically-labeled Series" + with pytest.raises(ValueError, match=msg): + a < b + + a = Series([1, 2]) + b = Series([2, 3, 4]) + with pytest.raises(ValueError, match=msg): + a == b + + @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) + def test_ser_flex_cmp_return_dtypes(self, opname): + # GH#15115 + ser = Series([1, 3, 2], index=range(3)) + const = 2 + result = getattr(ser, opname)(const).dtypes + expected = np.dtype("bool") + assert result == expected + + @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) + def test_ser_flex_cmp_return_dtypes_empty(self, opname): + # GH#15115 empty Series case + ser = Series([1, 3, 2], index=range(3)) + empty = ser.iloc[:0] + const = 2 + result = getattr(empty, opname)(const).dtypes + expected = np.dtype("bool") + assert result == expected + + @pytest.mark.parametrize( + "names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")] + ) + def test_ser_cmp_result_names(self, names, comparison_op): + # datetime64 dtype + op = comparison_op + dti = date_range("1949-06-07 03:00:00", freq="h", periods=5, name=names[0]) + ser = Series(dti).rename(names[1]) + result = op(ser, dti) + assert result.name == names[2] + + # datetime64tz dtype + dti = dti.tz_localize("US/Central") + dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize + ser = Series(dti).rename(names[1]) + result = op(ser, dti) + assert result.name == names[2] + + # timedelta64 dtype + tdi = dti - dti.shift(1) + ser = Series(tdi).rename(names[1]) + result = op(ser, tdi) + assert result.name == names[2] + + # interval dtype + if op in [operator.eq, operator.ne]: + # interval dtype comparisons not yet implemented + ii = pd.interval_range(start=0, periods=5, name=names[0]) + ser = Series(ii).rename(names[1]) + result = op(ser, ii) + assert result.name == names[2] + + # categorical + if op in [operator.eq, operator.ne]: + # categorical dtype comparisons raise for inequalities + cidx = tdi.astype("category") + ser = Series(cidx).rename(names[1]) + result = op(ser, cidx) + assert result.name == names[2] + + def test_comparisons(self, using_infer_string): + s = Series(["a", "b", "c"]) + s2 = Series([False, True, False]) + + # it works! + exp = Series([False, False, False]) + if using_infer_string: + import pyarrow as pa + + msg = "has no kernel" + # TODO(3.0) GH56008 + with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg): + s == s2 + with tm.assert_produces_warning( + DeprecationWarning, match="comparison", check_stacklevel=False + ): + with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg): + s2 == s + else: + tm.assert_series_equal(s == s2, exp) + tm.assert_series_equal(s2 == s, exp) + + # ----------------------------------------------------------------- + # Categorical Dtype Comparisons + + def test_categorical_comparisons(self): + # GH#8938 + # allow equality comparisons + a = Series(list("abc"), dtype="category") + b = Series(list("abc"), dtype="object") + c = Series(["a", "b", "cc"], dtype="object") + d = Series(list("acb"), dtype="object") + e = Categorical(list("abc")) + f = Categorical(list("acb")) + + # vs scalar + assert not (a == "a").all() + assert ((a != "a") == ~(a == "a")).all() + + assert not ("a" == a).all() + assert (a == "a")[0] + assert ("a" == a)[0] + assert not ("a" != a)[0] + + # vs list-like + assert (a == a).all() + assert not (a != a).all() + + assert (a == list(a)).all() + assert (a == b).all() + assert (b == a).all() + assert ((~(a == b)) == (a != b)).all() + assert ((~(b == a)) == (b != a)).all() + + assert not (a == c).all() + assert not (c == a).all() + assert not (a == d).all() + assert not (d == a).all() + + # vs a cat-like + assert (a == e).all() + assert (e == a).all() + assert not (a == f).all() + assert not (f == a).all() + + assert (~(a == e) == (a != e)).all() + assert (~(e == a) == (e != a)).all() + assert (~(a == f) == (a != f)).all() + assert (~(f == a) == (f != a)).all() + + # non-equality is not comparable + msg = "can only compare equality or not" + with pytest.raises(TypeError, match=msg): + a < b + with pytest.raises(TypeError, match=msg): + b < a + with pytest.raises(TypeError, match=msg): + a > b + with pytest.raises(TypeError, match=msg): + b > a + + def test_unequal_categorical_comparison_raises_type_error(self): + # unequal comparison should raise for unordered cats + cat = Series(Categorical(list("abc"))) + msg = "can only compare equality or not" + with pytest.raises(TypeError, match=msg): + cat > "b" + + cat = Series(Categorical(list("abc"), ordered=False)) + with pytest.raises(TypeError, match=msg): + cat > "b" + + # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 + # and following comparisons with scalars not in categories should raise + # for unequal comps, but not for equal/not equal + cat = Series(Categorical(list("abc"), ordered=True)) + + msg = "Invalid comparison between dtype=category and str" + with pytest.raises(TypeError, match=msg): + cat < "d" + with pytest.raises(TypeError, match=msg): + cat > "d" + with pytest.raises(TypeError, match=msg): + "d" < cat + with pytest.raises(TypeError, match=msg): + "d" > cat + + tm.assert_series_equal(cat == "d", Series([False, False, False])) + tm.assert_series_equal(cat != "d", Series([True, True, True])) + + # ----------------------------------------------------------------- + + def test_comparison_tuples(self): + # GH#11339 + # comparisons vs tuple + s = Series([(1, 1), (1, 2)]) + + result = s == (1, 2) + expected = Series([False, True]) + tm.assert_series_equal(result, expected) + + result = s != (1, 2) + expected = Series([True, False]) + tm.assert_series_equal(result, expected) + + result = s == (0, 0) + expected = Series([False, False]) + tm.assert_series_equal(result, expected) + + result = s != (0, 0) + expected = Series([True, True]) + tm.assert_series_equal(result, expected) + + s = Series([(1, 1), (1, 1)]) + + result = s == (1, 1) + expected = Series([True, True]) + tm.assert_series_equal(result, expected) + + result = s != (1, 1) + expected = Series([False, False]) + tm.assert_series_equal(result, expected) + + def test_comparison_frozenset(self): + ser = Series([frozenset([1]), frozenset([1, 2])]) + + result = ser == frozenset([1]) + expected = Series([True, False]) + tm.assert_series_equal(result, expected) + + def test_comparison_operators_with_nas(self, comparison_op): + ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) + ser[::2] = np.nan + + # test that comparisons work + val = ser[5] + + result = comparison_op(ser, val) + expected = comparison_op(ser.dropna(), val).reindex(ser.index) + + msg = "Downcasting object dtype arrays" + with tm.assert_produces_warning(FutureWarning, match=msg): + if comparison_op is operator.ne: + expected = expected.fillna(True).astype(bool) + else: + expected = expected.fillna(False).astype(bool) + + tm.assert_series_equal(result, expected) + + def test_ne(self): + ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) + expected = np.array([True, True, False, True, True]) + tm.assert_numpy_array_equal(ts.index != 5, expected) + tm.assert_numpy_array_equal(~(ts.index == 5), expected) + + @pytest.mark.parametrize( + "left, right", + [ + ( + Series([1, 2, 3], index=list("ABC"), name="x"), + Series([2, 2, 2], index=list("ABD"), name="x"), + ), + ( + Series([1, 2, 3], index=list("ABC"), name="x"), + Series([2, 2, 2, 2], index=list("ABCD"), name="x"), + ), + ], + ) + def test_comp_ops_df_compat(self, left, right, frame_or_series): + # GH 1134 + # GH 50083 to clarify that index and columns must be identically labeled + if frame_or_series is not Series: + msg = ( + rf"Can only compare identically-labeled \(both index and columns\) " + f"{frame_or_series.__name__} objects" + ) + left = left.to_frame() + right = right.to_frame() + else: + msg = ( + f"Can only compare identically-labeled {frame_or_series.__name__} " + f"objects" + ) + + with pytest.raises(ValueError, match=msg): + left == right + with pytest.raises(ValueError, match=msg): + right == left + + with pytest.raises(ValueError, match=msg): + left != right + with pytest.raises(ValueError, match=msg): + right != left + + with pytest.raises(ValueError, match=msg): + left < right + with pytest.raises(ValueError, match=msg): + right < left + + def test_compare_series_interval_keyword(self): + # GH#25338 + ser = Series(["IntervalA", "IntervalB", "IntervalC"]) + result = ser == "IntervalA" + expected = Series([True, False, False]) + tm.assert_series_equal(result, expected) + + +# ------------------------------------------------------------------ +# Unsorted +# These arithmetic tests were previously in other files, eventually +# should be parametrized and put into tests.arithmetic + + +class TestTimeSeriesArithmetic: + def test_series_add_tz_mismatch_converts_to_utc(self): + rng = date_range("1/1/2011", periods=100, freq="h", tz="utc") + + perm = np.random.default_rng(2).permutation(100)[:90] + ser1 = Series( + np.random.default_rng(2).standard_normal(90), + index=rng.take(perm).tz_convert("US/Eastern"), + ) + + perm = np.random.default_rng(2).permutation(100)[:90] + ser2 = Series( + np.random.default_rng(2).standard_normal(90), + index=rng.take(perm).tz_convert("Europe/Berlin"), + ) + + result = ser1 + ser2 + + uts1 = ser1.tz_convert("utc") + uts2 = ser2.tz_convert("utc") + expected = uts1 + uts2 + + # sort since input indexes are not equal + expected = expected.sort_index() + + assert result.index.tz is timezone.utc + tm.assert_series_equal(result, expected) + + def test_series_add_aware_naive_raises(self): + rng = date_range("1/1/2011", periods=10, freq="h") + ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + ser_utc = ser.tz_localize("utc") + + msg = "Cannot join tz-naive with tz-aware DatetimeIndex" + with pytest.raises(Exception, match=msg): + ser + ser_utc + + with pytest.raises(Exception, match=msg): + ser_utc + ser + + # TODO: belongs in tests/arithmetic? + def test_datetime_understood(self, unit): + # Ensures it doesn't fail to create the right series + # reported in issue#16726 + series = Series(date_range("2012-01-01", periods=3, unit=unit)) + offset = pd.offsets.DateOffset(days=6) + result = series - offset + exp_dti = pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]).as_unit( + unit + ) + expected = Series(exp_dti) + tm.assert_series_equal(result, expected) + + def test_align_date_objects_with_datetimeindex(self): + rng = date_range("1/1/2000", periods=20) + ts = Series(np.random.default_rng(2).standard_normal(20), index=rng) + + ts_slice = ts[5:] + ts2 = ts_slice.copy() + ts2.index = [x.date() for x in ts2.index] + + result = ts + ts2 + result2 = ts2 + ts + expected = ts + ts[5:] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result2, expected) + + +class TestNamePreservation: + @pytest.mark.parametrize("box", [list, tuple, np.array, Index, Series, pd.array]) + @pytest.mark.parametrize("flex", [True, False]) + def test_series_ops_name_retention(self, flex, box, names, all_binary_operators): + # GH#33930 consistent name-retention + op = all_binary_operators + + left = Series(range(10), name=names[0]) + right = Series(range(10), name=names[1]) + + name = op.__name__.strip("_") + is_logical = name in ["and", "rand", "xor", "rxor", "or", "ror"] + + msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + warn = None + if box in [list, tuple] and is_logical: + warn = FutureWarning + + right = box(right) + if flex: + if is_logical: + # Series doesn't have these as flex methods + return + result = getattr(left, name)(right) + else: + # GH#37374 logical ops behaving as set ops deprecated + with tm.assert_produces_warning(warn, match=msg): + result = op(left, right) + + assert isinstance(result, Series) + if box in [Index, Series]: + assert result.name is names[2] or result.name == names[2] + else: + assert result.name is names[0] or result.name == names[0] + + def test_binop_maybe_preserve_name(self, datetime_series): + # names match, preserve + result = datetime_series * datetime_series + assert result.name == datetime_series.name + result = datetime_series.mul(datetime_series) + assert result.name == datetime_series.name + + result = datetime_series * datetime_series[:-2] + assert result.name == datetime_series.name + + # names don't match, don't preserve + cp = datetime_series.copy() + cp.name = "something else" + result = datetime_series + cp + assert result.name is None + result = datetime_series.add(cp) + assert result.name is None + + ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"] + ops = ops + ["r" + op for op in ops] + for op in ops: + # names match, preserve + ser = datetime_series.copy() + result = getattr(ser, op)(ser) + assert result.name == datetime_series.name + + # names don't match, don't preserve + cp = datetime_series.copy() + cp.name = "changed" + result = getattr(ser, op)(cp) + assert result.name is None + + def test_scalarop_preserve_name(self, datetime_series): + result = datetime_series * 2 + assert result.name == datetime_series.name + + +class TestInplaceOperations: + @pytest.mark.parametrize( + "dtype1, dtype2, dtype_expected, dtype_mul", + ( + ("Int64", "Int64", "Int64", "Int64"), + ("float", "float", "float", "float"), + ("Int64", "float", "Float64", "Float64"), + ("Int64", "Float64", "Float64", "Float64"), + ), + ) + def test_series_inplace_ops(self, dtype1, dtype2, dtype_expected, dtype_mul): + # GH 37910 + + ser1 = Series([1], dtype=dtype1) + ser2 = Series([2], dtype=dtype2) + ser1 += ser2 + expected = Series([3], dtype=dtype_expected) + tm.assert_series_equal(ser1, expected) + + ser1 -= ser2 + expected = Series([1], dtype=dtype_expected) + tm.assert_series_equal(ser1, expected) + + ser1 *= ser2 + expected = Series([2], dtype=dtype_mul) + tm.assert_series_equal(ser1, expected) + + +def test_none_comparison(request, series_with_simple_index): + series = series_with_simple_index + + if len(series) < 1: + request.applymarker( + pytest.mark.xfail(reason="Test doesn't make sense on empty data") + ) + + # bug brought up by #1079 + # changed from TypeError in 0.17.0 + series.iloc[0] = np.nan + + # noinspection PyComparisonWithNone + result = series == None # noqa: E711 + assert not result.iat[0] + assert not result.iat[1] + + # noinspection PyComparisonWithNone + result = series != None # noqa: E711 + assert result.iat[0] + assert result.iat[1] + + result = None == series # noqa: E711 + assert not result.iat[0] + assert not result.iat[1] + + result = None != series # noqa: E711 + assert result.iat[0] + assert result.iat[1] + + if lib.is_np_dtype(series.dtype, "M") or isinstance(series.dtype, DatetimeTZDtype): + # Following DatetimeIndex (and Timestamp) convention, + # inequality comparisons with Series[datetime64] raise + msg = "Invalid comparison" + with pytest.raises(TypeError, match=msg): + None > series + with pytest.raises(TypeError, match=msg): + series > None + else: + result = None > series + assert not result.iat[0] + assert not result.iat[1] + + result = series < None + assert not result.iat[0] + assert not result.iat[1] + + +def test_series_varied_multiindex_alignment(): + # GH 20414 + s1 = Series( + range(8), + index=pd.MultiIndex.from_product( + [list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"] + ), + ) + s2 = Series( + [1000 * i for i in range(1, 5)], + index=pd.MultiIndex.from_product([list("xy"), [1, 2]], names=["xy", "num"]), + ) + result = s1.loc[pd.IndexSlice[["a"], :, :]] + s2 + expected = Series( + [1000, 2001, 3002, 4003], + index=pd.MultiIndex.from_tuples( + [("a", "x", 1), ("a", "x", 2), ("a", "y", 1), ("a", "y", 2)], + names=["ab", "xy", "num"], + ), + ) + tm.assert_series_equal(result, expected) + + +def test_rmod_consistent_large_series(): + # GH 29602 + result = Series([2] * 10001).rmod(-1) + expected = Series([1] * 10001) + + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_constructors.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_constructors.py new file mode 100644 index 0000000000000000000000000000000000000000..387be8398e4b281421317c844269fe45a10eb6bc --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_constructors.py @@ -0,0 +1,2290 @@ +from collections import OrderedDict +from collections.abc import Iterator +from datetime import ( + datetime, + timedelta, +) + +from dateutil.tz import tzoffset +import numpy as np +from numpy import ma +import pytest + +from pandas._libs import ( + iNaT, + lib, +) +from pandas.compat.numpy import np_version_gt2 +from pandas.errors import IntCastingNaNError +import pandas.util._test_decorators as td + +from pandas.core.dtypes.dtypes import CategoricalDtype + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + DatetimeIndex, + DatetimeTZDtype, + Index, + Interval, + IntervalIndex, + MultiIndex, + NaT, + Period, + RangeIndex, + Series, + Timestamp, + date_range, + isna, + period_range, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.arrays import ( + IntegerArray, + IntervalArray, + period_array, +) +from pandas.core.internals.blocks import NumpyBlock + + +class TestSeriesConstructors: + def test_from_ints_with_non_nano_dt64_dtype(self, index_or_series): + values = np.arange(10) + + res = index_or_series(values, dtype="M8[s]") + expected = index_or_series(values.astype("M8[s]")) + tm.assert_equal(res, expected) + + res = index_or_series(list(values), dtype="M8[s]") + tm.assert_equal(res, expected) + + def test_from_na_value_and_interval_of_datetime_dtype(self): + # GH#41805 + ser = Series([None], dtype="interval[datetime64[ns]]") + assert ser.isna().all() + assert ser.dtype == "interval[datetime64[ns], right]" + + def test_infer_with_date_and_datetime(self): + # GH#49341 pre-2.0 we inferred datetime-and-date to datetime64, which + # was inconsistent with Index behavior + ts = Timestamp(2016, 1, 1) + vals = [ts.to_pydatetime(), ts.date()] + + ser = Series(vals) + expected = Series(vals, dtype=object) + tm.assert_series_equal(ser, expected) + + idx = Index(vals) + expected = Index(vals, dtype=object) + tm.assert_index_equal(idx, expected) + + def test_unparsable_strings_with_dt64_dtype(self): + # pre-2.0 these would be silently ignored and come back with object dtype + vals = ["aa"] + msg = "^Unknown datetime string format, unable to parse: aa, at position 0$" + with pytest.raises(ValueError, match=msg): + Series(vals, dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + Series(np.array(vals, dtype=object), dtype="datetime64[ns]") + + @pytest.mark.parametrize( + "constructor", + [ + # NOTE: some overlap with test_constructor_empty but that test does not + # test for None or an empty generator. + # test_constructor_pass_none tests None but only with the index also + # passed. + (lambda idx: Series(index=idx)), + (lambda idx: Series(None, index=idx)), + (lambda idx: Series({}, index=idx)), + (lambda idx: Series((), index=idx)), + (lambda idx: Series([], index=idx)), + (lambda idx: Series((_ for _ in []), index=idx)), + (lambda idx: Series(data=None, index=idx)), + (lambda idx: Series(data={}, index=idx)), + (lambda idx: Series(data=(), index=idx)), + (lambda idx: Series(data=[], index=idx)), + (lambda idx: Series(data=(_ for _ in []), index=idx)), + ], + ) + @pytest.mark.parametrize("empty_index", [None, []]) + def test_empty_constructor(self, constructor, empty_index): + # GH 49573 (addition of empty_index parameter) + expected = Series(index=empty_index) + result = constructor(empty_index) + + assert result.dtype == object + assert len(result.index) == 0 + tm.assert_series_equal(result, expected, check_index_type=True) + + def test_invalid_dtype(self): + # GH15520 + msg = "not understood" + invalid_list = [Timestamp, "Timestamp", list] + for dtype in invalid_list: + with pytest.raises(TypeError, match=msg): + Series([], name="time", dtype=dtype) + + def test_invalid_compound_dtype(self): + # GH#13296 + c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) + cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) + + with pytest.raises(ValueError, match="Use DataFrame instead"): + Series(cdt_arr, index=["A", "B"]) + + def test_scalar_conversion(self): + # Pass in scalar is disabled + scalar = Series(0.5) + assert not isinstance(scalar, float) + + def test_scalar_extension_dtype(self, ea_scalar_and_dtype): + # GH 28401 + + ea_scalar, ea_dtype = ea_scalar_and_dtype + + ser = Series(ea_scalar, index=range(3)) + expected = Series([ea_scalar] * 3, dtype=ea_dtype) + + assert ser.dtype == ea_dtype + tm.assert_series_equal(ser, expected) + + def test_constructor(self, datetime_series, using_infer_string): + empty_series = Series() + assert datetime_series.index._is_all_dates + + # Pass in Series + derived = Series(datetime_series) + assert derived.index._is_all_dates + + tm.assert_index_equal(derived.index, datetime_series.index) + # Ensure new index is not created + assert id(datetime_series.index) == id(derived.index) + + # Mixed type Series + mixed = Series(["hello", np.nan], index=[0, 1]) + assert mixed.dtype == np.object_ if not using_infer_string else "string" + assert np.isnan(mixed[1]) + + assert not empty_series.index._is_all_dates + assert not Series().index._is_all_dates + + # exception raised is of type ValueError GH35744 + with pytest.raises( + ValueError, + match=r"Data must be 1-dimensional, got ndarray of shape \(3, 3\) instead", + ): + Series(np.random.default_rng(2).standard_normal((3, 3)), index=np.arange(3)) + + mixed.name = "Series" + rs = Series(mixed).name + xp = "Series" + assert rs == xp + + # raise on MultiIndex GH4187 + m = MultiIndex.from_arrays([[1, 2], [3, 4]]) + msg = "initializing a Series from a MultiIndex is not supported" + with pytest.raises(NotImplementedError, match=msg): + Series(m) + + def test_constructor_index_ndim_gt_1_raises(self): + # GH#18579 + df = DataFrame([[1, 2], [3, 4], [5, 6]], index=[3, 6, 9]) + with pytest.raises(ValueError, match="Index data must be 1-dimensional"): + Series([1, 3, 2], index=df) + + @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) + def test_constructor_empty(self, input_class, using_infer_string): + empty = Series() + empty2 = Series(input_class()) + + # these are Index() and RangeIndex() which don't compare type equal + # but are just .equals + tm.assert_series_equal(empty, empty2, check_index_type=False) + + # With explicit dtype: + empty = Series(dtype="float64") + empty2 = Series(input_class(), dtype="float64") + tm.assert_series_equal(empty, empty2, check_index_type=False) + + # GH 18515 : with dtype=category: + empty = Series(dtype="category") + empty2 = Series(input_class(), dtype="category") + tm.assert_series_equal(empty, empty2, check_index_type=False) + + if input_class is not list: + # With index: + empty = Series(index=range(10)) + empty2 = Series(input_class(), index=range(10)) + tm.assert_series_equal(empty, empty2) + + # With index and dtype float64: + empty = Series(np.nan, index=range(10)) + empty2 = Series(input_class(), index=range(10), dtype="float64") + tm.assert_series_equal(empty, empty2) + + # GH 19853 : with empty string, index and dtype str + empty = Series("", dtype=str, index=range(3)) + if using_infer_string: + empty2 = Series("", index=range(3), dtype=object) + else: + empty2 = Series("", index=range(3)) + tm.assert_series_equal(empty, empty2) + + @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) + def test_constructor_nan(self, input_arg): + empty = Series(dtype="float64", index=range(10)) + empty2 = Series(input_arg, index=range(10)) + + tm.assert_series_equal(empty, empty2, check_index_type=False) + + @pytest.mark.parametrize( + "dtype", + ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], + ) + @pytest.mark.parametrize("index", [None, Index([])]) + def test_constructor_dtype_only(self, dtype, index): + # GH-20865 + result = Series(dtype=dtype, index=index) + assert result.dtype == dtype + assert len(result) == 0 + + def test_constructor_no_data_index_order(self): + result = Series(index=["b", "a", "c"]) + assert result.index.tolist() == ["b", "a", "c"] + + def test_constructor_no_data_string_type(self): + # GH 22477 + result = Series(index=[1], dtype=str) + assert np.isnan(result.iloc[0]) + + @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) + def test_constructor_string_element_string_type(self, item): + # GH 22477 + result = Series(item, index=[1], dtype=str) + assert result.iloc[0] == str(item) + + def test_constructor_dtype_str_na_values(self, string_dtype): + # https://github.com/pandas-dev/pandas/issues/21083 + ser = Series(["x", None], dtype=string_dtype) + result = ser.isna() + expected = Series([False, True]) + tm.assert_series_equal(result, expected) + assert ser.iloc[1] is None + + ser = Series(["x", np.nan], dtype=string_dtype) + assert np.isnan(ser.iloc[1]) + + def test_constructor_series(self): + index1 = ["d", "b", "a", "c"] + index2 = sorted(index1) + s1 = Series([4, 7, -5, 3], index=index1) + s2 = Series(s1, index=index2) + + tm.assert_series_equal(s2, s1.sort_index()) + + def test_constructor_iterable(self): + # GH 21987 + class Iter: + def __iter__(self) -> Iterator: + yield from range(10) + + expected = Series(list(range(10)), dtype="int64") + result = Series(Iter(), dtype="int64") + tm.assert_series_equal(result, expected) + + def test_constructor_sequence(self): + # GH 21987 + expected = Series(list(range(10)), dtype="int64") + result = Series(range(10), dtype="int64") + tm.assert_series_equal(result, expected) + + def test_constructor_single_str(self): + # GH 21987 + expected = Series(["abc"]) + result = Series("abc") + tm.assert_series_equal(result, expected) + + def test_constructor_list_like(self): + # make sure that we are coercing different + # list-likes to standard dtypes and not + # platform specific + expected = Series([1, 2, 3], dtype="int64") + for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: + result = Series(obj, index=[0, 1, 2]) + tm.assert_series_equal(result, expected) + + def test_constructor_boolean_index(self): + # GH#18579 + s1 = Series([1, 2, 3], index=[4, 5, 6]) + + index = s1 == 2 + result = Series([1, 3, 2], index=index) + expected = Series([1, 3, 2], index=[False, True, False]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) + def test_constructor_index_dtype(self, dtype): + # GH 17088 + + s = Series(Index([0, 2, 4]), dtype=dtype) + assert s.dtype == dtype + + @pytest.mark.parametrize( + "input_vals", + [ + ([1, 2]), + (["1", "2"]), + (list(date_range("1/1/2011", periods=2, freq="h"))), + (list(date_range("1/1/2011", periods=2, freq="h", tz="US/Eastern"))), + ([Interval(left=0, right=5)]), + ], + ) + def test_constructor_list_str(self, input_vals, string_dtype): + # GH 16605 + # Ensure that data elements from a list are converted to strings + # when dtype is str, 'str', or 'U' + result = Series(input_vals, dtype=string_dtype) + expected = Series(input_vals).astype(string_dtype) + tm.assert_series_equal(result, expected) + + def test_constructor_list_str_na(self, string_dtype): + result = Series([1.0, 2.0, np.nan], dtype=string_dtype) + expected = Series(["1.0", "2.0", np.nan], dtype=object) + tm.assert_series_equal(result, expected) + assert np.isnan(result[2]) + + def test_constructor_generator(self): + gen = (i for i in range(10)) + + result = Series(gen) + exp = Series(range(10)) + tm.assert_series_equal(result, exp) + + # same but with non-default index + gen = (i for i in range(10)) + result = Series(gen, index=range(10, 20)) + exp.index = range(10, 20) + tm.assert_series_equal(result, exp) + + def test_constructor_map(self): + # GH8909 + m = (x for x in range(10)) + + result = Series(m) + exp = Series(range(10)) + tm.assert_series_equal(result, exp) + + # same but with non-default index + m = (x for x in range(10)) + result = Series(m, index=range(10, 20)) + exp.index = range(10, 20) + tm.assert_series_equal(result, exp) + + def test_constructor_categorical(self): + cat = Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"]) + res = Series(cat) + tm.assert_categorical_equal(res.values, cat) + + # can cast to a new dtype + result = Series(Categorical([1, 2, 3]), dtype="int64") + expected = Series([1, 2, 3], dtype="int64") + tm.assert_series_equal(result, expected) + + def test_construct_from_categorical_with_dtype(self): + # GH12574 + ser = Series(Categorical([1, 2, 3]), dtype="category") + assert isinstance(ser.dtype, CategoricalDtype) + + def test_construct_intlist_values_category_dtype(self): + ser = Series([1, 2, 3], dtype="category") + assert isinstance(ser.dtype, CategoricalDtype) + + def test_constructor_categorical_with_coercion(self): + factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) + # test basic creation / coercion of categoricals + s = Series(factor, name="A") + assert s.dtype == "category" + assert len(s) == len(factor) + + # in a frame + df = DataFrame({"A": factor}) + result = df["A"] + tm.assert_series_equal(result, s) + result = df.iloc[:, 0] + tm.assert_series_equal(result, s) + assert len(df) == len(factor) + + df = DataFrame({"A": s}) + result = df["A"] + tm.assert_series_equal(result, s) + assert len(df) == len(factor) + + # multiples + df = DataFrame({"A": s, "B": s, "C": 1}) + result1 = df["A"] + result2 = df["B"] + tm.assert_series_equal(result1, s) + tm.assert_series_equal(result2, s, check_names=False) + assert result2.name == "B" + assert len(df) == len(factor) + + def test_constructor_categorical_with_coercion2(self): + # GH8623 + x = DataFrame( + [[1, "John P. Doe"], [2, "Jane Dove"], [1, "John P. Doe"]], + columns=["person_id", "person_name"], + ) + x["person_name"] = Categorical(x.person_name) # doing this breaks transform + + expected = x.iloc[0].person_name + result = x.person_name.iloc[0] + assert result == expected + + result = x.person_name[0] + assert result == expected + + result = x.person_name.loc[0] + assert result == expected + + def test_constructor_series_to_categorical(self): + # see GH#16524: test conversion of Series to Categorical + series = Series(["a", "b", "c"]) + + result = Series(series, dtype="category") + expected = Series(["a", "b", "c"], dtype="category") + + tm.assert_series_equal(result, expected) + + def test_constructor_categorical_dtype(self): + result = Series( + ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) + ) + assert isinstance(result.dtype, CategoricalDtype) + tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) + assert result.cat.ordered + + result = Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) + assert isinstance(result.dtype, CategoricalDtype) + tm.assert_index_equal(result.cat.categories, Index(["b", "a"])) + assert result.cat.ordered is False + + # GH 19565 - Check broadcasting of scalar with Categorical dtype + result = Series( + "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) + ) + expected = Series( + ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) + ) + tm.assert_series_equal(result, expected) + + def test_constructor_categorical_string(self): + # GH 26336: the string 'category' maintains existing CategoricalDtype + cdt = CategoricalDtype(categories=list("dabc"), ordered=True) + expected = Series(list("abcabc"), dtype=cdt) + + # Series(Categorical, dtype='category') keeps existing dtype + cat = Categorical(list("abcabc"), dtype=cdt) + result = Series(cat, dtype="category") + tm.assert_series_equal(result, expected) + + # Series(Series[Categorical], dtype='category') keeps existing dtype + result = Series(result, dtype="category") + tm.assert_series_equal(result, expected) + + def test_categorical_sideeffects_free(self): + # Passing a categorical to a Series and then changing values in either + # the series or the categorical should not change the values in the + # other one, IF you specify copy! + cat = Categorical(["a", "b", "c", "a"]) + s = Series(cat, copy=True) + assert s.cat is not cat + s = s.cat.rename_categories([1, 2, 3]) + exp_s = np.array([1, 2, 3, 1], dtype=np.int64) + exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) + tm.assert_numpy_array_equal(s.__array__(), exp_s) + tm.assert_numpy_array_equal(cat.__array__(), exp_cat) + + # setting + s[0] = 2 + exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) + tm.assert_numpy_array_equal(s.__array__(), exp_s2) + tm.assert_numpy_array_equal(cat.__array__(), exp_cat) + + # however, copy is False by default + # so this WILL change values + cat = Categorical(["a", "b", "c", "a"]) + s = Series(cat, copy=False) + assert s.values is cat + s = s.cat.rename_categories([1, 2, 3]) + assert s.values is not cat + exp_s = np.array([1, 2, 3, 1], dtype=np.int64) + tm.assert_numpy_array_equal(s.__array__(), exp_s) + + s[0] = 2 + exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) + tm.assert_numpy_array_equal(s.__array__(), exp_s2) + + def test_unordered_compare_equal(self): + left = Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) + right = Series(Categorical(["a", "b", np.nan], categories=["a", "b"])) + tm.assert_series_equal(left, right) + + def test_constructor_maskedarray(self): + data = ma.masked_all((3,), dtype=float) + result = Series(data) + expected = Series([np.nan, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + data[0] = 0.0 + data[2] = 2.0 + index = ["a", "b", "c"] + result = Series(data, index=index) + expected = Series([0.0, np.nan, 2.0], index=index) + tm.assert_series_equal(result, expected) + + data[1] = 1.0 + result = Series(data, index=index) + expected = Series([0.0, 1.0, 2.0], index=index) + tm.assert_series_equal(result, expected) + + data = ma.masked_all((3,), dtype=int) + result = Series(data) + expected = Series([np.nan, np.nan, np.nan], dtype=float) + tm.assert_series_equal(result, expected) + + data[0] = 0 + data[2] = 2 + index = ["a", "b", "c"] + result = Series(data, index=index) + expected = Series([0, np.nan, 2], index=index, dtype=float) + tm.assert_series_equal(result, expected) + + data[1] = 1 + result = Series(data, index=index) + expected = Series([0, 1, 2], index=index, dtype=int) + with pytest.raises(AssertionError, match="Series classes are different"): + # TODO should this be raising at all? + # https://github.com/pandas-dev/pandas/issues/56131 + tm.assert_series_equal(result, expected) + + data = ma.masked_all((3,), dtype=bool) + result = Series(data) + expected = Series([np.nan, np.nan, np.nan], dtype=object) + tm.assert_series_equal(result, expected) + + data[0] = True + data[2] = False + index = ["a", "b", "c"] + result = Series(data, index=index) + expected = Series([True, np.nan, False], index=index, dtype=object) + tm.assert_series_equal(result, expected) + + data[1] = True + result = Series(data, index=index) + expected = Series([True, True, False], index=index, dtype=bool) + with pytest.raises(AssertionError, match="Series classes are different"): + # TODO should this be raising at all? + # https://github.com/pandas-dev/pandas/issues/56131 + tm.assert_series_equal(result, expected) + + data = ma.masked_all((3,), dtype="M8[ns]") + result = Series(data) + expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") + tm.assert_series_equal(result, expected) + + data[0] = datetime(2001, 1, 1) + data[2] = datetime(2001, 1, 3) + index = ["a", "b", "c"] + result = Series(data, index=index) + expected = Series( + [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], + index=index, + dtype="M8[ns]", + ) + tm.assert_series_equal(result, expected) + + data[1] = datetime(2001, 1, 2) + result = Series(data, index=index) + expected = Series( + [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], + index=index, + dtype="M8[ns]", + ) + tm.assert_series_equal(result, expected) + + def test_constructor_maskedarray_hardened(self): + # Check numpy masked arrays with hard masks -- from GH24574 + data = ma.masked_all((3,), dtype=float).harden_mask() + result = Series(data) + expected = Series([np.nan, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + def test_series_ctor_plus_datetimeindex(self, using_copy_on_write): + rng = date_range("20090415", "20090519", freq="B") + data = {k: 1 for k in rng} + + result = Series(data, index=rng) + if using_copy_on_write: + assert result.index.is_(rng) + else: + assert result.index is rng + + def test_constructor_default_index(self): + s = Series([0, 1, 2]) + tm.assert_index_equal(s.index, Index(range(3)), exact=True) + + @pytest.mark.parametrize( + "input", + [ + [1, 2, 3], + (1, 2, 3), + list(range(3)), + Categorical(["a", "b", "a"]), + (i for i in range(3)), + (x for x in range(3)), + ], + ) + def test_constructor_index_mismatch(self, input): + # GH 19342 + # test that construction of a Series with an index of different length + # raises an error + msg = r"Length of values \(3\) does not match length of index \(4\)" + with pytest.raises(ValueError, match=msg): + Series(input, index=np.arange(4)) + + def test_constructor_numpy_scalar(self): + # GH 19342 + # construction with a numpy scalar + # should not raise + result = Series(np.array(100), index=np.arange(4), dtype="int64") + expected = Series(100, index=np.arange(4), dtype="int64") + tm.assert_series_equal(result, expected) + + def test_constructor_broadcast_list(self): + # GH 19342 + # construction with single-element container and index + # should raise + msg = r"Length of values \(1\) does not match length of index \(3\)" + with pytest.raises(ValueError, match=msg): + Series(["foo"], index=["a", "b", "c"]) + + def test_constructor_corner(self): + df = DataFrame(range(5), index=date_range("2020-01-01", periods=5)) + objs = [df, df] + s = Series(objs, index=[0, 1]) + assert isinstance(s, Series) + + def test_constructor_sanitize(self): + s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") + assert s.dtype == np.dtype("i8") + + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") + + def test_constructor_copy(self): + # GH15125 + # test dtype parameter has no side effects on copy=True + for data in [[1.0], np.array([1.0])]: + x = Series(data) + y = Series(x, copy=True, dtype=float) + + # copy=True maintains original data in Series + tm.assert_series_equal(x, y) + + # changes to origin of copy does not affect the copy + x[0] = 2.0 + assert not x.equals(y) + assert x[0] == 2.0 + assert y[0] == 1.0 + + @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite test + @pytest.mark.parametrize( + "index", + [ + date_range("20170101", periods=3, tz="US/Eastern"), + date_range("20170101", periods=3), + timedelta_range("1 day", periods=3), + period_range("2012Q1", periods=3, freq="Q"), + Index(list("abc")), + Index([1, 2, 3]), + RangeIndex(0, 3), + ], + ids=lambda x: type(x).__name__, + ) + def test_constructor_limit_copies(self, index): + # GH 17449 + # limit copies of input + s = Series(index) + + # we make 1 copy; this is just a smoke test here + assert s._mgr.blocks[0].values is not index + + def test_constructor_shallow_copy(self): + # constructing a Series from Series with copy=False should still + # give a "shallow" copy (share data, not attributes) + # https://github.com/pandas-dev/pandas/issues/49523 + s = Series([1, 2, 3]) + s_orig = s.copy() + s2 = Series(s) + assert s2._mgr is not s._mgr + # Overwriting index of s2 doesn't change s + s2.index = ["a", "b", "c"] + tm.assert_series_equal(s, s_orig) + + def test_constructor_pass_none(self): + s = Series(None, index=range(5)) + assert s.dtype == np.float64 + + s = Series(None, index=range(5), dtype=object) + assert s.dtype == np.object_ + + # GH 7431 + # inference on the index + s = Series(index=np.array([None])) + expected = Series(index=Index([None])) + tm.assert_series_equal(s, expected) + + def test_constructor_pass_nan_nat(self): + # GH 13467 + exp = Series([np.nan, np.nan], dtype=np.float64) + assert exp.dtype == np.float64 + tm.assert_series_equal(Series([np.nan, np.nan]), exp) + tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) + + exp = Series([NaT, NaT]) + assert exp.dtype == "datetime64[ns]" + tm.assert_series_equal(Series([NaT, NaT]), exp) + tm.assert_series_equal(Series(np.array([NaT, NaT])), exp) + + tm.assert_series_equal(Series([NaT, np.nan]), exp) + tm.assert_series_equal(Series(np.array([NaT, np.nan])), exp) + + tm.assert_series_equal(Series([np.nan, NaT]), exp) + tm.assert_series_equal(Series(np.array([np.nan, NaT])), exp) + + def test_constructor_cast(self): + msg = "could not convert string to float" + with pytest.raises(ValueError, match=msg): + Series(["a", "b", "c"], dtype=float) + + def test_constructor_signed_int_overflow_raises(self): + # GH#41734 disallow silent overflow, enforced in 2.0 + if np_version_gt2: + msg = "The elements provided in the data cannot all be casted to the dtype" + err = OverflowError + else: + msg = "Values are too large to be losslessly converted" + err = ValueError + with pytest.raises(err, match=msg): + Series([1, 200, 923442], dtype="int8") + + with pytest.raises(err, match=msg): + Series([1, 200, 923442], dtype="uint8") + + @pytest.mark.parametrize( + "values", + [ + np.array([1], dtype=np.uint16), + np.array([1], dtype=np.uint32), + np.array([1], dtype=np.uint64), + [np.uint16(1)], + [np.uint32(1)], + [np.uint64(1)], + ], + ) + def test_constructor_numpy_uints(self, values): + # GH#47294 + value = values[0] + result = Series(values) + + assert result[0].dtype == value.dtype + assert result[0] == value + + def test_constructor_unsigned_dtype_overflow(self, any_unsigned_int_numpy_dtype): + # see gh-15832 + if np_version_gt2: + msg = ( + f"The elements provided in the data cannot " + f"all be casted to the dtype {any_unsigned_int_numpy_dtype}" + ) + else: + msg = "Trying to coerce negative values to unsigned integers" + with pytest.raises(OverflowError, match=msg): + Series([-1], dtype=any_unsigned_int_numpy_dtype) + + def test_constructor_floating_data_int_dtype(self, frame_or_series): + # GH#40110 + arr = np.random.default_rng(2).standard_normal(2) + + # Long-standing behavior (for Series, new in 2.0 for DataFrame) + # has been to ignore the dtype on these; + # not clear if this is what we want long-term + # expected = frame_or_series(arr) + + # GH#49599 as of 2.0 we raise instead of silently retaining float dtype + msg = "Trying to coerce float values to integer" + with pytest.raises(ValueError, match=msg): + frame_or_series(arr, dtype="i8") + + with pytest.raises(ValueError, match=msg): + frame_or_series(list(arr), dtype="i8") + + # pre-2.0, when we had NaNs, we silently ignored the integer dtype + arr[0] = np.nan + # expected = frame_or_series(arr) + + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + frame_or_series(arr, dtype="i8") + + exc = IntCastingNaNError + if frame_or_series is Series: + # TODO: try to align these + exc = ValueError + msg = "cannot convert float NaN to integer" + with pytest.raises(exc, match=msg): + # same behavior if we pass list instead of the ndarray + frame_or_series(list(arr), dtype="i8") + + # float array that can be losslessly cast to integers + arr = np.array([1.0, 2.0], dtype="float64") + expected = frame_or_series(arr.astype("i8")) + + obj = frame_or_series(arr, dtype="i8") + tm.assert_equal(obj, expected) + + obj = frame_or_series(list(arr), dtype="i8") + tm.assert_equal(obj, expected) + + def test_constructor_coerce_float_fail(self, any_int_numpy_dtype): + # see gh-15832 + # Updated: make sure we treat this list the same as we would treat + # the equivalent ndarray + # GH#49599 pre-2.0 we silently retained float dtype, in 2.0 we raise + vals = [1, 2, 3.5] + + msg = "Trying to coerce float values to integer" + with pytest.raises(ValueError, match=msg): + Series(vals, dtype=any_int_numpy_dtype) + with pytest.raises(ValueError, match=msg): + Series(np.array(vals), dtype=any_int_numpy_dtype) + + def test_constructor_coerce_float_valid(self, float_numpy_dtype): + s = Series([1, 2, 3.5], dtype=float_numpy_dtype) + expected = Series([1, 2, 3.5]).astype(float_numpy_dtype) + tm.assert_series_equal(s, expected) + + def test_constructor_invalid_coerce_ints_with_float_nan(self, any_int_numpy_dtype): + # GH 22585 + # Updated: make sure we treat this list the same as we would treat the + # equivalent ndarray + vals = [1, 2, np.nan] + # pre-2.0 this would return with a float dtype, in 2.0 we raise + + msg = "cannot convert float NaN to integer" + with pytest.raises(ValueError, match=msg): + Series(vals, dtype=any_int_numpy_dtype) + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + Series(np.array(vals), dtype=any_int_numpy_dtype) + + def test_constructor_dtype_no_cast(self, using_copy_on_write, warn_copy_on_write): + # see gh-1572 + s = Series([1, 2, 3]) + s2 = Series(s, dtype=np.int64) + + warn = FutureWarning if warn_copy_on_write else None + with tm.assert_produces_warning(warn): + s2[1] = 5 + if using_copy_on_write: + assert s[1] == 2 + else: + assert s[1] == 5 + + def test_constructor_datelike_coercion(self): + # GH 9477 + # incorrectly inferring on dateimelike looking when object dtype is + # specified + s = Series([Timestamp("20130101"), "NOV"], dtype=object) + assert s.iloc[0] == Timestamp("20130101") + assert s.iloc[1] == "NOV" + assert s.dtype == object + + def test_constructor_datelike_coercion2(self): + # the dtype was being reset on the slicing and re-inferred to datetime + # even thought the blocks are mixed + belly = "216 3T19".split() + wing1 = "2T15 4H19".split() + wing2 = "416 4T20".split() + mat = pd.to_datetime("2016-01-22 2019-09-07".split()) + df = DataFrame({"wing1": wing1, "wing2": wing2, "mat": mat}, index=belly) + + result = df.loc["3T19"] + assert result.dtype == object + result = df.loc["216"] + assert result.dtype == object + + def test_constructor_mixed_int_and_timestamp(self, frame_or_series): + # specifically Timestamp with nanos, not datetimes + objs = [Timestamp(9), 10, NaT._value] + result = frame_or_series(objs, dtype="M8[ns]") + + expected = frame_or_series([Timestamp(9), Timestamp(10), NaT]) + tm.assert_equal(result, expected) + + def test_constructor_datetimes_with_nulls(self): + # gh-15869 + for arr in [ + np.array([None, None, None, None, datetime.now(), None]), + np.array([None, None, datetime.now(), None]), + ]: + result = Series(arr) + assert result.dtype == "M8[ns]" + + def test_constructor_dtype_datetime64(self): + s = Series(iNaT, dtype="M8[ns]", index=range(5)) + assert isna(s).all() + + # in theory this should be all nulls, but since + # we are not specifying a dtype is ambiguous + s = Series(iNaT, index=range(5)) + assert not isna(s).all() + + s = Series(np.nan, dtype="M8[ns]", index=range(5)) + assert isna(s).all() + + s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype="M8[ns]") + assert isna(s[1]) + assert s.dtype == "M8[ns]" + + s = Series([datetime(2001, 1, 2, 0, 0), np.nan], dtype="M8[ns]") + assert isna(s[1]) + assert s.dtype == "M8[ns]" + + def test_constructor_dtype_datetime64_10(self): + # GH3416 + pydates = [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)] + dates = [np.datetime64(x) for x in pydates] + + ser = Series(dates) + assert ser.dtype == "M8[ns]" + + ser.iloc[0] = np.nan + assert ser.dtype == "M8[ns]" + + # GH3414 related + expected = Series(pydates, dtype="datetime64[ms]") + + result = Series(Series(dates).astype(np.int64) / 1000000, dtype="M8[ms]") + tm.assert_series_equal(result, expected) + + result = Series(dates, dtype="datetime64[ms]") + tm.assert_series_equal(result, expected) + + expected = Series( + [NaT, datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]" + ) + result = Series([np.nan] + dates[1:], dtype="datetime64[ns]") + tm.assert_series_equal(result, expected) + + def test_constructor_dtype_datetime64_11(self): + pydates = [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)] + dates = [np.datetime64(x) for x in pydates] + + dts = Series(dates, dtype="datetime64[ns]") + + # valid astype + dts.astype("int64") + + # invalid casting + msg = r"Converting from datetime64\[ns\] to int32 is not supported" + with pytest.raises(TypeError, match=msg): + dts.astype("int32") + + # ints are ok + # we test with np.int64 to get similar results on + # windows / 32-bit platforms + result = Series(dts, dtype=np.int64) + expected = Series(dts.astype(np.int64)) + tm.assert_series_equal(result, expected) + + def test_constructor_dtype_datetime64_9(self): + # invalid dates can be help as object + result = Series([datetime(2, 1, 1)]) + assert result[0] == datetime(2, 1, 1, 0, 0) + + result = Series([datetime(3000, 1, 1)]) + assert result[0] == datetime(3000, 1, 1, 0, 0) + + def test_constructor_dtype_datetime64_8(self): + # don't mix types + result = Series([Timestamp("20130101"), 1], index=["a", "b"]) + assert result["a"] == Timestamp("20130101") + assert result["b"] == 1 + + def test_constructor_dtype_datetime64_7(self): + # GH6529 + # coerce datetime64 non-ns properly + dates = date_range("01-Jan-2015", "01-Dec-2015", freq="ME") + values2 = dates.view(np.ndarray).astype("datetime64[ns]") + expected = Series(values2, index=dates) + + for unit in ["s", "D", "ms", "us", "ns"]: + dtype = np.dtype(f"M8[{unit}]") + values1 = dates.view(np.ndarray).astype(dtype) + result = Series(values1, dates) + if unit == "D": + # for unit="D" we cast to nearest-supported reso, i.e. "s" + dtype = np.dtype("M8[s]") + assert result.dtype == dtype + tm.assert_series_equal(result, expected.astype(dtype)) + + # GH 13876 + # coerce to non-ns to object properly + expected = Series(values2, index=dates, dtype=object) + for dtype in ["s", "D", "ms", "us", "ns"]: + values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") + result = Series(values1, index=dates, dtype=object) + tm.assert_series_equal(result, expected) + + # leave datetime.date alone + dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) + series1 = Series(dates2, dates) + tm.assert_numpy_array_equal(series1.values, dates2) + assert series1.dtype == object + + def test_constructor_dtype_datetime64_6(self): + # as of 2.0, these no longer infer datetime64 based on the strings, + # matching the Index behavior + + ser = Series([None, NaT, "2013-08-05 15:30:00.000001"]) + assert ser.dtype == object + + ser = Series([np.nan, NaT, "2013-08-05 15:30:00.000001"]) + assert ser.dtype == object + + ser = Series([NaT, None, "2013-08-05 15:30:00.000001"]) + assert ser.dtype == object + + ser = Series([NaT, np.nan, "2013-08-05 15:30:00.000001"]) + assert ser.dtype == object + + def test_constructor_dtype_datetime64_5(self): + # tz-aware (UTC and other tz's) + # GH 8411 + dr = date_range("20130101", periods=3) + assert Series(dr).iloc[0].tz is None + dr = date_range("20130101", periods=3, tz="UTC") + assert str(Series(dr).iloc[0].tz) == "UTC" + dr = date_range("20130101", periods=3, tz="US/Eastern") + assert str(Series(dr).iloc[0].tz) == "US/Eastern" + + def test_constructor_dtype_datetime64_4(self): + # non-convertible + ser = Series([1479596223000, -1479590, NaT]) + assert ser.dtype == "object" + assert ser[2] is NaT + assert "NaT" in str(ser) + + def test_constructor_dtype_datetime64_3(self): + # if we passed a NaT it remains + ser = Series([datetime(2010, 1, 1), datetime(2, 1, 1), NaT]) + assert ser.dtype == "object" + assert ser[2] is NaT + assert "NaT" in str(ser) + + def test_constructor_dtype_datetime64_2(self): + # if we passed a nan it remains + ser = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) + assert ser.dtype == "object" + assert ser[2] is np.nan + assert "NaN" in str(ser) + + def test_constructor_with_datetime_tz(self): + # 8260 + # support datetime64 with tz + + dr = date_range("20130101", periods=3, tz="US/Eastern") + s = Series(dr) + assert s.dtype.name == "datetime64[ns, US/Eastern]" + assert s.dtype == "datetime64[ns, US/Eastern]" + assert isinstance(s.dtype, DatetimeTZDtype) + assert "datetime64[ns, US/Eastern]" in str(s) + + # export + result = s.values + assert isinstance(result, np.ndarray) + assert result.dtype == "datetime64[ns]" + + exp = DatetimeIndex(result) + exp = exp.tz_localize("UTC").tz_convert(tz=s.dt.tz) + tm.assert_index_equal(dr, exp) + + # indexing + result = s.iloc[0] + assert result == Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern") + result = s[0] + assert result == Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern") + + result = s[Series([True, True, False], index=s.index)] + tm.assert_series_equal(result, s[0:2]) + + result = s.iloc[0:1] + tm.assert_series_equal(result, Series(dr[0:1])) + + # concat + result = pd.concat([s.iloc[0:1], s.iloc[1:]]) + tm.assert_series_equal(result, s) + + # short str + assert "datetime64[ns, US/Eastern]" in str(s) + + # formatting with NaT + result = s.shift() + assert "datetime64[ns, US/Eastern]" in str(result) + assert "NaT" in str(result) + + result = DatetimeIndex(s, freq="infer") + tm.assert_index_equal(result, dr) + + def test_constructor_with_datetime_tz5(self): + # long str + ser = Series(date_range("20130101", periods=1000, tz="US/Eastern")) + assert "datetime64[ns, US/Eastern]" in str(ser) + + def test_constructor_with_datetime_tz4(self): + # inference + ser = Series( + [ + Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), + Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), + ] + ) + assert ser.dtype == "datetime64[ns, US/Pacific]" + assert lib.infer_dtype(ser, skipna=True) == "datetime64" + + def test_constructor_with_datetime_tz3(self): + ser = Series( + [ + Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), + Timestamp("2013-01-02 14:00:00-0800", tz="US/Eastern"), + ] + ) + assert ser.dtype == "object" + assert lib.infer_dtype(ser, skipna=True) == "datetime" + + def test_constructor_with_datetime_tz2(self): + # with all NaT + ser = Series(NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") + dti = DatetimeIndex(["NaT", "NaT"], tz="US/Eastern").as_unit("ns") + expected = Series(dti) + tm.assert_series_equal(ser, expected) + + def test_constructor_no_partial_datetime_casting(self): + # GH#40111 + vals = [ + "nan", + Timestamp("1990-01-01"), + "2015-03-14T16:15:14.123-08:00", + "2019-03-04T21:56:32.620-07:00", + None, + ] + ser = Series(vals) + assert all(ser[i] is vals[i] for i in range(len(vals))) + + @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) + @pytest.mark.parametrize("kind", ["M", "m"]) + @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) + def test_construction_to_datetimelike_unit(self, arr_dtype, kind, unit): + # tests all units + # gh-19223 + # TODO: GH#19223 was about .astype, doesn't belong here + dtype = f"{kind}8[{unit}]" + arr = np.array([1, 2, 3], dtype=arr_dtype) + ser = Series(arr) + result = ser.astype(dtype) + + expected = Series(arr.astype(dtype)) + + if unit in ["ns", "us", "ms", "s"]: + assert result.dtype == dtype + assert expected.dtype == dtype + else: + # Otherwise we cast to nearest-supported unit, i.e. seconds + assert result.dtype == f"{kind}8[s]" + assert expected.dtype == f"{kind}8[s]" + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("arg", ["2013-01-01 00:00:00", NaT, np.nan, None]) + def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): + # GH 17415: With naive string + result = Series([arg], dtype="datetime64[ns, CET]") + expected = Series(Timestamp(arg)).dt.tz_localize("CET") + tm.assert_series_equal(result, expected) + + def test_constructor_datetime64_bigendian(self): + # GH#30976 + ms = np.datetime64(1, "ms") + arr = np.array([np.datetime64(1, "ms")], dtype=">M8[ms]") + + result = Series(arr) + expected = Series([Timestamp(ms)]).astype("M8[ms]") + assert expected.dtype == "M8[ms]" + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("interval_constructor", [IntervalIndex, IntervalArray]) + def test_construction_interval(self, interval_constructor): + # construction from interval & array of intervals + intervals = interval_constructor.from_breaks(np.arange(3), closed="right") + result = Series(intervals) + assert result.dtype == "interval[int64, right]" + tm.assert_index_equal(Index(result.values), Index(intervals)) + + @pytest.mark.parametrize( + "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] + ) + def test_constructor_infer_interval(self, data_constructor): + # GH 23563: consistent closed results in interval dtype + data = [Interval(0, 1), Interval(0, 2), None] + result = Series(data_constructor(data)) + expected = Series(IntervalArray(data)) + assert result.dtype == "interval[float64, right]" + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] + ) + def test_constructor_interval_mixed_closed(self, data_constructor): + # GH 23563: mixed closed results in object dtype (not interval dtype) + data = [Interval(0, 1, closed="both"), Interval(0, 2, closed="neither")] + result = Series(data_constructor(data)) + assert result.dtype == object + assert result.tolist() == data + + def test_construction_consistency(self): + # make sure that we are not re-localizing upon construction + # GH 14928 + ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) + + result = Series(ser, dtype=ser.dtype) + tm.assert_series_equal(result, ser) + + result = Series(ser.dt.tz_convert("UTC"), dtype=ser.dtype) + tm.assert_series_equal(result, ser) + + # Pre-2.0 dt64 values were treated as utc, which was inconsistent + # with DatetimeIndex, which treats them as wall times, see GH#33401 + result = Series(ser.values, dtype=ser.dtype) + expected = Series(ser.values).dt.tz_localize(ser.dtype.tz) + tm.assert_series_equal(result, expected) + + with tm.assert_produces_warning(None): + # one suggested alternative to the deprecated (changed in 2.0) usage + middle = Series(ser.values).dt.tz_localize("UTC") + result = middle.dt.tz_convert(ser.dtype.tz) + tm.assert_series_equal(result, ser) + + with tm.assert_produces_warning(None): + # the other suggested alternative to the deprecated usage + result = Series(ser.values.view("int64"), dtype=ser.dtype) + tm.assert_series_equal(result, ser) + + @pytest.mark.parametrize( + "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] + ) + def test_constructor_infer_period(self, data_constructor): + data = [Period("2000", "D"), Period("2001", "D"), None] + result = Series(data_constructor(data)) + expected = Series(period_array(data)) + tm.assert_series_equal(result, expected) + assert result.dtype == "Period[D]" + + @pytest.mark.xfail(reason="PeriodDtype Series not supported yet") + def test_construct_from_ints_including_iNaT_scalar_period_dtype(self): + series = Series([0, 1000, 2000, pd._libs.iNaT], dtype="period[D]") + + val = series[3] + assert isna(val) + + series[2] = val + assert isna(series[2]) + + def test_constructor_period_incompatible_frequency(self): + data = [Period("2000", "D"), Period("2001", "Y")] + result = Series(data) + assert result.dtype == object + assert result.tolist() == data + + def test_constructor_periodindex(self): + # GH7932 + # converting a PeriodIndex when put in a Series + + pi = period_range("20130101", periods=5, freq="D") + s = Series(pi) + assert s.dtype == "Period[D]" + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + expected = Series(pi.astype(object)) + tm.assert_series_equal(s, expected) + + def test_constructor_dict(self): + d = {"a": 0.0, "b": 1.0, "c": 2.0} + + result = Series(d) + expected = Series(d, index=sorted(d.keys())) + tm.assert_series_equal(result, expected) + + result = Series(d, index=["b", "c", "d", "a"]) + expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) + tm.assert_series_equal(result, expected) + + pidx = period_range("2020-01-01", periods=10, freq="D") + d = {pidx[0]: 0, pidx[1]: 1} + result = Series(d, index=pidx) + expected = Series(np.nan, pidx, dtype=np.float64) + expected.iloc[0] = 0 + expected.iloc[1] = 1 + tm.assert_series_equal(result, expected) + + def test_constructor_dict_list_value_explicit_dtype(self): + # GH 18625 + d = {"a": [[2], [3], [4]]} + result = Series(d, index=["a"], dtype="object") + expected = Series(d, index=["a"]) + tm.assert_series_equal(result, expected) + + def test_constructor_dict_order(self): + # GH19018 + # initialization ordering: by insertion order + d = {"b": 1, "a": 0, "c": 2} + result = Series(d) + expected = Series([1, 0, 2], index=list("bac")) + tm.assert_series_equal(result, expected) + + def test_constructor_dict_extension(self, ea_scalar_and_dtype, request): + ea_scalar, ea_dtype = ea_scalar_and_dtype + if isinstance(ea_scalar, Timestamp): + mark = pytest.mark.xfail( + reason="Construction from dict goes through " + "maybe_convert_objects which casts to nano" + ) + request.applymarker(mark) + d = {"a": ea_scalar} + result = Series(d, index=["a"]) + expected = Series(ea_scalar, index=["a"], dtype=ea_dtype) + + assert result.dtype == ea_dtype + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) + def test_constructor_dict_nan_key(self, value): + # GH 18480 + d = {1: "a", value: "b", float("nan"): "c", 4: "d"} + result = Series(d).sort_values() + expected = Series(["a", "b", "c", "d"], index=[1, value, np.nan, 4]) + tm.assert_series_equal(result, expected) + + # MultiIndex: + d = {(1, 1): "a", (2, np.nan): "b", (3, value): "c"} + result = Series(d).sort_values() + expected = Series( + ["a", "b", "c"], index=Index([(1, 1), (2, np.nan), (3, value)]) + ) + tm.assert_series_equal(result, expected) + + def test_constructor_dict_datetime64_index(self): + # GH 9456 + + dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] + values = [42544017.198965244, 1234565, 40512335.181958228, -1] + + def create_data(constructor): + return dict(zip((constructor(x) for x in dates_as_str), values)) + + data_datetime64 = create_data(np.datetime64) + data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) + data_Timestamp = create_data(Timestamp) + + expected = Series(values, (Timestamp(x) for x in dates_as_str)) + + result_datetime64 = Series(data_datetime64) + result_datetime = Series(data_datetime) + result_Timestamp = Series(data_Timestamp) + + tm.assert_series_equal(result_datetime64, expected) + tm.assert_series_equal(result_datetime, expected) + tm.assert_series_equal(result_Timestamp, expected) + + def test_constructor_dict_tuple_indexer(self): + # GH 12948 + data = {(1, 1, None): -1.0} + result = Series(data) + expected = Series( + -1.0, index=MultiIndex(levels=[[1], [1], [np.nan]], codes=[[0], [0], [-1]]) + ) + tm.assert_series_equal(result, expected) + + def test_constructor_mapping(self, non_dict_mapping_subclass): + # GH 29788 + ndm = non_dict_mapping_subclass({3: "three"}) + result = Series(ndm) + expected = Series(["three"], index=[3]) + + tm.assert_series_equal(result, expected) + + def test_constructor_list_of_tuples(self): + data = [(1, 1), (2, 2), (2, 3)] + s = Series(data) + assert list(s) == data + + def test_constructor_tuple_of_tuples(self): + data = ((1, 1), (2, 2), (2, 3)) + s = Series(data) + assert tuple(s) == data + + def test_constructor_dict_of_tuples(self): + data = {(1, 2): 3, (None, 5): 6} + result = Series(data).sort_values() + expected = Series([3, 6], index=MultiIndex.from_tuples([(1, 2), (None, 5)])) + tm.assert_series_equal(result, expected) + + # https://github.com/pandas-dev/pandas/issues/22698 + @pytest.mark.filterwarnings("ignore:elementwise comparison:FutureWarning") + def test_fromDict(self, using_infer_string): + data = {"a": 0, "b": 1, "c": 2, "d": 3} + + series = Series(data) + tm.assert_is_sorted(series.index) + + data = {"a": 0, "b": "1", "c": "2", "d": datetime.now()} + series = Series(data) + assert series.dtype == np.object_ + + data = {"a": 0, "b": "1", "c": "2", "d": "3"} + series = Series(data) + assert series.dtype == np.object_ if not using_infer_string else "string" + + data = {"a": "0", "b": "1"} + series = Series(data, dtype=float) + assert series.dtype == np.float64 + + def test_fromValue(self, datetime_series, using_infer_string): + nans = Series(np.nan, index=datetime_series.index, dtype=np.float64) + assert nans.dtype == np.float64 + assert len(nans) == len(datetime_series) + + strings = Series("foo", index=datetime_series.index) + assert strings.dtype == np.object_ if not using_infer_string else "string" + assert len(strings) == len(datetime_series) + + d = datetime.now() + dates = Series(d, index=datetime_series.index) + assert dates.dtype == "M8[us]" + assert len(dates) == len(datetime_series) + + # GH12336 + # Test construction of categorical series from value + categorical = Series(0, index=datetime_series.index, dtype="category") + expected = Series(0, index=datetime_series.index).astype("category") + assert categorical.dtype == "category" + assert len(categorical) == len(datetime_series) + tm.assert_series_equal(categorical, expected) + + def test_constructor_dtype_timedelta64(self): + # basic + td = Series([timedelta(days=i) for i in range(3)]) + assert td.dtype == "timedelta64[ns]" + + td = Series([timedelta(days=1)]) + assert td.dtype == "timedelta64[ns]" + + td = Series([timedelta(days=1), timedelta(days=2), np.timedelta64(1, "s")]) + + assert td.dtype == "timedelta64[ns]" + + # mixed with NaT + td = Series([timedelta(days=1), NaT], dtype="m8[ns]") + assert td.dtype == "timedelta64[ns]" + + td = Series([timedelta(days=1), np.nan], dtype="m8[ns]") + assert td.dtype == "timedelta64[ns]" + + td = Series([np.timedelta64(300000000), NaT], dtype="m8[ns]") + assert td.dtype == "timedelta64[ns]" + + # improved inference + # GH5689 + td = Series([np.timedelta64(300000000), NaT]) + assert td.dtype == "timedelta64[ns]" + + # because iNaT is int, not coerced to timedelta + td = Series([np.timedelta64(300000000), iNaT]) + assert td.dtype == "object" + + td = Series([np.timedelta64(300000000), np.nan]) + assert td.dtype == "timedelta64[ns]" + + td = Series([NaT, np.timedelta64(300000000)]) + assert td.dtype == "timedelta64[ns]" + + td = Series([np.timedelta64(1, "s")]) + assert td.dtype == "timedelta64[ns]" + + # valid astype + td.astype("int64") + + # invalid casting + msg = r"Converting from timedelta64\[ns\] to int32 is not supported" + with pytest.raises(TypeError, match=msg): + td.astype("int32") + + # this is an invalid casting + msg = "|".join( + [ + "Could not convert object to NumPy timedelta", + "Could not convert 'foo' to NumPy timedelta", + ] + ) + with pytest.raises(ValueError, match=msg): + Series([timedelta(days=1), "foo"], dtype="m8[ns]") + + # leave as object here + td = Series([timedelta(days=i) for i in range(3)] + ["foo"]) + assert td.dtype == "object" + + # as of 2.0, these no longer infer timedelta64 based on the strings, + # matching Index behavior + ser = Series([None, NaT, "1 Day"]) + assert ser.dtype == object + + ser = Series([np.nan, NaT, "1 Day"]) + assert ser.dtype == object + + ser = Series([NaT, None, "1 Day"]) + assert ser.dtype == object + + ser = Series([NaT, np.nan, "1 Day"]) + assert ser.dtype == object + + # GH 16406 + def test_constructor_mixed_tz(self): + s = Series([Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")]) + expected = Series( + [Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")], + dtype="object", + ) + tm.assert_series_equal(s, expected) + + def test_NaT_scalar(self): + series = Series([0, 1000, 2000, iNaT], dtype="M8[ns]") + + val = series[3] + assert isna(val) + + series[2] = val + assert isna(series[2]) + + def test_NaT_cast(self): + # GH10747 + result = Series([np.nan]).astype("M8[ns]") + expected = Series([NaT], dtype="M8[ns]") + tm.assert_series_equal(result, expected) + + def test_constructor_name_hashable(self): + for n in [777, 777.0, "name", datetime(2001, 11, 11), (1,), "\u05D0"]: + for data in [[1, 2, 3], np.ones(3), {"a": 0, "b": 1}]: + s = Series(data, name=n) + assert s.name == n + + def test_constructor_name_unhashable(self): + msg = r"Series\.name must be a hashable type" + for n in [["name_list"], np.ones(2), {1: 2}]: + for data in [["name_list"], np.ones(2), {1: 2}]: + with pytest.raises(TypeError, match=msg): + Series(data, name=n) + + def test_auto_conversion(self): + series = Series(list(date_range("1/1/2000", periods=10))) + assert series.dtype == "M8[ns]" + + def test_convert_non_ns(self): + # convert from a numpy array of non-ns timedelta64 + arr = np.array([1, 2, 3], dtype="timedelta64[s]") + ser = Series(arr) + assert ser.dtype == arr.dtype + + tdi = timedelta_range("00:00:01", periods=3, freq="s").as_unit("s") + expected = Series(tdi) + assert expected.dtype == arr.dtype + tm.assert_series_equal(ser, expected) + + # convert from a numpy array of non-ns datetime64 + arr = np.array( + ["2013-01-01", "2013-01-02", "2013-01-03"], dtype="datetime64[D]" + ) + ser = Series(arr) + expected = Series(date_range("20130101", periods=3, freq="D"), dtype="M8[s]") + assert expected.dtype == "M8[s]" + tm.assert_series_equal(ser, expected) + + arr = np.array( + ["2013-01-01 00:00:01", "2013-01-01 00:00:02", "2013-01-01 00:00:03"], + dtype="datetime64[s]", + ) + ser = Series(arr) + expected = Series( + date_range("20130101 00:00:01", periods=3, freq="s"), dtype="M8[s]" + ) + assert expected.dtype == "M8[s]" + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize( + "index", + [ + date_range("1/1/2000", periods=10), + timedelta_range("1 day", periods=10), + period_range("2000-Q1", periods=10, freq="Q"), + ], + ids=lambda x: type(x).__name__, + ) + def test_constructor_cant_cast_datetimelike(self, index): + # floats are not ok + # strip Index to convert PeriodIndex -> Period + # We don't care whether the error message says + # PeriodIndex or PeriodArray + msg = f"Cannot cast {type(index).__name__.rstrip('Index')}.*? to " + + with pytest.raises(TypeError, match=msg): + Series(index, dtype=float) + + # ints are ok + # we test with np.int64 to get similar results on + # windows / 32-bit platforms + result = Series(index, dtype=np.int64) + expected = Series(index.astype(np.int64)) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "index", + [ + date_range("1/1/2000", periods=10), + timedelta_range("1 day", periods=10), + period_range("2000-Q1", periods=10, freq="Q"), + ], + ids=lambda x: type(x).__name__, + ) + def test_constructor_cast_object(self, index): + s = Series(index, dtype=object) + exp = Series(index).astype(object) + tm.assert_series_equal(s, exp) + + s = Series(Index(index, dtype=object), dtype=object) + exp = Series(index).astype(object) + tm.assert_series_equal(s, exp) + + s = Series(index.astype(object), dtype=object) + exp = Series(index).astype(object) + tm.assert_series_equal(s, exp) + + @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) + def test_constructor_generic_timestamp_no_frequency(self, dtype, request): + # see gh-15524, gh-15987 + msg = "dtype has no unit. Please pass in" + + if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: + mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") + request.applymarker(mark) + + with pytest.raises(ValueError, match=msg): + Series([], dtype=dtype) + + @pytest.mark.parametrize("unit", ["ps", "as", "fs", "Y", "M", "W", "D", "h", "m"]) + @pytest.mark.parametrize("kind", ["m", "M"]) + def test_constructor_generic_timestamp_bad_frequency(self, kind, unit): + # see gh-15524, gh-15987 + # as of 2.0 we raise on any non-supported unit rather than silently + # cast to nanos; previously we only raised for frequencies higher + # than ns + dtype = f"{kind}8[{unit}]" + + msg = "dtype=.* is not supported. Supported resolutions are" + with pytest.raises(TypeError, match=msg): + Series([], dtype=dtype) + + with pytest.raises(TypeError, match=msg): + # pre-2.0 the DataFrame cast raised but the Series case did not + DataFrame([[0]], dtype=dtype) + + @pytest.mark.parametrize("dtype", [None, "uint8", "category"]) + def test_constructor_range_dtype(self, dtype): + # GH 16804 + expected = Series([0, 1, 2, 3, 4], dtype=dtype or "int64") + result = Series(range(5), dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_constructor_range_overflows(self): + # GH#30173 range objects that overflow int64 + rng = range(2**63, 2**63 + 4) + ser = Series(rng) + expected = Series(list(rng)) + tm.assert_series_equal(ser, expected) + assert list(ser) == list(rng) + assert ser.dtype == np.uint64 + + rng2 = range(2**63 + 4, 2**63, -1) + ser2 = Series(rng2) + expected2 = Series(list(rng2)) + tm.assert_series_equal(ser2, expected2) + assert list(ser2) == list(rng2) + assert ser2.dtype == np.uint64 + + rng3 = range(-(2**63), -(2**63) - 4, -1) + ser3 = Series(rng3) + expected3 = Series(list(rng3)) + tm.assert_series_equal(ser3, expected3) + assert list(ser3) == list(rng3) + assert ser3.dtype == object + + rng4 = range(2**73, 2**73 + 4) + ser4 = Series(rng4) + expected4 = Series(list(rng4)) + tm.assert_series_equal(ser4, expected4) + assert list(ser4) == list(rng4) + assert ser4.dtype == object + + def test_constructor_tz_mixed_data(self): + # GH 13051 + dt_list = [ + Timestamp("2016-05-01 02:03:37"), + Timestamp("2016-04-30 19:03:37-0700", tz="US/Pacific"), + ] + result = Series(dt_list) + expected = Series(dt_list, dtype=object) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("pydt", [True, False]) + def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture, pydt): + # GH#25843, GH#41555, GH#33401 + tz = tz_aware_fixture + ts = Timestamp("2019", tz=tz) + if pydt: + ts = ts.to_pydatetime() + + msg = ( + "Cannot convert timezone-aware data to timezone-naive dtype. " + r"Use pd.Series\(values\).dt.tz_localize\(None\) instead." + ) + with pytest.raises(ValueError, match=msg): + Series([ts], dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + Series(np.array([ts], dtype=object), dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + Series({0: ts}, dtype="datetime64[ns]") + + msg = "Cannot unbox tzaware Timestamp to tznaive dtype" + with pytest.raises(TypeError, match=msg): + Series(ts, index=[0], dtype="datetime64[ns]") + + def test_constructor_datetime64(self): + rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") + dates = np.asarray(rng) + + series = Series(dates) + assert np.issubdtype(series.dtype, np.dtype("M8[ns]")) + + def test_constructor_datetimelike_scalar_to_string_dtype( + self, nullable_string_dtype + ): + # https://github.com/pandas-dev/pandas/pull/33846 + result = Series("M", index=[1, 2, 3], dtype=nullable_string_dtype) + expected = Series(["M", "M", "M"], index=[1, 2, 3], dtype=nullable_string_dtype) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "values", + [ + [np.datetime64("2012-01-01"), np.datetime64("2013-01-01")], + ["2012-01-01", "2013-01-01"], + ], + ) + def test_constructor_sparse_datetime64(self, values): + # https://github.com/pandas-dev/pandas/issues/35762 + dtype = pd.SparseDtype("datetime64[ns]") + result = Series(values, dtype=dtype) + arr = pd.arrays.SparseArray(values, dtype=dtype) + expected = Series(arr) + tm.assert_series_equal(result, expected) + + def test_construction_from_ordered_collection(self): + # https://github.com/pandas-dev/pandas/issues/36044 + result = Series({"a": 1, "b": 2}.keys()) + expected = Series(["a", "b"]) + tm.assert_series_equal(result, expected) + + result = Series({"a": 1, "b": 2}.values()) + expected = Series([1, 2]) + tm.assert_series_equal(result, expected) + + def test_construction_from_large_int_scalar_no_overflow(self): + # https://github.com/pandas-dev/pandas/issues/36291 + n = 1_000_000_000_000_000_000_000 + result = Series(n, index=[0]) + expected = Series(n) + tm.assert_series_equal(result, expected) + + def test_constructor_list_of_periods_infers_period_dtype(self): + series = Series(list(period_range("2000-01-01", periods=10, freq="D"))) + assert series.dtype == "Period[D]" + + series = Series( + [Period("2011-01-01", freq="D"), Period("2011-02-01", freq="D")] + ) + assert series.dtype == "Period[D]" + + def test_constructor_subclass_dict(self, dict_subclass): + data = dict_subclass((x, 10.0 * x) for x in range(10)) + series = Series(data) + expected = Series(dict(data.items())) + tm.assert_series_equal(series, expected) + + def test_constructor_ordereddict(self): + # GH3283 + data = OrderedDict( + (f"col{i}", np.random.default_rng(2).random()) for i in range(12) + ) + + series = Series(data) + expected = Series(list(data.values()), list(data.keys())) + tm.assert_series_equal(series, expected) + + # Test with subclass + class A(OrderedDict): + pass + + series = Series(A(data)) + tm.assert_series_equal(series, expected) + + def test_constructor_dict_multiindex(self): + d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0} + _d = sorted(d.items()) + result = Series(d) + expected = Series( + [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d]) + ) + tm.assert_series_equal(result, expected) + + d["z"] = 111.0 + _d.insert(0, ("z", d["z"])) + result = Series(d) + expected = Series( + [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False) + ) + result = result.reindex(index=expected.index) + tm.assert_series_equal(result, expected) + + def test_constructor_dict_multiindex_reindex_flat(self): + # construction involves reindexing with a MultiIndex corner case + data = {("i", "i"): 0, ("i", "j"): 1, ("j", "i"): 2, "j": np.nan} + expected = Series(data) + + result = Series(expected[:-1].to_dict(), index=expected.index) + tm.assert_series_equal(result, expected) + + def test_constructor_dict_timedelta_index(self): + # GH #12169 : Resample category data with timedelta index + # construct Series from dict as data and TimedeltaIndex as index + # will result NaN in result Series data + expected = Series( + data=["A", "B", "C"], index=pd.to_timedelta([0, 10, 20], unit="s") + ) + + result = Series( + data={ + pd.to_timedelta(0, unit="s"): "A", + pd.to_timedelta(10, unit="s"): "B", + pd.to_timedelta(20, unit="s"): "C", + }, + index=pd.to_timedelta([0, 10, 20], unit="s"), + ) + tm.assert_series_equal(result, expected) + + def test_constructor_infer_index_tz(self): + values = [188.5, 328.25] + tzinfo = tzoffset(None, 7200) + index = [ + datetime(2012, 5, 11, 11, tzinfo=tzinfo), + datetime(2012, 5, 11, 12, tzinfo=tzinfo), + ] + series = Series(data=values, index=index) + + assert series.index.tz == tzinfo + + # it works! GH#2443 + repr(series.index[0]) + + def test_constructor_with_pandas_dtype(self): + # going through 2D->1D path + vals = [(1,), (2,), (3,)] + ser = Series(vals) + dtype = ser.array.dtype # NumpyEADtype + ser2 = Series(vals, dtype=dtype) + tm.assert_series_equal(ser, ser2) + + def test_constructor_int_dtype_missing_values(self): + # GH#43017 + result = Series(index=[0], dtype="int64") + expected = Series(np.nan, index=[0], dtype="float64") + tm.assert_series_equal(result, expected) + + def test_constructor_bool_dtype_missing_values(self): + # GH#43018 + result = Series(index=[0], dtype="bool") + expected = Series(True, index=[0], dtype="bool") + tm.assert_series_equal(result, expected) + + def test_constructor_int64_dtype(self, any_int_dtype): + # GH#44923 + result = Series(["0", "1", "2"], dtype=any_int_dtype) + expected = Series([0, 1, 2], dtype=any_int_dtype) + tm.assert_series_equal(result, expected) + + def test_constructor_raise_on_lossy_conversion_of_strings(self): + # GH#44923 + if not np_version_gt2: + raises = pytest.raises( + ValueError, match="string values cannot be losslessly cast to int8" + ) + else: + raises = pytest.raises( + OverflowError, match="The elements provided in the data" + ) + with raises: + Series(["128"], dtype="int8") + + def test_constructor_dtype_timedelta_alternative_construct(self): + # GH#35465 + result = Series([1000000, 200000, 3000000], dtype="timedelta64[ns]") + expected = Series(pd.to_timedelta([1000000, 200000, 3000000], unit="ns")) + tm.assert_series_equal(result, expected) + + @pytest.mark.xfail( + reason="Not clear what the correct expected behavior should be with " + "integers now that we support non-nano. ATM (2022-10-08) we treat ints " + "as nanoseconds, then cast to the requested dtype. xref #48312" + ) + def test_constructor_dtype_timedelta_ns_s(self): + # GH#35465 + result = Series([1000000, 200000, 3000000], dtype="timedelta64[ns]") + expected = Series([1000000, 200000, 3000000], dtype="timedelta64[s]") + tm.assert_series_equal(result, expected) + + @pytest.mark.xfail( + reason="Not clear what the correct expected behavior should be with " + "integers now that we support non-nano. ATM (2022-10-08) we treat ints " + "as nanoseconds, then cast to the requested dtype. xref #48312" + ) + def test_constructor_dtype_timedelta_ns_s_astype_int64(self): + # GH#35465 + result = Series([1000000, 200000, 3000000], dtype="timedelta64[ns]").astype( + "int64" + ) + expected = Series([1000000, 200000, 3000000], dtype="timedelta64[s]").astype( + "int64" + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.filterwarnings( + "ignore:elementwise comparison failed:DeprecationWarning" + ) + @pytest.mark.parametrize("func", [Series, DataFrame, Index, pd.array]) + def test_constructor_mismatched_null_nullable_dtype( + self, func, any_numeric_ea_dtype + ): + # GH#44514 + msg = "|".join( + [ + "cannot safely cast non-equivalent object", + r"int\(\) argument must be a string, a bytes-like object " + "or a (real )?number", + r"Cannot cast array data from dtype\('O'\) to dtype\('float64'\) " + "according to the rule 'safe'", + "object cannot be converted to a FloatingDtype", + "'values' contains non-numeric NA", + ] + ) + + for null in tm.NP_NAT_OBJECTS + [NaT]: + with pytest.raises(TypeError, match=msg): + func([null, 1.0, 3.0], dtype=any_numeric_ea_dtype) + + def test_series_constructor_ea_int_from_bool(self): + # GH#42137 + result = Series([True, False, True, pd.NA], dtype="Int64") + expected = Series([1, 0, 1, pd.NA], dtype="Int64") + tm.assert_series_equal(result, expected) + + result = Series([True, False, True], dtype="Int64") + expected = Series([1, 0, 1], dtype="Int64") + tm.assert_series_equal(result, expected) + + def test_series_constructor_ea_int_from_string_bool(self): + # GH#42137 + with pytest.raises(ValueError, match="invalid literal"): + Series(["True", "False", "True", pd.NA], dtype="Int64") + + @pytest.mark.parametrize("val", [1, 1.0]) + def test_series_constructor_overflow_uint_ea(self, val): + # GH#38798 + max_val = np.iinfo(np.uint64).max - 1 + result = Series([max_val, val], dtype="UInt64") + expected = Series(np.array([max_val, 1], dtype="uint64"), dtype="UInt64") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val", [1, 1.0]) + def test_series_constructor_overflow_uint_ea_with_na(self, val): + # GH#38798 + max_val = np.iinfo(np.uint64).max - 1 + result = Series([max_val, val, pd.NA], dtype="UInt64") + expected = Series( + IntegerArray( + np.array([max_val, 1, 0], dtype="uint64"), + np.array([0, 0, 1], dtype=np.bool_), + ) + ) + tm.assert_series_equal(result, expected) + + def test_series_constructor_overflow_uint_with_nan(self): + # GH#38798 + max_val = np.iinfo(np.uint64).max - 1 + result = Series([max_val, np.nan], dtype="UInt64") + expected = Series( + IntegerArray( + np.array([max_val, 1], dtype="uint64"), + np.array([0, 1], dtype=np.bool_), + ) + ) + tm.assert_series_equal(result, expected) + + def test_series_constructor_ea_all_na(self): + # GH#38798 + result = Series([np.nan, np.nan], dtype="UInt64") + expected = Series( + IntegerArray( + np.array([1, 1], dtype="uint64"), + np.array([1, 1], dtype=np.bool_), + ) + ) + tm.assert_series_equal(result, expected) + + def test_series_from_index_dtype_equal_does_not_copy(self): + # GH#52008 + idx = Index([1, 2, 3]) + expected = idx.copy(deep=True) + ser = Series(idx, dtype="int64") + ser.iloc[0] = 100 + tm.assert_index_equal(idx, expected) + + def test_series_string_inference(self): + # GH#54430 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + expected = Series(["a", "b"], dtype=dtype) + with pd.option_context("future.infer_string", True): + ser = Series(["a", "b"]) + tm.assert_series_equal(ser, expected) + + expected = Series(["a", 1], dtype="object") + with pd.option_context("future.infer_string", True): + ser = Series(["a", 1]) + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize("na_value", [None, np.nan, pd.NA]) + def test_series_string_with_na_inference(self, na_value): + # GH#54430 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + expected = Series(["a", na_value], dtype=dtype) + with pd.option_context("future.infer_string", True): + ser = Series(["a", na_value]) + tm.assert_series_equal(ser, expected) + + def test_series_string_inference_scalar(self): + # GH#54430 + pytest.importorskip("pyarrow") + expected = Series("a", index=[1], dtype="string[pyarrow_numpy]") + with pd.option_context("future.infer_string", True): + ser = Series("a", index=[1]) + tm.assert_series_equal(ser, expected) + + def test_series_string_inference_array_string_dtype(self): + # GH#54496 + pytest.importorskip("pyarrow") + expected = Series(["a", "b"], dtype="string[pyarrow_numpy]") + with pd.option_context("future.infer_string", True): + ser = Series(np.array(["a", "b"])) + tm.assert_series_equal(ser, expected) + + def test_series_string_inference_storage_definition(self): + # GH#54793 + pytest.importorskip("pyarrow") + expected = Series(["a", "b"], dtype="string[pyarrow_numpy]") + with pd.option_context("future.infer_string", True): + result = Series(["a", "b"], dtype="string") + tm.assert_series_equal(result, expected) + + def test_series_constructor_infer_string_scalar(self): + # GH#55537 + with pd.option_context("future.infer_string", True): + ser = Series("a", index=[1, 2], dtype="string[python]") + expected = Series(["a", "a"], index=[1, 2], dtype="string[python]") + tm.assert_series_equal(ser, expected) + assert ser.dtype.storage == "python" + + def test_series_string_inference_na_first(self): + # GH#55655 + pytest.importorskip("pyarrow") + expected = Series([pd.NA, "b"], dtype="string[pyarrow_numpy]") + with pd.option_context("future.infer_string", True): + result = Series([pd.NA, "b"]) + tm.assert_series_equal(result, expected) + + def test_inference_on_pandas_objects(self): + # GH#56012 + ser = Series([Timestamp("2019-12-31")], dtype=object) + with tm.assert_produces_warning(None): + # This doesn't do inference + result = Series(ser) + assert result.dtype == np.object_ + + idx = Index([Timestamp("2019-12-31")], dtype=object) + + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + result = Series(idx) + assert result.dtype != np.object_ + + +class TestSeriesConstructorIndexCoercion: + def test_series_constructor_datetimelike_index_coercion(self): + idx = date_range("2020-01-01", periods=5) + ser = Series( + np.random.default_rng(2).standard_normal(len(idx)), idx.astype(object) + ) + # as of 2.0, we no longer silently cast the object-dtype index + # to DatetimeIndex GH#39307, GH#23598 + assert not isinstance(ser.index, DatetimeIndex) + + @pytest.mark.parametrize("container", [None, np.array, Series, Index]) + @pytest.mark.parametrize("data", [1.0, range(4)]) + def test_series_constructor_infer_multiindex(self, container, data): + indexes = [["a", "a", "b", "b"], ["x", "y", "x", "y"]] + if container is not None: + indexes = [container(ind) for ind in indexes] + + multi = Series(data, index=indexes) + assert isinstance(multi.index, MultiIndex) + + # TODO: make this not cast to object in pandas 3.0 + @pytest.mark.skipif( + not np_version_gt2, reason="StringDType only available in numpy 2 and above" + ) + @pytest.mark.parametrize( + "data", + [ + ["a", "b", "c"], + ["a", "b", np.nan], + ], + ) + def test_np_string_array_object_cast(self, data): + from numpy.dtypes import StringDType + + arr = np.array(data, dtype=StringDType()) + res = Series(arr) + assert res.dtype == np.object_ + assert (res == data).all() + + +class TestSeriesConstructorInternals: + def test_constructor_no_pandas_array(self, using_array_manager): + ser = Series([1, 2, 3]) + result = Series(ser.array) + tm.assert_series_equal(ser, result) + if not using_array_manager: + assert isinstance(result._mgr.blocks[0], NumpyBlock) + assert result._mgr.blocks[0].is_numeric + + @td.skip_array_manager_invalid_test + def test_from_array(self): + result = Series(pd.array(["1h", "2h"], dtype="timedelta64[ns]")) + assert result._mgr.blocks[0].is_extension is False + + result = Series(pd.array(["2015"], dtype="datetime64[ns]")) + assert result._mgr.blocks[0].is_extension is False + + @td.skip_array_manager_invalid_test + def test_from_list_dtype(self): + result = Series(["1h", "2h"], dtype="timedelta64[ns]") + assert result._mgr.blocks[0].is_extension is False + + result = Series(["2015"], dtype="datetime64[ns]") + assert result._mgr.blocks[0].is_extension is False + + +def test_constructor(rand_series_with_duplicate_datetimeindex): + dups = rand_series_with_duplicate_datetimeindex + assert isinstance(dups, Series) + assert isinstance(dups.index, DatetimeIndex) + + +@pytest.mark.parametrize( + "input_dict,expected", + [ + ({0: 0}, np.array([[0]], dtype=np.int64)), + ({"a": "a"}, np.array([["a"]], dtype=object)), + ({1: 1}, np.array([[1]], dtype=np.int64)), + ], +) +def test_numpy_array(input_dict, expected): + result = np.array([Series(input_dict)]) + tm.assert_numpy_array_equal(result, expected) + + +def test_index_ordered_dict_keys(): + # GH 22077 + + param_index = OrderedDict( + [ + ((("a", "b"), ("c", "d")), 1), + ((("a", None), ("c", "d")), 2), + ] + ) + series = Series([1, 2], index=param_index.keys()) + expected = Series( + [1, 2], + index=MultiIndex.from_tuples( + [(("a", "b"), ("c", "d")), (("a", None), ("c", "d"))] + ), + ) + tm.assert_series_equal(series, expected) + + +@pytest.mark.parametrize( + "input_list", + [ + [1, complex("nan"), 2], + [1 + 1j, complex("nan"), 2 + 2j], + ], +) +def test_series_with_complex_nan(input_list): + # GH#53627 + ser = Series(input_list) + result = Series(ser.array) + assert ser.dtype == "complex128" + tm.assert_series_equal(ser, result) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_cumulative.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_cumulative.py new file mode 100644 index 0000000000000000000000000000000000000000..e6f7b2a5e69e0a97e2f898c6a665372ba3ec2a6b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_cumulative.py @@ -0,0 +1,157 @@ +""" +Tests for Series cumulative operations. + +See also +-------- +tests.frame.test_cumulative +""" + +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + +methods = { + "cumsum": np.cumsum, + "cumprod": np.cumprod, + "cummin": np.minimum.accumulate, + "cummax": np.maximum.accumulate, +} + + +class TestSeriesCumulativeOps: + @pytest.mark.parametrize("func", [np.cumsum, np.cumprod]) + def test_datetime_series(self, datetime_series, func): + tm.assert_numpy_array_equal( + func(datetime_series).values, + func(np.array(datetime_series)), + check_dtype=True, + ) + + # with missing values + ts = datetime_series.copy() + ts[::2] = np.nan + + result = func(ts)[1::2] + expected = func(np.array(ts.dropna())) + + tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) + + @pytest.mark.parametrize("method", ["cummin", "cummax"]) + def test_cummin_cummax(self, datetime_series, method): + ufunc = methods[method] + + result = getattr(datetime_series, method)().values + expected = ufunc(np.array(datetime_series)) + + tm.assert_numpy_array_equal(result, expected) + ts = datetime_series.copy() + ts[::2] = np.nan + result = getattr(ts, method)()[1::2] + expected = ufunc(ts.dropna()) + + result.index = result.index._with_freq(None) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ts", + [ + pd.Timedelta(0), + pd.Timestamp("1999-12-31"), + pd.Timestamp("1999-12-31").tz_localize("US/Pacific"), + ], + ) + @pytest.mark.parametrize( + "method, skipna, exp_tdi", + [ + ["cummax", True, ["NaT", "2 days", "NaT", "2 days", "NaT", "3 days"]], + ["cummin", True, ["NaT", "2 days", "NaT", "1 days", "NaT", "1 days"]], + [ + "cummax", + False, + ["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"], + ], + [ + "cummin", + False, + ["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"], + ], + ], + ) + def test_cummin_cummax_datetimelike(self, ts, method, skipna, exp_tdi): + # with ts==pd.Timedelta(0), we are testing td64; with naive Timestamp + # we are testing datetime64[ns]; with Timestamp[US/Pacific] + # we are testing dt64tz + tdi = pd.to_timedelta(["NaT", "2 days", "NaT", "1 days", "NaT", "3 days"]) + ser = pd.Series(tdi + ts) + + exp_tdi = pd.to_timedelta(exp_tdi) + expected = pd.Series(exp_tdi + ts) + result = getattr(ser, method)(skipna=skipna) + tm.assert_series_equal(expected, result) + + @pytest.mark.parametrize( + "func, exp", + [ + ("cummin", pd.Period("2012-1-1", freq="D")), + ("cummax", pd.Period("2012-1-2", freq="D")), + ], + ) + def test_cummin_cummax_period(self, func, exp): + # GH#28385 + ser = pd.Series( + [pd.Period("2012-1-1", freq="D"), pd.NaT, pd.Period("2012-1-2", freq="D")] + ) + result = getattr(ser, func)(skipna=False) + expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, pd.NaT]) + tm.assert_series_equal(result, expected) + + result = getattr(ser, func)(skipna=True) + expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, exp]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "arg", + [ + [False, False, False, True, True, False, False], + [False, False, False, False, False, False, False], + ], + ) + @pytest.mark.parametrize( + "func", [lambda x: x, lambda x: ~x], ids=["identity", "inverse"] + ) + @pytest.mark.parametrize("method", methods.keys()) + def test_cummethods_bool(self, arg, func, method): + # GH#6270 + # checking Series method vs the ufunc applied to the values + + ser = func(pd.Series(arg)) + ufunc = methods[method] + + exp_vals = ufunc(ser.values) + expected = pd.Series(exp_vals) + + result = getattr(ser, method)() + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "method, expected", + [ + ["cumsum", pd.Series([0, 1, np.nan, 1], dtype=object)], + ["cumprod", pd.Series([False, 0, np.nan, 0])], + ["cummin", pd.Series([False, False, np.nan, False])], + ["cummax", pd.Series([False, True, np.nan, True])], + ], + ) + def test_cummethods_bool_in_object_dtype(self, method, expected): + ser = pd.Series([False, True, np.nan, False]) + result = getattr(ser, method)() + tm.assert_series_equal(result, expected) + + def test_cumprod_timedelta(self): + # GH#48111 + ser = pd.Series([pd.Timedelta(days=1), pd.Timedelta(days=3)]) + with pytest.raises(TypeError, match="cumprod not supported for Timedelta"): + ser.cumprod() diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_formats.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_formats.py new file mode 100644 index 0000000000000000000000000000000000000000..a1c5018ea7961c5979b4f407f7096e81e2dda0c0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_formats.py @@ -0,0 +1,577 @@ +from datetime import ( + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + Index, + Series, + date_range, + option_context, + period_range, + timedelta_range, +) +import pandas._testing as tm + + +class TestSeriesRepr: + def test_multilevel_name_print_0(self): + # GH#55415 None does not get printed, but 0 does + # (matching DataFrame and flat index behavior) + mi = pd.MultiIndex.from_product([range(2, 3), range(3, 4)], names=[0, None]) + ser = Series(1.5, index=mi) + + res = repr(ser) + expected = "0 \n2 3 1.5\ndtype: float64" + assert res == expected + + def test_multilevel_name_print(self, lexsorted_two_level_string_multiindex): + index = lexsorted_two_level_string_multiindex + ser = Series(range(len(index)), index=index, name="sth") + expected = [ + "first second", + "foo one 0", + " two 1", + " three 2", + "bar one 3", + " two 4", + "baz two 5", + " three 6", + "qux one 7", + " two 8", + " three 9", + "Name: sth, dtype: int64", + ] + expected = "\n".join(expected) + assert repr(ser) == expected + + def test_small_name_printing(self): + # Test small Series. + s = Series([0, 1, 2]) + + s.name = "test" + assert "Name: test" in repr(s) + + s.name = None + assert "Name:" not in repr(s) + + def test_big_name_printing(self): + # Test big Series (diff code path). + s = Series(range(1000)) + + s.name = "test" + assert "Name: test" in repr(s) + + s.name = None + assert "Name:" not in repr(s) + + def test_empty_name_printing(self): + s = Series(index=date_range("20010101", "20020101"), name="test", dtype=object) + assert "Name: test" in repr(s) + + @pytest.mark.parametrize("args", [(), (0, -1)]) + def test_float_range(self, args): + str( + Series( + np.random.default_rng(2).standard_normal(1000), + index=np.arange(1000, *args), + ) + ) + + def test_empty_object(self): + # empty + str(Series(dtype=object)) + + def test_string(self, string_series): + str(string_series) + str(string_series.astype(int)) + + # with NaNs + string_series[5:7] = np.nan + str(string_series) + + def test_object(self, object_series): + str(object_series) + + def test_datetime(self, datetime_series): + str(datetime_series) + # with Nones + ots = datetime_series.astype("O") + ots[::2] = None + repr(ots) + + @pytest.mark.parametrize( + "name", + [ + "", + 1, + 1.2, + "foo", + "\u03B1\u03B2\u03B3", + "loooooooooooooooooooooooooooooooooooooooooooooooooooong", + ("foo", "bar", "baz"), + (1, 2), + ("foo", 1, 2.3), + ("\u03B1", "\u03B2", "\u03B3"), + ("\u03B1", "bar"), + ], + ) + def test_various_names(self, name, string_series): + # various names + string_series.name = name + repr(string_series) + + def test_tuple_name(self): + biggie = Series( + np.random.default_rng(2).standard_normal(1000), + index=np.arange(1000), + name=("foo", "bar", "baz"), + ) + repr(biggie) + + @pytest.mark.parametrize("arg", [100, 1001]) + def test_tidy_repr_name_0(self, arg): + # tidy repr + ser = Series(np.random.default_rng(2).standard_normal(arg), name=0) + rep_str = repr(ser) + assert "Name: 0" in rep_str + + @pytest.mark.xfail( + using_pyarrow_string_dtype(), reason="TODO: investigate why this is failing" + ) + def test_newline(self): + ser = Series(["a\n\r\tb"], name="a\n\r\td", index=["a\n\r\tf"]) + assert "\t" not in repr(ser) + assert "\r" not in repr(ser) + assert "a\n" not in repr(ser) + + @pytest.mark.parametrize( + "name, expected", + [ + ["foo", "Series([], Name: foo, dtype: int64)"], + [None, "Series([], dtype: int64)"], + ], + ) + def test_empty_int64(self, name, expected): + # with empty series (#4651) + s = Series([], dtype=np.int64, name=name) + assert repr(s) == expected + + def test_repr_bool_fails(self, capsys): + s = Series( + [ + DataFrame(np.random.default_rng(2).standard_normal((2, 2))) + for i in range(5) + ] + ) + + # It works (with no Cython exception barf)! + repr(s) + + captured = capsys.readouterr() + assert captured.err == "" + + def test_repr_name_iterable_indexable(self): + s = Series([1, 2, 3], name=np.int64(3)) + + # it works! + repr(s) + + s.name = ("\u05d0",) * 2 + repr(s) + + def test_repr_max_rows(self): + # GH 6863 + with option_context("display.max_rows", None): + str(Series(range(1001))) # should not raise exception + + def test_unicode_string_with_unicode(self): + df = Series(["\u05d0"], name="\u05d1") + str(df) + + ser = Series(["\u03c3"] * 10) + repr(ser) + + ser2 = Series(["\u05d0"] * 1000) + ser2.name = "title1" + repr(ser2) + + def test_str_to_bytes_raises(self): + # GH 26447 + df = Series(["abc"], name="abc") + msg = "^'str' object cannot be interpreted as an integer$" + with pytest.raises(TypeError, match=msg): + bytes(df) + + def test_timeseries_repr_object_dtype(self): + index = Index( + [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], dtype=object + ) + ts = Series(np.random.default_rng(2).standard_normal(len(index)), index) + repr(ts) + + ts = Series( + np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) + ) + assert repr(ts).splitlines()[-1].startswith("Freq:") + + ts2 = ts.iloc[np.random.default_rng(2).integers(0, len(ts) - 1, 400)] + repr(ts2).splitlines()[-1] + + def test_latex_repr(self): + pytest.importorskip("jinja2") # uses Styler implementation + result = r"""\begin{tabular}{ll} +\toprule + & 0 \\ +\midrule +0 & $\alpha$ \\ +1 & b \\ +2 & c \\ +\bottomrule +\end{tabular} +""" + with option_context( + "styler.format.escape", None, "styler.render.repr", "latex" + ): + s = Series([r"$\alpha$", "b", "c"]) + assert result == s._repr_latex_() + + assert s._repr_latex_() is None + + def test_index_repr_in_frame_with_nan(self): + # see gh-25061 + i = Index([1, np.nan]) + s = Series([1, 2], index=i) + exp = """1.0 1\nNaN 2\ndtype: int64""" + + assert repr(s) == exp + + def test_format_pre_1900_dates(self): + rng = date_range("1/1/1850", "1/1/1950", freq="YE-DEC") + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + rng.format() + ts = Series(1, index=rng) + repr(ts) + + def test_series_repr_nat(self): + series = Series([0, 1000, 2000, pd.NaT._value], dtype="M8[ns]") + + result = repr(series) + expected = ( + "0 1970-01-01 00:00:00.000000\n" + "1 1970-01-01 00:00:00.000001\n" + "2 1970-01-01 00:00:00.000002\n" + "3 NaT\n" + "dtype: datetime64[ns]" + ) + assert result == expected + + def test_float_repr(self): + # GH#35603 + # check float format when cast to object + ser = Series([1.0]).astype(object) + expected = "0 1.0\ndtype: object" + assert repr(ser) == expected + + def test_different_null_objects(self): + # GH#45263 + ser = Series([1, 2, 3, 4], [True, None, np.nan, pd.NaT]) + result = repr(ser) + expected = "True 1\nNone 2\nNaN 3\nNaT 4\ndtype: int64" + assert result == expected + + +class TestCategoricalRepr: + def test_categorical_repr_unicode(self): + # see gh-21002 + + class County: + name = "San Sebastián" + state = "PR" + + def __repr__(self) -> str: + return self.name + ", " + self.state + + cat = Categorical([County() for _ in range(61)]) + idx = Index(cat) + ser = idx.to_series() + + repr(ser) + str(ser) + + def test_categorical_repr(self, using_infer_string): + a = Series(Categorical([1, 2, 3, 4])) + exp = ( + "0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]" + ) + + assert exp == a.__str__() + + a = Series(Categorical(["a", "b"] * 25)) + if using_infer_string: + exp = ( + "0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "Length: 50, dtype: category\nCategories (2, string): [a, b]" + ) + else: + exp = ( + "0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "Length: 50, dtype: category\nCategories (2, object): ['a', 'b']" + ) + with option_context("display.max_rows", 5): + assert exp == repr(a) + + levs = list("abcdefghijklmnopqrstuvwxyz") + a = Series(Categorical(["a", "b"], categories=levs, ordered=True)) + if using_infer_string: + exp = ( + "0 a\n1 b\n" + "dtype: category\n" + "Categories (26, string): [a < b < c < d ... w < x < y < z]" + ) + else: + exp = ( + "0 a\n1 b\n" + "dtype: category\n" + "Categories (26, object): ['a' < 'b' < 'c' < 'd' ... " + "'w' < 'x' < 'y' < 'z']" + ) + assert exp == a.__str__() + + def test_categorical_series_repr(self): + s = Series(Categorical([1, 2, 3])) + exp = """0 1 +1 2 +2 3 +dtype: category +Categories (3, int64): [1, 2, 3]""" + + assert repr(s) == exp + + s = Series(Categorical(np.arange(10))) + exp = f"""0 0 +1 1 +2 2 +3 3 +4 4 +5 5 +6 6 +7 7 +8 8 +9 9 +dtype: category +Categories (10, {np.dtype(int)}): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" + + assert repr(s) == exp + + def test_categorical_series_repr_ordered(self): + s = Series(Categorical([1, 2, 3], ordered=True)) + exp = """0 1 +1 2 +2 3 +dtype: category +Categories (3, int64): [1 < 2 < 3]""" + + assert repr(s) == exp + + s = Series(Categorical(np.arange(10), ordered=True)) + exp = f"""0 0 +1 1 +2 2 +3 3 +4 4 +5 5 +6 6 +7 7 +8 8 +9 9 +dtype: category +Categories (10, {np.dtype(int)}): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" + + assert repr(s) == exp + + def test_categorical_series_repr_datetime(self): + idx = date_range("2011-01-01 09:00", freq="h", periods=5) + s = Series(Categorical(idx)) + exp = """0 2011-01-01 09:00:00 +1 2011-01-01 10:00:00 +2 2011-01-01 11:00:00 +3 2011-01-01 12:00:00 +4 2011-01-01 13:00:00 +dtype: category +Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, + 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" # noqa: E501 + + assert repr(s) == exp + + idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern") + s = Series(Categorical(idx)) + exp = """0 2011-01-01 09:00:00-05:00 +1 2011-01-01 10:00:00-05:00 +2 2011-01-01 11:00:00-05:00 +3 2011-01-01 12:00:00-05:00 +4 2011-01-01 13:00:00-05:00 +dtype: category +Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, + 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, + 2011-01-01 13:00:00-05:00]""" # noqa: E501 + + assert repr(s) == exp + + def test_categorical_series_repr_datetime_ordered(self): + idx = date_range("2011-01-01 09:00", freq="h", periods=5) + s = Series(Categorical(idx, ordered=True)) + exp = """0 2011-01-01 09:00:00 +1 2011-01-01 10:00:00 +2 2011-01-01 11:00:00 +3 2011-01-01 12:00:00 +4 2011-01-01 13:00:00 +dtype: category +Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < + 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa: E501 + + assert repr(s) == exp + + idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern") + s = Series(Categorical(idx, ordered=True)) + exp = """0 2011-01-01 09:00:00-05:00 +1 2011-01-01 10:00:00-05:00 +2 2011-01-01 11:00:00-05:00 +3 2011-01-01 12:00:00-05:00 +4 2011-01-01 13:00:00-05:00 +dtype: category +Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < + 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < + 2011-01-01 13:00:00-05:00]""" # noqa: E501 + + assert repr(s) == exp + + def test_categorical_series_repr_period(self): + idx = period_range("2011-01-01 09:00", freq="h", periods=5) + s = Series(Categorical(idx)) + exp = """0 2011-01-01 09:00 +1 2011-01-01 10:00 +2 2011-01-01 11:00 +3 2011-01-01 12:00 +4 2011-01-01 13:00 +dtype: category +Categories (5, period[h]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, + 2011-01-01 13:00]""" # noqa: E501 + + assert repr(s) == exp + + idx = period_range("2011-01", freq="M", periods=5) + s = Series(Categorical(idx)) + exp = """0 2011-01 +1 2011-02 +2 2011-03 +3 2011-04 +4 2011-05 +dtype: category +Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" + + assert repr(s) == exp + + def test_categorical_series_repr_period_ordered(self): + idx = period_range("2011-01-01 09:00", freq="h", periods=5) + s = Series(Categorical(idx, ordered=True)) + exp = """0 2011-01-01 09:00 +1 2011-01-01 10:00 +2 2011-01-01 11:00 +3 2011-01-01 12:00 +4 2011-01-01 13:00 +dtype: category +Categories (5, period[h]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < + 2011-01-01 13:00]""" # noqa: E501 + + assert repr(s) == exp + + idx = period_range("2011-01", freq="M", periods=5) + s = Series(Categorical(idx, ordered=True)) + exp = """0 2011-01 +1 2011-02 +2 2011-03 +3 2011-04 +4 2011-05 +dtype: category +Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" + + assert repr(s) == exp + + def test_categorical_series_repr_timedelta(self): + idx = timedelta_range("1 days", periods=5) + s = Series(Categorical(idx)) + exp = """0 1 days +1 2 days +2 3 days +3 4 days +4 5 days +dtype: category +Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" + + assert repr(s) == exp + + idx = timedelta_range("1 hours", periods=10) + s = Series(Categorical(idx)) + exp = """0 0 days 01:00:00 +1 1 days 01:00:00 +2 2 days 01:00:00 +3 3 days 01:00:00 +4 4 days 01:00:00 +5 5 days 01:00:00 +6 6 days 01:00:00 +7 7 days 01:00:00 +8 8 days 01:00:00 +9 9 days 01:00:00 +dtype: category +Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, + 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, + 8 days 01:00:00, 9 days 01:00:00]""" # noqa: E501 + + assert repr(s) == exp + + def test_categorical_series_repr_timedelta_ordered(self): + idx = timedelta_range("1 days", periods=5) + s = Series(Categorical(idx, ordered=True)) + exp = """0 1 days +1 2 days +2 3 days +3 4 days +4 5 days +dtype: category +Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" + + assert repr(s) == exp + + idx = timedelta_range("1 hours", periods=10) + s = Series(Categorical(idx, ordered=True)) + exp = """0 0 days 01:00:00 +1 1 days 01:00:00 +2 2 days 01:00:00 +3 3 days 01:00:00 +4 4 days 01:00:00 +5 5 days 01:00:00 +6 6 days 01:00:00 +7 7 days 01:00:00 +8 8 days 01:00:00 +9 9 days 01:00:00 +dtype: category +Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < + 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < + 8 days 01:00:00 < 9 days 01:00:00]""" # noqa: E501 + + assert repr(s) == exp diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_iteration.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_iteration.py new file mode 100644 index 0000000000000000000000000000000000000000..edc82455234bba0203d817417e7bf122c876bfff --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_iteration.py @@ -0,0 +1,35 @@ +class TestIteration: + def test_keys(self, datetime_series): + assert datetime_series.keys() is datetime_series.index + + def test_iter_datetimes(self, datetime_series): + for i, val in enumerate(datetime_series): + # pylint: disable-next=unnecessary-list-index-lookup + assert val == datetime_series.iloc[i] + + def test_iter_strings(self, string_series): + for i, val in enumerate(string_series): + # pylint: disable-next=unnecessary-list-index-lookup + assert val == string_series.iloc[i] + + def test_iteritems_datetimes(self, datetime_series): + for idx, val in datetime_series.items(): + assert val == datetime_series[idx] + + def test_iteritems_strings(self, string_series): + for idx, val in string_series.items(): + assert val == string_series[idx] + + # assert is lazy (generators don't define reverse, lists do) + assert not hasattr(string_series.items(), "reverse") + + def test_items_datetimes(self, datetime_series): + for idx, val in datetime_series.items(): + assert val == datetime_series[idx] + + def test_items_strings(self, string_series): + for idx, val in string_series.items(): + assert val == string_series[idx] + + # assert is lazy (generators don't define reverse, lists do) + assert not hasattr(string_series.items(), "reverse") diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_logical_ops.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_logical_ops.py new file mode 100644 index 0000000000000000000000000000000000000000..d9c94e871bd4bf39e0a380ca1bc3806dc33154c2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_logical_ops.py @@ -0,0 +1,548 @@ +from datetime import datetime +import operator + +import numpy as np +import pytest + +from pandas import ( + DataFrame, + Index, + Series, + bdate_range, +) +import pandas._testing as tm +from pandas.core import ops + + +class TestSeriesLogicalOps: + @pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning") + @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) + def test_bool_operators_with_nas(self, bool_op): + # boolean &, |, ^ should work with object arrays and propagate NAs + ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) + ser[::2] = np.nan + + mask = ser.isna() + filled = ser.fillna(ser[0]) + + result = bool_op(ser < ser[9], ser > ser[3]) + + expected = bool_op(filled < filled[9], filled > filled[3]) + expected[mask] = False + tm.assert_series_equal(result, expected) + + def test_logical_operators_bool_dtype_with_empty(self): + # GH#9016: support bitwise op for integer types + index = list("bca") + + s_tft = Series([True, False, True], index=index) + s_fff = Series([False, False, False], index=index) + s_empty = Series([], dtype=object) + + res = s_tft & s_empty + expected = s_fff.sort_index() + tm.assert_series_equal(res, expected) + + res = s_tft | s_empty + expected = s_tft.sort_index() + tm.assert_series_equal(res, expected) + + def test_logical_operators_int_dtype_with_int_dtype(self): + # GH#9016: support bitwise op for integer types + + s_0123 = Series(range(4), dtype="int64") + s_3333 = Series([3] * 4) + s_4444 = Series([4] * 4) + + res = s_0123 & s_3333 + expected = Series(range(4), dtype="int64") + tm.assert_series_equal(res, expected) + + res = s_0123 | s_4444 + expected = Series(range(4, 8), dtype="int64") + tm.assert_series_equal(res, expected) + + s_1111 = Series([1] * 4, dtype="int8") + res = s_0123 & s_1111 + expected = Series([0, 1, 0, 1], dtype="int64") + tm.assert_series_equal(res, expected) + + res = s_0123.astype(np.int16) | s_1111.astype(np.int32) + expected = Series([1, 1, 3, 3], dtype="int32") + tm.assert_series_equal(res, expected) + + def test_logical_operators_int_dtype_with_int_scalar(self): + # GH#9016: support bitwise op for integer types + s_0123 = Series(range(4), dtype="int64") + + res = s_0123 & 0 + expected = Series([0] * 4) + tm.assert_series_equal(res, expected) + + res = s_0123 & 1 + expected = Series([0, 1, 0, 1]) + tm.assert_series_equal(res, expected) + + def test_logical_operators_int_dtype_with_float(self): + # GH#9016: support bitwise op for integer types + s_0123 = Series(range(4), dtype="int64") + + warn_msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + + msg = "Cannot perform.+with a dtyped.+array and scalar of type" + with pytest.raises(TypeError, match=msg): + s_0123 & np.nan + with pytest.raises(TypeError, match=msg): + s_0123 & 3.14 + msg = "unsupported operand type.+for &:" + with pytest.raises(TypeError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s_0123 & [0.1, 4, 3.14, 2] + with pytest.raises(TypeError, match=msg): + s_0123 & np.array([0.1, 4, 3.14, 2]) + with pytest.raises(TypeError, match=msg): + s_0123 & Series([0.1, 4, -3.14, 2]) + + def test_logical_operators_int_dtype_with_str(self): + s_1111 = Series([1] * 4, dtype="int8") + + warn_msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + + msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" + with pytest.raises(TypeError, match=msg): + s_1111 & "a" + with pytest.raises(TypeError, match="unsupported operand.+for &"): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s_1111 & ["a", "b", "c", "d"] + + def test_logical_operators_int_dtype_with_bool(self): + # GH#9016: support bitwise op for integer types + s_0123 = Series(range(4), dtype="int64") + + expected = Series([False] * 4) + + result = s_0123 & False + tm.assert_series_equal(result, expected) + + warn_msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + result = s_0123 & [False] + tm.assert_series_equal(result, expected) + + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + result = s_0123 & (False,) + tm.assert_series_equal(result, expected) + + result = s_0123 ^ False + expected = Series([False, True, True, True]) + tm.assert_series_equal(result, expected) + + def test_logical_operators_int_dtype_with_object(self, using_infer_string): + # GH#9016: support bitwise op for integer types + s_0123 = Series(range(4), dtype="int64") + + result = s_0123 & Series([False, np.nan, False, False]) + expected = Series([False] * 4) + tm.assert_series_equal(result, expected) + + s_abNd = Series(["a", "b", np.nan, "d"]) + if using_infer_string: + import pyarrow as pa + + with pytest.raises(pa.lib.ArrowNotImplementedError, match="has no kernel"): + s_0123 & s_abNd + else: + with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): + s_0123 & s_abNd + + def test_logical_operators_bool_dtype_with_int(self): + index = list("bca") + + s_tft = Series([True, False, True], index=index) + s_fff = Series([False, False, False], index=index) + + res = s_tft & 0 + expected = s_fff + tm.assert_series_equal(res, expected) + + res = s_tft & 1 + expected = s_tft + tm.assert_series_equal(res, expected) + + def test_logical_ops_bool_dtype_with_ndarray(self): + # make sure we operate on ndarray the same as Series + left = Series([True, True, True, False, True]) + right = [True, False, None, True, np.nan] + + msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + + expected = Series([True, False, False, False, False]) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = left & right + tm.assert_series_equal(result, expected) + result = left & np.array(right) + tm.assert_series_equal(result, expected) + result = left & Index(right) + tm.assert_series_equal(result, expected) + result = left & Series(right) + tm.assert_series_equal(result, expected) + + expected = Series([True, True, True, True, True]) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = left | right + tm.assert_series_equal(result, expected) + result = left | np.array(right) + tm.assert_series_equal(result, expected) + result = left | Index(right) + tm.assert_series_equal(result, expected) + result = left | Series(right) + tm.assert_series_equal(result, expected) + + expected = Series([False, True, True, True, True]) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = left ^ right + tm.assert_series_equal(result, expected) + result = left ^ np.array(right) + tm.assert_series_equal(result, expected) + result = left ^ Index(right) + tm.assert_series_equal(result, expected) + result = left ^ Series(right) + tm.assert_series_equal(result, expected) + + def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): + # GH#9016: support bitwise op for integer types + + index = list("bca") + + s_tft = Series([True, False, True], index=index) + s_tft = Series([True, False, True], index=index) + s_tff = Series([True, False, False], index=index) + + s_0123 = Series(range(4), dtype="int64") + + # s_0123 will be all false now because of reindexing like s_tft + expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) + with tm.assert_produces_warning(FutureWarning): + result = s_tft & s_0123 + tm.assert_series_equal(result, expected) + + # GH 52538: Deprecate casting to object type when reindex is needed; + # matches DataFrame behavior + expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) + with tm.assert_produces_warning(FutureWarning): + result = s_0123 & s_tft + tm.assert_series_equal(result, expected) + + s_a0b1c0 = Series([1], list("b")) + + with tm.assert_produces_warning(FutureWarning): + res = s_tft & s_a0b1c0 + expected = s_tff.reindex(list("abc")) + tm.assert_series_equal(res, expected) + + with tm.assert_produces_warning(FutureWarning): + res = s_tft | s_a0b1c0 + expected = s_tft.reindex(list("abc")) + tm.assert_series_equal(res, expected) + + def test_scalar_na_logical_ops_corners(self): + s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) + + msg = "Cannot perform.+with a dtyped.+array and scalar of type" + with pytest.raises(TypeError, match=msg): + s & datetime(2005, 1, 1) + + s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) + s[::2] = np.nan + + expected = Series(True, index=s.index) + expected[::2] = False + + msg = ( + r"Logical ops \(and, or, xor\) between Pandas objects and " + "dtype-less sequences" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s & list(s) + tm.assert_series_equal(result, expected) + + def test_scalar_na_logical_ops_corners_aligns(self): + s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) + s[::2] = np.nan + d = DataFrame({"A": s}) + + expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) + + result = s & d + tm.assert_frame_equal(result, expected) + + result = d & s + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) + def test_logical_ops_with_index(self, op): + # GH#22092, GH#19792 + ser = Series([True, True, False, False]) + idx1 = Index([True, False, True, False]) + idx2 = Index([1, 0, 1, 0]) + + expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) + + result = op(ser, idx1) + tm.assert_series_equal(result, expected) + + expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) + + result = op(ser, idx2) + tm.assert_series_equal(result, expected) + + def test_reversed_xor_with_index_returns_series(self): + # GH#22092, GH#19792 pre-2.0 these were aliased to setops + ser = Series([True, True, False, False]) + idx1 = Index([True, False, True, False], dtype=bool) + idx2 = Index([1, 0, 1, 0]) + + expected = Series([False, True, True, False]) + result = idx1 ^ ser + tm.assert_series_equal(result, expected) + + result = idx2 ^ ser + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "op", + [ + ops.rand_, + ops.ror_, + ], + ) + def test_reversed_logical_op_with_index_returns_series(self, op): + # GH#22092, GH#19792 + ser = Series([True, True, False, False]) + idx1 = Index([True, False, True, False]) + idx2 = Index([1, 0, 1, 0]) + + expected = Series(op(idx1.values, ser.values)) + result = op(ser, idx1) + tm.assert_series_equal(result, expected) + + expected = op(ser, Series(idx2)) + result = op(ser, idx2) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "op, expected", + [ + (ops.rand_, Series([False, False])), + (ops.ror_, Series([True, True])), + (ops.rxor, Series([True, True])), + ], + ) + def test_reverse_ops_with_index(self, op, expected): + # https://github.com/pandas-dev/pandas/pull/23628 + # multi-set Index ops are buggy, so let's avoid duplicates... + # GH#49503 + ser = Series([True, False]) + idx = Index([False, True]) + + result = op(ser, idx) + tm.assert_series_equal(result, expected) + + def test_logical_ops_label_based(self, using_infer_string): + # GH#4947 + # logical ops should be label based + + a = Series([True, False, True], list("bca")) + b = Series([False, True, False], list("abc")) + + expected = Series([False, True, False], list("abc")) + result = a & b + tm.assert_series_equal(result, expected) + + expected = Series([True, True, False], list("abc")) + result = a | b + tm.assert_series_equal(result, expected) + + expected = Series([True, False, False], list("abc")) + result = a ^ b + tm.assert_series_equal(result, expected) + + # rhs is bigger + a = Series([True, False, True], list("bca")) + b = Series([False, True, False, True], list("abcd")) + + expected = Series([False, True, False, False], list("abcd")) + result = a & b + tm.assert_series_equal(result, expected) + + expected = Series([True, True, False, False], list("abcd")) + result = a | b + tm.assert_series_equal(result, expected) + + # filling + + # vs empty + empty = Series([], dtype=object) + + result = a & empty.copy() + expected = Series([False, False, False], list("abc")) + tm.assert_series_equal(result, expected) + + result = a | empty.copy() + expected = Series([True, True, False], list("abc")) + tm.assert_series_equal(result, expected) + + # vs non-matching + with tm.assert_produces_warning(FutureWarning): + result = a & Series([1], ["z"]) + expected = Series([False, False, False, False], list("abcz")) + tm.assert_series_equal(result, expected) + + with tm.assert_produces_warning(FutureWarning): + result = a | Series([1], ["z"]) + expected = Series([True, True, False, False], list("abcz")) + tm.assert_series_equal(result, expected) + + # identity + # we would like s[s|e] == s to hold for any e, whether empty or not + with tm.assert_produces_warning(FutureWarning): + for e in [ + empty.copy(), + Series([1], ["z"]), + Series(np.nan, b.index), + Series(np.nan, a.index), + ]: + result = a[a | e] + tm.assert_series_equal(result, a[a]) + + for e in [Series(["z"])]: + warn = FutureWarning if using_infer_string else None + if using_infer_string: + import pyarrow as pa + + with tm.assert_produces_warning(warn, match="Operation between non"): + with pytest.raises( + pa.lib.ArrowNotImplementedError, match="has no kernel" + ): + result = a[a | e] + else: + result = a[a | e] + tm.assert_series_equal(result, a[a]) + + # vs scalars + index = list("bca") + t = Series([True, False, True]) + + for v in [True, 1, 2]: + result = Series([True, False, True], index=index) | v + expected = Series([True, True, True], index=index) + tm.assert_series_equal(result, expected) + + msg = "Cannot perform.+with a dtyped.+array and scalar of type" + for v in [np.nan, "foo"]: + with pytest.raises(TypeError, match=msg): + t | v + + for v in [False, 0]: + result = Series([True, False, True], index=index) | v + expected = Series([True, False, True], index=index) + tm.assert_series_equal(result, expected) + + for v in [True, 1]: + result = Series([True, False, True], index=index) & v + expected = Series([True, False, True], index=index) + tm.assert_series_equal(result, expected) + + for v in [False, 0]: + result = Series([True, False, True], index=index) & v + expected = Series([False, False, False], index=index) + tm.assert_series_equal(result, expected) + msg = "Cannot perform.+with a dtyped.+array and scalar of type" + for v in [np.nan]: + with pytest.raises(TypeError, match=msg): + t & v + + def test_logical_ops_df_compat(self): + # GH#1134 + s1 = Series([True, False, True], index=list("ABC"), name="x") + s2 = Series([True, True, False], index=list("ABD"), name="x") + + exp = Series([True, False, False, False], index=list("ABCD"), name="x") + tm.assert_series_equal(s1 & s2, exp) + tm.assert_series_equal(s2 & s1, exp) + + # True | np.nan => True + exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x") + tm.assert_series_equal(s1 | s2, exp_or1) + # np.nan | True => np.nan, filled with False + exp_or = Series([True, True, False, False], index=list("ABCD"), name="x") + tm.assert_series_equal(s2 | s1, exp_or) + + # DataFrame doesn't fill nan with False + tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp.to_frame()) + tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp.to_frame()) + + exp = DataFrame({"x": [True, True, np.nan, np.nan]}, index=list("ABCD")) + tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp_or1.to_frame()) + tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp_or.to_frame()) + + # different length + s3 = Series([True, False, True], index=list("ABC"), name="x") + s4 = Series([True, True, True, True], index=list("ABCD"), name="x") + + exp = Series([True, False, True, False], index=list("ABCD"), name="x") + tm.assert_series_equal(s3 & s4, exp) + tm.assert_series_equal(s4 & s3, exp) + + # np.nan | True => np.nan, filled with False + exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x") + tm.assert_series_equal(s3 | s4, exp_or1) + # True | np.nan => True + exp_or = Series([True, True, True, True], index=list("ABCD"), name="x") + tm.assert_series_equal(s4 | s3, exp_or) + + tm.assert_frame_equal(s3.to_frame() & s4.to_frame(), exp.to_frame()) + tm.assert_frame_equal(s4.to_frame() & s3.to_frame(), exp.to_frame()) + + tm.assert_frame_equal(s3.to_frame() | s4.to_frame(), exp_or1.to_frame()) + tm.assert_frame_equal(s4.to_frame() | s3.to_frame(), exp_or.to_frame()) + + @pytest.mark.xfail(reason="Will pass once #52839 deprecation is enforced") + def test_int_dtype_different_index_not_bool(self): + # GH 52500 + ser1 = Series([1, 2, 3], index=[10, 11, 23], name="a") + ser2 = Series([10, 20, 30], index=[11, 10, 23], name="a") + result = np.bitwise_xor(ser1, ser2) + expected = Series([21, 8, 29], index=[10, 11, 23], name="a") + tm.assert_series_equal(result, expected) + + result = ser1 ^ ser2 + tm.assert_series_equal(result, expected) + + def test_pyarrow_numpy_string_invalid(self): + # GH#56008 + pytest.importorskip("pyarrow") + ser = Series([False, True]) + ser2 = Series(["a", "b"], dtype="string[pyarrow_numpy]") + result = ser == ser2 + expected = Series(False, index=ser.index) + tm.assert_series_equal(result, expected) + + result = ser != ser2 + expected = Series(True, index=ser.index) + tm.assert_series_equal(result, expected) + + with pytest.raises(TypeError, match="Invalid comparison"): + ser > ser2 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_missing.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_missing.py new file mode 100644 index 0000000000000000000000000000000000000000..cafc69c4d0f20f42dc184366db0ac8933a512f54 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_missing.py @@ -0,0 +1,105 @@ +from datetime import timedelta + +import numpy as np +import pytest + +from pandas._libs import iNaT + +import pandas as pd +from pandas import ( + Categorical, + Index, + NaT, + Series, + isna, +) +import pandas._testing as tm + + +class TestSeriesMissingData: + def test_categorical_nan_handling(self): + # NaNs are represented as -1 in labels + s = Series(Categorical(["a", "b", np.nan, "a"])) + tm.assert_index_equal(s.cat.categories, Index(["a", "b"])) + tm.assert_numpy_array_equal( + s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8) + ) + + def test_isna_for_inf(self): + s = Series(["a", np.inf, np.nan, pd.NA, 1.0]) + msg = "use_inf_as_na option is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + with pd.option_context("mode.use_inf_as_na", True): + r = s.isna() + dr = s.dropna() + e = Series([False, True, True, True, False]) + de = Series(["a", 1.0], index=[0, 4]) + tm.assert_series_equal(r, e) + tm.assert_series_equal(dr, de) + + def test_timedelta64_nan(self): + td = Series([timedelta(days=i) for i in range(10)]) + + # nan ops on timedeltas + td1 = td.copy() + td1[0] = np.nan + assert isna(td1[0]) + assert td1[0]._value == iNaT + td1[0] = td[0] + assert not isna(td1[0]) + + # GH#16674 iNaT is treated as an integer when given by the user + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + td1[1] = iNaT + assert not isna(td1[1]) + assert td1.dtype == np.object_ + assert td1[1] == iNaT + td1[1] = td[1] + assert not isna(td1[1]) + + td1[2] = NaT + assert isna(td1[2]) + assert td1[2]._value == iNaT + td1[2] = td[2] + assert not isna(td1[2]) + + # boolean setting + # GH#2899 boolean setting + td3 = np.timedelta64(timedelta(days=3)) + td7 = np.timedelta64(timedelta(days=7)) + td[(td > td3) & (td < td7)] = np.nan + assert isna(td).sum() == 3 + + @pytest.mark.xfail( + reason="Chained inequality raises when trying to define 'selector'" + ) + def test_logical_range_select(self, datetime_series): + # NumPy limitation =( + # https://github.com/pandas-dev/pandas/commit/9030dc021f07c76809848925cb34828f6c8484f3 + + selector = -0.5 <= datetime_series <= 0.5 + expected = (datetime_series >= -0.5) & (datetime_series <= 0.5) + tm.assert_series_equal(selector, expected) + + def test_valid(self, datetime_series): + ts = datetime_series.copy() + ts.index = ts.index._with_freq(None) + ts[::2] = np.nan + + result = ts.dropna() + assert len(result) == ts.count() + tm.assert_series_equal(result, ts[1::2]) + tm.assert_series_equal(result, ts[pd.notna(ts)]) + + +def test_hasnans_uncached_for_series(): + # GH#19700 + # set float64 dtype to avoid upcast when setting nan + idx = Index([0, 1], dtype="float64") + assert idx.hasnans is False + assert "hasnans" in idx._cache + ser = idx.to_series() + assert ser.hasnans is False + assert not hasattr(ser, "_cache") + ser.iloc[-1] = np.nan + assert ser.hasnans is True diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_npfuncs.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_npfuncs.py new file mode 100644 index 0000000000000000000000000000000000000000..11a51c4700d5c1733e7136909d86d2ea7294dd8e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_npfuncs.py @@ -0,0 +1,46 @@ +""" +Tests for np.foo applied to Series, not necessarily ufuncs. +""" + +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +from pandas import Series +import pandas._testing as tm + + +class TestPtp: + def test_ptp(self): + # GH#21614 + N = 1000 + arr = np.random.default_rng(2).standard_normal(N) + ser = Series(arr) + assert np.ptp(ser) == np.ptp(arr) + + +def test_numpy_unique(datetime_series): + # it works! + np.unique(datetime_series) + + +@pytest.mark.parametrize("index", [["a", "b", "c", "d", "e"], None]) +def test_numpy_argwhere(index): + # GH#35331 + + s = Series(range(5), index=index, dtype=np.int64) + + result = np.argwhere(s > 2).astype(np.int64) + expected = np.array([[3], [4]], dtype=np.int64) + + tm.assert_numpy_array_equal(result, expected) + + +@td.skip_if_no("pyarrow") +def test_log_arrow_backed_missing_value(): + # GH#56285 + ser = Series([1, 2, None], dtype="float64[pyarrow]") + result = np.log(ser) + expected = np.log(Series([1, 2, None], dtype="float64")) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_reductions.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_reductions.py new file mode 100644 index 0000000000000000000000000000000000000000..76353ab25fca6e5208f099b030aa308aeb8837c1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_reductions.py @@ -0,0 +1,218 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + + +@pytest.mark.parametrize("operation, expected", [("min", "a"), ("max", "b")]) +def test_reductions_series_strings(operation, expected): + # GH#31746 + ser = Series(["a", "b"], dtype="string") + res_operation_serie = getattr(ser, operation)() + assert res_operation_serie == expected + + +@pytest.mark.parametrize("as_period", [True, False]) +def test_mode_extension_dtype(as_period): + # GH#41927 preserve dt64tz dtype + ser = Series([pd.Timestamp(1979, 4, n) for n in range(1, 5)]) + + if as_period: + ser = ser.dt.to_period("D") + else: + ser = ser.dt.tz_localize("US/Central") + + res = ser.mode() + assert res.dtype == ser.dtype + tm.assert_series_equal(res, ser) + + +def test_mode_nullable_dtype(any_numeric_ea_dtype): + # GH#55340 + ser = Series([1, 3, 2, pd.NA, 3, 2, pd.NA], dtype=any_numeric_ea_dtype) + result = ser.mode(dropna=False) + expected = Series([2, 3, pd.NA], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(result, expected) + + result = ser.mode(dropna=True) + expected = Series([2, 3], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(result, expected) + + ser[-1] = pd.NA + + result = ser.mode(dropna=True) + expected = Series([2, 3], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(result, expected) + + result = ser.mode(dropna=False) + expected = Series([pd.NA], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(result, expected) + + +def test_mode_infer_string(): + # GH#56183 + pytest.importorskip("pyarrow") + ser = Series(["a", "b"], dtype=object) + with pd.option_context("future.infer_string", True): + result = ser.mode() + expected = Series(["a", "b"], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_reductions_td64_with_nat(): + # GH#8617 + ser = Series([0, pd.NaT], dtype="m8[ns]") + exp = ser[0] + assert ser.median() == exp + assert ser.min() == exp + assert ser.max() == exp + + +@pytest.mark.parametrize("skipna", [True, False]) +def test_td64_sum_empty(skipna): + # GH#37151 + ser = Series([], dtype="timedelta64[ns]") + + result = ser.sum(skipna=skipna) + assert isinstance(result, pd.Timedelta) + assert result == pd.Timedelta(0) + + +def test_td64_summation_overflow(): + # GH#9442 + ser = Series(pd.date_range("20130101", periods=100000, freq="h")) + ser[0] += pd.Timedelta("1s 1ms") + + # mean + result = (ser - ser.min()).mean() + expected = pd.Timedelta((pd.TimedeltaIndex(ser - ser.min()).asi8 / len(ser)).sum()) + + # the computation is converted to float so + # might be some loss of precision + assert np.allclose(result._value / 1000, expected._value / 1000) + + # sum + msg = "overflow in timedelta operation" + with pytest.raises(ValueError, match=msg): + (ser - ser.min()).sum() + + s1 = ser[0:10000] + with pytest.raises(ValueError, match=msg): + (s1 - s1.min()).sum() + s2 = ser[0:1000] + (s2 - s2.min()).sum() + + +def test_prod_numpy16_bug(): + ser = Series([1.0, 1.0, 1.0], index=range(3)) + result = ser.prod() + + assert not isinstance(result, Series) + + +@pytest.mark.parametrize("func", [np.any, np.all]) +@pytest.mark.parametrize("kwargs", [{"keepdims": True}, {"out": object()}]) +def test_validate_any_all_out_keepdims_raises(kwargs, func): + ser = Series([1, 2]) + param = next(iter(kwargs)) + name = func.__name__ + + msg = ( + f"the '{param}' parameter is not " + "supported in the pandas " + rf"implementation of {name}\(\)" + ) + with pytest.raises(ValueError, match=msg): + func(ser, **kwargs) + + +def test_validate_sum_initial(): + ser = Series([1, 2]) + msg = ( + r"the 'initial' parameter is not " + r"supported in the pandas " + r"implementation of sum\(\)" + ) + with pytest.raises(ValueError, match=msg): + np.sum(ser, initial=10) + + +def test_validate_median_initial(): + ser = Series([1, 2]) + msg = ( + r"the 'overwrite_input' parameter is not " + r"supported in the pandas " + r"implementation of median\(\)" + ) + with pytest.raises(ValueError, match=msg): + # It seems like np.median doesn't dispatch, so we use the + # method instead of the ufunc. + ser.median(overwrite_input=True) + + +def test_validate_stat_keepdims(): + ser = Series([1, 2]) + msg = ( + r"the 'keepdims' parameter is not " + r"supported in the pandas " + r"implementation of sum\(\)" + ) + with pytest.raises(ValueError, match=msg): + np.sum(ser, keepdims=True) + + +def test_mean_with_convertible_string_raises(using_array_manager, using_infer_string): + # GH#44008 + ser = Series(["1", "2"]) + if using_infer_string: + msg = "does not support" + with pytest.raises(TypeError, match=msg): + ser.sum() + else: + assert ser.sum() == "12" + msg = "Could not convert string '12' to numeric|does not support" + with pytest.raises(TypeError, match=msg): + ser.mean() + + df = ser.to_frame() + if not using_array_manager: + msg = r"Could not convert \['12'\] to numeric|does not support" + with pytest.raises(TypeError, match=msg): + df.mean() + + +def test_mean_dont_convert_j_to_complex(using_array_manager): + # GH#36703 + df = pd.DataFrame([{"db": "J", "numeric": 123}]) + if using_array_manager: + msg = "Could not convert string 'J' to numeric" + else: + msg = r"Could not convert \['J'\] to numeric|does not support" + with pytest.raises(TypeError, match=msg): + df.mean() + + with pytest.raises(TypeError, match=msg): + df.agg("mean") + + msg = "Could not convert string 'J' to numeric|does not support" + with pytest.raises(TypeError, match=msg): + df["db"].mean() + msg = "Could not convert string 'J' to numeric|ufunc 'divide'" + with pytest.raises(TypeError, match=msg): + np.mean(df["db"].astype("string").array) + + +def test_median_with_convertible_string_raises(using_array_manager): + # GH#34671 this _could_ return a string "2", but definitely not float 2.0 + msg = r"Cannot convert \['1' '2' '3'\] to numeric|does not support" + ser = Series(["1", "2", "3"]) + with pytest.raises(TypeError, match=msg): + ser.median() + + if not using_array_manager: + msg = r"Cannot convert \[\['1' '2' '3'\]\] to numeric|does not support" + df = ser.to_frame() + with pytest.raises(TypeError, match=msg): + df.median() diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_subclass.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_subclass.py new file mode 100644 index 0000000000000000000000000000000000000000..c2d5afcf884b12b3007905061b7c503359e71a5d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_subclass.py @@ -0,0 +1,82 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning" +) + + +class TestSeriesSubclassing: + @pytest.mark.parametrize( + "idx_method, indexer, exp_data, exp_idx", + [ + ["loc", ["a", "b"], [1, 2], "ab"], + ["iloc", [2, 3], [3, 4], "cd"], + ], + ) + def test_indexing_sliced(self, idx_method, indexer, exp_data, exp_idx): + s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd")) + res = getattr(s, idx_method)[indexer] + exp = tm.SubclassedSeries(exp_data, index=list(exp_idx)) + tm.assert_series_equal(res, exp) + + def test_to_frame(self): + s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd"), name="xxx") + res = s.to_frame() + exp = tm.SubclassedDataFrame({"xxx": [1, 2, 3, 4]}, index=list("abcd")) + tm.assert_frame_equal(res, exp) + + def test_subclass_unstack(self): + # GH 15564 + s = tm.SubclassedSeries([1, 2, 3, 4], index=[list("aabb"), list("xyxy")]) + + res = s.unstack() + exp = tm.SubclassedDataFrame({"x": [1, 3], "y": [2, 4]}, index=["a", "b"]) + + tm.assert_frame_equal(res, exp) + + def test_subclass_empty_repr(self): + sub_series = tm.SubclassedSeries() + assert "SubclassedSeries" in repr(sub_series) + + def test_asof(self): + N = 3 + rng = pd.date_range("1/1/1990", periods=N, freq="53s") + s = tm.SubclassedSeries({"A": [np.nan, np.nan, np.nan]}, index=rng) + + result = s.asof(rng[-2:]) + assert isinstance(result, tm.SubclassedSeries) + + def test_explode(self): + s = tm.SubclassedSeries([[1, 2, 3], "foo", [], [3, 4]]) + result = s.explode() + assert isinstance(result, tm.SubclassedSeries) + + def test_equals(self): + # https://github.com/pandas-dev/pandas/pull/34402 + # allow subclass in both directions + s1 = pd.Series([1, 2, 3]) + s2 = tm.SubclassedSeries([1, 2, 3]) + assert s1.equals(s2) + assert s2.equals(s1) + + +class SubclassedSeries(pd.Series): + @property + def _constructor(self): + def _new(*args, **kwargs): + # some constructor logic that accesses the Series' name + if self.name == "test": + return pd.Series(*args, **kwargs) + return SubclassedSeries(*args, **kwargs) + + return _new + + +def test_constructor_from_dict(): + # https://github.com/pandas-dev/pandas/issues/52445 + result = SubclassedSeries({"a": 1, "b": 2, "c": 3}) + assert isinstance(result, SubclassedSeries) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_ufunc.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_ufunc.py new file mode 100644 index 0000000000000000000000000000000000000000..9d13ebf740eabb562fea10336a39edc36e431f5e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_ufunc.py @@ -0,0 +1,460 @@ +from collections import deque +import re +import string + +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +import pandas as pd +import pandas._testing as tm +from pandas.arrays import SparseArray + + +@pytest.fixture(params=[np.add, np.logaddexp]) +def ufunc(request): + # dunder op + return request.param + + +@pytest.fixture(params=[True, False], ids=["sparse", "dense"]) +def sparse(request): + return request.param + + +@pytest.fixture +def arrays_for_binary_ufunc(): + """ + A pair of random, length-100 integer-dtype arrays, that are mostly 0. + """ + a1 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") + a2 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") + a1[::3] = 0 + a2[::4] = 0 + return a1, a2 + + +@pytest.mark.parametrize("ufunc", [np.positive, np.floor, np.exp]) +def test_unary_ufunc(ufunc, sparse): + # Test that ufunc(pd.Series) == pd.Series(ufunc) + arr = np.random.default_rng(2).integers(0, 10, 10, dtype="int64") + arr[::2] = 0 + if sparse: + arr = SparseArray(arr, dtype=pd.SparseDtype("int64", 0)) + + index = list(string.ascii_letters[:10]) + name = "name" + series = pd.Series(arr, index=index, name=name) + + result = ufunc(series) + expected = pd.Series(ufunc(arr), index=index, name=name) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) +def test_binary_ufunc_with_array(flip, sparse, ufunc, arrays_for_binary_ufunc): + # Test that ufunc(pd.Series(a), array) == pd.Series(ufunc(a, b)) + a1, a2 = arrays_for_binary_ufunc + if sparse: + a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) + a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) + + name = "name" # op(pd.Series, array) preserves the name. + series = pd.Series(a1, name=name) + other = a2 + + array_args = (a1, a2) + series_args = (series, other) # ufunc(series, array) + + if flip: + array_args = reversed(array_args) + series_args = reversed(series_args) # ufunc(array, series) + + expected = pd.Series(ufunc(*array_args), name=name) + result = ufunc(*series_args) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) +def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc): + # Test that + # * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) + # * ufunc(Index, pd.Series) dispatches to pd.Series (returns a pd.Series) + a1, a2 = arrays_for_binary_ufunc + if sparse: + a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) + a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) + + name = "name" # op(pd.Series, array) preserves the name. + series = pd.Series(a1, name=name) + + other = pd.Index(a2, name=name).astype("int64") + + array_args = (a1, a2) + series_args = (series, other) # ufunc(series, array) + + if flip: + array_args = reversed(array_args) + series_args = reversed(series_args) # ufunc(array, series) + + expected = pd.Series(ufunc(*array_args), name=name) + result = ufunc(*series_args) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("shuffle", [True, False], ids=["unaligned", "aligned"]) +@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) +def test_binary_ufunc_with_series( + flip, shuffle, sparse, ufunc, arrays_for_binary_ufunc +): + # Test that + # * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) + # with alignment between the indices + a1, a2 = arrays_for_binary_ufunc + if sparse: + a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) + a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) + + name = "name" # op(pd.Series, array) preserves the name. + series = pd.Series(a1, name=name) + other = pd.Series(a2, name=name) + + idx = np.random.default_rng(2).permutation(len(a1)) + + if shuffle: + other = other.take(idx) + if flip: + index = other.align(series)[0].index + else: + index = series.align(other)[0].index + else: + index = series.index + + array_args = (a1, a2) + series_args = (series, other) # ufunc(series, array) + + if flip: + array_args = tuple(reversed(array_args)) + series_args = tuple(reversed(series_args)) # ufunc(array, series) + + expected = pd.Series(ufunc(*array_args), index=index, name=name) + result = ufunc(*series_args) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("flip", [True, False]) +def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc): + # Test that + # * ufunc(pd.Series, scalar) == pd.Series(ufunc(array, scalar)) + # * ufunc(pd.Series, scalar) == ufunc(scalar, pd.Series) + arr, _ = arrays_for_binary_ufunc + if sparse: + arr = SparseArray(arr) + other = 2 + series = pd.Series(arr, name="name") + + series_args = (series, other) + array_args = (arr, other) + + if flip: + series_args = tuple(reversed(series_args)) + array_args = tuple(reversed(array_args)) + + expected = pd.Series(ufunc(*array_args), name="name") + result = ufunc(*series_args) + + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("ufunc", [np.divmod]) # TODO: np.modf, np.frexp +@pytest.mark.parametrize("shuffle", [True, False]) +@pytest.mark.filterwarnings("ignore:divide by zero:RuntimeWarning") +def test_multiple_output_binary_ufuncs(ufunc, sparse, shuffle, arrays_for_binary_ufunc): + # Test that + # the same conditions from binary_ufunc_scalar apply to + # ufuncs with multiple outputs. + + a1, a2 = arrays_for_binary_ufunc + # work around https://github.com/pandas-dev/pandas/issues/26987 + a1[a1 == 0] = 1 + a2[a2 == 0] = 1 + + if sparse: + a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) + a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) + + s1 = pd.Series(a1) + s2 = pd.Series(a2) + + if shuffle: + # ensure we align before applying the ufunc + s2 = s2.sample(frac=1) + + expected = ufunc(a1, a2) + assert isinstance(expected, tuple) + + result = ufunc(s1, s2) + assert isinstance(result, tuple) + tm.assert_series_equal(result[0], pd.Series(expected[0])) + tm.assert_series_equal(result[1], pd.Series(expected[1])) + + +def test_multiple_output_ufunc(sparse, arrays_for_binary_ufunc): + # Test that the same conditions from unary input apply to multi-output + # ufuncs + arr, _ = arrays_for_binary_ufunc + + if sparse: + arr = SparseArray(arr) + + series = pd.Series(arr, name="name") + result = np.modf(series) + expected = np.modf(arr) + + assert isinstance(result, tuple) + assert isinstance(expected, tuple) + + tm.assert_series_equal(result[0], pd.Series(expected[0], name="name")) + tm.assert_series_equal(result[1], pd.Series(expected[1], name="name")) + + +def test_binary_ufunc_drops_series_name(ufunc, sparse, arrays_for_binary_ufunc): + # Drop the names when they differ. + a1, a2 = arrays_for_binary_ufunc + s1 = pd.Series(a1, name="a") + s2 = pd.Series(a2, name="b") + + result = ufunc(s1, s2) + assert result.name is None + + +def test_object_series_ok(): + class Dummy: + def __init__(self, value) -> None: + self.value = value + + def __add__(self, other): + return self.value + other.value + + arr = np.array([Dummy(0), Dummy(1)]) + ser = pd.Series(arr) + tm.assert_series_equal(np.add(ser, ser), pd.Series(np.add(ser, arr))) + tm.assert_series_equal(np.add(ser, Dummy(1)), pd.Series(np.add(ser, Dummy(1)))) + + +@pytest.fixture( + params=[ + pd.array([1, 3, 2], dtype=np.int64), + pd.array([1, 3, 2], dtype="Int64"), + pd.array([1, 3, 2], dtype="Float32"), + pd.array([1, 10, 2], dtype="Sparse[int]"), + pd.to_datetime(["2000", "2010", "2001"]), + pd.to_datetime(["2000", "2010", "2001"]).tz_localize("CET"), + pd.to_datetime(["2000", "2010", "2001"]).to_period(freq="D"), + pd.to_timedelta(["1 Day", "3 Days", "2 Days"]), + pd.IntervalIndex([pd.Interval(0, 1), pd.Interval(2, 3), pd.Interval(1, 2)]), + ], + ids=lambda x: str(x.dtype), +) +def values_for_np_reduce(request): + # min/max tests assume that these are monotonic increasing + return request.param + + +class TestNumpyReductions: + # TODO: cases with NAs, axis kwarg for DataFrame + + def test_multiply(self, values_for_np_reduce, box_with_array, request): + box = box_with_array + values = values_for_np_reduce + + with tm.assert_produces_warning(None): + obj = box(values) + + if isinstance(values, pd.core.arrays.SparseArray): + mark = pytest.mark.xfail(reason="SparseArray has no 'prod'") + request.applymarker(mark) + + if values.dtype.kind in "iuf": + result = np.multiply.reduce(obj) + if box is pd.DataFrame: + expected = obj.prod(numeric_only=False) + tm.assert_series_equal(result, expected) + elif box is pd.Index: + # Index has no 'prod' + expected = obj._values.prod() + assert result == expected + else: + expected = obj.prod() + assert result == expected + else: + msg = "|".join( + [ + "does not support reduction", + "unsupported operand type", + "ufunc 'multiply' cannot use operands", + ] + ) + with pytest.raises(TypeError, match=msg): + np.multiply.reduce(obj) + + def test_add(self, values_for_np_reduce, box_with_array): + box = box_with_array + values = values_for_np_reduce + + with tm.assert_produces_warning(None): + obj = box(values) + + if values.dtype.kind in "miuf": + result = np.add.reduce(obj) + if box is pd.DataFrame: + expected = obj.sum(numeric_only=False) + tm.assert_series_equal(result, expected) + elif box is pd.Index: + # Index has no 'sum' + expected = obj._values.sum() + assert result == expected + else: + expected = obj.sum() + assert result == expected + else: + msg = "|".join( + [ + "does not support reduction", + "unsupported operand type", + "ufunc 'add' cannot use operands", + ] + ) + with pytest.raises(TypeError, match=msg): + np.add.reduce(obj) + + def test_max(self, values_for_np_reduce, box_with_array): + box = box_with_array + values = values_for_np_reduce + + same_type = True + if box is pd.Index and values.dtype.kind in ["i", "f"]: + # ATM Index casts to object, so we get python ints/floats + same_type = False + + with tm.assert_produces_warning(None): + obj = box(values) + + result = np.maximum.reduce(obj) + if box is pd.DataFrame: + # TODO: cases with axis kwarg + expected = obj.max(numeric_only=False) + tm.assert_series_equal(result, expected) + else: + expected = values[1] + assert result == expected + if same_type: + # check we have e.g. Timestamp instead of dt64 + assert type(result) == type(expected) + + def test_min(self, values_for_np_reduce, box_with_array): + box = box_with_array + values = values_for_np_reduce + + same_type = True + if box is pd.Index and values.dtype.kind in ["i", "f"]: + # ATM Index casts to object, so we get python ints/floats + same_type = False + + with tm.assert_produces_warning(None): + obj = box(values) + + result = np.minimum.reduce(obj) + if box is pd.DataFrame: + expected = obj.min(numeric_only=False) + tm.assert_series_equal(result, expected) + else: + expected = values[0] + assert result == expected + if same_type: + # check we have e.g. Timestamp instead of dt64 + assert type(result) == type(expected) + + +@pytest.mark.parametrize("type_", [list, deque, tuple]) +def test_binary_ufunc_other_types(type_): + a = pd.Series([1, 2, 3], name="name") + b = type_([3, 4, 5]) + + result = np.add(a, b) + expected = pd.Series(np.add(a.to_numpy(), b), name="name") + tm.assert_series_equal(result, expected) + + +def test_object_dtype_ok(): + class Thing: + def __init__(self, value) -> None: + self.value = value + + def __add__(self, other): + other = getattr(other, "value", other) + return type(self)(self.value + other) + + def __eq__(self, other) -> bool: + return type(other) is Thing and self.value == other.value + + def __repr__(self) -> str: + return f"Thing({self.value})" + + s = pd.Series([Thing(1), Thing(2)]) + result = np.add(s, Thing(1)) + expected = pd.Series([Thing(2), Thing(3)]) + tm.assert_series_equal(result, expected) + + +def test_outer(): + # https://github.com/pandas-dev/pandas/issues/27186 + ser = pd.Series([1, 2, 3]) + obj = np.array([1, 2, 3]) + + with pytest.raises(NotImplementedError, match=""): + np.subtract.outer(ser, obj) + + +def test_np_matmul(): + # GH26650 + df1 = pd.DataFrame(data=[[-1, 1, 10]]) + df2 = pd.DataFrame(data=[-1, 1, 10]) + expected = pd.DataFrame(data=[102]) + + result = np.matmul(df1, df2) + tm.assert_frame_equal(expected, result) + + +def test_array_ufuncs_for_many_arguments(): + # GH39853 + def add3(x, y, z): + return x + y + z + + ufunc = np.frompyfunc(add3, 3, 1) + ser = pd.Series([1, 2]) + + result = ufunc(ser, ser, 1) + expected = pd.Series([3, 5], dtype=object) + tm.assert_series_equal(result, expected) + + df = pd.DataFrame([[1, 2]]) + + msg = ( + "Cannot apply ufunc " + "to mixed DataFrame and Series inputs." + ) + with pytest.raises(NotImplementedError, match=re.escape(msg)): + ufunc(ser, ser, df) + + +# TODO(CoW) see https://github.com/pandas-dev/pandas/pull/51082 +@td.skip_copy_on_write_not_yet_implemented +def test_np_fix(): + # np.fix is not a ufunc but is composed of several ufunc calls under the hood + # with `out` and `where` keywords + ser = pd.Series([-1.5, -0.5, 0.5, 1.5]) + result = np.fix(ser) + expected = pd.Series([-1.0, -0.0, 0.0, 1.0]) + tm.assert_series_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_unary.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_unary.py new file mode 100644 index 0000000000000000000000000000000000000000..8f153788e413c5e9198dc35867bc628823555dbf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_unary.py @@ -0,0 +1,50 @@ +import pytest + +from pandas import Series +import pandas._testing as tm + + +class TestSeriesUnaryOps: + # __neg__, __pos__, __invert__ + + def test_neg(self): + ser = Series(range(5), dtype="float64", name="series") + tm.assert_series_equal(-ser, -1 * ser) + + def test_invert(self): + ser = Series(range(5), dtype="float64", name="series") + tm.assert_series_equal(-(ser < 0), ~(ser < 0)) + + @pytest.mark.parametrize( + "source, neg_target, abs_target", + [ + ([1, 2, 3], [-1, -2, -3], [1, 2, 3]), + ([1, 2, None], [-1, -2, None], [1, 2, None]), + ], + ) + def test_all_numeric_unary_operators( + self, any_numeric_ea_dtype, source, neg_target, abs_target + ): + # GH38794 + dtype = any_numeric_ea_dtype + ser = Series(source, dtype=dtype) + neg_result, pos_result, abs_result = -ser, +ser, abs(ser) + if dtype.startswith("U"): + neg_target = -Series(source, dtype=dtype) + else: + neg_target = Series(neg_target, dtype=dtype) + + abs_target = Series(abs_target, dtype=dtype) + + tm.assert_series_equal(neg_result, neg_target) + tm.assert_series_equal(pos_result, ser) + tm.assert_series_equal(abs_result, abs_target) + + @pytest.mark.parametrize("op", ["__neg__", "__abs__"]) + def test_unary_float_op_mask(self, float_ea_dtype, op): + dtype = float_ea_dtype + ser = Series([1.1, 2.2, 3.3], dtype=dtype) + result = getattr(ser, op)() + target = result.copy(deep=True) + ser[0] = None + tm.assert_series_equal(result, target) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_validate.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_validate.py new file mode 100644 index 0000000000000000000000000000000000000000..3c867f7582b7d3250bf5e009ffbf7545da404712 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/series/test_validate.py @@ -0,0 +1,26 @@ +import pytest + + +@pytest.mark.parametrize( + "func", + [ + "reset_index", + "_set_name", + "sort_values", + "sort_index", + "rename", + "dropna", + "drop_duplicates", + ], +) +@pytest.mark.parametrize("inplace", [1, "True", [1, 2, 3], 5.0]) +def test_validate_bool_args(string_series, func, inplace): + """Tests for error handling related to data types of method arguments.""" + msg = 'For argument "inplace" expected type bool' + kwargs = {"inplace": inplace} + + if func == "_set_name": + kwargs["name"] = "hello" + + with pytest.raises(ValueError, match=msg): + getattr(string_series, func)(**kwargs)