applied-ai-018 commited on
Commit
6689871
·
verified ·
1 Parent(s): 89bb99b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. env-llmeval/lib/python3.10/site-packages/functorch/dim/__init__.py +179 -0
  3. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/__init__.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/batch_tensor.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/delayed_mul_tensor.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/dim.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/magic_trace.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/op_properties.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/reference.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/tree_map.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/wrap_type.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/functorch/dim/batch_tensor.py +25 -0
  13. env-llmeval/lib/python3.10/site-packages/functorch/dim/dim.py +110 -0
  14. env-llmeval/lib/python3.10/site-packages/functorch/dim/magic_trace.py +42 -0
  15. env-llmeval/lib/python3.10/site-packages/functorch/dim/op_properties.py +311 -0
  16. env-llmeval/lib/python3.10/site-packages/functorch/dim/reference.py +645 -0
  17. env-llmeval/lib/python3.10/site-packages/functorch/dim/tree_map.py +14 -0
  18. env-llmeval/lib/python3.10/site-packages/functorch/dim/wrap_type.py +71 -0
  19. env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so +3 -0
  20. env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so +3 -0
  21. env-llmeval/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 +3 -0
  22. env-llmeval/lib/python3.10/site-packages/pytz/lazy.py +172 -0
  23. env-llmeval/lib/python3.10/site-packages/pytz/reference.py +140 -0
  24. env-llmeval/lib/python3.10/site-packages/pytz/tzinfo.py +580 -0
  25. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/CET +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/CST6CDT +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Cuba +0 -0
  28. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EET +0 -0
  29. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EST +0 -0
  30. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EST5EDT +0 -0
  31. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Egypt +0 -0
  32. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+12 +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+2 +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+5 +0 -0
  35. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+7 +0 -0
  36. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+8 +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-11 +0 -0
  38. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-3 +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-7 +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT0 +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/UCT +0 -0
  42. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/Universal +0 -0
  43. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Factory +0 -0
  44. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GB-Eire +0 -0
  45. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT +0 -0
  46. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT+0 +0 -0
  47. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT-0 +0 -0
  48. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT0 +0 -0
  49. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/HST +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Hongkong +0 -0
.gitattributes CHANGED
@@ -150,3 +150,6 @@ env-llmeval/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolver.so.11 f
150
  env-llmeval/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
151
  env-llmeval/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
152
  env-llmeval/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc-builtins.so.12.1 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
150
  env-llmeval/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
151
  env-llmeval/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
152
  env-llmeval/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc-builtins.so.12.1 filter=lfs diff=lfs merge=lfs -text
153
+ env-llmeval/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 filter=lfs diff=lfs merge=lfs -text
154
+ env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so filter=lfs diff=lfs merge=lfs -text
155
+ env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so filter=lfs diff=lfs merge=lfs -text
env-llmeval/lib/python3.10/site-packages/functorch/dim/__init__.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dis
2
+ import inspect
3
+ from typing import Sequence, Union
4
+
5
+ import torch
6
+
7
+ import functorch._C
8
+ from functorch._C import dim as _C
9
+ from .tree_map import tree_flatten, tree_map
10
+ from .wrap_type import wrap_type
11
+
12
+ _C._patch_tensor_class()
13
+ dims, DimList, dimlists = _C.dims, _C.DimList, _C.dimlists
14
+
15
+
16
+ class DimensionMismatchError(Exception):
17
+ pass
18
+
19
+
20
+ class DimensionBindError(Exception):
21
+ pass
22
+
23
+
24
+ from . import op_properties
25
+
26
+ # use dict to avoid writing C++ bindings for set
27
+ pointwise = {t: True for t in op_properties.pointwise}
28
+
29
+ use_c = True
30
+ if not use_c:
31
+ from . import reference
32
+
33
+
34
+ class _Tensor:
35
+ # fast path around slow wrapping/unwrapping logic for simply queries used
36
+ # by the implementation...
37
+
38
+ @property
39
+ def dims(self):
40
+ return tuple(d for d in self._levels if isinstance(d, Dim))
41
+
42
+ def dim(self):
43
+ return self.ndim
44
+
45
+ if use_c:
46
+ __torch_function__ = classmethod(_C.__torch_function__)
47
+ expand = _C._instancemethod(_C.expand)
48
+ else:
49
+ __torch_function__ = reference.__torch_function__
50
+ expand = reference.expand
51
+
52
+ index = _C._instancemethod(_C.index)
53
+
54
+ def __repr__(self):
55
+ tensor, levels, ndim = self._tensor, self._levels, self.ndim
56
+ return f"{tensor}\nwith dims={tuple(l + ndim if isinstance(l, int) else l for l in levels)} sizes={tuple(tensor.size())}"
57
+
58
+
59
+ TensorLike = (_Tensor, torch.Tensor)
60
+
61
+
62
+ class Dim(_C.Dim, _Tensor):
63
+ # note that _C.Dim comes before tensor because we want the Dim API for things like size to take precendence.
64
+ # Tensor defines format, but we want to print Dims with special formatting
65
+ __format__ = object.__format__
66
+
67
+
68
+ class Tensor(_Tensor, _C.Tensor):
69
+ if not use_c:
70
+ from_batched = staticmethod(_C.Tensor_from_batched)
71
+ from_positional = staticmethod(_C.Tensor_from_positional)
72
+ sum = _C._instancemethod(_C.Tensor_sum)
73
+
74
+
75
+ def cat(tensors, dim, new_dim):
76
+ n = dims()
77
+ return stack(tensors, n, dim).index([n, dim], new_dim)
78
+
79
+
80
+ if use_c:
81
+ _wrap = _C._wrap
82
+
83
+ def _def(name, *args, **kwargs):
84
+ orig = getattr(torch.Tensor, name)
85
+ setattr(_Tensor, name, _C._instancemethod(_wrap(orig, *args, **kwargs)))
86
+
87
+ t__getitem__ = _C._instancemethod(_C.__getitem__)
88
+ stack = _C.stack
89
+ split = _C._instancemethod(_C.split)
90
+ else:
91
+ _wrap, _def = reference._wrap, reference._def
92
+ t__getitem__ = reference.t__getitem__
93
+ stack = reference.stack
94
+ split = reference.split
95
+
96
+ # note: there is no python reference
97
+ t__setitem__ = _C._instancemethod(_C.__setitem__)
98
+ # this is patched in the C API because otherwise torch.Tensor will
99
+ # no longer be considered a sequence and things will break
100
+ # torch.Tensor.__getitem__ = t__getitem__
101
+
102
+ _Tensor.__getitem__ = t__getitem__
103
+ # torch.Tensor.__setitem__ = t__setitem__
104
+ _Tensor.__setitem__ = t__setitem__
105
+
106
+ torch.Tensor.split = split
107
+ _Tensor.split = split
108
+ torch.Tensor.expand = _C._instancemethod(_C.expand)
109
+ torch.Tensor.index = _C._instancemethod(_C.index)
110
+ wrap_type(use_c, _Tensor, torch.Tensor, _Tensor.__torch_function__)
111
+ del _Tensor.ndim
112
+
113
+ if use_c:
114
+ _Tensor.order = _C._instancemethod(_C.order)
115
+ else:
116
+ _Tensor.order = reference.positional
117
+
118
+ _def("mean")
119
+ _def("sum")
120
+ _def("all")
121
+ _def("amax")
122
+ _def("amin")
123
+ _def("aminmax")
124
+ _def("any")
125
+ _def("count_nonzero")
126
+ _def("logsumexp")
127
+ _def("nanmean")
128
+ _def("nansum")
129
+ _def("prod")
130
+ _def("std", keepdim_offset=2)
131
+ _def("var", keepdim_offset=2)
132
+ _def("max", single_dim=True)
133
+ _def("min", single_dim=True)
134
+ _def("argmax", single_dim=True)
135
+ _def("argmin", single_dim=True)
136
+ _def("kthvalue", single_dim=True)
137
+ _def("median", single_dim=True)
138
+ _def("nanmedian", single_dim=True)
139
+ _def("mode", single_dim=True)
140
+ _def("sort", reduce=False)
141
+ _def("argsort", reduce=False)
142
+ _def("unbind", single_dim=True)
143
+ _def("chunk", dim_offset=1, reduce=False)
144
+ _def("cummax", single_dim=True, reduce=False)
145
+ _def("cummin", single_dim=True, reduce=False)
146
+ _def("cumprod", single_dim=True, reduce=False)
147
+ _def("cumprod_", single_dim=True, reduce=False)
148
+ _def("cumsum", single_dim=True, reduce=False)
149
+ _def("cumsum_", single_dim=True, reduce=False)
150
+ _def("logcumsumexp", single_dim=True, reduce=False)
151
+ _def("renorm", dim_offset=1, single_dim=True, reduce=False)
152
+ _def("softmax", single_dim=True, reduce=False)
153
+ softmax = _wrap(torch.nn.functional.softmax, single_dim=True, reduce=False)
154
+
155
+ # stuff to handle in the future, because they require special
156
+ # binding logic for dims
157
+ # cross
158
+ # diag_embed
159
+ # diagonal
160
+ # diagonal_scatter
161
+ # diff
162
+ # nanquantile
163
+ # quantile
164
+ # roll
165
+ # rot90
166
+ # topk (new dimes on output)
167
+ # should these all be subsumed by inplace indexing?
168
+ # index_add_
169
+ # index_add
170
+ # index_copy
171
+ # index_copy_
172
+ # index_fill
173
+ # index_fill_
174
+ # index_select
175
+ # scatter
176
+ # scatter_
177
+ # scatter_add
178
+ # scatter_add_
179
+ # scatter_reduce
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.28 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/batch_tensor.cpython-310.pyc ADDED
Binary file (786 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/delayed_mul_tensor.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/dim.cpython-310.pyc ADDED
Binary file (3.95 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/magic_trace.cpython-310.pyc ADDED
Binary file (1.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/op_properties.cpython-310.pyc ADDED
Binary file (5.64 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/reference.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/tree_map.cpython-310.pyc ADDED
Binary file (540 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/__pycache__/wrap_type.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/functorch/dim/batch_tensor.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ from contextlib import contextmanager
7
+
8
+ from torch._C._functorch import _vmap_add_layers, _vmap_remove_layers
9
+
10
+ _enabled = False
11
+
12
+
13
+ @contextmanager
14
+ def _enable_layers(dims):
15
+ global _enabled
16
+ assert not _enabled
17
+ input = sorted((d._level, d.size) for d in dims if not isinstance(d, int))
18
+ n = len(input)
19
+ try:
20
+ _vmap_add_layers(input)
21
+ _enabled = True
22
+ yield
23
+ finally:
24
+ _enabled = False
25
+ _vmap_remove_layers(n)
env-llmeval/lib/python3.10/site-packages/functorch/dim/dim.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ _vmap_levels = []
7
+
8
+
9
+ @dataclass
10
+ class LevelInfo:
11
+ level: int
12
+ alive: bool = True
13
+
14
+
15
+ class Dim:
16
+ def __init__(self, name: str, size: Union[None, int] = None):
17
+ self.name = name
18
+ self._size = None
19
+ self._vmap_level = None
20
+ if size is not None:
21
+ self.size = size
22
+
23
+ def __del__(self):
24
+ if self._vmap_level is not None:
25
+ _vmap_active_levels[self._vmap_stack].alive = False
26
+ while (
27
+ not _vmap_levels[-1].alive and current_level() == _vmap_levels[-1].level
28
+ ):
29
+ _vmap_decrement_nesting()
30
+ _vmap_levels.pop()
31
+
32
+ @property
33
+ def size(self):
34
+ assert self.is_bound
35
+ return self._size
36
+
37
+ @size.setter
38
+ def size(self, size: int):
39
+ if self._size is None:
40
+ self._size = size
41
+ self._vmap_level = _vmap_increment_nesting(size, "same")
42
+ self._vmap_stack = len(_vmap_levels)
43
+ _vmap_levels.append(LevelInfo(self._vmap_level))
44
+
45
+ elif self._size != size:
46
+ raise DimensionBindError(
47
+ f"Dim '{self}' previously bound to a dimension of size {self._size} cannot bind to a dimension of size {size}"
48
+ )
49
+
50
+ @property
51
+ def is_bound(self):
52
+ return self._size is not None
53
+
54
+ def __repr__(self):
55
+ return self.name
56
+
57
+
58
+ def extract_name(inst):
59
+ assert inst.opname == "STORE_FAST" or inst.opname == "STORE_NAME"
60
+ return inst.argval
61
+
62
+
63
+ _cache = {}
64
+
65
+
66
+ def dims(lists=0):
67
+ frame = inspect.currentframe()
68
+ assert frame is not None
69
+ calling_frame = frame.f_back
70
+ assert calling_frame is not None
71
+ code, lasti = calling_frame.f_code, calling_frame.f_lasti
72
+ key = (code, lasti)
73
+ if key not in _cache:
74
+ first = lasti // 2 + 1
75
+ instructions = list(dis.get_instructions(calling_frame.f_code))
76
+ unpack = instructions[first]
77
+
78
+ if unpack.opname == "STORE_FAST" or unpack.opname == "STORE_NAME":
79
+ # just a single dim, not a list
80
+ name = unpack.argval
81
+ ctor = Dim if lists == 0 else DimList
82
+ _cache[key] = lambda: ctor(name=name)
83
+ else:
84
+ assert unpack.opname == "UNPACK_SEQUENCE"
85
+ ndims = unpack.argval
86
+ names = tuple(
87
+ extract_name(instructions[first + 1 + i]) for i in range(ndims)
88
+ )
89
+ first_list = len(names) - lists
90
+ _cache[key] = lambda: tuple(
91
+ Dim(n) if i < first_list else DimList(name=n)
92
+ for i, n in enumerate(names)
93
+ )
94
+ return _cache[key]()
95
+
96
+
97
+ def _dim_set(positional, arg):
98
+ def convert(a):
99
+ if isinstance(a, Dim):
100
+ return a
101
+ else:
102
+ assert isinstance(a, int)
103
+ return positional[a]
104
+
105
+ if arg is None:
106
+ return positional
107
+ elif not isinstance(arg, (Dim, int)):
108
+ return tuple(convert(a) for a in arg)
109
+ else:
110
+ return (convert(arg),)
env-llmeval/lib/python3.10/site-packages/functorch/dim/magic_trace.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ import os
7
+ import signal
8
+ import subprocess
9
+ from contextlib import contextmanager
10
+
11
+
12
+ @contextmanager
13
+ def magic_trace(output="trace.fxt", magic_trace_cache="/tmp/magic-trace"):
14
+ pid = os.getpid()
15
+ if not os.path.exists(magic_trace_cache):
16
+ print(f"Downloading magic_trace to: {magic_trace_cache}")
17
+ subprocess.run(
18
+ [
19
+ "wget",
20
+ "-O",
21
+ magic_trace_cache,
22
+ "-q",
23
+ "https://github.com/janestreet/magic-trace/releases/download/v1.0.2/magic-trace",
24
+ ]
25
+ )
26
+ subprocess.run(["chmod", "+x", magic_trace_cache])
27
+ args = [magic_trace_cache, "attach", "-pid", str(pid), "-o", output]
28
+ p = subprocess.Popen(args, stderr=subprocess.PIPE, encoding="utf-8")
29
+ while True:
30
+ x = p.stderr.readline()
31
+ print(x)
32
+ if "Attached" in x:
33
+ break
34
+ try:
35
+ yield
36
+ finally:
37
+ p.send_signal(signal.SIGINT)
38
+ r = p.wait()
39
+ print(p.stderr.read())
40
+ p.stderr.close()
41
+ if r != 0:
42
+ raise ValueError(f"magic_trace exited abnormally: {r}")
env-llmeval/lib/python3.10/site-packages/functorch/dim/op_properties.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ import torch
7
+
8
+ # pointwise operators can go through a faster pathway
9
+
10
+ tensor_magic_methods = ["add", ""]
11
+ pointwise_magic_methods_with_reverse = (
12
+ "add",
13
+ "sub",
14
+ "mul",
15
+ "floordiv",
16
+ "div",
17
+ "truediv",
18
+ "mod",
19
+ "pow",
20
+ "lshift",
21
+ "rshift",
22
+ "and",
23
+ "or",
24
+ "xor",
25
+ )
26
+ pointwise_magic_methods = (
27
+ *(x for m in pointwise_magic_methods_with_reverse for x in (m, "r" + m)),
28
+ "eq",
29
+ "gt",
30
+ "le",
31
+ "lt",
32
+ "ge",
33
+ "gt",
34
+ "ne",
35
+ "neg",
36
+ "pos",
37
+ "abs",
38
+ "invert",
39
+ "iadd",
40
+ "isub",
41
+ "imul",
42
+ "ifloordiv",
43
+ "idiv",
44
+ "itruediv",
45
+ "imod",
46
+ "ipow",
47
+ "ilshift",
48
+ "irshift",
49
+ "iand",
50
+ "ior",
51
+ "ixor",
52
+ "int",
53
+ "long",
54
+ "float",
55
+ "complex",
56
+ )
57
+
58
+ pointwise_methods = (*(f"__{m}__" for m in pointwise_magic_methods),)
59
+
60
+ pointwise = (
61
+ *(getattr(torch.Tensor, m) for m in pointwise_methods),
62
+ torch.nn.functional.dropout,
63
+ torch.where,
64
+ torch.Tensor.abs,
65
+ torch.abs,
66
+ torch.Tensor.acos,
67
+ torch.acos,
68
+ torch.Tensor.acosh,
69
+ torch.acosh,
70
+ torch.Tensor.add,
71
+ torch.add,
72
+ torch.Tensor.addcdiv,
73
+ torch.addcdiv,
74
+ torch.Tensor.addcmul,
75
+ torch.addcmul,
76
+ torch.Tensor.addr,
77
+ torch.addr,
78
+ torch.Tensor.angle,
79
+ torch.angle,
80
+ torch.Tensor.asin,
81
+ torch.asin,
82
+ torch.Tensor.asinh,
83
+ torch.asinh,
84
+ torch.Tensor.atan,
85
+ torch.atan,
86
+ torch.Tensor.atan2,
87
+ torch.atan2,
88
+ torch.Tensor.atanh,
89
+ torch.atanh,
90
+ torch.Tensor.bitwise_and,
91
+ torch.bitwise_and,
92
+ torch.Tensor.bitwise_left_shift,
93
+ torch.bitwise_left_shift,
94
+ torch.Tensor.bitwise_not,
95
+ torch.bitwise_not,
96
+ torch.Tensor.bitwise_or,
97
+ torch.bitwise_or,
98
+ torch.Tensor.bitwise_right_shift,
99
+ torch.bitwise_right_shift,
100
+ torch.Tensor.bitwise_xor,
101
+ torch.bitwise_xor,
102
+ torch.Tensor.ceil,
103
+ torch.ceil,
104
+ torch.celu,
105
+ torch.nn.functional.celu,
106
+ torch.Tensor.clamp,
107
+ torch.clamp,
108
+ torch.Tensor.clamp_max,
109
+ torch.clamp_max,
110
+ torch.Tensor.clamp_min,
111
+ torch.clamp_min,
112
+ torch.Tensor.copysign,
113
+ torch.copysign,
114
+ torch.Tensor.cos,
115
+ torch.cos,
116
+ torch.Tensor.cosh,
117
+ torch.cosh,
118
+ torch.Tensor.deg2rad,
119
+ torch.deg2rad,
120
+ torch.Tensor.digamma,
121
+ torch.digamma,
122
+ torch.Tensor.div,
123
+ torch.div,
124
+ torch.dropout,
125
+ torch.nn.functional.dropout,
126
+ torch.nn.functional.elu,
127
+ torch.Tensor.eq,
128
+ torch.eq,
129
+ torch.Tensor.erf,
130
+ torch.erf,
131
+ torch.Tensor.erfc,
132
+ torch.erfc,
133
+ torch.Tensor.erfinv,
134
+ torch.erfinv,
135
+ torch.Tensor.exp,
136
+ torch.exp,
137
+ torch.Tensor.exp2,
138
+ torch.exp2,
139
+ torch.Tensor.expm1,
140
+ torch.expm1,
141
+ torch.feature_dropout,
142
+ torch.Tensor.float_power,
143
+ torch.float_power,
144
+ torch.Tensor.floor,
145
+ torch.floor,
146
+ torch.Tensor.floor_divide,
147
+ torch.floor_divide,
148
+ torch.Tensor.fmod,
149
+ torch.fmod,
150
+ torch.Tensor.frac,
151
+ torch.frac,
152
+ torch.Tensor.frexp,
153
+ torch.frexp,
154
+ torch.Tensor.gcd,
155
+ torch.gcd,
156
+ torch.Tensor.ge,
157
+ torch.ge,
158
+ torch.nn.functional.gelu,
159
+ torch.nn.functional.glu,
160
+ torch.Tensor.gt,
161
+ torch.gt,
162
+ torch.Tensor.hardshrink,
163
+ torch.hardshrink,
164
+ torch.nn.functional.hardshrink,
165
+ torch.nn.functional.hardsigmoid,
166
+ torch.nn.functional.hardswish,
167
+ torch.nn.functional.hardtanh,
168
+ torch.Tensor.heaviside,
169
+ torch.heaviside,
170
+ torch.Tensor.hypot,
171
+ torch.hypot,
172
+ torch.Tensor.i0,
173
+ torch.i0,
174
+ torch.Tensor.igamma,
175
+ torch.igamma,
176
+ torch.Tensor.igammac,
177
+ torch.igammac,
178
+ torch.Tensor.isclose,
179
+ torch.isclose,
180
+ torch.Tensor.isfinite,
181
+ torch.isfinite,
182
+ torch.Tensor.isinf,
183
+ torch.isinf,
184
+ torch.Tensor.isnan,
185
+ torch.isnan,
186
+ torch.Tensor.isneginf,
187
+ torch.isneginf,
188
+ torch.Tensor.isposinf,
189
+ torch.isposinf,
190
+ torch.Tensor.isreal,
191
+ torch.isreal,
192
+ torch.Tensor.kron,
193
+ torch.kron,
194
+ torch.Tensor.lcm,
195
+ torch.lcm,
196
+ torch.Tensor.ldexp,
197
+ torch.ldexp,
198
+ torch.Tensor.le,
199
+ torch.le,
200
+ torch.nn.functional.leaky_relu,
201
+ torch.Tensor.lerp,
202
+ torch.lerp,
203
+ torch.Tensor.lgamma,
204
+ torch.lgamma,
205
+ torch.Tensor.log,
206
+ torch.log,
207
+ torch.Tensor.log10,
208
+ torch.log10,
209
+ torch.Tensor.log1p,
210
+ torch.log1p,
211
+ torch.Tensor.log2,
212
+ torch.log2,
213
+ torch.nn.functional.logsigmoid,
214
+ torch.Tensor.logical_and,
215
+ torch.logical_and,
216
+ torch.Tensor.logical_not,
217
+ torch.logical_not,
218
+ torch.Tensor.logical_or,
219
+ torch.logical_or,
220
+ torch.Tensor.logical_xor,
221
+ torch.logical_xor,
222
+ torch.Tensor.logit,
223
+ torch.logit,
224
+ torch.Tensor.lt,
225
+ torch.lt,
226
+ torch.Tensor.maximum,
227
+ torch.maximum,
228
+ torch.Tensor.minimum,
229
+ torch.minimum,
230
+ torch.nn.functional.mish,
231
+ torch.Tensor.mvlgamma,
232
+ torch.mvlgamma,
233
+ torch.Tensor.nan_to_num,
234
+ torch.nan_to_num,
235
+ torch.Tensor.ne,
236
+ torch.ne,
237
+ torch.Tensor.neg,
238
+ torch.neg,
239
+ torch.Tensor.nextafter,
240
+ torch.nextafter,
241
+ torch.Tensor.outer,
242
+ torch.outer,
243
+ torch.polar,
244
+ torch.Tensor.polygamma,
245
+ torch.polygamma,
246
+ torch.Tensor.positive,
247
+ torch.positive,
248
+ torch.Tensor.pow,
249
+ torch.pow,
250
+ torch.Tensor.prelu,
251
+ torch.prelu,
252
+ torch.nn.functional.prelu,
253
+ torch.Tensor.rad2deg,
254
+ torch.rad2deg,
255
+ torch.Tensor.reciprocal,
256
+ torch.reciprocal,
257
+ torch.Tensor.relu,
258
+ torch.relu,
259
+ torch.nn.functional.relu,
260
+ torch.nn.functional.relu6,
261
+ torch.Tensor.remainder,
262
+ torch.remainder,
263
+ torch.Tensor.round,
264
+ torch.round,
265
+ torch.rrelu,
266
+ torch.nn.functional.rrelu,
267
+ torch.Tensor.rsqrt,
268
+ torch.rsqrt,
269
+ torch.rsub,
270
+ torch.selu,
271
+ torch.nn.functional.selu,
272
+ torch.Tensor.sgn,
273
+ torch.sgn,
274
+ torch.Tensor.sigmoid,
275
+ torch.sigmoid,
276
+ torch.nn.functional.sigmoid,
277
+ torch.Tensor.sign,
278
+ torch.sign,
279
+ torch.Tensor.signbit,
280
+ torch.signbit,
281
+ torch.nn.functional.silu,
282
+ torch.Tensor.sin,
283
+ torch.sin,
284
+ torch.Tensor.sinc,
285
+ torch.sinc,
286
+ torch.Tensor.sinh,
287
+ torch.sinh,
288
+ torch.nn.functional.softplus,
289
+ torch.nn.functional.softshrink,
290
+ torch.Tensor.sqrt,
291
+ torch.sqrt,
292
+ torch.Tensor.square,
293
+ torch.square,
294
+ torch.Tensor.sub,
295
+ torch.sub,
296
+ torch.Tensor.tan,
297
+ torch.tan,
298
+ torch.Tensor.tanh,
299
+ torch.tanh,
300
+ torch.nn.functional.tanh,
301
+ torch.threshold,
302
+ torch.nn.functional.threshold,
303
+ torch.trapz,
304
+ torch.Tensor.true_divide,
305
+ torch.true_divide,
306
+ torch.Tensor.trunc,
307
+ torch.trunc,
308
+ torch.Tensor.xlogy,
309
+ torch.xlogy,
310
+ torch.rand_like,
311
+ )
env-llmeval/lib/python3.10/site-packages/functorch/dim/reference.py ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # reference python implementations for C ops
8
+ import torch
9
+
10
+ from functorch._C import dim as _C
11
+ from . import op_properties
12
+ from .batch_tensor import _enable_layers
13
+ from .tree_map import tree_flatten, tree_map
14
+
15
+ DimList = _C.DimList
16
+ import operator
17
+ from functools import reduce
18
+
19
+
20
+ # use dict to avoid writing C++ bindings for set
21
+ pointwise = set(op_properties.pointwise)
22
+
23
+
24
+ def prod(x):
25
+ return reduce(operator.mul, x, 1)
26
+
27
+
28
+ def _wrap_dim(d, N, keepdim):
29
+ from . import Dim
30
+
31
+ if isinstance(d, Dim):
32
+ assert not keepdim, "cannot preserve first-class dimensions with keepdim=True"
33
+ return d
34
+ elif d >= 0:
35
+ return d - N
36
+ else:
37
+ return d
38
+
39
+
40
+ def _dims(d, N, keepdim, single_dim):
41
+ from . import Dim
42
+
43
+ if isinstance(d, (Dim, int)):
44
+ return ltuple((_wrap_dim(d, N, keepdim),))
45
+ assert not single_dim, f"expected a single dimension or int but found: {d}"
46
+ return ltuple(_wrap_dim(x, N, keepdim) for x in d)
47
+
48
+
49
+ def _bind_dims_to_size(lhs_size, rhs, lhs_debug):
50
+ from . import DimensionMismatchError
51
+
52
+ not_bound = tuple((i, r) for i, r in enumerate(rhs) if not r.is_bound)
53
+ if len(not_bound) == 1:
54
+ idx, d = not_bound[0]
55
+ rhs_so_far = prod(r.size for r in rhs if r.is_bound)
56
+ if lhs_size % rhs_so_far != 0:
57
+ rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
58
+ raise DimensionMismatchError(
59
+ f"inferred dimension does not evenly fit into larger dimension: {lhs_size} vs {rhs_s}"
60
+ )
61
+ new_size = lhs_size // rhs_so_far
62
+ d.size = new_size
63
+ elif len(not_bound) > 1:
64
+ rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
65
+ raise DimensionMismatchError(
66
+ f"cannot infer the size of two dimensions at once: {rhs} with sizes {rhs_s}"
67
+ )
68
+ else:
69
+ rhs_size = prod(r.size for r in rhs)
70
+ if lhs_size != rhs_size:
71
+ raise DimensionMismatchError(
72
+ f"Dimension sizes to do not match ({lhs_size} != {rhs_size}) when matching {lhs_debug} to {rhs}"
73
+ )
74
+
75
+
76
+ def _tensor_levels(inp):
77
+ from . import _Tensor
78
+
79
+ if isinstance(inp, _Tensor):
80
+ return inp._tensor, llist(inp._levels), inp._has_device
81
+ else:
82
+ return inp, llist(range(-inp.ndim, 0)), True
83
+
84
+
85
+ def _match_levels(v, from_levels, to_levels):
86
+ view = []
87
+ permute = []
88
+ requires_view = False
89
+ size = v.size()
90
+ for t in to_levels:
91
+ try:
92
+ idx = from_levels.index(t)
93
+ permute.append(idx)
94
+ view.append(size[idx])
95
+ except ValueError:
96
+ view.append(1)
97
+ requires_view = True
98
+ if permute != list(range(len(permute))):
99
+ v = v.permute(*permute)
100
+ if requires_view:
101
+ v = v.view(*view)
102
+ return v
103
+
104
+
105
+ # make a single dimension positional but do not permute it,
106
+ # used to do multi-tensor operators where the dim being acted on
107
+ # should not physically move if possible
108
+ def _positional_no_permute(self, dim, expand_dim=False):
109
+ from . import Tensor
110
+
111
+ ptensor, levels = self._tensor, llist(self._levels)
112
+ try:
113
+ idx = levels.index(dim)
114
+ except ValueError:
115
+ if not expand_dim:
116
+ raise
117
+ idx = 0
118
+ ptensor = ptensor.expand(dim.size, *ptensor.size())
119
+ levels.insert(0, 0)
120
+ idx_batched = 0
121
+ for i in range(idx):
122
+ if isinstance(levels[i], int):
123
+ levels[i] -= 1
124
+ idx_batched += 1
125
+ levels[idx] = -idx_batched - 1
126
+ return Tensor.from_positional(ptensor, levels, self._has_device), idx_batched
127
+
128
+
129
+ def seq(a, b):
130
+ from . import Dim
131
+
132
+ if isinstance(a, Dim) != isinstance(b, Dim):
133
+ return False
134
+ if isinstance(a, Dim):
135
+ return a is b
136
+ else:
137
+ return a == b
138
+
139
+
140
+ class isin:
141
+ def __contains__(self, item):
142
+ for x in self:
143
+ if seq(item, x):
144
+ return True
145
+ return False
146
+
147
+ def index(self, item):
148
+ for i, x in enumerate(self):
149
+ if seq(item, x):
150
+ return i
151
+ raise ValueError
152
+
153
+
154
+ class llist(isin, list):
155
+ pass
156
+
157
+
158
+ class ltuple(isin, tuple):
159
+ pass
160
+
161
+
162
+ empty_dict = {}
163
+
164
+
165
+ @classmethod
166
+ def __torch_function__(self, orig, cls, args, kwargs=empty_dict):
167
+ from . import _Tensor, Tensor, TensorLike
168
+ from .delayed_mul_tensor import DelayedMulTensor
169
+
170
+ if orig is torch.Tensor.__mul__:
171
+ lhs, rhs = args
172
+ if (
173
+ isinstance(lhs, _Tensor)
174
+ and isinstance(rhs, _Tensor)
175
+ and lhs.ndim == 0
176
+ and rhs.ndim == 0
177
+ ):
178
+ return DelayedMulTensor(lhs, rhs)
179
+ all_dims = llist()
180
+ flat_args, unflatten = tree_flatten((args, kwargs))
181
+ device_holding_tensor = None
182
+ for f in flat_args:
183
+ if isinstance(f, _Tensor):
184
+ if f._has_device:
185
+ device_holding_tensor = f._batchtensor
186
+ for d in f.dims:
187
+ if d not in all_dims:
188
+ all_dims.append(d)
189
+
190
+ def unwrap(t):
191
+ if isinstance(t, _Tensor):
192
+ r = t._batchtensor
193
+ if device_holding_tensor is not None and not t._has_device:
194
+ r = r.to(device=device_holding_tensor.device)
195
+ return r
196
+ return t
197
+
198
+ if orig in pointwise:
199
+ result_levels = llist()
200
+ arg_levels = llist()
201
+ to_expand = []
202
+ for i, f in enumerate(flat_args):
203
+ if isinstance(f, TensorLike):
204
+ ptensor, levels, _ = _tensor_levels(f)
205
+ if (
206
+ isinstance(f, _Tensor)
207
+ and not f._has_device
208
+ and device_holding_tensor is not None
209
+ ):
210
+ ptensor = ptensor.to(device=device_holding_tensor.device)
211
+ flat_args[i] = ptensor
212
+ for l in levels:
213
+ if l not in result_levels:
214
+ result_levels.append(l)
215
+ to_expand.append((i, levels))
216
+
217
+ for i, levels in to_expand:
218
+ flat_args[i] = _match_levels(flat_args[i], levels, result_levels)
219
+ args, kwargs = unflatten(flat_args)
220
+ result = orig(*args, **kwargs)
221
+
222
+ def wrap(t):
223
+ if isinstance(t, TensorLike):
224
+ return Tensor.from_positional(
225
+ t, result_levels, device_holding_tensor is not None
226
+ )
227
+ return t
228
+
229
+ return tree_map(wrap, result)
230
+ else:
231
+
232
+ def wrap(t):
233
+ if isinstance(t, TensorLike):
234
+ return Tensor.from_batched(t, device_holding_tensor is not None)
235
+ return t
236
+
237
+ with _enable_layers(all_dims):
238
+ print(f"batch_tensor for {orig}")
239
+ args, kwargs = unflatten(unwrap(f) for f in flat_args)
240
+ result = orig(*args, **kwargs)
241
+ # print("END", orig)
242
+ return tree_map(wrap, result)
243
+
244
+
245
+ def positional(self, *dims):
246
+ from . import Dim, Tensor
247
+
248
+ ptensor, levels = self._tensor, llist(self._levels)
249
+ flat_dims = llist()
250
+ view = []
251
+ needs_view = False
252
+ ndim = self.ndim
253
+ for d in dims:
254
+ if isinstance(d, DimList):
255
+ flat_dims.extend(d)
256
+ view.extend(e.size for e in d)
257
+ elif isinstance(d, Dim):
258
+ flat_dims.append(d)
259
+ view.append(d.size)
260
+ elif isinstance(d, int):
261
+ d = _wrap_dim(d, ndim, False)
262
+ flat_dims.append(d)
263
+ view.append(ptensor.size(d))
264
+ else:
265
+ flat_dims.extend(d)
266
+ view.append(prod(e.size for e in d))
267
+ needs_view = True
268
+
269
+ permute = list(range(len(levels)))
270
+ nflat = len(flat_dims)
271
+ for i, d in enumerate(flat_dims):
272
+ try:
273
+ idx = levels.index(d)
274
+ except ValueError as e:
275
+ raise DimensionBindError(
276
+ f"tensor of dimensions {self.dims} does not contain dim {d}"
277
+ ) from e
278
+ p = permute[idx]
279
+ del levels[idx]
280
+ del permute[idx]
281
+ levels.insert(i, 0)
282
+ permute.insert(i, p)
283
+ ptensor = ptensor.permute(*permute)
284
+ seen = 0
285
+ for i in range(len(levels) - 1, -1, -1):
286
+ if isinstance(levels[i], int):
287
+ seen += 1
288
+ levels[i] = -seen
289
+ result = Tensor.from_positional(ptensor, levels, self._has_device)
290
+ if needs_view:
291
+ result = result.reshape(*view, *result.size()[len(flat_dims) :])
292
+ return result
293
+
294
+
295
+ def _contains_dim(input):
296
+ from . import Dim
297
+
298
+ for i in input:
299
+ if isinstance(i, Dim):
300
+ return True
301
+
302
+
303
+ def expand(self, *sizes):
304
+ if not _contains_dim(sizes):
305
+ return self.__torch_function__(torch.Tensor.expand, None, (self, *sizes))
306
+ dims = sizes
307
+ sizes = [d.size for d in dims] + [-1] * self.ndim
308
+ self = self.expand(*sizes)
309
+ return self[dims]
310
+
311
+
312
+ _not_present = object()
313
+
314
+
315
+ def _getarg(name, offset, args, kwargs, default):
316
+ if len(args) > offset:
317
+ return args[offset]
318
+ return kwargs.get(name, default)
319
+
320
+
321
+ def _patcharg(name, offset, args, kwargs, value):
322
+ if len(args) > offset:
323
+ args[offset] = value
324
+ else:
325
+ kwargs[name] = value
326
+
327
+
328
+ def _wrap(
329
+ orig, dim_offset=0, keepdim_offset=1, dim_name="dim", single_dim=False, reduce=True
330
+ ):
331
+ from . import Dim, Tensor, TensorLike
332
+
333
+ def fn(self, *args, **kwargs):
334
+ dim = _getarg(dim_name, dim_offset, args, kwargs, _not_present)
335
+ if dim is _not_present or (single_dim and not isinstance(dim, Dim)):
336
+ with _enable_layers(self.dims):
337
+ print(f"dim fallback batch_tensor for {orig}")
338
+ return Tensor.from_batched(
339
+ orig(self._batchtensor, *args, **kwargs), self._has_device
340
+ )
341
+ keepdim = (
342
+ _getarg("keepdim", keepdim_offset, args, kwargs, False) if reduce else False
343
+ )
344
+ t, levels = self._tensor, llist(self._levels)
345
+ dims = _dims(dim, self._batchtensor.ndim, keepdim, single_dim)
346
+ dim_indices = tuple(levels.index(d) for d in dims)
347
+ if reduce and not keepdim:
348
+ new_levels = [l for i, l in enumerate(levels) if i not in dim_indices]
349
+ else:
350
+ new_levels = levels
351
+
352
+ if len(dim_indices) == 1:
353
+ dim_indices = dim_indices[
354
+ 0
355
+ ] # so that dims that really only take a single argument work...
356
+ args = list(args)
357
+ _patcharg(dim_name, dim_offset, args, kwargs, dim_indices)
358
+
359
+ def wrap(t):
360
+ if isinstance(t, TensorLike):
361
+ return Tensor.from_positional(t, new_levels, self._has_device)
362
+ return t
363
+
364
+ with _enable_layers(new_levels):
365
+ print(f"dim used batch_tensor for {orig}")
366
+ r = orig(t, *args, **kwargs)
367
+ return tree_map(wrap, r)
368
+
369
+ return fn
370
+
371
+
372
+ def _def(name, *args, **kwargs):
373
+ from . import _Tensor
374
+
375
+ orig = getattr(torch.Tensor, name)
376
+ setattr(_Tensor, name, _wrap(orig, *args, **kwargs))
377
+
378
+
379
+ no_slice = slice(None)
380
+
381
+ _orig_getitem = torch.Tensor.__getitem__
382
+
383
+
384
+ class dim_tracker:
385
+ def __init__(self):
386
+ self.dims = llist()
387
+ self.count = []
388
+
389
+ def record(self, d):
390
+ if d not in self.dims:
391
+ self.dims.append(d)
392
+ self.count.append(1)
393
+
394
+ def __getitem__(self, d):
395
+ return self.count[self.dims.index(d)]
396
+
397
+
398
+ def t__getitem__(self, input):
399
+ from . import _Tensor, Dim, DimensionBindError, DimList, Tensor, TensorLike
400
+
401
+ # * bail to original example if we have a single non-Dim tensor, or a non-tensor
402
+ # * locate ... or an unbound tensor list, and determine its size, bind dim list
403
+ # (remember that None does not count to the total dim count)
404
+ # * bind simple dims and dim-packs to their sizes, count the number of uses of each dim,
405
+ # produce the re-view if needed
406
+ # * for each single-use dim index, replace with no_slice and mark that it will be added
407
+ # (keep track of whether we have to call super)
408
+ # * call super if needed
409
+ # * if we have dims to bind, bind them (it will help if we eliminated ... and None before)
410
+
411
+ # this handles bool indexing handling, as well as some other simple cases.
412
+
413
+ is_simple = (
414
+ not isinstance(input, Dim)
415
+ and not isinstance(input, (tuple, list))
416
+ and
417
+ # WAR for functorch bug where zero time tensors in getitem are not handled correctly.
418
+ not (isinstance(input, TensorLike) and input.ndim == 0)
419
+ )
420
+
421
+ if is_simple:
422
+ if isinstance(self, _Tensor):
423
+ return _Tensor.__torch_function__(_orig_getitem, None, (self, input))
424
+ else:
425
+ return _orig_getitem(self, input)
426
+
427
+ # can further optimize this case
428
+ if not isinstance(input, tuple):
429
+ input = [input]
430
+ else:
431
+ input = list(input)
432
+
433
+ dims_indexed = 0
434
+ expanding_object = None
435
+ dimlists = []
436
+ for i, s in enumerate(input):
437
+ if s is ... or isinstance(s, DimList) and not s.is_bound:
438
+ if expanding_object is not None:
439
+ msg = (
440
+ "at most one ... or unbound dimension list can exist in indexing list but"
441
+ f" found 2 at offsets {i} and {expanding_object}"
442
+ )
443
+ raise DimensionBindError(msg)
444
+ expanding_object = i
445
+
446
+ if isinstance(s, DimList):
447
+ dims_indexed += len(s) if s.is_bound else 0
448
+ dimlists.append(i)
449
+ elif s is not None and s is not ...:
450
+ dims_indexed += 1
451
+
452
+ ndim = self.ndim
453
+ if dims_indexed > ndim:
454
+ raise IndexError(
455
+ f"at least {dims_indexed} indices were supplied but the tensor only has {ndim} dimensions."
456
+ )
457
+ if expanding_object is not None:
458
+ expanding_ndims = ndim - dims_indexed
459
+ obj = input[expanding_object]
460
+ if obj is ...:
461
+ input[expanding_object : expanding_object + 1] = [
462
+ no_slice
463
+ ] * expanding_ndims
464
+ else:
465
+ obj.bind_len(expanding_ndims)
466
+ # flatten the dimslists into the indexing
467
+ for i in reversed(dimlists):
468
+ input[i : i + 1] = input[i]
469
+ dims_indexed = 0
470
+ requires_view = False
471
+ size = self.size()
472
+ view_sizes = []
473
+ dims_seen = dim_tracker()
474
+
475
+ def add_dims(t):
476
+ if not isinstance(t, _Tensor):
477
+ return
478
+ for d in t.dims:
479
+ dims_seen.record(d)
480
+
481
+ add_dims(self)
482
+ dim_packs = []
483
+ for i, idx in enumerate(input):
484
+ if idx is None:
485
+ input[i] = no_slice
486
+ view_sizes.append(1)
487
+ requires_view = True
488
+ else:
489
+ sz = size[dims_indexed]
490
+ if isinstance(idx, Dim):
491
+ idx.size = sz
492
+ dims_seen.record(idx)
493
+ view_sizes.append(sz)
494
+ elif isinstance(idx, (tuple, list)) and idx and isinstance(idx[0], Dim):
495
+ for d in idx:
496
+ dims_seen.record(idx)
497
+ _bind_dims_to_size(sz, idx, f"offset {i}")
498
+ view_sizes.extend(d.size for d in idx)
499
+ requires_view = True
500
+ dim_packs.append(i)
501
+ else:
502
+ add_dims(idx)
503
+ view_sizes.append(sz)
504
+ dims_indexed += 1
505
+ if requires_view:
506
+ self = self.view(*view_sizes)
507
+ for i in reversed(dim_packs):
508
+ input[i : i + 1] = input[i]
509
+
510
+ # currenty:
511
+ # input is flat, containing either Dim, or Tensor, or something valid for standard indexing
512
+ # self may have first-class dims as well.
513
+
514
+ # to index:
515
+ # drop the first class dims from self, they just become direct indices of their positions
516
+
517
+ # figure out the dimensions of the indexing tensors: union of all the dims in the tensors in the index.
518
+ # these dimensions will appear and need to be bound at the first place tensor occures
519
+
520
+ if isinstance(self, _Tensor):
521
+ ptensor_self, levels = self._tensor, list(self._levels)
522
+ # indices to ptensor rather than self which has first-class dimensions
523
+ input_it = iter(input)
524
+ flat_inputs = [next(input_it) if isinstance(l, int) else l for l in levels]
525
+ has_device = self._has_device
526
+ to_pad = 0
527
+ else:
528
+ ptensor_self, flat_inputs = self, input
529
+ to_pad = ptensor_self.ndim - len(flat_inputs)
530
+ has_device = True
531
+
532
+ result_levels = []
533
+ index_levels = []
534
+ tensor_insert_point = None
535
+ to_expand = {}
536
+ requires_getindex = False
537
+ for i, inp in enumerate(flat_inputs):
538
+ if isinstance(inp, Dim) and dims_seen[inp] == 1:
539
+ flat_inputs[i] = no_slice
540
+ result_levels.append(inp)
541
+ elif isinstance(inp, TensorLike):
542
+ requires_getindex = True
543
+ if tensor_insert_point is None:
544
+ tensor_insert_point = len(result_levels)
545
+ ptensor, levels, _ = _tensor_levels(inp)
546
+ to_expand[i] = levels
547
+ flat_inputs[i] = ptensor
548
+ for l in levels:
549
+ if l not in index_levels:
550
+ index_levels.append(l)
551
+ else:
552
+ requires_getindex = True
553
+ result_levels.append(0)
554
+
555
+ if tensor_insert_point is not None:
556
+ result_levels[tensor_insert_point:tensor_insert_point] = index_levels
557
+
558
+ for i, levels in to_expand.items():
559
+ flat_inputs[i] = _match_levels(flat_inputs[i], levels, index_levels)
560
+
561
+ if requires_getindex:
562
+ result = _orig_getitem(ptensor_self, flat_inputs)
563
+ else:
564
+ result = ptensor_self
565
+
566
+ next_positional = -1
567
+ if to_pad > 0:
568
+ result_levels.extend([0] * to_pad)
569
+ for i, r in enumerate(reversed(result_levels)):
570
+ if isinstance(r, int):
571
+ result_levels[-1 - i] = next_positional
572
+ next_positional -= 1
573
+
574
+ return Tensor.from_positional(result, result_levels, has_device)
575
+
576
+
577
+ # XXX - dim is optional and can be the outer-most dimension...
578
+ def stack(tensors, new_dim, dim=0, out=None):
579
+ if isinstance(dim, int):
580
+ return torch.stack(tensors, dim, out).index(dim, new_dim)
581
+ index = None
582
+ if out is not None:
583
+ out, index = _positional_no_permute(out, dim, expand_dim=True)
584
+ ptensors = []
585
+ for t in tensors:
586
+ pt, pi = _positional_no_permute(t, dim, expand_dim=True)
587
+ if index is not None and pi != index:
588
+ pt = pt.move_dim(pi, index)
589
+ else:
590
+ index = pi
591
+ ptensors.append(pt)
592
+ pr = torch.stack(ptensors, index, out=out)
593
+ return pr.index((index, index + 1), (new_dim, dim))
594
+
595
+
596
+ _orig_split = torch.Tensor.split
597
+
598
+
599
+ def split(self, split_size_or_sections, dim=0):
600
+ from . import _Tensor, Dim
601
+
602
+ if isinstance(split_size_or_sections, int) or any(
603
+ isinstance(t, int) for t in split_size_or_sections
604
+ ):
605
+ if isinstance(dim, Dim):
606
+ raise ValueError(
607
+ "when dim is specified as a Dim object, split sizes must also be dimensions."
608
+ )
609
+ return _orig_split(self, split_size_or_sections, dim=dim)
610
+
611
+ if isinstance(dim, Dim):
612
+ assert isinstance(self, _Tensor), f"Tensor does not have dimension {dim}"
613
+ self, dim = _positional_no_permute(self, dim)
614
+
615
+ size = self.size(dim)
616
+ total_bound_size = 0
617
+ unbound = []
618
+ sizes = []
619
+ for i, d in enumerate(split_size_or_sections):
620
+ if d.is_bound:
621
+ sizes.append(d.size)
622
+ total_bound_size += d.size
623
+ else:
624
+ sizes.append(0)
625
+ unbound.append(i)
626
+
627
+ if unbound:
628
+ assert (
629
+ total_bound_size <= size
630
+ ), f"result dimensions are larger than original: {total_bound_size} vs {size} ({split_size_or_sections})"
631
+ remaining_size = size - total_bound_size
632
+ chunk_size = -(-remaining_size // len(unbound))
633
+ for u in unbound:
634
+ sz = min(chunk_size, remaining_size)
635
+ split_size_or_sections[u].size = sz
636
+ sizes[u] = sz
637
+ remaining_size -= sz
638
+ else:
639
+ assert (
640
+ total_bound_size == size
641
+ ), f"result dimensions do not match original: {total_bound_size} vs {size} ({split_size_or_sections})"
642
+ return tuple(
643
+ t.index(dim, d)
644
+ for d, t in zip(split_size_or_sections, _orig_split(self, sizes, dim=dim))
645
+ )
env-llmeval/lib/python3.10/site-packages/functorch/dim/tree_map.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from functorch._C import dim
8
+
9
+ tree_flatten = dim.tree_flatten
10
+
11
+
12
+ def tree_map(fn, tree):
13
+ vs, unflatten = tree_flatten(tree)
14
+ return unflatten(fn(v) for v in vs)
env-llmeval/lib/python3.10/site-packages/functorch/dim/wrap_type.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from types import (
8
+ BuiltinMethodType,
9
+ FunctionType,
10
+ GetSetDescriptorType,
11
+ MethodDescriptorType,
12
+ WrapperDescriptorType,
13
+ )
14
+
15
+ from functorch._C import dim as _C
16
+
17
+ _wrap_method = _C._wrap_method
18
+
19
+ FUNC_TYPES = (
20
+ FunctionType,
21
+ MethodDescriptorType,
22
+ BuiltinMethodType,
23
+ WrapperDescriptorType,
24
+ )
25
+ PROPERTY_TYPES = (GetSetDescriptorType, property)
26
+
27
+
28
+ def _py_wrap_method(orig, __torch_function__):
29
+ def impl(*args, **kwargs):
30
+ return __torch_function__(orig, None, args, kwargs)
31
+
32
+ return impl
33
+
34
+
35
+ def wrap_type(use_c, to_patch, pattern, __torch_function__):
36
+ if use_c:
37
+ wrap_method = _wrap_method
38
+ else:
39
+ wrap_method = _py_wrap_method
40
+
41
+ all = {}
42
+ for t in reversed(pattern.mro()[:-1]): # skip object
43
+ all.update(t.__dict__)
44
+
45
+ def wrap_attr(orig):
46
+ return property(wrap_method(orig.__get__, __torch_function__))
47
+
48
+ for name, obj in all.items():
49
+ if name in (
50
+ "__dict__",
51
+ "__new__",
52
+ "__init__",
53
+ "__repr__",
54
+ "__weakref__",
55
+ "__doc__",
56
+ "__module__",
57
+ "__dir__",
58
+ ):
59
+ continue
60
+
61
+ # skip things that have been overloaded
62
+ # things that come from object like `__eq__` still need to be patched, however.
63
+ if hasattr(to_patch, name) and getattr(to_patch, name) is not getattr(
64
+ object, name, None
65
+ ):
66
+ continue
67
+
68
+ if isinstance(obj, FUNC_TYPES):
69
+ setattr(to_patch, name, wrap_method(obj, __torch_function__))
70
+ elif isinstance(obj, PROPERTY_TYPES):
71
+ setattr(to_patch, name, wrap_attr(obj))
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1626ff119582bca46605bc6d49769ab75314b9993dd647bd64a90dec747bc843
3
+ size 1534104
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa2587c8d211fbc85e8b88cca0bcebe78c8cc40c81b0c3763ce57ac9e63f0669
3
+ size 5895416
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83ec9ad7775e89f6280286ba11eb9d28cafe49c2f777a3e051bcc881de7449fc
3
+ size 56875328
env-llmeval/lib/python3.10/site-packages/pytz/lazy.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from threading import RLock
2
+ try:
3
+ from collections.abc import Mapping as DictMixin
4
+ except ImportError: # Python < 3.3
5
+ try:
6
+ from UserDict import DictMixin # Python 2
7
+ except ImportError: # Python 3.0-3.3
8
+ from collections import Mapping as DictMixin
9
+
10
+
11
+ # With lazy loading, we might end up with multiple threads triggering
12
+ # it at the same time. We need a lock.
13
+ _fill_lock = RLock()
14
+
15
+
16
+ class LazyDict(DictMixin):
17
+ """Dictionary populated on first use."""
18
+ data = None
19
+
20
+ def __getitem__(self, key):
21
+ if self.data is None:
22
+ _fill_lock.acquire()
23
+ try:
24
+ if self.data is None:
25
+ self._fill()
26
+ finally:
27
+ _fill_lock.release()
28
+ return self.data[key.upper()]
29
+
30
+ def __contains__(self, key):
31
+ if self.data is None:
32
+ _fill_lock.acquire()
33
+ try:
34
+ if self.data is None:
35
+ self._fill()
36
+ finally:
37
+ _fill_lock.release()
38
+ return key in self.data
39
+
40
+ def __iter__(self):
41
+ if self.data is None:
42
+ _fill_lock.acquire()
43
+ try:
44
+ if self.data is None:
45
+ self._fill()
46
+ finally:
47
+ _fill_lock.release()
48
+ return iter(self.data)
49
+
50
+ def __len__(self):
51
+ if self.data is None:
52
+ _fill_lock.acquire()
53
+ try:
54
+ if self.data is None:
55
+ self._fill()
56
+ finally:
57
+ _fill_lock.release()
58
+ return len(self.data)
59
+
60
+ def keys(self):
61
+ if self.data is None:
62
+ _fill_lock.acquire()
63
+ try:
64
+ if self.data is None:
65
+ self._fill()
66
+ finally:
67
+ _fill_lock.release()
68
+ return self.data.keys()
69
+
70
+
71
+ class LazyList(list):
72
+ """List populated on first use."""
73
+
74
+ _props = [
75
+ '__str__', '__repr__', '__unicode__',
76
+ '__hash__', '__sizeof__', '__cmp__',
77
+ '__lt__', '__le__', '__eq__', '__ne__', '__gt__', '__ge__',
78
+ 'append', 'count', 'index', 'extend', 'insert', 'pop', 'remove',
79
+ 'reverse', 'sort', '__add__', '__radd__', '__iadd__', '__mul__',
80
+ '__rmul__', '__imul__', '__contains__', '__len__', '__nonzero__',
81
+ '__getitem__', '__setitem__', '__delitem__', '__iter__',
82
+ '__reversed__', '__getslice__', '__setslice__', '__delslice__']
83
+
84
+ def __new__(cls, fill_iter=None):
85
+
86
+ if fill_iter is None:
87
+ return list()
88
+
89
+ # We need a new class as we will be dynamically messing with its
90
+ # methods.
91
+ class LazyList(list):
92
+ pass
93
+
94
+ fill_iter = [fill_iter]
95
+
96
+ def lazy(name):
97
+ def _lazy(self, *args, **kw):
98
+ _fill_lock.acquire()
99
+ try:
100
+ if len(fill_iter) > 0:
101
+ list.extend(self, fill_iter.pop())
102
+ for method_name in cls._props:
103
+ delattr(LazyList, method_name)
104
+ finally:
105
+ _fill_lock.release()
106
+ return getattr(list, name)(self, *args, **kw)
107
+ return _lazy
108
+
109
+ for name in cls._props:
110
+ setattr(LazyList, name, lazy(name))
111
+
112
+ new_list = LazyList()
113
+ return new_list
114
+
115
+ # Not all versions of Python declare the same magic methods.
116
+ # Filter out properties that don't exist in this version of Python
117
+ # from the list.
118
+ LazyList._props = [prop for prop in LazyList._props if hasattr(list, prop)]
119
+
120
+
121
+ class LazySet(set):
122
+ """Set populated on first use."""
123
+
124
+ _props = (
125
+ '__str__', '__repr__', '__unicode__',
126
+ '__hash__', '__sizeof__', '__cmp__',
127
+ '__lt__', '__le__', '__eq__', '__ne__', '__gt__', '__ge__',
128
+ '__contains__', '__len__', '__nonzero__',
129
+ '__getitem__', '__setitem__', '__delitem__', '__iter__',
130
+ '__sub__', '__and__', '__xor__', '__or__',
131
+ '__rsub__', '__rand__', '__rxor__', '__ror__',
132
+ '__isub__', '__iand__', '__ixor__', '__ior__',
133
+ 'add', 'clear', 'copy', 'difference', 'difference_update',
134
+ 'discard', 'intersection', 'intersection_update', 'isdisjoint',
135
+ 'issubset', 'issuperset', 'pop', 'remove',
136
+ 'symmetric_difference', 'symmetric_difference_update',
137
+ 'union', 'update')
138
+
139
+ def __new__(cls, fill_iter=None):
140
+
141
+ if fill_iter is None:
142
+ return set()
143
+
144
+ class LazySet(set):
145
+ pass
146
+
147
+ fill_iter = [fill_iter]
148
+
149
+ def lazy(name):
150
+ def _lazy(self, *args, **kw):
151
+ _fill_lock.acquire()
152
+ try:
153
+ if len(fill_iter) > 0:
154
+ for i in fill_iter.pop():
155
+ set.add(self, i)
156
+ for method_name in cls._props:
157
+ delattr(LazySet, method_name)
158
+ finally:
159
+ _fill_lock.release()
160
+ return getattr(set, name)(self, *args, **kw)
161
+ return _lazy
162
+
163
+ for name in cls._props:
164
+ setattr(LazySet, name, lazy(name))
165
+
166
+ new_set = LazySet()
167
+ return new_set
168
+
169
+ # Not all versions of Python declare the same magic methods.
170
+ # Filter out properties that don't exist in this version of Python
171
+ # from the list.
172
+ LazySet._props = [prop for prop in LazySet._props if hasattr(set, prop)]
env-llmeval/lib/python3.10/site-packages/pytz/reference.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Reference tzinfo implementations from the Python docs.
3
+ Used for testing against as they are only correct for the years
4
+ 1987 to 2006. Do not use these for real code.
5
+ '''
6
+
7
+ from datetime import tzinfo, timedelta, datetime
8
+ from pytz import HOUR, ZERO, UTC
9
+
10
+ __all__ = [
11
+ 'FixedOffset',
12
+ 'LocalTimezone',
13
+ 'USTimeZone',
14
+ 'Eastern',
15
+ 'Central',
16
+ 'Mountain',
17
+ 'Pacific',
18
+ 'UTC'
19
+ ]
20
+
21
+
22
+ # A class building tzinfo objects for fixed-offset time zones.
23
+ # Note that FixedOffset(0, "UTC") is a different way to build a
24
+ # UTC tzinfo object.
25
+ class FixedOffset(tzinfo):
26
+ """Fixed offset in minutes east from UTC."""
27
+
28
+ def __init__(self, offset, name):
29
+ self.__offset = timedelta(minutes=offset)
30
+ self.__name = name
31
+
32
+ def utcoffset(self, dt):
33
+ return self.__offset
34
+
35
+ def tzname(self, dt):
36
+ return self.__name
37
+
38
+ def dst(self, dt):
39
+ return ZERO
40
+
41
+
42
+ import time as _time
43
+
44
+ STDOFFSET = timedelta(seconds=-_time.timezone)
45
+ if _time.daylight:
46
+ DSTOFFSET = timedelta(seconds=-_time.altzone)
47
+ else:
48
+ DSTOFFSET = STDOFFSET
49
+
50
+ DSTDIFF = DSTOFFSET - STDOFFSET
51
+
52
+
53
+ # A class capturing the platform's idea of local time.
54
+ class LocalTimezone(tzinfo):
55
+
56
+ def utcoffset(self, dt):
57
+ if self._isdst(dt):
58
+ return DSTOFFSET
59
+ else:
60
+ return STDOFFSET
61
+
62
+ def dst(self, dt):
63
+ if self._isdst(dt):
64
+ return DSTDIFF
65
+ else:
66
+ return ZERO
67
+
68
+ def tzname(self, dt):
69
+ return _time.tzname[self._isdst(dt)]
70
+
71
+ def _isdst(self, dt):
72
+ tt = (dt.year, dt.month, dt.day,
73
+ dt.hour, dt.minute, dt.second,
74
+ dt.weekday(), 0, -1)
75
+ stamp = _time.mktime(tt)
76
+ tt = _time.localtime(stamp)
77
+ return tt.tm_isdst > 0
78
+
79
+ Local = LocalTimezone()
80
+
81
+
82
+ def first_sunday_on_or_after(dt):
83
+ days_to_go = 6 - dt.weekday()
84
+ if days_to_go:
85
+ dt += timedelta(days_to_go)
86
+ return dt
87
+
88
+
89
+ # In the US, DST starts at 2am (standard time) on the first Sunday in April.
90
+ DSTSTART = datetime(1, 4, 1, 2)
91
+ # and ends at 2am (DST time; 1am standard time) on the last Sunday of Oct.
92
+ # which is the first Sunday on or after Oct 25.
93
+ DSTEND = datetime(1, 10, 25, 1)
94
+
95
+
96
+ # A complete implementation of current DST rules for major US time zones.
97
+ class USTimeZone(tzinfo):
98
+
99
+ def __init__(self, hours, reprname, stdname, dstname):
100
+ self.stdoffset = timedelta(hours=hours)
101
+ self.reprname = reprname
102
+ self.stdname = stdname
103
+ self.dstname = dstname
104
+
105
+ def __repr__(self):
106
+ return self.reprname
107
+
108
+ def tzname(self, dt):
109
+ if self.dst(dt):
110
+ return self.dstname
111
+ else:
112
+ return self.stdname
113
+
114
+ def utcoffset(self, dt):
115
+ return self.stdoffset + self.dst(dt)
116
+
117
+ def dst(self, dt):
118
+ if dt is None or dt.tzinfo is None:
119
+ # An exception may be sensible here, in one or both cases.
120
+ # It depends on how you want to treat them. The default
121
+ # fromutc() implementation (called by the default astimezone()
122
+ # implementation) passes a datetime with dt.tzinfo is self.
123
+ return ZERO
124
+ assert dt.tzinfo is self
125
+
126
+ # Find first Sunday in April & the last in October.
127
+ start = first_sunday_on_or_after(DSTSTART.replace(year=dt.year))
128
+ end = first_sunday_on_or_after(DSTEND.replace(year=dt.year))
129
+
130
+ # Can't compare naive to aware objects, so strip the timezone from
131
+ # dt first.
132
+ if start <= dt.replace(tzinfo=None) < end:
133
+ return HOUR
134
+ else:
135
+ return ZERO
136
+
137
+ Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
138
+ Central = USTimeZone(-6, "Central", "CST", "CDT")
139
+ Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
140
+ Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")
env-llmeval/lib/python3.10/site-packages/pytz/tzinfo.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''Base classes and helpers for building zone specific tzinfo classes'''
2
+
3
+ from datetime import datetime, timedelta, tzinfo
4
+ from bisect import bisect_right
5
+ try:
6
+ set
7
+ except NameError:
8
+ from sets import Set as set
9
+
10
+ import pytz
11
+ from pytz.exceptions import AmbiguousTimeError, NonExistentTimeError
12
+
13
+ __all__ = []
14
+
15
+ _timedelta_cache = {}
16
+
17
+
18
+ def memorized_timedelta(seconds):
19
+ '''Create only one instance of each distinct timedelta'''
20
+ try:
21
+ return _timedelta_cache[seconds]
22
+ except KeyError:
23
+ delta = timedelta(seconds=seconds)
24
+ _timedelta_cache[seconds] = delta
25
+ return delta
26
+
27
+
28
+ _epoch = datetime(1970, 1, 1, 0, 0) # datetime.utcfromtimestamp(0)
29
+ _datetime_cache = {0: _epoch}
30
+
31
+
32
+ def memorized_datetime(seconds):
33
+ '''Create only one instance of each distinct datetime'''
34
+ try:
35
+ return _datetime_cache[seconds]
36
+ except KeyError:
37
+ # NB. We can't just do datetime.fromtimestamp(seconds, tz=timezone.utc).replace(tzinfo=None)
38
+ # as this fails with negative values under Windows (Bug #90096)
39
+ dt = _epoch + timedelta(seconds=seconds)
40
+ _datetime_cache[seconds] = dt
41
+ return dt
42
+
43
+
44
+ _ttinfo_cache = {}
45
+
46
+
47
+ def memorized_ttinfo(*args):
48
+ '''Create only one instance of each distinct tuple'''
49
+ try:
50
+ return _ttinfo_cache[args]
51
+ except KeyError:
52
+ ttinfo = (
53
+ memorized_timedelta(args[0]),
54
+ memorized_timedelta(args[1]),
55
+ args[2]
56
+ )
57
+ _ttinfo_cache[args] = ttinfo
58
+ return ttinfo
59
+
60
+
61
+ _notime = memorized_timedelta(0)
62
+
63
+
64
+ def _to_seconds(td):
65
+ '''Convert a timedelta to seconds'''
66
+ return td.seconds + td.days * 24 * 60 * 60
67
+
68
+
69
+ class BaseTzInfo(tzinfo):
70
+ # Overridden in subclass
71
+ _utcoffset = None
72
+ _tzname = None
73
+ zone = None
74
+
75
+ def __str__(self):
76
+ return self.zone
77
+
78
+
79
+ class StaticTzInfo(BaseTzInfo):
80
+ '''A timezone that has a constant offset from UTC
81
+
82
+ These timezones are rare, as most locations have changed their
83
+ offset at some point in their history
84
+ '''
85
+ def fromutc(self, dt):
86
+ '''See datetime.tzinfo.fromutc'''
87
+ if dt.tzinfo is not None and dt.tzinfo is not self:
88
+ raise ValueError('fromutc: dt.tzinfo is not self')
89
+ return (dt + self._utcoffset).replace(tzinfo=self)
90
+
91
+ def utcoffset(self, dt, is_dst=None):
92
+ '''See datetime.tzinfo.utcoffset
93
+
94
+ is_dst is ignored for StaticTzInfo, and exists only to
95
+ retain compatibility with DstTzInfo.
96
+ '''
97
+ return self._utcoffset
98
+
99
+ def dst(self, dt, is_dst=None):
100
+ '''See datetime.tzinfo.dst
101
+
102
+ is_dst is ignored for StaticTzInfo, and exists only to
103
+ retain compatibility with DstTzInfo.
104
+ '''
105
+ return _notime
106
+
107
+ def tzname(self, dt, is_dst=None):
108
+ '''See datetime.tzinfo.tzname
109
+
110
+ is_dst is ignored for StaticTzInfo, and exists only to
111
+ retain compatibility with DstTzInfo.
112
+ '''
113
+ return self._tzname
114
+
115
+ def localize(self, dt, is_dst=False):
116
+ '''Convert naive time to local time'''
117
+ if dt.tzinfo is not None:
118
+ raise ValueError('Not naive datetime (tzinfo is already set)')
119
+ return dt.replace(tzinfo=self)
120
+
121
+ def normalize(self, dt, is_dst=False):
122
+ '''Correct the timezone information on the given datetime.
123
+
124
+ This is normally a no-op, as StaticTzInfo timezones never have
125
+ ambiguous cases to correct:
126
+
127
+ >>> from pytz import timezone
128
+ >>> gmt = timezone('GMT')
129
+ >>> isinstance(gmt, StaticTzInfo)
130
+ True
131
+ >>> dt = datetime(2011, 5, 8, 1, 2, 3, tzinfo=gmt)
132
+ >>> gmt.normalize(dt) is dt
133
+ True
134
+
135
+ The supported method of converting between timezones is to use
136
+ datetime.astimezone(). Currently normalize() also works:
137
+
138
+ >>> la = timezone('America/Los_Angeles')
139
+ >>> dt = la.localize(datetime(2011, 5, 7, 1, 2, 3))
140
+ >>> fmt = '%Y-%m-%d %H:%M:%S %Z (%z)'
141
+ >>> gmt.normalize(dt).strftime(fmt)
142
+ '2011-05-07 08:02:03 GMT (+0000)'
143
+ '''
144
+ if dt.tzinfo is self:
145
+ return dt
146
+ if dt.tzinfo is None:
147
+ raise ValueError('Naive time - no tzinfo set')
148
+ return dt.astimezone(self)
149
+
150
+ def __repr__(self):
151
+ return '<StaticTzInfo %r>' % (self.zone,)
152
+
153
+ def __reduce__(self):
154
+ # Special pickle to zone remains a singleton and to cope with
155
+ # database changes.
156
+ return pytz._p, (self.zone,)
157
+
158
+
159
+ class DstTzInfo(BaseTzInfo):
160
+ '''A timezone that has a variable offset from UTC
161
+
162
+ The offset might change if daylight saving time comes into effect,
163
+ or at a point in history when the region decides to change their
164
+ timezone definition.
165
+ '''
166
+ # Overridden in subclass
167
+
168
+ # Sorted list of DST transition times, UTC
169
+ _utc_transition_times = None
170
+
171
+ # [(utcoffset, dstoffset, tzname)] corresponding to
172
+ # _utc_transition_times entries
173
+ _transition_info = None
174
+
175
+ zone = None
176
+
177
+ # Set in __init__
178
+
179
+ _tzinfos = None
180
+ _dst = None # DST offset
181
+
182
+ def __init__(self, _inf=None, _tzinfos=None):
183
+ if _inf:
184
+ self._tzinfos = _tzinfos
185
+ self._utcoffset, self._dst, self._tzname = _inf
186
+ else:
187
+ _tzinfos = {}
188
+ self._tzinfos = _tzinfos
189
+ self._utcoffset, self._dst, self._tzname = (
190
+ self._transition_info[0])
191
+ _tzinfos[self._transition_info[0]] = self
192
+ for inf in self._transition_info[1:]:
193
+ if inf not in _tzinfos:
194
+ _tzinfos[inf] = self.__class__(inf, _tzinfos)
195
+
196
+ def fromutc(self, dt):
197
+ '''See datetime.tzinfo.fromutc'''
198
+ if (dt.tzinfo is not None and
199
+ getattr(dt.tzinfo, '_tzinfos', None) is not self._tzinfos):
200
+ raise ValueError('fromutc: dt.tzinfo is not self')
201
+ dt = dt.replace(tzinfo=None)
202
+ idx = max(0, bisect_right(self._utc_transition_times, dt) - 1)
203
+ inf = self._transition_info[idx]
204
+ return (dt + inf[0]).replace(tzinfo=self._tzinfos[inf])
205
+
206
+ def normalize(self, dt):
207
+ '''Correct the timezone information on the given datetime
208
+
209
+ If date arithmetic crosses DST boundaries, the tzinfo
210
+ is not magically adjusted. This method normalizes the
211
+ tzinfo to the correct one.
212
+
213
+ To test, first we need to do some setup
214
+
215
+ >>> from pytz import timezone
216
+ >>> utc = timezone('UTC')
217
+ >>> eastern = timezone('US/Eastern')
218
+ >>> fmt = '%Y-%m-%d %H:%M:%S %Z (%z)'
219
+
220
+ We next create a datetime right on an end-of-DST transition point,
221
+ the instant when the wallclocks are wound back one hour.
222
+
223
+ >>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
224
+ >>> loc_dt = utc_dt.astimezone(eastern)
225
+ >>> loc_dt.strftime(fmt)
226
+ '2002-10-27 01:00:00 EST (-0500)'
227
+
228
+ Now, if we subtract a few minutes from it, note that the timezone
229
+ information has not changed.
230
+
231
+ >>> before = loc_dt - timedelta(minutes=10)
232
+ >>> before.strftime(fmt)
233
+ '2002-10-27 00:50:00 EST (-0500)'
234
+
235
+ But we can fix that by calling the normalize method
236
+
237
+ >>> before = eastern.normalize(before)
238
+ >>> before.strftime(fmt)
239
+ '2002-10-27 01:50:00 EDT (-0400)'
240
+
241
+ The supported method of converting between timezones is to use
242
+ datetime.astimezone(). Currently, normalize() also works:
243
+
244
+ >>> th = timezone('Asia/Bangkok')
245
+ >>> am = timezone('Europe/Amsterdam')
246
+ >>> dt = th.localize(datetime(2011, 5, 7, 1, 2, 3))
247
+ >>> fmt = '%Y-%m-%d %H:%M:%S %Z (%z)'
248
+ >>> am.normalize(dt).strftime(fmt)
249
+ '2011-05-06 20:02:03 CEST (+0200)'
250
+ '''
251
+ if dt.tzinfo is None:
252
+ raise ValueError('Naive time - no tzinfo set')
253
+
254
+ # Convert dt in localtime to UTC
255
+ offset = dt.tzinfo._utcoffset
256
+ dt = dt.replace(tzinfo=None)
257
+ dt = dt - offset
258
+ # convert it back, and return it
259
+ return self.fromutc(dt)
260
+
261
+ def localize(self, dt, is_dst=False):
262
+ '''Convert naive time to local time.
263
+
264
+ This method should be used to construct localtimes, rather
265
+ than passing a tzinfo argument to a datetime constructor.
266
+
267
+ is_dst is used to determine the correct timezone in the ambigous
268
+ period at the end of daylight saving time.
269
+
270
+ >>> from pytz import timezone
271
+ >>> fmt = '%Y-%m-%d %H:%M:%S %Z (%z)'
272
+ >>> amdam = timezone('Europe/Amsterdam')
273
+ >>> dt = datetime(2004, 10, 31, 2, 0, 0)
274
+ >>> loc_dt1 = amdam.localize(dt, is_dst=True)
275
+ >>> loc_dt2 = amdam.localize(dt, is_dst=False)
276
+ >>> loc_dt1.strftime(fmt)
277
+ '2004-10-31 02:00:00 CEST (+0200)'
278
+ >>> loc_dt2.strftime(fmt)
279
+ '2004-10-31 02:00:00 CET (+0100)'
280
+ >>> str(loc_dt2 - loc_dt1)
281
+ '1:00:00'
282
+
283
+ Use is_dst=None to raise an AmbiguousTimeError for ambiguous
284
+ times at the end of daylight saving time
285
+
286
+ >>> try:
287
+ ... loc_dt1 = amdam.localize(dt, is_dst=None)
288
+ ... except AmbiguousTimeError:
289
+ ... print('Ambiguous')
290
+ Ambiguous
291
+
292
+ is_dst defaults to False
293
+
294
+ >>> amdam.localize(dt) == amdam.localize(dt, False)
295
+ True
296
+
297
+ is_dst is also used to determine the correct timezone in the
298
+ wallclock times jumped over at the start of daylight saving time.
299
+
300
+ >>> pacific = timezone('US/Pacific')
301
+ >>> dt = datetime(2008, 3, 9, 2, 0, 0)
302
+ >>> ploc_dt1 = pacific.localize(dt, is_dst=True)
303
+ >>> ploc_dt2 = pacific.localize(dt, is_dst=False)
304
+ >>> ploc_dt1.strftime(fmt)
305
+ '2008-03-09 02:00:00 PDT (-0700)'
306
+ >>> ploc_dt2.strftime(fmt)
307
+ '2008-03-09 02:00:00 PST (-0800)'
308
+ >>> str(ploc_dt2 - ploc_dt1)
309
+ '1:00:00'
310
+
311
+ Use is_dst=None to raise a NonExistentTimeError for these skipped
312
+ times.
313
+
314
+ >>> try:
315
+ ... loc_dt1 = pacific.localize(dt, is_dst=None)
316
+ ... except NonExistentTimeError:
317
+ ... print('Non-existent')
318
+ Non-existent
319
+ '''
320
+ if dt.tzinfo is not None:
321
+ raise ValueError('Not naive datetime (tzinfo is already set)')
322
+
323
+ # Find the two best possibilities.
324
+ possible_loc_dt = set()
325
+ for delta in [timedelta(days=-1), timedelta(days=1)]:
326
+ loc_dt = dt + delta
327
+ idx = max(0, bisect_right(
328
+ self._utc_transition_times, loc_dt) - 1)
329
+ inf = self._transition_info[idx]
330
+ tzinfo = self._tzinfos[inf]
331
+ loc_dt = tzinfo.normalize(dt.replace(tzinfo=tzinfo))
332
+ if loc_dt.replace(tzinfo=None) == dt:
333
+ possible_loc_dt.add(loc_dt)
334
+
335
+ if len(possible_loc_dt) == 1:
336
+ return possible_loc_dt.pop()
337
+
338
+ # If there are no possibly correct timezones, we are attempting
339
+ # to convert a time that never happened - the time period jumped
340
+ # during the start-of-DST transition period.
341
+ if len(possible_loc_dt) == 0:
342
+ # If we refuse to guess, raise an exception.
343
+ if is_dst is None:
344
+ raise NonExistentTimeError(dt)
345
+
346
+ # If we are forcing the pre-DST side of the DST transition, we
347
+ # obtain the correct timezone by winding the clock forward a few
348
+ # hours.
349
+ elif is_dst:
350
+ return self.localize(
351
+ dt + timedelta(hours=6), is_dst=True) - timedelta(hours=6)
352
+
353
+ # If we are forcing the post-DST side of the DST transition, we
354
+ # obtain the correct timezone by winding the clock back.
355
+ else:
356
+ return self.localize(
357
+ dt - timedelta(hours=6),
358
+ is_dst=False) + timedelta(hours=6)
359
+
360
+ # If we get this far, we have multiple possible timezones - this
361
+ # is an ambiguous case occurring during the end-of-DST transition.
362
+
363
+ # If told to be strict, raise an exception since we have an
364
+ # ambiguous case
365
+ if is_dst is None:
366
+ raise AmbiguousTimeError(dt)
367
+
368
+ # Filter out the possiblilities that don't match the requested
369
+ # is_dst
370
+ filtered_possible_loc_dt = [
371
+ p for p in possible_loc_dt if bool(p.tzinfo._dst) == is_dst
372
+ ]
373
+
374
+ # Hopefully we only have one possibility left. Return it.
375
+ if len(filtered_possible_loc_dt) == 1:
376
+ return filtered_possible_loc_dt[0]
377
+
378
+ if len(filtered_possible_loc_dt) == 0:
379
+ filtered_possible_loc_dt = list(possible_loc_dt)
380
+
381
+ # If we get this far, we have in a wierd timezone transition
382
+ # where the clocks have been wound back but is_dst is the same
383
+ # in both (eg. Europe/Warsaw 1915 when they switched to CET).
384
+ # At this point, we just have to guess unless we allow more
385
+ # hints to be passed in (such as the UTC offset or abbreviation),
386
+ # but that is just getting silly.
387
+ #
388
+ # Choose the earliest (by UTC) applicable timezone if is_dst=True
389
+ # Choose the latest (by UTC) applicable timezone if is_dst=False
390
+ # i.e., behave like end-of-DST transition
391
+ dates = {} # utc -> local
392
+ for local_dt in filtered_possible_loc_dt:
393
+ utc_time = (
394
+ local_dt.replace(tzinfo=None) - local_dt.tzinfo._utcoffset)
395
+ assert utc_time not in dates
396
+ dates[utc_time] = local_dt
397
+ return dates[[min, max][not is_dst](dates)]
398
+
399
+ def utcoffset(self, dt, is_dst=None):
400
+ '''See datetime.tzinfo.utcoffset
401
+
402
+ The is_dst parameter may be used to remove ambiguity during DST
403
+ transitions.
404
+
405
+ >>> from pytz import timezone
406
+ >>> tz = timezone('America/St_Johns')
407
+ >>> ambiguous = datetime(2009, 10, 31, 23, 30)
408
+
409
+ >>> str(tz.utcoffset(ambiguous, is_dst=False))
410
+ '-1 day, 20:30:00'
411
+
412
+ >>> str(tz.utcoffset(ambiguous, is_dst=True))
413
+ '-1 day, 21:30:00'
414
+
415
+ >>> try:
416
+ ... tz.utcoffset(ambiguous)
417
+ ... except AmbiguousTimeError:
418
+ ... print('Ambiguous')
419
+ Ambiguous
420
+
421
+ '''
422
+ if dt is None:
423
+ return None
424
+ elif dt.tzinfo is not self:
425
+ dt = self.localize(dt, is_dst)
426
+ return dt.tzinfo._utcoffset
427
+ else:
428
+ return self._utcoffset
429
+
430
+ def dst(self, dt, is_dst=None):
431
+ '''See datetime.tzinfo.dst
432
+
433
+ The is_dst parameter may be used to remove ambiguity during DST
434
+ transitions.
435
+
436
+ >>> from pytz import timezone
437
+ >>> tz = timezone('America/St_Johns')
438
+
439
+ >>> normal = datetime(2009, 9, 1)
440
+
441
+ >>> str(tz.dst(normal))
442
+ '1:00:00'
443
+ >>> str(tz.dst(normal, is_dst=False))
444
+ '1:00:00'
445
+ >>> str(tz.dst(normal, is_dst=True))
446
+ '1:00:00'
447
+
448
+ >>> ambiguous = datetime(2009, 10, 31, 23, 30)
449
+
450
+ >>> str(tz.dst(ambiguous, is_dst=False))
451
+ '0:00:00'
452
+ >>> str(tz.dst(ambiguous, is_dst=True))
453
+ '1:00:00'
454
+ >>> try:
455
+ ... tz.dst(ambiguous)
456
+ ... except AmbiguousTimeError:
457
+ ... print('Ambiguous')
458
+ Ambiguous
459
+
460
+ '''
461
+ if dt is None:
462
+ return None
463
+ elif dt.tzinfo is not self:
464
+ dt = self.localize(dt, is_dst)
465
+ return dt.tzinfo._dst
466
+ else:
467
+ return self._dst
468
+
469
+ def tzname(self, dt, is_dst=None):
470
+ '''See datetime.tzinfo.tzname
471
+
472
+ The is_dst parameter may be used to remove ambiguity during DST
473
+ transitions.
474
+
475
+ >>> from pytz import timezone
476
+ >>> tz = timezone('America/St_Johns')
477
+
478
+ >>> normal = datetime(2009, 9, 1)
479
+
480
+ >>> tz.tzname(normal)
481
+ 'NDT'
482
+ >>> tz.tzname(normal, is_dst=False)
483
+ 'NDT'
484
+ >>> tz.tzname(normal, is_dst=True)
485
+ 'NDT'
486
+
487
+ >>> ambiguous = datetime(2009, 10, 31, 23, 30)
488
+
489
+ >>> tz.tzname(ambiguous, is_dst=False)
490
+ 'NST'
491
+ >>> tz.tzname(ambiguous, is_dst=True)
492
+ 'NDT'
493
+ >>> try:
494
+ ... tz.tzname(ambiguous)
495
+ ... except AmbiguousTimeError:
496
+ ... print('Ambiguous')
497
+ Ambiguous
498
+ '''
499
+ if dt is None:
500
+ return self.zone
501
+ elif dt.tzinfo is not self:
502
+ dt = self.localize(dt, is_dst)
503
+ return dt.tzinfo._tzname
504
+ else:
505
+ return self._tzname
506
+
507
+ def __repr__(self):
508
+ if self._dst:
509
+ dst = 'DST'
510
+ else:
511
+ dst = 'STD'
512
+ if self._utcoffset > _notime:
513
+ return '<DstTzInfo %r %s+%s %s>' % (
514
+ self.zone, self._tzname, self._utcoffset, dst
515
+ )
516
+ else:
517
+ return '<DstTzInfo %r %s%s %s>' % (
518
+ self.zone, self._tzname, self._utcoffset, dst
519
+ )
520
+
521
+ def __reduce__(self):
522
+ # Special pickle to zone remains a singleton and to cope with
523
+ # database changes.
524
+ return pytz._p, (
525
+ self.zone,
526
+ _to_seconds(self._utcoffset),
527
+ _to_seconds(self._dst),
528
+ self._tzname
529
+ )
530
+
531
+
532
+ def unpickler(zone, utcoffset=None, dstoffset=None, tzname=None):
533
+ """Factory function for unpickling pytz tzinfo instances.
534
+
535
+ This is shared for both StaticTzInfo and DstTzInfo instances, because
536
+ database changes could cause a zones implementation to switch between
537
+ these two base classes and we can't break pickles on a pytz version
538
+ upgrade.
539
+ """
540
+ # Raises a KeyError if zone no longer exists, which should never happen
541
+ # and would be a bug.
542
+ tz = pytz.timezone(zone)
543
+
544
+ # A StaticTzInfo - just return it
545
+ if utcoffset is None:
546
+ return tz
547
+
548
+ # This pickle was created from a DstTzInfo. We need to
549
+ # determine which of the list of tzinfo instances for this zone
550
+ # to use in order to restore the state of any datetime instances using
551
+ # it correctly.
552
+ utcoffset = memorized_timedelta(utcoffset)
553
+ dstoffset = memorized_timedelta(dstoffset)
554
+ try:
555
+ return tz._tzinfos[(utcoffset, dstoffset, tzname)]
556
+ except KeyError:
557
+ # The particular state requested in this timezone no longer exists.
558
+ # This indicates a corrupt pickle, or the timezone database has been
559
+ # corrected violently enough to make this particular
560
+ # (utcoffset,dstoffset) no longer exist in the zone, or the
561
+ # abbreviation has been changed.
562
+ pass
563
+
564
+ # See if we can find an entry differing only by tzname. Abbreviations
565
+ # get changed from the initial guess by the database maintainers to
566
+ # match reality when this information is discovered.
567
+ for localized_tz in tz._tzinfos.values():
568
+ if (localized_tz._utcoffset == utcoffset and
569
+ localized_tz._dst == dstoffset):
570
+ return localized_tz
571
+
572
+ # This (utcoffset, dstoffset) information has been removed from the
573
+ # zone. Add it back. This might occur when the database maintainers have
574
+ # corrected incorrect information. datetime instances using this
575
+ # incorrect information will continue to do so, exactly as they were
576
+ # before being pickled. This is purely an overly paranoid safety net - I
577
+ # doubt this will ever been needed in real life.
578
+ inf = (utcoffset, dstoffset, tzname)
579
+ tz._tzinfos[inf] = tz.__class__(inf, tz._tzinfos)
580
+ return tz._tzinfos[inf]
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/CET ADDED
Binary file (2.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/CST6CDT ADDED
Binary file (2.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Cuba ADDED
Binary file (2.42 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EET ADDED
Binary file (1.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EST ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/EST5EDT ADDED
Binary file (2.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Egypt ADDED
Binary file (2.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+12 ADDED
Binary file (117 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+2 ADDED
Binary file (116 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+5 ADDED
Binary file (116 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+7 ADDED
Binary file (116 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+8 ADDED
Binary file (116 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-11 ADDED
Binary file (118 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-3 ADDED
Binary file (117 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-7 ADDED
Binary file (117 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT0 ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/UCT ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Etc/Universal ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Factory ADDED
Binary file (116 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GB-Eire ADDED
Binary file (3.66 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT+0 ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT-0 ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/GMT0 ADDED
Binary file (114 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/HST ADDED
Binary file (115 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pytz/zoneinfo/Hongkong ADDED
Binary file (1.23 kB). View file