diff --git "a/llmeval-env/lib/python3.10/site-packages/datasets/builder.py" "b/llmeval-env/lib/python3.10/site-packages/datasets/builder.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/datasets/builder.py" @@ -0,0 +1,2293 @@ +# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python3 +"""DatasetBuilder base class.""" + +import abc +import contextlib +import copy +import inspect +import os +import posixpath +import shutil +import textwrap +import time +import urllib +import warnings +from dataclasses import dataclass +from functools import partial +from pathlib import Path +from typing import TYPE_CHECKING, Dict, Iterable, Mapping, Optional, Tuple, Union +from unittest.mock import patch + +import fsspec +import pyarrow as pa +from fsspec.core import url_to_fs +from multiprocess import Pool +from tqdm.contrib.concurrent import thread_map + +from . import config, utils +from .arrow_dataset import Dataset +from .arrow_reader import ( + HF_GCP_BASE_URL, + ArrowReader, + DatasetNotOnHfGcsError, + MissingFilesOnHfGcsError, + ReadInstruction, +) +from .arrow_writer import ArrowWriter, BeamWriter, ParquetWriter, SchemaInferenceError +from .data_files import DataFilesDict, DataFilesPatternsDict, sanitize_patterns +from .dataset_dict import DatasetDict, IterableDatasetDict +from .download.download_config import DownloadConfig +from .download.download_manager import DownloadManager, DownloadMode +from .download.mock_download_manager import MockDownloadManager +from .download.streaming_download_manager import StreamingDownloadManager, xjoin, xopen +from .exceptions import DatasetGenerationCastError, DatasetGenerationError, FileFormatError, ManualDownloadError +from .features import Features +from .filesystems import ( + is_remote_filesystem, + rename, +) +from .fingerprint import Hasher +from .info import DatasetInfo, DatasetInfosDict, PostProcessedInfo +from .iterable_dataset import ArrowExamplesIterable, ExamplesIterable, IterableDataset +from .keyhash import DuplicatedKeysError +from .naming import INVALID_WINDOWS_CHARACTERS_IN_PATH, camelcase_to_snakecase +from .splits import Split, SplitDict, SplitGenerator, SplitInfo +from .streaming import extend_dataset_builder_for_streaming +from .table import CastError +from .utils import logging +from .utils import tqdm as hf_tqdm +from .utils._filelock import FileLock +from .utils.deprecation_utils import deprecated +from .utils.file_utils import cached_path, is_remote_url +from .utils.info_utils import VerificationMode, get_size_checksum_dict, verify_checksums, verify_splits +from .utils.py_utils import ( + classproperty, + convert_file_size_to_int, + has_sufficient_disk_space, + iflatmap_unordered, + map_nested, + memoize, + size_str, + temporary_assignment, +) +from .utils.sharding import _number_of_shards_in_gen_kwargs, _split_gen_kwargs +from .utils.track import tracked_list + + +if TYPE_CHECKING: + from .load import DatasetModule + + +logger = logging.get_logger(__name__) + + +class InvalidConfigName(ValueError): + pass + + +@dataclass +class BuilderConfig: + """Base class for `DatasetBuilder` data configuration. + + `DatasetBuilder` subclasses with data configuration options should subclass + `BuilderConfig` and add their own properties. + + Attributes: + name (`str`, defaults to `default`): + The name of the configuration. + version (`Version` or `str`, defaults to `0.0.0`): + The version of the configuration. + data_dir (`str`, *optional*): + Path to the directory containing the source data. + data_files (`str` or `Sequence` or `Mapping`, *optional*): + Path(s) to source data file(s). + description (`str`, *optional*): + A human description of the configuration. + """ + + name: str = "default" + version: Optional[Union[utils.Version, str]] = utils.Version("0.0.0") + data_dir: Optional[str] = None + data_files: Optional[Union[DataFilesDict, DataFilesPatternsDict]] = None + description: Optional[str] = None + + def __post_init__(self): + # The config name is used to name the cache directory. + for invalid_char in INVALID_WINDOWS_CHARACTERS_IN_PATH: + if invalid_char in self.name: + raise InvalidConfigName( + f"Bad characters from black list '{INVALID_WINDOWS_CHARACTERS_IN_PATH}' found in '{self.name}'. " + f"They could create issues when creating a directory for this config on Windows filesystem." + ) + if self.data_files is not None and not isinstance(self.data_files, (DataFilesDict, DataFilesPatternsDict)): + raise ValueError(f"Expected a DataFilesDict in data_files but got {self.data_files}") + + def __eq__(self, o): + # we need to override the default dataclass __eq__ since it doesn't check for + # other attributes that the ones of the signature. + if set(self.__dict__.keys()) != set(o.__dict__.keys()): + return False + return all((k, getattr(self, k)) == (k, getattr(o, k)) for k in self.__dict__.keys()) + + def create_config_id( + self, + config_kwargs: dict, + custom_features: Optional[Features] = None, + ) -> str: + """ + The config id is used to build the cache directory. + By default it is equal to the config name. + However the name of a config is not sufficient to have a unique identifier for the dataset being generated + since it doesn't take into account: + - the config kwargs that can be used to overwrite attributes + - the custom features used to write the dataset + - the data_files for json/text/csv/pandas datasets + + Therefore the config id is just the config name with an optional suffix based on these. + """ + # Possibly add a suffix to the name to handle custom features/data_files/config_kwargs + suffix: Optional[str] = None + config_kwargs_to_add_to_suffix = config_kwargs.copy() + # name and version are already used to build the cache directory + config_kwargs_to_add_to_suffix.pop("name", None) + config_kwargs_to_add_to_suffix.pop("version", None) + # data dir handling (when specified it points to the manually downloaded data): + # it was previously ignored before the introduction of config id because we didn't want + # to change the config name. Now it's fine to take it into account for the config id. + # config_kwargs_to_add_to_suffix.pop("data_dir", None) + if "data_dir" in config_kwargs_to_add_to_suffix: + if config_kwargs_to_add_to_suffix["data_dir"] is None: + config_kwargs_to_add_to_suffix.pop("data_dir", None) + else: + # canonicalize the data dir to avoid two paths to the same location having different + # hashes + data_dir = config_kwargs_to_add_to_suffix["data_dir"] + data_dir = os.path.normpath(data_dir) + config_kwargs_to_add_to_suffix["data_dir"] = data_dir + if config_kwargs_to_add_to_suffix: + # we don't care about the order of the kwargs + config_kwargs_to_add_to_suffix = { + k: config_kwargs_to_add_to_suffix[k] for k in sorted(config_kwargs_to_add_to_suffix) + } + if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): + suffix = ",".join( + str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() + ) + if len(suffix) > 32: # hash if too long + suffix = Hasher.hash(config_kwargs_to_add_to_suffix) + else: + suffix = Hasher.hash(config_kwargs_to_add_to_suffix) + + if custom_features is not None: + m = Hasher() + if suffix: + m.update(suffix) + m.update(custom_features) + suffix = m.hexdigest() + + if suffix: + config_id = self.name + "-" + suffix + if len(config_id) > config.MAX_DATASET_CONFIG_ID_READABLE_LENGTH: + config_id = self.name + "-" + Hasher.hash(suffix) + return config_id + else: + return self.name + + def _resolve_data_files(self, base_path: str, download_config: DownloadConfig) -> None: + if isinstance(self.data_files, DataFilesPatternsDict): + base_path = xjoin(base_path, self.data_dir) if self.data_dir else base_path + self.data_files = self.data_files.resolve(base_path, download_config) + + +class DatasetBuilder: + """Abstract base class for all datasets. + + `DatasetBuilder` has 3 key methods: + + - [`DatasetBuilder.info`]: Documents the dataset, including feature + names, types, shapes, version, splits, citation, etc. + - [`DatasetBuilder.download_and_prepare`]: Downloads the source data + and writes it to disk. + - [`DatasetBuilder.as_dataset`]: Generates a [`Dataset`]. + + Some `DatasetBuilder`s expose multiple variants of the + dataset by defining a [`BuilderConfig`] subclass and accepting a + config object (or name) on construction. Configurable datasets expose a + pre-defined set of configurations in [`DatasetBuilder.builder_configs`]. + + Args: + cache_dir (`str`, *optional*): + Directory to cache data. Defaults to `"~/.cache/huggingface/datasets"`. + dataset_name (`str`, *optional*): + Name of the dataset, if different from the builder name. Useful for packaged builders + like csv, imagefolder, audiofolder, etc. to reflect the difference between datasets + that use the same packaged builder. + config_name (`str`, *optional*): + Name of the dataset configuration. + It affects the data generated on disk. Different configurations will have their own subdirectories and + versions. + If not provided, the default configuration is used (if it exists). + + + + Parameter `name` was renamed to `config_name`. + + + hash (`str`, *optional*): + Hash specific to the dataset code. Used to update the caching directory when the + dataset loading script code is updated (to avoid reusing old data). + The typical caching directory (defined in `self._relative_data_dir`) is `name/version/hash/`. + base_path (`str`, *optional*): + Base path for relative paths that are used to download files. + This can be a remote URL. + features ([`Features`], *optional*): + Features types to use with this dataset. + It can be used to change the [`Features`] types of a dataset, for example. + token (`str` or `bool`, *optional*): + String or boolean to use as Bearer token for remote files on the + Datasets Hub. If `True`, will get token from `"~/.huggingface"`. + repo_id (`str`, *optional*): + ID of the dataset repository. + Used to distinguish builders with the same name but not coming from the same namespace, for example "squad" + and "lhoestq/squad" repo IDs. In the latter, the builder name would be "lhoestq___squad". + data_files (`str` or `Sequence` or `Mapping`, *optional*): + Path(s) to source data file(s). + For builders like "csv" or "json" that need the user to specify data files. They can be either + local or remote files. For convenience, you can use a `DataFilesDict`. + data_dir (`str`, *optional*): + Path to directory containing source data file(s). + Use only if `data_files` is not passed, in which case it is equivalent to passing + `os.path.join(data_dir, "**")` as `data_files`. + For builders that require manual download, it must be the path to the local directory containing the + manually downloaded data. + storage_options (`dict`, *optional*): + Key/value pairs to be passed on to the dataset file-system backend, if any. + writer_batch_size (`int`, *optional*): + Batch size used by the ArrowWriter. + It defines the number of samples that are kept in memory before writing them + and also the length of the arrow chunks. + None means that the ArrowWriter will use its default value. + name (`str`): Configuration name for the dataset. + + + + Use `config_name` instead. + + + + **config_kwargs (additional keyword arguments): Keyword arguments to be passed to the corresponding builder + configuration class, set on the class attribute [`DatasetBuilder.BUILDER_CONFIG_CLASS`]. The builder + configuration class is [`BuilderConfig`] or a subclass of it. + """ + + # Default version + VERSION = None # Default version set in BuilderConfig + + # Class for the builder config. + BUILDER_CONFIG_CLASS = BuilderConfig + + # Named configurations that modify the data generated by download_and_prepare. + BUILDER_CONFIGS = [] + + # Optional default config name to be used when name is None + DEFAULT_CONFIG_NAME = None + + # Default batch size used by the ArrowWriter + # It defines the number of samples that are kept in memory before writing them + # and also the length of the arrow chunks + # None means that the ArrowWriter will use its default value + DEFAULT_WRITER_BATCH_SIZE = None + + def __init__( + self, + cache_dir: Optional[str] = None, + dataset_name: Optional[str] = None, + config_name: Optional[str] = None, + hash: Optional[str] = None, + base_path: Optional[str] = None, + info: Optional[DatasetInfo] = None, + features: Optional[Features] = None, + token: Optional[Union[bool, str]] = None, + use_auth_token="deprecated", + repo_id: Optional[str] = None, + data_files: Optional[Union[str, list, dict, DataFilesDict]] = None, + data_dir: Optional[str] = None, + storage_options: Optional[dict] = None, + writer_batch_size: Optional[int] = None, + name="deprecated", + **config_kwargs, + ): + if use_auth_token != "deprecated": + warnings.warn( + "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'token={use_auth_token}' instead.", + FutureWarning, + ) + token = use_auth_token + if name != "deprecated": + warnings.warn( + "Parameter 'name' was renamed to 'config_name' in version 2.3.0 and will be removed in 3.0.0.", + category=FutureWarning, + ) + config_name = name + # DatasetBuilder name + self.name: str = camelcase_to_snakecase(self.__module__.split(".")[-1]) + self.hash: Optional[str] = hash + self.base_path = base_path + self.token = token + # For backwards compatibility (e.g. if accessed in a dataset script) + self.use_auth_token = token + self.repo_id = repo_id + self.storage_options = storage_options or {} + self.dataset_name = camelcase_to_snakecase(dataset_name) if dataset_name else self.name + self._writer_batch_size = writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE + + if data_files is not None and not isinstance(data_files, DataFilesDict): + data_files = DataFilesDict.from_patterns( + sanitize_patterns(data_files), + base_path=base_path, + download_config=DownloadConfig(token=token, storage_options=self.storage_options), + ) + + # Prepare config: DatasetConfig contains name, version and description but can be extended by each dataset + if "features" in inspect.signature(self.BUILDER_CONFIG_CLASS.__init__).parameters and features is not None: + config_kwargs["features"] = features + if data_files is not None: + config_kwargs["data_files"] = data_files + if data_dir is not None: + config_kwargs["data_dir"] = data_dir + self.config_kwargs = config_kwargs + self.config, self.config_id = self._create_builder_config( + config_name=config_name, + custom_features=features, + **config_kwargs, + ) + + # prepare info: DatasetInfo are a standardized dataclass across all datasets + # Prefill datasetinfo + if info is None: + # TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense + info = self.get_exported_dataset_info() + info.update(self._info()) + info.builder_name = self.name + info.dataset_name = self.dataset_name + info.config_name = self.config.name + info.version = self.config.version + self.info = info + # update info with user specified infos + if features is not None: + self.info.features = features + + # Prepare data dirs: + # cache_dir can be a remote bucket on GCS or S3 (when using BeamBasedBuilder for distributed data processing) + self._cache_dir_root = str(cache_dir or config.HF_DATASETS_CACHE) + self._cache_dir_root = ( + self._cache_dir_root if is_remote_url(self._cache_dir_root) else os.path.expanduser(self._cache_dir_root) + ) + self._cache_downloaded_dir = ( + posixpath.join(self._cache_dir_root, config.DOWNLOADED_DATASETS_DIR) + if cache_dir + else str(config.DOWNLOADED_DATASETS_PATH) + ) + self._cache_downloaded_dir = ( + self._cache_downloaded_dir + if is_remote_url(self._cache_downloaded_dir) + else os.path.expanduser(self._cache_downloaded_dir) + ) + + # In case there exists a legacy cache directory + self._legacy_relative_data_dir = None + + self._cache_dir = self._build_cache_dir() + if not is_remote_url(self._cache_dir_root): + os.makedirs(self._cache_dir_root, exist_ok=True) + lock_path = os.path.join( + self._cache_dir_root, Path(self._cache_dir).as_posix().replace("/", "_") + ".lock" + ) + with FileLock(lock_path): + if os.path.exists(self._cache_dir): # check if data exist + if len(os.listdir(self._cache_dir)) > 0: + if os.path.exists(os.path.join(self._cache_dir, config.DATASET_INFO_FILENAME)): + logger.info("Overwrite dataset info from restored data version if exists.") + self.info = DatasetInfo.from_directory(self._cache_dir) + else: # dir exists but no data, remove the empty dir as data aren't available anymore + logger.warning( + f"Old caching folder {self._cache_dir} for dataset {self.dataset_name} exists but no data were found. Removing it. " + ) + os.rmdir(self._cache_dir) + + # Store in the cache by default unless the user specifies a custom output_dir to download_and_prepare + self._output_dir = self._cache_dir + self._fs: fsspec.AbstractFileSystem = fsspec.filesystem("file") + + # Set download manager + self.dl_manager = None + + # Set to True by "datasets-cli test" to generate file checksums for (deprecated) dataset_infos.json independently of verification_mode value. + self._record_infos = False + + # Set in `.download_and_prepare` once the format of the generated dataset is known + self._file_format = None + + # Enable streaming (e.g. it patches "open" to work with remote files) + extend_dataset_builder_for_streaming(self) + + def __getstate__(self): + return self.__dict__ + + def __setstate__(self, d): + self.__dict__ = d + # Re-enable streaming, since patched functions are not kept when pickling + extend_dataset_builder_for_streaming(self) + + # Must be set for datasets that use 'data_dir' functionality - the ones + # that require users to do additional steps to download the data + # (this is usually due to some external regulations / rules). + # This field should contain a string with user instructions, including + # the list of files that should be present. It will be + # displayed in the dataset documentation. + @property + def manual_download_instructions(self) -> Optional[str]: + return None + + def _check_legacy_cache(self) -> Optional[str]: + """Check for the old cache directory template {cache_dir}/{namespace}___{builder_name} from 2.13""" + if ( + self.__module__.startswith("datasets.") + and not is_remote_url(self._cache_dir_root) + and self.config.name == "default" + ): + from .packaged_modules import _PACKAGED_DATASETS_MODULES + + namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None + config_name = self.repo_id.replace("/", "--") if self.repo_id is not None else self.dataset_name + config_id = config_name + self.config_id[len(self.config.name) :] + hash = _PACKAGED_DATASETS_MODULES.get(self.name, "missing")[1] + legacy_relative_data_dir = posixpath.join( + self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}", + config_id, + "0.0.0", + hash, + ) + legacy_cache_dir = posixpath.join(self._cache_dir_root, legacy_relative_data_dir) + if os.path.isdir(legacy_cache_dir): + return legacy_relative_data_dir + + def _check_legacy_cache2(self, dataset_module: "DatasetModule") -> Optional[str]: + """Check for the old cache directory template {cache_dir}/{namespace}___{dataset_name}/{config_name}-xxx from 2.14 and 2.15""" + if ( + self.__module__.startswith("datasets.") + and not is_remote_url(self._cache_dir_root) + and not (set(self.config_kwargs) - {"data_files", "data_dir"}) + ): + from .packaged_modules import _PACKAGED_DATASETS_MODULES + from .utils._dill import Pickler + + def update_hash_with_config_parameters(hash: str, config_parameters: dict) -> str: + """ + Used to update hash of packaged modules which is used for creating unique cache directories to reflect + different config parameters which are passed in metadata from readme. + """ + params_to_exclude = {"config_name", "version", "description"} + params_to_add_to_hash = { + param: value + for param, value in sorted(config_parameters.items()) + if param not in params_to_exclude + } + m = Hasher() + m.update(hash) + m.update(params_to_add_to_hash) + return m.hexdigest() + + namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None + with patch.object(Pickler, "_legacy_no_dict_keys_sorting", True): + config_id = self.config.name + "-" + Hasher.hash({"data_files": self.config.data_files}) + hash = _PACKAGED_DATASETS_MODULES.get(self.name, "missing")[1] + if ( + dataset_module.builder_configs_parameters.metadata_configs + and self.config.name in dataset_module.builder_configs_parameters.metadata_configs + ): + hash = update_hash_with_config_parameters( + hash, dataset_module.builder_configs_parameters.metadata_configs[self.config.name] + ) + legacy_relative_data_dir = posixpath.join( + self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}", + config_id, + "0.0.0", + hash, + ) + legacy_cache_dir = posixpath.join(self._cache_dir_root, legacy_relative_data_dir) + if os.path.isdir(legacy_cache_dir): + return legacy_relative_data_dir + + @classmethod + def get_all_exported_dataset_infos(cls) -> DatasetInfosDict: + """Empty dict if doesn't exist + + Example: + + ```py + >>> from datasets import load_dataset_builder + >>> ds_builder = load_dataset_builder('rotten_tomatoes') + >>> ds_builder.get_all_exported_dataset_infos() + {'default': DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\nsentiment categorization with respect to rating scales.'', Proceedings of the\nACL, 2005.\n", citation='@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)} + ``` + """ + return DatasetInfosDict.from_directory(cls.get_imported_module_dir()) + + def get_exported_dataset_info(self) -> DatasetInfo: + """Empty `DatasetInfo` if doesn't exist + + Example: + + ```py + >>> from datasets import load_dataset_builder + >>> ds_builder = load_dataset_builder('rotten_tomatoes') + >>> ds_builder.get_exported_dataset_info() + DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\nsentiment categorization with respect to rating scales.'', Proceedings of the\nACL, 2005.\n", citation='@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231) + ``` + """ + return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo()) + + def _create_builder_config( + self, config_name=None, custom_features=None, **config_kwargs + ) -> Tuple[BuilderConfig, str]: + """Create and validate BuilderConfig object as well as a unique config id for this config. + Raises ValueError if there are multiple builder configs and config_name and DEFAULT_CONFIG_NAME are None. + config_kwargs override the defaults kwargs in config + """ + builder_config = None + + # try default config + if config_name is None and self.BUILDER_CONFIGS: + if self.DEFAULT_CONFIG_NAME is not None: + builder_config = self.builder_configs.get(self.DEFAULT_CONFIG_NAME) + logger.info(f"No config specified, defaulting to: {self.dataset_name}/{builder_config.name}") + else: + if len(self.BUILDER_CONFIGS) > 1: + if not config_kwargs: + example_of_usage = f"load_dataset('{self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')" + raise ValueError( + "Config name is missing." + f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}" + + f"\nExample of usage:\n\t`{example_of_usage}`" + ) + else: + builder_config = self.BUILDER_CONFIGS[0] + logger.info( + f"No config specified, defaulting to the single config: {self.dataset_name}/{builder_config.name}" + ) + + # try to get config by name + if isinstance(config_name, str): + builder_config = self.builder_configs.get(config_name) + if builder_config is None and self.BUILDER_CONFIGS: + raise ValueError( + f"BuilderConfig '{config_name}' not found. Available: {list(self.builder_configs.keys())}" + ) + + # if not using an existing config, then create a new config on the fly + if not builder_config: + if config_name is not None: + config_kwargs["name"] = config_name + elif self.DEFAULT_CONFIG_NAME and not config_kwargs: + # Use DEFAULT_CONFIG_NAME only if no config_kwargs are passed + config_kwargs["name"] = self.DEFAULT_CONFIG_NAME + if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION: + config_kwargs["version"] = self.VERSION + builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs) + + # otherwise use the config_kwargs to overwrite the attributes + else: + builder_config = copy.deepcopy(builder_config) if config_kwargs else builder_config + for key, value in config_kwargs.items(): + if value is not None: + if not hasattr(builder_config, key): + raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.") + setattr(builder_config, key, value) + + if not builder_config.name: + raise ValueError(f"BuilderConfig must have a name, got {builder_config.name}") + + # resolve data files if needed + builder_config._resolve_data_files( + base_path=self.base_path, + download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), + ) + + # compute the config id that is going to be used for caching + config_id = builder_config.create_config_id( + config_kwargs, + custom_features=custom_features, + ) + is_custom = (config_id not in self.builder_configs) and config_id != "default" + if is_custom: + logger.info(f"Using custom data configuration {config_id}") + else: + if ( + builder_config.name in self.builder_configs + and builder_config != self.builder_configs[builder_config.name] + ): + raise ValueError( + "Cannot name a custom BuilderConfig the same as an available " + f"BuilderConfig. Change the name. Available BuilderConfigs: {list(self.builder_configs.keys())}" + ) + if not builder_config.version: + raise ValueError(f"BuilderConfig {builder_config.name} must have a version") + + return builder_config, config_id + + @classproperty + @classmethod + @memoize() + def builder_configs(cls) -> Dict[str, BuilderConfig]: + """Dictionary of pre-defined configurations for this builder class.""" + configs = {config.name: config for config in cls.BUILDER_CONFIGS} + if len(configs) != len(cls.BUILDER_CONFIGS): + names = [config.name for config in cls.BUILDER_CONFIGS] + raise ValueError(f"Names in BUILDER_CONFIGS must not be duplicated. Got {names}") + return configs + + @property + def cache_dir(self): + return self._cache_dir + + def _use_legacy_cache_dir_if_possible(self, dataset_module: "DatasetModule"): + # Check for the legacy cache directory template (datasets<3.0.0) + self._legacy_relative_data_dir = ( + self._check_legacy_cache2(dataset_module) or self._check_legacy_cache() or None + ) + self._cache_dir = self._build_cache_dir() + self._output_dir = self._cache_dir + + def _relative_data_dir(self, with_version=True, with_hash=True) -> str: + """Relative path of this dataset in cache_dir: + Will be: + self.dataset_name/self.config.version/self.hash/ + or if a repo_id with a namespace has been specified: + self.namespace___self.dataset_name/self.config.version/self.hash/ + If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. + """ + if self._legacy_relative_data_dir is not None and with_version and with_hash: + return self._legacy_relative_data_dir + + namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None + builder_data_dir = self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}" + builder_data_dir = posixpath.join(builder_data_dir, self.config_id) + if with_version: + builder_data_dir = posixpath.join(builder_data_dir, str(self.config.version)) + if with_hash and self.hash and isinstance(self.hash, str): + builder_data_dir = posixpath.join(builder_data_dir, self.hash) + return builder_data_dir + + def _build_cache_dir(self): + """Return the data directory for the current version.""" + builder_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=False)) + version_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=True)) + + def _other_versions_on_disk(): + """Returns previous versions on disk.""" + if not os.path.exists(builder_data_dir): + return [] + + version_dirnames = [] + for dir_name in os.listdir(builder_data_dir): + try: + version_dirnames.append((utils.Version(dir_name), dir_name)) + except ValueError: # Invalid version (ex: incomplete data dir) + pass + version_dirnames.sort(reverse=True) + return version_dirnames + + # Check and warn if other versions exist + if not is_remote_url(builder_data_dir): + version_dirs = _other_versions_on_disk() + if version_dirs: + other_version = version_dirs[0][0] + if other_version != self.config.version: + warn_msg = ( + f"Found a different version {str(other_version)} of dataset {self.dataset_name} in " + f"cache_dir {self._cache_dir_root}. Using currently defined version " + f"{str(self.config.version)}." + ) + logger.warning(warn_msg) + + return version_data_dir + + @abc.abstractmethod + def _info(self) -> DatasetInfo: + """Construct the DatasetInfo object. See `DatasetInfo` for details. + + Warning: This function is only called once and the result is cached for all + following .info() calls. + + Returns: + info: (DatasetInfo) The dataset information + """ + raise NotImplementedError + + @classmethod + def get_imported_module_dir(cls): + """Return the path of the module of this class or subclass.""" + return os.path.dirname(inspect.getfile(inspect.getmodule(cls))) + + def _rename(self, src: str, dst: str): + rename(self._fs, src, dst) + + def download_and_prepare( + self, + output_dir: Optional[str] = None, + download_config: Optional[DownloadConfig] = None, + download_mode: Optional[Union[DownloadMode, str]] = None, + verification_mode: Optional[Union[VerificationMode, str]] = None, + ignore_verifications="deprecated", + try_from_hf_gcs="deprecated", + dl_manager: Optional[DownloadManager] = None, + base_path: Optional[str] = None, + use_auth_token="deprecated", + file_format: str = "arrow", + max_shard_size: Optional[Union[int, str]] = None, + num_proc: Optional[int] = None, + storage_options: Optional[dict] = None, + **download_and_prepare_kwargs, + ): + """Downloads and prepares dataset for reading. + + Args: + output_dir (`str`, *optional*): + Output directory for the dataset. + Default to this builder's `cache_dir`, which is inside `~/.cache/huggingface/datasets` by default. + + + download_config (`DownloadConfig`, *optional*): + Specific download configuration parameters. + download_mode ([`DownloadMode`] or `str`, *optional*): + Select the download/generate mode, default to `REUSE_DATASET_IF_EXISTS`. + verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`): + Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...). + + + ignore_verifications (`bool`, defaults to `False`): + Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/...). + + + + `ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0. + Please use `verification_mode` instead. + + + try_from_hf_gcs (`bool`): + If `True`, it will try to download the already prepared dataset from the HF Google cloud storage. + + + + `try_from_hf_gcs` was deprecated in version 2.16.0 and will be removed in 3.0.0. + Host the processed files on the Hugging Face Hub instead. + + + dl_manager (`DownloadManager`, *optional*): + Specific `DownloadManger` to use. + base_path (`str`, *optional*): + Base path for relative paths that are used to download files. This can be a remote url. + If not specified, the value of the `base_path` attribute (`self.base_path`) will be used instead. + use_auth_token (`Union[str, bool]`, *optional*): + Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. + If True, or not specified, will get token from ~/.huggingface. + + + + Pass `use_auth_token` to `load_dataset_builder` instead. + + + file_format (`str`, *optional*): + Format of the data files in which the dataset will be written. + Supported formats: "arrow", "parquet". Default to "arrow" format. + If the format is "parquet", then image and audio data are embedded into the Parquet files instead of pointing to local files. + + + max_shard_size (`Union[str, int]`, *optional*): + Maximum number of bytes written per shard, default is "500MB". + The size is based on uncompressed data size, so in practice your shard files may be smaller than + `max_shard_size` thanks to Parquet compression for example. + + + num_proc (`int`, *optional*, defaults to `None`): + Number of processes when downloading and generating the dataset locally. + Multiprocessing is disabled by default. + + + storage_options (`dict`, *optional*): + Key/value pairs to be passed on to the caching file-system backend, if any. + + + **download_and_prepare_kwargs (additional keyword arguments): Keyword arguments. + + Example: + + Download and prepare the dataset as Arrow files that can be loaded as a Dataset using `builder.as_dataset()`: + + ```py + >>> from datasets import load_dataset_builder + >>> builder = load_dataset_builder("rotten_tomatoes") + >>> builder.download_and_prepare() + ``` + + Download and prepare the dataset as sharded Parquet files locally: + + ```py + >>> from datasets import load_dataset_builder + >>> builder = load_dataset_builder("rotten_tomatoes") + >>> builder.download_and_prepare("./output_dir", file_format="parquet") + ``` + + Download and prepare the dataset as sharded Parquet files in a cloud storage: + + ```py + >>> from datasets import load_dataset_builder + >>> storage_options = {"key": aws_access_key_id, "secret": aws_secret_access_key} + >>> builder = load_dataset_builder("rotten_tomatoes") + >>> builder.download_and_prepare("s3://my-bucket/my_rotten_tomatoes", storage_options=storage_options, file_format="parquet") + ``` + """ + if ignore_verifications != "deprecated": + verification_mode = VerificationMode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS + warnings.warn( + "'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.", + FutureWarning, + ) + if use_auth_token != "deprecated": + warnings.warn( + "'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `token` to `load_dataset_builder` instead.", + FutureWarning, + ) + token = use_auth_token + else: + token = self.token + + if try_from_hf_gcs != "deprecated": + warnings.warn( + "'try_from_hf_gcs' was deprecated in version 2.16.0 and will be removed in 3.0.0.", + FutureWarning, + ) + else: + try_from_hf_gcs = False + + output_dir = output_dir if output_dir is not None else self._cache_dir + # output_dir can be a remote bucket on GCS or S3 (when using BeamBasedBuilder for distributed data processing) + fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) + self._fs = fs + self._output_dir = output_dir if not is_remote_filesystem(self._fs) else self._fs.unstrip_protocol(output_dir) + + download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) + verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) + base_path = base_path if base_path is not None else self.base_path + + if file_format is not None and file_format not in ["arrow", "parquet"]: + raise ValueError(f"Unsupported file_format: {file_format}. Expected 'arrow' or 'parquet'") + self._file_format = file_format + + if self._fs._strip_protocol(self._output_dir) == "": + # We don't support the root directory, because it has no dirname, + # and we need a dirname to use a .incomplete directory + # when the dataset is being written + raise RuntimeError( + f"Unable to download and prepare the dataset at the root {self._output_dir}. " + f"Please specify a subdirectory, e.g. '{self._output_dir + self.dataset_name}'" + ) + + if dl_manager is None: + if download_config is None: + download_config = DownloadConfig( + cache_dir=self._cache_downloaded_dir, + force_download=download_mode == DownloadMode.FORCE_REDOWNLOAD, + force_extract=download_mode == DownloadMode.FORCE_REDOWNLOAD, + use_etag=False, + num_proc=num_proc, + token=token, + storage_options=self.storage_options, + ) # We don't use etag for data files to speed up the process + + dl_manager = DownloadManager( + dataset_name=self.dataset_name, + download_config=download_config, + data_dir=self.config.data_dir, + base_path=base_path, + record_checksums=(self._record_infos or verification_mode == VerificationMode.ALL_CHECKS), + ) + + is_local = not is_remote_filesystem(self._fs) + + if ( + isinstance(dl_manager, MockDownloadManager) + or not is_local + or file_format != "arrow" + or max_shard_size is not None + ): + try_from_hf_gcs = False + self.dl_manager = dl_manager + + # Prevent parallel local disk operations + if is_local: + # Create parent directory of the output_dir to put the lock file in there + Path(self._output_dir).parent.mkdir(parents=True, exist_ok=True) + lock_path = self._output_dir + "_builder.lock" + + # File locking only with local paths; no file locking on GCS or S3 + with FileLock(lock_path) if is_local else contextlib.nullcontext(): + # Check if the data already exists + data_exists = self._fs.exists(posixpath.join(self._output_dir, config.DATASET_INFO_FILENAME)) + if data_exists and download_mode == DownloadMode.REUSE_DATASET_IF_EXISTS: + logger.info(f"Found cached dataset {self.dataset_name} ({self._output_dir})") + # We need to update the info in case some splits were added in the meantime + # for example when calling load_dataset from multiple workers. + self.info = self._load_info() + self.download_post_processing_resources(dl_manager) + return + + logger.info(f"Generating dataset {self.dataset_name} ({self._output_dir})") + if is_local: # if cache dir is local, check for available space + if not has_sufficient_disk_space( + self.info.size_in_bytes or 0, directory=Path(self._output_dir).parent + ): + raise OSError( + f"Not enough disk space. Needed: {size_str(self.info.size_in_bytes or 0)} (download: {size_str(self.info.download_size or 0)}, generated: {size_str(self.info.dataset_size or 0)}, post-processed: {size_str(self.info.post_processing_size or 0)})" + ) + + @contextlib.contextmanager + def incomplete_dir(dirname): + """Create temporary dir for dirname and rename on exit.""" + if not is_local: + self._fs.makedirs(dirname, exist_ok=True) + yield dirname + else: + tmp_dir = dirname + ".incomplete" + os.makedirs(tmp_dir, exist_ok=True) + try: + yield tmp_dir + if os.path.isdir(dirname): + shutil.rmtree(dirname) + # LocalFileSystem.mv does copy + rm, it is more efficient to simply rename a local directory + shutil.move(tmp_dir, dirname) + finally: + if os.path.exists(tmp_dir): + shutil.rmtree(tmp_dir) + + # Print is intentional: we want this to always go to stdout so user has + # information needed to cancel download/preparation if needed. + # This comes right before the progress bar. + if self.info.size_in_bytes: + logger.info( + f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} " + f"(download: {size_str(self.info.download_size)}, generated: {size_str(self.info.dataset_size)}, " + f"post-processed: {size_str(self.info.post_processing_size)}, " + f"total: {size_str(self.info.size_in_bytes)}) to {self._output_dir}..." + ) + else: + _dest = self._fs._strip_protocol(self._output_dir) if is_local else self._output_dir + logger.info(f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} to {_dest}...") + + self._check_manual_download(dl_manager) + + # Create a tmp dir and rename to self._output_dir on successful exit. + with incomplete_dir(self._output_dir) as tmp_output_dir: + # Temporarily assign _output_dir to tmp_data_dir to avoid having to forward + # it to every sub function. + with temporary_assignment(self, "_output_dir", tmp_output_dir): + # Try to download the already prepared dataset files + downloaded_from_gcs = False + if try_from_hf_gcs: + try: + self._download_prepared_from_hf_gcs(dl_manager.download_config) + downloaded_from_gcs = True + except (DatasetNotOnHfGcsError, MissingFilesOnHfGcsError): + logger.info("Dataset not on Hf google storage. Downloading and preparing it from source") + except ConnectionError: + logger.warning("HF google storage unreachable. Downloading and preparing it from source") + if not downloaded_from_gcs: + prepare_split_kwargs = {"file_format": file_format} + if max_shard_size is not None: + prepare_split_kwargs["max_shard_size"] = max_shard_size + if num_proc is not None: + prepare_split_kwargs["num_proc"] = num_proc + self._download_and_prepare( + dl_manager=dl_manager, + verification_mode=verification_mode, + **prepare_split_kwargs, + **download_and_prepare_kwargs, + ) + # Sync info + self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) + self.info.download_checksums = dl_manager.get_recorded_sizes_checksums() + self.info.size_in_bytes = self.info.dataset_size + self.info.download_size + # Save info + self._save_info() + + # Download post processing resources + self.download_post_processing_resources(dl_manager) + + logger.info( + f"Dataset {self.dataset_name} downloaded and prepared to {self._output_dir}. " + f"Subsequent calls will reuse this data." + ) + + def _check_manual_download(self, dl_manager): + if self.manual_download_instructions is not None and dl_manager.manual_dir is None: + raise ManualDownloadError( + textwrap.dedent( + f"""\ + The dataset {self.dataset_name} with config {self.config.name} requires manual data. + Please follow the manual download instructions: + {self.manual_download_instructions} + Manual data can be loaded with: + datasets.load_dataset("{self.dataset_name}", data_dir="")""" + ) + ) + + def _download_prepared_from_hf_gcs(self, download_config: DownloadConfig): + relative_data_dir = self._relative_data_dir(with_version=True, with_hash=False) + reader = ArrowReader(self._output_dir, self.info) + # use reader instructions to download the right files + reader.download_from_hf_gcs(download_config, relative_data_dir) + downloaded_info = DatasetInfo.from_directory(self._output_dir) + self.info.update(downloaded_info) + # download post processing resources + remote_cache_dir = HF_GCP_BASE_URL + "/" + relative_data_dir.replace(os.sep, "/") + for split in self.info.splits: + for resource_file_name in self._post_processing_resources(split).values(): + if os.sep in resource_file_name: + raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}") + try: + resource_path = cached_path(remote_cache_dir + "/" + resource_file_name) + shutil.move(resource_path, os.path.join(self._output_dir, resource_file_name)) + except ConnectionError: + logger.info(f"Couldn't download resourse file {resource_file_name} from Hf google storage.") + logger.info("Dataset downloaded from Hf google storage.") + + def _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs): + """Downloads and prepares dataset for reading. + + This is the internal implementation to overwrite called when user calls + `download_and_prepare`. It should download all required data and generate + the pre-processed datasets files. + + Args: + dl_manager ([`DownloadManager`]): + `DownloadManager` used to download and cache data. + verification_mode ([`VerificationMode`]): + if `ALL_CHECKS`, perform all the verifications including checksums. + if `BASIC_CHECKS`, do not perform checksums, only perform split tests. + if `NO_CHECKS`, do not perform any verification. + prepare_split_kwargs: Additional options, such as `file_format`, `max_shard_size` + """ + # Generating data for all splits + split_dict = SplitDict(dataset_name=self.dataset_name) + split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) + split_generators = self._split_generators(dl_manager, **split_generators_kwargs) + + # Checksums verification + if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: + verify_checksums( + self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" + ) + + # Build splits + for split_generator in split_generators: + if str(split_generator.split_info.name).lower() == "all": + raise ValueError( + "`all` is a special split keyword corresponding to the " + "union of all splits, so cannot be used as key in " + "._split_generator()." + ) + + logger.info(f"Generating {split_generator.split_info.name} split") + split_dict.add(split_generator.split_info) + + try: + # Prepare split will record examples associated to the split + self._prepare_split(split_generator, **prepare_split_kwargs) + except OSError as e: + raise OSError( + "Cannot find data file. " + + (self.manual_download_instructions or "") + + "\nOriginal error:\n" + + str(e) + ) from None + # If check_duplicates is set to True , then except DuplicatedKeysError + except DuplicatedKeysError as e: + raise DuplicatedKeysError( + e.key, + e.duplicate_key_indices, + fix_msg=f"To avoid duplicate keys, please fix the dataset script {self.name}.py", + ) from None + dl_manager.manage_extracted_files() + + if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS: + verify_splits(self.info.splits, split_dict) + + # Update the info object with the splits. + self.info.splits = split_dict + self.info.download_size = dl_manager.downloaded_size + + def download_post_processing_resources(self, dl_manager): + for split in self.info.splits or []: + for resource_name, resource_file_name in self._post_processing_resources(split).items(): + if not not is_remote_filesystem(self._fs): + raise NotImplementedError(f"Post processing is not supported on filesystem {self._fs}") + if os.sep in resource_file_name: + raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}") + resource_path = os.path.join(self._output_dir, resource_file_name) + if not os.path.exists(resource_path): + downloaded_resource_path = self._download_post_processing_resources( + split, resource_name, dl_manager + ) + if downloaded_resource_path: + logger.info(f"Downloaded post-processing resource {resource_name} as {resource_file_name}") + shutil.move(downloaded_resource_path, resource_path) + + def _load_info(self) -> DatasetInfo: + return DatasetInfo.from_directory(self._output_dir, storage_options=self._fs.storage_options) + + def _save_info(self): + file_lock = ( + FileLock(self._output_dir + "_info.lock") + if not is_remote_filesystem(self._fs) + else contextlib.nullcontext() + ) + with file_lock: + self.info.write_to_directory(self._output_dir, storage_options=self._fs.storage_options) + + def _save_infos(self): + file_lock = ( + FileLock(self._output_dir + "_infos.lock") + if not is_remote_filesystem(self._fs) + else contextlib.nullcontext() + ) + with file_lock: + DatasetInfosDict(**{self.config.name: self.info}).write_to_directory(self.get_imported_module_dir()) + + def _make_split_generators_kwargs(self, prepare_split_kwargs): + """Get kwargs for `self._split_generators()` from `prepare_split_kwargs`.""" + del prepare_split_kwargs + return {} + + def as_dataset( + self, + split: Optional[Split] = None, + run_post_process=True, + verification_mode: Optional[Union[VerificationMode, str]] = None, + ignore_verifications="deprecated", + in_memory=False, + ) -> Union[Dataset, DatasetDict]: + """Return a Dataset for the specified split. + + Args: + split (`datasets.Split`): + Which subset of the data to return. + run_post_process (`bool`, defaults to `True`): + Whether to run post-processing dataset transforms and/or add + indexes. + verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`): + Verification mode determining the checks to run on the + downloaded/processed dataset information (checksums/size/splits/...). + + + ignore_verifications (`bool`, defaults to `False`): + Whether to ignore the verifications of the + downloaded/processed dataset information (checksums/size/splits/...). + + + + `ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0. + Please use `verification_mode` instead. + + + in_memory (`bool`, defaults to `False`): + Whether to copy the data in-memory. + + Returns: + datasets.Dataset + + Example: + + ```py + >>> from datasets import load_dataset_builder + >>> builder = load_dataset_builder('rotten_tomatoes') + >>> builder.download_and_prepare() + >>> ds = builder.as_dataset(split='train') + >>> ds + Dataset({ + features: ['text', 'label'], + num_rows: 8530 + }) + ``` + """ + if ignore_verifications != "deprecated": + verification_mode = verification_mode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS + warnings.warn( + "'ignore_verifications' was deprecated in favor of 'verification' in version 2.9.1 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.", + FutureWarning, + ) + if self._file_format is not None and self._file_format != "arrow": + raise FileFormatError('Loading a dataset not written in the "arrow" format is not supported.') + if is_remote_filesystem(self._fs): + raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") + if not os.path.exists(self._output_dir): + raise FileNotFoundError( + f"Dataset {self.dataset_name}: could not find data in {self._output_dir}. Please make sure to call " + "builder.download_and_prepare(), or use " + "datasets.load_dataset() before trying to access the Dataset object." + ) + + logger.debug(f'Constructing Dataset for split {split or ", ".join(self.info.splits)}, from {self._output_dir}') + + # By default, return all splits + if split is None: + split = {s: s for s in self.info.splits} + + verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) + + # Create a dataset for each of the given splits + datasets = map_nested( + partial( + self._build_single_dataset, + run_post_process=run_post_process, + verification_mode=verification_mode, + in_memory=in_memory, + ), + split, + map_tuple=True, + disable_tqdm=True, + ) + if isinstance(datasets, dict): + datasets = DatasetDict(datasets) + return datasets + + def _build_single_dataset( + self, + split: Union[str, ReadInstruction, Split], + run_post_process: bool, + verification_mode: VerificationMode, + in_memory: bool = False, + ): + """as_dataset for a single split.""" + if not isinstance(split, ReadInstruction): + split = str(split) + if split == "all": + split = "+".join(self.info.splits.keys()) + split = Split(split) + + # Build base dataset + ds = self._as_dataset( + split=split, + in_memory=in_memory, + ) + if run_post_process: + for resource_file_name in self._post_processing_resources(split).values(): + if os.sep in resource_file_name: + raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}") + resources_paths = { + resource_name: os.path.join(self._output_dir, resource_file_name) + for resource_name, resource_file_name in self._post_processing_resources(split).items() + } + post_processed = self._post_process(ds, resources_paths) + if post_processed is not None: + ds = post_processed + recorded_checksums = {} + record_checksums = False + for resource_name, resource_path in resources_paths.items(): + size_checksum = get_size_checksum_dict(resource_path) + recorded_checksums[resource_name] = size_checksum + if verification_mode == VerificationMode.ALL_CHECKS and record_checksums: + if self.info.post_processed is None or self.info.post_processed.resources_checksums is None: + expected_checksums = None + else: + expected_checksums = self.info.post_processed.resources_checksums.get(split) + verify_checksums(expected_checksums, recorded_checksums, "post processing resources") + if self.info.post_processed is None: + self.info.post_processed = PostProcessedInfo() + if self.info.post_processed.resources_checksums is None: + self.info.post_processed.resources_checksums = {} + self.info.post_processed.resources_checksums[str(split)] = recorded_checksums + self.info.post_processing_size = sum( + checksums_dict["num_bytes"] + for split_checksums_dicts in self.info.post_processed.resources_checksums.values() + for checksums_dict in split_checksums_dicts.values() + ) + if self.info.dataset_size is not None and self.info.download_size is not None: + self.info.size_in_bytes = ( + self.info.dataset_size + self.info.download_size + self.info.post_processing_size + ) + self._save_info() + ds._info.post_processed = self.info.post_processed + ds._info.post_processing_size = self.info.post_processing_size + ds._info.size_in_bytes = self.info.size_in_bytes + if self.info.post_processed.features is not None: + if self.info.post_processed.features.type != ds.features.type: + raise ValueError( + f"Post-processed features info don't match the dataset:\nGot\n{self.info.post_processed.features}\nbut expected something like\n{ds.features}" + ) + else: + ds.info.features = self.info.post_processed.features + + return ds + + def _as_dataset(self, split: Union[ReadInstruction, Split] = Split.TRAIN, in_memory: bool = False) -> Dataset: + """Constructs a `Dataset`. + + This is the internal implementation to overwrite called when user calls + `as_dataset`. It should read the pre-processed datasets files and generate + the `Dataset` object. + + Args: + split (`datasets.Split`): + which subset of the data to read. + in_memory (`bool`, defaults to `False`): + Whether to copy the data in-memory. + + Returns: + `Dataset` + """ + cache_dir = self._fs._strip_protocol(self._output_dir) + dataset_name = self.dataset_name + if self._check_legacy_cache(): + dataset_name = self.name + dataset_kwargs = ArrowReader(cache_dir, self.info).read( + name=dataset_name, + instructions=split, + split_infos=self.info.splits.values(), + in_memory=in_memory, + ) + fingerprint = self._get_dataset_fingerprint(split) + return Dataset(fingerprint=fingerprint, **dataset_kwargs) + + def _get_dataset_fingerprint(self, split: Union[ReadInstruction, Split]) -> str: + """The dataset fingerprint is the hash of the relative directory dataset_name/config_name/version/hash, as well as the split specs.""" + hasher = Hasher() + hasher.update(Path(self._relative_data_dir()).as_posix()) + hasher.update(str(split)) # for example: train, train+test, train[:10%], test[:33%](pct1_dropremainder) + fingerprint = hasher.hexdigest() + return fingerprint + + def as_streaming_dataset( + self, + split: Optional[str] = None, + base_path: Optional[str] = None, + ) -> Union[Dict[str, IterableDataset], IterableDataset]: + if is_remote_filesystem(self._fs): + raise NotImplementedError( + f"Loading a streaming dataset cached in a {type(self._fs).__name__} is not supported yet." + ) + + dl_manager = StreamingDownloadManager( + base_path=base_path or self.base_path, + download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), + dataset_name=self.dataset_name, + data_dir=self.config.data_dir, + ) + self._check_manual_download(dl_manager) + splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)} + # By default, return all splits + if split is None: + splits_generator = splits_generators + elif split in splits_generators: + splits_generator = splits_generators[split] + else: + raise ValueError(f"Bad split: {split}. Available splits: {list(splits_generators)}") + + # Create a dataset for each of the given splits + datasets = map_nested( + self._as_streaming_dataset_single, + splits_generator, + map_tuple=True, + ) + if isinstance(datasets, dict): + datasets = IterableDatasetDict(datasets) + return datasets + + def _as_streaming_dataset_single( + self, + splits_generator, + ) -> IterableDataset: + ex_iterable = self._get_examples_iterable_for_split(splits_generator) + # add auth to be able to access and decode audio/image files from private repositories. + token_per_repo_id = {self.repo_id: self.token} if self.repo_id else {} + return IterableDataset( + ex_iterable, info=self.info, split=splits_generator.name, token_per_repo_id=token_per_repo_id + ) + + def _post_process(self, dataset: Dataset, resources_paths: Mapping[str, str]) -> Optional[Dataset]: + """Run dataset transforms or add indexes""" + return None + + def _post_processing_resources(self, split: str) -> Dict[str, str]: + """Mapping resource_name -> resource_file_name""" + return {} + + def _download_post_processing_resources( + self, split: str, resource_name: str, dl_manager: DownloadManager + ) -> Optional[str]: + """Download the resource using the download manager and return the downloaded path.""" + return None + + @abc.abstractmethod + def _split_generators(self, dl_manager: Union[DownloadManager, StreamingDownloadManager]): + """Specify feature dictionary generators and dataset splits. + + This function returns a list of `SplitGenerator`s defining how to generate + data and what splits to use. + + Example: + + return [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, + gen_kwargs={'file': 'train_data.zip'}, + ), + datasets.SplitGenerator( + name=datasets.Split.TEST, + gen_kwargs={'file': 'test_data.zip'}, + ), + ] + + The above code will first call `_generate_examples(file='train_data.zip')` + to write the train data, then `_generate_examples(file='test_data.zip')` to + write the test data. + + Datasets are typically split into different subsets to be used at various + stages of training and evaluation. + + Note that for datasets without a `VALIDATION` split, you can use a + fraction of the `TRAIN` data for evaluation as you iterate on your model + so as not to overfit to the `TEST` data. + + For downloads and extractions, use the given `download_manager`. + Note that the `DownloadManager` caches downloads, so it is fine to have each + generator attempt to download the source data. + + A good practice is to download all data in this function, and then + distribute the relevant parts to each split with the `gen_kwargs` argument + + Args: + dl_manager (`Union[DownloadManager, StreamingDownloadManager]`): + Download manager to download the data + + Returns: + `list`. + """ + raise NotImplementedError() + + @abc.abstractmethod + def _prepare_split( + self, + split_generator: SplitGenerator, + file_format: str = "arrow", + max_shard_size: Optional[Union[str, int]] = None, + num_proc: Optional[int] = None, + **kwargs, + ): + """Generate the examples and record them on disk. + + Args: + split_generator (`SplitGenerator`): + Split generator to process + file_format (`str`, *optional*): + format of the data files in which the dataset will be written. + Supported formats: "arrow", "parquet". Default to "arrow" format. + max_shard_size (`Union[str, int]`, *optional*): + Maximum number of bytes written per shard, default is "500MB". + The size is based on uncompressed data size, so in practice your shard files may be smaller than + `max_shard_size` thanks to Parquet compression for example. + num_proc (`int`, *optional*, defaults to `None`): + Number of processes when downloading and generating the dataset locally. + Multiprocessing is disabled by default. + + + **kwargs: Additional kwargs forwarded from _download_and_prepare (ex: + beam pipeline) + """ + raise NotImplementedError() + + def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: + """Generate the examples on the fly. + + Args: + split_generator (`SplitGenerator`): + Split generator to process + """ + raise NotImplementedError() + + +class GeneratorBasedBuilder(DatasetBuilder): + """Base class for datasets with data generation based on dict generators. + + `GeneratorBasedBuilder` is a convenience class that abstracts away much + of the data writing and reading of `DatasetBuilder`. It expects subclasses to + implement generators of feature dictionaries across the dataset splits + (`_split_generators`). See the method docstrings for details. + """ + + @abc.abstractmethod + def _generate_examples(self, **kwargs): + """Default function generating examples for each `SplitGenerator`. + + This function preprocess the examples from the raw data to the preprocessed + dataset files. + This function is called once for each `SplitGenerator` defined in + `_split_generators`. The examples yielded here will be written on + disk. + + Args: + **kwargs (additional keyword arguments): + Arguments forwarded from the SplitGenerator.gen_kwargs + + Yields: + key: `str` or `int`, a unique deterministic example identification key. + * Unique: An error will be raised if two examples are yield with the + same key. + * Deterministic: When generating the dataset twice, the same example + should have the same key. + Good keys can be the image id, or line number if examples are extracted + from a text file. + The key will be hashed and sorted to shuffle examples deterministically, + such as generating the dataset multiple times keep examples in the + same order. + example: `dict`, a feature dictionary + ready to be encoded and written to disk. The example will be + encoded with `self.info.features.encode_example({...})`. + """ + raise NotImplementedError() + + def _prepare_split( + self, + split_generator: SplitGenerator, + check_duplicate_keys: bool, + file_format="arrow", + num_proc: Optional[int] = None, + max_shard_size: Optional[Union[int, str]] = None, + ): + max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE) + + if self.info.splits is not None: + split_info = self.info.splits[split_generator.name] + else: + split_info = split_generator.split_info + + SUFFIX = "-JJJJJ-SSSSS-of-NNNNN" + fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}" + fpath = posixpath.join(self._output_dir, fname) + + if num_proc and num_proc > 1: + num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) + if num_input_shards <= 1: + logger.warning( + f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard." + ) + num_proc = 1 + elif num_input_shards < num_proc: + logger.warning( + f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards." + ) + num_proc = num_input_shards + + pbar = hf_tqdm( + unit=" examples", + total=split_info.num_examples, + desc=f"Generating {split_info.name} split", + ) + + _prepare_split_args = { + "fpath": fpath, + "file_format": file_format, + "max_shard_size": max_shard_size, + "split_info": split_info, + "check_duplicate_keys": check_duplicate_keys, + } + + if num_proc is None or num_proc == 1: + result = None + gen_kwargs = split_generator.gen_kwargs + job_id = 0 + with pbar: + for job_id, done, content in self._prepare_split_single( + gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args + ): + if done: + result = content + else: + pbar.update(content) + # wrapping everything into lists for consistency with the multiprocessed code path + assert result is not None, "Failed to retrieve results from prepare_split" + examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [ + [item] for item in result + ] + else: + kwargs_per_job = [ + {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} + for job_id, gen_kwargs in enumerate( + _split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc) + ) + ] + num_jobs = len(kwargs_per_job) + + examples_per_job = [None] * num_jobs + bytes_per_job = [None] * num_jobs + features_per_job = [None] * num_jobs + shards_per_job = [None] * num_jobs + shard_lengths_per_job = [None] * num_jobs + + with Pool(num_proc) as pool: + with pbar: + for job_id, done, content in iflatmap_unordered( + pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job + ): + if done: + # the content is the result of the job + ( + examples_per_job[job_id], + bytes_per_job[job_id], + features_per_job[job_id], + shards_per_job[job_id], + shard_lengths_per_job[job_id], + ) = content + else: + # the content is the number of examples progress update + pbar.update(content) + + assert ( + None not in examples_per_job + ), f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results" + + total_shards = sum(shards_per_job) + total_num_examples = sum(examples_per_job) + total_num_bytes = sum(bytes_per_job) + features = features_per_job[0] + + split_generator.split_info.num_examples = total_num_examples + split_generator.split_info.num_bytes = total_num_bytes + + # should rename everything at the end + logger.debug(f"Renaming {total_shards} shards.") + if total_shards > 1: + # use the -SSSSS-of-NNNNN pattern + + def _rename_shard(shard_and_job: Tuple[int]): + shard_id, job_id = shard_and_job + global_shard_id = sum(shards_per_job[:job_id]) + shard_id + self._rename( + fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"), + ) + + shards_and_jobs = [ + (shard_id, job_id) + for job_id, num_shards in enumerate(shards_per_job) + for shard_id in range(num_shards) + ] + thread_map(_rename_shard, shards_and_jobs, disable=True, max_workers=64) + + split_generator.split_info.shard_lengths = [ + shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths + ] + else: + # don't use any pattern + shard_id, job_id = 0, 0 + self._rename( + fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + fpath.replace(SUFFIX, ""), + ) + + if self.info.features is None: + self.info.features = features + + def _prepare_split_single( + self, + gen_kwargs: dict, + fpath: str, + file_format: str, + max_shard_size: int, + split_info: SplitInfo, + check_duplicate_keys: bool, + job_id: int, + ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: + generator = self._generate_examples(**gen_kwargs) + writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter + embed_local_files = file_format == "parquet" + shard_lengths = [] + total_num_examples, total_num_bytes = 0, 0 + + shard_id = 0 + num_examples_progress_update = 0 + try: + writer = writer_class( + features=self.info.features, + path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + writer_batch_size=self._writer_batch_size, + hash_salt=split_info.name, + check_duplicates=check_duplicate_keys, + storage_options=self._fs.storage_options, + embed_local_files=embed_local_files, + ) + try: + _time = time.time() + for key, record in generator: + if max_shard_size is not None and writer._num_bytes > max_shard_size: + num_examples, num_bytes = writer.finalize() + writer.close() + shard_lengths.append(num_examples) + total_num_examples += num_examples + total_num_bytes += num_bytes + shard_id += 1 + writer = writer_class( + features=writer._features, + path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + writer_batch_size=self._writer_batch_size, + hash_salt=split_info.name, + check_duplicates=check_duplicate_keys, + storage_options=self._fs.storage_options, + embed_local_files=embed_local_files, + ) + example = self.info.features.encode_example(record) if self.info.features is not None else record + writer.write(example, key) + num_examples_progress_update += 1 + if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL: + _time = time.time() + yield job_id, False, num_examples_progress_update + num_examples_progress_update = 0 + finally: + yield job_id, False, num_examples_progress_update + num_shards = shard_id + 1 + num_examples, num_bytes = writer.finalize() + writer.close() + shard_lengths.append(num_examples) + total_num_examples += num_examples + total_num_bytes += num_bytes + except Exception as e: + # Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded + if isinstance(e, SchemaInferenceError) and e.__context__ is not None: + e = e.__context__ + raise DatasetGenerationError("An error occurred while generating the dataset") from e + + yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) + + def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): + super()._download_and_prepare( + dl_manager, + verification_mode, + check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS + or verification_mode == VerificationMode.ALL_CHECKS, + **prepare_splits_kwargs, + ) + + def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: + return ExamplesIterable(self._generate_examples, split_generator.gen_kwargs) + + +class ArrowBasedBuilder(DatasetBuilder): + """Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet).""" + + @abc.abstractmethod + def _generate_tables(self, **kwargs): + """Default function generating examples for each `SplitGenerator`. + + This function preprocess the examples from the raw data to the preprocessed + dataset files. + This function is called once for each `SplitGenerator` defined in + `_split_generators`. The examples yielded here will be written on + disk. + + Args: + **kwargs (additional keyword arguments): + Arguments forwarded from the SplitGenerator.gen_kwargs + + Yields: + key: `str` or `int`, a unique deterministic example identification key. + * Unique: An error will be raised if two examples are yield with the + same key. + * Deterministic: When generating the dataset twice, the same example + should have the same key. + Good keys can be the image id, or line number if examples are extracted + from a text file. + The key will be hashed and sorted to shuffle examples deterministically, + such as generating the dataset multiple times keep examples in the + same order. + example: `pyarrow.Table`, a feature table + ready to be encoded and written to disk. + """ + raise NotImplementedError() + + def _prepare_split( + self, + split_generator: SplitGenerator, + file_format: str = "arrow", + num_proc: Optional[int] = None, + max_shard_size: Optional[Union[str, int]] = None, + ): + max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE) + + try: + split_info = self.info.splits[split_generator.name] + except Exception: + split_info = split_generator.split_info + + SUFFIX = "-JJJJJ-SSSSS-of-NNNNN" + fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}" + fpath = posixpath.join(self._output_dir, fname) + + if num_proc and num_proc > 1: + num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) + if num_input_shards <= 1: + logger.warning( + f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard." + ) + num_proc = 1 + elif num_input_shards < num_proc: + logger.warning( + f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards." + ) + num_proc = num_input_shards + + pbar = hf_tqdm( + unit=" examples", + total=split_info.num_examples, + desc=f"Generating {split_info.name} split", + ) + + _prepare_split_args = { + "fpath": fpath, + "file_format": file_format, + "max_shard_size": max_shard_size, + } + + if num_proc is None or num_proc == 1: + result = None + gen_kwargs = split_generator.gen_kwargs + job_id = 0 + with pbar: + for job_id, done, content in self._prepare_split_single( + gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args + ): + if done: + result = content + else: + pbar.update(content) + # wrapping everything into lists for consistency with the multiprocessed code path + assert result is not None, "Failed to retrieve results from prepare_split" + examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [ + [item] for item in result + ] + else: + kwargs_per_job = [ + {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} + for job_id, gen_kwargs in enumerate( + _split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc) + ) + ] + num_jobs = len(kwargs_per_job) + + examples_per_job = [None] * num_jobs + bytes_per_job = [None] * num_jobs + features_per_job = [None] * num_jobs + shards_per_job = [None] * num_jobs + shard_lengths_per_job = [None] * num_jobs + + with Pool(num_proc) as pool: + with pbar: + for job_id, done, content in iflatmap_unordered( + pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job + ): + if done: + # the content is the result of the job + ( + examples_per_job[job_id], + bytes_per_job[job_id], + features_per_job[job_id], + shards_per_job[job_id], + shard_lengths_per_job[job_id], + ) = content + else: + # the content is the number of examples progress update + pbar.update(content) + + assert ( + None not in examples_per_job + ), f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results" + + total_shards = sum(shards_per_job) + total_num_examples = sum(examples_per_job) + total_num_bytes = sum(bytes_per_job) + features = features_per_job[0] + + split_generator.split_info.num_examples = total_num_examples + split_generator.split_info.num_bytes = total_num_bytes + + # should rename everything at the end + logger.debug(f"Renaming {total_shards} shards.") + if total_shards > 1: + # use the -SSSSS-of-NNNNN pattern + + def _rename_shard(shard_id_and_job: Tuple[int]): + shard_id, job_id = shard_id_and_job + global_shard_id = sum(shards_per_job[:job_id]) + shard_id + self._rename( + fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"), + ) + + shard_ids_and_jobs = [ + (shard_id, job_id) + for job_id, num_shards in enumerate(shards_per_job) + for shard_id in range(num_shards) + ] + thread_map(_rename_shard, shard_ids_and_jobs, disable=True, max_workers=64) + + split_generator.split_info.shard_lengths = [ + shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths + ] + else: + # don't use any pattern + shard_id, job_id = 0, 0 + self._rename( + fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + fpath.replace(SUFFIX, ""), + ) + + if self.info.features is None: + self.info.features = features + + def _prepare_split_single( + self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int + ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: + gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()} + generator = self._generate_tables(**gen_kwargs) + writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter + embed_local_files = file_format == "parquet" + shard_lengths = [] + total_num_examples, total_num_bytes = 0, 0 + + shard_id = 0 + num_examples_progress_update = 0 + try: + writer = writer_class( + features=self.info.features, + path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + writer_batch_size=self._writer_batch_size, + storage_options=self._fs.storage_options, + embed_local_files=embed_local_files, + ) + try: + _time = time.time() + for _, table in generator: + if max_shard_size is not None and writer._num_bytes > max_shard_size: + num_examples, num_bytes = writer.finalize() + writer.close() + shard_lengths.append(num_examples) + total_num_examples += num_examples + total_num_bytes += num_bytes + shard_id += 1 + writer = writer_class( + features=writer._features, + path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), + writer_batch_size=self._writer_batch_size, + storage_options=self._fs.storage_options, + embed_local_files=embed_local_files, + ) + try: + writer.write_table(table) + except CastError as cast_error: + raise DatasetGenerationCastError.from_cast_error( + cast_error=cast_error, + builder_name=self.info.builder_name, + gen_kwargs=gen_kwargs, + token=self.token, + ) + num_examples_progress_update += len(table) + if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL: + _time = time.time() + yield job_id, False, num_examples_progress_update + num_examples_progress_update = 0 + finally: + yield job_id, False, num_examples_progress_update + num_shards = shard_id + 1 + num_examples, num_bytes = writer.finalize() + writer.close() + shard_lengths.append(num_examples) + total_num_examples += num_examples + total_num_bytes += num_bytes + except Exception as e: + # Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded + if isinstance(e, SchemaInferenceError) and e.__context__ is not None: + e = e.__context__ + if isinstance(e, DatasetGenerationError): + raise + raise DatasetGenerationError("An error occurred while generating the dataset") from e + + yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) + + def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: + return ArrowExamplesIterable(self._generate_tables, kwargs=split_generator.gen_kwargs) + + +class MissingBeamOptions(ValueError): + pass + + +@deprecated("Use `GeneratorBasedBuilder` or `ArrowBasedBuilder` instead.") +class BeamBasedBuilder(DatasetBuilder): + """Beam-based Builder.""" + + def __init__(self, *args, beam_runner=None, beam_options=None, **kwargs): + self._beam_runner = beam_runner + self._beam_options = beam_options + self._beam_writers = {} # {split: beam_writer} mapping. + super().__init__(*args, **kwargs) + + def _make_split_generators_kwargs(self, prepare_split_kwargs): + # Pass `pipeline` into `_split_generators()` from `prepare_split_kwargs` if + # it's in the call signature of `_split_generators()`. + # This allows for global preprocessing in beam. + split_generators_kwargs = {} + split_generators_arg_names = inspect.signature(self._split_generators).parameters.keys() + if "pipeline" in split_generators_arg_names: + split_generators_kwargs["pipeline"] = prepare_split_kwargs["pipeline"] + return split_generators_kwargs + + @abc.abstractmethod + def _build_pcollection(self, pipeline, **kwargs): + """Build the beam pipeline examples for each `SplitGenerator`. + + This function extracts examples from the raw data with parallel transforms + in a Beam pipeline. It is called once for each `SplitGenerator` defined in + `_split_generators`. The examples from the PCollection will be + encoded and written to disk. + + + Warning: When running in a distributed setup, make sure that the data + which will be read (download_dir, manual_dir,...) and written (cache_dir) + can be accessed by the workers jobs. The data should be located in a + shared filesystem, like GCS. + + + Args: + pipeline ([`utils.beam_utils.BeamPipeline`]): + Apache Beam pipeline. + **kwargs (additional keyword arguments): + Arguments forwarded from the SplitGenerator.gen_kwargs. + + Returns: + `beam.PCollection`: Apache Beam PCollection containing the + example to send to `self.info.features.encode_example(...)`. + + Example: + + ``` + def _build_pcollection(pipeline, extracted_dir=None): + return ( + pipeline + | beam.Create(gfile.io.listdir(extracted_dir)) + | beam.Map(_process_file) + ) + ``` + """ + raise NotImplementedError() + + def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): + # Create the Beam pipeline and forward it to `_prepare_split` + import apache_beam as beam + + import datasets.utils.beam_utils as beam_utils + + beam_runner = self._beam_runner + beam_options = self._beam_options + + if not beam_runner and not beam_options: + usage_example = f"load_dataset('{self.name}', '{self.config.name}', beam_runner='DirectRunner')" + raise MissingBeamOptions( + "Trying to generate a dataset using Apache Beam, yet no Beam Runner " + "or PipelineOptions() has been provided in `load_dataset` or in the " + "builder arguments. For big datasets it has to run on large-scale data " + "processing tools like Dataflow, Spark, etc. More information about " + "Apache Beam runners at " + "https://beam.apache.org/documentation/runners/capability-matrix/" + "\nIf you really want to run it locally because you feel like the " + "Dataset is small enough, you can use the local beam runner called " + "`DirectRunner` (you may run out of memory). \nExample of usage: " + f"\n\t`{usage_example}`" + ) + if self._writer_batch_size is not None: + logger.warning( + "`writer_batch_size` is not supported for beam pipelines yet. Using the default chunk size for writing." + ) + + # Beam type checking assumes transforms multiple outputs are of same type, + # which is not our case. Plus it doesn't handle correctly all types, so we + # are better without it. + pipeline_options = {"pipeline_type_check": False} + if "num_proc" in prepare_splits_kwargs: + num_workers = prepare_splits_kwargs.pop("num_proc") + pipeline_options["direct_num_workers"] = num_workers + pipeline_options["num_workers"] = num_workers + pipeline_options["direct_running_mode"] = "multi_processing" + # TODO: Fix ModuleNotFoundError: No module named 'datasets_modules' when running multiprocessed DirectRunner + raise NotImplementedError("Using a DirectRunner with `num_proc` for multiprocessing it not supported yet.") + beam_options = beam_options or beam.options.pipeline_options.PipelineOptions.from_dictionary(pipeline_options) + # Use a single pipeline for all splits + pipeline = beam_utils.BeamPipeline( + runner=beam_runner, + options=beam_options, + ) + super()._download_and_prepare( + dl_manager, verification_mode=VerificationMode.NO_CHECKS, pipeline=pipeline, **prepare_splits_kwargs + ) # TODO handle verification_mode in beam datasets + # Run pipeline + pipeline_results = pipeline.run() + pipeline_results.wait_until_finish() + metrics = pipeline_results.metrics() + # Update `info.splits`. + split_dict = self.info.splits + for split_name, beam_writer in self._beam_writers.items(): + m_filter = beam.metrics.MetricsFilter().with_namespace(namespace=split_name) + num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter)) + split_info = split_dict[split_name] + split_info.num_examples = num_examples + split_info.num_bytes = num_bytes + if hasattr(beam_writer, "_shard_lengths") and len(beam_writer._shard_lengths) > 1: + # keep the -SSSSS-of-NNNNN pattern + split_info.shard_lengths = beam_writer._shard_lengths + else: + # don't use any pattern + file_format = prepare_splits_kwargs.get("file_format", "arrow") + src_fname = f"{self.dataset_name}-{split_name}-00000-of-00001.{file_format}" + dst_fname = f"{self.dataset_name}-{split_name}.{file_format}" + src_fpath = posixpath.join(self._output_dir, src_fname) + dst_fpath = posixpath.join(self._output_dir, dst_fname) + self._rename(src_fpath, dst_fpath) + + def _save_info(self): + download_config = ( + self.dl_manager.download_config + if self.dl_manager + else DownloadConfig(token=self.token, storage_options=self._fs.storage_options) + ) + with xopen(f"{self._output_dir}/{config.DATASET_INFO_FILENAME}", "wb", download_config=download_config) as f: + self.info._dump_info(f) + if self.info.license: + with xopen(f"{self._output_dir}/{config.LICENSE_FILENAME}", "wb", download_config=download_config) as f: + self.info._dump_license(f) + + def _prepare_split( + self, split_generator, pipeline, file_format="arrow", max_shard_size: Optional[Union[str, int]] = None + ): + import apache_beam as beam + + if max_shard_size is not None: + raise NotImplementedError( + "max_shard_size is not supported for Beam datasets." + "Please set it to None to use the default Apache Beam sharding and get the best performance." + ) + + # To write examples in filesystem: + split_name = split_generator.split_info.name + fname = f"{self.dataset_name}-{split_name}.{file_format}" + fpath = posixpath.join(self._output_dir, fname) + beam_writer = BeamWriter( + features=self.info.features, path=fpath, namespace=split_name, cache_dir=self._output_dir + ) + self._beam_writers[split_name] = beam_writer + + encode_example = self.info.features.encode_example + + # Note: We need to wrap the pipeline in a PTransform to avoid re-using the + # same label names for each split + @beam.ptransform_fn + def _build_pcollection(pipeline): + """PTransformation which build a single split.""" + # Encode the PCollection + pcoll_examples = self._build_pcollection(pipeline, **split_generator.gen_kwargs) + pcoll_examples |= "Encode" >> beam.Map(lambda key_ex: (key_ex[0], encode_example(key_ex[1]))) + return beam_writer.write_from_pcollection(pcoll_examples) + + # Add the PCollection to the pipeline + _ = pipeline | split_name >> _build_pcollection() # pylint: disable=no-value-for-parameter max_bytes_per_shard + + def as_streaming_dataset( + self, + split: Optional[str] = None, + ) -> Union[Dict[str, IterableDataset], IterableDataset]: + self._request_info_from_hf_gcs() + datasets = { + split.name: IterableDataset(self._get_examples_iterable_for_split(split), info=self.info, split=split.name) + for split in self.info.splits.values() + } + if split: + try: + datasets = datasets[split] + except KeyError: + raise ValueError(f"Bad split: {split}. Available splits: {list(datasets)}") + if isinstance(datasets, dict): + datasets = IterableDatasetDict(datasets) + return datasets + + def _get_examples_iterable_for_split(self, split: SplitInfo) -> ExamplesIterable: + return ExamplesIterable(self._generate_examples_from_hf_gcs, {"split": split}) + + def _generate_examples_from_hf_gcs(self, split: SplitInfo): + if split.shard_lengths: + num_shards = len(split.shard_lengths) + remote_prepared_urls = [ + f"{self._remote_cache_dir_from_hf_gcs}/{self.name}-{split.name}-{shard_id:05d}-of-{num_shards:05d}.arrow" + for shard_id in range(num_shards) + ] + else: + remote_prepared_urls = [f"{self._remote_cache_dir_from_hf_gcs}/{self.name}-{split.name}.arrow"] + key = 0 + download_config = ( + self.dl_manager.download_config + if self.dl_manager + else DownloadConfig(token=self.token, storage_options=self._fs.storage_options) + ) + for remote_prepared_url in remote_prepared_urls: + with xopen(remote_prepared_url, "rb", download_config=download_config) as f: + with pa.ipc.open_stream(f) as reader: + for record_batch in reader: + for record in record_batch.to_pylist(): + yield key, record + key += 1 + + def _request_info_from_hf_gcs(self): + from .download.streaming_download_manager import xopen + + remote_dataset_info = f"{self._remote_cache_dir_from_hf_gcs}/{config.DATASET_INFO_FILENAME}" + try: + download_config = download_config = ( + self.dl_manager.download_config + if self.dl_manager + else DownloadConfig(token=self.token, storage_options=self._fs.storage_options) + ) + with xopen(remote_dataset_info, download_config=download_config) as f: + import json + + _info = json.load(f) + except FileNotFoundError as err: + raise DatasetNotOnHfGcsError(err) from None + self.info.update(DatasetInfo.from_dict(_info)) + + @property + def _remote_cache_dir_from_hf_gcs(self): + relative_data_dir = self._relative_data_dir(with_hash=False) + return HF_GCP_BASE_URL + "/" + Path(relative_data_dir).as_posix()