diff --git "a/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py" "b/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py" @@ -0,0 +1,2389 @@ +import copy +import itertools +import sys +import warnings +from collections import Counter +from copy import deepcopy +from dataclasses import dataclass +from functools import partial +from itertools import cycle, islice +from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union + +import fsspec.asyn +import numpy as np +import pyarrow as pa + +from . import config +from .arrow_dataset import Dataset, DatasetInfoMixin +from .features import Features +from .features.features import FeatureType, _align_features, _check_if_features_can_be_aligned, cast_to_python_objects +from .formatting import PythonFormatter, TensorFormatter, get_format_type_from_alias, get_formatter +from .info import DatasetInfo +from .splits import NamedSplit +from .table import cast_table_to_features, read_schema_from_file, table_cast +from .utils.logging import get_logger +from .utils.py_utils import Literal +from .utils.sharding import _merge_gen_kwargs, _number_of_shards_in_gen_kwargs, _shuffle_gen_kwargs, _split_gen_kwargs + + +logger = get_logger(__name__) + +Key = Union[int, str] + + +def identity_func(x): + return x + + +def _rename_columns_fn(example: Dict, column_mapping: Dict[str, str]): + if any(col not in example for col in column_mapping): + raise ValueError( + f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(column_mapping) - set(example)} are not in the dataset." + ) + if any(col in example for col in column_mapping.values()): + raise ValueError( + f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(example) - set(column_mapping.values())} are already in the dataset." + ) + return { + new_column_name: example[original_column_name] + for original_column_name, new_column_name in column_mapping.items() + } + + +def add_column_fn(example: Dict, idx: int, name: str, column: List[Dict]): + if name in example: + raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.") + return {name: column[idx]} + + +def _infer_features_from_batch(batch: Dict[str, list], try_features: Optional[Features] = None) -> Features: + pa_table = pa.Table.from_pydict(batch) + if try_features is not None: + try: + pa_table = table_cast(pa_table, pa.schema(try_features.type)) + except (TypeError, pa.ArrowInvalid, pa.ArrowNotImplementedError): + pass + return Features.from_arrow_schema(pa_table.schema) + + +def _examples_to_batch(examples: List[Dict[str, Any]]) -> Dict[str, list]: + # we order the columns by order of appearance + # to do so, we use a dict as an ordered set + cols = {col: None for example in examples for col in example} + # when an example is missing a column, we set the value to None with .get() + arrays = [[example.get(col) for example in examples] for col in cols] + return dict(zip(cols, arrays)) + + +def _batch_to_examples(batch: Dict[str, list]) -> List[Dict[str, Any]]: + """Convert a batch (dict of examples) to examples list""" + n_examples = len(batch[next(iter(batch))]) + for i in range(n_examples): + yield {col: array[i] for col, array in batch.items()} + + +class _HasNextIterator(Iterator): + """Iterator with an hasnext() function. Taken from https://stackoverflow.com/questions/1966591/has-next-in-python-iterators.""" + + def __init__(self, it): + self.it = iter(it) + self._hasnext = None + + def __iter__(self): + return self + + def __next__(self): + if self._hasnext: + result = self._thenext + else: + result = next(self.it) + self._hasnext = None + return result + + def hasnext(self): + if self._hasnext is None: + try: + self._thenext = next(self.it) + except StopIteration: + self._hasnext = False + else: + self._hasnext = True + return self._hasnext + + +def _convert_to_arrow( + iterable: Iterable[Tuple[Key, dict]], + batch_size: int, + drop_last_batch: bool = False, +) -> Iterator[Tuple[Key, pa.Table]]: + """Convert and group examples in Arrow tables of size `batch_size`. + + Args: + iterable (`Iterable[Tuple[Key, dict]]`): + An examples iterable containing tuples (example_key, example) of type (int/str, dict) + batch_size (`Optional[int]`): + Size of each sub-table to yield. If None or <= 0, yields the full table. + drop_last_batch (`bool`, defaults to `False`): + Drop the last batch if it is smaller than `batch_size`. + """ + if batch_size is None or batch_size <= 0: + yield ( + "all", + pa.Table.from_pylist(cast_to_python_objects([example for _, example in iterable], only_1d_for_numpy=True)), + ) + return + iterator = iter(iterable) + for key, example in iterator: + iterator_batch = islice(iterator, batch_size - 1) + key_examples_list = [(key, example)] + list(iterator_batch) + if len(key_examples_list) < batch_size and drop_last_batch: + return + keys, examples = zip(*key_examples_list) + new_key = "_".join(str(key) for key in keys) + yield new_key, pa.Table.from_pylist(cast_to_python_objects(examples, only_1d_for_numpy=True)) + + +def _batch_arrow_tables( + iterable: Iterable[Tuple[Key, pa.Table]], + batch_size: Optional[int], + drop_last_batch: bool = False, +) -> Iterator[Tuple[Key, pa.Table]]: + """Iterate over sub-tables of size `batch_size`. + + Args: + iterable (`Iterable[Tuple[Key, pa.Table]]`): + A tables iterable containing tuples (table_key, table) of type (int/str, pa.Table) + batch_size (`Optional[int]`): + Size of each sub-table to yield. If None or <= 0, yields the full table. + drop_last_batch (`bool`, defaults to `False`): + Drop the last batch if it is smaller than `batch_size`. + """ + if batch_size is None or batch_size <= 0: + yield "all", pa.concat_tables([pa_table for _, pa_table in iterable]) + return + keys_buffer = [] + chunks_buffer = [] + chunks_buffer_size = 0 + for key, pa_table in iterable: + for chunk in pa_table.to_reader(max_chunksize=batch_size): + if len(chunk) == 0: + continue + elif chunks_buffer_size + len(chunk) < batch_size: + keys_buffer.append(key) + chunks_buffer.append(chunk) + chunks_buffer_size += len(chunk) + continue + elif chunks_buffer_size + len(chunk) == batch_size: + keys_buffer.append(key) + chunks_buffer.append(chunk) + new_key = "_".join(str(_key) for _key in keys_buffer) + yield new_key, pa.Table.from_batches(chunks_buffer) + keys_buffer = [] + chunks_buffer = [] + chunks_buffer_size = 0 + else: + cropped_chunk_length = batch_size - chunks_buffer_size + keys_buffer.append(f"{key}[:{cropped_chunk_length}]") + chunks_buffer.append(chunk.slice(0, cropped_chunk_length)) + new_key = "_".join(str(_key) for _key in keys_buffer) + yield new_key, pa.Table.from_batches(chunks_buffer) + keys_buffer = [f"{key}[{cropped_chunk_length}:]"] + chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)] + chunks_buffer_size = len(chunk) - cropped_chunk_length + if not drop_last_batch and chunks_buffer: + new_key = "_".join(str(_key) for _key in keys_buffer) + yield new_key, pa.Table.from_batches(chunks_buffer) + + +class _BaseExamplesIterable: + """Base class for the examples iterable used by an IterableDataset""" + + def __init__(self) -> None: + self.iter_arrow: Optional[Callable[[], Iterator[Tuple[Key, pa.Table]]]] = None + + def __iter__(self) -> Iterator[Tuple[Key, dict]]: + """An examples iterable should yield tuples (example_key, example) of type (int/str, dict)""" + raise NotImplementedError(f"{type(self)} doesn't implement __iter__ yet") + + def shuffle_data_sources(self, generator: np.random.Generator) -> "_BaseExamplesIterable": + """ + Either shuffle the shards/sources of the dataset, or propagate the shuffling to the underlying iterable. + If the order of the shards must stay fixed (when using .skip or .take for example), then this method returns self. + """ + raise NotImplementedError(f"{type(self)} doesn't implement shuffle_data_sources yet") + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "_BaseExamplesIterable": + """Either keep only the requested shard, or propagate the request to the underlying iterable.""" + raise NotImplementedError(f"{type(self)} doesn't implement shard_data_sources yet") + + def split_shard_indices_by_worker(self, worker_id: int, num_workers: int) -> List[int]: + return list(range(worker_id, self.n_shards, num_workers)) + + @property + def n_shards(self) -> int: + raise NotImplementedError(f"{type(self)} doesn't implement n_shards yet") + + +class ExamplesIterable(_BaseExamplesIterable): + def __init__(self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict): + super().__init__() + self.generate_examples_fn = generate_examples_fn + self.kwargs = kwargs + + def __iter__(self): + yield from self.generate_examples_fn(**self.kwargs) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "ExamplesIterable": + return ShuffledDataSourcesExamplesIterable(self.generate_examples_fn, self.kwargs, generator) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable": + """Keep only the requested shard.""" + gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards) + shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers) + requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) + return ExamplesIterable(self.generate_examples_fn, requested_gen_kwargs) + + @property + def n_shards(self) -> int: + return _number_of_shards_in_gen_kwargs(self.kwargs) + + +class ShuffledDataSourcesExamplesIterable(ExamplesIterable): + def __init__( + self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict, generator: np.random.Generator + ): + super().__init__(generate_examples_fn, kwargs) + self.generator = deepcopy(generator) + + def __iter__(self): + """Shuffle the kwargs order to shuffle shards""" + rng = deepcopy(self.generator) + kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) + yield from self.generate_examples_fn(**kwargs_with_shuffled_shards) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable": + """Keep only the requested shard.""" + rng = deepcopy(self.generator) + kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) + return ExamplesIterable(self.generate_examples_fn, kwargs_with_shuffled_shards).shard_data_sources( + worker_id, num_workers + ) + + +class ArrowExamplesIterable(_BaseExamplesIterable): + def __init__(self, generate_tables_fn: Callable[..., Tuple[Key, pa.Table]], kwargs: dict): + super().__init__() + self.generate_tables_fn = generate_tables_fn + self.kwargs = kwargs + self.iter_arrow = self._iter_arrow + + def __iter__(self): + formatter = PythonFormatter() + for key, pa_table in self.generate_tables_fn(**self.kwargs): + for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER): + formatted_batch = formatter.format_batch(pa_subtable) + for example in _batch_to_examples(formatted_batch): + yield key, example + + def _iter_arrow(self): + yield from self.generate_tables_fn(**self.kwargs) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "ArrowExamplesIterable": + return ShuffledDataSourcesArrowExamplesIterable(self.generate_tables_fn, self.kwargs, generator) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable": + """Keep only the requested shard.""" + gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards) + shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers) + requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) + return ArrowExamplesIterable(self.generate_tables_fn, requested_gen_kwargs) + + @property + def n_shards(self) -> int: + return _number_of_shards_in_gen_kwargs(self.kwargs) + + +class ShuffledDataSourcesArrowExamplesIterable(ArrowExamplesIterable): + def __init__( + self, + generate_tables_fn: Callable[..., Tuple[Key, pa.Table]], + kwargs: dict, + generator: np.random.Generator, + ): + super().__init__(generate_tables_fn, kwargs) + self.generator = deepcopy(generator) + + def __iter__(self): + """Shuffle the kwargs order to shuffle shards""" + rng = deepcopy(self.generator) + kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) + formatter = PythonFormatter() + for key, pa_table in self.generate_tables_fn(**kwargs_with_shuffled_shards): + for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER): + formatted_batch = formatter.format_batch(pa_subtable) + for example in _batch_to_examples(formatted_batch): + yield key, example + + def _iter_arrow(self): + rng = deepcopy(self.generator) + kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) + yield from self.generate_tables_fn(**kwargs_with_shuffled_shards) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable": + """Keep only the requested shard.""" + rng = deepcopy(self.generator) + kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) + return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources( + worker_id, num_workers + ) + + +class SelectColumnsIterable(_BaseExamplesIterable): + def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: List[str]): + super().__init__() + self.ex_iterable = ex_iterable + self.column_names = column_names + if self.ex_iterable.iter_arrow: + self.iter_arrow = self._iter_arrow + + def __iter__(self): + for idx, row in self.ex_iterable: + yield idx, {c: row[c] for c in self.column_names} + + def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]: + for idx, pa_table in self.ex_iterable.iter_arrow(): + yield idx, pa_table.select(self.column_names) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable": + return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "SelectColumnsIterable": + return SelectColumnsIterable(self.ex_iterable.shard_data_sources(worker_id, num_workers), self.column_names) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class StepExamplesIterable(_BaseExamplesIterable): + def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int): + super().__init__() + self.ex_iterable = ex_iterable + self.step = step + self.offset = offset + # TODO(QL): implement iter_arrow + + def __iter__(self): + ex_iterator = iter(self.ex_iterable) + while True: + batch = list(islice(ex_iterator, self.step)) + if len(batch) > self.offset: + yield batch[self.offset] + else: + break + + def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable": + return StepExamplesIterable( + self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "StepExamplesIterable": + return StepExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), step=self.step, offset=self.offset + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable): + def __init__( + self, + ex_iterables: List[_BaseExamplesIterable], + stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", + ): + super().__init__() + self.ex_iterables = ex_iterables + self.stopping_strategy = stopping_strategy + + # if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted + # if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once + self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any + # TODO(QL): implement iter_arrow + + def _get_indices_iterator(self): + # this is an infinite iterator to keep track of which iterator we want to pick examples from + return cycle(range(len(self.ex_iterables))) + + def __iter__(self): + iterators = [_HasNextIterator(ex_iterable) for ex_iterable in self.ex_iterables] + + indices_iterator = self._get_indices_iterator() + + is_exhausted = np.full(len(self.ex_iterables), False) + for i in indices_iterator: + try: # let's pick one example from the iterator at index i + yield next(iterators[i]) + + # it will resume from the yield at the next call so that we can directly test if the iterable is exhausted and if we need to break out of the loop + if not iterators[i].hasnext(): + is_exhausted[i] = True + + if self.bool_strategy_func(is_exhausted): + # if the stopping criteria is met, break the main for loop + break + # otherwise reinitialise the iterator and yield the first example + iterators[i] = _HasNextIterator(self.ex_iterables[i]) + + except StopIteration: + # here it means that the i-th iterabledataset is empty, i.e we never have the occasion to yield an element of the i-th dataset. + # we still check if the stopping criteria is met and if we break out of the loop in case of an oversampling strategy + is_exhausted[i] = True + + if self.bool_strategy_func(is_exhausted): + # if the stopping criteria is met, break the main for loop + break + + def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable": + """Shuffle each underlying examples iterable.""" + ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables] + return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy) + + @property + def n_shards(self) -> int: + return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "CyclingMultiSourcesExamplesIterable": + """Either keep only the requested shard, or propagate the request to the underlying iterable.""" + return CyclingMultiSourcesExamplesIterable( + [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables], + stopping_strategy=self.stopping_strategy, + ) + + +class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable): + """ + VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables. + It doesn't require the examples iterables to always yield the same columns. + Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`. + + For information, `IterableDataset` merges the features of all the datasets to concatenate into one. + We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate. + + Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None. + This is done with `_apply_feature_types_on_example`. + """ + + def __init__(self, ex_iterables: List[_BaseExamplesIterable]): + super().__init__() + self.ex_iterables = ex_iterables + if all(ex_iterable.iter_arrow is not None for ex_iterable in ex_iterables): + self.iter_arrow = self._iter_arrow + + def __iter__(self): + for ex_iterable in self.ex_iterables: + yield from ex_iterable + + def _iter_arrow(self): + for ex_iterable in self.ex_iterables: + yield from ex_iterable.iter_arrow() + + def shuffle_data_sources( + self, generator: np.random.Generator + ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable": + """Shuffle the list of examples iterable, as well as each underlying examples iterable.""" + rng = deepcopy(generator) + ex_iterables = list(self.ex_iterables) + rng.shuffle(ex_iterables) + ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables] + return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) + + @property + def n_shards(self) -> int: + return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables) + + def shard_data_sources( + self, worker_id: int, num_workers: int + ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable": + """Either keep only the requested shard, or propagate the request to the underlying iterable.""" + return VerticallyConcatenatedMultiSourcesExamplesIterable( + [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables] + ) + + +def _check_column_names(column_names: List[str]): + """Check the column names to make sure they don't contain duplicates.""" + counter = Counter(column_names) + if not all(count == 1 for count in counter.values()): + duplicated_columns = [col for col in counter if counter[col] > 1] + raise ValueError( + f"The examples iterables can't have duplicated columns but columns {duplicated_columns} are duplicated." + ) + + +class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable): + """ + HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables. + It also checks that there are no duplicate columns (otherwise we don't know which one to keep). + This check is done once when yielding the first example. + + However it doesn't fill missing columns with None. + Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`. + + For information, `IterableDataset` merges the features of all the datasets to concatenate into one. + We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate. + + Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None. + This is done with `_apply_feature_types_on_example`. + """ + + def __init__(self, ex_iterables: List[_BaseExamplesIterable]): + super().__init__() + self.ex_iterables = ex_iterables + # TODO(QL): implement iter_arrow + + def __iter__(self): + ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables] + for i in itertools.count(): + keys = [] + examples = [] + for ex_iterator in list(ex_iterators): + try: + key, example = next(ex_iterator) + keys.append(key) + examples.append(example) + except StopIteration: + ex_iterators.remove(ex_iterator) + if ex_iterators: + if i == 0: + _check_column_names([column_name for example in examples for column_name in example]) + new_example = {} + for example in examples: + new_example.update(example) + new_key = "_".join(str(key) for key in keys) + yield new_key, new_example + else: + break + + def shuffle_data_sources( + self, generator: np.random.Generator + ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable": + """Doesn't shuffle the wrapped examples iterable since it would break the alignment between them.""" + return self + + @property + def n_shards(self) -> int: + return 1 + + def shard_data_sources( + self, worker_id: int, num_workers: int + ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable": + """Either keep only the requested shard, or propagate the request to the underlying iterable.""" + return HorizontallyConcatenatedMultiSourcesExamplesIterable( + [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables] + ) + + +class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable): + def __init__( + self, + ex_iterables: List[_BaseExamplesIterable], + generator: np.random.Generator, + probabilities: Optional[List[float]] = None, + stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", + ): + super().__init__(ex_iterables, stopping_strategy) + self.generator = deepcopy(generator) + self.probabilities = probabilities + # TODO(QL): implement iter_arrow + + @staticmethod + def _iter_random_indices( + rng: np.random.Generator, + num_sources: int, + random_batch_size=1000, + p: Optional[List[float]] = None, + ) -> Iterator[int]: + """Get an infinite iterator that randomly samples the index of the source to pick examples from.""" + if p is None: + while True: + yield from (int(i) for i in rng.integers(0, num_sources, size=random_batch_size)) + else: + while True: + yield from (int(i) for i in rng.choice(num_sources, size=random_batch_size, p=p)) + + def _get_indices_iterator(self): + rng = deepcopy(self.generator) + # this is an infinite iterator that randomly samples the index of the source to pick examples from + return self._iter_random_indices(rng, len(self.ex_iterables), p=self.probabilities) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable": + """Shuffle the data sources of each wrapped examples iterable.""" + ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables] + return RandomlyCyclingMultiSourcesExamplesIterable( + ex_iterables, + generator=generator, + probabilities=self.probabilities, + stopping_strategy=self.stopping_strategy, + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "RandomlyCyclingMultiSourcesExamplesIterable": + """Either keep only the requested shard, or propagate the request to the underlying iterable.""" + return RandomlyCyclingMultiSourcesExamplesIterable( + [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables], + self.generator, + self.probabilities, + self.stopping_strategy, + ) + + +class MappedExamplesIterable(_BaseExamplesIterable): + def __init__( + self, + ex_iterable: _BaseExamplesIterable, + function: Callable, + with_indices: bool = False, + input_columns: Optional[List[str]] = None, + batched: bool = False, + batch_size: Optional[int] = 1000, + drop_last_batch: bool = False, + remove_columns: Optional[List[str]] = None, + fn_kwargs: Optional[dict] = None, + formatting: Optional["FormattingConfig"] = None, + format_type="deprecated", + ): + if format_type != "deprecated": + warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. " + help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead." + warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2) + formatting = FormattingConfig(format_type=format_type) + super().__init__() + self.ex_iterable = ex_iterable + self.function = function + self.batched = batched + self.batch_size = batch_size + self.drop_last_batch = drop_last_batch + self.remove_columns = remove_columns + self.with_indices = with_indices + self.input_columns = input_columns + self.fn_kwargs = fn_kwargs or {} + self.formatting = formatting + if self.formatting and self.formatting.format_type == "arrow": + self.iter_arrow = self._iter_arrow + + def __iter__(self): + if self.formatting and self.formatting.format_type == "arrow": + yield from ArrowExamplesIterable(self._iter_arrow, {}) + else: + yield from self._iter() + + def _iter(self): + iterator = iter(self.ex_iterable) + current_idx = 0 + + if self.formatting: + formatter = get_formatter(self.formatting.format_type) + format_dict = ( + formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects + ) + else: + format_dict = None + + if self.batched: + for key, example in iterator: + # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset + iterator_batch = ( + iterator + if self.batch_size is None or self.batch_size <= 0 + else islice(iterator, self.batch_size - 1) + ) + key_examples_list = [(key, example)] + list(iterator_batch) + keys, examples = zip(*key_examples_list) + if ( + self.drop_last_batch + and self.batch_size is not None + and self.batch_size > 0 + and len(examples) < self.batch_size + ): # ignore last batch + return + batch = _examples_to_batch(examples) + batch = format_dict(batch) if format_dict else batch + # then apply the transform + inputs = batch + function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns] + if self.with_indices: + function_args.append([current_idx + i for i in range(len(key_examples_list))]) + transformed_batch = dict(batch) # this will be updated with the function output + transformed_batch.update(self.function(*function_args, **self.fn_kwargs)) + # then remove the unwanted columns + if self.remove_columns: + for c in self.remove_columns: + del transformed_batch[c] + if transformed_batch: + first_col = next(iter(transformed_batch)) + bad_cols = [ + col + for col in transformed_batch + if len(transformed_batch[col]) != len(transformed_batch[first_col]) + ] + if bad_cols: + raise ValueError( + f"Column lengths mismatch: columns {bad_cols} have length {[len(transformed_batch[col]) for col in bad_cols]} while {first_col} has length {len(transformed_batch[first_col])}." + ) + # the new key is the concatenation of the examples keys from the batch + new_key = "_".join(str(key) for key in keys) + # yield one example at a time from the transformed batch + for example in _batch_to_examples(transformed_batch): + yield new_key, example + current_idx += 1 + else: + for key, example in iterator: + # If not batched, we can apply the transform and yield the example directly + # first copy the example, since we might drop some keys + example = dict(example) + example = format_dict(example) if format_dict else example + # then apply the transform + inputs = example + function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns] + if self.with_indices: + function_args.append(current_idx) + transformed_example = dict(example) # this will be updated with the function output + transformed_example.update(self.function(*function_args, **self.fn_kwargs)) + # then we remove the unwanted columns + if self.remove_columns: + for c in self.remove_columns: + del transformed_example[c] + yield key, transformed_example + current_idx += 1 + + def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]: + if self.ex_iterable.iter_arrow: + iterator = _batch_arrow_tables( + self.ex_iterable.iter_arrow(), + batch_size=self.batch_size if self.batched else 1, + drop_last_batch=self.drop_last_batch, + ) + else: + iterator = _convert_to_arrow( + self.ex_iterable, + batch_size=self.batch_size if self.batched else 1, + drop_last_batch=self.drop_last_batch, + ) + current_idx = 0 + for key, pa_table in iterator: + # first build the batch + function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns] + if self.with_indices: + if self.batched: + function_args.append([current_idx + i for i in range(len(pa_table))]) + else: + function_args.append(current_idx) + # then apply the transform + output_table = self.function(*function_args, **self.fn_kwargs) + if not isinstance(output_table, pa.Table): + raise TypeError( + f"Provided `function` which is applied to pyarrow tables returns a variable of type {type(output_table)}. Make sure provided `function` returns a a pyarrow table to update the dataset." + ) + # we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts + # then remove the unwanted columns + if self.remove_columns: + for column in self.remove_columns: + if column in output_table.column_names: + output_table = output_table.remove_column(output_table.column_names.index(column)) + # return output + yield key, output_table + current_idx += len(pa_table) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable": + """Shuffle the wrapped examples iterable.""" + return MappedExamplesIterable( + self.ex_iterable.shuffle_data_sources(generator), + function=self.function, + with_indices=self.with_indices, + input_columns=self.input_columns, + batched=self.batched, + batch_size=self.batch_size, + drop_last_batch=self.drop_last_batch, + remove_columns=self.remove_columns, + fn_kwargs=self.fn_kwargs, + formatting=self.formatting, + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "MappedExamplesIterable": + """Keep only the requested shard.""" + return MappedExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), + function=self.function, + with_indices=self.with_indices, + input_columns=self.input_columns, + batched=self.batched, + batch_size=self.batch_size, + drop_last_batch=self.drop_last_batch, + remove_columns=self.remove_columns, + fn_kwargs=self.fn_kwargs, + formatting=self.formatting, + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class FilteredExamplesIterable(_BaseExamplesIterable): + def __init__( + self, + ex_iterable: _BaseExamplesIterable, + function: Callable, + with_indices: bool = False, + input_columns: Optional[List[str]] = None, + batched: bool = False, + batch_size: Optional[int] = 1000, + fn_kwargs: Optional[dict] = None, + formatting: Optional["FormattingConfig"] = None, + format_type="deprecated", + ): + if format_type != "deprecated": + warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. " + help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead." + warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2) + formatting = FormattingConfig(format_type=format_type) + super().__init__() + self.ex_iterable = ex_iterable + self.function = function + self.batched = batched + self.batch_size = batch_size + self.with_indices = with_indices + self.input_columns = input_columns + self.fn_kwargs = fn_kwargs or {} + self.formatting = formatting + if self.formatting and self.formatting.format_type == "arrow": + self.iter_arrow = self._iter_arrow + + def __iter__(self): + if self.formatting and self.formatting.format_type == "arrow": + yield from ArrowExamplesIterable(self._iter_arrow, {}) + else: + yield from self._iter() + + def _iter(self): + if self.formatting: + formatter = get_formatter(self.formatting.format_type) + format_dict = ( + formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects + ) + else: + format_dict = None + + iterator = iter(self.ex_iterable) + current_idx = 0 + if self.batched: + for key, example in iterator: + # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset + iterator_batch = ( + iterator + if self.batch_size is None or self.batch_size <= 0 + else islice(iterator, self.batch_size - 1) + ) + key_examples_list = [(key, example)] + list(iterator_batch) + keys, examples = zip(*key_examples_list) + batch = _examples_to_batch(examples) + batch = format_dict(batch) if format_dict else batch + # then compute the mask for the batch + inputs = batch + function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns] + if self.with_indices: + function_args.append([current_idx + i for i in range(len(key_examples_list))]) + mask = self.function(*function_args, **self.fn_kwargs) + # yield one example at a time from the batch + for key_example, to_keep in zip(key_examples_list, mask): + if to_keep: + yield key_example + current_idx += 1 + else: + for key, example in iterator: + # If not batched, we can apply the filtering function direcly + example = dict(example) + inputs = format_dict(example) if format_dict else example + function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns] + if self.with_indices: + function_args.append(current_idx) + to_keep = self.function(*function_args, **self.fn_kwargs) + if to_keep: + yield key, example + current_idx += 1 + + def _iter_arrow(self): + if self.ex_iterable.iter_arrow: + iterator = _batch_arrow_tables( + self.ex_iterable.iter_arrow(), batch_size=self.batch_size if self.batched else 1 + ) + else: + iterator = _convert_to_arrow(self.ex_iterable, batch_size=self.batch_size if self.batched else 1) + current_idx = 0 + for key, pa_table in iterator: + # first build the batch + function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns] + if self.with_indices: + if self.batched: + function_args.append([current_idx + i for i in range(len(pa_table))]) + else: + function_args.append(current_idx) + # then apply the transform + mask = self.function(*function_args, **self.fn_kwargs) + # yield the filtered table + if self.batched: + yield key, pa_table.filter(mask) + elif mask.as_py() if isinstance(mask, pa.BooleanScalar) else mask: + yield key, pa_table + current_idx += len(pa_table) + + def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable": + """Shuffle the wrapped examples iterable.""" + return FilteredExamplesIterable( + self.ex_iterable.shuffle_data_sources(seed), + function=self.function, + with_indices=self.with_indices, + input_columns=self.input_columns, + batched=self.batched, + batch_size=self.batch_size, + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "FilteredExamplesIterable": + """Keep only the requested shard.""" + return FilteredExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), + function=self.function, + with_indices=self.with_indices, + input_columns=self.input_columns, + batched=self.batched, + batch_size=self.batch_size, + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class BufferShuffledExamplesIterable(_BaseExamplesIterable): + def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator): + super().__init__() + self.ex_iterable = ex_iterable + self.buffer_size = buffer_size + self.generator = generator + # TODO(QL): implement iter_arrow + + @staticmethod + def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]: + while True: + yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size)) + + def __iter__(self): + buffer_size = self.buffer_size + rng = deepcopy(self.generator) + indices_iterator = self._iter_random_indices(rng, buffer_size) + # this is the shuffle buffer that we keep in memory + mem_buffer = [] + for x in self.ex_iterable: + if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it + i = next(indices_iterator) + yield mem_buffer[i] + mem_buffer[i] = x # replace the picked example by a new one + else: # otherwise, keep filling the buffer + mem_buffer.append(x) + # when we run out of examples, we shuffle the remaining examples in the buffer and yield them + rng.shuffle(mem_buffer) + yield from mem_buffer + + def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable": + """Shuffle the wrapped examples iterable as well as the shuffling buffer.""" + return BufferShuffledExamplesIterable( + self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "BufferShuffledExamplesIterable": + """Keep only the requested shard.""" + return BufferShuffledExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), + buffer_size=self.buffer_size, + generator=self.generator, + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class SkipExamplesIterable(_BaseExamplesIterable): + def __init__(self, ex_iterable: _BaseExamplesIterable, n: int): + super().__init__() + self.ex_iterable = ex_iterable + self.n = n + # TODO(QL): implement iter_arrow + + def __iter__(self): + yield from islice(self.ex_iterable, self.n, None) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable": + """Doesn't shuffle the wrapped examples iterable since it would skip examples from other shards instead.""" + return self + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +class TakeExamplesIterable(_BaseExamplesIterable): + def __init__(self, ex_iterable: _BaseExamplesIterable, n: int): + super().__init__() + self.ex_iterable = ex_iterable + self.n = n + # TODO(QL): implement iter_arrow + + def __iter__(self): + yield from islice(self.ex_iterable, self.n) + + def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable": + """Doesn't shuffle the wrapped examples iterable since it would take examples from other shards instead.""" + return self + + @staticmethod + def split_number(num, n): + quotient = num // n + remainder = num % n + result = [quotient] * n + for i in range(remainder): + result[i] += 1 + return result + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "TakeExamplesIterable": + """Keep only the requested shard.""" + return TakeExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), + n=self.split_number(self.n, num_workers)[worker_id], + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +def _apply_feature_types_on_example( + example: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]] +) -> dict: + example = dict(example) + # add missing columns + for column_name in features: + if column_name not in example: + example[column_name] = None + # we encode the example for ClassLabel feature types for example + encoded_example = features.encode_example(example) + # Decode example for Audio feature, e.g. + decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id) + return decoded_example + + +def _apply_feature_types_on_batch( + batch: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]] +) -> dict: + batch = dict(batch) + # add missing columns + n_examples = len(batch[next(iter(batch))]) + for column_name in features: + if column_name not in batch: + batch[column_name] = [None] * n_examples + # we encode the batch for ClassLabel feature types for example + encoded_batch = features.encode_batch(batch) + # Decode batch for Audio feature, e.g. + decoded_batch = features.decode_batch(encoded_batch, token_per_repo_id=token_per_repo_id) + return decoded_batch + + +class TypedExamplesIterable(_BaseExamplesIterable): + def __init__( + self, + ex_iterable: _BaseExamplesIterable, + features: Features, + token_per_repo_id: Dict[str, Union[str, bool, None]], + ): + super().__init__() + self.ex_iterable = ex_iterable + self.features = features + self.token_per_repo_id = token_per_repo_id + if self.ex_iterable.iter_arrow is not None: + self.iter_arrow = self._iter_arrow + + def __iter__(self): + # Then for each example, `TypedExamplesIterable` automatically fills missing columns with None. + # This is done with `_apply_feature_types_on_example`. + for key, example in self.ex_iterable: + yield ( + key, + _apply_feature_types_on_example(example, self.features, token_per_repo_id=self.token_per_repo_id), + ) + + def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]: + schema = self.features.arrow_schema + for key, pa_table in self.ex_iterable.iter_arrow(): + columns = set(pa_table.column_names) + # add missing columns + for column_name in self.features: + if column_name not in columns: + col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None]) + pa_table = pa_table.append_column(column_name, col) + if pa_table.schema != schema: + pa_table = cast_table_to_features(pa_table, self.features) + yield key, pa_table + + def shuffle_data_sources(self, generator: np.random.Generator) -> "TypedExamplesIterable": + """Shuffle the wrapped examples iterable.""" + return TypedExamplesIterable( + self.ex_iterable.shuffle_data_sources(generator), + features=self.features, + token_per_repo_id=self.token_per_repo_id, + ) + + def shard_data_sources(self, worker_id: int, num_workers: int) -> "TypedExamplesIterable": + """Keep only the requested shard.""" + return TypedExamplesIterable( + self.ex_iterable.shard_data_sources(worker_id, num_workers), + features=self.features, + token_per_repo_id=self.token_per_repo_id, + ) + + @property + def n_shards(self) -> int: + return self.ex_iterable.n_shards + + +@dataclass +class FormattingConfig: + format_type: Optional[str] + + def __post_init__(self): + if self.format_type == "pandas": + raise NotImplementedError( + "The 'pandas' formatting is not implemented for iterable datasets. You can use 'numpy' or 'arrow' instead." + ) + + +@dataclass +class ShufflingConfig: + generator: np.random.Generator + _original_seed: Optional[int] = None + + +@dataclass +class DistributedConfig: + rank: int + world_size: int + + +def _maybe_add_torch_iterable_dataset_parent_class(cls): + """Add torch.utils.data.IterableDataset as a parent class if 'torch' is available""" + if config.TORCH_AVAILABLE: + import torch.utils.data + + if torch.utils.data.IterableDataset not in cls.__bases__: + cls.__bases__ += (torch.utils.data.IterableDataset,) + + +class IterableDataset(DatasetInfoMixin): + """A Dataset backed by an iterable.""" + + def __init__( + self, + ex_iterable: _BaseExamplesIterable, + info: Optional[DatasetInfo] = None, + split: Optional[NamedSplit] = None, + formatting: Optional[FormattingConfig] = None, + shuffling: Optional[ShufflingConfig] = None, + distributed: Optional[DistributedConfig] = None, + token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None, + format_type="deprecated", + ): + if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None: + raise RuntimeError( + "The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. " + "Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. " + ) + if format_type != "deprecated": + warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. " + help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead." + warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2) + formatting = FormattingConfig(format_type=format_type) + + info = info.copy() if info is not None else DatasetInfo() + DatasetInfoMixin.__init__(self, info=info, split=split) + + self._ex_iterable = ex_iterable + self._formatting = formatting + self._shuffling = shuffling + self._distributed = distributed + self._epoch = 0 + self._token_per_repo_id: Dict[str, Union[str, bool, None]] = token_per_repo_id or {} + _maybe_add_torch_iterable_dataset_parent_class(self.__class__) + + def __repr__(self): + return f"IterableDataset({{\n features: {list(self._info.features.keys()) if self._info.features is not None else 'Unknown'},\n n_shards: {self.n_shards}\n}})" + + def __getstate__(self): + return self.__dict__ + + def __setstate__(self, d): + self.__dict__ = d + # Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling + _maybe_add_torch_iterable_dataset_parent_class(self.__class__) + + def _head(self, n=5): + return _examples_to_batch(list(self.take(n))) + + def _effective_generator(self): + if self._shuffling and self._epoch == 0: + return self._shuffling.generator + elif self._shuffling: + # Create effective seed using self._epoch (we subtract in order to avoir overflow in long_scalars) + effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self._epoch + effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed + return np.random.default_rng(effective_seed) + else: + raise ValueError("This dataset is not shuffled") + + @property + def n_shards(self) -> int: + if self._distributed and self._ex_iterable.n_shards % self._distributed.world_size == 0: + return self._ex_iterable.n_shards // self._distributed.world_size + return self._ex_iterable.n_shards + + def _iter_pytorch(self): + ex_iterable = self._prepare_ex_iterable_for_iteration() + # Fix for fsspec when using multiprocess to avoid hanging in the ML training loop. (only required for fsspec >= 0.9.0) + # See https://github.com/fsspec/gcsfs/issues/379 + fsspec.asyn.reset_lock() + # check if there aren't too many workers + import torch.utils.data + + worker_info = torch.utils.data.get_worker_info() + if self._is_main_process() and ex_iterable.n_shards < worker_info.num_workers: + logger.warning( + f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.n_shards={ex_iterable.n_shards}). " + f"Stopping {worker_info.num_workers - ex_iterable.n_shards} dataloader workers." + ) + logger.info( + f"To parallelize data loading, we give each process some shards (or data sources) to process. " + f"Therefore it's unnecessary to have a number of workers greater than dataset.n_shards={ex_iterable.n_shards}. " + f"To enable more parallelism, please split the dataset in more files than {ex_iterable.n_shards}." + ) + # split workload + _log_prefix = f"node#{self._distributed.rank} " if self._distributed else "" + shards_indices = ex_iterable.split_shard_indices_by_worker(worker_info.id, worker_info.num_workers) + if shards_indices: + logger.debug( + f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.n_shards} shards." + ) + ex_iterable = ex_iterable.shard_data_sources(worker_id=worker_info.id, num_workers=worker_info.num_workers) + + if self._formatting: + formatter = get_formatter(self._formatting.format_type, features=self.features) + format_dict = ( + formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects + ) + else: + format_dict = None + + if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"): + if ex_iterable.iter_arrow: + iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1) + else: + iterator = _convert_to_arrow(ex_iterable, batch_size=1) + for key, pa_table in iterator: + yield formatter.format_row(pa_table) + return + else: + for key, example in ex_iterable: + if self.features: + # `IterableDataset` automatically fills missing columns with None. + # This is done with `_apply_feature_types_on_example`. + example = _apply_feature_types_on_example( + example, self.features, token_per_repo_id=self._token_per_repo_id + ) + yield format_dict(example) if format_dict else example + logger.debug( + f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.n_shards} shards." + ) + else: + logger.debug( + f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.n_shards}<{worker_info.num_workers})." + ) + + def _is_main_process(self): + if self._distributed and self._distributed.rank > 0: + return False + if "torch" in sys.modules: + import torch.utils.data + + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None and worker_info.id > 0: + return False + return True + + def _prepare_ex_iterable_for_iteration(self) -> _BaseExamplesIterable: + if self._shuffling: + ex_iterable = self._ex_iterable.shuffle_data_sources(self._effective_generator()) + else: + ex_iterable = self._ex_iterable + + if self._distributed: + rank = self._distributed.rank + world_size = self._distributed.world_size + if ex_iterable.n_shards % world_size == 0: + if self._is_main_process(): + n_shards_per_node = ex_iterable.n_shards // world_size + plural = "s" if n_shards_per_node > 1 else "" + logger.info( + f"Assigning {n_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node." + ) + ex_iterable = ex_iterable.shard_data_sources(rank, world_size) + else: + if self._is_main_process(): + logger.info( + f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration." + ) + logger.info( + f"It is more optimized to distribute the dataset shards (or data sources) across nodes. " + f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. " + f"The current dataset has {ex_iterable.n_shards} which is not a factor of {world_size}" + ) + ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank) + + return ex_iterable + + def __iter__(self): + if "torch" in sys.modules: + import torch.utils.data + + worker_info = torch.utils.data.get_worker_info() + if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None: + # We're a torch.utils.data.IterableDataset in a PyTorch worker process + yield from self._iter_pytorch() + return + + ex_iterable = self._prepare_ex_iterable_for_iteration() + if self._formatting: + formatter = get_formatter(self._formatting.format_type, features=self.features) + format_dict = ( + formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects + ) + else: + format_dict = None + + if self._formatting and (ex_iterable.iter_arrow or self._formatting.format_type == "arrow"): + if ex_iterable.iter_arrow: + iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1) + else: + iterator = _convert_to_arrow(ex_iterable, batch_size=1) + for key, pa_table in iterator: + yield formatter.format_row(pa_table) + return + + for key, example in ex_iterable: + if self.features: + # `IterableDataset` automatically fills missing columns with None. + # This is done with `_apply_feature_types_on_example`. + example = _apply_feature_types_on_example( + example, self.features, token_per_repo_id=self._token_per_repo_id + ) + yield format_dict(example) if format_dict else example + + def iter(self, batch_size: int, drop_last_batch: bool = False): + """Iterate through the batches of size `batch_size`. + + Args: + batch_size (:obj:`int`): size of each batch to yield. + drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be + dropped + """ + + if self._formatting: + formatter = get_formatter(self._formatting.format_type, features=self.features) + format_dict = ( + formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects + ) + else: + format_dict = None + + ex_iterable = self._prepare_ex_iterable_for_iteration() + if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"): + if ex_iterable.iter_arrow: + iterator = _batch_arrow_tables( + ex_iterable.iter_arrow(), batch_size=batch_size, drop_last_batch=drop_last_batch + ) + else: + iterator = _convert_to_arrow(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch) + for key, pa_table in iterator: + yield formatter.format_batch(pa_table) + return + + iterator = iter(ex_iterable) + for key, example in iterator: + # If batched, first build the batch + examples = [example] + [example for key, example in islice(iterator, batch_size - 1)] + if drop_last_batch and len(examples) < batch_size: # ignore last batch + return + batch = _examples_to_batch(examples) + if self.features: + # `IterableDataset` automatically fills missing columns with None. + # This is done with `_apply_feature_types_on_batch`. + batch = _apply_feature_types_on_batch(batch, self.features, token_per_repo_id=self._token_per_repo_id) + yield format_dict(batch) if format_dict else batch + + @staticmethod + def from_generator( + generator: Callable, + features: Optional[Features] = None, + gen_kwargs: Optional[dict] = None, + ) -> "IterableDataset": + """Create an Iterable Dataset from a generator. + + Args: + generator (`Callable`): + A generator function that `yields` examples. + features (`Features`, *optional*): + Dataset features. + gen_kwargs(`dict`, *optional*): + Keyword arguments to be passed to the `generator` callable. + You can define a sharded iterable dataset by passing the list of shards in `gen_kwargs`. + This can be used to improve shuffling and when iterating over the dataset with multiple workers. + + Returns: + `IterableDataset` + + Example: + + ```py + >>> def gen(): + ... yield {"text": "Good", "label": 0} + ... yield {"text": "Bad", "label": 1} + ... + >>> ds = IterableDataset.from_generator(gen) + ``` + + ```py + >>> def gen(shards): + ... for shard in shards: + ... with open(shard) as f: + ... for line in f: + ... yield {"line": line} + ... + >>> shards = [f"data{i}.txt" for i in range(32)] + >>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards}) + >>> ds = ds.shuffle(seed=42, buffer_size=10_000) # shuffles the shards order + uses a shuffle buffer + >>> from torch.utils.data import DataLoader + >>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4) # give each worker a subset of 32/4=8 shards + ``` + """ + from .io.generator import GeneratorDatasetInputStream + + return GeneratorDatasetInputStream( + generator=generator, + features=features, + gen_kwargs=gen_kwargs, + streaming=True, + ).read() + + @staticmethod + def from_spark( + df: "pyspark.sql.DataFrame", + split: Optional[NamedSplit] = None, + features: Optional[Features] = None, + **kwargs, + ) -> "IterableDataset": + """Create an IterableDataset from Spark DataFrame. The dataset is streamed to the driver in batches. + + Args: + df (`pyspark.sql.DataFrame`): + The DataFrame containing the desired data. + split (`NamedSplit`, *optional*): + Split name to be assigned to the dataset. + features (`Features`, *optional*): + Dataset features. + + Returns: + [`IterableDataset`] + + Example: + + ```py + >>> df = spark.createDataFrame( + >>> data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]], + >>> columns=["id", "name"], + >>> ) + >>> ds = IterableDataset.from_spark(df) + ``` + """ + from .io.spark import SparkDatasetReader + + if sys.platform == "win32": + raise EnvironmentError("IterableDataset.from_spark is not currently supported on Windows") + + return SparkDatasetReader( + df, + split=split, + features=features, + streaming=True, + **kwargs, + ).read() + + @staticmethod + def from_file(filename: str) -> "IterableDataset": + """Instantiate a IterableDataset from Arrow table at filename. + + Args: + filename (`str`): + File name of the dataset. + + Returns: + [`IterableDataset`] + """ + pa_table_schema = read_schema_from_file(filename) + inferred_features = Features.from_arrow_schema(pa_table_schema) + ex_iterable = ArrowExamplesIterable(Dataset._generate_tables_from_cache_file, kwargs={"filename": filename}) + return IterableDataset(ex_iterable=ex_iterable, info=DatasetInfo(features=inferred_features)) + + def with_format( + self, + type: Optional[str] = None, + ) -> "IterableDataset": + """ + Return a dataset with the specified format. + Supported formats: "arrow", or None for regular python objects. + The other formats are currently not implemented. + + Args: + + type (`str`, optional, default None): if set to "torch", the returned dataset + will be a subclass of torch.utils.data.IterableDataset to be used in a DataLoader + """ + type = get_format_type_from_alias(type) + # TODO(QL): add format_kwargs + # TODO(QL): add format_columns and return_all_columns + # TODO(QL): add pandas format + return IterableDataset( + ex_iterable=self._ex_iterable, + info=self._info.copy(), + split=self._split, + formatting=FormattingConfig(format_type=type), + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def map( + self, + function: Optional[Callable] = None, + with_indices: bool = False, + input_columns: Optional[Union[str, List[str]]] = None, + batched: bool = False, + batch_size: Optional[int] = 1000, + drop_last_batch: bool = False, + remove_columns: Optional[Union[str, List[str]]] = None, + features: Optional[Features] = None, + fn_kwargs: Optional[dict] = None, + ) -> "IterableDataset": + """ + Apply a function to all the examples in the iterable dataset (individually or in batches) and update them. + If your function returns a column that already exists, then it overwrites it. + The function is applied on-the-fly on the examples when iterating over the dataset. + + You can specify whether the function should be batched or not with the `batched` parameter: + + - If batched is `False`, then the function takes 1 example in and should return 1 example. + An example is a dictionary, e.g. `{"text": "Hello there !"}`. + - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples. + A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}. + - If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples. + Note that the last batch may have less than `n` examples. + A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`. + + Args: + function (`Callable`, *optional*, defaults to `None`): + Function applied on-the-fly on the examples when you iterate on the dataset. + It must have one of the following signatures: + + - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False` + - `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True` + - `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False` + - `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True` + + For advanced usage, the function can also return a `pyarrow.Table`. + Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged. + If no function is provided, default to identity function: `lambda x: x`. + with_indices (`bool`, defaults to `False`): + Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`. + input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): + The columns to be passed into `function` + as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. + batched (`bool`, defaults to `False`): + Provide batch of examples to `function`. + batch_size (`int`, *optional*, defaults to `1000`): + Number of examples per batch provided to `function` if `batched=True`. + `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`. + drop_last_batch (`bool`, defaults to `False`): + Whether a last batch smaller than the batch_size should be + dropped instead of being processed by the function. + remove_columns (`[List[str]]`, *optional*, defaults to `None`): + Remove a selection of columns while doing the mapping. + Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding + columns with names in `remove_columns`, these columns will be kept. + features (`[Features]`, *optional*, defaults to `None`): + Feature types of the resulting dataset. + fn_kwargs (`Dict`, *optional*, default `None`): + Keyword arguments to be passed to `function`. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> def add_prefix(example): + ... example["text"] = "Review: " + example["text"] + ... return example + >>> ds = ds.map(add_prefix) + >>> list(ds.take(3)) + [{'label': 1, + 'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, + {'label': 1, + 'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, + {'label': 1, 'text': 'Review: effective but too-tepid biopic'}] + ``` + """ + if isinstance(input_columns, str): + input_columns = [input_columns] + if isinstance(remove_columns, str): + remove_columns = [remove_columns] + if function is None: + function = identity_func + if fn_kwargs is None: + fn_kwargs = {} + ex_iterable = MappedExamplesIterable( + TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id) + if self._info.features is not None + else self._ex_iterable, + function=function, + with_indices=with_indices, + input_columns=input_columns, + batched=batched, + batch_size=batch_size, + drop_last_batch=drop_last_batch, + remove_columns=remove_columns, + fn_kwargs=fn_kwargs, + formatting=self._formatting, + ) + info = self.info.copy() + info.features = features + return IterableDataset( + ex_iterable=ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def filter( + self, + function: Optional[Callable] = None, + with_indices=False, + input_columns: Optional[Union[str, List[str]]] = None, + batched: bool = False, + batch_size: Optional[int] = 1000, + fn_kwargs: Optional[dict] = None, + ) -> "IterableDataset": + """Apply a filter function to all the elements so that the dataset only includes examples according to the filter function. + The filtering is done on-the-fly when iterating over the dataset. + + Args: + function (`Callable`): + Callable with one of the following signatures: + + - `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False` + - `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False` + - `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True` + - `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True` + + If no function is provided, defaults to an always True function: `lambda x: True`. + with_indices (`bool`, defaults to `False`): + Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`. + input_columns (`str` or `List[str]`, *optional*): + The columns to be passed into `function` as + positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. + batched (`bool`, defaults to `False`): + Provide batch of examples to `function`. + batch_size (`int`, *optional*, default `1000`): + Number of examples per batch provided to `function` if `batched=True`. + fn_kwargs (`Dict`, *optional*, default `None`): + Keyword arguments to be passed to `function`. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> ds = ds.filter(lambda x: x["label"] == 0) + >>> list(ds.take(3)) + [{'label': 0, 'movie_review': 'simplistic , silly and tedious .'}, + {'label': 0, + 'movie_review': "it's so laddish and juvenile , only teenage boys could possibly find it funny ."}, + {'label': 0, + 'movie_review': 'exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}] + ``` + """ + if isinstance(input_columns, str): + input_columns = [input_columns] + + # TODO(QL): keep the features (right now if we keep it it would call decode_example again on an already decoded example) + info = copy.deepcopy(self._info) + info.features = None + + # We need the examples to be decoded for certain feature types like Image or Audio, so we use TypedExamplesIterable here + ex_iterable = FilteredExamplesIterable( + TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id) + if self._info.features is not None + else self._ex_iterable, + function=function, + with_indices=with_indices, + input_columns=input_columns, + batched=batched, + batch_size=batch_size, + fn_kwargs=fn_kwargs, + formatting=self._formatting, + ) + return IterableDataset( + ex_iterable=ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def shuffle( + self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000 + ) -> "IterableDataset": + """ + Randomly shuffles the elements of this dataset. + + This dataset fills a buffer with `buffer_size` elements, then randomly samples elements from this buffer, + replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or + equal to the full size of the dataset is required. + + For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will + initially select a random element from only the first 1000 elements in the buffer. Once an element is + selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element, + maintaining the 1000 element buffer. + + If the dataset is made of several shards, it also does shuffle the order of the shards. + However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`] + then the order of the shards is kept unchanged. + + Args: + seed (`int`, *optional*, defaults to `None`): + Random seed that will be used to shuffle the dataset. + It is used to sample from the shuffle buffer and also to shuffle the data shards. + generator (`numpy.random.Generator`, *optional*): + Numpy random Generator to use to compute the permutation of the dataset rows. + If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy). + buffer_size (`int`, defaults to `1000`): + Size of the buffer. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> list(ds.take(3)) + [{'label': 1, + 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, + {'label': 1, + 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, + {'label': 1, 'text': 'effective but too-tepid biopic'}] + >>> shuffled_ds = ds.shuffle(seed=42) + >>> list(shuffled_ds.take(3)) + [{'label': 1, + 'text': "a sports movie with action that's exciting on the field and a story you care about off it ."}, + {'label': 1, + 'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'}, + {'label': 1, + 'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}] + ``` + """ + if generator is None: + generator = np.random.default_rng(seed) + else: + generator = deepcopy(generator) + shuffling = ShufflingConfig(generator=generator, _original_seed=seed) + return IterableDataset( + ex_iterable=BufferShuffledExamplesIterable( + self._ex_iterable, buffer_size=buffer_size, generator=generator + ).shuffle_data_sources(generator), + info=self._info.copy(), + split=self._split, + formatting=self._formatting, + shuffling=shuffling, + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def set_epoch(self, epoch: int): + self._epoch = epoch + + def skip(self, n: int) -> "IterableDataset": + """ + Create a new [`IterableDataset`] that skips the first `n` elements. + + Args: + n (`int`): + Number of elements to skip. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> list(ds.take(3)) + [{'label': 1, + 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, + {'label': 1, + 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, + {'label': 1, 'text': 'effective but too-tepid biopic'}] + >>> ds = ds.skip(1) + >>> list(ds.take(3)) + [{'label': 1, + 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, + {'label': 1, 'text': 'effective but too-tepid biopic'}, + {'label': 1, + 'text': 'if you sometimes like to go to the movies to have fun , wasabi is a good place to start .'}] + ``` + """ + ex_iterable = SkipExamplesIterable(self._ex_iterable, n) + return IterableDataset( + ex_iterable=ex_iterable, + info=self._info.copy(), + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def take(self, n: int) -> "IterableDataset": + """ + Create a new [`IterableDataset`] with only the first `n` elements. + + Args: + n (`int`): + Number of elements to take. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> small_ds = ds.take(2) + >>> list(small_ds) + [{'label': 1, + 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, + {'label': 1, + 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}] + ``` + """ + ex_iterable = TakeExamplesIterable(self._ex_iterable, n) + return IterableDataset( + ex_iterable=ex_iterable, + info=self._info.copy(), + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + @property + def column_names(self) -> Optional[List[str]]: + """Names of the columns in the dataset. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="validation", streaming=True) + >>> ds.column_names + ['text', 'label'] + ``` + """ + return list(self._info.features.keys()) if self._info.features is not None else None + + def add_column(self, name: str, column: Union[list, np.array]) -> "IterableDataset": + """Add column to Dataset. + + Args: + name (str): Column name. + column (list or np.array): Column data to be added. + + Returns: + `IterableDataset` + """ + return self.map(partial(add_column_fn, name=name, column=column), with_indices=True) + + def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDataset": + """ + Rename a column in the dataset, and move the features associated to the original column under the new column + name. + + Args: + original_column_name (`str`): + Name of the column to rename. + new_column_name (`str`): + New name for the column. + + Returns: + `IterableDataset`: A copy of the dataset with a renamed column. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> next(iter(ds)) + {'label': 1, + 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} + >>> ds = ds.rename_column("text", "movie_review") + >>> next(iter(ds)) + {'label': 1, + 'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} + ``` + """ + return self.rename_columns({original_column_name: new_column_name}) + + def rename_columns(self, column_mapping: Dict[str, str]) -> "IterableDataset": + """ + Rename several columns in the dataset, and move the features associated to the original columns under + the new column names. + + Args: + column_mapping (`Dict[str, str]`): A mapping of columns to rename to their new names + + Returns: + `IterableDataset`: A copy of the dataset with renamed columns + """ + + original_features = self._info.features.copy() if self._info.features else None + ds_iterable = self.map( + partial(_rename_columns_fn, column_mapping=column_mapping), remove_columns=list(column_mapping) + ) + if original_features is not None: + ds_iterable._info.features = Features( + { + column_mapping[col] if col in column_mapping.keys() else col: feature + for col, feature in original_features.items() + } + ) + # check that it's still valid, especially with regard to task templates + try: + ds_iterable._info.copy() + except ValueError: + ds_iterable._info.task_templates = None + return ds_iterable + + def remove_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset": + """ + Remove one or several column(s) in the dataset and the features associated to them. + The removal is done on-the-fly on the examples when iterating over the dataset. + + + Args: + column_names (`Union[str, List[str]]`): + Name of the column(s) to remove. + + Returns: + `IterableDataset`: A copy of the dataset object without the columns to remove. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> next(iter(ds)) + {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1} + >>> ds = ds.remove_columns("label") + >>> next(iter(ds)) + {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} + ``` + """ + original_features = self._info.features.copy() if self._info.features else None + ds_iterable = self.map(remove_columns=column_names) + if original_features is not None: + ds_iterable._info.features = original_features.copy() + for col, _ in original_features.items(): + if col in column_names: + del ds_iterable._info.features[col] + # check that it's still valid, especially with regard to task templates + try: + ds_iterable._info.copy() + except ValueError: + ds_iterable._info.task_templates = None + + return ds_iterable + + def select_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset": + """Select one or several column(s) in the dataset and the features + associated to them. The selection is done on-the-fly on the examples + when iterating over the dataset. + + + Args: + column_names (`Union[str, List[str]]`): + Name of the column(s) to select. + + Returns: + `IterableDataset`: A copy of the dataset object with selected columns. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> next(iter(ds)) + {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1} + >>> ds = ds.select_columns("text") + >>> next(iter(ds)) + {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} + ``` + """ + if isinstance(column_names, str): + column_names = [column_names] + + if self._info: + info = copy.deepcopy(self._info) + if self._info.features is not None: + missing_columns = set(column_names) - set(self._info.features.keys()) + if missing_columns: + raise ValueError( + f"Column name {list(missing_columns)} not in the " + "dataset. Columns in the dataset: " + f"{list(self._info.features.keys())}." + ) + info.features = Features({c: info.features[c] for c in column_names}) + # check that it's still valid, especially with regard to task templates + try: + info.copy() + except ValueError: + info.task_templates = None + + ex_iterable = SelectColumnsIterable(self._ex_iterable, column_names) + return IterableDataset( + ex_iterable=ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=self._shuffling, + distributed=self._distributed, + token_per_repo_id=self._token_per_repo_id, + ) + + def cast_column(self, column: str, feature: FeatureType) -> "IterableDataset": + """Cast column to feature for decoding. + + Args: + column (`str`): + Column name. + feature (`Feature`): + Target feature. + + Returns: + `IterableDataset` + + Example: + + ```py + >>> from datasets import load_dataset, Audio + >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train", streaming=True) + >>> ds.features + {'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None), + 'english_transcription': Value(dtype='string', id=None), + 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None), + 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None), + 'path': Value(dtype='string', id=None), + 'transcription': Value(dtype='string', id=None)} + >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) + >>> ds.features + {'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), + 'english_transcription': Value(dtype='string', id=None), + 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None), + 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None), + 'path': Value(dtype='string', id=None), + 'transcription': Value(dtype='string', id=None)} + ``` + """ + info = self._info.copy() + info.features[column] = feature + # check that it's still valid, especially with regard to task templates + try: + info.copy() + except ValueError: + info.task_templates = None + return IterableDataset( + ex_iterable=self._ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def cast( + self, + features: Features, + ) -> "IterableDataset": + """ + Cast the dataset to a new set of features. + + Args: + features ([`Features`]): + New features to cast the dataset to. + The name of the fields in the features must match the current column names. + The type of the data must also be convertible from one type to the other. + For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset. + + Returns: + `IterableDataset`: A copy of the dataset with casted features. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True) + >>> ds.features + {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), + 'text': Value(dtype='string', id=None)} + >>> new_features = ds.features.copy() + >>> new_features["label"] = ClassLabel(names=["bad", "good"]) + >>> new_features["text"] = Value("large_string") + >>> ds = ds.cast(new_features) + >>> ds.features + {'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None), + 'text': Value(dtype='large_string', id=None)} + ``` + """ + info = self._info.copy() + info.features = features + # check that it's still valid, especially with regard to task templates + try: + info.copy() + except ValueError: + info.task_templates = None + return IterableDataset( + ex_iterable=self._ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def _step(self, step: int, offset: int) -> "IterableDataset": + ex_iterable = StepExamplesIterable(self._ex_iterable, step=step, offset=offset) + return IterableDataset( + ex_iterable=ex_iterable, + info=self._info.copy(), + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + def _resolve_features(self): + if self.features is not None: + return self + elif isinstance(self._ex_iterable, TypedExamplesIterable): + features = self._ex_iterable.features + else: + features = _infer_features_from_batch(self.with_format(None)._head()) + info = self.info.copy() + info.features = features + return IterableDataset( + ex_iterable=self._ex_iterable, + info=info, + split=self._split, + formatting=self._formatting, + shuffling=copy.deepcopy(self._shuffling), + distributed=copy.deepcopy(self._distributed), + token_per_repo_id=self._token_per_repo_id, + ) + + +def _concatenate_iterable_datasets( + dsets: List[IterableDataset], + info: Optional[DatasetInfo] = None, + split: Optional[NamedSplit] = None, + axis: int = 0, +) -> IterableDataset: + """ + Converts a list of `IterableDataset` with the same schema into a single `IterableDataset`. + Missing data are filled with None values. + + + + Args: + dsets (`List[datasets.IterableDataset]`): List of Datasets to concatenate. + info (`DatasetInfo`, optional): Dataset information, like description, citation, etc. + split (`NamedSplit`, optional): Name of the dataset split. + axis (``{0, 1}``, default ``0``, meaning over rows): + Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns + (horizontally). + + *New in version 1.6.0* + + Example: + + ```py + >>> ds3 = _concatenate_iterable_datasets([ds1, ds2]) + ``` + """ + dsets = [d._resolve_features() for d in dsets] + + # Perform checks (and a potentional cast if axis=0) + if axis == 0: + _check_if_features_can_be_aligned([dset.features for dset in dsets]) + else: + _check_column_names([col_name for dset in dsets for col_name in dset.features]) + + # TODO: improve this to account for a mix of ClassLabel and Value for example + # right now it would keep the type of the first dataset in the list + features = Features( + {k: v for features in _align_features([dset.features for dset in dsets]) for k, v in features.items()} + ) + + ex_iterables = [d._ex_iterable for d in dsets] + if axis == 0: + ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) + else: + ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) + # Set new info - we update the features + # setting the features also ensures to fill missing columns with None + if info is None: + info = DatasetInfo.from_merge([d.info for d in dsets]) + else: + info = info.copy() + info.features = features + # Get all the auth tokens per repository - in case the datasets come from different private repositories + token_per_repo_id = {repo_id: token for dataset in dsets for repo_id, token in dataset._token_per_repo_id.items()} + # Return new daset + return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id) + + +def _interleave_iterable_datasets( + datasets: List[IterableDataset], + probabilities: Optional[List[float]] = None, + seed: Optional[int] = None, + info: Optional[DatasetInfo] = None, + split: Optional[NamedSplit] = None, + stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", +) -> IterableDataset: + """ + Interleave several iterable datasets (sources) into a single iterable dataset. + The new iterable dataset alternates between the sources to yield examples. + If `probabilities = None` (default) the iterable dataset will cycles through the sources in order for each next example in the iteration. + If `probabilities` is not `None, the iterable dataset will sample a random source according to the provided probabilities for each next examples in the iteration. + + + + Args: + datasets (`List[IterableDataset]`): list of datasets to interleave + probabilities (`List[float]`, optional, default None): If specified, the new iterable dataset samples + examples from one source at a time according to these probabilities. + seed (`int`, optional, default None): The random seed used to choose a source for each example. + stopping_strategy (`str`, defaults to `first_exhausted`): + Two strategies are proposed right now. + By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples. + If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once. + Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous: + - with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples. + - with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting. + + Output: + `datasets.IterableDataset` + """ + datasets = [d._resolve_features() for d in datasets] + + # Perform checks + _check_if_features_can_be_aligned([dset.features for dset in datasets]) + + # TODO: improve this to account for a mix of ClassLabel and Value for example + # right now it would keep the type of the first dataset in the list + features = Features( + {k: v for features in _align_features([dset.features for dset in datasets]) for k, v in features.items()} + ) + + ex_iterables = [d._ex_iterable for d in datasets] + + # Use cycling or random cycling of sources + if probabilities is None: + ex_iterable = CyclingMultiSourcesExamplesIterable(ex_iterables, stopping_strategy=stopping_strategy) + else: + generator = np.random.default_rng(seed) + ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable( + ex_iterables, generator=generator, probabilities=probabilities, stopping_strategy=stopping_strategy + ) + # Set new info - we update the features + # setting the features also ensures to fill missing columns with None + if info is None: + info = DatasetInfo.from_merge([d.info for d in datasets]) + else: + info = info.copy() + info.features = features + # Get all the auth tokens per repository - in case the datasets come from different private repositories + token_per_repo_id = { + repo_id: token for dataset in datasets for repo_id, token in dataset._token_per_repo_id.items() + } + # Return new daset + return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id) + + +def _split_by_node_iterable_dataset(dataset: IterableDataset, rank: int, world_size: int) -> IterableDataset: + """ + Split an iterable dataset for the node at rank `rank` in a pool of nodes of size `world_size`. + + If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`), + then the shards are evenly assigned across the nodes, which is the most optimized. + Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples. + + Args: + dataset ([`IterableDataset`]): + The iterable dataset to split by node. + rank (`int`): + Rank of the current node. + world_size (`int`): + Total number of nodes. + + Returns: + [`IterableDataset`]: The iterable dataset to be used on the node at rank `rank`. + """ + if dataset._distributed: + world_size = world_size * dataset._distributed.world_size + rank = world_size * dataset._distributed.rank + rank + distributed = DistributedConfig(rank=rank, world_size=world_size) + return IterableDataset( + ex_iterable=dataset._ex_iterable, + info=dataset._info.copy(), + split=dataset._split, + formatting=dataset._formatting, + shuffling=copy.deepcopy(dataset._shuffling), + distributed=distributed, + token_per_repo_id=dataset._token_per_repo_id, + )