diff --git "a/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py" "b/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py"
new file mode 100644--- /dev/null
+++ "b/llmeval-env/lib/python3.10/site-packages/datasets/iterable_dataset.py"
@@ -0,0 +1,2389 @@
+import copy
+import itertools
+import sys
+import warnings
+from collections import Counter
+from copy import deepcopy
+from dataclasses import dataclass
+from functools import partial
+from itertools import cycle, islice
+from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union
+
+import fsspec.asyn
+import numpy as np
+import pyarrow as pa
+
+from . import config
+from .arrow_dataset import Dataset, DatasetInfoMixin
+from .features import Features
+from .features.features import FeatureType, _align_features, _check_if_features_can_be_aligned, cast_to_python_objects
+from .formatting import PythonFormatter, TensorFormatter, get_format_type_from_alias, get_formatter
+from .info import DatasetInfo
+from .splits import NamedSplit
+from .table import cast_table_to_features, read_schema_from_file, table_cast
+from .utils.logging import get_logger
+from .utils.py_utils import Literal
+from .utils.sharding import _merge_gen_kwargs, _number_of_shards_in_gen_kwargs, _shuffle_gen_kwargs, _split_gen_kwargs
+
+
+logger = get_logger(__name__)
+
+Key = Union[int, str]
+
+
+def identity_func(x):
+ return x
+
+
+def _rename_columns_fn(example: Dict, column_mapping: Dict[str, str]):
+ if any(col not in example for col in column_mapping):
+ raise ValueError(
+ f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(column_mapping) - set(example)} are not in the dataset."
+ )
+ if any(col in example for col in column_mapping.values()):
+ raise ValueError(
+ f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(example) - set(column_mapping.values())} are already in the dataset."
+ )
+ return {
+ new_column_name: example[original_column_name]
+ for original_column_name, new_column_name in column_mapping.items()
+ }
+
+
+def add_column_fn(example: Dict, idx: int, name: str, column: List[Dict]):
+ if name in example:
+ raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
+ return {name: column[idx]}
+
+
+def _infer_features_from_batch(batch: Dict[str, list], try_features: Optional[Features] = None) -> Features:
+ pa_table = pa.Table.from_pydict(batch)
+ if try_features is not None:
+ try:
+ pa_table = table_cast(pa_table, pa.schema(try_features.type))
+ except (TypeError, pa.ArrowInvalid, pa.ArrowNotImplementedError):
+ pass
+ return Features.from_arrow_schema(pa_table.schema)
+
+
+def _examples_to_batch(examples: List[Dict[str, Any]]) -> Dict[str, list]:
+ # we order the columns by order of appearance
+ # to do so, we use a dict as an ordered set
+ cols = {col: None for example in examples for col in example}
+ # when an example is missing a column, we set the value to None with .get()
+ arrays = [[example.get(col) for example in examples] for col in cols]
+ return dict(zip(cols, arrays))
+
+
+def _batch_to_examples(batch: Dict[str, list]) -> List[Dict[str, Any]]:
+ """Convert a batch (dict of examples) to examples list"""
+ n_examples = len(batch[next(iter(batch))])
+ for i in range(n_examples):
+ yield {col: array[i] for col, array in batch.items()}
+
+
+class _HasNextIterator(Iterator):
+ """Iterator with an hasnext() function. Taken from https://stackoverflow.com/questions/1966591/has-next-in-python-iterators."""
+
+ def __init__(self, it):
+ self.it = iter(it)
+ self._hasnext = None
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self._hasnext:
+ result = self._thenext
+ else:
+ result = next(self.it)
+ self._hasnext = None
+ return result
+
+ def hasnext(self):
+ if self._hasnext is None:
+ try:
+ self._thenext = next(self.it)
+ except StopIteration:
+ self._hasnext = False
+ else:
+ self._hasnext = True
+ return self._hasnext
+
+
+def _convert_to_arrow(
+ iterable: Iterable[Tuple[Key, dict]],
+ batch_size: int,
+ drop_last_batch: bool = False,
+) -> Iterator[Tuple[Key, pa.Table]]:
+ """Convert and group examples in Arrow tables of size `batch_size`.
+
+ Args:
+ iterable (`Iterable[Tuple[Key, dict]]`):
+ An examples iterable containing tuples (example_key, example) of type (int/str, dict)
+ batch_size (`Optional[int]`):
+ Size of each sub-table to yield. If None or <= 0, yields the full table.
+ drop_last_batch (`bool`, defaults to `False`):
+ Drop the last batch if it is smaller than `batch_size`.
+ """
+ if batch_size is None or batch_size <= 0:
+ yield (
+ "all",
+ pa.Table.from_pylist(cast_to_python_objects([example for _, example in iterable], only_1d_for_numpy=True)),
+ )
+ return
+ iterator = iter(iterable)
+ for key, example in iterator:
+ iterator_batch = islice(iterator, batch_size - 1)
+ key_examples_list = [(key, example)] + list(iterator_batch)
+ if len(key_examples_list) < batch_size and drop_last_batch:
+ return
+ keys, examples = zip(*key_examples_list)
+ new_key = "_".join(str(key) for key in keys)
+ yield new_key, pa.Table.from_pylist(cast_to_python_objects(examples, only_1d_for_numpy=True))
+
+
+def _batch_arrow_tables(
+ iterable: Iterable[Tuple[Key, pa.Table]],
+ batch_size: Optional[int],
+ drop_last_batch: bool = False,
+) -> Iterator[Tuple[Key, pa.Table]]:
+ """Iterate over sub-tables of size `batch_size`.
+
+ Args:
+ iterable (`Iterable[Tuple[Key, pa.Table]]`):
+ A tables iterable containing tuples (table_key, table) of type (int/str, pa.Table)
+ batch_size (`Optional[int]`):
+ Size of each sub-table to yield. If None or <= 0, yields the full table.
+ drop_last_batch (`bool`, defaults to `False`):
+ Drop the last batch if it is smaller than `batch_size`.
+ """
+ if batch_size is None or batch_size <= 0:
+ yield "all", pa.concat_tables([pa_table for _, pa_table in iterable])
+ return
+ keys_buffer = []
+ chunks_buffer = []
+ chunks_buffer_size = 0
+ for key, pa_table in iterable:
+ for chunk in pa_table.to_reader(max_chunksize=batch_size):
+ if len(chunk) == 0:
+ continue
+ elif chunks_buffer_size + len(chunk) < batch_size:
+ keys_buffer.append(key)
+ chunks_buffer.append(chunk)
+ chunks_buffer_size += len(chunk)
+ continue
+ elif chunks_buffer_size + len(chunk) == batch_size:
+ keys_buffer.append(key)
+ chunks_buffer.append(chunk)
+ new_key = "_".join(str(_key) for _key in keys_buffer)
+ yield new_key, pa.Table.from_batches(chunks_buffer)
+ keys_buffer = []
+ chunks_buffer = []
+ chunks_buffer_size = 0
+ else:
+ cropped_chunk_length = batch_size - chunks_buffer_size
+ keys_buffer.append(f"{key}[:{cropped_chunk_length}]")
+ chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
+ new_key = "_".join(str(_key) for _key in keys_buffer)
+ yield new_key, pa.Table.from_batches(chunks_buffer)
+ keys_buffer = [f"{key}[{cropped_chunk_length}:]"]
+ chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
+ chunks_buffer_size = len(chunk) - cropped_chunk_length
+ if not drop_last_batch and chunks_buffer:
+ new_key = "_".join(str(_key) for _key in keys_buffer)
+ yield new_key, pa.Table.from_batches(chunks_buffer)
+
+
+class _BaseExamplesIterable:
+ """Base class for the examples iterable used by an IterableDataset"""
+
+ def __init__(self) -> None:
+ self.iter_arrow: Optional[Callable[[], Iterator[Tuple[Key, pa.Table]]]] = None
+
+ def __iter__(self) -> Iterator[Tuple[Key, dict]]:
+ """An examples iterable should yield tuples (example_key, example) of type (int/str, dict)"""
+ raise NotImplementedError(f"{type(self)} doesn't implement __iter__ yet")
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "_BaseExamplesIterable":
+ """
+ Either shuffle the shards/sources of the dataset, or propagate the shuffling to the underlying iterable.
+ If the order of the shards must stay fixed (when using .skip or .take for example), then this method returns self.
+ """
+ raise NotImplementedError(f"{type(self)} doesn't implement shuffle_data_sources yet")
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "_BaseExamplesIterable":
+ """Either keep only the requested shard, or propagate the request to the underlying iterable."""
+ raise NotImplementedError(f"{type(self)} doesn't implement shard_data_sources yet")
+
+ def split_shard_indices_by_worker(self, worker_id: int, num_workers: int) -> List[int]:
+ return list(range(worker_id, self.n_shards, num_workers))
+
+ @property
+ def n_shards(self) -> int:
+ raise NotImplementedError(f"{type(self)} doesn't implement n_shards yet")
+
+
+class ExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict):
+ super().__init__()
+ self.generate_examples_fn = generate_examples_fn
+ self.kwargs = kwargs
+
+ def __iter__(self):
+ yield from self.generate_examples_fn(**self.kwargs)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "ExamplesIterable":
+ return ShuffledDataSourcesExamplesIterable(self.generate_examples_fn, self.kwargs, generator)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable":
+ """Keep only the requested shard."""
+ gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards)
+ shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers)
+ requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
+ return ExamplesIterable(self.generate_examples_fn, requested_gen_kwargs)
+
+ @property
+ def n_shards(self) -> int:
+ return _number_of_shards_in_gen_kwargs(self.kwargs)
+
+
+class ShuffledDataSourcesExamplesIterable(ExamplesIterable):
+ def __init__(
+ self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict, generator: np.random.Generator
+ ):
+ super().__init__(generate_examples_fn, kwargs)
+ self.generator = deepcopy(generator)
+
+ def __iter__(self):
+ """Shuffle the kwargs order to shuffle shards"""
+ rng = deepcopy(self.generator)
+ kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
+ yield from self.generate_examples_fn(**kwargs_with_shuffled_shards)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable":
+ """Keep only the requested shard."""
+ rng = deepcopy(self.generator)
+ kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
+ return ExamplesIterable(self.generate_examples_fn, kwargs_with_shuffled_shards).shard_data_sources(
+ worker_id, num_workers
+ )
+
+
+class ArrowExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, generate_tables_fn: Callable[..., Tuple[Key, pa.Table]], kwargs: dict):
+ super().__init__()
+ self.generate_tables_fn = generate_tables_fn
+ self.kwargs = kwargs
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ formatter = PythonFormatter()
+ for key, pa_table in self.generate_tables_fn(**self.kwargs):
+ for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
+ formatted_batch = formatter.format_batch(pa_subtable)
+ for example in _batch_to_examples(formatted_batch):
+ yield key, example
+
+ def _iter_arrow(self):
+ yield from self.generate_tables_fn(**self.kwargs)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "ArrowExamplesIterable":
+ return ShuffledDataSourcesArrowExamplesIterable(self.generate_tables_fn, self.kwargs, generator)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable":
+ """Keep only the requested shard."""
+ gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards)
+ shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers)
+ requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
+ return ArrowExamplesIterable(self.generate_tables_fn, requested_gen_kwargs)
+
+ @property
+ def n_shards(self) -> int:
+ return _number_of_shards_in_gen_kwargs(self.kwargs)
+
+
+class ShuffledDataSourcesArrowExamplesIterable(ArrowExamplesIterable):
+ def __init__(
+ self,
+ generate_tables_fn: Callable[..., Tuple[Key, pa.Table]],
+ kwargs: dict,
+ generator: np.random.Generator,
+ ):
+ super().__init__(generate_tables_fn, kwargs)
+ self.generator = deepcopy(generator)
+
+ def __iter__(self):
+ """Shuffle the kwargs order to shuffle shards"""
+ rng = deepcopy(self.generator)
+ kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
+ formatter = PythonFormatter()
+ for key, pa_table in self.generate_tables_fn(**kwargs_with_shuffled_shards):
+ for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
+ formatted_batch = formatter.format_batch(pa_subtable)
+ for example in _batch_to_examples(formatted_batch):
+ yield key, example
+
+ def _iter_arrow(self):
+ rng = deepcopy(self.generator)
+ kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
+ yield from self.generate_tables_fn(**kwargs_with_shuffled_shards)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable":
+ """Keep only the requested shard."""
+ rng = deepcopy(self.generator)
+ kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
+ return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources(
+ worker_id, num_workers
+ )
+
+
+class SelectColumnsIterable(_BaseExamplesIterable):
+ def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: List[str]):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.column_names = column_names
+ if self.ex_iterable.iter_arrow:
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ for idx, row in self.ex_iterable:
+ yield idx, {c: row[c] for c in self.column_names}
+
+ def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
+ for idx, pa_table in self.ex_iterable.iter_arrow():
+ yield idx, pa_table.select(self.column_names)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable":
+ return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "SelectColumnsIterable":
+ return SelectColumnsIterable(self.ex_iterable.shard_data_sources(worker_id, num_workers), self.column_names)
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class StepExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.step = step
+ self.offset = offset
+ # TODO(QL): implement iter_arrow
+
+ def __iter__(self):
+ ex_iterator = iter(self.ex_iterable)
+ while True:
+ batch = list(islice(ex_iterator, self.step))
+ if len(batch) > self.offset:
+ yield batch[self.offset]
+ else:
+ break
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable":
+ return StepExamplesIterable(
+ self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "StepExamplesIterable":
+ return StepExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers), step=self.step, offset=self.offset
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable):
+ def __init__(
+ self,
+ ex_iterables: List[_BaseExamplesIterable],
+ stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
+ ):
+ super().__init__()
+ self.ex_iterables = ex_iterables
+ self.stopping_strategy = stopping_strategy
+
+ # if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted
+ # if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once
+ self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any
+ # TODO(QL): implement iter_arrow
+
+ def _get_indices_iterator(self):
+ # this is an infinite iterator to keep track of which iterator we want to pick examples from
+ return cycle(range(len(self.ex_iterables)))
+
+ def __iter__(self):
+ iterators = [_HasNextIterator(ex_iterable) for ex_iterable in self.ex_iterables]
+
+ indices_iterator = self._get_indices_iterator()
+
+ is_exhausted = np.full(len(self.ex_iterables), False)
+ for i in indices_iterator:
+ try: # let's pick one example from the iterator at index i
+ yield next(iterators[i])
+
+ # it will resume from the yield at the next call so that we can directly test if the iterable is exhausted and if we need to break out of the loop
+ if not iterators[i].hasnext():
+ is_exhausted[i] = True
+
+ if self.bool_strategy_func(is_exhausted):
+ # if the stopping criteria is met, break the main for loop
+ break
+ # otherwise reinitialise the iterator and yield the first example
+ iterators[i] = _HasNextIterator(self.ex_iterables[i])
+
+ except StopIteration:
+ # here it means that the i-th iterabledataset is empty, i.e we never have the occasion to yield an element of the i-th dataset.
+ # we still check if the stopping criteria is met and if we break out of the loop in case of an oversampling strategy
+ is_exhausted[i] = True
+
+ if self.bool_strategy_func(is_exhausted):
+ # if the stopping criteria is met, break the main for loop
+ break
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable":
+ """Shuffle each underlying examples iterable."""
+ ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
+ return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy)
+
+ @property
+ def n_shards(self) -> int:
+ return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables)
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "CyclingMultiSourcesExamplesIterable":
+ """Either keep only the requested shard, or propagate the request to the underlying iterable."""
+ return CyclingMultiSourcesExamplesIterable(
+ [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],
+ stopping_strategy=self.stopping_strategy,
+ )
+
+
+class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
+ """
+ VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables.
+ It doesn't require the examples iterables to always yield the same columns.
+ Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`.
+
+ For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
+ We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
+
+ Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None.
+ This is done with `_apply_feature_types_on_example`.
+ """
+
+ def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
+ super().__init__()
+ self.ex_iterables = ex_iterables
+ if all(ex_iterable.iter_arrow is not None for ex_iterable in ex_iterables):
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ for ex_iterable in self.ex_iterables:
+ yield from ex_iterable
+
+ def _iter_arrow(self):
+ for ex_iterable in self.ex_iterables:
+ yield from ex_iterable.iter_arrow()
+
+ def shuffle_data_sources(
+ self, generator: np.random.Generator
+ ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
+ """Shuffle the list of examples iterable, as well as each underlying examples iterable."""
+ rng = deepcopy(generator)
+ ex_iterables = list(self.ex_iterables)
+ rng.shuffle(ex_iterables)
+ ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables]
+ return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
+
+ @property
+ def n_shards(self) -> int:
+ return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables)
+
+ def shard_data_sources(
+ self, worker_id: int, num_workers: int
+ ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
+ """Either keep only the requested shard, or propagate the request to the underlying iterable."""
+ return VerticallyConcatenatedMultiSourcesExamplesIterable(
+ [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables]
+ )
+
+
+def _check_column_names(column_names: List[str]):
+ """Check the column names to make sure they don't contain duplicates."""
+ counter = Counter(column_names)
+ if not all(count == 1 for count in counter.values()):
+ duplicated_columns = [col for col in counter if counter[col] > 1]
+ raise ValueError(
+ f"The examples iterables can't have duplicated columns but columns {duplicated_columns} are duplicated."
+ )
+
+
+class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
+ """
+ HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables.
+ It also checks that there are no duplicate columns (otherwise we don't know which one to keep).
+ This check is done once when yielding the first example.
+
+ However it doesn't fill missing columns with None.
+ Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`.
+
+ For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
+ We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
+
+ Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None.
+ This is done with `_apply_feature_types_on_example`.
+ """
+
+ def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
+ super().__init__()
+ self.ex_iterables = ex_iterables
+ # TODO(QL): implement iter_arrow
+
+ def __iter__(self):
+ ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]
+ for i in itertools.count():
+ keys = []
+ examples = []
+ for ex_iterator in list(ex_iterators):
+ try:
+ key, example = next(ex_iterator)
+ keys.append(key)
+ examples.append(example)
+ except StopIteration:
+ ex_iterators.remove(ex_iterator)
+ if ex_iterators:
+ if i == 0:
+ _check_column_names([column_name for example in examples for column_name in example])
+ new_example = {}
+ for example in examples:
+ new_example.update(example)
+ new_key = "_".join(str(key) for key in keys)
+ yield new_key, new_example
+ else:
+ break
+
+ def shuffle_data_sources(
+ self, generator: np.random.Generator
+ ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
+ """Doesn't shuffle the wrapped examples iterable since it would break the alignment between them."""
+ return self
+
+ @property
+ def n_shards(self) -> int:
+ return 1
+
+ def shard_data_sources(
+ self, worker_id: int, num_workers: int
+ ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
+ """Either keep only the requested shard, or propagate the request to the underlying iterable."""
+ return HorizontallyConcatenatedMultiSourcesExamplesIterable(
+ [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables]
+ )
+
+
+class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable):
+ def __init__(
+ self,
+ ex_iterables: List[_BaseExamplesIterable],
+ generator: np.random.Generator,
+ probabilities: Optional[List[float]] = None,
+ stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
+ ):
+ super().__init__(ex_iterables, stopping_strategy)
+ self.generator = deepcopy(generator)
+ self.probabilities = probabilities
+ # TODO(QL): implement iter_arrow
+
+ @staticmethod
+ def _iter_random_indices(
+ rng: np.random.Generator,
+ num_sources: int,
+ random_batch_size=1000,
+ p: Optional[List[float]] = None,
+ ) -> Iterator[int]:
+ """Get an infinite iterator that randomly samples the index of the source to pick examples from."""
+ if p is None:
+ while True:
+ yield from (int(i) for i in rng.integers(0, num_sources, size=random_batch_size))
+ else:
+ while True:
+ yield from (int(i) for i in rng.choice(num_sources, size=random_batch_size, p=p))
+
+ def _get_indices_iterator(self):
+ rng = deepcopy(self.generator)
+ # this is an infinite iterator that randomly samples the index of the source to pick examples from
+ return self._iter_random_indices(rng, len(self.ex_iterables), p=self.probabilities)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable":
+ """Shuffle the data sources of each wrapped examples iterable."""
+ ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
+ return RandomlyCyclingMultiSourcesExamplesIterable(
+ ex_iterables,
+ generator=generator,
+ probabilities=self.probabilities,
+ stopping_strategy=self.stopping_strategy,
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "RandomlyCyclingMultiSourcesExamplesIterable":
+ """Either keep only the requested shard, or propagate the request to the underlying iterable."""
+ return RandomlyCyclingMultiSourcesExamplesIterable(
+ [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],
+ self.generator,
+ self.probabilities,
+ self.stopping_strategy,
+ )
+
+
+class MappedExamplesIterable(_BaseExamplesIterable):
+ def __init__(
+ self,
+ ex_iterable: _BaseExamplesIterable,
+ function: Callable,
+ with_indices: bool = False,
+ input_columns: Optional[List[str]] = None,
+ batched: bool = False,
+ batch_size: Optional[int] = 1000,
+ drop_last_batch: bool = False,
+ remove_columns: Optional[List[str]] = None,
+ fn_kwargs: Optional[dict] = None,
+ formatting: Optional["FormattingConfig"] = None,
+ format_type="deprecated",
+ ):
+ if format_type != "deprecated":
+ warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
+ help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
+ warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
+ formatting = FormattingConfig(format_type=format_type)
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.function = function
+ self.batched = batched
+ self.batch_size = batch_size
+ self.drop_last_batch = drop_last_batch
+ self.remove_columns = remove_columns
+ self.with_indices = with_indices
+ self.input_columns = input_columns
+ self.fn_kwargs = fn_kwargs or {}
+ self.formatting = formatting
+ if self.formatting and self.formatting.format_type == "arrow":
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ if self.formatting and self.formatting.format_type == "arrow":
+ yield from ArrowExamplesIterable(self._iter_arrow, {})
+ else:
+ yield from self._iter()
+
+ def _iter(self):
+ iterator = iter(self.ex_iterable)
+ current_idx = 0
+
+ if self.formatting:
+ formatter = get_formatter(self.formatting.format_type)
+ format_dict = (
+ formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
+ )
+ else:
+ format_dict = None
+
+ if self.batched:
+ for key, example in iterator:
+ # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
+ iterator_batch = (
+ iterator
+ if self.batch_size is None or self.batch_size <= 0
+ else islice(iterator, self.batch_size - 1)
+ )
+ key_examples_list = [(key, example)] + list(iterator_batch)
+ keys, examples = zip(*key_examples_list)
+ if (
+ self.drop_last_batch
+ and self.batch_size is not None
+ and self.batch_size > 0
+ and len(examples) < self.batch_size
+ ): # ignore last batch
+ return
+ batch = _examples_to_batch(examples)
+ batch = format_dict(batch) if format_dict else batch
+ # then apply the transform
+ inputs = batch
+ function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
+ if self.with_indices:
+ function_args.append([current_idx + i for i in range(len(key_examples_list))])
+ transformed_batch = dict(batch) # this will be updated with the function output
+ transformed_batch.update(self.function(*function_args, **self.fn_kwargs))
+ # then remove the unwanted columns
+ if self.remove_columns:
+ for c in self.remove_columns:
+ del transformed_batch[c]
+ if transformed_batch:
+ first_col = next(iter(transformed_batch))
+ bad_cols = [
+ col
+ for col in transformed_batch
+ if len(transformed_batch[col]) != len(transformed_batch[first_col])
+ ]
+ if bad_cols:
+ raise ValueError(
+ f"Column lengths mismatch: columns {bad_cols} have length {[len(transformed_batch[col]) for col in bad_cols]} while {first_col} has length {len(transformed_batch[first_col])}."
+ )
+ # the new key is the concatenation of the examples keys from the batch
+ new_key = "_".join(str(key) for key in keys)
+ # yield one example at a time from the transformed batch
+ for example in _batch_to_examples(transformed_batch):
+ yield new_key, example
+ current_idx += 1
+ else:
+ for key, example in iterator:
+ # If not batched, we can apply the transform and yield the example directly
+ # first copy the example, since we might drop some keys
+ example = dict(example)
+ example = format_dict(example) if format_dict else example
+ # then apply the transform
+ inputs = example
+ function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
+ if self.with_indices:
+ function_args.append(current_idx)
+ transformed_example = dict(example) # this will be updated with the function output
+ transformed_example.update(self.function(*function_args, **self.fn_kwargs))
+ # then we remove the unwanted columns
+ if self.remove_columns:
+ for c in self.remove_columns:
+ del transformed_example[c]
+ yield key, transformed_example
+ current_idx += 1
+
+ def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
+ if self.ex_iterable.iter_arrow:
+ iterator = _batch_arrow_tables(
+ self.ex_iterable.iter_arrow(),
+ batch_size=self.batch_size if self.batched else 1,
+ drop_last_batch=self.drop_last_batch,
+ )
+ else:
+ iterator = _convert_to_arrow(
+ self.ex_iterable,
+ batch_size=self.batch_size if self.batched else 1,
+ drop_last_batch=self.drop_last_batch,
+ )
+ current_idx = 0
+ for key, pa_table in iterator:
+ # first build the batch
+ function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
+ if self.with_indices:
+ if self.batched:
+ function_args.append([current_idx + i for i in range(len(pa_table))])
+ else:
+ function_args.append(current_idx)
+ # then apply the transform
+ output_table = self.function(*function_args, **self.fn_kwargs)
+ if not isinstance(output_table, pa.Table):
+ raise TypeError(
+ f"Provided `function` which is applied to pyarrow tables returns a variable of type {type(output_table)}. Make sure provided `function` returns a a pyarrow table to update the dataset."
+ )
+ # we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts
+ # then remove the unwanted columns
+ if self.remove_columns:
+ for column in self.remove_columns:
+ if column in output_table.column_names:
+ output_table = output_table.remove_column(output_table.column_names.index(column))
+ # return output
+ yield key, output_table
+ current_idx += len(pa_table)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable":
+ """Shuffle the wrapped examples iterable."""
+ return MappedExamplesIterable(
+ self.ex_iterable.shuffle_data_sources(generator),
+ function=self.function,
+ with_indices=self.with_indices,
+ input_columns=self.input_columns,
+ batched=self.batched,
+ batch_size=self.batch_size,
+ drop_last_batch=self.drop_last_batch,
+ remove_columns=self.remove_columns,
+ fn_kwargs=self.fn_kwargs,
+ formatting=self.formatting,
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "MappedExamplesIterable":
+ """Keep only the requested shard."""
+ return MappedExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers),
+ function=self.function,
+ with_indices=self.with_indices,
+ input_columns=self.input_columns,
+ batched=self.batched,
+ batch_size=self.batch_size,
+ drop_last_batch=self.drop_last_batch,
+ remove_columns=self.remove_columns,
+ fn_kwargs=self.fn_kwargs,
+ formatting=self.formatting,
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class FilteredExamplesIterable(_BaseExamplesIterable):
+ def __init__(
+ self,
+ ex_iterable: _BaseExamplesIterable,
+ function: Callable,
+ with_indices: bool = False,
+ input_columns: Optional[List[str]] = None,
+ batched: bool = False,
+ batch_size: Optional[int] = 1000,
+ fn_kwargs: Optional[dict] = None,
+ formatting: Optional["FormattingConfig"] = None,
+ format_type="deprecated",
+ ):
+ if format_type != "deprecated":
+ warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
+ help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
+ warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
+ formatting = FormattingConfig(format_type=format_type)
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.function = function
+ self.batched = batched
+ self.batch_size = batch_size
+ self.with_indices = with_indices
+ self.input_columns = input_columns
+ self.fn_kwargs = fn_kwargs or {}
+ self.formatting = formatting
+ if self.formatting and self.formatting.format_type == "arrow":
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ if self.formatting and self.formatting.format_type == "arrow":
+ yield from ArrowExamplesIterable(self._iter_arrow, {})
+ else:
+ yield from self._iter()
+
+ def _iter(self):
+ if self.formatting:
+ formatter = get_formatter(self.formatting.format_type)
+ format_dict = (
+ formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
+ )
+ else:
+ format_dict = None
+
+ iterator = iter(self.ex_iterable)
+ current_idx = 0
+ if self.batched:
+ for key, example in iterator:
+ # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
+ iterator_batch = (
+ iterator
+ if self.batch_size is None or self.batch_size <= 0
+ else islice(iterator, self.batch_size - 1)
+ )
+ key_examples_list = [(key, example)] + list(iterator_batch)
+ keys, examples = zip(*key_examples_list)
+ batch = _examples_to_batch(examples)
+ batch = format_dict(batch) if format_dict else batch
+ # then compute the mask for the batch
+ inputs = batch
+ function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
+ if self.with_indices:
+ function_args.append([current_idx + i for i in range(len(key_examples_list))])
+ mask = self.function(*function_args, **self.fn_kwargs)
+ # yield one example at a time from the batch
+ for key_example, to_keep in zip(key_examples_list, mask):
+ if to_keep:
+ yield key_example
+ current_idx += 1
+ else:
+ for key, example in iterator:
+ # If not batched, we can apply the filtering function direcly
+ example = dict(example)
+ inputs = format_dict(example) if format_dict else example
+ function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
+ if self.with_indices:
+ function_args.append(current_idx)
+ to_keep = self.function(*function_args, **self.fn_kwargs)
+ if to_keep:
+ yield key, example
+ current_idx += 1
+
+ def _iter_arrow(self):
+ if self.ex_iterable.iter_arrow:
+ iterator = _batch_arrow_tables(
+ self.ex_iterable.iter_arrow(), batch_size=self.batch_size if self.batched else 1
+ )
+ else:
+ iterator = _convert_to_arrow(self.ex_iterable, batch_size=self.batch_size if self.batched else 1)
+ current_idx = 0
+ for key, pa_table in iterator:
+ # first build the batch
+ function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
+ if self.with_indices:
+ if self.batched:
+ function_args.append([current_idx + i for i in range(len(pa_table))])
+ else:
+ function_args.append(current_idx)
+ # then apply the transform
+ mask = self.function(*function_args, **self.fn_kwargs)
+ # yield the filtered table
+ if self.batched:
+ yield key, pa_table.filter(mask)
+ elif mask.as_py() if isinstance(mask, pa.BooleanScalar) else mask:
+ yield key, pa_table
+ current_idx += len(pa_table)
+
+ def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable":
+ """Shuffle the wrapped examples iterable."""
+ return FilteredExamplesIterable(
+ self.ex_iterable.shuffle_data_sources(seed),
+ function=self.function,
+ with_indices=self.with_indices,
+ input_columns=self.input_columns,
+ batched=self.batched,
+ batch_size=self.batch_size,
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "FilteredExamplesIterable":
+ """Keep only the requested shard."""
+ return FilteredExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers),
+ function=self.function,
+ with_indices=self.with_indices,
+ input_columns=self.input_columns,
+ batched=self.batched,
+ batch_size=self.batch_size,
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class BufferShuffledExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.buffer_size = buffer_size
+ self.generator = generator
+ # TODO(QL): implement iter_arrow
+
+ @staticmethod
+ def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]:
+ while True:
+ yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size))
+
+ def __iter__(self):
+ buffer_size = self.buffer_size
+ rng = deepcopy(self.generator)
+ indices_iterator = self._iter_random_indices(rng, buffer_size)
+ # this is the shuffle buffer that we keep in memory
+ mem_buffer = []
+ for x in self.ex_iterable:
+ if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it
+ i = next(indices_iterator)
+ yield mem_buffer[i]
+ mem_buffer[i] = x # replace the picked example by a new one
+ else: # otherwise, keep filling the buffer
+ mem_buffer.append(x)
+ # when we run out of examples, we shuffle the remaining examples in the buffer and yield them
+ rng.shuffle(mem_buffer)
+ yield from mem_buffer
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable":
+ """Shuffle the wrapped examples iterable as well as the shuffling buffer."""
+ return BufferShuffledExamplesIterable(
+ self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "BufferShuffledExamplesIterable":
+ """Keep only the requested shard."""
+ return BufferShuffledExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers),
+ buffer_size=self.buffer_size,
+ generator=self.generator,
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class SkipExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, ex_iterable: _BaseExamplesIterable, n: int):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.n = n
+ # TODO(QL): implement iter_arrow
+
+ def __iter__(self):
+ yield from islice(self.ex_iterable, self.n, None)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable":
+ """Doesn't shuffle the wrapped examples iterable since it would skip examples from other shards instead."""
+ return self
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+class TakeExamplesIterable(_BaseExamplesIterable):
+ def __init__(self, ex_iterable: _BaseExamplesIterable, n: int):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.n = n
+ # TODO(QL): implement iter_arrow
+
+ def __iter__(self):
+ yield from islice(self.ex_iterable, self.n)
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable":
+ """Doesn't shuffle the wrapped examples iterable since it would take examples from other shards instead."""
+ return self
+
+ @staticmethod
+ def split_number(num, n):
+ quotient = num // n
+ remainder = num % n
+ result = [quotient] * n
+ for i in range(remainder):
+ result[i] += 1
+ return result
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "TakeExamplesIterable":
+ """Keep only the requested shard."""
+ return TakeExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers),
+ n=self.split_number(self.n, num_workers)[worker_id],
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+def _apply_feature_types_on_example(
+ example: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]]
+) -> dict:
+ example = dict(example)
+ # add missing columns
+ for column_name in features:
+ if column_name not in example:
+ example[column_name] = None
+ # we encode the example for ClassLabel feature types for example
+ encoded_example = features.encode_example(example)
+ # Decode example for Audio feature, e.g.
+ decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)
+ return decoded_example
+
+
+def _apply_feature_types_on_batch(
+ batch: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]]
+) -> dict:
+ batch = dict(batch)
+ # add missing columns
+ n_examples = len(batch[next(iter(batch))])
+ for column_name in features:
+ if column_name not in batch:
+ batch[column_name] = [None] * n_examples
+ # we encode the batch for ClassLabel feature types for example
+ encoded_batch = features.encode_batch(batch)
+ # Decode batch for Audio feature, e.g.
+ decoded_batch = features.decode_batch(encoded_batch, token_per_repo_id=token_per_repo_id)
+ return decoded_batch
+
+
+class TypedExamplesIterable(_BaseExamplesIterable):
+ def __init__(
+ self,
+ ex_iterable: _BaseExamplesIterable,
+ features: Features,
+ token_per_repo_id: Dict[str, Union[str, bool, None]],
+ ):
+ super().__init__()
+ self.ex_iterable = ex_iterable
+ self.features = features
+ self.token_per_repo_id = token_per_repo_id
+ if self.ex_iterable.iter_arrow is not None:
+ self.iter_arrow = self._iter_arrow
+
+ def __iter__(self):
+ # Then for each example, `TypedExamplesIterable` automatically fills missing columns with None.
+ # This is done with `_apply_feature_types_on_example`.
+ for key, example in self.ex_iterable:
+ yield (
+ key,
+ _apply_feature_types_on_example(example, self.features, token_per_repo_id=self.token_per_repo_id),
+ )
+
+ def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
+ schema = self.features.arrow_schema
+ for key, pa_table in self.ex_iterable.iter_arrow():
+ columns = set(pa_table.column_names)
+ # add missing columns
+ for column_name in self.features:
+ if column_name not in columns:
+ col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None])
+ pa_table = pa_table.append_column(column_name, col)
+ if pa_table.schema != schema:
+ pa_table = cast_table_to_features(pa_table, self.features)
+ yield key, pa_table
+
+ def shuffle_data_sources(self, generator: np.random.Generator) -> "TypedExamplesIterable":
+ """Shuffle the wrapped examples iterable."""
+ return TypedExamplesIterable(
+ self.ex_iterable.shuffle_data_sources(generator),
+ features=self.features,
+ token_per_repo_id=self.token_per_repo_id,
+ )
+
+ def shard_data_sources(self, worker_id: int, num_workers: int) -> "TypedExamplesIterable":
+ """Keep only the requested shard."""
+ return TypedExamplesIterable(
+ self.ex_iterable.shard_data_sources(worker_id, num_workers),
+ features=self.features,
+ token_per_repo_id=self.token_per_repo_id,
+ )
+
+ @property
+ def n_shards(self) -> int:
+ return self.ex_iterable.n_shards
+
+
+@dataclass
+class FormattingConfig:
+ format_type: Optional[str]
+
+ def __post_init__(self):
+ if self.format_type == "pandas":
+ raise NotImplementedError(
+ "The 'pandas' formatting is not implemented for iterable datasets. You can use 'numpy' or 'arrow' instead."
+ )
+
+
+@dataclass
+class ShufflingConfig:
+ generator: np.random.Generator
+ _original_seed: Optional[int] = None
+
+
+@dataclass
+class DistributedConfig:
+ rank: int
+ world_size: int
+
+
+def _maybe_add_torch_iterable_dataset_parent_class(cls):
+ """Add torch.utils.data.IterableDataset as a parent class if 'torch' is available"""
+ if config.TORCH_AVAILABLE:
+ import torch.utils.data
+
+ if torch.utils.data.IterableDataset not in cls.__bases__:
+ cls.__bases__ += (torch.utils.data.IterableDataset,)
+
+
+class IterableDataset(DatasetInfoMixin):
+ """A Dataset backed by an iterable."""
+
+ def __init__(
+ self,
+ ex_iterable: _BaseExamplesIterable,
+ info: Optional[DatasetInfo] = None,
+ split: Optional[NamedSplit] = None,
+ formatting: Optional[FormattingConfig] = None,
+ shuffling: Optional[ShufflingConfig] = None,
+ distributed: Optional[DistributedConfig] = None,
+ token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None,
+ format_type="deprecated",
+ ):
+ if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None:
+ raise RuntimeError(
+ "The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. "
+ "Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. "
+ )
+ if format_type != "deprecated":
+ warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
+ help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
+ warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
+ formatting = FormattingConfig(format_type=format_type)
+
+ info = info.copy() if info is not None else DatasetInfo()
+ DatasetInfoMixin.__init__(self, info=info, split=split)
+
+ self._ex_iterable = ex_iterable
+ self._formatting = formatting
+ self._shuffling = shuffling
+ self._distributed = distributed
+ self._epoch = 0
+ self._token_per_repo_id: Dict[str, Union[str, bool, None]] = token_per_repo_id or {}
+ _maybe_add_torch_iterable_dataset_parent_class(self.__class__)
+
+ def __repr__(self):
+ return f"IterableDataset({{\n features: {list(self._info.features.keys()) if self._info.features is not None else 'Unknown'},\n n_shards: {self.n_shards}\n}})"
+
+ def __getstate__(self):
+ return self.__dict__
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+ # Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling
+ _maybe_add_torch_iterable_dataset_parent_class(self.__class__)
+
+ def _head(self, n=5):
+ return _examples_to_batch(list(self.take(n)))
+
+ def _effective_generator(self):
+ if self._shuffling and self._epoch == 0:
+ return self._shuffling.generator
+ elif self._shuffling:
+ # Create effective seed using self._epoch (we subtract in order to avoir overflow in long_scalars)
+ effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self._epoch
+ effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed
+ return np.random.default_rng(effective_seed)
+ else:
+ raise ValueError("This dataset is not shuffled")
+
+ @property
+ def n_shards(self) -> int:
+ if self._distributed and self._ex_iterable.n_shards % self._distributed.world_size == 0:
+ return self._ex_iterable.n_shards // self._distributed.world_size
+ return self._ex_iterable.n_shards
+
+ def _iter_pytorch(self):
+ ex_iterable = self._prepare_ex_iterable_for_iteration()
+ # Fix for fsspec when using multiprocess to avoid hanging in the ML training loop. (only required for fsspec >= 0.9.0)
+ # See https://github.com/fsspec/gcsfs/issues/379
+ fsspec.asyn.reset_lock()
+ # check if there aren't too many workers
+ import torch.utils.data
+
+ worker_info = torch.utils.data.get_worker_info()
+ if self._is_main_process() and ex_iterable.n_shards < worker_info.num_workers:
+ logger.warning(
+ f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.n_shards={ex_iterable.n_shards}). "
+ f"Stopping {worker_info.num_workers - ex_iterable.n_shards} dataloader workers."
+ )
+ logger.info(
+ f"To parallelize data loading, we give each process some shards (or data sources) to process. "
+ f"Therefore it's unnecessary to have a number of workers greater than dataset.n_shards={ex_iterable.n_shards}. "
+ f"To enable more parallelism, please split the dataset in more files than {ex_iterable.n_shards}."
+ )
+ # split workload
+ _log_prefix = f"node#{self._distributed.rank} " if self._distributed else ""
+ shards_indices = ex_iterable.split_shard_indices_by_worker(worker_info.id, worker_info.num_workers)
+ if shards_indices:
+ logger.debug(
+ f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.n_shards} shards."
+ )
+ ex_iterable = ex_iterable.shard_data_sources(worker_id=worker_info.id, num_workers=worker_info.num_workers)
+
+ if self._formatting:
+ formatter = get_formatter(self._formatting.format_type, features=self.features)
+ format_dict = (
+ formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
+ )
+ else:
+ format_dict = None
+
+ if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"):
+ if ex_iterable.iter_arrow:
+ iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1)
+ else:
+ iterator = _convert_to_arrow(ex_iterable, batch_size=1)
+ for key, pa_table in iterator:
+ yield formatter.format_row(pa_table)
+ return
+ else:
+ for key, example in ex_iterable:
+ if self.features:
+ # `IterableDataset` automatically fills missing columns with None.
+ # This is done with `_apply_feature_types_on_example`.
+ example = _apply_feature_types_on_example(
+ example, self.features, token_per_repo_id=self._token_per_repo_id
+ )
+ yield format_dict(example) if format_dict else example
+ logger.debug(
+ f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.n_shards} shards."
+ )
+ else:
+ logger.debug(
+ f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.n_shards}<{worker_info.num_workers})."
+ )
+
+ def _is_main_process(self):
+ if self._distributed and self._distributed.rank > 0:
+ return False
+ if "torch" in sys.modules:
+ import torch.utils.data
+
+ worker_info = torch.utils.data.get_worker_info()
+ if worker_info is not None and worker_info.id > 0:
+ return False
+ return True
+
+ def _prepare_ex_iterable_for_iteration(self) -> _BaseExamplesIterable:
+ if self._shuffling:
+ ex_iterable = self._ex_iterable.shuffle_data_sources(self._effective_generator())
+ else:
+ ex_iterable = self._ex_iterable
+
+ if self._distributed:
+ rank = self._distributed.rank
+ world_size = self._distributed.world_size
+ if ex_iterable.n_shards % world_size == 0:
+ if self._is_main_process():
+ n_shards_per_node = ex_iterable.n_shards // world_size
+ plural = "s" if n_shards_per_node > 1 else ""
+ logger.info(
+ f"Assigning {n_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node."
+ )
+ ex_iterable = ex_iterable.shard_data_sources(rank, world_size)
+ else:
+ if self._is_main_process():
+ logger.info(
+ f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration."
+ )
+ logger.info(
+ f"It is more optimized to distribute the dataset shards (or data sources) across nodes. "
+ f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. "
+ f"The current dataset has {ex_iterable.n_shards} which is not a factor of {world_size}"
+ )
+ ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank)
+
+ return ex_iterable
+
+ def __iter__(self):
+ if "torch" in sys.modules:
+ import torch.utils.data
+
+ worker_info = torch.utils.data.get_worker_info()
+ if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None:
+ # We're a torch.utils.data.IterableDataset in a PyTorch worker process
+ yield from self._iter_pytorch()
+ return
+
+ ex_iterable = self._prepare_ex_iterable_for_iteration()
+ if self._formatting:
+ formatter = get_formatter(self._formatting.format_type, features=self.features)
+ format_dict = (
+ formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
+ )
+ else:
+ format_dict = None
+
+ if self._formatting and (ex_iterable.iter_arrow or self._formatting.format_type == "arrow"):
+ if ex_iterable.iter_arrow:
+ iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1)
+ else:
+ iterator = _convert_to_arrow(ex_iterable, batch_size=1)
+ for key, pa_table in iterator:
+ yield formatter.format_row(pa_table)
+ return
+
+ for key, example in ex_iterable:
+ if self.features:
+ # `IterableDataset` automatically fills missing columns with None.
+ # This is done with `_apply_feature_types_on_example`.
+ example = _apply_feature_types_on_example(
+ example, self.features, token_per_repo_id=self._token_per_repo_id
+ )
+ yield format_dict(example) if format_dict else example
+
+ def iter(self, batch_size: int, drop_last_batch: bool = False):
+ """Iterate through the batches of size `batch_size`.
+
+ Args:
+ batch_size (:obj:`int`): size of each batch to yield.
+ drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be
+ dropped
+ """
+
+ if self._formatting:
+ formatter = get_formatter(self._formatting.format_type, features=self.features)
+ format_dict = (
+ formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
+ )
+ else:
+ format_dict = None
+
+ ex_iterable = self._prepare_ex_iterable_for_iteration()
+ if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"):
+ if ex_iterable.iter_arrow:
+ iterator = _batch_arrow_tables(
+ ex_iterable.iter_arrow(), batch_size=batch_size, drop_last_batch=drop_last_batch
+ )
+ else:
+ iterator = _convert_to_arrow(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch)
+ for key, pa_table in iterator:
+ yield formatter.format_batch(pa_table)
+ return
+
+ iterator = iter(ex_iterable)
+ for key, example in iterator:
+ # If batched, first build the batch
+ examples = [example] + [example for key, example in islice(iterator, batch_size - 1)]
+ if drop_last_batch and len(examples) < batch_size: # ignore last batch
+ return
+ batch = _examples_to_batch(examples)
+ if self.features:
+ # `IterableDataset` automatically fills missing columns with None.
+ # This is done with `_apply_feature_types_on_batch`.
+ batch = _apply_feature_types_on_batch(batch, self.features, token_per_repo_id=self._token_per_repo_id)
+ yield format_dict(batch) if format_dict else batch
+
+ @staticmethod
+ def from_generator(
+ generator: Callable,
+ features: Optional[Features] = None,
+ gen_kwargs: Optional[dict] = None,
+ ) -> "IterableDataset":
+ """Create an Iterable Dataset from a generator.
+
+ Args:
+ generator (`Callable`):
+ A generator function that `yields` examples.
+ features (`Features`, *optional*):
+ Dataset features.
+ gen_kwargs(`dict`, *optional*):
+ Keyword arguments to be passed to the `generator` callable.
+ You can define a sharded iterable dataset by passing the list of shards in `gen_kwargs`.
+ This can be used to improve shuffling and when iterating over the dataset with multiple workers.
+
+ Returns:
+ `IterableDataset`
+
+ Example:
+
+ ```py
+ >>> def gen():
+ ... yield {"text": "Good", "label": 0}
+ ... yield {"text": "Bad", "label": 1}
+ ...
+ >>> ds = IterableDataset.from_generator(gen)
+ ```
+
+ ```py
+ >>> def gen(shards):
+ ... for shard in shards:
+ ... with open(shard) as f:
+ ... for line in f:
+ ... yield {"line": line}
+ ...
+ >>> shards = [f"data{i}.txt" for i in range(32)]
+ >>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards})
+ >>> ds = ds.shuffle(seed=42, buffer_size=10_000) # shuffles the shards order + uses a shuffle buffer
+ >>> from torch.utils.data import DataLoader
+ >>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4) # give each worker a subset of 32/4=8 shards
+ ```
+ """
+ from .io.generator import GeneratorDatasetInputStream
+
+ return GeneratorDatasetInputStream(
+ generator=generator,
+ features=features,
+ gen_kwargs=gen_kwargs,
+ streaming=True,
+ ).read()
+
+ @staticmethod
+ def from_spark(
+ df: "pyspark.sql.DataFrame",
+ split: Optional[NamedSplit] = None,
+ features: Optional[Features] = None,
+ **kwargs,
+ ) -> "IterableDataset":
+ """Create an IterableDataset from Spark DataFrame. The dataset is streamed to the driver in batches.
+
+ Args:
+ df (`pyspark.sql.DataFrame`):
+ The DataFrame containing the desired data.
+ split (`NamedSplit`, *optional*):
+ Split name to be assigned to the dataset.
+ features (`Features`, *optional*):
+ Dataset features.
+
+ Returns:
+ [`IterableDataset`]
+
+ Example:
+
+ ```py
+ >>> df = spark.createDataFrame(
+ >>> data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]],
+ >>> columns=["id", "name"],
+ >>> )
+ >>> ds = IterableDataset.from_spark(df)
+ ```
+ """
+ from .io.spark import SparkDatasetReader
+
+ if sys.platform == "win32":
+ raise EnvironmentError("IterableDataset.from_spark is not currently supported on Windows")
+
+ return SparkDatasetReader(
+ df,
+ split=split,
+ features=features,
+ streaming=True,
+ **kwargs,
+ ).read()
+
+ @staticmethod
+ def from_file(filename: str) -> "IterableDataset":
+ """Instantiate a IterableDataset from Arrow table at filename.
+
+ Args:
+ filename (`str`):
+ File name of the dataset.
+
+ Returns:
+ [`IterableDataset`]
+ """
+ pa_table_schema = read_schema_from_file(filename)
+ inferred_features = Features.from_arrow_schema(pa_table_schema)
+ ex_iterable = ArrowExamplesIterable(Dataset._generate_tables_from_cache_file, kwargs={"filename": filename})
+ return IterableDataset(ex_iterable=ex_iterable, info=DatasetInfo(features=inferred_features))
+
+ def with_format(
+ self,
+ type: Optional[str] = None,
+ ) -> "IterableDataset":
+ """
+ Return a dataset with the specified format.
+ Supported formats: "arrow", or None for regular python objects.
+ The other formats are currently not implemented.
+
+ Args:
+
+ type (`str`, optional, default None): if set to "torch", the returned dataset
+ will be a subclass of torch.utils.data.IterableDataset to be used in a DataLoader
+ """
+ type = get_format_type_from_alias(type)
+ # TODO(QL): add format_kwargs
+ # TODO(QL): add format_columns and return_all_columns
+ # TODO(QL): add pandas format
+ return IterableDataset(
+ ex_iterable=self._ex_iterable,
+ info=self._info.copy(),
+ split=self._split,
+ formatting=FormattingConfig(format_type=type),
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def map(
+ self,
+ function: Optional[Callable] = None,
+ with_indices: bool = False,
+ input_columns: Optional[Union[str, List[str]]] = None,
+ batched: bool = False,
+ batch_size: Optional[int] = 1000,
+ drop_last_batch: bool = False,
+ remove_columns: Optional[Union[str, List[str]]] = None,
+ features: Optional[Features] = None,
+ fn_kwargs: Optional[dict] = None,
+ ) -> "IterableDataset":
+ """
+ Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
+ If your function returns a column that already exists, then it overwrites it.
+ The function is applied on-the-fly on the examples when iterating over the dataset.
+
+ You can specify whether the function should be batched or not with the `batched` parameter:
+
+ - If batched is `False`, then the function takes 1 example in and should return 1 example.
+ An example is a dictionary, e.g. `{"text": "Hello there !"}`.
+ - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
+ A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}.
+ - If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
+ Note that the last batch may have less than `n` examples.
+ A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
+
+ Args:
+ function (`Callable`, *optional*, defaults to `None`):
+ Function applied on-the-fly on the examples when you iterate on the dataset.
+ It must have one of the following signatures:
+
+ - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
+ - `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
+ - `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
+ - `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
+
+ For advanced usage, the function can also return a `pyarrow.Table`.
+ Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
+ If no function is provided, default to identity function: `lambda x: x`.
+ with_indices (`bool`, defaults to `False`):
+ Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
+ input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
+ The columns to be passed into `function`
+ as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
+ batched (`bool`, defaults to `False`):
+ Provide batch of examples to `function`.
+ batch_size (`int`, *optional*, defaults to `1000`):
+ Number of examples per batch provided to `function` if `batched=True`.
+ `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
+ drop_last_batch (`bool`, defaults to `False`):
+ Whether a last batch smaller than the batch_size should be
+ dropped instead of being processed by the function.
+ remove_columns (`[List[str]]`, *optional*, defaults to `None`):
+ Remove a selection of columns while doing the mapping.
+ Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
+ columns with names in `remove_columns`, these columns will be kept.
+ features (`[Features]`, *optional*, defaults to `None`):
+ Feature types of the resulting dataset.
+ fn_kwargs (`Dict`, *optional*, default `None`):
+ Keyword arguments to be passed to `function`.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> def add_prefix(example):
+ ... example["text"] = "Review: " + example["text"]
+ ... return example
+ >>> ds = ds.map(add_prefix)
+ >>> list(ds.take(3))
+ [{'label': 1,
+ 'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
+ {'label': 1,
+ 'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
+ {'label': 1, 'text': 'Review: effective but too-tepid biopic'}]
+ ```
+ """
+ if isinstance(input_columns, str):
+ input_columns = [input_columns]
+ if isinstance(remove_columns, str):
+ remove_columns = [remove_columns]
+ if function is None:
+ function = identity_func
+ if fn_kwargs is None:
+ fn_kwargs = {}
+ ex_iterable = MappedExamplesIterable(
+ TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id)
+ if self._info.features is not None
+ else self._ex_iterable,
+ function=function,
+ with_indices=with_indices,
+ input_columns=input_columns,
+ batched=batched,
+ batch_size=batch_size,
+ drop_last_batch=drop_last_batch,
+ remove_columns=remove_columns,
+ fn_kwargs=fn_kwargs,
+ formatting=self._formatting,
+ )
+ info = self.info.copy()
+ info.features = features
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def filter(
+ self,
+ function: Optional[Callable] = None,
+ with_indices=False,
+ input_columns: Optional[Union[str, List[str]]] = None,
+ batched: bool = False,
+ batch_size: Optional[int] = 1000,
+ fn_kwargs: Optional[dict] = None,
+ ) -> "IterableDataset":
+ """Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
+ The filtering is done on-the-fly when iterating over the dataset.
+
+ Args:
+ function (`Callable`):
+ Callable with one of the following signatures:
+
+ - `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
+ - `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
+ - `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
+ - `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`
+
+ If no function is provided, defaults to an always True function: `lambda x: True`.
+ with_indices (`bool`, defaults to `False`):
+ Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
+ input_columns (`str` or `List[str]`, *optional*):
+ The columns to be passed into `function` as
+ positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
+ batched (`bool`, defaults to `False`):
+ Provide batch of examples to `function`.
+ batch_size (`int`, *optional*, default `1000`):
+ Number of examples per batch provided to `function` if `batched=True`.
+ fn_kwargs (`Dict`, *optional*, default `None`):
+ Keyword arguments to be passed to `function`.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> ds = ds.filter(lambda x: x["label"] == 0)
+ >>> list(ds.take(3))
+ [{'label': 0, 'movie_review': 'simplistic , silly and tedious .'},
+ {'label': 0,
+ 'movie_review': "it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
+ {'label': 0,
+ 'movie_review': 'exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
+ ```
+ """
+ if isinstance(input_columns, str):
+ input_columns = [input_columns]
+
+ # TODO(QL): keep the features (right now if we keep it it would call decode_example again on an already decoded example)
+ info = copy.deepcopy(self._info)
+ info.features = None
+
+ # We need the examples to be decoded for certain feature types like Image or Audio, so we use TypedExamplesIterable here
+ ex_iterable = FilteredExamplesIterable(
+ TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id)
+ if self._info.features is not None
+ else self._ex_iterable,
+ function=function,
+ with_indices=with_indices,
+ input_columns=input_columns,
+ batched=batched,
+ batch_size=batch_size,
+ fn_kwargs=fn_kwargs,
+ formatting=self._formatting,
+ )
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def shuffle(
+ self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000
+ ) -> "IterableDataset":
+ """
+ Randomly shuffles the elements of this dataset.
+
+ This dataset fills a buffer with `buffer_size` elements, then randomly samples elements from this buffer,
+ replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
+ equal to the full size of the dataset is required.
+
+ For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
+ initially select a random element from only the first 1000 elements in the buffer. Once an element is
+ selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
+ maintaining the 1000 element buffer.
+
+ If the dataset is made of several shards, it also does shuffle the order of the shards.
+ However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
+ then the order of the shards is kept unchanged.
+
+ Args:
+ seed (`int`, *optional*, defaults to `None`):
+ Random seed that will be used to shuffle the dataset.
+ It is used to sample from the shuffle buffer and also to shuffle the data shards.
+ generator (`numpy.random.Generator`, *optional*):
+ Numpy random Generator to use to compute the permutation of the dataset rows.
+ If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
+ buffer_size (`int`, defaults to `1000`):
+ Size of the buffer.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> list(ds.take(3))
+ [{'label': 1,
+ 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
+ {'label': 1,
+ 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
+ {'label': 1, 'text': 'effective but too-tepid biopic'}]
+ >>> shuffled_ds = ds.shuffle(seed=42)
+ >>> list(shuffled_ds.take(3))
+ [{'label': 1,
+ 'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
+ {'label': 1,
+ 'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
+ {'label': 1,
+ 'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
+ ```
+ """
+ if generator is None:
+ generator = np.random.default_rng(seed)
+ else:
+ generator = deepcopy(generator)
+ shuffling = ShufflingConfig(generator=generator, _original_seed=seed)
+ return IterableDataset(
+ ex_iterable=BufferShuffledExamplesIterable(
+ self._ex_iterable, buffer_size=buffer_size, generator=generator
+ ).shuffle_data_sources(generator),
+ info=self._info.copy(),
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=shuffling,
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def set_epoch(self, epoch: int):
+ self._epoch = epoch
+
+ def skip(self, n: int) -> "IterableDataset":
+ """
+ Create a new [`IterableDataset`] that skips the first `n` elements.
+
+ Args:
+ n (`int`):
+ Number of elements to skip.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> list(ds.take(3))
+ [{'label': 1,
+ 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
+ {'label': 1,
+ 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
+ {'label': 1, 'text': 'effective but too-tepid biopic'}]
+ >>> ds = ds.skip(1)
+ >>> list(ds.take(3))
+ [{'label': 1,
+ 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
+ {'label': 1, 'text': 'effective but too-tepid biopic'},
+ {'label': 1,
+ 'text': 'if you sometimes like to go to the movies to have fun , wasabi is a good place to start .'}]
+ ```
+ """
+ ex_iterable = SkipExamplesIterable(self._ex_iterable, n)
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=self._info.copy(),
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def take(self, n: int) -> "IterableDataset":
+ """
+ Create a new [`IterableDataset`] with only the first `n` elements.
+
+ Args:
+ n (`int`):
+ Number of elements to take.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> small_ds = ds.take(2)
+ >>> list(small_ds)
+ [{'label': 1,
+ 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
+ {'label': 1,
+ 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}]
+ ```
+ """
+ ex_iterable = TakeExamplesIterable(self._ex_iterable, n)
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=self._info.copy(),
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ @property
+ def column_names(self) -> Optional[List[str]]:
+ """Names of the columns in the dataset.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="validation", streaming=True)
+ >>> ds.column_names
+ ['text', 'label']
+ ```
+ """
+ return list(self._info.features.keys()) if self._info.features is not None else None
+
+ def add_column(self, name: str, column: Union[list, np.array]) -> "IterableDataset":
+ """Add column to Dataset.
+
+ Args:
+ name (str): Column name.
+ column (list or np.array): Column data to be added.
+
+ Returns:
+ `IterableDataset`
+ """
+ return self.map(partial(add_column_fn, name=name, column=column), with_indices=True)
+
+ def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDataset":
+ """
+ Rename a column in the dataset, and move the features associated to the original column under the new column
+ name.
+
+ Args:
+ original_column_name (`str`):
+ Name of the column to rename.
+ new_column_name (`str`):
+ New name for the column.
+
+ Returns:
+ `IterableDataset`: A copy of the dataset with a renamed column.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> next(iter(ds))
+ {'label': 1,
+ 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
+ >>> ds = ds.rename_column("text", "movie_review")
+ >>> next(iter(ds))
+ {'label': 1,
+ 'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
+ ```
+ """
+ return self.rename_columns({original_column_name: new_column_name})
+
+ def rename_columns(self, column_mapping: Dict[str, str]) -> "IterableDataset":
+ """
+ Rename several columns in the dataset, and move the features associated to the original columns under
+ the new column names.
+
+ Args:
+ column_mapping (`Dict[str, str]`): A mapping of columns to rename to their new names
+
+ Returns:
+ `IterableDataset`: A copy of the dataset with renamed columns
+ """
+
+ original_features = self._info.features.copy() if self._info.features else None
+ ds_iterable = self.map(
+ partial(_rename_columns_fn, column_mapping=column_mapping), remove_columns=list(column_mapping)
+ )
+ if original_features is not None:
+ ds_iterable._info.features = Features(
+ {
+ column_mapping[col] if col in column_mapping.keys() else col: feature
+ for col, feature in original_features.items()
+ }
+ )
+ # check that it's still valid, especially with regard to task templates
+ try:
+ ds_iterable._info.copy()
+ except ValueError:
+ ds_iterable._info.task_templates = None
+ return ds_iterable
+
+ def remove_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset":
+ """
+ Remove one or several column(s) in the dataset and the features associated to them.
+ The removal is done on-the-fly on the examples when iterating over the dataset.
+
+
+ Args:
+ column_names (`Union[str, List[str]]`):
+ Name of the column(s) to remove.
+
+ Returns:
+ `IterableDataset`: A copy of the dataset object without the columns to remove.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> next(iter(ds))
+ {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
+ >>> ds = ds.remove_columns("label")
+ >>> next(iter(ds))
+ {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
+ ```
+ """
+ original_features = self._info.features.copy() if self._info.features else None
+ ds_iterable = self.map(remove_columns=column_names)
+ if original_features is not None:
+ ds_iterable._info.features = original_features.copy()
+ for col, _ in original_features.items():
+ if col in column_names:
+ del ds_iterable._info.features[col]
+ # check that it's still valid, especially with regard to task templates
+ try:
+ ds_iterable._info.copy()
+ except ValueError:
+ ds_iterable._info.task_templates = None
+
+ return ds_iterable
+
+ def select_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset":
+ """Select one or several column(s) in the dataset and the features
+ associated to them. The selection is done on-the-fly on the examples
+ when iterating over the dataset.
+
+
+ Args:
+ column_names (`Union[str, List[str]]`):
+ Name of the column(s) to select.
+
+ Returns:
+ `IterableDataset`: A copy of the dataset object with selected columns.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> next(iter(ds))
+ {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
+ >>> ds = ds.select_columns("text")
+ >>> next(iter(ds))
+ {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
+ ```
+ """
+ if isinstance(column_names, str):
+ column_names = [column_names]
+
+ if self._info:
+ info = copy.deepcopy(self._info)
+ if self._info.features is not None:
+ missing_columns = set(column_names) - set(self._info.features.keys())
+ if missing_columns:
+ raise ValueError(
+ f"Column name {list(missing_columns)} not in the "
+ "dataset. Columns in the dataset: "
+ f"{list(self._info.features.keys())}."
+ )
+ info.features = Features({c: info.features[c] for c in column_names})
+ # check that it's still valid, especially with regard to task templates
+ try:
+ info.copy()
+ except ValueError:
+ info.task_templates = None
+
+ ex_iterable = SelectColumnsIterable(self._ex_iterable, column_names)
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=self._shuffling,
+ distributed=self._distributed,
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def cast_column(self, column: str, feature: FeatureType) -> "IterableDataset":
+ """Cast column to feature for decoding.
+
+ Args:
+ column (`str`):
+ Column name.
+ feature (`Feature`):
+ Target feature.
+
+ Returns:
+ `IterableDataset`
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset, Audio
+ >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train", streaming=True)
+ >>> ds.features
+ {'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None),
+ 'english_transcription': Value(dtype='string', id=None),
+ 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
+ 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
+ 'path': Value(dtype='string', id=None),
+ 'transcription': Value(dtype='string', id=None)}
+ >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
+ >>> ds.features
+ {'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None),
+ 'english_transcription': Value(dtype='string', id=None),
+ 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
+ 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
+ 'path': Value(dtype='string', id=None),
+ 'transcription': Value(dtype='string', id=None)}
+ ```
+ """
+ info = self._info.copy()
+ info.features[column] = feature
+ # check that it's still valid, especially with regard to task templates
+ try:
+ info.copy()
+ except ValueError:
+ info.task_templates = None
+ return IterableDataset(
+ ex_iterable=self._ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def cast(
+ self,
+ features: Features,
+ ) -> "IterableDataset":
+ """
+ Cast the dataset to a new set of features.
+
+ Args:
+ features ([`Features`]):
+ New features to cast the dataset to.
+ The name of the fields in the features must match the current column names.
+ The type of the data must also be convertible from one type to the other.
+ For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset.
+
+ Returns:
+ `IterableDataset`: A copy of the dataset with casted features.
+
+ Example:
+
+ ```py
+ >>> from datasets import load_dataset
+ >>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
+ >>> ds.features
+ {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
+ 'text': Value(dtype='string', id=None)}
+ >>> new_features = ds.features.copy()
+ >>> new_features["label"] = ClassLabel(names=["bad", "good"])
+ >>> new_features["text"] = Value("large_string")
+ >>> ds = ds.cast(new_features)
+ >>> ds.features
+ {'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
+ 'text': Value(dtype='large_string', id=None)}
+ ```
+ """
+ info = self._info.copy()
+ info.features = features
+ # check that it's still valid, especially with regard to task templates
+ try:
+ info.copy()
+ except ValueError:
+ info.task_templates = None
+ return IterableDataset(
+ ex_iterable=self._ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def _step(self, step: int, offset: int) -> "IterableDataset":
+ ex_iterable = StepExamplesIterable(self._ex_iterable, step=step, offset=offset)
+ return IterableDataset(
+ ex_iterable=ex_iterable,
+ info=self._info.copy(),
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+ def _resolve_features(self):
+ if self.features is not None:
+ return self
+ elif isinstance(self._ex_iterable, TypedExamplesIterable):
+ features = self._ex_iterable.features
+ else:
+ features = _infer_features_from_batch(self.with_format(None)._head())
+ info = self.info.copy()
+ info.features = features
+ return IterableDataset(
+ ex_iterable=self._ex_iterable,
+ info=info,
+ split=self._split,
+ formatting=self._formatting,
+ shuffling=copy.deepcopy(self._shuffling),
+ distributed=copy.deepcopy(self._distributed),
+ token_per_repo_id=self._token_per_repo_id,
+ )
+
+
+def _concatenate_iterable_datasets(
+ dsets: List[IterableDataset],
+ info: Optional[DatasetInfo] = None,
+ split: Optional[NamedSplit] = None,
+ axis: int = 0,
+) -> IterableDataset:
+ """
+ Converts a list of `IterableDataset` with the same schema into a single `IterableDataset`.
+ Missing data are filled with None values.
+
+
+
+ Args:
+ dsets (`List[datasets.IterableDataset]`): List of Datasets to concatenate.
+ info (`DatasetInfo`, optional): Dataset information, like description, citation, etc.
+ split (`NamedSplit`, optional): Name of the dataset split.
+ axis (``{0, 1}``, default ``0``, meaning over rows):
+ Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns
+ (horizontally).
+
+ *New in version 1.6.0*
+
+ Example:
+
+ ```py
+ >>> ds3 = _concatenate_iterable_datasets([ds1, ds2])
+ ```
+ """
+ dsets = [d._resolve_features() for d in dsets]
+
+ # Perform checks (and a potentional cast if axis=0)
+ if axis == 0:
+ _check_if_features_can_be_aligned([dset.features for dset in dsets])
+ else:
+ _check_column_names([col_name for dset in dsets for col_name in dset.features])
+
+ # TODO: improve this to account for a mix of ClassLabel and Value for example
+ # right now it would keep the type of the first dataset in the list
+ features = Features(
+ {k: v for features in _align_features([dset.features for dset in dsets]) for k, v in features.items()}
+ )
+
+ ex_iterables = [d._ex_iterable for d in dsets]
+ if axis == 0:
+ ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
+ else:
+ ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
+ # Set new info - we update the features
+ # setting the features also ensures to fill missing columns with None
+ if info is None:
+ info = DatasetInfo.from_merge([d.info for d in dsets])
+ else:
+ info = info.copy()
+ info.features = features
+ # Get all the auth tokens per repository - in case the datasets come from different private repositories
+ token_per_repo_id = {repo_id: token for dataset in dsets for repo_id, token in dataset._token_per_repo_id.items()}
+ # Return new daset
+ return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)
+
+
+def _interleave_iterable_datasets(
+ datasets: List[IterableDataset],
+ probabilities: Optional[List[float]] = None,
+ seed: Optional[int] = None,
+ info: Optional[DatasetInfo] = None,
+ split: Optional[NamedSplit] = None,
+ stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
+) -> IterableDataset:
+ """
+ Interleave several iterable datasets (sources) into a single iterable dataset.
+ The new iterable dataset alternates between the sources to yield examples.
+ If `probabilities = None` (default) the iterable dataset will cycles through the sources in order for each next example in the iteration.
+ If `probabilities` is not `None, the iterable dataset will sample a random source according to the provided probabilities for each next examples in the iteration.
+
+
+
+ Args:
+ datasets (`List[IterableDataset]`): list of datasets to interleave
+ probabilities (`List[float]`, optional, default None): If specified, the new iterable dataset samples
+ examples from one source at a time according to these probabilities.
+ seed (`int`, optional, default None): The random seed used to choose a source for each example.
+ stopping_strategy (`str`, defaults to `first_exhausted`):
+ Two strategies are proposed right now.
+ By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
+ If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
+ Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
+ - with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples.
+ - with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
+
+ Output:
+ `datasets.IterableDataset`
+ """
+ datasets = [d._resolve_features() for d in datasets]
+
+ # Perform checks
+ _check_if_features_can_be_aligned([dset.features for dset in datasets])
+
+ # TODO: improve this to account for a mix of ClassLabel and Value for example
+ # right now it would keep the type of the first dataset in the list
+ features = Features(
+ {k: v for features in _align_features([dset.features for dset in datasets]) for k, v in features.items()}
+ )
+
+ ex_iterables = [d._ex_iterable for d in datasets]
+
+ # Use cycling or random cycling of sources
+ if probabilities is None:
+ ex_iterable = CyclingMultiSourcesExamplesIterable(ex_iterables, stopping_strategy=stopping_strategy)
+ else:
+ generator = np.random.default_rng(seed)
+ ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable(
+ ex_iterables, generator=generator, probabilities=probabilities, stopping_strategy=stopping_strategy
+ )
+ # Set new info - we update the features
+ # setting the features also ensures to fill missing columns with None
+ if info is None:
+ info = DatasetInfo.from_merge([d.info for d in datasets])
+ else:
+ info = info.copy()
+ info.features = features
+ # Get all the auth tokens per repository - in case the datasets come from different private repositories
+ token_per_repo_id = {
+ repo_id: token for dataset in datasets for repo_id, token in dataset._token_per_repo_id.items()
+ }
+ # Return new daset
+ return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)
+
+
+def _split_by_node_iterable_dataset(dataset: IterableDataset, rank: int, world_size: int) -> IterableDataset:
+ """
+ Split an iterable dataset for the node at rank `rank` in a pool of nodes of size `world_size`.
+
+ If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`),
+ then the shards are evenly assigned across the nodes, which is the most optimized.
+ Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.
+
+ Args:
+ dataset ([`IterableDataset`]):
+ The iterable dataset to split by node.
+ rank (`int`):
+ Rank of the current node.
+ world_size (`int`):
+ Total number of nodes.
+
+ Returns:
+ [`IterableDataset`]: The iterable dataset to be used on the node at rank `rank`.
+ """
+ if dataset._distributed:
+ world_size = world_size * dataset._distributed.world_size
+ rank = world_size * dataset._distributed.rank + rank
+ distributed = DistributedConfig(rank=rank, world_size=world_size)
+ return IterableDataset(
+ ex_iterable=dataset._ex_iterable,
+ info=dataset._info.copy(),
+ split=dataset._split,
+ formatting=dataset._formatting,
+ shuffling=copy.deepcopy(dataset._shuffling),
+ distributed=distributed,
+ token_per_repo_id=dataset._token_per_repo_id,
+ )