Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.pyi +17 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops.pyi +51 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi +141 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi +27 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi +287 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi +135 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi +21 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi +127 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi +12 -0
- env-llmeval/lib/python3.10/site-packages/pandas/_libs/writers.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py +192 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py +51 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py +73 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py +11 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py +87 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py +67 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_timestamp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/methods/__init__.py +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (133 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
2 |
+
def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
3 |
+
def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
4 |
+
def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
5 |
+
def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (221 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Hashable,
|
4 |
+
Literal,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._typing import npt
|
10 |
+
|
11 |
+
def unique_label_indices(
|
12 |
+
labels: np.ndarray, # const int64_t[:]
|
13 |
+
) -> np.ndarray: ...
|
14 |
+
|
15 |
+
class Factorizer:
|
16 |
+
count: int
|
17 |
+
uniques: Any
|
18 |
+
def __init__(self, size_hint: int) -> None: ...
|
19 |
+
def get_count(self) -> int: ...
|
20 |
+
def factorize(
|
21 |
+
self,
|
22 |
+
values: np.ndarray,
|
23 |
+
na_sentinel=...,
|
24 |
+
na_value=...,
|
25 |
+
mask=...,
|
26 |
+
) -> npt.NDArray[np.intp]: ...
|
27 |
+
|
28 |
+
class ObjectFactorizer(Factorizer):
|
29 |
+
table: PyObjectHashTable
|
30 |
+
uniques: ObjectVector
|
31 |
+
|
32 |
+
class Int64Factorizer(Factorizer):
|
33 |
+
table: Int64HashTable
|
34 |
+
uniques: Int64Vector
|
35 |
+
|
36 |
+
class UInt64Factorizer(Factorizer):
|
37 |
+
table: UInt64HashTable
|
38 |
+
uniques: UInt64Vector
|
39 |
+
|
40 |
+
class Int32Factorizer(Factorizer):
|
41 |
+
table: Int32HashTable
|
42 |
+
uniques: Int32Vector
|
43 |
+
|
44 |
+
class UInt32Factorizer(Factorizer):
|
45 |
+
table: UInt32HashTable
|
46 |
+
uniques: UInt32Vector
|
47 |
+
|
48 |
+
class Int16Factorizer(Factorizer):
|
49 |
+
table: Int16HashTable
|
50 |
+
uniques: Int16Vector
|
51 |
+
|
52 |
+
class UInt16Factorizer(Factorizer):
|
53 |
+
table: UInt16HashTable
|
54 |
+
uniques: UInt16Vector
|
55 |
+
|
56 |
+
class Int8Factorizer(Factorizer):
|
57 |
+
table: Int8HashTable
|
58 |
+
uniques: Int8Vector
|
59 |
+
|
60 |
+
class UInt8Factorizer(Factorizer):
|
61 |
+
table: UInt8HashTable
|
62 |
+
uniques: UInt8Vector
|
63 |
+
|
64 |
+
class Float64Factorizer(Factorizer):
|
65 |
+
table: Float64HashTable
|
66 |
+
uniques: Float64Vector
|
67 |
+
|
68 |
+
class Float32Factorizer(Factorizer):
|
69 |
+
table: Float32HashTable
|
70 |
+
uniques: Float32Vector
|
71 |
+
|
72 |
+
class Complex64Factorizer(Factorizer):
|
73 |
+
table: Complex64HashTable
|
74 |
+
uniques: Complex64Vector
|
75 |
+
|
76 |
+
class Complex128Factorizer(Factorizer):
|
77 |
+
table: Complex128HashTable
|
78 |
+
uniques: Complex128Vector
|
79 |
+
|
80 |
+
class Int64Vector:
|
81 |
+
def __init__(self, *args) -> None: ...
|
82 |
+
def __len__(self) -> int: ...
|
83 |
+
def to_array(self) -> npt.NDArray[np.int64]: ...
|
84 |
+
|
85 |
+
class Int32Vector:
|
86 |
+
def __init__(self, *args) -> None: ...
|
87 |
+
def __len__(self) -> int: ...
|
88 |
+
def to_array(self) -> npt.NDArray[np.int32]: ...
|
89 |
+
|
90 |
+
class Int16Vector:
|
91 |
+
def __init__(self, *args) -> None: ...
|
92 |
+
def __len__(self) -> int: ...
|
93 |
+
def to_array(self) -> npt.NDArray[np.int16]: ...
|
94 |
+
|
95 |
+
class Int8Vector:
|
96 |
+
def __init__(self, *args) -> None: ...
|
97 |
+
def __len__(self) -> int: ...
|
98 |
+
def to_array(self) -> npt.NDArray[np.int8]: ...
|
99 |
+
|
100 |
+
class UInt64Vector:
|
101 |
+
def __init__(self, *args) -> None: ...
|
102 |
+
def __len__(self) -> int: ...
|
103 |
+
def to_array(self) -> npt.NDArray[np.uint64]: ...
|
104 |
+
|
105 |
+
class UInt32Vector:
|
106 |
+
def __init__(self, *args) -> None: ...
|
107 |
+
def __len__(self) -> int: ...
|
108 |
+
def to_array(self) -> npt.NDArray[np.uint32]: ...
|
109 |
+
|
110 |
+
class UInt16Vector:
|
111 |
+
def __init__(self, *args) -> None: ...
|
112 |
+
def __len__(self) -> int: ...
|
113 |
+
def to_array(self) -> npt.NDArray[np.uint16]: ...
|
114 |
+
|
115 |
+
class UInt8Vector:
|
116 |
+
def __init__(self, *args) -> None: ...
|
117 |
+
def __len__(self) -> int: ...
|
118 |
+
def to_array(self) -> npt.NDArray[np.uint8]: ...
|
119 |
+
|
120 |
+
class Float64Vector:
|
121 |
+
def __init__(self, *args) -> None: ...
|
122 |
+
def __len__(self) -> int: ...
|
123 |
+
def to_array(self) -> npt.NDArray[np.float64]: ...
|
124 |
+
|
125 |
+
class Float32Vector:
|
126 |
+
def __init__(self, *args) -> None: ...
|
127 |
+
def __len__(self) -> int: ...
|
128 |
+
def to_array(self) -> npt.NDArray[np.float32]: ...
|
129 |
+
|
130 |
+
class Complex128Vector:
|
131 |
+
def __init__(self, *args) -> None: ...
|
132 |
+
def __len__(self) -> int: ...
|
133 |
+
def to_array(self) -> npt.NDArray[np.complex128]: ...
|
134 |
+
|
135 |
+
class Complex64Vector:
|
136 |
+
def __init__(self, *args) -> None: ...
|
137 |
+
def __len__(self) -> int: ...
|
138 |
+
def to_array(self) -> npt.NDArray[np.complex64]: ...
|
139 |
+
|
140 |
+
class StringVector:
|
141 |
+
def __init__(self, *args) -> None: ...
|
142 |
+
def __len__(self) -> int: ...
|
143 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
144 |
+
|
145 |
+
class ObjectVector:
|
146 |
+
def __init__(self, *args) -> None: ...
|
147 |
+
def __len__(self) -> int: ...
|
148 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
149 |
+
|
150 |
+
class HashTable:
|
151 |
+
# NB: The base HashTable class does _not_ actually have these methods;
|
152 |
+
# we are putting them here for the sake of mypy to avoid
|
153 |
+
# reproducing them in each subclass below.
|
154 |
+
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
|
155 |
+
def __len__(self) -> int: ...
|
156 |
+
def __contains__(self, key: Hashable) -> bool: ...
|
157 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
158 |
+
def get_state(self) -> dict[str, int]: ...
|
159 |
+
# TODO: `val/key` type is subclass-specific
|
160 |
+
def get_item(self, val): ... # TODO: return type?
|
161 |
+
def set_item(self, key, val) -> None: ...
|
162 |
+
def get_na(self): ... # TODO: return type?
|
163 |
+
def set_na(self, val) -> None: ...
|
164 |
+
def map_locations(
|
165 |
+
self,
|
166 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
167 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
168 |
+
) -> None: ...
|
169 |
+
def lookup(
|
170 |
+
self,
|
171 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
172 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
173 |
+
) -> npt.NDArray[np.intp]: ...
|
174 |
+
def get_labels(
|
175 |
+
self,
|
176 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
177 |
+
uniques, # SubclassTypeVector
|
178 |
+
count_prior: int = ...,
|
179 |
+
na_sentinel: int = ...,
|
180 |
+
na_value: object = ...,
|
181 |
+
mask=...,
|
182 |
+
) -> npt.NDArray[np.intp]: ...
|
183 |
+
def unique(
|
184 |
+
self,
|
185 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
186 |
+
return_inverse: bool = ...,
|
187 |
+
mask=...,
|
188 |
+
) -> (
|
189 |
+
tuple[
|
190 |
+
np.ndarray, # np.ndarray[subclass-specific]
|
191 |
+
npt.NDArray[np.intp],
|
192 |
+
]
|
193 |
+
| np.ndarray
|
194 |
+
): ... # np.ndarray[subclass-specific]
|
195 |
+
def factorize(
|
196 |
+
self,
|
197 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
198 |
+
na_sentinel: int = ...,
|
199 |
+
na_value: object = ...,
|
200 |
+
mask=...,
|
201 |
+
ignore_na: bool = True,
|
202 |
+
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
|
203 |
+
|
204 |
+
class Complex128HashTable(HashTable): ...
|
205 |
+
class Complex64HashTable(HashTable): ...
|
206 |
+
class Float64HashTable(HashTable): ...
|
207 |
+
class Float32HashTable(HashTable): ...
|
208 |
+
|
209 |
+
class Int64HashTable(HashTable):
|
210 |
+
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
|
211 |
+
def get_labels_groupby(
|
212 |
+
self,
|
213 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
214 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
|
215 |
+
def map_keys_to_values(
|
216 |
+
self,
|
217 |
+
keys: npt.NDArray[np.int64],
|
218 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
219 |
+
) -> None: ...
|
220 |
+
|
221 |
+
class Int32HashTable(HashTable): ...
|
222 |
+
class Int16HashTable(HashTable): ...
|
223 |
+
class Int8HashTable(HashTable): ...
|
224 |
+
class UInt64HashTable(HashTable): ...
|
225 |
+
class UInt32HashTable(HashTable): ...
|
226 |
+
class UInt16HashTable(HashTable): ...
|
227 |
+
class UInt8HashTable(HashTable): ...
|
228 |
+
class StringHashTable(HashTable): ...
|
229 |
+
class PyObjectHashTable(HashTable): ...
|
230 |
+
class IntpHashTable(HashTable): ...
|
231 |
+
|
232 |
+
def duplicated(
|
233 |
+
values: np.ndarray,
|
234 |
+
keep: Literal["last", "first", False] = ...,
|
235 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
236 |
+
) -> npt.NDArray[np.bool_]: ...
|
237 |
+
def mode(
|
238 |
+
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
|
239 |
+
) -> np.ndarray: ...
|
240 |
+
def value_count(
|
241 |
+
values: np.ndarray,
|
242 |
+
dropna: bool,
|
243 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
244 |
+
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
|
245 |
+
|
246 |
+
# arr and values should have same dtype
|
247 |
+
def ismember(
|
248 |
+
arr: np.ndarray,
|
249 |
+
values: np.ndarray,
|
250 |
+
) -> npt.NDArray[np.bool_]: ...
|
251 |
+
def object_hash(obj) -> int: ...
|
252 |
+
def objects_are_equal(a, b) -> bool: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/index.pyi
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
from pandas import MultiIndex
|
6 |
+
from pandas.core.arrays import ExtensionArray
|
7 |
+
|
8 |
+
multiindex_nulls_shift: int
|
9 |
+
|
10 |
+
class IndexEngine:
|
11 |
+
over_size_threshold: bool
|
12 |
+
def __init__(self, values: np.ndarray) -> None: ...
|
13 |
+
def __contains__(self, val: object) -> bool: ...
|
14 |
+
|
15 |
+
# -> int | slice | np.ndarray[bool]
|
16 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
17 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
18 |
+
def __sizeof__(self) -> int: ...
|
19 |
+
@property
|
20 |
+
def is_unique(self) -> bool: ...
|
21 |
+
@property
|
22 |
+
def is_monotonic_increasing(self) -> bool: ...
|
23 |
+
@property
|
24 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
25 |
+
@property
|
26 |
+
def is_mapping_populated(self) -> bool: ...
|
27 |
+
def clear_mapping(self): ...
|
28 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
29 |
+
def get_indexer_non_unique(
|
30 |
+
self,
|
31 |
+
targets: np.ndarray,
|
32 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
33 |
+
|
34 |
+
class MaskedIndexEngine(IndexEngine):
|
35 |
+
def __init__(self, values: object) -> None: ...
|
36 |
+
def get_indexer_non_unique(
|
37 |
+
self, targets: object
|
38 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
39 |
+
|
40 |
+
class Float64Engine(IndexEngine): ...
|
41 |
+
class Float32Engine(IndexEngine): ...
|
42 |
+
class Complex128Engine(IndexEngine): ...
|
43 |
+
class Complex64Engine(IndexEngine): ...
|
44 |
+
class Int64Engine(IndexEngine): ...
|
45 |
+
class Int32Engine(IndexEngine): ...
|
46 |
+
class Int16Engine(IndexEngine): ...
|
47 |
+
class Int8Engine(IndexEngine): ...
|
48 |
+
class UInt64Engine(IndexEngine): ...
|
49 |
+
class UInt32Engine(IndexEngine): ...
|
50 |
+
class UInt16Engine(IndexEngine): ...
|
51 |
+
class UInt8Engine(IndexEngine): ...
|
52 |
+
class ObjectEngine(IndexEngine): ...
|
53 |
+
class DatetimeEngine(Int64Engine): ...
|
54 |
+
class TimedeltaEngine(DatetimeEngine): ...
|
55 |
+
class PeriodEngine(Int64Engine): ...
|
56 |
+
class BoolEngine(UInt8Engine): ...
|
57 |
+
class MaskedFloat64Engine(MaskedIndexEngine): ...
|
58 |
+
class MaskedFloat32Engine(MaskedIndexEngine): ...
|
59 |
+
class MaskedComplex128Engine(MaskedIndexEngine): ...
|
60 |
+
class MaskedComplex64Engine(MaskedIndexEngine): ...
|
61 |
+
class MaskedInt64Engine(MaskedIndexEngine): ...
|
62 |
+
class MaskedInt32Engine(MaskedIndexEngine): ...
|
63 |
+
class MaskedInt16Engine(MaskedIndexEngine): ...
|
64 |
+
class MaskedInt8Engine(MaskedIndexEngine): ...
|
65 |
+
class MaskedUInt64Engine(MaskedIndexEngine): ...
|
66 |
+
class MaskedUInt32Engine(MaskedIndexEngine): ...
|
67 |
+
class MaskedUInt16Engine(MaskedIndexEngine): ...
|
68 |
+
class MaskedUInt8Engine(MaskedIndexEngine): ...
|
69 |
+
class MaskedBoolEngine(MaskedUInt8Engine): ...
|
70 |
+
|
71 |
+
class BaseMultiIndexCodesEngine:
|
72 |
+
levels: list[np.ndarray]
|
73 |
+
offsets: np.ndarray # ndarray[uint64_t, ndim=1]
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
levels: list[np.ndarray], # all entries hashable
|
78 |
+
labels: list[np.ndarray], # all entries integer-dtyped
|
79 |
+
offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
|
80 |
+
) -> None: ...
|
81 |
+
def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
|
82 |
+
def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
|
83 |
+
|
84 |
+
class ExtensionEngine:
|
85 |
+
def __init__(self, values: ExtensionArray) -> None: ...
|
86 |
+
def __contains__(self, val: object) -> bool: ...
|
87 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
88 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
89 |
+
def get_indexer_non_unique(
|
90 |
+
self,
|
91 |
+
targets: np.ndarray,
|
92 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
93 |
+
@property
|
94 |
+
def is_unique(self) -> bool: ...
|
95 |
+
@property
|
96 |
+
def is_monotonic_increasing(self) -> bool: ...
|
97 |
+
@property
|
98 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
99 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
100 |
+
def clear_mapping(self): ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (66.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.pyi
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Generic,
|
3 |
+
TypeVar,
|
4 |
+
)
|
5 |
+
|
6 |
+
from pandas.core.indexing import IndexingMixin
|
7 |
+
|
8 |
+
_IndexingMixinT = TypeVar("_IndexingMixinT", bound=IndexingMixin)
|
9 |
+
|
10 |
+
class NDFrameIndexerBase(Generic[_IndexingMixinT]):
|
11 |
+
name: str
|
12 |
+
# in practice obj is either a DataFrame or a Series
|
13 |
+
obj: _IndexingMixinT
|
14 |
+
|
15 |
+
def __init__(self, name: str, obj: _IndexingMixinT) -> None: ...
|
16 |
+
@property
|
17 |
+
def ndim(self) -> int: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (416 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.pyi
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Generic,
|
4 |
+
TypeVar,
|
5 |
+
overload,
|
6 |
+
)
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
|
11 |
+
from pandas._typing import (
|
12 |
+
IntervalClosedType,
|
13 |
+
Timedelta,
|
14 |
+
Timestamp,
|
15 |
+
)
|
16 |
+
|
17 |
+
VALID_CLOSED: frozenset[str]
|
18 |
+
|
19 |
+
_OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
|
20 |
+
_OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
|
21 |
+
_OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
|
22 |
+
|
23 |
+
class _LengthDescriptor:
|
24 |
+
@overload
|
25 |
+
def __get__(
|
26 |
+
self, instance: Interval[_OrderableScalarT], owner: Any
|
27 |
+
) -> _OrderableScalarT: ...
|
28 |
+
@overload
|
29 |
+
def __get__(
|
30 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
31 |
+
) -> Timedelta: ...
|
32 |
+
|
33 |
+
class _MidDescriptor:
|
34 |
+
@overload
|
35 |
+
def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
|
36 |
+
@overload
|
37 |
+
def __get__(
|
38 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
39 |
+
) -> _OrderableTimesT: ...
|
40 |
+
|
41 |
+
class IntervalMixin:
|
42 |
+
@property
|
43 |
+
def closed_left(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def closed_right(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def open_left(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def open_right(self) -> bool: ...
|
50 |
+
@property
|
51 |
+
def is_empty(self) -> bool: ...
|
52 |
+
def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
|
53 |
+
|
54 |
+
class Interval(IntervalMixin, Generic[_OrderableT]):
|
55 |
+
@property
|
56 |
+
def left(self: Interval[_OrderableT]) -> _OrderableT: ...
|
57 |
+
@property
|
58 |
+
def right(self: Interval[_OrderableT]) -> _OrderableT: ...
|
59 |
+
@property
|
60 |
+
def closed(self) -> IntervalClosedType: ...
|
61 |
+
mid: _MidDescriptor
|
62 |
+
length: _LengthDescriptor
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
left: _OrderableT,
|
66 |
+
right: _OrderableT,
|
67 |
+
closed: IntervalClosedType = ...,
|
68 |
+
) -> None: ...
|
69 |
+
def __hash__(self) -> int: ...
|
70 |
+
@overload
|
71 |
+
def __contains__(
|
72 |
+
self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
|
73 |
+
) -> bool: ...
|
74 |
+
@overload
|
75 |
+
def __contains__(
|
76 |
+
self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
|
77 |
+
) -> bool: ...
|
78 |
+
@overload
|
79 |
+
def __contains__(
|
80 |
+
self: Interval[_OrderableScalarT],
|
81 |
+
key: _OrderableScalarT | Interval[_OrderableScalarT],
|
82 |
+
) -> bool: ...
|
83 |
+
@overload
|
84 |
+
def __add__(
|
85 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
86 |
+
) -> Interval[_OrderableTimesT]: ...
|
87 |
+
@overload
|
88 |
+
def __add__(
|
89 |
+
self: Interval[int], y: _OrderableScalarT
|
90 |
+
) -> Interval[_OrderableScalarT]: ...
|
91 |
+
@overload
|
92 |
+
def __add__(self: Interval[float], y: float) -> Interval[float]: ...
|
93 |
+
@overload
|
94 |
+
def __radd__(
|
95 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
96 |
+
) -> Interval[_OrderableTimesT]: ...
|
97 |
+
@overload
|
98 |
+
def __radd__(
|
99 |
+
self: Interval[int], y: _OrderableScalarT
|
100 |
+
) -> Interval[_OrderableScalarT]: ...
|
101 |
+
@overload
|
102 |
+
def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
|
103 |
+
@overload
|
104 |
+
def __sub__(
|
105 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
106 |
+
) -> Interval[_OrderableTimesT]: ...
|
107 |
+
@overload
|
108 |
+
def __sub__(
|
109 |
+
self: Interval[int], y: _OrderableScalarT
|
110 |
+
) -> Interval[_OrderableScalarT]: ...
|
111 |
+
@overload
|
112 |
+
def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
|
113 |
+
@overload
|
114 |
+
def __rsub__(
|
115 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
116 |
+
) -> Interval[_OrderableTimesT]: ...
|
117 |
+
@overload
|
118 |
+
def __rsub__(
|
119 |
+
self: Interval[int], y: _OrderableScalarT
|
120 |
+
) -> Interval[_OrderableScalarT]: ...
|
121 |
+
@overload
|
122 |
+
def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
|
123 |
+
@overload
|
124 |
+
def __mul__(
|
125 |
+
self: Interval[int], y: _OrderableScalarT
|
126 |
+
) -> Interval[_OrderableScalarT]: ...
|
127 |
+
@overload
|
128 |
+
def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
|
129 |
+
@overload
|
130 |
+
def __rmul__(
|
131 |
+
self: Interval[int], y: _OrderableScalarT
|
132 |
+
) -> Interval[_OrderableScalarT]: ...
|
133 |
+
@overload
|
134 |
+
def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
|
135 |
+
@overload
|
136 |
+
def __truediv__(
|
137 |
+
self: Interval[int], y: _OrderableScalarT
|
138 |
+
) -> Interval[_OrderableScalarT]: ...
|
139 |
+
@overload
|
140 |
+
def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
|
141 |
+
@overload
|
142 |
+
def __floordiv__(
|
143 |
+
self: Interval[int], y: _OrderableScalarT
|
144 |
+
) -> Interval[_OrderableScalarT]: ...
|
145 |
+
@overload
|
146 |
+
def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
|
147 |
+
def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
|
148 |
+
|
149 |
+
def intervals_to_interval_bounds(
|
150 |
+
intervals: np.ndarray, validate_closed: bool = ...
|
151 |
+
) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
|
152 |
+
|
153 |
+
class IntervalTree(IntervalMixin):
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
left: np.ndarray,
|
157 |
+
right: np.ndarray,
|
158 |
+
closed: IntervalClosedType = ...,
|
159 |
+
leaf_size: int = ...,
|
160 |
+
) -> None: ...
|
161 |
+
@property
|
162 |
+
def mid(self) -> np.ndarray: ...
|
163 |
+
@property
|
164 |
+
def length(self) -> np.ndarray: ...
|
165 |
+
def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
|
166 |
+
def get_indexer_non_unique(
|
167 |
+
self, target
|
168 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
169 |
+
_na_count: int
|
170 |
+
@property
|
171 |
+
def is_overlapping(self) -> bool: ...
|
172 |
+
@property
|
173 |
+
def is_monotonic_increasing(self) -> bool: ...
|
174 |
+
def clear_mapping(self) -> None: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (64.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (211 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops.pyi
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
Iterable,
|
5 |
+
Literal,
|
6 |
+
TypeAlias,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._typing import npt
|
13 |
+
|
14 |
+
_BinOp: TypeAlias = Callable[[Any, Any], Any]
|
15 |
+
_BoolOp: TypeAlias = Callable[[Any, Any], bool]
|
16 |
+
|
17 |
+
def scalar_compare(
|
18 |
+
values: np.ndarray, # object[:]
|
19 |
+
val: object,
|
20 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
21 |
+
) -> npt.NDArray[np.bool_]: ...
|
22 |
+
def vec_compare(
|
23 |
+
left: npt.NDArray[np.object_],
|
24 |
+
right: npt.NDArray[np.object_],
|
25 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
26 |
+
) -> npt.NDArray[np.bool_]: ...
|
27 |
+
def scalar_binop(
|
28 |
+
values: np.ndarray, # object[:]
|
29 |
+
val: object,
|
30 |
+
op: _BinOp, # binary operator
|
31 |
+
) -> np.ndarray: ...
|
32 |
+
def vec_binop(
|
33 |
+
left: np.ndarray, # object[:]
|
34 |
+
right: np.ndarray, # object[:]
|
35 |
+
op: _BinOp, # binary operator
|
36 |
+
) -> np.ndarray: ...
|
37 |
+
@overload
|
38 |
+
def maybe_convert_bool(
|
39 |
+
arr: npt.NDArray[np.object_],
|
40 |
+
true_values: Iterable | None = None,
|
41 |
+
false_values: Iterable | None = None,
|
42 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
43 |
+
) -> tuple[np.ndarray, None]: ...
|
44 |
+
@overload
|
45 |
+
def maybe_convert_bool(
|
46 |
+
arr: npt.NDArray[np.object_],
|
47 |
+
true_values: Iterable = ...,
|
48 |
+
false_values: Iterable = ...,
|
49 |
+
*,
|
50 |
+
convert_to_masked_nullable: Literal[True],
|
51 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def maybe_dispatch_ufunc_to_dunder_op(
|
4 |
+
self, ufunc: np.ufunc, method: str, *inputs, **kwargs
|
5 |
+
): ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (39.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (595 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.pyi
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Hashable,
|
3 |
+
Literal,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from pandas._typing import (
|
9 |
+
ArrayLike,
|
10 |
+
Dtype,
|
11 |
+
npt,
|
12 |
+
)
|
13 |
+
|
14 |
+
STR_NA_VALUES: set[str]
|
15 |
+
DEFAULT_BUFFER_HEURISTIC: int
|
16 |
+
|
17 |
+
def sanitize_objects(
|
18 |
+
values: npt.NDArray[np.object_],
|
19 |
+
na_values: set,
|
20 |
+
) -> int: ...
|
21 |
+
|
22 |
+
class TextReader:
|
23 |
+
unnamed_cols: set[str]
|
24 |
+
table_width: int # int64_t
|
25 |
+
leading_cols: int # int64_t
|
26 |
+
header: list[list[int]] # non-negative integers
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
source,
|
30 |
+
delimiter: bytes | str = ..., # single-character only
|
31 |
+
header=...,
|
32 |
+
header_start: int = ..., # int64_t
|
33 |
+
header_end: int = ..., # uint64_t
|
34 |
+
index_col=...,
|
35 |
+
names=...,
|
36 |
+
tokenize_chunksize: int = ..., # int64_t
|
37 |
+
delim_whitespace: bool = ...,
|
38 |
+
converters=...,
|
39 |
+
skipinitialspace: bool = ...,
|
40 |
+
escapechar: bytes | str | None = ..., # single-character only
|
41 |
+
doublequote: bool = ...,
|
42 |
+
quotechar: str | bytes | None = ..., # at most 1 character
|
43 |
+
quoting: int = ...,
|
44 |
+
lineterminator: bytes | str | None = ..., # at most 1 character
|
45 |
+
comment=...,
|
46 |
+
decimal: bytes | str = ..., # single-character only
|
47 |
+
thousands: bytes | str | None = ..., # single-character only
|
48 |
+
dtype: Dtype | dict[Hashable, Dtype] = ...,
|
49 |
+
usecols=...,
|
50 |
+
error_bad_lines: bool = ...,
|
51 |
+
warn_bad_lines: bool = ...,
|
52 |
+
na_filter: bool = ...,
|
53 |
+
na_values=...,
|
54 |
+
na_fvalues=...,
|
55 |
+
keep_default_na: bool = ...,
|
56 |
+
true_values=...,
|
57 |
+
false_values=...,
|
58 |
+
allow_leading_cols: bool = ...,
|
59 |
+
skiprows=...,
|
60 |
+
skipfooter: int = ..., # int64_t
|
61 |
+
verbose: bool = ...,
|
62 |
+
float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
|
63 |
+
skip_blank_lines: bool = ...,
|
64 |
+
encoding_errors: bytes | str = ...,
|
65 |
+
) -> None: ...
|
66 |
+
def set_noconvert(self, i: int) -> None: ...
|
67 |
+
def remove_noconvert(self, i: int) -> None: ...
|
68 |
+
def close(self) -> None: ...
|
69 |
+
def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
|
70 |
+
def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
|
71 |
+
|
72 |
+
# _maybe_upcast, na_values are only exposed for testing
|
73 |
+
na_values: dict
|
74 |
+
|
75 |
+
def _maybe_upcast(
|
76 |
+
arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
|
77 |
+
) -> np.ndarray: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (340 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.pyi
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import tzinfo
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
def format_array_from_datetime(
|
8 |
+
values: npt.NDArray[np.int64],
|
9 |
+
tz: tzinfo | None = ...,
|
10 |
+
format: str | None = ...,
|
11 |
+
na_rep: str | float = ...,
|
12 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
13 |
+
) -> npt.NDArray[np.object_]: ...
|
14 |
+
def array_with_unit_to_datetime(
|
15 |
+
values: npt.NDArray[np.object_],
|
16 |
+
unit: str,
|
17 |
+
errors: str = ...,
|
18 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
19 |
+
def first_non_null(values: np.ndarray) -> int: ...
|
20 |
+
def array_to_datetime(
|
21 |
+
values: npt.NDArray[np.object_],
|
22 |
+
errors: str = ...,
|
23 |
+
dayfirst: bool = ...,
|
24 |
+
yearfirst: bool = ...,
|
25 |
+
utc: bool = ...,
|
26 |
+
creso: int = ...,
|
27 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
28 |
+
|
29 |
+
# returned ndarray may be object dtype or datetime64[ns]
|
30 |
+
|
31 |
+
def array_to_datetime_with_tz(
|
32 |
+
values: npt.NDArray[np.object_],
|
33 |
+
tz: tzinfo,
|
34 |
+
dayfirst: bool,
|
35 |
+
yearfirst: bool,
|
36 |
+
creso: int,
|
37 |
+
) -> npt.NDArray[np.int64]: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.85 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (103 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (308 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (203 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (345 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
tzinfo as _tzinfo,
|
5 |
+
)
|
6 |
+
import typing
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from pandas._libs.tslibs.period import Period
|
11 |
+
from pandas._typing import Self
|
12 |
+
|
13 |
+
NaT: NaTType
|
14 |
+
iNaT: int
|
15 |
+
nat_strings: set[str]
|
16 |
+
|
17 |
+
_NaTComparisonTypes: typing.TypeAlias = (
|
18 |
+
datetime | timedelta | Period | np.datetime64 | np.timedelta64
|
19 |
+
)
|
20 |
+
|
21 |
+
class _NatComparison:
|
22 |
+
def __call__(self, other: _NaTComparisonTypes) -> bool: ...
|
23 |
+
|
24 |
+
class NaTType:
|
25 |
+
_value: np.int64
|
26 |
+
@property
|
27 |
+
def value(self) -> int: ...
|
28 |
+
@property
|
29 |
+
def asm8(self) -> np.datetime64: ...
|
30 |
+
def to_datetime64(self) -> np.datetime64: ...
|
31 |
+
def to_numpy(
|
32 |
+
self, dtype: np.dtype | str | None = ..., copy: bool = ...
|
33 |
+
) -> np.datetime64 | np.timedelta64: ...
|
34 |
+
@property
|
35 |
+
def is_leap_year(self) -> bool: ...
|
36 |
+
@property
|
37 |
+
def is_month_start(self) -> bool: ...
|
38 |
+
@property
|
39 |
+
def is_quarter_start(self) -> bool: ...
|
40 |
+
@property
|
41 |
+
def is_year_start(self) -> bool: ...
|
42 |
+
@property
|
43 |
+
def is_month_end(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def is_quarter_end(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def is_year_end(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def day_of_year(self) -> float: ...
|
50 |
+
@property
|
51 |
+
def dayofyear(self) -> float: ...
|
52 |
+
@property
|
53 |
+
def days_in_month(self) -> float: ...
|
54 |
+
@property
|
55 |
+
def daysinmonth(self) -> float: ...
|
56 |
+
@property
|
57 |
+
def day_of_week(self) -> float: ...
|
58 |
+
@property
|
59 |
+
def dayofweek(self) -> float: ...
|
60 |
+
@property
|
61 |
+
def week(self) -> float: ...
|
62 |
+
@property
|
63 |
+
def weekofyear(self) -> float: ...
|
64 |
+
def day_name(self) -> float: ...
|
65 |
+
def month_name(self) -> float: ...
|
66 |
+
def weekday(self) -> float: ...
|
67 |
+
def isoweekday(self) -> float: ...
|
68 |
+
def total_seconds(self) -> float: ...
|
69 |
+
def today(self, *args, **kwargs) -> NaTType: ...
|
70 |
+
def now(self, *args, **kwargs) -> NaTType: ...
|
71 |
+
def to_pydatetime(self) -> NaTType: ...
|
72 |
+
def date(self) -> NaTType: ...
|
73 |
+
def round(self) -> NaTType: ...
|
74 |
+
def floor(self) -> NaTType: ...
|
75 |
+
def ceil(self) -> NaTType: ...
|
76 |
+
@property
|
77 |
+
def tzinfo(self) -> None: ...
|
78 |
+
@property
|
79 |
+
def tz(self) -> None: ...
|
80 |
+
def tz_convert(self, tz: _tzinfo | str | None) -> NaTType: ...
|
81 |
+
def tz_localize(
|
82 |
+
self,
|
83 |
+
tz: _tzinfo | str | None,
|
84 |
+
ambiguous: str = ...,
|
85 |
+
nonexistent: str = ...,
|
86 |
+
) -> NaTType: ...
|
87 |
+
def replace(
|
88 |
+
self,
|
89 |
+
year: int | None = ...,
|
90 |
+
month: int | None = ...,
|
91 |
+
day: int | None = ...,
|
92 |
+
hour: int | None = ...,
|
93 |
+
minute: int | None = ...,
|
94 |
+
second: int | None = ...,
|
95 |
+
microsecond: int | None = ...,
|
96 |
+
nanosecond: int | None = ...,
|
97 |
+
tzinfo: _tzinfo | None = ...,
|
98 |
+
fold: int | None = ...,
|
99 |
+
) -> NaTType: ...
|
100 |
+
@property
|
101 |
+
def year(self) -> float: ...
|
102 |
+
@property
|
103 |
+
def quarter(self) -> float: ...
|
104 |
+
@property
|
105 |
+
def month(self) -> float: ...
|
106 |
+
@property
|
107 |
+
def day(self) -> float: ...
|
108 |
+
@property
|
109 |
+
def hour(self) -> float: ...
|
110 |
+
@property
|
111 |
+
def minute(self) -> float: ...
|
112 |
+
@property
|
113 |
+
def second(self) -> float: ...
|
114 |
+
@property
|
115 |
+
def millisecond(self) -> float: ...
|
116 |
+
@property
|
117 |
+
def microsecond(self) -> float: ...
|
118 |
+
@property
|
119 |
+
def nanosecond(self) -> float: ...
|
120 |
+
# inject Timedelta properties
|
121 |
+
@property
|
122 |
+
def days(self) -> float: ...
|
123 |
+
@property
|
124 |
+
def microseconds(self) -> float: ...
|
125 |
+
@property
|
126 |
+
def nanoseconds(self) -> float: ...
|
127 |
+
# inject Period properties
|
128 |
+
@property
|
129 |
+
def qyear(self) -> float: ...
|
130 |
+
def __eq__(self, other: object) -> bool: ...
|
131 |
+
def __ne__(self, other: object) -> bool: ...
|
132 |
+
__lt__: _NatComparison
|
133 |
+
__le__: _NatComparison
|
134 |
+
__gt__: _NatComparison
|
135 |
+
__ge__: _NatComparison
|
136 |
+
def __sub__(self, other: Self | timedelta | datetime) -> Self: ...
|
137 |
+
def __rsub__(self, other: Self | timedelta | datetime) -> Self: ...
|
138 |
+
def __add__(self, other: Self | timedelta | datetime) -> Self: ...
|
139 |
+
def __radd__(self, other: Self | timedelta | datetime) -> Self: ...
|
140 |
+
def __hash__(self) -> int: ...
|
141 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> NaTType: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
class OutOfBoundsDatetime(ValueError): ...
|
6 |
+
class OutOfBoundsTimedelta(ValueError): ...
|
7 |
+
|
8 |
+
# only exposed for testing
|
9 |
+
def py_get_unit_from_dtype(dtype: np.dtype): ...
|
10 |
+
def py_td64_to_tdstruct(td64: int, unit: int) -> dict: ...
|
11 |
+
def astype_overflowsafe(
|
12 |
+
values: np.ndarray,
|
13 |
+
dtype: np.dtype,
|
14 |
+
copy: bool = ...,
|
15 |
+
round_ok: bool = ...,
|
16 |
+
is_coerce: bool = ...,
|
17 |
+
) -> np.ndarray: ...
|
18 |
+
def is_unitless(dtype: np.dtype) -> bool: ...
|
19 |
+
def compare_mismatched_resolutions(
|
20 |
+
left: np.ndarray, right: np.ndarray, op
|
21 |
+
) -> npt.NDArray[np.bool_]: ...
|
22 |
+
def add_overflowsafe(
|
23 |
+
left: npt.NDArray[np.int64],
|
24 |
+
right: npt.NDArray[np.int64],
|
25 |
+
) -> npt.NDArray[np.int64]: ...
|
26 |
+
def get_supported_dtype(dtype: np.dtype) -> np.dtype: ...
|
27 |
+
def is_supported_dtype(dtype: np.dtype) -> bool: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
time,
|
4 |
+
timedelta,
|
5 |
+
)
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Collection,
|
9 |
+
Literal,
|
10 |
+
TypeVar,
|
11 |
+
overload,
|
12 |
+
)
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._libs.tslibs.nattype import NaTType
|
17 |
+
from pandas._typing import (
|
18 |
+
OffsetCalendar,
|
19 |
+
Self,
|
20 |
+
npt,
|
21 |
+
)
|
22 |
+
|
23 |
+
from .timedeltas import Timedelta
|
24 |
+
|
25 |
+
_BaseOffsetT = TypeVar("_BaseOffsetT", bound=BaseOffset)
|
26 |
+
_DatetimeT = TypeVar("_DatetimeT", bound=datetime)
|
27 |
+
_TimedeltaT = TypeVar("_TimedeltaT", bound=timedelta)
|
28 |
+
|
29 |
+
_relativedelta_kwds: set[str]
|
30 |
+
prefix_mapping: dict[str, type]
|
31 |
+
|
32 |
+
class ApplyTypeError(TypeError): ...
|
33 |
+
|
34 |
+
class BaseOffset:
|
35 |
+
n: int
|
36 |
+
normalize: bool
|
37 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
38 |
+
def __eq__(self, other) -> bool: ...
|
39 |
+
def __ne__(self, other) -> bool: ...
|
40 |
+
def __hash__(self) -> int: ...
|
41 |
+
@property
|
42 |
+
def kwds(self) -> dict: ...
|
43 |
+
@property
|
44 |
+
def base(self) -> BaseOffset: ...
|
45 |
+
@overload
|
46 |
+
def __add__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
47 |
+
@overload
|
48 |
+
def __add__(self, other: BaseOffset) -> Self: ...
|
49 |
+
@overload
|
50 |
+
def __add__(self, other: _DatetimeT) -> _DatetimeT: ...
|
51 |
+
@overload
|
52 |
+
def __add__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
53 |
+
@overload
|
54 |
+
def __radd__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
55 |
+
@overload
|
56 |
+
def __radd__(self, other: BaseOffset) -> Self: ...
|
57 |
+
@overload
|
58 |
+
def __radd__(self, other: _DatetimeT) -> _DatetimeT: ...
|
59 |
+
@overload
|
60 |
+
def __radd__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
61 |
+
@overload
|
62 |
+
def __radd__(self, other: NaTType) -> NaTType: ...
|
63 |
+
def __sub__(self, other: BaseOffset) -> Self: ...
|
64 |
+
@overload
|
65 |
+
def __rsub__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
66 |
+
@overload
|
67 |
+
def __rsub__(self, other: BaseOffset): ...
|
68 |
+
@overload
|
69 |
+
def __rsub__(self, other: _DatetimeT) -> _DatetimeT: ...
|
70 |
+
@overload
|
71 |
+
def __rsub__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
72 |
+
@overload
|
73 |
+
def __mul__(self, other: np.ndarray) -> np.ndarray: ...
|
74 |
+
@overload
|
75 |
+
def __mul__(self, other: int): ...
|
76 |
+
@overload
|
77 |
+
def __rmul__(self, other: np.ndarray) -> np.ndarray: ...
|
78 |
+
@overload
|
79 |
+
def __rmul__(self, other: int) -> Self: ...
|
80 |
+
def __neg__(self) -> Self: ...
|
81 |
+
def copy(self) -> Self: ...
|
82 |
+
@property
|
83 |
+
def name(self) -> str: ...
|
84 |
+
@property
|
85 |
+
def rule_code(self) -> str: ...
|
86 |
+
@property
|
87 |
+
def freqstr(self) -> str: ...
|
88 |
+
def _apply(self, other): ...
|
89 |
+
def _apply_array(self, dtarr: np.ndarray) -> np.ndarray: ...
|
90 |
+
def rollback(self, dt: datetime) -> datetime: ...
|
91 |
+
def rollforward(self, dt: datetime) -> datetime: ...
|
92 |
+
def is_on_offset(self, dt: datetime) -> bool: ...
|
93 |
+
def __setstate__(self, state) -> None: ...
|
94 |
+
def __getstate__(self): ...
|
95 |
+
@property
|
96 |
+
def nanos(self) -> int: ...
|
97 |
+
def is_anchored(self) -> bool: ...
|
98 |
+
|
99 |
+
def _get_offset(name: str) -> BaseOffset: ...
|
100 |
+
|
101 |
+
class SingleConstructorOffset(BaseOffset):
|
102 |
+
@classmethod
|
103 |
+
def _from_name(cls, suffix: None = ...): ...
|
104 |
+
def __reduce__(self): ...
|
105 |
+
|
106 |
+
@overload
|
107 |
+
def to_offset(freq: None, is_period: bool = ...) -> None: ...
|
108 |
+
@overload
|
109 |
+
def to_offset(freq: _BaseOffsetT, is_period: bool = ...) -> _BaseOffsetT: ...
|
110 |
+
@overload
|
111 |
+
def to_offset(freq: timedelta | str, is_period: bool = ...) -> BaseOffset: ...
|
112 |
+
|
113 |
+
class Tick(SingleConstructorOffset):
|
114 |
+
_creso: int
|
115 |
+
_prefix: str
|
116 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
117 |
+
@property
|
118 |
+
def delta(self) -> Timedelta: ...
|
119 |
+
@property
|
120 |
+
def nanos(self) -> int: ...
|
121 |
+
|
122 |
+
def delta_to_tick(delta: timedelta) -> Tick: ...
|
123 |
+
|
124 |
+
class Day(Tick): ...
|
125 |
+
class Hour(Tick): ...
|
126 |
+
class Minute(Tick): ...
|
127 |
+
class Second(Tick): ...
|
128 |
+
class Milli(Tick): ...
|
129 |
+
class Micro(Tick): ...
|
130 |
+
class Nano(Tick): ...
|
131 |
+
|
132 |
+
class RelativeDeltaOffset(BaseOffset):
|
133 |
+
def __init__(self, n: int = ..., normalize: bool = ..., **kwds: Any) -> None: ...
|
134 |
+
|
135 |
+
class BusinessMixin(SingleConstructorOffset):
|
136 |
+
def __init__(
|
137 |
+
self, n: int = ..., normalize: bool = ..., offset: timedelta = ...
|
138 |
+
) -> None: ...
|
139 |
+
|
140 |
+
class BusinessDay(BusinessMixin): ...
|
141 |
+
|
142 |
+
class BusinessHour(BusinessMixin):
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
n: int = ...,
|
146 |
+
normalize: bool = ...,
|
147 |
+
start: str | time | Collection[str | time] = ...,
|
148 |
+
end: str | time | Collection[str | time] = ...,
|
149 |
+
offset: timedelta = ...,
|
150 |
+
) -> None: ...
|
151 |
+
|
152 |
+
class WeekOfMonthMixin(SingleConstructorOffset):
|
153 |
+
def __init__(
|
154 |
+
self, n: int = ..., normalize: bool = ..., weekday: int = ...
|
155 |
+
) -> None: ...
|
156 |
+
|
157 |
+
class YearOffset(SingleConstructorOffset):
|
158 |
+
def __init__(
|
159 |
+
self, n: int = ..., normalize: bool = ..., month: int | None = ...
|
160 |
+
) -> None: ...
|
161 |
+
|
162 |
+
class BYearEnd(YearOffset): ...
|
163 |
+
class BYearBegin(YearOffset): ...
|
164 |
+
class YearEnd(YearOffset): ...
|
165 |
+
class YearBegin(YearOffset): ...
|
166 |
+
|
167 |
+
class QuarterOffset(SingleConstructorOffset):
|
168 |
+
def __init__(
|
169 |
+
self, n: int = ..., normalize: bool = ..., startingMonth: int | None = ...
|
170 |
+
) -> None: ...
|
171 |
+
|
172 |
+
class BQuarterEnd(QuarterOffset): ...
|
173 |
+
class BQuarterBegin(QuarterOffset): ...
|
174 |
+
class QuarterEnd(QuarterOffset): ...
|
175 |
+
class QuarterBegin(QuarterOffset): ...
|
176 |
+
class MonthOffset(SingleConstructorOffset): ...
|
177 |
+
class MonthEnd(MonthOffset): ...
|
178 |
+
class MonthBegin(MonthOffset): ...
|
179 |
+
class BusinessMonthEnd(MonthOffset): ...
|
180 |
+
class BusinessMonthBegin(MonthOffset): ...
|
181 |
+
|
182 |
+
class SemiMonthOffset(SingleConstructorOffset):
|
183 |
+
def __init__(
|
184 |
+
self, n: int = ..., normalize: bool = ..., day_of_month: int | None = ...
|
185 |
+
) -> None: ...
|
186 |
+
|
187 |
+
class SemiMonthEnd(SemiMonthOffset): ...
|
188 |
+
class SemiMonthBegin(SemiMonthOffset): ...
|
189 |
+
|
190 |
+
class Week(SingleConstructorOffset):
|
191 |
+
def __init__(
|
192 |
+
self, n: int = ..., normalize: bool = ..., weekday: int | None = ...
|
193 |
+
) -> None: ...
|
194 |
+
|
195 |
+
class WeekOfMonth(WeekOfMonthMixin):
|
196 |
+
def __init__(
|
197 |
+
self, n: int = ..., normalize: bool = ..., week: int = ..., weekday: int = ...
|
198 |
+
) -> None: ...
|
199 |
+
|
200 |
+
class LastWeekOfMonth(WeekOfMonthMixin): ...
|
201 |
+
|
202 |
+
class FY5253Mixin(SingleConstructorOffset):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
n: int = ...,
|
206 |
+
normalize: bool = ...,
|
207 |
+
weekday: int = ...,
|
208 |
+
startingMonth: int = ...,
|
209 |
+
variation: Literal["nearest", "last"] = ...,
|
210 |
+
) -> None: ...
|
211 |
+
|
212 |
+
class FY5253(FY5253Mixin): ...
|
213 |
+
|
214 |
+
class FY5253Quarter(FY5253Mixin):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
n: int = ...,
|
218 |
+
normalize: bool = ...,
|
219 |
+
weekday: int = ...,
|
220 |
+
startingMonth: int = ...,
|
221 |
+
qtr_with_extra_week: int = ...,
|
222 |
+
variation: Literal["nearest", "last"] = ...,
|
223 |
+
) -> None: ...
|
224 |
+
|
225 |
+
class Easter(SingleConstructorOffset): ...
|
226 |
+
|
227 |
+
class _CustomBusinessMonth(BusinessMixin):
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
n: int = ...,
|
231 |
+
normalize: bool = ...,
|
232 |
+
weekmask: str = ...,
|
233 |
+
holidays: list | None = ...,
|
234 |
+
calendar: OffsetCalendar | None = ...,
|
235 |
+
offset: timedelta = ...,
|
236 |
+
) -> None: ...
|
237 |
+
|
238 |
+
class CustomBusinessDay(BusinessDay):
|
239 |
+
def __init__(
|
240 |
+
self,
|
241 |
+
n: int = ...,
|
242 |
+
normalize: bool = ...,
|
243 |
+
weekmask: str = ...,
|
244 |
+
holidays: list | None = ...,
|
245 |
+
calendar: OffsetCalendar | None = ...,
|
246 |
+
offset: timedelta = ...,
|
247 |
+
) -> None: ...
|
248 |
+
|
249 |
+
class CustomBusinessHour(BusinessHour):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
n: int = ...,
|
253 |
+
normalize: bool = ...,
|
254 |
+
weekmask: str = ...,
|
255 |
+
holidays: list | None = ...,
|
256 |
+
calendar: OffsetCalendar | None = ...,
|
257 |
+
start: str | time | Collection[str | time] = ...,
|
258 |
+
end: str | time | Collection[str | time] = ...,
|
259 |
+
offset: timedelta = ...,
|
260 |
+
) -> None: ...
|
261 |
+
|
262 |
+
class CustomBusinessMonthEnd(_CustomBusinessMonth): ...
|
263 |
+
class CustomBusinessMonthBegin(_CustomBusinessMonth): ...
|
264 |
+
class OffsetMeta(type): ...
|
265 |
+
class DateOffset(RelativeDeltaOffset, metaclass=OffsetMeta): ...
|
266 |
+
|
267 |
+
BDay = BusinessDay
|
268 |
+
BMonthEnd = BusinessMonthEnd
|
269 |
+
BMonthBegin = BusinessMonthBegin
|
270 |
+
CBMonthEnd = CustomBusinessMonthEnd
|
271 |
+
CBMonthBegin = CustomBusinessMonthBegin
|
272 |
+
CDay = CustomBusinessDay
|
273 |
+
|
274 |
+
def roll_qtrday(
|
275 |
+
other: datetime, n: int, month: int, day_opt: str, modby: int
|
276 |
+
) -> int: ...
|
277 |
+
|
278 |
+
INVALID_FREQ_ERR_MSG: Literal["Invalid frequency: {0}"]
|
279 |
+
|
280 |
+
def shift_months(
|
281 |
+
dtindex: npt.NDArray[np.int64],
|
282 |
+
months: int,
|
283 |
+
day_opt: str | None = ...,
|
284 |
+
reso: int = ...,
|
285 |
+
) -> npt.NDArray[np.int64]: ...
|
286 |
+
|
287 |
+
_offset_map: dict[str, BaseOffset]
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (532 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas._libs.tslibs.dtypes import PeriodDtypeBase
|
7 |
+
from pandas._libs.tslibs.nattype import NaTType
|
8 |
+
from pandas._libs.tslibs.offsets import BaseOffset
|
9 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
10 |
+
from pandas._typing import (
|
11 |
+
Frequency,
|
12 |
+
npt,
|
13 |
+
)
|
14 |
+
|
15 |
+
INVALID_FREQ_ERR_MSG: str
|
16 |
+
DIFFERENT_FREQ: str
|
17 |
+
|
18 |
+
class IncompatibleFrequency(ValueError): ...
|
19 |
+
|
20 |
+
def periodarr_to_dt64arr(
|
21 |
+
periodarr: npt.NDArray[np.int64], # const int64_t[:]
|
22 |
+
freq: int,
|
23 |
+
) -> npt.NDArray[np.int64]: ...
|
24 |
+
def period_asfreq_arr(
|
25 |
+
arr: npt.NDArray[np.int64],
|
26 |
+
freq1: int,
|
27 |
+
freq2: int,
|
28 |
+
end: bool,
|
29 |
+
) -> npt.NDArray[np.int64]: ...
|
30 |
+
def get_period_field_arr(
|
31 |
+
field: str,
|
32 |
+
arr: npt.NDArray[np.int64], # const int64_t[:]
|
33 |
+
freq: int,
|
34 |
+
) -> npt.NDArray[np.int64]: ...
|
35 |
+
def from_ordinals(
|
36 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
37 |
+
freq: timedelta | BaseOffset | str,
|
38 |
+
) -> npt.NDArray[np.int64]: ...
|
39 |
+
def extract_ordinals(
|
40 |
+
values: npt.NDArray[np.object_],
|
41 |
+
freq: Frequency | int,
|
42 |
+
) -> npt.NDArray[np.int64]: ...
|
43 |
+
def extract_freq(
|
44 |
+
values: npt.NDArray[np.object_],
|
45 |
+
) -> BaseOffset: ...
|
46 |
+
def period_array_strftime(
|
47 |
+
values: npt.NDArray[np.int64],
|
48 |
+
dtype_code: int,
|
49 |
+
na_rep,
|
50 |
+
date_format: str | None,
|
51 |
+
) -> npt.NDArray[np.object_]: ...
|
52 |
+
|
53 |
+
# exposed for tests
|
54 |
+
def period_asfreq(ordinal: int, freq1: int, freq2: int, end: bool) -> int: ...
|
55 |
+
def period_ordinal(
|
56 |
+
y: int, m: int, d: int, h: int, min: int, s: int, us: int, ps: int, freq: int
|
57 |
+
) -> int: ...
|
58 |
+
def freq_to_dtype_code(freq: BaseOffset) -> int: ...
|
59 |
+
def validate_end_alias(how: str) -> Literal["E", "S"]: ...
|
60 |
+
|
61 |
+
class PeriodMixin:
|
62 |
+
@property
|
63 |
+
def end_time(self) -> Timestamp: ...
|
64 |
+
@property
|
65 |
+
def start_time(self) -> Timestamp: ...
|
66 |
+
def _require_matching_freq(self, other: BaseOffset, base: bool = ...) -> None: ...
|
67 |
+
|
68 |
+
class Period(PeriodMixin):
|
69 |
+
ordinal: int # int64_t
|
70 |
+
freq: BaseOffset
|
71 |
+
_dtype: PeriodDtypeBase
|
72 |
+
|
73 |
+
# error: "__new__" must return a class instance (got "Union[Period, NaTType]")
|
74 |
+
def __new__( # type: ignore[misc]
|
75 |
+
cls,
|
76 |
+
value=...,
|
77 |
+
freq: int | str | BaseOffset | None = ...,
|
78 |
+
ordinal: int | None = ...,
|
79 |
+
year: int | None = ...,
|
80 |
+
month: int | None = ...,
|
81 |
+
quarter: int | None = ...,
|
82 |
+
day: int | None = ...,
|
83 |
+
hour: int | None = ...,
|
84 |
+
minute: int | None = ...,
|
85 |
+
second: int | None = ...,
|
86 |
+
) -> Period | NaTType: ...
|
87 |
+
@classmethod
|
88 |
+
def _maybe_convert_freq(cls, freq) -> BaseOffset: ...
|
89 |
+
@classmethod
|
90 |
+
def _from_ordinal(cls, ordinal: int, freq: BaseOffset) -> Period: ...
|
91 |
+
@classmethod
|
92 |
+
def now(cls, freq: Frequency) -> Period: ...
|
93 |
+
def strftime(self, fmt: str | None) -> str: ...
|
94 |
+
def to_timestamp(
|
95 |
+
self,
|
96 |
+
freq: str | BaseOffset | None = ...,
|
97 |
+
how: str = ...,
|
98 |
+
) -> Timestamp: ...
|
99 |
+
def asfreq(self, freq: str | BaseOffset, how: str = ...) -> Period: ...
|
100 |
+
@property
|
101 |
+
def freqstr(self) -> str: ...
|
102 |
+
@property
|
103 |
+
def is_leap_year(self) -> bool: ...
|
104 |
+
@property
|
105 |
+
def daysinmonth(self) -> int: ...
|
106 |
+
@property
|
107 |
+
def days_in_month(self) -> int: ...
|
108 |
+
@property
|
109 |
+
def qyear(self) -> int: ...
|
110 |
+
@property
|
111 |
+
def quarter(self) -> int: ...
|
112 |
+
@property
|
113 |
+
def day_of_year(self) -> int: ...
|
114 |
+
@property
|
115 |
+
def weekday(self) -> int: ...
|
116 |
+
@property
|
117 |
+
def day_of_week(self) -> int: ...
|
118 |
+
@property
|
119 |
+
def week(self) -> int: ...
|
120 |
+
@property
|
121 |
+
def weekofyear(self) -> int: ...
|
122 |
+
@property
|
123 |
+
def second(self) -> int: ...
|
124 |
+
@property
|
125 |
+
def minute(self) -> int: ...
|
126 |
+
@property
|
127 |
+
def hour(self) -> int: ...
|
128 |
+
@property
|
129 |
+
def day(self) -> int: ...
|
130 |
+
@property
|
131 |
+
def month(self) -> int: ...
|
132 |
+
@property
|
133 |
+
def year(self) -> int: ...
|
134 |
+
def __sub__(self, other) -> Period | BaseOffset: ...
|
135 |
+
def __add__(self, other) -> Period: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (410 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (295 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
tzinfo,
|
4 |
+
)
|
5 |
+
from typing import Callable
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# imported from dateutil.tz
|
10 |
+
dateutil_gettz: Callable[[str], tzinfo]
|
11 |
+
|
12 |
+
def tz_standardize(tz: tzinfo) -> tzinfo: ...
|
13 |
+
def tz_compare(start: tzinfo | None, end: tzinfo | None) -> bool: ...
|
14 |
+
def infer_tzinfo(
|
15 |
+
start: datetime | None,
|
16 |
+
end: datetime | None,
|
17 |
+
) -> tzinfo | None: ...
|
18 |
+
def maybe_get_tz(tz: str | int | np.int64 | tzinfo | None) -> tzinfo | None: ...
|
19 |
+
def get_timezone(tz: tzinfo) -> tzinfo | str: ...
|
20 |
+
def is_utc(tz: tzinfo | None) -> bool: ...
|
21 |
+
def is_fixed_offset(tz: tzinfo) -> bool: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (407 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
Literal,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._typing import (
|
10 |
+
WindowingRankType,
|
11 |
+
npt,
|
12 |
+
)
|
13 |
+
|
14 |
+
def roll_sum(
|
15 |
+
values: np.ndarray, # const float64_t[:]
|
16 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
17 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
18 |
+
minp: int, # int64_t
|
19 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
20 |
+
def roll_mean(
|
21 |
+
values: np.ndarray, # const float64_t[:]
|
22 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
23 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
24 |
+
minp: int, # int64_t
|
25 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
26 |
+
def roll_var(
|
27 |
+
values: np.ndarray, # const float64_t[:]
|
28 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
29 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
30 |
+
minp: int, # int64_t
|
31 |
+
ddof: int = ...,
|
32 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
33 |
+
def roll_skew(
|
34 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
35 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
36 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
37 |
+
minp: int, # int64_t
|
38 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
39 |
+
def roll_kurt(
|
40 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
41 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
42 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
43 |
+
minp: int, # int64_t
|
44 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
45 |
+
def roll_median_c(
|
46 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
47 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
48 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
49 |
+
minp: int, # int64_t
|
50 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
51 |
+
def roll_max(
|
52 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
53 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
54 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
55 |
+
minp: int, # int64_t
|
56 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
57 |
+
def roll_min(
|
58 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
59 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
60 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
61 |
+
minp: int, # int64_t
|
62 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
63 |
+
def roll_quantile(
|
64 |
+
values: np.ndarray, # const float64_t[:]
|
65 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
66 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
67 |
+
minp: int, # int64_t
|
68 |
+
quantile: float, # float64_t
|
69 |
+
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
70 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
71 |
+
def roll_rank(
|
72 |
+
values: np.ndarray,
|
73 |
+
start: np.ndarray,
|
74 |
+
end: np.ndarray,
|
75 |
+
minp: int,
|
76 |
+
percentile: bool,
|
77 |
+
method: WindowingRankType,
|
78 |
+
ascending: bool,
|
79 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
80 |
+
def roll_apply(
|
81 |
+
obj: object,
|
82 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
83 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
84 |
+
minp: int, # int64_t
|
85 |
+
function: Callable[..., Any],
|
86 |
+
raw: bool,
|
87 |
+
args: tuple[Any, ...],
|
88 |
+
kwargs: dict[str, Any],
|
89 |
+
) -> npt.NDArray[np.float64]: ...
|
90 |
+
def roll_weighted_sum(
|
91 |
+
values: np.ndarray, # const float64_t[:]
|
92 |
+
weights: np.ndarray, # const float64_t[:]
|
93 |
+
minp: int,
|
94 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
95 |
+
def roll_weighted_mean(
|
96 |
+
values: np.ndarray, # const float64_t[:]
|
97 |
+
weights: np.ndarray, # const float64_t[:]
|
98 |
+
minp: int,
|
99 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
100 |
+
def roll_weighted_var(
|
101 |
+
values: np.ndarray, # const float64_t[:]
|
102 |
+
weights: np.ndarray, # const float64_t[:]
|
103 |
+
minp: int, # int64_t
|
104 |
+
ddof: int, # unsigned int
|
105 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
106 |
+
def ewm(
|
107 |
+
vals: np.ndarray, # const float64_t[:]
|
108 |
+
start: np.ndarray, # const int64_t[:]
|
109 |
+
end: np.ndarray, # const int64_t[:]
|
110 |
+
minp: int,
|
111 |
+
com: float, # float64_t
|
112 |
+
adjust: bool,
|
113 |
+
ignore_na: bool,
|
114 |
+
deltas: np.ndarray | None = None, # const float64_t[:]
|
115 |
+
normalize: bool = True,
|
116 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
117 |
+
def ewmcov(
|
118 |
+
input_x: np.ndarray, # const float64_t[:]
|
119 |
+
start: np.ndarray, # const int64_t[:]
|
120 |
+
end: np.ndarray, # const int64_t[:]
|
121 |
+
minp: int,
|
122 |
+
input_y: np.ndarray, # const float64_t[:]
|
123 |
+
com: float, # float64_t
|
124 |
+
adjust: bool,
|
125 |
+
ignore_na: bool,
|
126 |
+
bias: bool,
|
127 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def calculate_variable_window_bounds(
|
6 |
+
num_values: int, # int64_t
|
7 |
+
window_size: int, # int64_t
|
8 |
+
min_periods,
|
9 |
+
center: bool,
|
10 |
+
closed: str | None,
|
11 |
+
index: np.ndarray, # const int64_t[:]
|
12 |
+
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
|
env-llmeval/lib/python3.10/site-packages/pandas/_libs/writers.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (259 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
Interval,
|
8 |
+
Timedelta,
|
9 |
+
Timestamp,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
class TestIntervalArithmetic:
|
15 |
+
def test_interval_add(self, closed):
|
16 |
+
interval = Interval(0, 1, closed=closed)
|
17 |
+
expected = Interval(1, 2, closed=closed)
|
18 |
+
|
19 |
+
result = interval + 1
|
20 |
+
assert result == expected
|
21 |
+
|
22 |
+
result = 1 + interval
|
23 |
+
assert result == expected
|
24 |
+
|
25 |
+
result = interval
|
26 |
+
result += 1
|
27 |
+
assert result == expected
|
28 |
+
|
29 |
+
msg = r"unsupported operand type\(s\) for \+"
|
30 |
+
with pytest.raises(TypeError, match=msg):
|
31 |
+
interval + interval
|
32 |
+
|
33 |
+
with pytest.raises(TypeError, match=msg):
|
34 |
+
interval + "foo"
|
35 |
+
|
36 |
+
def test_interval_sub(self, closed):
|
37 |
+
interval = Interval(0, 1, closed=closed)
|
38 |
+
expected = Interval(-1, 0, closed=closed)
|
39 |
+
|
40 |
+
result = interval - 1
|
41 |
+
assert result == expected
|
42 |
+
|
43 |
+
result = interval
|
44 |
+
result -= 1
|
45 |
+
assert result == expected
|
46 |
+
|
47 |
+
msg = r"unsupported operand type\(s\) for -"
|
48 |
+
with pytest.raises(TypeError, match=msg):
|
49 |
+
interval - interval
|
50 |
+
|
51 |
+
with pytest.raises(TypeError, match=msg):
|
52 |
+
interval - "foo"
|
53 |
+
|
54 |
+
def test_interval_mult(self, closed):
|
55 |
+
interval = Interval(0, 1, closed=closed)
|
56 |
+
expected = Interval(0, 2, closed=closed)
|
57 |
+
|
58 |
+
result = interval * 2
|
59 |
+
assert result == expected
|
60 |
+
|
61 |
+
result = 2 * interval
|
62 |
+
assert result == expected
|
63 |
+
|
64 |
+
result = interval
|
65 |
+
result *= 2
|
66 |
+
assert result == expected
|
67 |
+
|
68 |
+
msg = r"unsupported operand type\(s\) for \*"
|
69 |
+
with pytest.raises(TypeError, match=msg):
|
70 |
+
interval * interval
|
71 |
+
|
72 |
+
msg = r"can\'t multiply sequence by non-int"
|
73 |
+
with pytest.raises(TypeError, match=msg):
|
74 |
+
interval * "foo"
|
75 |
+
|
76 |
+
def test_interval_div(self, closed):
|
77 |
+
interval = Interval(0, 1, closed=closed)
|
78 |
+
expected = Interval(0, 0.5, closed=closed)
|
79 |
+
|
80 |
+
result = interval / 2.0
|
81 |
+
assert result == expected
|
82 |
+
|
83 |
+
result = interval
|
84 |
+
result /= 2.0
|
85 |
+
assert result == expected
|
86 |
+
|
87 |
+
msg = r"unsupported operand type\(s\) for /"
|
88 |
+
with pytest.raises(TypeError, match=msg):
|
89 |
+
interval / interval
|
90 |
+
|
91 |
+
with pytest.raises(TypeError, match=msg):
|
92 |
+
interval / "foo"
|
93 |
+
|
94 |
+
def test_interval_floordiv(self, closed):
|
95 |
+
interval = Interval(1, 2, closed=closed)
|
96 |
+
expected = Interval(0, 1, closed=closed)
|
97 |
+
|
98 |
+
result = interval // 2
|
99 |
+
assert result == expected
|
100 |
+
|
101 |
+
result = interval
|
102 |
+
result //= 2
|
103 |
+
assert result == expected
|
104 |
+
|
105 |
+
msg = r"unsupported operand type\(s\) for //"
|
106 |
+
with pytest.raises(TypeError, match=msg):
|
107 |
+
interval // interval
|
108 |
+
|
109 |
+
with pytest.raises(TypeError, match=msg):
|
110 |
+
interval // "foo"
|
111 |
+
|
112 |
+
@pytest.mark.parametrize("method", ["__add__", "__sub__"])
|
113 |
+
@pytest.mark.parametrize(
|
114 |
+
"interval",
|
115 |
+
[
|
116 |
+
Interval(
|
117 |
+
Timestamp("2017-01-01 00:00:00"), Timestamp("2018-01-01 00:00:00")
|
118 |
+
),
|
119 |
+
Interval(Timedelta(days=7), Timedelta(days=14)),
|
120 |
+
],
|
121 |
+
)
|
122 |
+
@pytest.mark.parametrize(
|
123 |
+
"delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
|
124 |
+
)
|
125 |
+
def test_time_interval_add_subtract_timedelta(self, interval, delta, method):
|
126 |
+
# https://github.com/pandas-dev/pandas/issues/32023
|
127 |
+
result = getattr(interval, method)(delta)
|
128 |
+
left = getattr(interval.left, method)(delta)
|
129 |
+
right = getattr(interval.right, method)(delta)
|
130 |
+
expected = Interval(left, right)
|
131 |
+
|
132 |
+
assert result == expected
|
133 |
+
|
134 |
+
@pytest.mark.parametrize("interval", [Interval(1, 2), Interval(1.0, 2.0)])
|
135 |
+
@pytest.mark.parametrize(
|
136 |
+
"delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
|
137 |
+
)
|
138 |
+
def test_numeric_interval_add_timedelta_raises(self, interval, delta):
|
139 |
+
# https://github.com/pandas-dev/pandas/issues/32023
|
140 |
+
msg = "|".join(
|
141 |
+
[
|
142 |
+
"unsupported operand",
|
143 |
+
"cannot use operands",
|
144 |
+
"Only numeric, Timestamp and Timedelta endpoints are allowed",
|
145 |
+
]
|
146 |
+
)
|
147 |
+
with pytest.raises((TypeError, ValueError), match=msg):
|
148 |
+
interval + delta
|
149 |
+
|
150 |
+
with pytest.raises((TypeError, ValueError), match=msg):
|
151 |
+
delta + interval
|
152 |
+
|
153 |
+
@pytest.mark.parametrize("klass", [timedelta, np.timedelta64, Timedelta])
|
154 |
+
def test_timedelta_add_timestamp_interval(self, klass):
|
155 |
+
delta = klass(0)
|
156 |
+
expected = Interval(Timestamp("2020-01-01"), Timestamp("2020-02-01"))
|
157 |
+
|
158 |
+
result = delta + expected
|
159 |
+
assert result == expected
|
160 |
+
|
161 |
+
result = expected + delta
|
162 |
+
assert result == expected
|
163 |
+
|
164 |
+
|
165 |
+
class TestIntervalComparisons:
|
166 |
+
def test_interval_equal(self):
|
167 |
+
assert Interval(0, 1) == Interval(0, 1, closed="right")
|
168 |
+
assert Interval(0, 1) != Interval(0, 1, closed="left")
|
169 |
+
assert Interval(0, 1) != 0
|
170 |
+
|
171 |
+
def test_interval_comparison(self):
|
172 |
+
msg = (
|
173 |
+
"'<' not supported between instances of "
|
174 |
+
"'pandas._libs.interval.Interval' and 'int'"
|
175 |
+
)
|
176 |
+
with pytest.raises(TypeError, match=msg):
|
177 |
+
Interval(0, 1) < 2
|
178 |
+
|
179 |
+
assert Interval(0, 1) < Interval(1, 2)
|
180 |
+
assert Interval(0, 1) < Interval(0, 2)
|
181 |
+
assert Interval(0, 1) < Interval(0.5, 1.5)
|
182 |
+
assert Interval(0, 1) <= Interval(0, 1)
|
183 |
+
assert Interval(0, 1) > Interval(-1, 2)
|
184 |
+
assert Interval(0, 1) >= Interval(0, 1)
|
185 |
+
|
186 |
+
def test_equality_comparison_broadcasts_over_array(self):
|
187 |
+
# https://github.com/pandas-dev/pandas/issues/35931
|
188 |
+
interval = Interval(0, 1)
|
189 |
+
arr = np.array([interval, interval])
|
190 |
+
result = interval == arr
|
191 |
+
expected = np.array([True, True])
|
192 |
+
tm.assert_numpy_array_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Interval,
|
5 |
+
Period,
|
6 |
+
Timestamp,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
class TestIntervalConstructors:
|
11 |
+
@pytest.mark.parametrize(
|
12 |
+
"left, right",
|
13 |
+
[
|
14 |
+
("a", "z"),
|
15 |
+
(("a", "b"), ("c", "d")),
|
16 |
+
(list("AB"), list("ab")),
|
17 |
+
(Interval(0, 1), Interval(1, 2)),
|
18 |
+
(Period("2018Q1", freq="Q"), Period("2018Q1", freq="Q")),
|
19 |
+
],
|
20 |
+
)
|
21 |
+
def test_construct_errors(self, left, right):
|
22 |
+
# GH#23013
|
23 |
+
msg = "Only numeric, Timestamp and Timedelta endpoints are allowed"
|
24 |
+
with pytest.raises(ValueError, match=msg):
|
25 |
+
Interval(left, right)
|
26 |
+
|
27 |
+
def test_constructor_errors(self):
|
28 |
+
msg = "invalid option for 'closed': foo"
|
29 |
+
with pytest.raises(ValueError, match=msg):
|
30 |
+
Interval(0, 1, closed="foo")
|
31 |
+
|
32 |
+
msg = "left side of interval must be <= right side"
|
33 |
+
with pytest.raises(ValueError, match=msg):
|
34 |
+
Interval(1, 0)
|
35 |
+
|
36 |
+
@pytest.mark.parametrize(
|
37 |
+
"tz_left, tz_right", [(None, "UTC"), ("UTC", None), ("UTC", "US/Eastern")]
|
38 |
+
)
|
39 |
+
def test_constructor_errors_tz(self, tz_left, tz_right):
|
40 |
+
# GH#18538
|
41 |
+
left = Timestamp("2017-01-01", tz=tz_left)
|
42 |
+
right = Timestamp("2017-01-02", tz=tz_right)
|
43 |
+
|
44 |
+
if tz_left is None or tz_right is None:
|
45 |
+
error = TypeError
|
46 |
+
msg = "Cannot compare tz-naive and tz-aware timestamps"
|
47 |
+
else:
|
48 |
+
error = ValueError
|
49 |
+
msg = "left and right must have the same time zone"
|
50 |
+
with pytest.raises(error, match=msg):
|
51 |
+
Interval(left, right)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Interval,
|
5 |
+
Timedelta,
|
6 |
+
Timestamp,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
class TestContains:
|
11 |
+
def test_contains(self):
|
12 |
+
interval = Interval(0, 1)
|
13 |
+
assert 0.5 in interval
|
14 |
+
assert 1 in interval
|
15 |
+
assert 0 not in interval
|
16 |
+
|
17 |
+
interval_both = Interval(0, 1, "both")
|
18 |
+
assert 0 in interval_both
|
19 |
+
assert 1 in interval_both
|
20 |
+
|
21 |
+
interval_neither = Interval(0, 1, closed="neither")
|
22 |
+
assert 0 not in interval_neither
|
23 |
+
assert 0.5 in interval_neither
|
24 |
+
assert 1 not in interval_neither
|
25 |
+
|
26 |
+
def test_contains_interval(self, inclusive_endpoints_fixture):
|
27 |
+
interval1 = Interval(0, 1, "both")
|
28 |
+
interval2 = Interval(0, 1, inclusive_endpoints_fixture)
|
29 |
+
assert interval1 in interval1
|
30 |
+
assert interval2 in interval2
|
31 |
+
assert interval2 in interval1
|
32 |
+
assert interval1 not in interval2 or inclusive_endpoints_fixture == "both"
|
33 |
+
|
34 |
+
def test_contains_infinite_length(self):
|
35 |
+
interval1 = Interval(0, 1, "both")
|
36 |
+
interval2 = Interval(float("-inf"), float("inf"), "neither")
|
37 |
+
assert interval1 in interval2
|
38 |
+
assert interval2 not in interval1
|
39 |
+
|
40 |
+
def test_contains_zero_length(self):
|
41 |
+
interval1 = Interval(0, 1, "both")
|
42 |
+
interval2 = Interval(-1, -1, "both")
|
43 |
+
interval3 = Interval(0.5, 0.5, "both")
|
44 |
+
assert interval2 not in interval1
|
45 |
+
assert interval3 in interval1
|
46 |
+
assert interval2 not in interval3 and interval3 not in interval2
|
47 |
+
assert interval1 not in interval2 and interval1 not in interval3
|
48 |
+
|
49 |
+
@pytest.mark.parametrize(
|
50 |
+
"type1",
|
51 |
+
[
|
52 |
+
(0, 1),
|
53 |
+
(Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
|
54 |
+
(Timedelta("0h"), Timedelta("1h")),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
@pytest.mark.parametrize(
|
58 |
+
"type2",
|
59 |
+
[
|
60 |
+
(0, 1),
|
61 |
+
(Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
|
62 |
+
(Timedelta("0h"), Timedelta("1h")),
|
63 |
+
],
|
64 |
+
)
|
65 |
+
def test_contains_mixed_types(self, type1, type2):
|
66 |
+
interval1 = Interval(*type1)
|
67 |
+
interval2 = Interval(*type2)
|
68 |
+
if type1 == type2:
|
69 |
+
assert interval1 in interval2
|
70 |
+
else:
|
71 |
+
msg = "^'<=' not supported between instances of"
|
72 |
+
with pytest.raises(TypeError, match=msg):
|
73 |
+
interval1 in interval2
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import Interval
|
2 |
+
|
3 |
+
|
4 |
+
def test_interval_repr():
|
5 |
+
interval = Interval(0, 1)
|
6 |
+
assert repr(interval) == "Interval(0, 1, closed='right')"
|
7 |
+
assert str(interval) == "(0, 1]"
|
8 |
+
|
9 |
+
interval_left = Interval(0, 1, closed="left")
|
10 |
+
assert repr(interval_left) == "Interval(0, 1, closed='left')"
|
11 |
+
assert str(interval_left) == "[0, 1)"
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Interval,
|
6 |
+
Timedelta,
|
7 |
+
Timestamp,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.fixture
|
12 |
+
def interval():
|
13 |
+
return Interval(0, 1)
|
14 |
+
|
15 |
+
|
16 |
+
class TestInterval:
|
17 |
+
def test_properties(self, interval):
|
18 |
+
assert interval.closed == "right"
|
19 |
+
assert interval.left == 0
|
20 |
+
assert interval.right == 1
|
21 |
+
assert interval.mid == 0.5
|
22 |
+
|
23 |
+
def test_hash(self, interval):
|
24 |
+
# should not raise
|
25 |
+
hash(interval)
|
26 |
+
|
27 |
+
@pytest.mark.parametrize(
|
28 |
+
"left, right, expected",
|
29 |
+
[
|
30 |
+
(0, 5, 5),
|
31 |
+
(-2, 5.5, 7.5),
|
32 |
+
(10, 10, 0),
|
33 |
+
(10, np.inf, np.inf),
|
34 |
+
(-np.inf, -5, np.inf),
|
35 |
+
(-np.inf, np.inf, np.inf),
|
36 |
+
(Timedelta("0 days"), Timedelta("5 days"), Timedelta("5 days")),
|
37 |
+
(Timedelta("10 days"), Timedelta("10 days"), Timedelta("0 days")),
|
38 |
+
(Timedelta("1h10min"), Timedelta("5h5min"), Timedelta("3h55min")),
|
39 |
+
(Timedelta("5s"), Timedelta("1h"), Timedelta("59min55s")),
|
40 |
+
],
|
41 |
+
)
|
42 |
+
def test_length(self, left, right, expected):
|
43 |
+
# GH 18789
|
44 |
+
iv = Interval(left, right)
|
45 |
+
result = iv.length
|
46 |
+
assert result == expected
|
47 |
+
|
48 |
+
@pytest.mark.parametrize(
|
49 |
+
"left, right, expected",
|
50 |
+
[
|
51 |
+
("2017-01-01", "2017-01-06", "5 days"),
|
52 |
+
("2017-01-01", "2017-01-01 12:00:00", "12 hours"),
|
53 |
+
("2017-01-01 12:00", "2017-01-01 12:00:00", "0 days"),
|
54 |
+
("2017-01-01 12:01", "2017-01-05 17:31:00", "4 days 5 hours 30 min"),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
@pytest.mark.parametrize("tz", (None, "UTC", "CET", "US/Eastern"))
|
58 |
+
def test_length_timestamp(self, tz, left, right, expected):
|
59 |
+
# GH 18789
|
60 |
+
iv = Interval(Timestamp(left, tz=tz), Timestamp(right, tz=tz))
|
61 |
+
result = iv.length
|
62 |
+
expected = Timedelta(expected)
|
63 |
+
assert result == expected
|
64 |
+
|
65 |
+
@pytest.mark.parametrize(
|
66 |
+
"left, right",
|
67 |
+
[
|
68 |
+
(0, 1),
|
69 |
+
(Timedelta("0 days"), Timedelta("1 day")),
|
70 |
+
(Timestamp("2018-01-01"), Timestamp("2018-01-02")),
|
71 |
+
(
|
72 |
+
Timestamp("2018-01-01", tz="US/Eastern"),
|
73 |
+
Timestamp("2018-01-02", tz="US/Eastern"),
|
74 |
+
),
|
75 |
+
],
|
76 |
+
)
|
77 |
+
def test_is_empty(self, left, right, closed):
|
78 |
+
# GH27219
|
79 |
+
# non-empty always return False
|
80 |
+
iv = Interval(left, right, closed)
|
81 |
+
assert iv.is_empty is False
|
82 |
+
|
83 |
+
# same endpoint is empty except when closed='both' (contains one point)
|
84 |
+
iv = Interval(left, left, closed)
|
85 |
+
result = iv.is_empty
|
86 |
+
expected = closed != "both"
|
87 |
+
assert result is expected
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Interval,
|
5 |
+
Timedelta,
|
6 |
+
Timestamp,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.fixture(
|
11 |
+
params=[
|
12 |
+
(Timedelta("0 days"), Timedelta("1 day")),
|
13 |
+
(Timestamp("2018-01-01"), Timedelta("1 day")),
|
14 |
+
(0, 1),
|
15 |
+
],
|
16 |
+
ids=lambda x: type(x[0]).__name__,
|
17 |
+
)
|
18 |
+
def start_shift(request):
|
19 |
+
"""
|
20 |
+
Fixture for generating intervals of types from a start value and a shift
|
21 |
+
value that can be added to start to generate an endpoint
|
22 |
+
"""
|
23 |
+
return request.param
|
24 |
+
|
25 |
+
|
26 |
+
class TestOverlaps:
|
27 |
+
def test_overlaps_self(self, start_shift, closed):
|
28 |
+
start, shift = start_shift
|
29 |
+
interval = Interval(start, start + shift, closed)
|
30 |
+
assert interval.overlaps(interval)
|
31 |
+
|
32 |
+
def test_overlaps_nested(self, start_shift, closed, other_closed):
|
33 |
+
start, shift = start_shift
|
34 |
+
interval1 = Interval(start, start + 3 * shift, other_closed)
|
35 |
+
interval2 = Interval(start + shift, start + 2 * shift, closed)
|
36 |
+
|
37 |
+
# nested intervals should always overlap
|
38 |
+
assert interval1.overlaps(interval2)
|
39 |
+
|
40 |
+
def test_overlaps_disjoint(self, start_shift, closed, other_closed):
|
41 |
+
start, shift = start_shift
|
42 |
+
interval1 = Interval(start, start + shift, other_closed)
|
43 |
+
interval2 = Interval(start + 2 * shift, start + 3 * shift, closed)
|
44 |
+
|
45 |
+
# disjoint intervals should never overlap
|
46 |
+
assert not interval1.overlaps(interval2)
|
47 |
+
|
48 |
+
def test_overlaps_endpoint(self, start_shift, closed, other_closed):
|
49 |
+
start, shift = start_shift
|
50 |
+
interval1 = Interval(start, start + shift, other_closed)
|
51 |
+
interval2 = Interval(start + shift, start + 2 * shift, closed)
|
52 |
+
|
53 |
+
# overlap if shared endpoint is closed for both (overlap at a point)
|
54 |
+
result = interval1.overlaps(interval2)
|
55 |
+
expected = interval1.closed_right and interval2.closed_left
|
56 |
+
assert result == expected
|
57 |
+
|
58 |
+
@pytest.mark.parametrize(
|
59 |
+
"other",
|
60 |
+
[10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
|
61 |
+
ids=lambda x: type(x).__name__,
|
62 |
+
)
|
63 |
+
def test_overlaps_invalid_type(self, other):
|
64 |
+
interval = Interval(0, 1)
|
65 |
+
msg = f"`other` must be an Interval, got {type(other).__name__}"
|
66 |
+
with pytest.raises(TypeError, match=msg):
|
67 |
+
interval.overlaps(other)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_timestamp.cpython-310.pyc
ADDED
Binary file (25.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/methods/__init__.py
ADDED
File without changes
|