applied-ai-018 commited on
Commit
68e7f63
·
verified ·
1 Parent(s): ffeb68c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so +0 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so +0 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.pyi +17 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so +0 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so +0 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops.pyi +51 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so +0 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so +0 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi +141 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi +27 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi +287 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so +0 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi +135 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so +0 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.cpython-310-x86_64-linux-gnu.so +0 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi +21 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/__init__.py +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.cpython-310-x86_64-linux-gnu.so +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi +127 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi +12 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/_libs/writers.cpython-310-x86_64-linux-gnu.so +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py +192 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py +51 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py +73 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py +11 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py +87 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py +67 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/__init__.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_timestamp.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/methods/__init__.py +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (133 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
2
+ def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
3
+ def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
4
+ def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
5
+ def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (221 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Hashable,
4
+ Literal,
5
+ )
6
+
7
+ import numpy as np
8
+
9
+ from pandas._typing import npt
10
+
11
+ def unique_label_indices(
12
+ labels: np.ndarray, # const int64_t[:]
13
+ ) -> np.ndarray: ...
14
+
15
+ class Factorizer:
16
+ count: int
17
+ uniques: Any
18
+ def __init__(self, size_hint: int) -> None: ...
19
+ def get_count(self) -> int: ...
20
+ def factorize(
21
+ self,
22
+ values: np.ndarray,
23
+ na_sentinel=...,
24
+ na_value=...,
25
+ mask=...,
26
+ ) -> npt.NDArray[np.intp]: ...
27
+
28
+ class ObjectFactorizer(Factorizer):
29
+ table: PyObjectHashTable
30
+ uniques: ObjectVector
31
+
32
+ class Int64Factorizer(Factorizer):
33
+ table: Int64HashTable
34
+ uniques: Int64Vector
35
+
36
+ class UInt64Factorizer(Factorizer):
37
+ table: UInt64HashTable
38
+ uniques: UInt64Vector
39
+
40
+ class Int32Factorizer(Factorizer):
41
+ table: Int32HashTable
42
+ uniques: Int32Vector
43
+
44
+ class UInt32Factorizer(Factorizer):
45
+ table: UInt32HashTable
46
+ uniques: UInt32Vector
47
+
48
+ class Int16Factorizer(Factorizer):
49
+ table: Int16HashTable
50
+ uniques: Int16Vector
51
+
52
+ class UInt16Factorizer(Factorizer):
53
+ table: UInt16HashTable
54
+ uniques: UInt16Vector
55
+
56
+ class Int8Factorizer(Factorizer):
57
+ table: Int8HashTable
58
+ uniques: Int8Vector
59
+
60
+ class UInt8Factorizer(Factorizer):
61
+ table: UInt8HashTable
62
+ uniques: UInt8Vector
63
+
64
+ class Float64Factorizer(Factorizer):
65
+ table: Float64HashTable
66
+ uniques: Float64Vector
67
+
68
+ class Float32Factorizer(Factorizer):
69
+ table: Float32HashTable
70
+ uniques: Float32Vector
71
+
72
+ class Complex64Factorizer(Factorizer):
73
+ table: Complex64HashTable
74
+ uniques: Complex64Vector
75
+
76
+ class Complex128Factorizer(Factorizer):
77
+ table: Complex128HashTable
78
+ uniques: Complex128Vector
79
+
80
+ class Int64Vector:
81
+ def __init__(self, *args) -> None: ...
82
+ def __len__(self) -> int: ...
83
+ def to_array(self) -> npt.NDArray[np.int64]: ...
84
+
85
+ class Int32Vector:
86
+ def __init__(self, *args) -> None: ...
87
+ def __len__(self) -> int: ...
88
+ def to_array(self) -> npt.NDArray[np.int32]: ...
89
+
90
+ class Int16Vector:
91
+ def __init__(self, *args) -> None: ...
92
+ def __len__(self) -> int: ...
93
+ def to_array(self) -> npt.NDArray[np.int16]: ...
94
+
95
+ class Int8Vector:
96
+ def __init__(self, *args) -> None: ...
97
+ def __len__(self) -> int: ...
98
+ def to_array(self) -> npt.NDArray[np.int8]: ...
99
+
100
+ class UInt64Vector:
101
+ def __init__(self, *args) -> None: ...
102
+ def __len__(self) -> int: ...
103
+ def to_array(self) -> npt.NDArray[np.uint64]: ...
104
+
105
+ class UInt32Vector:
106
+ def __init__(self, *args) -> None: ...
107
+ def __len__(self) -> int: ...
108
+ def to_array(self) -> npt.NDArray[np.uint32]: ...
109
+
110
+ class UInt16Vector:
111
+ def __init__(self, *args) -> None: ...
112
+ def __len__(self) -> int: ...
113
+ def to_array(self) -> npt.NDArray[np.uint16]: ...
114
+
115
+ class UInt8Vector:
116
+ def __init__(self, *args) -> None: ...
117
+ def __len__(self) -> int: ...
118
+ def to_array(self) -> npt.NDArray[np.uint8]: ...
119
+
120
+ class Float64Vector:
121
+ def __init__(self, *args) -> None: ...
122
+ def __len__(self) -> int: ...
123
+ def to_array(self) -> npt.NDArray[np.float64]: ...
124
+
125
+ class Float32Vector:
126
+ def __init__(self, *args) -> None: ...
127
+ def __len__(self) -> int: ...
128
+ def to_array(self) -> npt.NDArray[np.float32]: ...
129
+
130
+ class Complex128Vector:
131
+ def __init__(self, *args) -> None: ...
132
+ def __len__(self) -> int: ...
133
+ def to_array(self) -> npt.NDArray[np.complex128]: ...
134
+
135
+ class Complex64Vector:
136
+ def __init__(self, *args) -> None: ...
137
+ def __len__(self) -> int: ...
138
+ def to_array(self) -> npt.NDArray[np.complex64]: ...
139
+
140
+ class StringVector:
141
+ def __init__(self, *args) -> None: ...
142
+ def __len__(self) -> int: ...
143
+ def to_array(self) -> npt.NDArray[np.object_]: ...
144
+
145
+ class ObjectVector:
146
+ def __init__(self, *args) -> None: ...
147
+ def __len__(self) -> int: ...
148
+ def to_array(self) -> npt.NDArray[np.object_]: ...
149
+
150
+ class HashTable:
151
+ # NB: The base HashTable class does _not_ actually have these methods;
152
+ # we are putting them here for the sake of mypy to avoid
153
+ # reproducing them in each subclass below.
154
+ def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
155
+ def __len__(self) -> int: ...
156
+ def __contains__(self, key: Hashable) -> bool: ...
157
+ def sizeof(self, deep: bool = ...) -> int: ...
158
+ def get_state(self) -> dict[str, int]: ...
159
+ # TODO: `val/key` type is subclass-specific
160
+ def get_item(self, val): ... # TODO: return type?
161
+ def set_item(self, key, val) -> None: ...
162
+ def get_na(self): ... # TODO: return type?
163
+ def set_na(self, val) -> None: ...
164
+ def map_locations(
165
+ self,
166
+ values: np.ndarray, # np.ndarray[subclass-specific]
167
+ mask: npt.NDArray[np.bool_] | None = ...,
168
+ ) -> None: ...
169
+ def lookup(
170
+ self,
171
+ values: np.ndarray, # np.ndarray[subclass-specific]
172
+ mask: npt.NDArray[np.bool_] | None = ...,
173
+ ) -> npt.NDArray[np.intp]: ...
174
+ def get_labels(
175
+ self,
176
+ values: np.ndarray, # np.ndarray[subclass-specific]
177
+ uniques, # SubclassTypeVector
178
+ count_prior: int = ...,
179
+ na_sentinel: int = ...,
180
+ na_value: object = ...,
181
+ mask=...,
182
+ ) -> npt.NDArray[np.intp]: ...
183
+ def unique(
184
+ self,
185
+ values: np.ndarray, # np.ndarray[subclass-specific]
186
+ return_inverse: bool = ...,
187
+ mask=...,
188
+ ) -> (
189
+ tuple[
190
+ np.ndarray, # np.ndarray[subclass-specific]
191
+ npt.NDArray[np.intp],
192
+ ]
193
+ | np.ndarray
194
+ ): ... # np.ndarray[subclass-specific]
195
+ def factorize(
196
+ self,
197
+ values: np.ndarray, # np.ndarray[subclass-specific]
198
+ na_sentinel: int = ...,
199
+ na_value: object = ...,
200
+ mask=...,
201
+ ignore_na: bool = True,
202
+ ) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
203
+
204
+ class Complex128HashTable(HashTable): ...
205
+ class Complex64HashTable(HashTable): ...
206
+ class Float64HashTable(HashTable): ...
207
+ class Float32HashTable(HashTable): ...
208
+
209
+ class Int64HashTable(HashTable):
210
+ # Only Int64HashTable has get_labels_groupby, map_keys_to_values
211
+ def get_labels_groupby(
212
+ self,
213
+ values: npt.NDArray[np.int64], # const int64_t[:]
214
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
215
+ def map_keys_to_values(
216
+ self,
217
+ keys: npt.NDArray[np.int64],
218
+ values: npt.NDArray[np.int64], # const int64_t[:]
219
+ ) -> None: ...
220
+
221
+ class Int32HashTable(HashTable): ...
222
+ class Int16HashTable(HashTable): ...
223
+ class Int8HashTable(HashTable): ...
224
+ class UInt64HashTable(HashTable): ...
225
+ class UInt32HashTable(HashTable): ...
226
+ class UInt16HashTable(HashTable): ...
227
+ class UInt8HashTable(HashTable): ...
228
+ class StringHashTable(HashTable): ...
229
+ class PyObjectHashTable(HashTable): ...
230
+ class IntpHashTable(HashTable): ...
231
+
232
+ def duplicated(
233
+ values: np.ndarray,
234
+ keep: Literal["last", "first", False] = ...,
235
+ mask: npt.NDArray[np.bool_] | None = ...,
236
+ ) -> npt.NDArray[np.bool_]: ...
237
+ def mode(
238
+ values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
239
+ ) -> np.ndarray: ...
240
+ def value_count(
241
+ values: np.ndarray,
242
+ dropna: bool,
243
+ mask: npt.NDArray[np.bool_] | None = ...,
244
+ ) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
245
+
246
+ # arr and values should have same dtype
247
+ def ismember(
248
+ arr: np.ndarray,
249
+ values: np.ndarray,
250
+ ) -> npt.NDArray[np.bool_]: ...
251
+ def object_hash(obj) -> int: ...
252
+ def objects_are_equal(a, b) -> bool: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/index.pyi ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ from pandas import MultiIndex
6
+ from pandas.core.arrays import ExtensionArray
7
+
8
+ multiindex_nulls_shift: int
9
+
10
+ class IndexEngine:
11
+ over_size_threshold: bool
12
+ def __init__(self, values: np.ndarray) -> None: ...
13
+ def __contains__(self, val: object) -> bool: ...
14
+
15
+ # -> int | slice | np.ndarray[bool]
16
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
17
+ def sizeof(self, deep: bool = ...) -> int: ...
18
+ def __sizeof__(self) -> int: ...
19
+ @property
20
+ def is_unique(self) -> bool: ...
21
+ @property
22
+ def is_monotonic_increasing(self) -> bool: ...
23
+ @property
24
+ def is_monotonic_decreasing(self) -> bool: ...
25
+ @property
26
+ def is_mapping_populated(self) -> bool: ...
27
+ def clear_mapping(self): ...
28
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
29
+ def get_indexer_non_unique(
30
+ self,
31
+ targets: np.ndarray,
32
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
33
+
34
+ class MaskedIndexEngine(IndexEngine):
35
+ def __init__(self, values: object) -> None: ...
36
+ def get_indexer_non_unique(
37
+ self, targets: object
38
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
39
+
40
+ class Float64Engine(IndexEngine): ...
41
+ class Float32Engine(IndexEngine): ...
42
+ class Complex128Engine(IndexEngine): ...
43
+ class Complex64Engine(IndexEngine): ...
44
+ class Int64Engine(IndexEngine): ...
45
+ class Int32Engine(IndexEngine): ...
46
+ class Int16Engine(IndexEngine): ...
47
+ class Int8Engine(IndexEngine): ...
48
+ class UInt64Engine(IndexEngine): ...
49
+ class UInt32Engine(IndexEngine): ...
50
+ class UInt16Engine(IndexEngine): ...
51
+ class UInt8Engine(IndexEngine): ...
52
+ class ObjectEngine(IndexEngine): ...
53
+ class DatetimeEngine(Int64Engine): ...
54
+ class TimedeltaEngine(DatetimeEngine): ...
55
+ class PeriodEngine(Int64Engine): ...
56
+ class BoolEngine(UInt8Engine): ...
57
+ class MaskedFloat64Engine(MaskedIndexEngine): ...
58
+ class MaskedFloat32Engine(MaskedIndexEngine): ...
59
+ class MaskedComplex128Engine(MaskedIndexEngine): ...
60
+ class MaskedComplex64Engine(MaskedIndexEngine): ...
61
+ class MaskedInt64Engine(MaskedIndexEngine): ...
62
+ class MaskedInt32Engine(MaskedIndexEngine): ...
63
+ class MaskedInt16Engine(MaskedIndexEngine): ...
64
+ class MaskedInt8Engine(MaskedIndexEngine): ...
65
+ class MaskedUInt64Engine(MaskedIndexEngine): ...
66
+ class MaskedUInt32Engine(MaskedIndexEngine): ...
67
+ class MaskedUInt16Engine(MaskedIndexEngine): ...
68
+ class MaskedUInt8Engine(MaskedIndexEngine): ...
69
+ class MaskedBoolEngine(MaskedUInt8Engine): ...
70
+
71
+ class BaseMultiIndexCodesEngine:
72
+ levels: list[np.ndarray]
73
+ offsets: np.ndarray # ndarray[uint64_t, ndim=1]
74
+
75
+ def __init__(
76
+ self,
77
+ levels: list[np.ndarray], # all entries hashable
78
+ labels: list[np.ndarray], # all entries integer-dtyped
79
+ offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
80
+ ) -> None: ...
81
+ def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
82
+ def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
83
+
84
+ class ExtensionEngine:
85
+ def __init__(self, values: ExtensionArray) -> None: ...
86
+ def __contains__(self, val: object) -> bool: ...
87
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
88
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
89
+ def get_indexer_non_unique(
90
+ self,
91
+ targets: np.ndarray,
92
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
93
+ @property
94
+ def is_unique(self) -> bool: ...
95
+ @property
96
+ def is_monotonic_increasing(self) -> bool: ...
97
+ @property
98
+ def is_monotonic_decreasing(self) -> bool: ...
99
+ def sizeof(self, deep: bool = ...) -> int: ...
100
+ def clear_mapping(self): ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (66.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/indexing.pyi ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Generic,
3
+ TypeVar,
4
+ )
5
+
6
+ from pandas.core.indexing import IndexingMixin
7
+
8
+ _IndexingMixinT = TypeVar("_IndexingMixinT", bound=IndexingMixin)
9
+
10
+ class NDFrameIndexerBase(Generic[_IndexingMixinT]):
11
+ name: str
12
+ # in practice obj is either a DataFrame or a Series
13
+ obj: _IndexingMixinT
14
+
15
+ def __init__(self, name: str, obj: _IndexingMixinT) -> None: ...
16
+ @property
17
+ def ndim(self) -> int: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (416 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.pyi ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Generic,
4
+ TypeVar,
5
+ overload,
6
+ )
7
+
8
+ import numpy as np
9
+ import numpy.typing as npt
10
+
11
+ from pandas._typing import (
12
+ IntervalClosedType,
13
+ Timedelta,
14
+ Timestamp,
15
+ )
16
+
17
+ VALID_CLOSED: frozenset[str]
18
+
19
+ _OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
20
+ _OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
21
+ _OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
22
+
23
+ class _LengthDescriptor:
24
+ @overload
25
+ def __get__(
26
+ self, instance: Interval[_OrderableScalarT], owner: Any
27
+ ) -> _OrderableScalarT: ...
28
+ @overload
29
+ def __get__(
30
+ self, instance: Interval[_OrderableTimesT], owner: Any
31
+ ) -> Timedelta: ...
32
+
33
+ class _MidDescriptor:
34
+ @overload
35
+ def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
36
+ @overload
37
+ def __get__(
38
+ self, instance: Interval[_OrderableTimesT], owner: Any
39
+ ) -> _OrderableTimesT: ...
40
+
41
+ class IntervalMixin:
42
+ @property
43
+ def closed_left(self) -> bool: ...
44
+ @property
45
+ def closed_right(self) -> bool: ...
46
+ @property
47
+ def open_left(self) -> bool: ...
48
+ @property
49
+ def open_right(self) -> bool: ...
50
+ @property
51
+ def is_empty(self) -> bool: ...
52
+ def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
53
+
54
+ class Interval(IntervalMixin, Generic[_OrderableT]):
55
+ @property
56
+ def left(self: Interval[_OrderableT]) -> _OrderableT: ...
57
+ @property
58
+ def right(self: Interval[_OrderableT]) -> _OrderableT: ...
59
+ @property
60
+ def closed(self) -> IntervalClosedType: ...
61
+ mid: _MidDescriptor
62
+ length: _LengthDescriptor
63
+ def __init__(
64
+ self,
65
+ left: _OrderableT,
66
+ right: _OrderableT,
67
+ closed: IntervalClosedType = ...,
68
+ ) -> None: ...
69
+ def __hash__(self) -> int: ...
70
+ @overload
71
+ def __contains__(
72
+ self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
73
+ ) -> bool: ...
74
+ @overload
75
+ def __contains__(
76
+ self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
77
+ ) -> bool: ...
78
+ @overload
79
+ def __contains__(
80
+ self: Interval[_OrderableScalarT],
81
+ key: _OrderableScalarT | Interval[_OrderableScalarT],
82
+ ) -> bool: ...
83
+ @overload
84
+ def __add__(
85
+ self: Interval[_OrderableTimesT], y: Timedelta
86
+ ) -> Interval[_OrderableTimesT]: ...
87
+ @overload
88
+ def __add__(
89
+ self: Interval[int], y: _OrderableScalarT
90
+ ) -> Interval[_OrderableScalarT]: ...
91
+ @overload
92
+ def __add__(self: Interval[float], y: float) -> Interval[float]: ...
93
+ @overload
94
+ def __radd__(
95
+ self: Interval[_OrderableTimesT], y: Timedelta
96
+ ) -> Interval[_OrderableTimesT]: ...
97
+ @overload
98
+ def __radd__(
99
+ self: Interval[int], y: _OrderableScalarT
100
+ ) -> Interval[_OrderableScalarT]: ...
101
+ @overload
102
+ def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
103
+ @overload
104
+ def __sub__(
105
+ self: Interval[_OrderableTimesT], y: Timedelta
106
+ ) -> Interval[_OrderableTimesT]: ...
107
+ @overload
108
+ def __sub__(
109
+ self: Interval[int], y: _OrderableScalarT
110
+ ) -> Interval[_OrderableScalarT]: ...
111
+ @overload
112
+ def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
113
+ @overload
114
+ def __rsub__(
115
+ self: Interval[_OrderableTimesT], y: Timedelta
116
+ ) -> Interval[_OrderableTimesT]: ...
117
+ @overload
118
+ def __rsub__(
119
+ self: Interval[int], y: _OrderableScalarT
120
+ ) -> Interval[_OrderableScalarT]: ...
121
+ @overload
122
+ def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
123
+ @overload
124
+ def __mul__(
125
+ self: Interval[int], y: _OrderableScalarT
126
+ ) -> Interval[_OrderableScalarT]: ...
127
+ @overload
128
+ def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
129
+ @overload
130
+ def __rmul__(
131
+ self: Interval[int], y: _OrderableScalarT
132
+ ) -> Interval[_OrderableScalarT]: ...
133
+ @overload
134
+ def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
135
+ @overload
136
+ def __truediv__(
137
+ self: Interval[int], y: _OrderableScalarT
138
+ ) -> Interval[_OrderableScalarT]: ...
139
+ @overload
140
+ def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
141
+ @overload
142
+ def __floordiv__(
143
+ self: Interval[int], y: _OrderableScalarT
144
+ ) -> Interval[_OrderableScalarT]: ...
145
+ @overload
146
+ def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
147
+ def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
148
+
149
+ def intervals_to_interval_bounds(
150
+ intervals: np.ndarray, validate_closed: bool = ...
151
+ ) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
152
+
153
+ class IntervalTree(IntervalMixin):
154
+ def __init__(
155
+ self,
156
+ left: np.ndarray,
157
+ right: np.ndarray,
158
+ closed: IntervalClosedType = ...,
159
+ leaf_size: int = ...,
160
+ ) -> None: ...
161
+ @property
162
+ def mid(self) -> np.ndarray: ...
163
+ @property
164
+ def length(self) -> np.ndarray: ...
165
+ def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
166
+ def get_indexer_non_unique(
167
+ self, target
168
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
169
+ _na_count: int
170
+ @property
171
+ def is_overlapping(self) -> bool: ...
172
+ @property
173
+ def is_monotonic_increasing(self) -> bool: ...
174
+ def clear_mapping(self) -> None: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (64.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (211 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Callable,
4
+ Iterable,
5
+ Literal,
6
+ TypeAlias,
7
+ overload,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas._typing import npt
13
+
14
+ _BinOp: TypeAlias = Callable[[Any, Any], Any]
15
+ _BoolOp: TypeAlias = Callable[[Any, Any], bool]
16
+
17
+ def scalar_compare(
18
+ values: np.ndarray, # object[:]
19
+ val: object,
20
+ op: _BoolOp, # {operator.eq, operator.ne, ...}
21
+ ) -> npt.NDArray[np.bool_]: ...
22
+ def vec_compare(
23
+ left: npt.NDArray[np.object_],
24
+ right: npt.NDArray[np.object_],
25
+ op: _BoolOp, # {operator.eq, operator.ne, ...}
26
+ ) -> npt.NDArray[np.bool_]: ...
27
+ def scalar_binop(
28
+ values: np.ndarray, # object[:]
29
+ val: object,
30
+ op: _BinOp, # binary operator
31
+ ) -> np.ndarray: ...
32
+ def vec_binop(
33
+ left: np.ndarray, # object[:]
34
+ right: np.ndarray, # object[:]
35
+ op: _BinOp, # binary operator
36
+ ) -> np.ndarray: ...
37
+ @overload
38
+ def maybe_convert_bool(
39
+ arr: npt.NDArray[np.object_],
40
+ true_values: Iterable | None = None,
41
+ false_values: Iterable | None = None,
42
+ convert_to_masked_nullable: Literal[False] = ...,
43
+ ) -> tuple[np.ndarray, None]: ...
44
+ @overload
45
+ def maybe_convert_bool(
46
+ arr: npt.NDArray[np.object_],
47
+ true_values: Iterable = ...,
48
+ false_values: Iterable = ...,
49
+ *,
50
+ convert_to_masked_nullable: Literal[True],
51
+ ) -> tuple[np.ndarray, np.ndarray]: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ def maybe_dispatch_ufunc_to_dunder_op(
4
+ self, ufunc: np.ufunc, method: str, *inputs, **kwargs
5
+ ): ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (39.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (595 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/parsers.pyi ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Hashable,
3
+ Literal,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ from pandas._typing import (
9
+ ArrayLike,
10
+ Dtype,
11
+ npt,
12
+ )
13
+
14
+ STR_NA_VALUES: set[str]
15
+ DEFAULT_BUFFER_HEURISTIC: int
16
+
17
+ def sanitize_objects(
18
+ values: npt.NDArray[np.object_],
19
+ na_values: set,
20
+ ) -> int: ...
21
+
22
+ class TextReader:
23
+ unnamed_cols: set[str]
24
+ table_width: int # int64_t
25
+ leading_cols: int # int64_t
26
+ header: list[list[int]] # non-negative integers
27
+ def __init__(
28
+ self,
29
+ source,
30
+ delimiter: bytes | str = ..., # single-character only
31
+ header=...,
32
+ header_start: int = ..., # int64_t
33
+ header_end: int = ..., # uint64_t
34
+ index_col=...,
35
+ names=...,
36
+ tokenize_chunksize: int = ..., # int64_t
37
+ delim_whitespace: bool = ...,
38
+ converters=...,
39
+ skipinitialspace: bool = ...,
40
+ escapechar: bytes | str | None = ..., # single-character only
41
+ doublequote: bool = ...,
42
+ quotechar: str | bytes | None = ..., # at most 1 character
43
+ quoting: int = ...,
44
+ lineterminator: bytes | str | None = ..., # at most 1 character
45
+ comment=...,
46
+ decimal: bytes | str = ..., # single-character only
47
+ thousands: bytes | str | None = ..., # single-character only
48
+ dtype: Dtype | dict[Hashable, Dtype] = ...,
49
+ usecols=...,
50
+ error_bad_lines: bool = ...,
51
+ warn_bad_lines: bool = ...,
52
+ na_filter: bool = ...,
53
+ na_values=...,
54
+ na_fvalues=...,
55
+ keep_default_na: bool = ...,
56
+ true_values=...,
57
+ false_values=...,
58
+ allow_leading_cols: bool = ...,
59
+ skiprows=...,
60
+ skipfooter: int = ..., # int64_t
61
+ verbose: bool = ...,
62
+ float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
63
+ skip_blank_lines: bool = ...,
64
+ encoding_errors: bytes | str = ...,
65
+ ) -> None: ...
66
+ def set_noconvert(self, i: int) -> None: ...
67
+ def remove_noconvert(self, i: int) -> None: ...
68
+ def close(self) -> None: ...
69
+ def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
70
+ def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
71
+
72
+ # _maybe_upcast, na_values are only exposed for testing
73
+ na_values: dict
74
+
75
+ def _maybe_upcast(
76
+ arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
77
+ ) -> np.ndarray: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (340 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslib.pyi ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import tzinfo
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ def format_array_from_datetime(
8
+ values: npt.NDArray[np.int64],
9
+ tz: tzinfo | None = ...,
10
+ format: str | None = ...,
11
+ na_rep: str | float = ...,
12
+ reso: int = ..., # NPY_DATETIMEUNIT
13
+ ) -> npt.NDArray[np.object_]: ...
14
+ def array_with_unit_to_datetime(
15
+ values: npt.NDArray[np.object_],
16
+ unit: str,
17
+ errors: str = ...,
18
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
19
+ def first_non_null(values: np.ndarray) -> int: ...
20
+ def array_to_datetime(
21
+ values: npt.NDArray[np.object_],
22
+ errors: str = ...,
23
+ dayfirst: bool = ...,
24
+ yearfirst: bool = ...,
25
+ utc: bool = ...,
26
+ creso: int = ...,
27
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
28
+
29
+ # returned ndarray may be object dtype or datetime64[ns]
30
+
31
+ def array_to_datetime_with_tz(
32
+ values: npt.NDArray[np.object_],
33
+ tz: tzinfo,
34
+ dayfirst: bool,
35
+ yearfirst: bool,
36
+ creso: int,
37
+ ) -> npt.NDArray[np.int64]: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.85 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (103 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (308 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (203 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (345 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ tzinfo as _tzinfo,
5
+ )
6
+ import typing
7
+
8
+ import numpy as np
9
+
10
+ from pandas._libs.tslibs.period import Period
11
+ from pandas._typing import Self
12
+
13
+ NaT: NaTType
14
+ iNaT: int
15
+ nat_strings: set[str]
16
+
17
+ _NaTComparisonTypes: typing.TypeAlias = (
18
+ datetime | timedelta | Period | np.datetime64 | np.timedelta64
19
+ )
20
+
21
+ class _NatComparison:
22
+ def __call__(self, other: _NaTComparisonTypes) -> bool: ...
23
+
24
+ class NaTType:
25
+ _value: np.int64
26
+ @property
27
+ def value(self) -> int: ...
28
+ @property
29
+ def asm8(self) -> np.datetime64: ...
30
+ def to_datetime64(self) -> np.datetime64: ...
31
+ def to_numpy(
32
+ self, dtype: np.dtype | str | None = ..., copy: bool = ...
33
+ ) -> np.datetime64 | np.timedelta64: ...
34
+ @property
35
+ def is_leap_year(self) -> bool: ...
36
+ @property
37
+ def is_month_start(self) -> bool: ...
38
+ @property
39
+ def is_quarter_start(self) -> bool: ...
40
+ @property
41
+ def is_year_start(self) -> bool: ...
42
+ @property
43
+ def is_month_end(self) -> bool: ...
44
+ @property
45
+ def is_quarter_end(self) -> bool: ...
46
+ @property
47
+ def is_year_end(self) -> bool: ...
48
+ @property
49
+ def day_of_year(self) -> float: ...
50
+ @property
51
+ def dayofyear(self) -> float: ...
52
+ @property
53
+ def days_in_month(self) -> float: ...
54
+ @property
55
+ def daysinmonth(self) -> float: ...
56
+ @property
57
+ def day_of_week(self) -> float: ...
58
+ @property
59
+ def dayofweek(self) -> float: ...
60
+ @property
61
+ def week(self) -> float: ...
62
+ @property
63
+ def weekofyear(self) -> float: ...
64
+ def day_name(self) -> float: ...
65
+ def month_name(self) -> float: ...
66
+ def weekday(self) -> float: ...
67
+ def isoweekday(self) -> float: ...
68
+ def total_seconds(self) -> float: ...
69
+ def today(self, *args, **kwargs) -> NaTType: ...
70
+ def now(self, *args, **kwargs) -> NaTType: ...
71
+ def to_pydatetime(self) -> NaTType: ...
72
+ def date(self) -> NaTType: ...
73
+ def round(self) -> NaTType: ...
74
+ def floor(self) -> NaTType: ...
75
+ def ceil(self) -> NaTType: ...
76
+ @property
77
+ def tzinfo(self) -> None: ...
78
+ @property
79
+ def tz(self) -> None: ...
80
+ def tz_convert(self, tz: _tzinfo | str | None) -> NaTType: ...
81
+ def tz_localize(
82
+ self,
83
+ tz: _tzinfo | str | None,
84
+ ambiguous: str = ...,
85
+ nonexistent: str = ...,
86
+ ) -> NaTType: ...
87
+ def replace(
88
+ self,
89
+ year: int | None = ...,
90
+ month: int | None = ...,
91
+ day: int | None = ...,
92
+ hour: int | None = ...,
93
+ minute: int | None = ...,
94
+ second: int | None = ...,
95
+ microsecond: int | None = ...,
96
+ nanosecond: int | None = ...,
97
+ tzinfo: _tzinfo | None = ...,
98
+ fold: int | None = ...,
99
+ ) -> NaTType: ...
100
+ @property
101
+ def year(self) -> float: ...
102
+ @property
103
+ def quarter(self) -> float: ...
104
+ @property
105
+ def month(self) -> float: ...
106
+ @property
107
+ def day(self) -> float: ...
108
+ @property
109
+ def hour(self) -> float: ...
110
+ @property
111
+ def minute(self) -> float: ...
112
+ @property
113
+ def second(self) -> float: ...
114
+ @property
115
+ def millisecond(self) -> float: ...
116
+ @property
117
+ def microsecond(self) -> float: ...
118
+ @property
119
+ def nanosecond(self) -> float: ...
120
+ # inject Timedelta properties
121
+ @property
122
+ def days(self) -> float: ...
123
+ @property
124
+ def microseconds(self) -> float: ...
125
+ @property
126
+ def nanoseconds(self) -> float: ...
127
+ # inject Period properties
128
+ @property
129
+ def qyear(self) -> float: ...
130
+ def __eq__(self, other: object) -> bool: ...
131
+ def __ne__(self, other: object) -> bool: ...
132
+ __lt__: _NatComparison
133
+ __le__: _NatComparison
134
+ __gt__: _NatComparison
135
+ __ge__: _NatComparison
136
+ def __sub__(self, other: Self | timedelta | datetime) -> Self: ...
137
+ def __rsub__(self, other: Self | timedelta | datetime) -> Self: ...
138
+ def __add__(self, other: Self | timedelta | datetime) -> Self: ...
139
+ def __radd__(self, other: Self | timedelta | datetime) -> Self: ...
140
+ def __hash__(self) -> int: ...
141
+ def as_unit(self, unit: str, round_ok: bool = ...) -> NaTType: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ class OutOfBoundsDatetime(ValueError): ...
6
+ class OutOfBoundsTimedelta(ValueError): ...
7
+
8
+ # only exposed for testing
9
+ def py_get_unit_from_dtype(dtype: np.dtype): ...
10
+ def py_td64_to_tdstruct(td64: int, unit: int) -> dict: ...
11
+ def astype_overflowsafe(
12
+ values: np.ndarray,
13
+ dtype: np.dtype,
14
+ copy: bool = ...,
15
+ round_ok: bool = ...,
16
+ is_coerce: bool = ...,
17
+ ) -> np.ndarray: ...
18
+ def is_unitless(dtype: np.dtype) -> bool: ...
19
+ def compare_mismatched_resolutions(
20
+ left: np.ndarray, right: np.ndarray, op
21
+ ) -> npt.NDArray[np.bool_]: ...
22
+ def add_overflowsafe(
23
+ left: npt.NDArray[np.int64],
24
+ right: npt.NDArray[np.int64],
25
+ ) -> npt.NDArray[np.int64]: ...
26
+ def get_supported_dtype(dtype: np.dtype) -> np.dtype: ...
27
+ def is_supported_dtype(dtype: np.dtype) -> bool: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ time,
4
+ timedelta,
5
+ )
6
+ from typing import (
7
+ Any,
8
+ Collection,
9
+ Literal,
10
+ TypeVar,
11
+ overload,
12
+ )
13
+
14
+ import numpy as np
15
+
16
+ from pandas._libs.tslibs.nattype import NaTType
17
+ from pandas._typing import (
18
+ OffsetCalendar,
19
+ Self,
20
+ npt,
21
+ )
22
+
23
+ from .timedeltas import Timedelta
24
+
25
+ _BaseOffsetT = TypeVar("_BaseOffsetT", bound=BaseOffset)
26
+ _DatetimeT = TypeVar("_DatetimeT", bound=datetime)
27
+ _TimedeltaT = TypeVar("_TimedeltaT", bound=timedelta)
28
+
29
+ _relativedelta_kwds: set[str]
30
+ prefix_mapping: dict[str, type]
31
+
32
+ class ApplyTypeError(TypeError): ...
33
+
34
+ class BaseOffset:
35
+ n: int
36
+ normalize: bool
37
+ def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
38
+ def __eq__(self, other) -> bool: ...
39
+ def __ne__(self, other) -> bool: ...
40
+ def __hash__(self) -> int: ...
41
+ @property
42
+ def kwds(self) -> dict: ...
43
+ @property
44
+ def base(self) -> BaseOffset: ...
45
+ @overload
46
+ def __add__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
47
+ @overload
48
+ def __add__(self, other: BaseOffset) -> Self: ...
49
+ @overload
50
+ def __add__(self, other: _DatetimeT) -> _DatetimeT: ...
51
+ @overload
52
+ def __add__(self, other: _TimedeltaT) -> _TimedeltaT: ...
53
+ @overload
54
+ def __radd__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
55
+ @overload
56
+ def __radd__(self, other: BaseOffset) -> Self: ...
57
+ @overload
58
+ def __radd__(self, other: _DatetimeT) -> _DatetimeT: ...
59
+ @overload
60
+ def __radd__(self, other: _TimedeltaT) -> _TimedeltaT: ...
61
+ @overload
62
+ def __radd__(self, other: NaTType) -> NaTType: ...
63
+ def __sub__(self, other: BaseOffset) -> Self: ...
64
+ @overload
65
+ def __rsub__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
66
+ @overload
67
+ def __rsub__(self, other: BaseOffset): ...
68
+ @overload
69
+ def __rsub__(self, other: _DatetimeT) -> _DatetimeT: ...
70
+ @overload
71
+ def __rsub__(self, other: _TimedeltaT) -> _TimedeltaT: ...
72
+ @overload
73
+ def __mul__(self, other: np.ndarray) -> np.ndarray: ...
74
+ @overload
75
+ def __mul__(self, other: int): ...
76
+ @overload
77
+ def __rmul__(self, other: np.ndarray) -> np.ndarray: ...
78
+ @overload
79
+ def __rmul__(self, other: int) -> Self: ...
80
+ def __neg__(self) -> Self: ...
81
+ def copy(self) -> Self: ...
82
+ @property
83
+ def name(self) -> str: ...
84
+ @property
85
+ def rule_code(self) -> str: ...
86
+ @property
87
+ def freqstr(self) -> str: ...
88
+ def _apply(self, other): ...
89
+ def _apply_array(self, dtarr: np.ndarray) -> np.ndarray: ...
90
+ def rollback(self, dt: datetime) -> datetime: ...
91
+ def rollforward(self, dt: datetime) -> datetime: ...
92
+ def is_on_offset(self, dt: datetime) -> bool: ...
93
+ def __setstate__(self, state) -> None: ...
94
+ def __getstate__(self): ...
95
+ @property
96
+ def nanos(self) -> int: ...
97
+ def is_anchored(self) -> bool: ...
98
+
99
+ def _get_offset(name: str) -> BaseOffset: ...
100
+
101
+ class SingleConstructorOffset(BaseOffset):
102
+ @classmethod
103
+ def _from_name(cls, suffix: None = ...): ...
104
+ def __reduce__(self): ...
105
+
106
+ @overload
107
+ def to_offset(freq: None, is_period: bool = ...) -> None: ...
108
+ @overload
109
+ def to_offset(freq: _BaseOffsetT, is_period: bool = ...) -> _BaseOffsetT: ...
110
+ @overload
111
+ def to_offset(freq: timedelta | str, is_period: bool = ...) -> BaseOffset: ...
112
+
113
+ class Tick(SingleConstructorOffset):
114
+ _creso: int
115
+ _prefix: str
116
+ def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
117
+ @property
118
+ def delta(self) -> Timedelta: ...
119
+ @property
120
+ def nanos(self) -> int: ...
121
+
122
+ def delta_to_tick(delta: timedelta) -> Tick: ...
123
+
124
+ class Day(Tick): ...
125
+ class Hour(Tick): ...
126
+ class Minute(Tick): ...
127
+ class Second(Tick): ...
128
+ class Milli(Tick): ...
129
+ class Micro(Tick): ...
130
+ class Nano(Tick): ...
131
+
132
+ class RelativeDeltaOffset(BaseOffset):
133
+ def __init__(self, n: int = ..., normalize: bool = ..., **kwds: Any) -> None: ...
134
+
135
+ class BusinessMixin(SingleConstructorOffset):
136
+ def __init__(
137
+ self, n: int = ..., normalize: bool = ..., offset: timedelta = ...
138
+ ) -> None: ...
139
+
140
+ class BusinessDay(BusinessMixin): ...
141
+
142
+ class BusinessHour(BusinessMixin):
143
+ def __init__(
144
+ self,
145
+ n: int = ...,
146
+ normalize: bool = ...,
147
+ start: str | time | Collection[str | time] = ...,
148
+ end: str | time | Collection[str | time] = ...,
149
+ offset: timedelta = ...,
150
+ ) -> None: ...
151
+
152
+ class WeekOfMonthMixin(SingleConstructorOffset):
153
+ def __init__(
154
+ self, n: int = ..., normalize: bool = ..., weekday: int = ...
155
+ ) -> None: ...
156
+
157
+ class YearOffset(SingleConstructorOffset):
158
+ def __init__(
159
+ self, n: int = ..., normalize: bool = ..., month: int | None = ...
160
+ ) -> None: ...
161
+
162
+ class BYearEnd(YearOffset): ...
163
+ class BYearBegin(YearOffset): ...
164
+ class YearEnd(YearOffset): ...
165
+ class YearBegin(YearOffset): ...
166
+
167
+ class QuarterOffset(SingleConstructorOffset):
168
+ def __init__(
169
+ self, n: int = ..., normalize: bool = ..., startingMonth: int | None = ...
170
+ ) -> None: ...
171
+
172
+ class BQuarterEnd(QuarterOffset): ...
173
+ class BQuarterBegin(QuarterOffset): ...
174
+ class QuarterEnd(QuarterOffset): ...
175
+ class QuarterBegin(QuarterOffset): ...
176
+ class MonthOffset(SingleConstructorOffset): ...
177
+ class MonthEnd(MonthOffset): ...
178
+ class MonthBegin(MonthOffset): ...
179
+ class BusinessMonthEnd(MonthOffset): ...
180
+ class BusinessMonthBegin(MonthOffset): ...
181
+
182
+ class SemiMonthOffset(SingleConstructorOffset):
183
+ def __init__(
184
+ self, n: int = ..., normalize: bool = ..., day_of_month: int | None = ...
185
+ ) -> None: ...
186
+
187
+ class SemiMonthEnd(SemiMonthOffset): ...
188
+ class SemiMonthBegin(SemiMonthOffset): ...
189
+
190
+ class Week(SingleConstructorOffset):
191
+ def __init__(
192
+ self, n: int = ..., normalize: bool = ..., weekday: int | None = ...
193
+ ) -> None: ...
194
+
195
+ class WeekOfMonth(WeekOfMonthMixin):
196
+ def __init__(
197
+ self, n: int = ..., normalize: bool = ..., week: int = ..., weekday: int = ...
198
+ ) -> None: ...
199
+
200
+ class LastWeekOfMonth(WeekOfMonthMixin): ...
201
+
202
+ class FY5253Mixin(SingleConstructorOffset):
203
+ def __init__(
204
+ self,
205
+ n: int = ...,
206
+ normalize: bool = ...,
207
+ weekday: int = ...,
208
+ startingMonth: int = ...,
209
+ variation: Literal["nearest", "last"] = ...,
210
+ ) -> None: ...
211
+
212
+ class FY5253(FY5253Mixin): ...
213
+
214
+ class FY5253Quarter(FY5253Mixin):
215
+ def __init__(
216
+ self,
217
+ n: int = ...,
218
+ normalize: bool = ...,
219
+ weekday: int = ...,
220
+ startingMonth: int = ...,
221
+ qtr_with_extra_week: int = ...,
222
+ variation: Literal["nearest", "last"] = ...,
223
+ ) -> None: ...
224
+
225
+ class Easter(SingleConstructorOffset): ...
226
+
227
+ class _CustomBusinessMonth(BusinessMixin):
228
+ def __init__(
229
+ self,
230
+ n: int = ...,
231
+ normalize: bool = ...,
232
+ weekmask: str = ...,
233
+ holidays: list | None = ...,
234
+ calendar: OffsetCalendar | None = ...,
235
+ offset: timedelta = ...,
236
+ ) -> None: ...
237
+
238
+ class CustomBusinessDay(BusinessDay):
239
+ def __init__(
240
+ self,
241
+ n: int = ...,
242
+ normalize: bool = ...,
243
+ weekmask: str = ...,
244
+ holidays: list | None = ...,
245
+ calendar: OffsetCalendar | None = ...,
246
+ offset: timedelta = ...,
247
+ ) -> None: ...
248
+
249
+ class CustomBusinessHour(BusinessHour):
250
+ def __init__(
251
+ self,
252
+ n: int = ...,
253
+ normalize: bool = ...,
254
+ weekmask: str = ...,
255
+ holidays: list | None = ...,
256
+ calendar: OffsetCalendar | None = ...,
257
+ start: str | time | Collection[str | time] = ...,
258
+ end: str | time | Collection[str | time] = ...,
259
+ offset: timedelta = ...,
260
+ ) -> None: ...
261
+
262
+ class CustomBusinessMonthEnd(_CustomBusinessMonth): ...
263
+ class CustomBusinessMonthBegin(_CustomBusinessMonth): ...
264
+ class OffsetMeta(type): ...
265
+ class DateOffset(RelativeDeltaOffset, metaclass=OffsetMeta): ...
266
+
267
+ BDay = BusinessDay
268
+ BMonthEnd = BusinessMonthEnd
269
+ BMonthBegin = BusinessMonthBegin
270
+ CBMonthEnd = CustomBusinessMonthEnd
271
+ CBMonthBegin = CustomBusinessMonthBegin
272
+ CDay = CustomBusinessDay
273
+
274
+ def roll_qtrday(
275
+ other: datetime, n: int, month: int, day_opt: str, modby: int
276
+ ) -> int: ...
277
+
278
+ INVALID_FREQ_ERR_MSG: Literal["Invalid frequency: {0}"]
279
+
280
+ def shift_months(
281
+ dtindex: npt.NDArray[np.int64],
282
+ months: int,
283
+ day_opt: str | None = ...,
284
+ reso: int = ...,
285
+ ) -> npt.NDArray[np.int64]: ...
286
+
287
+ _offset_map: dict[str, BaseOffset]
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (532 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ from typing import Literal
3
+
4
+ import numpy as np
5
+
6
+ from pandas._libs.tslibs.dtypes import PeriodDtypeBase
7
+ from pandas._libs.tslibs.nattype import NaTType
8
+ from pandas._libs.tslibs.offsets import BaseOffset
9
+ from pandas._libs.tslibs.timestamps import Timestamp
10
+ from pandas._typing import (
11
+ Frequency,
12
+ npt,
13
+ )
14
+
15
+ INVALID_FREQ_ERR_MSG: str
16
+ DIFFERENT_FREQ: str
17
+
18
+ class IncompatibleFrequency(ValueError): ...
19
+
20
+ def periodarr_to_dt64arr(
21
+ periodarr: npt.NDArray[np.int64], # const int64_t[:]
22
+ freq: int,
23
+ ) -> npt.NDArray[np.int64]: ...
24
+ def period_asfreq_arr(
25
+ arr: npt.NDArray[np.int64],
26
+ freq1: int,
27
+ freq2: int,
28
+ end: bool,
29
+ ) -> npt.NDArray[np.int64]: ...
30
+ def get_period_field_arr(
31
+ field: str,
32
+ arr: npt.NDArray[np.int64], # const int64_t[:]
33
+ freq: int,
34
+ ) -> npt.NDArray[np.int64]: ...
35
+ def from_ordinals(
36
+ values: npt.NDArray[np.int64], # const int64_t[:]
37
+ freq: timedelta | BaseOffset | str,
38
+ ) -> npt.NDArray[np.int64]: ...
39
+ def extract_ordinals(
40
+ values: npt.NDArray[np.object_],
41
+ freq: Frequency | int,
42
+ ) -> npt.NDArray[np.int64]: ...
43
+ def extract_freq(
44
+ values: npt.NDArray[np.object_],
45
+ ) -> BaseOffset: ...
46
+ def period_array_strftime(
47
+ values: npt.NDArray[np.int64],
48
+ dtype_code: int,
49
+ na_rep,
50
+ date_format: str | None,
51
+ ) -> npt.NDArray[np.object_]: ...
52
+
53
+ # exposed for tests
54
+ def period_asfreq(ordinal: int, freq1: int, freq2: int, end: bool) -> int: ...
55
+ def period_ordinal(
56
+ y: int, m: int, d: int, h: int, min: int, s: int, us: int, ps: int, freq: int
57
+ ) -> int: ...
58
+ def freq_to_dtype_code(freq: BaseOffset) -> int: ...
59
+ def validate_end_alias(how: str) -> Literal["E", "S"]: ...
60
+
61
+ class PeriodMixin:
62
+ @property
63
+ def end_time(self) -> Timestamp: ...
64
+ @property
65
+ def start_time(self) -> Timestamp: ...
66
+ def _require_matching_freq(self, other: BaseOffset, base: bool = ...) -> None: ...
67
+
68
+ class Period(PeriodMixin):
69
+ ordinal: int # int64_t
70
+ freq: BaseOffset
71
+ _dtype: PeriodDtypeBase
72
+
73
+ # error: "__new__" must return a class instance (got "Union[Period, NaTType]")
74
+ def __new__( # type: ignore[misc]
75
+ cls,
76
+ value=...,
77
+ freq: int | str | BaseOffset | None = ...,
78
+ ordinal: int | None = ...,
79
+ year: int | None = ...,
80
+ month: int | None = ...,
81
+ quarter: int | None = ...,
82
+ day: int | None = ...,
83
+ hour: int | None = ...,
84
+ minute: int | None = ...,
85
+ second: int | None = ...,
86
+ ) -> Period | NaTType: ...
87
+ @classmethod
88
+ def _maybe_convert_freq(cls, freq) -> BaseOffset: ...
89
+ @classmethod
90
+ def _from_ordinal(cls, ordinal: int, freq: BaseOffset) -> Period: ...
91
+ @classmethod
92
+ def now(cls, freq: Frequency) -> Period: ...
93
+ def strftime(self, fmt: str | None) -> str: ...
94
+ def to_timestamp(
95
+ self,
96
+ freq: str | BaseOffset | None = ...,
97
+ how: str = ...,
98
+ ) -> Timestamp: ...
99
+ def asfreq(self, freq: str | BaseOffset, how: str = ...) -> Period: ...
100
+ @property
101
+ def freqstr(self) -> str: ...
102
+ @property
103
+ def is_leap_year(self) -> bool: ...
104
+ @property
105
+ def daysinmonth(self) -> int: ...
106
+ @property
107
+ def days_in_month(self) -> int: ...
108
+ @property
109
+ def qyear(self) -> int: ...
110
+ @property
111
+ def quarter(self) -> int: ...
112
+ @property
113
+ def day_of_year(self) -> int: ...
114
+ @property
115
+ def weekday(self) -> int: ...
116
+ @property
117
+ def day_of_week(self) -> int: ...
118
+ @property
119
+ def week(self) -> int: ...
120
+ @property
121
+ def weekofyear(self) -> int: ...
122
+ @property
123
+ def second(self) -> int: ...
124
+ @property
125
+ def minute(self) -> int: ...
126
+ @property
127
+ def hour(self) -> int: ...
128
+ @property
129
+ def day(self) -> int: ...
130
+ @property
131
+ def month(self) -> int: ...
132
+ @property
133
+ def year(self) -> int: ...
134
+ def __sub__(self, other) -> Period | BaseOffset: ...
135
+ def __add__(self, other) -> Period: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (410 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (295 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ tzinfo,
4
+ )
5
+ from typing import Callable
6
+
7
+ import numpy as np
8
+
9
+ # imported from dateutil.tz
10
+ dateutil_gettz: Callable[[str], tzinfo]
11
+
12
+ def tz_standardize(tz: tzinfo) -> tzinfo: ...
13
+ def tz_compare(start: tzinfo | None, end: tzinfo | None) -> bool: ...
14
+ def infer_tzinfo(
15
+ start: datetime | None,
16
+ end: datetime | None,
17
+ ) -> tzinfo | None: ...
18
+ def maybe_get_tz(tz: str | int | np.int64 | tzinfo | None) -> tzinfo | None: ...
19
+ def get_timezone(tz: tzinfo) -> tzinfo | str: ...
20
+ def is_utc(tz: tzinfo | None) -> bool: ...
21
+ def is_fixed_offset(tz: tzinfo) -> bool: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (407 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Callable,
4
+ Literal,
5
+ )
6
+
7
+ import numpy as np
8
+
9
+ from pandas._typing import (
10
+ WindowingRankType,
11
+ npt,
12
+ )
13
+
14
+ def roll_sum(
15
+ values: np.ndarray, # const float64_t[:]
16
+ start: np.ndarray, # np.ndarray[np.int64]
17
+ end: np.ndarray, # np.ndarray[np.int64]
18
+ minp: int, # int64_t
19
+ ) -> np.ndarray: ... # np.ndarray[float]
20
+ def roll_mean(
21
+ values: np.ndarray, # const float64_t[:]
22
+ start: np.ndarray, # np.ndarray[np.int64]
23
+ end: np.ndarray, # np.ndarray[np.int64]
24
+ minp: int, # int64_t
25
+ ) -> np.ndarray: ... # np.ndarray[float]
26
+ def roll_var(
27
+ values: np.ndarray, # const float64_t[:]
28
+ start: np.ndarray, # np.ndarray[np.int64]
29
+ end: np.ndarray, # np.ndarray[np.int64]
30
+ minp: int, # int64_t
31
+ ddof: int = ...,
32
+ ) -> np.ndarray: ... # np.ndarray[float]
33
+ def roll_skew(
34
+ values: np.ndarray, # np.ndarray[np.float64]
35
+ start: np.ndarray, # np.ndarray[np.int64]
36
+ end: np.ndarray, # np.ndarray[np.int64]
37
+ minp: int, # int64_t
38
+ ) -> np.ndarray: ... # np.ndarray[float]
39
+ def roll_kurt(
40
+ values: np.ndarray, # np.ndarray[np.float64]
41
+ start: np.ndarray, # np.ndarray[np.int64]
42
+ end: np.ndarray, # np.ndarray[np.int64]
43
+ minp: int, # int64_t
44
+ ) -> np.ndarray: ... # np.ndarray[float]
45
+ def roll_median_c(
46
+ values: np.ndarray, # np.ndarray[np.float64]
47
+ start: np.ndarray, # np.ndarray[np.int64]
48
+ end: np.ndarray, # np.ndarray[np.int64]
49
+ minp: int, # int64_t
50
+ ) -> np.ndarray: ... # np.ndarray[float]
51
+ def roll_max(
52
+ values: np.ndarray, # np.ndarray[np.float64]
53
+ start: np.ndarray, # np.ndarray[np.int64]
54
+ end: np.ndarray, # np.ndarray[np.int64]
55
+ minp: int, # int64_t
56
+ ) -> np.ndarray: ... # np.ndarray[float]
57
+ def roll_min(
58
+ values: np.ndarray, # np.ndarray[np.float64]
59
+ start: np.ndarray, # np.ndarray[np.int64]
60
+ end: np.ndarray, # np.ndarray[np.int64]
61
+ minp: int, # int64_t
62
+ ) -> np.ndarray: ... # np.ndarray[float]
63
+ def roll_quantile(
64
+ values: np.ndarray, # const float64_t[:]
65
+ start: np.ndarray, # np.ndarray[np.int64]
66
+ end: np.ndarray, # np.ndarray[np.int64]
67
+ minp: int, # int64_t
68
+ quantile: float, # float64_t
69
+ interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
70
+ ) -> np.ndarray: ... # np.ndarray[float]
71
+ def roll_rank(
72
+ values: np.ndarray,
73
+ start: np.ndarray,
74
+ end: np.ndarray,
75
+ minp: int,
76
+ percentile: bool,
77
+ method: WindowingRankType,
78
+ ascending: bool,
79
+ ) -> np.ndarray: ... # np.ndarray[float]
80
+ def roll_apply(
81
+ obj: object,
82
+ start: np.ndarray, # np.ndarray[np.int64]
83
+ end: np.ndarray, # np.ndarray[np.int64]
84
+ minp: int, # int64_t
85
+ function: Callable[..., Any],
86
+ raw: bool,
87
+ args: tuple[Any, ...],
88
+ kwargs: dict[str, Any],
89
+ ) -> npt.NDArray[np.float64]: ...
90
+ def roll_weighted_sum(
91
+ values: np.ndarray, # const float64_t[:]
92
+ weights: np.ndarray, # const float64_t[:]
93
+ minp: int,
94
+ ) -> np.ndarray: ... # np.ndarray[np.float64]
95
+ def roll_weighted_mean(
96
+ values: np.ndarray, # const float64_t[:]
97
+ weights: np.ndarray, # const float64_t[:]
98
+ minp: int,
99
+ ) -> np.ndarray: ... # np.ndarray[np.float64]
100
+ def roll_weighted_var(
101
+ values: np.ndarray, # const float64_t[:]
102
+ weights: np.ndarray, # const float64_t[:]
103
+ minp: int, # int64_t
104
+ ddof: int, # unsigned int
105
+ ) -> np.ndarray: ... # np.ndarray[np.float64]
106
+ def ewm(
107
+ vals: np.ndarray, # const float64_t[:]
108
+ start: np.ndarray, # const int64_t[:]
109
+ end: np.ndarray, # const int64_t[:]
110
+ minp: int,
111
+ com: float, # float64_t
112
+ adjust: bool,
113
+ ignore_na: bool,
114
+ deltas: np.ndarray | None = None, # const float64_t[:]
115
+ normalize: bool = True,
116
+ ) -> np.ndarray: ... # np.ndarray[np.float64]
117
+ def ewmcov(
118
+ input_x: np.ndarray, # const float64_t[:]
119
+ start: np.ndarray, # const int64_t[:]
120
+ end: np.ndarray, # const int64_t[:]
121
+ minp: int,
122
+ input_y: np.ndarray, # const float64_t[:]
123
+ com: float, # float64_t
124
+ adjust: bool,
125
+ ignore_na: bool,
126
+ bias: bool,
127
+ ) -> np.ndarray: ... # np.ndarray[np.float64]
env-llmeval/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def calculate_variable_window_bounds(
6
+ num_values: int, # int64_t
7
+ window_size: int, # int64_t
8
+ min_periods,
9
+ center: bool,
10
+ closed: str | None,
11
+ index: np.ndarray, # const int64_t[:]
12
+ ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/writers.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (259 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc ADDED
Binary file (7.97 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ Interval,
8
+ Timedelta,
9
+ Timestamp,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestIntervalArithmetic:
15
+ def test_interval_add(self, closed):
16
+ interval = Interval(0, 1, closed=closed)
17
+ expected = Interval(1, 2, closed=closed)
18
+
19
+ result = interval + 1
20
+ assert result == expected
21
+
22
+ result = 1 + interval
23
+ assert result == expected
24
+
25
+ result = interval
26
+ result += 1
27
+ assert result == expected
28
+
29
+ msg = r"unsupported operand type\(s\) for \+"
30
+ with pytest.raises(TypeError, match=msg):
31
+ interval + interval
32
+
33
+ with pytest.raises(TypeError, match=msg):
34
+ interval + "foo"
35
+
36
+ def test_interval_sub(self, closed):
37
+ interval = Interval(0, 1, closed=closed)
38
+ expected = Interval(-1, 0, closed=closed)
39
+
40
+ result = interval - 1
41
+ assert result == expected
42
+
43
+ result = interval
44
+ result -= 1
45
+ assert result == expected
46
+
47
+ msg = r"unsupported operand type\(s\) for -"
48
+ with pytest.raises(TypeError, match=msg):
49
+ interval - interval
50
+
51
+ with pytest.raises(TypeError, match=msg):
52
+ interval - "foo"
53
+
54
+ def test_interval_mult(self, closed):
55
+ interval = Interval(0, 1, closed=closed)
56
+ expected = Interval(0, 2, closed=closed)
57
+
58
+ result = interval * 2
59
+ assert result == expected
60
+
61
+ result = 2 * interval
62
+ assert result == expected
63
+
64
+ result = interval
65
+ result *= 2
66
+ assert result == expected
67
+
68
+ msg = r"unsupported operand type\(s\) for \*"
69
+ with pytest.raises(TypeError, match=msg):
70
+ interval * interval
71
+
72
+ msg = r"can\'t multiply sequence by non-int"
73
+ with pytest.raises(TypeError, match=msg):
74
+ interval * "foo"
75
+
76
+ def test_interval_div(self, closed):
77
+ interval = Interval(0, 1, closed=closed)
78
+ expected = Interval(0, 0.5, closed=closed)
79
+
80
+ result = interval / 2.0
81
+ assert result == expected
82
+
83
+ result = interval
84
+ result /= 2.0
85
+ assert result == expected
86
+
87
+ msg = r"unsupported operand type\(s\) for /"
88
+ with pytest.raises(TypeError, match=msg):
89
+ interval / interval
90
+
91
+ with pytest.raises(TypeError, match=msg):
92
+ interval / "foo"
93
+
94
+ def test_interval_floordiv(self, closed):
95
+ interval = Interval(1, 2, closed=closed)
96
+ expected = Interval(0, 1, closed=closed)
97
+
98
+ result = interval // 2
99
+ assert result == expected
100
+
101
+ result = interval
102
+ result //= 2
103
+ assert result == expected
104
+
105
+ msg = r"unsupported operand type\(s\) for //"
106
+ with pytest.raises(TypeError, match=msg):
107
+ interval // interval
108
+
109
+ with pytest.raises(TypeError, match=msg):
110
+ interval // "foo"
111
+
112
+ @pytest.mark.parametrize("method", ["__add__", "__sub__"])
113
+ @pytest.mark.parametrize(
114
+ "interval",
115
+ [
116
+ Interval(
117
+ Timestamp("2017-01-01 00:00:00"), Timestamp("2018-01-01 00:00:00")
118
+ ),
119
+ Interval(Timedelta(days=7), Timedelta(days=14)),
120
+ ],
121
+ )
122
+ @pytest.mark.parametrize(
123
+ "delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
124
+ )
125
+ def test_time_interval_add_subtract_timedelta(self, interval, delta, method):
126
+ # https://github.com/pandas-dev/pandas/issues/32023
127
+ result = getattr(interval, method)(delta)
128
+ left = getattr(interval.left, method)(delta)
129
+ right = getattr(interval.right, method)(delta)
130
+ expected = Interval(left, right)
131
+
132
+ assert result == expected
133
+
134
+ @pytest.mark.parametrize("interval", [Interval(1, 2), Interval(1.0, 2.0)])
135
+ @pytest.mark.parametrize(
136
+ "delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
137
+ )
138
+ def test_numeric_interval_add_timedelta_raises(self, interval, delta):
139
+ # https://github.com/pandas-dev/pandas/issues/32023
140
+ msg = "|".join(
141
+ [
142
+ "unsupported operand",
143
+ "cannot use operands",
144
+ "Only numeric, Timestamp and Timedelta endpoints are allowed",
145
+ ]
146
+ )
147
+ with pytest.raises((TypeError, ValueError), match=msg):
148
+ interval + delta
149
+
150
+ with pytest.raises((TypeError, ValueError), match=msg):
151
+ delta + interval
152
+
153
+ @pytest.mark.parametrize("klass", [timedelta, np.timedelta64, Timedelta])
154
+ def test_timedelta_add_timestamp_interval(self, klass):
155
+ delta = klass(0)
156
+ expected = Interval(Timestamp("2020-01-01"), Timestamp("2020-02-01"))
157
+
158
+ result = delta + expected
159
+ assert result == expected
160
+
161
+ result = expected + delta
162
+ assert result == expected
163
+
164
+
165
+ class TestIntervalComparisons:
166
+ def test_interval_equal(self):
167
+ assert Interval(0, 1) == Interval(0, 1, closed="right")
168
+ assert Interval(0, 1) != Interval(0, 1, closed="left")
169
+ assert Interval(0, 1) != 0
170
+
171
+ def test_interval_comparison(self):
172
+ msg = (
173
+ "'<' not supported between instances of "
174
+ "'pandas._libs.interval.Interval' and 'int'"
175
+ )
176
+ with pytest.raises(TypeError, match=msg):
177
+ Interval(0, 1) < 2
178
+
179
+ assert Interval(0, 1) < Interval(1, 2)
180
+ assert Interval(0, 1) < Interval(0, 2)
181
+ assert Interval(0, 1) < Interval(0.5, 1.5)
182
+ assert Interval(0, 1) <= Interval(0, 1)
183
+ assert Interval(0, 1) > Interval(-1, 2)
184
+ assert Interval(0, 1) >= Interval(0, 1)
185
+
186
+ def test_equality_comparison_broadcasts_over_array(self):
187
+ # https://github.com/pandas-dev/pandas/issues/35931
188
+ interval = Interval(0, 1)
189
+ arr = np.array([interval, interval])
190
+ result = interval == arr
191
+ expected = np.array([True, True])
192
+ tm.assert_numpy_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Period,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ class TestIntervalConstructors:
11
+ @pytest.mark.parametrize(
12
+ "left, right",
13
+ [
14
+ ("a", "z"),
15
+ (("a", "b"), ("c", "d")),
16
+ (list("AB"), list("ab")),
17
+ (Interval(0, 1), Interval(1, 2)),
18
+ (Period("2018Q1", freq="Q"), Period("2018Q1", freq="Q")),
19
+ ],
20
+ )
21
+ def test_construct_errors(self, left, right):
22
+ # GH#23013
23
+ msg = "Only numeric, Timestamp and Timedelta endpoints are allowed"
24
+ with pytest.raises(ValueError, match=msg):
25
+ Interval(left, right)
26
+
27
+ def test_constructor_errors(self):
28
+ msg = "invalid option for 'closed': foo"
29
+ with pytest.raises(ValueError, match=msg):
30
+ Interval(0, 1, closed="foo")
31
+
32
+ msg = "left side of interval must be <= right side"
33
+ with pytest.raises(ValueError, match=msg):
34
+ Interval(1, 0)
35
+
36
+ @pytest.mark.parametrize(
37
+ "tz_left, tz_right", [(None, "UTC"), ("UTC", None), ("UTC", "US/Eastern")]
38
+ )
39
+ def test_constructor_errors_tz(self, tz_left, tz_right):
40
+ # GH#18538
41
+ left = Timestamp("2017-01-01", tz=tz_left)
42
+ right = Timestamp("2017-01-02", tz=tz_right)
43
+
44
+ if tz_left is None or tz_right is None:
45
+ error = TypeError
46
+ msg = "Cannot compare tz-naive and tz-aware timestamps"
47
+ else:
48
+ error = ValueError
49
+ msg = "left and right must have the same time zone"
50
+ with pytest.raises(error, match=msg):
51
+ Interval(left, right)
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Timedelta,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ class TestContains:
11
+ def test_contains(self):
12
+ interval = Interval(0, 1)
13
+ assert 0.5 in interval
14
+ assert 1 in interval
15
+ assert 0 not in interval
16
+
17
+ interval_both = Interval(0, 1, "both")
18
+ assert 0 in interval_both
19
+ assert 1 in interval_both
20
+
21
+ interval_neither = Interval(0, 1, closed="neither")
22
+ assert 0 not in interval_neither
23
+ assert 0.5 in interval_neither
24
+ assert 1 not in interval_neither
25
+
26
+ def test_contains_interval(self, inclusive_endpoints_fixture):
27
+ interval1 = Interval(0, 1, "both")
28
+ interval2 = Interval(0, 1, inclusive_endpoints_fixture)
29
+ assert interval1 in interval1
30
+ assert interval2 in interval2
31
+ assert interval2 in interval1
32
+ assert interval1 not in interval2 or inclusive_endpoints_fixture == "both"
33
+
34
+ def test_contains_infinite_length(self):
35
+ interval1 = Interval(0, 1, "both")
36
+ interval2 = Interval(float("-inf"), float("inf"), "neither")
37
+ assert interval1 in interval2
38
+ assert interval2 not in interval1
39
+
40
+ def test_contains_zero_length(self):
41
+ interval1 = Interval(0, 1, "both")
42
+ interval2 = Interval(-1, -1, "both")
43
+ interval3 = Interval(0.5, 0.5, "both")
44
+ assert interval2 not in interval1
45
+ assert interval3 in interval1
46
+ assert interval2 not in interval3 and interval3 not in interval2
47
+ assert interval1 not in interval2 and interval1 not in interval3
48
+
49
+ @pytest.mark.parametrize(
50
+ "type1",
51
+ [
52
+ (0, 1),
53
+ (Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
54
+ (Timedelta("0h"), Timedelta("1h")),
55
+ ],
56
+ )
57
+ @pytest.mark.parametrize(
58
+ "type2",
59
+ [
60
+ (0, 1),
61
+ (Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
62
+ (Timedelta("0h"), Timedelta("1h")),
63
+ ],
64
+ )
65
+ def test_contains_mixed_types(self, type1, type2):
66
+ interval1 = Interval(*type1)
67
+ interval2 = Interval(*type2)
68
+ if type1 == type2:
69
+ assert interval1 in interval2
70
+ else:
71
+ msg = "^'<=' not supported between instances of"
72
+ with pytest.raises(TypeError, match=msg):
73
+ interval1 in interval2
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Interval
2
+
3
+
4
+ def test_interval_repr():
5
+ interval = Interval(0, 1)
6
+ assert repr(interval) == "Interval(0, 1, closed='right')"
7
+ assert str(interval) == "(0, 1]"
8
+
9
+ interval_left = Interval(0, 1, closed="left")
10
+ assert repr(interval_left) == "Interval(0, 1, closed='left')"
11
+ assert str(interval_left) == "[0, 1)"
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Interval,
6
+ Timedelta,
7
+ Timestamp,
8
+ )
9
+
10
+
11
+ @pytest.fixture
12
+ def interval():
13
+ return Interval(0, 1)
14
+
15
+
16
+ class TestInterval:
17
+ def test_properties(self, interval):
18
+ assert interval.closed == "right"
19
+ assert interval.left == 0
20
+ assert interval.right == 1
21
+ assert interval.mid == 0.5
22
+
23
+ def test_hash(self, interval):
24
+ # should not raise
25
+ hash(interval)
26
+
27
+ @pytest.mark.parametrize(
28
+ "left, right, expected",
29
+ [
30
+ (0, 5, 5),
31
+ (-2, 5.5, 7.5),
32
+ (10, 10, 0),
33
+ (10, np.inf, np.inf),
34
+ (-np.inf, -5, np.inf),
35
+ (-np.inf, np.inf, np.inf),
36
+ (Timedelta("0 days"), Timedelta("5 days"), Timedelta("5 days")),
37
+ (Timedelta("10 days"), Timedelta("10 days"), Timedelta("0 days")),
38
+ (Timedelta("1h10min"), Timedelta("5h5min"), Timedelta("3h55min")),
39
+ (Timedelta("5s"), Timedelta("1h"), Timedelta("59min55s")),
40
+ ],
41
+ )
42
+ def test_length(self, left, right, expected):
43
+ # GH 18789
44
+ iv = Interval(left, right)
45
+ result = iv.length
46
+ assert result == expected
47
+
48
+ @pytest.mark.parametrize(
49
+ "left, right, expected",
50
+ [
51
+ ("2017-01-01", "2017-01-06", "5 days"),
52
+ ("2017-01-01", "2017-01-01 12:00:00", "12 hours"),
53
+ ("2017-01-01 12:00", "2017-01-01 12:00:00", "0 days"),
54
+ ("2017-01-01 12:01", "2017-01-05 17:31:00", "4 days 5 hours 30 min"),
55
+ ],
56
+ )
57
+ @pytest.mark.parametrize("tz", (None, "UTC", "CET", "US/Eastern"))
58
+ def test_length_timestamp(self, tz, left, right, expected):
59
+ # GH 18789
60
+ iv = Interval(Timestamp(left, tz=tz), Timestamp(right, tz=tz))
61
+ result = iv.length
62
+ expected = Timedelta(expected)
63
+ assert result == expected
64
+
65
+ @pytest.mark.parametrize(
66
+ "left, right",
67
+ [
68
+ (0, 1),
69
+ (Timedelta("0 days"), Timedelta("1 day")),
70
+ (Timestamp("2018-01-01"), Timestamp("2018-01-02")),
71
+ (
72
+ Timestamp("2018-01-01", tz="US/Eastern"),
73
+ Timestamp("2018-01-02", tz="US/Eastern"),
74
+ ),
75
+ ],
76
+ )
77
+ def test_is_empty(self, left, right, closed):
78
+ # GH27219
79
+ # non-empty always return False
80
+ iv = Interval(left, right, closed)
81
+ assert iv.is_empty is False
82
+
83
+ # same endpoint is empty except when closed='both' (contains one point)
84
+ iv = Interval(left, left, closed)
85
+ result = iv.is_empty
86
+ expected = closed != "both"
87
+ assert result is expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Timedelta,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ @pytest.fixture(
11
+ params=[
12
+ (Timedelta("0 days"), Timedelta("1 day")),
13
+ (Timestamp("2018-01-01"), Timedelta("1 day")),
14
+ (0, 1),
15
+ ],
16
+ ids=lambda x: type(x[0]).__name__,
17
+ )
18
+ def start_shift(request):
19
+ """
20
+ Fixture for generating intervals of types from a start value and a shift
21
+ value that can be added to start to generate an endpoint
22
+ """
23
+ return request.param
24
+
25
+
26
+ class TestOverlaps:
27
+ def test_overlaps_self(self, start_shift, closed):
28
+ start, shift = start_shift
29
+ interval = Interval(start, start + shift, closed)
30
+ assert interval.overlaps(interval)
31
+
32
+ def test_overlaps_nested(self, start_shift, closed, other_closed):
33
+ start, shift = start_shift
34
+ interval1 = Interval(start, start + 3 * shift, other_closed)
35
+ interval2 = Interval(start + shift, start + 2 * shift, closed)
36
+
37
+ # nested intervals should always overlap
38
+ assert interval1.overlaps(interval2)
39
+
40
+ def test_overlaps_disjoint(self, start_shift, closed, other_closed):
41
+ start, shift = start_shift
42
+ interval1 = Interval(start, start + shift, other_closed)
43
+ interval2 = Interval(start + 2 * shift, start + 3 * shift, closed)
44
+
45
+ # disjoint intervals should never overlap
46
+ assert not interval1.overlaps(interval2)
47
+
48
+ def test_overlaps_endpoint(self, start_shift, closed, other_closed):
49
+ start, shift = start_shift
50
+ interval1 = Interval(start, start + shift, other_closed)
51
+ interval2 = Interval(start + shift, start + 2 * shift, closed)
52
+
53
+ # overlap if shared endpoint is closed for both (overlap at a point)
54
+ result = interval1.overlaps(interval2)
55
+ expected = interval1.closed_right and interval2.closed_left
56
+ assert result == expected
57
+
58
+ @pytest.mark.parametrize(
59
+ "other",
60
+ [10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
61
+ ids=lambda x: type(x).__name__,
62
+ )
63
+ def test_overlaps_invalid_type(self, other):
64
+ interval = Interval(0, 1)
65
+ msg = f"`other` must be an Interval, got {type(other).__name__}"
66
+ with pytest.raises(TypeError, match=msg):
67
+ interval.overlaps(other)
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/__pycache__/test_timestamp.cpython-310.pyc ADDED
Binary file (25.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/scalar/timestamp/methods/__init__.py ADDED
File without changes