applied-ai-018 commited on
Commit
6a33523
·
verified ·
1 Parent(s): c11e4d9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/ao/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__init__.py +0 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/_numeric_suite.py +526 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/_numeric_suite_fx.py +1025 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__init__.py +0 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/graph_matcher.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/graph_passes.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/mappings.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/pattern_utils.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/weight_utils.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/graph_matcher.py +460 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/graph_passes.py +950 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/mappings.py +761 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/n_shadows_utils.py +1312 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/ns_types.py +64 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/pattern_utils.py +200 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/qconfig_multi_mapping.py +243 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/utils.py +533 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/weight_utils.py +275 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__init__.py +23 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/__init__.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_common_operator_config_utils.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_qnnpack_pt2e.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/backend_config.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/executorch.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/fbgemm.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/native.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/observation_type.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/onednn.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/qnnpack.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/tensorrt.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/utils.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/x86.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_common_operator_config_utils.py +637 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_qnnpack_pt2e.py +160 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py +659 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/executorch.py +494 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/fbgemm.py +116 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/native.py +204 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/observation_type.py +0 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py +542 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/qnnpack.py +160 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/tensorrt.py +81 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/utils.py +279 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/x86.py +113 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__init__.py +0 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/__init__.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/duplicate_dq_pass.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/eval_utils.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/generate_numeric_debug_handle.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/torch/ao/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (479 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/_numeric_suite.py ADDED
@@ -0,0 +1,526 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.ao.nn.quantized as nnq
4
+ import torch.ao.nn.quantized.dynamic as nnqd
5
+ from torch.ao.quantization import prepare
6
+ from typing import Dict, List, Optional, Any, Union, Callable, Set
7
+
8
+ from torch.ao.quantization.quantization_mappings import (
9
+ get_default_compare_output_module_list,
10
+ )
11
+
12
+ NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST = {
13
+ nnqd.Linear,
14
+ nnq.Linear,
15
+ nnqd.LSTM,
16
+ nn.LSTM,
17
+ }
18
+
19
+
20
+ def _find_match(
21
+ str_list: Union[Dict[str, Any], List[str]], key_str: str,
22
+ postfix: str,
23
+ ) -> Optional[str]:
24
+ split_str = key_str.split(".")
25
+ if split_str[-1] == postfix:
26
+ match_string = "".join(key_str.split(".")[0:-1])
27
+ for s2 in str_list:
28
+ pattern1 = "".join(s2.split(".")[0:-1])
29
+ pattern2 = "".join(s2.split(".")[0:-2])
30
+ if match_string == pattern1:
31
+ return s2
32
+ if match_string == pattern2:
33
+ return s2
34
+
35
+ # For matching "fc.weight" and "fc._packed_params._packed_params"
36
+ if postfix == "_packed_params":
37
+ match_string = "".join(key_str.split(".")[0:-2])
38
+ if len(match_string) == 0:
39
+ return None
40
+ for s2 in str_list:
41
+ pattern1 = "".join(s2.split(".")[0:-1])
42
+ pattern2 = "".join(s2.split(".")[0:-2])
43
+ if match_string == pattern1:
44
+ return s2
45
+ if match_string == pattern2:
46
+ return s2
47
+ return None
48
+ else:
49
+ return None
50
+
51
+
52
+ def compare_weights(
53
+ float_dict: Dict[str, Any], quantized_dict: Dict[str, Any]
54
+ ) -> Dict[str, Dict[str, torch.Tensor]]:
55
+ r"""Compare the weights of the float module with its corresponding quantized
56
+ module. Return a dict with key corresponding to module names and each entry being
57
+ a dictionary with two keys 'float' and 'quantized', containing the float and
58
+ quantized weights. This dict can be used to compare and compute the quantization
59
+ error of the weights of float and quantized models.
60
+
61
+ Example usage::
62
+
63
+ wt_compare_dict = compare_weights(
64
+ float_model.state_dict(), qmodel.state_dict())
65
+ for key in wt_compare_dict:
66
+ print(
67
+ key,
68
+ compute_error(
69
+ wt_compare_dict[key]['float'],
70
+ wt_compare_dict[key]['quantized'].dequantize()
71
+ )
72
+ )
73
+
74
+ Args:
75
+ float_dict: state dict of the float model
76
+ quantized_dict: state dict of the quantized model
77
+
78
+ Return:
79
+ weight_dict: dict with key corresponding to module names and each entry being
80
+ a dictionary with two keys 'float' and 'quantized', containing the float and
81
+ quantized weights
82
+ """
83
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_weights")
84
+ weight_dict: Dict[str, Dict] = {}
85
+ for key in quantized_dict:
86
+ match_key = _find_match(float_dict, key, "weight")
87
+ if match_key is not None:
88
+ weight_dict[key] = {}
89
+ weight_dict[key]["float"] = float_dict[match_key]
90
+ weight_dict[key]["quantized"] = quantized_dict[key]
91
+ continue
92
+
93
+ # For matching "fc.weight" and "fc._packed_params._packed_params"
94
+ match_key = _find_match(float_dict, key, "_packed_params")
95
+ if match_key is not None:
96
+ weight_dict[key] = {}
97
+ weight_dict[key]["float"] = float_dict[match_key]
98
+ weight_dict[key]["quantized"] = quantized_dict[key][0]
99
+
100
+ # For LSTM
101
+ split_str = key.split(".")
102
+ if split_str[-1] == "param" and split_str[-3] == "_all_weight_values":
103
+ layer = split_str[-2]
104
+ module_name = ".".join(split_str[:-3])
105
+ float_weight_ih_key = module_name + ".weight_ih_l" + layer
106
+ float_weight_hh_key = module_name + ".weight_hh_l" + layer
107
+ if float_weight_ih_key in float_dict and float_weight_hh_key in float_dict:
108
+ weight_dict[key] = {}
109
+ weight_dict[key]["float"] = float_dict[float_weight_ih_key]
110
+ weight_dict[key]["quantized"] = (
111
+ quantized_dict[key].__getstate__()[0][4][0].__getstate__()[0][0]
112
+ )
113
+ weight_dict[key]["float"] = float_dict[float_weight_hh_key]
114
+ weight_dict[key]["quantized"] = (
115
+ quantized_dict[key].__getstate__()[0][4][1].__getstate__()[0][0]
116
+ )
117
+
118
+ return weight_dict
119
+
120
+
121
+ def _get_logger_dict_helper(
122
+ mod: nn.Module, target_dict: Dict[str, Any],
123
+ prefix: str = "",
124
+ ) -> None:
125
+ r"""This is the helper function for get_logger_dict
126
+
127
+ Args:
128
+ mod: module we want to save all logger stats
129
+ prefix: prefix for the current module
130
+ target_dict: the dictionary used to save all logger stats
131
+ """
132
+
133
+ def get_prefix(prefix):
134
+ return prefix if prefix == "" else prefix + "."
135
+
136
+ for name, child in mod.named_children():
137
+ if isinstance(child, Logger):
138
+ target_dict[get_prefix(prefix) + "stats"] = child.stats
139
+ break
140
+
141
+ for name, child in mod.named_children():
142
+ module_prefix = get_prefix(prefix) + name if prefix else name
143
+ _get_logger_dict_helper(child, target_dict, module_prefix)
144
+
145
+
146
+ def get_logger_dict(mod: nn.Module, prefix: str = "") -> Dict[str, Dict]:
147
+ r"""Traverse the modules and save all logger stats into target dict.
148
+ This is mainly used for quantization accuracy debug.
149
+
150
+ Type of loggers supported:
151
+ ShadowLogger: used to log the outputs of the quantized module and its matching float shadow module,
152
+ OutputLogger: used to log the outputs of the modules
153
+
154
+ Args:
155
+ mod: module we want to save all logger stats
156
+ prefix: prefix for the current module
157
+
158
+ Return:
159
+ target_dict: the dictionary used to save all logger stats
160
+
161
+ """
162
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.get_logger_dict")
163
+
164
+ target_dict: Dict[str, Dict] = {}
165
+ _get_logger_dict_helper(mod, target_dict, prefix)
166
+ return target_dict
167
+
168
+
169
+ class Logger(nn.Module):
170
+ r"""Base class for stats logging
171
+ """
172
+
173
+ def __init__(self):
174
+ super().__init__()
175
+ self.stats = {}
176
+ # We only insert observer if the op is quantized with static quantization,
177
+ # which is identified by activation_observer.dtype == quint8. This is needed
178
+ # when attaching Logger as observer for FX mode
179
+ self.dtype = torch.quint8
180
+
181
+ def forward(self, x):
182
+ """
183
+ """ # blank docblock to make autodoc happy
184
+ pass
185
+
186
+
187
+ class ShadowLogger(Logger):
188
+ r"""Class used in Shadow module to record the outputs of the original and
189
+ shadow modules.
190
+ """
191
+
192
+ def __init__(self):
193
+ super().__init__()
194
+ self.stats["float"] = []
195
+ self.stats["quantized"] = []
196
+
197
+ def forward(self, x, y):
198
+ """
199
+ """ # blank docblock to make autodoc happy
200
+ if len(x) > 1:
201
+ x = x[0]
202
+ if len(y) > 1:
203
+ y = y[0]
204
+ self.stats["quantized"].append(x.detach())
205
+ self.stats["float"].append(y.detach())
206
+
207
+
208
+ class OutputLogger(Logger):
209
+ r"""Class used to log the outputs of the module
210
+ """
211
+
212
+ def __init__(self):
213
+ super().__init__()
214
+ self.stats["tensor_val"] = []
215
+
216
+
217
+ def forward(self, x):
218
+ """
219
+ """ # blank docblock to make autodoc happy
220
+ self.stats["tensor_val"].append(x)
221
+ return x
222
+
223
+
224
+ def _convert_tuple_to_list(t: Any) -> Any:
225
+ return [_convert_tuple_to_list(x) for x in t] if type(t) is tuple else t
226
+
227
+
228
+ def _dequantize_tensor_list(t: Any) -> Any:
229
+ return (
230
+ [_dequantize_tensor_list(x) for x in t]
231
+ if type(t) is list
232
+ else t.dequantize()
233
+ if t.is_quantized
234
+ else t
235
+ )
236
+
237
+
238
+ class Shadow(nn.Module):
239
+ r"""Shadow module attaches the float module to its matching quantized module
240
+ as the shadow. Then it uses Logger module to process the outputs of both
241
+ modules.
242
+
243
+ Args:
244
+ q_module: module quantized from float_module that we want to shadow
245
+ float_module: float module used to shadow q_module
246
+ logger_cls: type of logger used to process the outputs of q_module and
247
+ float_module. ShadowLogger or custom loggers can be used.
248
+ """
249
+
250
+ def __init__(self, q_module, float_module, logger_cls):
251
+ super().__init__()
252
+ self.orig_module = q_module
253
+ self.shadow_module = float_module
254
+ self.dequant = nnq.DeQuantize()
255
+ self.logger = logger_cls()
256
+
257
+ def forward(self, *x) -> torch.Tensor:
258
+ """
259
+ """ # blank docblock to make autodoc happy
260
+ xl = _convert_tuple_to_list(x)
261
+ output = self.orig_module(*xl)
262
+ xl_float = _dequantize_tensor_list(xl)
263
+ shadow_output = self.shadow_module(*xl_float)
264
+ self.logger(output, shadow_output)
265
+ return output
266
+
267
+ def add(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
268
+ """
269
+ """ # blank docblock to make autodoc happy
270
+ output = self.orig_module.add(x, y)
271
+ x = x.dequantize()
272
+ y = y.dequantize()
273
+ shadow_output = self.shadow_module.add(x, y)
274
+ self.logger(output, shadow_output)
275
+ return output
276
+
277
+ def add_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
278
+ """
279
+ """ # blank docblock to make autodoc happy
280
+ output = self.orig_module.add_scalar(x, y)
281
+ x = x.dequantize()
282
+ shadow_output = self.shadow_module.add_scalar(x, y)
283
+ self.logger(output, shadow_output)
284
+ return output
285
+
286
+ def mul(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
287
+ """
288
+ """ # blank docblock to make autodoc happy
289
+ output = self.orig_module.mul(x, y)
290
+ x = x.dequantize()
291
+ y = y.dequantize()
292
+ shadow_output = self.shadow_module.mul(x, y)
293
+ self.logger(output, shadow_output)
294
+ return output
295
+
296
+ def mul_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
297
+ """
298
+ """ # blank docblock to make autodoc happy
299
+ output = self.orig_module.mul_scalar(x, y)
300
+ x = x.dequantize()
301
+ shadow_output = self.shadow_module.mul_scalar(x, y)
302
+ self.logger(output, shadow_output)
303
+ return output
304
+
305
+ def cat(self, x: List[torch.Tensor], dim: int = 0) -> torch.Tensor:
306
+ """
307
+ """ # blank docblock to make autodoc happy
308
+ output = self.orig_module.cat(x, dim)
309
+ x = [y.dequantize() for y in x]
310
+ shadow_output = self.shadow_module.cat(x, dim)
311
+ self.logger(output, shadow_output)
312
+ return output
313
+
314
+ def add_relu(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
315
+ """
316
+ """ # blank docblock to make autodoc happy
317
+ output = self.orig_module.add_relu(x, y)
318
+ x = x.dequantize()
319
+ y = y.dequantize()
320
+ shadow_output = self.shadow_module.add_relu(x, y)
321
+ self.logger(output, shadow_output)
322
+ return output
323
+
324
+
325
+ def prepare_model_with_stubs(
326
+ float_module: nn.Module, q_module: nn.Module,
327
+ module_swap_list: Set[type], logger_cls: Callable,
328
+ ) -> None:
329
+ r"""Prepare the model by attaching the float module to its matching quantized
330
+ module as the shadow if the float module type is in module_swap_list.
331
+
332
+ Example usage::
333
+
334
+ prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
335
+ q_model(data)
336
+ ob_dict = get_logger_dict(q_model)
337
+
338
+ Args:
339
+ float_module: float module used to generate the q_module
340
+ q_module: module quantized from float_module
341
+ module_swap_list: list of float module types to attach the shadow
342
+ logger_cls: type of logger to be used in shadow module to process the outputs of
343
+ quantized module and its float shadow module
344
+ """
345
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_with_stubs")
346
+
347
+ float_module_children = {}
348
+ for name, mod in float_module.named_children():
349
+ float_module_children[name] = mod
350
+
351
+ reassign = {}
352
+ for name, mod in q_module.named_children():
353
+
354
+ if name not in float_module_children:
355
+ continue
356
+
357
+ float_mod = float_module_children[name]
358
+
359
+ if type(float_mod) not in module_swap_list:
360
+ prepare_model_with_stubs(float_mod, mod, module_swap_list, logger_cls)
361
+
362
+ # Insert shadow module only if the module is not of the same type as
363
+ # the floating point module
364
+ if type(float_mod) in module_swap_list and not _is_identical_module_type(mod, float_mod):
365
+ reassign[name] = Shadow(mod, float_mod, logger_cls)
366
+
367
+ for key, value in reassign.items():
368
+ q_module._modules[key] = value
369
+
370
+ def _is_identical_module_type(mod1, mod2):
371
+ # Compare if two modules have the same dtype
372
+ mod1_module_types = [type(mod) for mod in mod1.modules()]
373
+ mod2_module_types = [type(mod) for mod in mod2.modules()]
374
+ return mod1_module_types == mod2_module_types
375
+
376
+
377
+
378
+ def compare_model_stub(
379
+ float_model: nn.Module, q_model: nn.Module, module_swap_list: Set[type],
380
+ *data, logger_cls=ShadowLogger
381
+ ) -> Dict[str, Dict]:
382
+ r"""Compare quantized module in a model with its floating point counterpart,
383
+ feeding both of them the same input. Return a dict with key corresponding to
384
+ module names and each entry being a dictionary with two keys 'float' and
385
+ 'quantized', containing the output tensors of quantized and its matching
386
+ float shadow module. This dict can be used to compare and compute the module
387
+ level quantization error.
388
+
389
+ This function first call prepare_model_with_stubs() to swap the quantized
390
+ module that we want to compare with the Shadow module, which takes quantized
391
+ module, corresponding float module and logger as input, and creates a forward
392
+ path inside to make the float module to shadow quantized module sharing the
393
+ same input. The logger can be customizable, default logger is ShadowLogger
394
+ and it will save the outputs of the quantized module and float module that
395
+ can be used to compute the module level quantization error.
396
+
397
+ Example usage::
398
+
399
+ module_swap_list = [torchvision.models.quantization.resnet.QuantizableBasicBlock]
400
+ ob_dict = compare_model_stub(float_model,qmodel,module_swap_list, data)
401
+ for key in ob_dict:
402
+ print(key, compute_error(ob_dict[key]['float'], ob_dict[key]['quantized'].dequantize()))
403
+
404
+ Args:
405
+ float_model: float model used to generate the q_model
406
+ q_model: model quantized from float_model
407
+ module_swap_list: list of float module types at which shadow modules will
408
+ be attached.
409
+ data: input data used to run the prepared q_model
410
+ logger_cls: type of logger to be used in shadow module to process the outputs of
411
+ quantized module and its float shadow module
412
+ """
413
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_stub")
414
+ prepare_model_with_stubs(float_model, q_model, module_swap_list, logger_cls)
415
+ q_model(*data)
416
+ ob_dict = get_logger_dict(q_model)
417
+ return ob_dict
418
+
419
+
420
+ def get_matching_activations(
421
+ float_module: nn.Module, q_module: nn.Module,
422
+ ) -> Dict[str, Dict[str, torch.Tensor]]:
423
+ r"""Find the matching activation between float and quantized modules.
424
+
425
+ Args:
426
+ float_module: float module used to generate the q_module
427
+ q_module: module quantized from float_module
428
+
429
+ Return:
430
+ act_dict: dict with key corresponding to quantized module names and each
431
+ entry being a dictionary with two keys 'float' and 'quantized', containing
432
+ the matching float and quantized activations
433
+ """
434
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.get_matching_activations")
435
+ float_dict = get_logger_dict(float_module)
436
+ quantized_dict = get_logger_dict(q_module)
437
+ act_dict: Dict[str, Dict] = {}
438
+ for key in quantized_dict:
439
+ if len(quantized_dict[key]["tensor_val"]) == 0:
440
+ continue
441
+ match_key = _find_match(sorted(float_dict, reverse=True), key, "stats")
442
+ if match_key is not None:
443
+ act_dict[key] = {}
444
+ act_dict[key]["float"] = float_dict[match_key]["tensor_val"]
445
+ act_dict[key]["quantized"] = quantized_dict[key]["tensor_val"]
446
+ return act_dict
447
+
448
+
449
+ def prepare_model_outputs(
450
+ float_module: nn.Module,
451
+ q_module: nn.Module,
452
+ logger_cls=OutputLogger,
453
+ allow_list=None
454
+ ) -> None:
455
+ r"""Prepare the model by attaching the logger to both float module
456
+ and quantized module if they are in the allow_list.
457
+
458
+ Args:
459
+ float_module: float module used to generate the q_module
460
+ q_module: module quantized from float_module
461
+ logger_cls: type of logger to be attached to float_module and q_module
462
+ allow_list: list of module types to attach logger
463
+ """
464
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_outputs")
465
+ if allow_list is None:
466
+ allow_list = get_default_compare_output_module_list()
467
+
468
+ qconfig_debug = torch.ao.quantization.QConfig(activation=logger_cls, weight=None)
469
+ float_module.qconfig = qconfig_debug # type: ignore[assignment]
470
+ prepare(float_module, inplace=True, allow_list=allow_list, prepare_custom_config_dict={})
471
+ q_module.qconfig = qconfig_debug # type: ignore[assignment]
472
+ prepare(
473
+ q_module,
474
+ inplace=True,
475
+ allow_list=allow_list,
476
+ observer_non_leaf_module_list=NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST,
477
+ prepare_custom_config_dict={}
478
+ )
479
+
480
+
481
+ def compare_model_outputs(
482
+ float_model: nn.Module,
483
+ q_model: nn.Module,
484
+ *data,
485
+ logger_cls=OutputLogger,
486
+ allow_list=None
487
+ ) -> Dict[str, Dict[str, torch.Tensor]]:
488
+ r"""Compare output activations between float and quantized models at
489
+ corresponding locations for the same input. Return a dict with key corresponding
490
+ to quantized module names and each entry being a dictionary with two keys
491
+ 'float' and 'quantized', containing the activations of quantized model and
492
+ float model at matching locations. This dict can be used to compare and
493
+ compute the propagation quantization error.
494
+
495
+ Example usage::
496
+
497
+ act_compare_dict = compare_model_outputs(float_model, qmodel, data)
498
+ for key in act_compare_dict:
499
+ print(
500
+ key,
501
+ compute_error(
502
+ act_compare_dict[key]['float'],
503
+ act_compare_dict[key]['quantized'].dequantize()
504
+ )
505
+ )
506
+
507
+ Args:
508
+ float_model: float model used to generate the q_model
509
+ q_model: model quantized from float_model
510
+ data: input data used to run the prepared float_model and q_model
511
+ logger_cls: type of logger to be attached to float_module and q_module
512
+ allow_list: list of module types to attach logger
513
+
514
+ Return:
515
+ act_compare_dict: dict with key corresponding to quantized module names
516
+ and each entry being a dictionary with two keys 'float' and 'quantized',
517
+ containing the matching float and quantized activations
518
+ """
519
+ torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_outputs")
520
+ if allow_list is None:
521
+ allow_list = get_default_compare_output_module_list()
522
+ prepare_model_outputs(float_model, q_model, logger_cls, allow_list)
523
+ float_model(*data)
524
+ q_model(*data)
525
+ act_compare_dict = get_matching_activations(float_model, q_model)
526
+ return act_compare_dict
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/_numeric_suite_fx.py ADDED
@@ -0,0 +1,1025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains tooling to compare weights and activations
3
+ across models. Example usage::
4
+
5
+ import copy
6
+ import torch
7
+ import torch.ao.quantization.quantize_fx as quantize_fx
8
+ import torch.ao.ns._numeric_suite_fx as ns
9
+
10
+ m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)).eval()
11
+ mp = quantize_fx.prepare_fx(m, {'': torch.ao.quantization.default_qconfig})
12
+ # We convert a copy because we need the original prepared model
13
+ # to be available for comparisons, and `quantize_fx.convert_fx` is inplace.
14
+ mq = quantize_fx.convert_fx(copy.deepcopy(mp))
15
+
16
+ #
17
+ # Comparing weights
18
+ #
19
+
20
+ # extract weight pairs
21
+ weight_comparison = ns.extract_weights('a', mp, 'b', mq)
22
+
23
+ # add SQNR for each comparison, inplace
24
+ ns.extend_logger_results_with_comparison(
25
+ weight_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
26
+ 'sqnr')
27
+
28
+ # weight_comparison contains the weights from `mp` and `mq` stored
29
+ # in pairs, and can be used for further analysis.
30
+
31
+
32
+ #
33
+ # Comparing activations, with error propagation
34
+ #
35
+
36
+ # add loggers
37
+ mp_ns, mq_ns = ns.add_loggers(
38
+ 'a', copy.deepcopy(mp),
39
+ 'b', copy.deepcopy(mq),
40
+ ns.OutputLogger)
41
+
42
+ # send an example datum to capture intermediate activations
43
+ datum = torch.randn(1, 1, 1, 1)
44
+ mp_ns(datum)
45
+ mq_ns(datum)
46
+
47
+ # extract intermediate activations
48
+ act_comparison = ns.extract_logger_info(
49
+ mp_ns, mq_ns, ns.OutputLogger, 'b')
50
+
51
+ # add SQNR for each comparison, inplace
52
+ ns.extend_logger_results_with_comparison(
53
+ act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
54
+ 'sqnr')
55
+
56
+ # act_comparison contains the activations from `mp_ns` and `mq_ns` stored
57
+ # in pairs, and can be used for further analysis.
58
+
59
+ #
60
+ # Comparing activations, without error propagation
61
+ #
62
+
63
+ # create shadow model
64
+ mp_shadows_mq = ns.add_shadow_loggers(
65
+ 'a', copy.deepcopy(mp),
66
+ 'b', copy.deepcopy(mq),
67
+ ns.OutputLogger)
68
+
69
+ # send an example datum to capture intermediate activations
70
+ datum = torch.randn(1, 1, 1, 1)
71
+ mp_shadows_mq(datum)
72
+
73
+ # extract intermediate activations
74
+ shadow_act_comparison = ns.extract_shadow_logger_info(
75
+ mp_shadows_mq, ns.OutputLogger, 'b')
76
+
77
+ # add SQNR for each comparison, inplace
78
+ ns.extend_logger_results_with_comparison(
79
+ shadow_act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
80
+ 'sqnr')
81
+
82
+ # shadow_act_comparison contains the activations from `mp_ns` and `mq_ns` stored
83
+ # in pairs, and can be used for further analysis.
84
+
85
+ """
86
+
87
+ import collections
88
+
89
+ import torch
90
+ import torch.nn as nn
91
+ import torch.ao.quantization.quantize_fx as quantize_fx
92
+ from torch.fx import GraphModule
93
+ from torch.fx.graph import Node
94
+ from torch.ao.ns.fx.mappings import (
95
+ get_base_name_to_sets_of_related_ops,
96
+ )
97
+ from torch.ao.ns.fx.graph_matcher import (
98
+ get_matching_subgraph_pairs,
99
+ get_type_a_related_to_b,
100
+ )
101
+
102
+ from .fx.weight_utils import (
103
+ extract_weight_from_node,
104
+ )
105
+
106
+ from .fx.graph_passes import (
107
+ add_loggers_to_model,
108
+ create_a_shadows_b,
109
+ )
110
+
111
+ from .fx.utils import (
112
+ rekey_logger_info_on_node_name_of_model,
113
+ maybe_add_missing_fqns,
114
+ get_target_type_str,
115
+ )
116
+
117
+ from .fx.ns_types import (
118
+ NSSingleResultValuesType,
119
+ NSResultsType,
120
+ NSNodeTargetType,
121
+ )
122
+ from torch.ao.quantization.backend_config.utils import get_fusion_pattern_to_root_node_getter
123
+ from torch.ao.quantization.backend_config import BackendConfig
124
+ from torch.ao.quantization.fx.match_utils import _find_matches
125
+ from torch.ao.quantization.fx.graph_module import _get_observed_graph_module_attr
126
+ from torch.ao.quantization.fx.qconfig_mapping_utils import _generate_node_name_to_qconfig
127
+ from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
128
+ from torch.ao.quantization.qconfig import QConfigAny
129
+ from torch.ao.quantization import QConfigMapping
130
+ from torch.ao.ns.fx.n_shadows_utils import (
131
+ OutputProp,
132
+ _get_dedup_subgraphs,
133
+ SHADOW_WRAPPER_NODE_NAME_PREFIX,
134
+ group_results_by_subgraph,
135
+ create_results_comparison,
136
+ print_n_shadows_summary,
137
+ create_n_transformed_and_logged_copies_of_subgraph,
138
+ create_add_loggers_graph,
139
+ extract_weight_comparison,
140
+ )
141
+ from torch.ao.ns.fx.qconfig_multi_mapping import QConfigMultiMapping
142
+
143
+ from typing import Dict, Tuple, Callable, List, Optional, Set, Any, Type
144
+
145
+ RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
146
+
147
+ class OutputLogger(nn.Module):
148
+ """
149
+ Base class for capturing intermediate values.
150
+ """
151
+ stats: List[torch.Tensor]
152
+ stats_rnn: List[RNNReturnType]
153
+
154
+ # Mark as impure so that calls to it will not be removed during DCE.
155
+ _is_impure = True
156
+
157
+ def __init__(
158
+ self,
159
+ ref_node_name: str,
160
+ prev_node_name: str,
161
+ model_name: str,
162
+ ref_name: str,
163
+ prev_node_target_type: str,
164
+ ref_node_target_type: str,
165
+ results_type: str,
166
+ index_within_arg: int,
167
+ index_of_arg: int,
168
+ fqn: Optional[str],
169
+ qconfig_str: Optional[str] = '',
170
+ ):
171
+ super().__init__()
172
+ self.stats: List[torch.Tensor] = []
173
+ self.stats_rnn: List[RNNReturnType] = []
174
+
175
+ # name of the node which was responsible for adding this logger
176
+ # Note:
177
+ # - if we are logging node outputs, this is the same as prev_node_name
178
+ # - if we are logging node inputs, this is the name of the node
179
+ # whose input this logger is logging.
180
+ #
181
+ # example, where logger1 is logging input of op1 and logger2 is logging
182
+ # the output of op1:
183
+ #
184
+ # x1 -> logger1 -> op1 -> logger2 -> x2
185
+ #
186
+ # in this example,
187
+ # - logger1's prev_node_name is x1 and ref_node_name is op1
188
+ # - logger2's prev_node_name is op1 and ref_node_name is op1
189
+ self.ref_node_name = ref_node_name
190
+ # name of the node whose output this Logger is capturing
191
+ self.prev_node_name = prev_node_name
192
+
193
+ # name of the model from which the node originated from
194
+ self.model_name = model_name
195
+ # reference name, used to match loggers from separate models
196
+ # to each other
197
+ self.ref_name = ref_name
198
+ # type of the target of the node whose output this logger is logging
199
+ self.prev_node_target_type = prev_node_target_type
200
+ # type of the target of the node which was responsible for adding this
201
+ # logger
202
+ self.ref_node_target_type = ref_node_target_type
203
+ # what kind of values are inside of stats
204
+ self.results_type = results_type
205
+ # index of this node within the arg of the input/output node
206
+ # for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
207
+ self.index_within_arg = index_within_arg
208
+ # index of this node within the args of the input/output node
209
+ # for example, in add(x1, x2), x2 would have index_of_arg == 1
210
+ self.index_of_arg = index_of_arg
211
+ # fully qualified name
212
+ self.fqn = fqn
213
+ # if loggers are added before prepare_fx, but we do not want
214
+ # collect results of calibration, only results after convert_fx
215
+ # so, we add a flag to control whether this logger collects data
216
+ self.enabled = True
217
+ # string representation of qconfig
218
+ self.qconfig_str = qconfig_str
219
+ # this can be turned off to reduce memory usage during calibration
220
+ self.save_activations = True
221
+
222
+ # Note: cannot annotate the type of x because TorchScript does not support
223
+ # the Union type.
224
+ def forward(self, x):
225
+ """
226
+ """ # blank docblock to make autodoc happy
227
+ # TODO(future PR): consider designing this better, as the difference
228
+ # between these two flags is subtle and not obvious.
229
+ if not self.enabled:
230
+ return x
231
+ if not self.save_activations:
232
+ return x
233
+ # TODO(future PR): consider refactoring this to better reuse the parent
234
+ # class
235
+ if isinstance(x, torch.Tensor):
236
+ self.stats.append(x.detach())
237
+ elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2:
238
+ new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach()))
239
+ self.stats_rnn.append(new_res)
240
+ return x
241
+
242
+ def __repr__(self):
243
+ clean_dict = {
244
+ k: v
245
+ for k, v in self.__dict__.items()
246
+ # skip nn.Module keys
247
+ if (k != 'training') and not k.startswith('_')
248
+ }
249
+ return f"OutputLogger({clean_dict})"
250
+
251
+
252
+ class OutputComparisonLogger(OutputLogger):
253
+ """
254
+ Same as OutputLogger, but also requires the original activation
255
+ in order to calculate the comparison at calibration time
256
+ """
257
+
258
+ def __init__(self, *args, **kwargs):
259
+ super().__init__(*args, **kwargs)
260
+ # TODO(future PR): make the comparison function configurable
261
+ self.comparison_fn = torch.ao.ns.fx.utils.compute_sqnr
262
+ self.comparison_fn_name = 'sqnr'
263
+ # precalculated comparisons of logger output versus reference
264
+ self.comparisons = []
265
+ # precalculated comparisons function
266
+
267
+ def forward(self, x, x_ref):
268
+ """
269
+ """ # blank docblock to make autodoc happy
270
+ if not self.enabled:
271
+ return x
272
+ assert isinstance(x, torch.Tensor), 'non-tensor inputs not yet supported'
273
+ if self.save_activations:
274
+ # save the activation, for debugging
275
+ self.stats.append(x.detach())
276
+ # save the comparison
277
+ self.comparisons.append(self.comparison_fn(x, x_ref))
278
+ return x
279
+
280
+ def __repr__(self):
281
+ clean_dict = {
282
+ k: v
283
+ for k, v in self.__dict__.items()
284
+ # skip nn.Module keys
285
+ if (k != 'training') and not k.startswith('_')
286
+ }
287
+ return f"OutputComparisonLogger({clean_dict})"
288
+
289
+
290
+ class NSTracer(quantize_fx.QuantizationTracer):
291
+ """
292
+ Just like a regular FX quantization tracer, but treats observers and fake_quantize
293
+ modules as leaf modules.
294
+ """
295
+ def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool:
296
+ """
297
+ """ # blank docblock to make autodoc happy
298
+ if isinstance(m, torch.ao.quantization.ObserverBase):
299
+ return True
300
+ elif isinstance(m, torch.ao.quantization.FakeQuantizeBase):
301
+ return True
302
+ return super().is_leaf_module(m, module_qualified_name)
303
+
304
+
305
+ def _extract_weights_one_model(
306
+ model_name: str,
307
+ model: GraphModule,
308
+ nodes_and_names_to_instrument: List[Tuple[Node, str]],
309
+ results: NSResultsType,
310
+ op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
311
+ ) -> None:
312
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_one_model")
313
+ for node, ref_name in nodes_and_names_to_instrument:
314
+ res_type = NSSingleResultValuesType.WEIGHT.value
315
+ extracted_weight = extract_weight_from_node(
316
+ node, model, op_to_type_to_weight_extraction_fn)
317
+ if extracted_weight:
318
+ if ref_name not in results:
319
+ results[ref_name] = {res_type: {}}
320
+ results[ref_name][res_type][model_name] = [extracted_weight]
321
+
322
+
323
+ def _extract_weights_impl(
324
+ model_name_a: str,
325
+ gm_a: GraphModule,
326
+ model_name_b: str,
327
+ gm_b: GraphModule,
328
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
329
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
330
+ op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
331
+ ) -> NSResultsType:
332
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_impl")
333
+ matched_subgraph_pairs = get_matching_subgraph_pairs(
334
+ gm_a, gm_b, base_name_to_sets_of_related_ops,
335
+ unmatchable_types_map)
336
+
337
+ # split the subgraph pairs into one data structure for each model
338
+ nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = []
339
+ nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = []
340
+ for match_name, match in matched_subgraph_pairs.items():
341
+ subgraph_a, subgraph_b = match
342
+ nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name))
343
+ nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name))
344
+
345
+ # populate the results, one model at a time
346
+ results: NSResultsType = {}
347
+ _extract_weights_one_model(
348
+ model_name_a, gm_a, nodes_and_names_to_instrument_a, results,
349
+ op_to_type_to_weight_extraction_fn)
350
+ _extract_weights_one_model(
351
+ model_name_b, gm_b, nodes_and_names_to_instrument_b, results,
352
+ op_to_type_to_weight_extraction_fn)
353
+
354
+ # fill in missing fqn entries
355
+ maybe_add_missing_fqns(results)
356
+
357
+ # rekey on names of nodes in gm_b
358
+ results = rekey_logger_info_on_node_name_of_model(results, model_name_b)
359
+
360
+ return results
361
+
362
+
363
+ def extract_weights(
364
+ model_name_a: str,
365
+ model_a: nn.Module,
366
+ model_name_b: str,
367
+ model_b: nn.Module,
368
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
369
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
370
+ op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
371
+ ) -> NSResultsType:
372
+ """
373
+ Extract weights from model A and model B, and return a comparison.
374
+
375
+ Args:
376
+ model_name_a: string name of model A to use in results
377
+ model_a: model A
378
+ model_name_b: string name of model B to use in results
379
+ model_b: model B
380
+ base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
381
+ unmatchable_types_map: optional override of unmatchable types, subject to change
382
+ op_to_type_to_weight_extraction_fn: optional override of function which extracts weight
383
+ from a type, subject to change
384
+
385
+ Return:
386
+ NSResultsType, containing the weight comparisons
387
+ """
388
+
389
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_weights")
390
+ if base_name_to_sets_of_related_ops is None:
391
+ base_name_to_sets_of_related_ops = \
392
+ get_base_name_to_sets_of_related_ops()
393
+ type_a_related_to_b = \
394
+ get_type_a_related_to_b(base_name_to_sets_of_related_ops)
395
+
396
+ # TODO(future PR): expose these
397
+ skipped_module_names: List[str] = []
398
+ skipped_module_classes: List[Callable] = []
399
+ tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
400
+ tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
401
+ gm_a = GraphModule(model_a, tracer_a.trace(model_a))
402
+ maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope')
403
+ if maybe_model_a_node_name_to_scope is not None:
404
+ gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
405
+ gm_b = GraphModule(model_b, tracer_b.trace(model_b))
406
+ maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope')
407
+ if maybe_model_b_node_name_to_scope is not None:
408
+ gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
409
+ return _extract_weights_impl(
410
+ model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops,
411
+ unmatchable_types_map, op_to_type_to_weight_extraction_fn)
412
+
413
+
414
+ def _add_loggers_one_model(
415
+ model_name: str,
416
+ model: GraphModule,
417
+ nodes_and_names_to_instrument_inputs: List[Tuple[Node, str, str]],
418
+ nodes_and_names_to_instrument_outputs: List[Tuple[Node, str, str]],
419
+ logger_cls: Callable,
420
+ ) -> nn.Module:
421
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_one_model")
422
+
423
+ # TODO(future PR): do not observe nodes we do not care
424
+ # about (both fp32, denylist, etc)
425
+ node_to_instrument_inputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
426
+ node_to_instrument_outputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
427
+ for node, ref_name, ref_node_type in nodes_and_names_to_instrument_inputs:
428
+ node_to_instrument_inputs_to_ref_name[node] = (ref_name, ref_node_type)
429
+ for node, ref_name, ref_node_type in nodes_and_names_to_instrument_outputs:
430
+ node_to_instrument_outputs_to_ref_name[node] = (ref_name, ref_node_type)
431
+
432
+ model = add_loggers_to_model(
433
+ model, node_to_instrument_inputs_to_ref_name,
434
+ node_to_instrument_outputs_to_ref_name, logger_cls, model_name)
435
+ return model
436
+
437
+
438
+ def _add_loggers_impl(
439
+ name_a: str,
440
+ gm_a: GraphModule,
441
+ name_b: str,
442
+ gm_b: GraphModule,
443
+ logger_cls: Callable,
444
+ should_log_inputs: bool,
445
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
446
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
447
+ ) -> Tuple[nn.Module, nn.Module]:
448
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_impl")
449
+ matched_subgraph_pairs = get_matching_subgraph_pairs(
450
+ gm_a, gm_b,
451
+ base_name_to_sets_of_related_ops, unmatchable_types_map)
452
+ nodes_and_names_to_instrument_inputs_a = []
453
+ nodes_and_names_to_instrument_inputs_b = []
454
+ nodes_and_names_to_instrument_outputs_a = []
455
+ nodes_and_names_to_instrument_outputs_b = []
456
+ for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items():
457
+ ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a)
458
+ ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b)
459
+ # Note: for matching inputs we use start_node, such as observing
460
+ # the input of linear in linear-relu
461
+ if should_log_inputs:
462
+ nodes_and_names_to_instrument_inputs_a.append(
463
+ (subgraph_a.start_node, match_name, ref_node_type_a))
464
+ nodes_and_names_to_instrument_inputs_b.append(
465
+ (subgraph_b.start_node, match_name, ref_node_type_b))
466
+ # Note: for matching activations we always use end_node,
467
+ # such as observing the output of relu in linear-relu
468
+ nodes_and_names_to_instrument_outputs_a.append(
469
+ (subgraph_a.end_node, match_name, ref_node_type_a))
470
+ nodes_and_names_to_instrument_outputs_b.append(
471
+ (subgraph_b.end_node, match_name, ref_node_type_b))
472
+
473
+ new_model_a = _add_loggers_one_model(
474
+ name_a, gm_a, nodes_and_names_to_instrument_inputs_a,
475
+ nodes_and_names_to_instrument_outputs_a, logger_cls)
476
+ new_model_b = _add_loggers_one_model(
477
+ name_b, gm_b, nodes_and_names_to_instrument_inputs_b,
478
+ nodes_and_names_to_instrument_outputs_b, logger_cls)
479
+ return (new_model_a, new_model_b)
480
+
481
+
482
+ def add_loggers(
483
+ name_a: str,
484
+ model_a: nn.Module,
485
+ name_b: str,
486
+ model_b: nn.Module,
487
+ logger_cls: Callable,
488
+ should_log_inputs : bool = False,
489
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
490
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
491
+ ) -> Tuple[nn.Module, nn.Module]:
492
+ """
493
+ Instrument model A and model B with loggers.
494
+
495
+ Args:
496
+ name_a: string name of model A to use in results
497
+ model_a: model A
498
+ name_b: string name of model B to use in results
499
+ model_b: model B
500
+ logger_cls: class of Logger to use
501
+ base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
502
+ unmatchable_types_map: optional override of unmatchable types, subject to change
503
+
504
+ Return:
505
+ Returns a tuple of (model_a_with_loggers, model_b_with_loggers). Modifies both models inplace.
506
+ """
507
+
508
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_loggers")
509
+ # TODO(future PR): expose these
510
+ skipped_module_names: List[str] = []
511
+ skipped_module_classes: List[Callable] = []
512
+ tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
513
+ tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
514
+ gm_a = GraphModule(model_a, tracer_a.trace(model_a))
515
+ maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope')
516
+ if maybe_model_a_node_name_to_scope is not None:
517
+ gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
518
+ gm_b = GraphModule(model_b, tracer_b.trace(model_b))
519
+ maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope')
520
+ if maybe_model_b_node_name_to_scope is not None:
521
+ gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
522
+ return _add_loggers_impl(
523
+ name_a, gm_a, name_b, gm_b, logger_cls,
524
+ should_log_inputs=should_log_inputs,
525
+ base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
526
+ unmatchable_types_map=unmatchable_types_map)
527
+
528
+
529
+ def _extract_logger_info_one_model(
530
+ model: nn.Module,
531
+ results: NSResultsType,
532
+ logger_cls: Callable,
533
+ ) -> None:
534
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_logger_info_one_model")
535
+ for gm_name, mod in model.named_modules():
536
+ # TODO(future PR): better check when scripted
537
+ is_logger = (
538
+ isinstance(mod, logger_cls) # type: ignore[arg-type]
539
+ or (
540
+ isinstance(mod, torch.jit.RecursiveScriptModule)
541
+ and mod.original_name == 'OutputLogger'
542
+ )
543
+ )
544
+ if is_logger:
545
+ key = mod.ref_name
546
+ if key not in results:
547
+ results[key] = {}
548
+ assert mod.model_name not in results[key], \
549
+ f"{mod.model_name} is already present in results"
550
+ if mod.results_type not in results[key]:
551
+ results[key][mod.results_type] = {}
552
+ if mod.model_name not in results[key][mod.results_type]:
553
+ results[key][mod.results_type][mod.model_name] = []
554
+ stats_to_use = mod.stats
555
+ if len(mod.stats_rnn) > 0:
556
+ stats_to_use = mod.stats_rnn
557
+ data = {
558
+ 'type': mod.results_type,
559
+ 'values': stats_to_use,
560
+ 'ref_node_name': mod.ref_node_name,
561
+ 'ref_node_target_type': mod.ref_node_target_type,
562
+ 'prev_node_name': mod.prev_node_name,
563
+ 'prev_node_target_type': mod.prev_node_target_type,
564
+ 'index_within_arg': mod.index_within_arg,
565
+ 'index_of_arg': mod.index_of_arg,
566
+ 'fqn': mod.fqn,
567
+ 'qconfig_str': mod.qconfig_str,
568
+ }
569
+ if hasattr(mod, 'comparisons'):
570
+ data['comparisons'] = mod.comparisons
571
+ data['comparison_fn_name'] = mod.comparison_fn_name
572
+ else:
573
+ data['comparisons'] = []
574
+ data['comparison_fn_name'] = ''
575
+ results[key][mod.results_type][mod.model_name].append(data)
576
+ # ensure the list stays sorted
577
+ results[key][mod.results_type][mod.model_name].sort(
578
+ key=lambda res:
579
+ f"{res['index_of_arg']}:{res['index_within_arg']}"
580
+ )
581
+
582
+
583
+ # TODO(future PR): align on naming
584
+ # this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
585
+ def extract_logger_info(
586
+ model_a: nn.Module,
587
+ model_b: nn.Module,
588
+ logger_cls: Callable,
589
+ model_name_to_use_for_layer_names: str,
590
+ ) -> NSResultsType:
591
+ """
592
+ Traverse all loggers in `model_a` and `model_b`, and extract the logged
593
+ information.
594
+
595
+ Args:
596
+ model_a: model A
597
+ model_b: model B
598
+ logger_cls: class of Logger to use
599
+ model_name_to_use_for_layer_names: string name of model to use for
600
+ layer names in the output
601
+
602
+ Return:
603
+ NSResultsType, containing the logged comparisons
604
+ """
605
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_logger_info")
606
+ results: NSResultsType = {}
607
+ for model in (model_a, model_b):
608
+ _extract_logger_info_one_model(model, results, logger_cls)
609
+ # fill in missing fqn entries
610
+ maybe_add_missing_fqns(results)
611
+ # rekey on the name of model b
612
+ results = rekey_logger_info_on_node_name_of_model(
613
+ results, model_name_to_use_for_layer_names)
614
+ return results
615
+
616
+
617
+ def _add_shadow_loggers_impl(
618
+ name_a: str,
619
+ gm_a: GraphModule,
620
+ name_b: str,
621
+ gm_b: GraphModule,
622
+ logger_cls: Callable,
623
+ should_log_inputs: bool,
624
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
625
+ node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
626
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
627
+ ) -> nn.Module:
628
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_shadow_loggers_impl")
629
+ matched_subgraph_pairs = get_matching_subgraph_pairs(
630
+ gm_a, gm_b, base_name_to_sets_of_related_ops,
631
+ unmatchable_types_map)
632
+ gm_a_shadows_b = create_a_shadows_b(
633
+ name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls,
634
+ should_log_inputs=should_log_inputs,
635
+ node_type_to_io_type_map=node_type_to_io_type_map)
636
+ return gm_a_shadows_b
637
+
638
+
639
+ def add_shadow_loggers(
640
+ name_a: str,
641
+ model_a: nn.Module,
642
+ name_b: str,
643
+ model_b: nn.Module,
644
+ logger_cls: Callable,
645
+ should_log_inputs: bool = False,
646
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
647
+ node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
648
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
649
+ ) -> nn.Module:
650
+ """
651
+ Instrument model A and model B with shadow loggers.
652
+
653
+ Args:
654
+ name_a: string name of model A to use in results
655
+ model_a: model A
656
+ name_b: string name of model B to use in results
657
+ model_b: model B
658
+ logger_cls: class of Logger to use
659
+ should_log_inputs: whether to log inputs
660
+ base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
661
+ unmatchable_types_map: optional override of unmatchable types, subject to change
662
+ """
663
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_shadow_loggers")
664
+ # TODO(future PR): expose these
665
+ skipped_module_names: List[str] = []
666
+ skipped_module_classes: List[Callable] = []
667
+ tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
668
+ tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
669
+ gm_a = GraphModule(model_a, tracer_a.trace(model_a))
670
+ maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope')
671
+ if maybe_model_a_node_name_to_scope is not None:
672
+ gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
673
+ gm_b = GraphModule(model_b, tracer_b.trace(model_b))
674
+ maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope')
675
+ if maybe_model_b_node_name_to_scope is not None:
676
+ gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
677
+ return _add_shadow_loggers_impl(
678
+ name_a, gm_a, name_b, gm_b, logger_cls,
679
+ should_log_inputs=should_log_inputs,
680
+ base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
681
+ node_type_to_io_type_map=node_type_to_io_type_map,
682
+ unmatchable_types_map=unmatchable_types_map)
683
+
684
+
685
+ def extract_shadow_logger_info(
686
+ model_a_shadows_b: nn.Module,
687
+ logger_cls: Callable,
688
+ model_name_to_use_for_layer_names: str,
689
+ ) -> NSResultsType:
690
+ """
691
+ Traverse all loggers in a shadow model, and extract the logged
692
+ information.
693
+
694
+ Args:
695
+ model_a_shadows_b: shadow model
696
+ logger_cls: class of Logger to use
697
+ model_name_to_use_for_layer_names: string name of model to use for
698
+ layer names in the output
699
+
700
+ Return:
701
+ NSResultsType, containing the logged comparisons
702
+ """
703
+ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_shadow_logger_info")
704
+ results: NSResultsType = collections.defaultdict(dict)
705
+ _extract_logger_info_one_model(model_a_shadows_b, results, logger_cls)
706
+ # fill in missing fqn entries
707
+ maybe_add_missing_fqns(results)
708
+ # rekey on the name of model b
709
+ results = rekey_logger_info_on_node_name_of_model(
710
+ results, model_name_to_use_for_layer_names)
711
+ return dict(results)
712
+
713
+
714
+ def extend_logger_results_with_comparison(
715
+ results: NSResultsType,
716
+ model_name_1: str,
717
+ model_name_2: str,
718
+ comparison_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
719
+ comparison_name: str,
720
+ ) -> None:
721
+ """
722
+ Compares the logged values from `model_name_2` against the corresponding
723
+ values in `model_name_1`, using `comparison_fn`. Records the result
724
+ in `model_name_2`'s results under `comparison_name`. Modifies `results` inplace.
725
+
726
+ Args:
727
+ results: the result data structure from `extract_logger_info` or
728
+ `extract_shadow_logger_info`.
729
+ model_name_1: string name of model 1
730
+ model_name_2: string name of model 2
731
+ comparison_fn: function to compare two Tensors
732
+ comparison_name: string name of model to use for
733
+ layer names in the output
734
+ """
735
+ for results_type_to_results in results.values():
736
+ for model_name_to_results in results_type_to_results.values():
737
+ assert model_name_1 in model_name_to_results, \
738
+ f"{model_name_1} not found in results"
739
+ assert model_name_2 in model_name_to_results, \
740
+ f"{model_name_2} not found in results"
741
+
742
+ results_1 = model_name_to_results[model_name_1]
743
+ results_2 = model_name_to_results[model_name_2]
744
+
745
+ for result_2 in results_2:
746
+ index_within_arg_2 = result_2['index_within_arg']
747
+ index_of_arg_2 = result_2['index_of_arg']
748
+ # find corresponding result_1
749
+ result_1 = None
750
+ for cur_result_1 in results_1:
751
+ index_within_arg_1 = cur_result_1['index_within_arg']
752
+ index_of_arg_1 = cur_result_1['index_of_arg']
753
+ if (
754
+ (index_within_arg_1 == index_within_arg_2) and
755
+ (index_of_arg_1 == index_of_arg_2)
756
+ ):
757
+ result_1 = cur_result_1
758
+ break
759
+ assert result_1 is not None
760
+
761
+ values_1 = result_1['values']
762
+ values_2 = result_2['values']
763
+ result_2[comparison_name] = []
764
+ for value_1, value_2 in zip(values_1, values_2):
765
+ comparison_result = comparison_fn(value_1, value_2)
766
+ result_2[comparison_name].append(comparison_result)
767
+
768
+ def prepare_n_shadows_model(
769
+ model: torch.nn.Module,
770
+ example_inputs: Any,
771
+ qconfig_multi_mapping: QConfigMultiMapping,
772
+ backend_config: BackendConfig,
773
+ custom_prepare_fn: Optional[Callable] = None,
774
+ custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
775
+ custom_tracer: Any = None,
776
+ ) -> GraphModule:
777
+ """
778
+ Given a model with a graph with M ops such as
779
+
780
+
781
+ args_kwargs_m -> op_m -> output_m
782
+
783
+
784
+ And a set of N qconfigs for each op, creates a new model, with
785
+ each of the subgraph of `op_m` transformed into
786
+
787
+ .. code::
788
+
789
+ |---------> op_m_n -> log_m_n
790
+ | /
791
+ args_kwargs_m ---------> op_m -> log_m_0
792
+
793
+ Where op_m_n is op_m wrapped in a submodule and transformed with
794
+ qconfig_n, and its inner graph looks like
795
+
796
+ .. code::
797
+
798
+ args_m -------- op_m_prepared_with_qconfig_n -> out_m_n
799
+ /
800
+ kwargs_m ---
801
+
802
+ This is useful for testing different quantization of multiple layers in
803
+ a single pass through the model.
804
+
805
+ High level TODOs for future PRs:
806
+ * figure out a better way to name the output structure
807
+ * return a results data structure instead of printing it out
808
+ * add examples to docblocks
809
+ """
810
+
811
+ if custom_tracer is None:
812
+ tracer = quantize_fx.QuantizationTracer([], [])
813
+ else:
814
+ tracer = custom_tracer
815
+ mt = torch.fx.GraphModule(model, tracer.trace(model))
816
+ # this is necessary to ensure logger FQNs get populated
817
+ mt._node_name_to_scope = tracer.node_name_to_scope
818
+
819
+ # run example input propagation, we need this to call prepare_fx on
820
+ # individual subgraphs
821
+ output_prop = OutputProp(mt)
822
+ output_prop.propagate(*example_inputs)
823
+
824
+ # Find the set of subgraphs in the original graph which we need to
825
+ # consider.
826
+ modules = dict(mt.named_modules(remove_duplicate=False))
827
+ patterns = _get_pattern_to_quantize_handlers(backend_config)
828
+ root_node_getter_mapping = \
829
+ get_fusion_pattern_to_root_node_getter(backend_config)
830
+ standalone_module_names: List[str] = []
831
+ standalone_module_classes: List[Type] = []
832
+ custom_module_classes: List[Type] = []
833
+ matches = _find_matches(
834
+ mt.graph, modules, patterns, root_node_getter_mapping,
835
+ standalone_module_names, standalone_module_classes, custom_module_classes)
836
+ subgraphs_dedup: Dict[str, List[Node]] = \
837
+ _get_dedup_subgraphs(matches)
838
+
839
+ # generate node to qconfig for each subgraph
840
+ # TODO(future PR): deduplicate repeating entries
841
+ list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]] = []
842
+ for qconfig_mapping in qconfig_multi_mapping.qconfig_mappings_list:
843
+ node_name_to_qconfig = _generate_node_name_to_qconfig(
844
+ mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope)
845
+ list_of_node_name_to_qconfig.append(node_name_to_qconfig)
846
+
847
+ # For each region in the model, do the following:
848
+ # For each qconfig for that region, do the following:
849
+ # 1. create a copy of the region wrapped in a module
850
+ # 2. pass original args, original kwargs, and expected output to module
851
+ # 3. add an output comparison logger and hook it up to compare
852
+ # actual output to expected output
853
+ # 4. run `prepare_fx` on the module
854
+ for (subgraph_idx, (match_name, nodes_in_this_subgraph)) in \
855
+ enumerate(subgraphs_dedup.items()):
856
+ create_n_transformed_and_logged_copies_of_subgraph(
857
+ mt, subgraph_idx, match_name, nodes_in_this_subgraph,
858
+ qconfig_multi_mapping.qconfig_mappings_list, list_of_node_name_to_qconfig,
859
+ custom_prepare_fn, custom_prepare_kwargs # type: ignore[arg-type]
860
+ )
861
+
862
+ return mt
863
+
864
+ # TODO(future PR): we should rethink the names of all the PNP APIs
865
+ def _prepare_n_shadows_add_loggers_model(
866
+ model: torch.nn.Module,
867
+ example_inputs: Any,
868
+ qconfig_mapping: QConfigMapping,
869
+ backend_config: BackendConfig,
870
+ ) -> torch.nn.Module:
871
+ r"""
872
+ Note: this API is not recommended for wide usage, it is only
873
+ provided for customers who need to migrate from the `add_loggers`
874
+ API.
875
+
876
+ This creates a model which provides logging for the following
877
+ problem: if we quantize `model` with `qconfig_mapping` and feed
878
+ the same input through both models, log the comparisons of
879
+ corresponding intermediate layers.
880
+
881
+ The problem is solved with a single model. Specifically, we
882
+ partition `model` into N subgraphs, create a copy of each relevant
883
+ subgraph, wrap it in a module, apply the quantization API to that
884
+ module, and hook up loggers to measure the comparisons.
885
+
886
+ Example starting graph:
887
+
888
+ x0 -> op0 -> x1 -> op1 -> x2
889
+
890
+ Example config: quantize op0 to int8, do nothing to op1.
891
+ The following graph will be created:
892
+
893
+ .. code::
894
+
895
+ x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
896
+ \ \ \ # noqa: W605
897
+ ---> op0_1 -> x1_1 ----> clog -> op1_0 -> x2_1 ----> clog
898
+
899
+ Where op0_0 is op0, op0_1 is op0 wrapped in a submodule and quantized
900
+ to int8, op1_0 is op1 (appearing in the graph twice), log is a logger,
901
+ and clog is a comparison logger.
902
+ """
903
+
904
+ tracer = quantize_fx.QuantizationTracer([], [])
905
+ mt = torch.fx.GraphModule(model, tracer.trace(model))
906
+ # this is necessary to ensure logger FQNs get populated
907
+ mt._node_name_to_scope = tracer.node_name_to_scope
908
+
909
+ # run example input propagation, we need this to call prepare_fx on
910
+ # individual subgraphs
911
+ output_prop = OutputProp(mt)
912
+ output_prop.propagate(*example_inputs)
913
+
914
+ # Find the set of subgraphs in the original graph which we need to
915
+ # consider.
916
+ modules = dict(mt.named_modules(remove_duplicate=False))
917
+ patterns = _get_pattern_to_quantize_handlers(backend_config)
918
+ root_node_getter_mapping = \
919
+ get_fusion_pattern_to_root_node_getter(backend_config)
920
+ standalone_module_names: List[str] = []
921
+ standalone_module_classes: List[Type] = []
922
+ custom_module_classes: List[Type] = []
923
+ matches = _find_matches(
924
+ mt.graph, modules, patterns, root_node_getter_mapping,
925
+ standalone_module_names, standalone_module_classes, custom_module_classes)
926
+ subgraphs_dedup: Dict[str, List[Node]] = \
927
+ _get_dedup_subgraphs(matches)
928
+
929
+ # generate node to qconfig for each subgraph
930
+ node_name_to_qconfig = _generate_node_name_to_qconfig(
931
+ mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope)
932
+
933
+ # Now, mutate the graph to be the add_loggers graph with propagation
934
+ # error.
935
+ create_add_loggers_graph(
936
+ mt, subgraphs_dedup, qconfig_mapping, node_name_to_qconfig)
937
+
938
+ return mt
939
+
940
+ # TODO(future PR): we should rethink the names of all the PNP APIs
941
+ def _n_shadows_compare_weights(
942
+ model: torch.nn.Module,
943
+ example_inputs: Any,
944
+ qconfig_mapping: QConfigMapping,
945
+ backend_config: BackendConfig,
946
+ ) -> NSResultsType:
947
+ """
948
+ Note: this API is not recommended for wide usage, it is only
949
+ provided for customers who need to migrate from the `add_loggers`
950
+ API.
951
+ """
952
+ qconfig_multi_mapping = \
953
+ QConfigMultiMapping.from_list_qconfig_mapping([qconfig_mapping])
954
+ mp = prepare_n_shadows_model(
955
+ model, example_inputs, qconfig_multi_mapping, backend_config)
956
+ # passing inputs through the model is necessary to populate
957
+ # observers which observe weights with real values
958
+ mp(*example_inputs)
959
+ mq = convert_n_shadows_model(mp)
960
+ weight_comparison = extract_weight_comparison(mq)
961
+ return weight_comparison
962
+
963
+ # TODO(future PR): consider aligning API signature with other similar quantization
964
+ # functions (enable_fake_quant, etc)
965
+ def loggers_set_enabled(model: torch.nn.Module, enabled: bool) -> None:
966
+ """
967
+ Sets the `enabled` setting on a `model`'s loggers
968
+ """
969
+ for name, child in model.named_modules():
970
+ if isinstance(child, OutputLogger):
971
+ child.enabled = enabled
972
+
973
+ # TODO(future PR): consider aligning API signature with other similar quantization
974
+ # functions (enable_fake_quant, etc)
975
+ def loggers_set_save_activations(
976
+ model: torch.nn.Module,
977
+ save_activations: bool,
978
+ ) -> None:
979
+ """
980
+ Sets the `save_activations` setting on a `model`'s loggers
981
+ """
982
+ for name, child in model.named_modules():
983
+ if isinstance(child, OutputLogger):
984
+ child.save_activations = save_activations
985
+
986
+ def convert_n_shadows_model(
987
+ model: GraphModule,
988
+ custom_convert_fn: Optional[Callable] = None,
989
+ custom_convert_kwargs: Optional[Dict[str, Any]] = None
990
+ ) -> GraphModule:
991
+ """
992
+ Given a model from `prepare_n_shadows_model`, runs `convert_fx`
993
+ on each shadow submodule.
994
+ """
995
+ for node in model.graph.nodes:
996
+ # TODO(future PR): consider matching in a safer way than
997
+ # node name string match
998
+ if node.name.startswith(SHADOW_WRAPPER_NODE_NAME_PREFIX):
999
+ orig_mod = getattr(model, node.name)
1000
+ if custom_convert_fn is None:
1001
+ converted_mod = torch.ao.quantization.quantize_fx.convert_fx(
1002
+ orig_mod)
1003
+ else:
1004
+ if custom_convert_kwargs is None:
1005
+ custom_convert_kwargs = {}
1006
+ converted_mod = custom_convert_fn(orig_mod, **custom_convert_kwargs)
1007
+ setattr(model, node.name, converted_mod)
1008
+
1009
+ return model
1010
+
1011
+ def extract_results_n_shadows_model(model: torch.nn.Module) -> NSResultsType:
1012
+ """
1013
+ Extracts logger results from `model`.
1014
+ """
1015
+ results: NSResultsType = {}
1016
+ _extract_logger_info_one_model(model, results, OutputLogger)
1017
+ return results
1018
+
1019
+ def print_comparisons_n_shadows_model(results: NSResultsType) -> None:
1020
+ """
1021
+ Prints a summary of extracted `results`.
1022
+ """
1023
+ results_grouped = group_results_by_subgraph(results)
1024
+ results_comparison = create_results_comparison(results_grouped)
1025
+ print_n_shadows_summary(results_comparison)
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/graph_matcher.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/graph_passes.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/mappings.cpython-310.pyc ADDED
Binary file (9.97 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/pattern_utils.cpython-310.pyc ADDED
Binary file (4.04 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/weight_utils.cpython-310.pyc ADDED
Binary file (6.85 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/graph_matcher.py ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import enum
3
+
4
+ import torch
5
+ toq = torch.ops.quantized
6
+
7
+ from torch.fx import GraphModule
8
+ from torch.fx.graph import Graph, Node
9
+
10
+ from torch.ao.quantization.utils import getattr_from_fqn
11
+ from .ns_types import NSSubgraph, NSNodeTargetType
12
+ from .mappings import (
13
+ get_base_name_to_sets_of_related_ops,
14
+ get_unmatchable_types_map,
15
+ )
16
+ from .pattern_utils import (
17
+ get_type_a_related_to_b,
18
+ get_reversed_fusions,
19
+ end_node_matches_reversed_fusion,
20
+ )
21
+ from torch.ao.quantization import (
22
+ ObserverBase,
23
+ FakeQuantizeBase,
24
+ )
25
+
26
+ from typing import Dict, Tuple, List, Optional, Set, Any
27
+
28
+ def _get_output_nodes(g: Graph) -> List[Node]:
29
+ return [n for n in g.nodes if n.op == 'output']
30
+
31
+ class _NSGraphMatchableSubgraphsIterator:
32
+ """
33
+ Iterates through the graph of gm, starting with the output nodes
34
+ and continuing backwards.
35
+ 1. Returns matchable subgraphs, in order. A subgraph is defined by
36
+ (start_node, end_node).
37
+ 2. Skips over non-matchable subgraphs
38
+ """
39
+ def __init__(
40
+ self,
41
+ gm: GraphModule,
42
+ non_matchable_functions: Set[NSNodeTargetType],
43
+ non_matchable_modules: Set[NSNodeTargetType],
44
+ non_matchable_methods: Set[NSNodeTargetType],
45
+ ):
46
+ self.gm: GraphModule = gm
47
+ self.non_matchable_functions: Set[NSNodeTargetType] = non_matchable_functions
48
+ self.non_matchable_modules: Set[NSNodeTargetType] = non_matchable_modules
49
+ self.non_matchable_methods: Set[NSNodeTargetType] = non_matchable_methods
50
+ self.seen_nodes: Set[Node] = set()
51
+ self.stack: List[Node] = []
52
+ for start_node in _get_output_nodes(self.gm.graph):
53
+ self.stack.append(start_node)
54
+
55
+ def __iter__(self):
56
+ return self
57
+
58
+ def __next__(self) -> NSSubgraph:
59
+ """
60
+ Returns the next matchable subgraph.
61
+ """
62
+ while len(self.stack) > 0:
63
+ cur_end_node = self.stack.pop()
64
+ if cur_end_node in self.seen_nodes:
65
+ continue
66
+
67
+ # for subgraphs which are single nodes, start_node == end_node
68
+ # for subgraphs with more than one node, start node != end_node
69
+ cur_start_node = cur_end_node
70
+ # Subgraphs like linear-relu have the base node as the start node.
71
+ # Subgraphs like dequantize-linear-relu-to(torch.float16) have the
72
+ # base node as the second node.
73
+ # The cur_base_op_node var will move to the actual node during
74
+ # the fusion matching later in this code block.
75
+ cur_base_op_node = cur_end_node
76
+
77
+ # Check for potential fusions. For now, we are greedy
78
+ # and always skip all non-base nodes of a fusion. For example,
79
+ # if we match linear-relu backwards, we will always skip the
80
+ # relu node and attempt to match the linear node. This can
81
+ # be made configurable later if needed.
82
+ for _reverse_fusion_ops, base_op_idx in get_reversed_fusions():
83
+ is_match = end_node_matches_reversed_fusion(
84
+ cur_end_node, _reverse_fusion_ops, self.gm, self.seen_nodes)
85
+ if is_match:
86
+ # navigate to the base node
87
+ for rev_fusion_idx in range(len(_reverse_fusion_ops) - 1):
88
+ self.seen_nodes.add(cur_start_node)
89
+ # for now, assume that there are no other nodes
90
+ # which need to be added to the stack
91
+ cur_start_node = cur_start_node.args[0] # type: ignore[assignment]
92
+ # if the base op index matches the current node, set it
93
+ rev_base_op_idx = \
94
+ len(_reverse_fusion_ops) - 2 - base_op_idx
95
+ if rev_fusion_idx == rev_base_op_idx:
96
+ cur_base_op_node = cur_start_node
97
+ break
98
+
99
+ self.seen_nodes.add(cur_start_node)
100
+ # add args of previous nodes to stack
101
+ for arg in cur_start_node.all_input_nodes:
102
+ self._recursively_add_node_arg_to_stack(arg)
103
+
104
+ # skip unmatchable nodes
105
+ # note: this check is done on the start_node, i.e.
106
+ # if we are matching linear-relu in reverse, this would do the matchable
107
+ # check on the linear
108
+ if not self._is_matchable(cur_base_op_node):
109
+ continue
110
+
111
+ # If an observer or a fake_quant was not matched as a part of
112
+ # a pattern of multiple nodes, ignore it. One case where this is
113
+ # relevant is an observer on a graph input, which was added because
114
+ # it is necessary for the next node.
115
+ if cur_end_node.op == 'call_module' and cur_start_node is cur_end_node:
116
+ maybe_obs = getattr_from_fqn(self.gm, cur_end_node.target) # type: ignore[arg-type]
117
+ if isinstance(maybe_obs, (ObserverBase, FakeQuantizeBase)):
118
+ continue
119
+
120
+ return NSSubgraph(
121
+ start_node=cur_start_node, end_node=cur_end_node,
122
+ base_op_node=cur_base_op_node)
123
+
124
+ raise StopIteration
125
+
126
+ def _recursively_add_node_arg_to_stack(self, arg: Any) -> None:
127
+ """
128
+ Adds all of the nodes in this arg to the stack, properly navigating
129
+ through list, dicts and tuples.
130
+ """
131
+ if isinstance(arg, Node):
132
+ self.stack.append(arg)
133
+ elif isinstance(arg, torch.fx.immutable_collections.immutable_list) or type(arg) is tuple:
134
+ for inner_arg in arg:
135
+ self._recursively_add_node_arg_to_stack(inner_arg)
136
+ elif isinstance(arg, torch.fx.immutable_collections.immutable_dict):
137
+ for value in arg.values():
138
+ self._recursively_add_node_arg_to_stack(value)
139
+
140
+ def _is_matchable(self, node: Node) -> bool:
141
+ if node.op == 'call_function':
142
+ return node.target not in self.non_matchable_functions
143
+ elif node.op == 'call_module':
144
+ assert isinstance(node.target, str)
145
+ target_mod = getattr_from_fqn(self.gm, node.target)
146
+ return not \
147
+ any(isinstance(target_mod, t) # type: ignore[arg-type]
148
+ for t in self.non_matchable_modules)
149
+ elif node.op == 'call_method':
150
+ return node.target not in self.non_matchable_methods
151
+ else:
152
+ return False
153
+
154
+ class GraphMatchingException(Exception):
155
+ """
156
+ Exception raised when two graphs cannot be matched.
157
+ """
158
+ pass
159
+
160
+ class SubgraphTypeRelationship(enum.Enum):
161
+ # same type, known
162
+ # example: F.linear and F.linear, or nn.Conv2d and nn.Conv2d
163
+ EQUAL = enum.auto()
164
+ # same type, but the type is not known to Numerical Suite
165
+ # (user defined type, etc).
166
+ EQUAL_BUT_UKNOWN = enum.auto()
167
+ # known, same subgraph_relationship set, but not the same type
168
+ # example: F.linear and toq.linear
169
+ RELATED_BUT_NOT_EQUAL = enum.auto()
170
+ # not related
171
+ NOT_RELATED = enum.auto()
172
+
173
+ def _get_subgraph_relationship_type(
174
+ subgraph_a: NSSubgraph,
175
+ subgraph_b: NSSubgraph,
176
+ gm_a: GraphModule,
177
+ gm_b: GraphModule,
178
+ type_a_related_to_b: Set[Tuple[NSNodeTargetType, NSNodeTargetType]],
179
+ ) -> SubgraphTypeRelationship:
180
+ node_a = subgraph_a.base_op_node
181
+ node_b = subgraph_b.base_op_node
182
+
183
+ # TODO(next): make this code handle matching by what is before the base op
184
+ if node_a.op != node_b.op:
185
+ if not (
186
+ node_a.op in ('call_function', 'call_method') and
187
+ node_b.op in ('call_function', 'call_method')
188
+ ):
189
+ return SubgraphTypeRelationship.NOT_RELATED
190
+
191
+ if node_a.op in ('call_function', 'call_method'):
192
+ key = (node_a.target, node_b.target)
193
+
194
+ if key not in type_a_related_to_b:
195
+ if node_a.target == node_b.target:
196
+ return SubgraphTypeRelationship.EQUAL_BUT_UKNOWN
197
+ else:
198
+ return SubgraphTypeRelationship.NOT_RELATED
199
+ # after this point, we are dealing with known types
200
+
201
+ if node_a.target == node_b.target:
202
+ node_a_has_prev = subgraph_a.base_op_node == subgraph_a.start_node
203
+ node_b_has_prev = subgraph_b.base_op_node == subgraph_b.start_node
204
+ if node_a_has_prev and (not node_b_has_prev):
205
+ return SubgraphTypeRelationship.RELATED_BUT_NOT_EQUAL
206
+ elif (not node_a_has_prev) and node_b_has_prev:
207
+ return SubgraphTypeRelationship.RELATED_BUT_NOT_EQUAL
208
+ elif (not node_a_has_prev) and (not node_b_has_prev):
209
+ return SubgraphTypeRelationship.EQUAL
210
+ else:
211
+ # TODO(future PR): check for matches start_op_node and base_op_node
212
+ return SubgraphTypeRelationship.EQUAL
213
+
214
+ if key in type_a_related_to_b:
215
+ return SubgraphTypeRelationship.RELATED_BUT_NOT_EQUAL
216
+ else:
217
+ return SubgraphTypeRelationship.NOT_RELATED
218
+ elif node_a.op == 'call_module':
219
+ assert (subgraph_a.base_op_node == subgraph_a.start_node and
220
+ subgraph_b.base_op_node == subgraph_b.start_node), \
221
+ "Matching call_module patterns where base_op_node != start_node is not supported yet"
222
+ # for call_module, we need to look up the modules to do the type check
223
+ assert isinstance(node_a.target, str)
224
+ mod_a = getattr_from_fqn(gm_a, node_a.target)
225
+ assert isinstance(node_b.target, str)
226
+ mod_b = getattr_from_fqn(gm_b, node_b.target)
227
+
228
+ key = (type(mod_a), type(mod_b))
229
+
230
+ if key not in type_a_related_to_b:
231
+ if type(mod_a) == type(mod_b):
232
+ return SubgraphTypeRelationship.EQUAL_BUT_UKNOWN
233
+ else:
234
+ return SubgraphTypeRelationship.NOT_RELATED
235
+ elif type(mod_a) == type(mod_b):
236
+ return SubgraphTypeRelationship.EQUAL
237
+ else:
238
+ return SubgraphTypeRelationship.RELATED_BUT_NOT_EQUAL
239
+
240
+ return SubgraphTypeRelationship.NOT_RELATED
241
+
242
+ def _get_name_for_subgraph(
243
+ subgraph_a: NSSubgraph,
244
+ gm_a: GraphModule,
245
+ base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
246
+ existing_names: Set[str],
247
+ ) -> str:
248
+ """
249
+ Returns a unique name for a subgraph. This name is based on two things:
250
+ 1. the name of the set containing the underlying type of the base op in the
251
+ subgraph (i.e. 'torch.nn.functional.linear' if this is related to a linear op)
252
+ 2. the number of previous subgraphs with related underlying type of the base op
253
+
254
+ For example, in the graph
255
+
256
+ linear0 -> relu0 -> linear1 -> relu1
257
+
258
+ The subgraphs are (linear0, relu0) and (linear1, relu1). If we iterate
259
+ from the output node backwards, the name given to (linear1, relu1) will be
260
+ `base_op_torch.nn.functional.linear_0`, and the name given to (linear0, relu0)
261
+ will be `base_op_torch.nn.functional.linear_1`.
262
+
263
+ Why are we not just using the node name? Answer: because of two requirements:
264
+ A. fusions must be supported
265
+ B. some Numeric Suite APIs can be called without having all of the models in memory
266
+
267
+ For example, let's say we need to match nodes of
268
+
269
+ (1) ... -> linear0 -> relu0 -> ...
270
+
271
+ And
272
+
273
+ (2) ... -> linear_relu0 -> ...
274
+
275
+ Without being able to inspect them together. With the current naming scheme, if
276
+ we iterate through both of these graphs in the same order, and assuming the rest
277
+ of the graphs match, both of these subgraphs will get the same name without
278
+ (1) and (2) knowing anything about each other.
279
+ """
280
+ target_type = _get_node_target_type(subgraph_a.base_op_node, gm_a)
281
+ target_base_type = None
282
+ for base_name, sets_of_related_ops in base_name_to_sets_of_related_ops.items():
283
+ if target_type in sets_of_related_ops:
284
+ target_base_type = base_name
285
+ target_base_name = 'base_op_' + str(target_base_type)
286
+ counter = 0
287
+ proposed_name = target_base_name + '_' + str(counter)
288
+ while proposed_name in existing_names:
289
+ counter += 1
290
+ proposed_name = target_base_name + '_' + str(counter)
291
+ existing_names.add(proposed_name)
292
+ return proposed_name
293
+
294
+ def _get_node_target_type(node: Node, gm: GraphModule) -> Optional[NSNodeTargetType]:
295
+ if node.op in ('call_function', 'call_method'):
296
+ return node.target
297
+ elif node.op == 'call_module':
298
+ assert isinstance(node.target, str)
299
+ mod = getattr_from_fqn(gm, node.target)
300
+ return type(mod)
301
+ return None
302
+
303
+ def get_matching_subgraph_pairs(
304
+ gm_a: GraphModule,
305
+ gm_b: GraphModule,
306
+ base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
307
+ unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
308
+ ) -> Dict[str, Tuple[NSSubgraph, NSSubgraph]]:
309
+ """
310
+ Matches matchable subgraphs of graph_a to graph_b.
311
+
312
+ For a node, "matchable" is defined as a node which is not an observer,
313
+ fake_quants, quant or dequant.
314
+
315
+ A subgraph can contain one or more nodes. A subgraph is matchable if
316
+ at least one node inside of it is matchable. Currently, all nodes in
317
+ a subgraph must be matchable (because we assume no observers will be
318
+ inserted in the middle of a fusion).
319
+
320
+ A subgraph is defined by (start_node, end_node). We assume that only
321
+ start_node and end_node are linked with the surrounding graph, all other
322
+ nodes in a subgraph are self-contained.
323
+
324
+ A pair of nodes is "related" if both nodes represent the same mathematical
325
+ operation across different quantization flavors. For example,
326
+ `F.linear` and `torch.ops.quantized.linear` are related, and
327
+ `F.linear` and `torch.nn.Conv` are not related.
328
+
329
+ For each matchable pair of nodes node_a and node_b, they will match
330
+ if node_a and node_b are related.
331
+
332
+ For graphs A and B, they will match iff:
333
+ 1. the number of matchable subgraphs in A and B is equivalent
334
+ 2. when iterating through the matchable subgraphs of A and B in the same order, each
335
+ corresponding pair of base nodes is related.
336
+
337
+ This enables us to find the corresponding subgraphs between
338
+ graphs of related models. For example, if we had two graphs such as:
339
+
340
+ graph_a: x0 -> conv_0 (type: nn.Conv2d) -> obs_0 -> x1
341
+ w -/
342
+ b -/
343
+
344
+ graph_b: x0 -> quant_0 -> qconv_0 (type: nnq.Conv2d) -> dequant_0 -> x1
345
+ packed_params_0 -/
346
+
347
+ This function will return the following result:
348
+ {
349
+ 'conv_0': ( # the name of the node in graph_b
350
+ (conv_0, conv_0), # (start_node_a, end_node_a)
351
+ (qconv_0, qconv_0), # (start_node_b, end_node_b)
352
+ ),
353
+ }
354
+
355
+ Or, if we have a fusion pattern,
356
+
357
+ graph_a: x0 -> linear_0 -> relu_0 -> obs_0 -> x1
358
+ w -/
359
+ b -/
360
+
361
+ graph_b: x0 -> quant_0 -> linear_relu_0 -> dequant_0 -> x1
362
+ packed_params_0 -/
363
+
364
+ This function will return the following result:
365
+ {
366
+ 'linear_relu_0': ( # the name of the node in graph_b
367
+ (linear_0, relu_0), # (start_node_a, end_node_a)
368
+ (linear_relu_0, linear_relu_0), # (start_node_b, end_node_b)
369
+ ),
370
+ }
371
+ """
372
+ if unmatchable_types_map is None:
373
+ unmatchable_types_map = get_unmatchable_types_map()
374
+ non_matchable_functions = unmatchable_types_map['funs_unmatchable']
375
+ non_matchable_modules = unmatchable_types_map['mods_unmatchable']
376
+ non_matchable_methods = unmatchable_types_map['meths_unmatchable']
377
+
378
+ graph_a_iterator = _NSGraphMatchableSubgraphsIterator(
379
+ gm_a, non_matchable_functions, non_matchable_modules,
380
+ non_matchable_methods)
381
+ graph_b_iterator = _NSGraphMatchableSubgraphsIterator(
382
+ gm_b, non_matchable_functions, non_matchable_modules,
383
+ non_matchable_methods)
384
+ results = collections.OrderedDict()
385
+ if base_name_to_sets_of_related_ops is None:
386
+ base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
387
+ type_a_related_to_b = \
388
+ get_type_a_related_to_b(base_name_to_sets_of_related_ops)
389
+
390
+ existing_names_a: Set[str] = set()
391
+ existing_names_b: Set[str] = set()
392
+
393
+ while True:
394
+ # fetch the next subgraphs from a and b
395
+ cur_subgraph_a, cur_subgraph_b = None, None
396
+ try:
397
+ cur_subgraph_a = next(graph_a_iterator)
398
+ except StopIteration:
399
+ pass
400
+ try:
401
+ cur_subgraph_b = next(graph_b_iterator)
402
+ except StopIteration:
403
+ pass
404
+
405
+ # look up types of a and b for useful error messages
406
+ type_start_a, type_start_b = None, None
407
+ if cur_subgraph_a is not None:
408
+ type_start_a = _get_node_target_type(cur_subgraph_a.start_node, gm_a)
409
+ if cur_subgraph_b is not None:
410
+ type_start_b = _get_node_target_type(cur_subgraph_b.start_node, gm_b)
411
+
412
+ # check for results and determine what to do next
413
+ if cur_subgraph_a is not None and cur_subgraph_b is not None:
414
+ # both nodes were fetched, check for subgraph_relationship
415
+ # note: subgraph_relationship is checked on the start node, i.e.
416
+ # if a linear-relu pattern is checked, we would check for subgraph_relationship
417
+ # of the linear
418
+ subgraph_relationship = _get_subgraph_relationship_type(
419
+ cur_subgraph_a, cur_subgraph_b,
420
+ gm_a, gm_b, type_a_related_to_b)
421
+ if subgraph_relationship == SubgraphTypeRelationship.NOT_RELATED:
422
+ msg = f"""
423
+ The subgraphs
424
+ ({cur_subgraph_a}, {type_start_a}) and
425
+ ({cur_subgraph_b}, {type_start_b})
426
+ are not related. Please ensure that the two models you pass in have the same number
427
+ of subgraphs, and each pair of subgraphs is related to each other."""
428
+ raise GraphMatchingException(msg)
429
+ elif subgraph_relationship == SubgraphTypeRelationship.EQUAL_BUT_UKNOWN:
430
+ # skip matching but unknown types
431
+ continue
432
+ key_name_a = _get_name_for_subgraph(
433
+ cur_subgraph_a, gm_a, base_name_to_sets_of_related_ops,
434
+ existing_names_a)
435
+ key_name_b = _get_name_for_subgraph(
436
+ cur_subgraph_b, gm_b, base_name_to_sets_of_related_ops,
437
+ existing_names_b)
438
+ assert key_name_a == key_name_b, \
439
+ f"Subgraph names {key_name_a} and {key_name_b} do not match"
440
+ results[key_name_a] = (cur_subgraph_a, cur_subgraph_b)
441
+ continue
442
+ elif cur_subgraph_a is None and cur_subgraph_b is None:
443
+ # we reached the end of both graphs
444
+ break
445
+ else:
446
+ # only one node was fetched, no match possible, throw error
447
+ msg = f"""
448
+ Attempting to match
449
+ ({cur_subgraph_a}, {type_start_a}) and
450
+ ({cur_subgraph_b}, {type_start_b}),
451
+ one of which is empty. Please ensure that the two models you pass in have the same number
452
+ of subgraphs."""
453
+ raise GraphMatchingException(msg)
454
+
455
+ # The subgraph pairs are originally created by traversing the two graphs
456
+ # from the outputs to the inputs. Reverse the results to return the
457
+ # subgraphs in their order of execution.
458
+ results = collections.OrderedDict(reversed(list(results.items())))
459
+
460
+ return results
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/graph_passes.py ADDED
@@ -0,0 +1,950 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.fx import GraphModule, map_arg
3
+ from torch.fx.graph import Graph, Node
4
+ from torch.ao.quantization.fx.utils import get_new_attr_name_with_prefix
5
+
6
+ from .utils import (
7
+ get_node_first_input_and_output_type,
8
+ getattr_from_fqn,
9
+ NodeInputOrOutputType,
10
+ return_first_non_observer_node,
11
+ get_number_of_non_param_args,
12
+ get_target_type_str,
13
+ get_arg_indices_of_inputs_to_log,
14
+ get_node_input_qparams,
15
+ op_type_supports_shadowing,
16
+ get_normalized_nth_input,
17
+ )
18
+
19
+ from .ns_types import (
20
+ NSSingleResultValuesType,
21
+ NSSubgraph,
22
+ NSNodeTargetType,
23
+ )
24
+ from torch.ao.ns.fx.mappings import (
25
+ get_node_type_to_io_type_map,
26
+ )
27
+ from torch.ao.quantization.observer import _is_activation_post_process
28
+
29
+ from typing import Dict, Tuple, Callable, List, Any, Union, Optional, Set
30
+
31
+ def _maybe_get_fqn(node: Node, gm: GraphModule) -> Optional[str]:
32
+ fqn = None
33
+ if hasattr(gm, '_node_name_to_scope'):
34
+ # fqn on observers is not present, because they do not
35
+ # exist when the fqns are created during tracing. If this is
36
+ # an observer, get the fqn of the node being observed.
37
+ node_to_use_for_fqn = node
38
+ if node.op == 'call_module':
39
+ assert isinstance(node.target, str)
40
+ module = getattr_from_fqn(gm, node.target)
41
+ if _is_activation_post_process(module):
42
+ node_to_use_for_fqn = get_normalized_nth_input(node, gm, 0)
43
+ fqn = gm._node_name_to_scope[node_to_use_for_fqn.name][0] # type: ignore[index]
44
+ return fqn # type: ignore[return-value]
45
+
46
+ def _insert_logger_after_node(
47
+ node: Node,
48
+ gm: GraphModule,
49
+ logger_cls: Callable,
50
+ logger_node_name_suffix: str,
51
+ ref_node_name: str,
52
+ model_name: str,
53
+ ref_name: str,
54
+ ref_node_target_type: str,
55
+ results_type: str,
56
+ index_within_arg: int,
57
+ index_of_arg: int,
58
+ fqn: Optional[str],
59
+ ) -> Node:
60
+ """
61
+ Given a starting graph of
62
+
63
+ prev_node -> node -> next_node
64
+
65
+ This function creates a new logger_cls obj and adds it
66
+ after node, resulting in
67
+
68
+ prev_node -> node -> logger_obj -> next_node
69
+ """
70
+ # create new name
71
+ logger_node_name = \
72
+ get_new_attr_name_with_prefix(node.name + logger_node_name_suffix)(gm)
73
+ target_type = get_target_type_str(node, gm)
74
+ # create the logger object
75
+ logger_obj = logger_cls(
76
+ ref_node_name, node.name, model_name, ref_name, target_type,
77
+ ref_node_target_type,
78
+ results_type, index_within_arg, index_of_arg, fqn)
79
+ # attach the logger object to the parent module
80
+ setattr(gm, logger_node_name, logger_obj)
81
+ logger_node = node.graph.create_node(
82
+ 'call_module', logger_node_name, (node,), {})
83
+ return logger_node
84
+
85
+ def add_loggers_to_model(
86
+ gm: GraphModule,
87
+ node_to_instrument_inputs_to_ref_node_name: Dict[Node, Tuple[str, str]],
88
+ node_to_instrument_outputs_to_ref_node_name: Dict[Node, Tuple[str, str]],
89
+ logger_cls: Callable,
90
+ model_name: str,
91
+ ) -> GraphModule:
92
+ """
93
+ Takes the graph of gm, adds loggers to the output
94
+ of each node in nodes_to_instrument. Returns a GraphModule with the new
95
+ graph.
96
+ """
97
+
98
+ new_graph = Graph()
99
+ env: Dict[str, Any] = {}
100
+ modules = dict(gm.named_modules())
101
+
102
+ def load_arg(a):
103
+ return map_arg(a, lambda node: env[node.name])
104
+
105
+ for node in gm.graph.nodes:
106
+ if node.op == 'output':
107
+ new_graph.output(map_arg(get_normalized_nth_input(node, gm, 0), load_arg))
108
+ continue
109
+
110
+ if (
111
+ (node in node_to_instrument_inputs_to_ref_node_name) or
112
+ (node in node_to_instrument_outputs_to_ref_node_name)
113
+ ):
114
+ fqn = _maybe_get_fqn(node, gm)
115
+
116
+ if node in node_to_instrument_inputs_to_ref_node_name:
117
+ ref_name, ref_node_type = node_to_instrument_inputs_to_ref_node_name[node]
118
+ # Ops such add and mul are special because either
119
+ # one or two of the first two arguments can be tensors,
120
+ # and if one argument is a tensor it can be first or
121
+ # second (x + 1 versus 1 + x).
122
+ arg_indices_to_log = get_arg_indices_of_inputs_to_log(node)
123
+ for node_arg_idx in arg_indices_to_log:
124
+ node_arg = get_normalized_nth_input(node, gm, node_arg_idx)
125
+ if type(node_arg) == Node:
126
+ # create a single input logger
127
+ prev_node = env[node_arg.name]
128
+ env[node_arg.name] = _insert_logger_after_node(
129
+ prev_node, gm, logger_cls, '_ns_logger_', node.name,
130
+ model_name, ref_name, ref_node_type,
131
+ NSSingleResultValuesType.NODE_INPUT.value,
132
+ index_within_arg=0, index_of_arg=node_arg_idx,
133
+ fqn=fqn)
134
+ elif type(node_arg) == torch.fx.immutable_collections.immutable_list:
135
+ # create N input loggers, one for each node
136
+ for arg_idx, arg in enumerate(node_arg): # type: ignore[var-annotated, arg-type]
137
+ prev_node = env[arg.name]
138
+ env[prev_node.name] = _insert_logger_after_node(
139
+ prev_node, gm, logger_cls, '_ns_logger_', node.name,
140
+ model_name, ref_name, ref_node_type,
141
+ NSSingleResultValuesType.NODE_INPUT.value,
142
+ index_within_arg=arg_idx, index_of_arg=node_arg_idx,
143
+ fqn=fqn)
144
+ else:
145
+ pass
146
+
147
+ # ensure env is populated with base node
148
+ # Note: runs for both inputs and outputs
149
+ env[node.name] = new_graph.node_copy(node, load_arg)
150
+
151
+ if node in node_to_instrument_outputs_to_ref_node_name:
152
+ ref_name, ref_node_type = node_to_instrument_outputs_to_ref_node_name[node]
153
+ # add the logger after the base node
154
+ env[node.name] = _insert_logger_after_node(
155
+ env[node.name], gm, logger_cls, '_ns_logger_', node.name,
156
+ model_name, ref_name, ref_node_type,
157
+ NSSingleResultValuesType.NODE_OUTPUT.value,
158
+ index_within_arg=0, index_of_arg=0, fqn=fqn)
159
+
160
+ else:
161
+ env[node.name] = new_graph.node_copy(node, load_arg)
162
+
163
+ new_gm = GraphModule(gm, new_graph)
164
+ return new_gm
165
+
166
+ def _insert_quantize_per_tensor_node(
167
+ prev_node_c: Node,
168
+ node_a: Node,
169
+ gm_b: GraphModule,
170
+ graph_c: Graph,
171
+ scale: Union[torch.Tensor, float],
172
+ zero_point: Union[torch.Tensor, int],
173
+ dtype_cast_name: str,
174
+ ) -> Node:
175
+ # copy scale
176
+ scale_node_name = \
177
+ get_new_attr_name_with_prefix(
178
+ node_a.name + '_input_scale_')(gm_b)
179
+ setattr(gm_b, scale_node_name, scale)
180
+ scale_node = graph_c.create_node(
181
+ 'get_attr', scale_node_name, (), {}, scale_node_name)
182
+ # copy zero_point
183
+ zero_point_node_name = \
184
+ get_new_attr_name_with_prefix(
185
+ node_a.name + '_input_zero_point_')(gm_b)
186
+ setattr(gm_b, zero_point_node_name, zero_point)
187
+ zero_point_node = graph_c.create_node(
188
+ 'get_attr', zero_point_node_name, (), {}, zero_point_node_name)
189
+ # create the quantize_per_tensor call
190
+ return graph_c.create_node(
191
+ 'call_function', torch.quantize_per_tensor,
192
+ (prev_node_c, scale_node, zero_point_node, torch.quint8), {},
193
+ dtype_cast_name)
194
+
195
+ def _insert_dtype_cast_after_node(
196
+ node_a: Node,
197
+ node_c: Node,
198
+ prev_node_c: Union[Node, List[Node]],
199
+ gm_a: GraphModule,
200
+ gm_b: GraphModule,
201
+ graph_c: Graph,
202
+ node_name_prefix: str,
203
+ logger_cls: Callable,
204
+ node_type_to_io_type_map: Dict[str, Set[NSNodeTargetType]],
205
+ ) -> Union[Node, List[Node]]:
206
+ """
207
+ Given a starting graph C (derived from graph B) of
208
+
209
+ ... -> prev_node_c -> node_c -> ...
210
+
211
+ And a corresponding related node_a, inserts the correct dtype
212
+ cast node after prev_node_c to cast into the dtype expected
213
+ by node_a, resulting in:
214
+
215
+ dtype_cast
216
+ /
217
+ ... -> prev_node_c -> node_c -> ...
218
+
219
+ For example, if node_c is an int8 op and node_a is an fp32 op, this function
220
+ will insert a dequant.
221
+ """
222
+ dtype_cast_op = None
223
+ dtype_cast_mod_cls = None
224
+ dtype_cast_method = None
225
+ dtype_cast_method_dtype = None
226
+ dtype_cast_scale = None
227
+ dtype_cast_zero_point = None
228
+ node_input_type_a, _node_output_type_a = \
229
+ get_node_first_input_and_output_type(
230
+ node_a, gm_a, logger_cls, node_type_to_io_type_map)
231
+ node_input_type_c, _node_output_type_c = \
232
+ get_node_first_input_and_output_type(
233
+ node_c, gm_b, logger_cls, node_type_to_io_type_map)
234
+
235
+ if (
236
+ (node_input_type_a == NodeInputOrOutputType.FP32 and
237
+ node_input_type_c == NodeInputOrOutputType.INT8) or
238
+ (node_input_type_a == NodeInputOrOutputType.FP32 and
239
+ node_input_type_c == NodeInputOrOutputType.FP16) or
240
+ # TODO(future PR): determine the actual dtype of node_c,
241
+ # the current code only works because dequantize works with
242
+ # multiple input dtypes.
243
+ (node_input_type_a == NodeInputOrOutputType.FP32 and
244
+ node_input_type_c == NodeInputOrOutputType.FP32_OR_INT8)
245
+ ):
246
+ dtype_cast_op = torch.dequantize
247
+ elif (
248
+ node_input_type_a == node_input_type_c and
249
+ node_input_type_a != NodeInputOrOutputType.UNKNOWN
250
+ ):
251
+ dtype_cast_mod_cls = torch.nn.Identity
252
+ elif (
253
+ node_input_type_a == NodeInputOrOutputType.INT8 and
254
+ node_input_type_c == NodeInputOrOutputType.FP32
255
+ ):
256
+ # int8 shadows fp32, the dtype cast needs to quantize to int8
257
+ # with the right qparams.
258
+ node_a_input_qparams = get_node_input_qparams(
259
+ node_a, gm_a, node_type_to_io_type_map)
260
+ if node_a_input_qparams is not None:
261
+ dtype_cast_op = torch.quantize_per_tensor # type: ignore[assignment]
262
+ dtype_cast_scale, dtype_cast_zero_point = node_a_input_qparams
263
+ elif (
264
+ node_input_type_a == NodeInputOrOutputType.FP16 and
265
+ node_input_type_c == NodeInputOrOutputType.FP32
266
+ ):
267
+ dtype_cast_method = 'to'
268
+ dtype_cast_method_dtype = torch.float16
269
+ else:
270
+ raise AssertionError(
271
+ f"dtype cast from {node_input_type_c} {node_c.format_node()} to " +
272
+ f"{node_input_type_a} {node_a.format_node()} needs to be implemented")
273
+
274
+ if isinstance(prev_node_c, Node):
275
+ new_dtype_cast_name = \
276
+ get_new_attr_name_with_prefix(node_name_prefix)(gm_b)
277
+ if dtype_cast_op:
278
+ if dtype_cast_scale is not None and dtype_cast_zero_point is not None:
279
+ return _insert_quantize_per_tensor_node(
280
+ prev_node_c, node_a, gm_b, graph_c, dtype_cast_scale,
281
+ dtype_cast_zero_point, new_dtype_cast_name)
282
+ else:
283
+ return graph_c.create_node(
284
+ 'call_function', dtype_cast_op, (prev_node_c,), {},
285
+ new_dtype_cast_name)
286
+ elif dtype_cast_method:
287
+ return graph_c.create_node(
288
+ 'call_method', dtype_cast_method,
289
+ (prev_node_c, dtype_cast_method_dtype), {}, new_dtype_cast_name)
290
+ else:
291
+ assert dtype_cast_mod_cls
292
+ dtype_cast_mod = dtype_cast_mod_cls()
293
+ setattr(gm_b, new_dtype_cast_name, dtype_cast_mod)
294
+ return graph_c.create_node(
295
+ 'call_module', new_dtype_cast_name, (prev_node_c,), {},
296
+ new_dtype_cast_name)
297
+ elif isinstance(prev_node_c, list):
298
+ results = []
299
+ for prev_node_c_inner in prev_node_c:
300
+ new_dtype_cast_name = \
301
+ get_new_attr_name_with_prefix(node_name_prefix)(gm_b)
302
+ if dtype_cast_op:
303
+ # TODO(future PR): add handling for quantize_per_tensor
304
+ new_dtype_cast_node = graph_c.create_node(
305
+ 'call_function', dtype_cast_op, (prev_node_c_inner,), {},
306
+ new_dtype_cast_name)
307
+ results.append(new_dtype_cast_node)
308
+ else:
309
+ assert dtype_cast_mod_cls
310
+ dtype_cast_mod = dtype_cast_mod_cls()
311
+ setattr(gm_b, new_dtype_cast_name, dtype_cast_mod)
312
+ new_dtype_cast_node = graph_c.create_node(
313
+ 'call_module', new_dtype_cast_name, (prev_node_c_inner,), {},
314
+ new_dtype_cast_name)
315
+ results.append(new_dtype_cast_node)
316
+ return results
317
+ else:
318
+ raise AssertionError(f"type f{type(prev_node_c)} is not handled")
319
+
320
+ # TODO(future PR): look into using copy_node API instead
321
+ def _copy_node_from_a_to_c(
322
+ node_a: Node,
323
+ gm_a: GraphModule,
324
+ gm_b: GraphModule,
325
+ graph_c: Graph,
326
+ ) -> Node:
327
+ """
328
+ Simple copy of node_a to graph_c.
329
+ """
330
+ if node_a.op == 'get_attr':
331
+ node_a_copy_name = \
332
+ get_new_attr_name_with_prefix(node_a.name + '_shadow_copy_')(gm_b)
333
+ node_a_obj = getattr_from_fqn(gm_a, node_a.target) # type: ignore[arg-type]
334
+ if torch.is_tensor(node_a_obj):
335
+ node_a_obj = node_a_obj.detach()
336
+ setattr(gm_b, node_a_copy_name, node_a_obj)
337
+ node_a_copy = graph_c.create_node(
338
+ node_a.op, node_a_copy_name, (), {}, node_a_copy_name)
339
+ return node_a_copy
340
+ elif node_a.op == 'call_method':
341
+ assert node_a.target in ('dequantize', 'to'), \
342
+ f"target {node_a.target} is not implemented"
343
+ if node_a.target == 'dequantize':
344
+ arg_copy = _copy_node_from_a_to_c(
345
+ get_normalized_nth_input(node_a, gm_a, 0),
346
+ gm_a, gm_b, graph_c) # type: ignore[arg-type]
347
+ node_a_copy_name = \
348
+ get_new_attr_name_with_prefix(node_a.name + '_shadow_copy_')(gm_b)
349
+ node_a_copy = graph_c.create_node(
350
+ node_a.op, node_a.target, (arg_copy,), {}, node_a_copy_name)
351
+ return node_a_copy
352
+ else: # to
353
+ arg_copy = _copy_node_from_a_to_c(
354
+ get_normalized_nth_input(node_a, gm_a, 0), gm_a, gm_b, graph_c) # type: ignore[arg-type]
355
+ node_a_copy_name = \
356
+ get_new_attr_name_with_prefix(node_a.name + '_shadow_copy_')(gm_b)
357
+ node_a_copy = graph_c.create_node(
358
+ node_a.op, node_a.target,
359
+ (arg_copy, get_normalized_nth_input(node_a, gm_a, 1)),
360
+ {}, node_a_copy_name)
361
+ return node_a_copy
362
+
363
+ else:
364
+ raise AssertionError(
365
+ f"handling of node {node_a.format_node()} with op {node_a.op} is not implemented")
366
+
367
+ def _can_insert_copy_of_subgraph_a(
368
+ subgraph_a: NSSubgraph,
369
+ gm_a: GraphModule,
370
+ num_non_param_args_node_a: int,
371
+ ) -> bool:
372
+ """
373
+ This function returns `False` if the input subgraph cannot be copied by
374
+ `_insert_copy_of_subgraph_a_after_input_node_c`. This usually means
375
+ that there is a corner case logic for which copy is not yet implemented.
376
+ """
377
+ # populate the list of nodes we need to check
378
+ nodes = []
379
+ cur_node = subgraph_a.end_node
380
+ while cur_node != subgraph_a.start_node:
381
+ nodes.append(cur_node)
382
+ cur_node = get_normalized_nth_input(cur_node, gm_a, 0) # type: ignore[assignment]
383
+ nodes.append(cur_node)
384
+ nodes.reverse()
385
+
386
+ def _can_insert(node_a_arg, gm_a):
387
+ if isinstance(node_a_arg, Node):
388
+ arg_a = return_first_non_observer_node(node_a_arg, gm_a)
389
+ if arg_a.op == 'call_method':
390
+ return arg_a.target in ('dequantize', 'to')
391
+ elif arg_a.op == 'get_attr':
392
+ return True
393
+ else:
394
+ return False
395
+ elif isinstance(node_a_arg, (list, tuple)):
396
+ for el in node_a_arg:
397
+ if not isinstance(el, Node):
398
+ return False
399
+ return True
400
+
401
+ # For each node, check if we handle the copy behavior. This follows the
402
+ # logic in `_insert_copy_of_subgraph_a_after_input_node_c`.
403
+ for node_a in nodes:
404
+
405
+ local_num_non_param_args_node_a = num_non_param_args_node_a \
406
+ if node_a is nodes[0] else 1
407
+
408
+ norm_args_kwargs = node_a.normalized_arguments(
409
+ gm_a, normalize_to_only_use_kwargs=True)
410
+ if norm_args_kwargs is not None:
411
+ norm_args, norm_kwargs = norm_args_kwargs
412
+ else:
413
+ norm_args, norm_kwargs = node_a.args, node_a.kwargs
414
+
415
+ cur_idx = 0
416
+
417
+ while cur_idx < len(norm_args):
418
+ if cur_idx == 0:
419
+ pass
420
+ elif cur_idx == 1 and local_num_non_param_args_node_a == 2:
421
+ pass
422
+ else:
423
+ if not _can_insert(norm_args[cur_idx], gm_a):
424
+ return False
425
+ cur_idx += 1
426
+
427
+ for kwarg_val in norm_kwargs.values():
428
+ # stitch the inputs from base graph
429
+ if cur_idx == 0:
430
+ pass
431
+ elif cur_idx == 1 and local_num_non_param_args_node_a == 2:
432
+ pass
433
+ else:
434
+ if not _can_insert(kwarg_val, gm_a):
435
+ return False
436
+ cur_idx += 1
437
+
438
+ return True
439
+
440
+ def _insert_copy_of_subgraph_a_after_input_node_c(
441
+ input_node_c: Union[Node, List[Node]],
442
+ input_node_c_2: Optional[Union[Node, List[Node]]],
443
+ subgraph_a: NSSubgraph,
444
+ gm_a: GraphModule,
445
+ gm_b: GraphModule,
446
+ node_name_prefix: str,
447
+ ) -> Node:
448
+ """
449
+ TODO(before land): real docblock
450
+ """
451
+ if isinstance(input_node_c, Node):
452
+ graph_c = input_node_c.graph
453
+ else:
454
+ assert isinstance(input_node_c, list)
455
+ graph_c = input_node_c[0].graph
456
+
457
+ # create a sequential list of the subgraphs' nodes from start to end,
458
+ # because we need to add the nodes to graph C in non-reverse order
459
+ nodes_of_a = [subgraph_a.end_node]
460
+ cur_node = subgraph_a.end_node
461
+ while cur_node != subgraph_a.start_node:
462
+ cur_node = get_normalized_nth_input(cur_node, gm_a, 0) # type: ignore[assignment]
463
+ nodes_of_a.insert(0, cur_node)
464
+
465
+ # go through nodes of a in order, and insert them into the graph of c
466
+ # sequentially
467
+ cur_node_a = nodes_of_a[0]
468
+ cur_node_c = _insert_copy_of_node_a_after_input_node_c(
469
+ input_node_c,
470
+ input_node_c_2,
471
+ cur_node_a,
472
+ gm_a,
473
+ gm_b,
474
+ node_name_prefix)
475
+ for cur_idx_a in range(1, len(nodes_of_a)):
476
+ cur_node_a = nodes_of_a[cur_idx_a]
477
+ prev_node_c = cur_node_c # previous added node is the input to next node
478
+ cur_node_c = _insert_copy_of_node_a_after_input_node_c(
479
+ prev_node_c,
480
+ # TODO(future PR): enable multiple inputs for nodes which are not at start of subgraph
481
+ None,
482
+ cur_node_a,
483
+ gm_a,
484
+ gm_b,
485
+ node_name_prefix)
486
+ # return the last inserted node
487
+ return cur_node_c
488
+
489
+
490
+ def _insert_copy_of_node_a_after_input_node_c(
491
+ input_node_c: Union[Node, List[Node]],
492
+ input_node_c_2: Optional[Union[Node, List[Node]]],
493
+ node_a: Node,
494
+ gm_a: GraphModule,
495
+ gm_b: GraphModule,
496
+ node_name_prefix: str,
497
+ ) -> Node:
498
+ """
499
+ Assume that node_a from graph_a has
500
+ args (input, (input2)?, arg1, ...), and
501
+ kwargs {kw0: kwarg0, ...}
502
+
503
+ Note: input2 is optional. If it equals to None, we assume that the op
504
+ has a single non-param input. If it is specified, we assume that the op
505
+ has two non-param inputs.
506
+
507
+ Copies the underlying values of arg1..argn and kwarg0..kwargn into gm_b,
508
+ and creates the corresponding nodes in graph_c. Note: observers are ignored,
509
+ so if an arg is an observer we navigate up until we find a non-observer parent.
510
+
511
+ If node_a is a call_module, points the module pointed to by node_a to gm_b.
512
+
513
+ Creates the copy of node_a in graph_c, with input as the first arg,
514
+ and all other args and kwargs pointing to the copies of the objects
515
+ in gm_b created above.
516
+
517
+ An example in pictures:
518
+
519
+ graph A:
520
+ ========
521
+
522
+ input -------------> node_a
523
+ / / /
524
+ (input_2)?----------/ / /
525
+ / /
526
+ weight -> weight_obs /
527
+ /
528
+ bias ----------------
529
+
530
+ graph C (derived from B):
531
+ =========================
532
+
533
+ input_node_c --> node_a_copy
534
+ / / /
535
+ (input_node_c_2)? / /
536
+ / /
537
+ weight_copy ----/ /
538
+ /
539
+ bias_copy ------/
540
+ """
541
+ if isinstance(input_node_c, Node):
542
+ graph_c = input_node_c.graph
543
+ else:
544
+ assert isinstance(input_node_c, list)
545
+ graph_c = input_node_c[0].graph
546
+
547
+ norm_args_kwargs = node_a.normalized_arguments(
548
+ gm_a, normalize_to_only_use_kwargs=True)
549
+ if norm_args_kwargs is not None:
550
+ norm_args, norm_kwargs = norm_args_kwargs
551
+ else:
552
+ norm_args, norm_kwargs = node_a.args, node_a.kwargs
553
+
554
+ new_args = []
555
+ new_kwargs = {}
556
+
557
+ def _copy_arg(arg):
558
+ # copy the other inputs from the other graph
559
+ if isinstance(arg, Node):
560
+ arg = return_first_non_observer_node(arg, gm_a)
561
+ arg = _copy_node_from_a_to_c(arg, gm_a, gm_b, graph_c)
562
+ return arg
563
+ elif isinstance(arg, (int, float, torch.dtype)):
564
+ return arg
565
+ elif isinstance(kwarg_val, (list, tuple)):
566
+ for el in kwarg_val:
567
+ assert not isinstance(el, Node), \
568
+ "handling of Node inside list is not implemented"
569
+ return arg
570
+ else:
571
+ raise AssertionError(
572
+ f"handling for kwarg of type {type(kwarg_val)} is not implemented")
573
+
574
+ cur_idx = 0
575
+
576
+ while cur_idx < len(norm_args):
577
+ if cur_idx == 0:
578
+ new_arg = input_node_c
579
+ elif cur_idx == 1 and input_node_c_2 is not None:
580
+ new_arg = input_node_c_2
581
+ else:
582
+ new_arg = _copy_arg(norm_args[cur_idx])
583
+ new_args.append(new_arg)
584
+ cur_idx += 1
585
+
586
+ for kwarg_name, kwarg_val in norm_kwargs.items():
587
+ # stitch the inputs from base graph
588
+ if cur_idx == 0:
589
+ new_kwargs[kwarg_name] = input_node_c
590
+ elif cur_idx == 1 and input_node_c_2 is not None:
591
+ new_kwargs[kwarg_name] = input_node_c_2
592
+ else:
593
+ new_kwargs[kwarg_name] = _copy_arg(kwarg_val)
594
+ cur_idx += 1
595
+
596
+ new_args = tuple(new_args) # type: ignore[assignment]
597
+
598
+ node_a_shadows_c_name = \
599
+ get_new_attr_name_with_prefix(node_name_prefix)(gm_b)
600
+
601
+ if node_a.op == 'call_module':
602
+ # if target is a module, we point to the module from gm_b
603
+ new_mod_copy_name = \
604
+ get_new_attr_name_with_prefix(node_name_prefix)(gm_b)
605
+ # fetch the corresponding module from gm_a
606
+ assert isinstance(node_a.target, str)
607
+ mod_a = getattr_from_fqn(gm_a, node_a.target)
608
+ setattr(gm_b, new_mod_copy_name, mod_a)
609
+ node_a_shadows_c = graph_c.create_node(
610
+ node_a.op, new_mod_copy_name, new_args,
611
+ new_kwargs, node_a_shadows_c_name)
612
+ return node_a_shadows_c
613
+ else:
614
+ assert node_a.op in ('call_function', 'call_method')
615
+ node_a_shadows_c = graph_c.create_node(
616
+ node_a.op, node_a.target, new_args,
617
+ new_kwargs, node_a_shadows_c_name)
618
+ return node_a_shadows_c
619
+
620
+ def create_a_shadows_b(
621
+ name_a: str,
622
+ gm_a: GraphModule,
623
+ name_b: str,
624
+ gm_b: GraphModule,
625
+ matched_subgraph_pairs: Dict[str, Tuple[NSSubgraph, NSSubgraph]],
626
+ logger_cls: Callable,
627
+ should_log_inputs: bool,
628
+ node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
629
+ ) -> GraphModule:
630
+ """
631
+ Creates a new GraphModule consisting of the graph of C, with the meaningful
632
+ nodes of A shadowing the corresponding nodes of B. For example,
633
+
634
+ Graph A:
635
+ a0 -> op0_fp32 -> a1 -> op1_fp32 -> a2
636
+
637
+ Graph B:
638
+ b0 -> op0_int8 -> b1 -> op1_int8 -> b2
639
+
640
+ matched_node_pairs: {'op0': (op0_fp32, op0_int8), 'op1': (op1_fp32, op1_int8)}
641
+
642
+ Graph C (A shadows B):
643
+
644
+ / dequant0 -> op0_fp32 -> logger_a_0 / dequant_1 -> op1_fp32 -> logger_a_1
645
+ / /
646
+ b0 -------------> op0_int8 -> logger_b_0 --------------> op1_int8 -> logger_b_1
647
+
648
+ In a nutshell, this function does the following for each node pair:
649
+ * copies the necessary attributes and modules from gm_a to gm_b,
650
+ keeping names unique
651
+ * adds a dtype cast op (dequant, quant, etc)
652
+ * adds a copy of node_a in gm_b's graph
653
+ * adds loggers to the outputs of node_a and node_b
654
+ """
655
+
656
+ if node_type_to_io_type_map is None:
657
+ node_type_to_io_type_map = get_node_type_to_io_type_map()
658
+
659
+ # graph_c is the graph created from copying the nodes of graph_b and inserting
660
+ # the shadows with the nodes copied from graph_a
661
+ graph_c = Graph()
662
+ env_c: Dict[str, Any] = {}
663
+ modules = dict(gm_b.named_modules())
664
+
665
+ def load_arg(a):
666
+ return map_arg(a, lambda node: env_c[node.name])
667
+
668
+ start_node_b_to_matched_subgraph_a_and_name = {}
669
+ end_node_b_to_matched_subgraph_a_and_name = {}
670
+ for match_name, match in matched_subgraph_pairs.items():
671
+ subgraph_a, subgraph_b = match
672
+ ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a)
673
+ ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b)
674
+ start_node_b_to_matched_subgraph_a_and_name[subgraph_b.start_node] = \
675
+ (subgraph_a, match_name, ref_node_type_a, ref_node_type_b)
676
+ end_node_b_to_matched_subgraph_a_and_name[subgraph_b.end_node] = \
677
+ (subgraph_a, match_name, ref_node_type_a, ref_node_type_b)
678
+
679
+ for node_b in gm_b.graph.nodes:
680
+ if node_b.op == 'output':
681
+ graph_c.output(map_arg(node_b.args[0], load_arg))
682
+ continue
683
+
684
+ # calculate the flags to determine what to do with this node
685
+ node_b_is_start_node = node_b in start_node_b_to_matched_subgraph_a_and_name
686
+ node_b_is_end_node = node_b in end_node_b_to_matched_subgraph_a_and_name
687
+
688
+ if (node_b_is_start_node or node_b_is_end_node):
689
+
690
+ if node_b_is_start_node:
691
+ subgraph_a, ref_name, ref_node_type_a, ref_node_type_b = \
692
+ start_node_b_to_matched_subgraph_a_and_name[node_b]
693
+ else:
694
+ assert node_b_is_end_node
695
+ subgraph_a, ref_name, ref_node_type_a, ref_node_type_b = \
696
+ end_node_b_to_matched_subgraph_a_and_name[node_b]
697
+
698
+ all_op_types_support_shadowing = (
699
+ op_type_supports_shadowing(subgraph_a.start_node) and
700
+ op_type_supports_shadowing(node_b)
701
+ )
702
+ if not all_op_types_support_shadowing:
703
+ print(
704
+ f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' +
705
+ f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' +
706
+ ', unsupported')
707
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
708
+ continue
709
+
710
+ # For both start_node and end_node verify that we know how to do
711
+ # the dtype cast. If we do not, skip.
712
+ node_input_type_a, node_output_type_a = \
713
+ get_node_first_input_and_output_type(
714
+ subgraph_a.start_node, gm_a, logger_cls,
715
+ node_type_to_io_type_map)
716
+ node_input_type_b, node_output_type_b = \
717
+ get_node_first_input_and_output_type(
718
+ node_b, gm_b, logger_cls,
719
+ node_type_to_io_type_map)
720
+ node_io_types_known_a_and_b = (
721
+ node_input_type_a != NodeInputOrOutputType.UNKNOWN and
722
+ node_output_type_a != NodeInputOrOutputType.UNKNOWN and
723
+ node_input_type_b != NodeInputOrOutputType.UNKNOWN and
724
+ node_output_type_b != NodeInputOrOutputType.UNKNOWN
725
+ )
726
+ if not node_io_types_known_a_and_b:
727
+ print(
728
+ f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' +
729
+ f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' +
730
+ ', unknown dtype cast')
731
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
732
+ continue
733
+
734
+ # If we are shadowing from fp32 to int8, we need to insert
735
+ # quantize_per_tensor call with qparams from the previous node.
736
+ # Only do this if we are able to infer these qparams from the graph.
737
+ if (
738
+ node_input_type_a == NodeInputOrOutputType.INT8 and
739
+ node_input_type_b == NodeInputOrOutputType.FP32
740
+ ):
741
+ node_a_input_qparams = get_node_input_qparams(
742
+ subgraph_a.start_node, gm_a, node_type_to_io_type_map)
743
+ if not node_a_input_qparams:
744
+ print(
745
+ f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' +
746
+ f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' +
747
+ ', unknown input qparams')
748
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
749
+ continue
750
+
751
+ num_non_param_args_node_a = \
752
+ get_number_of_non_param_args(subgraph_a.start_node, gm_a)
753
+ if not _can_insert_copy_of_subgraph_a(subgraph_a, gm_a, num_non_param_args_node_a):
754
+ print(
755
+ f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' +
756
+ f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' +
757
+ ', unhandled logic in subgraph copy')
758
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
759
+ continue
760
+
761
+ fqn_base_a = _maybe_get_fqn(subgraph_a.base_op_node, gm_a)
762
+ fqn_base_b = _maybe_get_fqn(subgraph_b.base_op_node, gm_b)
763
+
764
+ if node_b_is_start_node:
765
+
766
+ # if necessary, log the input of node_c
767
+ if should_log_inputs:
768
+ prev_node_b = get_normalized_nth_input(node_b, gm_b, 0)
769
+ if isinstance(prev_node_b, Node):
770
+ prev_node_c = env_c[prev_node_b.name]
771
+ env_c[prev_node_c.name] = _insert_logger_after_node(
772
+ prev_node_c, gm_b, logger_cls, '_ns_logger_b_inp_',
773
+ node_b.name, name_b, ref_name, ref_node_type_b,
774
+ NSSingleResultValuesType.NODE_INPUT.value,
775
+ index_within_arg=0, index_of_arg=0,
776
+ fqn=fqn_base_b)
777
+ elif isinstance(prev_node_b, list):
778
+ # first, save the prev_node instances, because they
779
+ # will be overwritten in the env after the first logger
780
+ # is added
781
+ prev_node_c_list = [env_c[arg.name] for arg in prev_node_b]
782
+
783
+ for arg_idx, arg in enumerate(prev_node_b):
784
+ prev_node_c = prev_node_c_list[arg_idx]
785
+ env_c[prev_node_c.name] = _insert_logger_after_node(
786
+ prev_node_c, gm_b, logger_cls, '_ns_logger_b_inp_',
787
+ node_b.name, name_b, ref_name, ref_node_type_b,
788
+ NSSingleResultValuesType.NODE_INPUT.value,
789
+ index_within_arg=arg_idx, index_of_arg=0,
790
+ fqn=fqn_base_b)
791
+ else:
792
+ # logging of inputs which are not lists is not supported yet
793
+ raise AssertionError(f"type {type(prev_node_b)} is not handled yet")
794
+ # subgraph so far:
795
+ #
796
+ # (prev_node_c)+ -> (logger_c_input)?
797
+
798
+ # Note: this if statement is always True, spelling it out to clarify code
799
+ # intent.
800
+ if node_b_is_start_node or node_b_is_end_node:
801
+ # ensure env_c is populated with base node
802
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
803
+ node_c = env_c[node_b.name]
804
+
805
+ # after this point,
806
+ #
807
+ # node_a is the original node from graph_a, with parent module gm_a
808
+ # node_b is the original node from graph_b, with parent module gm_b
809
+ # node_c is the copy of node_b in graph_c
810
+ #
811
+ # subgraph so far:
812
+ #
813
+ # (prev_node_c)+ -> (logger_c_input)? -> node_start_c
814
+
815
+ if node_b_is_start_node:
816
+
817
+ # cast dtype from the dtype of node_c's input to the dtype of
818
+ # node_a's input (dequant, etc)
819
+ # prev_node_c = node_c.args[0]
820
+ prev_node_c = get_normalized_nth_input(node_c, gm_b, 0)
821
+ if should_log_inputs:
822
+ # skip the input logger when inserting a dtype cast
823
+ if isinstance(prev_node_c, Node):
824
+ prev_node_c = get_normalized_nth_input(node_c, gm_b, 0)
825
+ elif isinstance(prev_node_c, list):
826
+ prev_node_c = [get_normalized_nth_input(arg, gm_b, 0) for arg in prev_node_c]
827
+ dtype_cast_node = _insert_dtype_cast_after_node(
828
+ subgraph_a.start_node, node_c, prev_node_c, gm_a, gm_b, graph_c,
829
+ node_b.name + '_dtype_cast_', logger_cls,
830
+ node_type_to_io_type_map)
831
+ # note: not inserting to env_c because all nodes which use the dtype
832
+ # casts are copied from graph_a
833
+ #
834
+ # subgraph so far:
835
+ #
836
+ # (dtype_cast_node)+
837
+ # /
838
+ # (prev_node_c)+ -> (logger_c_input)? -> node_start_c
839
+
840
+ # if input logging is enabled, log the input to the subgraph
841
+ if should_log_inputs:
842
+ # TODO: explain this
843
+ ref_node_name = ''
844
+ if isinstance(dtype_cast_node, Node):
845
+ dtype_cast_node = _insert_logger_after_node(
846
+ dtype_cast_node, gm_b, logger_cls, '_ns_logger_a_inp_',
847
+ ref_node_name, name_a, ref_name, ref_node_type_a,
848
+ NSSingleResultValuesType.NODE_INPUT.value,
849
+ index_within_arg=0, index_of_arg=0,
850
+ fqn=fqn_base_a)
851
+ input_logger: Union[Node, List[Node]] = dtype_cast_node
852
+ else:
853
+ assert isinstance(dtype_cast_node, list)
854
+ new_loggers = []
855
+ for dtype_cast_idx, dtype_cast_node_inner in enumerate(dtype_cast_node):
856
+ dtype_cast_logger = _insert_logger_after_node(
857
+ dtype_cast_node_inner, gm_b, logger_cls, '_ns_logger_a_inp_',
858
+ ref_node_name, name_a, ref_name, ref_node_type_a,
859
+ NSSingleResultValuesType.NODE_INPUT.value,
860
+ index_within_arg=dtype_cast_idx,
861
+ index_of_arg=0,
862
+ fqn=fqn_base_a)
863
+ new_loggers.append(dtype_cast_logger)
864
+ dtype_cast_node = new_loggers
865
+ input_logger = dtype_cast_node
866
+ # subgraph so far:
867
+ #
868
+ # (dtype_cast_node)+ -> (logger_a_input)?
869
+ # /
870
+ # prev_node_c -> (logger_c_input)? -> node_start_c
871
+
872
+ # hook up the new mod_a copy to be in the graph, receiving the
873
+ # same inputs as mod_b does, with dtype cast to match a
874
+ # Some ops, such as LSTMs, have two non-param inputs. If we have
875
+ # such an op, pass the second param as well. Note: dtype casting
876
+ # for the second param is not implemented yet, it can be added
877
+ # later if there is a use case.
878
+ node_c_second_non_param_arg = None
879
+ num_non_param_args_node_a = get_number_of_non_param_args(subgraph_a.start_node, gm_a)
880
+ if num_non_param_args_node_a == 2:
881
+ # node_c_second_non_param_arg = node_c.args[1]
882
+ node_c_second_non_param_arg = get_normalized_nth_input(node_c, gm_b, 1)
883
+ node_a_shadows_c = _insert_copy_of_subgraph_a_after_input_node_c(
884
+ dtype_cast_node, node_c_second_non_param_arg,
885
+ subgraph_a, gm_a, gm_b, node_c.name + '_shadow_copy_')
886
+ env_c[node_a_shadows_c.name] = node_a_shadows_c
887
+ # subgraph so far:
888
+ #
889
+ # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy(args/kwargs not shown)
890
+ # /
891
+ # (prev_node_c)+ -> (logger_c_input)? -> node_start_c
892
+
893
+ if should_log_inputs:
894
+ # When we created the input logger, we left the ref_node_name
895
+ # as an empty string, because the subgraph copy did not exist
896
+ # yet. Now that the subgraph copy exists, we modify this name
897
+ # to its true value.
898
+ # Note: the alternative to this is to create the input logger
899
+ # after creating the subgraph, which is slightly more
900
+ # complicated. This is the lesser of two evils.
901
+ # input_logger = env_c[dtype_cast_node.name]
902
+ # Find the first node in the subgraph
903
+ cur_node = node_a_shadows_c
904
+ while get_normalized_nth_input(cur_node, gm_b, 0) != input_logger:
905
+ cur_node = get_normalized_nth_input(cur_node, gm_b, 0) # type: ignore[assignment]
906
+ if isinstance(input_logger, Node):
907
+ input_logger_mod = getattr(gm_b, input_logger.name)
908
+ input_logger_mod.ref_node_name = cur_node.name
909
+ else:
910
+ assert isinstance(input_logger, list)
911
+ for input_logger_inner in input_logger:
912
+ input_logger_mod = getattr(gm_b, input_logger_inner.name)
913
+ input_logger_mod.ref_node_name = cur_node.name
914
+
915
+ # hook up a logger to the mod_a copy
916
+ env_c[node_a_shadows_c.name] = _insert_logger_after_node(
917
+ env_c[node_a_shadows_c.name], gm_b, logger_cls, '_ns_logger_a_',
918
+ node_a_shadows_c.name, name_a, ref_name, ref_node_type_a,
919
+ NSSingleResultValuesType.NODE_OUTPUT.value,
920
+ index_within_arg=0, index_of_arg=0,
921
+ fqn=fqn_base_a)
922
+ # subgraph so far:
923
+ #
924
+ # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a
925
+ # /
926
+ # (prev_node_c)+ -> (logger_c_input)? -> node_start_c
927
+
928
+ if node_b_is_end_node:
929
+
930
+ # hook up a logger to the mod_b copy
931
+ env_c[node_b.name] = _insert_logger_after_node(
932
+ env_c[node_b.name], gm_b, logger_cls, '_ns_logger_b_',
933
+ node_b.name, name_b, ref_name, ref_node_type_b,
934
+ NSSingleResultValuesType.NODE_OUTPUT.value,
935
+ index_within_arg=0, index_of_arg=0,
936
+ fqn=fqn_base_b)
937
+ # subgraph so far:
938
+ #
939
+ # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a
940
+ # /
941
+ # (prev_node_c+) -> (logger_c_input)? -> node_start_c -> ... -> node_end_c -> logger_c
942
+ #
943
+ # Note: node_start_c may be the same node as node_end_c, or they
944
+ # may have nodes inbetween.
945
+
946
+ else:
947
+ env_c[node_b.name] = graph_c.node_copy(node_b, load_arg)
948
+
949
+ gm_c = GraphModule(gm_b, graph_c)
950
+ return gm_c
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/mappings.py ADDED
@@ -0,0 +1,761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ toq = torch.ops.quantized
7
+
8
+ import torch.ao.nn.quantized as nnq
9
+ import torch.ao.nn.quantized.dynamic as nnqd
10
+ import torch.ao.nn.intrinsic.quantized as nniq
11
+ import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
12
+ import torch.ao.nn.intrinsic.qat as nniqat
13
+ import torch.ao.nn.intrinsic as nni
14
+ import torch.ao.nn.qat as nnqat
15
+ import torch.ao.nn.qat.dynamic as nnqatd
16
+ from torch.ao.quantization.backend_config import get_native_backend_config
17
+ import torch.ao.quantization.fx._lower_to_native_backend as \
18
+ _lower_to_native_backend
19
+ import torch.ao.quantization.quantization_mappings as quantization_mappings
20
+
21
+ from .ns_types import NSNodeTargetType
22
+
23
+ from typing import Callable, Dict, List, Optional, Set, Tuple
24
+
25
+
26
+ def get_base_name_to_sets_of_related_ops() -> Dict[str, Set[NSNodeTargetType]]:
27
+ # note: this set is modified below by items from backend_config
28
+ sets_of_related_ops: List[Set[NSNodeTargetType]] = [
29
+ # conv modules
30
+ {
31
+ nn.Conv1d,
32
+ },
33
+ {
34
+ nn.Conv2d,
35
+ },
36
+ {
37
+ nn.Conv3d,
38
+ },
39
+ # conv functionals
40
+ {
41
+ F.conv1d,
42
+ },
43
+ {
44
+ F.conv2d,
45
+ },
46
+ {
47
+ F.conv3d,
48
+ },
49
+ # linear modules
50
+ {
51
+ nn.Linear,
52
+ },
53
+ # linear functionals
54
+ {
55
+ F.linear,
56
+ },
57
+ # average pool
58
+ {
59
+ nn.AvgPool1d,
60
+ torch.avg_pool1d,
61
+ },
62
+ {
63
+ nn.AvgPool2d,
64
+ torch._C._nn.avg_pool2d,
65
+ },
66
+ {
67
+ nn.AvgPool3d,
68
+ torch._C._nn.avg_pool3d,
69
+ },
70
+ # adaptive average pool
71
+ {
72
+ nn.AdaptiveAvgPool1d,
73
+ F.adaptive_avg_pool1d,
74
+ },
75
+ {
76
+ nn.AdaptiveAvgPool2d,
77
+ F.adaptive_avg_pool2d,
78
+ },
79
+ {
80
+ nn.AdaptiveAvgPool3d,
81
+ F.adaptive_avg_pool3d,
82
+ },
83
+ # LSTM
84
+ {
85
+ nn.LSTM,
86
+ },
87
+ # add
88
+ {
89
+ torch.add,
90
+ operator.add, # x + y
91
+ },
92
+ # cat
93
+ {
94
+ torch.cat,
95
+ },
96
+ # mul
97
+ {
98
+ torch.mul,
99
+ operator.mul,
100
+ },
101
+ # relu
102
+ {
103
+ F.relu,
104
+ nn.ReLU,
105
+ 'relu',
106
+ 'relu_',
107
+ torch.relu,
108
+ },
109
+ # maxpool
110
+ {
111
+ nn.MaxPool1d,
112
+ F.max_pool1d,
113
+ },
114
+ {
115
+ nn.MaxPool2d,
116
+ F.max_pool2d,
117
+ },
118
+ {
119
+ nn.MaxPool3d,
120
+ F.max_pool3d,
121
+ },
122
+ # sigmoid
123
+ {
124
+ torch.sigmoid,
125
+ 'sigmoid',
126
+ 'sigmoid_',
127
+ nn.Sigmoid,
128
+ F.sigmoid,
129
+ },
130
+ # BatchNorm
131
+ {
132
+ nn.BatchNorm2d,
133
+ },
134
+ {
135
+ nn.BatchNorm3d,
136
+ },
137
+ # ConvTranspose
138
+ {
139
+ nn.ConvTranspose1d,
140
+ },
141
+ {
142
+ nn.ConvTranspose2d,
143
+ },
144
+ {
145
+ nn.ConvTranspose3d,
146
+ },
147
+ # functional transposed conv
148
+ {
149
+ F.conv_transpose1d,
150
+ },
151
+ {
152
+ F.conv_transpose2d,
153
+ },
154
+ {
155
+ F.conv_transpose3d,
156
+ },
157
+ # ELU
158
+ {
159
+ nn.ELU,
160
+ },
161
+ # Embedding
162
+ {
163
+ nn.Embedding,
164
+ },
165
+ # EmbeddingBag
166
+ {
167
+ nn.EmbeddingBag,
168
+ },
169
+ # GroupNorm
170
+ {
171
+ nn.GroupNorm,
172
+ },
173
+ # Hardswish
174
+ {
175
+ nn.Hardswish,
176
+ },
177
+ # InstanceNorm
178
+ {
179
+ nn.InstanceNorm1d,
180
+ },
181
+ {
182
+ nn.InstanceNorm2d,
183
+ },
184
+ {
185
+ nn.InstanceNorm3d,
186
+ },
187
+ # LayerNorm
188
+ {
189
+ nn.LayerNorm,
190
+ },
191
+ # LeakyReLU
192
+ {
193
+ nn.LeakyReLU,
194
+ },
195
+ # ReLU6
196
+ {
197
+ nn.ReLU6,
198
+ F.relu6,
199
+ },
200
+ # F.elu
201
+ {
202
+ F.elu,
203
+ },
204
+ # F.hardswish
205
+ {
206
+ F.hardswish,
207
+ },
208
+ # F.group_norm
209
+ {
210
+ F.group_norm,
211
+ },
212
+ # F.instance_norm
213
+ {
214
+ F.instance_norm,
215
+ },
216
+ # F.layer_norm
217
+ {
218
+ F.layer_norm,
219
+ },
220
+ # F.leaky_relu
221
+ {
222
+ F.leaky_relu,
223
+ },
224
+ # F.silu
225
+ {
226
+ nn.SiLU,
227
+ F.silu,
228
+ },
229
+ # F.mish
230
+ {
231
+ nn.Mish,
232
+ F.mish,
233
+ },
234
+ # F.tanh
235
+ {
236
+ nn.Tanh,
237
+ F.tanh,
238
+ torch.tanh,
239
+ 'tanh_',
240
+ 'tanh',
241
+ },
242
+ # F.hardsigmoid
243
+ {
244
+ 'hardsigmoid_',
245
+ 'hardsigmoid',
246
+ F.hardsigmoid,
247
+ nn.Hardsigmoid,
248
+ },
249
+ # F.hardtanh
250
+ {
251
+ nn.Hardtanh,
252
+ F.hardtanh,
253
+ F.hardtanh_,
254
+ },
255
+ # floordiv
256
+ {
257
+ operator.floordiv,
258
+ },
259
+ # unsqueeze
260
+ {
261
+ torch.unsqueeze,
262
+ },
263
+ # stack
264
+ {
265
+ torch.stack,
266
+ },
267
+ # squeeze
268
+ {
269
+ torch.squeeze,
270
+ },
271
+ # sort
272
+ {
273
+ torch.sort,
274
+ },
275
+ # repeat_interleave
276
+ {
277
+ torch.repeat_interleave,
278
+ },
279
+ # min
280
+ {
281
+ torch.min,
282
+ },
283
+ # mean
284
+ {
285
+ torch.mean,
286
+ },
287
+ # max
288
+ {
289
+ torch.max,
290
+ },
291
+ # transpose
292
+ {
293
+ torch.transpose,
294
+ },
295
+ # flatten
296
+ {
297
+ torch.flatten,
298
+ },
299
+ # clamp
300
+ {
301
+ torch.clamp,
302
+ },
303
+ # chunk
304
+ {
305
+ torch.chunk,
306
+ },
307
+ # interpolate
308
+ {
309
+ torch.nn.functional.interpolate,
310
+ },
311
+ # dropout
312
+ {
313
+ nn.Dropout,
314
+ },
315
+ # F.dropout
316
+ {
317
+ F.dropout,
318
+ },
319
+ # matmul
320
+ {
321
+ torch.matmul,
322
+ },
323
+ # Softmax
324
+ {
325
+ nn.Softmax,
326
+ },
327
+ # PReLU
328
+ {
329
+ nn.PReLU,
330
+ nnq.PReLU,
331
+ },
332
+ # F.prelu
333
+ {
334
+ F.prelu,
335
+ toq.prelu,
336
+ },
337
+ # pixel shuffle
338
+ {
339
+ nn.PixelShuffle,
340
+ },
341
+ {
342
+ F.pixel_shuffle,
343
+ },
344
+ # pixel unshuffle
345
+ {
346
+ nn.PixelUnshuffle,
347
+ },
348
+ {
349
+ F.pixel_unshuffle,
350
+ },
351
+ # narrow
352
+ {
353
+ torch.narrow,
354
+ },
355
+ ]
356
+
357
+ # for each floating point op, add versions of the op added by
358
+ # backend_config
359
+ backend_config = get_native_backend_config()
360
+
361
+ new_connections: List[Tuple[Callable, Callable]] = [
362
+ # technical debt edge case
363
+ (nn.Linear, nn.modules.linear.NonDynamicallyQuantizableLinear),
364
+ ]
365
+
366
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
367
+
368
+ # pattern format: (c, (b, a))
369
+ first_element = pattern
370
+ # look from the end, because pattern is in reverse order
371
+ while isinstance(first_element, (list, tuple)):
372
+ first_element = first_element[-1]
373
+
374
+ if config.fused_module is not None:
375
+ # case 1: pattern fuses a pattern of ops into an op
376
+ # example: nn.Conv1d, nn.ReLU fused into nni.ConvReLU1d
377
+ new_connections.append((first_element, config.fused_module))
378
+
379
+ if config.qat_module is not None:
380
+ # case 2: pattern swaps a module into a QAT module
381
+ # example: nni.ConvReLU1d swapped into nniqat.ConvReLU1d
382
+ new_connections.append((first_element, config.qat_module))
383
+
384
+ if config.reference_quantized_module is not None:
385
+ # case 3: reference version of floating point module, such as
386
+ # nn.Conv2d and nnqr.Conv2d
387
+ new_connections.append((first_element, config.reference_quantized_module))
388
+
389
+ #
390
+ # Add reference module swaps from default lowering path
391
+ #
392
+
393
+ for source_to_target in (
394
+ _lower_to_native_backend.STATIC_LOWER_MODULE_MAP,
395
+ _lower_to_native_backend.DYNAMIC_LOWER_MODULE_MAP,
396
+ _lower_to_native_backend.WEIGHT_ONLY_LOWER_MODULE_MAP,
397
+ _lower_to_native_backend.SPECIAL_PATTERN_LOWER_MODULE_MAP,
398
+ ):
399
+ for source, target in source_to_target.items(): # type: ignore[attr-defined]
400
+ new_connections.append((source, target))
401
+
402
+ for source_to_double_target in (
403
+ _lower_to_native_backend.STATIC_LOWER_FUSED_MODULE_MAP,
404
+ _lower_to_native_backend.STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP,
405
+ _lower_to_native_backend.DYNAMIC_LOWER_FUSED_MODULE_MAP,
406
+ ):
407
+ for source, (target1, target2) in source_to_double_target.items(): # type: ignore[attr-defined]
408
+ new_connections.append((source, target1))
409
+ new_connections.append((source, target2))
410
+
411
+ #
412
+ # Add function swaps from default lowering path
413
+ #
414
+
415
+ for source, (target1, target2) in \
416
+ _lower_to_native_backend.STATIC_LOWER_FUNCTIONAL_MAP.items():
417
+ new_connections.append((source, target1))
418
+ new_connections.append((source, target2))
419
+
420
+ for source_to_target in (
421
+ _lower_to_native_backend.QBIN_OP_MAPPING,
422
+ _lower_to_native_backend.QBIN_RELU_OP_MAPPING,
423
+ quantization_mappings.DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS,
424
+ ):
425
+ for source, target in source_to_target.items():
426
+ new_connections.append((source, target))
427
+
428
+ #
429
+ # Add other swaps, ideally in the future this could be removed
430
+ # after the lowering code stops using these.
431
+ #
432
+ for source_to_target in (
433
+ quantization_mappings.DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS,
434
+ ):
435
+ for source, target in source_to_target.items():
436
+ new_connections.append((source, target))
437
+
438
+
439
+ # add the new connections from backend_config
440
+ for item1, item2 in new_connections:
441
+ for set_of_related_ops in sets_of_related_ops:
442
+ if item1 in set_of_related_ops or item2 in set_of_related_ops:
443
+ set_of_related_ops.add(item1)
444
+ set_of_related_ops.add(item2)
445
+ break
446
+
447
+ base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]] = {}
448
+
449
+ counter = 0
450
+ for set_of_related_ops in sets_of_related_ops:
451
+ base_name = str(counter)
452
+ counter += 1
453
+ base_name_to_sets_of_related_ops[base_name] = set_of_related_ops
454
+
455
+ return base_name_to_sets_of_related_ops
456
+
457
+
458
+ def get_base_name_for_op(
459
+ base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
460
+ op: NSNodeTargetType,
461
+ ) -> Optional[str]:
462
+ for base_name, set_of_related_ops in base_name_to_sets_of_related_ops.items():
463
+ if op in set_of_related_ops:
464
+ return base_name
465
+ return None
466
+
467
+
468
+ def add_op_to_sets_of_related_ops(
469
+ base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
470
+ op: NSNodeTargetType,
471
+ related_op: Optional[NSNodeTargetType],
472
+ ) -> None:
473
+ if related_op is not None:
474
+ for set_of_related_ops in base_name_to_sets_of_related_ops.values():
475
+ if related_op in set_of_related_ops:
476
+ set_of_related_ops.add(op)
477
+ return
478
+ # if we got here, related_op was not found
479
+ raise AssertionError(f"{related_op} was not found")
480
+ else:
481
+ counter = 0
482
+ while str(counter) in base_name_to_sets_of_related_ops:
483
+ counter += 1
484
+ base_name_to_sets_of_related_ops[str(counter)] = {op}
485
+
486
+
487
+ # TODO(future PR): clean this up
488
+ def get_node_type_to_io_type_map() -> Dict[str, Set[NSNodeTargetType]]:
489
+ FUNS_IO_TYPE_FP32: Set[NSNodeTargetType] = {
490
+ F.linear,
491
+ F.conv1d,
492
+ F.conv2d,
493
+ F.conv3d,
494
+ torch.cat,
495
+ F.elu,
496
+ F.hardswish,
497
+ F.instance_norm,
498
+ F.layer_norm,
499
+ F.leaky_relu,
500
+ F.dropout,
501
+ F.silu,
502
+ F.mish,
503
+ operator.add,
504
+ torch.add,
505
+ operator.mul,
506
+ torch.mul,
507
+ torch.sum,
508
+ F.prelu,
509
+ }
510
+
511
+ FUNS_IO_TYPE_FP16: Set[NSNodeTargetType] = set()
512
+
513
+ FUNS_IO_TYPE_INT8: Set[NSNodeTargetType] = {
514
+ toq.linear,
515
+ toq.linear_relu,
516
+ toq.conv1d,
517
+ toq.conv1d_relu,
518
+ toq.conv2d,
519
+ toq.conv2d_relu,
520
+ toq.conv3d,
521
+ toq.conv3d_relu,
522
+ toq.cat,
523
+ toq.elu,
524
+ toq.hardswish,
525
+ toq.instance_norm,
526
+ toq.layer_norm,
527
+ toq.leaky_relu,
528
+ toq.dropout,
529
+ toq.prelu,
530
+ # TODO(future PR): implement shadowing for binary ops and
531
+ # uncomment below
532
+ # toq.add,
533
+ # toq.mul,
534
+ }
535
+
536
+ FUNS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = {
537
+ F.relu,
538
+ F.tanh,
539
+ torch.tanh,
540
+ F.sigmoid,
541
+ torch.sigmoid,
542
+ F.hardsigmoid,
543
+ operator.floordiv,
544
+ torch.adaptive_avg_pool1d,
545
+ F.adaptive_avg_pool2d,
546
+ F.adaptive_avg_pool3d,
547
+ F.dropout,
548
+ F.hardtanh,
549
+ F.hardtanh_,
550
+ F.interpolate,
551
+ F.max_pool1d,
552
+ F.max_pool2d,
553
+ F.max_pool3d,
554
+ F.relu6,
555
+ F.pixel_shuffle,
556
+ F.pixel_unshuffle,
557
+ torch.avg_pool1d,
558
+ torch._C._nn.avg_pool2d,
559
+ torch._C._nn.avg_pool3d,
560
+ torch.cat,
561
+ torch.chunk,
562
+ torch.clamp,
563
+ torch.flatten,
564
+ torch.transpose,
565
+ torch.max,
566
+ torch.mean,
567
+ torch.min,
568
+ torch.narrow,
569
+ torch.repeat_interleave,
570
+ torch.sort,
571
+ torch.squeeze,
572
+ torch.stack,
573
+ torch.unsqueeze,
574
+ operator.add,
575
+ }
576
+
577
+ MODS_IO_TYPE_FP32: Set[NSNodeTargetType] = {
578
+ nn.Linear,
579
+ nnqat.Linear,
580
+ nnqatd.Linear,
581
+ nnqd.Linear,
582
+ torch.nn.modules.linear.NonDynamicallyQuantizableLinear,
583
+ nn.Conv1d,
584
+ nn.Conv2d,
585
+ nn.Conv3d,
586
+ nnqat.Conv1d,
587
+ nnqat.Conv2d,
588
+ nnqat.Conv3d,
589
+ nnqat.Embedding,
590
+ nnqat.EmbeddingBag,
591
+ nn.LSTM,
592
+ # note: nnqd.Linear is an instance of nnq.Linear, so this
593
+ # check has to happen before the int8 module check
594
+ nnqd.LSTM,
595
+ nn.BatchNorm2d,
596
+ nn.BatchNorm3d,
597
+ nn.Dropout,
598
+ nn.ConvTranspose1d,
599
+ nn.ConvTranspose2d,
600
+ nn.ConvTranspose3d,
601
+ nn.ELU,
602
+ nn.GroupNorm,
603
+ nn.InstanceNorm1d,
604
+ nn.InstanceNorm2d,
605
+ nn.InstanceNorm3d,
606
+ nn.LayerNorm,
607
+ nn.Hardswish,
608
+ nn.LeakyReLU,
609
+ nn.ReLU6,
610
+ nn.SiLU,
611
+ nn.Mish,
612
+ nn.Softmax,
613
+ nn.PReLU,
614
+ nni.BNReLU2d,
615
+ nni.BNReLU3d,
616
+ nni.ConvReLU1d,
617
+ nni.ConvReLU2d,
618
+ nni.ConvReLU3d,
619
+ nni.LinearReLU,
620
+ nni.LinearBn1d,
621
+ nni.ConvBn1d,
622
+ nni.ConvBn2d,
623
+ nni.ConvBn3d,
624
+ nniqat.ConvBn1d,
625
+ nniqat.ConvBn2d,
626
+ nniqat.ConvBn3d,
627
+ nniqat.ConvBnReLU1d,
628
+ nniqat.ConvBnReLU2d,
629
+ nniqat.ConvBnReLU3d,
630
+ nniqat.ConvReLU1d,
631
+ nniqat.ConvReLU2d,
632
+ nniqat.ConvReLU3d,
633
+ nniqat.LinearReLU,
634
+ nniqat.LinearBn1d,
635
+ nniqd.LinearReLU,
636
+ nni.LinearLeakyReLU,
637
+ nni.LinearTanh,
638
+ nni.ConvAdd2d,
639
+ nni.ConvAddReLU2d,
640
+ }
641
+
642
+ MODS_IO_TYPE_INT8: Set[NSNodeTargetType] = {
643
+ nnq.Linear,
644
+ nnq.Conv1d,
645
+ nnq.Conv2d,
646
+ nnq.Conv3d,
647
+ nnq.BatchNorm2d,
648
+ nnq.BatchNorm3d,
649
+ nnq.Dropout,
650
+ nnq.ConvTranspose1d,
651
+ nnq.ConvTranspose2d,
652
+ nnq.ELU,
653
+ nnq.InstanceNorm1d,
654
+ nnq.InstanceNorm2d,
655
+ nnq.InstanceNorm3d,
656
+ nnq.LayerNorm,
657
+ nnq.Hardswish,
658
+ nnq.LeakyReLU,
659
+ nnq.Embedding,
660
+ nnq.EmbeddingBag,
661
+ nnq.Dropout,
662
+ nnq.Softmax,
663
+ nnq.PReLU,
664
+ nniq.BNReLU2d,
665
+ nniq.BNReLU3d,
666
+ nniq.ConvReLU1d,
667
+ nniq.ConvReLU2d,
668
+ nniq.ConvReLU3d,
669
+ nniq.LinearReLU,
670
+ nniq.LinearLeakyReLU,
671
+ nniq.LinearTanh,
672
+ nniq.ConvAdd2d,
673
+ nniq.ConvAddReLU2d,
674
+ }
675
+
676
+ MODS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = {
677
+ nn.ReLU,
678
+ nn.Tanh,
679
+ nn.Sigmoid,
680
+ nn.Hardsigmoid,
681
+ nn.AdaptiveAvgPool1d,
682
+ nn.AdaptiveAvgPool2d,
683
+ nn.AdaptiveAvgPool3d,
684
+ nn.AvgPool1d,
685
+ nn.AvgPool2d,
686
+ nn.AvgPool3d,
687
+ nn.Dropout,
688
+ nn.Hardtanh,
689
+ nn.Identity,
690
+ nn.MaxPool1d,
691
+ nn.MaxPool2d,
692
+ nn.MaxPool3d,
693
+ nn.PixelShuffle,
694
+ nn.PixelUnshuffle,
695
+ nn.ReLU6,
696
+ }
697
+
698
+ METHS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = {
699
+ 'sigmoid_',
700
+ 'sigmoid',
701
+ 'tanh_',
702
+ 'tanh',
703
+ 'hardsigmoid_',
704
+ 'hardsigmoid',
705
+ 'relu_',
706
+ 'relu',
707
+ }
708
+
709
+ return {
710
+ 'funs_io_type_fp32': FUNS_IO_TYPE_FP32,
711
+ 'funs_io_type_fp16': FUNS_IO_TYPE_FP16,
712
+ 'funs_io_type_int8': FUNS_IO_TYPE_INT8,
713
+ 'funs_io_type_fp32_or_int8': FUNS_IO_TYPE_FP32_OR_INT8,
714
+ 'mods_io_type_fp32': MODS_IO_TYPE_FP32,
715
+ 'mods_io_type_int8': MODS_IO_TYPE_INT8,
716
+ 'mods_io_type_fp32_or_int8': MODS_IO_TYPE_FP32_OR_INT8,
717
+ 'meths_io_type_fp32_or_int8': METHS_IO_TYPE_FP32_OR_INT8,
718
+ }
719
+
720
+
721
+ def get_unmatchable_types_map() -> Dict[str, Set[NSNodeTargetType]]:
722
+
723
+ FUNS_UNMATCHABLE: Set[NSNodeTargetType] = {
724
+ torch.quantize_per_tensor,
725
+ operator.getitem,
726
+ }
727
+
728
+ MODS_UNMATCHABLE: Set[NSNodeTargetType] = {
729
+ nn.Identity,
730
+ }
731
+
732
+ METHS_UNMATCHABLE: Set[NSNodeTargetType] = {
733
+ 'to',
734
+ 'dequantize',
735
+ 'reshape',
736
+ 'view',
737
+ 'unsqueeze_',
738
+ 'unsqueeze',
739
+ 'transpose',
740
+ 'squeeze_',
741
+ 'squeeze',
742
+ 'size',
743
+ 'shape',
744
+ 'resize_',
745
+ 'repeat_interleave',
746
+ 'repeat',
747
+ 'permute',
748
+ 'numel',
749
+ 'mean',
750
+ 'detach_',
751
+ 'detach',
752
+ 'contiguous',
753
+ 'clamp',
754
+ 'chunk',
755
+ }
756
+
757
+ return {
758
+ 'funs_unmatchable': FUNS_UNMATCHABLE,
759
+ 'mods_unmatchable': MODS_UNMATCHABLE,
760
+ 'meths_unmatchable': METHS_UNMATCHABLE,
761
+ }
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/n_shadows_utils.py ADDED
@@ -0,0 +1,1312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.fx
3
+ from torch.fx import (
4
+ Node,
5
+ GraphModule,
6
+ Graph,
7
+ )
8
+
9
+ from torch.ao.ns.fx.utils import (
10
+ # TODO(future PR): make this work correctly for methods
11
+ get_target_type_str,
12
+ get_normalized_nth_input,
13
+ )
14
+ from torch.ao.ns.fx.ns_types import (
15
+ NSSingleResultValuesType,
16
+ NSResultsType,
17
+ )
18
+ from torch.ao.ns.fx.graph_passes import _maybe_get_fqn
19
+ from torch.ao.quantization import QConfigMapping
20
+ from torch.ao.quantization.qconfig import QConfigAny
21
+ from torch.ao.quantization.utils import getattr_from_fqn
22
+ from torch.ao.quantization.fx.match_utils import _MatchResult
23
+ from torch.utils._pytree import tree_map
24
+
25
+ import collections
26
+ import copy
27
+ from typing import List, Dict, Set, Tuple, Callable, Any, Optional
28
+ import operator
29
+
30
+ SHADOW_NODE_NAME_PREFIX = 'shadow'
31
+ SHADOW_WRAPPER_NODE_NAME_PREFIX = 'shadow_wrapper'
32
+
33
+ # TODO(future PR): reuse existing mapping instead of creating a new one
34
+ BINARY_FUNCTIONS = {
35
+ torch.add,
36
+ torch.Tensor.add,
37
+ operator.add,
38
+ torch.mul,
39
+ torch.Tensor.mul,
40
+ operator.mul,
41
+ }
42
+
43
+ def _get_attr_name(subgraph_idx, subgraph_candidate_idx):
44
+ return f"{SHADOW_NODE_NAME_PREFIX}_{subgraph_idx}_{subgraph_candidate_idx}"
45
+
46
+ def _get_attr_wrapper_name(subgraph_idx, subgraph_candidate_idx):
47
+ return f"{SHADOW_WRAPPER_NODE_NAME_PREFIX}_{subgraph_idx}_{subgraph_candidate_idx}"
48
+
49
+
50
+ class OutputProp:
51
+ """
52
+ Output propagation (modeled from shape propagation).
53
+
54
+ Given a GraphModule and an example input, saves the output flowing
55
+ through each node on `node.traced_result`.
56
+
57
+ Code based on the example from
58
+ https://pytorch.org/docs/stable/fx.html#the-interpreter-pattern
59
+ """
60
+ def __init__(self, mod):
61
+ self.mod = mod
62
+ self.graph = mod.graph
63
+ self.modules = dict(self.mod.named_modules())
64
+
65
+ def propagate(self, *args):
66
+ args_iter = iter(args)
67
+ env : Dict[str, Node] = {}
68
+
69
+ def load_arg(a):
70
+ return torch.fx.graph.map_arg(a, lambda n: env[n.name])
71
+
72
+ def fetch_attr(target : str):
73
+ target_atoms = target.split('.')
74
+ attr_itr = self.mod
75
+ for i, atom in enumerate(target_atoms):
76
+ if not hasattr(attr_itr, atom):
77
+ raise RuntimeError(f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}")
78
+ attr_itr = getattr(attr_itr, atom)
79
+ return attr_itr
80
+
81
+ for node in self.graph.nodes:
82
+ if node.op == 'placeholder':
83
+ result = next(args_iter)
84
+ elif node.op == 'get_attr':
85
+ result = fetch_attr(node.target)
86
+ elif node.op == 'call_function':
87
+ result = node.target(*load_arg(node.args), **load_arg(node.kwargs))
88
+ elif node.op == 'call_method':
89
+ self_obj, *args = load_arg(node.args)
90
+ kwargs = load_arg(node.kwargs)
91
+ result = getattr(self_obj, node.target)(*args, **kwargs)
92
+ elif node.op == 'call_module':
93
+ result = self.modules[node.target](*load_arg(node.args), **load_arg(node.kwargs))
94
+
95
+ if isinstance(result, torch.Tensor):
96
+ node.traced_result = result
97
+
98
+ env[node.name] = result
99
+
100
+ return None
101
+
102
+ def _get_dedup_subgraphs(
103
+ matches: Dict[str, _MatchResult]
104
+ ) -> Dict[str, List[Node]]:
105
+ # the original matches variable is unique by node, make it unique by subgraph
106
+ # instead
107
+ seen_nodes = set()
108
+ subgraphs_dedup = {}
109
+
110
+ # Dict items are not reversible until Python 3.8, so we hack it
111
+ # to be compatible with previous Python versions
112
+ # TODO(future PR): try reversed(list(matches.items()))
113
+ matches_items_reversed: List[Tuple[str, _MatchResult]] = []
114
+ for name, cur_match in matches.items():
115
+ matches_items_reversed.insert(0, (name, cur_match))
116
+
117
+ # Note: the order is important. `matches` currently provides the matches
118
+ # in reverse order. We would like to process the matches in non-reverse
119
+ # order, so that we can create an intuitive naming scheme, such as
120
+ # naming the first op's submodules `shadow_0_0` through `shadow_0_(n-1)`
121
+ for name, cur_match in matches_items_reversed: # type: ignore[call-overload]
122
+ was_seen = False
123
+ for node_or_tuple in cur_match[1]:
124
+
125
+ # Cur_match[1] has an unusual type. It says that it's a `List[Node]`,
126
+ # but it is really not. Furthermore, the contents of this field
127
+ # can change from match results of multiple nodes of the same pattern
128
+ #
129
+ # For example, for conv -> bn -> relu, we see
130
+ # match_results = {
131
+ # 'conv': (relu, [(bn, conv), relu], ...),
132
+ # 'bn': (relu, [(bn, conv), relu], ...),
133
+ # 'relu': (relu, [(bn, conv), relu], ...),
134
+ # }
135
+ #
136
+ # Ideally we should clean up the `find_matches` function to make
137
+ # this more intuitive. For the purposes of this prototype, we hack
138
+ # around it.
139
+
140
+ if isinstance(node_or_tuple, Node):
141
+ if node_or_tuple in seen_nodes:
142
+ was_seen = True
143
+ seen_nodes.add(node_or_tuple)
144
+
145
+ else:
146
+ assert isinstance(node_or_tuple, tuple)
147
+ for node in node_or_tuple:
148
+ assert isinstance(node, Node)
149
+ if node in seen_nodes:
150
+ was_seen = True
151
+ seen_nodes.add(node)
152
+
153
+ if was_seen:
154
+ continue
155
+
156
+ # Start with the unusual type, convert it to [op_0, ..., op_n]
157
+ list_of_nodes = []
158
+
159
+ if len(cur_match[1]) == 1:
160
+ list_of_nodes = cur_match[1]
161
+ else:
162
+ assert len(cur_match[1]) == 2
163
+ # either (a, b), or ((a, b), c) or (c, (a, b))
164
+ # cannot make any assumptions on order, not clear what the
165
+ # _find_matches function is doing to populate this
166
+ # TODO(future PR): make this code less confusing, see discussion
167
+ # in https://github.com/pytorch/pytorch/pull/80521/files#r975918836
168
+
169
+ def _order_nodes(node_a, node_b, node_c) -> List[Node]:
170
+ nodes = [node_a, node_b, node_c]
171
+ first_node = None
172
+ mid_node = None
173
+ last_node = None
174
+ for n in nodes:
175
+ prev_n = n.args[0]
176
+ next_n = next(iter(n.users))
177
+ if prev_n not in nodes:
178
+ first_node = n
179
+ elif next_n not in nodes:
180
+ last_node = n
181
+ else:
182
+ mid_node = n
183
+ assert first_node is not None and mid_node is not None and \
184
+ last_node is not None
185
+ assert mid_node.args[0] is first_node
186
+ assert last_node.args[0] is mid_node
187
+ return [last_node, mid_node, first_node]
188
+
189
+ if isinstance(cur_match[1][0], Node) and isinstance(cur_match[1][1], Node):
190
+ # (a, b)
191
+ list_of_nodes = cur_match[1]
192
+ elif isinstance(cur_match[1][0], tuple):
193
+ # ((a, b), c)
194
+ node_a, node_b = cur_match[1][0]
195
+ node_c = cur_match[1][1]
196
+ list_of_nodes = _order_nodes(node_a, node_b, node_c)
197
+ elif isinstance(cur_match[1][1], tuple):
198
+ # (a, (b, c))
199
+ node_a, node_b = cur_match[1][1]
200
+ node_c = cur_match[1][0]
201
+ list_of_nodes = _order_nodes(node_a, node_b, node_c)
202
+
203
+ # [node_n, ..., node_0], note that the order is reversed
204
+ # to make it chronological for simple subgraphs
205
+ list_of_nodes.reverse()
206
+ subgraphs_dedup[name] = list_of_nodes
207
+
208
+ return subgraphs_dedup
209
+
210
+ def _get_logger_for_subgraph(
211
+ model: GraphModule,
212
+ first_node: Node,
213
+ last_node: Node,
214
+ subgraph_idx: int,
215
+ subgraph_candidate_idx: int,
216
+ qconfig_str: str,
217
+ logger_cls: Callable,
218
+ fqn: Optional[str],
219
+ ) -> torch.nn.Module:
220
+ """
221
+ Given a model and a linear subgraph starting from `first_node` and
222
+ ending with `last_node`, creates a logger for the end of this
223
+ subgraph.
224
+ """
225
+ if fqn is None:
226
+ fqn = ''
227
+ logger_mod_orig = logger_cls(
228
+ first_node.name, # ref_node_name
229
+ last_node.name, # prev_node_name
230
+ f'subgraph_{subgraph_idx}_{subgraph_candidate_idx}', # model_name
231
+ 'model', # ref_name
232
+ get_target_type_str(last_node, model), # prev_node_target_type
233
+ get_target_type_str(first_node, model), # ref_node_target_type
234
+ NSSingleResultValuesType.NODE_OUTPUT.value, # results_type
235
+ 0, # index_within_arg
236
+ 0, # index_of_arg
237
+ fqn, # fqn
238
+ qconfig_str,
239
+ )
240
+ # Usually we expect the user to add loggers, then calibrate, then convert,
241
+ # and then populate loggers. This is why the loggers start disabled.
242
+ # TODO(future PR): reconsider the design to make this more intuitive.
243
+ logger_mod_orig.enabled = False
244
+ return logger_mod_orig
245
+
246
+ def create_submodule_from_subgraph(
247
+ model: torch.nn.Module,
248
+ first_node: Node,
249
+ last_node: Node,
250
+ ) -> GraphModule:
251
+ """
252
+ Input: a model, and a linear subgraph within the model from first_node to
253
+ last_node.
254
+
255
+ Output: a new submodule containing a copy of the subgraph, with the inputs
256
+ to the first node becoming the inputs to the submodule, and all other
257
+ nodes in the subgraph being copied.
258
+
259
+ Example inputs:
260
+
261
+ `model`: a module with graph
262
+
263
+ x0 -> op1 -> x1 -> op2 -> x2
264
+ |
265
+ arg1
266
+
267
+ `first_node`: op1
268
+ `last_node`: op2
269
+
270
+ Example output: a new module with graph
271
+
272
+ input1 -> op1_copy -> x1 -> op2_copy -> output1
273
+ |
274
+ arg1
275
+ """
276
+
277
+ #
278
+ # create a blank GraphModule with an empty graph
279
+ #
280
+
281
+ class M(torch.nn.Module):
282
+ def forward(self, x):
283
+ pass
284
+
285
+ m = M()
286
+ gm = torch.fx.symbolic_trace(m)
287
+ g = gm.graph
288
+ for node in reversed(gm.graph.nodes):
289
+ g.erase_node(node)
290
+
291
+ #
292
+ # modify the graph to have a copy of our subgraph
293
+ #
294
+
295
+ cur_node_orig = first_node
296
+ cur_args_orig = cur_node_orig.args
297
+ cur_kwargs_orig = cur_node_orig.kwargs
298
+
299
+ cur_name_idx = 0
300
+
301
+ iteration_limit = 100
302
+ cur_iteration = 0
303
+
304
+ while True:
305
+ if cur_node_orig is first_node:
306
+ # we are at the first node, we need to set up graph inputs
307
+ # TODO(future): some graphs could have placeholders which are unrelated
308
+ # to the first node, need to handle this
309
+ cur_args_copy = []
310
+ cur_kwargs_copy = {}
311
+ seen_names: Set[str] = set()
312
+ old_name_to_new_node: Dict[str, Node] = {}
313
+
314
+ def _add_placeholder(
315
+ g: Graph, node: Node, seen_names, old_name_to_new_node
316
+ ):
317
+ # note: for graphs starting with patterns such as `y = x + x`, we
318
+ # need to ensure we do not add multiple placeholders with the
319
+ # same name
320
+ counter = 0
321
+ while node.name + '_' + str(counter) in seen_names:
322
+ counter += 1
323
+ cur_name = node.name + '_' + str(counter)
324
+ seen_names.add(cur_name)
325
+ placeholder = g.placeholder(cur_name)
326
+ old_name_to_new_node[node.name] = placeholder
327
+ return placeholder
328
+
329
+ for arg in cur_node_orig.args:
330
+ if isinstance(arg, Node):
331
+ p = _add_placeholder(
332
+ g, arg, seen_names, old_name_to_new_node)
333
+ cur_args_copy.append(p)
334
+ elif isinstance(arg, (list, tuple)):
335
+ new_arg = []
336
+ for inner_arg in arg:
337
+ if isinstance(inner_arg, Node):
338
+ new_arg.append(_add_placeholder(
339
+ g, inner_arg, seen_names, old_name_to_new_node))
340
+ else:
341
+ new_arg.append(inner_arg)
342
+ cur_args_copy.append(new_arg)
343
+ else:
344
+ cur_args_copy.append(arg)
345
+
346
+ # TODO(future PR): handle non-normalized kwargs
347
+ for kwarg_name, kwarg in cur_node_orig.kwargs.items():
348
+ if isinstance(kwarg, Node):
349
+ cur_kwargs_copy[kwarg_name] = _add_placeholder(
350
+ g, kwarg, seen_names, old_name_to_new_node)
351
+ elif isinstance(kwarg, (list, tuple)):
352
+ new_kwarg = []
353
+ for inner_kwarg in kwarg:
354
+ p = _add_placeholder(
355
+ g, inner_kwarg, seen_names, old_name_to_new_node)
356
+ new_kwarg.append(p)
357
+ cur_kwargs_copy[kwarg_name] = new_kwarg
358
+ else:
359
+ cur_kwargs_copy[kwarg_name] = kwarg
360
+
361
+ cur_args_copy = tuple(cur_args_copy) # type: ignore[assignment]
362
+ else:
363
+ # we are not at first node, first arg is from the previous node,
364
+ # and all other args are copied
365
+
366
+ # the current implementation is simplistic and cannot handle
367
+ # ops with two or more arguments which need to be passed from
368
+ # the previous op, so we assert them out
369
+ assert cur_node_orig.target not in BINARY_FUNCTIONS
370
+
371
+ # at this point in the code, cur_node_copy is pointing to the copy
372
+ # of the previous node
373
+ # TODO(future PR): this is not handling complicated graphs correctly, need to
374
+ # look at actual relationships instead of assuming sequential graph
375
+ # TODO(future PR): this is ignoring kwargs, will need to support kwargs
376
+ # for any fusion pattern which has them for a node that is not the
377
+ # first node.
378
+ cur_args_copy = [cur_node_copy] # type: ignore[has-type]
379
+
380
+ if len(cur_node_orig.args) > 1:
381
+ for arg in cur_node_orig.args[1:]:
382
+ if isinstance(arg, torch.nn.Parameter):
383
+ new_arg = arg.clone().detach() # type: ignore[assignment]
384
+ mod_name = f"mod_{cur_name_idx}"
385
+ cur_name_idx += 1
386
+ setattr(gm, mod_name, new_arg)
387
+ new_arg_placeholder = gm.placeholder(mod_name)
388
+ cur_args_copy.append(new_arg_placeholder)
389
+ elif isinstance(arg, (float, int, torch.dtype)):
390
+ cur_args_copy.append(arg)
391
+ else:
392
+ raise AssertionError(f'arg of type {type(arg)} not handled yet')
393
+ cur_args_copy = tuple(cur_args_copy) # type: ignore[assignment]
394
+
395
+ # copy the node
396
+ if cur_node_orig.op == 'call_module':
397
+ orig_mod = getattr_from_fqn(model, cur_node_orig.target) # type: ignore[arg-type]
398
+ orig_mod_copy = copy.deepcopy(orig_mod)
399
+ mod_name = f"mod_{cur_name_idx}"
400
+ setattr(gm, mod_name, orig_mod_copy)
401
+ cur_name_idx += 1
402
+ cur_node_copy = g.call_module(mod_name, cur_args_copy, cur_kwargs_copy)
403
+
404
+ elif cur_node_orig.op == 'call_function':
405
+ cur_node_copy = g.call_function(
406
+ cur_node_orig.target, cur_args_copy, cur_kwargs_copy)
407
+
408
+ elif cur_node_orig.op == 'call_method':
409
+ cur_node_copy = g.call_method(
410
+ cur_node_orig.target, cur_args_copy, cur_kwargs_copy)
411
+
412
+ else:
413
+ raise AssertionError(f'{cur_node_orig.op} not supported yet')
414
+
415
+ if cur_node_orig is last_node:
416
+ break
417
+
418
+ # go to next node
419
+ assert len(cur_node_orig.users.keys()) == 1, \
420
+ f'{cur_node_orig} has more than 1 users, not supported yet'
421
+ cur_node_orig = next(iter(cur_node_orig.users.keys()))
422
+ cur_args_orig = cur_node_orig.args
423
+ cur_kwargs_orig = cur_node_orig.kwargs
424
+
425
+ cur_iteration += 1
426
+ if cur_iteration > iteration_limit:
427
+ raise AssertionError('iteration limit exceeded')
428
+
429
+ # set up outputs
430
+ g.output(cur_node_copy)
431
+
432
+ gm.recompile()
433
+ return gm
434
+
435
+ def create_one_transformed_and_logged_copy_of_subgraph(
436
+ mt: GraphModule,
437
+ subgraph_idx: int,
438
+ subgraph_candidate_idx: int,
439
+ first_node: Node,
440
+ last_node: Node,
441
+ fqn: Optional[str],
442
+ list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]],
443
+ example_inputs: Any,
444
+ last_added_shadow_node_list: List[Optional[Node]],
445
+ custom_prepare_fn: Optional[Callable] = None,
446
+ custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
447
+ ) -> None:
448
+ """
449
+ Given a subgraph in `mt` and a subgraph candidate idx, inserts the
450
+ subgraph candidate copy and instruments it with loggers.
451
+
452
+ If subgraph_candidate_idx is 0, this is the baseline fp32 subgraph and we just
453
+ add a logger to the end.
454
+
455
+ If subgraph_candidate_idx is not 0, we create a copy of the subgraph and
456
+ prepare it with `prepare_fx`.
457
+ """
458
+
459
+ # TODO(future PR): move logger classes to utils to remove circular dependency
460
+ from torch.ao.ns._numeric_suite_fx import OutputLogger, OutputComparisonLogger
461
+
462
+ if subgraph_candidate_idx == 0:
463
+ # idx = 0 is the floating point (original) version of the subgraph
464
+ # We keep the subgraph as is, and add a logger at the end
465
+
466
+ qconfig_str = ''
467
+ logger_mod_orig = _get_logger_for_subgraph(
468
+ mt, first_node, last_node, subgraph_idx, subgraph_candidate_idx,
469
+ qconfig_str, OutputLogger, fqn)
470
+
471
+ attr_name = _get_attr_name(subgraph_idx, subgraph_candidate_idx)
472
+ assert not hasattr(mt, attr_name)
473
+ setattr(mt, attr_name, logger_mod_orig)
474
+ with mt.graph.inserting_after(last_node):
475
+ new_node = mt.graph.call_module(attr_name, args=(last_node,), kwargs={})
476
+ last_added_shadow_node_list[0] = new_node
477
+
478
+ else:
479
+ # idx > 0 means we have a candidate qconfig to try, so we need
480
+ # to make a copy of the subgraph, feed it with the right inputs,
481
+ # and add a logger at the end
482
+
483
+ # get the qconfig
484
+ # subtract one because the first candidate is the floating point
485
+ # version of the subgraph
486
+ node_name_to_qconfig = \
487
+ list_of_node_name_to_qconfig[subgraph_candidate_idx - 1]
488
+ qconfig = node_name_to_qconfig[first_node.name]
489
+
490
+ # if no quantization is requested, skip
491
+ # TODO(future PR): deduplicate equivalent qconfigs that come from
492
+ # different qconfig mapping objects
493
+ if qconfig is None:
494
+ return
495
+
496
+ qconfig_mapping = QConfigMapping().set_global(qconfig)
497
+
498
+ # create a copy of the submodule, wrapped in a separate module
499
+ orig_mod_copy_wrapped = create_submodule_from_subgraph(
500
+ mt, first_node, last_node)
501
+
502
+ # add a call to prepare_fx on the wrapper module
503
+ if custom_prepare_fn is None:
504
+ orig_mod_copy_wrapped = torch.ao.quantization.quantize_fx.prepare_fx(
505
+ orig_mod_copy_wrapped, qconfig_mapping, example_inputs=example_inputs)
506
+ else:
507
+ if custom_prepare_kwargs is None:
508
+ custom_prepare_kwargs = {}
509
+ for kwarg_name in ["example_inputs", "prepare_custom_config", "qconfig_mapping"]:
510
+ assert kwarg_name not in custom_prepare_kwargs, f"cannot specify {kwarg_name} in custom_prepare_kwargs"
511
+ prepare_kwargs: Dict[str, Any] = {
512
+ "example_inputs": example_inputs,
513
+ "qconfig_mapping": qconfig_mapping
514
+ }
515
+ prepare_kwargs.update(custom_prepare_kwargs)
516
+ orig_mod_copy_wrapped = custom_prepare_fn(
517
+ orig_mod_copy_wrapped,
518
+ **prepare_kwargs)
519
+
520
+ # attach the wrapper to the model
521
+ attr_name = _get_attr_wrapper_name(subgraph_idx, subgraph_candidate_idx)
522
+ assert not hasattr(mt, attr_name)
523
+ setattr(mt, attr_name, orig_mod_copy_wrapped)
524
+
525
+ # add a call to the wrapper module from the parent graph
526
+ insert_after_node = last_added_shadow_node_list[0]
527
+ with mt.graph.inserting_after(insert_after_node):
528
+ # TODO(future PR): handle fusion patterns where non-first nodes
529
+ # need inputs
530
+
531
+ # pass in all node args and kwargs
532
+
533
+ new_args = []
534
+ for arg in first_node.args:
535
+ if isinstance(arg, Node):
536
+ new_args.append(arg)
537
+ elif isinstance(arg, (list, tuple)) and len(arg) and isinstance(arg[0], Node):
538
+ for inner_arg in arg:
539
+ if isinstance(inner_arg, Node):
540
+ new_args.append(inner_arg)
541
+
542
+ new_kwargs = {}
543
+ for name, old_kwarg in first_node.kwargs.items():
544
+ if isinstance(old_kwarg, Node):
545
+ new_kwargs[name] = old_kwarg
546
+ elif isinstance(old_kwarg, (list, tuple)) and len(old_kwarg):
547
+ for inner_old_kwarg in old_kwarg:
548
+ # TODO(future PR): clarify why we are adding kwargs to args
549
+ new_args.append(inner_old_kwarg)
550
+
551
+ new_args = tuple(new_args) # type: ignore[assignment]
552
+
553
+ new_node = mt.graph.call_module(
554
+ attr_name, args=new_args, kwargs=new_kwargs)
555
+
556
+ # add a logger to parent graph to observe the shadow wrapper
557
+ logger_mod_orig = _get_logger_for_subgraph(
558
+ mt, first_node, last_node, subgraph_idx, subgraph_candidate_idx,
559
+ str(qconfig), OutputComparisonLogger, fqn)
560
+
561
+ attr_name = _get_attr_name(subgraph_idx, subgraph_candidate_idx)
562
+ assert not hasattr(mt, attr_name)
563
+ setattr(mt, attr_name, logger_mod_orig)
564
+ with mt.graph.inserting_after(new_node):
565
+ logger = mt.graph.call_module(attr_name, args=(new_node, last_node), kwargs={})
566
+ last_added_shadow_node_list[0] = logger
567
+
568
+ mt.recompile()
569
+
570
+ def create_n_transformed_and_logged_copies_of_subgraph(
571
+ mt: GraphModule,
572
+ subgraph_idx: int,
573
+ match_name: str,
574
+ nodes_in_this_subgraph: List[Any],
575
+ qconfig_mappings: List[QConfigMapping],
576
+ list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]],
577
+ custom_prepare_fn: Optional[Callable] = None,
578
+ custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
579
+ ) -> None:
580
+ """
581
+ Given a model `mt` and a subgraph_idx, creates the needed copies
582
+ of the subgraph for all qconfigs, and instruments them with loggers.
583
+ """
584
+ # for now, assume that
585
+ # 1. the first node has one input
586
+ # 2. the last node has one output
587
+
588
+ # for now, ignore all subgraphs that contain non-nodes (tuples, etc)
589
+ # TODO(future PR): implement this
590
+ if any(
591
+ not isinstance(node, Node)
592
+ for node in nodes_in_this_subgraph
593
+ ):
594
+ return
595
+
596
+ first_node = nodes_in_this_subgraph[0]
597
+ last_node = nodes_in_this_subgraph[-1]
598
+ # We used output propagation to populate example values on each
599
+ # node. Use the example values from the previous node as the input
600
+ # to the current node.
601
+ prev_node = get_normalized_nth_input(first_node, mt, 0)
602
+ if isinstance(prev_node, list):
603
+ example_inputs = [x.traced_result for x in prev_node]
604
+ elif isinstance(prev_node, tuple):
605
+ example_inputs = (x.traced_result for x in prev_node) # type: ignore[assignment]
606
+ else:
607
+ # currently some customer models do not have a traced_result in
608
+ # every node, so we have to guard for this case since we cannot
609
+ # quantize without an example input
610
+ # TODO(future PR): add a test case for this once we have an easy
611
+ # repro, see https://github.com/pytorch/pytorch/pull/80521/files#r975940489
612
+ # for additional context
613
+ if hasattr(prev_node, 'traced_result'):
614
+ example_inputs = (prev_node.traced_result,) # type: ignore[attr-defined, assignment]
615
+ else:
616
+ print(
617
+ 'unable to get example input for node ' +
618
+ f'{first_node.format_node()}, skipping')
619
+ return
620
+
621
+ # If there are no quantization configs for this subgraph, skip adding
622
+ # loggers. This reduces memory usage for models where not all layers are
623
+ # quantized.
624
+ # TODO(future): consider making this configurable
625
+ found_at_least_one_qconfig = False
626
+ for subgraph_candidate_idx in range(len(qconfig_mappings) + 1):
627
+
628
+ if subgraph_candidate_idx == 0:
629
+ # fp32 baseline does not need a qconfig
630
+ continue
631
+
632
+ # a. we have N shadows, so len(qconfig_mappings) is N
633
+ # b. we will have the fp32 layer + N shadows, so overall number of
634
+ # (original_op) + (*shadows) will be N+1
635
+ # c. since `subgraph_candidate_idx` represents (b), we need
636
+ # to subtract 1 to query from (a)
637
+ node_name_to_qconfig = \
638
+ list_of_node_name_to_qconfig[subgraph_candidate_idx - 1]
639
+ qconfig = node_name_to_qconfig[first_node.name]
640
+ if qconfig is not None:
641
+ found_at_least_one_qconfig = True
642
+ break
643
+ if not found_at_least_one_qconfig:
644
+ print('unable to find at least one qconfig for node ' +
645
+ f'{first_node.format_node()}, skipping')
646
+ return
647
+
648
+ fqn = _maybe_get_fqn(first_node, mt)
649
+
650
+ # We want the results to contain the subgraphs in natural order,
651
+ # and the graph to also contain shadow wrappers and shadow loggers
652
+ # in natural order.
653
+ # If we just iterate in reverse, the graph will be in natural
654
+ # order but the eventual results will be in reverse order.
655
+ # So, we keep track of the last shadow logger we added and
656
+ # always insert after it.
657
+ last_added_shadow_node_list: List[Optional[Node]] = [None]
658
+ for subgraph_candidate_idx in range(len(qconfig_mappings) + 1):
659
+
660
+ create_one_transformed_and_logged_copy_of_subgraph(
661
+ mt, subgraph_idx, subgraph_candidate_idx, first_node,
662
+ last_node, fqn, list_of_node_name_to_qconfig,
663
+ example_inputs, last_added_shadow_node_list, custom_prepare_fn,
664
+ custom_prepare_kwargs)
665
+
666
+ def create_add_loggers_graph(
667
+ model: GraphModule,
668
+ subgraphs_dedup: Dict[str, List[Node]],
669
+ qconfig_mapping: QConfigMapping,
670
+ node_name_to_qconfig: Dict[str, QConfigAny],
671
+ ) -> None:
672
+ r"""
673
+ Given a model, a model graph partition (currently a set of matched
674
+ subgraphs) and instructions how to transform each subgraph
675
+ (currently quantizing it according to qconfig_mapping), modifies
676
+ the model graph to create an alternate path through the original graph,
677
+ with each of the subgraphs quantized. This is useful to compare
678
+ propagation error of a transformation such as quantization.
679
+
680
+ For example, given layer op0 and op1, there are four cases when handling op1:
681
+ 1. op0 and op1 quantized
682
+ 2. op0 and op1 unquantized
683
+ 3. op0 quantized, op1 unquantized
684
+ 4. op0 unquantized, op1 quantized
685
+
686
+ Example input, case 1:
687
+
688
+ .. code::
689
+
690
+ x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
691
+ \ \ \ \ # noqa: W605
692
+ ---> op0_1 -> x1_1 ----> clog op1_1 -> x2_1 ----> clog
693
+
694
+ Example output, case 1:
695
+
696
+ .. code::
697
+
698
+ x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
699
+ \ \ \ # noqa: W605
700
+ ---> op0_1 -> x1_1 ----> clog -> op1_1 -> x2_1 ----> clog
701
+
702
+ """
703
+ # TODO(future PR): move logger classes to utils to remove circular dependency
704
+ from torch.ao.ns._numeric_suite_fx import OutputLogger, OutputComparisonLogger
705
+
706
+ def _get_subgraph_containing_node(node, subgraphs_dedup):
707
+ for subgraph in subgraphs_dedup.values():
708
+ if node in subgraph:
709
+ return subgraph
710
+ return None
711
+
712
+ # First, we need to create shadow branches, going from
713
+ #
714
+ # x0 -> op0 -> x1 -> ...
715
+ #
716
+ #
717
+ # to
718
+ #
719
+ # x0 -> op0_0 -> x1_0 -> log -> ...
720
+ # \ \
721
+ # -> op0_1 -> x1_1 -> clog
722
+ #
723
+ # Later, the outputs of each shadow will be rerouted to calculate
724
+ # propagation error.
725
+
726
+ # Note: we cannot iterate over matched subgraphs because some nodes
727
+ # may not be matched. So, we iterate over nodes in the graph, and
728
+ # associate them to matched subgraphs if possible.
729
+
730
+ nodes_to_skip = set()
731
+ # for each subgraph, save a mapping from first node of subgraph
732
+ # to first and last node of the shadow of this subgraph
733
+ orig_first_node_to_shadow_in_node = {}
734
+ orig_first_node_to_shadow_out_node = {}
735
+ # need to record original list because we will mutate the graph as we go
736
+ orig_nodes = list(model.graph.nodes) # type: ignore[union-attr, arg-type]
737
+ cur_subgraph_idx = 0
738
+ for n in orig_nodes:
739
+ if n.op in ('placeholder', 'get_attr', 'output') or n in nodes_to_skip:
740
+ continue
741
+
742
+ maybe_subgraph = _get_subgraph_containing_node(n, subgraphs_dedup)
743
+ insert_submodule_copy = False
744
+ if maybe_subgraph is not None:
745
+ first_node, last_node = maybe_subgraph[0], maybe_subgraph[-1]
746
+ for node_to_skip in maybe_subgraph:
747
+ nodes_to_skip.add(node_to_skip)
748
+ qconfig = node_name_to_qconfig[first_node.name]
749
+ if qconfig is not None:
750
+ insert_submodule_copy = True
751
+ else:
752
+ first_node, last_node = n, n
753
+
754
+ if insert_submodule_copy:
755
+ match_name = first_node.name
756
+ create_n_transformed_and_logged_copies_of_subgraph(
757
+ model, cur_subgraph_idx, match_name, maybe_subgraph,
758
+ [qconfig_mapping], [node_name_to_qconfig],
759
+ None, None # type: ignore[arg-type]
760
+ )
761
+ # find the created shadow module and record it so we
762
+ # can find it easily in step 2
763
+ expected_shadow_target = f"shadow_wrapper_{cur_subgraph_idx}_1"
764
+ new_shadow_mod = None
765
+ for maybe_shadow_mod in model.graph.nodes:
766
+ if maybe_shadow_mod.op == 'call_module' and \
767
+ maybe_shadow_mod.target == expected_shadow_target:
768
+ new_shadow_mod = maybe_shadow_mod
769
+ break
770
+ assert new_shadow_mod is not None
771
+ orig_first_node_to_shadow_in_node[first_node] = new_shadow_mod
772
+ orig_first_node_to_shadow_out_node[first_node] = new_shadow_mod
773
+
774
+ else:
775
+ # create a copy of the subgraph by only copying FX nodes
776
+ # but not copying any parameters, to minimize memory usage
777
+ subgraph_to_use = maybe_subgraph if maybe_subgraph is not None \
778
+ else [first_node]
779
+
780
+ # add a regular logger after last_node
781
+ qconfig_str = ''
782
+ subgraph_candidate_idx = 0
783
+ fqn = _maybe_get_fqn(first_node, model)
784
+ logger_mod_orig = _get_logger_for_subgraph(
785
+ model, first_node, last_node, cur_subgraph_idx, subgraph_candidate_idx,
786
+ qconfig_str, OutputLogger, fqn)
787
+ attr_name = _get_attr_name(cur_subgraph_idx, subgraph_candidate_idx)
788
+ assert not hasattr(model, attr_name)
789
+ setattr(model, attr_name, logger_mod_orig)
790
+ insertion_point = last_node
791
+ with model.graph.inserting_after(insertion_point):
792
+ logger = model.graph.call_module(
793
+ attr_name, args=(last_node,), kwargs={})
794
+ insertion_point = logger
795
+
796
+ # create a copy of the subgraph
797
+ cur_node_orig = first_node
798
+ cur_node_copy = None
799
+ first_node_copy = None
800
+ while cur_node_orig in subgraph_to_use:
801
+ # TODO(future PR): make this support all possible args/kwargs
802
+ if cur_node_orig is first_node:
803
+ new_args = cur_node_orig.args
804
+ new_kwargs = cur_node_orig.kwargs
805
+ else:
806
+ first_arg_for_copy = cur_node_copy
807
+ new_args = tuple([first_arg_for_copy, *cur_node_orig.args[1:]]) # noqa: C409
808
+ new_kwargs = cur_node_orig.kwargs
809
+ # make a copy of cur_node_orig
810
+ with model.graph.inserting_after(insertion_point):
811
+ cur_node_copy = model.graph.create_node(
812
+ cur_node_orig.op,
813
+ cur_node_orig.target,
814
+ new_args,
815
+ new_kwargs,
816
+ # cur_node_orig.name, # TODO(future PR): set name explicitly
817
+ )
818
+ if first_node_copy is None:
819
+ first_node_copy = cur_node_copy
820
+ # since now only linear subgraphs are supported, all nodes
821
+ # except the last one must have only one user
822
+ if cur_node_orig != last_node:
823
+ assert len(cur_node_orig.users.keys()) == 1
824
+ cur_node_orig = next(iter(cur_node_orig.users.keys()))
825
+ assert not cur_node_orig.name.startswith(SHADOW_NODE_NAME_PREFIX)
826
+ insertion_point = cur_node_copy
827
+
828
+ # add a comparison logger after last_node's copy
829
+ subgraph_candidate_idx = 1
830
+ logger_mod_orig = _get_logger_for_subgraph(
831
+ model, first_node, last_node, cur_subgraph_idx, subgraph_candidate_idx,
832
+ qconfig_str, OutputComparisonLogger, fqn)
833
+ attr_name = _get_attr_name(cur_subgraph_idx, subgraph_candidate_idx)
834
+ assert not hasattr(model, attr_name)
835
+ setattr(model, attr_name, logger_mod_orig)
836
+ with model.graph.inserting_after(insertion_point):
837
+ logger = model.graph.call_module(
838
+ attr_name, args=(cur_node_copy, last_node), kwargs={})
839
+
840
+ # save the final node so we can use it in step 2
841
+ orig_first_node_to_shadow_in_node[first_node] = first_node_copy
842
+ orig_first_node_to_shadow_out_node[first_node] = cur_node_copy
843
+
844
+ cur_subgraph_idx += 1
845
+
846
+ model.recompile()
847
+
848
+ # Now, we go from
849
+ #
850
+ # x0 -> op0_0 -> x1_0 -> log -> x1 -> op1_0 -> ...
851
+ # \ \ \
852
+ # -> op0_1 -> x1_1 -> clog -> op1_1 -> ...
853
+ #
854
+ # to
855
+ #
856
+ # x0 -> op0_0 -> x1_0 -> log --> x1_0 -> op1_0 -> ...
857
+ # \ \
858
+ # -> op0_1 -> x1_1 -> clog -> x1_1 -> op1_1 -> ...
859
+ #
860
+ # sample values of key internal variables for the example above:
861
+ #
862
+ # orig_first_node_to_shadow_in_node = {op0_0: op0_1, op1_0: op1_1}
863
+ # orig_first_node_to_shadow_out_node = {op0_0: op0_1, op1_0: op1_1}
864
+ #
865
+ # note: for subgraphs with more than one node, in_node will be different
866
+ # compared to out_node
867
+
868
+
869
+ nodes_to_skip = set()
870
+ for n in orig_nodes:
871
+ if n.op in ('placeholder', 'get_attr', 'output') or n in nodes_to_skip:
872
+ continue
873
+
874
+ maybe_subgraph = _get_subgraph_containing_node(n, subgraphs_dedup)
875
+ if maybe_subgraph is not None:
876
+ first_node, last_node = maybe_subgraph[0], maybe_subgraph[-1]
877
+ for node_to_skip in maybe_subgraph:
878
+ nodes_to_skip.add(node_to_skip)
879
+ else:
880
+ first_node, last_node = n, n
881
+
882
+ def maybe_remap_node_to_shadow(node):
883
+ """
884
+ If unshadowed `node` has a shadow version, return that. If not,
885
+ return `node`.
886
+ """
887
+ if not isinstance(node, Node):
888
+ # handle scalars
889
+ return node
890
+
891
+ if node.op in ('placeholder', 'get_attr'):
892
+ return node
893
+
894
+ # Find the shadowed version of this arg from the previous
895
+ # subgraph. For this, we need to:
896
+ # 1. navigate to the first node of the previous subgraph
897
+ # 2. get the output of the shadow wrapper which has (1) as an input
898
+
899
+ # For now, assume the arg is in matched subgraphs. In the
900
+ # future we may have to handle the case where this is not true.
901
+ prev_subgraph = _get_subgraph_containing_node(
902
+ node, subgraphs_dedup)
903
+ if prev_subgraph is None:
904
+ prev_subgraph = [node]
905
+ prev_first_node = prev_subgraph[0]
906
+ prev_shadow_output = \
907
+ orig_first_node_to_shadow_out_node[prev_first_node]
908
+ return prev_shadow_output
909
+
910
+ cur_shadow_input = \
911
+ orig_first_node_to_shadow_in_node[first_node]
912
+ assert cur_shadow_input is not None
913
+ cur_shadow_input.args = tree_map(
914
+ maybe_remap_node_to_shadow, cur_shadow_input.args)
915
+ cur_shadow_input.kwargs = tree_map(
916
+ maybe_remap_node_to_shadow, cur_shadow_input.kwargs)
917
+
918
+ model.recompile()
919
+
920
+ def _get_weight_info_from_shadow_wrapper(shadow_wrapper: torch.nn.Module):
921
+ # input: shadow wrapper module
922
+ # output if shadow wrapper module has a weighted op:
923
+ # (quantize_fn, (quantize_fn_args))
924
+ # output if shadow wrapper module doesn't have a weighted op:
925
+ # None
926
+
927
+ # For now, assume that the weight is the second input
928
+ # to the shadow module. If that changes, we can fix it later.
929
+ placeholders_seen = 0
930
+ for shadow_n in shadow_wrapper.graph.nodes: # type: ignore[union-attr]
931
+ if shadow_n.op != 'placeholder':
932
+ continue
933
+
934
+ placeholders_seen += 1
935
+ if placeholders_seen != 2:
936
+ continue
937
+
938
+ # the subgraph looks like
939
+ #
940
+ # _input_scale_1 = self._input_scale_1
941
+ # _input_zero_point_1 = self._input_zero_point_1
942
+ # quantize_per_channel = torch.quantize_per_channel(
943
+ # w2_0, _input_scale_1, _input_zero_point_1,
944
+ # 0, torch.qint8)
945
+ #
946
+ # we have `w2_0`, and are navigating this subgraph
947
+ # to get `_input_scale_1` and `_input_zero_point_1`
948
+
949
+ assert len(shadow_n.users) == 1
950
+ quant_node = next(iter(shadow_n.users.keys()))
951
+ new_args: Any = None
952
+ if quant_node.target == torch.quantize_per_channel:
953
+ _weight, scale_node, zp_node, axis, dtype = quant_node.args
954
+ scale_val = getattr_from_fqn(
955
+ shadow_wrapper, scale_node.target)
956
+ zp_val = getattr_from_fqn(
957
+ shadow_wrapper, zp_node.target)
958
+ new_args = (scale_val, zp_val, axis, dtype)
959
+ else:
960
+ assert quant_node.target == torch.quantize_per_tensor
961
+ _weight, scale_node, zp_node, dtype = quant_node.args
962
+ scale_val = getattr_from_fqn(
963
+ shadow_wrapper, scale_node.target)
964
+ zp_val = getattr_from_fqn(
965
+ shadow_wrapper, zp_node.target)
966
+ new_args = (scale_val, zp_val, dtype)
967
+ return (quant_node.target, new_args)
968
+
969
+ return None
970
+
971
+
972
+ def extract_weight_comparison(m: GraphModule) -> NSResultsType:
973
+
974
+ # example graph:
975
+ #
976
+ # w1 = self.w1
977
+ # b1 = self.b1
978
+ # linear = torch._C._nn.linear(x, w1, b1)
979
+ # shadow_0_0 = self.shadow_0_0(linear)
980
+ # shadow_wrapper_0_1 = self.shadow_wrapper_0_1(x, w1, b1)
981
+ # shadow_0_1 = self.shadow_0_1(shadow_wrapper_0_1, linear)
982
+ #
983
+ # algorithm:
984
+ # 1. for each call_function node matching our allowlist:
985
+ # 2. if corresponding shadow wrapper exists, extract the weight pair
986
+ #
987
+ # Note: this is not super robust, but that's ok because this is
988
+ # just for legacy customers who depend on the previous two-model version
989
+ # of this API. TBD if we need to make this robust.
990
+ # Note: modules are not supported, since existing customers only
991
+ # use functions.
992
+
993
+ # TODO(future PR): move this to config
994
+ weighted_ops = {
995
+ torch.nn.functional.linear,
996
+ }
997
+
998
+ results: NSResultsType = {
999
+ 'model': {NSSingleResultValuesType.WEIGHT.value: {}}
1000
+ }
1001
+
1002
+ for n in m.graph.nodes: # type: ignore[union-attr]
1003
+ if not (n.op == 'call_function' and n.target in weighted_ops):
1004
+ continue
1005
+
1006
+ # Check if we have a corresponding shadow wrapper
1007
+ # TODO(future PR, if needed): support kwargs
1008
+ # TODO(future PR, if needed): support multiple shadow users
1009
+ first_arg = n.args[0]
1010
+ shadow_wrapper_node = None
1011
+ for user in first_arg.users:
1012
+ # TODO(before land): fix string match
1013
+ if user.op == 'call_module' and \
1014
+ user.target.startswith('shadow_wrapper'):
1015
+ shadow_wrapper_node = user
1016
+ break
1017
+
1018
+ if shadow_wrapper_node is None:
1019
+ continue
1020
+
1021
+ shadow_wrapper = getattr_from_fqn(
1022
+ m, shadow_wrapper_node.target) # type: ignore[arg-type]
1023
+ weight_info = _get_weight_info_from_shadow_wrapper(
1024
+ shadow_wrapper)
1025
+ if weight_info is None:
1026
+ continue
1027
+
1028
+ # get weight
1029
+ w_node = n.args[1]
1030
+ w_obj = getattr_from_fqn(m, w_node.target).detach()
1031
+
1032
+ # get a quantized version of weight
1033
+ quant_fn, quant_fn_args_except_first = weight_info
1034
+ new_args = (w_obj, *quant_fn_args_except_first)
1035
+ w_obj_q = quant_fn(*new_args)
1036
+
1037
+ # add a comparison
1038
+ ref_node_name = n.name
1039
+ prev_node_name = n.name
1040
+ ref_node_type = get_target_type_str(n, m)
1041
+ prev_node_type = ref_node_type
1042
+ fqn = None
1043
+ if hasattr(m, '_node_name_to_scope'):
1044
+ fqn = m._node_name_to_scope[n.name][0] # type: ignore[index]
1045
+ comparison = torch.ao.ns.fx.utils.compute_sqnr(w_obj, w_obj_q)
1046
+ result_fp32 = {
1047
+ 'res_type': NSSingleResultValuesType.WEIGHT.value,
1048
+ 'values': [w_obj],
1049
+ 'prev_node_name': prev_node_name,
1050
+ 'prev_node_target_type': prev_node_type,
1051
+ 'ref_node_name': ref_node_name,
1052
+ 'ref_node_target_type': ref_node_type,
1053
+ 'index_within_arg': 0,
1054
+ 'index_of_arg': 0,
1055
+ 'fqn': fqn,
1056
+ 'qconfig_str': '',
1057
+ 'comparisons': [comparison],
1058
+ 'comparison_fn_name': 'sqnr',
1059
+ }
1060
+ result_q = {
1061
+ 'res_type': NSSingleResultValuesType.WEIGHT.value,
1062
+ 'values': [w_obj_q],
1063
+ 'prev_node_name': prev_node_name,
1064
+ 'prev_node_target_type': prev_node_type,
1065
+ 'ref_node_name': ref_node_name,
1066
+ 'ref_node_target_type': ref_node_type,
1067
+ 'index_within_arg': 0,
1068
+ 'index_of_arg': 0,
1069
+ 'fqn': fqn,
1070
+ 'qconfig_str': '',
1071
+ 'comparisons': [comparison],
1072
+ 'comparison_fn_name': 'sqnr',
1073
+ }
1074
+
1075
+ # go from subgraph_n_1 to subgraph_n_0
1076
+ _1, _2, node_idx, _3 = shadow_wrapper_node.target.split('_')
1077
+ name_fp32 = f"subgraph_{node_idx}_0"
1078
+ name_q = f"subgraph_{node_idx}_1"
1079
+
1080
+ results['model'][NSSingleResultValuesType.WEIGHT.value][name_fp32] = \
1081
+ [result_fp32]
1082
+ results['model'][NSSingleResultValuesType.WEIGHT.value][name_q] = \
1083
+ [result_q]
1084
+
1085
+ return results
1086
+
1087
+ # TODO(future PR): redesign this to make it easier to consume outputs
1088
+ def group_results_by_subgraph(results: NSResultsType) -> Any:
1089
+ """
1090
+ Creates a comparison of results
1091
+
1092
+ Input:
1093
+
1094
+ {
1095
+ 'model': {
1096
+ 'node_output': {
1097
+ 'subgraph_0_0': [
1098
+ 'values': [torch.tensor(...), ...], ...
1099
+ 'ref_node_name': ...,
1100
+ 'ref_node_target_type': ...,
1101
+ 'qconfig_str': ...,
1102
+ 'comparisons': [], ...
1103
+ 'comparison_fn_name': '',
1104
+ 'fqn': '...',
1105
+ ],
1106
+ 'subgraph_0_1': [
1107
+ 'values': [torch.tensor(...), ...], ...
1108
+ 'ref_node_name': ...,
1109
+ 'ref_node_target_type': ...,
1110
+ 'qconfig_str': ...,
1111
+ 'comparisons': [torch.tensor(...), ...], ...
1112
+ 'comparison_fn_name': '...',
1113
+ 'fqn': '...',
1114
+ ],
1115
+ ...
1116
+ },
1117
+ },
1118
+ }
1119
+
1120
+ Output:
1121
+ {
1122
+ 'subgraph_0': {
1123
+ '0': {
1124
+ 'ref_node_name': '...',
1125
+ 'ref_node_target_type': ...,
1126
+ 'values': [torch.tensor(...), ...],
1127
+ 'qconfig_str': None,
1128
+ 'comparisons': [torch.tensor(...), ...], ...
1129
+ 'comparison_fn_name': '...',
1130
+ 'fqn': '...',
1131
+ },
1132
+ '1': {
1133
+ 'ref_node_name': '...',
1134
+ 'ref_node_target_type': ...,
1135
+ 'values': [torch.tensor(...), ...],
1136
+ 'qconfig_str': '...',
1137
+ 'comparisons': [torch.tensor(...), ...], ...
1138
+ 'comparison_fn_name': '...',
1139
+ 'fqn': '...',
1140
+ },
1141
+ },
1142
+ }
1143
+
1144
+ """
1145
+ subgraph_name_to_subgraph_results: Any = collections.defaultdict(dict)
1146
+
1147
+ # node_output or weight
1148
+ key_to_use = next(iter(results['model'].keys()))
1149
+
1150
+ for subgraph_name_with_idx, subgraph_candidate_results in \
1151
+ results['model'][key_to_use].items():
1152
+
1153
+ # convert from `subgraph_m_n` to `subgraph_m` and `n`
1154
+ subgraph_str, subgraph_idx, subgraph_candidate_idx = \
1155
+ subgraph_name_with_idx.split('_')
1156
+ subgraph_name = f'{subgraph_str}_{subgraph_idx}'
1157
+
1158
+ subgraph_results = {
1159
+ 'ref_node_name': subgraph_candidate_results[0]['ref_node_name'],
1160
+ 'ref_node_target_type': subgraph_candidate_results[0]['ref_node_target_type'],
1161
+ 'fqn': subgraph_candidate_results[0]['fqn'],
1162
+ 'values': subgraph_candidate_results[0]['values'],
1163
+ 'qconfig_str': subgraph_candidate_results[0]['qconfig_str'],
1164
+ 'comparisons': subgraph_candidate_results[0]['comparisons'],
1165
+ 'comparison_fn_name': subgraph_candidate_results[0]['comparison_fn_name'],
1166
+ }
1167
+
1168
+ subgraph_name_to_subgraph_results[subgraph_name][subgraph_candidate_idx] = \
1169
+ subgraph_results
1170
+
1171
+ return dict(subgraph_name_to_subgraph_results)
1172
+
1173
+ # TODO(future PR): redesign this to make it easier to consume outputs
1174
+ def create_results_comparison(
1175
+ results_grouped,
1176
+ ) -> Any:
1177
+ """
1178
+ Input:
1179
+
1180
+ {
1181
+ 'subgraph_0': {
1182
+ '0': {
1183
+ 'ref_node_name': '...',
1184
+ 'ref_node_target_type': ...,
1185
+ 'values': [torch.tensor(...), ...],
1186
+ 'qconfig_str': '',
1187
+ 'comparisons': [],
1188
+ 'comparison_fn_name': '',
1189
+ 'fqn': '...',
1190
+ },
1191
+ '1': {
1192
+ 'ref_node_name': '...',
1193
+ 'ref_node_target_type': ...,
1194
+ 'values': [torch.tensor(...), ...],
1195
+ 'qconfig_str': '...',
1196
+ 'comparisons': [torch.tensor(...), ...],
1197
+ 'comparison_fn_name': 'sqnr',
1198
+ 'fqn': '...',
1199
+ },
1200
+ },
1201
+ }
1202
+
1203
+ Output:
1204
+ {
1205
+ 'subgraph_0': {
1206
+ 'ref_node_name': '...',
1207
+ 'ref_node_target_type': '...',
1208
+ 'fqn': '...',
1209
+ 'candidates': {
1210
+ '1': {
1211
+ 'qconfig_str': ...,
1212
+ 'comparison_fn_name': 'sqnr',
1213
+ 'cmp_raw': [..., ...],
1214
+ 'cmp_mean': ...,
1215
+ },
1216
+ ...,
1217
+ },
1218
+ },
1219
+ }
1220
+ """
1221
+
1222
+ results_comparison = {}
1223
+
1224
+ for subgraph_name, subgraph_results in results_grouped.items():
1225
+
1226
+ candidates = {}
1227
+ for subgraph_inner_name, subgraph_inner_result in subgraph_results.items():
1228
+ # skip comparing baseline to baseline
1229
+ if subgraph_inner_name == '0':
1230
+ continue
1231
+
1232
+ # we expect the comparisons to be precalculated from
1233
+ # calibration, so we just fetch them here
1234
+ cmp_raw = subgraph_inner_result['comparisons']
1235
+ cmp_raw_tensor = torch.stack(cmp_raw)
1236
+
1237
+ candidates[subgraph_inner_name] = {
1238
+ 'qconfig_str': subgraph_inner_result['qconfig_str'],
1239
+ 'comparison_fn_name': subgraph_inner_result['comparison_fn_name'],
1240
+ 'cmp_raw': cmp_raw_tensor,
1241
+ 'cmp_mean': torch.mean(cmp_raw_tensor),
1242
+ }
1243
+
1244
+ results_comparison[subgraph_name] = {
1245
+ 'ref_node_name': subgraph_results['0']['ref_node_name'],
1246
+ 'ref_node_target_type': subgraph_results['0']['ref_node_target_type'],
1247
+ 'fqn': subgraph_results['0']['fqn'],
1248
+ 'candidates': candidates,
1249
+ }
1250
+
1251
+ return results_comparison
1252
+
1253
+ # TODO(future PR): redesign this to make it easier to consume outputs
1254
+ def print_n_shadows_summary(
1255
+ results_comparison,
1256
+ ) -> None:
1257
+ """
1258
+ Input:
1259
+
1260
+ {
1261
+ 'subgraph_0': {
1262
+ 'ref_node_name': 'linear1',
1263
+ 'ref_node_target_type': '...',
1264
+ 'fqn': '...',
1265
+ 'candidates': {
1266
+ '1': {
1267
+ 'qconfig_str': ...,
1268
+ 'comparison_fn_name': ...,
1269
+ 'cmp_raw': [45.0, 55.0],
1270
+ 'cmp_mean': 50.0,
1271
+ },
1272
+ ...,
1273
+ },
1274
+ },
1275
+ }
1276
+
1277
+ Prints:
1278
+
1279
+ node_name | node_type | fqn | 0 | 1 | ...
1280
+ linear1 | ... | ... | 45.0 | 50.0 | ...
1281
+ """
1282
+
1283
+ try:
1284
+ from tabulate import tabulate
1285
+ except ImportError:
1286
+ print("`print_tabular` relies on the library `tabulate`, "
1287
+ "which could not be found on this machine. Run `pip "
1288
+ "install tabulate` to install the library.")
1289
+ return
1290
+
1291
+ results = []
1292
+ for subgraph_data in results_comparison.values():
1293
+ mean_all_candidates = [
1294
+ candidate['cmp_mean']
1295
+ for candidate_name, candidate in subgraph_data['candidates'].items()
1296
+ ]
1297
+
1298
+ data_row = [
1299
+ subgraph_data['ref_node_name'],
1300
+ subgraph_data['ref_node_target_type'],
1301
+ subgraph_data['fqn'],
1302
+ *mean_all_candidates,
1303
+ ]
1304
+ results.append(data_row)
1305
+
1306
+ max_candidate_idx_len = -1
1307
+ for data_row in results:
1308
+ max_candidate_idx_len = max(max_candidate_idx_len, len(data_row[1]))
1309
+ candidate_idx_headers = [str(x) for x in range(max_candidate_idx_len)]
1310
+
1311
+ headers = ['node_name', 'node_type', 'fqn', *candidate_idx_headers]
1312
+ print(tabulate(results, headers=headers))
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/ns_types.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import enum
2
+ from typing import NamedTuple
3
+
4
+ from torch.fx.graph import Node
5
+
6
+ from typing import Dict, Any, List, Union, Callable
7
+
8
+ class NSSingleResultValuesType(str, enum.Enum):
9
+ WEIGHT = 'weight'
10
+ NODE_OUTPUT = 'node_output'
11
+ NODE_INPUT = 'node_input'
12
+
13
+ class NSSubgraph(NamedTuple):
14
+ start_node: Node
15
+ end_node: Node
16
+ base_op_node: Node
17
+
18
+ # TODO(future PR): see if we can use typing_extensions's TypedDict instead
19
+ # to properly type the various keys
20
+ # {
21
+ # # one of NSSingleResultValuesType
22
+ # 'type': 'weight',
23
+ # # the values of type specified above
24
+ # 'values': [torch.tensor(...), ...],
25
+ # # name of the node directly before the logger
26
+ # 'prev_node_name': 'linear1',
27
+ # # type of the underlying function or module
28
+ # 'prev_node_target_type': torch.nn.functional.linear # or torch.nn.Linear, etc
29
+ # # name of the node responsible for adding this logger
30
+ # # Note: this may differ from prev_node_name if we are logging inputs
31
+ # 'ref_node_name': 'linear1',
32
+ # # index of this node within the arg of the input/output node
33
+ # # for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
34
+ # 'index_within_arg': 0,
35
+ # # index of this node within the args of the input/output node
36
+ # # for example, in add(x1, x2), x2 would have index_of_arg == 1
37
+ # 'index_of_arg': 0,
38
+ # # precomputed comparisons of logger values to reference values
39
+ # 'comparisons': [torch.tensor(...), ...]
40
+ # # name of function used for precomputed comparisons
41
+ # 'comparison_fn_name': 'sqnr',
42
+ # # string representation of qconfig responsible for creating this logger
43
+ # 'qconfig_str': 'QConfig(...)',
44
+ # }
45
+ NSSingleResultType = Dict[str, Any]
46
+
47
+ # {
48
+ # 'layer_name_1': { # subgraph name
49
+ # 'node_output': { # results type (node_output, node_input, weight)
50
+ # 'model_name_a': # model name
51
+ # [NSSingleResultType, ...], # results, ordered by index_within_arg
52
+ # 'model_name_b':
53
+ # [NSSingleResultType, ...],
54
+ # },
55
+ # },
56
+ # }
57
+ #
58
+ NSResultsType = Dict[str, Dict[str, Dict[str, List[NSSingleResultType]]]]
59
+
60
+ # Defines the underlying target type of a node, for example:
61
+ # `F.conv1d` for a `call_function` conv node
62
+ # `nn.Conv1d` for a `call_module` node calling the forward of a `nn.Conv1d` module
63
+ # `'sigmoid'` for a `call_method` node calling `x.sigmoid()`
64
+ NSNodeTargetType = Union[Callable, str]
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/pattern_utils.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ toq = torch.ops.quantized
5
+
6
+ from torch.fx import GraphModule
7
+ from torch.fx.graph import Node
8
+
9
+ from torch.ao.quantization.backend_config import get_native_backend_config
10
+ from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
11
+ from torch.ao.quantization.utils import getattr_from_fqn
12
+ from .ns_types import NSNodeTargetType
13
+ from torch.ao.quantization import (
14
+ ObserverBase,
15
+ FakeQuantizeBase,
16
+ )
17
+
18
+ from typing import Dict, Tuple, Set, Callable, Any, Union, List
19
+
20
+
21
+ def get_type_a_related_to_b(
22
+ base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
23
+ ) -> Set[Tuple[NSNodeTargetType, NSNodeTargetType]]:
24
+ # TODO(future PR): allow customizations
25
+ # TODO(future PR): reuse existing quantization mappings
26
+ # TODO(future PR): add the rest of modules and ops here
27
+ type_a_related_to_b: Set[Tuple[NSNodeTargetType, NSNodeTargetType]] = set()
28
+
29
+ for s in base_name_to_sets_of_related_ops.values():
30
+ s_list = list(s)
31
+ # add every bidirectional pair
32
+ for idx_0 in range(0, len(s_list)):
33
+ for idx_1 in range(idx_0, len(s_list)):
34
+ type_a_related_to_b.add((s_list[idx_0], s_list[idx_1]))
35
+ type_a_related_to_b.add((s_list[idx_1], s_list[idx_0]))
36
+
37
+ return type_a_related_to_b
38
+
39
+
40
+ NSFusionElType = Union[
41
+ Callable, # call_function or call_module type, example: F.linear or nn.Conv2d
42
+ str, # call_method name, example: "dequantize"
43
+ Tuple[str, Any], # call_method name and first argument, example: ("to", torch.float16)
44
+ ]
45
+ NSFusionType = Union[
46
+ Tuple[NSFusionElType, NSFusionElType],
47
+ Tuple[NSFusionElType, NSFusionElType, NSFusionElType, NSFusionElType],
48
+ ]
49
+
50
+ def get_reversed_fusions() -> List[Tuple[NSFusionType, int]]:
51
+ """
52
+ Set of potential fusions, in reverse order. The order is reversed
53
+ to match how fusion patterns are defined in quantization code.
54
+
55
+ Fusion format:
56
+ ((fusion_op_0, fusion_op_1), base_op_idx)
57
+
58
+ Where base_op_idx is the idx of the op we should use to match other related
59
+ ops. Note: base_op_idx is specified in non-reverse order, i.e. a base_op_idx
60
+ of 0 represents the first op in regular (non-reverse) order, 1 represents the
61
+ second op, etc.
62
+ """
63
+ results: List[Tuple[NSFusionType, int]] = []
64
+
65
+ # Possible syntaxes:
66
+ # * single op: torch.nn.Conv2d
67
+ # * multiple ops: (torch.nn.ReLU, torch.nn.Conv2d)
68
+ # For fusions, we only care about patterns composed of multiple ops.
69
+ # TODO(future PR): allow customizations from default patterns.
70
+ all_quant_patterns = _get_pattern_to_quantize_handlers(get_native_backend_config())
71
+
72
+ default_base_op_idx = 0
73
+ for quant_pattern in all_quant_patterns.keys():
74
+ # TODO: this is a temporary hack to flatten the patterns from quantization so
75
+ # that it works with the ns matcher function, maybe we should use `_is_match`
76
+ # in torch.ao.quantization.fx.match_utils to match the patterns
77
+ if isinstance(quant_pattern, tuple) and len(quant_pattern) == 2 and \
78
+ isinstance(quant_pattern[1], tuple) and len(quant_pattern[1]) == 2:
79
+ # flatten the pattern with form (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
80
+ quant_pattern = (quant_pattern[0], quant_pattern[1][0], quant_pattern[1][1])
81
+
82
+ # Only patterns of multiple ops are fusions, ignore
83
+ # patterns which contain a single ops (they get matched
84
+ # without caring about fusions).
85
+ if isinstance(quant_pattern, tuple):
86
+ results.append((quant_pattern, default_base_op_idx)) # type: ignore[arg-type]
87
+
88
+ # For each pattern, add additional patterns with observers and
89
+ # fake quants at the end.
90
+ # TODO(future PR): if needed, implement matching for a node
91
+ # having multiple output observers.
92
+ for cls in (ObserverBase, FakeQuantizeBase):
93
+ if isinstance(quant_pattern, tuple):
94
+ new_pattern = (cls, *quant_pattern)
95
+ else:
96
+ new_pattern = (cls, quant_pattern)
97
+ results.append((new_pattern, default_base_op_idx)) # type: ignore[arg-type]
98
+
99
+
100
+ # After this point, results contains values such as
101
+ # [..., ((torch.nn.Relu, torch.nn.Conv2d), 0), ...]
102
+
103
+ # Patterns for matching fp16 emulation are not specified in the quantization
104
+ # fusion mappings. For now, define them here.
105
+ fp16_em_base_op_idx = 1
106
+ patterns_to_add = [
107
+ # linear-relu fp16 emulation:
108
+ # fp16_to_fp32 -> linear -> relu -> fp32_to_fp16
109
+ ((("to", torch.float16), F.relu, F.linear, "dequantize"), fp16_em_base_op_idx,),
110
+ # Conv-BN fusion (this happens outside of quantization patterns,
111
+ # which is why it is defined separately here).
112
+ ((nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
113
+ ((nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
114
+ ((nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
115
+ ((nn.ReLU, nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
116
+ ((nn.ReLU, nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
117
+ ((nn.ReLU, nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
118
+ ]
119
+ for p in patterns_to_add:
120
+ results.append(p) # type: ignore[arg-type]
121
+ results.append(((ObserverBase, *p[0]), p[1])) # type: ignore[arg-type]
122
+ results.append(((FakeQuantizeBase, *p[0]), p[1])) # type: ignore[arg-type]
123
+
124
+ return results
125
+
126
+
127
+ def end_node_matches_reversed_fusion(
128
+ end_node: Node,
129
+ reversed_fusion: NSFusionType,
130
+ gm: GraphModule,
131
+ seen_nodes: Set[Node],
132
+ ) -> bool:
133
+ """
134
+ Returns true if a pattern ending with `end_node` matches
135
+ the fusion pattern.
136
+ """
137
+ cur_node = end_node
138
+ for fusion_idx in range(len(reversed_fusion)):
139
+ # each node can only belong to one matched pattern
140
+ if cur_node in seen_nodes:
141
+ return False
142
+
143
+ cur_fusion_el = reversed_fusion[fusion_idx]
144
+
145
+ if cur_node.op == 'call_function':
146
+ fusion_el_is_fun = (not isinstance(cur_fusion_el, str)) and \
147
+ (not isinstance(cur_fusion_el, type))
148
+ if fusion_el_is_fun:
149
+ if cur_node.target != cur_fusion_el:
150
+ return False
151
+ if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
152
+ cur_node = cur_node.args[0]
153
+ else:
154
+ return False
155
+ else:
156
+ return False
157
+
158
+ elif cur_node.op == 'call_module':
159
+ fusion_el_is_mod = isinstance(cur_fusion_el, type)
160
+ if fusion_el_is_mod:
161
+ assert isinstance(cur_node.target, str)
162
+ target_mod = getattr_from_fqn(gm, cur_node.target)
163
+ if not isinstance(cur_fusion_el, type):
164
+ return False
165
+ if not isinstance(target_mod, cur_fusion_el):
166
+ return False
167
+ if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
168
+ cur_node = cur_node.args[0]
169
+ else:
170
+ return False
171
+ else:
172
+ return False
173
+
174
+ elif cur_node.op == 'call_method':
175
+ fusion_el_is_meth_with_second_arg = \
176
+ isinstance(cur_fusion_el, tuple) and len(cur_fusion_el) == 2
177
+ fusion_el_is_meth_without_args = isinstance(cur_fusion_el, str)
178
+ if fusion_el_is_meth_without_args or fusion_el_is_meth_with_second_arg:
179
+ if fusion_el_is_meth_without_args:
180
+ if cur_node.target != cur_fusion_el:
181
+ return False
182
+ else:
183
+ assert isinstance(cur_fusion_el, tuple)
184
+ if cur_node.target != cur_fusion_el[0]:
185
+ return False
186
+ elif len(cur_node.args) < 2:
187
+ return False
188
+ elif cur_node.args[1] != cur_fusion_el[1]:
189
+ return False
190
+
191
+ if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
192
+ cur_node = cur_node.args[0]
193
+ else:
194
+ return False
195
+ else:
196
+ return False
197
+ else:
198
+ return False
199
+
200
+ return True
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/qconfig_multi_mapping.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import copy
4
+ from typing import Any, Callable, Dict, List, Union
5
+
6
+ import torch
7
+ from torch.ao.quantization import QConfigMapping
8
+ from torch.ao.quantization.qconfig_mapping import _QCONFIG_STYLE_ORDER
9
+ from torch.ao.quantization.qconfig import QConfigAny
10
+
11
+ __all__ = ["QConfigMultiMapping"]
12
+
13
+ _QCONFIG_STYLE_TO_METHOD: Dict[str, str] = {
14
+ "global_qconfig": "set_global",
15
+ "object_type_qconfigs": "set_object_type",
16
+ "module_name_regex_qconfigs": "set_module_name_regex",
17
+ "module_name_qconfigs": "set_module_name",
18
+ "module_name_object_type_order_qconfigs": "set_module_name_object_type_order",
19
+ }
20
+
21
+ def _remove_duplicates_and_none(qconfig_list: List[QConfigAny]) -> None:
22
+ to_remove = []
23
+ for index, cur_qconfig in enumerate(qconfig_list):
24
+ if cur_qconfig is None:
25
+ to_remove.append(index)
26
+ break
27
+ for checked_qconfig in qconfig_list[:index]:
28
+ if torch.ao.quantization.qconfig_equals(cur_qconfig, checked_qconfig):
29
+ to_remove.append(index)
30
+ break
31
+ for index in to_remove[::-1]:
32
+ qconfig_list.pop(index)
33
+
34
+ class QConfigMultiMapping:
35
+ """
36
+ This class, used with the prepare_n_shadows_model API, stores a list of :class:`torch.ao.quantization.QConfigMapping`s
37
+ so that multiple QConfigs can be specified for each QConfig matching style.
38
+
39
+ The user can specify QConfigs using the following methods (in increasing match priority):
40
+
41
+ ``set_global`` : sets the global (default) QConfigs
42
+
43
+ ``set_object_type`` : sets the QConfigs for a given module type, function, or method name
44
+
45
+ ``set_module_name_regex`` : sets the QConfigs for modules matching the given regex string
46
+
47
+ ``set_module_name`` : sets the QConfigs for modules matching the given module name
48
+
49
+ ``set_module_name_object_type_order`` : sets the QConfigs for modules matching a combination
50
+ of the given module name, object type, and the index at which the module appears
51
+
52
+ Note: Usage of set methods is the same as in QConfigMapping except with a passed in list of QConfigs rather than a
53
+ single QConfig.
54
+
55
+ Example usage::
56
+
57
+ qconfig_mapping = QConfigMultiMapping()
58
+ .set_global([qconfig1, qconfig2])
59
+ .set_object_type(torch.nn.Linear, [qconfig2, qconfig3])
60
+ .set_object_type(torch.nn.ReLU, [qconfig1])
61
+ .set_module_name_regex("foo.*bar.*conv[0-9]+", [qconfig2])
62
+ .set_module_name_regex("foo.*", [qconfig1, qconfig2, qconfig3])
63
+ .set_module_name("module1", [None])
64
+ .set_module_name("module2", [qconfig2])
65
+ .set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, [qconfig3])
66
+
67
+ """
68
+
69
+ def __init__(self):
70
+ # initialize this with 1 QConfigMapping to avoid corner cases
71
+ self.qconfig_mappings_list: List[QConfigMapping] = [QConfigMapping()]
72
+
73
+ def _handle_list_size_mismatch(
74
+ self, qconfig_list: List[QConfigAny], style: str
75
+ ) -> None:
76
+ # this method handles cases where the size of qconfig_list does not match
77
+ # the size of qconfig_mappings_list.
78
+ # Issue: Consider a user inserting global_qconfig A and B first, then inserting
79
+ # qconfig C as an object_type_qconfig for conv ops. If we internally store
80
+ # 1 QConfigMapping with A and C and another with just B, then the
81
+ # second QConfigMapping will match B to conv ops (which is not wanted), since B is global.
82
+
83
+ # we avoid this by maintaining the invariant that if any QConfigMapping
84
+ # has a qconfig style+key with a qconfig in it, all QConfigMappings must
85
+ # have either a qconfig or None for that same style+key. In the above
86
+ # example, a None qconfig would prevent the unwanted match in the
87
+ # second QConfigMapping
88
+
89
+ if len(qconfig_list) > len(self.qconfig_mappings_list):
90
+ # Case: we have more qconfigs (in qconfig_list) than QConfigMappings
91
+
92
+ # Add new QConfigMappings (initialized so we maintain the `invariant`)
93
+
94
+ new_qconfig_mapping = QConfigMapping()
95
+ # searches other QConfigMappings for qconfig style+keys
96
+ # that need to be inserted as `None` into the new QConfigMapping
97
+ for qconfig_mapping in self.qconfig_mappings_list:
98
+
99
+ # global_qconfig has None by default
100
+ for check_style in _QCONFIG_STYLE_ORDER[1:]:
101
+ qconfigs_dict = getattr(qconfig_mapping, check_style)
102
+ target_qconfigs_dict = getattr(new_qconfig_mapping, check_style)
103
+ for key in qconfigs_dict:
104
+ target_qconfigs_dict[key] = None
105
+ break
106
+
107
+ # insert copies of this new QConfigMapping until all entires
108
+ # in qconfig_list can fit among the QConfigMappings
109
+ while len(qconfig_list) > len(self.qconfig_mappings_list):
110
+ self.qconfig_mappings_list.append(copy.deepcopy(new_qconfig_mapping))
111
+ else:
112
+ # Case: we have fewer qconfigs in qconfig_list than QConfigMappings
113
+
114
+ # pad qconfig_list with `None` until length is same
115
+ while len(qconfig_list) < len(self.qconfig_mappings_list):
116
+ qconfig_list.append(None)
117
+
118
+ # this function applies the insertion method across each QConfigMapping
119
+ def _insert_qconfig_list(
120
+ self,
121
+ style: str,
122
+ args: List[Union[str, int, Callable]],
123
+ qconfig_list: List[QConfigAny],
124
+ ) -> None:
125
+
126
+ # we remove duplicates and None to make the ordering of qconfigs
127
+ # deterministic upon insertion.
128
+ _remove_duplicates_and_none(qconfig_list)
129
+
130
+ self._handle_list_size_mismatch(qconfig_list, style)
131
+ method_name = _QCONFIG_STYLE_TO_METHOD[style]
132
+ for qconfig_mapping, qconfig in zip(self.qconfig_mappings_list, qconfig_list):
133
+ # uses QConfigMapping set method to insert qconfig
134
+ set_method = getattr(qconfig_mapping, method_name)
135
+ set_method(*args, qconfig)
136
+
137
+ def set_global(self, global_qconfig_list: List[QConfigAny]) -> QConfigMultiMapping:
138
+ """
139
+ Set global QConfigs
140
+ see :func:`~torch.ao.quantization.QConfigMapping.set_global()` for more info
141
+ """
142
+ self._insert_qconfig_list("global_qconfig", [], global_qconfig_list)
143
+ return self
144
+
145
+ def set_object_type(
146
+ self, object_type: Union[Callable, str], qconfig_list: List[QConfigAny]
147
+ ) -> QConfigMultiMapping:
148
+ """
149
+ Set object type QConfigs
150
+ see :func:`~torch.ao.quantization.QConfigMapping.set_object_type()` for more info
151
+ """
152
+ self._insert_qconfig_list("object_type_qconfigs", [object_type], qconfig_list)
153
+ return self
154
+
155
+ def set_module_name_regex(
156
+ self, module_name_regex: str, qconfig_list: List[QConfigAny]
157
+ ) -> QConfigMultiMapping:
158
+ """
159
+ Set module_name_regex QConfigs
160
+ see :func:`~torch.ao.quantization.QConfigMapping.set_module_name_regex()` for more info
161
+ """
162
+ self._insert_qconfig_list(
163
+ "module_name_regex_qconfigs", [module_name_regex], qconfig_list
164
+ )
165
+ return self
166
+
167
+ def set_module_name(
168
+ self, module_name: str, qconfig_list: List[QConfigAny]
169
+ ) -> QConfigMultiMapping:
170
+ """
171
+ Set module_name QConfigs
172
+ see :func:`~torch.ao.quantization.QConfigMapping.set_module_name()` for more info
173
+ """
174
+ self._insert_qconfig_list("module_name_qconfigs", [module_name], qconfig_list)
175
+ return self
176
+
177
+ def set_module_name_object_type_order(
178
+ self,
179
+ module_name: str,
180
+ object_type: Callable,
181
+ index: int,
182
+ qconfig_list: List[QConfigAny],
183
+ ) -> QConfigMultiMapping:
184
+ """
185
+ Set module_name QConfigs
186
+ see :func:`~torch.ao.quantization.QConfigMapping.set_module_name_object_type_order()` for more info
187
+ """
188
+ self._insert_qconfig_list(
189
+ "module_name_object_type_order_qconfigs",
190
+ [module_name, object_type, index],
191
+ qconfig_list,
192
+ )
193
+ return self
194
+
195
+ def __repr__(self):
196
+ return (
197
+ self.__class__.__name__ +
198
+ " [" +
199
+ "".join(f"\n{qconfig_mapping.__repr__()}," for qconfig_mapping in self.qconfig_mappings_list) +
200
+ "\n]"
201
+ )
202
+
203
+ @classmethod
204
+ def from_list_qconfig_mapping(
205
+ cls, qconfig_mapping_list: List[QConfigMapping]
206
+ ) -> QConfigMultiMapping:
207
+ """
208
+ Creates a QConfigMultiMapping from a list of QConfigMappings
209
+ """
210
+ new_qconfig_multi_mapping = cls()
211
+
212
+ new_qconfig_multi_mapping.qconfig_mappings_list = copy.deepcopy(
213
+ qconfig_mapping_list
214
+ )
215
+
216
+ # we need to avoid the issue described in _handle_list_size_mismatch,
217
+ # so we reinsert all the qconfigs using the QConfigMultiMapping
218
+ # set methods
219
+
220
+ # go through all qconfig styles
221
+ # note: global can be ignored since it is None by default
222
+ for style in _QCONFIG_STYLE_ORDER[1:]:
223
+
224
+ # gather all key+qconfigs for current style
225
+ # into qconfig_dict_list
226
+ qconfig_dict_list: Dict[Any, List[QConfigAny]] = {}
227
+ for qconfig_mapping in qconfig_mapping_list:
228
+ qconfig_dict = getattr(qconfig_mapping, style)
229
+ for key, qconfig in qconfig_dict.items():
230
+ if key not in qconfig_dict_list:
231
+ qconfig_dict_list[key] = []
232
+ qconfig_dict_list[key].append(qconfig)
233
+
234
+ # reinsert all gathered key+qconfigs
235
+ set_method_name = _QCONFIG_STYLE_TO_METHOD[style]
236
+ set_method = getattr(new_qconfig_multi_mapping, set_method_name)
237
+ for key, qconfig_list in qconfig_dict_list.items():
238
+ if isinstance(key, tuple):
239
+ set_method(*key, qconfig_list)
240
+ else:
241
+ set_method(key, qconfig_list)
242
+
243
+ return new_qconfig_multi_mapping
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/utils.py ADDED
@@ -0,0 +1,533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import enum
2
+ import operator
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.ao.nn.intrinsic.quantized as nniq
7
+ import torch.ao.nn.quantized as nnq
8
+
9
+ toq = torch.ops.quantized
10
+ from typing import Tuple, Callable, Dict, Set, List, Optional, Union
11
+
12
+ from torch.fx import GraphModule
13
+ from torch.fx.graph import Node
14
+ from torch.ao.quantization import (
15
+ ObserverBase,
16
+ FakeQuantizeBase,
17
+ )
18
+ from torch.ao.quantization.utils import getattr_from_fqn
19
+ from torch.ao.quantization.observer import _is_activation_post_process
20
+
21
+ from .ns_types import NSNodeTargetType, NSResultsType
22
+
23
+ # TODO(future PR): consider deleting this enum and using the torch types
24
+ # directly. This might be tricky because it is not a one to one mapping.
25
+ class NodeInputOrOutputType(enum.Enum):
26
+ FP32 = enum.auto() # torch.float
27
+ INT8 = enum.auto() # torch.qint8 or torch.quint8
28
+ FP16 = enum.auto() # torch.float16
29
+ UNKNOWN = enum.auto() # we cannot determine input/output dtype
30
+ # TODO(future PR): while these functions can support multiple dtypes,
31
+ # for the purposes of numerical debugging we want to get the actual
32
+ # dtype used in the model. We will likely need some kind of dtype
33
+ # propagation to estimate this.
34
+ FP32_OR_INT8 = enum.auto() # either torch.float or torch.quint8 or torch.qint8
35
+ # TODO(future PRs): dynamic quant, fake quant, etc
36
+
37
+
38
+ def get_node_first_input_and_output_type(
39
+ node: Node,
40
+ gm: GraphModule,
41
+ logger_cls: Callable,
42
+ node_type_to_io_type_map: Dict[str, Set[NSNodeTargetType]],
43
+ ) -> Tuple[NodeInputOrOutputType, NodeInputOrOutputType]:
44
+
45
+ # TODO(future PR): clean this up
46
+ FUNS_IO_TYPE_FP32 = node_type_to_io_type_map["funs_io_type_fp32"]
47
+ FUNS_IO_TYPE_FP16 = node_type_to_io_type_map["funs_io_type_fp16"]
48
+ FUNS_IO_TYPE_INT8 = node_type_to_io_type_map["funs_io_type_int8"]
49
+ FUNS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["funs_io_type_fp32_or_int8"]
50
+ MODS_IO_TYPE_FP32 = node_type_to_io_type_map["mods_io_type_fp32"]
51
+ MODS_IO_TYPE_INT8 = node_type_to_io_type_map["mods_io_type_int8"]
52
+ MODS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["mods_io_type_fp32_or_int8"]
53
+ METHS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["meths_io_type_fp32_or_int8"]
54
+
55
+ if node.op == "call_function":
56
+ if node.target in FUNS_IO_TYPE_FP32:
57
+ return (NodeInputOrOutputType.FP32, NodeInputOrOutputType.FP32)
58
+ if node.target in FUNS_IO_TYPE_FP16:
59
+ return (NodeInputOrOutputType.FP16, NodeInputOrOutputType.FP16)
60
+ elif node.target in FUNS_IO_TYPE_INT8:
61
+ return (NodeInputOrOutputType.INT8, NodeInputOrOutputType.INT8)
62
+ elif node.target in FUNS_IO_TYPE_FP32_OR_INT8:
63
+ first_arg = get_normalized_nth_input(node, gm, 0)
64
+ assert isinstance(first_arg, Node)
65
+ (
66
+ _prev_node_input_type,
67
+ prev_node_output_type,
68
+ ) = get_node_first_input_and_output_type(
69
+ first_arg, gm, logger_cls, node_type_to_io_type_map
70
+ )
71
+ return (prev_node_output_type, prev_node_output_type)
72
+ else:
73
+ return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
74
+
75
+ elif node.op == "call_module":
76
+ assert node.op == "call_module"
77
+ assert isinstance(node.target, str)
78
+ mod = getattr_from_fqn(gm, node.target)
79
+ is_known_fp32_or_int8_input_module = any(
80
+ isinstance(mod, target_type) for target_type in MODS_IO_TYPE_FP32_OR_INT8 # type: ignore[arg-type]
81
+ )
82
+ if (
83
+ isinstance(mod, (logger_cls, ObserverBase, FakeQuantizeBase)) # type: ignore[arg-type]
84
+ or is_known_fp32_or_int8_input_module
85
+ ):
86
+ # A logger or observer's input and output type is the output
87
+ # type of the preceding node.
88
+ first_arg = get_normalized_nth_input(node, gm, 0)
89
+ assert isinstance(first_arg, Node)
90
+ (
91
+ _prev_node_input_type,
92
+ prev_node_output_type,
93
+ ) = get_node_first_input_and_output_type(
94
+ first_arg, gm, logger_cls, node_type_to_io_type_map
95
+ )
96
+ return (prev_node_output_type, prev_node_output_type)
97
+ is_known_fp32_input_module = any(
98
+ isinstance(mod, target_type) for target_type in MODS_IO_TYPE_FP32 # type: ignore[arg-type]
99
+ )
100
+ is_known_int8_input_module = any(
101
+ isinstance(mod, target_type) for target_type in MODS_IO_TYPE_INT8 # type: ignore[arg-type]
102
+ )
103
+ if is_known_fp32_input_module:
104
+ return (NodeInputOrOutputType.FP32, NodeInputOrOutputType.FP32)
105
+ elif is_known_int8_input_module:
106
+ return (NodeInputOrOutputType.INT8, NodeInputOrOutputType.INT8)
107
+ else:
108
+ return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
109
+
110
+ elif node.op == "call_method":
111
+ if node.target == "dequantize":
112
+ # Dequantize is a special node because it allows multiple input types.
113
+ # So, we look up the output type of the previous node and return that
114
+ # as the input type of this node instance.
115
+ prev_node = get_normalized_nth_input(node, gm, 0)
116
+ assert isinstance(prev_node, Node)
117
+ (
118
+ _prev_node_input_type,
119
+ prev_node_output_type,
120
+ ) = get_node_first_input_and_output_type(
121
+ prev_node, gm, logger_cls, node_type_to_io_type_map
122
+ )
123
+ return (prev_node_output_type, NodeInputOrOutputType.FP32)
124
+
125
+ elif node.target == "to":
126
+ # to is a special node because it allows multiple input types.
127
+ # So, we look up the output type of the previous node and return that
128
+ # as the input type of this node instance. We also look up the target
129
+ # of to and return the correct output type.
130
+ prev_node = get_normalized_nth_input(node, gm, 0)
131
+ assert isinstance(prev_node, Node)
132
+ (
133
+ _prev_node_input_type,
134
+ prev_node_output_type,
135
+ ) = get_node_first_input_and_output_type(
136
+ prev_node, gm, logger_cls, node_type_to_io_type_map
137
+ )
138
+
139
+ cur_node_dtype_target = get_normalized_nth_input(node, gm, 1)
140
+ assert (
141
+ cur_node_dtype_target is torch.float16
142
+ ), f"{cur_node_dtype_target} handling needs to be added"
143
+
144
+ return (prev_node_output_type, NodeInputOrOutputType.FP16)
145
+
146
+ elif node.target in METHS_IO_TYPE_FP32_OR_INT8:
147
+ first_arg = get_normalized_nth_input(node, gm, 0)
148
+ assert isinstance(first_arg, Node)
149
+ (
150
+ _prev_node_input_type,
151
+ prev_node_output_type,
152
+ ) = get_node_first_input_and_output_type(
153
+ first_arg, gm, logger_cls, node_type_to_io_type_map
154
+ )
155
+ return (prev_node_output_type, prev_node_output_type)
156
+
157
+ return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
158
+ else:
159
+ return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
160
+
161
+
162
+ def get_node_input_qparams(
163
+ node: Node,
164
+ gm: GraphModule,
165
+ node_type_to_io_type_map: Dict[str, Set[NSNodeTargetType]],
166
+ ) -> Optional[Tuple[Union[torch.Tensor, float], Union[torch.Tensor, int]]]:
167
+ """
168
+ Returns the qparams (scale, zero_point) of the first input to `node`,
169
+ if they can be inferred from the graph.
170
+ """
171
+ prev_node = get_normalized_nth_input(node, gm, 0)
172
+
173
+ if not isinstance(prev_node, Node):
174
+ return None
175
+
176
+ MODS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["mods_io_type_fp32_or_int8"]
177
+
178
+ def _get_scale_zp_from_function_args(node, gm, scale_arg_idx, zp_arg_idx):
179
+ scale_node = get_normalized_nth_input(node, gm, scale_arg_idx)
180
+ zp_node = get_normalized_nth_input(node, gm, zp_arg_idx)
181
+ assert isinstance(scale_node, Node) and isinstance(scale_node.target, str)
182
+ assert isinstance(zp_node, Node) and isinstance(zp_node.target, str)
183
+ scale_obj = getattr_from_fqn(gm, scale_node.target)
184
+ zp_obj = getattr_from_fqn(gm, zp_node.target)
185
+ return (scale_obj, zp_obj)
186
+
187
+ if prev_node.op == "call_function":
188
+
189
+ # quantize - read the args directly
190
+ if prev_node.target == torch.quantize_per_tensor:
191
+ return _get_scale_zp_from_function_args(prev_node, gm, 1, 2)
192
+ elif prev_node.target in (toq.add, toq.add_relu, toq.mul, toq.mul_relu):
193
+ return _get_scale_zp_from_function_args(prev_node, gm, 2, 3)
194
+
195
+ return None
196
+ # TODO(future PR): handle more functionals
197
+ # TODO(future PR): handle functional ops which inherit qparams from input
198
+
199
+ elif prev_node.op == "call_module":
200
+
201
+ # get type of the module
202
+ assert isinstance(prev_node.target, str)
203
+ module_obj = getattr_from_fqn(gm, prev_node.target)
204
+ if isinstance(
205
+ module_obj,
206
+ (
207
+ nnq.Linear,
208
+ nnq.Conv1d,
209
+ nnq.Conv2d,
210
+ nniq.ConvReLU2d,
211
+ nnq.Conv3d,
212
+ nnq.BatchNorm2d,
213
+ nnq.BatchNorm3d,
214
+ nnq.ConvTranspose1d,
215
+ nnq.ConvTranspose2d,
216
+ nnq.ELU,
217
+ nnq.GroupNorm,
218
+ nnq.InstanceNorm1d,
219
+ nnq.InstanceNorm2d,
220
+ nnq.InstanceNorm3d,
221
+ nnq.LayerNorm,
222
+ nnq.Hardswish,
223
+ nnq.LeakyReLU,
224
+ nnq.ReLU6,
225
+ nniq.BNReLU2d,
226
+ nniq.BNReLU3d,
227
+ nniq.ConvReLU1d,
228
+ nniq.ConvReLU2d,
229
+ nniq.ConvReLU3d,
230
+ nniq.LinearReLU,
231
+ ),
232
+ ):
233
+ return (module_obj.scale, module_obj.zero_point) # type: ignore[return-value]
234
+
235
+ is_known_fp32_or_int8_input_module = any(
236
+ isinstance(module_obj, target_type) for target_type in MODS_IO_TYPE_FP32_OR_INT8 # type: ignore[arg-type]
237
+ )
238
+ if is_known_fp32_or_int8_input_module:
239
+ return get_node_input_qparams(prev_node, gm, node_type_to_io_type_map)
240
+
241
+ return None
242
+
243
+
244
+ def return_first_non_observer_node(
245
+ node: Node,
246
+ gm: GraphModule,
247
+ ) -> Node:
248
+ """
249
+ If node is not an observer, returns it. If node is an observer,
250
+ navigates up the graph and returns the first parent which is not an
251
+ observer. For example,
252
+
253
+ graph: (node_non_obs), node = node_non_obs : returns node_non_obs
254
+ graph: (node_non_obs -> obs0), node = obs0 : returns node_non_obs
255
+ graph: (node_non_obs -> obs0 -> fq0), node = fq0 : returns node_non_obs
256
+ """
257
+ if node.op == "call_module":
258
+ node_obj = getattr_from_fqn(gm, node.target) # type: ignore[arg-type]
259
+ if _is_activation_post_process(node_obj):
260
+ assert len(node.args) == 1
261
+ assert isinstance(node.args[0], Node)
262
+ node = node.args[0]
263
+ # code duplication intended, not worth refactoring
264
+ assert isinstance(node.target, str)
265
+ node_obj = getattr_from_fqn(gm, node.target)
266
+ if _is_activation_post_process(node_obj):
267
+ assert len(node.args) == 1
268
+ assert isinstance(node.args[0], Node)
269
+ node = node.args[0]
270
+ return node
271
+
272
+
273
+ def get_number_of_non_param_args(
274
+ node: Node,
275
+ gm: GraphModule,
276
+ ) -> int:
277
+ """
278
+ Assumes that all non-param args occur first. Returns the number of
279
+ non-param args expected for a node. For example, for
280
+
281
+ F.linear(x, weight, bias)
282
+
283
+ Returns 1, because x is a non-param arg and weight and bias are params.
284
+ For
285
+
286
+ lstm_mod(x, hid)
287
+
288
+ Returns 2, because both x and hid are non-param args.
289
+ """
290
+ if node.op == "call_module":
291
+ node_obj = getattr_from_fqn(gm, node.target) # type: ignore[arg-type]
292
+ if isinstance(node_obj, nn.LSTM):
293
+ return 2
294
+
295
+ # default is 1
296
+ return 1
297
+
298
+
299
+ def get_arg_indices_of_inputs_to_log(node: Node) -> List[int]:
300
+ """
301
+ Returns the indices of args of the node which we should attach
302
+ loggers to, if input logging is enabled.
303
+
304
+ For example,
305
+ * for (x + y), returns [0, 1]
306
+ * for (1 + y), returns [1]
307
+ * for (x + 1), returns [0]
308
+ * for (linear(x, w, b)) returns [0]
309
+ * by default, returns [0]
310
+ """
311
+ if len(node.args) == 0:
312
+ return []
313
+ if node.op == "call_function" and (
314
+ # TODO(future PR): use relationship map instead of hardcoding
315
+ node.target in (torch.add, torch.ops.quantized.add, operator.add)
316
+ or node.target in (torch.mul, torch.ops.quantized.mul, operator.mul)
317
+ ):
318
+ result = []
319
+ for i in range(2):
320
+ if type(node.args[i]) == Node:
321
+ result.append(i)
322
+ return result
323
+ return [0]
324
+
325
+
326
+ def get_target_type_str(node: Node, gm: GraphModule) -> str:
327
+ """
328
+ Returns a string representation of the type of the function or module
329
+ pointed to by this node, or '' for other node types.
330
+ """
331
+ target_type = ""
332
+ if node.op in ("call_function", "call_method"):
333
+ target_type = torch.typename(node.target)
334
+ elif node.op == "call_module":
335
+ assert isinstance(node.target, str)
336
+ target_mod = getattr_from_fqn(gm, node.target)
337
+ target_type = torch.typename(target_mod)
338
+ return target_type
339
+
340
+
341
+ def rekey_logger_info_on_node_name_of_model(
342
+ results: NSResultsType,
343
+ model_name: str,
344
+ ) -> NSResultsType:
345
+ """
346
+ Rekeys the layer name of a results dictionary to use node names
347
+ from `model_name`.
348
+
349
+ For example, transforms
350
+
351
+ {'base_op_1_0': {'node_output': {'model_a':
352
+ [{'ref_node_name': 'linear1', ...}]}}}
353
+
354
+ into
355
+
356
+ {'linear1': {'node_output': {'model_a':
357
+ [{'ref_node_name': 'linear1', ...}]}}}
358
+
359
+ Note: we cannot use these node names directly because they are not
360
+ guaranteed to be consistent across models. This is why we extract
361
+ the results first and rekey afterwards.
362
+ """
363
+ new_results = {}
364
+ for old_layer_name, result_type_to_results in results.items():
365
+ new_layer_name = None
366
+ for model_name_to_results in result_type_to_results.values():
367
+ for cur_model_name, list_of_results in model_name_to_results.items():
368
+ if cur_model_name == model_name:
369
+ assert len(list_of_results)
370
+ new_layer_name = list_of_results[0]["ref_node_name"]
371
+ else:
372
+ continue
373
+ if new_layer_name is not None:
374
+ new_results[new_layer_name] = result_type_to_results
375
+ else:
376
+ new_results[old_layer_name] = result_type_to_results
377
+ return new_results
378
+
379
+
380
+ def maybe_add_missing_fqns(results: NSResultsType) -> None:
381
+ """
382
+ If `fqn` entries are filled in for one of the models in `results`, copies
383
+ them over to any models which do not have them filled out.
384
+
385
+ A common use case benefitting from this is comparing a model prepared by
386
+ quantization to a quantized model. In this case, the model prepared by
387
+ quantization would have `fqn` entries, and the quantized model would not.
388
+ """
389
+
390
+ # Check in the first result to find any model with fqn entries defined.
391
+ model_name_with_fqns = None
392
+ for result_type_to_results in results.values():
393
+ for model_name_to_results in result_type_to_results.values():
394
+ for model_name, model_results in model_name_to_results.items():
395
+ if len(model_results) > 0:
396
+ if model_results[0]["fqn"] is not None:
397
+ model_name_with_fqns = model_name
398
+ break
399
+ break
400
+ break
401
+
402
+ if model_name_with_fqns:
403
+ for result_type_to_results in results.values():
404
+ for model_name_to_results in result_type_to_results.values():
405
+ ref_model_results = model_name_to_results[model_name_with_fqns]
406
+ for model_name, model_results in model_name_to_results.items():
407
+ if model_name == model_name_with_fqns:
408
+ continue
409
+ for i in range(len(model_results)):
410
+ fqn = ref_model_results[i]["fqn"]
411
+ model_results[i]["fqn"] = fqn
412
+
413
+
414
+ def maybe_dequantize_first_two_tensor_args_and_handle_tuples(f):
415
+ def inner(*args, **kwargs):
416
+ a0, a1, *a_other = args
417
+
418
+ if (isinstance(a0, tuple) and isinstance(a1, tuple)) or (
419
+ isinstance(a0, list) and isinstance(a1, list)
420
+ ):
421
+ results = []
422
+ for el0, el1 in zip(a0, a1):
423
+ new_args = (el0, el1, *a_other)
424
+ results.append(inner(*new_args, **kwargs))
425
+ return results
426
+
427
+ elif isinstance(a0, torch.Tensor) and isinstance(a1, torch.Tensor):
428
+ if a0.is_quantized:
429
+ a0 = a0.dequantize()
430
+ if a1.is_quantized:
431
+ a1 = a1.dequantize()
432
+
433
+ # for the purposes of this util, only handle floats
434
+ if a0.dtype != torch.float or a1.dtype != torch.float:
435
+ return None
436
+
437
+ new_args = (a0, a1, *a_other)
438
+ return f(*new_args, **kwargs)
439
+
440
+ return inner
441
+
442
+
443
+ @maybe_dequantize_first_two_tensor_args_and_handle_tuples
444
+ def compute_sqnr(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
445
+ """
446
+ Computes the SQNR between `x` and `y`.
447
+
448
+ Args:
449
+ x: Tensor or tuple of tensors
450
+ y: Tensor or tuple of tensors
451
+
452
+ Return:
453
+ float or tuple of floats
454
+ """
455
+ Ps = torch.norm(x)
456
+ Pn = torch.norm(x - y)
457
+ return 20 * torch.log10(Ps / Pn)
458
+
459
+
460
+ @maybe_dequantize_first_two_tensor_args_and_handle_tuples
461
+ def compute_normalized_l2_error(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
462
+ """
463
+ Computes the normalized L2 error between `x` and `y`.
464
+
465
+ Args:
466
+ x: Tensor or tuple of tensors
467
+ y: Tensor or tuple of tensors
468
+
469
+ Return:
470
+ float or tuple of floats
471
+ """
472
+ return torch.sqrt(((x - y) ** 2).sum() / (x ** 2).sum())
473
+
474
+
475
+ @maybe_dequantize_first_two_tensor_args_and_handle_tuples
476
+ def compute_cosine_similarity(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
477
+ """
478
+ Computes the cosine similarity between `x` and `y`.
479
+
480
+ Args:
481
+ x: Tensor or tuple of tensors
482
+ y: Tensor or tuple of tensors
483
+
484
+ Return:
485
+ float or tuple of floats
486
+ """
487
+ # For convolutions, the shape of the quantized weight has one additional
488
+ # dimension compared to the shape of the fp32 weight. Match the shapes
489
+ # to enable cosine similarity comparison.
490
+ x = x.reshape(1, -1)
491
+ y = y.reshape(1, -1)
492
+ return torch.nn.functional.cosine_similarity(x, y)
493
+
494
+ def op_type_supports_shadowing(node: Node) -> bool:
495
+ if node.op == 'call_function':
496
+ if node.target in (torch.add, torch.mul, operator.add, operator.mul, torch.cat, torch.stack):
497
+ # shadowing for ops with multiple tensor inputs is not implemented yet
498
+ return False
499
+ return True
500
+
501
+ def get_normalized_nth_input(node: Node, gm: GraphModule, idx: int) -> Node:
502
+ """
503
+ Given a node, gets the n'th input to that node, normalizing
504
+ args and kwargs to the best of its ability.
505
+ """
506
+ try:
507
+ norm_args_and_kwargs = node.normalized_arguments(
508
+ gm, normalize_to_only_use_kwargs=True)
509
+ if norm_args_and_kwargs is not None:
510
+ norm_args, norm_kwargs = norm_args_and_kwargs
511
+ assert len(norm_args) + len(norm_kwargs) > idx
512
+ if idx < len(norm_args):
513
+ return norm_args[idx]
514
+ else:
515
+ # note: in Python 3.7+ dicts are ordered
516
+ return list(norm_kwargs.values())[idx]
517
+ else:
518
+ assert len(node.args) + len(node.kwargs) > idx
519
+ if idx < len(node.args):
520
+ return node.args[idx] # type: ignore[return-value]
521
+ else:
522
+ kwargs_idx = idx + len(node.args)
523
+ return list(node.kwargs.values())[kwargs_idx] # type: ignore[return-value]
524
+ except RuntimeError:
525
+ # this RuntimeError happens when node argument normalization
526
+ # requires typehints to proceed, such as for torch.add where
527
+ # either the first, second or both arguments could be tensors
528
+ assert len(node.args) + len(node.kwargs) > idx
529
+ if idx < len(node.args):
530
+ return node.args[idx] # type: ignore[return-value]
531
+ else:
532
+ kwargs_idx = idx + len(node.args)
533
+ return list(node.kwargs.values())[kwargs_idx] # type: ignore[return-value]
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/weight_utils.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.ao.nn.quantized.dynamic as nnqd
5
+ import torch.ao.nn.quantized as nnq
6
+ import torch.ao.nn.intrinsic.qat as nniqat
7
+ import torch.ao.nn.qat as nnqat
8
+ import torch.ao.nn.intrinsic as nni
9
+ import torch.ao.nn.intrinsic.quantized as nniq
10
+ toq = torch.ops.quantized
11
+ from torch.fx import GraphModule
12
+ from torch.fx.graph import Node
13
+
14
+ from .utils import (
15
+ get_target_type_str,
16
+ getattr_from_fqn,
17
+ return_first_non_observer_node,
18
+ )
19
+
20
+ from .ns_types import (
21
+ NSSingleResultValuesType,
22
+ NSSingleResultType,
23
+ )
24
+
25
+ from typing import List, Optional, Dict, Callable
26
+
27
+ def mod_weight_detach(mod: nn.Module) -> torch.Tensor:
28
+ return mod.weight.detach() # type: ignore[operator]
29
+
30
+ def mod_0_weight_detach(mod: nn.Module) -> torch.Tensor:
31
+ return mod[0].weight.detach() # type: ignore[index]
32
+
33
+ def mod_weight_bias_0(mod: nn.Module) -> torch.Tensor:
34
+ return mod._weight_bias()[0] # type: ignore[operator]
35
+
36
+ def get_lstm_weight(mod: nn.Module) -> List[torch.Tensor]:
37
+ res = []
38
+ for idx, param_name in enumerate(mod._flat_weights_names): # type: ignore[arg-type]
39
+ if 'weight_ih_l' in param_name or 'weight_hh_l' in param_name:
40
+ param_value = mod._flat_weights[idx].detach() # type: ignore[index]
41
+ res.append(param_value)
42
+ return res
43
+
44
+ def get_qlstm_weight(mod: nn.Module) -> List[torch.Tensor]:
45
+ res = []
46
+ for weight_value in mod._all_weight_values: # type: ignore[union-attr]
47
+ res.append(weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0])
48
+ res.append(weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0])
49
+ return res
50
+
51
+ def get_conv_mod_weight(mod: nn.Module) -> torch.Tensor:
52
+ if (
53
+ isinstance(mod, (nn.Conv1d, nn.Conv2d, nn.Conv3d))
54
+ ):
55
+ return mod.weight.detach()
56
+ elif (
57
+ isinstance(mod, (nni.ConvReLU1d, nni.ConvReLU2d, nni.ConvReLU3d))
58
+ ):
59
+ return mod[0].weight.detach()
60
+ else:
61
+ return mod._weight_bias()[0] # type: ignore[operator]
62
+
63
+ def get_linear_mod_weight(mod: nn.Module) -> torch.Tensor:
64
+ if isinstance(mod, nn.Linear):
65
+ return mod.weight.detach()
66
+ elif isinstance(mod, nni.LinearReLU):
67
+ return mod[0].weight.detach()
68
+ else:
69
+ return mod._weight_bias()[0] # type: ignore[operator]
70
+
71
+ def get_lstm_mod_weights(mod: nn.Module) -> List[torch.Tensor]:
72
+ # TODO(future PR): make more generic, handle everything
73
+ if isinstance(mod, nn.LSTM):
74
+ res = []
75
+ for idx, param_name in enumerate(mod._flat_weights_names):
76
+ if 'weight_ih_l' in param_name or 'weight_hh_l' in param_name:
77
+ param_value = mod._flat_weights[idx].detach()
78
+ res.append(param_value)
79
+ return res
80
+ else:
81
+ assert isinstance(mod, nnqd.LSTM), f"type {type(mod)} not handled yet"
82
+ res = []
83
+ for weight_value in mod._all_weight_values:
84
+ res.append(weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0])
85
+ res.append(weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0])
86
+ return res
87
+
88
+ def get_conv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
89
+ # traverse backwards from the weight arg, accounting for any observers
90
+ weight_arg_node = node.args[1]
91
+ assert isinstance(weight_arg_node, Node)
92
+ weight_node = return_first_non_observer_node(weight_arg_node, gm)
93
+ assert isinstance(weight_node, Node)
94
+ assert weight_node.op == 'get_attr'
95
+ weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
96
+ return weight.detach()
97
+
98
+ def get_qconv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
99
+ # qconv state is arg 1
100
+ qconv_state_node = node.args[1]
101
+ assert isinstance(qconv_state_node, Node)
102
+ assert qconv_state_node.op == 'get_attr'
103
+ qconv_state_obj = getattr_from_fqn(gm, qconv_state_node.target) # type: ignore[arg-type]
104
+ return qconv_state_obj.weight()
105
+
106
+ def get_linear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
107
+ # traverse backwards from the weight arg, accounting for any observers
108
+ # supported patterns:
109
+ # weight -> obs -> linear
110
+ # weight -> to(torch.float16) -> dequantize -> linear
111
+ linear_second_arg = node.args[1]
112
+ assert isinstance(linear_second_arg, Node)
113
+
114
+ if linear_second_arg.op == 'call_module':
115
+ # weight -> obs -> linear
116
+ weight_arg_node = node.args[1]
117
+ assert isinstance(weight_arg_node, Node)
118
+ weight_node = weight_arg_node.args[0]
119
+ assert isinstance(weight_node, Node)
120
+ assert weight_node.op == 'get_attr'
121
+ weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
122
+ return weight.detach()
123
+ elif linear_second_arg.op == 'call_method':
124
+ # weight -> to(torch.float16) -> dequantize -> linear
125
+ assert linear_second_arg.op == 'call_method'
126
+ dequant_node = node.args[1]
127
+ assert isinstance(dequant_node, Node)
128
+ to_fp16_node = dequant_node.args[0]
129
+ assert isinstance(to_fp16_node, Node)
130
+ # extract the dtype, so we can cast to it before returning
131
+ target_dtype = to_fp16_node.args[1]
132
+ weight_node = to_fp16_node.args[0]
133
+ assert isinstance(weight_node, Node)
134
+ assert weight_node.op == 'get_attr'
135
+ weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
136
+ # return the weight with fp16 cast
137
+ return weight.detach().to(target_dtype)
138
+ else:
139
+ assert linear_second_arg.op == 'get_attr'
140
+ weight = getattr_from_fqn(gm, linear_second_arg.target) # type: ignore[arg-type]
141
+ return weight.detach()
142
+
143
+ def get_qlinear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
144
+ # packed weight is arg 1
145
+ packed_weight_node = node.args[1]
146
+ assert isinstance(packed_weight_node, Node)
147
+ assert packed_weight_node.op == 'get_attr'
148
+ packed_weight = getattr_from_fqn(gm, packed_weight_node.target) # type: ignore[arg-type]
149
+ # TODO(future PR): why does packed_weight.unpack() not work?
150
+ (weight, _bias), _name = packed_weight.__getstate__()
151
+ return weight
152
+
153
+ def get_op_to_type_to_weight_extraction_fn() -> Dict[str, Dict[Callable, Callable]]:
154
+
155
+ op_to_type_to_weight_extraction_fn: Dict[str, Dict[Callable, Callable]] = {
156
+ 'call_module': {
157
+ # Conv1d
158
+ nn.Conv1d: mod_weight_detach,
159
+ nni.ConvReLU1d: mod_0_weight_detach,
160
+ nnq.Conv1d: mod_weight_bias_0,
161
+ nnqat.Conv1d: mod_weight_detach,
162
+ nniqat.ConvBn1d: mod_weight_detach,
163
+ nniqat.ConvBnReLU1d: mod_weight_detach,
164
+ nniqat.ConvReLU1d: mod_weight_detach,
165
+ nniq.ConvReLU1d: mod_weight_bias_0,
166
+ # Conv2d
167
+ nn.Conv2d: mod_weight_detach,
168
+ nni.ConvReLU2d: mod_0_weight_detach,
169
+ nnq.Conv2d: mod_weight_bias_0,
170
+ nnqat.Conv2d: mod_weight_detach,
171
+ nniqat.ConvBn2d: mod_weight_detach,
172
+ nniqat.ConvBnReLU2d: mod_weight_detach,
173
+ nniqat.ConvReLU2d: mod_weight_detach,
174
+ nniq.ConvReLU2d: mod_weight_bias_0,
175
+ # Conv3d
176
+ nn.Conv3d: mod_weight_detach,
177
+ nni.ConvReLU3d: mod_0_weight_detach,
178
+ nnq.Conv3d: mod_weight_bias_0,
179
+ nnqat.Conv3d: mod_weight_detach,
180
+ nniqat.ConvBn3d: mod_weight_detach,
181
+ nniqat.ConvBnReLU3d: mod_weight_detach,
182
+ nniqat.ConvReLU3d: mod_weight_detach,
183
+ nniq.ConvReLU3d: mod_weight_bias_0,
184
+ # Linear
185
+ nn.Linear: mod_weight_detach,
186
+ nnq.Linear: mod_weight_bias_0,
187
+ nni.LinearReLU: mod_0_weight_detach,
188
+ nniq.LinearReLU: mod_weight_bias_0,
189
+ nnqat.Linear: mod_weight_detach,
190
+ nnqd.Linear: mod_weight_bias_0,
191
+ nniqat.LinearReLU: mod_weight_detach,
192
+ nniqat.LinearBn1d: mod_weight_detach,
193
+ nn.modules.linear.NonDynamicallyQuantizableLinear: mod_weight_detach,
194
+ # LSTM
195
+ nn.LSTM: get_lstm_weight,
196
+ nnqd.LSTM: get_qlstm_weight,
197
+ },
198
+ 'call_function': {
199
+ # Conv
200
+ F.conv1d: get_conv_fun_weight,
201
+ F.conv2d: get_conv_fun_weight,
202
+ F.conv3d: get_conv_fun_weight,
203
+ toq.conv1d: get_qconv_fun_weight,
204
+ toq.conv2d: get_qconv_fun_weight,
205
+ toq.conv3d: get_qconv_fun_weight,
206
+ toq.conv1d_relu: get_qconv_fun_weight,
207
+ toq.conv2d_relu: get_qconv_fun_weight,
208
+ toq.conv3d_relu: get_qconv_fun_weight,
209
+ # Linear
210
+ F.linear: get_linear_fun_weight,
211
+ toq.linear: get_qlinear_fun_weight,
212
+ toq.linear_relu: get_qlinear_fun_weight,
213
+ },
214
+ }
215
+
216
+ return op_to_type_to_weight_extraction_fn
217
+
218
+ def extract_weight_from_node(
219
+ node: Node,
220
+ gm: GraphModule,
221
+ op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
222
+ ) -> Optional[NSSingleResultType]:
223
+ res_type = NSSingleResultValuesType.WEIGHT.value
224
+
225
+ # Not all graphmodules have _node_name_to_scope, so only fill it
226
+ # out if it exists.
227
+ fqn = None
228
+ if hasattr(gm, '_node_name_to_scope'):
229
+ fqn = gm._node_name_to_scope[node.name][0] # type: ignore[index]
230
+
231
+ if op_to_type_to_weight_extraction_fn is None:
232
+ op_to_type_to_weight_extraction_fn = get_op_to_type_to_weight_extraction_fn()
233
+
234
+ ref_node_type = get_target_type_str(node, gm)
235
+ # for extracting weights, these are always the same
236
+ prev_node_type = ref_node_type
237
+
238
+ if node.op == 'call_function':
239
+ function_mapping = op_to_type_to_weight_extraction_fn['call_function']
240
+ for target_fn_type, weight_extraction_fn in function_mapping.items():
241
+ if node.target == target_fn_type:
242
+ weight = weight_extraction_fn(node, gm)
243
+ return {
244
+ 'type': res_type,
245
+ 'values': [weight],
246
+ 'prev_node_name': node.name,
247
+ 'prev_node_target_type': prev_node_type,
248
+ 'ref_node_name': node.name,
249
+ 'ref_node_target_type': ref_node_type,
250
+ 'index_within_arg': 0,
251
+ 'index_of_arg': 0,
252
+ 'fqn': fqn,
253
+ }
254
+
255
+ elif node.op == 'call_module':
256
+ # for call_module, we need to look up the modules to do the type check
257
+ assert isinstance(node.target, str)
258
+ mod = getattr_from_fqn(gm, node.target)
259
+ module_mapping = op_to_type_to_weight_extraction_fn['call_module']
260
+ for target_mod_type, weight_extraction_fn in module_mapping.items():
261
+ if type(mod) == target_mod_type:
262
+ weight = weight_extraction_fn(mod)
263
+ return {
264
+ 'type': res_type,
265
+ 'values': [weight],
266
+ 'prev_node_name': node.name,
267
+ 'prev_node_target_type': prev_node_type,
268
+ 'ref_node_name': node.name,
269
+ 'ref_node_target_type': ref_node_type,
270
+ 'index_within_arg': 0,
271
+ 'index_of_arg': 0,
272
+ 'fqn': fqn,
273
+ }
274
+
275
+ return None
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__init__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .backend_config import BackendConfig, BackendPatternConfig, DTypeConfig, DTypeWithConstraints, ObservationType
2
+ from .fbgemm import get_fbgemm_backend_config
3
+ from .native import get_native_backend_config, get_native_backend_config_dict
4
+ from .qnnpack import get_qnnpack_backend_config
5
+ from .tensorrt import get_tensorrt_backend_config, get_tensorrt_backend_config_dict
6
+ from .executorch import get_executorch_backend_config
7
+ from .onednn import get_onednn_backend_config
8
+
9
+ __all__ = [
10
+ "get_fbgemm_backend_config",
11
+ "get_native_backend_config",
12
+ "get_native_backend_config_dict",
13
+ "get_qnnpack_backend_config",
14
+ "get_tensorrt_backend_config",
15
+ "get_tensorrt_backend_config_dict",
16
+ "get_executorch_backend_config",
17
+ "BackendConfig",
18
+ "BackendPatternConfig",
19
+ "DTypeConfig",
20
+ "DTypeWithConstraints",
21
+ "ObservationType",
22
+ "get_onednn_backend_config",
23
+ ]
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (883 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_common_operator_config_utils.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_qnnpack_pt2e.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/backend_config.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/executorch.cpython-310.pyc ADDED
Binary file (7.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/fbgemm.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/native.cpython-310.pyc ADDED
Binary file (3.59 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/observation_type.cpython-310.pyc ADDED
Binary file (209 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/onednn.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/qnnpack.cpython-310.pyc ADDED
Binary file (2.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/tensorrt.cpython-310.pyc ADDED
Binary file (2.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/utils.cpython-310.pyc ADDED
Binary file (9.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/x86.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_common_operator_config_utils.py ADDED
@@ -0,0 +1,637 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import operator
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.nn as nn
6
+ import torch.ao.nn.intrinsic as nni
7
+ import torch.ao.nn.intrinsic.qat as nniqat
8
+ import torch.ao.nn.qat as nnqat
9
+ import torch.ao.nn.quantized.reference as nnqr
10
+ from collections import namedtuple
11
+ from typing import Callable, Dict, List, Union
12
+ from .backend_config import (
13
+ BackendPatternConfig,
14
+ DTypeConfig,
15
+ DTypeWithConstraints,
16
+ ObservationType,
17
+ )
18
+ from ..fuser_method_mappings import (
19
+ _sequential_wrapper2,
20
+ fuse_conv_bn,
21
+ fuse_conv_bn_relu,
22
+ fuse_linear_bn,
23
+ fuse_convtranspose_bn,
24
+ )
25
+
26
+ __all__: List[str] = []
27
+
28
+ # TODO: rename to be more explicit, e.g. qat_conv_relu
29
+ _ConvMetadata = namedtuple(
30
+ "_ConvMetadata",
31
+ ["root", "transpose", "bn", "reference", "transpose_reference",
32
+ "fused_conv_relu", "fused_conv_bn", "fused_conv_bn_relu",
33
+ "qat", "relu_qat", "bn_qat", "bn_relu_qat",
34
+ "func", "func_transpose"])
35
+ _Conv1dMetadata = _ConvMetadata(
36
+ nn.Conv1d, nn.ConvTranspose1d, nn.BatchNorm1d, nnqr.Conv1d, nnqr.ConvTranspose1d,
37
+ nni.ConvReLU1d, nni.ConvBn1d, nni.ConvBnReLU1d,
38
+ nnqat.Conv1d, nniqat.ConvReLU1d, nniqat.ConvBn1d, nniqat.ConvBnReLU1d,
39
+ F.conv1d, F.conv_transpose1d)
40
+ _Conv2dMetadata = _ConvMetadata(
41
+ nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d, nnqr.Conv2d, nnqr.ConvTranspose2d,
42
+ nni.ConvReLU2d, nni.ConvBn2d, nni.ConvBnReLU2d,
43
+ nnqat.Conv2d, nniqat.ConvReLU2d, nniqat.ConvBn2d, nniqat.ConvBnReLU2d,
44
+ F.conv2d, F.conv_transpose2d)
45
+ _Conv3dMetadata = _ConvMetadata(
46
+ nn.Conv3d, nn.ConvTranspose3d, nn.BatchNorm3d, nnqr.Conv3d, nnqr.ConvTranspose3d,
47
+ nni.ConvReLU3d, nni.ConvBn3d, nni.ConvBnReLU3d,
48
+ nnqat.Conv3d, nniqat.ConvReLU3d, nniqat.ConvBn3d, nniqat.ConvBnReLU3d,
49
+ F.conv3d, F.conv_transpose3d)
50
+
51
+ # Add constraints for fixed qparams ops like sigmoid and tanh to ensure values
52
+ # fall within the proper ranges, e.g. [0, 1] for sigmoid, [-1, 1] for tanh
53
+ _FIXED_QPARAM_OP_0TO1_CONSTRAINTS = DTypeWithConstraints(
54
+ dtype=torch.quint8,
55
+ quant_min_lower_bound=0,
56
+ quant_max_upper_bound=255,
57
+ scale_exact_match=1.0 / 256.0,
58
+ zero_point_exact_match=0,
59
+ )
60
+ _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS = DTypeWithConstraints(
61
+ dtype=torch.quint8,
62
+ quant_min_lower_bound=0,
63
+ quant_max_upper_bound=255,
64
+ scale_exact_match=2.0 / 256.0,
65
+ zero_point_exact_match=128,
66
+ )
67
+ _FIXED_QPARAMS_OP_TO_CONSTRAINTS: Dict[Union[Callable, str], DTypeWithConstraints] = {
68
+ torch.nn.Hardsigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
69
+ torch.nn.functional.hardsigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
70
+ "hardsigmoid": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
71
+ "hardsigmoid_": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
72
+ torch.nn.Sigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
73
+ torch.sigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
74
+ "sigmoid": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
75
+ "sigmoid_": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
76
+ torch.nn.Softmax: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
77
+ torch.nn.Tanh: _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
78
+ torch.tanh: _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
79
+ "tanh": _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
80
+ "tanh_": _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
81
+ }
82
+
83
+ def _get_binary_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
84
+ binary_op_configs: List[BackendPatternConfig] = []
85
+ num_tensor_args_to_observation_type_mapping = {
86
+ # TODO: this is not used right now since we have extra check in prepare
87
+ # will need to change this to NO_OBSERVER later after we implemented
88
+ # Tensor dtype inference properly
89
+ 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
90
+ 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
91
+ 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
92
+ }
93
+ for op_with_quantized_bop_scalar_variant in [operator.add, torch.add, operator.mul, torch.mul]:
94
+ bop_patterns = [
95
+ (op_with_quantized_bop_scalar_variant, nn.ReLU),
96
+ (op_with_quantized_bop_scalar_variant, F.relu),
97
+ (op_with_quantized_bop_scalar_variant, torch.relu),
98
+ op_with_quantized_bop_scalar_variant
99
+ ]
100
+ for bop_pattern in bop_patterns:
101
+ binary_op_configs.append(
102
+ BackendPatternConfig(bop_pattern)
103
+ .set_dtype_configs(dtype_configs) # noqa: E131
104
+ ._set_num_tensor_args_to_observation_type(num_tensor_args_to_observation_type_mapping))
105
+ # matmul
106
+ binary_op_configs.append(
107
+ BackendPatternConfig(torch.matmul)
108
+ .set_dtype_configs(dtype_configs) # noqa: E131
109
+ )
110
+ return binary_op_configs
111
+
112
+ def _get_linear_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
113
+ """
114
+ Return all configs related to linear modules and ops.
115
+ """
116
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
117
+ linear_configs: List[BackendPatternConfig] = []
118
+
119
+ # (1) Single linear modules/functions
120
+ # -------------------------------------
121
+ # linear module
122
+ linear_configs.append(
123
+ BackendPatternConfig(torch.nn.Linear)
124
+ .set_observation_type(observation_type) # noqa: E131
125
+ .set_dtype_configs(dtype_configs)
126
+ .set_root_module(torch.nn.Linear)
127
+ .set_reference_quantized_module(nnqr.Linear)
128
+ .set_qat_module(nnqat.Linear))
129
+ # linear qat module
130
+ linear_configs.append(
131
+ BackendPatternConfig(nnqat.Linear)
132
+ .set_observation_type(observation_type) # noqa: E131
133
+ .set_dtype_configs(dtype_configs)
134
+ .set_root_module(torch.nn.Linear)
135
+ .set_reference_quantized_module(nnqr.Linear))
136
+ # functional linear
137
+ linear_configs.append(
138
+ BackendPatternConfig(torch.nn.functional.linear)
139
+ .set_observation_type(observation_type) # noqa: E131
140
+ .set_dtype_configs(dtype_configs)
141
+ ._set_input_type_to_index({"weight": 1, "bias": 2}))
142
+
143
+ # (2) Linear + relu
144
+ # -------------------
145
+ # 2.1 linear module + relu fusion config
146
+ # linear relu, linear module + relu module
147
+ linear_configs.append(
148
+ BackendPatternConfig((torch.nn.Linear, torch.nn.ReLU))
149
+ .set_dtype_configs(dtype_configs) # noqa: E131
150
+ .set_fuser_method(_sequential_wrapper2(nni.LinearReLU))
151
+ .set_fused_module(nni.LinearReLU))
152
+ # linear relu, linear module + functional relu
153
+ linear_configs.append(
154
+ BackendPatternConfig((torch.nn.Linear, torch.nn.functional.relu))
155
+ .set_dtype_configs(dtype_configs) # noqa: E131
156
+ .set_fuser_method(_sequential_wrapper2(nni.LinearReLU))
157
+ .set_fused_module(nni.LinearReLU))
158
+
159
+ # 2.2 linear module + relu, fused module configs
160
+ # linear relu, fused module
161
+ linear_configs.append(
162
+ BackendPatternConfig(nni.LinearReLU)
163
+ .set_observation_type(observation_type) # noqa: E131
164
+ .set_dtype_configs(dtype_configs)
165
+ .set_root_module(torch.nn.Linear)
166
+ .set_reference_quantized_module(nnqr.Linear)
167
+ .set_qat_module(nniqat.LinearReLU))
168
+ # linear relu, qat fused module
169
+ linear_configs.append(
170
+ BackendPatternConfig(nniqat.LinearReLU)
171
+ .set_observation_type(observation_type) # noqa: E131
172
+ .set_dtype_configs(dtype_configs)
173
+ .set_root_module(torch.nn.Linear)
174
+ .set_reference_quantized_module(nnqr.Linear))
175
+ # 2.3 functional linear + relu configs
176
+ # linear relu, functional linear + relu module
177
+ linear_configs.append(
178
+ BackendPatternConfig((F.linear, torch.nn.ReLU))
179
+ .set_observation_type(observation_type) # noqa: E131
180
+ .set_dtype_configs(dtype_configs))
181
+ # linear relu, functional linear + functional relu
182
+ linear_configs.append(
183
+ BackendPatternConfig((F.linear, F.relu))
184
+ .set_observation_type(observation_type) # noqa: E131
185
+ .set_dtype_configs(dtype_configs))
186
+
187
+ # (3) Linear + batchnorm
188
+ # ------------------------
189
+ # 3.1 linear bn fusion
190
+ linear_configs.append(
191
+ BackendPatternConfig((nn.Linear, nn.BatchNorm1d))
192
+ .set_dtype_configs(dtype_configs) # noqa: E131
193
+ .set_fuser_method(fuse_linear_bn)
194
+ .set_fused_module(nni.LinearBn1d))
195
+
196
+ # 3.2 linear bn fused
197
+ # linear bn, fused module
198
+ linear_configs.append(
199
+ BackendPatternConfig(nni.LinearBn1d)
200
+ .set_observation_type(observation_type) # noqa: E131
201
+ .set_dtype_configs(dtype_configs)
202
+ .set_root_module(torch.nn.Linear)
203
+ .set_reference_quantized_module(nnqr.Linear)
204
+ .set_qat_module(nniqat.LinearBn1d))
205
+ # linear bn, qat fused module
206
+ linear_configs.append(
207
+ BackendPatternConfig(nniqat.LinearBn1d)
208
+ .set_observation_type(observation_type) # noqa: E131
209
+ .set_dtype_configs(dtype_configs)
210
+ .set_root_module(torch.nn.Linear)
211
+ .set_reference_quantized_module(nnqr.Linear))
212
+ return linear_configs
213
+
214
+ def _get_conv_configs(dtype_configs):
215
+ """
216
+ Return all configs related to conv modules and ops.
217
+ """
218
+ conv_configs = []
219
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
220
+ for convs in [_Conv1dMetadata, _Conv2dMetadata, _Conv3dMetadata]:
221
+
222
+ # (1) Single conv modules/functions
223
+ # -----------------------------------
224
+ # conv module
225
+ conv_configs.append(
226
+ BackendPatternConfig(convs.root)
227
+ .set_observation_type(observation_type) # noqa: E131
228
+ .set_dtype_configs(dtype_configs)
229
+ .set_root_module(convs.root)
230
+ .set_reference_quantized_module(convs.reference)
231
+ .set_qat_module(convs.qat))
232
+ # conv qat module
233
+ conv_configs.append(
234
+ BackendPatternConfig(convs.qat)
235
+ .set_observation_type(observation_type) # noqa: E131
236
+ .set_dtype_configs(dtype_configs)
237
+ .set_root_module(convs.root)
238
+ .set_reference_quantized_module(convs.reference))
239
+ # functional conv
240
+ conv_configs.append(
241
+ BackendPatternConfig(convs.func)
242
+ .set_observation_type(observation_type) # noqa: E131
243
+ .set_dtype_configs(dtype_configs)
244
+ ._set_input_type_to_index({"weight": 1, "bias": 2}))
245
+
246
+ # (2) Conv + relu
247
+ # -----------------
248
+ # 2.1 conv module + relu fusion configs
249
+ # conv relu fusion, conv module + relu module
250
+ conv_configs.append(
251
+ BackendPatternConfig((convs.root, torch.nn.ReLU))
252
+ .set_dtype_configs(dtype_configs) # noqa: E131
253
+ .set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
254
+ .set_fused_module(convs.fused_conv_relu))
255
+ # conv relu fusion, conv module + functional relu
256
+ conv_configs.append(
257
+ BackendPatternConfig((convs.root, F.relu))
258
+ .set_dtype_configs(dtype_configs) # noqa: E131
259
+ .set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
260
+ .set_fused_module(convs.fused_conv_relu))
261
+ # 2.2 conv module + relu fused module configs
262
+ # conv relu, fused module
263
+ conv_configs.append(
264
+ BackendPatternConfig(convs.fused_conv_relu)
265
+ .set_observation_type(observation_type) # noqa: E131
266
+ .set_dtype_configs(dtype_configs)
267
+ .set_root_module(convs.root)
268
+ .set_reference_quantized_module(convs.reference)
269
+ .set_qat_module(convs.relu_qat))
270
+ # conv relu, qat fused module
271
+ conv_configs.append(
272
+ BackendPatternConfig(convs.relu_qat)
273
+ .set_observation_type(observation_type) # noqa: E131
274
+ .set_dtype_configs(dtype_configs)
275
+ .set_root_module(convs.root)
276
+ .set_reference_quantized_module(convs.reference))
277
+ # 2.3 functional conv + relu configs
278
+ # conv relu, functional conv + relu module
279
+ conv_configs.append(
280
+ BackendPatternConfig((convs.func, torch.nn.ReLU))
281
+ .set_observation_type(observation_type) # noqa: E131
282
+ .set_dtype_configs(dtype_configs))
283
+ # conv relu, functional conv + functional relu
284
+ conv_configs.append(
285
+ BackendPatternConfig((convs.func, F.relu))
286
+ .set_observation_type(observation_type) # noqa: E131
287
+ .set_dtype_configs(dtype_configs))
288
+
289
+ # fused conv relu
290
+ conv_configs.append(
291
+ BackendPatternConfig(convs.fused_conv_relu)
292
+ .set_dtype_configs(dtype_configs) # noqa: E131
293
+ .set_qat_module(convs.relu_qat))
294
+
295
+ conv_configs.append(
296
+ BackendPatternConfig(convs.relu_qat)
297
+ .set_dtype_configs(dtype_configs) # noqa: E131
298
+ .set_root_module(convs.root)
299
+ .set_reference_quantized_module(convs.reference))
300
+
301
+ # (3) Conv + batchnorm (+ relu)
302
+ # -------------------------------
303
+ # 3.1 conv bn fusion configs
304
+ # conv + bn fusion
305
+ conv_configs.append(
306
+ BackendPatternConfig((convs.root, convs.bn))
307
+ .set_dtype_configs(dtype_configs) # noqa: E131
308
+ .set_fuser_method(fuse_conv_bn)
309
+ .set_fused_module(convs.fused_conv_bn))
310
+ # conv + bn + relu module fusion
311
+ conv_configs.append(
312
+ BackendPatternConfig((convs.root, convs.bn, nn.ReLU))
313
+ .set_dtype_configs(dtype_configs) # noqa: E131
314
+ .set_fuser_method(fuse_conv_bn_relu)
315
+ .set_fused_module(convs.fused_conv_bn_relu))
316
+ # conv + bn + relu functional fusion
317
+ conv_configs.append(
318
+ BackendPatternConfig((convs.root, convs.bn, F.relu))
319
+ .set_dtype_configs(dtype_configs) # noqa: E131
320
+ .set_root_module(convs.root)
321
+ .set_fuser_method(fuse_conv_bn_relu)
322
+ .set_fused_module(convs.fused_conv_bn_relu))
323
+ # TODO: we can add fusion for torch.relu as well
324
+
325
+ # 3.2 conv + bn (+ relu) fused module configs
326
+ # fused conv bn
327
+ conv_configs.append(
328
+ BackendPatternConfig(convs.fused_conv_bn)
329
+ .set_dtype_configs(dtype_configs) # noqa: E131
330
+ .set_qat_module(convs.bn_qat))
331
+
332
+ # fused conv bn relu
333
+ conv_configs.append(
334
+ BackendPatternConfig(convs.fused_conv_bn_relu)
335
+ .set_dtype_configs(dtype_configs) # noqa: E131
336
+ .set_qat_module(convs.bn_relu_qat))
337
+
338
+ # conv bn, qat fused module
339
+ conv_configs.append(
340
+ BackendPatternConfig(convs.bn_qat)
341
+ .set_observation_type(observation_type) # noqa: E131
342
+ .set_dtype_configs(dtype_configs)
343
+ .set_root_module(convs.root)
344
+ .set_reference_quantized_module(convs.reference))
345
+ # conv bn relu, qat fused module
346
+ conv_configs.append(
347
+ BackendPatternConfig(convs.bn_relu_qat)
348
+ .set_observation_type(observation_type) # noqa: E131
349
+ .set_dtype_configs(dtype_configs)
350
+ .set_root_module(convs.root)
351
+ .set_reference_quantized_module(convs.reference))
352
+
353
+ # (4) conv transpose and its fusion
354
+ # 4.1 conv transpose config
355
+ conv_configs.append(
356
+ BackendPatternConfig(convs.transpose)
357
+ .set_dtype_configs(dtype_configs) # noqa: E131
358
+ .set_root_module(convs.transpose)
359
+ .set_reference_quantized_module(convs.transpose_reference))
360
+
361
+ # 4.2 conv transpose + bn fusion
362
+ conv_configs.append(
363
+ BackendPatternConfig((convs.transpose, convs.bn))
364
+ .set_dtype_configs(dtype_configs) # noqa: E131
365
+ .set_fuser_method(fuse_convtranspose_bn)
366
+ .set_root_module(convs.transpose)
367
+ .set_reference_quantized_module(convs.transpose_reference))
368
+
369
+ # 4.3 functional conv transpose
370
+ conv_configs.append(
371
+ BackendPatternConfig(convs.func_transpose)
372
+ .set_dtype_configs(dtype_configs) # noqa: E131
373
+ ._set_input_type_to_index({"weight": 1, "bias": 2}))
374
+
375
+ return conv_configs
376
+
377
+ def _get_cat_config(dtype_configs: List[DTypeConfig]) -> BackendPatternConfig:
378
+ return BackendPatternConfig(torch.cat) \
379
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
380
+ .set_dtype_configs(dtype_configs)
381
+
382
+ def _get_ln_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
383
+ ln_configs = []
384
+ ln_configs.append(
385
+ BackendPatternConfig(torch.nn.LayerNorm)
386
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
387
+ .set_dtype_configs(dtype_configs)
388
+ )
389
+ ln_configs.append(
390
+ BackendPatternConfig(torch.nn.functional.layer_norm)
391
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
392
+ .set_dtype_configs(dtype_configs)
393
+ ._set_input_type_to_index({"weight": 2, "bias": 3})
394
+ )
395
+ return ln_configs
396
+
397
+ def _get_default_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
398
+ configs = []
399
+ default_ops = [
400
+ torch.nn.ELU,
401
+ torch.nn.LeakyReLU,
402
+ torch.nn.Hardswish,
403
+ torch.nn.InstanceNorm1d,
404
+ torch.nn.InstanceNorm2d,
405
+ torch.nn.InstanceNorm3d,
406
+ torch.nn.Dropout,
407
+ torch.nn.PReLU,
408
+ torch.nn.functional.elu,
409
+ torch.nn.functional.hardswish,
410
+ torch.nn.functional.leaky_relu,
411
+ torch.nn.functional.dropout,
412
+ ]
413
+ for op in default_ops:
414
+ configs.append(
415
+ BackendPatternConfig(op)
416
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
417
+ .set_dtype_configs(dtype_configs))
418
+
419
+ configs.append(
420
+ BackendPatternConfig(torch.nn.functional.group_norm)
421
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
422
+ .set_dtype_configs(dtype_configs)
423
+ ._set_input_type_to_index({"weight": 2, "bias": 3})
424
+ )
425
+
426
+ configs.append(
427
+ BackendPatternConfig(torch.nn.functional.instance_norm)
428
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
429
+ .set_dtype_configs(dtype_configs)
430
+ ._set_input_type_to_index({"weight": 3, "bias": 4})
431
+ )
432
+ return configs
433
+
434
+ def _add_fixed_qparams_to_dtype_configs(
435
+ dtype_configs: List[DTypeConfig],
436
+ constraints: DTypeWithConstraints,
437
+ ) -> List[DTypeConfig]:
438
+ """
439
+ Return a copy of the list of DTypeConfigs where activations are subject to the specified
440
+ constraints required for fixed qparams ops.
441
+
442
+ If the data type doesn't match the one in the constraints, simply leave the corresponding
443
+ DTypeConfig unchanged.
444
+
445
+ If `scale_min_lower_bound` or `scale_max_upper_bound` is specified in the activations,
446
+ throw an exception since these settings are incompatible with fixed qparams ops.
447
+ """
448
+ new_dtype_configs = []
449
+ for dtype_config in dtype_configs:
450
+ dc = copy.deepcopy(dtype_config)
451
+ for orig_constraints in [dc.input_dtype_with_constraints, dc.output_dtype_with_constraints]:
452
+ if orig_constraints.dtype != constraints.dtype:
453
+ continue
454
+ if orig_constraints.scale_min_lower_bound is not None:
455
+ raise ValueError(f"scale_min_lower_bound is invalid for fixed qparams ops: {dtype_config}")
456
+ if orig_constraints.scale_max_upper_bound is not None:
457
+ raise ValueError(f"scale_max_upper_bound is invalid for fixed qparams ops: {dtype_config}")
458
+ orig_constraints.quant_min_lower_bound = constraints.quant_min_lower_bound
459
+ orig_constraints.quant_max_upper_bound = constraints.quant_max_upper_bound
460
+ orig_constraints.scale_exact_match = constraints.scale_exact_match
461
+ orig_constraints.zero_point_exact_match = constraints.zero_point_exact_match
462
+ new_dtype_configs.append(dc)
463
+ return new_dtype_configs
464
+
465
+ def _get_fixed_qparams_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
466
+ fixed_qparams_op_configs = []
467
+ for fixed_qparam_op, constraints in _FIXED_QPARAMS_OP_TO_CONSTRAINTS.items():
468
+ new_dtype_configs = _add_fixed_qparams_to_dtype_configs(dtype_configs, constraints)
469
+ fixed_qparams_op_configs.append(
470
+ BackendPatternConfig(fixed_qparam_op)
471
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
472
+ .set_dtype_configs(new_dtype_configs))
473
+ return fixed_qparams_op_configs
474
+
475
+ def _get_share_qparams_op_configs(dtype_configs):
476
+ """ Get the operator config for the operators that works for both float and quantized input
477
+ if input is quantized, the output Tensor shares the same quantization parameter
478
+ with input.
479
+ Example operator: avgpool2d, reshape, transpose, maxpool2d
480
+ Example observed operator:
481
+ observer_0 - avgpool2d - observer_0 (same observer instance as input)
482
+ """
483
+
484
+ def _get_share_qprams_op_backend_config(op):
485
+ return BackendPatternConfig(op) \
486
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
487
+ .set_dtype_configs(dtype_configs)
488
+
489
+ share_qparams_ops = [
490
+ torch.nn.AdaptiveAvgPool1d,
491
+ torch.nn.AdaptiveAvgPool2d,
492
+ torch.nn.AdaptiveAvgPool3d,
493
+ torch.nn.AvgPool1d,
494
+ torch.nn.AvgPool2d,
495
+ torch.nn.AvgPool3d,
496
+ torch.nn.Hardtanh,
497
+ torch.nn.Identity,
498
+ torch.nn.MaxPool1d,
499
+ torch.nn.MaxPool2d,
500
+ torch.nn.MaxPool3d,
501
+ torch.nn.PixelShuffle,
502
+ torch.nn.PixelUnshuffle,
503
+ torch.nn.ReLU,
504
+ torch.nn.ReLU6,
505
+ torch.adaptive_avg_pool1d,
506
+ torch.nn.functional.adaptive_avg_pool2d,
507
+ torch.nn.functional.adaptive_avg_pool3d,
508
+ torch.nn.functional.hardtanh,
509
+ torch.nn.functional.hardtanh_,
510
+ torch.nn.functional.interpolate,
511
+ torch.nn.functional.max_pool1d,
512
+ torch.nn.functional.max_pool2d,
513
+ torch.nn.functional.max_pool3d,
514
+ torch.nn.functional.pixel_shuffle,
515
+ torch.nn.functional.pixel_unshuffle,
516
+ torch.nn.functional.relu,
517
+ torch.nn.functional.relu6,
518
+ torch.avg_pool1d,
519
+ torch._C._nn.avg_pool2d,
520
+ torch._C._nn.avg_pool3d,
521
+ torch.clamp,
522
+ torch.flatten,
523
+ torch.mean,
524
+ torch.narrow,
525
+ torch.repeat_interleave,
526
+ torch.transpose,
527
+ torch.squeeze,
528
+ torch.stack,
529
+ torch.unsqueeze,
530
+ operator.floordiv,
531
+ "contiguous",
532
+ "clamp",
533
+ "detach",
534
+ "detach_",
535
+ "mean",
536
+ "permute",
537
+ "repeat",
538
+ "repeat_interleave",
539
+ "reshape",
540
+ "resize_",
541
+ "relu",
542
+ "relu_",
543
+ "squeeze",
544
+ "squeeze_",
545
+ "transpose",
546
+ "unsqueeze",
547
+ "unsqueeze_",
548
+ "view"
549
+ ]
550
+ return [_get_share_qprams_op_backend_config(op) for op in share_qparams_ops]
551
+
552
+ def _get_bn_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
553
+ """ Get configs related to batchnorm. """
554
+ bn_configs = []
555
+ bn_to_fused_bn = {
556
+ torch.nn.BatchNorm2d: nni.BNReLU2d,
557
+ torch.nn.BatchNorm3d: nni.BNReLU3d,
558
+ }
559
+ for bn in bn_to_fused_bn.keys():
560
+ fused_bn = bn_to_fused_bn[bn]
561
+ # bn module + relu module fusion config
562
+ bn_configs.append(
563
+ BackendPatternConfig((bn, nn.ReLU))
564
+ .set_dtype_configs(dtype_configs) # noqa: E131
565
+ .set_fuser_method(_sequential_wrapper2(fused_bn))
566
+ .set_fused_module(fused_bn))
567
+ # bn module + F.relu fusion config
568
+ bn_configs.append(
569
+ BackendPatternConfig((bn, F.relu))
570
+ .set_dtype_configs(dtype_configs) # noqa: E131
571
+ .set_fuser_method(_sequential_wrapper2(fused_bn))
572
+ .set_fused_module(fused_bn))
573
+ bn_configs.append(
574
+ BackendPatternConfig(bn)
575
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
576
+ .set_dtype_configs(dtype_configs))
577
+
578
+ # fused bn configs
579
+ for fused_bn in bn_to_fused_bn.values():
580
+ bn_configs.append(
581
+ BackendPatternConfig(fused_bn)
582
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
583
+ .set_dtype_configs(dtype_configs))
584
+ return bn_configs
585
+
586
+ def _get_rnn_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
587
+ rnn_op_configs = []
588
+ for rnn_op, ref_rnn_op in [
589
+ (nn.GRUCell, nnqr.GRUCell),
590
+ (nn.LSTMCell, nnqr.LSTMCell),
591
+ (nn.RNNCell, nnqr.RNNCell),
592
+ (nn.LSTM, nnqr.LSTM),
593
+ (nn.GRU, nnqr.GRU)
594
+ ]:
595
+ rnn_op_configs.append(
596
+ BackendPatternConfig(rnn_op)
597
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
598
+ .set_dtype_configs(dtype_configs)
599
+ .set_root_module(rnn_op)
600
+ .set_reference_quantized_module(ref_rnn_op))
601
+ return rnn_op_configs
602
+
603
+ def _get_embedding_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
604
+ embedding_op_configs = []
605
+ for embedding_op, qat_embedding_op, ref_embedding_op in [
606
+ (nn.Embedding, nnqat.Embedding, nnqr.Embedding),
607
+ (nn.EmbeddingBag, nnqat.EmbeddingBag, nnqr.EmbeddingBag),
608
+ ]:
609
+ embedding_op_configs.append(
610
+ BackendPatternConfig(embedding_op)
611
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
612
+ .set_dtype_configs(dtype_configs)
613
+ .set_qat_module(qat_embedding_op)
614
+ .set_root_module(embedding_op)
615
+ .set_reference_quantized_module(ref_embedding_op))
616
+
617
+ # config for qat op
618
+ embedding_op_configs.append(
619
+ BackendPatternConfig(qat_embedding_op)
620
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
621
+ .set_dtype_configs(dtype_configs)
622
+ .set_root_module(embedding_op)
623
+ .set_reference_quantized_module(ref_embedding_op))
624
+ return embedding_op_configs
625
+
626
+ def _get_tensor_info_op_configs(dtype_configs):
627
+ """
628
+ These ops work on tensors of different dtypes but return non-tensors
629
+ containing information about the input tensor.
630
+ """
631
+
632
+ def _get_config(op):
633
+ return BackendPatternConfig(op) \
634
+ .set_observation_type(ObservationType.INPUT_OUTPUT_NOT_OBSERVED) \
635
+ .set_dtype_configs(dtype_configs)
636
+
637
+ return [_get_config(op) for op in ("shape", "size")]
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_qnnpack_pt2e.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+ import torch
3
+ from torch.ao.quantization.backend_config import (
4
+ BackendConfig,
5
+ DTypeConfig,
6
+ ObservationType,
7
+ BackendPatternConfig,
8
+ )
9
+
10
+ weighted_op_quint8_dtype_config = DTypeConfig(
11
+ input_dtype=torch.quint8,
12
+ output_dtype=torch.quint8,
13
+ weight_dtype=torch.qint8,
14
+ bias_dtype=torch.float,
15
+ )
16
+ from typing import List
17
+
18
+ def get_linear_configs():
19
+ linear_configs = []
20
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
21
+ dtype_configs = [weighted_op_quint8_dtype_config]
22
+
23
+ # TODO: need to fix the way we insert observers for this pattern
24
+ # should be solved in the new fusion API
25
+ # reason that this doesn't work: the pattern is a bit complicated and we don't
26
+ # have a way to specify which input of the pattern we would like to observe
27
+ # pattern:
28
+ # bias input weight
29
+ # \ | /
30
+ # \ | t
31
+ # \ | /
32
+ # addmm
33
+ # we want to observe "weight" as weight, but there is not way to convey this
34
+ # information with current pattern language
35
+ #
36
+ # right now:
37
+ # original:
38
+ # weight - t \
39
+ # input - addmm
40
+ # observed (no hack):
41
+ # weight - t - observer \
42
+ # input - observer - addmm
43
+ # target:
44
+ # weight - observer - t \
45
+ # input - observer - addmm
46
+
47
+ # def root_node_getter(node_pattern):
48
+ # addmm, bias, act, weight = node_pattern
49
+ # return addmm
50
+
51
+ # linear_configs.append(
52
+ # BackendPatternConfig((torch.ops.aten.addmm.default, MatchAllNode, MatchAllNode, torch.ops.aten.t.default))
53
+ # .set_observation_type(observation_type) # noqa: E131
54
+ # .set_dtype_configs(dtype_configs)
55
+ # ._set_root_node_getter(root_node_getter))
56
+
57
+ linear_configs.append(
58
+ BackendPatternConfig(torch.ops.aten.addmm.default)
59
+ .set_observation_type(observation_type) # noqa: E131
60
+ .set_dtype_configs(dtype_configs)
61
+ ._set_input_type_to_index({"weight": 2, "bias": 0})
62
+ )
63
+ # linear is decomposed to `t - mm` if bias is not present
64
+ linear_configs.append(
65
+ BackendPatternConfig(torch.ops.aten.mm.default)
66
+ .set_observation_type(observation_type) # noqa: E131
67
+ .set_dtype_configs(dtype_configs)
68
+ ._set_input_type_to_index({"weight": 1})
69
+ )
70
+ return linear_configs
71
+
72
+ def get_conv_configs():
73
+ conv_configs = []
74
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
75
+ dtype_configs = [weighted_op_quint8_dtype_config]
76
+ conv_configs.append(
77
+ BackendPatternConfig(torch.ops.aten.convolution.default)
78
+ .set_observation_type(observation_type) # noqa: E131
79
+ .set_dtype_configs(dtype_configs)
80
+ ._set_input_type_to_index({"weight": 1, "bias": 2})
81
+ )
82
+ conv_configs.append(
83
+ BackendPatternConfig((torch.ops.aten.convolution.default, torch.ops.aten.relu.default))
84
+ .set_observation_type(observation_type) # noqa: E131
85
+ .set_dtype_configs(dtype_configs)
86
+ ._set_input_type_to_index({"weight": 1, "bias": 2})
87
+ )
88
+ # TODO: remove when functionalization is supported in PT2 mode
89
+ conv_configs.append(
90
+ BackendPatternConfig((torch.ops.aten.convolution.default, torch.ops.aten.relu_.default))
91
+ .set_observation_type(observation_type) # noqa: E131
92
+ .set_dtype_configs(dtype_configs)
93
+ ._set_input_type_to_index({"weight": 1, "bias": 2})
94
+ )
95
+ return conv_configs
96
+
97
+ def get_pooling_configs():
98
+ backend_pattern_configs = []
99
+ observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
100
+ dtype_configs = [weighted_op_quint8_dtype_config]
101
+
102
+ def root_node_getter(node_pattern):
103
+ getitem, maxpool, index = node_pattern
104
+ return maxpool
105
+
106
+ backend_pattern_configs.append(
107
+ BackendPatternConfig()
108
+ ._set_pattern_complex_format((operator.getitem, torch.ops.aten.max_pool2d_with_indices.default, 0))
109
+ .set_observation_type(observation_type) # noqa: E131
110
+ .set_dtype_configs(dtype_configs)
111
+ ._set_root_node_getter(root_node_getter)
112
+ )
113
+
114
+ return backend_pattern_configs
115
+
116
+ def get_relu_configs():
117
+ backend_pattern_configs = []
118
+ observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
119
+ dtype_configs = [weighted_op_quint8_dtype_config]
120
+ backend_pattern_configs.append(
121
+ BackendPatternConfig(torch.ops.aten.relu.default)
122
+ .set_observation_type(observation_type) # noqa: E131
123
+ .set_dtype_configs(dtype_configs))
124
+ return backend_pattern_configs
125
+
126
+ def get_binary_op_configs():
127
+ binary_op_configs: List[BackendPatternConfig] = []
128
+ dtype_configs = [weighted_op_quint8_dtype_config]
129
+ num_tensor_args_to_observation_type_mapping = {
130
+ # TODO: this is not used right now since we have extra check in prepare
131
+ # will need to change this to NO_OBSERVER later after we implemented
132
+ # Tensor dtype inference properly
133
+ 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
134
+ 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
135
+ 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
136
+ }
137
+ for op_with_quantized_bop_scalar_variant in [torch.ops.aten.add.Tensor, torch.ops.aten.add_.Tensor]:
138
+ bop_patterns = [
139
+ (op_with_quantized_bop_scalar_variant, torch.ops.aten.relu.default),
140
+ op_with_quantized_bop_scalar_variant,
141
+ # TODO: remove when functionalization is supported in pt2_mode
142
+ (op_with_quantized_bop_scalar_variant, torch.ops.aten.relu_.default),
143
+ ]
144
+ for bop_pattern in bop_patterns:
145
+ binary_op_configs.append(
146
+ BackendPatternConfig(bop_pattern)
147
+ .set_dtype_configs(dtype_configs) # noqa: E131
148
+ ._set_num_tensor_args_to_observation_type(num_tensor_args_to_observation_type_mapping))
149
+
150
+ return binary_op_configs
151
+
152
+ def get_qnnpack_pt2e_backend_config():
153
+ return (
154
+ BackendConfig("qnnpack_pytorch_2.0_export")
155
+ .set_backend_pattern_configs(get_linear_configs())
156
+ .set_backend_pattern_configs(get_binary_op_configs())
157
+ .set_backend_pattern_configs(get_conv_configs())
158
+ .set_backend_pattern_configs(get_pooling_configs())
159
+ .set_backend_pattern_configs(get_relu_configs())
160
+ )
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from typing import Any, Callable, Dict, List, Optional, Type, Union
4
+
5
+ import torch
6
+ from torch.ao.quantization.utils import Pattern
7
+ from enum import Enum
8
+
9
+
10
+ __all__ = [
11
+ "BackendConfig",
12
+ "BackendPatternConfig",
13
+ "DTypeConfig",
14
+ "DTypeWithConstraints",
15
+ "ObservationType",
16
+ ]
17
+
18
+
19
+ # DTypeConfig dict keys
20
+ INPUT_DTYPE_DICT_KEY = "input_dtype"
21
+ OUTPUT_DTYPE_DICT_KEY = "output_dtype"
22
+ WEIGHT_DTYPE_DICT_KEY = "weight_dtype"
23
+ BIAS_DTYPE_DICT_KEY = "bias_dtype"
24
+ IS_DYNAMIC_DICT_KEY = "is_dynamic"
25
+
26
+ # BackendConfig dict keys
27
+ NAME_DICT_KEY = "name"
28
+ CONFIGS_DICT_KEY = "configs"
29
+
30
+ # BackendPatternConfig dict keys
31
+ PATTERN_DICT_KEY = "pattern"
32
+ PATTERN_COMPLEX_FORMAT_DICT_KEY = "pattern_complex_format"
33
+ OBSERVATION_TYPE_DICT_KEY = "observation_type"
34
+ DTYPE_CONFIGS_DICT_KEY = "dtype_configs"
35
+ ROOT_MODULE_DICT_KEY = "root_module"
36
+ QAT_MODULE_DICT_KEY = "qat_module"
37
+ REFERENCE_QUANTIZED_MODULE_DICT_KEY = "reference_quantized_module_for_root"
38
+ FUSED_MODULE_DICT_KEY = "fused_module"
39
+ FUSER_METHOD_DICT_KEY = "fuser_method"
40
+ ROOT_NODE_GETTER_DICT_KEY = "root_node_getter"
41
+ EXTRA_INPUTS_GETTER_DICT_KEY = "extra_inputs_getter"
42
+ NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY = "num_tensor_args_to_observation_type"
43
+ INPUT_TYPE_TO_INDEX_DICT_KEY = "input_type_to_index"
44
+
45
+
46
+ # TODO: maybe rename this to something that's not related to observer
47
+ # e.g. QParamsType
48
+ class ObservationType(Enum):
49
+ """ An enum that represents different ways of how an operator/operator pattern
50
+ should be observed
51
+ """
52
+
53
+ OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0
54
+ """this means input and output are observed with different observers, based
55
+ on qconfig.activation
56
+ example: conv, linear, softmax
57
+ """
58
+
59
+ OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1
60
+ """this means the output will use the same observer instance as input, based
61
+ on qconfig.activation
62
+ example: torch.cat, maxpool
63
+ """
64
+
65
+ INPUT_OUTPUT_NOT_OBSERVED = 2
66
+ """this means the input and output are never observed
67
+ example: x.shape, x.size
68
+ """
69
+
70
+
71
+ @dataclass
72
+ class DTypeWithConstraints:
73
+ """
74
+ Config for specifying additional constraints for a given dtype, such as quantization
75
+ value ranges, scale value ranges, and fixed quantization params, to be used in
76
+ :class:`~torch.ao.quantization.backend_config.DTypeConfig`.
77
+
78
+ The constraints currently supported are:
79
+
80
+ * `quant_min_lower_bound` and `quant_max_upper_bound`: Lower and upper
81
+ bounds for the minimum and maximum quantized values respectively. If
82
+ the QConfig’s `quant_min` and `quant_max` fall outside this range,
83
+ then the QConfig will be ignored.
84
+
85
+ * `scale_min_lower_bound` and `scale_max_upper_bound`: Lower and upper
86
+ bounds for the minimum and maximum scale values respectively. If the
87
+ QConfig’s minimum scale value (currently exposed as `eps`) falls below
88
+ the lower bound, then the QConfig will be ignored. Note that the upper
89
+ bound is currently not enforced.
90
+
91
+ * `scale_exact_match` and `zero_point_exact_match`: Exact match requirements
92
+ for scale and zero point, to be used for operators with fixed quantization
93
+ parameters such as sigmoid and tanh. If the observer specified in the QConfig
94
+ is neither `FixedQParamsObserver` nor `FixedQParamsFakeQuantize`, or if
95
+ the quantization parameters don't match, then the QConfig will be ignored.
96
+ """
97
+ dtype: Optional[torch.dtype] = None
98
+ quant_min_lower_bound: Union[int, float, None] = None
99
+ quant_max_upper_bound: Union[int, float, None] = None
100
+ scale_min_lower_bound: Union[int, float, None] = None
101
+ scale_max_upper_bound: Union[int, float, None] = None
102
+ scale_exact_match: Optional[float] = None
103
+ zero_point_exact_match: Optional[int] = None
104
+
105
+
106
+ @dataclass
107
+ class DTypeConfig:
108
+ """
109
+ Config object that specifies the supported data types passed as arguments to
110
+ quantize ops in the reference model spec, for input and output activations,
111
+ weights, and biases.
112
+
113
+ For example, consider the following reference model:
114
+
115
+ quant1 - [dequant1 - fp32_linear - quant2] - dequant2
116
+
117
+ The pattern in the square brackets refers to the reference pattern of
118
+ statically quantized linear. Setting the input dtype as `torch.quint8`
119
+ in the DTypeConfig means we pass in `torch.quint8` as the dtype argument
120
+ to the first quantize op (quant1). Similarly, setting the output dtype as
121
+ `torch.quint8` means we pass in `torch.quint8` as the dtype argument to
122
+ the second quantize op (quant2).
123
+
124
+ Note that the dtype here does not refer to the interface dtypes of the
125
+ op. For example, the "input dtype" here is not the dtype of the input
126
+ tensor passed to the quantized linear op. Though it can still be the
127
+ same as the interface dtype, this is not always the case, e.g. the
128
+ interface dtype is fp32 in dynamic quantization but the "input dtype"
129
+ specified in the DTypeConfig would still be quint8. The semantics of
130
+ dtypes here are the same as the semantics of the dtypes specified in
131
+ the observers.
132
+
133
+ These dtypes are matched against the ones specified in the user’s
134
+ QConfig. If there is a match, and the QConfig satisfies the constraints
135
+ specified in the DTypeConfig (if any), then we will quantize the given
136
+ pattern using this DTypeConfig. Otherwise, the QConfig is ignored and
137
+ the pattern will not be quantized.
138
+
139
+ Example usage::
140
+
141
+ >>> # xdoctest: +SKIP(failing)
142
+ >>> dtype_config1 = DTypeConfig(
143
+ ... input_dtype=torch.quint8,
144
+ ... output_dtype=torch.quint8,
145
+ ... weight_dtype=torch.qint8,
146
+ ... bias_dtype=torch.float)
147
+
148
+ >>> dtype_config2 = DTypeConfig(
149
+ ... input_dtype=DTypeWithConstraints(
150
+ ... dtype=torch.quint8,
151
+ ... quant_min_lower_bound=0,
152
+ ... quant_max_upper_bound=255,
153
+ ... ),
154
+ ... output_dtype=DTypeWithConstraints(
155
+ ... dtype=torch.quint8,
156
+ ... quant_min_lower_bound=0,
157
+ ... quant_max_upper_bound=255,
158
+ ... ),
159
+ ... weight_dtype=DTypeWithConstraints(
160
+ ... dtype=torch.qint8,
161
+ ... quant_min_lower_bound=-128,
162
+ ... quant_max_upper_bound=127,
163
+ ... ),
164
+ ... bias_dtype=torch.float)
165
+
166
+ >>> dtype_config1.input_dtype
167
+ torch.quint8
168
+
169
+ >>> dtype_config2.input_dtype
170
+ torch.quint8
171
+
172
+ >>> dtype_config2.input_dtype_with_constraints
173
+ DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, \
174
+ scale_min_lower_bound=None, scale_max_upper_bound=None)
175
+ """
176
+ input_dtype_with_constraints: DTypeWithConstraints
177
+ output_dtype_with_constraints: DTypeWithConstraints
178
+ weight_dtype_with_constraints: DTypeWithConstraints
179
+ bias_dtype: Optional[torch.dtype]
180
+ is_dynamic: Optional[bool]
181
+
182
+ def __init__(
183
+ self,
184
+ input_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
185
+ output_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
186
+ weight_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
187
+ bias_dtype: Optional[torch.dtype] = None,
188
+ is_dynamic: Optional[bool] = None,
189
+ ):
190
+ if isinstance(input_dtype, DTypeWithConstraints):
191
+ self.input_dtype_with_constraints = input_dtype
192
+ else:
193
+ self.input_dtype_with_constraints = DTypeWithConstraints(dtype=input_dtype)
194
+
195
+ if isinstance(output_dtype, DTypeWithConstraints):
196
+ self.output_dtype_with_constraints = output_dtype
197
+ else:
198
+ self.output_dtype_with_constraints = DTypeWithConstraints(dtype=output_dtype)
199
+
200
+ if isinstance(weight_dtype, DTypeWithConstraints):
201
+ self.weight_dtype_with_constraints = weight_dtype
202
+ else:
203
+ self.weight_dtype_with_constraints = DTypeWithConstraints(dtype=weight_dtype)
204
+
205
+ self.bias_dtype = bias_dtype
206
+ self.is_dynamic = is_dynamic
207
+
208
+ @property
209
+ def input_dtype(self) -> Optional[torch.dtype]:
210
+ return self.input_dtype_with_constraints.dtype
211
+
212
+ @property
213
+ def output_dtype(self) -> Optional[torch.dtype]:
214
+ return self.output_dtype_with_constraints.dtype
215
+
216
+ @property
217
+ def weight_dtype(self) -> Optional[torch.dtype]:
218
+ return self.weight_dtype_with_constraints.dtype
219
+
220
+ @classmethod
221
+ def from_dict(cls, dtype_config_dict: Dict[str, Any]) -> DTypeConfig:
222
+ """
223
+ Create a ``DTypeConfig`` from a dictionary with the following items (all optional):
224
+ "input_dtype": torch.dtype or ``DTypeWithConstraints``
225
+ "output_dtype": torch.dtype or ``DTypeWithConstraints``
226
+ "weight_dtype": torch.dtype or ``DTypeWithConstraints``
227
+ "bias_type": torch.dtype
228
+ "is_dynamic": bool
229
+ """
230
+ input_dtype = dtype_config_dict.get(INPUT_DTYPE_DICT_KEY, None)
231
+ if input_dtype is not None and not isinstance(input_dtype, (torch.dtype, DTypeWithConstraints)):
232
+ raise ValueError("Expected input_dtype to be a torch.dtype or DTypeWithConstraints")
233
+ output_dtype = dtype_config_dict.get(OUTPUT_DTYPE_DICT_KEY, None)
234
+ if output_dtype is not None and not isinstance(output_dtype, (torch.dtype, DTypeWithConstraints)):
235
+ raise ValueError("Expected output_dtype to be a torch.dtype or DTypeWithConstraints")
236
+ weight_dtype = dtype_config_dict.get(WEIGHT_DTYPE_DICT_KEY, None)
237
+ if weight_dtype is not None and not isinstance(weight_dtype, (torch.dtype, DTypeWithConstraints)):
238
+ raise ValueError("Expected weight_dtype to be a torch.dtype or DTypeWithConstraints")
239
+ bias_dtype = dtype_config_dict.get(BIAS_DTYPE_DICT_KEY, None)
240
+ is_dynamic = dtype_config_dict.get(IS_DYNAMIC_DICT_KEY, None)
241
+ return cls(input_dtype, output_dtype, weight_dtype, bias_dtype, is_dynamic)
242
+
243
+ def to_dict(self) -> Dict[str, Any]:
244
+ """
245
+ Convert this ``DTypeConfig`` to a dictionary with the items described in
246
+ :func:`~torch.ao.quantization.backend_config.DTypeConfig.from_dict`.
247
+ """
248
+ dtype_config_dict: Dict[str, Any] = {}
249
+ if self.input_dtype is not None:
250
+ dtype_config_dict[INPUT_DTYPE_DICT_KEY] = self.input_dtype_with_constraints
251
+ if self.output_dtype is not None:
252
+ dtype_config_dict[OUTPUT_DTYPE_DICT_KEY] = self.output_dtype_with_constraints
253
+ if self.weight_dtype is not None:
254
+ dtype_config_dict[WEIGHT_DTYPE_DICT_KEY] = self.weight_dtype_with_constraints
255
+ if self.bias_dtype is not None:
256
+ dtype_config_dict[BIAS_DTYPE_DICT_KEY] = self.bias_dtype
257
+ if self.is_dynamic is not None:
258
+ dtype_config_dict[IS_DYNAMIC_DICT_KEY] = self.is_dynamic
259
+ return dtype_config_dict
260
+
261
+
262
+ class BackendConfig:
263
+ # TODO: refer to NativeBackendConfig once that is implemented
264
+ """Config that defines the set of patterns that can be quantized on a given backend, and how reference
265
+ quantized models can be produced from these patterns.
266
+
267
+ A pattern in this context refers to a module, a functional, an operator, or a directed acyclic graph
268
+ of the above. Each pattern supported on the target backend can be individually configured through
269
+ :class:`~torch.ao.quantization.backend_config.BackendPatternConfig` in terms of:
270
+
271
+ (1) The supported input/output activation, weight, and bias data types
272
+
273
+ (2) How observers and quant/dequant ops are inserted in order to construct the reference pattern, and
274
+
275
+ (3) (Optionally) Fusion, QAT, and reference module mappings.
276
+
277
+ The format of the patterns is described in:
278
+ https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md
279
+
280
+ Example usage::
281
+
282
+ import torch
283
+ from torch.ao.quantization.backend_config import (
284
+ BackendConfig,
285
+ BackendPatternConfig,
286
+ DTypeConfig,
287
+ ObservationType,
288
+ )
289
+
290
+ weighted_int8_dtype_config = DTypeConfig(
291
+ input_dtype=torch.quint8,
292
+ output_dtype=torch.quint8,
293
+ weight_dtype=torch.qint8,
294
+ bias_dtype=torch.float)
295
+
296
+ def fuse_conv2d_relu(is_qat, conv, relu):
297
+ return torch.ao.nn.intrinsic.ConvReLU2d(conv, relu)
298
+
299
+ # For quantizing Linear
300
+ linear_config = BackendPatternConfig(torch.nn.Linear) \
301
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
302
+ .add_dtype_config(weighted_int8_dtype_config) \
303
+ .set_root_module(torch.nn.Linear) \
304
+ .set_qat_module(torch.ao.nn.qat.Linear) \
305
+ .set_reference_quantized_module(torch.ao.nn.quantized.reference.Linear)
306
+
307
+ # For fusing Conv2d + ReLU into ConvReLU2d
308
+ conv_relu_config = BackendPatternConfig((torch.nn.Conv2d, torch.nn.ReLU)) \
309
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
310
+ .add_dtype_config(weighted_int8_dtype_config) \
311
+ .set_fused_module(torch.ao.nn.intrinsic.ConvReLU2d) \
312
+ .set_fuser_method(fuse_conv2d_relu)
313
+
314
+ # For quantizing ConvReLU2d
315
+ fused_conv_relu_config = BackendPatternConfig(torch.ao.nn.intrinsic.ConvReLU2d) \
316
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
317
+ .add_dtype_config(weighted_int8_dtype_config) \
318
+ .set_root_module(torch.nn.Conv2d) \
319
+ .set_qat_module(torch.ao.nn.intrinsic.qat.ConvReLU2d) \
320
+ .set_reference_quantized_module(torch.ao.nn.quantized.reference.Conv2d)
321
+
322
+ backend_config = BackendConfig("my_backend") \
323
+ .set_backend_pattern_config(linear_config) \
324
+ .set_backend_pattern_config(conv_relu_config) \
325
+ .set_backend_pattern_config(fused_conv_relu_config)
326
+
327
+ """
328
+ def __init__(self, name: str = ""):
329
+ self.name = name
330
+ # Store all BackendPatternConfigs in a map to handle duplicates
331
+ # Note: the key in this map uses the complex reversed tuple format.
332
+ # This is intended only for internal use; users who wish to access
333
+ # the original patterns should go through `self.configs` instead.
334
+ self._pattern_complex_format_to_config: Dict[Pattern, BackendPatternConfig] = {}
335
+
336
+ def __repr__(self):
337
+ return f"BackendConfig({self.__dict__})"
338
+
339
+ def set_name(self, name: str) -> BackendConfig:
340
+ """
341
+ Set the name of the target backend.
342
+ """
343
+ self.name = name
344
+ return self
345
+
346
+ def set_backend_pattern_config(self, config: BackendPatternConfig) -> BackendConfig:
347
+ """
348
+ Set the config for an pattern that can be run on the target backend.
349
+ This overrides any existing config for the given pattern.
350
+ """
351
+ # Avoid circular dependencies
352
+ pattern_complex_format = torch.ao.quantization.backend_config.utils \
353
+ ._get_pattern_in_reversed_nested_tuple_format(config) # type: ignore[attr-defined]
354
+ self._pattern_complex_format_to_config[pattern_complex_format] = config
355
+ return self
356
+
357
+ def set_backend_pattern_configs(self, configs: List[BackendPatternConfig]) -> BackendConfig:
358
+ """
359
+ Set the configs for patterns that can be run on the target backend.
360
+ This overrides any existing config for a given pattern if it was previously registered already.
361
+ """
362
+ for conf in configs:
363
+ self.set_backend_pattern_config(conf)
364
+ return self
365
+
366
+ @property
367
+ def configs(self) -> List[BackendPatternConfig]:
368
+ """
369
+ Return a copy of the list of configs set in this `BackendConfig`.
370
+ """
371
+ return list(self._pattern_complex_format_to_config.values())
372
+
373
+ @classmethod
374
+ def from_dict(cls, backend_config_dict: Dict[str, Any]) -> BackendConfig:
375
+ """
376
+ Create a ``BackendConfig`` from a dictionary with the following items:
377
+
378
+ "name": the name of the target backend
379
+
380
+ "configs": a list of dictionaries that each represents a `BackendPatternConfig`
381
+
382
+ """
383
+ conf = cls(backend_config_dict.get(NAME_DICT_KEY, ""))
384
+ for d in backend_config_dict.get(CONFIGS_DICT_KEY, []):
385
+ if isinstance(d, BackendPatternConfig):
386
+ conf.set_backend_pattern_config(d)
387
+ elif isinstance(d, Dict):
388
+ conf.set_backend_pattern_config(BackendPatternConfig.from_dict(d))
389
+ else:
390
+ raise ValueError(f"Expected backend_config_dict['{CONFIGS_DICT_KEY}'] to be a dictionary")
391
+ return conf
392
+
393
+ def to_dict(self) -> Dict[str, Any]:
394
+ """
395
+ Convert this ``BackendConfig`` to a dictionary with the items described in
396
+ :func:`~torch.ao.quantization.backend_config.BackendConfig.from_dict`.
397
+ """
398
+ return {
399
+ NAME_DICT_KEY: self.name,
400
+ CONFIGS_DICT_KEY: [c.to_dict() for c in self.configs],
401
+ }
402
+
403
+
404
+ class BackendPatternConfig:
405
+ """
406
+ Config object that specifies quantization behavior for a given operator pattern.
407
+ For a detailed example usage, see :class:`~torch.ao.quantization.backend_config.BackendConfig`.
408
+ """
409
+ def __init__(self, pattern: Optional[Pattern] = None):
410
+ self.pattern: Optional[Pattern] = pattern
411
+ self.observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
412
+ self.dtype_configs: List[DTypeConfig] = []
413
+ self.root_module: Optional[Type[torch.nn.Module]] = None
414
+ self.qat_module: Optional[Type[torch.nn.Module]] = None
415
+ self.reference_quantized_module: Optional[Type[torch.nn.Module]] = None
416
+ self.fused_module: Optional[Type[torch.nn.Module]] = None
417
+ self.fuser_method: Optional[Callable] = None
418
+
419
+ # Temporary/internal configs
420
+ self._root_node_getter: Optional[Callable] = None
421
+ self._extra_inputs_getter: Optional[Callable] = None
422
+ self._num_tensor_args_to_observation_type: Dict[int, ObservationType] = {}
423
+ self._input_type_to_index: Dict[str, int] = {}
424
+ self._pattern_complex_format: Optional[Pattern] = None
425
+
426
+ def __repr__(self):
427
+ dict_nonempty = {
428
+ k: v for k, v in self.__dict__.items()
429
+ if (
430
+ (not isinstance(v, (list, dict)) and v is not None)
431
+ or (isinstance(v, (list, dict)) and len(v) > 0)
432
+ )
433
+ }
434
+ return f"BackendPatternConfig({dict_nonempty})"
435
+
436
+ def set_pattern(self, pattern: Pattern) -> BackendPatternConfig:
437
+ """
438
+ Set the pattern to configure.
439
+
440
+ The pattern can be a float module, functional operator, pytorch operator, or a tuple
441
+ combination of the above. Tuple patterns are treated as sequential patterns, and
442
+ currently only tuples of 2 or 3 elements are supported.
443
+ """
444
+ if self._pattern_complex_format is not None:
445
+ raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set")
446
+ self.pattern = pattern
447
+ return self
448
+
449
+ def set_observation_type(self, observation_type: ObservationType) -> BackendPatternConfig:
450
+ """
451
+ Set how observers should be inserted in the graph for this pattern.
452
+
453
+ Observation type here refers to how observers (or quant-dequant ops) will be placed
454
+ in the graph. This is used to produce the desired reference patterns understood by
455
+ the backend. Weighted ops such as linear and conv require different observers
456
+ (or quantization parameters passed to quantize ops in the reference model) for the
457
+ input and the output.
458
+
459
+ There are two observation types:
460
+
461
+ `OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT` (default): the output observer instance
462
+ will be different from the input. This is the most common observation type.
463
+
464
+ `OUTPUT_SHARE_OBSERVER_WITH_INPUT`: the output observer instance will be the
465
+ same as the input. This is useful for operators like `cat`.
466
+
467
+ Note: This will be renamed in the near future, since we will soon insert QuantDeQuantStubs
468
+ with observers (and fake quantizes) attached instead of observers themselves.
469
+ """
470
+ self.observation_type = observation_type
471
+ return self
472
+
473
+ def add_dtype_config(self, dtype_config: DTypeConfig) -> BackendPatternConfig:
474
+ """
475
+ Add a set of supported data types passed as arguments to quantize ops in the
476
+ reference model spec.
477
+ """
478
+ self.dtype_configs.append(dtype_config)
479
+ return self
480
+
481
+ def set_dtype_configs(self, dtype_configs: List[DTypeConfig]) -> BackendPatternConfig:
482
+ """
483
+ Set the supported data types passed as arguments to quantize ops in the
484
+ reference model spec, overriding all previously registered data types.
485
+ """
486
+ self.dtype_configs = dtype_configs
487
+ return self
488
+
489
+ def set_root_module(self, root_module: Type[torch.nn.Module]) -> BackendPatternConfig:
490
+ """
491
+ Set the module that represents the root for this pattern.
492
+
493
+ When we construct the reference quantized model during the convert phase,
494
+ the root modules (e.g. torch.nn.Linear for torch.ao.nn.intrinsic.LinearReLU)
495
+ will be swapped to the corresponding reference quantized modules (e.g.
496
+ torch.ao.nn.reference.quantized.Linear). This allows custom backends to
497
+ specify custom reference quantized module implementations to match the
498
+ numerics of their lowered operators. Since this is a one-to-one mapping,
499
+ both the root module and the reference quantized module must be specified
500
+ in the same BackendPatternConfig in order for the conversion to take place.
501
+ """
502
+ self.root_module = root_module
503
+ return self
504
+
505
+ def set_qat_module(self, qat_module: Type[torch.nn.Module]) -> BackendPatternConfig:
506
+ """
507
+ Set the module that represents the QAT implementation for this pattern.
508
+ """
509
+ self.qat_module = qat_module
510
+ return self
511
+
512
+ def set_reference_quantized_module(self, reference_quantized_module: Type[torch.nn.Module]) -> BackendPatternConfig:
513
+ """
514
+ Set the module that represents the reference quantized implementation for
515
+ this pattern's root module.
516
+
517
+ For more detail, see :func:`~torch.ao.quantization.backend_config.BackendPatternConfig.set_root_module`.
518
+ """
519
+ self.reference_quantized_module = reference_quantized_module
520
+ return self
521
+
522
+ def set_fused_module(self, fused_module: Type[torch.nn.Module]) -> BackendPatternConfig:
523
+ """
524
+ Set the module that represents the fused implementation for this pattern.
525
+ """
526
+ self.fused_module = fused_module
527
+ return self
528
+
529
+ def set_fuser_method(self, fuser_method: Callable) -> BackendPatternConfig:
530
+ """
531
+ Set the function that specifies how to fuse this BackendPatternConfig's pattern.
532
+
533
+ The first argument of this function should be `is_qat`, and the rest of the arguments
534
+ should be the items in the tuple pattern. The return value of this function should be
535
+ the resulting fused module.
536
+
537
+ For example, the fuser method for the pattern `(torch.nn.Linear, torch.nn.ReLU)` can be:
538
+
539
+ def fuse_linear_relu(is_qat, linear, relu):
540
+ return torch.ao.nn.intrinsic.LinearReLU(linear, relu)
541
+
542
+ For a more complicated example, see https://gist.github.com/jerryzh168/8bea7180a8ba3c279f2c9b050f2a69a6.
543
+ """
544
+ self.fuser_method = fuser_method
545
+ return self
546
+
547
+ def _set_root_node_getter(self, root_node_getter: Callable) -> BackendPatternConfig:
548
+ self._root_node_getter = root_node_getter
549
+ return self
550
+
551
+ def _set_extra_inputs_getter(self, extra_inputs_getter: Callable) -> BackendPatternConfig:
552
+ self._extra_inputs_getter = extra_inputs_getter
553
+ return self
554
+
555
+ def _set_num_tensor_args_to_observation_type(
556
+ self, num_tensor_args_to_observation_type: Dict[int, ObservationType]) -> BackendPatternConfig:
557
+ self._num_tensor_args_to_observation_type = num_tensor_args_to_observation_type
558
+ return self
559
+
560
+ def _set_input_type_to_index(self, input_type_to_index: Dict[str, int]) -> BackendPatternConfig:
561
+ self._input_type_to_index = input_type_to_index
562
+ return self
563
+
564
+ def _set_pattern_complex_format(self, pattern: Pattern) -> BackendPatternConfig:
565
+ """
566
+ Set the pattern to configure, using the reversed nested tuple format.
567
+
568
+ See the BackendConfig README for more detail:
569
+ https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md#advanced-pattern-specification
570
+ """
571
+ if self.pattern is not None:
572
+ raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set")
573
+ self._pattern_complex_format = pattern
574
+ return self
575
+
576
+ @classmethod
577
+ def from_dict(cls, backend_pattern_config_dict: Dict[str, Any]) -> BackendPatternConfig:
578
+ """
579
+ Create a ``BackendPatternConfig`` from a dictionary with the following items:
580
+
581
+ "pattern": the pattern being configured
582
+ "observation_type": the :class:`~torch.ao.quantization.backend_config.ObservationType` that specifies how
583
+ observers should be inserted for this pattern
584
+ "dtype_configs": a list of dictionaries that represents :class:`~torch.ao.quantization.backend_config.DTypeConfig` s
585
+ "root_module": a :class:`torch.nn.Module` that represents the root for this pattern
586
+ "qat_module": a :class:`torch.nn.Module` that represents the QAT implementation for this pattern
587
+ "reference_quantized_module": a :class:`torch.nn.Module` that represents the reference quantized
588
+ implementation for this pattern's root module.
589
+ "fused_module": a :class:`torch.nn.Module` that represents the fused implementation for this pattern
590
+ "fuser_method": a function that specifies how to fuse the pattern for this pattern
591
+ "pattern_complex_format": the pattern specified in the reversed nested tuple format (deprecated)
592
+
593
+ """
594
+ def _get_dtype_config(obj: Any) -> DTypeConfig:
595
+ """
596
+ Convert the given object into a ``DTypeConfig`` if possible, else throw an exception.
597
+ """
598
+ if isinstance(obj, DTypeConfig):
599
+ return obj
600
+ if isinstance(obj, Dict):
601
+ return DTypeConfig.from_dict(obj)
602
+ raise ValueError(
603
+ f"Expected a list of DTypeConfigs in "
604
+ f"backend_pattern_config_dict[\"{DTYPE_CONFIGS_DICT_KEY}\"], got '{type(obj)}'"
605
+ )
606
+
607
+ conf = cls()
608
+ if PATTERN_DICT_KEY in backend_pattern_config_dict:
609
+ conf.set_pattern(backend_pattern_config_dict[PATTERN_DICT_KEY])
610
+ if OBSERVATION_TYPE_DICT_KEY in backend_pattern_config_dict:
611
+ conf.set_observation_type(backend_pattern_config_dict[OBSERVATION_TYPE_DICT_KEY])
612
+ for d in backend_pattern_config_dict.get(DTYPE_CONFIGS_DICT_KEY, []):
613
+ conf.add_dtype_config(_get_dtype_config(d))
614
+ conf.set_root_module(backend_pattern_config_dict.get(ROOT_MODULE_DICT_KEY, None))
615
+ conf.set_qat_module(backend_pattern_config_dict.get(QAT_MODULE_DICT_KEY, None))
616
+ conf.set_reference_quantized_module(backend_pattern_config_dict.get(REFERENCE_QUANTIZED_MODULE_DICT_KEY, None))
617
+ conf.set_fused_module(backend_pattern_config_dict.get(FUSED_MODULE_DICT_KEY, None))
618
+ conf.set_fuser_method(backend_pattern_config_dict.get(FUSER_METHOD_DICT_KEY, None))
619
+ conf._set_root_node_getter(backend_pattern_config_dict.get(ROOT_NODE_GETTER_DICT_KEY, None))
620
+ conf._set_extra_inputs_getter(backend_pattern_config_dict.get(EXTRA_INPUTS_GETTER_DICT_KEY, None))
621
+ conf._set_num_tensor_args_to_observation_type(
622
+ backend_pattern_config_dict.get(NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY, {}))
623
+ conf._set_input_type_to_index(backend_pattern_config_dict.get(INPUT_TYPE_TO_INDEX_DICT_KEY, {}))
624
+ if PATTERN_COMPLEX_FORMAT_DICT_KEY in backend_pattern_config_dict:
625
+ conf._set_pattern_complex_format(backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY])
626
+ return conf
627
+
628
+ def to_dict(self) -> Dict[str, Any]:
629
+ """
630
+ Convert this ``BackendPatternConfig`` to a dictionary with the items described in
631
+ :func:`~torch.ao.quantization.backend_config.BackendPatternConfig.from_dict`.
632
+ """
633
+ backend_pattern_config_dict: Dict[str, Any] = {
634
+ OBSERVATION_TYPE_DICT_KEY: self.observation_type,
635
+ DTYPE_CONFIGS_DICT_KEY: [c.to_dict() for c in self.dtype_configs],
636
+ }
637
+ if self.pattern is not None:
638
+ backend_pattern_config_dict[PATTERN_DICT_KEY] = self.pattern
639
+ if self.root_module is not None:
640
+ backend_pattern_config_dict[ROOT_MODULE_DICT_KEY] = self.root_module
641
+ if self.qat_module is not None:
642
+ backend_pattern_config_dict[QAT_MODULE_DICT_KEY] = self.qat_module
643
+ if self.reference_quantized_module is not None:
644
+ backend_pattern_config_dict[REFERENCE_QUANTIZED_MODULE_DICT_KEY] = self.reference_quantized_module
645
+ if self.fused_module is not None:
646
+ backend_pattern_config_dict[FUSED_MODULE_DICT_KEY] = self.fused_module
647
+ if self.fuser_method is not None:
648
+ backend_pattern_config_dict[FUSER_METHOD_DICT_KEY] = self.fuser_method
649
+ if self._root_node_getter is not None:
650
+ backend_pattern_config_dict[ROOT_NODE_GETTER_DICT_KEY] = self._root_node_getter
651
+ if self._extra_inputs_getter is not None:
652
+ backend_pattern_config_dict[EXTRA_INPUTS_GETTER_DICT_KEY] = self._extra_inputs_getter
653
+ if len(self._num_tensor_args_to_observation_type) > 0:
654
+ backend_pattern_config_dict[NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY] = self._num_tensor_args_to_observation_type
655
+ if len(self._input_type_to_index) > 0:
656
+ backend_pattern_config_dict[INPUT_TYPE_TO_INDEX_DICT_KEY] = self._input_type_to_index
657
+ if self._pattern_complex_format is not None:
658
+ backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY] = self._pattern_complex_format
659
+ return backend_pattern_config_dict
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/executorch.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO: rename executorch to qnnpack_executorch since executorch is a general runtime
2
+ # not a specific backend
3
+
4
+ import operator
5
+ from typing import List
6
+
7
+ import torch
8
+ import torch.ao.nn.qat as nnqat
9
+ import torch.ao.nn.quantized.reference as nnqr
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from ..fuser_method_mappings import (
14
+ _sequential_wrapper2,
15
+ fuse_conv_bn,
16
+ fuse_conv_bn_relu,
17
+ )
18
+ from ._common_operator_config_utils import _Conv2dMetadata
19
+ from .backend_config import (
20
+ BackendConfig,
21
+ BackendPatternConfig,
22
+ DTypeConfig,
23
+ DTypeWithConstraints,
24
+ ObservationType,
25
+ )
26
+ from .qnnpack import (
27
+ qnnpack_default_op_qint8_symmetric_dtype_config,
28
+ qnnpack_weighted_op_qint8_symmetric_dtype_config,
29
+ )
30
+
31
+
32
+ __all__ = [
33
+ "get_executorch_backend_config",
34
+ ]
35
+
36
+
37
+ # ===================
38
+ # | DTYPE CONFIGS |
39
+ # ===================
40
+
41
+ executorch_weighted_op_int8_dtype_config = DTypeConfig(
42
+ input_dtype=torch.quint8,
43
+ output_dtype=torch.quint8,
44
+ weight_dtype=torch.qint8,
45
+ bias_dtype=torch.float,
46
+ )
47
+
48
+ executorch_default_op_quint8_dtype_config = DTypeConfig(
49
+ input_dtype=torch.quint8,
50
+ output_dtype=torch.quint8,
51
+ )
52
+
53
+ executorch_default_dynamic_quint8_dtype_config = DTypeConfig(
54
+ input_dtype=torch.quint8,
55
+ output_dtype=torch.float,
56
+ weight_dtype=torch.qint8,
57
+ bias_dtype=torch.float,
58
+ is_dynamic=True,
59
+ )
60
+
61
+ executorch_act_qint8_scale_min_2_neg_12 = DTypeWithConstraints(
62
+ dtype=torch.qint8,
63
+ scale_min_lower_bound=2**-12,
64
+ )
65
+
66
+ executorch_weight_qint8_neg_127_to_127_scale_min_2_neg_12 = DTypeWithConstraints(
67
+ dtype=torch.qint8,
68
+ quant_min_lower_bound=-127,
69
+ quant_max_upper_bound=127,
70
+ scale_min_lower_bound=2**-12,
71
+ )
72
+
73
+ executorch_default_dynamic_qint8_dtype_config = DTypeConfig(
74
+ input_dtype=executorch_act_qint8_scale_min_2_neg_12,
75
+ output_dtype=torch.float,
76
+ weight_dtype=executorch_weight_qint8_neg_127_to_127_scale_min_2_neg_12,
77
+ bias_dtype=torch.float,
78
+ is_dynamic=True,
79
+ )
80
+
81
+ executorch_default_dynamic_float16_dtype_config = DTypeConfig(
82
+ input_dtype=torch.float16,
83
+ output_dtype=torch.float,
84
+ weight_dtype=torch.float16,
85
+ bias_dtype=torch.float,
86
+ is_dynamic=True,
87
+ )
88
+
89
+ executorch_weight_only_quint8_dtype_config = DTypeConfig(
90
+ input_dtype=torch.float,
91
+ output_dtype=torch.float,
92
+ weight_dtype=torch.quint8,
93
+ )
94
+
95
+
96
+ # =============================
97
+ # | BACKEND PATTERN CONFIGS |
98
+ # =============================
99
+
100
+
101
+ def _get_linear_configs() -> List[BackendPatternConfig]:
102
+ """
103
+ Return all configs related to linear modules and ops.
104
+ """
105
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
106
+ dtype_configs = [
107
+ qnnpack_weighted_op_qint8_symmetric_dtype_config,
108
+ executorch_weighted_op_int8_dtype_config,
109
+ executorch_default_dynamic_quint8_dtype_config,
110
+ executorch_default_dynamic_qint8_dtype_config,
111
+ executorch_default_dynamic_float16_dtype_config,
112
+ ]
113
+ linear_configs: List[BackendPatternConfig] = []
114
+ # linear module
115
+ linear_configs.append(
116
+ BackendPatternConfig(torch.nn.Linear)
117
+ .set_observation_type(observation_type) # noqa: E131
118
+ .set_dtype_configs(dtype_configs)
119
+ .set_root_module(torch.nn.Linear)
120
+ .set_reference_quantized_module(nnqr.Linear)
121
+ .set_qat_module(nnqat.Linear)
122
+ )
123
+ # linear qat module
124
+ linear_configs.append(
125
+ BackendPatternConfig(nnqat.Linear)
126
+ .set_observation_type(observation_type) # noqa: E131
127
+ .set_dtype_configs(dtype_configs)
128
+ .set_root_module(torch.nn.Linear)
129
+ .set_reference_quantized_module(nnqr.Linear)
130
+ )
131
+ # functional linear
132
+ linear_configs.append(
133
+ BackendPatternConfig(torch.nn.functional.linear)
134
+ .set_observation_type(observation_type) # noqa: E131
135
+ .set_dtype_configs(dtype_configs)
136
+ ._set_input_type_to_index({"weight": 1, "bias": 2})
137
+ )
138
+ return linear_configs
139
+
140
+
141
+ def _get_conv_configs() -> List[BackendPatternConfig]:
142
+ """
143
+ Return all configs related to conv modules and ops.
144
+ """
145
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
146
+ dtype_configs = [
147
+ qnnpack_weighted_op_qint8_symmetric_dtype_config,
148
+ executorch_weighted_op_int8_dtype_config,
149
+ ]
150
+ conv_configs = []
151
+ for convs in [_Conv2dMetadata]:
152
+ # (1) Single conv modules/functions
153
+ # -----------------------------------
154
+ # conv module
155
+ conv_configs.append(
156
+ BackendPatternConfig(convs.root)
157
+ .set_observation_type(observation_type) # noqa: E131
158
+ .set_dtype_configs(dtype_configs)
159
+ .set_root_module(convs.root)
160
+ .set_reference_quantized_module(convs.reference)
161
+ .set_qat_module(convs.qat)
162
+ )
163
+ # conv qat module
164
+ conv_configs.append(
165
+ BackendPatternConfig(convs.qat)
166
+ .set_observation_type(observation_type) # noqa: E131
167
+ .set_dtype_configs(dtype_configs)
168
+ .set_root_module(convs.root)
169
+ .set_reference_quantized_module(convs.reference)
170
+ )
171
+ # functional conv
172
+ conv_configs.append(
173
+ BackendPatternConfig(convs.func)
174
+ .set_observation_type(observation_type) # noqa: E131
175
+ .set_dtype_configs(dtype_configs)
176
+ ._set_input_type_to_index({"weight": 1, "bias": 2})
177
+ )
178
+
179
+ # (2) Conv + relu
180
+ # -----------------------------------
181
+ # conv module + relu module
182
+ conv_configs.append(
183
+ BackendPatternConfig((convs.root, nn.ReLU))
184
+ .set_dtype_configs(dtype_configs) # noqa: E131
185
+ .set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
186
+ .set_fused_module(convs.fused_conv_relu)
187
+ )
188
+ # conv module + functional relu
189
+ conv_configs.append(
190
+ BackendPatternConfig((convs.root, F.relu))
191
+ .set_dtype_configs(dtype_configs) # noqa: E131
192
+ .set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
193
+ .set_fused_module(convs.fused_conv_relu)
194
+ )
195
+ # fused conv relu module
196
+ conv_configs.append(
197
+ BackendPatternConfig(convs.fused_conv_relu)
198
+ .set_observation_type(observation_type) # noqa: E131
199
+ .set_dtype_configs(dtype_configs)
200
+ .set_root_module(convs.root)
201
+ .set_reference_quantized_module(convs.reference)
202
+ .set_qat_module(convs.relu_qat)
203
+ )
204
+ # conv relu, qat fused module
205
+ conv_configs.append(
206
+ BackendPatternConfig(convs.relu_qat)
207
+ .set_observation_type(observation_type) # noqa: E131
208
+ .set_dtype_configs(dtype_configs)
209
+ .set_root_module(convs.root)
210
+ .set_reference_quantized_module(convs.reference)
211
+ )
212
+ # functional conv + relu module
213
+ conv_configs.append(
214
+ BackendPatternConfig((convs.func, nn.ReLU))
215
+ .set_observation_type(observation_type) # noqa: E131
216
+ .set_dtype_configs(dtype_configs)
217
+ )
218
+ # functional conv + functional relu
219
+ conv_configs.append(
220
+ BackendPatternConfig((convs.func, F.relu))
221
+ .set_observation_type(observation_type) # noqa: E131
222
+ .set_dtype_configs(dtype_configs)
223
+ )
224
+ # fused conv relu
225
+ conv_configs.append(
226
+ BackendPatternConfig(convs.fused_conv_relu)
227
+ .set_dtype_configs(dtype_configs) # noqa: E131
228
+ .set_qat_module(convs.relu_qat)
229
+ )
230
+
231
+ conv_configs.append(
232
+ BackendPatternConfig(convs.relu_qat)
233
+ .set_dtype_configs(dtype_configs) # noqa: E131
234
+ .set_root_module(convs.root)
235
+ .set_reference_quantized_module(convs.reference)
236
+ )
237
+
238
+ # (3) Conv + batchnorm (+ relu)
239
+ # -------------------------------
240
+ # conv + batchnorm (+ relu)
241
+ conv_configs.append(
242
+ BackendPatternConfig((convs.root, convs.bn))
243
+ .set_dtype_configs(dtype_configs) # noqa: E131
244
+ .set_fuser_method(fuse_conv_bn)
245
+ .set_fused_module(convs.fused_conv_bn)
246
+ )
247
+ # conv + bn + relu module fusion
248
+ conv_configs.append(
249
+ BackendPatternConfig((convs.root, convs.bn, nn.ReLU))
250
+ .set_dtype_configs(dtype_configs) # noqa: E131
251
+ .set_fuser_method(fuse_conv_bn_relu)
252
+ .set_fused_module(convs.fused_conv_bn_relu)
253
+ )
254
+ # conv + bn + relu functional fusion
255
+ conv_configs.append(
256
+ BackendPatternConfig((convs.root, convs.bn, F.relu))
257
+ .set_dtype_configs(dtype_configs) # noqa: E131
258
+ .set_root_module(convs.root)
259
+ .set_fuser_method(fuse_conv_bn_relu)
260
+ .set_fused_module(convs.fused_conv_bn_relu)
261
+ )
262
+ # TODO: we can add fusion for torch.relu as well
263
+ # 3.2 conv + bn (+ relu) fused module configs
264
+ # fused conv bn
265
+ conv_configs.append(
266
+ BackendPatternConfig(convs.fused_conv_bn)
267
+ .set_dtype_configs(dtype_configs) # noqa: E131
268
+ .set_qat_module(convs.bn_qat)
269
+ )
270
+
271
+ # fused conv bn relu
272
+ conv_configs.append(
273
+ BackendPatternConfig(convs.fused_conv_bn_relu)
274
+ .set_dtype_configs(dtype_configs) # noqa: E131
275
+ .set_qat_module(convs.bn_relu_qat)
276
+ )
277
+
278
+ # conv bn, qat fused module
279
+ conv_configs.append(
280
+ BackendPatternConfig(convs.bn_qat)
281
+ .set_observation_type(observation_type) # noqa: E131
282
+ .set_dtype_configs(dtype_configs)
283
+ .set_root_module(convs.root)
284
+ .set_reference_quantized_module(convs.reference)
285
+ )
286
+ # conv bn relu, qat fused module
287
+ conv_configs.append(
288
+ BackendPatternConfig(convs.bn_relu_qat)
289
+ .set_observation_type(observation_type) # noqa: E131
290
+ .set_dtype_configs(dtype_configs)
291
+ .set_root_module(convs.root)
292
+ .set_reference_quantized_module(convs.reference)
293
+ )
294
+ return conv_configs
295
+
296
+
297
+ def _get_binary_ops_configs() -> List[BackendPatternConfig]:
298
+ """
299
+ Return all configs related to binary ops.
300
+ """
301
+ dtype_configs = [
302
+ qnnpack_default_op_qint8_symmetric_dtype_config,
303
+ executorch_weighted_op_int8_dtype_config,
304
+ ]
305
+ num_tensor_args_to_observation_type_mapping = {
306
+ # TODO: this is not used right now since we have extra check in prepare
307
+ # will need to change this to NO_OBSERVER later after we implemented
308
+ # Tensor dtype inference properly
309
+ 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
310
+ 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
311
+ 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
312
+ }
313
+ binary_op_configs: List[BackendPatternConfig] = []
314
+ for op in [operator.add, torch.add, operator.sub, torch.sub, operator.mul, torch.mul]:
315
+ bop_patterns = [
316
+ (op, torch.nn.ReLU),
317
+ (op, torch.nn.functional.relu),
318
+ (op, torch.relu),
319
+ op
320
+ ]
321
+ for bop_pattern in bop_patterns:
322
+ binary_op_configs.append(
323
+ BackendPatternConfig(bop_pattern)
324
+ .set_dtype_configs(dtype_configs) # noqa: E131
325
+ ._set_num_tensor_args_to_observation_type(
326
+ num_tensor_args_to_observation_type_mapping
327
+ )
328
+ )
329
+ return binary_op_configs
330
+
331
+
332
+ def _get_share_qparams_ops_configs() -> List[BackendPatternConfig]:
333
+ """
334
+ Return the operator configs for the operators that works for both float and quantized
335
+ input if input is quantized, the output Tensor shares the same quantization parameter
336
+ with input.
337
+
338
+ Example operator: avgpool2d, reshape, transpose, maxpool2d
339
+ Example observed operator:
340
+ observer_0 - avgpool2d - observer_0 (same observer instance as input)
341
+ """
342
+ observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
343
+ dtype_configs = [
344
+ qnnpack_default_op_qint8_symmetric_dtype_config,
345
+ executorch_default_op_quint8_dtype_config,
346
+ ]
347
+ share_qparams_ops = [
348
+ torch.nn.Flatten,
349
+ F.adaptive_avg_pool2d,
350
+ F.elu,
351
+ F.hardtanh,
352
+ F.max_pool2d,
353
+ F.pad,
354
+ F.relu,
355
+ F.relu6,
356
+ F.leaky_relu,
357
+ F.leaky_relu_,
358
+ torch.nn.AdaptiveAvgPool2d,
359
+ torch.nn.ConstantPad2d,
360
+ torch.nn.ELU,
361
+ torch.nn.MaxPool2d,
362
+ torch.nn.ReLU6,
363
+ torch.nn.Hardtanh,
364
+ torch.nn.LeakyReLU,
365
+ torch.clamp,
366
+ torch.flatten,
367
+ torch.mean,
368
+ torch.permute,
369
+ torch.permute_copy,
370
+ torch.squeeze,
371
+ "clamp",
372
+ "mean",
373
+ "permute",
374
+ "reshape",
375
+ "relu",
376
+ "relu_",
377
+ "squeeze",
378
+ "squeeze_",
379
+ "leaky_relu",
380
+ ]
381
+ share_qparams_op_configs: List[BackendPatternConfig] = []
382
+ for op in share_qparams_ops:
383
+ share_qparams_op_configs.append(
384
+ BackendPatternConfig(op)
385
+ .set_observation_type(observation_type) # noqa: E131
386
+ .set_dtype_configs(dtype_configs)
387
+ )
388
+ return share_qparams_op_configs
389
+
390
+
391
+ def _get_bn_configs() -> List[BackendPatternConfig]:
392
+ """
393
+ Return all configs related to batchnorm.
394
+ """
395
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
396
+ dtype_configs = [
397
+ qnnpack_default_op_qint8_symmetric_dtype_config,
398
+ executorch_default_op_quint8_dtype_config,
399
+ ]
400
+ bn_configs = []
401
+ bn_configs.append(
402
+ BackendPatternConfig(nn.BatchNorm2d)
403
+ .set_observation_type(observation_type) # noqa: E131
404
+ .set_dtype_configs(dtype_configs)
405
+ )
406
+ return bn_configs
407
+
408
+
409
+ def _get_cat_configs() -> List[BackendPatternConfig]:
410
+ dtype_configs = [
411
+ qnnpack_default_op_qint8_symmetric_dtype_config,
412
+ executorch_default_op_quint8_dtype_config,
413
+ ]
414
+ cat_configs = []
415
+ cat_configs.append(
416
+ BackendPatternConfig(torch.cat)
417
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
418
+ .set_dtype_configs(dtype_configs)
419
+ )
420
+ cat_configs.append(
421
+ BackendPatternConfig(torch.concat)
422
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
423
+ .set_dtype_configs(dtype_configs)
424
+ )
425
+ cat_configs.append(
426
+ BackendPatternConfig(torch.concatenate)
427
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
428
+ .set_dtype_configs(dtype_configs)
429
+ )
430
+ return cat_configs
431
+
432
+
433
+ def _get_embedding_op_configs() -> List[BackendPatternConfig]:
434
+ dtype_configs = [
435
+ executorch_weight_only_quint8_dtype_config,
436
+ ]
437
+ embedding_op_configs = []
438
+ for embedding_op, qat_embedding_op, ref_embedding_op in [
439
+ (nn.Embedding, nnqat.Embedding, nnqr.Embedding),
440
+ (nn.EmbeddingBag, nnqat.EmbeddingBag, nnqr.EmbeddingBag),
441
+ ]:
442
+ embedding_op_configs.append(
443
+ BackendPatternConfig(embedding_op)
444
+ .set_observation_type(
445
+ ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
446
+ ) # noqa: E131
447
+ .set_dtype_configs(dtype_configs)
448
+ .set_qat_module(qat_embedding_op)
449
+ .set_root_module(embedding_op)
450
+ .set_reference_quantized_module(ref_embedding_op)
451
+ )
452
+ # config for qat op
453
+ embedding_op_configs.append(
454
+ BackendPatternConfig(qat_embedding_op)
455
+ .set_observation_type(
456
+ ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
457
+ ) # noqa: E131
458
+ .set_dtype_configs(dtype_configs)
459
+ .set_root_module(embedding_op)
460
+ .set_reference_quantized_module(ref_embedding_op)
461
+ )
462
+
463
+ # config for functional embedding
464
+ embedding_op_configs.append(
465
+ BackendPatternConfig(torch.nn.functional.embedding)
466
+ .set_observation_type(
467
+ ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
468
+ ) # noqa: E131
469
+ .set_dtype_configs(dtype_configs)
470
+ ._set_input_type_to_index({"weight": 1})
471
+ )
472
+ return embedding_op_configs
473
+
474
+
475
+
476
+ # =====================
477
+ # | BACKEND CONFIGS |
478
+ # =====================
479
+
480
+
481
+ def get_executorch_backend_config() -> BackendConfig:
482
+ """
483
+ Return the `BackendConfig` for backends PyTorch lowers to through the Executorch stack.
484
+ """
485
+ return (
486
+ BackendConfig("executorch")
487
+ .set_backend_pattern_configs(_get_linear_configs())
488
+ .set_backend_pattern_configs(_get_conv_configs())
489
+ .set_backend_pattern_configs(_get_binary_ops_configs())
490
+ .set_backend_pattern_configs(_get_share_qparams_ops_configs())
491
+ .set_backend_pattern_configs(_get_bn_configs())
492
+ .set_backend_pattern_configs(_get_cat_configs())
493
+ .set_backend_pattern_configs(_get_embedding_op_configs())
494
+ )
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/fbgemm.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ._common_operator_config_utils import (
3
+ _get_binary_op_configs,
4
+ _get_bn_configs,
5
+ _get_cat_config,
6
+ _get_conv_configs,
7
+ _get_default_op_configs,
8
+ _get_embedding_op_configs,
9
+ _get_fixed_qparams_op_configs,
10
+ _get_linear_configs,
11
+ _get_rnn_op_configs,
12
+ _get_share_qparams_op_configs,
13
+ _get_tensor_info_op_configs,
14
+ )
15
+ from .backend_config import BackendConfig, DTypeConfig
16
+
17
+ __all__ = [
18
+ "get_fbgemm_backend_config",
19
+ ]
20
+
21
+ # ===================
22
+ # | DTYPE CONFIGS |
23
+ # ===================
24
+
25
+ # TODO: For now, these DTypeConfigs are identical to the ones defined in native.py
26
+ # In the future, once we support specifying quant_min/quant_max and scale_min/scale_max,
27
+ # these will diverge. In particular, for FBGEMM, we will restrict the activation quantized
28
+ # values to within [0, 127].
29
+
30
+ fbgemm_weighted_op_quint8_dtype_config = DTypeConfig(
31
+ input_dtype=torch.quint8,
32
+ output_dtype=torch.quint8,
33
+ weight_dtype=torch.qint8,
34
+ bias_dtype=torch.float,
35
+ )
36
+
37
+ fbgemm_default_op_quint8_dtype_config = DTypeConfig(
38
+ input_dtype=torch.quint8,
39
+ output_dtype=torch.quint8,
40
+ )
41
+
42
+ fbgemm_default_op_fp16_dtype_config = DTypeConfig(
43
+ input_dtype=torch.float16,
44
+ output_dtype=torch.float16,
45
+ weight_dtype=torch.float16,
46
+ bias_dtype=torch.float16,
47
+ )
48
+
49
+ fbgemm_default_dynamic_int8_dtype_config = DTypeConfig(
50
+ input_dtype=torch.quint8,
51
+ output_dtype=torch.float,
52
+ weight_dtype=torch.qint8,
53
+ bias_dtype=torch.float,
54
+ is_dynamic=True,
55
+ )
56
+
57
+ fbgemm_default_dynamic_float16_dtype_config = DTypeConfig(
58
+ input_dtype=torch.float16,
59
+ output_dtype=torch.float,
60
+ weight_dtype=torch.float16,
61
+ bias_dtype=torch.float,
62
+ is_dynamic=True,
63
+ )
64
+
65
+ fbgemm_weight_only_quint8_dtype_config = DTypeConfig(
66
+ input_dtype=torch.float,
67
+ output_dtype=torch.float,
68
+ weight_dtype=torch.quint8,
69
+ )
70
+
71
+ fbgemm_weight_only_quint4x2_dtype_config = DTypeConfig(
72
+ input_dtype=torch.float,
73
+ output_dtype=torch.float,
74
+ weight_dtype=torch.quint4x2,
75
+ )
76
+
77
+
78
+ # =====================
79
+ # | BACKEND CONFIGS |
80
+ # =====================
81
+
82
+ def get_fbgemm_backend_config() -> BackendConfig:
83
+ """
84
+ Return the `BackendConfig` for PyTorch's native FBGEMM backend.
85
+ """
86
+ conv_dtype_configs = [fbgemm_weighted_op_quint8_dtype_config]
87
+ linear_dtype_configs = [
88
+ fbgemm_weighted_op_quint8_dtype_config,
89
+ fbgemm_default_dynamic_int8_dtype_config,
90
+ fbgemm_default_dynamic_float16_dtype_config,
91
+ ]
92
+ binary_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
93
+ default_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
94
+ fixed_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
95
+ share_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
96
+ tensor_info_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
97
+ rnn_op_dtype_configs = [
98
+ fbgemm_default_dynamic_int8_dtype_config,
99
+ fbgemm_default_dynamic_float16_dtype_config,
100
+ ]
101
+ embedding_op_dtype_configs = [
102
+ fbgemm_weight_only_quint8_dtype_config,
103
+ fbgemm_weight_only_quint4x2_dtype_config,
104
+ ]
105
+ return BackendConfig("fbgemm") \
106
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
107
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
108
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
109
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
110
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
111
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
112
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
113
+ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
114
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
115
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
116
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/native.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ._common_operator_config_utils import (
3
+ _get_binary_op_configs,
4
+ _get_bn_configs,
5
+ _get_cat_config,
6
+ _get_conv_configs,
7
+ _get_default_op_configs,
8
+ _get_embedding_op_configs,
9
+ _get_fixed_qparams_op_configs,
10
+ _get_linear_configs,
11
+ _get_ln_configs,
12
+ _get_rnn_op_configs,
13
+ _get_share_qparams_op_configs,
14
+ _get_tensor_info_op_configs,
15
+ )
16
+ from .backend_config import BackendConfig, DTypeConfig
17
+
18
+ __all__ = [
19
+ "get_test_only_legacy_native_backend_config",
20
+ "default_op_quint8_dtype_config",
21
+ "default_op_fp16_dtype_config",
22
+ "default_dynamic_int8_dtype_config",
23
+ "default_dynamic_float16_dtype_config",
24
+ "input_output_only_quint8_dtype_config",
25
+ "weight_only_quint8_dtype_config",
26
+ "weight_only_quint4x2_dtype_config",
27
+ "get_native_backend_config",
28
+ "get_native_backend_config_dict",
29
+ "get_test_only_legacy_native_backend_config_dict",
30
+ ]
31
+
32
+ # ===================
33
+ # | DTYPE CONFIGS |
34
+ # ===================
35
+
36
+ # weighted op int8 dtype config
37
+ # this is config for ops that has quantized weights, like linear, conv
38
+ weighted_op_quint8_dtype_config = DTypeConfig(
39
+ input_dtype=torch.quint8,
40
+ output_dtype=torch.quint8,
41
+ weight_dtype=torch.qint8,
42
+ bias_dtype=torch.float,
43
+ )
44
+
45
+ default_op_quint8_dtype_config = DTypeConfig(
46
+ input_dtype=torch.quint8,
47
+ output_dtype=torch.quint8,
48
+ )
49
+
50
+ default_op_fp16_dtype_config = DTypeConfig(
51
+ input_dtype=torch.float16,
52
+ output_dtype=torch.float16,
53
+ weight_dtype=torch.float16,
54
+ bias_dtype=torch.float16,
55
+ )
56
+
57
+ default_dynamic_int8_dtype_config = DTypeConfig(
58
+ input_dtype=torch.quint8,
59
+ output_dtype=torch.float,
60
+ weight_dtype=torch.qint8,
61
+ bias_dtype=torch.float,
62
+ # currently the dtype check is not yet enabled, so we provided the dtype_configs but
63
+ # it is not really used yet,
64
+ # we will enable it a bit later after we moved everything to backend_config_dict
65
+ is_dynamic=True,
66
+ )
67
+
68
+ default_dynamic_float16_dtype_config = DTypeConfig(
69
+ input_dtype=torch.float16,
70
+ output_dtype=torch.float,
71
+ weight_dtype=torch.float16,
72
+ bias_dtype=torch.float,
73
+ # currently the dtype check is not yet enabled, so we provided the dtype_configs but
74
+ # it is not really used yet,
75
+ # we will enable it a bit later after we moved everything to backend_config_dict
76
+ is_dynamic=True,
77
+ )
78
+
79
+ # Needed for LayerNorm and f.layer_norm, since currently the kernel only supports float weights
80
+ input_output_only_quint8_dtype_config = DTypeConfig(
81
+ input_dtype=torch.quint8,
82
+ output_dtype=torch.quint8,
83
+ weight_dtype=torch.float,
84
+ bias_dtype=torch.float,
85
+ )
86
+
87
+ weight_only_quint8_dtype_config = DTypeConfig(
88
+ input_dtype=torch.float,
89
+ output_dtype=torch.float,
90
+ weight_dtype=torch.quint8,
91
+ )
92
+
93
+ weight_only_quint4x2_dtype_config = DTypeConfig(
94
+ input_dtype=torch.float,
95
+ output_dtype=torch.float,
96
+ weight_dtype=torch.quint4x2,
97
+ )
98
+
99
+
100
+ # =====================
101
+ # | BACKEND CONFIGS |
102
+ # =====================
103
+
104
+ def get_test_only_legacy_native_backend_config() -> BackendConfig:
105
+ """
106
+ Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional fp16 ops.
107
+ """
108
+ conv_dtype_configs = [weighted_op_quint8_dtype_config]
109
+ linear_dtype_configs = [
110
+ weighted_op_quint8_dtype_config,
111
+ default_dynamic_int8_dtype_config,
112
+ default_dynamic_float16_dtype_config,
113
+ default_op_fp16_dtype_config,
114
+ ]
115
+ binary_op_dtype_configs = [
116
+ default_op_quint8_dtype_config,
117
+ default_op_fp16_dtype_config,
118
+ ]
119
+ default_op_dtype_configs = [default_op_quint8_dtype_config]
120
+ fixed_qparams_op_dtype_configs = [
121
+ default_op_quint8_dtype_config,
122
+ default_op_fp16_dtype_config,
123
+ ]
124
+ share_qparams_op_dtype_configs = [
125
+ default_op_quint8_dtype_config,
126
+ default_op_fp16_dtype_config
127
+ ]
128
+ tensor_info_op_dtype_configs = [
129
+ default_op_quint8_dtype_config,
130
+ ]
131
+ rnn_op_dtype_configs = [
132
+ default_dynamic_int8_dtype_config,
133
+ default_dynamic_float16_dtype_config,
134
+ ]
135
+ embedding_op_dtype_configs = [
136
+ weight_only_quint8_dtype_config,
137
+ weight_only_quint4x2_dtype_config,
138
+ ]
139
+ layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
140
+ return BackendConfig("_native_and_fp16") \
141
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
142
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
143
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
144
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
145
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
146
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
147
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
148
+ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
149
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
150
+ .set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
151
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
152
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
153
+
154
+ def get_native_backend_config() -> BackendConfig:
155
+ """
156
+ Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack).
157
+ """
158
+ # TODO: express this BackendConfig as a union of the FBGEMM and QNNPACK BackendConfigs
159
+ conv_dtype_configs = [weighted_op_quint8_dtype_config]
160
+ linear_dtype_configs = [
161
+ weighted_op_quint8_dtype_config,
162
+ default_dynamic_int8_dtype_config,
163
+ default_dynamic_float16_dtype_config,
164
+ ]
165
+ binary_op_dtype_configs = [default_op_quint8_dtype_config]
166
+ default_op_dtype_configs = [default_op_quint8_dtype_config]
167
+ fixed_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
168
+ share_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
169
+ tensor_info_op_dtype_configs = [default_op_quint8_dtype_config]
170
+ rnn_op_dtype_configs = [
171
+ default_dynamic_int8_dtype_config,
172
+ default_dynamic_float16_dtype_config,
173
+ ]
174
+ embedding_op_dtype_configs = [
175
+ weight_only_quint8_dtype_config,
176
+ weight_only_quint4x2_dtype_config,
177
+ ]
178
+ layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
179
+ return BackendConfig("native") \
180
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
181
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
182
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
183
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
184
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
185
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
186
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
187
+ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
188
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
189
+ .set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
190
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
191
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
192
+
193
+ def get_native_backend_config_dict():
194
+ """
195
+ Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) in dictionary form.
196
+ """
197
+ return get_native_backend_config().to_dict()
198
+
199
+ def get_test_only_legacy_native_backend_config_dict():
200
+ """
201
+ Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional
202
+ fp16 ops in dictionary form.
203
+ """
204
+ return get_test_only_legacy_native_backend_config().to_dict()
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/observation_type.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.ao.nn.intrinsic as nni
4
+ import torch.nn.functional as F
5
+ import torch.ao.nn.quantized.reference as nnqr
6
+ from ._common_operator_config_utils import (
7
+ _get_conv_configs,
8
+ _get_linear_configs,
9
+ _get_binary_op_configs,
10
+ _get_bn_configs,
11
+ _get_cat_config,
12
+ _get_default_op_configs,
13
+ _get_embedding_op_configs,
14
+ _get_fixed_qparams_op_configs,
15
+ _get_ln_configs,
16
+ _get_rnn_op_configs,
17
+ _get_share_qparams_op_configs,
18
+ )
19
+ from .backend_config import (
20
+ BackendPatternConfig,
21
+ BackendConfig,
22
+ DTypeConfig,
23
+ ObservationType,
24
+ )
25
+ from ..fuser_method_mappings import (
26
+ _sequential_wrapper2,
27
+ )
28
+ import operator
29
+ from torch.ao.quantization.utils import MatchAllNode
30
+ import itertools
31
+
32
+ # ===================
33
+ # | DTYPE CONFIGS |
34
+ # ===================
35
+
36
+ onednn_weighted_op_int8_dtype_config = DTypeConfig(
37
+ input_dtype=torch.quint8,
38
+ output_dtype=torch.quint8,
39
+ weight_dtype=torch.qint8,
40
+ bias_dtype=torch.float,
41
+ )
42
+
43
+ onednn_op_quint8_dtype_config = DTypeConfig(
44
+ input_dtype=torch.quint8,
45
+ output_dtype=torch.quint8,
46
+ )
47
+
48
+ onednn_dynamic_int8_dtype_config = DTypeConfig(
49
+ input_dtype=torch.quint8,
50
+ output_dtype=torch.float,
51
+ weight_dtype=torch.qint8,
52
+ bias_dtype=torch.float,
53
+ is_dynamic=True,
54
+ )
55
+
56
+ onednn_weight_only_qint8_dtype_config = DTypeConfig(
57
+ input_dtype=torch.float,
58
+ output_dtype=torch.float,
59
+ weight_dtype=torch.qint8,
60
+ )
61
+
62
+ onednn_input_output_only_quint8_dtype_config = DTypeConfig(
63
+ input_dtype=torch.quint8,
64
+ output_dtype=torch.quint8,
65
+ weight_dtype=torch.float,
66
+ bias_dtype=torch.float,
67
+ )
68
+
69
+ # ===================
70
+ # | FUSER METHODS |
71
+ # ===================
72
+
73
+ def _fuse_linear_bn_leaky_relu(is_qat, linear, bn, leaky_relu):
74
+ r"""Given the linear, bn and leaky_relu modules, fuses them and returns the fused module
75
+ Args:
76
+ is_qat: a flag for whether we are using quantization aware training fusion
77
+ or post training quantization fusion
78
+ linear: Module instance of type Linear
79
+ bn: BatchNorm1d instance that needs to be fused with the linear layer
80
+ leaky_relu: LeakyReLU instance that needs to be fused with the linear layer
81
+ Examples::
82
+ >>> # xdoctest: +SKIP(failing)
83
+ >>> m1 = nn.Linear(20, 10)
84
+ >>> b1 = nn.BatchNorm1d(10)
85
+ >>> lr = nn.LeakyReLU(0.01)
86
+ >>> m2 = _fuse_linear_bn_leaky_relu(m1, b1, lr)
87
+ """
88
+ assert(linear.training == bn.training and bn.training == leaky_relu.training),\
89
+ "Linear, BN and LeakyReLU all must be in the same mode (train or eval)."
90
+
91
+ if is_qat:
92
+ raise NotImplementedError(f"Cannot fuse train modules: {(linear, bn, leaky_relu)}")
93
+ else:
94
+ map_to_fused_module_eval = {
95
+ nn.Linear: nni.LinearLeakyReLU,
96
+ }
97
+ fused_module = map_to_fused_module_eval.get(type(linear), None)
98
+ if fused_module is not None:
99
+ fused_linear = nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
100
+ fm = fused_module(fused_linear, leaky_relu)
101
+ return fm
102
+ else:
103
+ raise NotImplementedError(f"Cannot fuse eval modules: {(linear, bn, leaky_relu)}")
104
+
105
+ # ======================
106
+ # | CONFIGS FOR CONV |
107
+ # ======================
108
+ observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
109
+
110
+ conv_dtype_configs = [onednn_weighted_op_int8_dtype_config]
111
+ conv_configs = _get_conv_configs(conv_dtype_configs)
112
+
113
+ # (1) Conv2d + Add
114
+
115
+ # conv2d Y
116
+ # \ /
117
+ # add
118
+
119
+ # include:
120
+ # conv2d conv2d
121
+ # \ /
122
+ # add
123
+
124
+ def _fuse_conv_add_left(is_qat, add, conv, _):
125
+ return nni.ConvAdd2d(conv, add)
126
+
127
+ def _conv_add_root_node_getter_left(pattern):
128
+ _, conv, _ = pattern
129
+ return conv
130
+
131
+ def _conv_add_extra_inputs_getter_left(pattern):
132
+ """ get inputs pattern for extra inputs, inputs for root node
133
+ are assumed to be copied over from root node to the fused node
134
+ """
135
+ _, conv, extra_input = pattern
136
+ return [extra_input]
137
+
138
+ # conv2d
139
+ # \
140
+ # bn Y
141
+ # \ /
142
+ # add
143
+
144
+ def _fuse_conv_bn_add_left(is_qat, add, bn_conv, _):
145
+ bn, conv = bn_conv
146
+ if is_qat:
147
+ raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add)}")
148
+ else:
149
+ fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
150
+ return nni.ConvAdd2d(fused_conv, add)
151
+
152
+ def _conv_bn_add_root_node_getter_left(add_pattern):
153
+ _, bn_conv, _ = add_pattern
154
+ bn, conv = bn_conv
155
+ return conv
156
+
157
+ def _conv_bn_add_extra_inputs_getter_left(add_pattern):
158
+ """ get inputs pattern for extra inputs, inputs for root node
159
+ are assumed to be copied over from root node to the fused node
160
+ """
161
+ _, bn_conv, extra_input = add_pattern
162
+ bn, conv = bn_conv
163
+ return [extra_input]
164
+
165
+ conv_add_left_optioins = itertools.product(
166
+ [True, False], # with_bn
167
+ [torch.add, operator.add], # add_op
168
+ )
169
+
170
+ for with_bn, add_op in conv_add_left_optioins:
171
+ if with_bn:
172
+ conv_configs.append(
173
+ BackendPatternConfig()
174
+ ._set_pattern_complex_format((add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode)) # noqa: E131
175
+ .set_observation_type(observation_type)
176
+ .set_dtype_configs(conv_dtype_configs)
177
+ .set_fuser_method(_fuse_conv_bn_add_left)
178
+ ._set_root_node_getter(_conv_bn_add_root_node_getter_left)
179
+ ._set_extra_inputs_getter(_conv_bn_add_extra_inputs_getter_left)
180
+ .set_fused_module(nni.ConvAdd2d))
181
+ else:
182
+ conv_configs.append(
183
+ BackendPatternConfig()
184
+ ._set_pattern_complex_format((add_op, nn.Conv2d, MatchAllNode)) # noqa: E131
185
+ .set_observation_type(observation_type)
186
+ .set_dtype_configs(conv_dtype_configs)
187
+ .set_fuser_method(_fuse_conv_add_left)
188
+ ._set_root_node_getter(_conv_add_root_node_getter_left)
189
+ ._set_extra_inputs_getter(_conv_add_extra_inputs_getter_left)
190
+ .set_fused_module(nni.ConvAdd2d))
191
+
192
+ # Y conv2d
193
+ # \ /
194
+ # add
195
+
196
+ def _fuse_conv_add_right(is_qat, add, _, conv):
197
+ return nni.ConvAdd2d(conv, add)
198
+
199
+ def _conv_add_root_node_getter_right(pattern):
200
+ add, _, conv = pattern
201
+ return conv
202
+
203
+ def _conv_add_extra_inputs_getter_right(pattern):
204
+ """ get inputs pattern for extra inputs, inputs for root node
205
+ are assumed to be copied over from root node to the fused node
206
+ """
207
+ _, extra_input, conv = pattern
208
+ return [extra_input]
209
+
210
+ # conv2d
211
+ # /
212
+ # Y bn
213
+ # \ /
214
+ # add
215
+
216
+ def _fuse_conv_bn_add_right(is_qat, add, _, bn_conv):
217
+ bn, conv = bn_conv
218
+ if is_qat:
219
+ raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add)}")
220
+ else:
221
+ fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
222
+ return nni.ConvAdd2d(fused_conv, add)
223
+
224
+ def _conv_bn_add_root_node_getter_right(pattern):
225
+ add, _, bn_conv = pattern
226
+ bn, conv = bn_conv
227
+ return conv
228
+
229
+ def _conv_bn_add_extra_inputs_getter_right(pattern):
230
+ """ get inputs pattern for extra inputs, inputs for root node
231
+ are assumed to be copied over from root node to the fused node
232
+ """
233
+ _, extra_input, bn_conv = pattern
234
+ bn, conv = bn_conv
235
+ return [extra_input]
236
+
237
+ conv_add_optioins = itertools.product(
238
+ [True, False], # with_bn
239
+ [torch.add, operator.add], # add_op
240
+ )
241
+
242
+ for with_bn, add_op in conv_add_optioins:
243
+ if with_bn:
244
+ conv_configs.append(
245
+ BackendPatternConfig()
246
+ ._set_pattern_complex_format((add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d))) # noqa: E131
247
+ .set_observation_type(observation_type)
248
+ .set_dtype_configs(conv_dtype_configs)
249
+ .set_fuser_method(_fuse_conv_bn_add_right)
250
+ ._set_root_node_getter(_conv_bn_add_root_node_getter_right)
251
+ ._set_extra_inputs_getter(_conv_bn_add_extra_inputs_getter_right)
252
+ .set_fused_module(nni.ConvAdd2d))
253
+ else:
254
+ conv_configs.append(
255
+ BackendPatternConfig()
256
+ ._set_pattern_complex_format((add_op, MatchAllNode, nn.Conv2d)) # noqa: E131
257
+ .set_observation_type(observation_type)
258
+ .set_dtype_configs(conv_dtype_configs)
259
+ .set_fuser_method(_fuse_conv_add_right)
260
+ ._set_root_node_getter(_conv_add_root_node_getter_right)
261
+ ._set_extra_inputs_getter(_conv_add_extra_inputs_getter_right)
262
+ .set_fused_module(nni.ConvAdd2d))
263
+
264
+ conv_configs.append(
265
+ BackendPatternConfig(nni.ConvAdd2d)
266
+ .set_observation_type(observation_type) # noqa: E131
267
+ .set_dtype_configs(conv_dtype_configs)
268
+ .set_root_module(nn.Conv2d)
269
+ .set_reference_quantized_module(nnqr.Conv2d))
270
+
271
+ # (2) Conv2d + Add + Relu
272
+
273
+ # conv2d Y
274
+ # \ /
275
+ # add
276
+ # \
277
+ # relu
278
+
279
+ def _fuse_conv_add_relu_left(is_qat, relu, add_pattern):
280
+ add, conv, _ = add_pattern
281
+ return nni.ConvAddReLU2d(conv, add, relu)
282
+
283
+ def _conv_add_relu_root_node_getter_left(pattern):
284
+ relu, add_pattern = pattern
285
+ _, conv, _ = add_pattern
286
+ return conv
287
+
288
+ def _conv_add_relu_extra_inputs_getter_left(pattern):
289
+ """ get inputs pattern for extra inputs, inputs for root node
290
+ are assumed to be copied over from root node to the fused node
291
+ """
292
+ relu, add_pattern = pattern
293
+ _, conv, extra_input = add_pattern
294
+ return [extra_input]
295
+
296
+ # conv2d
297
+ # \
298
+ # bn Y
299
+ # \ /
300
+ # add
301
+ # \
302
+ # relu
303
+
304
+ def _fuse_conv_bn_add_relu_left(is_qat, relu, add_pattern):
305
+ add, bn_conv, _ = add_pattern
306
+ bn, conv = bn_conv
307
+ if is_qat:
308
+ raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add, relu)}")
309
+ else:
310
+ fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
311
+ return nni.ConvAddReLU2d(fused_conv, add, relu)
312
+
313
+ def _conv_bn_add_relu_root_node_getter_left(pattern):
314
+ relu, add_pattern = pattern
315
+ _, bn_conv, _ = add_pattern
316
+ bn, conv = bn_conv
317
+ return conv
318
+
319
+ def _conv_bn_add_relu_extra_inputs_getter_left(pattern):
320
+ """ get inputs pattern for extra inputs, inputs for root node
321
+ are assumed to be copied over from root node to the fused node
322
+ """
323
+ relu, add_pattern = pattern
324
+ _, bn_conv, extra_input = add_pattern
325
+ bn, conv = bn_conv
326
+ return [extra_input]
327
+
328
+ conv_add_relu_left_optioins = itertools.product(
329
+ [True, False], # with_bn
330
+ [torch.add, operator.add], # add_op
331
+ )
332
+
333
+ for with_bn, add_op in conv_add_relu_left_optioins:
334
+ if with_bn:
335
+ conv_configs.append(
336
+ BackendPatternConfig()
337
+ ._set_pattern_complex_format((nn.ReLU, (add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode))) # noqa: E131
338
+ .set_observation_type(observation_type)
339
+ .set_dtype_configs(conv_dtype_configs)
340
+ .set_fuser_method(_fuse_conv_bn_add_relu_left)
341
+ ._set_root_node_getter(_conv_bn_add_relu_root_node_getter_left)
342
+ ._set_extra_inputs_getter(_conv_bn_add_relu_extra_inputs_getter_left)
343
+ .set_fused_module(nni.ConvAddReLU2d))
344
+ else:
345
+ conv_configs.append(
346
+ BackendPatternConfig()
347
+ ._set_pattern_complex_format((nn.ReLU, (add_op, nn.Conv2d, MatchAllNode))) # noqa: E131
348
+ .set_observation_type(observation_type)
349
+ .set_dtype_configs(conv_dtype_configs)
350
+ .set_fuser_method(_fuse_conv_add_relu_left)
351
+ ._set_root_node_getter(_conv_add_relu_root_node_getter_left)
352
+ ._set_extra_inputs_getter(_conv_add_relu_extra_inputs_getter_left)
353
+ .set_fused_module(nni.ConvAddReLU2d))
354
+
355
+ # Y conv2d
356
+ # \ /
357
+ # add
358
+ # \
359
+ # relu
360
+
361
+ def _fuse_conv_add_relu_right(is_qat, relu, add_pattern):
362
+ add, _, conv = add_pattern
363
+ return nni.ConvAddReLU2d(conv, add, relu)
364
+
365
+ def _conv_add_relu_root_node_getter_right(pattern):
366
+ relu, add_pattern = pattern
367
+ _, _, conv = add_pattern
368
+ return conv
369
+
370
+ def _conv_add_relu_extra_inputs_getter_right(pattern):
371
+ """ get inputs pattern for extra inputs, inputs for root node
372
+ are assumed to be copied over from root node to the fused node
373
+ """
374
+ relu, add_pattern = pattern
375
+ _, extra_input, conv = add_pattern
376
+ return [extra_input]
377
+
378
+ # conv2d
379
+ # /
380
+ # Y bn
381
+ # \ /
382
+ # add
383
+ # \
384
+ # relu
385
+
386
+ def _fuse_conv_bn_add_relu_right(is_qat, relu, add_pattern):
387
+ add, _, bn_conv = add_pattern
388
+ bn, conv = bn_conv
389
+ if is_qat:
390
+ raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add, relu)}")
391
+ else:
392
+ fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
393
+ return nni.ConvAddReLU2d(fused_conv, add, relu)
394
+
395
+ def _conv_bn_add_relu_root_node_getter_right(pattern):
396
+ relu, add_pattern = pattern
397
+ _, _, bn_conv = add_pattern
398
+ bn, conv = bn_conv
399
+ return conv
400
+
401
+ def _conv_bn_add_relu_extra_inputs_getter_right(pattern):
402
+ """ get inputs pattern for extra inputs, inputs for root node
403
+ are assumed to be copied over from root node to the fused node
404
+ """
405
+ relu, add_pattern = pattern
406
+ _, extra_input, bn_conv = add_pattern
407
+ bn, conv = bn_conv
408
+ return [extra_input]
409
+
410
+ conv_add_relu_optioins = itertools.product(
411
+ [True, False], # with_bn
412
+ [torch.add, operator.add], # add_op
413
+ )
414
+
415
+ for with_bn, add_op in conv_add_relu_optioins:
416
+ if with_bn:
417
+ conv_configs.append(
418
+ BackendPatternConfig()
419
+ ._set_pattern_complex_format((nn.ReLU, (add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d)))) # noqa: E131
420
+ .set_observation_type(observation_type)
421
+ .set_dtype_configs(conv_dtype_configs)
422
+ .set_fuser_method(_fuse_conv_bn_add_relu_right)
423
+ ._set_root_node_getter(_conv_bn_add_relu_root_node_getter_right)
424
+ ._set_extra_inputs_getter(_conv_bn_add_relu_extra_inputs_getter_right)
425
+ .set_fused_module(nni.ConvAddReLU2d))
426
+ else:
427
+ conv_configs.append(
428
+ BackendPatternConfig()
429
+ ._set_pattern_complex_format((nn.ReLU, (add_op, MatchAllNode, nn.Conv2d))) # noqa: E131
430
+ .set_observation_type(observation_type)
431
+ .set_dtype_configs(conv_dtype_configs)
432
+ .set_fuser_method(_fuse_conv_add_relu_right)
433
+ ._set_root_node_getter(_conv_add_relu_root_node_getter_right)
434
+ ._set_extra_inputs_getter(_conv_add_relu_extra_inputs_getter_right)
435
+ .set_fused_module(nni.ConvAddReLU2d))
436
+
437
+ conv_configs.append(
438
+ BackendPatternConfig(nni.ConvAddReLU2d)
439
+ .set_observation_type(observation_type) # noqa: E131
440
+ .set_dtype_configs(conv_dtype_configs)
441
+ .set_root_module(nn.Conv2d)
442
+ .set_reference_quantized_module(nnqr.Conv2d))
443
+
444
+ # ========================
445
+ # | CONFIGS FOR LINEAR |
446
+ # ========================
447
+
448
+ linear_dtype_configs = [
449
+ onednn_weighted_op_int8_dtype_config,
450
+ onednn_dynamic_int8_dtype_config,
451
+ ]
452
+ linear_configs = _get_linear_configs(linear_dtype_configs)
453
+
454
+ def _add_eltwise_fusion_configs(configs, root_module, root_op, post_module, post_op,
455
+ dtype_configs, fuser_method, fused_module, observation_type,
456
+ ref_quant_module):
457
+ # 1 base module + op module fusion config
458
+ configs.append(
459
+ BackendPatternConfig((root_module, post_module))
460
+ .set_dtype_configs(dtype_configs) # noqa: E131
461
+ .set_fuser_method(fuser_method)
462
+ .set_fused_module(fused_module))
463
+ # base module + functional post op
464
+ configs.append(
465
+ BackendPatternConfig((root_module, post_op))
466
+ .set_dtype_configs(dtype_configs) # noqa: E131
467
+ .set_fuser_method(fuser_method)
468
+ .set_fused_module(fused_module))
469
+
470
+ # 2 fused module configs
471
+ configs.append(
472
+ BackendPatternConfig(fused_module)
473
+ .set_observation_type(observation_type) # noqa: E131
474
+ .set_dtype_configs(dtype_configs)
475
+ .set_root_module(root_module)
476
+ .set_reference_quantized_module(ref_quant_module))
477
+
478
+ # 3 functional base op + post op configs
479
+ configs.append(
480
+ BackendPatternConfig((root_op, post_module))
481
+ .set_observation_type(observation_type) # noqa: E131
482
+ .set_dtype_configs(dtype_configs))
483
+ configs.append(
484
+ BackendPatternConfig((root_op, post_op))
485
+ .set_observation_type(observation_type) # noqa: E131
486
+ .set_dtype_configs(dtype_configs))
487
+
488
+ # Configs for linear + leaky_relu fusion
489
+ _add_eltwise_fusion_configs(linear_configs, nn.Linear, F.linear,
490
+ nn.LeakyReLU, F.leaky_relu, linear_dtype_configs,
491
+ _sequential_wrapper2(nni.LinearLeakyReLU),
492
+ nni.LinearLeakyReLU, observation_type, nnqr.Linear)
493
+
494
+ # Configs for linear module + batchnorm + leaky_relu
495
+ linear_configs.append(
496
+ BackendPatternConfig((nn.Linear, nn.BatchNorm1d, nn.LeakyReLU))
497
+ .set_dtype_configs(linear_dtype_configs) # noqa: E131
498
+ .set_fuser_method(_fuse_linear_bn_leaky_relu)
499
+ .set_fused_module(nni.LinearLeakyReLU))
500
+
501
+ # Configs for linear + tanh fusion
502
+ _add_eltwise_fusion_configs(linear_configs, nn.Linear, F.linear,
503
+ nn.Tanh, torch.tanh, linear_dtype_configs,
504
+ _sequential_wrapper2(nni.LinearTanh),
505
+ nni.LinearTanh, observation_type, nnqr.Linear)
506
+
507
+ # ===========================
508
+ # | CONFIGS FOR OTHER OPS |
509
+ # ===========================
510
+
511
+ binary_op_dtype_configs = [onednn_op_quint8_dtype_config]
512
+ default_op_dtype_configs = [onednn_op_quint8_dtype_config]
513
+ fixed_qparams_op_dtype_configs = [onednn_op_quint8_dtype_config]
514
+ share_qparams_op_dtype_configs = [onednn_op_quint8_dtype_config]
515
+ rnn_op_dtype_configs = [onednn_dynamic_int8_dtype_config]
516
+ embedding_op_dtype_configs = [onednn_weight_only_qint8_dtype_config]
517
+ layer_norm_op_dtype_configs = [onednn_input_output_only_quint8_dtype_config]
518
+
519
+ # =====================
520
+ # | BACKEND CONFIGS |
521
+ # =====================
522
+
523
+ def get_onednn_backend_config() -> BackendConfig:
524
+ """
525
+ Return the `BackendConfig` for PyTorch's native ONEDNN backend.
526
+ """
527
+ return BackendConfig("onednn") \
528
+ .set_backend_pattern_configs(conv_configs) \
529
+ .set_backend_pattern_configs(linear_configs) \
530
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
531
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
532
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
533
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
534
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
535
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
536
+ .set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
537
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
538
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
539
+
540
+ __all__ = [
541
+ "get_onednn_backend_config",
542
+ ]
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/qnnpack.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ._common_operator_config_utils import (
3
+ _get_binary_op_configs,
4
+ _get_bn_configs,
5
+ _get_cat_config,
6
+ _get_conv_configs,
7
+ _get_default_op_configs,
8
+ _get_embedding_op_configs,
9
+ _get_fixed_qparams_op_configs,
10
+ _get_linear_configs,
11
+ _get_rnn_op_configs,
12
+ _get_share_qparams_op_configs,
13
+ )
14
+ from .backend_config import BackendConfig, DTypeConfig, DTypeWithConstraints
15
+
16
+ __all__ = [
17
+ "get_qnnpack_backend_config",
18
+ ]
19
+
20
+ # ===================
21
+ # | DTYPE CONFIGS |
22
+ # ===================
23
+
24
+ qnnpack_weighted_op_quint8_dtype_config = DTypeConfig(
25
+ input_dtype=torch.quint8,
26
+ output_dtype=torch.quint8,
27
+ weight_dtype=torch.qint8,
28
+ bias_dtype=torch.float,
29
+ )
30
+
31
+ qnnpack_default_op_quint8_dtype_config = DTypeConfig(
32
+ input_dtype=torch.quint8,
33
+ output_dtype=torch.quint8,
34
+ )
35
+
36
+ qnnpack_default_op_fp16_dtype_config = DTypeConfig(
37
+ input_dtype=torch.float16,
38
+ output_dtype=torch.float16,
39
+ weight_dtype=torch.float16,
40
+ bias_dtype=torch.float16,
41
+ )
42
+
43
+ qnnpack_default_dynamic_int8_dtype_config = DTypeConfig(
44
+ input_dtype=torch.quint8,
45
+ output_dtype=torch.float,
46
+ weight_dtype=torch.qint8,
47
+ bias_dtype=torch.float,
48
+ is_dynamic=True,
49
+ )
50
+
51
+ qnnpack_default_dynamic_float16_dtype_config = DTypeConfig(
52
+ input_dtype=torch.float16,
53
+ output_dtype=torch.float,
54
+ weight_dtype=torch.float16,
55
+ bias_dtype=torch.float,
56
+ is_dynamic=True,
57
+ )
58
+
59
+ qnnpack_weight_only_quint8_dtype_config = DTypeConfig(
60
+ input_dtype=torch.float,
61
+ output_dtype=torch.float,
62
+ weight_dtype=torch.quint8,
63
+ )
64
+
65
+ qnnpack_weight_only_quint4x2_dtype_config = DTypeConfig(
66
+ input_dtype=torch.float,
67
+ output_dtype=torch.float,
68
+ weight_dtype=torch.quint4x2,
69
+ )
70
+
71
+ # xnnpack compatible dtype configs
72
+
73
+ # We restrict scale values to be 2 ** -12 to ensure the
74
+ # requantization scale never falls below the xnnpack lower
75
+ # threshold. Additionally, for qint8 weight, we restrict
76
+ # the quantization values to [-127, +127], excluding -128.
77
+ # For more detail, refer to the description of
78
+ # `default_symmetric_qnnpack_qconfig`.
79
+
80
+ # TODO: add additional restriction on qscheme to ensure it
81
+ # is either per_tensor_symmetric or per_channel_symmetric
82
+
83
+ qnnpack_act_qint8_scale_min_2_neg_12 = DTypeWithConstraints(
84
+ dtype=torch.qint8,
85
+ scale_min_lower_bound=2 ** -12,
86
+ )
87
+
88
+ qnnpack_weight_qint8_neg_127_to_127_scale_min_2_neg_12 = DTypeWithConstraints(
89
+ dtype=torch.qint8,
90
+ quant_min_lower_bound=-127,
91
+ quant_max_upper_bound=127,
92
+ scale_min_lower_bound=2 ** -12,
93
+ )
94
+
95
+ qnnpack_weighted_op_qint8_symmetric_dtype_config = DTypeConfig(
96
+ input_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
97
+ output_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
98
+ weight_dtype=qnnpack_weight_qint8_neg_127_to_127_scale_min_2_neg_12,
99
+ bias_dtype=torch.float,
100
+ )
101
+
102
+ qnnpack_default_op_qint8_symmetric_dtype_config = DTypeConfig(
103
+ input_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
104
+ output_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
105
+ )
106
+
107
+
108
+ # =====================
109
+ # | BACKEND CONFIGS |
110
+ # =====================
111
+
112
+ def get_qnnpack_backend_config() -> BackendConfig:
113
+ """
114
+ Return the `BackendConfig` for PyTorch's native QNNPACK backend.
115
+ """
116
+ conv_dtype_configs = [
117
+ qnnpack_weighted_op_qint8_symmetric_dtype_config,
118
+ qnnpack_weighted_op_quint8_dtype_config,
119
+ ]
120
+ linear_dtype_configs = [
121
+ qnnpack_weighted_op_qint8_symmetric_dtype_config,
122
+ qnnpack_weighted_op_quint8_dtype_config,
123
+ qnnpack_default_dynamic_int8_dtype_config,
124
+ qnnpack_default_dynamic_float16_dtype_config,
125
+ ]
126
+ binary_op_dtype_configs = [
127
+ qnnpack_default_op_qint8_symmetric_dtype_config,
128
+ qnnpack_default_op_quint8_dtype_config,
129
+ ]
130
+ default_op_dtype_configs = [
131
+ qnnpack_default_op_qint8_symmetric_dtype_config,
132
+ qnnpack_default_op_quint8_dtype_config,
133
+ ]
134
+ fixed_qparams_op_dtype_configs = [
135
+ qnnpack_default_op_qint8_symmetric_dtype_config,
136
+ qnnpack_default_op_quint8_dtype_config,
137
+ ]
138
+ share_qparams_op_dtype_configs = [
139
+ qnnpack_default_op_qint8_symmetric_dtype_config,
140
+ qnnpack_default_op_quint8_dtype_config,
141
+ ]
142
+ rnn_op_dtype_configs = [
143
+ qnnpack_default_dynamic_int8_dtype_config,
144
+ qnnpack_default_dynamic_float16_dtype_config,
145
+ ]
146
+ embedding_op_dtype_configs = [
147
+ qnnpack_weight_only_quint8_dtype_config,
148
+ qnnpack_weight_only_quint4x2_dtype_config,
149
+ ]
150
+ return BackendConfig("qnnpack") \
151
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
152
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
153
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
154
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
155
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
156
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
157
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
158
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
159
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
160
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/tensorrt.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .backend_config import (
3
+ BackendConfig,
4
+ BackendPatternConfig,
5
+ DTypeConfig,
6
+ ObservationType
7
+ )
8
+ from ._common_operator_config_utils import (
9
+ _get_binary_op_configs,
10
+ _get_linear_configs,
11
+ _get_conv_configs,
12
+ _get_share_qparams_op_configs,
13
+ _get_tensor_info_op_configs,
14
+ )
15
+
16
+ __all__ = [
17
+ "get_tensorrt_backend_config",
18
+ "get_tensorrt_backend_config_dict",
19
+ ]
20
+
21
+ def get_tensorrt_backend_config() -> BackendConfig:
22
+ """
23
+ Return the `BackendConfig` for the TensorRT backend.
24
+ NOTE: Current api will change in the future, it's just to unblock experimentation for
25
+ new backends, please don't use it right now.
26
+ TODO: add a README when it's more stable
27
+ """
28
+ # dtype configs
29
+ weighted_op_qint8_dtype_config = DTypeConfig(
30
+ input_dtype=torch.qint8,
31
+ output_dtype=torch.qint8,
32
+ weight_dtype=torch.qint8,
33
+ bias_dtype=torch.float,
34
+ )
35
+ non_weighted_op_qint8_dtype_config = DTypeConfig(
36
+ input_dtype=torch.qint8,
37
+ output_dtype=torch.qint8,
38
+ )
39
+
40
+ addmm_config = BackendPatternConfig(torch.addmm) \
41
+ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
42
+ .add_dtype_config(weighted_op_qint8_dtype_config) \
43
+ ._set_input_type_to_index({
44
+ "bias": 0,
45
+ "input": 1,
46
+ "weight": 2,
47
+ })
48
+ cat_config = BackendPatternConfig(torch.cat) \
49
+ .set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
50
+ .add_dtype_config(non_weighted_op_qint8_dtype_config)
51
+ conv_dtype_configs = [
52
+ weighted_op_qint8_dtype_config,
53
+ ]
54
+ linear_dtype_configs = [
55
+ weighted_op_qint8_dtype_config,
56
+ ]
57
+ binary_op_dtype_configs = [
58
+ weighted_op_qint8_dtype_config,
59
+ ]
60
+ share_qparams_op_dtype_configs = [
61
+ non_weighted_op_qint8_dtype_config,
62
+ ]
63
+ tensor_info_op_dtype_configs = [
64
+ non_weighted_op_qint8_dtype_config,
65
+ ]
66
+ # there might be things not supported in fx2trt, but it will error out
67
+ # during fx2trt conversion and can support them after that
68
+ return BackendConfig("tensorrt") \
69
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
70
+ .set_backend_pattern_config(addmm_config) \
71
+ .set_backend_pattern_config(cat_config) \
72
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
73
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
74
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
75
+ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs))
76
+
77
+ def get_tensorrt_backend_config_dict():
78
+ """
79
+ Return the `BackendConfig` for the TensorRT backend in dictionary form.
80
+ """
81
+ return get_tensorrt_backend_config().to_dict()
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/utils.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any, List, Callable, Union, Tuple, Type
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from .backend_config import (
7
+ BackendConfig,
8
+ BackendPatternConfig,
9
+ DTypeConfig,
10
+ )
11
+ from ..utils import Pattern
12
+ from ..fuser_method_mappings import (
13
+ _reverse2,
14
+ _reverse3,
15
+ )
16
+
17
+ __all__ = [
18
+ "get_pattern_to_dtype_configs",
19
+ "get_qat_module_classes",
20
+ "get_fused_module_classes",
21
+ "get_pattern_to_input_type_to_index",
22
+ "get_root_module_to_quantized_reference_module",
23
+ "get_fuser_method_mapping",
24
+ "get_module_to_qat_module",
25
+ "get_fusion_pattern_to_root_node_getter",
26
+ "get_fusion_pattern_to_extra_inputs_getter",
27
+ "remove_boolean_dispatch_from_name",
28
+ "pattern_to_human_readable",
29
+ "entry_to_pretty_str",
30
+ ]
31
+
32
+ def get_pattern_to_dtype_configs(backend_config: BackendConfig) -> Dict[Pattern, List[DTypeConfig]]:
33
+ pattern_to_dtype_configs: Dict[Pattern, List[DTypeConfig]] = {}
34
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
35
+ pattern_to_dtype_configs[pattern] = config.dtype_configs
36
+ return pattern_to_dtype_configs
37
+
38
+ def get_qat_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
39
+ qat_module_classes = []
40
+ for config in backend_config.configs:
41
+ if config.qat_module is not None:
42
+ qat_module_classes.append(config.qat_module)
43
+ return tuple(set(qat_module_classes))
44
+
45
+ def get_fused_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
46
+ fused_module_classes = []
47
+ for config in backend_config.configs:
48
+ if config.fused_module is not None:
49
+ fused_module_classes.append(config.fused_module)
50
+ return tuple(set(fused_module_classes))
51
+
52
+ def get_pattern_to_input_type_to_index(backend_config: BackendConfig) -> Dict[Pattern, Dict[str, int]]:
53
+ pattern_to_input_type_to_index: Dict[Pattern, Dict[str, int]] = {}
54
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
55
+ pattern_to_input_type_to_index[pattern] = config._input_type_to_index
56
+ return pattern_to_input_type_to_index
57
+
58
+ def get_root_module_to_quantized_reference_module(
59
+ backend_config: BackendConfig) -> Dict[Type[torch.nn.Module], Type[torch.nn.Module]]:
60
+ mapping: Dict[Type[torch.nn.Module], Type[torch.nn.Module]] = {}
61
+ for config in backend_config.configs:
62
+ if config.root_module is not None and config.reference_quantized_module is not None:
63
+ mapping[config.root_module] = config.reference_quantized_module
64
+ return mapping
65
+
66
+ def get_fuser_method_mapping(backend_config: BackendConfig) -> Dict[Pattern, Union[nn.Sequential, Callable]]:
67
+ fuser_method_mapping : Dict[Pattern, Union[nn.Sequential, Callable]] = {}
68
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
69
+ if config.fuser_method is not None:
70
+ # Note: both the fuser method and the pattern are specified in forward order in the
71
+ # BackendConfig, but the internal pattern matching code uses the reversed nested tuple
72
+ # format, so we need to convert both to the internal format
73
+ fuser_method = _get_fuser_method_in_reversed_nested_tuple_format(config)
74
+ fuser_method_mapping[pattern] = fuser_method
75
+ return fuser_method_mapping
76
+
77
+ def get_module_to_qat_module(backend_config: BackendConfig) -> Dict[Pattern, Type[torch.nn.Module]]:
78
+ module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]] = {}
79
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
80
+ if config.qat_module is not None:
81
+ module_to_qat_module[pattern] = config.qat_module
82
+ return module_to_qat_module
83
+
84
+ def get_fusion_pattern_to_root_node_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
85
+ """ Get a map from fusion pattern to a function that returns the root node
86
+ from the fusion pattern, e.g. the most common one is:
87
+ def get_root_node(node_pattern):
88
+ while not isinstance(node_pattern[-1], Node):
89
+ node_pattern = node_pattern[-1]
90
+ return node_pattern[-1]
91
+ This can work for all patterns whose root node is the "last node" in the pattern,
92
+ e.g. (torch.add, MatchAllNode, (torch.ReLU, torch.Conv2d))
93
+ """
94
+ root_node_getter_mapping: Dict[Pattern, Callable] = {}
95
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
96
+ if config._root_node_getter is not None:
97
+ root_node_getter_mapping[pattern] = config._root_node_getter
98
+ return root_node_getter_mapping
99
+
100
+ def get_fusion_pattern_to_extra_inputs_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
101
+ """ Get a map from fusion pattern to a function that returns extra input nodes
102
+ from the fusion pattern, in the order required by the root node. This is optional,
103
+ if not specified, we will not copy over any extra inputs for the root node.
104
+ Example:
105
+ # Let's say we have the pattern (torch.add, MatchAllNode, (torch.nn.BatchNorm2d, torch.nn.Conv2d))
106
+ # and root node is torch.nn.Conv2d, and the node in MatchAllNode would be an extra
107
+ # argument to the fused module, we can unpack the pattern and return the node at
108
+ # MatchAllNode here
109
+ # we can implement extra_inputs_getter as follows:
110
+ def extra_inputs_getter(pattern) -> List[Any]:
111
+ add, extra_input, conv_pattern = pattern
112
+ return [extra_input]
113
+ """
114
+ extra_inputs_getter_mapping: Dict[Pattern, Callable] = {}
115
+ for pattern, config in backend_config._pattern_complex_format_to_config.items():
116
+ if config._extra_inputs_getter is not None:
117
+ extra_inputs_getter_mapping[pattern] = config._extra_inputs_getter
118
+ return extra_inputs_getter_mapping
119
+
120
+ def remove_boolean_dispatch_from_name(p) -> Any:
121
+ """
122
+ Some ops have a default string representation such as
123
+ '<function boolean_dispatch.<locals>.fn at 0x7ff1106bf280>',
124
+ this function replaces them with the hardcoded function names.
125
+ """
126
+ if p is F.fractional_max_pool2d:
127
+ return "torch.nn.functional.fractional_max_pool2d"
128
+ elif p is F.fractional_max_pool3d:
129
+ return "torch.nn.functional.fractional_max_pool3d"
130
+ elif p is F.max_pool1d:
131
+ return "torch.nn.functional.max_pool1d"
132
+ elif p is F.max_pool2d:
133
+ return "torch.nn.functional.max_pool2d"
134
+ elif p is F.max_pool3d:
135
+ return "torch.nn.functional.max_pool3d"
136
+ elif p is F.adaptive_max_pool1d:
137
+ return "torch.nn.functional.adaptive_max_pool1d"
138
+ elif p is F.adaptive_max_pool2d:
139
+ return "torch.nn.functional.adaptive_max_pool2d"
140
+ elif p is F.adaptive_max_pool3d:
141
+ return "torch.nn.functional.adaptive_max_pool3d"
142
+ assert "boolean_dispatch" not in str(p), \
143
+ f"{p} does not have a human readable representation in " + \
144
+ "quantization documentation"
145
+ return p
146
+
147
+ def pattern_to_human_readable(p) -> Any:
148
+ if isinstance(p, tuple):
149
+ # nested patterns, recurse
150
+ return tuple(pattern_to_human_readable(inner_p) for inner_p in p)
151
+ elif isinstance(p, str):
152
+ # method names are already human readable
153
+ return p
154
+ else:
155
+ p = remove_boolean_dispatch_from_name(p)
156
+ return p
157
+
158
+ # TODO(future PR): move backend_config_dict to use dataclass and move this logic to
159
+ # the corresponding __str__ function
160
+ def entry_to_pretty_str(entry) -> str:
161
+ """
162
+ Given a backend_config_dict entry, returns a string with the human readable
163
+ representation of it.
164
+ """
165
+ s = "{\n"
166
+
167
+ # always output the pattern first
168
+ if "pattern" in entry:
169
+ pattern_str = pattern_to_human_readable(entry["pattern"])
170
+
171
+ s += f" 'pattern': {pattern_str},\n"
172
+
173
+ # custom output for dtype_configs to make it look nice
174
+ if "dtype_configs" in entry:
175
+ s += " 'dtype_configs': [\n"
176
+ for dtype_config in entry["dtype_configs"]:
177
+ s += " {\n"
178
+ for k, v in dtype_config.items():
179
+ s += f" '{k}': {v},\n"
180
+ s += " },\n"
181
+ s += " ],\n"
182
+
183
+ # custom output for num_tensor_args_to_observation_type to make it look nice
184
+ if "num_tensor_args_to_observation_type" in entry:
185
+ s += " 'num_tensor_args_to_observation_type': {\n"
186
+ for k, v in entry["num_tensor_args_to_observation_type"].items():
187
+ s += f" {k}: {v},\n"
188
+ s += " },\n"
189
+
190
+ # output all the other fields
191
+ custom_handled_fields = [
192
+ "pattern",
193
+ "dtype_configs",
194
+ "num_tensor_args_to_observation_type",
195
+ ]
196
+ for field_name in entry:
197
+ if field_name in custom_handled_fields:
198
+ continue
199
+ s += f" '{field_name}': {entry[field_name]},\n"
200
+
201
+ s += "}"
202
+ return s
203
+
204
+ def _get_pattern_in_reversed_nested_tuple_format(config: BackendPatternConfig) -> Pattern:
205
+ """
206
+ Return the pattern specified in the given config in the reversed nested tuple format
207
+ used internally in the quantization pattern matching code.
208
+
209
+ If the pattern is not a tuple, or the pattern is already specified in the reversed
210
+ nested tuple format, return the pattern as is. Otherwise:
211
+
212
+ For 2-tuples (a, b), return (b, a).
213
+ For 3-tuples (a, b, c), return (c, (b, a)).
214
+
215
+ For example:
216
+ * Given nn.Linear, return nn.Linear
217
+ * Given (nn.Linear, nn.ReLU), return (nn.ReLU, nn.Linear)
218
+ * Given (nn.Conv2d, nn.BatchNorm2d, nn.ReLU), return
219
+ (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
220
+
221
+ For context, the reason why this is needed is the user-facing BackendConfig
222
+ API accepts the flat 2-or-3-tuple format in forward order. While this simple
223
+ format handles the vast majority of use cases, it does not handle the more
224
+ complex ones, and so the internal pattern matching code for quantization uses
225
+ the following, more general reversed nested tuple format instead:
226
+
227
+ operator = module_type | functional | torch op | native op | MatchAllNode
228
+ Pattern = (operator, Pattern, Pattern, ...) | operator
229
+
230
+ In the future, we expect to replace the above complex format with the one used
231
+ by the subgraph rewriter in torch.fx, so we don't have to maintain our own
232
+ complex pattern matching code. Then we won't need this helper function anymore.
233
+ """
234
+ if config._pattern_complex_format is not None:
235
+ return config._pattern_complex_format
236
+ if config.pattern is None:
237
+ raise ValueError("Either 'pattern' or 'pattern_complex_format' must be specified")
238
+ if not isinstance(config.pattern, tuple):
239
+ return config.pattern
240
+
241
+ # Pattern is specified in the simple tuple format, need to convert
242
+ if len(config.pattern) == 2:
243
+ (a, b) = config.pattern
244
+ return (b, a)
245
+ elif len(config.pattern) == 3:
246
+ (a, b, c) = config.pattern
247
+ return (c, (b, a))
248
+ else:
249
+ raise ValueError("Expected a tuple with 2 or 3 elements, got: ", config.pattern)
250
+
251
+ def _get_fuser_method_in_reversed_nested_tuple_format(config: BackendPatternConfig) -> Callable:
252
+ """
253
+ Return the fuser method specified in the given config in the reversed nested
254
+ tuple format used internally in the quantization pattern matching code.
255
+
256
+ If pattern is specified in the reversed nested tuple format, we assume the
257
+ fuser method is also specified in this format and simply return it as is.
258
+ Otherwise, we convert the fuser method as follows:
259
+
260
+ * Given f(is_qat, conv, relu), return f'(is_qat, relu, conv)
261
+ * Given f(is_qat, conv, bn, relu), return f'(is_qat, relu, bn_conv),
262
+ where bn_conv is a 2-tuple (bn, conv)
263
+
264
+ The first argument of a fuser method is always `is_qat` and is not affected
265
+ in the conversion. We currently only support functions with 3 or 4 arguments.
266
+ """
267
+ assert config.fuser_method is not None
268
+ if config._pattern_complex_format is not None:
269
+ return config.fuser_method
270
+ if not isinstance(config.pattern, tuple):
271
+ raise ValueError("Expected pattern to be a tuple, got: ", config.pattern)
272
+
273
+ # Pattern is specified in the simple tuple format, need to convert
274
+ if len(config.pattern) == 2:
275
+ return _reverse2(config.fuser_method)
276
+ elif len(config.pattern) == 3:
277
+ return _reverse3(config.fuser_method)
278
+ else:
279
+ raise ValueError("Expected a tuple with 2 or 3 elements, got: ", config.pattern)
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/backend_config/x86.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ._common_operator_config_utils import (
3
+ _get_binary_op_configs,
4
+ _get_bn_configs,
5
+ _get_cat_config,
6
+ _get_conv_configs,
7
+ _get_default_op_configs,
8
+ _get_embedding_op_configs,
9
+ _get_fixed_qparams_op_configs,
10
+ _get_linear_configs,
11
+ _get_rnn_op_configs,
12
+ _get_share_qparams_op_configs,
13
+ _get_tensor_info_op_configs,
14
+ )
15
+ from .backend_config import BackendConfig, DTypeConfig
16
+
17
+ __all__ = [
18
+ "get_x86_backend_config",
19
+ ]
20
+
21
+ # ===================
22
+ # | DTYPE CONFIGS |
23
+ # ===================
24
+
25
+ # X86 aligns with FBGEMM for now
26
+
27
+ x86_weighted_op_int8_dtype_config = DTypeConfig(
28
+ input_dtype=torch.quint8,
29
+ output_dtype=torch.quint8,
30
+ weight_dtype=torch.qint8,
31
+ bias_dtype=torch.float,
32
+ )
33
+
34
+ x86_default_op_quint8_dtype_config = DTypeConfig(
35
+ input_dtype=torch.quint8,
36
+ output_dtype=torch.quint8,
37
+ )
38
+
39
+ x86_default_op_fp16_dtype_config = DTypeConfig(
40
+ input_dtype=torch.float16,
41
+ output_dtype=torch.float16,
42
+ weight_dtype=torch.float16,
43
+ bias_dtype=torch.float16,
44
+ )
45
+
46
+ x86_default_dynamic_int8_dtype_config = DTypeConfig(
47
+ input_dtype=torch.quint8,
48
+ output_dtype=torch.float,
49
+ weight_dtype=torch.qint8,
50
+ bias_dtype=torch.float,
51
+ is_dynamic=True,
52
+ )
53
+
54
+ x86_default_dynamic_float16_dtype_config = DTypeConfig(
55
+ input_dtype=torch.float16,
56
+ output_dtype=torch.float,
57
+ weight_dtype=torch.float16,
58
+ bias_dtype=torch.float,
59
+ is_dynamic=True,
60
+ )
61
+
62
+ x86_weight_only_quint8_dtype_config = DTypeConfig(
63
+ input_dtype=torch.float,
64
+ output_dtype=torch.float,
65
+ weight_dtype=torch.quint8,
66
+ )
67
+
68
+ x86_weight_only_quint4x2_dtype_config = DTypeConfig(
69
+ input_dtype=torch.float,
70
+ output_dtype=torch.float,
71
+ weight_dtype=torch.quint4x2,
72
+ )
73
+
74
+
75
+ # =====================
76
+ # | BACKEND CONFIGS |
77
+ # =====================
78
+
79
+ def get_x86_backend_config() -> BackendConfig:
80
+ """
81
+ Return the `BackendConfig` for PyTorch's native x86 backend.
82
+ """
83
+ conv_dtype_configs = [x86_weighted_op_int8_dtype_config]
84
+ linear_dtype_configs = [
85
+ x86_weighted_op_int8_dtype_config,
86
+ x86_default_dynamic_int8_dtype_config,
87
+ x86_default_dynamic_float16_dtype_config,
88
+ ]
89
+ binary_op_dtype_configs = [x86_weighted_op_int8_dtype_config]
90
+ default_op_dtype_configs = [x86_default_op_quint8_dtype_config]
91
+ fixed_qparams_op_dtype_configs = [x86_weighted_op_int8_dtype_config]
92
+ share_qparams_op_dtype_configs = [x86_default_op_quint8_dtype_config]
93
+ tensor_info_op_dtype_configs = [x86_default_op_quint8_dtype_config]
94
+ rnn_op_dtype_configs = [
95
+ x86_default_dynamic_int8_dtype_config,
96
+ x86_default_dynamic_float16_dtype_config,
97
+ ]
98
+ embedding_op_dtype_configs = [
99
+ x86_weight_only_quint8_dtype_config,
100
+ x86_weight_only_quint4x2_dtype_config,
101
+ ]
102
+ return BackendConfig("x86") \
103
+ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
104
+ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
105
+ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
106
+ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
107
+ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
108
+ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
109
+ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
110
+ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
111
+ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
112
+ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
113
+ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/duplicate_dq_pass.cpython-310.pyc ADDED
Binary file (2.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/eval_utils.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/generate_numeric_debug_handle.cpython-310.pyc ADDED
Binary file (695 Bytes). View file