applied-ai-018 commited on
Commit
6b0b284
·
verified ·
1 Parent(s): a156ca7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/__init__.py +1 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/factorials.py +1102 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/numbers.py +2563 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__init__.py +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/test_comb_factorials.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/test_comb_numbers.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/test_comb_factorials.py +650 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/test_comb_numbers.py +852 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_beta_functions.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_bsplines.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_delta_functions.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_gamma_functions.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_hyper.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_tensor_functions.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_zeta_functions.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py +59 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/commutator.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/constants.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/gate.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/identitysearch.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixcache.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operatorordering.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operatorset.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/pauli.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/piab.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qapply.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qubit.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/sho1d.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/shor.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/spin.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/state.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/trace.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py +149 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/boson.py +259 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/cartesian.py +341 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/cg.py +754 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py +370 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py +488 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py +239 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/constants.py +59 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/dagger.py +97 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/density.py +319 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/fermion.py +179 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/gate.py +1305 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/grover.py +345 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/hilbert.py +653 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/identitysearch.py +853 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/innerproduct.py +137 -0
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # Stub __init__.py for sympy.functions.combinatorial
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/factorials.py ADDED
@@ -0,0 +1,1102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from functools import reduce
3
+
4
+ from sympy.core import S, sympify, Dummy, Mod
5
+ from sympy.core.cache import cacheit
6
+ from sympy.core.function import Function, ArgumentIndexError, PoleError
7
+ from sympy.core.logic import fuzzy_and
8
+ from sympy.core.numbers import Integer, pi, I
9
+ from sympy.core.relational import Eq
10
+ from sympy.external.gmpy import HAS_GMPY, gmpy
11
+ from sympy.ntheory import sieve
12
+ from sympy.polys.polytools import Poly
13
+
14
+ from math import factorial as _factorial, prod, sqrt as _sqrt
15
+
16
+ class CombinatorialFunction(Function):
17
+ """Base class for combinatorial functions. """
18
+
19
+ def _eval_simplify(self, **kwargs):
20
+ from sympy.simplify.combsimp import combsimp
21
+ # combinatorial function with non-integer arguments is
22
+ # automatically passed to gammasimp
23
+ expr = combsimp(self)
24
+ measure = kwargs['measure']
25
+ if measure(expr) <= kwargs['ratio']*measure(self):
26
+ return expr
27
+ return self
28
+
29
+
30
+ ###############################################################################
31
+ ######################## FACTORIAL and MULTI-FACTORIAL ########################
32
+ ###############################################################################
33
+
34
+
35
+ class factorial(CombinatorialFunction):
36
+ r"""Implementation of factorial function over nonnegative integers.
37
+ By convention (consistent with the gamma function and the binomial
38
+ coefficients), factorial of a negative integer is complex infinity.
39
+
40
+ The factorial is very important in combinatorics where it gives
41
+ the number of ways in which `n` objects can be permuted. It also
42
+ arises in calculus, probability, number theory, etc.
43
+
44
+ There is strict relation of factorial with gamma function. In
45
+ fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this
46
+ kind is very useful in case of combinatorial simplification.
47
+
48
+ Computation of the factorial is done using two algorithms. For
49
+ small arguments a precomputed look up table is used. However for bigger
50
+ input algorithm Prime-Swing is used. It is the fastest algorithm
51
+ known and computes `n!` via prime factorization of special class
52
+ of numbers, called here the 'Swing Numbers'.
53
+
54
+ Examples
55
+ ========
56
+
57
+ >>> from sympy import Symbol, factorial, S
58
+ >>> n = Symbol('n', integer=True)
59
+
60
+ >>> factorial(0)
61
+ 1
62
+
63
+ >>> factorial(7)
64
+ 5040
65
+
66
+ >>> factorial(-2)
67
+ zoo
68
+
69
+ >>> factorial(n)
70
+ factorial(n)
71
+
72
+ >>> factorial(2*n)
73
+ factorial(2*n)
74
+
75
+ >>> factorial(S(1)/2)
76
+ factorial(1/2)
77
+
78
+ See Also
79
+ ========
80
+
81
+ factorial2, RisingFactorial, FallingFactorial
82
+ """
83
+
84
+ def fdiff(self, argindex=1):
85
+ from sympy.functions.special.gamma_functions import (gamma, polygamma)
86
+ if argindex == 1:
87
+ return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1)
88
+ else:
89
+ raise ArgumentIndexError(self, argindex)
90
+
91
+ _small_swing = [
92
+ 1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395,
93
+ 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075,
94
+ 35102025, 5014575, 145422675, 9694845, 300540195, 300540195
95
+ ]
96
+
97
+ _small_factorials: list[int] = []
98
+
99
+ @classmethod
100
+ def _swing(cls, n):
101
+ if n < 33:
102
+ return cls._small_swing[n]
103
+ else:
104
+ N, primes = int(_sqrt(n)), []
105
+
106
+ for prime in sieve.primerange(3, N + 1):
107
+ p, q = 1, n
108
+
109
+ while True:
110
+ q //= prime
111
+
112
+ if q > 0:
113
+ if q & 1 == 1:
114
+ p *= prime
115
+ else:
116
+ break
117
+
118
+ if p > 1:
119
+ primes.append(p)
120
+
121
+ for prime in sieve.primerange(N + 1, n//3 + 1):
122
+ if (n // prime) & 1 == 1:
123
+ primes.append(prime)
124
+
125
+ L_product = prod(sieve.primerange(n//2 + 1, n + 1))
126
+ R_product = prod(primes)
127
+
128
+ return L_product*R_product
129
+
130
+ @classmethod
131
+ def _recursive(cls, n):
132
+ if n < 2:
133
+ return 1
134
+ else:
135
+ return (cls._recursive(n//2)**2)*cls._swing(n)
136
+
137
+ @classmethod
138
+ def eval(cls, n):
139
+ n = sympify(n)
140
+
141
+ if n.is_Number:
142
+ if n.is_zero:
143
+ return S.One
144
+ elif n is S.Infinity:
145
+ return S.Infinity
146
+ elif n.is_Integer:
147
+ if n.is_negative:
148
+ return S.ComplexInfinity
149
+ else:
150
+ n = n.p
151
+
152
+ if n < 20:
153
+ if not cls._small_factorials:
154
+ result = 1
155
+ for i in range(1, 20):
156
+ result *= i
157
+ cls._small_factorials.append(result)
158
+ result = cls._small_factorials[n-1]
159
+
160
+ # GMPY factorial is faster, use it when available
161
+ elif HAS_GMPY:
162
+ result = gmpy.fac(n)
163
+
164
+ else:
165
+ bits = bin(n).count('1')
166
+ result = cls._recursive(n)*2**(n - bits)
167
+
168
+ return Integer(result)
169
+
170
+ def _facmod(self, n, q):
171
+ res, N = 1, int(_sqrt(n))
172
+
173
+ # Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ...
174
+ # for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m,
175
+ # occur consecutively and are grouped together in pw[m] for
176
+ # simultaneous exponentiation at a later stage
177
+ pw = [1]*N
178
+
179
+ m = 2 # to initialize the if condition below
180
+ for prime in sieve.primerange(2, n + 1):
181
+ if m > 1:
182
+ m, y = 0, n // prime
183
+ while y:
184
+ m += y
185
+ y //= prime
186
+ if m < N:
187
+ pw[m] = pw[m]*prime % q
188
+ else:
189
+ res = res*pow(prime, m, q) % q
190
+
191
+ for ex, bs in enumerate(pw):
192
+ if ex == 0 or bs == 1:
193
+ continue
194
+ if bs == 0:
195
+ return 0
196
+ res = res*pow(bs, ex, q) % q
197
+
198
+ return res
199
+
200
+ def _eval_Mod(self, q):
201
+ n = self.args[0]
202
+ if n.is_integer and n.is_nonnegative and q.is_integer:
203
+ aq = abs(q)
204
+ d = aq - n
205
+ if d.is_nonpositive:
206
+ return S.Zero
207
+ else:
208
+ isprime = aq.is_prime
209
+ if d == 1:
210
+ # Apply Wilson's theorem (if a natural number n > 1
211
+ # is a prime number, then (n-1)! = -1 mod n) and
212
+ # its inverse (if n > 4 is a composite number, then
213
+ # (n-1)! = 0 mod n)
214
+ if isprime:
215
+ return -1 % q
216
+ elif isprime is False and (aq - 6).is_nonnegative:
217
+ return S.Zero
218
+ elif n.is_Integer and q.is_Integer:
219
+ n, d, aq = map(int, (n, d, aq))
220
+ if isprime and (d - 1 < n):
221
+ fc = self._facmod(d - 1, aq)
222
+ fc = pow(fc, aq - 2, aq)
223
+ if d%2:
224
+ fc = -fc
225
+ else:
226
+ fc = self._facmod(n, aq)
227
+
228
+ return fc % q
229
+
230
+ def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
231
+ from sympy.functions.special.gamma_functions import gamma
232
+ return gamma(n + 1)
233
+
234
+ def _eval_rewrite_as_Product(self, n, **kwargs):
235
+ from sympy.concrete.products import Product
236
+ if n.is_nonnegative and n.is_integer:
237
+ i = Dummy('i', integer=True)
238
+ return Product(i, (i, 1, n))
239
+
240
+ def _eval_is_integer(self):
241
+ if self.args[0].is_integer and self.args[0].is_nonnegative:
242
+ return True
243
+
244
+ def _eval_is_positive(self):
245
+ if self.args[0].is_integer and self.args[0].is_nonnegative:
246
+ return True
247
+
248
+ def _eval_is_even(self):
249
+ x = self.args[0]
250
+ if x.is_integer and x.is_nonnegative:
251
+ return (x - 2).is_nonnegative
252
+
253
+ def _eval_is_composite(self):
254
+ x = self.args[0]
255
+ if x.is_integer and x.is_nonnegative:
256
+ return (x - 3).is_nonnegative
257
+
258
+ def _eval_is_real(self):
259
+ x = self.args[0]
260
+ if x.is_nonnegative or x.is_noninteger:
261
+ return True
262
+
263
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
264
+ arg = self.args[0].as_leading_term(x)
265
+ arg0 = arg.subs(x, 0)
266
+ if arg0.is_zero:
267
+ return S.One
268
+ elif not arg0.is_infinite:
269
+ return self.func(arg)
270
+ raise PoleError("Cannot expand %s around 0" % (self))
271
+
272
+ class MultiFactorial(CombinatorialFunction):
273
+ pass
274
+
275
+
276
+ class subfactorial(CombinatorialFunction):
277
+ r"""The subfactorial counts the derangements of $n$ items and is
278
+ defined for non-negative integers as:
279
+
280
+ .. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\
281
+ (n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases}
282
+
283
+ It can also be written as ``int(round(n!/exp(1)))`` but the
284
+ recursive definition with caching is implemented for this function.
285
+
286
+ An interesting analytic expression is the following [2]_
287
+
288
+ .. math:: !x = \Gamma(x + 1, -1)/e
289
+
290
+ which is valid for non-negative integers `x`. The above formula
291
+ is not very useful in case of non-integers. `\Gamma(x + 1, -1)` is
292
+ single-valued only for integral arguments `x`, elsewhere on the positive
293
+ real axis it has an infinite number of branches none of which are real.
294
+
295
+ References
296
+ ==========
297
+
298
+ .. [1] https://en.wikipedia.org/wiki/Subfactorial
299
+ .. [2] https://mathworld.wolfram.com/Subfactorial.html
300
+
301
+ Examples
302
+ ========
303
+
304
+ >>> from sympy import subfactorial
305
+ >>> from sympy.abc import n
306
+ >>> subfactorial(n + 1)
307
+ subfactorial(n + 1)
308
+ >>> subfactorial(5)
309
+ 44
310
+
311
+ See Also
312
+ ========
313
+
314
+ factorial, uppergamma,
315
+ sympy.utilities.iterables.generate_derangements
316
+ """
317
+
318
+ @classmethod
319
+ @cacheit
320
+ def _eval(self, n):
321
+ if not n:
322
+ return S.One
323
+ elif n == 1:
324
+ return S.Zero
325
+ else:
326
+ z1, z2 = 1, 0
327
+ for i in range(2, n + 1):
328
+ z1, z2 = z2, (i - 1)*(z2 + z1)
329
+ return z2
330
+
331
+ @classmethod
332
+ def eval(cls, arg):
333
+ if arg.is_Number:
334
+ if arg.is_Integer and arg.is_nonnegative:
335
+ return cls._eval(arg)
336
+ elif arg is S.NaN:
337
+ return S.NaN
338
+ elif arg is S.Infinity:
339
+ return S.Infinity
340
+
341
+ def _eval_is_even(self):
342
+ if self.args[0].is_odd and self.args[0].is_nonnegative:
343
+ return True
344
+
345
+ def _eval_is_integer(self):
346
+ if self.args[0].is_integer and self.args[0].is_nonnegative:
347
+ return True
348
+
349
+ def _eval_rewrite_as_factorial(self, arg, **kwargs):
350
+ from sympy.concrete.summations import summation
351
+ i = Dummy('i')
352
+ f = S.NegativeOne**i / factorial(i)
353
+ return factorial(arg) * summation(f, (i, 0, arg))
354
+
355
+ def _eval_rewrite_as_gamma(self, arg, piecewise=True, **kwargs):
356
+ from sympy.functions.elementary.exponential import exp
357
+ from sympy.functions.special.gamma_functions import (gamma, lowergamma)
358
+ return (S.NegativeOne**(arg + 1)*exp(-I*pi*arg)*lowergamma(arg + 1, -1)
359
+ + gamma(arg + 1))*exp(-1)
360
+
361
+ def _eval_rewrite_as_uppergamma(self, arg, **kwargs):
362
+ from sympy.functions.special.gamma_functions import uppergamma
363
+ return uppergamma(arg + 1, -1)/S.Exp1
364
+
365
+ def _eval_is_nonnegative(self):
366
+ if self.args[0].is_integer and self.args[0].is_nonnegative:
367
+ return True
368
+
369
+ def _eval_is_odd(self):
370
+ if self.args[0].is_even and self.args[0].is_nonnegative:
371
+ return True
372
+
373
+
374
+ class factorial2(CombinatorialFunction):
375
+ r"""The double factorial `n!!`, not to be confused with `(n!)!`
376
+
377
+ The double factorial is defined for nonnegative integers and for odd
378
+ negative integers as:
379
+
380
+ .. math:: n!! = \begin{cases} 1 & n = 0 \\
381
+ n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\
382
+ n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\
383
+ (n+2)!!/(n+2) & n\ \text{negative odd} \end{cases}
384
+
385
+ References
386
+ ==========
387
+
388
+ .. [1] https://en.wikipedia.org/wiki/Double_factorial
389
+
390
+ Examples
391
+ ========
392
+
393
+ >>> from sympy import factorial2, var
394
+ >>> n = var('n')
395
+ >>> n
396
+ n
397
+ >>> factorial2(n + 1)
398
+ factorial2(n + 1)
399
+ >>> factorial2(5)
400
+ 15
401
+ >>> factorial2(-1)
402
+ 1
403
+ >>> factorial2(-5)
404
+ 1/3
405
+
406
+ See Also
407
+ ========
408
+
409
+ factorial, RisingFactorial, FallingFactorial
410
+ """
411
+
412
+ @classmethod
413
+ def eval(cls, arg):
414
+ # TODO: extend this to complex numbers?
415
+
416
+ if arg.is_Number:
417
+ if not arg.is_Integer:
418
+ raise ValueError("argument must be nonnegative integer "
419
+ "or negative odd integer")
420
+
421
+ # This implementation is faster than the recursive one
422
+ # It also avoids "maximum recursion depth exceeded" runtime error
423
+ if arg.is_nonnegative:
424
+ if arg.is_even:
425
+ k = arg / 2
426
+ return 2**k * factorial(k)
427
+ return factorial(arg) / factorial2(arg - 1)
428
+
429
+
430
+ if arg.is_odd:
431
+ return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg)
432
+ raise ValueError("argument must be nonnegative integer "
433
+ "or negative odd integer")
434
+
435
+
436
+ def _eval_is_even(self):
437
+ # Double factorial is even for every positive even input
438
+ n = self.args[0]
439
+ if n.is_integer:
440
+ if n.is_odd:
441
+ return False
442
+ if n.is_even:
443
+ if n.is_positive:
444
+ return True
445
+ if n.is_zero:
446
+ return False
447
+
448
+ def _eval_is_integer(self):
449
+ # Double factorial is an integer for every nonnegative input, and for
450
+ # -1 and -3
451
+ n = self.args[0]
452
+ if n.is_integer:
453
+ if (n + 1).is_nonnegative:
454
+ return True
455
+ if n.is_odd:
456
+ return (n + 3).is_nonnegative
457
+
458
+ def _eval_is_odd(self):
459
+ # Double factorial is odd for every odd input not smaller than -3, and
460
+ # for 0
461
+ n = self.args[0]
462
+ if n.is_odd:
463
+ return (n + 3).is_nonnegative
464
+ if n.is_even:
465
+ if n.is_positive:
466
+ return False
467
+ if n.is_zero:
468
+ return True
469
+
470
+ def _eval_is_positive(self):
471
+ # Double factorial is positive for every nonnegative input, and for
472
+ # every odd negative input which is of the form -1-4k for an
473
+ # nonnegative integer k
474
+ n = self.args[0]
475
+ if n.is_integer:
476
+ if (n + 1).is_nonnegative:
477
+ return True
478
+ if n.is_odd:
479
+ return ((n + 1) / 2).is_even
480
+
481
+ def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
482
+ from sympy.functions.elementary.miscellaneous import sqrt
483
+ from sympy.functions.elementary.piecewise import Piecewise
484
+ from sympy.functions.special.gamma_functions import gamma
485
+ return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)),
486
+ (sqrt(2/pi), Eq(Mod(n, 2), 1)))
487
+
488
+
489
+ ###############################################################################
490
+ ######################## RISING and FALLING FACTORIALS ########################
491
+ ###############################################################################
492
+
493
+
494
+ class RisingFactorial(CombinatorialFunction):
495
+ r"""
496
+ Rising factorial (also called Pochhammer symbol [1]_) is a double valued
497
+ function arising in concrete mathematics, hypergeometric functions
498
+ and series expansions. It is defined by:
499
+
500
+ .. math:: \texttt{rf(y, k)} = (x)^k = x \cdot (x+1) \cdots (x+k-1)
501
+
502
+ where `x` can be arbitrary expression and `k` is an integer. For
503
+ more information check "Concrete mathematics" by Graham, pp. 66
504
+ or visit https://mathworld.wolfram.com/RisingFactorial.html page.
505
+
506
+ When `x` is a `~.Poly` instance of degree $\ge 1$ with a single variable,
507
+ `(x)^k = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the
508
+ variable of `x`. This is as described in [2]_.
509
+
510
+ Examples
511
+ ========
512
+
513
+ >>> from sympy import rf, Poly
514
+ >>> from sympy.abc import x
515
+ >>> rf(x, 0)
516
+ 1
517
+ >>> rf(1, 5)
518
+ 120
519
+ >>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
520
+ True
521
+ >>> rf(Poly(x**3, x), 2)
522
+ Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ')
523
+
524
+ Rewriting is complicated unless the relationship between
525
+ the arguments is known, but rising factorial can
526
+ be rewritten in terms of gamma, factorial, binomial,
527
+ and falling factorial.
528
+
529
+ >>> from sympy import Symbol, factorial, ff, binomial, gamma
530
+ >>> n = Symbol('n', integer=True, positive=True)
531
+ >>> R = rf(n, n + 2)
532
+ >>> for i in (rf, ff, factorial, binomial, gamma):
533
+ ... R.rewrite(i)
534
+ ...
535
+ RisingFactorial(n, n + 2)
536
+ FallingFactorial(2*n + 1, n + 2)
537
+ factorial(2*n + 1)/factorial(n - 1)
538
+ binomial(2*n + 1, n + 2)*factorial(n + 2)
539
+ gamma(2*n + 2)/gamma(n)
540
+
541
+ See Also
542
+ ========
543
+
544
+ factorial, factorial2, FallingFactorial
545
+
546
+ References
547
+ ==========
548
+
549
+ .. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol
550
+ .. [2] Peter Paule, "Greatest Factorial Factorization and Symbolic
551
+ Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268,
552
+ 1995.
553
+
554
+ """
555
+
556
+ @classmethod
557
+ def eval(cls, x, k):
558
+ x = sympify(x)
559
+ k = sympify(k)
560
+
561
+ if x is S.NaN or k is S.NaN:
562
+ return S.NaN
563
+ elif x is S.One:
564
+ return factorial(k)
565
+ elif k.is_Integer:
566
+ if k.is_zero:
567
+ return S.One
568
+ else:
569
+ if k.is_positive:
570
+ if x is S.Infinity:
571
+ return S.Infinity
572
+ elif x is S.NegativeInfinity:
573
+ if k.is_odd:
574
+ return S.NegativeInfinity
575
+ else:
576
+ return S.Infinity
577
+ else:
578
+ if isinstance(x, Poly):
579
+ gens = x.gens
580
+ if len(gens)!= 1:
581
+ raise ValueError("rf only defined for "
582
+ "polynomials on one generator")
583
+ else:
584
+ return reduce(lambda r, i:
585
+ r*(x.shift(i)),
586
+ range(int(k)), 1)
587
+ else:
588
+ return reduce(lambda r, i: r*(x + i),
589
+ range(int(k)), 1)
590
+
591
+ else:
592
+ if x is S.Infinity:
593
+ return S.Infinity
594
+ elif x is S.NegativeInfinity:
595
+ return S.Infinity
596
+ else:
597
+ if isinstance(x, Poly):
598
+ gens = x.gens
599
+ if len(gens)!= 1:
600
+ raise ValueError("rf only defined for "
601
+ "polynomials on one generator")
602
+ else:
603
+ return 1/reduce(lambda r, i:
604
+ r*(x.shift(-i)),
605
+ range(1, abs(int(k)) + 1), 1)
606
+ else:
607
+ return 1/reduce(lambda r, i:
608
+ r*(x - i),
609
+ range(1, abs(int(k)) + 1), 1)
610
+
611
+ if k.is_integer == False:
612
+ if x.is_integer and x.is_negative:
613
+ return S.Zero
614
+
615
+ def _eval_rewrite_as_gamma(self, x, k, piecewise=True, **kwargs):
616
+ from sympy.functions.elementary.piecewise import Piecewise
617
+ from sympy.functions.special.gamma_functions import gamma
618
+ if not piecewise:
619
+ if (x <= 0) == True:
620
+ return S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1)
621
+ return gamma(x + k) / gamma(x)
622
+ return Piecewise(
623
+ (gamma(x + k) / gamma(x), x > 0),
624
+ (S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1), True))
625
+
626
+ def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs):
627
+ return FallingFactorial(x + k - 1, k)
628
+
629
+ def _eval_rewrite_as_factorial(self, x, k, **kwargs):
630
+ from sympy.functions.elementary.piecewise import Piecewise
631
+ if x.is_integer and k.is_integer:
632
+ return Piecewise(
633
+ (factorial(k + x - 1)/factorial(x - 1), x > 0),
634
+ (S.NegativeOne**k*factorial(-x)/factorial(-k - x), True))
635
+
636
+ def _eval_rewrite_as_binomial(self, x, k, **kwargs):
637
+ if k.is_integer:
638
+ return factorial(k) * binomial(x + k - 1, k)
639
+
640
+ def _eval_rewrite_as_tractable(self, x, k, limitvar=None, **kwargs):
641
+ from sympy.functions.special.gamma_functions import gamma
642
+ if limitvar:
643
+ k_lim = k.subs(limitvar, S.Infinity)
644
+ if k_lim is S.Infinity:
645
+ return (gamma(x + k).rewrite('tractable', deep=True) / gamma(x))
646
+ elif k_lim is S.NegativeInfinity:
647
+ return (S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1).rewrite('tractable', deep=True))
648
+ return self.rewrite(gamma).rewrite('tractable', deep=True)
649
+
650
+ def _eval_is_integer(self):
651
+ return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
652
+ self.args[1].is_nonnegative))
653
+
654
+
655
+ class FallingFactorial(CombinatorialFunction):
656
+ r"""
657
+ Falling factorial (related to rising factorial) is a double valued
658
+ function arising in concrete mathematics, hypergeometric functions
659
+ and series expansions. It is defined by
660
+
661
+ .. math:: \texttt{ff(x, k)} = (x)_k = x \cdot (x-1) \cdots (x-k+1)
662
+
663
+ where `x` can be arbitrary expression and `k` is an integer. For
664
+ more information check "Concrete mathematics" by Graham, pp. 66
665
+ or [1]_.
666
+
667
+ When `x` is a `~.Poly` instance of degree $\ge 1$ with single variable,
668
+ `(x)_k = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the
669
+ variable of `x`. This is as described in
670
+
671
+ >>> from sympy import ff, Poly, Symbol
672
+ >>> from sympy.abc import x
673
+ >>> n = Symbol('n', integer=True)
674
+
675
+ >>> ff(x, 0)
676
+ 1
677
+ >>> ff(5, 5)
678
+ 120
679
+ >>> ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
680
+ True
681
+ >>> ff(Poly(x**2, x), 2)
682
+ Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ')
683
+ >>> ff(n, n)
684
+ factorial(n)
685
+
686
+ Rewriting is complicated unless the relationship between
687
+ the arguments is known, but falling factorial can
688
+ be rewritten in terms of gamma, factorial and binomial
689
+ and rising factorial.
690
+
691
+ >>> from sympy import factorial, rf, gamma, binomial, Symbol
692
+ >>> n = Symbol('n', integer=True, positive=True)
693
+ >>> F = ff(n, n - 2)
694
+ >>> for i in (rf, ff, factorial, binomial, gamma):
695
+ ... F.rewrite(i)
696
+ ...
697
+ RisingFactorial(3, n - 2)
698
+ FallingFactorial(n, n - 2)
699
+ factorial(n)/2
700
+ binomial(n, n - 2)*factorial(n - 2)
701
+ gamma(n + 1)/2
702
+
703
+ See Also
704
+ ========
705
+
706
+ factorial, factorial2, RisingFactorial
707
+
708
+ References
709
+ ==========
710
+
711
+ .. [1] https://mathworld.wolfram.com/FallingFactorial.html
712
+ .. [2] Peter Paule, "Greatest Factorial Factorization and Symbolic
713
+ Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268,
714
+ 1995.
715
+
716
+ """
717
+
718
+ @classmethod
719
+ def eval(cls, x, k):
720
+ x = sympify(x)
721
+ k = sympify(k)
722
+
723
+ if x is S.NaN or k is S.NaN:
724
+ return S.NaN
725
+ elif k.is_integer and x == k:
726
+ return factorial(x)
727
+ elif k.is_Integer:
728
+ if k.is_zero:
729
+ return S.One
730
+ else:
731
+ if k.is_positive:
732
+ if x is S.Infinity:
733
+ return S.Infinity
734
+ elif x is S.NegativeInfinity:
735
+ if k.is_odd:
736
+ return S.NegativeInfinity
737
+ else:
738
+ return S.Infinity
739
+ else:
740
+ if isinstance(x, Poly):
741
+ gens = x.gens
742
+ if len(gens)!= 1:
743
+ raise ValueError("ff only defined for "
744
+ "polynomials on one generator")
745
+ else:
746
+ return reduce(lambda r, i:
747
+ r*(x.shift(-i)),
748
+ range(int(k)), 1)
749
+ else:
750
+ return reduce(lambda r, i: r*(x - i),
751
+ range(int(k)), 1)
752
+ else:
753
+ if x is S.Infinity:
754
+ return S.Infinity
755
+ elif x is S.NegativeInfinity:
756
+ return S.Infinity
757
+ else:
758
+ if isinstance(x, Poly):
759
+ gens = x.gens
760
+ if len(gens)!= 1:
761
+ raise ValueError("rf only defined for "
762
+ "polynomials on one generator")
763
+ else:
764
+ return 1/reduce(lambda r, i:
765
+ r*(x.shift(i)),
766
+ range(1, abs(int(k)) + 1), 1)
767
+ else:
768
+ return 1/reduce(lambda r, i: r*(x + i),
769
+ range(1, abs(int(k)) + 1), 1)
770
+
771
+ def _eval_rewrite_as_gamma(self, x, k, piecewise=True, **kwargs):
772
+ from sympy.functions.elementary.piecewise import Piecewise
773
+ from sympy.functions.special.gamma_functions import gamma
774
+ if not piecewise:
775
+ if (x < 0) == True:
776
+ return S.NegativeOne**k*gamma(k - x) / gamma(-x)
777
+ return gamma(x + 1) / gamma(x - k + 1)
778
+ return Piecewise(
779
+ (gamma(x + 1) / gamma(x - k + 1), x >= 0),
780
+ (S.NegativeOne**k*gamma(k - x) / gamma(-x), True))
781
+
782
+ def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs):
783
+ return rf(x - k + 1, k)
784
+
785
+ def _eval_rewrite_as_binomial(self, x, k, **kwargs):
786
+ if k.is_integer:
787
+ return factorial(k) * binomial(x, k)
788
+
789
+ def _eval_rewrite_as_factorial(self, x, k, **kwargs):
790
+ from sympy.functions.elementary.piecewise import Piecewise
791
+ if x.is_integer and k.is_integer:
792
+ return Piecewise(
793
+ (factorial(x)/factorial(-k + x), x >= 0),
794
+ (S.NegativeOne**k*factorial(k - x - 1)/factorial(-x - 1), True))
795
+
796
+ def _eval_rewrite_as_tractable(self, x, k, limitvar=None, **kwargs):
797
+ from sympy.functions.special.gamma_functions import gamma
798
+ if limitvar:
799
+ k_lim = k.subs(limitvar, S.Infinity)
800
+ if k_lim is S.Infinity:
801
+ return (S.NegativeOne**k*gamma(k - x).rewrite('tractable', deep=True) / gamma(-x))
802
+ elif k_lim is S.NegativeInfinity:
803
+ return (gamma(x + 1) / gamma(x - k + 1).rewrite('tractable', deep=True))
804
+ return self.rewrite(gamma).rewrite('tractable', deep=True)
805
+
806
+ def _eval_is_integer(self):
807
+ return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
808
+ self.args[1].is_nonnegative))
809
+
810
+
811
+ rf = RisingFactorial
812
+ ff = FallingFactorial
813
+
814
+ ###############################################################################
815
+ ########################### BINOMIAL COEFFICIENTS #############################
816
+ ###############################################################################
817
+
818
+
819
+ class binomial(CombinatorialFunction):
820
+ r"""Implementation of the binomial coefficient. It can be defined
821
+ in two ways depending on its desired interpretation:
822
+
823
+ .. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\
824
+ \binom{n}{k} = \frac{(n)_k}{k!}
825
+
826
+ First, in a strict combinatorial sense it defines the
827
+ number of ways we can choose `k` elements from a set of
828
+ `n` elements. In this case both arguments are nonnegative
829
+ integers and binomial is computed using an efficient
830
+ algorithm based on prime factorization.
831
+
832
+ The other definition is generalization for arbitrary `n`,
833
+ however `k` must also be nonnegative. This case is very
834
+ useful when evaluating summations.
835
+
836
+ For the sake of convenience, for negative integer `k` this function
837
+ will return zero no matter the other argument.
838
+
839
+ To expand the binomial when `n` is a symbol, use either
840
+ ``expand_func()`` or ``expand(func=True)``. The former will keep
841
+ the polynomial in factored form while the latter will expand the
842
+ polynomial itself. See examples for details.
843
+
844
+ Examples
845
+ ========
846
+
847
+ >>> from sympy import Symbol, Rational, binomial, expand_func
848
+ >>> n = Symbol('n', integer=True, positive=True)
849
+
850
+ >>> binomial(15, 8)
851
+ 6435
852
+
853
+ >>> binomial(n, -1)
854
+ 0
855
+
856
+ Rows of Pascal's triangle can be generated with the binomial function:
857
+
858
+ >>> for N in range(8):
859
+ ... print([binomial(N, i) for i in range(N + 1)])
860
+ ...
861
+ [1]
862
+ [1, 1]
863
+ [1, 2, 1]
864
+ [1, 3, 3, 1]
865
+ [1, 4, 6, 4, 1]
866
+ [1, 5, 10, 10, 5, 1]
867
+ [1, 6, 15, 20, 15, 6, 1]
868
+ [1, 7, 21, 35, 35, 21, 7, 1]
869
+
870
+ As can a given diagonal, e.g. the 4th diagonal:
871
+
872
+ >>> N = -4
873
+ >>> [binomial(N, i) for i in range(1 - N)]
874
+ [1, -4, 10, -20, 35]
875
+
876
+ >>> binomial(Rational(5, 4), 3)
877
+ -5/128
878
+ >>> binomial(Rational(-5, 4), 3)
879
+ -195/128
880
+
881
+ >>> binomial(n, 3)
882
+ binomial(n, 3)
883
+
884
+ >>> binomial(n, 3).expand(func=True)
885
+ n**3/6 - n**2/2 + n/3
886
+
887
+ >>> expand_func(binomial(n, 3))
888
+ n*(n - 2)*(n - 1)/6
889
+
890
+ References
891
+ ==========
892
+
893
+ .. [1] https://www.johndcook.com/blog/binomial_coefficients/
894
+
895
+ """
896
+
897
+ def fdiff(self, argindex=1):
898
+ from sympy.functions.special.gamma_functions import polygamma
899
+ if argindex == 1:
900
+ # https://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
901
+ n, k = self.args
902
+ return binomial(n, k)*(polygamma(0, n + 1) - \
903
+ polygamma(0, n - k + 1))
904
+ elif argindex == 2:
905
+ # https://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
906
+ n, k = self.args
907
+ return binomial(n, k)*(polygamma(0, n - k + 1) - \
908
+ polygamma(0, k + 1))
909
+ else:
910
+ raise ArgumentIndexError(self, argindex)
911
+
912
+ @classmethod
913
+ def _eval(self, n, k):
914
+ # n.is_Number and k.is_Integer and k != 1 and n != k
915
+
916
+ if k.is_Integer:
917
+ if n.is_Integer and n >= 0:
918
+ n, k = int(n), int(k)
919
+
920
+ if k > n:
921
+ return S.Zero
922
+ elif k > n // 2:
923
+ k = n - k
924
+
925
+ if HAS_GMPY:
926
+ return Integer(gmpy.bincoef(n, k))
927
+
928
+ d, result = n - k, 1
929
+ for i in range(1, k + 1):
930
+ d += 1
931
+ result = result * d // i
932
+ return Integer(result)
933
+ else:
934
+ d, result = n - k, 1
935
+ for i in range(1, k + 1):
936
+ d += 1
937
+ result *= d
938
+ return result / _factorial(k)
939
+
940
+ @classmethod
941
+ def eval(cls, n, k):
942
+ n, k = map(sympify, (n, k))
943
+ d = n - k
944
+ n_nonneg, n_isint = n.is_nonnegative, n.is_integer
945
+ if k.is_zero or ((n_nonneg or n_isint is False)
946
+ and d.is_zero):
947
+ return S.One
948
+ if (k - 1).is_zero or ((n_nonneg or n_isint is False)
949
+ and (d - 1).is_zero):
950
+ return n
951
+ if k.is_integer:
952
+ if k.is_negative or (n_nonneg and n_isint and d.is_negative):
953
+ return S.Zero
954
+ elif n.is_number:
955
+ res = cls._eval(n, k)
956
+ return res.expand(basic=True) if res else res
957
+ elif n_nonneg is False and n_isint:
958
+ # a special case when binomial evaluates to complex infinity
959
+ return S.ComplexInfinity
960
+ elif k.is_number:
961
+ from sympy.functions.special.gamma_functions import gamma
962
+ return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
963
+
964
+ def _eval_Mod(self, q):
965
+ n, k = self.args
966
+
967
+ if any(x.is_integer is False for x in (n, k, q)):
968
+ raise ValueError("Integers expected for binomial Mod")
969
+
970
+ if all(x.is_Integer for x in (n, k, q)):
971
+ n, k = map(int, (n, k))
972
+ aq, res = abs(q), 1
973
+
974
+ # handle negative integers k or n
975
+ if k < 0:
976
+ return S.Zero
977
+ if n < 0:
978
+ n = -n + k - 1
979
+ res = -1 if k%2 else 1
980
+
981
+ # non negative integers k and n
982
+ if k > n:
983
+ return S.Zero
984
+
985
+ isprime = aq.is_prime
986
+ aq = int(aq)
987
+ if isprime:
988
+ if aq < n:
989
+ # use Lucas Theorem
990
+ N, K = n, k
991
+ while N or K:
992
+ res = res*binomial(N % aq, K % aq) % aq
993
+ N, K = N // aq, K // aq
994
+
995
+ else:
996
+ # use Factorial Modulo
997
+ d = n - k
998
+ if k > d:
999
+ k, d = d, k
1000
+ kf = 1
1001
+ for i in range(2, k + 1):
1002
+ kf = kf*i % aq
1003
+ df = kf
1004
+ for i in range(k + 1, d + 1):
1005
+ df = df*i % aq
1006
+ res *= df
1007
+ for i in range(d + 1, n + 1):
1008
+ res = res*i % aq
1009
+
1010
+ res *= pow(kf*df % aq, aq - 2, aq)
1011
+ res %= aq
1012
+
1013
+ else:
1014
+ # Binomial Factorization is performed by calculating the
1015
+ # exponents of primes <= n in `n! /(k! (n - k)!)`,
1016
+ # for non-negative integers n and k. As the exponent of
1017
+ # prime in n! is e_p(n) = [n/p] + [n/p**2] + ...
1018
+ # the exponent of prime in binomial(n, k) would be
1019
+ # e_p(n) - e_p(k) - e_p(n - k)
1020
+ M = int(_sqrt(n))
1021
+ for prime in sieve.primerange(2, n + 1):
1022
+ if prime > n - k:
1023
+ res = res*prime % aq
1024
+ elif prime > n // 2:
1025
+ continue
1026
+ elif prime > M:
1027
+ if n % prime < k % prime:
1028
+ res = res*prime % aq
1029
+ else:
1030
+ N, K = n, k
1031
+ exp = a = 0
1032
+
1033
+ while N > 0:
1034
+ a = int((N % prime) < (K % prime + a))
1035
+ N, K = N // prime, K // prime
1036
+ exp += a
1037
+
1038
+ if exp > 0:
1039
+ res *= pow(prime, exp, aq)
1040
+ res %= aq
1041
+
1042
+ return S(res % q)
1043
+
1044
+ def _eval_expand_func(self, **hints):
1045
+ """
1046
+ Function to expand binomial(n, k) when m is positive integer
1047
+ Also,
1048
+ n is self.args[0] and k is self.args[1] while using binomial(n, k)
1049
+ """
1050
+ n = self.args[0]
1051
+ if n.is_Number:
1052
+ return binomial(*self.args)
1053
+
1054
+ k = self.args[1]
1055
+ if (n-k).is_Integer:
1056
+ k = n - k
1057
+
1058
+ if k.is_Integer:
1059
+ if k.is_zero:
1060
+ return S.One
1061
+ elif k.is_negative:
1062
+ return S.Zero
1063
+ else:
1064
+ n, result = self.args[0], 1
1065
+ for i in range(1, k + 1):
1066
+ result *= n - k + i
1067
+ return result / _factorial(k)
1068
+ else:
1069
+ return binomial(*self.args)
1070
+
1071
+ def _eval_rewrite_as_factorial(self, n, k, **kwargs):
1072
+ return factorial(n)/(factorial(k)*factorial(n - k))
1073
+
1074
+ def _eval_rewrite_as_gamma(self, n, k, piecewise=True, **kwargs):
1075
+ from sympy.functions.special.gamma_functions import gamma
1076
+ return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
1077
+
1078
+ def _eval_rewrite_as_tractable(self, n, k, limitvar=None, **kwargs):
1079
+ return self._eval_rewrite_as_gamma(n, k).rewrite('tractable')
1080
+
1081
+ def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs):
1082
+ if k.is_integer:
1083
+ return ff(n, k) / factorial(k)
1084
+
1085
+ def _eval_is_integer(self):
1086
+ n, k = self.args
1087
+ if n.is_integer and k.is_integer:
1088
+ return True
1089
+ elif k.is_integer is False:
1090
+ return False
1091
+
1092
+ def _eval_is_nonnegative(self):
1093
+ n, k = self.args
1094
+ if n.is_integer and k.is_integer:
1095
+ if n.is_nonnegative or k.is_negative or k.is_even:
1096
+ return True
1097
+ elif k.is_even is False:
1098
+ return False
1099
+
1100
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
1101
+ from sympy.functions.special.gamma_functions import gamma
1102
+ return self.rewrite(gamma)._eval_as_leading_term(x, logx=logx, cdir=cdir)
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/numbers.py ADDED
@@ -0,0 +1,2563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module implements some special functions that commonly appear in
3
+ combinatorial contexts (e.g. in power series); in particular,
4
+ sequences of rational numbers such as Bernoulli and Fibonacci numbers.
5
+
6
+ Factorials, binomial coefficients and related functions are located in
7
+ the separate 'factorials' module.
8
+ """
9
+ from math import prod
10
+ from collections import defaultdict
11
+ from typing import Tuple as tTuple
12
+
13
+ from sympy.core import S, Symbol, Add, Dummy
14
+ from sympy.core.cache import cacheit
15
+ from sympy.core.expr import Expr
16
+ from sympy.core.function import ArgumentIndexError, Function, expand_mul
17
+ from sympy.core.logic import fuzzy_not
18
+ from sympy.core.mul import Mul
19
+ from sympy.core.numbers import E, I, pi, oo, Rational, Integer
20
+ from sympy.core.relational import Eq, is_le, is_gt
21
+ from sympy.external.gmpy import SYMPY_INTS
22
+ from sympy.functions.combinatorial.factorials import (binomial,
23
+ factorial, subfactorial)
24
+ from sympy.functions.elementary.exponential import log
25
+ from sympy.functions.elementary.piecewise import Piecewise
26
+ from sympy.ntheory.primetest import isprime, is_square
27
+ from sympy.polys.appellseqs import bernoulli_poly, euler_poly, genocchi_poly
28
+ from sympy.utilities.enumerative import MultisetPartitionTraverser
29
+ from sympy.utilities.exceptions import sympy_deprecation_warning
30
+ from sympy.utilities.iterables import multiset, multiset_derangements, iterable
31
+ from sympy.utilities.memoization import recurrence_memo
32
+ from sympy.utilities.misc import as_int
33
+
34
+ from mpmath import mp, workprec
35
+ from mpmath.libmp import ifib as _ifib
36
+
37
+
38
+ def _product(a, b):
39
+ return prod(range(a, b + 1))
40
+
41
+
42
+ # Dummy symbol used for computing polynomial sequences
43
+ _sym = Symbol('x')
44
+
45
+
46
+ #----------------------------------------------------------------------------#
47
+ # #
48
+ # Carmichael numbers #
49
+ # #
50
+ #----------------------------------------------------------------------------#
51
+
52
+ def _divides(p, n):
53
+ return n % p == 0
54
+
55
+ class carmichael(Function):
56
+ r"""
57
+ Carmichael Numbers:
58
+
59
+ Certain cryptographic algorithms make use of big prime numbers.
60
+ However, checking whether a big number is prime is not so easy.
61
+ Randomized prime number checking tests exist that offer a high degree of
62
+ confidence of accurate determination at low cost, such as the Fermat test.
63
+
64
+ Let 'a' be a random number between $2$ and $n - 1$, where $n$ is the
65
+ number whose primality we are testing. Then, $n$ is probably prime if it
66
+ satisfies the modular arithmetic congruence relation:
67
+
68
+ .. math :: a^{n-1} = 1 \pmod{n}
69
+
70
+ (where mod refers to the modulo operation)
71
+
72
+ If a number passes the Fermat test several times, then it is prime with a
73
+ high probability.
74
+
75
+ Unfortunately, certain composite numbers (non-primes) still pass the Fermat
76
+ test with every number smaller than themselves.
77
+ These numbers are called Carmichael numbers.
78
+
79
+ A Carmichael number will pass a Fermat primality test to every base $b$
80
+ relatively prime to the number, even though it is not actually prime.
81
+ This makes tests based on Fermat's Little Theorem less effective than
82
+ strong probable prime tests such as the Baillie-PSW primality test and
83
+ the Miller-Rabin primality test.
84
+
85
+ Examples
86
+ ========
87
+
88
+ >>> from sympy import carmichael
89
+ >>> carmichael.find_first_n_carmichaels(5)
90
+ [561, 1105, 1729, 2465, 2821]
91
+ >>> carmichael.find_carmichael_numbers_in_range(0, 562)
92
+ [561]
93
+ >>> carmichael.find_carmichael_numbers_in_range(0,1000)
94
+ [561]
95
+ >>> carmichael.find_carmichael_numbers_in_range(0,2000)
96
+ [561, 1105, 1729]
97
+
98
+ References
99
+ ==========
100
+
101
+ .. [1] https://en.wikipedia.org/wiki/Carmichael_number
102
+ .. [2] https://en.wikipedia.org/wiki/Fermat_primality_test
103
+ .. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents
104
+ """
105
+
106
+ @staticmethod
107
+ def is_perfect_square(n):
108
+ sympy_deprecation_warning(
109
+ """
110
+ is_perfect_square is just a wrapper around sympy.ntheory.primetest.is_square
111
+ so use that directly instead.
112
+ """,
113
+ deprecated_since_version="1.11",
114
+ active_deprecations_target='deprecated-carmichael-static-methods',
115
+ )
116
+ return is_square(n)
117
+
118
+ @staticmethod
119
+ def divides(p, n):
120
+ sympy_deprecation_warning(
121
+ """
122
+ divides can be replaced by directly testing n % p == 0.
123
+ """,
124
+ deprecated_since_version="1.11",
125
+ active_deprecations_target='deprecated-carmichael-static-methods',
126
+ )
127
+ return n % p == 0
128
+
129
+ @staticmethod
130
+ def is_prime(n):
131
+ sympy_deprecation_warning(
132
+ """
133
+ is_prime is just a wrapper around sympy.ntheory.primetest.isprime so use that
134
+ directly instead.
135
+ """,
136
+ deprecated_since_version="1.11",
137
+ active_deprecations_target='deprecated-carmichael-static-methods',
138
+ )
139
+ return isprime(n)
140
+
141
+ @staticmethod
142
+ def is_carmichael(n):
143
+ if n >= 0:
144
+ if (n == 1) or isprime(n) or (n % 2 == 0):
145
+ return False
146
+
147
+ divisors = [1, n]
148
+
149
+ # get divisors
150
+ divisors.extend([i for i in range(3, n // 2 + 1, 2) if n % i == 0])
151
+
152
+ for i in divisors:
153
+ if is_square(i) and i != 1:
154
+ return False
155
+ if isprime(i):
156
+ if not _divides(i - 1, n - 1):
157
+ return False
158
+
159
+ return True
160
+
161
+ else:
162
+ raise ValueError('The provided number must be greater than or equal to 0')
163
+
164
+ @staticmethod
165
+ def find_carmichael_numbers_in_range(x, y):
166
+ if 0 <= x <= y:
167
+ if x % 2 == 0:
168
+ return [i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]
169
+ else:
170
+ return [i for i in range(x, y, 2) if carmichael.is_carmichael(i)]
171
+
172
+ else:
173
+ raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y')
174
+
175
+ @staticmethod
176
+ def find_first_n_carmichaels(n):
177
+ i = 1
178
+ carmichaels = []
179
+
180
+ while len(carmichaels) < n:
181
+ if carmichael.is_carmichael(i):
182
+ carmichaels.append(i)
183
+ i += 2
184
+
185
+ return carmichaels
186
+
187
+
188
+ #----------------------------------------------------------------------------#
189
+ # #
190
+ # Fibonacci numbers #
191
+ # #
192
+ #----------------------------------------------------------------------------#
193
+
194
+
195
+ class fibonacci(Function):
196
+ r"""
197
+ Fibonacci numbers / Fibonacci polynomials
198
+
199
+ The Fibonacci numbers are the integer sequence defined by the
200
+ initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence
201
+ relation `F_n = F_{n-1} + F_{n-2}`. This definition
202
+ extended to arbitrary real and complex arguments using
203
+ the formula
204
+
205
+ .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5}
206
+
207
+ The Fibonacci polynomials are defined by `F_1(x) = 1`,
208
+ `F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`.
209
+ For all positive integers `n`, `F_n(1) = F_n`.
210
+
211
+ * ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n`
212
+ * ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)`
213
+
214
+ Examples
215
+ ========
216
+
217
+ >>> from sympy import fibonacci, Symbol
218
+
219
+ >>> [fibonacci(x) for x in range(11)]
220
+ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
221
+ >>> fibonacci(5, Symbol('t'))
222
+ t**4 + 3*t**2 + 1
223
+
224
+ See Also
225
+ ========
226
+
227
+ bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci
228
+
229
+ References
230
+ ==========
231
+
232
+ .. [1] https://en.wikipedia.org/wiki/Fibonacci_number
233
+ .. [2] https://mathworld.wolfram.com/FibonacciNumber.html
234
+
235
+ """
236
+
237
+ @staticmethod
238
+ def _fib(n):
239
+ return _ifib(n)
240
+
241
+ @staticmethod
242
+ @recurrence_memo([None, S.One, _sym])
243
+ def _fibpoly(n, prev):
244
+ return (prev[-2] + _sym*prev[-1]).expand()
245
+
246
+ @classmethod
247
+ def eval(cls, n, sym=None):
248
+ if n is S.Infinity:
249
+ return S.Infinity
250
+
251
+ if n.is_Integer:
252
+ if sym is None:
253
+ n = int(n)
254
+ if n < 0:
255
+ return S.NegativeOne**(n + 1) * fibonacci(-n)
256
+ else:
257
+ return Integer(cls._fib(n))
258
+ else:
259
+ if n < 1:
260
+ raise ValueError("Fibonacci polynomials are defined "
261
+ "only for positive integer indices.")
262
+ return cls._fibpoly(n).subs(_sym, sym)
263
+
264
+ def _eval_rewrite_as_sqrt(self, n, **kwargs):
265
+ from sympy.functions.elementary.miscellaneous import sqrt
266
+ return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
267
+
268
+ def _eval_rewrite_as_GoldenRatio(self,n, **kwargs):
269
+ return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1)
270
+
271
+
272
+ #----------------------------------------------------------------------------#
273
+ # #
274
+ # Lucas numbers #
275
+ # #
276
+ #----------------------------------------------------------------------------#
277
+
278
+
279
+ class lucas(Function):
280
+ """
281
+ Lucas numbers
282
+
283
+ Lucas numbers satisfy a recurrence relation similar to that of
284
+ the Fibonacci sequence, in which each term is the sum of the
285
+ preceding two. They are generated by choosing the initial
286
+ values `L_0 = 2` and `L_1 = 1`.
287
+
288
+ * ``lucas(n)`` gives the `n^{th}` Lucas number
289
+
290
+ Examples
291
+ ========
292
+
293
+ >>> from sympy import lucas
294
+
295
+ >>> [lucas(x) for x in range(11)]
296
+ [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
297
+
298
+ See Also
299
+ ========
300
+
301
+ bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci
302
+
303
+ References
304
+ ==========
305
+
306
+ .. [1] https://en.wikipedia.org/wiki/Lucas_number
307
+ .. [2] https://mathworld.wolfram.com/LucasNumber.html
308
+
309
+ """
310
+
311
+ @classmethod
312
+ def eval(cls, n):
313
+ if n is S.Infinity:
314
+ return S.Infinity
315
+
316
+ if n.is_Integer:
317
+ return fibonacci(n + 1) + fibonacci(n - 1)
318
+
319
+ def _eval_rewrite_as_sqrt(self, n, **kwargs):
320
+ from sympy.functions.elementary.miscellaneous import sqrt
321
+ return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n)
322
+
323
+
324
+ #----------------------------------------------------------------------------#
325
+ # #
326
+ # Tribonacci numbers #
327
+ # #
328
+ #----------------------------------------------------------------------------#
329
+
330
+
331
+ class tribonacci(Function):
332
+ r"""
333
+ Tribonacci numbers / Tribonacci polynomials
334
+
335
+ The Tribonacci numbers are the integer sequence defined by the
336
+ initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term
337
+ recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`.
338
+
339
+ The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`,
340
+ `T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)`
341
+ for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`.
342
+
343
+ * ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n`
344
+ * ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)`
345
+
346
+ Examples
347
+ ========
348
+
349
+ >>> from sympy import tribonacci, Symbol
350
+
351
+ >>> [tribonacci(x) for x in range(11)]
352
+ [0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]
353
+ >>> tribonacci(5, Symbol('t'))
354
+ t**8 + 3*t**5 + 3*t**2
355
+
356
+ See Also
357
+ ========
358
+
359
+ bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition
360
+
361
+ References
362
+ ==========
363
+
364
+ .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
365
+ .. [2] https://mathworld.wolfram.com/TribonacciNumber.html
366
+ .. [3] https://oeis.org/A000073
367
+
368
+ """
369
+
370
+ @staticmethod
371
+ @recurrence_memo([S.Zero, S.One, S.One])
372
+ def _trib(n, prev):
373
+ return (prev[-3] + prev[-2] + prev[-1])
374
+
375
+ @staticmethod
376
+ @recurrence_memo([S.Zero, S.One, _sym**2])
377
+ def _tribpoly(n, prev):
378
+ return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand()
379
+
380
+ @classmethod
381
+ def eval(cls, n, sym=None):
382
+ if n is S.Infinity:
383
+ return S.Infinity
384
+
385
+ if n.is_Integer:
386
+ n = int(n)
387
+ if n < 0:
388
+ raise ValueError("Tribonacci polynomials are defined "
389
+ "only for non-negative integer indices.")
390
+ if sym is None:
391
+ return Integer(cls._trib(n))
392
+ else:
393
+ return cls._tribpoly(n).subs(_sym, sym)
394
+
395
+ def _eval_rewrite_as_sqrt(self, n, **kwargs):
396
+ from sympy.functions.elementary.miscellaneous import cbrt, sqrt
397
+ w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
398
+ a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
399
+ b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
400
+ c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
401
+ Tn = (a**(n + 1)/((a - b)*(a - c))
402
+ + b**(n + 1)/((b - a)*(b - c))
403
+ + c**(n + 1)/((c - a)*(c - b)))
404
+ return Tn
405
+
406
+ def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs):
407
+ from sympy.functions.elementary.integers import floor
408
+ from sympy.functions.elementary.miscellaneous import cbrt, sqrt
409
+ b = cbrt(586 + 102*sqrt(33))
410
+ Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4)
411
+ return floor(Tn + S.Half)
412
+
413
+
414
+ #----------------------------------------------------------------------------#
415
+ # #
416
+ # Bernoulli numbers #
417
+ # #
418
+ #----------------------------------------------------------------------------#
419
+
420
+
421
+ class bernoulli(Function):
422
+ r"""
423
+ Bernoulli numbers / Bernoulli polynomials / Bernoulli function
424
+
425
+ The Bernoulli numbers are a sequence of rational numbers
426
+ defined by `B_0 = 1` and the recursive relation (`n > 0`):
427
+
428
+ .. math :: n+1 = \sum_{k=0}^n \binom{n+1}{k} B_k
429
+
430
+ They are also commonly defined by their exponential generating
431
+ function, which is `\frac{x}{1 - e^{-x}}`. For odd indices > 1,
432
+ the Bernoulli numbers are zero.
433
+
434
+ The Bernoulli polynomials satisfy the analogous formula:
435
+
436
+ .. math :: B_n(x) = \sum_{k=0}^n (-1)^k \binom{n}{k} B_k x^{n-k}
437
+
438
+ Bernoulli numbers and Bernoulli polynomials are related as
439
+ `B_n(1) = B_n`.
440
+
441
+ The generalized Bernoulli function `\operatorname{B}(s, a)`
442
+ is defined for any complex `s` and `a`, except where `a` is a
443
+ nonpositive integer and `s` is not a nonnegative integer. It is
444
+ an entire function of `s` for fixed `a`, related to the Hurwitz
445
+ zeta function by
446
+
447
+ .. math:: \operatorname{B}(s, a) = \begin{cases}
448
+ -s \zeta(1-s, a) & s \ne 0 \\ 1 & s = 0 \end{cases}
449
+
450
+ When `s` is a nonnegative integer this function reduces to the
451
+ Bernoulli polynomials: `\operatorname{B}(n, x) = B_n(x)`. When
452
+ `a` is omitted it is assumed to be 1, yielding the (ordinary)
453
+ Bernoulli function which interpolates the Bernoulli numbers and is
454
+ related to the Riemann zeta function.
455
+
456
+ We compute Bernoulli numbers using Ramanujan's formula:
457
+
458
+ .. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}}
459
+
460
+ where:
461
+
462
+ .. math :: A(n) = \begin{cases} \frac{n+3}{3} &
463
+ n \equiv 0\ \text{or}\ 2 \pmod{6} \\
464
+ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases}
465
+
466
+ and:
467
+
468
+ .. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k}
469
+
470
+ This formula is similar to the sum given in the definition, but
471
+ cuts `\frac{2}{3}` of the terms. For Bernoulli polynomials, we use
472
+ Appell sequences.
473
+
474
+ For `n` a nonnegative integer and `s`, `a`, `x` arbitrary complex numbers,
475
+
476
+ * ``bernoulli(n)`` gives the nth Bernoulli number, `B_n`
477
+ * ``bernoulli(s)`` gives the Bernoulli function `\operatorname{B}(s)`
478
+ * ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)`
479
+ * ``bernoulli(s, a)`` gives the generalized Bernoulli function
480
+ `\operatorname{B}(s, a)`
481
+
482
+ .. versionchanged:: 1.12
483
+ ``bernoulli(1)`` gives `+\frac{1}{2}` instead of `-\frac{1}{2}`.
484
+ This choice of value confers several theoretical advantages [5]_,
485
+ including the extension to complex parameters described above
486
+ which this function now implements. The previous behavior, defined
487
+ only for nonnegative integers `n`, can be obtained with
488
+ ``(-1)**n*bernoulli(n)``.
489
+
490
+ Examples
491
+ ========
492
+
493
+ >>> from sympy import bernoulli
494
+ >>> from sympy.abc import x
495
+ >>> [bernoulli(n) for n in range(11)]
496
+ [1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
497
+ >>> bernoulli(1000001)
498
+ 0
499
+ >>> bernoulli(3, x)
500
+ x**3 - 3*x**2/2 + x/2
501
+
502
+ See Also
503
+ ========
504
+
505
+ andre, bell, catalan, euler, fibonacci, harmonic, lucas, genocchi,
506
+ partition, tribonacci, sympy.polys.appellseqs.bernoulli_poly
507
+
508
+ References
509
+ ==========
510
+
511
+ .. [1] https://en.wikipedia.org/wiki/Bernoulli_number
512
+ .. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial
513
+ .. [3] https://mathworld.wolfram.com/BernoulliNumber.html
514
+ .. [4] https://mathworld.wolfram.com/BernoulliPolynomial.html
515
+ .. [5] Peter Luschny, "The Bernoulli Manifesto",
516
+ https://luschny.de/math/zeta/The-Bernoulli-Manifesto.html
517
+ .. [6] Peter Luschny, "An introduction to the Bernoulli function",
518
+ https://arxiv.org/abs/2009.06743
519
+
520
+ """
521
+
522
+ args: tTuple[Integer]
523
+
524
+ # Calculates B_n for positive even n
525
+ @staticmethod
526
+ def _calc_bernoulli(n):
527
+ s = 0
528
+ a = int(binomial(n + 3, n - 6))
529
+ for j in range(1, n//6 + 1):
530
+ s += a * bernoulli(n - 6*j)
531
+ # Avoid computing each binomial coefficient from scratch
532
+ a *= _product(n - 6 - 6*j + 1, n - 6*j)
533
+ a //= _product(6*j + 4, 6*j + 9)
534
+ if n % 6 == 4:
535
+ s = -Rational(n + 3, 6) - s
536
+ else:
537
+ s = Rational(n + 3, 3) - s
538
+ return s / binomial(n + 3, n)
539
+
540
+ # We implement a specialized memoization scheme to handle each
541
+ # case modulo 6 separately
542
+ _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)}
543
+ _highest = {0: 0, 2: 2, 4: 4}
544
+
545
+ @classmethod
546
+ def eval(cls, n, x=None):
547
+ if x is S.One:
548
+ return cls(n)
549
+ elif n.is_zero:
550
+ return S.One
551
+ elif n.is_integer is False or n.is_nonnegative is False:
552
+ if x is not None and x.is_Integer and x.is_nonpositive:
553
+ return S.NaN
554
+ return
555
+ # Bernoulli numbers
556
+ elif x is None:
557
+ if n is S.One:
558
+ return S.Half
559
+ elif n.is_odd and (n-1).is_positive:
560
+ return S.Zero
561
+ elif n.is_Number:
562
+ n = int(n)
563
+ # Use mpmath for enormous Bernoulli numbers
564
+ if n > 500:
565
+ p, q = mp.bernfrac(n)
566
+ return Rational(int(p), int(q))
567
+ case = n % 6
568
+ highest_cached = cls._highest[case]
569
+ if n <= highest_cached:
570
+ return cls._cache[n]
571
+ # To avoid excessive recursion when, say, bernoulli(1000) is
572
+ # requested, calculate and cache the entire sequence ... B_988,
573
+ # B_994, B_1000 in increasing order
574
+ for i in range(highest_cached + 6, n + 6, 6):
575
+ b = cls._calc_bernoulli(i)
576
+ cls._cache[i] = b
577
+ cls._highest[case] = i
578
+ return b
579
+ # Bernoulli polynomials
580
+ elif n.is_Number:
581
+ return bernoulli_poly(n, x)
582
+
583
+ def _eval_rewrite_as_zeta(self, n, x=1, **kwargs):
584
+ from sympy.functions.special.zeta_functions import zeta
585
+ return Piecewise((1, Eq(n, 0)), (-n * zeta(1-n, x), True))
586
+
587
+ def _eval_evalf(self, prec):
588
+ if not all(x.is_number for x in self.args):
589
+ return
590
+ n = self.args[0]._to_mpmath(prec)
591
+ x = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
592
+ with workprec(prec):
593
+ if n == 0:
594
+ res = mp.mpf(1)
595
+ elif n == 1:
596
+ res = x - mp.mpf(0.5)
597
+ elif mp.isint(n) and n >= 0:
598
+ res = mp.bernoulli(n) if x == 1 else mp.bernpoly(n, x)
599
+ else:
600
+ res = -n * mp.zeta(1-n, x)
601
+ return Expr._from_mpmath(res, prec)
602
+
603
+
604
+ #----------------------------------------------------------------------------#
605
+ # #
606
+ # Bell numbers #
607
+ # #
608
+ #----------------------------------------------------------------------------#
609
+
610
+
611
+ class bell(Function):
612
+ r"""
613
+ Bell numbers / Bell polynomials
614
+
615
+ The Bell numbers satisfy `B_0 = 1` and
616
+
617
+ .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.
618
+
619
+ They are also given by:
620
+
621
+ .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}.
622
+
623
+ The Bell polynomials are given by `B_0(x) = 1` and
624
+
625
+ .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x).
626
+
627
+ The second kind of Bell polynomials (are sometimes called "partial" Bell
628
+ polynomials or incomplete Bell polynomials) are defined as
629
+
630
+ .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
631
+ \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
632
+ \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
633
+ \left(\frac{x_1}{1!} \right)^{j_1}
634
+ \left(\frac{x_2}{2!} \right)^{j_2} \dotsb
635
+ \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
636
+
637
+ * ``bell(n)`` gives the `n^{th}` Bell number, `B_n`.
638
+ * ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`.
639
+ * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
640
+ `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
641
+
642
+ Notes
643
+ =====
644
+
645
+ Not to be confused with Bernoulli numbers and Bernoulli polynomials,
646
+ which use the same notation.
647
+
648
+ Examples
649
+ ========
650
+
651
+ >>> from sympy import bell, Symbol, symbols
652
+
653
+ >>> [bell(n) for n in range(11)]
654
+ [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]
655
+ >>> bell(30)
656
+ 846749014511809332450147
657
+ >>> bell(4, Symbol('t'))
658
+ t**4 + 6*t**3 + 7*t**2 + t
659
+ >>> bell(6, 2, symbols('x:6')[1:])
660
+ 6*x1*x5 + 15*x2*x4 + 10*x3**2
661
+
662
+ See Also
663
+ ========
664
+
665
+ bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
666
+
667
+ References
668
+ ==========
669
+
670
+ .. [1] https://en.wikipedia.org/wiki/Bell_number
671
+ .. [2] https://mathworld.wolfram.com/BellNumber.html
672
+ .. [3] https://mathworld.wolfram.com/BellPolynomial.html
673
+
674
+ """
675
+
676
+ @staticmethod
677
+ @recurrence_memo([1, 1])
678
+ def _bell(n, prev):
679
+ s = 1
680
+ a = 1
681
+ for k in range(1, n):
682
+ a = a * (n - k) // k
683
+ s += a * prev[k]
684
+ return s
685
+
686
+ @staticmethod
687
+ @recurrence_memo([S.One, _sym])
688
+ def _bell_poly(n, prev):
689
+ s = 1
690
+ a = 1
691
+ for k in range(2, n + 1):
692
+ a = a * (n - k + 1) // (k - 1)
693
+ s += a * prev[k - 1]
694
+ return expand_mul(_sym * s)
695
+
696
+ @staticmethod
697
+ def _bell_incomplete_poly(n, k, symbols):
698
+ r"""
699
+ The second kind of Bell polynomials (incomplete Bell polynomials).
700
+
701
+ Calculated by recurrence formula:
702
+
703
+ .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) =
704
+ \sum_{m=1}^{n-k+1}
705
+ \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k})
706
+
707
+ where
708
+ `B_{0,0} = 1;`
709
+ `B_{n,0} = 0; for n \ge 1`
710
+ `B_{0,k} = 0; for k \ge 1`
711
+
712
+ """
713
+ if (n == 0) and (k == 0):
714
+ return S.One
715
+ elif (n == 0) or (k == 0):
716
+ return S.Zero
717
+ s = S.Zero
718
+ a = S.One
719
+ for m in range(1, n - k + 2):
720
+ s += a * bell._bell_incomplete_poly(
721
+ n - m, k - 1, symbols) * symbols[m - 1]
722
+ a = a * (n - m) / m
723
+ return expand_mul(s)
724
+
725
+ @classmethod
726
+ def eval(cls, n, k_sym=None, symbols=None):
727
+ if n is S.Infinity:
728
+ if k_sym is None:
729
+ return S.Infinity
730
+ else:
731
+ raise ValueError("Bell polynomial is not defined")
732
+
733
+ if n.is_negative or n.is_integer is False:
734
+ raise ValueError("a non-negative integer expected")
735
+
736
+ if n.is_Integer and n.is_nonnegative:
737
+ if k_sym is None:
738
+ return Integer(cls._bell(int(n)))
739
+ elif symbols is None:
740
+ return cls._bell_poly(int(n)).subs(_sym, k_sym)
741
+ else:
742
+ r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols)
743
+ return r
744
+
745
+ def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs):
746
+ from sympy.concrete.summations import Sum
747
+ if (k_sym is not None) or (symbols is not None):
748
+ return self
749
+
750
+ # Dobinski's formula
751
+ if not n.is_nonnegative:
752
+ return self
753
+ k = Dummy('k', integer=True, nonnegative=True)
754
+ return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity))
755
+
756
+
757
+ #----------------------------------------------------------------------------#
758
+ # #
759
+ # Harmonic numbers #
760
+ # #
761
+ #----------------------------------------------------------------------------#
762
+
763
+
764
+ class harmonic(Function):
765
+ r"""
766
+ Harmonic numbers
767
+
768
+ The nth harmonic number is given by `\operatorname{H}_{n} =
769
+ 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`.
770
+
771
+ More generally:
772
+
773
+ .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}
774
+
775
+ As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`,
776
+ the Riemann zeta function.
777
+
778
+ * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n`
779
+
780
+ * ``harmonic(n, m)`` gives the nth generalized harmonic number
781
+ of order `m`, `\operatorname{H}_{n,m}`, where
782
+ ``harmonic(n) == harmonic(n, 1)``
783
+
784
+ This function can be extended to complex `n` and `m` where `n` is not a
785
+ negative integer or `m` is a nonpositive integer as
786
+
787
+ .. math:: \operatorname{H}_{n,m} = \begin{cases} \zeta(m) - \zeta(m, n+1)
788
+ & m \ne 1 \\ \psi(n+1) + \gamma & m = 1 \end{cases}
789
+
790
+ Examples
791
+ ========
792
+
793
+ >>> from sympy import harmonic, oo
794
+
795
+ >>> [harmonic(n) for n in range(6)]
796
+ [0, 1, 3/2, 11/6, 25/12, 137/60]
797
+ >>> [harmonic(n, 2) for n in range(6)]
798
+ [0, 1, 5/4, 49/36, 205/144, 5269/3600]
799
+ >>> harmonic(oo, 2)
800
+ pi**2/6
801
+
802
+ >>> from sympy import Symbol, Sum
803
+ >>> n = Symbol("n")
804
+
805
+ >>> harmonic(n).rewrite(Sum)
806
+ Sum(1/_k, (_k, 1, n))
807
+
808
+ We can evaluate harmonic numbers for all integral and positive
809
+ rational arguments:
810
+
811
+ >>> from sympy import S, expand_func, simplify
812
+ >>> harmonic(8)
813
+ 761/280
814
+ >>> harmonic(11)
815
+ 83711/27720
816
+
817
+ >>> H = harmonic(1/S(3))
818
+ >>> H
819
+ harmonic(1/3)
820
+ >>> He = expand_func(H)
821
+ >>> He
822
+ -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1))
823
+ + 3*Sum(1/(3*_k + 1), (_k, 0, 0))
824
+ >>> He.doit()
825
+ -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3
826
+ >>> H = harmonic(25/S(7))
827
+ >>> He = simplify(expand_func(H).doit())
828
+ >>> He
829
+ log(sin(2*pi/7)**(2*cos(16*pi/7))/(14*sin(pi/7)**(2*cos(pi/7))*cos(pi/14)**(2*sin(pi/14)))) + pi*tan(pi/14)/2 + 30247/9900
830
+ >>> He.n(40)
831
+ 1.983697455232980674869851942390639915940
832
+ >>> harmonic(25/S(7)).n(40)
833
+ 1.983697455232980674869851942390639915940
834
+
835
+ We can rewrite harmonic numbers in terms of polygamma functions:
836
+
837
+ >>> from sympy import digamma, polygamma
838
+ >>> m = Symbol("m", integer=True, positive=True)
839
+
840
+ >>> harmonic(n).rewrite(digamma)
841
+ polygamma(0, n + 1) + EulerGamma
842
+
843
+ >>> harmonic(n).rewrite(polygamma)
844
+ polygamma(0, n + 1) + EulerGamma
845
+
846
+ >>> harmonic(n,3).rewrite(polygamma)
847
+ polygamma(2, n + 1)/2 + zeta(3)
848
+
849
+ >>> simplify(harmonic(n,m).rewrite(polygamma))
850
+ Piecewise((polygamma(0, n + 1) + EulerGamma, Eq(m, 1)),
851
+ (-(-1)**m*polygamma(m - 1, n + 1)/factorial(m - 1) + zeta(m), True))
852
+
853
+ Integer offsets in the argument can be pulled out:
854
+
855
+ >>> from sympy import expand_func
856
+
857
+ >>> expand_func(harmonic(n+4))
858
+ harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
859
+
860
+ >>> expand_func(harmonic(n-4))
861
+ harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
862
+
863
+ Some limits can be computed as well:
864
+
865
+ >>> from sympy import limit, oo
866
+
867
+ >>> limit(harmonic(n), n, oo)
868
+ oo
869
+
870
+ >>> limit(harmonic(n, 2), n, oo)
871
+ pi**2/6
872
+
873
+ >>> limit(harmonic(n, 3), n, oo)
874
+ zeta(3)
875
+
876
+ For `m > 1`, `H_{n,m}` tends to `\zeta(m)` in the limit of infinite `n`:
877
+
878
+ >>> m = Symbol("m", positive=True)
879
+ >>> limit(harmonic(n, m+1), n, oo)
880
+ zeta(m + 1)
881
+
882
+ See Also
883
+ ========
884
+
885
+ bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci
886
+
887
+ References
888
+ ==========
889
+
890
+ .. [1] https://en.wikipedia.org/wiki/Harmonic_number
891
+ .. [2] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
892
+ .. [3] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/
893
+
894
+ """
895
+
896
+ @classmethod
897
+ def eval(cls, n, m=None):
898
+ from sympy.functions.special.zeta_functions import zeta
899
+ if m is S.One:
900
+ return cls(n)
901
+ if m is None:
902
+ m = S.One
903
+ if n.is_zero:
904
+ return S.Zero
905
+ elif m.is_zero:
906
+ return n
907
+ elif n is S.Infinity:
908
+ if m.is_negative:
909
+ return S.NaN
910
+ elif is_le(m, S.One):
911
+ return S.Infinity
912
+ elif is_gt(m, S.One):
913
+ return zeta(m)
914
+ elif m.is_Integer and m.is_nonpositive:
915
+ return (bernoulli(1-m, n+1) - bernoulli(1-m)) / (1-m)
916
+ elif n.is_Integer:
917
+ if n.is_negative and (m.is_integer is False or m.is_nonpositive is False):
918
+ return S.ComplexInfinity if m is S.One else S.NaN
919
+ if n.is_nonnegative:
920
+ return Add(*(k**(-m) for k in range(1, int(n)+1)))
921
+
922
+ def _eval_rewrite_as_polygamma(self, n, m=S.One, **kwargs):
923
+ from sympy.functions.special.gamma_functions import gamma, polygamma
924
+ if m.is_integer and m.is_positive:
925
+ return Piecewise((polygamma(0, n+1) + S.EulerGamma, Eq(m, 1)),
926
+ (S.NegativeOne**m * (polygamma(m-1, 1) - polygamma(m-1, n+1)) /
927
+ gamma(m), True))
928
+
929
+ def _eval_rewrite_as_digamma(self, n, m=1, **kwargs):
930
+ from sympy.functions.special.gamma_functions import polygamma
931
+ return self.rewrite(polygamma)
932
+
933
+ def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs):
934
+ from sympy.functions.special.gamma_functions import polygamma
935
+ return self.rewrite(polygamma)
936
+
937
+ def _eval_rewrite_as_Sum(self, n, m=None, **kwargs):
938
+ from sympy.concrete.summations import Sum
939
+ k = Dummy("k", integer=True)
940
+ if m is None:
941
+ m = S.One
942
+ return Sum(k**(-m), (k, 1, n))
943
+
944
+ def _eval_rewrite_as_zeta(self, n, m=S.One, **kwargs):
945
+ from sympy.functions.special.zeta_functions import zeta
946
+ from sympy.functions.special.gamma_functions import digamma
947
+ return Piecewise((digamma(n + 1) + S.EulerGamma, Eq(m, 1)),
948
+ (zeta(m) - zeta(m, n+1), True))
949
+
950
+ def _eval_expand_func(self, **hints):
951
+ from sympy.concrete.summations import Sum
952
+ n = self.args[0]
953
+ m = self.args[1] if len(self.args) == 2 else 1
954
+
955
+ if m == S.One:
956
+ if n.is_Add:
957
+ off = n.args[0]
958
+ nnew = n - off
959
+ if off.is_Integer and off.is_positive:
960
+ result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)]
961
+ return Add(*result)
962
+ elif off.is_Integer and off.is_negative:
963
+ result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)]
964
+ return Add(*result)
965
+
966
+ if n.is_Rational:
967
+ # Expansions for harmonic numbers at general rational arguments (u + p/q)
968
+ # Split n as u + p/q with p < q
969
+ p, q = n.as_numer_denom()
970
+ u = p // q
971
+ p = p - u * q
972
+ if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
973
+ from sympy.functions.elementary.exponential import log
974
+ from sympy.functions.elementary.integers import floor
975
+ from sympy.functions.elementary.trigonometric import sin, cos, cot
976
+ k = Dummy("k")
977
+ t1 = q * Sum(1 / (q * k + p), (k, 0, u))
978
+ t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) *
979
+ log(sin((pi * k) / S(q))),
980
+ (k, 1, floor((q - 1) / S(2))))
981
+ t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
982
+ return t1 + t2 - t3
983
+
984
+ return self
985
+
986
+ def _eval_rewrite_as_tractable(self, n, m=1, limitvar=None, **kwargs):
987
+ from sympy.functions.special.zeta_functions import zeta
988
+ from sympy.functions.special.gamma_functions import polygamma
989
+ pg = self.rewrite(polygamma)
990
+ if not isinstance(pg, harmonic):
991
+ return pg.rewrite("tractable", deep=True)
992
+ arg = m - S.One
993
+ if arg.is_nonzero:
994
+ return (zeta(m) - zeta(m, n+1)).rewrite("tractable", deep=True)
995
+
996
+ def _eval_evalf(self, prec):
997
+ if not all(x.is_number for x in self.args):
998
+ return
999
+ n = self.args[0]._to_mpmath(prec)
1000
+ m = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
1001
+ if mp.isint(n) and n < 0:
1002
+ return S.NaN
1003
+ with workprec(prec):
1004
+ if m == 1:
1005
+ res = mp.harmonic(n)
1006
+ else:
1007
+ res = mp.zeta(m) - mp.zeta(m, n+1)
1008
+ return Expr._from_mpmath(res, prec)
1009
+
1010
+ def fdiff(self, argindex=1):
1011
+ from sympy.functions.special.zeta_functions import zeta
1012
+ if len(self.args) == 2:
1013
+ n, m = self.args
1014
+ else:
1015
+ n, m = self.args + (1,)
1016
+ if argindex == 1:
1017
+ return m * zeta(m+1, n+1)
1018
+ else:
1019
+ raise ArgumentIndexError
1020
+
1021
+
1022
+ #----------------------------------------------------------------------------#
1023
+ # #
1024
+ # Euler numbers #
1025
+ # #
1026
+ #----------------------------------------------------------------------------#
1027
+
1028
+
1029
+ class euler(Function):
1030
+ r"""
1031
+ Euler numbers / Euler polynomials / Euler function
1032
+
1033
+ The Euler numbers are given by:
1034
+
1035
+ .. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j}
1036
+ \frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k}
1037
+
1038
+ .. math:: E_{2n+1} = 0
1039
+
1040
+ Euler numbers and Euler polynomials are related by
1041
+
1042
+ .. math:: E_n = 2^n E_n\left(\frac{1}{2}\right).
1043
+
1044
+ We compute symbolic Euler polynomials using Appell sequences,
1045
+ but numerical evaluation of the Euler polynomial is computed
1046
+ more efficiently (and more accurately) using the mpmath library.
1047
+
1048
+ The Euler polynomials are special cases of the generalized Euler function,
1049
+ related to the Genocchi function as
1050
+
1051
+ .. math:: \operatorname{E}(s, a) = -\frac{\operatorname{G}(s+1, a)}{s+1}
1052
+
1053
+ with the limit of `\psi\left(\frac{a+1}{2}\right) - \psi\left(\frac{a}{2}\right)`
1054
+ being taken when `s = -1`. The (ordinary) Euler function interpolating
1055
+ the Euler numbers is then obtained as
1056
+ `\operatorname{E}(s) = 2^s \operatorname{E}\left(s, \frac{1}{2}\right)`.
1057
+
1058
+ * ``euler(n)`` gives the nth Euler number `E_n`.
1059
+ * ``euler(s)`` gives the Euler function `\operatorname{E}(s)`.
1060
+ * ``euler(n, x)`` gives the nth Euler polynomial `E_n(x)`.
1061
+ * ``euler(s, a)`` gives the generalized Euler function `\operatorname{E}(s, a)`.
1062
+
1063
+ Examples
1064
+ ========
1065
+
1066
+ >>> from sympy import euler, Symbol, S
1067
+ >>> [euler(n) for n in range(10)]
1068
+ [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
1069
+ >>> [2**n*euler(n,1) for n in range(10)]
1070
+ [1, 1, 0, -2, 0, 16, 0, -272, 0, 7936]
1071
+ >>> n = Symbol("n")
1072
+ >>> euler(n + 2*n)
1073
+ euler(3*n)
1074
+
1075
+ >>> x = Symbol("x")
1076
+ >>> euler(n, x)
1077
+ euler(n, x)
1078
+
1079
+ >>> euler(0, x)
1080
+ 1
1081
+ >>> euler(1, x)
1082
+ x - 1/2
1083
+ >>> euler(2, x)
1084
+ x**2 - x
1085
+ >>> euler(3, x)
1086
+ x**3 - 3*x**2/2 + 1/4
1087
+ >>> euler(4, x)
1088
+ x**4 - 2*x**3 + x
1089
+
1090
+ >>> euler(12, S.Half)
1091
+ 2702765/4096
1092
+ >>> euler(12)
1093
+ 2702765
1094
+
1095
+ See Also
1096
+ ========
1097
+
1098
+ andre, bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi,
1099
+ partition, tribonacci, sympy.polys.appellseqs.euler_poly
1100
+
1101
+ References
1102
+ ==========
1103
+
1104
+ .. [1] https://en.wikipedia.org/wiki/Euler_numbers
1105
+ .. [2] https://mathworld.wolfram.com/EulerNumber.html
1106
+ .. [3] https://en.wikipedia.org/wiki/Alternating_permutation
1107
+ .. [4] https://mathworld.wolfram.com/AlternatingPermutation.html
1108
+
1109
+ """
1110
+
1111
+ @classmethod
1112
+ def eval(cls, n, x=None):
1113
+ if n.is_zero:
1114
+ return S.One
1115
+ elif n is S.NegativeOne:
1116
+ if x is None:
1117
+ return S.Pi/2
1118
+ from sympy.functions.special.gamma_functions import digamma
1119
+ return digamma((x+1)/2) - digamma(x/2)
1120
+ elif n.is_integer is False or n.is_nonnegative is False:
1121
+ return
1122
+ # Euler numbers
1123
+ elif x is None:
1124
+ if n.is_odd and n.is_positive:
1125
+ return S.Zero
1126
+ elif n.is_Number:
1127
+ from mpmath import mp
1128
+ n = n._to_mpmath(mp.prec)
1129
+ res = mp.eulernum(n, exact=True)
1130
+ return Integer(res)
1131
+ # Euler polynomials
1132
+ elif n.is_Number:
1133
+ return euler_poly(n, x)
1134
+
1135
+ def _eval_rewrite_as_Sum(self, n, x=None, **kwargs):
1136
+ from sympy.concrete.summations import Sum
1137
+ if x is None and n.is_even:
1138
+ k = Dummy("k", integer=True)
1139
+ j = Dummy("j", integer=True)
1140
+ n = n / 2
1141
+ Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * (S.NegativeOne**j *
1142
+ (k - 2*j)**(2*n + 1)) /
1143
+ (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1)))
1144
+ return Em
1145
+ if x:
1146
+ k = Dummy("k", integer=True)
1147
+ return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n))
1148
+
1149
+ def _eval_rewrite_as_genocchi(self, n, x=None, **kwargs):
1150
+ if x is None:
1151
+ return Piecewise((S.Pi/2, Eq(n, -1)),
1152
+ (-2**n * genocchi(n+1, S.Half) / (n+1), True))
1153
+ from sympy.functions.special.gamma_functions import digamma
1154
+ return Piecewise((digamma((x+1)/2) - digamma(x/2), Eq(n, -1)),
1155
+ (-genocchi(n+1, x) / (n+1), True))
1156
+
1157
+ def _eval_evalf(self, prec):
1158
+ if not all(i.is_number for i in self.args):
1159
+ return
1160
+ from mpmath import mp
1161
+ m, x = (self.args[0], None) if len(self.args) == 1 else self.args
1162
+ m = m._to_mpmath(prec)
1163
+ if x is not None:
1164
+ x = x._to_mpmath(prec)
1165
+ with workprec(prec):
1166
+ if mp.isint(m) and m >= 0:
1167
+ res = mp.eulernum(m) if x is None else mp.eulerpoly(m, x)
1168
+ else:
1169
+ if m == -1:
1170
+ res = mp.pi if x is None else mp.digamma((x+1)/2) - mp.digamma(x/2)
1171
+ else:
1172
+ y = 0.5 if x is None else x
1173
+ res = 2 * (mp.zeta(-m, y) - 2**(m+1) * mp.zeta(-m, (y+1)/2))
1174
+ if x is None:
1175
+ res *= 2**m
1176
+ return Expr._from_mpmath(res, prec)
1177
+
1178
+
1179
+ #----------------------------------------------------------------------------#
1180
+ # #
1181
+ # Catalan numbers #
1182
+ # #
1183
+ #----------------------------------------------------------------------------#
1184
+
1185
+
1186
+ class catalan(Function):
1187
+ r"""
1188
+ Catalan numbers
1189
+
1190
+ The `n^{th}` catalan number is given by:
1191
+
1192
+ .. math :: C_n = \frac{1}{n+1} \binom{2n}{n}
1193
+
1194
+ * ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n`
1195
+
1196
+ Examples
1197
+ ========
1198
+
1199
+ >>> from sympy import (Symbol, binomial, gamma, hyper,
1200
+ ... catalan, diff, combsimp, Rational, I)
1201
+
1202
+ >>> [catalan(i) for i in range(1,10)]
1203
+ [1, 2, 5, 14, 42, 132, 429, 1430, 4862]
1204
+
1205
+ >>> n = Symbol("n", integer=True)
1206
+
1207
+ >>> catalan(n)
1208
+ catalan(n)
1209
+
1210
+ Catalan numbers can be transformed into several other, identical
1211
+ expressions involving other mathematical functions
1212
+
1213
+ >>> catalan(n).rewrite(binomial)
1214
+ binomial(2*n, n)/(n + 1)
1215
+
1216
+ >>> catalan(n).rewrite(gamma)
1217
+ 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
1218
+
1219
+ >>> catalan(n).rewrite(hyper)
1220
+ hyper((1 - n, -n), (2,), 1)
1221
+
1222
+ For some non-integer values of n we can get closed form
1223
+ expressions by rewriting in terms of gamma functions:
1224
+
1225
+ >>> catalan(Rational(1, 2)).rewrite(gamma)
1226
+ 8/(3*pi)
1227
+
1228
+ We can differentiate the Catalan numbers C(n) interpreted as a
1229
+ continuous real function in n:
1230
+
1231
+ >>> diff(catalan(n), n)
1232
+ (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
1233
+
1234
+ As a more advanced example consider the following ratio
1235
+ between consecutive numbers:
1236
+
1237
+ >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial))
1238
+ 2*(2*n + 1)/(n + 2)
1239
+
1240
+ The Catalan numbers can be generalized to complex numbers:
1241
+
1242
+ >>> catalan(I).rewrite(gamma)
1243
+ 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
1244
+
1245
+ and evaluated with arbitrary precision:
1246
+
1247
+ >>> catalan(I).evalf(20)
1248
+ 0.39764993382373624267 - 0.020884341620842555705*I
1249
+
1250
+ See Also
1251
+ ========
1252
+
1253
+ andre, bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi,
1254
+ partition, tribonacci, sympy.functions.combinatorial.factorials.binomial
1255
+
1256
+ References
1257
+ ==========
1258
+
1259
+ .. [1] https://en.wikipedia.org/wiki/Catalan_number
1260
+ .. [2] https://mathworld.wolfram.com/CatalanNumber.html
1261
+ .. [3] https://functions.wolfram.com/GammaBetaErf/CatalanNumber/
1262
+ .. [4] http://geometer.org/mathcircles/catalan.pdf
1263
+
1264
+ """
1265
+
1266
+ @classmethod
1267
+ def eval(cls, n):
1268
+ from sympy.functions.special.gamma_functions import gamma
1269
+ if (n.is_Integer and n.is_nonnegative) or \
1270
+ (n.is_noninteger and n.is_negative):
1271
+ return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
1272
+
1273
+ if (n.is_integer and n.is_negative):
1274
+ if (n + 1).is_negative:
1275
+ return S.Zero
1276
+ if (n + 1).is_zero:
1277
+ return Rational(-1, 2)
1278
+
1279
+ def fdiff(self, argindex=1):
1280
+ from sympy.functions.elementary.exponential import log
1281
+ from sympy.functions.special.gamma_functions import polygamma
1282
+ n = self.args[0]
1283
+ return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4))
1284
+
1285
+ def _eval_rewrite_as_binomial(self, n, **kwargs):
1286
+ return binomial(2*n, n)/(n + 1)
1287
+
1288
+ def _eval_rewrite_as_factorial(self, n, **kwargs):
1289
+ return factorial(2*n) / (factorial(n+1) * factorial(n))
1290
+
1291
+ def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
1292
+ from sympy.functions.special.gamma_functions import gamma
1293
+ # The gamma function allows to generalize Catalan numbers to complex n
1294
+ return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
1295
+
1296
+ def _eval_rewrite_as_hyper(self, n, **kwargs):
1297
+ from sympy.functions.special.hyper import hyper
1298
+ return hyper([1 - n, -n], [2], 1)
1299
+
1300
+ def _eval_rewrite_as_Product(self, n, **kwargs):
1301
+ from sympy.concrete.products import Product
1302
+ if not (n.is_integer and n.is_nonnegative):
1303
+ return self
1304
+ k = Dummy('k', integer=True, positive=True)
1305
+ return Product((n + k) / k, (k, 2, n))
1306
+
1307
+ def _eval_is_integer(self):
1308
+ if self.args[0].is_integer and self.args[0].is_nonnegative:
1309
+ return True
1310
+
1311
+ def _eval_is_positive(self):
1312
+ if self.args[0].is_nonnegative:
1313
+ return True
1314
+
1315
+ def _eval_is_composite(self):
1316
+ if self.args[0].is_integer and (self.args[0] - 3).is_positive:
1317
+ return True
1318
+
1319
+ def _eval_evalf(self, prec):
1320
+ from sympy.functions.special.gamma_functions import gamma
1321
+ if self.args[0].is_number:
1322
+ return self.rewrite(gamma)._eval_evalf(prec)
1323
+
1324
+
1325
+ #----------------------------------------------------------------------------#
1326
+ # #
1327
+ # Genocchi numbers #
1328
+ # #
1329
+ #----------------------------------------------------------------------------#
1330
+
1331
+
1332
+ class genocchi(Function):
1333
+ r"""
1334
+ Genocchi numbers / Genocchi polynomials / Genocchi function
1335
+
1336
+ The Genocchi numbers are a sequence of integers `G_n` that satisfy the
1337
+ relation:
1338
+
1339
+ .. math:: \frac{-2t}{1 + e^{-t}} = \sum_{n=0}^\infty \frac{G_n t^n}{n!}
1340
+
1341
+ They are related to the Bernoulli numbers by
1342
+
1343
+ .. math:: G_n = 2 (1 - 2^n) B_n
1344
+
1345
+ and generalize like the Bernoulli numbers to the Genocchi polynomials and
1346
+ function as
1347
+
1348
+ .. math:: \operatorname{G}(s, a) = 2 \left(\operatorname{B}(s, a) -
1349
+ 2^s \operatorname{B}\left(s, \frac{a+1}{2}\right)\right)
1350
+
1351
+ .. versionchanged:: 1.12
1352
+ ``genocchi(1)`` gives `-1` instead of `1`.
1353
+
1354
+ Examples
1355
+ ========
1356
+
1357
+ >>> from sympy import genocchi, Symbol
1358
+ >>> [genocchi(n) for n in range(9)]
1359
+ [0, -1, -1, 0, 1, 0, -3, 0, 17]
1360
+ >>> n = Symbol('n', integer=True, positive=True)
1361
+ >>> genocchi(2*n + 1)
1362
+ 0
1363
+ >>> x = Symbol('x')
1364
+ >>> genocchi(4, x)
1365
+ -4*x**3 + 6*x**2 - 1
1366
+
1367
+ See Also
1368
+ ========
1369
+
1370
+ bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci
1371
+ sympy.polys.appellseqs.genocchi_poly
1372
+
1373
+ References
1374
+ ==========
1375
+
1376
+ .. [1] https://en.wikipedia.org/wiki/Genocchi_number
1377
+ .. [2] https://mathworld.wolfram.com/GenocchiNumber.html
1378
+ .. [3] Peter Luschny, "An introduction to the Bernoulli function",
1379
+ https://arxiv.org/abs/2009.06743
1380
+
1381
+ """
1382
+
1383
+ @classmethod
1384
+ def eval(cls, n, x=None):
1385
+ if x is S.One:
1386
+ return cls(n)
1387
+ elif n.is_integer is False or n.is_nonnegative is False:
1388
+ return
1389
+ # Genocchi numbers
1390
+ elif x is None:
1391
+ if n.is_odd and (n-1).is_positive:
1392
+ return S.Zero
1393
+ elif n.is_Number:
1394
+ return 2 * (1-S(2)**n) * bernoulli(n)
1395
+ # Genocchi polynomials
1396
+ elif n.is_Number:
1397
+ return genocchi_poly(n, x)
1398
+
1399
+ def _eval_rewrite_as_bernoulli(self, n, x=1, **kwargs):
1400
+ if x == 1 and n.is_integer and n.is_nonnegative:
1401
+ return 2 * (1-S(2)**n) * bernoulli(n)
1402
+ return 2 * (bernoulli(n, x) - 2**n * bernoulli(n, (x+1) / 2))
1403
+
1404
+ def _eval_rewrite_as_dirichlet_eta(self, n, x=1, **kwargs):
1405
+ from sympy.functions.special.zeta_functions import dirichlet_eta
1406
+ return -2*n * dirichlet_eta(1-n, x)
1407
+
1408
+ def _eval_is_integer(self):
1409
+ if len(self.args) > 1 and self.args[1] != 1:
1410
+ return
1411
+ n = self.args[0]
1412
+ if n.is_integer and n.is_nonnegative:
1413
+ return True
1414
+
1415
+ def _eval_is_negative(self):
1416
+ if len(self.args) > 1 and self.args[1] != 1:
1417
+ return
1418
+ n = self.args[0]
1419
+ if n.is_integer and n.is_nonnegative:
1420
+ if n.is_odd:
1421
+ return fuzzy_not((n-1).is_positive)
1422
+ return (n/2).is_odd
1423
+
1424
+ def _eval_is_positive(self):
1425
+ if len(self.args) > 1 and self.args[1] != 1:
1426
+ return
1427
+ n = self.args[0]
1428
+ if n.is_integer and n.is_nonnegative:
1429
+ if n.is_zero or n.is_odd:
1430
+ return False
1431
+ return (n/2).is_even
1432
+
1433
+ def _eval_is_even(self):
1434
+ if len(self.args) > 1 and self.args[1] != 1:
1435
+ return
1436
+ n = self.args[0]
1437
+ if n.is_integer and n.is_nonnegative:
1438
+ if n.is_even:
1439
+ return n.is_zero
1440
+ return (n-1).is_positive
1441
+
1442
+ def _eval_is_odd(self):
1443
+ if len(self.args) > 1 and self.args[1] != 1:
1444
+ return
1445
+ n = self.args[0]
1446
+ if n.is_integer and n.is_nonnegative:
1447
+ if n.is_even:
1448
+ return fuzzy_not(n.is_zero)
1449
+ return fuzzy_not((n-1).is_positive)
1450
+
1451
+ def _eval_is_prime(self):
1452
+ if len(self.args) > 1 and self.args[1] != 1:
1453
+ return
1454
+ n = self.args[0]
1455
+ # only G_6 = -3 and G_8 = 17 are prime,
1456
+ # but SymPy does not consider negatives as prime
1457
+ # so only n=8 is tested
1458
+ return (n-8).is_zero
1459
+
1460
+ def _eval_evalf(self, prec):
1461
+ if all(i.is_number for i in self.args):
1462
+ return self.rewrite(bernoulli)._eval_evalf(prec)
1463
+
1464
+
1465
+ #----------------------------------------------------------------------------#
1466
+ # #
1467
+ # Andre numbers #
1468
+ # #
1469
+ #----------------------------------------------------------------------------#
1470
+
1471
+
1472
+ class andre(Function):
1473
+ r"""
1474
+ Andre numbers / Andre function
1475
+
1476
+ The Andre number `\mathcal{A}_n` is Luschny's name for half the number of
1477
+ *alternating permutations* on `n` elements, where a permutation is alternating
1478
+ if adjacent elements alternately compare "greater" and "smaller" going from
1479
+ left to right. For example, `2 < 3 > 1 < 4` is an alternating permutation.
1480
+
1481
+ This sequence is A000111 in the OEIS, which assigns the names *up/down numbers*
1482
+ and *Euler zigzag numbers*. It satisfies a recurrence relation similar to that
1483
+ for the Catalan numbers, with `\mathcal{A}_0 = 1` and
1484
+
1485
+ .. math:: 2 \mathcal{A}_{n+1} = \sum_{k=0}^n \binom{n}{k} \mathcal{A}_k \mathcal{A}_{n-k}
1486
+
1487
+ The Bernoulli and Euler numbers are signed transformations of the odd- and
1488
+ even-indexed elements of this sequence respectively:
1489
+
1490
+ .. math :: \operatorname{B}_{2k} = \frac{2k \mathcal{A}_{2k-1}}{(-4)^k - (-16)^k}
1491
+
1492
+ .. math :: \operatorname{E}_{2k} = (-1)^k \mathcal{A}_{2k}
1493
+
1494
+ Like the Bernoulli and Euler numbers, the Andre numbers are interpolated by the
1495
+ entire Andre function:
1496
+
1497
+ .. math :: \mathcal{A}(s) = (-i)^{s+1} \operatorname{Li}_{-s}(i) +
1498
+ i^{s+1} \operatorname{Li}_{-s}(-i) = \\ \frac{2 \Gamma(s+1)}{(2\pi)^{s+1}}
1499
+ (\zeta(s+1, 1/4) - \zeta(s+1, 3/4) \cos{\pi s})
1500
+
1501
+ Examples
1502
+ ========
1503
+
1504
+ >>> from sympy import andre, euler, bernoulli
1505
+ >>> [andre(n) for n in range(11)]
1506
+ [1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
1507
+ >>> [(-1)**k * andre(2*k) for k in range(7)]
1508
+ [1, -1, 5, -61, 1385, -50521, 2702765]
1509
+ >>> [euler(2*k) for k in range(7)]
1510
+ [1, -1, 5, -61, 1385, -50521, 2702765]
1511
+ >>> [andre(2*k-1) * (2*k) / ((-4)**k - (-16)**k) for k in range(1, 8)]
1512
+ [1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
1513
+ >>> [bernoulli(2*k) for k in range(1, 8)]
1514
+ [1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
1515
+
1516
+ See Also
1517
+ ========
1518
+
1519
+ bernoulli, catalan, euler, sympy.polys.appellseqs.andre_poly
1520
+
1521
+ References
1522
+ ==========
1523
+
1524
+ .. [1] https://en.wikipedia.org/wiki/Alternating_permutation
1525
+ .. [2] https://mathworld.wolfram.com/EulerZigzagNumber.html
1526
+ .. [3] Peter Luschny, "An introduction to the Bernoulli function",
1527
+ https://arxiv.org/abs/2009.06743
1528
+ """
1529
+
1530
+ @classmethod
1531
+ def eval(cls, n):
1532
+ if n is S.NaN:
1533
+ return S.NaN
1534
+ elif n is S.Infinity:
1535
+ return S.Infinity
1536
+ if n.is_zero:
1537
+ return S.One
1538
+ elif n == -1:
1539
+ return -log(2)
1540
+ elif n == -2:
1541
+ return -2*S.Catalan
1542
+ elif n.is_Integer:
1543
+ if n.is_nonnegative and n.is_even:
1544
+ return abs(euler(n))
1545
+ elif n.is_odd:
1546
+ from sympy.functions.special.zeta_functions import zeta
1547
+ m = -n-1
1548
+ return I**m * Rational(1-2**m, 4**m) * zeta(-n)
1549
+
1550
+ def _eval_rewrite_as_zeta(self, s, **kwargs):
1551
+ from sympy.functions.elementary.trigonometric import cos
1552
+ from sympy.functions.special.gamma_functions import gamma
1553
+ from sympy.functions.special.zeta_functions import zeta
1554
+ return 2 * gamma(s+1) / (2*pi)**(s+1) * \
1555
+ (zeta(s+1, S.One/4) - cos(pi*s) * zeta(s+1, S(3)/4))
1556
+
1557
+ def _eval_rewrite_as_polylog(self, s, **kwargs):
1558
+ from sympy.functions.special.zeta_functions import polylog
1559
+ return (-I)**(s+1) * polylog(-s, I) + I**(s+1) * polylog(-s, -I)
1560
+
1561
+ def _eval_is_integer(self):
1562
+ n = self.args[0]
1563
+ if n.is_integer and n.is_nonnegative:
1564
+ return True
1565
+
1566
+ def _eval_is_positive(self):
1567
+ if self.args[0].is_nonnegative:
1568
+ return True
1569
+
1570
+ def _eval_evalf(self, prec):
1571
+ if not self.args[0].is_number:
1572
+ return
1573
+ s = self.args[0]._to_mpmath(prec+12)
1574
+ with workprec(prec+12):
1575
+ sp, cp = mp.sinpi(s/2), mp.cospi(s/2)
1576
+ res = 2*mp.dirichlet(-s, (-sp, cp, sp, -cp))
1577
+ return Expr._from_mpmath(res, prec)
1578
+
1579
+
1580
+ #----------------------------------------------------------------------------#
1581
+ # #
1582
+ # Partition numbers #
1583
+ # #
1584
+ #----------------------------------------------------------------------------#
1585
+
1586
+ _npartition = [1, 1]
1587
+ class partition(Function):
1588
+ r"""
1589
+ Partition numbers
1590
+
1591
+ The Partition numbers are a sequence of integers `p_n` that represent the
1592
+ number of distinct ways of representing `n` as a sum of natural numbers
1593
+ (with order irrelevant). The generating function for `p_n` is given by:
1594
+
1595
+ .. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1}
1596
+
1597
+ Examples
1598
+ ========
1599
+
1600
+ >>> from sympy import partition, Symbol
1601
+ >>> [partition(n) for n in range(9)]
1602
+ [1, 1, 2, 3, 5, 7, 11, 15, 22]
1603
+ >>> n = Symbol('n', integer=True, negative=True)
1604
+ >>> partition(n)
1605
+ 0
1606
+
1607
+ See Also
1608
+ ========
1609
+
1610
+ bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci
1611
+
1612
+ References
1613
+ ==========
1614
+
1615
+ .. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29
1616
+ .. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem
1617
+
1618
+ """
1619
+
1620
+ @staticmethod
1621
+ def _partition(n):
1622
+ L = len(_npartition)
1623
+ if n < L:
1624
+ return _npartition[n]
1625
+ # lengthen cache
1626
+ for _n in range(L, n + 1):
1627
+ v, p, i = 0, 0, 0
1628
+ while 1:
1629
+ s = 0
1630
+ p += 3*i + 1 # p = pentagonal number: 1, 5, 12, ...
1631
+ if _n >= p:
1632
+ s += _npartition[_n - p]
1633
+ i += 1
1634
+ gp = p + i # gp = generalized pentagonal: 2, 7, 15, ...
1635
+ if _n >= gp:
1636
+ s += _npartition[_n - gp]
1637
+ if s == 0:
1638
+ break
1639
+ else:
1640
+ v += s if i%2 == 1 else -s
1641
+ _npartition.append(v)
1642
+ return v
1643
+
1644
+ @classmethod
1645
+ def eval(cls, n):
1646
+ is_int = n.is_integer
1647
+ if is_int == False:
1648
+ raise ValueError("Partition numbers are defined only for "
1649
+ "integers")
1650
+ elif is_int:
1651
+ if n.is_negative:
1652
+ return S.Zero
1653
+
1654
+ if n.is_zero or (n - 1).is_zero:
1655
+ return S.One
1656
+
1657
+ if n.is_Integer:
1658
+ return Integer(cls._partition(n))
1659
+
1660
+
1661
+ def _eval_is_integer(self):
1662
+ if self.args[0].is_integer:
1663
+ return True
1664
+
1665
+ def _eval_is_negative(self):
1666
+ if self.args[0].is_integer:
1667
+ return False
1668
+
1669
+ def _eval_is_positive(self):
1670
+ n = self.args[0]
1671
+ if n.is_nonnegative and n.is_integer:
1672
+ return True
1673
+
1674
+
1675
+ #######################################################################
1676
+ ###
1677
+ ### Functions for enumerating partitions, permutations and combinations
1678
+ ###
1679
+ #######################################################################
1680
+
1681
+
1682
+ class _MultisetHistogram(tuple):
1683
+ pass
1684
+
1685
+
1686
+ _N = -1
1687
+ _ITEMS = -2
1688
+ _M = slice(None, _ITEMS)
1689
+
1690
+
1691
+ def _multiset_histogram(n):
1692
+ """Return tuple used in permutation and combination counting. Input
1693
+ is a dictionary giving items with counts as values or a sequence of
1694
+ items (which need not be sorted).
1695
+
1696
+ The data is stored in a class deriving from tuple so it is easily
1697
+ recognized and so it can be converted easily to a list.
1698
+ """
1699
+ if isinstance(n, dict): # item: count
1700
+ if not all(isinstance(v, int) and v >= 0 for v in n.values()):
1701
+ raise ValueError
1702
+ tot = sum(n.values())
1703
+ items = sum(1 for k in n if n[k] > 0)
1704
+ return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot])
1705
+ else:
1706
+ n = list(n)
1707
+ s = set(n)
1708
+ lens = len(s)
1709
+ lenn = len(n)
1710
+ if lens == lenn:
1711
+ n = [1]*lenn + [lenn, lenn]
1712
+ return _MultisetHistogram(n)
1713
+ m = dict(zip(s, range(lens)))
1714
+ d = dict(zip(range(lens), (0,)*lens))
1715
+ for i in n:
1716
+ d[m[i]] += 1
1717
+ return _multiset_histogram(d)
1718
+
1719
+
1720
+ def nP(n, k=None, replacement=False):
1721
+ """Return the number of permutations of ``n`` items taken ``k`` at a time.
1722
+
1723
+ Possible values for ``n``:
1724
+
1725
+ integer - set of length ``n``
1726
+
1727
+ sequence - converted to a multiset internally
1728
+
1729
+ multiset - {element: multiplicity}
1730
+
1731
+ If ``k`` is None then the total of all permutations of length 0
1732
+ through the number of items represented by ``n`` will be returned.
1733
+
1734
+ If ``replacement`` is True then a given item can appear more than once
1735
+ in the ``k`` items. (For example, for 'ab' permutations of 2 would
1736
+ include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in
1737
+ ``n`` is ignored when ``replacement`` is True but the total number
1738
+ of elements is considered since no element can appear more times than
1739
+ the number of elements in ``n``.
1740
+
1741
+ Examples
1742
+ ========
1743
+
1744
+ >>> from sympy.functions.combinatorial.numbers import nP
1745
+ >>> from sympy.utilities.iterables import multiset_permutations, multiset
1746
+ >>> nP(3, 2)
1747
+ 6
1748
+ >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
1749
+ True
1750
+ >>> nP('aab', 2)
1751
+ 3
1752
+ >>> nP([1, 2, 2], 2)
1753
+ 3
1754
+ >>> [nP(3, i) for i in range(4)]
1755
+ [1, 3, 6, 6]
1756
+ >>> nP(3) == sum(_)
1757
+ True
1758
+
1759
+ When ``replacement`` is True, each item can have multiplicity
1760
+ equal to the length represented by ``n``:
1761
+
1762
+ >>> nP('aabc', replacement=True)
1763
+ 121
1764
+ >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)]
1765
+ [1, 3, 9, 27, 81]
1766
+ >>> sum(_)
1767
+ 121
1768
+
1769
+ See Also
1770
+ ========
1771
+ sympy.utilities.iterables.multiset_permutations
1772
+
1773
+ References
1774
+ ==========
1775
+
1776
+ .. [1] https://en.wikipedia.org/wiki/Permutation
1777
+
1778
+ """
1779
+ try:
1780
+ n = as_int(n)
1781
+ except ValueError:
1782
+ return Integer(_nP(_multiset_histogram(n), k, replacement))
1783
+ return Integer(_nP(n, k, replacement))
1784
+
1785
+
1786
+ @cacheit
1787
+ def _nP(n, k=None, replacement=False):
1788
+
1789
+ if k == 0:
1790
+ return 1
1791
+ if isinstance(n, SYMPY_INTS): # n different items
1792
+ # assert n >= 0
1793
+ if k is None:
1794
+ return sum(_nP(n, i, replacement) for i in range(n + 1))
1795
+ elif replacement:
1796
+ return n**k
1797
+ elif k > n:
1798
+ return 0
1799
+ elif k == n:
1800
+ return factorial(k)
1801
+ elif k == 1:
1802
+ return n
1803
+ else:
1804
+ # assert k >= 0
1805
+ return _product(n - k + 1, n)
1806
+ elif isinstance(n, _MultisetHistogram):
1807
+ if k is None:
1808
+ return sum(_nP(n, i, replacement) for i in range(n[_N] + 1))
1809
+ elif replacement:
1810
+ return n[_ITEMS]**k
1811
+ elif k == n[_N]:
1812
+ return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1])
1813
+ elif k > n[_N]:
1814
+ return 0
1815
+ elif k == 1:
1816
+ return n[_ITEMS]
1817
+ else:
1818
+ # assert k >= 0
1819
+ tot = 0
1820
+ n = list(n)
1821
+ for i in range(len(n[_M])):
1822
+ if not n[i]:
1823
+ continue
1824
+ n[_N] -= 1
1825
+ if n[i] == 1:
1826
+ n[i] = 0
1827
+ n[_ITEMS] -= 1
1828
+ tot += _nP(_MultisetHistogram(n), k - 1)
1829
+ n[_ITEMS] += 1
1830
+ n[i] = 1
1831
+ else:
1832
+ n[i] -= 1
1833
+ tot += _nP(_MultisetHistogram(n), k - 1)
1834
+ n[i] += 1
1835
+ n[_N] += 1
1836
+ return tot
1837
+
1838
+
1839
+ @cacheit
1840
+ def _AOP_product(n):
1841
+ """for n = (m1, m2, .., mk) return the coefficients of the polynomial,
1842
+ prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients
1843
+ of the product of AOPs (all-one polynomials) or order given in n. The
1844
+ resulting coefficient corresponding to x**r is the number of r-length
1845
+ combinations of sum(n) elements with multiplicities given in n.
1846
+ The coefficients are given as a default dictionary (so if a query is made
1847
+ for a key that is not present, 0 will be returned).
1848
+
1849
+ Examples
1850
+ ========
1851
+
1852
+ >>> from sympy.functions.combinatorial.numbers import _AOP_product
1853
+ >>> from sympy.abc import x
1854
+ >>> n = (2, 2, 3) # e.g. aabbccc
1855
+ >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand()
1856
+ >>> c = _AOP_product(n); dict(c)
1857
+ {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1}
1858
+ >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)]
1859
+ True
1860
+
1861
+ The generating poly used here is the same as that listed in
1862
+ https://tinyurl.com/cep849r, but in a refactored form.
1863
+
1864
+ """
1865
+
1866
+ n = list(n)
1867
+ ord = sum(n)
1868
+ need = (ord + 2)//2
1869
+ rv = [1]*(n.pop() + 1)
1870
+ rv.extend((0,) * (need - len(rv)))
1871
+ rv = rv[:need]
1872
+ while n:
1873
+ ni = n.pop()
1874
+ N = ni + 1
1875
+ was = rv[:]
1876
+ for i in range(1, min(N, len(rv))):
1877
+ rv[i] += rv[i - 1]
1878
+ for i in range(N, need):
1879
+ rv[i] += rv[i - 1] - was[i - N]
1880
+ rev = list(reversed(rv))
1881
+ if ord % 2:
1882
+ rv = rv + rev
1883
+ else:
1884
+ rv[-1:] = rev
1885
+ d = defaultdict(int)
1886
+ for i, r in enumerate(rv):
1887
+ d[i] = r
1888
+ return d
1889
+
1890
+
1891
+ def nC(n, k=None, replacement=False):
1892
+ """Return the number of combinations of ``n`` items taken ``k`` at a time.
1893
+
1894
+ Possible values for ``n``:
1895
+
1896
+ integer - set of length ``n``
1897
+
1898
+ sequence - converted to a multiset internally
1899
+
1900
+ multiset - {element: multiplicity}
1901
+
1902
+ If ``k`` is None then the total of all combinations of length 0
1903
+ through the number of items represented in ``n`` will be returned.
1904
+
1905
+ If ``replacement`` is True then a given item can appear more than once
1906
+ in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa',
1907
+ 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when
1908
+ ``replacement`` is True but the total number of elements is considered
1909
+ since no element can appear more times than the number of elements in
1910
+ ``n``.
1911
+
1912
+ Examples
1913
+ ========
1914
+
1915
+ >>> from sympy.functions.combinatorial.numbers import nC
1916
+ >>> from sympy.utilities.iterables import multiset_combinations
1917
+ >>> nC(3, 2)
1918
+ 3
1919
+ >>> nC('abc', 2)
1920
+ 3
1921
+ >>> nC('aab', 2)
1922
+ 2
1923
+
1924
+ When ``replacement`` is True, each item can have multiplicity
1925
+ equal to the length represented by ``n``:
1926
+
1927
+ >>> nC('aabc', replacement=True)
1928
+ 35
1929
+ >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
1930
+ [1, 3, 6, 10, 15]
1931
+ >>> sum(_)
1932
+ 35
1933
+
1934
+ If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k``
1935
+ then the total of all combinations of length 0 through ``k`` is the
1936
+ product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity
1937
+ of each item is 1 (i.e., k unique items) then there are 2**k
1938
+ combinations. For example, if there are 4 unique items, the total number
1939
+ of combinations is 16:
1940
+
1941
+ >>> sum(nC(4, i) for i in range(5))
1942
+ 16
1943
+
1944
+ See Also
1945
+ ========
1946
+
1947
+ sympy.utilities.iterables.multiset_combinations
1948
+
1949
+ References
1950
+ ==========
1951
+
1952
+ .. [1] https://en.wikipedia.org/wiki/Combination
1953
+ .. [2] https://tinyurl.com/cep849r
1954
+
1955
+ """
1956
+
1957
+ if isinstance(n, SYMPY_INTS):
1958
+ if k is None:
1959
+ if not replacement:
1960
+ return 2**n
1961
+ return sum(nC(n, i, replacement) for i in range(n + 1))
1962
+ if k < 0:
1963
+ raise ValueError("k cannot be negative")
1964
+ if replacement:
1965
+ return binomial(n + k - 1, k)
1966
+ return binomial(n, k)
1967
+ if isinstance(n, _MultisetHistogram):
1968
+ N = n[_N]
1969
+ if k is None:
1970
+ if not replacement:
1971
+ return prod(m + 1 for m in n[_M])
1972
+ return sum(nC(n, i, replacement) for i in range(N + 1))
1973
+ elif replacement:
1974
+ return nC(n[_ITEMS], k, replacement)
1975
+ # assert k >= 0
1976
+ elif k in (1, N - 1):
1977
+ return n[_ITEMS]
1978
+ elif k in (0, N):
1979
+ return 1
1980
+ return _AOP_product(tuple(n[_M]))[k]
1981
+ else:
1982
+ return nC(_multiset_histogram(n), k, replacement)
1983
+
1984
+
1985
+ def _eval_stirling1(n, k):
1986
+ if n == k == 0:
1987
+ return S.One
1988
+ if 0 in (n, k):
1989
+ return S.Zero
1990
+
1991
+ # some special values
1992
+ if n == k:
1993
+ return S.One
1994
+ elif k == n - 1:
1995
+ return binomial(n, 2)
1996
+ elif k == n - 2:
1997
+ return (3*n - 1)*binomial(n, 3)/4
1998
+ elif k == n - 3:
1999
+ return binomial(n, 2)*binomial(n, 4)
2000
+
2001
+ return _stirling1(n, k)
2002
+
2003
+
2004
+ @cacheit
2005
+ def _stirling1(n, k):
2006
+ row = [0, 1]+[0]*(k-1) # for n = 1
2007
+ for i in range(2, n+1):
2008
+ for j in range(min(k,i), 0, -1):
2009
+ row[j] = (i-1) * row[j] + row[j-1]
2010
+ return Integer(row[k])
2011
+
2012
+
2013
+ def _eval_stirling2(n, k):
2014
+ if n == k == 0:
2015
+ return S.One
2016
+ if 0 in (n, k):
2017
+ return S.Zero
2018
+
2019
+ # some special values
2020
+ if n == k:
2021
+ return S.One
2022
+ elif k == n - 1:
2023
+ return binomial(n, 2)
2024
+ elif k == 1:
2025
+ return S.One
2026
+ elif k == 2:
2027
+ return Integer(2**(n - 1) - 1)
2028
+
2029
+ return _stirling2(n, k)
2030
+
2031
+
2032
+ @cacheit
2033
+ def _stirling2(n, k):
2034
+ row = [0, 1]+[0]*(k-1) # for n = 1
2035
+ for i in range(2, n+1):
2036
+ for j in range(min(k,i), 0, -1):
2037
+ row[j] = j * row[j] + row[j-1]
2038
+ return Integer(row[k])
2039
+
2040
+
2041
+ def stirling(n, k, d=None, kind=2, signed=False):
2042
+ r"""Return Stirling number $S(n, k)$ of the first or second (default) kind.
2043
+
2044
+ The sum of all Stirling numbers of the second kind for $k = 1$
2045
+ through $n$ is ``bell(n)``. The recurrence relationship for these numbers
2046
+ is:
2047
+
2048
+ .. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0;
2049
+
2050
+ .. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}}
2051
+
2052
+ where $j$ is:
2053
+ $n$ for Stirling numbers of the first kind,
2054
+ $-n$ for signed Stirling numbers of the first kind,
2055
+ $k$ for Stirling numbers of the second kind.
2056
+
2057
+ The first kind of Stirling number counts the number of permutations of
2058
+ ``n`` distinct items that have ``k`` cycles; the second kind counts the
2059
+ ways in which ``n`` distinct items can be partitioned into ``k`` parts.
2060
+ If ``d`` is given, the "reduced Stirling number of the second kind" is
2061
+ returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$.
2062
+ (This counts the ways to partition $n$ consecutive integers into $k$
2063
+ groups with no pairwise difference less than $d$. See example below.)
2064
+
2065
+ To obtain the signed Stirling numbers of the first kind, use keyword
2066
+ ``signed=True``. Using this keyword automatically sets ``kind`` to 1.
2067
+
2068
+ Examples
2069
+ ========
2070
+
2071
+ >>> from sympy.functions.combinatorial.numbers import stirling, bell
2072
+ >>> from sympy.combinatorics import Permutation
2073
+ >>> from sympy.utilities.iterables import multiset_partitions, permutations
2074
+
2075
+ First kind (unsigned by default):
2076
+
2077
+ >>> [stirling(6, i, kind=1) for i in range(7)]
2078
+ [0, 120, 274, 225, 85, 15, 1]
2079
+ >>> perms = list(permutations(range(4)))
2080
+ >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
2081
+ [0, 6, 11, 6, 1]
2082
+ >>> [stirling(4, i, kind=1) for i in range(5)]
2083
+ [0, 6, 11, 6, 1]
2084
+
2085
+ First kind (signed):
2086
+
2087
+ >>> [stirling(4, i, signed=True) for i in range(5)]
2088
+ [0, -6, 11, -6, 1]
2089
+
2090
+ Second kind:
2091
+
2092
+ >>> [stirling(10, i) for i in range(12)]
2093
+ [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
2094
+ >>> sum(_) == bell(10)
2095
+ True
2096
+ >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
2097
+ True
2098
+
2099
+ Reduced second kind:
2100
+
2101
+ >>> from sympy import subsets, oo
2102
+ >>> def delta(p):
2103
+ ... if len(p) == 1:
2104
+ ... return oo
2105
+ ... return min(abs(i[0] - i[1]) for i in subsets(p, 2))
2106
+ >>> parts = multiset_partitions(range(5), 3)
2107
+ >>> d = 2
2108
+ >>> sum(1 for p in parts if all(delta(i) >= d for i in p))
2109
+ 7
2110
+ >>> stirling(5, 3, 2)
2111
+ 7
2112
+
2113
+ See Also
2114
+ ========
2115
+ sympy.utilities.iterables.multiset_partitions
2116
+
2117
+
2118
+ References
2119
+ ==========
2120
+
2121
+ .. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
2122
+ .. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
2123
+
2124
+ """
2125
+ # TODO: make this a class like bell()
2126
+
2127
+ n = as_int(n)
2128
+ k = as_int(k)
2129
+ if n < 0:
2130
+ raise ValueError('n must be nonnegative')
2131
+ if k > n:
2132
+ return S.Zero
2133
+ if d:
2134
+ # assert k >= d
2135
+ # kind is ignored -- only kind=2 is supported
2136
+ return _eval_stirling2(n - d + 1, k - d + 1)
2137
+ elif signed:
2138
+ # kind is ignored -- only kind=1 is supported
2139
+ return S.NegativeOne**(n - k)*_eval_stirling1(n, k)
2140
+
2141
+ if kind == 1:
2142
+ return _eval_stirling1(n, k)
2143
+ elif kind == 2:
2144
+ return _eval_stirling2(n, k)
2145
+ else:
2146
+ raise ValueError('kind must be 1 or 2, not %s' % k)
2147
+
2148
+
2149
+ @cacheit
2150
+ def _nT(n, k):
2151
+ """Return the partitions of ``n`` items into ``k`` parts. This
2152
+ is used by ``nT`` for the case when ``n`` is an integer."""
2153
+ # really quick exits
2154
+ if k > n or k < 0:
2155
+ return 0
2156
+ if k in (1, n):
2157
+ return 1
2158
+ if k == 0:
2159
+ return 0
2160
+ # exits that could be done below but this is quicker
2161
+ if k == 2:
2162
+ return n//2
2163
+ d = n - k
2164
+ if d <= 3:
2165
+ return d
2166
+ # quick exit
2167
+ if 3*k >= n: # or, equivalently, 2*k >= d
2168
+ # all the information needed in this case
2169
+ # will be in the cache needed to calculate
2170
+ # partition(d), so...
2171
+ # update cache
2172
+ tot = partition._partition(d)
2173
+ # and correct for values not needed
2174
+ if d - k > 0:
2175
+ tot -= sum(_npartition[:d - k])
2176
+ return tot
2177
+ # regular exit
2178
+ # nT(n, k) = Sum(nT(n - k, m), (m, 1, k));
2179
+ # calculate needed nT(i, j) values
2180
+ p = [1]*d
2181
+ for i in range(2, k + 1):
2182
+ for m in range(i + 1, d):
2183
+ p[m] += p[m - i]
2184
+ d -= 1
2185
+ # if p[0] were appended to the end of p then the last
2186
+ # k values of p are the nT(n, j) values for 0 < j < k in reverse
2187
+ # order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of
2188
+ # putting the 1 from p[0] there, however, it is simply added to
2189
+ # the sum below which is valid for 1 < k <= n//2
2190
+ return (1 + sum(p[1 - k:]))
2191
+
2192
+
2193
+ def nT(n, k=None):
2194
+ """Return the number of ``k``-sized partitions of ``n`` items.
2195
+
2196
+ Possible values for ``n``:
2197
+
2198
+ integer - ``n`` identical items
2199
+
2200
+ sequence - converted to a multiset internally
2201
+
2202
+ multiset - {element: multiplicity}
2203
+
2204
+ Note: the convention for ``nT`` is different than that of ``nC`` and
2205
+ ``nP`` in that
2206
+ here an integer indicates ``n`` *identical* items instead of a set of
2207
+ length ``n``; this is in keeping with the ``partitions`` function which
2208
+ treats its integer-``n`` input like a list of ``n`` 1s. One can use
2209
+ ``range(n)`` for ``n`` to indicate ``n`` distinct items.
2210
+
2211
+ If ``k`` is None then the total number of ways to partition the elements
2212
+ represented in ``n`` will be returned.
2213
+
2214
+ Examples
2215
+ ========
2216
+
2217
+ >>> from sympy.functions.combinatorial.numbers import nT
2218
+
2219
+ Partitions of the given multiset:
2220
+
2221
+ >>> [nT('aabbc', i) for i in range(1, 7)]
2222
+ [1, 8, 11, 5, 1, 0]
2223
+ >>> nT('aabbc') == sum(_)
2224
+ True
2225
+
2226
+ >>> [nT("mississippi", i) for i in range(1, 12)]
2227
+ [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]
2228
+
2229
+ Partitions when all items are identical:
2230
+
2231
+ >>> [nT(5, i) for i in range(1, 6)]
2232
+ [1, 2, 2, 1, 1]
2233
+ >>> nT('1'*5) == sum(_)
2234
+ True
2235
+
2236
+ When all items are different:
2237
+
2238
+ >>> [nT(range(5), i) for i in range(1, 6)]
2239
+ [1, 15, 25, 10, 1]
2240
+ >>> nT(range(5)) == sum(_)
2241
+ True
2242
+
2243
+ Partitions of an integer expressed as a sum of positive integers:
2244
+
2245
+ >>> from sympy import partition
2246
+ >>> partition(4)
2247
+ 5
2248
+ >>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4)
2249
+ 5
2250
+ >>> nT('1'*4)
2251
+ 5
2252
+
2253
+ See Also
2254
+ ========
2255
+ sympy.utilities.iterables.partitions
2256
+ sympy.utilities.iterables.multiset_partitions
2257
+ sympy.functions.combinatorial.numbers.partition
2258
+
2259
+ References
2260
+ ==========
2261
+
2262
+ .. [1] https://web.archive.org/web/20210507012732/https://teaching.csse.uwa.edu.au/units/CITS7209/partition.pdf
2263
+
2264
+ """
2265
+
2266
+ if isinstance(n, SYMPY_INTS):
2267
+ # n identical items
2268
+ if k is None:
2269
+ return partition(n)
2270
+ if isinstance(k, SYMPY_INTS):
2271
+ n = as_int(n)
2272
+ k = as_int(k)
2273
+ return Integer(_nT(n, k))
2274
+ if not isinstance(n, _MultisetHistogram):
2275
+ try:
2276
+ # if n contains hashable items there is some
2277
+ # quick handling that can be done
2278
+ u = len(set(n))
2279
+ if u <= 1:
2280
+ return nT(len(n), k)
2281
+ elif u == len(n):
2282
+ n = range(u)
2283
+ raise TypeError
2284
+ except TypeError:
2285
+ n = _multiset_histogram(n)
2286
+ N = n[_N]
2287
+ if k is None and N == 1:
2288
+ return 1
2289
+ if k in (1, N):
2290
+ return 1
2291
+ if k == 2 or N == 2 and k is None:
2292
+ m, r = divmod(N, 2)
2293
+ rv = sum(nC(n, i) for i in range(1, m + 1))
2294
+ if not r:
2295
+ rv -= nC(n, m)//2
2296
+ if k is None:
2297
+ rv += 1 # for k == 1
2298
+ return rv
2299
+ if N == n[_ITEMS]:
2300
+ # all distinct
2301
+ if k is None:
2302
+ return bell(N)
2303
+ return stirling(N, k)
2304
+ m = MultisetPartitionTraverser()
2305
+ if k is None:
2306
+ return m.count_partitions(n[_M])
2307
+ # MultisetPartitionTraverser does not have a range-limited count
2308
+ # method, so need to enumerate and count
2309
+ tot = 0
2310
+ for discard in m.enum_range(n[_M], k-1, k):
2311
+ tot += 1
2312
+ return tot
2313
+
2314
+
2315
+ #-----------------------------------------------------------------------------#
2316
+ # #
2317
+ # Motzkin numbers #
2318
+ # #
2319
+ #-----------------------------------------------------------------------------#
2320
+
2321
+
2322
+ class motzkin(Function):
2323
+ """
2324
+ The nth Motzkin number is the number
2325
+ of ways of drawing non-intersecting chords
2326
+ between n points on a circle (not necessarily touching
2327
+ every point by a chord). The Motzkin numbers are named
2328
+ after Theodore Motzkin and have diverse applications
2329
+ in geometry, combinatorics and number theory.
2330
+
2331
+ Motzkin numbers are the integer sequence defined by the
2332
+ initial terms `M_0 = 1`, `M_1 = 1` and the two-term recurrence relation
2333
+ `M_n = \frac{2*n + 1}{n + 2} * M_{n-1} + \frac{3n - 3}{n + 2} * M_{n-2}`.
2334
+
2335
+
2336
+ Examples
2337
+ ========
2338
+
2339
+ >>> from sympy import motzkin
2340
+
2341
+ >>> motzkin.is_motzkin(5)
2342
+ False
2343
+ >>> motzkin.find_motzkin_numbers_in_range(2,300)
2344
+ [2, 4, 9, 21, 51, 127]
2345
+ >>> motzkin.find_motzkin_numbers_in_range(2,900)
2346
+ [2, 4, 9, 21, 51, 127, 323, 835]
2347
+ >>> motzkin.find_first_n_motzkins(10)
2348
+ [1, 1, 2, 4, 9, 21, 51, 127, 323, 835]
2349
+
2350
+
2351
+ References
2352
+ ==========
2353
+
2354
+ .. [1] https://en.wikipedia.org/wiki/Motzkin_number
2355
+ .. [2] https://mathworld.wolfram.com/MotzkinNumber.html
2356
+
2357
+ """
2358
+
2359
+ @staticmethod
2360
+ def is_motzkin(n):
2361
+ try:
2362
+ n = as_int(n)
2363
+ except ValueError:
2364
+ return False
2365
+ if n > 0:
2366
+ if n in (1, 2):
2367
+ return True
2368
+
2369
+ tn1 = 1
2370
+ tn = 2
2371
+ i = 3
2372
+ while tn < n:
2373
+ a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
2374
+ i += 1
2375
+ tn1 = tn
2376
+ tn = a
2377
+
2378
+ if tn == n:
2379
+ return True
2380
+ else:
2381
+ return False
2382
+
2383
+ else:
2384
+ return False
2385
+
2386
+ @staticmethod
2387
+ def find_motzkin_numbers_in_range(x, y):
2388
+ if 0 <= x <= y:
2389
+ motzkins = []
2390
+ if x <= 1 <= y:
2391
+ motzkins.append(1)
2392
+ tn1 = 1
2393
+ tn = 2
2394
+ i = 3
2395
+ while tn <= y:
2396
+ if tn >= x:
2397
+ motzkins.append(tn)
2398
+ a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
2399
+ i += 1
2400
+ tn1 = tn
2401
+ tn = int(a)
2402
+
2403
+ return motzkins
2404
+
2405
+ else:
2406
+ raise ValueError('The provided range is not valid. This condition should satisfy x <= y')
2407
+
2408
+ @staticmethod
2409
+ def find_first_n_motzkins(n):
2410
+ try:
2411
+ n = as_int(n)
2412
+ except ValueError:
2413
+ raise ValueError('The provided number must be a positive integer')
2414
+ if n < 0:
2415
+ raise ValueError('The provided number must be a positive integer')
2416
+ motzkins = [1]
2417
+ if n >= 1:
2418
+ motzkins.append(1)
2419
+ tn1 = 1
2420
+ tn = 2
2421
+ i = 3
2422
+ while i <= n:
2423
+ motzkins.append(tn)
2424
+ a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
2425
+ i += 1
2426
+ tn1 = tn
2427
+ tn = int(a)
2428
+
2429
+ return motzkins
2430
+
2431
+ @staticmethod
2432
+ @recurrence_memo([S.One, S.One])
2433
+ def _motzkin(n, prev):
2434
+ return ((2*n + 1)*prev[-1] + (3*n - 3)*prev[-2]) // (n + 2)
2435
+
2436
+ @classmethod
2437
+ def eval(cls, n):
2438
+ try:
2439
+ n = as_int(n)
2440
+ except ValueError:
2441
+ raise ValueError('The provided number must be a positive integer')
2442
+ if n < 0:
2443
+ raise ValueError('The provided number must be a positive integer')
2444
+ return Integer(cls._motzkin(n - 1))
2445
+
2446
+
2447
+ def nD(i=None, brute=None, *, n=None, m=None):
2448
+ """return the number of derangements for: ``n`` unique items, ``i``
2449
+ items (as a sequence or multiset), or multiplicities, ``m`` given
2450
+ as a sequence or multiset.
2451
+
2452
+ Examples
2453
+ ========
2454
+
2455
+ >>> from sympy.utilities.iterables import generate_derangements as enum
2456
+ >>> from sympy.functions.combinatorial.numbers import nD
2457
+
2458
+ A derangement ``d`` of sequence ``s`` has all ``d[i] != s[i]``:
2459
+
2460
+ >>> set([''.join(i) for i in enum('abc')])
2461
+ {'bca', 'cab'}
2462
+ >>> nD('abc')
2463
+ 2
2464
+
2465
+ Input as iterable or dictionary (multiset form) is accepted:
2466
+
2467
+ >>> assert nD([1, 2, 2, 3, 3, 3]) == nD({1: 1, 2: 2, 3: 3})
2468
+
2469
+ By default, a brute-force enumeration and count of multiset permutations
2470
+ is only done if there are fewer than 9 elements. There may be cases when
2471
+ there is high multiplicity with few unique elements that will benefit
2472
+ from a brute-force enumeration, too. For this reason, the `brute`
2473
+ keyword (default None) is provided. When False, the brute-force
2474
+ enumeration will never be used. When True, it will always be used.
2475
+
2476
+ >>> nD('1111222233', brute=True)
2477
+ 44
2478
+
2479
+ For convenience, one may specify ``n`` distinct items using the
2480
+ ``n`` keyword:
2481
+
2482
+ >>> assert nD(n=3) == nD('abc') == 2
2483
+
2484
+ Since the number of derangments depends on the multiplicity of the
2485
+ elements and not the elements themselves, it may be more convenient
2486
+ to give a list or multiset of multiplicities using keyword ``m``:
2487
+
2488
+ >>> assert nD('abc') == nD(m=(1,1,1)) == nD(m={1:3}) == 2
2489
+
2490
+ """
2491
+ from sympy.integrals.integrals import integrate
2492
+ from sympy.functions.special.polynomials import laguerre
2493
+ from sympy.abc import x
2494
+ def ok(x):
2495
+ if not isinstance(x, SYMPY_INTS):
2496
+ raise TypeError('expecting integer values')
2497
+ if x < 0:
2498
+ raise ValueError('value must not be negative')
2499
+ return True
2500
+
2501
+ if (i, n, m).count(None) != 2:
2502
+ raise ValueError('enter only 1 of i, n, or m')
2503
+ if i is not None:
2504
+ if isinstance(i, SYMPY_INTS):
2505
+ raise TypeError('items must be a list or dictionary')
2506
+ if not i:
2507
+ return S.Zero
2508
+ if type(i) is not dict:
2509
+ s = list(i)
2510
+ ms = multiset(s)
2511
+ elif type(i) is dict:
2512
+ all(ok(_) for _ in i.values())
2513
+ ms = {k: v for k, v in i.items() if v}
2514
+ s = None
2515
+ if not ms:
2516
+ return S.Zero
2517
+ N = sum(ms.values())
2518
+ counts = multiset(ms.values())
2519
+ nkey = len(ms)
2520
+ elif n is not None:
2521
+ ok(n)
2522
+ if not n:
2523
+ return S.Zero
2524
+ return subfactorial(n)
2525
+ elif m is not None:
2526
+ if isinstance(m, dict):
2527
+ all(ok(i) and ok(j) for i, j in m.items())
2528
+ counts = {k: v for k, v in m.items() if k*v}
2529
+ elif iterable(m) or isinstance(m, str):
2530
+ m = list(m)
2531
+ all(ok(i) for i in m)
2532
+ counts = multiset([i for i in m if i])
2533
+ else:
2534
+ raise TypeError('expecting iterable')
2535
+ if not counts:
2536
+ return S.Zero
2537
+ N = sum(k*v for k, v in counts.items())
2538
+ nkey = sum(counts.values())
2539
+ s = None
2540
+ big = int(max(counts))
2541
+ if big == 1: # no repetition
2542
+ return subfactorial(nkey)
2543
+ nval = len(counts)
2544
+ if big*2 > N:
2545
+ return S.Zero
2546
+ if big*2 == N:
2547
+ if nkey == 2 and nval == 1:
2548
+ return S.One # aaabbb
2549
+ if nkey - 1 == big: # one element repeated
2550
+ return factorial(big) # e.g. abc part of abcddd
2551
+ if N < 9 and brute is None or brute:
2552
+ # for all possibilities, this was found to be faster
2553
+ if s is None:
2554
+ s = []
2555
+ i = 0
2556
+ for m, v in counts.items():
2557
+ for j in range(v):
2558
+ s.extend([i]*m)
2559
+ i += 1
2560
+ return Integer(sum(1 for i in multiset_derangements(s)))
2561
+ from sympy.functions.elementary.exponential import exp
2562
+ return Integer(abs(integrate(exp(-x)*Mul(*[
2563
+ laguerre(i, x)**m for i, m in counts.items()]), (x, 0, oo))))
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/test_comb_factorials.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/__pycache__/test_comb_numbers.cpython-310.pyc ADDED
Binary file (35.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/test_comb_factorials.py ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.products import Product
2
+ from sympy.core.function import expand_func
3
+ from sympy.core.mod import Mod
4
+ from sympy.core.mul import Mul
5
+ from sympy.core import EulerGamma
6
+ from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
7
+ from sympy.core.relational import Eq
8
+ from sympy.core.singleton import S
9
+ from sympy.core.symbol import (Dummy, Symbol, symbols)
10
+ from sympy.functions.combinatorial.factorials import (ff, rf, binomial, factorial, factorial2)
11
+ from sympy.functions.elementary.miscellaneous import sqrt
12
+ from sympy.functions.elementary.piecewise import Piecewise
13
+ from sympy.functions.special.gamma_functions import (gamma, polygamma)
14
+ from sympy.polys.polytools import Poly
15
+ from sympy.series.order import O
16
+ from sympy.simplify.simplify import simplify
17
+ from sympy.core.expr import unchanged
18
+ from sympy.core.function import ArgumentIndexError
19
+ from sympy.functions.combinatorial.factorials import subfactorial
20
+ from sympy.functions.special.gamma_functions import uppergamma
21
+ from sympy.testing.pytest import XFAIL, raises, slow
22
+
23
+ #Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
24
+
25
+ def test_rf_eval_apply():
26
+ x, y = symbols('x,y')
27
+ n, k = symbols('n k', integer=True)
28
+ m = Symbol('m', integer=True, nonnegative=True)
29
+
30
+ assert rf(nan, y) is nan
31
+ assert rf(x, nan) is nan
32
+
33
+ assert unchanged(rf, x, y)
34
+
35
+ assert rf(oo, 0) == 1
36
+ assert rf(-oo, 0) == 1
37
+
38
+ assert rf(oo, 6) is oo
39
+ assert rf(-oo, 7) is -oo
40
+ assert rf(-oo, 6) is oo
41
+
42
+ assert rf(oo, -6) is oo
43
+ assert rf(-oo, -7) is oo
44
+
45
+ assert rf(-1, pi) == 0
46
+ assert rf(-5, 1 + I) == 0
47
+
48
+ assert unchanged(rf, -3, k)
49
+ assert unchanged(rf, x, Symbol('k', integer=False))
50
+ assert rf(-3, Symbol('k', integer=False)) == 0
51
+ assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0
52
+
53
+ assert rf(x, 0) == 1
54
+ assert rf(x, 1) == x
55
+ assert rf(x, 2) == x*(x + 1)
56
+ assert rf(x, 3) == x*(x + 1)*(x + 2)
57
+ assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)
58
+
59
+ assert rf(x, -1) == 1/(x - 1)
60
+ assert rf(x, -2) == 1/((x - 1)*(x - 2))
61
+ assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))
62
+
63
+ assert rf(1, 100) == factorial(100)
64
+
65
+ assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
66
+ assert isinstance(rf(x**2 + 3*x, 2), Mul)
67
+ assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))
68
+
69
+ assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
70
+ assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
71
+ raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
72
+ assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
73
+ raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))
74
+
75
+ assert rf(x, m).is_integer is None
76
+ assert rf(n, k).is_integer is None
77
+ assert rf(n, m).is_integer is True
78
+ assert rf(n, k + pi).is_integer is False
79
+ assert rf(n, m + pi).is_integer is False
80
+ assert rf(pi, m).is_integer is False
81
+
82
+ def check(x, k, o, n):
83
+ a, b = Dummy(), Dummy()
84
+ r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k})
85
+ for i in range(-5,5):
86
+ for j in range(-5,5):
87
+ assert o(i, j) == r(i, j), (o, n, i, j)
88
+ check(x, k, rf, ff)
89
+ check(x, k, rf, binomial)
90
+ check(n, k, rf, factorial)
91
+ check(x, y, rf, factorial)
92
+ check(x, y, rf, binomial)
93
+
94
+ assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
95
+ assert rf(x, k).rewrite(gamma) == Piecewise(
96
+ (gamma(k + x)/gamma(x), x > 0),
97
+ ((-1)**k*gamma(1 - x)/gamma(-k - x + 1), True))
98
+ assert rf(5, k).rewrite(gamma) == gamma(k + 5)/24
99
+ assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
100
+ assert rf(n, k).rewrite(factorial) == Piecewise(
101
+ (factorial(k + n - 1)/factorial(n - 1), n > 0),
102
+ ((-1)**k*factorial(-n)/factorial(-k - n), True))
103
+ assert rf(5, k).rewrite(factorial) == factorial(k + 4)/24
104
+ assert rf(x, y).rewrite(factorial) == rf(x, y)
105
+ assert rf(x, y).rewrite(binomial) == rf(x, y)
106
+
107
+ import random
108
+ from mpmath import rf as mpmath_rf
109
+ for i in range(100):
110
+ x = -500 + 500 * random.random()
111
+ k = -500 + 500 * random.random()
112
+ assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
113
+
114
+
115
+ def test_ff_eval_apply():
116
+ x, y = symbols('x,y')
117
+ n, k = symbols('n k', integer=True)
118
+ m = Symbol('m', integer=True, nonnegative=True)
119
+
120
+ assert ff(nan, y) is nan
121
+ assert ff(x, nan) is nan
122
+
123
+ assert unchanged(ff, x, y)
124
+
125
+ assert ff(oo, 0) == 1
126
+ assert ff(-oo, 0) == 1
127
+
128
+ assert ff(oo, 6) is oo
129
+ assert ff(-oo, 7) is -oo
130
+ assert ff(-oo, 6) is oo
131
+
132
+ assert ff(oo, -6) is oo
133
+ assert ff(-oo, -7) is oo
134
+
135
+ assert ff(x, 0) == 1
136
+ assert ff(x, 1) == x
137
+ assert ff(x, 2) == x*(x - 1)
138
+ assert ff(x, 3) == x*(x - 1)*(x - 2)
139
+ assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
140
+
141
+ assert ff(x, -1) == 1/(x + 1)
142
+ assert ff(x, -2) == 1/((x + 1)*(x + 2))
143
+ assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))
144
+
145
+ assert ff(100, 100) == factorial(100)
146
+
147
+ assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1)
148
+ assert isinstance(ff(2*x**2 - 5*x, 2), Mul)
149
+ assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2))
150
+
151
+ assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x)
152
+ assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly)
153
+ raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2))
154
+ assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)
155
+ raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2))
156
+
157
+
158
+ assert ff(x, m).is_integer is None
159
+ assert ff(n, k).is_integer is None
160
+ assert ff(n, m).is_integer is True
161
+ assert ff(n, k + pi).is_integer is False
162
+ assert ff(n, m + pi).is_integer is False
163
+ assert ff(pi, m).is_integer is False
164
+
165
+ assert isinstance(ff(x, x), ff)
166
+ assert ff(n, n) == factorial(n)
167
+
168
+ def check(x, k, o, n):
169
+ a, b = Dummy(), Dummy()
170
+ r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k})
171
+ for i in range(-5,5):
172
+ for j in range(-5,5):
173
+ assert o(i, j) == r(i, j), (o, n)
174
+ check(x, k, ff, rf)
175
+ check(x, k, ff, gamma)
176
+ check(n, k, ff, factorial)
177
+ check(x, k, ff, binomial)
178
+ check(x, y, ff, factorial)
179
+ check(x, y, ff, binomial)
180
+
181
+ assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
182
+ assert ff(x, k).rewrite(gamma) == Piecewise(
183
+ (gamma(x + 1)/gamma(-k + x + 1), x >= 0),
184
+ ((-1)**k*gamma(k - x)/gamma(-x), True))
185
+ assert ff(5, k).rewrite(gamma) == 120/gamma(6 - k)
186
+ assert ff(n, k).rewrite(factorial) == Piecewise(
187
+ (factorial(n)/factorial(-k + n), n >= 0),
188
+ ((-1)**k*factorial(k - n - 1)/factorial(-n - 1), True))
189
+ assert ff(5, k).rewrite(factorial) == 120/factorial(5 - k)
190
+ assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
191
+ assert ff(x, y).rewrite(factorial) == ff(x, y)
192
+ assert ff(x, y).rewrite(binomial) == ff(x, y)
193
+
194
+ import random
195
+ from mpmath import ff as mpmath_ff
196
+ for i in range(100):
197
+ x = -500 + 500 * random.random()
198
+ k = -500 + 500 * random.random()
199
+ a = mpmath_ff(x, k)
200
+ b = ff(x, k)
201
+ assert (abs(a - b) < abs(a) * 10**(-15))
202
+
203
+
204
+ def test_rf_ff_eval_hiprec():
205
+ maple = Float('6.9109401292234329956525265438452')
206
+ us = ff(18, Rational(2, 3)).evalf(32)
207
+ assert abs(us - maple)/us < 1e-31
208
+
209
+ maple = Float('6.8261540131125511557924466355367')
210
+ us = rf(18, Rational(2, 3)).evalf(32)
211
+ assert abs(us - maple)/us < 1e-31
212
+
213
+ maple = Float('34.007346127440197150854651814225')
214
+ us = rf(Float('4.4', 32), Float('2.2', 32));
215
+ assert abs(us - maple)/us < 1e-31
216
+
217
+
218
+ def test_rf_lambdify_mpmath():
219
+ from sympy.utilities.lambdify import lambdify
220
+ x, y = symbols('x,y')
221
+ f = lambdify((x,y), rf(x, y), 'mpmath')
222
+ maple = Float('34.007346127440197')
223
+ us = f(4.4, 2.2)
224
+ assert abs(us - maple)/us < 1e-15
225
+
226
+
227
+ def test_factorial():
228
+ x = Symbol('x')
229
+ n = Symbol('n', integer=True)
230
+ k = Symbol('k', integer=True, nonnegative=True)
231
+ r = Symbol('r', integer=False)
232
+ s = Symbol('s', integer=False, negative=True)
233
+ t = Symbol('t', nonnegative=True)
234
+ u = Symbol('u', noninteger=True)
235
+
236
+ assert factorial(-2) is zoo
237
+ assert factorial(0) == 1
238
+ assert factorial(7) == 5040
239
+ assert factorial(19) == 121645100408832000
240
+ assert factorial(31) == 8222838654177922817725562880000000
241
+ assert factorial(n).func == factorial
242
+ assert factorial(2*n).func == factorial
243
+
244
+ assert factorial(x).is_integer is None
245
+ assert factorial(n).is_integer is None
246
+ assert factorial(k).is_integer
247
+ assert factorial(r).is_integer is None
248
+
249
+ assert factorial(n).is_positive is None
250
+ assert factorial(k).is_positive
251
+
252
+ assert factorial(x).is_real is None
253
+ assert factorial(n).is_real is None
254
+ assert factorial(k).is_real is True
255
+ assert factorial(r).is_real is None
256
+ assert factorial(s).is_real is True
257
+ assert factorial(t).is_real is True
258
+ assert factorial(u).is_real is True
259
+
260
+ assert factorial(x).is_composite is None
261
+ assert factorial(n).is_composite is None
262
+ assert factorial(k).is_composite is None
263
+ assert factorial(k + 3).is_composite is True
264
+ assert factorial(r).is_composite is None
265
+ assert factorial(s).is_composite is None
266
+ assert factorial(t).is_composite is None
267
+ assert factorial(u).is_composite is None
268
+
269
+ assert factorial(oo) is oo
270
+
271
+
272
+ def test_factorial_Mod():
273
+ pr = Symbol('pr', prime=True)
274
+ p, q = 10**9 + 9, 10**9 + 33 # prime modulo
275
+ r, s = 10**7 + 5, 33333333 # composite modulo
276
+ assert Mod(factorial(pr - 1), pr) == pr - 1
277
+ assert Mod(factorial(pr - 1), -pr) == -1
278
+ assert Mod(factorial(r - 1, evaluate=False), r) == 0
279
+ assert Mod(factorial(s - 1, evaluate=False), s) == 0
280
+ assert Mod(factorial(p - 1, evaluate=False), p) == p - 1
281
+ assert Mod(factorial(q - 1, evaluate=False), q) == q - 1
282
+ assert Mod(factorial(p - 50, evaluate=False), p) == 854928834
283
+ assert Mod(factorial(q - 1800, evaluate=False), q) == 905504050
284
+ assert Mod(factorial(153, evaluate=False), r) == Mod(factorial(153), r)
285
+ assert Mod(factorial(255, evaluate=False), s) == Mod(factorial(255), s)
286
+ assert Mod(factorial(4, evaluate=False), 3) == S.Zero
287
+ assert Mod(factorial(5, evaluate=False), 6) == S.Zero
288
+
289
+
290
+ def test_factorial_diff():
291
+ n = Symbol('n', integer=True)
292
+
293
+ assert factorial(n).diff(n) == \
294
+ gamma(1 + n)*polygamma(0, 1 + n)
295
+ assert factorial(n**2).diff(n) == \
296
+ 2*n*gamma(1 + n**2)*polygamma(0, 1 + n**2)
297
+ raises(ArgumentIndexError, lambda: factorial(n**2).fdiff(2))
298
+
299
+
300
+ def test_factorial_series():
301
+ n = Symbol('n', integer=True)
302
+
303
+ assert factorial(n).series(n, 0, 3) == \
304
+ 1 - n*EulerGamma + n**2*(EulerGamma**2/2 + pi**2/12) + O(n**3)
305
+
306
+
307
+ def test_factorial_rewrite():
308
+ n = Symbol('n', integer=True)
309
+ k = Symbol('k', integer=True, nonnegative=True)
310
+
311
+ assert factorial(n).rewrite(gamma) == gamma(n + 1)
312
+ _i = Dummy('i')
313
+ assert factorial(k).rewrite(Product).dummy_eq(Product(_i, (_i, 1, k)))
314
+ assert factorial(n).rewrite(Product) == factorial(n)
315
+
316
+
317
+ def test_factorial2():
318
+ n = Symbol('n', integer=True)
319
+
320
+ assert factorial2(-1) == 1
321
+ assert factorial2(0) == 1
322
+ assert factorial2(7) == 105
323
+ assert factorial2(8) == 384
324
+
325
+ # The following is exhaustive
326
+ tt = Symbol('tt', integer=True, nonnegative=True)
327
+ tte = Symbol('tte', even=True, nonnegative=True)
328
+ tpe = Symbol('tpe', even=True, positive=True)
329
+ tto = Symbol('tto', odd=True, nonnegative=True)
330
+ tf = Symbol('tf', integer=True, nonnegative=False)
331
+ tfe = Symbol('tfe', even=True, nonnegative=False)
332
+ tfo = Symbol('tfo', odd=True, nonnegative=False)
333
+ ft = Symbol('ft', integer=False, nonnegative=True)
334
+ ff = Symbol('ff', integer=False, nonnegative=False)
335
+ fn = Symbol('fn', integer=False)
336
+ nt = Symbol('nt', nonnegative=True)
337
+ nf = Symbol('nf', nonnegative=False)
338
+ nn = Symbol('nn')
339
+ z = Symbol('z', zero=True)
340
+ #Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
341
+ raises(ValueError, lambda: factorial2(oo))
342
+ raises(ValueError, lambda: factorial2(Rational(5, 2)))
343
+ raises(ValueError, lambda: factorial2(-4))
344
+ assert factorial2(n).is_integer is None
345
+ assert factorial2(tt - 1).is_integer
346
+ assert factorial2(tte - 1).is_integer
347
+ assert factorial2(tpe - 3).is_integer
348
+ assert factorial2(tto - 4).is_integer
349
+ assert factorial2(tto - 2).is_integer
350
+ assert factorial2(tf).is_integer is None
351
+ assert factorial2(tfe).is_integer is None
352
+ assert factorial2(tfo).is_integer is None
353
+ assert factorial2(ft).is_integer is None
354
+ assert factorial2(ff).is_integer is None
355
+ assert factorial2(fn).is_integer is None
356
+ assert factorial2(nt).is_integer is None
357
+ assert factorial2(nf).is_integer is None
358
+ assert factorial2(nn).is_integer is None
359
+
360
+ assert factorial2(n).is_positive is None
361
+ assert factorial2(tt - 1).is_positive is True
362
+ assert factorial2(tte - 1).is_positive is True
363
+ assert factorial2(tpe - 3).is_positive is True
364
+ assert factorial2(tpe - 1).is_positive is True
365
+ assert factorial2(tto - 2).is_positive is True
366
+ assert factorial2(tto - 1).is_positive is True
367
+ assert factorial2(tf).is_positive is None
368
+ assert factorial2(tfe).is_positive is None
369
+ assert factorial2(tfo).is_positive is None
370
+ assert factorial2(ft).is_positive is None
371
+ assert factorial2(ff).is_positive is None
372
+ assert factorial2(fn).is_positive is None
373
+ assert factorial2(nt).is_positive is None
374
+ assert factorial2(nf).is_positive is None
375
+ assert factorial2(nn).is_positive is None
376
+
377
+ assert factorial2(tt).is_even is None
378
+ assert factorial2(tt).is_odd is None
379
+ assert factorial2(tte).is_even is None
380
+ assert factorial2(tte).is_odd is None
381
+ assert factorial2(tte + 2).is_even is True
382
+ assert factorial2(tpe).is_even is True
383
+ assert factorial2(tpe).is_odd is False
384
+ assert factorial2(tto).is_odd is True
385
+ assert factorial2(tf).is_even is None
386
+ assert factorial2(tf).is_odd is None
387
+ assert factorial2(tfe).is_even is None
388
+ assert factorial2(tfe).is_odd is None
389
+ assert factorial2(tfo).is_even is False
390
+ assert factorial2(tfo).is_odd is None
391
+ assert factorial2(z).is_even is False
392
+ assert factorial2(z).is_odd is True
393
+
394
+
395
+ def test_factorial2_rewrite():
396
+ n = Symbol('n', integer=True)
397
+ assert factorial2(n).rewrite(gamma) == \
398
+ 2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
399
+ assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
400
+ assert factorial2(2*n + 1).rewrite(gamma) == \
401
+ sqrt(2)*2**(n + S.Half)*gamma(n + Rational(3, 2))/sqrt(pi)
402
+
403
+
404
+ def test_binomial():
405
+ x = Symbol('x')
406
+ n = Symbol('n', integer=True)
407
+ nz = Symbol('nz', integer=True, nonzero=True)
408
+ k = Symbol('k', integer=True)
409
+ kp = Symbol('kp', integer=True, positive=True)
410
+ kn = Symbol('kn', integer=True, negative=True)
411
+ u = Symbol('u', negative=True)
412
+ v = Symbol('v', nonnegative=True)
413
+ p = Symbol('p', positive=True)
414
+ z = Symbol('z', zero=True)
415
+ nt = Symbol('nt', integer=False)
416
+ kt = Symbol('kt', integer=False)
417
+ a = Symbol('a', integer=True, nonnegative=True)
418
+ b = Symbol('b', integer=True, nonnegative=True)
419
+
420
+ assert binomial(0, 0) == 1
421
+ assert binomial(1, 1) == 1
422
+ assert binomial(10, 10) == 1
423
+ assert binomial(n, z) == 1
424
+ assert binomial(1, 2) == 0
425
+ assert binomial(-1, 2) == 1
426
+ assert binomial(1, -1) == 0
427
+ assert binomial(-1, 1) == -1
428
+ assert binomial(-1, -1) == 0
429
+ assert binomial(S.Half, S.Half) == 1
430
+ assert binomial(-10, 1) == -10
431
+ assert binomial(-10, 7) == -11440
432
+ assert binomial(n, -1) == 0 # holds for all integers (negative, zero, positive)
433
+ assert binomial(kp, -1) == 0
434
+ assert binomial(nz, 0) == 1
435
+ assert expand_func(binomial(n, 1)) == n
436
+ assert expand_func(binomial(n, 2)) == n*(n - 1)/2
437
+ assert expand_func(binomial(n, n - 2)) == n*(n - 1)/2
438
+ assert expand_func(binomial(n, n - 1)) == n
439
+ assert binomial(n, 3).func == binomial
440
+ assert binomial(n, 3).expand(func=True) == n**3/6 - n**2/2 + n/3
441
+ assert expand_func(binomial(n, 3)) == n*(n - 2)*(n - 1)/6
442
+ assert binomial(n, n).func == binomial # e.g. (-1, -1) == 0, (2, 2) == 1
443
+ assert binomial(n, n + 1).func == binomial # e.g. (-1, 0) == 1
444
+ assert binomial(kp, kp + 1) == 0
445
+ assert binomial(kn, kn) == 0 # issue #14529
446
+ assert binomial(n, u).func == binomial
447
+ assert binomial(kp, u).func == binomial
448
+ assert binomial(n, p).func == binomial
449
+ assert binomial(n, k).func == binomial
450
+ assert binomial(n, n + p).func == binomial
451
+ assert binomial(kp, kp + p).func == binomial
452
+
453
+ assert expand_func(binomial(n, n - 3)) == n*(n - 2)*(n - 1)/6
454
+
455
+ assert binomial(n, k).is_integer
456
+ assert binomial(nt, k).is_integer is None
457
+ assert binomial(x, nt).is_integer is False
458
+
459
+ assert binomial(gamma(25), 6) == 79232165267303928292058750056084441948572511312165380965440075720159859792344339983120618959044048198214221915637090855535036339620413440000
460
+ assert binomial(1324, 47) == 906266255662694632984994480774946083064699457235920708992926525848438478406790323869952
461
+ assert binomial(1735, 43) == 190910140420204130794758005450919715396159959034348676124678207874195064798202216379800
462
+ assert binomial(2512, 53) == 213894469313832631145798303740098720367984955243020898718979538096223399813295457822575338958939834177325304000
463
+ assert binomial(3383, 52) == 27922807788818096863529701501764372757272890613101645521813434902890007725667814813832027795881839396839287659777235
464
+ assert binomial(4321, 51) == 124595639629264868916081001263541480185227731958274383287107643816863897851139048158022599533438936036467601690983780576
465
+
466
+ assert binomial(a, b).is_nonnegative is True
467
+ assert binomial(-1, 2, evaluate=False).is_nonnegative is True
468
+ assert binomial(10, 5, evaluate=False).is_nonnegative is True
469
+ assert binomial(10, -3, evaluate=False).is_nonnegative is True
470
+ assert binomial(-10, -3, evaluate=False).is_nonnegative is True
471
+ assert binomial(-10, 2, evaluate=False).is_nonnegative is True
472
+ assert binomial(-10, 1, evaluate=False).is_nonnegative is False
473
+ assert binomial(-10, 7, evaluate=False).is_nonnegative is False
474
+
475
+ # issue #14625
476
+ for _ in (pi, -pi, nt, v, a):
477
+ assert binomial(_, _) == 1
478
+ assert binomial(_, _ - 1) == _
479
+ assert isinstance(binomial(u, u), binomial)
480
+ assert isinstance(binomial(u, u - 1), binomial)
481
+ assert isinstance(binomial(x, x), binomial)
482
+ assert isinstance(binomial(x, x - 1), binomial)
483
+
484
+ #issue #18802
485
+ assert expand_func(binomial(x + 1, x)) == x + 1
486
+ assert expand_func(binomial(x, x - 1)) == x
487
+ assert expand_func(binomial(x + 1, x - 1)) == x*(x + 1)/2
488
+ assert expand_func(binomial(x**2 + 1, x**2)) == x**2 + 1
489
+
490
+ # issue #13980 and #13981
491
+ assert binomial(-7, -5) == 0
492
+ assert binomial(-23, -12) == 0
493
+ assert binomial(Rational(13, 2), -10) == 0
494
+ assert binomial(-49, -51) == 0
495
+
496
+ assert binomial(19, Rational(-7, 2)) == S(-68719476736)/(911337863661225*pi)
497
+ assert binomial(0, Rational(3, 2)) == S(-2)/(3*pi)
498
+ assert binomial(-3, Rational(-7, 2)) is zoo
499
+ assert binomial(kn, kt) is zoo
500
+
501
+ assert binomial(nt, kt).func == binomial
502
+ assert binomial(nt, Rational(15, 6)) == 8*gamma(nt + 1)/(15*sqrt(pi)*gamma(nt - Rational(3, 2)))
503
+ assert binomial(Rational(20, 3), Rational(-10, 8)) == gamma(Rational(23, 3))/(gamma(Rational(-1, 4))*gamma(Rational(107, 12)))
504
+ assert binomial(Rational(19, 2), Rational(-7, 2)) == Rational(-1615, 8388608)
505
+ assert binomial(Rational(-13, 5), Rational(-7, 8)) == gamma(Rational(-8, 5))/(gamma(Rational(-29, 40))*gamma(Rational(1, 8)))
506
+ assert binomial(Rational(-19, 8), Rational(-13, 5)) == gamma(Rational(-11, 8))/(gamma(Rational(-8, 5))*gamma(Rational(49, 40)))
507
+
508
+ # binomial for complexes
509
+ assert binomial(I, Rational(-89, 8)) == gamma(1 + I)/(gamma(Rational(-81, 8))*gamma(Rational(97, 8) + I))
510
+ assert binomial(I, 2*I) == gamma(1 + I)/(gamma(1 - I)*gamma(1 + 2*I))
511
+ assert binomial(-7, I) is zoo
512
+ assert binomial(Rational(-7, 6), I) == gamma(Rational(-1, 6))/(gamma(Rational(-1, 6) - I)*gamma(1 + I))
513
+ assert binomial((1+2*I), (1+3*I)) == gamma(2 + 2*I)/(gamma(1 - I)*gamma(2 + 3*I))
514
+ assert binomial(I, 5) == Rational(1, 3) - I/S(12)
515
+ assert binomial((2*I + 3), 7) == -13*I/S(63)
516
+ assert isinstance(binomial(I, n), binomial)
517
+ assert expand_func(binomial(3, 2, evaluate=False)) == 3
518
+ assert expand_func(binomial(n, 0, evaluate=False)) == 1
519
+ assert expand_func(binomial(n, -2, evaluate=False)) == 0
520
+ assert expand_func(binomial(n, k)) == binomial(n, k)
521
+
522
+
523
+ def test_binomial_Mod():
524
+ p, q = 10**5 + 3, 10**9 + 33 # prime modulo
525
+ r = 10**7 + 5 # composite modulo
526
+
527
+ # A few tests to get coverage
528
+ # Lucas Theorem
529
+ assert Mod(binomial(156675, 4433, evaluate=False), p) == Mod(binomial(156675, 4433), p)
530
+
531
+ # factorial Mod
532
+ assert Mod(binomial(1234, 432, evaluate=False), q) == Mod(binomial(1234, 432), q)
533
+
534
+ # binomial factorize
535
+ assert Mod(binomial(253, 113, evaluate=False), r) == Mod(binomial(253, 113), r)
536
+
537
+
538
+ @slow
539
+ def test_binomial_Mod_slow():
540
+ p, q = 10**5 + 3, 10**9 + 33 # prime modulo
541
+ r, s = 10**7 + 5, 33333333 # composite modulo
542
+
543
+ n, k, m = symbols('n k m')
544
+ assert (binomial(n, k) % q).subs({n: s, k: p}) == Mod(binomial(s, p), q)
545
+ assert (binomial(n, k) % m).subs({n: 8, k: 5, m: 13}) == 4
546
+ assert (binomial(9, k) % 7).subs(k, 2) == 1
547
+
548
+ # Lucas Theorem
549
+ assert Mod(binomial(123456, 43253, evaluate=False), p) == Mod(binomial(123456, 43253), p)
550
+ assert Mod(binomial(-178911, 237, evaluate=False), p) == Mod(-binomial(178911 + 237 - 1, 237), p)
551
+ assert Mod(binomial(-178911, 238, evaluate=False), p) == Mod(binomial(178911 + 238 - 1, 238), p)
552
+
553
+ # factorial Mod
554
+ assert Mod(binomial(9734, 451, evaluate=False), q) == Mod(binomial(9734, 451), q)
555
+ assert Mod(binomial(-10733, 4459, evaluate=False), q) == Mod(binomial(-10733, 4459), q)
556
+ assert Mod(binomial(-15733, 4458, evaluate=False), q) == Mod(binomial(-15733, 4458), q)
557
+ assert Mod(binomial(23, -38, evaluate=False), q) is S.Zero
558
+ assert Mod(binomial(23, 38, evaluate=False), q) is S.Zero
559
+
560
+ # binomial factorize
561
+ assert Mod(binomial(753, 119, evaluate=False), r) == Mod(binomial(753, 119), r)
562
+ assert Mod(binomial(3781, 948, evaluate=False), s) == Mod(binomial(3781, 948), s)
563
+ assert Mod(binomial(25773, 1793, evaluate=False), s) == Mod(binomial(25773, 1793), s)
564
+ assert Mod(binomial(-753, 118, evaluate=False), r) == Mod(binomial(-753, 118), r)
565
+ assert Mod(binomial(-25773, 1793, evaluate=False), s) == Mod(binomial(-25773, 1793), s)
566
+
567
+
568
+ def test_binomial_diff():
569
+ n = Symbol('n', integer=True)
570
+ k = Symbol('k', integer=True)
571
+
572
+ assert binomial(n, k).diff(n) == \
573
+ (-polygamma(0, 1 + n - k) + polygamma(0, 1 + n))*binomial(n, k)
574
+ assert binomial(n**2, k**3).diff(n) == \
575
+ 2*n*(-polygamma(
576
+ 0, 1 + n**2 - k**3) + polygamma(0, 1 + n**2))*binomial(n**2, k**3)
577
+
578
+ assert binomial(n, k).diff(k) == \
579
+ (-polygamma(0, 1 + k) + polygamma(0, 1 + n - k))*binomial(n, k)
580
+ assert binomial(n**2, k**3).diff(k) == \
581
+ 3*k**2*(-polygamma(
582
+ 0, 1 + k**3) + polygamma(0, 1 + n**2 - k**3))*binomial(n**2, k**3)
583
+ raises(ArgumentIndexError, lambda: binomial(n, k).fdiff(3))
584
+
585
+
586
+ def test_binomial_rewrite():
587
+ n = Symbol('n', integer=True)
588
+ k = Symbol('k', integer=True)
589
+ x = Symbol('x')
590
+
591
+ assert binomial(n, k).rewrite(
592
+ factorial) == factorial(n)/(factorial(k)*factorial(n - k))
593
+ assert binomial(
594
+ n, k).rewrite(gamma) == gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
595
+ assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k)
596
+ assert binomial(n, x).rewrite(ff) == binomial(n, x)
597
+
598
+
599
+ @XFAIL
600
+ def test_factorial_simplify_fail():
601
+ # simplify(factorial(x + 1).diff(x) - ((x + 1)*factorial(x)).diff(x))) == 0
602
+ from sympy.abc import x
603
+ assert simplify(x*polygamma(0, x + 1) - x*polygamma(0, x + 2) +
604
+ polygamma(0, x + 1) - polygamma(0, x + 2) + 1) == 0
605
+
606
+
607
+ def test_subfactorial():
608
+ assert all(subfactorial(i) == ans for i, ans in enumerate(
609
+ [1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496]))
610
+ assert subfactorial(oo) is oo
611
+ assert subfactorial(nan) is nan
612
+ assert subfactorial(23) == 9510425471055777937262
613
+ assert unchanged(subfactorial, 2.2)
614
+
615
+ x = Symbol('x')
616
+ assert subfactorial(x).rewrite(uppergamma) == uppergamma(x + 1, -1)/S.Exp1
617
+
618
+ tt = Symbol('tt', integer=True, nonnegative=True)
619
+ tf = Symbol('tf', integer=True, nonnegative=False)
620
+ tn = Symbol('tf', integer=True)
621
+ ft = Symbol('ft', integer=False, nonnegative=True)
622
+ ff = Symbol('ff', integer=False, nonnegative=False)
623
+ fn = Symbol('ff', integer=False)
624
+ nt = Symbol('nt', nonnegative=True)
625
+ nf = Symbol('nf', nonnegative=False)
626
+ nn = Symbol('nf')
627
+ te = Symbol('te', even=True, nonnegative=True)
628
+ to = Symbol('to', odd=True, nonnegative=True)
629
+ assert subfactorial(tt).is_integer
630
+ assert subfactorial(tf).is_integer is None
631
+ assert subfactorial(tn).is_integer is None
632
+ assert subfactorial(ft).is_integer is None
633
+ assert subfactorial(ff).is_integer is None
634
+ assert subfactorial(fn).is_integer is None
635
+ assert subfactorial(nt).is_integer is None
636
+ assert subfactorial(nf).is_integer is None
637
+ assert subfactorial(nn).is_integer is None
638
+ assert subfactorial(tt).is_nonnegative
639
+ assert subfactorial(tf).is_nonnegative is None
640
+ assert subfactorial(tn).is_nonnegative is None
641
+ assert subfactorial(ft).is_nonnegative is None
642
+ assert subfactorial(ff).is_nonnegative is None
643
+ assert subfactorial(fn).is_nonnegative is None
644
+ assert subfactorial(nt).is_nonnegative is None
645
+ assert subfactorial(nf).is_nonnegative is None
646
+ assert subfactorial(nn).is_nonnegative is None
647
+ assert subfactorial(tt).is_even is None
648
+ assert subfactorial(tt).is_odd is None
649
+ assert subfactorial(te).is_odd is True
650
+ assert subfactorial(to).is_even is True
env-llmeval/lib/python3.10/site-packages/sympy/functions/combinatorial/tests/test_comb_numbers.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import string
2
+
3
+ from sympy.concrete.products import Product
4
+ from sympy.concrete.summations import Sum
5
+ from sympy.core.function import (diff, expand_func)
6
+ from sympy.core import (EulerGamma, TribonacciConstant)
7
+ from sympy.core.numbers import (Float, I, Rational, oo, pi)
8
+ from sympy.core.singleton import S
9
+ from sympy.core.symbol import (Dummy, Symbol, symbols)
10
+ from sympy.functions.combinatorial.numbers import carmichael
11
+ from sympy.functions.elementary.complexes import (im, re)
12
+ from sympy.functions.elementary.integers import floor
13
+ from sympy.polys.polytools import cancel
14
+ from sympy.series.limits import limit, Limit
15
+ from sympy.series.order import O
16
+ from sympy.functions import (
17
+ bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan,
18
+ genocchi, andre, partition, motzkin, binomial, gamma, sqrt, cbrt, hyper, log, digamma,
19
+ trigamma, polygamma, factorial, sin, cos, cot, polylog, zeta, dirichlet_eta)
20
+ from sympy.functions.combinatorial.numbers import _nT
21
+
22
+ from sympy.core.expr import unchanged
23
+ from sympy.core.numbers import GoldenRatio, Integer
24
+
25
+ from sympy.testing.pytest import raises, nocache_fail, warns_deprecated_sympy
26
+ from sympy.abc import x
27
+
28
+
29
+ def test_carmichael():
30
+ assert carmichael.find_carmichael_numbers_in_range(0, 561) == []
31
+ assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561]
32
+ assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561,
33
+ 562)
34
+ assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821]
35
+ raises(ValueError, lambda: carmichael.is_carmichael(-2))
36
+ raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2))
37
+ raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2))
38
+ with warns_deprecated_sympy():
39
+ assert carmichael.is_prime(2821) == False
40
+
41
+
42
+ def test_bernoulli():
43
+ assert bernoulli(0) == 1
44
+ assert bernoulli(1) == Rational(1, 2)
45
+ assert bernoulli(2) == Rational(1, 6)
46
+ assert bernoulli(3) == 0
47
+ assert bernoulli(4) == Rational(-1, 30)
48
+ assert bernoulli(5) == 0
49
+ assert bernoulli(6) == Rational(1, 42)
50
+ assert bernoulli(7) == 0
51
+ assert bernoulli(8) == Rational(-1, 30)
52
+ assert bernoulli(10) == Rational(5, 66)
53
+ assert bernoulli(1000001) == 0
54
+
55
+ assert bernoulli(0, x) == 1
56
+ assert bernoulli(1, x) == x - S.Half
57
+ assert bernoulli(2, x) == x**2 - x + Rational(1, 6)
58
+ assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2
59
+
60
+ # Should be fast; computed with mpmath
61
+ b = bernoulli(1000)
62
+ assert b.p % 10**10 == 7950421099
63
+ assert b.q == 342999030
64
+
65
+ b = bernoulli(10**6, evaluate=False).evalf()
66
+ assert str(b) == '-2.23799235765713e+4767529'
67
+
68
+ # Issue #8527
69
+ l = Symbol('l', integer=True)
70
+ m = Symbol('m', integer=True, nonnegative=True)
71
+ n = Symbol('n', integer=True, positive=True)
72
+ assert isinstance(bernoulli(2 * l + 1), bernoulli)
73
+ assert isinstance(bernoulli(2 * m + 1), bernoulli)
74
+ assert bernoulli(2 * n + 1) == 0
75
+
76
+ assert bernoulli(x, 1) == bernoulli(x)
77
+
78
+ assert str(bernoulli(0.0, 2.3).evalf(n=10)) == '1.000000000'
79
+ assert str(bernoulli(1.0).evalf(n=10)) == '0.5000000000'
80
+ assert str(bernoulli(1.2).evalf(n=10)) == '0.4195995367'
81
+ assert str(bernoulli(1.2, 0.8).evalf(n=10)) == '0.2144830348'
82
+ assert str(bernoulli(1.2, -0.8).evalf(n=10)) == '-1.158865646 - 0.6745558744*I'
83
+ assert str(bernoulli(3.0, 1j).evalf(n=10)) == '1.5 - 0.5*I'
84
+ assert str(bernoulli(I).evalf(n=10)) == '0.9268485643 - 0.5821580598*I'
85
+ assert str(bernoulli(I, I).evalf(n=10)) == '0.1267792071 + 0.01947413152*I'
86
+ assert bernoulli(x).evalf() == bernoulli(x)
87
+
88
+
89
+ def test_bernoulli_rewrite():
90
+ from sympy.functions.elementary.piecewise import Piecewise
91
+ n = Symbol('n', integer=True, nonnegative=True)
92
+
93
+ assert bernoulli(-1).rewrite(zeta) == pi**2/6
94
+ assert bernoulli(-2).rewrite(zeta) == 2*zeta(3)
95
+ assert not bernoulli(n, -3).rewrite(zeta).has(harmonic)
96
+ assert bernoulli(-4, x).rewrite(zeta) == 4*zeta(5, x)
97
+ assert isinstance(bernoulli(n, x).rewrite(zeta), Piecewise)
98
+ assert bernoulli(n+1, x).rewrite(zeta) == -(n+1) * zeta(-n, x)
99
+
100
+
101
+ def test_fibonacci():
102
+ assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3]
103
+ assert fibonacci(100) == 354224848179261915075
104
+ assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7]
105
+ assert lucas(100) == 792070839848372253127
106
+
107
+ assert fibonacci(1, x) == 1
108
+ assert fibonacci(2, x) == x
109
+ assert fibonacci(3, x) == x**2 + 1
110
+ assert fibonacci(4, x) == x**3 + 2*x
111
+
112
+ # issue #8800
113
+ n = Dummy('n')
114
+ assert fibonacci(n).limit(n, S.Infinity) is S.Infinity
115
+ assert lucas(n).limit(n, S.Infinity) is S.Infinity
116
+
117
+ assert fibonacci(n).rewrite(sqrt) == \
118
+ 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
119
+ assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10)
120
+ assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
121
+ Float(fibonacci(10))
122
+ assert lucas(n).rewrite(sqrt) == \
123
+ (fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify()
124
+ assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10)
125
+ raises(ValueError, lambda: fibonacci(-3, x))
126
+
127
+
128
+ def test_tribonacci():
129
+ assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24]
130
+ assert tribonacci(100) == 98079530178586034536500564
131
+
132
+ assert tribonacci(0, x) == 0
133
+ assert tribonacci(1, x) == 1
134
+ assert tribonacci(2, x) == x**2
135
+ assert tribonacci(3, x) == x**4 + x
136
+ assert tribonacci(4, x) == x**6 + 2*x**3 + 1
137
+ assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2
138
+
139
+ n = Dummy('n')
140
+ assert tribonacci(n).limit(n, S.Infinity) is S.Infinity
141
+
142
+ w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
143
+ a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
144
+ b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
145
+ c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
146
+ assert tribonacci(n).rewrite(sqrt) == \
147
+ (a**(n + 1)/((a - b)*(a - c))
148
+ + b**(n + 1)/((b - a)*(b - c))
149
+ + c**(n + 1)/((c - a)*(c - b)))
150
+ assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4)
151
+ assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
152
+ Float(tribonacci(10))
153
+ assert tribonacci(n).rewrite(TribonacciConstant) == floor(
154
+ 3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/
155
+ (-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33)
156
+ + 586)**Rational(2, 3)) + S.Half)
157
+ raises(ValueError, lambda: tribonacci(-1, x))
158
+
159
+
160
+ @nocache_fail
161
+ def test_bell():
162
+ assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877]
163
+
164
+ assert bell(0, x) == 1
165
+ assert bell(1, x) == x
166
+ assert bell(2, x) == x**2 + x
167
+ assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x
168
+ assert bell(oo) is S.Infinity
169
+ raises(ValueError, lambda: bell(oo, x))
170
+
171
+ raises(ValueError, lambda: bell(-1))
172
+ raises(ValueError, lambda: bell(S.Half))
173
+
174
+ X = symbols('x:6')
175
+ # X = (x0, x1, .. x5)
176
+ # at the same time: X[1] = x1, X[2] = x2 for standard readablity.
177
+ # but we must supply zero-based indexed object X[1:] = (x1, .. x5)
178
+
179
+ assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2
180
+ assert bell(
181
+ 6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3
182
+
183
+ X = (1, 10, 100, 1000, 10000)
184
+ assert bell(6, 2, X) == (6 + 15 + 10)*10000
185
+
186
+ X = (1, 2, 3, 3, 5)
187
+ assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2
188
+
189
+ X = (1, 2, 3, 5)
190
+ assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3
191
+
192
+ # Dobinski's formula
193
+ n = Symbol('n', integer=True, nonnegative=True)
194
+ # For large numbers, this is too slow
195
+ # For nonintegers, there are significant precision errors
196
+ for i in [0, 2, 3, 7, 13, 42, 55]:
197
+ # Running without the cache this is either very slow or goes into an
198
+ # infinite loop.
199
+ assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i})
200
+
201
+ m = Symbol("m")
202
+ assert bell(m).rewrite(Sum) == bell(m)
203
+ assert bell(n, m).rewrite(Sum) == bell(n, m)
204
+ # issue 9184
205
+ n = Dummy('n')
206
+ assert bell(n).limit(n, S.Infinity) is S.Infinity
207
+
208
+
209
+ def test_harmonic():
210
+ n = Symbol("n")
211
+ m = Symbol("m")
212
+
213
+ assert harmonic(n, 0) == n
214
+ assert harmonic(n).evalf() == harmonic(n)
215
+ assert harmonic(n, 1) == harmonic(n)
216
+ assert harmonic(1, n) == 1
217
+
218
+ assert harmonic(0, 1) == 0
219
+ assert harmonic(1, 1) == 1
220
+ assert harmonic(2, 1) == Rational(3, 2)
221
+ assert harmonic(3, 1) == Rational(11, 6)
222
+ assert harmonic(4, 1) == Rational(25, 12)
223
+ assert harmonic(0, 2) == 0
224
+ assert harmonic(1, 2) == 1
225
+ assert harmonic(2, 2) == Rational(5, 4)
226
+ assert harmonic(3, 2) == Rational(49, 36)
227
+ assert harmonic(4, 2) == Rational(205, 144)
228
+ assert harmonic(0, 3) == 0
229
+ assert harmonic(1, 3) == 1
230
+ assert harmonic(2, 3) == Rational(9, 8)
231
+ assert harmonic(3, 3) == Rational(251, 216)
232
+ assert harmonic(4, 3) == Rational(2035, 1728)
233
+
234
+ assert harmonic(oo, -1) is S.NaN
235
+ assert harmonic(oo, 0) is oo
236
+ assert harmonic(oo, S.Half) is oo
237
+ assert harmonic(oo, 1) is oo
238
+ assert harmonic(oo, 2) == (pi**2)/6
239
+ assert harmonic(oo, 3) == zeta(3)
240
+ assert harmonic(oo, Dummy(negative=True)) is S.NaN
241
+ ip = Dummy(integer=True, positive=True)
242
+ if (1/ip <= 1) is True: #---------------------------------+
243
+ assert None, 'delete this if-block and the next line' #|
244
+ ip = Dummy(even=True, positive=True) #--------------------+
245
+ assert harmonic(oo, 1/ip) is oo
246
+ assert harmonic(oo, 1 + ip) is zeta(1 + ip)
247
+
248
+ assert harmonic(0, m) == 0
249
+ assert harmonic(-1, -1) == 0
250
+ assert harmonic(-1, 0) == -1
251
+ assert harmonic(-1, 1) is S.ComplexInfinity
252
+ assert harmonic(-1, 2) is S.NaN
253
+ assert harmonic(-3, -2) == -5
254
+ assert harmonic(-3, -3) == 9
255
+
256
+
257
+ def test_harmonic_rational():
258
+ ne = S(6)
259
+ no = S(5)
260
+ pe = S(8)
261
+ po = S(9)
262
+ qe = S(10)
263
+ qo = S(13)
264
+
265
+ Heee = harmonic(ne + pe/qe)
266
+ Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
267
+ + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
268
+ + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968))
269
+
270
+ Heeo = harmonic(ne + pe/qo)
271
+ Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13))
272
+ + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13))
273
+ - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13))
274
+ + Rational(2422020029, 702257080))
275
+
276
+ Heoe = harmonic(ne + po/qe)
277
+ Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4)
278
+ + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
279
+ + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
280
+ + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4)
281
+ + Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2)
282
+
283
+ Heoo = harmonic(ne + po/qo)
284
+ Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13))
285
+ + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13)
286
+ - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2
287
+ - 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320))
288
+
289
+ Hoee = harmonic(no + pe/qe)
290
+ Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
291
+ + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
292
+ + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704))
293
+
294
+ Hoeo = harmonic(no + pe/qo)
295
+ Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13))
296
+ + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13))
297
+ - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2
298
+ - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560))
299
+
300
+ Hooe = harmonic(no + po/qe)
301
+ Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4)
302
+ + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
303
+ + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
304
+ + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4)
305
+ + Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2)
306
+
307
+ Hooo = harmonic(no + po/qo)
308
+ Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13))
309
+ + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13)
310
+ - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2
311
+ - 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080))
312
+
313
+ H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
314
+ A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]
315
+ for h, a in zip(H, A):
316
+ e = expand_func(h).doit()
317
+ assert cancel(e/a) == 1
318
+ assert abs(h.n() - a.n()) < 1e-12
319
+
320
+
321
+ def test_harmonic_evalf():
322
+ assert str(harmonic(1.5).evalf(n=10)) == '1.280372306'
323
+ assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443
324
+ assert str(harmonic(4.0, -3).evalf(n=10)) == '100.0000000'
325
+ assert str(harmonic(7.0, 1.0).evalf(n=10)) == '2.592857143'
326
+ assert str(harmonic(1, pi).evalf(n=10)) == '1.000000000'
327
+ assert str(harmonic(2, pi).evalf(n=10)) == '1.113314732'
328
+ assert str(harmonic(1000.0, pi).evalf(n=10)) == '1.176241563'
329
+ assert str(harmonic(I).evalf(n=10)) == '0.6718659855 + 1.076674047*I'
330
+ assert str(harmonic(I, I).evalf(n=10)) == '-0.3970915266 + 1.9629689*I'
331
+
332
+ assert harmonic(-1.0, 1).evalf() is S.NaN
333
+ assert harmonic(-2.0, 2.0).evalf() is S.NaN
334
+
335
+ def test_harmonic_rewrite():
336
+ from sympy.functions.elementary.piecewise import Piecewise
337
+ n = Symbol("n")
338
+ m = Symbol("m", integer=True, positive=True)
339
+ x1 = Symbol("x1", positive=True)
340
+ x2 = Symbol("x2", negative=True)
341
+
342
+ assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
343
+ assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
344
+ assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma
345
+
346
+ assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2
347
+ assert isinstance(harmonic(n,m).rewrite(polygamma), Piecewise)
348
+
349
+ assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
350
+ assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
351
+
352
+ assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma)
353
+ assert harmonic(n, x1).rewrite("tractable") == harmonic(n, x1)
354
+ assert harmonic(n, x1 + 1).rewrite("tractable") == zeta(x1 + 1) - zeta(x1 + 1, n + 1)
355
+ assert harmonic(n, x2).rewrite("tractable") == zeta(x2) - zeta(x2, n + 1)
356
+
357
+ _k = Dummy("k")
358
+ assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n)))
359
+ assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n)))
360
+
361
+
362
+ def test_harmonic_calculus():
363
+ y = Symbol("y", positive=True)
364
+ z = Symbol("z", negative=True)
365
+ assert harmonic(x, 1).limit(x, 0) == 0
366
+ assert harmonic(x, y).limit(x, 0) == 0
367
+ assert harmonic(x, 1).series(x, y, 2) == \
368
+ harmonic(y) + (x - y)*zeta(2, y + 1) + O((x - y)**2, (x, y))
369
+ assert limit(harmonic(x, y), x, oo) == harmonic(oo, y)
370
+ assert limit(harmonic(x, y + 1), x, oo) == zeta(y + 1)
371
+ assert limit(harmonic(x, y - 1), x, oo) == harmonic(oo, y - 1)
372
+ assert limit(harmonic(x, z), x, oo) == Limit(harmonic(x, z), x, oo, dir='-')
373
+ assert limit(harmonic(x, z + 1), x, oo) == oo
374
+ assert limit(harmonic(x, z + 2), x, oo) == harmonic(oo, z + 2)
375
+ assert limit(harmonic(x, z - 1), x, oo) == Limit(harmonic(x, z - 1), x, oo, dir='-')
376
+
377
+
378
+ def test_euler():
379
+ assert euler(0) == 1
380
+ assert euler(1) == 0
381
+ assert euler(2) == -1
382
+ assert euler(3) == 0
383
+ assert euler(4) == 5
384
+ assert euler(6) == -61
385
+ assert euler(8) == 1385
386
+
387
+ assert euler(20, evaluate=False) != 370371188237525
388
+
389
+ n = Symbol('n', integer=True)
390
+ assert euler(n) != -1
391
+ assert euler(n).subs(n, 2) == -1
392
+
393
+ assert euler(-1) == S.Pi / 2
394
+ assert euler(-1, 1) == 2*log(2)
395
+ assert euler(-2).evalf() == (2*S.Catalan).evalf()
396
+ assert euler(-3).evalf() == (S.Pi**3 / 16).evalf()
397
+ assert str(euler(2.3).evalf(n=10)) == '-1.052850274'
398
+ assert str(euler(1.2, 3.4).evalf(n=10)) == '3.575613489'
399
+ assert str(euler(I).evalf(n=10)) == '1.248446443 - 0.7675445124*I'
400
+ assert str(euler(I, I).evalf(n=10)) == '0.04812930469 + 0.01052411008*I'
401
+
402
+ assert euler(20).evalf() == 370371188237525.0
403
+ assert euler(20, evaluate=False).evalf() == 370371188237525.0
404
+
405
+ assert euler(n).rewrite(Sum) == euler(n)
406
+ n = Symbol('n', integer=True, nonnegative=True)
407
+ assert euler(2*n + 1).rewrite(Sum) == 0
408
+ _j = Dummy('j')
409
+ _k = Dummy('k')
410
+ assert euler(2*n).rewrite(Sum).dummy_eq(
411
+ I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)*
412
+ binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1)))
413
+
414
+
415
+ def test_euler_odd():
416
+ n = Symbol('n', odd=True, positive=True)
417
+ assert euler(n) == 0
418
+ n = Symbol('n', odd=True)
419
+ assert euler(n) != 0
420
+
421
+
422
+ def test_euler_polynomials():
423
+ assert euler(0, x) == 1
424
+ assert euler(1, x) == x - S.Half
425
+ assert euler(2, x) == x**2 - x
426
+ assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4)
427
+ m = Symbol('m')
428
+ assert isinstance(euler(m, x), euler)
429
+ from sympy.core.numbers import Float
430
+ A = Float('-0.46237208575048694923364757452876131e8') # from Maple
431
+ B = euler(19, S.Pi).evalf(32)
432
+ assert abs((A - B)/A) < 1e-31
433
+
434
+
435
+ def test_euler_polynomial_rewrite():
436
+ m = Symbol('m')
437
+ A = euler(m, x).rewrite('Sum');
438
+ assert A.subs({m:3, x:5}).doit() == euler(3, 5)
439
+
440
+
441
+ def test_catalan():
442
+ n = Symbol('n', integer=True)
443
+ m = Symbol('m', integer=True, positive=True)
444
+ k = Symbol('k', integer=True, nonnegative=True)
445
+ p = Symbol('p', nonnegative=True)
446
+
447
+ catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
448
+ for i, c in enumerate(catalans):
449
+ assert catalan(i) == c
450
+ assert catalan(n).rewrite(factorial).subs(n, i) == c
451
+ assert catalan(n).rewrite(Product).subs(n, i).doit() == c
452
+
453
+ assert unchanged(catalan, x)
454
+ assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
455
+ assert catalan(S.Half).rewrite(gamma) == 8/(3*pi)
456
+ assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\
457
+ 8 / (3 * pi)
458
+ assert catalan(3*x).rewrite(gamma) == 4**(
459
+ 3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2))
460
+ assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)
461
+
462
+ assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
463
+ * factorial(n))
464
+ assert isinstance(catalan(n).rewrite(Product), catalan)
465
+ assert isinstance(catalan(m).rewrite(Product), Product)
466
+
467
+ assert diff(catalan(x), x) == (polygamma(
468
+ 0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x)
469
+
470
+ assert catalan(x).evalf() == catalan(x)
471
+ c = catalan(S.Half).evalf()
472
+ assert str(c) == '0.848826363156775'
473
+ c = catalan(I).evalf(3)
474
+ assert str((re(c), im(c))) == '(0.398, -0.0209)'
475
+
476
+ # Assumptions
477
+ assert catalan(p).is_positive is True
478
+ assert catalan(k).is_integer is True
479
+ assert catalan(m+3).is_composite is True
480
+
481
+
482
+ def test_genocchi():
483
+ genocchis = [0, -1, -1, 0, 1, 0, -3, 0, 17]
484
+ for n, g in enumerate(genocchis):
485
+ assert genocchi(n) == g
486
+
487
+ m = Symbol('m', integer=True)
488
+ n = Symbol('n', integer=True, positive=True)
489
+ assert unchanged(genocchi, m)
490
+ assert genocchi(2*n + 1) == 0
491
+ gn = 2 * (1 - 2**n) * bernoulli(n)
492
+ assert genocchi(n).rewrite(bernoulli).factor() == gn.factor()
493
+ gnx = 2 * (bernoulli(n, x) - 2**n * bernoulli(n, (x+1) / 2))
494
+ assert genocchi(n, x).rewrite(bernoulli).factor() == gnx.factor()
495
+ assert genocchi(2 * n).is_odd
496
+ assert genocchi(2 * n).is_even is False
497
+ assert genocchi(2 * n + 1).is_even
498
+ assert genocchi(n).is_integer
499
+ assert genocchi(4 * n).is_positive
500
+ # these are the only 2 prime Genocchi numbers
501
+ assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime
502
+ assert genocchi(8, evaluate=False).is_prime
503
+ assert genocchi(4 * n + 2).is_negative
504
+ assert genocchi(4 * n + 1).is_negative is False
505
+ assert genocchi(4 * n - 2).is_negative
506
+
507
+ g0 = genocchi(0, evaluate=False)
508
+ assert g0.is_positive is False
509
+ assert g0.is_negative is False
510
+ assert g0.is_even is True
511
+ assert g0.is_odd is False
512
+
513
+ assert genocchi(0, x) == 0
514
+ assert genocchi(1, x) == -1
515
+ assert genocchi(2, x) == 1 - 2*x
516
+ assert genocchi(3, x) == 3*x - 3*x**2
517
+ assert genocchi(4, x) == -1 + 6*x**2 - 4*x**3
518
+ y = Symbol("y")
519
+ assert genocchi(5, (x+y)**100) == -5*(x+y)**400 + 10*(x+y)**300 - 5*(x+y)**100
520
+
521
+ assert str(genocchi(5.0, 4.0).evalf(n=10)) == '-660.0000000'
522
+ assert str(genocchi(Rational(5, 4)).evalf(n=10)) == '-1.104286457'
523
+ assert str(genocchi(-2).evalf(n=10)) == '3.606170709'
524
+ assert str(genocchi(1.3, 3.7).evalf(n=10)) == '-1.847375373'
525
+ assert str(genocchi(I, 1.0).evalf(n=10)) == '-0.3161917278 - 1.45311955*I'
526
+
527
+ n = Symbol('n')
528
+ assert genocchi(n, x).rewrite(dirichlet_eta) == -2*n * dirichlet_eta(1-n, x)
529
+
530
+
531
+ def test_andre():
532
+ nums = [1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
533
+ for n, a in enumerate(nums):
534
+ assert andre(n) == a
535
+ assert andre(S.Infinity) == S.Infinity
536
+ assert andre(-1) == -log(2)
537
+ assert andre(-2) == -2*S.Catalan
538
+ assert andre(-3) == 3*zeta(3)/16
539
+ assert andre(-5) == -15*zeta(5)/256
540
+ # In fact andre(-2*n) is related to the Dirichlet *beta* function
541
+ # at 2*n, but SymPy doesn't implement that (or general L-functions)
542
+ assert unchanged(andre, -4)
543
+
544
+ n = Symbol('n', integer=True, nonnegative=True)
545
+ assert unchanged(andre, n)
546
+ assert andre(n).is_integer is True
547
+ assert andre(n).is_positive is True
548
+
549
+ assert str(andre(10, evaluate=False).evalf(n=10)) == '50521.00000'
550
+ assert str(andre(-1, evaluate=False).evalf(n=10)) == '-0.6931471806'
551
+ assert str(andre(-2, evaluate=False).evalf(n=10)) == '-1.831931188'
552
+ assert str(andre(-4, evaluate=False).evalf(n=10)) == '1.977889103'
553
+ assert str(andre(I, evaluate=False).evalf(n=10)) == '2.378417833 + 0.6343322845*I'
554
+
555
+ assert andre(x).rewrite(polylog) == \
556
+ (-I)**(x+1) * polylog(-x, I) + I**(x+1) * polylog(-x, -I)
557
+ assert andre(x).rewrite(zeta) == \
558
+ 2 * gamma(x+1) / (2*pi)**(x+1) * \
559
+ (zeta(x+1, Rational(1,4)) - cos(pi*x) * zeta(x+1, Rational(3,4)))
560
+
561
+
562
+ @nocache_fail
563
+ def test_partition():
564
+ partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22]
565
+ for n, p in enumerate(partition_nums):
566
+ assert partition(n) == p
567
+
568
+ x = Symbol('x')
569
+ y = Symbol('y', real=True)
570
+ m = Symbol('m', integer=True)
571
+ n = Symbol('n', integer=True, negative=True)
572
+ p = Symbol('p', integer=True, nonnegative=True)
573
+ assert partition(m).is_integer
574
+ assert not partition(m).is_negative
575
+ assert partition(m).is_nonnegative
576
+ assert partition(n).is_zero
577
+ assert partition(p).is_positive
578
+ assert partition(x).subs(x, 7) == 15
579
+ assert partition(y).subs(y, 8) == 22
580
+ raises(ValueError, lambda: partition(Rational(5, 4)))
581
+
582
+
583
+ def test__nT():
584
+ assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [
585
+ 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0]
586
+ check = [_nT(10, i) for i in range(11)]
587
+ assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1]
588
+ assert all(type(i) is int for i in check)
589
+ assert _nT(10, 5) == 7
590
+ assert _nT(100, 98) == 2
591
+ assert _nT(100, 100) == 1
592
+ assert _nT(10, 3) == 8
593
+
594
+
595
+ def test_nC_nP_nT():
596
+ from sympy.utilities.iterables import (
597
+ multiset_permutations, multiset_combinations, multiset_partitions,
598
+ partitions, subsets, permutations)
599
+ from sympy.functions.combinatorial.numbers import (
600
+ nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product)
601
+
602
+ from sympy.combinatorics.permutations import Permutation
603
+ from sympy.core.random import choice
604
+
605
+ c = string.ascii_lowercase
606
+ for i in range(100):
607
+ s = ''.join(choice(c) for i in range(7))
608
+ u = len(s) == len(set(s))
609
+ try:
610
+ tot = 0
611
+ for i in range(8):
612
+ check = nP(s, i)
613
+ tot += check
614
+ assert len(list(multiset_permutations(s, i))) == check
615
+ if u:
616
+ assert nP(len(s), i) == check
617
+ assert nP(s) == tot
618
+ except AssertionError:
619
+ print(s, i, 'failed perm test')
620
+ raise ValueError()
621
+
622
+ for i in range(100):
623
+ s = ''.join(choice(c) for i in range(7))
624
+ u = len(s) == len(set(s))
625
+ try:
626
+ tot = 0
627
+ for i in range(8):
628
+ check = nC(s, i)
629
+ tot += check
630
+ assert len(list(multiset_combinations(s, i))) == check
631
+ if u:
632
+ assert nC(len(s), i) == check
633
+ assert nC(s) == tot
634
+ if u:
635
+ assert nC(len(s)) == tot
636
+ except AssertionError:
637
+ print(s, i, 'failed combo test')
638
+ raise ValueError()
639
+
640
+ for i in range(1, 10):
641
+ tot = 0
642
+ for j in range(1, i + 2):
643
+ check = nT(i, j)
644
+ assert check.is_Integer
645
+ tot += check
646
+ assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
647
+ assert nT(i) == tot
648
+
649
+ for i in range(1, 10):
650
+ tot = 0
651
+ for j in range(1, i + 2):
652
+ check = nT(range(i), j)
653
+ tot += check
654
+ assert len(list(multiset_partitions(list(range(i)), j))) == check
655
+ assert nT(range(i)) == tot
656
+
657
+ for i in range(100):
658
+ s = ''.join(choice(c) for i in range(7))
659
+ u = len(s) == len(set(s))
660
+ try:
661
+ tot = 0
662
+ for i in range(1, 8):
663
+ check = nT(s, i)
664
+ tot += check
665
+ assert len(list(multiset_partitions(s, i))) == check
666
+ if u:
667
+ assert nT(range(len(s)), i) == check
668
+ if u:
669
+ assert nT(range(len(s))) == tot
670
+ assert nT(s) == tot
671
+ except AssertionError:
672
+ print(s, i, 'failed partition test')
673
+ raise ValueError()
674
+
675
+ # tests for Stirling numbers of the first kind that are not tested in the
676
+ # above
677
+ assert [stirling(9, i, kind=1) for i in range(11)] == [
678
+ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
679
+ perms = list(permutations(range(4)))
680
+ assert [sum(1 for p in perms if Permutation(p).cycles == i)
681
+ for i in range(5)] == [0, 6, 11, 6, 1] == [
682
+ stirling(4, i, kind=1) for i in range(5)]
683
+ # http://oeis.org/A008275
684
+ assert [stirling(n, k, signed=1)
685
+ for n in range(10) for k in range(1, n + 1)] == [
686
+ 1, -1,
687
+ 1, 2, -3,
688
+ 1, -6, 11, -6,
689
+ 1, 24, -50, 35, -10,
690
+ 1, -120, 274, -225, 85, -15,
691
+ 1, 720, -1764, 1624, -735, 175, -21,
692
+ 1, -5040, 13068, -13132, 6769, -1960, 322, -28,
693
+ 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
694
+ # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
695
+ assert [stirling(n, k, kind=1)
696
+ for n in range(10) for k in range(n+1)] == [
697
+ 1,
698
+ 0, 1,
699
+ 0, 1, 1,
700
+ 0, 2, 3, 1,
701
+ 0, 6, 11, 6, 1,
702
+ 0, 24, 50, 35, 10, 1,
703
+ 0, 120, 274, 225, 85, 15, 1,
704
+ 0, 720, 1764, 1624, 735, 175, 21, 1,
705
+ 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
706
+ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
707
+ # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
708
+ assert [stirling(n, k, kind=2)
709
+ for n in range(10) for k in range(n+1)] == [
710
+ 1,
711
+ 0, 1,
712
+ 0, 1, 1,
713
+ 0, 1, 3, 1,
714
+ 0, 1, 7, 6, 1,
715
+ 0, 1, 15, 25, 10, 1,
716
+ 0, 1, 31, 90, 65, 15, 1,
717
+ 0, 1, 63, 301, 350, 140, 21, 1,
718
+ 0, 1, 127, 966, 1701, 1050, 266, 28, 1,
719
+ 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
720
+ assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
721
+ raises(ValueError, lambda: stirling(-2, 2))
722
+
723
+ # Assertion that the return type is SymPy Integer.
724
+ assert isinstance(_stirling1(6, 3), Integer)
725
+ assert isinstance(_stirling2(6, 3), Integer)
726
+
727
+ def delta(p):
728
+ if len(p) == 1:
729
+ return oo
730
+ return min(abs(i[0] - i[1]) for i in subsets(p, 2))
731
+ parts = multiset_partitions(range(5), 3)
732
+ d = 2
733
+ assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
734
+ stirling(5, 3, d=d) == 7)
735
+
736
+ # other coverage tests
737
+ assert nC('abb', 2) == nC('aab', 2) == 2
738
+ assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
739
+ assert nP(3, 4) == 0
740
+ assert nP('aabc', 5) == 0
741
+ assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
742
+ len(list(multiset_combinations('aabbccdd', 2))) == 10
743
+ assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
744
+ assert nC(list('abcdd'), 4) == 4
745
+ assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
746
+ assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
747
+ assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa
748
+ assert dict(_AOP_product((4,1,1,1))) == {
749
+ 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
750
+ # the following was the first t that showed a problem in a previous form of
751
+ # the function, so it's not as random as it may appear
752
+ t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
753
+ assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
754
+ raises(ValueError, lambda: _multiset_histogram({1:'a'}))
755
+
756
+
757
+ def test_PR_14617():
758
+ from sympy.functions.combinatorial.numbers import nT
759
+ for n in (0, []):
760
+ for k in (-1, 0, 1):
761
+ if k == 0:
762
+ assert nT(n, k) == 1
763
+ else:
764
+ assert nT(n, k) == 0
765
+
766
+
767
+ def test_issue_8496():
768
+ n = Symbol("n")
769
+ k = Symbol("k")
770
+
771
+ raises(TypeError, lambda: catalan(n, k))
772
+
773
+
774
+ def test_issue_8601():
775
+ n = Symbol('n', integer=True, negative=True)
776
+
777
+ assert catalan(n - 1) is S.Zero
778
+ assert catalan(Rational(-1, 2)) is S.ComplexInfinity
779
+ assert catalan(-S.One) == Rational(-1, 2)
780
+ c1 = catalan(-5.6).evalf()
781
+ assert str(c1) == '6.93334070531408e-5'
782
+ c2 = catalan(-35.4).evalf()
783
+ assert str(c2) == '-4.14189164517449e-24'
784
+
785
+
786
+ def test_motzkin():
787
+ assert motzkin.is_motzkin(4) == True
788
+ assert motzkin.is_motzkin(9) == True
789
+ assert motzkin.is_motzkin(10) == False
790
+ assert motzkin.find_motzkin_numbers_in_range(10,200) == [21, 51, 127]
791
+ assert motzkin.find_motzkin_numbers_in_range(10,400) == [21, 51, 127, 323]
792
+ assert motzkin.find_motzkin_numbers_in_range(10,1600) == [21, 51, 127, 323, 835]
793
+ assert motzkin.find_first_n_motzkins(5) == [1, 1, 2, 4, 9]
794
+ assert motzkin.find_first_n_motzkins(7) == [1, 1, 2, 4, 9, 21, 51]
795
+ assert motzkin.find_first_n_motzkins(10) == [1, 1, 2, 4, 9, 21, 51, 127, 323, 835]
796
+ raises(ValueError, lambda: motzkin.eval(77.58))
797
+ raises(ValueError, lambda: motzkin.eval(-8))
798
+ raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(-2,7))
799
+ raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(13,7))
800
+ raises(ValueError, lambda: motzkin.find_first_n_motzkins(112.8))
801
+
802
+
803
+ def test_nD_derangements():
804
+ from sympy.utilities.iterables import (partitions, multiset,
805
+ multiset_derangements, multiset_permutations)
806
+ from sympy.functions.combinatorial.numbers import nD
807
+
808
+ got = []
809
+ for i in partitions(8, k=4):
810
+ s = []
811
+ it = 0
812
+ for k, v in i.items():
813
+ for i in range(v):
814
+ s.extend([it]*k)
815
+ it += 1
816
+ ms = multiset(s)
817
+ c1 = sum(1 for i in multiset_permutations(s) if
818
+ all(i != j for i, j in zip(i, s)))
819
+ assert c1 == nD(ms) == nD(ms, 0) == nD(ms, 1)
820
+ v = [tuple(i) for i in multiset_derangements(s)]
821
+ c2 = len(v)
822
+ assert c2 == len(set(v))
823
+ assert c1 == c2
824
+ got.append(c1)
825
+ assert got == [1, 4, 6, 12, 24, 24, 61, 126, 315, 780, 297, 772,
826
+ 2033, 5430, 14833]
827
+
828
+ assert nD('1112233456', brute=True) == nD('1112233456') == 16356
829
+ assert nD('') == nD([]) == nD({}) == 0
830
+ assert nD({1: 0}) == 0
831
+ raises(ValueError, lambda: nD({1: -1}))
832
+ assert nD('112') == 0
833
+ assert nD(i='112') == 0
834
+ assert [nD(n=i) for i in range(6)] == [0, 0, 1, 2, 9, 44]
835
+ assert nD((i for i in range(4))) == nD('0123') == 9
836
+ assert nD(m=(i for i in range(4))) == 3
837
+ assert nD(m={0: 1, 1: 1, 2: 1, 3: 1}) == 3
838
+ assert nD(m=[0, 1, 2, 3]) == 3
839
+ raises(TypeError, lambda: nD(m=0))
840
+ raises(TypeError, lambda: nD(-1))
841
+ assert nD({-1: 1, -2: 1}) == 1
842
+ assert nD(m={0: 3}) == 0
843
+ raises(ValueError, lambda: nD(i='123', n=3))
844
+ raises(ValueError, lambda: nD(i='123', m=(1,2)))
845
+ raises(ValueError, lambda: nD(n=0, m=(1,2)))
846
+ raises(ValueError, lambda: nD({1: -1}))
847
+ raises(ValueError, lambda: nD(m={-1: 1, 2: 1}))
848
+ raises(ValueError, lambda: nD(m={1: -1, 2: 1}))
849
+ raises(ValueError, lambda: nD(m=[-1, 2]))
850
+ raises(TypeError, lambda: nD({1: x}))
851
+ raises(TypeError, lambda: nD(m={1: x}))
852
+ raises(TypeError, lambda: nD(m={x: 1}))
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/benchmarks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_beta_functions.cpython-310.pyc ADDED
Binary file (3.85 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_bsplines.cpython-310.pyc ADDED
Binary file (6.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_delta_functions.cpython-310.pyc ADDED
Binary file (5.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_gamma_functions.cpython-310.pyc ADDED
Binary file (24.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_hyper.cpython-310.pyc ADDED
Binary file (15.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_tensor_functions.cpython-310.pyc ADDED
Binary file (4.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/tests/__pycache__/test_zeta_functions.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Names exposed by 'from sympy.physics.quantum import *'
2
+
3
+ __all__ = [
4
+ 'AntiCommutator',
5
+
6
+ 'qapply',
7
+
8
+ 'Commutator',
9
+
10
+ 'Dagger',
11
+
12
+ 'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace',
13
+ 'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2',
14
+ 'FockSpace',
15
+
16
+ 'InnerProduct',
17
+
18
+ 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator',
19
+ 'OuterProduct', 'DifferentialOperator',
20
+
21
+ 'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result',
22
+ 'get_basis', 'enumerate_states',
23
+
24
+ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState',
25
+ 'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra',
26
+ 'OrthogonalState', 'Wavefunction',
27
+
28
+ 'TensorProduct', 'tensor_product_simp',
29
+
30
+ 'hbar', 'HBar',
31
+
32
+ ]
33
+ from .anticommutator import AntiCommutator
34
+
35
+ from .qapply import qapply
36
+
37
+ from .commutator import Commutator
38
+
39
+ from .dagger import Dagger
40
+
41
+ from .hilbert import (HilbertSpaceError, HilbertSpace,
42
+ TensorProductHilbertSpace, TensorPowerHilbertSpace,
43
+ DirectSumHilbertSpace, ComplexSpace, L2, FockSpace)
44
+
45
+ from .innerproduct import InnerProduct
46
+
47
+ from .operator import (Operator, HermitianOperator, UnitaryOperator,
48
+ IdentityOperator, OuterProduct, DifferentialOperator)
49
+
50
+ from .represent import (represent, rep_innerproduct, rep_expectation,
51
+ integrate_result, get_basis, enumerate_states)
52
+
53
+ from .state import (KetBase, BraBase, StateBase, State, Ket, Bra,
54
+ TimeDepState, TimeDepBra, TimeDepKet, OrthogonalKet,
55
+ OrthogonalBra, OrthogonalState, Wavefunction)
56
+
57
+ from .tensorproduct import TensorProduct, tensor_product_simp
58
+
59
+ from .constants import hbar, HBar
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/commutator.cpython-310.pyc ADDED
Binary file (6.29 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/constants.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/gate.cpython-310.pyc ADDED
Binary file (34.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/identitysearch.cpython-310.pyc ADDED
Binary file (21.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixcache.cpython-310.pyc ADDED
Binary file (3.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operatorordering.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operatorset.cpython-310.pyc ADDED
Binary file (7.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/pauli.cpython-310.pyc ADDED
Binary file (18.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/piab.cpython-310.pyc ADDED
Binary file (3.17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qapply.cpython-310.pyc ADDED
Binary file (5.03 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qubit.cpython-310.pyc ADDED
Binary file (22.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/sho1d.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/shor.cpython-310.pyc ADDED
Binary file (5.41 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/spin.cpython-310.pyc ADDED
Binary file (72.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/state.cpython-310.pyc ADDED
Binary file (30.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/trace.cpython-310.pyc ADDED
Binary file (5.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The anti-commutator: ``{A,B} = A*B + B*A``."""
2
+
3
+ from sympy.core.expr import Expr
4
+ from sympy.core.mul import Mul
5
+ from sympy.core.numbers import Integer
6
+ from sympy.core.singleton import S
7
+ from sympy.printing.pretty.stringpict import prettyForm
8
+
9
+ from sympy.physics.quantum.operator import Operator
10
+ from sympy.physics.quantum.dagger import Dagger
11
+
12
+ __all__ = [
13
+ 'AntiCommutator'
14
+ ]
15
+
16
+ #-----------------------------------------------------------------------------
17
+ # Anti-commutator
18
+ #-----------------------------------------------------------------------------
19
+
20
+
21
+ class AntiCommutator(Expr):
22
+ """The standard anticommutator, in an unevaluated state.
23
+
24
+ Explanation
25
+ ===========
26
+
27
+ Evaluating an anticommutator is defined [1]_ as: ``{A, B} = A*B + B*A``.
28
+ This class returns the anticommutator in an unevaluated form. To evaluate
29
+ the anticommutator, use the ``.doit()`` method.
30
+
31
+ Canonical ordering of an anticommutator is ``{A, B}`` for ``A < B``. The
32
+ arguments of the anticommutator are put into canonical order using
33
+ ``__cmp__``. If ``B < A``, then ``{A, B}`` is returned as ``{B, A}``.
34
+
35
+ Parameters
36
+ ==========
37
+
38
+ A : Expr
39
+ The first argument of the anticommutator {A,B}.
40
+ B : Expr
41
+ The second argument of the anticommutator {A,B}.
42
+
43
+ Examples
44
+ ========
45
+
46
+ >>> from sympy import symbols
47
+ >>> from sympy.physics.quantum import AntiCommutator
48
+ >>> from sympy.physics.quantum import Operator, Dagger
49
+ >>> x, y = symbols('x,y')
50
+ >>> A = Operator('A')
51
+ >>> B = Operator('B')
52
+
53
+ Create an anticommutator and use ``doit()`` to multiply them out.
54
+
55
+ >>> ac = AntiCommutator(A,B); ac
56
+ {A,B}
57
+ >>> ac.doit()
58
+ A*B + B*A
59
+
60
+ The commutator orders it arguments in canonical order:
61
+
62
+ >>> ac = AntiCommutator(B,A); ac
63
+ {A,B}
64
+
65
+ Commutative constants are factored out:
66
+
67
+ >>> AntiCommutator(3*x*A,x*y*B)
68
+ 3*x**2*y*{A,B}
69
+
70
+ Adjoint operations applied to the anticommutator are properly applied to
71
+ the arguments:
72
+
73
+ >>> Dagger(AntiCommutator(A,B))
74
+ {Dagger(A),Dagger(B)}
75
+
76
+ References
77
+ ==========
78
+
79
+ .. [1] https://en.wikipedia.org/wiki/Commutator
80
+ """
81
+ is_commutative = False
82
+
83
+ def __new__(cls, A, B):
84
+ r = cls.eval(A, B)
85
+ if r is not None:
86
+ return r
87
+ obj = Expr.__new__(cls, A, B)
88
+ return obj
89
+
90
+ @classmethod
91
+ def eval(cls, a, b):
92
+ if not (a and b):
93
+ return S.Zero
94
+ if a == b:
95
+ return Integer(2)*a**2
96
+ if a.is_commutative or b.is_commutative:
97
+ return Integer(2)*a*b
98
+
99
+ # [xA,yB] -> xy*[A,B]
100
+ ca, nca = a.args_cnc()
101
+ cb, ncb = b.args_cnc()
102
+ c_part = ca + cb
103
+ if c_part:
104
+ return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
105
+
106
+ # Canonical ordering of arguments
107
+ #The Commutator [A,B] is on canonical form if A < B.
108
+ if a.compare(b) == 1:
109
+ return cls(b, a)
110
+
111
+ def doit(self, **hints):
112
+ """ Evaluate anticommutator """
113
+ A = self.args[0]
114
+ B = self.args[1]
115
+ if isinstance(A, Operator) and isinstance(B, Operator):
116
+ try:
117
+ comm = A._eval_anticommutator(B, **hints)
118
+ except NotImplementedError:
119
+ try:
120
+ comm = B._eval_anticommutator(A, **hints)
121
+ except NotImplementedError:
122
+ comm = None
123
+ if comm is not None:
124
+ return comm.doit(**hints)
125
+ return (A*B + B*A).doit(**hints)
126
+
127
+ def _eval_adjoint(self):
128
+ return AntiCommutator(Dagger(self.args[0]), Dagger(self.args[1]))
129
+
130
+ def _sympyrepr(self, printer, *args):
131
+ return "%s(%s,%s)" % (
132
+ self.__class__.__name__, printer._print(
133
+ self.args[0]), printer._print(self.args[1])
134
+ )
135
+
136
+ def _sympystr(self, printer, *args):
137
+ return "{%s,%s}" % (
138
+ printer._print(self.args[0]), printer._print(self.args[1]))
139
+
140
+ def _pretty(self, printer, *args):
141
+ pform = printer._print(self.args[0], *args)
142
+ pform = prettyForm(*pform.right(prettyForm(',')))
143
+ pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
144
+ pform = prettyForm(*pform.parens(left='{', right='}'))
145
+ return pform
146
+
147
+ def _latex(self, printer, *args):
148
+ return "\\left\\{%s,%s\\right\\}" % tuple([
149
+ printer._print(arg, *args) for arg in self.args])
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/boson.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bosonic quantum operators."""
2
+
3
+ from sympy.core.mul import Mul
4
+ from sympy.core.numbers import Integer
5
+ from sympy.core.singleton import S
6
+ from sympy.functions.elementary.complexes import conjugate
7
+ from sympy.functions.elementary.exponential import exp
8
+ from sympy.functions.elementary.miscellaneous import sqrt
9
+ from sympy.physics.quantum import Operator
10
+ from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator
11
+ from sympy.functions.special.tensor_functions import KroneckerDelta
12
+
13
+
14
+ __all__ = [
15
+ 'BosonOp',
16
+ 'BosonFockKet',
17
+ 'BosonFockBra',
18
+ 'BosonCoherentKet',
19
+ 'BosonCoherentBra'
20
+ ]
21
+
22
+
23
+ class BosonOp(Operator):
24
+ """A bosonic operator that satisfies [a, Dagger(a)] == 1.
25
+
26
+ Parameters
27
+ ==========
28
+
29
+ name : str
30
+ A string that labels the bosonic mode.
31
+
32
+ annihilation : bool
33
+ A bool that indicates if the bosonic operator is an annihilation (True,
34
+ default value) or creation operator (False)
35
+
36
+ Examples
37
+ ========
38
+
39
+ >>> from sympy.physics.quantum import Dagger, Commutator
40
+ >>> from sympy.physics.quantum.boson import BosonOp
41
+ >>> a = BosonOp("a")
42
+ >>> Commutator(a, Dagger(a)).doit()
43
+ 1
44
+ """
45
+
46
+ @property
47
+ def name(self):
48
+ return self.args[0]
49
+
50
+ @property
51
+ def is_annihilation(self):
52
+ return bool(self.args[1])
53
+
54
+ @classmethod
55
+ def default_args(self):
56
+ return ("a", True)
57
+
58
+ def __new__(cls, *args, **hints):
59
+ if not len(args) in [1, 2]:
60
+ raise ValueError('1 or 2 parameters expected, got %s' % args)
61
+
62
+ if len(args) == 1:
63
+ args = (args[0], S.One)
64
+
65
+ if len(args) == 2:
66
+ args = (args[0], Integer(args[1]))
67
+
68
+ return Operator.__new__(cls, *args)
69
+
70
+ def _eval_commutator_BosonOp(self, other, **hints):
71
+ if self.name == other.name:
72
+ # [a^\dagger, a] = -1
73
+ if not self.is_annihilation and other.is_annihilation:
74
+ return S.NegativeOne
75
+
76
+ elif 'independent' in hints and hints['independent']:
77
+ # [a, b] = 0
78
+ return S.Zero
79
+
80
+ return None
81
+
82
+ def _eval_commutator_FermionOp(self, other, **hints):
83
+ return S.Zero
84
+
85
+ def _eval_anticommutator_BosonOp(self, other, **hints):
86
+ if 'independent' in hints and hints['independent']:
87
+ # {a, b} = 2 * a * b, because [a, b] = 0
88
+ return 2 * self * other
89
+
90
+ return None
91
+
92
+ def _eval_adjoint(self):
93
+ return BosonOp(str(self.name), not self.is_annihilation)
94
+
95
+ def __mul__(self, other):
96
+
97
+ if other == IdentityOperator(2):
98
+ return self
99
+
100
+ if isinstance(other, Mul):
101
+ args1 = tuple(arg for arg in other.args if arg.is_commutative)
102
+ args2 = tuple(arg for arg in other.args if not arg.is_commutative)
103
+ x = self
104
+ for y in args2:
105
+ x = x * y
106
+ return Mul(*args1) * x
107
+
108
+ return Mul(self, other)
109
+
110
+ def _print_contents_latex(self, printer, *args):
111
+ if self.is_annihilation:
112
+ return r'{%s}' % str(self.name)
113
+ else:
114
+ return r'{{%s}^\dagger}' % str(self.name)
115
+
116
+ def _print_contents(self, printer, *args):
117
+ if self.is_annihilation:
118
+ return r'%s' % str(self.name)
119
+ else:
120
+ return r'Dagger(%s)' % str(self.name)
121
+
122
+ def _print_contents_pretty(self, printer, *args):
123
+ from sympy.printing.pretty.stringpict import prettyForm
124
+ pform = printer._print(self.args[0], *args)
125
+ if self.is_annihilation:
126
+ return pform
127
+ else:
128
+ return pform**prettyForm('\N{DAGGER}')
129
+
130
+
131
+ class BosonFockKet(Ket):
132
+ """Fock state ket for a bosonic mode.
133
+
134
+ Parameters
135
+ ==========
136
+
137
+ n : Number
138
+ The Fock state number.
139
+
140
+ """
141
+
142
+ def __new__(cls, n):
143
+ return Ket.__new__(cls, n)
144
+
145
+ @property
146
+ def n(self):
147
+ return self.label[0]
148
+
149
+ @classmethod
150
+ def dual_class(self):
151
+ return BosonFockBra
152
+
153
+ @classmethod
154
+ def _eval_hilbert_space(cls, label):
155
+ return FockSpace()
156
+
157
+ def _eval_innerproduct_BosonFockBra(self, bra, **hints):
158
+ return KroneckerDelta(self.n, bra.n)
159
+
160
+ def _apply_from_right_to_BosonOp(self, op, **options):
161
+ if op.is_annihilation:
162
+ return sqrt(self.n) * BosonFockKet(self.n - 1)
163
+ else:
164
+ return sqrt(self.n + 1) * BosonFockKet(self.n + 1)
165
+
166
+
167
+ class BosonFockBra(Bra):
168
+ """Fock state bra for a bosonic mode.
169
+
170
+ Parameters
171
+ ==========
172
+
173
+ n : Number
174
+ The Fock state number.
175
+
176
+ """
177
+
178
+ def __new__(cls, n):
179
+ return Bra.__new__(cls, n)
180
+
181
+ @property
182
+ def n(self):
183
+ return self.label[0]
184
+
185
+ @classmethod
186
+ def dual_class(self):
187
+ return BosonFockKet
188
+
189
+ @classmethod
190
+ def _eval_hilbert_space(cls, label):
191
+ return FockSpace()
192
+
193
+
194
+ class BosonCoherentKet(Ket):
195
+ """Coherent state ket for a bosonic mode.
196
+
197
+ Parameters
198
+ ==========
199
+
200
+ alpha : Number, Symbol
201
+ The complex amplitude of the coherent state.
202
+
203
+ """
204
+
205
+ def __new__(cls, alpha):
206
+ return Ket.__new__(cls, alpha)
207
+
208
+ @property
209
+ def alpha(self):
210
+ return self.label[0]
211
+
212
+ @classmethod
213
+ def dual_class(self):
214
+ return BosonCoherentBra
215
+
216
+ @classmethod
217
+ def _eval_hilbert_space(cls, label):
218
+ return HilbertSpace()
219
+
220
+ def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
221
+ if self.alpha == bra.alpha:
222
+ return S.One
223
+ else:
224
+ return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2)
225
+
226
+ def _apply_from_right_to_BosonOp(self, op, **options):
227
+ if op.is_annihilation:
228
+ return self.alpha * self
229
+ else:
230
+ return None
231
+
232
+
233
+ class BosonCoherentBra(Bra):
234
+ """Coherent state bra for a bosonic mode.
235
+
236
+ Parameters
237
+ ==========
238
+
239
+ alpha : Number, Symbol
240
+ The complex amplitude of the coherent state.
241
+
242
+ """
243
+
244
+ def __new__(cls, alpha):
245
+ return Bra.__new__(cls, alpha)
246
+
247
+ @property
248
+ def alpha(self):
249
+ return self.label[0]
250
+
251
+ @classmethod
252
+ def dual_class(self):
253
+ return BosonCoherentKet
254
+
255
+ def _apply_operator_BosonOp(self, op, **options):
256
+ if not op.is_annihilation:
257
+ return self.alpha * self
258
+ else:
259
+ return None
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/cartesian.py ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Operators and states for 1D cartesian position and momentum.
2
+
3
+ TODO:
4
+
5
+ * Add 3D classes to mappings in operatorset.py
6
+
7
+ """
8
+
9
+ from sympy.core.numbers import (I, pi)
10
+ from sympy.core.singleton import S
11
+ from sympy.functions.elementary.exponential import exp
12
+ from sympy.functions.elementary.miscellaneous import sqrt
13
+ from sympy.functions.special.delta_functions import DiracDelta
14
+ from sympy.sets.sets import Interval
15
+
16
+ from sympy.physics.quantum.constants import hbar
17
+ from sympy.physics.quantum.hilbert import L2
18
+ from sympy.physics.quantum.operator import DifferentialOperator, HermitianOperator
19
+ from sympy.physics.quantum.state import Ket, Bra, State
20
+
21
+ __all__ = [
22
+ 'XOp',
23
+ 'YOp',
24
+ 'ZOp',
25
+ 'PxOp',
26
+ 'X',
27
+ 'Y',
28
+ 'Z',
29
+ 'Px',
30
+ 'XKet',
31
+ 'XBra',
32
+ 'PxKet',
33
+ 'PxBra',
34
+ 'PositionState3D',
35
+ 'PositionKet3D',
36
+ 'PositionBra3D'
37
+ ]
38
+
39
+ #-------------------------------------------------------------------------
40
+ # Position operators
41
+ #-------------------------------------------------------------------------
42
+
43
+
44
+ class XOp(HermitianOperator):
45
+ """1D cartesian position operator."""
46
+
47
+ @classmethod
48
+ def default_args(self):
49
+ return ("X",)
50
+
51
+ @classmethod
52
+ def _eval_hilbert_space(self, args):
53
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
54
+
55
+ def _eval_commutator_PxOp(self, other):
56
+ return I*hbar
57
+
58
+ def _apply_operator_XKet(self, ket, **options):
59
+ return ket.position*ket
60
+
61
+ def _apply_operator_PositionKet3D(self, ket, **options):
62
+ return ket.position_x*ket
63
+
64
+ def _represent_PxKet(self, basis, *, index=1, **options):
65
+ states = basis._enumerate_state(2, start_index=index)
66
+ coord1 = states[0].momentum
67
+ coord2 = states[1].momentum
68
+ d = DifferentialOperator(coord1)
69
+ delta = DiracDelta(coord1 - coord2)
70
+
71
+ return I*hbar*(d*delta)
72
+
73
+
74
+ class YOp(HermitianOperator):
75
+ """ Y cartesian coordinate operator (for 2D or 3D systems) """
76
+
77
+ @classmethod
78
+ def default_args(self):
79
+ return ("Y",)
80
+
81
+ @classmethod
82
+ def _eval_hilbert_space(self, args):
83
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
84
+
85
+ def _apply_operator_PositionKet3D(self, ket, **options):
86
+ return ket.position_y*ket
87
+
88
+
89
+ class ZOp(HermitianOperator):
90
+ """ Z cartesian coordinate operator (for 3D systems) """
91
+
92
+ @classmethod
93
+ def default_args(self):
94
+ return ("Z",)
95
+
96
+ @classmethod
97
+ def _eval_hilbert_space(self, args):
98
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
99
+
100
+ def _apply_operator_PositionKet3D(self, ket, **options):
101
+ return ket.position_z*ket
102
+
103
+ #-------------------------------------------------------------------------
104
+ # Momentum operators
105
+ #-------------------------------------------------------------------------
106
+
107
+
108
+ class PxOp(HermitianOperator):
109
+ """1D cartesian momentum operator."""
110
+
111
+ @classmethod
112
+ def default_args(self):
113
+ return ("Px",)
114
+
115
+ @classmethod
116
+ def _eval_hilbert_space(self, args):
117
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
118
+
119
+ def _apply_operator_PxKet(self, ket, **options):
120
+ return ket.momentum*ket
121
+
122
+ def _represent_XKet(self, basis, *, index=1, **options):
123
+ states = basis._enumerate_state(2, start_index=index)
124
+ coord1 = states[0].position
125
+ coord2 = states[1].position
126
+ d = DifferentialOperator(coord1)
127
+ delta = DiracDelta(coord1 - coord2)
128
+
129
+ return -I*hbar*(d*delta)
130
+
131
+ X = XOp('X')
132
+ Y = YOp('Y')
133
+ Z = ZOp('Z')
134
+ Px = PxOp('Px')
135
+
136
+ #-------------------------------------------------------------------------
137
+ # Position eigenstates
138
+ #-------------------------------------------------------------------------
139
+
140
+
141
+ class XKet(Ket):
142
+ """1D cartesian position eigenket."""
143
+
144
+ @classmethod
145
+ def _operators_to_state(self, op, **options):
146
+ return self.__new__(self, *_lowercase_labels(op), **options)
147
+
148
+ def _state_to_operators(self, op_class, **options):
149
+ return op_class.__new__(op_class,
150
+ *_uppercase_labels(self), **options)
151
+
152
+ @classmethod
153
+ def default_args(self):
154
+ return ("x",)
155
+
156
+ @classmethod
157
+ def dual_class(self):
158
+ return XBra
159
+
160
+ @property
161
+ def position(self):
162
+ """The position of the state."""
163
+ return self.label[0]
164
+
165
+ def _enumerate_state(self, num_states, **options):
166
+ return _enumerate_continuous_1D(self, num_states, **options)
167
+
168
+ def _eval_innerproduct_XBra(self, bra, **hints):
169
+ return DiracDelta(self.position - bra.position)
170
+
171
+ def _eval_innerproduct_PxBra(self, bra, **hints):
172
+ return exp(-I*self.position*bra.momentum/hbar)/sqrt(2*pi*hbar)
173
+
174
+
175
+ class XBra(Bra):
176
+ """1D cartesian position eigenbra."""
177
+
178
+ @classmethod
179
+ def default_args(self):
180
+ return ("x",)
181
+
182
+ @classmethod
183
+ def dual_class(self):
184
+ return XKet
185
+
186
+ @property
187
+ def position(self):
188
+ """The position of the state."""
189
+ return self.label[0]
190
+
191
+
192
+ class PositionState3D(State):
193
+ """ Base class for 3D cartesian position eigenstates """
194
+
195
+ @classmethod
196
+ def _operators_to_state(self, op, **options):
197
+ return self.__new__(self, *_lowercase_labels(op), **options)
198
+
199
+ def _state_to_operators(self, op_class, **options):
200
+ return op_class.__new__(op_class,
201
+ *_uppercase_labels(self), **options)
202
+
203
+ @classmethod
204
+ def default_args(self):
205
+ return ("x", "y", "z")
206
+
207
+ @property
208
+ def position_x(self):
209
+ """ The x coordinate of the state """
210
+ return self.label[0]
211
+
212
+ @property
213
+ def position_y(self):
214
+ """ The y coordinate of the state """
215
+ return self.label[1]
216
+
217
+ @property
218
+ def position_z(self):
219
+ """ The z coordinate of the state """
220
+ return self.label[2]
221
+
222
+
223
+ class PositionKet3D(Ket, PositionState3D):
224
+ """ 3D cartesian position eigenket """
225
+
226
+ def _eval_innerproduct_PositionBra3D(self, bra, **options):
227
+ x_diff = self.position_x - bra.position_x
228
+ y_diff = self.position_y - bra.position_y
229
+ z_diff = self.position_z - bra.position_z
230
+
231
+ return DiracDelta(x_diff)*DiracDelta(y_diff)*DiracDelta(z_diff)
232
+
233
+ @classmethod
234
+ def dual_class(self):
235
+ return PositionBra3D
236
+
237
+
238
+ # XXX: The type:ignore here is because mypy gives Definition of
239
+ # "_state_to_operators" in base class "PositionState3D" is incompatible with
240
+ # definition in base class "BraBase"
241
+ class PositionBra3D(Bra, PositionState3D): # type: ignore
242
+ """ 3D cartesian position eigenbra """
243
+
244
+ @classmethod
245
+ def dual_class(self):
246
+ return PositionKet3D
247
+
248
+ #-------------------------------------------------------------------------
249
+ # Momentum eigenstates
250
+ #-------------------------------------------------------------------------
251
+
252
+
253
+ class PxKet(Ket):
254
+ """1D cartesian momentum eigenket."""
255
+
256
+ @classmethod
257
+ def _operators_to_state(self, op, **options):
258
+ return self.__new__(self, *_lowercase_labels(op), **options)
259
+
260
+ def _state_to_operators(self, op_class, **options):
261
+ return op_class.__new__(op_class,
262
+ *_uppercase_labels(self), **options)
263
+
264
+ @classmethod
265
+ def default_args(self):
266
+ return ("px",)
267
+
268
+ @classmethod
269
+ def dual_class(self):
270
+ return PxBra
271
+
272
+ @property
273
+ def momentum(self):
274
+ """The momentum of the state."""
275
+ return self.label[0]
276
+
277
+ def _enumerate_state(self, *args, **options):
278
+ return _enumerate_continuous_1D(self, *args, **options)
279
+
280
+ def _eval_innerproduct_XBra(self, bra, **hints):
281
+ return exp(I*self.momentum*bra.position/hbar)/sqrt(2*pi*hbar)
282
+
283
+ def _eval_innerproduct_PxBra(self, bra, **hints):
284
+ return DiracDelta(self.momentum - bra.momentum)
285
+
286
+
287
+ class PxBra(Bra):
288
+ """1D cartesian momentum eigenbra."""
289
+
290
+ @classmethod
291
+ def default_args(self):
292
+ return ("px",)
293
+
294
+ @classmethod
295
+ def dual_class(self):
296
+ return PxKet
297
+
298
+ @property
299
+ def momentum(self):
300
+ """The momentum of the state."""
301
+ return self.label[0]
302
+
303
+ #-------------------------------------------------------------------------
304
+ # Global helper functions
305
+ #-------------------------------------------------------------------------
306
+
307
+
308
+ def _enumerate_continuous_1D(*args, **options):
309
+ state = args[0]
310
+ num_states = args[1]
311
+ state_class = state.__class__
312
+ index_list = options.pop('index_list', [])
313
+
314
+ if len(index_list) == 0:
315
+ start_index = options.pop('start_index', 1)
316
+ index_list = list(range(start_index, start_index + num_states))
317
+
318
+ enum_states = [0 for i in range(len(index_list))]
319
+
320
+ for i, ind in enumerate(index_list):
321
+ label = state.args[0]
322
+ enum_states[i] = state_class(str(label) + "_" + str(ind), **options)
323
+
324
+ return enum_states
325
+
326
+
327
+ def _lowercase_labels(ops):
328
+ if not isinstance(ops, set):
329
+ ops = [ops]
330
+
331
+ return [str(arg.label[0]).lower() for arg in ops]
332
+
333
+
334
+ def _uppercase_labels(ops):
335
+ if not isinstance(ops, set):
336
+ ops = [ops]
337
+
338
+ new_args = [str(arg.label[0])[0].upper() +
339
+ str(arg.label[0])[1:] for arg in ops]
340
+
341
+ return new_args
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/cg.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #TODO:
2
+ # -Implement Clebsch-Gordan symmetries
3
+ # -Improve simplification method
4
+ # -Implement new simplifications
5
+ """Clebsch-Gordon Coefficients."""
6
+
7
+ from sympy.concrete.summations import Sum
8
+ from sympy.core.add import Add
9
+ from sympy.core.expr import Expr
10
+ from sympy.core.function import expand
11
+ from sympy.core.mul import Mul
12
+ from sympy.core.power import Pow
13
+ from sympy.core.relational import Eq
14
+ from sympy.core.singleton import S
15
+ from sympy.core.symbol import (Wild, symbols)
16
+ from sympy.core.sympify import sympify
17
+ from sympy.functions.elementary.miscellaneous import sqrt
18
+ from sympy.functions.elementary.piecewise import Piecewise
19
+ from sympy.printing.pretty.stringpict import prettyForm, stringPict
20
+
21
+ from sympy.functions.special.tensor_functions import KroneckerDelta
22
+ from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
23
+ from sympy.printing.precedence import PRECEDENCE
24
+
25
+ __all__ = [
26
+ 'CG',
27
+ 'Wigner3j',
28
+ 'Wigner6j',
29
+ 'Wigner9j',
30
+ 'cg_simp'
31
+ ]
32
+
33
+ #-----------------------------------------------------------------------------
34
+ # CG Coefficients
35
+ #-----------------------------------------------------------------------------
36
+
37
+
38
+ class Wigner3j(Expr):
39
+ """Class for the Wigner-3j symbols.
40
+
41
+ Explanation
42
+ ===========
43
+
44
+ Wigner 3j-symbols are coefficients determined by the coupling of
45
+ two angular momenta. When created, they are expressed as symbolic
46
+ quantities that, for numerical parameters, can be evaluated using the
47
+ ``.doit()`` method [1]_.
48
+
49
+ Parameters
50
+ ==========
51
+
52
+ j1, m1, j2, m2, j3, m3 : Number, Symbol
53
+ Terms determining the angular momentum of coupled angular momentum
54
+ systems.
55
+
56
+ Examples
57
+ ========
58
+
59
+ Declare a Wigner-3j coefficient and calculate its value
60
+
61
+ >>> from sympy.physics.quantum.cg import Wigner3j
62
+ >>> w3j = Wigner3j(6,0,4,0,2,0)
63
+ >>> w3j
64
+ Wigner3j(6, 0, 4, 0, 2, 0)
65
+ >>> w3j.doit()
66
+ sqrt(715)/143
67
+
68
+ See Also
69
+ ========
70
+
71
+ CG: Clebsch-Gordan coefficients
72
+
73
+ References
74
+ ==========
75
+
76
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
77
+ """
78
+
79
+ is_commutative = True
80
+
81
+ def __new__(cls, j1, m1, j2, m2, j3, m3):
82
+ args = map(sympify, (j1, m1, j2, m2, j3, m3))
83
+ return Expr.__new__(cls, *args)
84
+
85
+ @property
86
+ def j1(self):
87
+ return self.args[0]
88
+
89
+ @property
90
+ def m1(self):
91
+ return self.args[1]
92
+
93
+ @property
94
+ def j2(self):
95
+ return self.args[2]
96
+
97
+ @property
98
+ def m2(self):
99
+ return self.args[3]
100
+
101
+ @property
102
+ def j3(self):
103
+ return self.args[4]
104
+
105
+ @property
106
+ def m3(self):
107
+ return self.args[5]
108
+
109
+ @property
110
+ def is_symbolic(self):
111
+ return not all(arg.is_number for arg in self.args)
112
+
113
+ # This is modified from the _print_Matrix method
114
+ def _pretty(self, printer, *args):
115
+ m = ((printer._print(self.j1), printer._print(self.m1)),
116
+ (printer._print(self.j2), printer._print(self.m2)),
117
+ (printer._print(self.j3), printer._print(self.m3)))
118
+ hsep = 2
119
+ vsep = 1
120
+ maxw = [-1]*3
121
+ for j in range(3):
122
+ maxw[j] = max([ m[j][i].width() for i in range(2) ])
123
+ D = None
124
+ for i in range(2):
125
+ D_row = None
126
+ for j in range(3):
127
+ s = m[j][i]
128
+ wdelta = maxw[j] - s.width()
129
+ wleft = wdelta //2
130
+ wright = wdelta - wleft
131
+
132
+ s = prettyForm(*s.right(' '*wright))
133
+ s = prettyForm(*s.left(' '*wleft))
134
+
135
+ if D_row is None:
136
+ D_row = s
137
+ continue
138
+ D_row = prettyForm(*D_row.right(' '*hsep))
139
+ D_row = prettyForm(*D_row.right(s))
140
+ if D is None:
141
+ D = D_row
142
+ continue
143
+ for _ in range(vsep):
144
+ D = prettyForm(*D.below(' '))
145
+ D = prettyForm(*D.below(D_row))
146
+ D = prettyForm(*D.parens())
147
+ return D
148
+
149
+ def _latex(self, printer, *args):
150
+ label = map(printer._print, (self.j1, self.j2, self.j3,
151
+ self.m1, self.m2, self.m3))
152
+ return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
153
+ tuple(label)
154
+
155
+ def doit(self, **hints):
156
+ if self.is_symbolic:
157
+ raise ValueError("Coefficients must be numerical")
158
+ return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
159
+
160
+
161
+ class CG(Wigner3j):
162
+ r"""Class for Clebsch-Gordan coefficient.
163
+
164
+ Explanation
165
+ ===========
166
+
167
+ Clebsch-Gordan coefficients describe the angular momentum coupling between
168
+ two systems. The coefficients give the expansion of a coupled total angular
169
+ momentum state and an uncoupled tensor product state. The Clebsch-Gordan
170
+ coefficients are defined as [1]_:
171
+
172
+ .. math ::
173
+ C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
174
+
175
+ Parameters
176
+ ==========
177
+
178
+ j1, m1, j2, m2 : Number, Symbol
179
+ Angular momenta of states 1 and 2.
180
+
181
+ j3, m3: Number, Symbol
182
+ Total angular momentum of the coupled system.
183
+
184
+ Examples
185
+ ========
186
+
187
+ Define a Clebsch-Gordan coefficient and evaluate its value
188
+
189
+ >>> from sympy.physics.quantum.cg import CG
190
+ >>> from sympy import S
191
+ >>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
192
+ >>> cg
193
+ CG(3/2, 3/2, 1/2, -1/2, 1, 1)
194
+ >>> cg.doit()
195
+ sqrt(3)/2
196
+ >>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
197
+ sqrt(2)/2
198
+
199
+
200
+ Compare [2]_.
201
+
202
+ See Also
203
+ ========
204
+
205
+ Wigner3j: Wigner-3j symbols
206
+
207
+ References
208
+ ==========
209
+
210
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
211
+ .. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
212
+ <https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
213
+ in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
214
+ 2020, 083C01 (2020).
215
+ """
216
+ precedence = PRECEDENCE["Pow"] - 1
217
+
218
+ def doit(self, **hints):
219
+ if self.is_symbolic:
220
+ raise ValueError("Coefficients must be numerical")
221
+ return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
222
+
223
+ def _pretty(self, printer, *args):
224
+ bot = printer._print_seq(
225
+ (self.j1, self.m1, self.j2, self.m2), delimiter=',')
226
+ top = printer._print_seq((self.j3, self.m3), delimiter=',')
227
+
228
+ pad = max(top.width(), bot.width())
229
+ bot = prettyForm(*bot.left(' '))
230
+ top = prettyForm(*top.left(' '))
231
+
232
+ if not pad == bot.width():
233
+ bot = prettyForm(*bot.right(' '*(pad - bot.width())))
234
+ if not pad == top.width():
235
+ top = prettyForm(*top.right(' '*(pad - top.width())))
236
+ s = stringPict('C' + ' '*pad)
237
+ s = prettyForm(*s.below(bot))
238
+ s = prettyForm(*s.above(top))
239
+ return s
240
+
241
+ def _latex(self, printer, *args):
242
+ label = map(printer._print, (self.j3, self.m3, self.j1,
243
+ self.m1, self.j2, self.m2))
244
+ return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
245
+
246
+
247
+ class Wigner6j(Expr):
248
+ """Class for the Wigner-6j symbols
249
+
250
+ See Also
251
+ ========
252
+
253
+ Wigner3j: Wigner-3j symbols
254
+
255
+ """
256
+ def __new__(cls, j1, j2, j12, j3, j, j23):
257
+ args = map(sympify, (j1, j2, j12, j3, j, j23))
258
+ return Expr.__new__(cls, *args)
259
+
260
+ @property
261
+ def j1(self):
262
+ return self.args[0]
263
+
264
+ @property
265
+ def j2(self):
266
+ return self.args[1]
267
+
268
+ @property
269
+ def j12(self):
270
+ return self.args[2]
271
+
272
+ @property
273
+ def j3(self):
274
+ return self.args[3]
275
+
276
+ @property
277
+ def j(self):
278
+ return self.args[4]
279
+
280
+ @property
281
+ def j23(self):
282
+ return self.args[5]
283
+
284
+ @property
285
+ def is_symbolic(self):
286
+ return not all(arg.is_number for arg in self.args)
287
+
288
+ # This is modified from the _print_Matrix method
289
+ def _pretty(self, printer, *args):
290
+ m = ((printer._print(self.j1), printer._print(self.j3)),
291
+ (printer._print(self.j2), printer._print(self.j)),
292
+ (printer._print(self.j12), printer._print(self.j23)))
293
+ hsep = 2
294
+ vsep = 1
295
+ maxw = [-1]*3
296
+ for j in range(3):
297
+ maxw[j] = max([ m[j][i].width() for i in range(2) ])
298
+ D = None
299
+ for i in range(2):
300
+ D_row = None
301
+ for j in range(3):
302
+ s = m[j][i]
303
+ wdelta = maxw[j] - s.width()
304
+ wleft = wdelta //2
305
+ wright = wdelta - wleft
306
+
307
+ s = prettyForm(*s.right(' '*wright))
308
+ s = prettyForm(*s.left(' '*wleft))
309
+
310
+ if D_row is None:
311
+ D_row = s
312
+ continue
313
+ D_row = prettyForm(*D_row.right(' '*hsep))
314
+ D_row = prettyForm(*D_row.right(s))
315
+ if D is None:
316
+ D = D_row
317
+ continue
318
+ for _ in range(vsep):
319
+ D = prettyForm(*D.below(' '))
320
+ D = prettyForm(*D.below(D_row))
321
+ D = prettyForm(*D.parens(left='{', right='}'))
322
+ return D
323
+
324
+ def _latex(self, printer, *args):
325
+ label = map(printer._print, (self.j1, self.j2, self.j12,
326
+ self.j3, self.j, self.j23))
327
+ return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
328
+ tuple(label)
329
+
330
+ def doit(self, **hints):
331
+ if self.is_symbolic:
332
+ raise ValueError("Coefficients must be numerical")
333
+ return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
334
+
335
+
336
+ class Wigner9j(Expr):
337
+ """Class for the Wigner-9j symbols
338
+
339
+ See Also
340
+ ========
341
+
342
+ Wigner3j: Wigner-3j symbols
343
+
344
+ """
345
+ def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
346
+ args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
347
+ return Expr.__new__(cls, *args)
348
+
349
+ @property
350
+ def j1(self):
351
+ return self.args[0]
352
+
353
+ @property
354
+ def j2(self):
355
+ return self.args[1]
356
+
357
+ @property
358
+ def j12(self):
359
+ return self.args[2]
360
+
361
+ @property
362
+ def j3(self):
363
+ return self.args[3]
364
+
365
+ @property
366
+ def j4(self):
367
+ return self.args[4]
368
+
369
+ @property
370
+ def j34(self):
371
+ return self.args[5]
372
+
373
+ @property
374
+ def j13(self):
375
+ return self.args[6]
376
+
377
+ @property
378
+ def j24(self):
379
+ return self.args[7]
380
+
381
+ @property
382
+ def j(self):
383
+ return self.args[8]
384
+
385
+ @property
386
+ def is_symbolic(self):
387
+ return not all(arg.is_number for arg in self.args)
388
+
389
+ # This is modified from the _print_Matrix method
390
+ def _pretty(self, printer, *args):
391
+ m = (
392
+ (printer._print(
393
+ self.j1), printer._print(self.j3), printer._print(self.j13)),
394
+ (printer._print(
395
+ self.j2), printer._print(self.j4), printer._print(self.j24)),
396
+ (printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
397
+ hsep = 2
398
+ vsep = 1
399
+ maxw = [-1]*3
400
+ for j in range(3):
401
+ maxw[j] = max([ m[j][i].width() for i in range(3) ])
402
+ D = None
403
+ for i in range(3):
404
+ D_row = None
405
+ for j in range(3):
406
+ s = m[j][i]
407
+ wdelta = maxw[j] - s.width()
408
+ wleft = wdelta //2
409
+ wright = wdelta - wleft
410
+
411
+ s = prettyForm(*s.right(' '*wright))
412
+ s = prettyForm(*s.left(' '*wleft))
413
+
414
+ if D_row is None:
415
+ D_row = s
416
+ continue
417
+ D_row = prettyForm(*D_row.right(' '*hsep))
418
+ D_row = prettyForm(*D_row.right(s))
419
+ if D is None:
420
+ D = D_row
421
+ continue
422
+ for _ in range(vsep):
423
+ D = prettyForm(*D.below(' '))
424
+ D = prettyForm(*D.below(D_row))
425
+ D = prettyForm(*D.parens(left='{', right='}'))
426
+ return D
427
+
428
+ def _latex(self, printer, *args):
429
+ label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
430
+ self.j4, self.j34, self.j13, self.j24, self.j))
431
+ return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
432
+ tuple(label)
433
+
434
+ def doit(self, **hints):
435
+ if self.is_symbolic:
436
+ raise ValueError("Coefficients must be numerical")
437
+ return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
438
+
439
+
440
+ def cg_simp(e):
441
+ """Simplify and combine CG coefficients.
442
+
443
+ Explanation
444
+ ===========
445
+
446
+ This function uses various symmetry and properties of sums and
447
+ products of Clebsch-Gordan coefficients to simplify statements
448
+ involving these terms [1]_.
449
+
450
+ Examples
451
+ ========
452
+
453
+ Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
454
+ 2*a+1
455
+
456
+ >>> from sympy.physics.quantum.cg import CG, cg_simp
457
+ >>> a = CG(1,1,0,0,1,1)
458
+ >>> b = CG(1,0,0,0,1,0)
459
+ >>> c = CG(1,-1,0,0,1,-1)
460
+ >>> cg_simp(a+b+c)
461
+ 3
462
+
463
+ See Also
464
+ ========
465
+
466
+ CG: Clebsh-Gordan coefficients
467
+
468
+ References
469
+ ==========
470
+
471
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
472
+ """
473
+ if isinstance(e, Add):
474
+ return _cg_simp_add(e)
475
+ elif isinstance(e, Sum):
476
+ return _cg_simp_sum(e)
477
+ elif isinstance(e, Mul):
478
+ return Mul(*[cg_simp(arg) for arg in e.args])
479
+ elif isinstance(e, Pow):
480
+ return Pow(cg_simp(e.base), e.exp)
481
+ else:
482
+ return e
483
+
484
+
485
+ def _cg_simp_add(e):
486
+ #TODO: Improve simplification method
487
+ """Takes a sum of terms involving Clebsch-Gordan coefficients and
488
+ simplifies the terms.
489
+
490
+ Explanation
491
+ ===========
492
+
493
+ First, we create two lists, cg_part, which is all the terms involving CG
494
+ coefficients, and other_part, which is all other terms. The cg_part list
495
+ is then passed to the simplification methods, which return the new cg_part
496
+ and any additional terms that are added to other_part
497
+ """
498
+ cg_part = []
499
+ other_part = []
500
+
501
+ e = expand(e)
502
+ for arg in e.args:
503
+ if arg.has(CG):
504
+ if isinstance(arg, Sum):
505
+ other_part.append(_cg_simp_sum(arg))
506
+ elif isinstance(arg, Mul):
507
+ terms = 1
508
+ for term in arg.args:
509
+ if isinstance(term, Sum):
510
+ terms *= _cg_simp_sum(term)
511
+ else:
512
+ terms *= term
513
+ if terms.has(CG):
514
+ cg_part.append(terms)
515
+ else:
516
+ other_part.append(terms)
517
+ else:
518
+ cg_part.append(arg)
519
+ else:
520
+ other_part.append(arg)
521
+
522
+ cg_part, other = _check_varsh_871_1(cg_part)
523
+ other_part.append(other)
524
+ cg_part, other = _check_varsh_871_2(cg_part)
525
+ other_part.append(other)
526
+ cg_part, other = _check_varsh_872_9(cg_part)
527
+ other_part.append(other)
528
+ return Add(*cg_part) + Add(*other_part)
529
+
530
+
531
+ def _check_varsh_871_1(term_list):
532
+ # Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
533
+ a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
534
+ expr = lt*CG(a, alpha, b, 0, a, alpha)
535
+ simp = (2*a + 1)*KroneckerDelta(b, 0)
536
+ sign = lt/abs(lt)
537
+ build_expr = 2*a + 1
538
+ index_expr = a + alpha
539
+ return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
540
+
541
+
542
+ def _check_varsh_871_2(term_list):
543
+ # Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
544
+ a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
545
+ expr = lt*CG(a, alpha, a, -alpha, c, 0)
546
+ simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
547
+ sign = (-1)**(a - alpha)*lt/abs(lt)
548
+ build_expr = 2*a + 1
549
+ index_expr = a + alpha
550
+ return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
551
+
552
+
553
+ def _check_varsh_872_9(term_list):
554
+ # Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
555
+ a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
556
+ 'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
557
+ # Case alpha==alphap, beta==betap
558
+
559
+ # For numerical alpha,beta
560
+ expr = lt*CG(a, alpha, b, beta, c, gamma)**2
561
+ simp = S.One
562
+ sign = lt/abs(lt)
563
+ x = abs(a - b)
564
+ y = abs(alpha + beta)
565
+ build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
566
+ index_expr = a + b - c
567
+ term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
568
+
569
+ # For symbolic alpha,beta
570
+ x = abs(a - b)
571
+ y = a + b
572
+ build_expr = (y + 1 - x)*(x + y + 1)
573
+ index_expr = (c - x)*(x + c) + c + gamma
574
+ term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
575
+
576
+ # Case alpha!=alphap or beta!=betap
577
+ # Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
578
+ # For numerical alpha,alphap,beta,betap
579
+ expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
580
+ simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
581
+ sign = S.One
582
+ x = abs(a - b)
583
+ y = abs(alpha + beta)
584
+ build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
585
+ index_expr = a + b - c
586
+ term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
587
+
588
+ # For symbolic alpha,alphap,beta,betap
589
+ x = abs(a - b)
590
+ y = a + b
591
+ build_expr = (y + 1 - x)*(x + y + 1)
592
+ index_expr = (c - x)*(x + c) + c + gamma
593
+ term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
594
+
595
+ return term_list, other1 + other2 + other4
596
+
597
+
598
+ def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
599
+ """ Checks for simplifications that can be made, returning a tuple of the
600
+ simplified list of terms and any terms generated by simplification.
601
+
602
+ Parameters
603
+ ==========
604
+
605
+ expr: expression
606
+ The expression with Wild terms that will be matched to the terms in
607
+ the sum
608
+
609
+ simp: expression
610
+ The expression with Wild terms that is substituted in place of the CG
611
+ terms in the case of simplification
612
+
613
+ sign: expression
614
+ The expression with Wild terms denoting the sign that is on expr that
615
+ must match
616
+
617
+ lt: expression
618
+ The expression with Wild terms that gives the leading term of the
619
+ matched expr
620
+
621
+ term_list: list
622
+ A list of all of the terms is the sum to be simplified
623
+
624
+ variables: list
625
+ A list of all the variables that appears in expr
626
+
627
+ dep_variables: list
628
+ A list of the variables that must match for all the terms in the sum,
629
+ i.e. the dependent variables
630
+
631
+ build_index_expr: expression
632
+ Expression with Wild terms giving the number of elements in cg_index
633
+
634
+ index_expr: expression
635
+ Expression with Wild terms giving the index terms have when storing
636
+ them to cg_index
637
+
638
+ """
639
+ other_part = 0
640
+ i = 0
641
+ while i < len(term_list):
642
+ sub_1 = _check_cg(term_list[i], expr, len(variables))
643
+ if sub_1 is None:
644
+ i += 1
645
+ continue
646
+ if not build_index_expr.subs(sub_1).is_number:
647
+ i += 1
648
+ continue
649
+ sub_dep = [(x, sub_1[x]) for x in dep_variables]
650
+ cg_index = [None]*build_index_expr.subs(sub_1)
651
+ for j in range(i, len(term_list)):
652
+ sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
653
+ if sub_2 is None:
654
+ continue
655
+ if not index_expr.subs(sub_dep).subs(sub_2).is_number:
656
+ continue
657
+ cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
658
+ if not any(i is None for i in cg_index):
659
+ min_lt = min(*[ abs(term[2]) for term in cg_index ])
660
+ indices = [ term[0] for term in cg_index]
661
+ indices.sort()
662
+ indices.reverse()
663
+ [ term_list.pop(j) for j in indices ]
664
+ for term in cg_index:
665
+ if abs(term[2]) > min_lt:
666
+ term_list.append( (term[2] - min_lt*term[3])*term[1] )
667
+ other_part += min_lt*(sign*simp).subs(sub_1)
668
+ else:
669
+ i += 1
670
+ return term_list, other_part
671
+
672
+
673
+ def _check_cg(cg_term, expr, length, sign=None):
674
+ """Checks whether a term matches the given expression"""
675
+ # TODO: Check for symmetries
676
+ matches = cg_term.match(expr)
677
+ if matches is None:
678
+ return
679
+ if sign is not None:
680
+ if not isinstance(sign, tuple):
681
+ raise TypeError('sign must be a tuple')
682
+ if not sign[0] == (sign[1]).subs(matches):
683
+ return
684
+ if len(matches) == length:
685
+ return matches
686
+
687
+
688
+ def _cg_simp_sum(e):
689
+ e = _check_varsh_sum_871_1(e)
690
+ e = _check_varsh_sum_871_2(e)
691
+ e = _check_varsh_sum_872_4(e)
692
+ return e
693
+
694
+
695
+ def _check_varsh_sum_871_1(e):
696
+ a = Wild('a')
697
+ alpha = symbols('alpha')
698
+ b = Wild('b')
699
+ match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
700
+ if match is not None and len(match) == 2:
701
+ return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
702
+ return e
703
+
704
+
705
+ def _check_varsh_sum_871_2(e):
706
+ a = Wild('a')
707
+ alpha = symbols('alpha')
708
+ c = Wild('c')
709
+ match = e.match(
710
+ Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
711
+ if match is not None and len(match) == 2:
712
+ return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
713
+ return e
714
+
715
+
716
+ def _check_varsh_sum_872_4(e):
717
+ alpha = symbols('alpha')
718
+ beta = symbols('beta')
719
+ a = Wild('a')
720
+ b = Wild('b')
721
+ c = Wild('c')
722
+ cp = Wild('cp')
723
+ gamma = Wild('gamma')
724
+ gammap = Wild('gammap')
725
+ cg1 = CG(a, alpha, b, beta, c, gamma)
726
+ cg2 = CG(a, alpha, b, beta, cp, gammap)
727
+ match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
728
+ if match1 is not None and len(match1) == 6:
729
+ return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
730
+ match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
731
+ if match2 is not None and len(match2) == 4:
732
+ return S.One
733
+ return e
734
+
735
+
736
+ def _cg_list(term):
737
+ if isinstance(term, CG):
738
+ return (term,), 1, 1
739
+ cg = []
740
+ coeff = 1
741
+ if not isinstance(term, (Mul, Pow)):
742
+ raise NotImplementedError('term must be CG, Add, Mul or Pow')
743
+ if isinstance(term, Pow) and term.exp.is_number:
744
+ if term.exp.is_number:
745
+ [ cg.append(term.base) for _ in range(term.exp) ]
746
+ else:
747
+ return (term,), 1, 1
748
+ if isinstance(term, Mul):
749
+ for arg in term.args:
750
+ if isinstance(arg, CG):
751
+ cg.append(arg)
752
+ else:
753
+ coeff *= arg
754
+ return cg, coeff, coeff/abs(coeff)
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Matplotlib based plotting of quantum circuits.
2
+
3
+ Todo:
4
+
5
+ * Optimize printing of large circuits.
6
+ * Get this to work with single gates.
7
+ * Do a better job checking the form of circuits to make sure it is a Mul of
8
+ Gates.
9
+ * Get multi-target gates plotting.
10
+ * Get initial and final states to plot.
11
+ * Get measurements to plot. Might need to rethink measurement as a gate
12
+ issue.
13
+ * Get scale and figsize to be handled in a better way.
14
+ * Write some tests/examples!
15
+ """
16
+
17
+ from __future__ import annotations
18
+
19
+ from sympy.core.mul import Mul
20
+ from sympy.external import import_module
21
+ from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS
22
+
23
+
24
+ __all__ = [
25
+ 'CircuitPlot',
26
+ 'circuit_plot',
27
+ 'labeller',
28
+ 'Mz',
29
+ 'Mx',
30
+ 'CreateOneQubitGate',
31
+ 'CreateCGate',
32
+ ]
33
+
34
+ np = import_module('numpy')
35
+ matplotlib = import_module(
36
+ 'matplotlib', import_kwargs={'fromlist': ['pyplot']},
37
+ catch=(RuntimeError,)) # This is raised in environments that have no display.
38
+
39
+ if np and matplotlib:
40
+ pyplot = matplotlib.pyplot
41
+ Line2D = matplotlib.lines.Line2D
42
+ Circle = matplotlib.patches.Circle
43
+
44
+ #from matplotlib import rc
45
+ #rc('text',usetex=True)
46
+
47
+ class CircuitPlot:
48
+ """A class for managing a circuit plot."""
49
+
50
+ scale = 1.0
51
+ fontsize = 20.0
52
+ linewidth = 1.0
53
+ control_radius = 0.05
54
+ not_radius = 0.15
55
+ swap_delta = 0.05
56
+ labels: list[str] = []
57
+ inits: dict[str, str] = {}
58
+ label_buffer = 0.5
59
+
60
+ def __init__(self, c, nqubits, **kwargs):
61
+ if not np or not matplotlib:
62
+ raise ImportError('numpy or matplotlib not available.')
63
+ self.circuit = c
64
+ self.ngates = len(self.circuit.args)
65
+ self.nqubits = nqubits
66
+ self.update(kwargs)
67
+ self._create_grid()
68
+ self._create_figure()
69
+ self._plot_wires()
70
+ self._plot_gates()
71
+ self._finish()
72
+
73
+ def update(self, kwargs):
74
+ """Load the kwargs into the instance dict."""
75
+ self.__dict__.update(kwargs)
76
+
77
+ def _create_grid(self):
78
+ """Create the grid of wires."""
79
+ scale = self.scale
80
+ wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float)
81
+ gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float)
82
+ self._wire_grid = wire_grid
83
+ self._gate_grid = gate_grid
84
+
85
+ def _create_figure(self):
86
+ """Create the main matplotlib figure."""
87
+ self._figure = pyplot.figure(
88
+ figsize=(self.ngates*self.scale, self.nqubits*self.scale),
89
+ facecolor='w',
90
+ edgecolor='w'
91
+ )
92
+ ax = self._figure.add_subplot(
93
+ 1, 1, 1,
94
+ frameon=True
95
+ )
96
+ ax.set_axis_off()
97
+ offset = 0.5*self.scale
98
+ ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset)
99
+ ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset)
100
+ ax.set_aspect('equal')
101
+ self._axes = ax
102
+
103
+ def _plot_wires(self):
104
+ """Plot the wires of the circuit diagram."""
105
+ xstart = self._gate_grid[0]
106
+ xstop = self._gate_grid[-1]
107
+ xdata = (xstart - self.scale, xstop + self.scale)
108
+ for i in range(self.nqubits):
109
+ ydata = (self._wire_grid[i], self._wire_grid[i])
110
+ line = Line2D(
111
+ xdata, ydata,
112
+ color='k',
113
+ lw=self.linewidth
114
+ )
115
+ self._axes.add_line(line)
116
+ if self.labels:
117
+ init_label_buffer = 0
118
+ if self.inits.get(self.labels[i]): init_label_buffer = 0.25
119
+ self._axes.text(
120
+ xdata[0]-self.label_buffer-init_label_buffer,ydata[0],
121
+ render_label(self.labels[i],self.inits),
122
+ size=self.fontsize,
123
+ color='k',ha='center',va='center')
124
+ self._plot_measured_wires()
125
+
126
+ def _plot_measured_wires(self):
127
+ ismeasured = self._measurements()
128
+ xstop = self._gate_grid[-1]
129
+ dy = 0.04 # amount to shift wires when doubled
130
+ # Plot doubled wires after they are measured
131
+ for im in ismeasured:
132
+ xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale)
133
+ ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy)
134
+ line = Line2D(
135
+ xdata, ydata,
136
+ color='k',
137
+ lw=self.linewidth
138
+ )
139
+ self._axes.add_line(line)
140
+ # Also double any controlled lines off these wires
141
+ for i,g in enumerate(self._gates()):
142
+ if isinstance(g, (CGate, CGateS)):
143
+ wires = g.controls + g.targets
144
+ for wire in wires:
145
+ if wire in ismeasured and \
146
+ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]:
147
+ ydata = min(wires), max(wires)
148
+ xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy
149
+ line = Line2D(
150
+ xdata, ydata,
151
+ color='k',
152
+ lw=self.linewidth
153
+ )
154
+ self._axes.add_line(line)
155
+ def _gates(self):
156
+ """Create a list of all gates in the circuit plot."""
157
+ gates = []
158
+ if isinstance(self.circuit, Mul):
159
+ for g in reversed(self.circuit.args):
160
+ if isinstance(g, Gate):
161
+ gates.append(g)
162
+ elif isinstance(self.circuit, Gate):
163
+ gates.append(self.circuit)
164
+ return gates
165
+
166
+ def _plot_gates(self):
167
+ """Iterate through the gates and plot each of them."""
168
+ for i, gate in enumerate(self._gates()):
169
+ gate.plot_gate(self, i)
170
+
171
+ def _measurements(self):
172
+ """Return a dict ``{i:j}`` where i is the index of the wire that has
173
+ been measured, and j is the gate where the wire is measured.
174
+ """
175
+ ismeasured = {}
176
+ for i,g in enumerate(self._gates()):
177
+ if getattr(g,'measurement',False):
178
+ for target in g.targets:
179
+ if target in ismeasured:
180
+ if ismeasured[target] > i:
181
+ ismeasured[target] = i
182
+ else:
183
+ ismeasured[target] = i
184
+ return ismeasured
185
+
186
+ def _finish(self):
187
+ # Disable clipping to make panning work well for large circuits.
188
+ for o in self._figure.findobj():
189
+ o.set_clip_on(False)
190
+
191
+ def one_qubit_box(self, t, gate_idx, wire_idx):
192
+ """Draw a box for a single qubit gate."""
193
+ x = self._gate_grid[gate_idx]
194
+ y = self._wire_grid[wire_idx]
195
+ self._axes.text(
196
+ x, y, t,
197
+ color='k',
198
+ ha='center',
199
+ va='center',
200
+ bbox={"ec": 'k', "fc": 'w', "fill": True, "lw": self.linewidth},
201
+ size=self.fontsize
202
+ )
203
+
204
+ def two_qubit_box(self, t, gate_idx, wire_idx):
205
+ """Draw a box for a two qubit gate. Does not work yet.
206
+ """
207
+ # x = self._gate_grid[gate_idx]
208
+ # y = self._wire_grid[wire_idx]+0.5
209
+ print(self._gate_grid)
210
+ print(self._wire_grid)
211
+ # unused:
212
+ # obj = self._axes.text(
213
+ # x, y, t,
214
+ # color='k',
215
+ # ha='center',
216
+ # va='center',
217
+ # bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
218
+ # size=self.fontsize
219
+ # )
220
+
221
+ def control_line(self, gate_idx, min_wire, max_wire):
222
+ """Draw a vertical control line."""
223
+ xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx])
224
+ ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire])
225
+ line = Line2D(
226
+ xdata, ydata,
227
+ color='k',
228
+ lw=self.linewidth
229
+ )
230
+ self._axes.add_line(line)
231
+
232
+ def control_point(self, gate_idx, wire_idx):
233
+ """Draw a control point."""
234
+ x = self._gate_grid[gate_idx]
235
+ y = self._wire_grid[wire_idx]
236
+ radius = self.control_radius
237
+ c = Circle(
238
+ (x, y),
239
+ radius*self.scale,
240
+ ec='k',
241
+ fc='k',
242
+ fill=True,
243
+ lw=self.linewidth
244
+ )
245
+ self._axes.add_patch(c)
246
+
247
+ def not_point(self, gate_idx, wire_idx):
248
+ """Draw a NOT gates as the circle with plus in the middle."""
249
+ x = self._gate_grid[gate_idx]
250
+ y = self._wire_grid[wire_idx]
251
+ radius = self.not_radius
252
+ c = Circle(
253
+ (x, y),
254
+ radius,
255
+ ec='k',
256
+ fc='w',
257
+ fill=False,
258
+ lw=self.linewidth
259
+ )
260
+ self._axes.add_patch(c)
261
+ l = Line2D(
262
+ (x, x), (y - radius, y + radius),
263
+ color='k',
264
+ lw=self.linewidth
265
+ )
266
+ self._axes.add_line(l)
267
+
268
+ def swap_point(self, gate_idx, wire_idx):
269
+ """Draw a swap point as a cross."""
270
+ x = self._gate_grid[gate_idx]
271
+ y = self._wire_grid[wire_idx]
272
+ d = self.swap_delta
273
+ l1 = Line2D(
274
+ (x - d, x + d),
275
+ (y - d, y + d),
276
+ color='k',
277
+ lw=self.linewidth
278
+ )
279
+ l2 = Line2D(
280
+ (x - d, x + d),
281
+ (y + d, y - d),
282
+ color='k',
283
+ lw=self.linewidth
284
+ )
285
+ self._axes.add_line(l1)
286
+ self._axes.add_line(l2)
287
+
288
+ def circuit_plot(c, nqubits, **kwargs):
289
+ """Draw the circuit diagram for the circuit with nqubits.
290
+
291
+ Parameters
292
+ ==========
293
+
294
+ c : circuit
295
+ The circuit to plot. Should be a product of Gate instances.
296
+ nqubits : int
297
+ The number of qubits to include in the circuit. Must be at least
298
+ as big as the largest ``min_qubits`` of the gates.
299
+ """
300
+ return CircuitPlot(c, nqubits, **kwargs)
301
+
302
+ def render_label(label, inits={}):
303
+ """Slightly more flexible way to render labels.
304
+
305
+ >>> from sympy.physics.quantum.circuitplot import render_label
306
+ >>> render_label('q0')
307
+ '$\\\\left|q0\\\\right\\\\rangle$'
308
+ >>> render_label('q0', {'q0':'0'})
309
+ '$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$'
310
+ """
311
+ init = inits.get(label)
312
+ if init:
313
+ return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init)
314
+ return r'$\left|%s\right\rangle$' % label
315
+
316
+ def labeller(n, symbol='q'):
317
+ """Autogenerate labels for wires of quantum circuits.
318
+
319
+ Parameters
320
+ ==========
321
+
322
+ n : int
323
+ number of qubits in the circuit.
324
+ symbol : string
325
+ A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc.
326
+
327
+ >>> from sympy.physics.quantum.circuitplot import labeller
328
+ >>> labeller(2)
329
+ ['q_1', 'q_0']
330
+ >>> labeller(3,'j')
331
+ ['j_2', 'j_1', 'j_0']
332
+ """
333
+ return ['%s_%d' % (symbol,n-i-1) for i in range(n)]
334
+
335
+ class Mz(OneQubitGate):
336
+ """Mock-up of a z measurement gate.
337
+
338
+ This is in circuitplot rather than gate.py because it's not a real
339
+ gate, it just draws one.
340
+ """
341
+ measurement = True
342
+ gate_name='Mz'
343
+ gate_name_latex='M_z'
344
+
345
+ class Mx(OneQubitGate):
346
+ """Mock-up of an x measurement gate.
347
+
348
+ This is in circuitplot rather than gate.py because it's not a real
349
+ gate, it just draws one.
350
+ """
351
+ measurement = True
352
+ gate_name='Mx'
353
+ gate_name_latex='M_x'
354
+
355
+ class CreateOneQubitGate(type):
356
+ def __new__(mcl, name, latexname=None):
357
+ if not latexname:
358
+ latexname = name
359
+ return type(name + "Gate", (OneQubitGate,),
360
+ {'gate_name': name, 'gate_name_latex': latexname})
361
+
362
+ def CreateCGate(name, latexname=None):
363
+ """Use a lexical closure to make a controlled gate.
364
+ """
365
+ if not latexname:
366
+ latexname = name
367
+ onequbitgate = CreateOneQubitGate(name, latexname)
368
+ def ControlledGate(ctrls,target):
369
+ return CGate(tuple(ctrls),onequbitgate(target))
370
+ return ControlledGate
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Primitive circuit operations on quantum circuits."""
2
+
3
+ from functools import reduce
4
+
5
+ from sympy.core.sorting import default_sort_key
6
+ from sympy.core.containers import Tuple
7
+ from sympy.core.mul import Mul
8
+ from sympy.core.symbol import Symbol
9
+ from sympy.core.sympify import sympify
10
+ from sympy.utilities import numbered_symbols
11
+ from sympy.physics.quantum.gate import Gate
12
+
13
+ __all__ = [
14
+ 'kmp_table',
15
+ 'find_subcircuit',
16
+ 'replace_subcircuit',
17
+ 'convert_to_symbolic_indices',
18
+ 'convert_to_real_indices',
19
+ 'random_reduce',
20
+ 'random_insert'
21
+ ]
22
+
23
+
24
+ def kmp_table(word):
25
+ """Build the 'partial match' table of the Knuth-Morris-Pratt algorithm.
26
+
27
+ Note: This is applicable to strings or
28
+ quantum circuits represented as tuples.
29
+ """
30
+
31
+ # Current position in subcircuit
32
+ pos = 2
33
+ # Beginning position of candidate substring that
34
+ # may reappear later in word
35
+ cnd = 0
36
+ # The 'partial match' table that helps one determine
37
+ # the next location to start substring search
38
+ table = []
39
+ table.append(-1)
40
+ table.append(0)
41
+
42
+ while pos < len(word):
43
+ if word[pos - 1] == word[cnd]:
44
+ cnd = cnd + 1
45
+ table.append(cnd)
46
+ pos = pos + 1
47
+ elif cnd > 0:
48
+ cnd = table[cnd]
49
+ else:
50
+ table.append(0)
51
+ pos = pos + 1
52
+
53
+ return table
54
+
55
+
56
+ def find_subcircuit(circuit, subcircuit, start=0, end=0):
57
+ """Finds the subcircuit in circuit, if it exists.
58
+
59
+ Explanation
60
+ ===========
61
+
62
+ If the subcircuit exists, the index of the start of
63
+ the subcircuit in circuit is returned; otherwise,
64
+ -1 is returned. The algorithm that is implemented
65
+ is the Knuth-Morris-Pratt algorithm.
66
+
67
+ Parameters
68
+ ==========
69
+
70
+ circuit : tuple, Gate or Mul
71
+ A tuple of Gates or Mul representing a quantum circuit
72
+ subcircuit : tuple, Gate or Mul
73
+ A tuple of Gates or Mul to find in circuit
74
+ start : int
75
+ The location to start looking for subcircuit.
76
+ If start is the same or past end, -1 is returned.
77
+ end : int
78
+ The last place to look for a subcircuit. If end
79
+ is less than 1 (one), then the length of circuit
80
+ is taken to be end.
81
+
82
+ Examples
83
+ ========
84
+
85
+ Find the first instance of a subcircuit:
86
+
87
+ >>> from sympy.physics.quantum.circuitutils import find_subcircuit
88
+ >>> from sympy.physics.quantum.gate import X, Y, Z, H
89
+ >>> circuit = X(0)*Z(0)*Y(0)*H(0)
90
+ >>> subcircuit = Z(0)*Y(0)
91
+ >>> find_subcircuit(circuit, subcircuit)
92
+ 1
93
+
94
+ Find the first instance starting at a specific position:
95
+
96
+ >>> find_subcircuit(circuit, subcircuit, start=1)
97
+ 1
98
+
99
+ >>> find_subcircuit(circuit, subcircuit, start=2)
100
+ -1
101
+
102
+ >>> circuit = circuit*subcircuit
103
+ >>> find_subcircuit(circuit, subcircuit, start=2)
104
+ 4
105
+
106
+ Find the subcircuit within some interval:
107
+
108
+ >>> find_subcircuit(circuit, subcircuit, start=2, end=2)
109
+ -1
110
+ """
111
+
112
+ if isinstance(circuit, Mul):
113
+ circuit = circuit.args
114
+
115
+ if isinstance(subcircuit, Mul):
116
+ subcircuit = subcircuit.args
117
+
118
+ if len(subcircuit) == 0 or len(subcircuit) > len(circuit):
119
+ return -1
120
+
121
+ if end < 1:
122
+ end = len(circuit)
123
+
124
+ # Location in circuit
125
+ pos = start
126
+ # Location in the subcircuit
127
+ index = 0
128
+ # 'Partial match' table
129
+ table = kmp_table(subcircuit)
130
+
131
+ while (pos + index) < end:
132
+ if subcircuit[index] == circuit[pos + index]:
133
+ index = index + 1
134
+ else:
135
+ pos = pos + index - table[index]
136
+ index = table[index] if table[index] > -1 else 0
137
+
138
+ if index == len(subcircuit):
139
+ return pos
140
+
141
+ return -1
142
+
143
+
144
+ def replace_subcircuit(circuit, subcircuit, replace=None, pos=0):
145
+ """Replaces a subcircuit with another subcircuit in circuit,
146
+ if it exists.
147
+
148
+ Explanation
149
+ ===========
150
+
151
+ If multiple instances of subcircuit exists, the first instance is
152
+ replaced. The position to being searching from (if different from
153
+ 0) may be optionally given. If subcircuit cannot be found, circuit
154
+ is returned.
155
+
156
+ Parameters
157
+ ==========
158
+
159
+ circuit : tuple, Gate or Mul
160
+ A quantum circuit.
161
+ subcircuit : tuple, Gate or Mul
162
+ The circuit to be replaced.
163
+ replace : tuple, Gate or Mul
164
+ The replacement circuit.
165
+ pos : int
166
+ The location to start search and replace
167
+ subcircuit, if it exists. This may be used
168
+ if it is known beforehand that multiple
169
+ instances exist, and it is desirable to
170
+ replace a specific instance. If a negative number
171
+ is given, pos will be defaulted to 0.
172
+
173
+ Examples
174
+ ========
175
+
176
+ Find and remove the subcircuit:
177
+
178
+ >>> from sympy.physics.quantum.circuitutils import replace_subcircuit
179
+ >>> from sympy.physics.quantum.gate import X, Y, Z, H
180
+ >>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0)
181
+ >>> subcircuit = Z(0)*Y(0)
182
+ >>> replace_subcircuit(circuit, subcircuit)
183
+ (X(0), H(0), X(0), H(0), Y(0))
184
+
185
+ Remove the subcircuit given a starting search point:
186
+
187
+ >>> replace_subcircuit(circuit, subcircuit, pos=1)
188
+ (X(0), H(0), X(0), H(0), Y(0))
189
+
190
+ >>> replace_subcircuit(circuit, subcircuit, pos=2)
191
+ (X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0))
192
+
193
+ Replace the subcircuit:
194
+
195
+ >>> replacement = H(0)*Z(0)
196
+ >>> replace_subcircuit(circuit, subcircuit, replace=replacement)
197
+ (X(0), H(0), Z(0), H(0), X(0), H(0), Y(0))
198
+ """
199
+
200
+ if pos < 0:
201
+ pos = 0
202
+
203
+ if isinstance(circuit, Mul):
204
+ circuit = circuit.args
205
+
206
+ if isinstance(subcircuit, Mul):
207
+ subcircuit = subcircuit.args
208
+
209
+ if isinstance(replace, Mul):
210
+ replace = replace.args
211
+ elif replace is None:
212
+ replace = ()
213
+
214
+ # Look for the subcircuit starting at pos
215
+ loc = find_subcircuit(circuit, subcircuit, start=pos)
216
+
217
+ # If subcircuit was found
218
+ if loc > -1:
219
+ # Get the gates to the left of subcircuit
220
+ left = circuit[0:loc]
221
+ # Get the gates to the right of subcircuit
222
+ right = circuit[loc + len(subcircuit):len(circuit)]
223
+ # Recombine the left and right side gates into a circuit
224
+ circuit = left + replace + right
225
+
226
+ return circuit
227
+
228
+
229
+ def _sympify_qubit_map(mapping):
230
+ new_map = {}
231
+ for key in mapping:
232
+ new_map[key] = sympify(mapping[key])
233
+ return new_map
234
+
235
+
236
+ def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None):
237
+ """Returns the circuit with symbolic indices and the
238
+ dictionary mapping symbolic indices to real indices.
239
+
240
+ The mapping is 1 to 1 and onto (bijective).
241
+
242
+ Parameters
243
+ ==========
244
+
245
+ seq : tuple, Gate/Integer/tuple or Mul
246
+ A tuple of Gate, Integer, or tuple objects, or a Mul
247
+ start : Symbol
248
+ An optional starting symbolic index
249
+ gen : object
250
+ An optional numbered symbol generator
251
+ qubit_map : dict
252
+ An existing mapping of symbolic indices to real indices
253
+
254
+ All symbolic indices have the format 'i#', where # is
255
+ some number >= 0.
256
+ """
257
+
258
+ if isinstance(seq, Mul):
259
+ seq = seq.args
260
+
261
+ # A numbered symbol generator
262
+ index_gen = numbered_symbols(prefix='i', start=-1)
263
+ cur_ndx = next(index_gen)
264
+
265
+ # keys are symbolic indices; values are real indices
266
+ ndx_map = {}
267
+
268
+ def create_inverse_map(symb_to_real_map):
269
+ rev_items = lambda item: (item[1], item[0])
270
+ return dict(map(rev_items, symb_to_real_map.items()))
271
+
272
+ if start is not None:
273
+ if not isinstance(start, Symbol):
274
+ msg = 'Expected Symbol for starting index, got %r.' % start
275
+ raise TypeError(msg)
276
+ cur_ndx = start
277
+
278
+ if gen is not None:
279
+ if not isinstance(gen, numbered_symbols().__class__):
280
+ msg = 'Expected a generator, got %r.' % gen
281
+ raise TypeError(msg)
282
+ index_gen = gen
283
+
284
+ if qubit_map is not None:
285
+ if not isinstance(qubit_map, dict):
286
+ msg = ('Expected dict for existing map, got ' +
287
+ '%r.' % qubit_map)
288
+ raise TypeError(msg)
289
+ ndx_map = qubit_map
290
+
291
+ ndx_map = _sympify_qubit_map(ndx_map)
292
+ # keys are real indices; keys are symbolic indices
293
+ inv_map = create_inverse_map(ndx_map)
294
+
295
+ sym_seq = ()
296
+ for item in seq:
297
+ # Nested items, so recurse
298
+ if isinstance(item, Gate):
299
+ result = convert_to_symbolic_indices(item.args,
300
+ qubit_map=ndx_map,
301
+ start=cur_ndx,
302
+ gen=index_gen)
303
+ sym_item, new_map, cur_ndx, index_gen = result
304
+ ndx_map.update(new_map)
305
+ inv_map = create_inverse_map(ndx_map)
306
+
307
+ elif isinstance(item, (tuple, Tuple)):
308
+ result = convert_to_symbolic_indices(item,
309
+ qubit_map=ndx_map,
310
+ start=cur_ndx,
311
+ gen=index_gen)
312
+ sym_item, new_map, cur_ndx, index_gen = result
313
+ ndx_map.update(new_map)
314
+ inv_map = create_inverse_map(ndx_map)
315
+
316
+ elif item in inv_map:
317
+ sym_item = inv_map[item]
318
+
319
+ else:
320
+ cur_ndx = next(gen)
321
+ ndx_map[cur_ndx] = item
322
+ inv_map[item] = cur_ndx
323
+ sym_item = cur_ndx
324
+
325
+ if isinstance(item, Gate):
326
+ sym_item = item.__class__(*sym_item)
327
+
328
+ sym_seq = sym_seq + (sym_item,)
329
+
330
+ return sym_seq, ndx_map, cur_ndx, index_gen
331
+
332
+
333
+ def convert_to_real_indices(seq, qubit_map):
334
+ """Returns the circuit with real indices.
335
+
336
+ Parameters
337
+ ==========
338
+
339
+ seq : tuple, Gate/Integer/tuple or Mul
340
+ A tuple of Gate, Integer, or tuple objects or a Mul
341
+ qubit_map : dict
342
+ A dictionary mapping symbolic indices to real indices.
343
+
344
+ Examples
345
+ ========
346
+
347
+ Change the symbolic indices to real integers:
348
+
349
+ >>> from sympy import symbols
350
+ >>> from sympy.physics.quantum.circuitutils import convert_to_real_indices
351
+ >>> from sympy.physics.quantum.gate import X, Y, H
352
+ >>> i0, i1 = symbols('i:2')
353
+ >>> index_map = {i0 : 0, i1 : 1}
354
+ >>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map)
355
+ (X(0), Y(1), H(0), X(1))
356
+ """
357
+
358
+ if isinstance(seq, Mul):
359
+ seq = seq.args
360
+
361
+ if not isinstance(qubit_map, dict):
362
+ msg = 'Expected dict for qubit_map, got %r.' % qubit_map
363
+ raise TypeError(msg)
364
+
365
+ qubit_map = _sympify_qubit_map(qubit_map)
366
+ real_seq = ()
367
+ for item in seq:
368
+ # Nested items, so recurse
369
+ if isinstance(item, Gate):
370
+ real_item = convert_to_real_indices(item.args, qubit_map)
371
+
372
+ elif isinstance(item, (tuple, Tuple)):
373
+ real_item = convert_to_real_indices(item, qubit_map)
374
+
375
+ else:
376
+ real_item = qubit_map[item]
377
+
378
+ if isinstance(item, Gate):
379
+ real_item = item.__class__(*real_item)
380
+
381
+ real_seq = real_seq + (real_item,)
382
+
383
+ return real_seq
384
+
385
+
386
+ def random_reduce(circuit, gate_ids, seed=None):
387
+ """Shorten the length of a quantum circuit.
388
+
389
+ Explanation
390
+ ===========
391
+
392
+ random_reduce looks for circuit identities in circuit, randomly chooses
393
+ one to remove, and returns a shorter yet equivalent circuit. If no
394
+ identities are found, the same circuit is returned.
395
+
396
+ Parameters
397
+ ==========
398
+
399
+ circuit : Gate tuple of Mul
400
+ A tuple of Gates representing a quantum circuit
401
+ gate_ids : list, GateIdentity
402
+ List of gate identities to find in circuit
403
+ seed : int or list
404
+ seed used for _randrange; to override the random selection, provide a
405
+ list of integers: the elements of gate_ids will be tested in the order
406
+ given by the list
407
+
408
+ """
409
+ from sympy.core.random import _randrange
410
+
411
+ if not gate_ids:
412
+ return circuit
413
+
414
+ if isinstance(circuit, Mul):
415
+ circuit = circuit.args
416
+
417
+ ids = flatten_ids(gate_ids)
418
+
419
+ # Create the random integer generator with the seed
420
+ randrange = _randrange(seed)
421
+
422
+ # Look for an identity in the circuit
423
+ while ids:
424
+ i = randrange(len(ids))
425
+ id = ids.pop(i)
426
+ if find_subcircuit(circuit, id) != -1:
427
+ break
428
+ else:
429
+ # no identity was found
430
+ return circuit
431
+
432
+ # return circuit with the identity removed
433
+ return replace_subcircuit(circuit, id)
434
+
435
+
436
+ def random_insert(circuit, choices, seed=None):
437
+ """Insert a circuit into another quantum circuit.
438
+
439
+ Explanation
440
+ ===========
441
+
442
+ random_insert randomly chooses a location in the circuit to insert
443
+ a randomly selected circuit from amongst the given choices.
444
+
445
+ Parameters
446
+ ==========
447
+
448
+ circuit : Gate tuple or Mul
449
+ A tuple or Mul of Gates representing a quantum circuit
450
+ choices : list
451
+ Set of circuit choices
452
+ seed : int or list
453
+ seed used for _randrange; to override the random selections, give
454
+ a list two integers, [i, j] where i is the circuit location where
455
+ choice[j] will be inserted.
456
+
457
+ Notes
458
+ =====
459
+
460
+ Indices for insertion should be [0, n] if n is the length of the
461
+ circuit.
462
+ """
463
+ from sympy.core.random import _randrange
464
+
465
+ if not choices:
466
+ return circuit
467
+
468
+ if isinstance(circuit, Mul):
469
+ circuit = circuit.args
470
+
471
+ # get the location in the circuit and the element to insert from choices
472
+ randrange = _randrange(seed)
473
+ loc = randrange(len(circuit) + 1)
474
+ choice = choices[randrange(len(choices))]
475
+
476
+ circuit = list(circuit)
477
+ circuit[loc: loc] = choice
478
+ return tuple(circuit)
479
+
480
+ # Flatten the GateIdentity objects (with gate rules) into one single list
481
+
482
+
483
+ def flatten_ids(ids):
484
+ collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids,
485
+ key=default_sort_key)
486
+ ids = reduce(collapse, ids, [])
487
+ ids.sort(key=default_sort_key)
488
+ return ids
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The commutator: [A,B] = A*B - B*A."""
2
+
3
+ from sympy.core.add import Add
4
+ from sympy.core.expr import Expr
5
+ from sympy.core.mul import Mul
6
+ from sympy.core.power import Pow
7
+ from sympy.core.singleton import S
8
+ from sympy.printing.pretty.stringpict import prettyForm
9
+
10
+ from sympy.physics.quantum.dagger import Dagger
11
+ from sympy.physics.quantum.operator import Operator
12
+
13
+
14
+ __all__ = [
15
+ 'Commutator'
16
+ ]
17
+
18
+ #-----------------------------------------------------------------------------
19
+ # Commutator
20
+ #-----------------------------------------------------------------------------
21
+
22
+
23
+ class Commutator(Expr):
24
+ """The standard commutator, in an unevaluated state.
25
+
26
+ Explanation
27
+ ===========
28
+
29
+ Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This
30
+ class returns the commutator in an unevaluated form. To evaluate the
31
+ commutator, use the ``.doit()`` method.
32
+
33
+ Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The
34
+ arguments of the commutator are put into canonical order using ``__cmp__``.
35
+ If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``.
36
+
37
+ Parameters
38
+ ==========
39
+
40
+ A : Expr
41
+ The first argument of the commutator [A,B].
42
+ B : Expr
43
+ The second argument of the commutator [A,B].
44
+
45
+ Examples
46
+ ========
47
+
48
+ >>> from sympy.physics.quantum import Commutator, Dagger, Operator
49
+ >>> from sympy.abc import x, y
50
+ >>> A = Operator('A')
51
+ >>> B = Operator('B')
52
+ >>> C = Operator('C')
53
+
54
+ Create a commutator and use ``.doit()`` to evaluate it:
55
+
56
+ >>> comm = Commutator(A, B)
57
+ >>> comm
58
+ [A,B]
59
+ >>> comm.doit()
60
+ A*B - B*A
61
+
62
+ The commutator orders it arguments in canonical order:
63
+
64
+ >>> comm = Commutator(B, A); comm
65
+ -[A,B]
66
+
67
+ Commutative constants are factored out:
68
+
69
+ >>> Commutator(3*x*A, x*y*B)
70
+ 3*x**2*y*[A,B]
71
+
72
+ Using ``.expand(commutator=True)``, the standard commutator expansion rules
73
+ can be applied:
74
+
75
+ >>> Commutator(A+B, C).expand(commutator=True)
76
+ [A,C] + [B,C]
77
+ >>> Commutator(A, B+C).expand(commutator=True)
78
+ [A,B] + [A,C]
79
+ >>> Commutator(A*B, C).expand(commutator=True)
80
+ [A,C]*B + A*[B,C]
81
+ >>> Commutator(A, B*C).expand(commutator=True)
82
+ [A,B]*C + B*[A,C]
83
+
84
+ Adjoint operations applied to the commutator are properly applied to the
85
+ arguments:
86
+
87
+ >>> Dagger(Commutator(A, B))
88
+ -[Dagger(A),Dagger(B)]
89
+
90
+ References
91
+ ==========
92
+
93
+ .. [1] https://en.wikipedia.org/wiki/Commutator
94
+ """
95
+ is_commutative = False
96
+
97
+ def __new__(cls, A, B):
98
+ r = cls.eval(A, B)
99
+ if r is not None:
100
+ return r
101
+ obj = Expr.__new__(cls, A, B)
102
+ return obj
103
+
104
+ @classmethod
105
+ def eval(cls, a, b):
106
+ if not (a and b):
107
+ return S.Zero
108
+ if a == b:
109
+ return S.Zero
110
+ if a.is_commutative or b.is_commutative:
111
+ return S.Zero
112
+
113
+ # [xA,yB] -> xy*[A,B]
114
+ ca, nca = a.args_cnc()
115
+ cb, ncb = b.args_cnc()
116
+ c_part = ca + cb
117
+ if c_part:
118
+ return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
119
+
120
+ # Canonical ordering of arguments
121
+ # The Commutator [A, B] is in canonical form if A < B.
122
+ if a.compare(b) == 1:
123
+ return S.NegativeOne*cls(b, a)
124
+
125
+ def _expand_pow(self, A, B, sign):
126
+ exp = A.exp
127
+ if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1:
128
+ # nothing to do
129
+ return self
130
+ base = A.base
131
+ if exp.is_negative:
132
+ base = A.base**-1
133
+ exp = -exp
134
+ comm = Commutator(base, B).expand(commutator=True)
135
+
136
+ result = base**(exp - 1) * comm
137
+ for i in range(1, exp):
138
+ result += base**(exp - 1 - i) * comm * base**i
139
+ return sign*result.expand()
140
+
141
+ def _eval_expand_commutator(self, **hints):
142
+ A = self.args[0]
143
+ B = self.args[1]
144
+
145
+ if isinstance(A, Add):
146
+ # [A + B, C] -> [A, C] + [B, C]
147
+ sargs = []
148
+ for term in A.args:
149
+ comm = Commutator(term, B)
150
+ if isinstance(comm, Commutator):
151
+ comm = comm._eval_expand_commutator()
152
+ sargs.append(comm)
153
+ return Add(*sargs)
154
+ elif isinstance(B, Add):
155
+ # [A, B + C] -> [A, B] + [A, C]
156
+ sargs = []
157
+ for term in B.args:
158
+ comm = Commutator(A, term)
159
+ if isinstance(comm, Commutator):
160
+ comm = comm._eval_expand_commutator()
161
+ sargs.append(comm)
162
+ return Add(*sargs)
163
+ elif isinstance(A, Mul):
164
+ # [A*B, C] -> A*[B, C] + [A, C]*B
165
+ a = A.args[0]
166
+ b = Mul(*A.args[1:])
167
+ c = B
168
+ comm1 = Commutator(b, c)
169
+ comm2 = Commutator(a, c)
170
+ if isinstance(comm1, Commutator):
171
+ comm1 = comm1._eval_expand_commutator()
172
+ if isinstance(comm2, Commutator):
173
+ comm2 = comm2._eval_expand_commutator()
174
+ first = Mul(a, comm1)
175
+ second = Mul(comm2, b)
176
+ return Add(first, second)
177
+ elif isinstance(B, Mul):
178
+ # [A, B*C] -> [A, B]*C + B*[A, C]
179
+ a = A
180
+ b = B.args[0]
181
+ c = Mul(*B.args[1:])
182
+ comm1 = Commutator(a, b)
183
+ comm2 = Commutator(a, c)
184
+ if isinstance(comm1, Commutator):
185
+ comm1 = comm1._eval_expand_commutator()
186
+ if isinstance(comm2, Commutator):
187
+ comm2 = comm2._eval_expand_commutator()
188
+ first = Mul(comm1, c)
189
+ second = Mul(b, comm2)
190
+ return Add(first, second)
191
+ elif isinstance(A, Pow):
192
+ # [A**n, C] -> A**(n - 1)*[A, C] + A**(n - 2)*[A, C]*A + ... + [A, C]*A**(n-1)
193
+ return self._expand_pow(A, B, 1)
194
+ elif isinstance(B, Pow):
195
+ # [A, C**n] -> C**(n - 1)*[C, A] + C**(n - 2)*[C, A]*C + ... + [C, A]*C**(n-1)
196
+ return self._expand_pow(B, A, -1)
197
+
198
+ # No changes, so return self
199
+ return self
200
+
201
+ def doit(self, **hints):
202
+ """ Evaluate commutator """
203
+ A = self.args[0]
204
+ B = self.args[1]
205
+ if isinstance(A, Operator) and isinstance(B, Operator):
206
+ try:
207
+ comm = A._eval_commutator(B, **hints)
208
+ except NotImplementedError:
209
+ try:
210
+ comm = -1*B._eval_commutator(A, **hints)
211
+ except NotImplementedError:
212
+ comm = None
213
+ if comm is not None:
214
+ return comm.doit(**hints)
215
+ return (A*B - B*A).doit(**hints)
216
+
217
+ def _eval_adjoint(self):
218
+ return Commutator(Dagger(self.args[1]), Dagger(self.args[0]))
219
+
220
+ def _sympyrepr(self, printer, *args):
221
+ return "%s(%s,%s)" % (
222
+ self.__class__.__name__, printer._print(
223
+ self.args[0]), printer._print(self.args[1])
224
+ )
225
+
226
+ def _sympystr(self, printer, *args):
227
+ return "[%s,%s]" % (
228
+ printer._print(self.args[0]), printer._print(self.args[1]))
229
+
230
+ def _pretty(self, printer, *args):
231
+ pform = printer._print(self.args[0], *args)
232
+ pform = prettyForm(*pform.right(prettyForm(',')))
233
+ pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
234
+ pform = prettyForm(*pform.parens(left='[', right=']'))
235
+ return pform
236
+
237
+ def _latex(self, printer, *args):
238
+ return "\\left[%s,%s\\right]" % tuple([
239
+ printer._print(arg, *args) for arg in self.args])
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/constants.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Constants (like hbar) related to quantum mechanics."""
2
+
3
+ from sympy.core.numbers import NumberSymbol
4
+ from sympy.core.singleton import Singleton
5
+ from sympy.printing.pretty.stringpict import prettyForm
6
+ import mpmath.libmp as mlib
7
+
8
+ #-----------------------------------------------------------------------------
9
+ # Constants
10
+ #-----------------------------------------------------------------------------
11
+
12
+ __all__ = [
13
+ 'hbar',
14
+ 'HBar',
15
+ ]
16
+
17
+
18
+ class HBar(NumberSymbol, metaclass=Singleton):
19
+ """Reduced Plank's constant in numerical and symbolic form [1]_.
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy.physics.quantum.constants import hbar
25
+ >>> hbar.evalf()
26
+ 1.05457162000000e-34
27
+
28
+ References
29
+ ==========
30
+
31
+ .. [1] https://en.wikipedia.org/wiki/Planck_constant
32
+ """
33
+
34
+ is_real = True
35
+ is_positive = True
36
+ is_negative = False
37
+ is_irrational = True
38
+
39
+ __slots__ = ()
40
+
41
+ def _as_mpf_val(self, prec):
42
+ return mlib.from_float(1.05457162e-34, prec)
43
+
44
+ def _sympyrepr(self, printer, *args):
45
+ return 'HBar()'
46
+
47
+ def _sympystr(self, printer, *args):
48
+ return 'hbar'
49
+
50
+ def _pretty(self, printer, *args):
51
+ if printer._use_unicode:
52
+ return prettyForm('\N{PLANCK CONSTANT OVER TWO PI}')
53
+ return prettyForm('hbar')
54
+
55
+ def _latex(self, printer, *args):
56
+ return r'\hbar'
57
+
58
+ # Create an instance for everyone to use.
59
+ hbar = HBar()
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/dagger.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Hermitian conjugation."""
2
+
3
+ from sympy.core import Expr, Mul
4
+ from sympy.functions.elementary.complexes import adjoint
5
+
6
+ __all__ = [
7
+ 'Dagger'
8
+ ]
9
+
10
+
11
+ class Dagger(adjoint):
12
+ """General Hermitian conjugate operation.
13
+
14
+ Explanation
15
+ ===========
16
+
17
+ Take the Hermetian conjugate of an argument [1]_. For matrices this
18
+ operation is equivalent to transpose and complex conjugate [2]_.
19
+
20
+ Parameters
21
+ ==========
22
+
23
+ arg : Expr
24
+ The SymPy expression that we want to take the dagger of.
25
+
26
+ Examples
27
+ ========
28
+
29
+ Daggering various quantum objects:
30
+
31
+ >>> from sympy.physics.quantum.dagger import Dagger
32
+ >>> from sympy.physics.quantum.state import Ket, Bra
33
+ >>> from sympy.physics.quantum.operator import Operator
34
+ >>> Dagger(Ket('psi'))
35
+ <psi|
36
+ >>> Dagger(Bra('phi'))
37
+ |phi>
38
+ >>> Dagger(Operator('A'))
39
+ Dagger(A)
40
+
41
+ Inner and outer products::
42
+
43
+ >>> from sympy.physics.quantum import InnerProduct, OuterProduct
44
+ >>> Dagger(InnerProduct(Bra('a'), Ket('b')))
45
+ <b|a>
46
+ >>> Dagger(OuterProduct(Ket('a'), Bra('b')))
47
+ |b><a|
48
+
49
+ Powers, sums and products::
50
+
51
+ >>> A = Operator('A')
52
+ >>> B = Operator('B')
53
+ >>> Dagger(A*B)
54
+ Dagger(B)*Dagger(A)
55
+ >>> Dagger(A+B)
56
+ Dagger(A) + Dagger(B)
57
+ >>> Dagger(A**2)
58
+ Dagger(A)**2
59
+
60
+ Dagger also seamlessly handles complex numbers and matrices::
61
+
62
+ >>> from sympy import Matrix, I
63
+ >>> m = Matrix([[1,I],[2,I]])
64
+ >>> m
65
+ Matrix([
66
+ [1, I],
67
+ [2, I]])
68
+ >>> Dagger(m)
69
+ Matrix([
70
+ [ 1, 2],
71
+ [-I, -I]])
72
+
73
+ References
74
+ ==========
75
+
76
+ .. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint
77
+ .. [2] https://en.wikipedia.org/wiki/Hermitian_transpose
78
+ """
79
+
80
+ def __new__(cls, arg):
81
+ if hasattr(arg, 'adjoint'):
82
+ obj = arg.adjoint()
83
+ elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose'):
84
+ obj = arg.conjugate().transpose()
85
+ if obj is not None:
86
+ return obj
87
+ return Expr.__new__(cls, arg)
88
+
89
+ def __mul__(self, other):
90
+ from sympy.physics.quantum import IdentityOperator
91
+ if isinstance(other, IdentityOperator):
92
+ return self
93
+
94
+ return Mul(self, other)
95
+
96
+ adjoint.__name__ = "Dagger"
97
+ adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/density.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import product
2
+
3
+ from sympy.core.add import Add
4
+ from sympy.core.containers import Tuple
5
+ from sympy.core.function import expand
6
+ from sympy.core.mul import Mul
7
+ from sympy.core.singleton import S
8
+ from sympy.functions.elementary.exponential import log
9
+ from sympy.matrices.dense import MutableDenseMatrix as Matrix
10
+ from sympy.printing.pretty.stringpict import prettyForm
11
+ from sympy.physics.quantum.dagger import Dagger
12
+ from sympy.physics.quantum.operator import HermitianOperator
13
+ from sympy.physics.quantum.represent import represent
14
+ from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy
15
+ from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp
16
+ from sympy.physics.quantum.trace import Tr
17
+
18
+
19
+ class Density(HermitianOperator):
20
+ """Density operator for representing mixed states.
21
+
22
+ TODO: Density operator support for Qubits
23
+
24
+ Parameters
25
+ ==========
26
+
27
+ values : tuples/lists
28
+ Each tuple/list should be of form (state, prob) or [state,prob]
29
+
30
+ Examples
31
+ ========
32
+
33
+ Create a density operator with 2 states represented by Kets.
34
+
35
+ >>> from sympy.physics.quantum.state import Ket
36
+ >>> from sympy.physics.quantum.density import Density
37
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
38
+ >>> d
39
+ Density((|0>, 0.5),(|1>, 0.5))
40
+
41
+ """
42
+ @classmethod
43
+ def _eval_args(cls, args):
44
+ # call this to qsympify the args
45
+ args = super()._eval_args(args)
46
+
47
+ for arg in args:
48
+ # Check if arg is a tuple
49
+ if not (isinstance(arg, Tuple) and len(arg) == 2):
50
+ raise ValueError("Each argument should be of form [state,prob]"
51
+ " or ( state, prob )")
52
+
53
+ return args
54
+
55
+ def states(self):
56
+ """Return list of all states.
57
+
58
+ Examples
59
+ ========
60
+
61
+ >>> from sympy.physics.quantum.state import Ket
62
+ >>> from sympy.physics.quantum.density import Density
63
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
64
+ >>> d.states()
65
+ (|0>, |1>)
66
+
67
+ """
68
+ return Tuple(*[arg[0] for arg in self.args])
69
+
70
+ def probs(self):
71
+ """Return list of all probabilities.
72
+
73
+ Examples
74
+ ========
75
+
76
+ >>> from sympy.physics.quantum.state import Ket
77
+ >>> from sympy.physics.quantum.density import Density
78
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
79
+ >>> d.probs()
80
+ (0.5, 0.5)
81
+
82
+ """
83
+ return Tuple(*[arg[1] for arg in self.args])
84
+
85
+ def get_state(self, index):
86
+ """Return specific state by index.
87
+
88
+ Parameters
89
+ ==========
90
+
91
+ index : index of state to be returned
92
+
93
+ Examples
94
+ ========
95
+
96
+ >>> from sympy.physics.quantum.state import Ket
97
+ >>> from sympy.physics.quantum.density import Density
98
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
99
+ >>> d.states()[1]
100
+ |1>
101
+
102
+ """
103
+ state = self.args[index][0]
104
+ return state
105
+
106
+ def get_prob(self, index):
107
+ """Return probability of specific state by index.
108
+
109
+ Parameters
110
+ ===========
111
+
112
+ index : index of states whose probability is returned.
113
+
114
+ Examples
115
+ ========
116
+
117
+ >>> from sympy.physics.quantum.state import Ket
118
+ >>> from sympy.physics.quantum.density import Density
119
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
120
+ >>> d.probs()[1]
121
+ 0.500000000000000
122
+
123
+ """
124
+ prob = self.args[index][1]
125
+ return prob
126
+
127
+ def apply_op(self, op):
128
+ """op will operate on each individual state.
129
+
130
+ Parameters
131
+ ==========
132
+
133
+ op : Operator
134
+
135
+ Examples
136
+ ========
137
+
138
+ >>> from sympy.physics.quantum.state import Ket
139
+ >>> from sympy.physics.quantum.density import Density
140
+ >>> from sympy.physics.quantum.operator import Operator
141
+ >>> A = Operator('A')
142
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
143
+ >>> d.apply_op(A)
144
+ Density((A*|0>, 0.5),(A*|1>, 0.5))
145
+
146
+ """
147
+ new_args = [(op*state, prob) for (state, prob) in self.args]
148
+ return Density(*new_args)
149
+
150
+ def doit(self, **hints):
151
+ """Expand the density operator into an outer product format.
152
+
153
+ Examples
154
+ ========
155
+
156
+ >>> from sympy.physics.quantum.state import Ket
157
+ >>> from sympy.physics.quantum.density import Density
158
+ >>> from sympy.physics.quantum.operator import Operator
159
+ >>> A = Operator('A')
160
+ >>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
161
+ >>> d.doit()
162
+ 0.5*|0><0| + 0.5*|1><1|
163
+
164
+ """
165
+
166
+ terms = []
167
+ for (state, prob) in self.args:
168
+ state = state.expand() # needed to break up (a+b)*c
169
+ if (isinstance(state, Add)):
170
+ for arg in product(state.args, repeat=2):
171
+ terms.append(prob*self._generate_outer_prod(arg[0],
172
+ arg[1]))
173
+ else:
174
+ terms.append(prob*self._generate_outer_prod(state, state))
175
+
176
+ return Add(*terms)
177
+
178
+ def _generate_outer_prod(self, arg1, arg2):
179
+ c_part1, nc_part1 = arg1.args_cnc()
180
+ c_part2, nc_part2 = arg2.args_cnc()
181
+
182
+ if (len(nc_part1) == 0 or len(nc_part2) == 0):
183
+ raise ValueError('Atleast one-pair of'
184
+ ' Non-commutative instance required'
185
+ ' for outer product.')
186
+
187
+ # Muls of Tensor Products should be expanded
188
+ # before this function is called
189
+ if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1
190
+ and len(nc_part2) == 1):
191
+ op = tensor_product_simp(nc_part1[0]*Dagger(nc_part2[0]))
192
+ else:
193
+ op = Mul(*nc_part1)*Dagger(Mul(*nc_part2))
194
+
195
+ return Mul(*c_part1)*Mul(*c_part2) * op
196
+
197
+ def _represent(self, **options):
198
+ return represent(self.doit(), **options)
199
+
200
+ def _print_operator_name_latex(self, printer, *args):
201
+ return r'\rho'
202
+
203
+ def _print_operator_name_pretty(self, printer, *args):
204
+ return prettyForm('\N{GREEK SMALL LETTER RHO}')
205
+
206
+ def _eval_trace(self, **kwargs):
207
+ indices = kwargs.get('indices', [])
208
+ return Tr(self.doit(), indices).doit()
209
+
210
+ def entropy(self):
211
+ """ Compute the entropy of a density matrix.
212
+
213
+ Refer to density.entropy() method for examples.
214
+ """
215
+ return entropy(self)
216
+
217
+
218
+ def entropy(density):
219
+ """Compute the entropy of a matrix/density object.
220
+
221
+ This computes -Tr(density*ln(density)) using the eigenvalue decomposition
222
+ of density, which is given as either a Density instance or a matrix
223
+ (numpy.ndarray, sympy.Matrix or scipy.sparse).
224
+
225
+ Parameters
226
+ ==========
227
+
228
+ density : density matrix of type Density, SymPy matrix,
229
+ scipy.sparse or numpy.ndarray
230
+
231
+ Examples
232
+ ========
233
+
234
+ >>> from sympy.physics.quantum.density import Density, entropy
235
+ >>> from sympy.physics.quantum.spin import JzKet
236
+ >>> from sympy import S
237
+ >>> up = JzKet(S(1)/2,S(1)/2)
238
+ >>> down = JzKet(S(1)/2,-S(1)/2)
239
+ >>> d = Density((up,S(1)/2),(down,S(1)/2))
240
+ >>> entropy(d)
241
+ log(2)/2
242
+
243
+ """
244
+ if isinstance(density, Density):
245
+ density = represent(density) # represent in Matrix
246
+
247
+ if isinstance(density, scipy_sparse_matrix):
248
+ density = to_numpy(density)
249
+
250
+ if isinstance(density, Matrix):
251
+ eigvals = density.eigenvals().keys()
252
+ return expand(-sum(e*log(e) for e in eigvals))
253
+ elif isinstance(density, numpy_ndarray):
254
+ import numpy as np
255
+ eigvals = np.linalg.eigvals(density)
256
+ return -np.sum(eigvals*np.log(eigvals))
257
+ else:
258
+ raise ValueError(
259
+ "numpy.ndarray, scipy.sparse or SymPy matrix expected")
260
+
261
+
262
+ def fidelity(state1, state2):
263
+ """ Computes the fidelity [1]_ between two quantum states
264
+
265
+ The arguments provided to this function should be a square matrix or a
266
+ Density object. If it is a square matrix, it is assumed to be diagonalizable.
267
+
268
+ Parameters
269
+ ==========
270
+
271
+ state1, state2 : a density matrix or Matrix
272
+
273
+
274
+ Examples
275
+ ========
276
+
277
+ >>> from sympy import S, sqrt
278
+ >>> from sympy.physics.quantum.dagger import Dagger
279
+ >>> from sympy.physics.quantum.spin import JzKet
280
+ >>> from sympy.physics.quantum.density import fidelity
281
+ >>> from sympy.physics.quantum.represent import represent
282
+ >>>
283
+ >>> up = JzKet(S(1)/2,S(1)/2)
284
+ >>> down = JzKet(S(1)/2,-S(1)/2)
285
+ >>> amp = 1/sqrt(2)
286
+ >>> updown = (amp*up) + (amp*down)
287
+ >>>
288
+ >>> # represent turns Kets into matrices
289
+ >>> up_dm = represent(up*Dagger(up))
290
+ >>> down_dm = represent(down*Dagger(down))
291
+ >>> updown_dm = represent(updown*Dagger(updown))
292
+ >>>
293
+ >>> fidelity(up_dm, up_dm)
294
+ 1
295
+ >>> fidelity(up_dm, down_dm) #orthogonal states
296
+ 0
297
+ >>> fidelity(up_dm, updown_dm).evalf().round(3)
298
+ 0.707
299
+
300
+ References
301
+ ==========
302
+
303
+ .. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states
304
+
305
+ """
306
+ state1 = represent(state1) if isinstance(state1, Density) else state1
307
+ state2 = represent(state2) if isinstance(state2, Density) else state2
308
+
309
+ if not isinstance(state1, Matrix) or not isinstance(state2, Matrix):
310
+ raise ValueError("state1 and state2 must be of type Density or Matrix "
311
+ "received type=%s for state1 and type=%s for state2" %
312
+ (type(state1), type(state2)))
313
+
314
+ if state1.shape != state2.shape and state1.is_square:
315
+ raise ValueError("The dimensions of both args should be equal and the "
316
+ "matrix obtained should be a square matrix")
317
+
318
+ sqrt_state1 = state1**S.Half
319
+ return Tr((sqrt_state1*state2*sqrt_state1)**S.Half).doit()
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/fermion.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Fermionic quantum operators."""
2
+
3
+ from sympy.core.numbers import Integer
4
+ from sympy.core.singleton import S
5
+ from sympy.physics.quantum import Operator
6
+ from sympy.physics.quantum import HilbertSpace, Ket, Bra
7
+ from sympy.functions.special.tensor_functions import KroneckerDelta
8
+
9
+
10
+ __all__ = [
11
+ 'FermionOp',
12
+ 'FermionFockKet',
13
+ 'FermionFockBra'
14
+ ]
15
+
16
+
17
+ class FermionOp(Operator):
18
+ """A fermionic operator that satisfies {c, Dagger(c)} == 1.
19
+
20
+ Parameters
21
+ ==========
22
+
23
+ name : str
24
+ A string that labels the fermionic mode.
25
+
26
+ annihilation : bool
27
+ A bool that indicates if the fermionic operator is an annihilation
28
+ (True, default value) or creation operator (False)
29
+
30
+ Examples
31
+ ========
32
+
33
+ >>> from sympy.physics.quantum import Dagger, AntiCommutator
34
+ >>> from sympy.physics.quantum.fermion import FermionOp
35
+ >>> c = FermionOp("c")
36
+ >>> AntiCommutator(c, Dagger(c)).doit()
37
+ 1
38
+ """
39
+ @property
40
+ def name(self):
41
+ return self.args[0]
42
+
43
+ @property
44
+ def is_annihilation(self):
45
+ return bool(self.args[1])
46
+
47
+ @classmethod
48
+ def default_args(self):
49
+ return ("c", True)
50
+
51
+ def __new__(cls, *args, **hints):
52
+ if not len(args) in [1, 2]:
53
+ raise ValueError('1 or 2 parameters expected, got %s' % args)
54
+
55
+ if len(args) == 1:
56
+ args = (args[0], S.One)
57
+
58
+ if len(args) == 2:
59
+ args = (args[0], Integer(args[1]))
60
+
61
+ return Operator.__new__(cls, *args)
62
+
63
+ def _eval_commutator_FermionOp(self, other, **hints):
64
+ if 'independent' in hints and hints['independent']:
65
+ # [c, d] = 0
66
+ return S.Zero
67
+
68
+ return None
69
+
70
+ def _eval_anticommutator_FermionOp(self, other, **hints):
71
+ if self.name == other.name:
72
+ # {a^\dagger, a} = 1
73
+ if not self.is_annihilation and other.is_annihilation:
74
+ return S.One
75
+
76
+ elif 'independent' in hints and hints['independent']:
77
+ # {c, d} = 2 * c * d, because [c, d] = 0 for independent operators
78
+ return 2 * self * other
79
+
80
+ return None
81
+
82
+ def _eval_anticommutator_BosonOp(self, other, **hints):
83
+ # because fermions and bosons commute
84
+ return 2 * self * other
85
+
86
+ def _eval_commutator_BosonOp(self, other, **hints):
87
+ return S.Zero
88
+
89
+ def _eval_adjoint(self):
90
+ return FermionOp(str(self.name), not self.is_annihilation)
91
+
92
+ def _print_contents_latex(self, printer, *args):
93
+ if self.is_annihilation:
94
+ return r'{%s}' % str(self.name)
95
+ else:
96
+ return r'{{%s}^\dagger}' % str(self.name)
97
+
98
+ def _print_contents(self, printer, *args):
99
+ if self.is_annihilation:
100
+ return r'%s' % str(self.name)
101
+ else:
102
+ return r'Dagger(%s)' % str(self.name)
103
+
104
+ def _print_contents_pretty(self, printer, *args):
105
+ from sympy.printing.pretty.stringpict import prettyForm
106
+ pform = printer._print(self.args[0], *args)
107
+ if self.is_annihilation:
108
+ return pform
109
+ else:
110
+ return pform**prettyForm('\N{DAGGER}')
111
+
112
+
113
+ class FermionFockKet(Ket):
114
+ """Fock state ket for a fermionic mode.
115
+
116
+ Parameters
117
+ ==========
118
+
119
+ n : Number
120
+ The Fock state number.
121
+
122
+ """
123
+
124
+ def __new__(cls, n):
125
+ if n not in (0, 1):
126
+ raise ValueError("n must be 0 or 1")
127
+ return Ket.__new__(cls, n)
128
+
129
+ @property
130
+ def n(self):
131
+ return self.label[0]
132
+
133
+ @classmethod
134
+ def dual_class(self):
135
+ return FermionFockBra
136
+
137
+ @classmethod
138
+ def _eval_hilbert_space(cls, label):
139
+ return HilbertSpace()
140
+
141
+ def _eval_innerproduct_FermionFockBra(self, bra, **hints):
142
+ return KroneckerDelta(self.n, bra.n)
143
+
144
+ def _apply_from_right_to_FermionOp(self, op, **options):
145
+ if op.is_annihilation:
146
+ if self.n == 1:
147
+ return FermionFockKet(0)
148
+ else:
149
+ return S.Zero
150
+ else:
151
+ if self.n == 0:
152
+ return FermionFockKet(1)
153
+ else:
154
+ return S.Zero
155
+
156
+
157
+ class FermionFockBra(Bra):
158
+ """Fock state bra for a fermionic mode.
159
+
160
+ Parameters
161
+ ==========
162
+
163
+ n : Number
164
+ The Fock state number.
165
+
166
+ """
167
+
168
+ def __new__(cls, n):
169
+ if n not in (0, 1):
170
+ raise ValueError("n must be 0 or 1")
171
+ return Bra.__new__(cls, n)
172
+
173
+ @property
174
+ def n(self):
175
+ return self.label[0]
176
+
177
+ @classmethod
178
+ def dual_class(self):
179
+ return FermionFockKet
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/gate.py ADDED
@@ -0,0 +1,1305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """An implementation of gates that act on qubits.
2
+
3
+ Gates are unitary operators that act on the space of qubits.
4
+
5
+ Medium Term Todo:
6
+
7
+ * Optimize Gate._apply_operators_Qubit to remove the creation of many
8
+ intermediate Qubit objects.
9
+ * Add commutation relationships to all operators and use this in gate_sort.
10
+ * Fix gate_sort and gate_simp.
11
+ * Get multi-target UGates plotting properly.
12
+ * Get UGate to work with either sympy/numpy matrices and output either
13
+ format. This should also use the matrix slots.
14
+ """
15
+
16
+ from itertools import chain
17
+ import random
18
+
19
+ from sympy.core.add import Add
20
+ from sympy.core.containers import Tuple
21
+ from sympy.core.mul import Mul
22
+ from sympy.core.numbers import (I, Integer)
23
+ from sympy.core.power import Pow
24
+ from sympy.core.numbers import Number
25
+ from sympy.core.singleton import S as _S
26
+ from sympy.core.sorting import default_sort_key
27
+ from sympy.core.sympify import _sympify
28
+ from sympy.functions.elementary.miscellaneous import sqrt
29
+ from sympy.printing.pretty.stringpict import prettyForm, stringPict
30
+
31
+ from sympy.physics.quantum.anticommutator import AntiCommutator
32
+ from sympy.physics.quantum.commutator import Commutator
33
+ from sympy.physics.quantum.qexpr import QuantumError
34
+ from sympy.physics.quantum.hilbert import ComplexSpace
35
+ from sympy.physics.quantum.operator import (UnitaryOperator, Operator,
36
+ HermitianOperator)
37
+ from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye
38
+ from sympy.physics.quantum.matrixcache import matrix_cache
39
+
40
+ from sympy.matrices.matrices import MatrixBase
41
+
42
+ from sympy.utilities.iterables import is_sequence
43
+
44
+ __all__ = [
45
+ 'Gate',
46
+ 'CGate',
47
+ 'UGate',
48
+ 'OneQubitGate',
49
+ 'TwoQubitGate',
50
+ 'IdentityGate',
51
+ 'HadamardGate',
52
+ 'XGate',
53
+ 'YGate',
54
+ 'ZGate',
55
+ 'TGate',
56
+ 'PhaseGate',
57
+ 'SwapGate',
58
+ 'CNotGate',
59
+ # Aliased gate names
60
+ 'CNOT',
61
+ 'SWAP',
62
+ 'H',
63
+ 'X',
64
+ 'Y',
65
+ 'Z',
66
+ 'T',
67
+ 'S',
68
+ 'Phase',
69
+ 'normalized',
70
+ 'gate_sort',
71
+ 'gate_simp',
72
+ 'random_circuit',
73
+ 'CPHASE',
74
+ 'CGateS',
75
+ ]
76
+
77
+ #-----------------------------------------------------------------------------
78
+ # Gate Super-Classes
79
+ #-----------------------------------------------------------------------------
80
+
81
+ _normalized = True
82
+
83
+
84
+ def _max(*args, **kwargs):
85
+ if "key" not in kwargs:
86
+ kwargs["key"] = default_sort_key
87
+ return max(*args, **kwargs)
88
+
89
+
90
+ def _min(*args, **kwargs):
91
+ if "key" not in kwargs:
92
+ kwargs["key"] = default_sort_key
93
+ return min(*args, **kwargs)
94
+
95
+
96
+ def normalized(normalize):
97
+ r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`.
98
+
99
+ This is a global setting that can be used to simplify the look of various
100
+ expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate.
101
+
102
+ Parameters
103
+ ----------
104
+ normalize : bool
105
+ Should the Hadamard gate include the `1/\sqrt{2}` normalization factor?
106
+ When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the
107
+ Hadamard gate will not have this factor.
108
+ """
109
+ global _normalized
110
+ _normalized = normalize
111
+
112
+
113
+ def _validate_targets_controls(tandc):
114
+ tandc = list(tandc)
115
+ # Check for integers
116
+ for bit in tandc:
117
+ if not bit.is_Integer and not bit.is_Symbol:
118
+ raise TypeError('Integer expected, got: %r' % tandc[bit])
119
+ # Detect duplicates
120
+ if len(set(tandc)) != len(tandc):
121
+ raise QuantumError(
122
+ 'Target/control qubits in a gate cannot be duplicated'
123
+ )
124
+
125
+
126
+ class Gate(UnitaryOperator):
127
+ """Non-controlled unitary gate operator that acts on qubits.
128
+
129
+ This is a general abstract gate that needs to be subclassed to do anything
130
+ useful.
131
+
132
+ Parameters
133
+ ----------
134
+ label : tuple, int
135
+ A list of the target qubits (as ints) that the gate will apply to.
136
+
137
+ Examples
138
+ ========
139
+
140
+
141
+ """
142
+
143
+ _label_separator = ','
144
+
145
+ gate_name = 'G'
146
+ gate_name_latex = 'G'
147
+
148
+ #-------------------------------------------------------------------------
149
+ # Initialization/creation
150
+ #-------------------------------------------------------------------------
151
+
152
+ @classmethod
153
+ def _eval_args(cls, args):
154
+ args = Tuple(*UnitaryOperator._eval_args(args))
155
+ _validate_targets_controls(args)
156
+ return args
157
+
158
+ @classmethod
159
+ def _eval_hilbert_space(cls, args):
160
+ """This returns the smallest possible Hilbert space."""
161
+ return ComplexSpace(2)**(_max(args) + 1)
162
+
163
+ #-------------------------------------------------------------------------
164
+ # Properties
165
+ #-------------------------------------------------------------------------
166
+
167
+ @property
168
+ def nqubits(self):
169
+ """The total number of qubits this gate acts on.
170
+
171
+ For controlled gate subclasses this includes both target and control
172
+ qubits, so that, for examples the CNOT gate acts on 2 qubits.
173
+ """
174
+ return len(self.targets)
175
+
176
+ @property
177
+ def min_qubits(self):
178
+ """The minimum number of qubits this gate needs to act on."""
179
+ return _max(self.targets) + 1
180
+
181
+ @property
182
+ def targets(self):
183
+ """A tuple of target qubits."""
184
+ return self.label
185
+
186
+ @property
187
+ def gate_name_plot(self):
188
+ return r'$%s$' % self.gate_name_latex
189
+
190
+ #-------------------------------------------------------------------------
191
+ # Gate methods
192
+ #-------------------------------------------------------------------------
193
+
194
+ def get_target_matrix(self, format='sympy'):
195
+ """The matrix representation of the target part of the gate.
196
+
197
+ Parameters
198
+ ----------
199
+ format : str
200
+ The format string ('sympy','numpy', etc.)
201
+ """
202
+ raise NotImplementedError(
203
+ 'get_target_matrix is not implemented in Gate.')
204
+
205
+ #-------------------------------------------------------------------------
206
+ # Apply
207
+ #-------------------------------------------------------------------------
208
+
209
+ def _apply_operator_IntQubit(self, qubits, **options):
210
+ """Redirect an apply from IntQubit to Qubit"""
211
+ return self._apply_operator_Qubit(qubits, **options)
212
+
213
+ def _apply_operator_Qubit(self, qubits, **options):
214
+ """Apply this gate to a Qubit."""
215
+
216
+ # Check number of qubits this gate acts on.
217
+ if qubits.nqubits < self.min_qubits:
218
+ raise QuantumError(
219
+ 'Gate needs a minimum of %r qubits to act on, got: %r' %
220
+ (self.min_qubits, qubits.nqubits)
221
+ )
222
+
223
+ # If the controls are not met, just return
224
+ if isinstance(self, CGate):
225
+ if not self.eval_controls(qubits):
226
+ return qubits
227
+
228
+ targets = self.targets
229
+ target_matrix = self.get_target_matrix(format='sympy')
230
+
231
+ # Find which column of the target matrix this applies to.
232
+ column_index = 0
233
+ n = 1
234
+ for target in targets:
235
+ column_index += n*qubits[target]
236
+ n = n << 1
237
+ column = target_matrix[:, int(column_index)]
238
+
239
+ # Now apply each column element to the qubit.
240
+ result = 0
241
+ for index in range(column.rows):
242
+ # TODO: This can be optimized to reduce the number of Qubit
243
+ # creations. We should simply manipulate the raw list of qubit
244
+ # values and then build the new Qubit object once.
245
+ # Make a copy of the incoming qubits.
246
+ new_qubit = qubits.__class__(*qubits.args)
247
+ # Flip the bits that need to be flipped.
248
+ for bit, target in enumerate(targets):
249
+ if new_qubit[target] != (index >> bit) & 1:
250
+ new_qubit = new_qubit.flip(target)
251
+ # The value in that row and column times the flipped-bit qubit
252
+ # is the result for that part.
253
+ result += column[index]*new_qubit
254
+ return result
255
+
256
+ #-------------------------------------------------------------------------
257
+ # Represent
258
+ #-------------------------------------------------------------------------
259
+
260
+ def _represent_default_basis(self, **options):
261
+ return self._represent_ZGate(None, **options)
262
+
263
+ def _represent_ZGate(self, basis, **options):
264
+ format = options.get('format', 'sympy')
265
+ nqubits = options.get('nqubits', 0)
266
+ if nqubits == 0:
267
+ raise QuantumError(
268
+ 'The number of qubits must be given as nqubits.')
269
+
270
+ # Make sure we have enough qubits for the gate.
271
+ if nqubits < self.min_qubits:
272
+ raise QuantumError(
273
+ 'The number of qubits %r is too small for the gate.' % nqubits
274
+ )
275
+
276
+ target_matrix = self.get_target_matrix(format)
277
+ targets = self.targets
278
+ if isinstance(self, CGate):
279
+ controls = self.controls
280
+ else:
281
+ controls = []
282
+ m = represent_zbasis(
283
+ controls, targets, target_matrix, nqubits, format
284
+ )
285
+ return m
286
+
287
+ #-------------------------------------------------------------------------
288
+ # Print methods
289
+ #-------------------------------------------------------------------------
290
+
291
+ def _sympystr(self, printer, *args):
292
+ label = self._print_label(printer, *args)
293
+ return '%s(%s)' % (self.gate_name, label)
294
+
295
+ def _pretty(self, printer, *args):
296
+ a = stringPict(self.gate_name)
297
+ b = self._print_label_pretty(printer, *args)
298
+ return self._print_subscript_pretty(a, b)
299
+
300
+ def _latex(self, printer, *args):
301
+ label = self._print_label(printer, *args)
302
+ return '%s_{%s}' % (self.gate_name_latex, label)
303
+
304
+ def plot_gate(self, axes, gate_idx, gate_grid, wire_grid):
305
+ raise NotImplementedError('plot_gate is not implemented.')
306
+
307
+
308
+ class CGate(Gate):
309
+ """A general unitary gate with control qubits.
310
+
311
+ A general control gate applies a target gate to a set of targets if all
312
+ of the control qubits have a particular values (set by
313
+ ``CGate.control_value``).
314
+
315
+ Parameters
316
+ ----------
317
+ label : tuple
318
+ The label in this case has the form (controls, gate), where controls
319
+ is a tuple/list of control qubits (as ints) and gate is a ``Gate``
320
+ instance that is the target operator.
321
+
322
+ Examples
323
+ ========
324
+
325
+ """
326
+
327
+ gate_name = 'C'
328
+ gate_name_latex = 'C'
329
+
330
+ # The values this class controls for.
331
+ control_value = _S.One
332
+
333
+ simplify_cgate = False
334
+
335
+ #-------------------------------------------------------------------------
336
+ # Initialization
337
+ #-------------------------------------------------------------------------
338
+
339
+ @classmethod
340
+ def _eval_args(cls, args):
341
+ # _eval_args has the right logic for the controls argument.
342
+ controls = args[0]
343
+ gate = args[1]
344
+ if not is_sequence(controls):
345
+ controls = (controls,)
346
+ controls = UnitaryOperator._eval_args(controls)
347
+ _validate_targets_controls(chain(controls, gate.targets))
348
+ return (Tuple(*controls), gate)
349
+
350
+ @classmethod
351
+ def _eval_hilbert_space(cls, args):
352
+ """This returns the smallest possible Hilbert space."""
353
+ return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits)
354
+
355
+ #-------------------------------------------------------------------------
356
+ # Properties
357
+ #-------------------------------------------------------------------------
358
+
359
+ @property
360
+ def nqubits(self):
361
+ """The total number of qubits this gate acts on.
362
+
363
+ For controlled gate subclasses this includes both target and control
364
+ qubits, so that, for examples the CNOT gate acts on 2 qubits.
365
+ """
366
+ return len(self.targets) + len(self.controls)
367
+
368
+ @property
369
+ def min_qubits(self):
370
+ """The minimum number of qubits this gate needs to act on."""
371
+ return _max(_max(self.controls), _max(self.targets)) + 1
372
+
373
+ @property
374
+ def targets(self):
375
+ """A tuple of target qubits."""
376
+ return self.gate.targets
377
+
378
+ @property
379
+ def controls(self):
380
+ """A tuple of control qubits."""
381
+ return tuple(self.label[0])
382
+
383
+ @property
384
+ def gate(self):
385
+ """The non-controlled gate that will be applied to the targets."""
386
+ return self.label[1]
387
+
388
+ #-------------------------------------------------------------------------
389
+ # Gate methods
390
+ #-------------------------------------------------------------------------
391
+
392
+ def get_target_matrix(self, format='sympy'):
393
+ return self.gate.get_target_matrix(format)
394
+
395
+ def eval_controls(self, qubit):
396
+ """Return True/False to indicate if the controls are satisfied."""
397
+ return all(qubit[bit] == self.control_value for bit in self.controls)
398
+
399
+ def decompose(self, **options):
400
+ """Decompose the controlled gate into CNOT and single qubits gates."""
401
+ if len(self.controls) == 1:
402
+ c = self.controls[0]
403
+ t = self.gate.targets[0]
404
+ if isinstance(self.gate, YGate):
405
+ g1 = PhaseGate(t)
406
+ g2 = CNotGate(c, t)
407
+ g3 = PhaseGate(t)
408
+ g4 = ZGate(t)
409
+ return g1*g2*g3*g4
410
+ if isinstance(self.gate, ZGate):
411
+ g1 = HadamardGate(t)
412
+ g2 = CNotGate(c, t)
413
+ g3 = HadamardGate(t)
414
+ return g1*g2*g3
415
+ else:
416
+ return self
417
+
418
+ #-------------------------------------------------------------------------
419
+ # Print methods
420
+ #-------------------------------------------------------------------------
421
+
422
+ def _print_label(self, printer, *args):
423
+ controls = self._print_sequence(self.controls, ',', printer, *args)
424
+ gate = printer._print(self.gate, *args)
425
+ return '(%s),%s' % (controls, gate)
426
+
427
+ def _pretty(self, printer, *args):
428
+ controls = self._print_sequence_pretty(
429
+ self.controls, ',', printer, *args)
430
+ gate = printer._print(self.gate)
431
+ gate_name = stringPict(self.gate_name)
432
+ first = self._print_subscript_pretty(gate_name, controls)
433
+ gate = self._print_parens_pretty(gate)
434
+ final = prettyForm(*first.right(gate))
435
+ return final
436
+
437
+ def _latex(self, printer, *args):
438
+ controls = self._print_sequence(self.controls, ',', printer, *args)
439
+ gate = printer._print(self.gate, *args)
440
+ return r'%s_{%s}{\left(%s\right)}' % \
441
+ (self.gate_name_latex, controls, gate)
442
+
443
+ def plot_gate(self, circ_plot, gate_idx):
444
+ """
445
+ Plot the controlled gate. If *simplify_cgate* is true, simplify
446
+ C-X and C-Z gates into their more familiar forms.
447
+ """
448
+ min_wire = int(_min(chain(self.controls, self.targets)))
449
+ max_wire = int(_max(chain(self.controls, self.targets)))
450
+ circ_plot.control_line(gate_idx, min_wire, max_wire)
451
+ for c in self.controls:
452
+ circ_plot.control_point(gate_idx, int(c))
453
+ if self.simplify_cgate:
454
+ if self.gate.gate_name == 'X':
455
+ self.gate.plot_gate_plus(circ_plot, gate_idx)
456
+ elif self.gate.gate_name == 'Z':
457
+ circ_plot.control_point(gate_idx, self.targets[0])
458
+ else:
459
+ self.gate.plot_gate(circ_plot, gate_idx)
460
+ else:
461
+ self.gate.plot_gate(circ_plot, gate_idx)
462
+
463
+ #-------------------------------------------------------------------------
464
+ # Miscellaneous
465
+ #-------------------------------------------------------------------------
466
+
467
+ def _eval_dagger(self):
468
+ if isinstance(self.gate, HermitianOperator):
469
+ return self
470
+ else:
471
+ return Gate._eval_dagger(self)
472
+
473
+ def _eval_inverse(self):
474
+ if isinstance(self.gate, HermitianOperator):
475
+ return self
476
+ else:
477
+ return Gate._eval_inverse(self)
478
+
479
+ def _eval_power(self, exp):
480
+ if isinstance(self.gate, HermitianOperator):
481
+ if exp == -1:
482
+ return Gate._eval_power(self, exp)
483
+ elif abs(exp) % 2 == 0:
484
+ return self*(Gate._eval_inverse(self))
485
+ else:
486
+ return self
487
+ else:
488
+ return Gate._eval_power(self, exp)
489
+
490
+ class CGateS(CGate):
491
+ """Version of CGate that allows gate simplifications.
492
+ I.e. cnot looks like an oplus, cphase has dots, etc.
493
+ """
494
+ simplify_cgate=True
495
+
496
+
497
+ class UGate(Gate):
498
+ """General gate specified by a set of targets and a target matrix.
499
+
500
+ Parameters
501
+ ----------
502
+ label : tuple
503
+ A tuple of the form (targets, U), where targets is a tuple of the
504
+ target qubits and U is a unitary matrix with dimension of
505
+ len(targets).
506
+ """
507
+ gate_name = 'U'
508
+ gate_name_latex = 'U'
509
+
510
+ #-------------------------------------------------------------------------
511
+ # Initialization
512
+ #-------------------------------------------------------------------------
513
+
514
+ @classmethod
515
+ def _eval_args(cls, args):
516
+ targets = args[0]
517
+ if not is_sequence(targets):
518
+ targets = (targets,)
519
+ targets = Gate._eval_args(targets)
520
+ _validate_targets_controls(targets)
521
+ mat = args[1]
522
+ if not isinstance(mat, MatrixBase):
523
+ raise TypeError('Matrix expected, got: %r' % mat)
524
+ #make sure this matrix is of a Basic type
525
+ mat = _sympify(mat)
526
+ dim = 2**len(targets)
527
+ if not all(dim == shape for shape in mat.shape):
528
+ raise IndexError(
529
+ 'Number of targets must match the matrix size: %r %r' %
530
+ (targets, mat)
531
+ )
532
+ return (targets, mat)
533
+
534
+ @classmethod
535
+ def _eval_hilbert_space(cls, args):
536
+ """This returns the smallest possible Hilbert space."""
537
+ return ComplexSpace(2)**(_max(args[0]) + 1)
538
+
539
+ #-------------------------------------------------------------------------
540
+ # Properties
541
+ #-------------------------------------------------------------------------
542
+
543
+ @property
544
+ def targets(self):
545
+ """A tuple of target qubits."""
546
+ return tuple(self.label[0])
547
+
548
+ #-------------------------------------------------------------------------
549
+ # Gate methods
550
+ #-------------------------------------------------------------------------
551
+
552
+ def get_target_matrix(self, format='sympy'):
553
+ """The matrix rep. of the target part of the gate.
554
+
555
+ Parameters
556
+ ----------
557
+ format : str
558
+ The format string ('sympy','numpy', etc.)
559
+ """
560
+ return self.label[1]
561
+
562
+ #-------------------------------------------------------------------------
563
+ # Print methods
564
+ #-------------------------------------------------------------------------
565
+ def _pretty(self, printer, *args):
566
+ targets = self._print_sequence_pretty(
567
+ self.targets, ',', printer, *args)
568
+ gate_name = stringPict(self.gate_name)
569
+ return self._print_subscript_pretty(gate_name, targets)
570
+
571
+ def _latex(self, printer, *args):
572
+ targets = self._print_sequence(self.targets, ',', printer, *args)
573
+ return r'%s_{%s}' % (self.gate_name_latex, targets)
574
+
575
+ def plot_gate(self, circ_plot, gate_idx):
576
+ circ_plot.one_qubit_box(
577
+ self.gate_name_plot,
578
+ gate_idx, int(self.targets[0])
579
+ )
580
+
581
+
582
+ class OneQubitGate(Gate):
583
+ """A single qubit unitary gate base class."""
584
+
585
+ nqubits = _S.One
586
+
587
+ def plot_gate(self, circ_plot, gate_idx):
588
+ circ_plot.one_qubit_box(
589
+ self.gate_name_plot,
590
+ gate_idx, int(self.targets[0])
591
+ )
592
+
593
+ def _eval_commutator(self, other, **hints):
594
+ if isinstance(other, OneQubitGate):
595
+ if self.targets != other.targets or self.__class__ == other.__class__:
596
+ return _S.Zero
597
+ return Operator._eval_commutator(self, other, **hints)
598
+
599
+ def _eval_anticommutator(self, other, **hints):
600
+ if isinstance(other, OneQubitGate):
601
+ if self.targets != other.targets or self.__class__ == other.__class__:
602
+ return Integer(2)*self*other
603
+ return Operator._eval_anticommutator(self, other, **hints)
604
+
605
+
606
+ class TwoQubitGate(Gate):
607
+ """A two qubit unitary gate base class."""
608
+
609
+ nqubits = Integer(2)
610
+
611
+ #-----------------------------------------------------------------------------
612
+ # Single Qubit Gates
613
+ #-----------------------------------------------------------------------------
614
+
615
+
616
+ class IdentityGate(OneQubitGate):
617
+ """The single qubit identity gate.
618
+
619
+ Parameters
620
+ ----------
621
+ target : int
622
+ The target qubit this gate will apply to.
623
+
624
+ Examples
625
+ ========
626
+
627
+ """
628
+ gate_name = '1'
629
+ gate_name_latex = '1'
630
+
631
+ # Short cut version of gate._apply_operator_Qubit
632
+ def _apply_operator_Qubit(self, qubits, **options):
633
+ # Check number of qubits this gate acts on (see gate._apply_operator_Qubit)
634
+ if qubits.nqubits < self.min_qubits:
635
+ raise QuantumError(
636
+ 'Gate needs a minimum of %r qubits to act on, got: %r' %
637
+ (self.min_qubits, qubits.nqubits)
638
+ )
639
+ return qubits # no computation required for IdentityGate
640
+
641
+ def get_target_matrix(self, format='sympy'):
642
+ return matrix_cache.get_matrix('eye2', format)
643
+
644
+ def _eval_commutator(self, other, **hints):
645
+ return _S.Zero
646
+
647
+ def _eval_anticommutator(self, other, **hints):
648
+ return Integer(2)*other
649
+
650
+
651
+ class HadamardGate(HermitianOperator, OneQubitGate):
652
+ """The single qubit Hadamard gate.
653
+
654
+ Parameters
655
+ ----------
656
+ target : int
657
+ The target qubit this gate will apply to.
658
+
659
+ Examples
660
+ ========
661
+
662
+ >>> from sympy import sqrt
663
+ >>> from sympy.physics.quantum.qubit import Qubit
664
+ >>> from sympy.physics.quantum.gate import HadamardGate
665
+ >>> from sympy.physics.quantum.qapply import qapply
666
+ >>> qapply(HadamardGate(0)*Qubit('1'))
667
+ sqrt(2)*|0>/2 - sqrt(2)*|1>/2
668
+ >>> # Hadamard on bell state, applied on 2 qubits.
669
+ >>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
670
+ >>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
671
+ sqrt(2)*|00>/2 + sqrt(2)*|11>/2
672
+
673
+ """
674
+ gate_name = 'H'
675
+ gate_name_latex = 'H'
676
+
677
+ def get_target_matrix(self, format='sympy'):
678
+ if _normalized:
679
+ return matrix_cache.get_matrix('H', format)
680
+ else:
681
+ return matrix_cache.get_matrix('Hsqrt2', format)
682
+
683
+ def _eval_commutator_XGate(self, other, **hints):
684
+ return I*sqrt(2)*YGate(self.targets[0])
685
+
686
+ def _eval_commutator_YGate(self, other, **hints):
687
+ return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0]))
688
+
689
+ def _eval_commutator_ZGate(self, other, **hints):
690
+ return -I*sqrt(2)*YGate(self.targets[0])
691
+
692
+ def _eval_anticommutator_XGate(self, other, **hints):
693
+ return sqrt(2)*IdentityGate(self.targets[0])
694
+
695
+ def _eval_anticommutator_YGate(self, other, **hints):
696
+ return _S.Zero
697
+
698
+ def _eval_anticommutator_ZGate(self, other, **hints):
699
+ return sqrt(2)*IdentityGate(self.targets[0])
700
+
701
+
702
+ class XGate(HermitianOperator, OneQubitGate):
703
+ """The single qubit X, or NOT, gate.
704
+
705
+ Parameters
706
+ ----------
707
+ target : int
708
+ The target qubit this gate will apply to.
709
+
710
+ Examples
711
+ ========
712
+
713
+ """
714
+ gate_name = 'X'
715
+ gate_name_latex = 'X'
716
+
717
+ def get_target_matrix(self, format='sympy'):
718
+ return matrix_cache.get_matrix('X', format)
719
+
720
+ def plot_gate(self, circ_plot, gate_idx):
721
+ OneQubitGate.plot_gate(self,circ_plot,gate_idx)
722
+
723
+ def plot_gate_plus(self, circ_plot, gate_idx):
724
+ circ_plot.not_point(
725
+ gate_idx, int(self.label[0])
726
+ )
727
+
728
+ def _eval_commutator_YGate(self, other, **hints):
729
+ return Integer(2)*I*ZGate(self.targets[0])
730
+
731
+ def _eval_anticommutator_XGate(self, other, **hints):
732
+ return Integer(2)*IdentityGate(self.targets[0])
733
+
734
+ def _eval_anticommutator_YGate(self, other, **hints):
735
+ return _S.Zero
736
+
737
+ def _eval_anticommutator_ZGate(self, other, **hints):
738
+ return _S.Zero
739
+
740
+
741
+ class YGate(HermitianOperator, OneQubitGate):
742
+ """The single qubit Y gate.
743
+
744
+ Parameters
745
+ ----------
746
+ target : int
747
+ The target qubit this gate will apply to.
748
+
749
+ Examples
750
+ ========
751
+
752
+ """
753
+ gate_name = 'Y'
754
+ gate_name_latex = 'Y'
755
+
756
+ def get_target_matrix(self, format='sympy'):
757
+ return matrix_cache.get_matrix('Y', format)
758
+
759
+ def _eval_commutator_ZGate(self, other, **hints):
760
+ return Integer(2)*I*XGate(self.targets[0])
761
+
762
+ def _eval_anticommutator_YGate(self, other, **hints):
763
+ return Integer(2)*IdentityGate(self.targets[0])
764
+
765
+ def _eval_anticommutator_ZGate(self, other, **hints):
766
+ return _S.Zero
767
+
768
+
769
+ class ZGate(HermitianOperator, OneQubitGate):
770
+ """The single qubit Z gate.
771
+
772
+ Parameters
773
+ ----------
774
+ target : int
775
+ The target qubit this gate will apply to.
776
+
777
+ Examples
778
+ ========
779
+
780
+ """
781
+ gate_name = 'Z'
782
+ gate_name_latex = 'Z'
783
+
784
+ def get_target_matrix(self, format='sympy'):
785
+ return matrix_cache.get_matrix('Z', format)
786
+
787
+ def _eval_commutator_XGate(self, other, **hints):
788
+ return Integer(2)*I*YGate(self.targets[0])
789
+
790
+ def _eval_anticommutator_YGate(self, other, **hints):
791
+ return _S.Zero
792
+
793
+
794
+ class PhaseGate(OneQubitGate):
795
+ """The single qubit phase, or S, gate.
796
+
797
+ This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and
798
+ does nothing if the state is ``|0>``.
799
+
800
+ Parameters
801
+ ----------
802
+ target : int
803
+ The target qubit this gate will apply to.
804
+
805
+ Examples
806
+ ========
807
+
808
+ """
809
+ gate_name = 'S'
810
+ gate_name_latex = 'S'
811
+
812
+ def get_target_matrix(self, format='sympy'):
813
+ return matrix_cache.get_matrix('S', format)
814
+
815
+ def _eval_commutator_ZGate(self, other, **hints):
816
+ return _S.Zero
817
+
818
+ def _eval_commutator_TGate(self, other, **hints):
819
+ return _S.Zero
820
+
821
+
822
+ class TGate(OneQubitGate):
823
+ """The single qubit pi/8 gate.
824
+
825
+ This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and
826
+ does nothing if the state is ``|0>``.
827
+
828
+ Parameters
829
+ ----------
830
+ target : int
831
+ The target qubit this gate will apply to.
832
+
833
+ Examples
834
+ ========
835
+
836
+ """
837
+ gate_name = 'T'
838
+ gate_name_latex = 'T'
839
+
840
+ def get_target_matrix(self, format='sympy'):
841
+ return matrix_cache.get_matrix('T', format)
842
+
843
+ def _eval_commutator_ZGate(self, other, **hints):
844
+ return _S.Zero
845
+
846
+ def _eval_commutator_PhaseGate(self, other, **hints):
847
+ return _S.Zero
848
+
849
+
850
+ # Aliases for gate names.
851
+ H = HadamardGate
852
+ X = XGate
853
+ Y = YGate
854
+ Z = ZGate
855
+ T = TGate
856
+ Phase = S = PhaseGate
857
+
858
+
859
+ #-----------------------------------------------------------------------------
860
+ # 2 Qubit Gates
861
+ #-----------------------------------------------------------------------------
862
+
863
+
864
+ class CNotGate(HermitianOperator, CGate, TwoQubitGate):
865
+ """Two qubit controlled-NOT.
866
+
867
+ This gate performs the NOT or X gate on the target qubit if the control
868
+ qubits all have the value 1.
869
+
870
+ Parameters
871
+ ----------
872
+ label : tuple
873
+ A tuple of the form (control, target).
874
+
875
+ Examples
876
+ ========
877
+
878
+ >>> from sympy.physics.quantum.gate import CNOT
879
+ >>> from sympy.physics.quantum.qapply import qapply
880
+ >>> from sympy.physics.quantum.qubit import Qubit
881
+ >>> c = CNOT(1,0)
882
+ >>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
883
+ |11>
884
+
885
+ """
886
+ gate_name = 'CNOT'
887
+ gate_name_latex = r'\text{CNOT}'
888
+ simplify_cgate = True
889
+
890
+ #-------------------------------------------------------------------------
891
+ # Initialization
892
+ #-------------------------------------------------------------------------
893
+
894
+ @classmethod
895
+ def _eval_args(cls, args):
896
+ args = Gate._eval_args(args)
897
+ return args
898
+
899
+ @classmethod
900
+ def _eval_hilbert_space(cls, args):
901
+ """This returns the smallest possible Hilbert space."""
902
+ return ComplexSpace(2)**(_max(args) + 1)
903
+
904
+ #-------------------------------------------------------------------------
905
+ # Properties
906
+ #-------------------------------------------------------------------------
907
+
908
+ @property
909
+ def min_qubits(self):
910
+ """The minimum number of qubits this gate needs to act on."""
911
+ return _max(self.label) + 1
912
+
913
+ @property
914
+ def targets(self):
915
+ """A tuple of target qubits."""
916
+ return (self.label[1],)
917
+
918
+ @property
919
+ def controls(self):
920
+ """A tuple of control qubits."""
921
+ return (self.label[0],)
922
+
923
+ @property
924
+ def gate(self):
925
+ """The non-controlled gate that will be applied to the targets."""
926
+ return XGate(self.label[1])
927
+
928
+ #-------------------------------------------------------------------------
929
+ # Properties
930
+ #-------------------------------------------------------------------------
931
+
932
+ # The default printing of Gate works better than those of CGate, so we
933
+ # go around the overridden methods in CGate.
934
+
935
+ def _print_label(self, printer, *args):
936
+ return Gate._print_label(self, printer, *args)
937
+
938
+ def _pretty(self, printer, *args):
939
+ return Gate._pretty(self, printer, *args)
940
+
941
+ def _latex(self, printer, *args):
942
+ return Gate._latex(self, printer, *args)
943
+
944
+ #-------------------------------------------------------------------------
945
+ # Commutator/AntiCommutator
946
+ #-------------------------------------------------------------------------
947
+
948
+ def _eval_commutator_ZGate(self, other, **hints):
949
+ """[CNOT(i, j), Z(i)] == 0."""
950
+ if self.controls[0] == other.targets[0]:
951
+ return _S.Zero
952
+ else:
953
+ raise NotImplementedError('Commutator not implemented: %r' % other)
954
+
955
+ def _eval_commutator_TGate(self, other, **hints):
956
+ """[CNOT(i, j), T(i)] == 0."""
957
+ return self._eval_commutator_ZGate(other, **hints)
958
+
959
+ def _eval_commutator_PhaseGate(self, other, **hints):
960
+ """[CNOT(i, j), S(i)] == 0."""
961
+ return self._eval_commutator_ZGate(other, **hints)
962
+
963
+ def _eval_commutator_XGate(self, other, **hints):
964
+ """[CNOT(i, j), X(j)] == 0."""
965
+ if self.targets[0] == other.targets[0]:
966
+ return _S.Zero
967
+ else:
968
+ raise NotImplementedError('Commutator not implemented: %r' % other)
969
+
970
+ def _eval_commutator_CNotGate(self, other, **hints):
971
+ """[CNOT(i, j), CNOT(i,k)] == 0."""
972
+ if self.controls[0] == other.controls[0]:
973
+ return _S.Zero
974
+ else:
975
+ raise NotImplementedError('Commutator not implemented: %r' % other)
976
+
977
+
978
+ class SwapGate(TwoQubitGate):
979
+ """Two qubit SWAP gate.
980
+
981
+ This gate swap the values of the two qubits.
982
+
983
+ Parameters
984
+ ----------
985
+ label : tuple
986
+ A tuple of the form (target1, target2).
987
+
988
+ Examples
989
+ ========
990
+
991
+ """
992
+ gate_name = 'SWAP'
993
+ gate_name_latex = r'\text{SWAP}'
994
+
995
+ def get_target_matrix(self, format='sympy'):
996
+ return matrix_cache.get_matrix('SWAP', format)
997
+
998
+ def decompose(self, **options):
999
+ """Decompose the SWAP gate into CNOT gates."""
1000
+ i, j = self.targets[0], self.targets[1]
1001
+ g1 = CNotGate(i, j)
1002
+ g2 = CNotGate(j, i)
1003
+ return g1*g2*g1
1004
+
1005
+ def plot_gate(self, circ_plot, gate_idx):
1006
+ min_wire = int(_min(self.targets))
1007
+ max_wire = int(_max(self.targets))
1008
+ circ_plot.control_line(gate_idx, min_wire, max_wire)
1009
+ circ_plot.swap_point(gate_idx, min_wire)
1010
+ circ_plot.swap_point(gate_idx, max_wire)
1011
+
1012
+ def _represent_ZGate(self, basis, **options):
1013
+ """Represent the SWAP gate in the computational basis.
1014
+
1015
+ The following representation is used to compute this:
1016
+
1017
+ SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0|
1018
+ """
1019
+ format = options.get('format', 'sympy')
1020
+ targets = [int(t) for t in self.targets]
1021
+ min_target = _min(targets)
1022
+ max_target = _max(targets)
1023
+ nqubits = options.get('nqubits', self.min_qubits)
1024
+
1025
+ op01 = matrix_cache.get_matrix('op01', format)
1026
+ op10 = matrix_cache.get_matrix('op10', format)
1027
+ op11 = matrix_cache.get_matrix('op11', format)
1028
+ op00 = matrix_cache.get_matrix('op00', format)
1029
+ eye2 = matrix_cache.get_matrix('eye2', format)
1030
+
1031
+ result = None
1032
+ for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)):
1033
+ product = nqubits*[eye2]
1034
+ product[nqubits - min_target - 1] = i
1035
+ product[nqubits - max_target - 1] = j
1036
+ new_result = matrix_tensor_product(*product)
1037
+ if result is None:
1038
+ result = new_result
1039
+ else:
1040
+ result = result + new_result
1041
+
1042
+ return result
1043
+
1044
+
1045
+ # Aliases for gate names.
1046
+ CNOT = CNotGate
1047
+ SWAP = SwapGate
1048
+ def CPHASE(a,b): return CGateS((a,),Z(b))
1049
+
1050
+
1051
+ #-----------------------------------------------------------------------------
1052
+ # Represent
1053
+ #-----------------------------------------------------------------------------
1054
+
1055
+
1056
+ def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'):
1057
+ """Represent a gate with controls, targets and target_matrix.
1058
+
1059
+ This function does the low-level work of representing gates as matrices
1060
+ in the standard computational basis (ZGate). Currently, we support two
1061
+ main cases:
1062
+
1063
+ 1. One target qubit and no control qubits.
1064
+ 2. One target qubits and multiple control qubits.
1065
+
1066
+ For the base of multiple controls, we use the following expression [1]:
1067
+
1068
+ 1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2})
1069
+
1070
+ Parameters
1071
+ ----------
1072
+ controls : list, tuple
1073
+ A sequence of control qubits.
1074
+ targets : list, tuple
1075
+ A sequence of target qubits.
1076
+ target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse
1077
+ The matrix form of the transformation to be performed on the target
1078
+ qubits. The format of this matrix must match that passed into
1079
+ the `format` argument.
1080
+ nqubits : int
1081
+ The total number of qubits used for the representation.
1082
+ format : str
1083
+ The format of the final matrix ('sympy', 'numpy', 'scipy.sparse').
1084
+
1085
+ Examples
1086
+ ========
1087
+
1088
+ References
1089
+ ----------
1090
+ [1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html.
1091
+ """
1092
+ controls = [int(x) for x in controls]
1093
+ targets = [int(x) for x in targets]
1094
+ nqubits = int(nqubits)
1095
+
1096
+ # This checks for the format as well.
1097
+ op11 = matrix_cache.get_matrix('op11', format)
1098
+ eye2 = matrix_cache.get_matrix('eye2', format)
1099
+
1100
+ # Plain single qubit case
1101
+ if len(controls) == 0 and len(targets) == 1:
1102
+ product = []
1103
+ bit = targets[0]
1104
+ # Fill product with [I1,Gate,I2] such that the unitaries,
1105
+ # I, cause the gate to be applied to the correct Qubit
1106
+ if bit != nqubits - 1:
1107
+ product.append(matrix_eye(2**(nqubits - bit - 1), format=format))
1108
+ product.append(target_matrix)
1109
+ if bit != 0:
1110
+ product.append(matrix_eye(2**bit, format=format))
1111
+ return matrix_tensor_product(*product)
1112
+
1113
+ # Single target, multiple controls.
1114
+ elif len(targets) == 1 and len(controls) >= 1:
1115
+ target = targets[0]
1116
+
1117
+ # Build the non-trivial part.
1118
+ product2 = []
1119
+ for i in range(nqubits):
1120
+ product2.append(matrix_eye(2, format=format))
1121
+ for control in controls:
1122
+ product2[nqubits - 1 - control] = op11
1123
+ product2[nqubits - 1 - target] = target_matrix - eye2
1124
+
1125
+ return matrix_eye(2**nqubits, format=format) + \
1126
+ matrix_tensor_product(*product2)
1127
+
1128
+ # Multi-target, multi-control is not yet implemented.
1129
+ else:
1130
+ raise NotImplementedError(
1131
+ 'The representation of multi-target, multi-control gates '
1132
+ 'is not implemented.'
1133
+ )
1134
+
1135
+
1136
+ #-----------------------------------------------------------------------------
1137
+ # Gate manipulation functions.
1138
+ #-----------------------------------------------------------------------------
1139
+
1140
+
1141
+ def gate_simp(circuit):
1142
+ """Simplifies gates symbolically
1143
+
1144
+ It first sorts gates using gate_sort. It then applies basic
1145
+ simplification rules to the circuit, e.g., XGate**2 = Identity
1146
+ """
1147
+
1148
+ # Bubble sort out gates that commute.
1149
+ circuit = gate_sort(circuit)
1150
+
1151
+ # Do simplifications by subing a simplification into the first element
1152
+ # which can be simplified. We recursively call gate_simp with new circuit
1153
+ # as input more simplifications exist.
1154
+ if isinstance(circuit, Add):
1155
+ return sum(gate_simp(t) for t in circuit.args)
1156
+ elif isinstance(circuit, Mul):
1157
+ circuit_args = circuit.args
1158
+ elif isinstance(circuit, Pow):
1159
+ b, e = circuit.as_base_exp()
1160
+ circuit_args = (gate_simp(b)**e,)
1161
+ else:
1162
+ return circuit
1163
+
1164
+ # Iterate through each element in circuit, simplify if possible.
1165
+ for i in range(len(circuit_args)):
1166
+ # H,X,Y or Z squared is 1.
1167
+ # T**2 = S, S**2 = Z
1168
+ if isinstance(circuit_args[i], Pow):
1169
+ if isinstance(circuit_args[i].base,
1170
+ (HadamardGate, XGate, YGate, ZGate)) \
1171
+ and isinstance(circuit_args[i].exp, Number):
1172
+ # Build a new circuit taking replacing the
1173
+ # H,X,Y,Z squared with one.
1174
+ newargs = (circuit_args[:i] +
1175
+ (circuit_args[i].base**(circuit_args[i].exp % 2),) +
1176
+ circuit_args[i + 1:])
1177
+ # Recursively simplify the new circuit.
1178
+ circuit = gate_simp(Mul(*newargs))
1179
+ break
1180
+ elif isinstance(circuit_args[i].base, PhaseGate):
1181
+ # Build a new circuit taking old circuit but splicing
1182
+ # in simplification.
1183
+ newargs = circuit_args[:i]
1184
+ # Replace PhaseGate**2 with ZGate.
1185
+ newargs = newargs + (ZGate(circuit_args[i].base.args[0])**
1186
+ (Integer(circuit_args[i].exp/2)), circuit_args[i].base**
1187
+ (circuit_args[i].exp % 2))
1188
+ # Append the last elements.
1189
+ newargs = newargs + circuit_args[i + 1:]
1190
+ # Recursively simplify the new circuit.
1191
+ circuit = gate_simp(Mul(*newargs))
1192
+ break
1193
+ elif isinstance(circuit_args[i].base, TGate):
1194
+ # Build a new circuit taking all the old elements.
1195
+ newargs = circuit_args[:i]
1196
+
1197
+ # Put an Phasegate in place of any TGate**2.
1198
+ newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])**
1199
+ Integer(circuit_args[i].exp/2), circuit_args[i].base**
1200
+ (circuit_args[i].exp % 2))
1201
+
1202
+ # Append the last elements.
1203
+ newargs = newargs + circuit_args[i + 1:]
1204
+ # Recursively simplify the new circuit.
1205
+ circuit = gate_simp(Mul(*newargs))
1206
+ break
1207
+ return circuit
1208
+
1209
+
1210
+ def gate_sort(circuit):
1211
+ """Sorts the gates while keeping track of commutation relations
1212
+
1213
+ This function uses a bubble sort to rearrange the order of gate
1214
+ application. Keeps track of Quantum computations special commutation
1215
+ relations (e.g. things that apply to the same Qubit do not commute with
1216
+ each other)
1217
+
1218
+ circuit is the Mul of gates that are to be sorted.
1219
+ """
1220
+ # Make sure we have an Add or Mul.
1221
+ if isinstance(circuit, Add):
1222
+ return sum(gate_sort(t) for t in circuit.args)
1223
+ if isinstance(circuit, Pow):
1224
+ return gate_sort(circuit.base)**circuit.exp
1225
+ elif isinstance(circuit, Gate):
1226
+ return circuit
1227
+ if not isinstance(circuit, Mul):
1228
+ return circuit
1229
+
1230
+ changes = True
1231
+ while changes:
1232
+ changes = False
1233
+ circ_array = circuit.args
1234
+ for i in range(len(circ_array) - 1):
1235
+ # Go through each element and switch ones that are in wrong order
1236
+ if isinstance(circ_array[i], (Gate, Pow)) and \
1237
+ isinstance(circ_array[i + 1], (Gate, Pow)):
1238
+ # If we have a Pow object, look at only the base
1239
+ first_base, first_exp = circ_array[i].as_base_exp()
1240
+ second_base, second_exp = circ_array[i + 1].as_base_exp()
1241
+
1242
+ # Use SymPy's hash based sorting. This is not mathematical
1243
+ # sorting, but is rather based on comparing hashes of objects.
1244
+ # See Basic.compare for details.
1245
+ if first_base.compare(second_base) > 0:
1246
+ if Commutator(first_base, second_base).doit() == 0:
1247
+ new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
1248
+ (circuit.args[i],) + circuit.args[i + 2:])
1249
+ circuit = Mul(*new_args)
1250
+ changes = True
1251
+ break
1252
+ if AntiCommutator(first_base, second_base).doit() == 0:
1253
+ new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
1254
+ (circuit.args[i],) + circuit.args[i + 2:])
1255
+ sign = _S.NegativeOne**(first_exp*second_exp)
1256
+ circuit = sign*Mul(*new_args)
1257
+ changes = True
1258
+ break
1259
+ return circuit
1260
+
1261
+
1262
+ #-----------------------------------------------------------------------------
1263
+ # Utility functions
1264
+ #-----------------------------------------------------------------------------
1265
+
1266
+
1267
+ def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)):
1268
+ """Return a random circuit of ngates and nqubits.
1269
+
1270
+ This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP)
1271
+ gates.
1272
+
1273
+ Parameters
1274
+ ----------
1275
+ ngates : int
1276
+ The number of gates in the circuit.
1277
+ nqubits : int
1278
+ The number of qubits in the circuit.
1279
+ gate_space : tuple
1280
+ A tuple of the gate classes that will be used in the circuit.
1281
+ Repeating gate classes multiple times in this tuple will increase
1282
+ the frequency they appear in the random circuit.
1283
+ """
1284
+ qubit_space = range(nqubits)
1285
+ result = []
1286
+ for i in range(ngates):
1287
+ g = random.choice(gate_space)
1288
+ if g == CNotGate or g == SwapGate:
1289
+ qubits = random.sample(qubit_space, 2)
1290
+ g = g(*qubits)
1291
+ else:
1292
+ qubit = random.choice(qubit_space)
1293
+ g = g(qubit)
1294
+ result.append(g)
1295
+ return Mul(*result)
1296
+
1297
+
1298
+ def zx_basis_transform(self, format='sympy'):
1299
+ """Transformation matrix from Z to X basis."""
1300
+ return matrix_cache.get_matrix('ZX', format)
1301
+
1302
+
1303
+ def zy_basis_transform(self, format='sympy'):
1304
+ """Transformation matrix from Z to Y basis."""
1305
+ return matrix_cache.get_matrix('ZY', format)
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/grover.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Grover's algorithm and helper functions.
2
+
3
+ Todo:
4
+
5
+ * W gate construction (or perhaps -W gate based on Mermin's book)
6
+ * Generalize the algorithm for an unknown function that returns 1 on multiple
7
+ qubit states, not just one.
8
+ * Implement _represent_ZGate in OracleGate
9
+ """
10
+
11
+ from sympy.core.numbers import pi
12
+ from sympy.core.sympify import sympify
13
+ from sympy.core.basic import Atom
14
+ from sympy.functions.elementary.integers import floor
15
+ from sympy.functions.elementary.miscellaneous import sqrt
16
+ from sympy.matrices.dense import eye
17
+ from sympy.core.numbers import NegativeOne
18
+ from sympy.physics.quantum.qapply import qapply
19
+ from sympy.physics.quantum.qexpr import QuantumError
20
+ from sympy.physics.quantum.hilbert import ComplexSpace
21
+ from sympy.physics.quantum.operator import UnitaryOperator
22
+ from sympy.physics.quantum.gate import Gate
23
+ from sympy.physics.quantum.qubit import IntQubit
24
+
25
+ __all__ = [
26
+ 'OracleGate',
27
+ 'WGate',
28
+ 'superposition_basis',
29
+ 'grover_iteration',
30
+ 'apply_grover'
31
+ ]
32
+
33
+
34
+ def superposition_basis(nqubits):
35
+ """Creates an equal superposition of the computational basis.
36
+
37
+ Parameters
38
+ ==========
39
+
40
+ nqubits : int
41
+ The number of qubits.
42
+
43
+ Returns
44
+ =======
45
+
46
+ state : Qubit
47
+ An equal superposition of the computational basis with nqubits.
48
+
49
+ Examples
50
+ ========
51
+
52
+ Create an equal superposition of 2 qubits::
53
+
54
+ >>> from sympy.physics.quantum.grover import superposition_basis
55
+ >>> superposition_basis(2)
56
+ |0>/2 + |1>/2 + |2>/2 + |3>/2
57
+ """
58
+
59
+ amp = 1/sqrt(2**nqubits)
60
+ return sum([amp*IntQubit(n, nqubits=nqubits) for n in range(2**nqubits)])
61
+
62
+ class OracleGateFunction(Atom):
63
+ """Wrapper for python functions used in `OracleGate`s"""
64
+
65
+ def __new__(cls, function):
66
+ if not callable(function):
67
+ raise TypeError('Callable expected, got: %r' % function)
68
+ obj = Atom.__new__(cls)
69
+ obj.function = function
70
+ return obj
71
+
72
+ def _hashable_content(self):
73
+ return type(self), self.function
74
+
75
+ def __call__(self, *args):
76
+ return self.function(*args)
77
+
78
+
79
+ class OracleGate(Gate):
80
+ """A black box gate.
81
+
82
+ The gate marks the desired qubits of an unknown function by flipping
83
+ the sign of the qubits. The unknown function returns true when it
84
+ finds its desired qubits and false otherwise.
85
+
86
+ Parameters
87
+ ==========
88
+
89
+ qubits : int
90
+ Number of qubits.
91
+
92
+ oracle : callable
93
+ A callable function that returns a boolean on a computational basis.
94
+
95
+ Examples
96
+ ========
97
+
98
+ Apply an Oracle gate that flips the sign of ``|2>`` on different qubits::
99
+
100
+ >>> from sympy.physics.quantum.qubit import IntQubit
101
+ >>> from sympy.physics.quantum.qapply import qapply
102
+ >>> from sympy.physics.quantum.grover import OracleGate
103
+ >>> f = lambda qubits: qubits == IntQubit(2)
104
+ >>> v = OracleGate(2, f)
105
+ >>> qapply(v*IntQubit(2))
106
+ -|2>
107
+ >>> qapply(v*IntQubit(3))
108
+ |3>
109
+ """
110
+
111
+ gate_name = 'V'
112
+ gate_name_latex = 'V'
113
+
114
+ #-------------------------------------------------------------------------
115
+ # Initialization/creation
116
+ #-------------------------------------------------------------------------
117
+
118
+ @classmethod
119
+ def _eval_args(cls, args):
120
+ if len(args) != 2:
121
+ raise QuantumError(
122
+ 'Insufficient/excessive arguments to Oracle. Please ' +
123
+ 'supply the number of qubits and an unknown function.'
124
+ )
125
+ sub_args = (args[0],)
126
+ sub_args = UnitaryOperator._eval_args(sub_args)
127
+ if not sub_args[0].is_Integer:
128
+ raise TypeError('Integer expected, got: %r' % sub_args[0])
129
+
130
+ function = args[1]
131
+ if not isinstance(function, OracleGateFunction):
132
+ function = OracleGateFunction(function)
133
+
134
+ return (sub_args[0], function)
135
+
136
+ @classmethod
137
+ def _eval_hilbert_space(cls, args):
138
+ """This returns the smallest possible Hilbert space."""
139
+ return ComplexSpace(2)**args[0]
140
+
141
+ #-------------------------------------------------------------------------
142
+ # Properties
143
+ #-------------------------------------------------------------------------
144
+
145
+ @property
146
+ def search_function(self):
147
+ """The unknown function that helps find the sought after qubits."""
148
+ return self.label[1]
149
+
150
+ @property
151
+ def targets(self):
152
+ """A tuple of target qubits."""
153
+ return sympify(tuple(range(self.args[0])))
154
+
155
+ #-------------------------------------------------------------------------
156
+ # Apply
157
+ #-------------------------------------------------------------------------
158
+
159
+ def _apply_operator_Qubit(self, qubits, **options):
160
+ """Apply this operator to a Qubit subclass.
161
+
162
+ Parameters
163
+ ==========
164
+
165
+ qubits : Qubit
166
+ The qubit subclass to apply this operator to.
167
+
168
+ Returns
169
+ =======
170
+
171
+ state : Expr
172
+ The resulting quantum state.
173
+ """
174
+ if qubits.nqubits != self.nqubits:
175
+ raise QuantumError(
176
+ 'OracleGate operates on %r qubits, got: %r'
177
+ % (self.nqubits, qubits.nqubits)
178
+ )
179
+ # If function returns 1 on qubits
180
+ # return the negative of the qubits (flip the sign)
181
+ if self.search_function(qubits):
182
+ return -qubits
183
+ else:
184
+ return qubits
185
+
186
+ #-------------------------------------------------------------------------
187
+ # Represent
188
+ #-------------------------------------------------------------------------
189
+
190
+ def _represent_ZGate(self, basis, **options):
191
+ """
192
+ Represent the OracleGate in the computational basis.
193
+ """
194
+ nbasis = 2**self.nqubits # compute it only once
195
+ matrixOracle = eye(nbasis)
196
+ # Flip the sign given the output of the oracle function
197
+ for i in range(nbasis):
198
+ if self.search_function(IntQubit(i, nqubits=self.nqubits)):
199
+ matrixOracle[i, i] = NegativeOne()
200
+ return matrixOracle
201
+
202
+
203
+ class WGate(Gate):
204
+ """General n qubit W Gate in Grover's algorithm.
205
+
206
+ The gate performs the operation ``2|phi><phi| - 1`` on some qubits.
207
+ ``|phi> = (tensor product of n Hadamards)*(|0> with n qubits)``
208
+
209
+ Parameters
210
+ ==========
211
+
212
+ nqubits : int
213
+ The number of qubits to operate on
214
+
215
+ """
216
+
217
+ gate_name = 'W'
218
+ gate_name_latex = 'W'
219
+
220
+ @classmethod
221
+ def _eval_args(cls, args):
222
+ if len(args) != 1:
223
+ raise QuantumError(
224
+ 'Insufficient/excessive arguments to W gate. Please ' +
225
+ 'supply the number of qubits to operate on.'
226
+ )
227
+ args = UnitaryOperator._eval_args(args)
228
+ if not args[0].is_Integer:
229
+ raise TypeError('Integer expected, got: %r' % args[0])
230
+ return args
231
+
232
+ #-------------------------------------------------------------------------
233
+ # Properties
234
+ #-------------------------------------------------------------------------
235
+
236
+ @property
237
+ def targets(self):
238
+ return sympify(tuple(reversed(range(self.args[0]))))
239
+
240
+ #-------------------------------------------------------------------------
241
+ # Apply
242
+ #-------------------------------------------------------------------------
243
+
244
+ def _apply_operator_Qubit(self, qubits, **options):
245
+ """
246
+ qubits: a set of qubits (Qubit)
247
+ Returns: quantum object (quantum expression - QExpr)
248
+ """
249
+ if qubits.nqubits != self.nqubits:
250
+ raise QuantumError(
251
+ 'WGate operates on %r qubits, got: %r'
252
+ % (self.nqubits, qubits.nqubits)
253
+ )
254
+
255
+ # See 'Quantum Computer Science' by David Mermin p.92 -> W|a> result
256
+ # Return (2/(sqrt(2^n)))|phi> - |a> where |a> is the current basis
257
+ # state and phi is the superposition of basis states (see function
258
+ # create_computational_basis above)
259
+ basis_states = superposition_basis(self.nqubits)
260
+ change_to_basis = (2/sqrt(2**self.nqubits))*basis_states
261
+ return change_to_basis - qubits
262
+
263
+
264
+ def grover_iteration(qstate, oracle):
265
+ """Applies one application of the Oracle and W Gate, WV.
266
+
267
+ Parameters
268
+ ==========
269
+
270
+ qstate : Qubit
271
+ A superposition of qubits.
272
+ oracle : OracleGate
273
+ The black box operator that flips the sign of the desired basis qubits.
274
+
275
+ Returns
276
+ =======
277
+
278
+ Qubit : The qubits after applying the Oracle and W gate.
279
+
280
+ Examples
281
+ ========
282
+
283
+ Perform one iteration of grover's algorithm to see a phase change::
284
+
285
+ >>> from sympy.physics.quantum.qapply import qapply
286
+ >>> from sympy.physics.quantum.qubit import IntQubit
287
+ >>> from sympy.physics.quantum.grover import OracleGate
288
+ >>> from sympy.physics.quantum.grover import superposition_basis
289
+ >>> from sympy.physics.quantum.grover import grover_iteration
290
+ >>> numqubits = 2
291
+ >>> basis_states = superposition_basis(numqubits)
292
+ >>> f = lambda qubits: qubits == IntQubit(2)
293
+ >>> v = OracleGate(numqubits, f)
294
+ >>> qapply(grover_iteration(basis_states, v))
295
+ |2>
296
+
297
+ """
298
+ wgate = WGate(oracle.nqubits)
299
+ return wgate*oracle*qstate
300
+
301
+
302
+ def apply_grover(oracle, nqubits, iterations=None):
303
+ """Applies grover's algorithm.
304
+
305
+ Parameters
306
+ ==========
307
+
308
+ oracle : callable
309
+ The unknown callable function that returns true when applied to the
310
+ desired qubits and false otherwise.
311
+
312
+ Returns
313
+ =======
314
+
315
+ state : Expr
316
+ The resulting state after Grover's algorithm has been iterated.
317
+
318
+ Examples
319
+ ========
320
+
321
+ Apply grover's algorithm to an even superposition of 2 qubits::
322
+
323
+ >>> from sympy.physics.quantum.qapply import qapply
324
+ >>> from sympy.physics.quantum.qubit import IntQubit
325
+ >>> from sympy.physics.quantum.grover import apply_grover
326
+ >>> f = lambda qubits: qubits == IntQubit(2)
327
+ >>> qapply(apply_grover(f, 2))
328
+ |2>
329
+
330
+ """
331
+ if nqubits <= 0:
332
+ raise QuantumError(
333
+ 'Grover\'s algorithm needs nqubits > 0, received %r qubits'
334
+ % nqubits
335
+ )
336
+ if iterations is None:
337
+ iterations = floor(sqrt(2**nqubits)*(pi/4))
338
+
339
+ v = OracleGate(nqubits, oracle)
340
+ iterated = superposition_basis(nqubits)
341
+ for iter in range(iterations):
342
+ iterated = grover_iteration(iterated, v)
343
+ iterated = qapply(iterated)
344
+
345
+ return iterated
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/hilbert.py ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Hilbert spaces for quantum mechanics.
2
+
3
+ Authors:
4
+ * Brian Granger
5
+ * Matt Curry
6
+ """
7
+
8
+ from functools import reduce
9
+
10
+ from sympy.core.basic import Basic
11
+ from sympy.core.singleton import S
12
+ from sympy.core.sympify import sympify
13
+ from sympy.sets.sets import Interval
14
+ from sympy.printing.pretty.stringpict import prettyForm
15
+ from sympy.physics.quantum.qexpr import QuantumError
16
+
17
+
18
+ __all__ = [
19
+ 'HilbertSpaceError',
20
+ 'HilbertSpace',
21
+ 'TensorProductHilbertSpace',
22
+ 'TensorPowerHilbertSpace',
23
+ 'DirectSumHilbertSpace',
24
+ 'ComplexSpace',
25
+ 'L2',
26
+ 'FockSpace'
27
+ ]
28
+
29
+ #-----------------------------------------------------------------------------
30
+ # Main objects
31
+ #-----------------------------------------------------------------------------
32
+
33
+
34
+ class HilbertSpaceError(QuantumError):
35
+ pass
36
+
37
+ #-----------------------------------------------------------------------------
38
+ # Main objects
39
+ #-----------------------------------------------------------------------------
40
+
41
+
42
+ class HilbertSpace(Basic):
43
+ """An abstract Hilbert space for quantum mechanics.
44
+
45
+ In short, a Hilbert space is an abstract vector space that is complete
46
+ with inner products defined [1]_.
47
+
48
+ Examples
49
+ ========
50
+
51
+ >>> from sympy.physics.quantum.hilbert import HilbertSpace
52
+ >>> hs = HilbertSpace()
53
+ >>> hs
54
+ H
55
+
56
+ References
57
+ ==========
58
+
59
+ .. [1] https://en.wikipedia.org/wiki/Hilbert_space
60
+ """
61
+
62
+ def __new__(cls):
63
+ obj = Basic.__new__(cls)
64
+ return obj
65
+
66
+ @property
67
+ def dimension(self):
68
+ """Return the Hilbert dimension of the space."""
69
+ raise NotImplementedError('This Hilbert space has no dimension.')
70
+
71
+ def __add__(self, other):
72
+ return DirectSumHilbertSpace(self, other)
73
+
74
+ def __radd__(self, other):
75
+ return DirectSumHilbertSpace(other, self)
76
+
77
+ def __mul__(self, other):
78
+ return TensorProductHilbertSpace(self, other)
79
+
80
+ def __rmul__(self, other):
81
+ return TensorProductHilbertSpace(other, self)
82
+
83
+ def __pow__(self, other, mod=None):
84
+ if mod is not None:
85
+ raise ValueError('The third argument to __pow__ is not supported \
86
+ for Hilbert spaces.')
87
+ return TensorPowerHilbertSpace(self, other)
88
+
89
+ def __contains__(self, other):
90
+ """Is the operator or state in this Hilbert space.
91
+
92
+ This is checked by comparing the classes of the Hilbert spaces, not
93
+ the instances. This is to allow Hilbert Spaces with symbolic
94
+ dimensions.
95
+ """
96
+ if other.hilbert_space.__class__ == self.__class__:
97
+ return True
98
+ else:
99
+ return False
100
+
101
+ def _sympystr(self, printer, *args):
102
+ return 'H'
103
+
104
+ def _pretty(self, printer, *args):
105
+ ustr = '\N{LATIN CAPITAL LETTER H}'
106
+ return prettyForm(ustr)
107
+
108
+ def _latex(self, printer, *args):
109
+ return r'\mathcal{H}'
110
+
111
+
112
+ class ComplexSpace(HilbertSpace):
113
+ """Finite dimensional Hilbert space of complex vectors.
114
+
115
+ The elements of this Hilbert space are n-dimensional complex valued
116
+ vectors with the usual inner product that takes the complex conjugate
117
+ of the vector on the right.
118
+
119
+ A classic example of this type of Hilbert space is spin-1/2, which is
120
+ ``ComplexSpace(2)``. Generalizing to spin-s, the space is
121
+ ``ComplexSpace(2*s+1)``. Quantum computing with N qubits is done with the
122
+ direct product space ``ComplexSpace(2)**N``.
123
+
124
+ Examples
125
+ ========
126
+
127
+ >>> from sympy import symbols
128
+ >>> from sympy.physics.quantum.hilbert import ComplexSpace
129
+ >>> c1 = ComplexSpace(2)
130
+ >>> c1
131
+ C(2)
132
+ >>> c1.dimension
133
+ 2
134
+
135
+ >>> n = symbols('n')
136
+ >>> c2 = ComplexSpace(n)
137
+ >>> c2
138
+ C(n)
139
+ >>> c2.dimension
140
+ n
141
+
142
+ """
143
+
144
+ def __new__(cls, dimension):
145
+ dimension = sympify(dimension)
146
+ r = cls.eval(dimension)
147
+ if isinstance(r, Basic):
148
+ return r
149
+ obj = Basic.__new__(cls, dimension)
150
+ return obj
151
+
152
+ @classmethod
153
+ def eval(cls, dimension):
154
+ if len(dimension.atoms()) == 1:
155
+ if not (dimension.is_Integer and dimension > 0 or dimension is S.Infinity
156
+ or dimension.is_Symbol):
157
+ raise TypeError('The dimension of a ComplexSpace can only'
158
+ 'be a positive integer, oo, or a Symbol: %r'
159
+ % dimension)
160
+ else:
161
+ for dim in dimension.atoms():
162
+ if not (dim.is_Integer or dim is S.Infinity or dim.is_Symbol):
163
+ raise TypeError('The dimension of a ComplexSpace can only'
164
+ ' contain integers, oo, or a Symbol: %r'
165
+ % dim)
166
+
167
+ @property
168
+ def dimension(self):
169
+ return self.args[0]
170
+
171
+ def _sympyrepr(self, printer, *args):
172
+ return "%s(%s)" % (self.__class__.__name__,
173
+ printer._print(self.dimension, *args))
174
+
175
+ def _sympystr(self, printer, *args):
176
+ return "C(%s)" % printer._print(self.dimension, *args)
177
+
178
+ def _pretty(self, printer, *args):
179
+ ustr = '\N{LATIN CAPITAL LETTER C}'
180
+ pform_exp = printer._print(self.dimension, *args)
181
+ pform_base = prettyForm(ustr)
182
+ return pform_base**pform_exp
183
+
184
+ def _latex(self, printer, *args):
185
+ return r'\mathcal{C}^{%s}' % printer._print(self.dimension, *args)
186
+
187
+
188
+ class L2(HilbertSpace):
189
+ """The Hilbert space of square integrable functions on an interval.
190
+
191
+ An L2 object takes in a single SymPy Interval argument which represents
192
+ the interval its functions (vectors) are defined on.
193
+
194
+ Examples
195
+ ========
196
+
197
+ >>> from sympy import Interval, oo
198
+ >>> from sympy.physics.quantum.hilbert import L2
199
+ >>> hs = L2(Interval(0,oo))
200
+ >>> hs
201
+ L2(Interval(0, oo))
202
+ >>> hs.dimension
203
+ oo
204
+ >>> hs.interval
205
+ Interval(0, oo)
206
+
207
+ """
208
+
209
+ def __new__(cls, interval):
210
+ if not isinstance(interval, Interval):
211
+ raise TypeError('L2 interval must be an Interval instance: %r'
212
+ % interval)
213
+ obj = Basic.__new__(cls, interval)
214
+ return obj
215
+
216
+ @property
217
+ def dimension(self):
218
+ return S.Infinity
219
+
220
+ @property
221
+ def interval(self):
222
+ return self.args[0]
223
+
224
+ def _sympyrepr(self, printer, *args):
225
+ return "L2(%s)" % printer._print(self.interval, *args)
226
+
227
+ def _sympystr(self, printer, *args):
228
+ return "L2(%s)" % printer._print(self.interval, *args)
229
+
230
+ def _pretty(self, printer, *args):
231
+ pform_exp = prettyForm('2')
232
+ pform_base = prettyForm('L')
233
+ return pform_base**pform_exp
234
+
235
+ def _latex(self, printer, *args):
236
+ interval = printer._print(self.interval, *args)
237
+ return r'{\mathcal{L}^2}\left( %s \right)' % interval
238
+
239
+
240
+ class FockSpace(HilbertSpace):
241
+ """The Hilbert space for second quantization.
242
+
243
+ Technically, this Hilbert space is a infinite direct sum of direct
244
+ products of single particle Hilbert spaces [1]_. This is a mess, so we have
245
+ a class to represent it directly.
246
+
247
+ Examples
248
+ ========
249
+
250
+ >>> from sympy.physics.quantum.hilbert import FockSpace
251
+ >>> hs = FockSpace()
252
+ >>> hs
253
+ F
254
+ >>> hs.dimension
255
+ oo
256
+
257
+ References
258
+ ==========
259
+
260
+ .. [1] https://en.wikipedia.org/wiki/Fock_space
261
+ """
262
+
263
+ def __new__(cls):
264
+ obj = Basic.__new__(cls)
265
+ return obj
266
+
267
+ @property
268
+ def dimension(self):
269
+ return S.Infinity
270
+
271
+ def _sympyrepr(self, printer, *args):
272
+ return "FockSpace()"
273
+
274
+ def _sympystr(self, printer, *args):
275
+ return "F"
276
+
277
+ def _pretty(self, printer, *args):
278
+ ustr = '\N{LATIN CAPITAL LETTER F}'
279
+ return prettyForm(ustr)
280
+
281
+ def _latex(self, printer, *args):
282
+ return r'\mathcal{F}'
283
+
284
+
285
+ class TensorProductHilbertSpace(HilbertSpace):
286
+ """A tensor product of Hilbert spaces [1]_.
287
+
288
+ The tensor product between Hilbert spaces is represented by the
289
+ operator ``*`` Products of the same Hilbert space will be combined into
290
+ tensor powers.
291
+
292
+ A ``TensorProductHilbertSpace`` object takes in an arbitrary number of
293
+ ``HilbertSpace`` objects as its arguments. In addition, multiplication of
294
+ ``HilbertSpace`` objects will automatically return this tensor product
295
+ object.
296
+
297
+ Examples
298
+ ========
299
+
300
+ >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
301
+ >>> from sympy import symbols
302
+
303
+ >>> c = ComplexSpace(2)
304
+ >>> f = FockSpace()
305
+ >>> hs = c*f
306
+ >>> hs
307
+ C(2)*F
308
+ >>> hs.dimension
309
+ oo
310
+ >>> hs.spaces
311
+ (C(2), F)
312
+
313
+ >>> c1 = ComplexSpace(2)
314
+ >>> n = symbols('n')
315
+ >>> c2 = ComplexSpace(n)
316
+ >>> hs = c1*c2
317
+ >>> hs
318
+ C(2)*C(n)
319
+ >>> hs.dimension
320
+ 2*n
321
+
322
+ References
323
+ ==========
324
+
325
+ .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products
326
+ """
327
+
328
+ def __new__(cls, *args):
329
+ r = cls.eval(args)
330
+ if isinstance(r, Basic):
331
+ return r
332
+ obj = Basic.__new__(cls, *args)
333
+ return obj
334
+
335
+ @classmethod
336
+ def eval(cls, args):
337
+ """Evaluates the direct product."""
338
+ new_args = []
339
+ recall = False
340
+ #flatten arguments
341
+ for arg in args:
342
+ if isinstance(arg, TensorProductHilbertSpace):
343
+ new_args.extend(arg.args)
344
+ recall = True
345
+ elif isinstance(arg, (HilbertSpace, TensorPowerHilbertSpace)):
346
+ new_args.append(arg)
347
+ else:
348
+ raise TypeError('Hilbert spaces can only be multiplied by \
349
+ other Hilbert spaces: %r' % arg)
350
+ #combine like arguments into direct powers
351
+ comb_args = []
352
+ prev_arg = None
353
+ for new_arg in new_args:
354
+ if prev_arg is not None:
355
+ if isinstance(new_arg, TensorPowerHilbertSpace) and \
356
+ isinstance(prev_arg, TensorPowerHilbertSpace) and \
357
+ new_arg.base == prev_arg.base:
358
+ prev_arg = new_arg.base**(new_arg.exp + prev_arg.exp)
359
+ elif isinstance(new_arg, TensorPowerHilbertSpace) and \
360
+ new_arg.base == prev_arg:
361
+ prev_arg = prev_arg**(new_arg.exp + 1)
362
+ elif isinstance(prev_arg, TensorPowerHilbertSpace) and \
363
+ new_arg == prev_arg.base:
364
+ prev_arg = new_arg**(prev_arg.exp + 1)
365
+ elif new_arg == prev_arg:
366
+ prev_arg = new_arg**2
367
+ else:
368
+ comb_args.append(prev_arg)
369
+ prev_arg = new_arg
370
+ elif prev_arg is None:
371
+ prev_arg = new_arg
372
+ comb_args.append(prev_arg)
373
+ if recall:
374
+ return TensorProductHilbertSpace(*comb_args)
375
+ elif len(comb_args) == 1:
376
+ return TensorPowerHilbertSpace(comb_args[0].base, comb_args[0].exp)
377
+ else:
378
+ return None
379
+
380
+ @property
381
+ def dimension(self):
382
+ arg_list = [arg.dimension for arg in self.args]
383
+ if S.Infinity in arg_list:
384
+ return S.Infinity
385
+ else:
386
+ return reduce(lambda x, y: x*y, arg_list)
387
+
388
+ @property
389
+ def spaces(self):
390
+ """A tuple of the Hilbert spaces in this tensor product."""
391
+ return self.args
392
+
393
+ def _spaces_printer(self, printer, *args):
394
+ spaces_strs = []
395
+ for arg in self.args:
396
+ s = printer._print(arg, *args)
397
+ if isinstance(arg, DirectSumHilbertSpace):
398
+ s = '(%s)' % s
399
+ spaces_strs.append(s)
400
+ return spaces_strs
401
+
402
+ def _sympyrepr(self, printer, *args):
403
+ spaces_reprs = self._spaces_printer(printer, *args)
404
+ return "TensorProductHilbertSpace(%s)" % ','.join(spaces_reprs)
405
+
406
+ def _sympystr(self, printer, *args):
407
+ spaces_strs = self._spaces_printer(printer, *args)
408
+ return '*'.join(spaces_strs)
409
+
410
+ def _pretty(self, printer, *args):
411
+ length = len(self.args)
412
+ pform = printer._print('', *args)
413
+ for i in range(length):
414
+ next_pform = printer._print(self.args[i], *args)
415
+ if isinstance(self.args[i], (DirectSumHilbertSpace,
416
+ TensorProductHilbertSpace)):
417
+ next_pform = prettyForm(
418
+ *next_pform.parens(left='(', right=')')
419
+ )
420
+ pform = prettyForm(*pform.right(next_pform))
421
+ if i != length - 1:
422
+ if printer._use_unicode:
423
+ pform = prettyForm(*pform.right(' ' + '\N{N-ARY CIRCLED TIMES OPERATOR}' + ' '))
424
+ else:
425
+ pform = prettyForm(*pform.right(' x '))
426
+ return pform
427
+
428
+ def _latex(self, printer, *args):
429
+ length = len(self.args)
430
+ s = ''
431
+ for i in range(length):
432
+ arg_s = printer._print(self.args[i], *args)
433
+ if isinstance(self.args[i], (DirectSumHilbertSpace,
434
+ TensorProductHilbertSpace)):
435
+ arg_s = r'\left(%s\right)' % arg_s
436
+ s = s + arg_s
437
+ if i != length - 1:
438
+ s = s + r'\otimes '
439
+ return s
440
+
441
+
442
+ class DirectSumHilbertSpace(HilbertSpace):
443
+ """A direct sum of Hilbert spaces [1]_.
444
+
445
+ This class uses the ``+`` operator to represent direct sums between
446
+ different Hilbert spaces.
447
+
448
+ A ``DirectSumHilbertSpace`` object takes in an arbitrary number of
449
+ ``HilbertSpace`` objects as its arguments. Also, addition of
450
+ ``HilbertSpace`` objects will automatically return a direct sum object.
451
+
452
+ Examples
453
+ ========
454
+
455
+ >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
456
+
457
+ >>> c = ComplexSpace(2)
458
+ >>> f = FockSpace()
459
+ >>> hs = c+f
460
+ >>> hs
461
+ C(2)+F
462
+ >>> hs.dimension
463
+ oo
464
+ >>> list(hs.spaces)
465
+ [C(2), F]
466
+
467
+ References
468
+ ==========
469
+
470
+ .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums
471
+ """
472
+ def __new__(cls, *args):
473
+ r = cls.eval(args)
474
+ if isinstance(r, Basic):
475
+ return r
476
+ obj = Basic.__new__(cls, *args)
477
+ return obj
478
+
479
+ @classmethod
480
+ def eval(cls, args):
481
+ """Evaluates the direct product."""
482
+ new_args = []
483
+ recall = False
484
+ #flatten arguments
485
+ for arg in args:
486
+ if isinstance(arg, DirectSumHilbertSpace):
487
+ new_args.extend(arg.args)
488
+ recall = True
489
+ elif isinstance(arg, HilbertSpace):
490
+ new_args.append(arg)
491
+ else:
492
+ raise TypeError('Hilbert spaces can only be summed with other \
493
+ Hilbert spaces: %r' % arg)
494
+ if recall:
495
+ return DirectSumHilbertSpace(*new_args)
496
+ else:
497
+ return None
498
+
499
+ @property
500
+ def dimension(self):
501
+ arg_list = [arg.dimension for arg in self.args]
502
+ if S.Infinity in arg_list:
503
+ return S.Infinity
504
+ else:
505
+ return reduce(lambda x, y: x + y, arg_list)
506
+
507
+ @property
508
+ def spaces(self):
509
+ """A tuple of the Hilbert spaces in this direct sum."""
510
+ return self.args
511
+
512
+ def _sympyrepr(self, printer, *args):
513
+ spaces_reprs = [printer._print(arg, *args) for arg in self.args]
514
+ return "DirectSumHilbertSpace(%s)" % ','.join(spaces_reprs)
515
+
516
+ def _sympystr(self, printer, *args):
517
+ spaces_strs = [printer._print(arg, *args) for arg in self.args]
518
+ return '+'.join(spaces_strs)
519
+
520
+ def _pretty(self, printer, *args):
521
+ length = len(self.args)
522
+ pform = printer._print('', *args)
523
+ for i in range(length):
524
+ next_pform = printer._print(self.args[i], *args)
525
+ if isinstance(self.args[i], (DirectSumHilbertSpace,
526
+ TensorProductHilbertSpace)):
527
+ next_pform = prettyForm(
528
+ *next_pform.parens(left='(', right=')')
529
+ )
530
+ pform = prettyForm(*pform.right(next_pform))
531
+ if i != length - 1:
532
+ if printer._use_unicode:
533
+ pform = prettyForm(*pform.right(' \N{CIRCLED PLUS} '))
534
+ else:
535
+ pform = prettyForm(*pform.right(' + '))
536
+ return pform
537
+
538
+ def _latex(self, printer, *args):
539
+ length = len(self.args)
540
+ s = ''
541
+ for i in range(length):
542
+ arg_s = printer._print(self.args[i], *args)
543
+ if isinstance(self.args[i], (DirectSumHilbertSpace,
544
+ TensorProductHilbertSpace)):
545
+ arg_s = r'\left(%s\right)' % arg_s
546
+ s = s + arg_s
547
+ if i != length - 1:
548
+ s = s + r'\oplus '
549
+ return s
550
+
551
+
552
+ class TensorPowerHilbertSpace(HilbertSpace):
553
+ """An exponentiated Hilbert space [1]_.
554
+
555
+ Tensor powers (repeated tensor products) are represented by the
556
+ operator ``**`` Identical Hilbert spaces that are multiplied together
557
+ will be automatically combined into a single tensor power object.
558
+
559
+ Any Hilbert space, product, or sum may be raised to a tensor power. The
560
+ ``TensorPowerHilbertSpace`` takes two arguments: the Hilbert space; and the
561
+ tensor power (number).
562
+
563
+ Examples
564
+ ========
565
+
566
+ >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
567
+ >>> from sympy import symbols
568
+
569
+ >>> n = symbols('n')
570
+ >>> c = ComplexSpace(2)
571
+ >>> hs = c**n
572
+ >>> hs
573
+ C(2)**n
574
+ >>> hs.dimension
575
+ 2**n
576
+
577
+ >>> c = ComplexSpace(2)
578
+ >>> c*c
579
+ C(2)**2
580
+ >>> f = FockSpace()
581
+ >>> c*f*f
582
+ C(2)*F**2
583
+
584
+ References
585
+ ==========
586
+
587
+ .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products
588
+ """
589
+
590
+ def __new__(cls, *args):
591
+ r = cls.eval(args)
592
+ if isinstance(r, Basic):
593
+ return r
594
+ return Basic.__new__(cls, *r)
595
+
596
+ @classmethod
597
+ def eval(cls, args):
598
+ new_args = args[0], sympify(args[1])
599
+ exp = new_args[1]
600
+ #simplify hs**1 -> hs
601
+ if exp is S.One:
602
+ return args[0]
603
+ #simplify hs**0 -> 1
604
+ if exp is S.Zero:
605
+ return S.One
606
+ #check (and allow) for hs**(x+42+y...) case
607
+ if len(exp.atoms()) == 1:
608
+ if not (exp.is_Integer and exp >= 0 or exp.is_Symbol):
609
+ raise ValueError('Hilbert spaces can only be raised to \
610
+ positive integers or Symbols: %r' % exp)
611
+ else:
612
+ for power in exp.atoms():
613
+ if not (power.is_Integer or power.is_Symbol):
614
+ raise ValueError('Tensor powers can only contain integers \
615
+ or Symbols: %r' % power)
616
+ return new_args
617
+
618
+ @property
619
+ def base(self):
620
+ return self.args[0]
621
+
622
+ @property
623
+ def exp(self):
624
+ return self.args[1]
625
+
626
+ @property
627
+ def dimension(self):
628
+ if self.base.dimension is S.Infinity:
629
+ return S.Infinity
630
+ else:
631
+ return self.base.dimension**self.exp
632
+
633
+ def _sympyrepr(self, printer, *args):
634
+ return "TensorPowerHilbertSpace(%s,%s)" % (printer._print(self.base,
635
+ *args), printer._print(self.exp, *args))
636
+
637
+ def _sympystr(self, printer, *args):
638
+ return "%s**%s" % (printer._print(self.base, *args),
639
+ printer._print(self.exp, *args))
640
+
641
+ def _pretty(self, printer, *args):
642
+ pform_exp = printer._print(self.exp, *args)
643
+ if printer._use_unicode:
644
+ pform_exp = prettyForm(*pform_exp.left(prettyForm('\N{N-ARY CIRCLED TIMES OPERATOR}')))
645
+ else:
646
+ pform_exp = prettyForm(*pform_exp.left(prettyForm('x')))
647
+ pform_base = printer._print(self.base, *args)
648
+ return pform_base**pform_exp
649
+
650
+ def _latex(self, printer, *args):
651
+ base = printer._print(self.base, *args)
652
+ exp = printer._print(self.exp, *args)
653
+ return r'{%s}^{\otimes %s}' % (base, exp)
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/identitysearch.py ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from sympy.core.random import randint
3
+
4
+ from sympy.external import import_module
5
+ from sympy.core.basic import Basic
6
+ from sympy.core.mul import Mul
7
+ from sympy.core.numbers import Number, equal_valued
8
+ from sympy.core.power import Pow
9
+ from sympy.core.singleton import S
10
+ from sympy.physics.quantum.represent import represent
11
+ from sympy.physics.quantum.dagger import Dagger
12
+
13
+ __all__ = [
14
+ # Public interfaces
15
+ 'generate_gate_rules',
16
+ 'generate_equivalent_ids',
17
+ 'GateIdentity',
18
+ 'bfs_identity_search',
19
+ 'random_identity_search',
20
+
21
+ # "Private" functions
22
+ 'is_scalar_sparse_matrix',
23
+ 'is_scalar_nonsparse_matrix',
24
+ 'is_degenerate',
25
+ 'is_reducible',
26
+ ]
27
+
28
+ np = import_module('numpy')
29
+ scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
30
+
31
+
32
+ def is_scalar_sparse_matrix(circuit, nqubits, identity_only, eps=1e-11):
33
+ """Checks if a given scipy.sparse matrix is a scalar matrix.
34
+
35
+ A scalar matrix is such that B = bI, where B is the scalar
36
+ matrix, b is some scalar multiple, and I is the identity
37
+ matrix. A scalar matrix would have only the element b along
38
+ it's main diagonal and zeroes elsewhere.
39
+
40
+ Parameters
41
+ ==========
42
+
43
+ circuit : Gate tuple
44
+ Sequence of quantum gates representing a quantum circuit
45
+ nqubits : int
46
+ Number of qubits in the circuit
47
+ identity_only : bool
48
+ Check for only identity matrices
49
+ eps : number
50
+ The tolerance value for zeroing out elements in the matrix.
51
+ Values in the range [-eps, +eps] will be changed to a zero.
52
+ """
53
+
54
+ if not np or not scipy:
55
+ pass
56
+
57
+ matrix = represent(Mul(*circuit), nqubits=nqubits,
58
+ format='scipy.sparse')
59
+
60
+ # In some cases, represent returns a 1D scalar value in place
61
+ # of a multi-dimensional scalar matrix
62
+ if (isinstance(matrix, int)):
63
+ return matrix == 1 if identity_only else True
64
+
65
+ # If represent returns a matrix, check if the matrix is diagonal
66
+ # and if every item along the diagonal is the same
67
+ else:
68
+ # Due to floating pointing operations, must zero out
69
+ # elements that are "very" small in the dense matrix
70
+ # See parameter for default value.
71
+
72
+ # Get the ndarray version of the dense matrix
73
+ dense_matrix = matrix.todense().getA()
74
+ # Since complex values can't be compared, must split
75
+ # the matrix into real and imaginary components
76
+ # Find the real values in between -eps and eps
77
+ bool_real = np.logical_and(dense_matrix.real > -eps,
78
+ dense_matrix.real < eps)
79
+ # Find the imaginary values between -eps and eps
80
+ bool_imag = np.logical_and(dense_matrix.imag > -eps,
81
+ dense_matrix.imag < eps)
82
+ # Replaces values between -eps and eps with 0
83
+ corrected_real = np.where(bool_real, 0.0, dense_matrix.real)
84
+ corrected_imag = np.where(bool_imag, 0.0, dense_matrix.imag)
85
+ # Convert the matrix with real values into imaginary values
86
+ corrected_imag = corrected_imag * complex(1j)
87
+ # Recombine the real and imaginary components
88
+ corrected_dense = corrected_real + corrected_imag
89
+
90
+ # Check if it's diagonal
91
+ row_indices = corrected_dense.nonzero()[0]
92
+ col_indices = corrected_dense.nonzero()[1]
93
+ # Check if the rows indices and columns indices are the same
94
+ # If they match, then matrix only contains elements along diagonal
95
+ bool_indices = row_indices == col_indices
96
+ is_diagonal = bool_indices.all()
97
+
98
+ first_element = corrected_dense[0][0]
99
+ # If the first element is a zero, then can't rescale matrix
100
+ # and definitely not diagonal
101
+ if (first_element == 0.0 + 0.0j):
102
+ return False
103
+
104
+ # The dimensions of the dense matrix should still
105
+ # be 2^nqubits if there are elements all along the
106
+ # the main diagonal
107
+ trace_of_corrected = (corrected_dense/first_element).trace()
108
+ expected_trace = pow(2, nqubits)
109
+ has_correct_trace = trace_of_corrected == expected_trace
110
+
111
+ # If only looking for identity matrices
112
+ # first element must be a 1
113
+ real_is_one = abs(first_element.real - 1.0) < eps
114
+ imag_is_zero = abs(first_element.imag) < eps
115
+ is_one = real_is_one and imag_is_zero
116
+ is_identity = is_one if identity_only else True
117
+ return bool(is_diagonal and has_correct_trace and is_identity)
118
+
119
+
120
+ def is_scalar_nonsparse_matrix(circuit, nqubits, identity_only, eps=None):
121
+ """Checks if a given circuit, in matrix form, is equivalent to
122
+ a scalar value.
123
+
124
+ Parameters
125
+ ==========
126
+
127
+ circuit : Gate tuple
128
+ Sequence of quantum gates representing a quantum circuit
129
+ nqubits : int
130
+ Number of qubits in the circuit
131
+ identity_only : bool
132
+ Check for only identity matrices
133
+ eps : number
134
+ This argument is ignored. It is just for signature compatibility with
135
+ is_scalar_sparse_matrix.
136
+
137
+ Note: Used in situations when is_scalar_sparse_matrix has bugs
138
+ """
139
+
140
+ matrix = represent(Mul(*circuit), nqubits=nqubits)
141
+
142
+ # In some cases, represent returns a 1D scalar value in place
143
+ # of a multi-dimensional scalar matrix
144
+ if (isinstance(matrix, Number)):
145
+ return matrix == 1 if identity_only else True
146
+
147
+ # If represent returns a matrix, check if the matrix is diagonal
148
+ # and if every item along the diagonal is the same
149
+ else:
150
+ # Added up the diagonal elements
151
+ matrix_trace = matrix.trace()
152
+ # Divide the trace by the first element in the matrix
153
+ # if matrix is not required to be the identity matrix
154
+ adjusted_matrix_trace = (matrix_trace/matrix[0]
155
+ if not identity_only
156
+ else matrix_trace)
157
+
158
+ is_identity = equal_valued(matrix[0], 1) if identity_only else True
159
+
160
+ has_correct_trace = adjusted_matrix_trace == pow(2, nqubits)
161
+
162
+ # The matrix is scalar if it's diagonal and the adjusted trace
163
+ # value is equal to 2^nqubits
164
+ return bool(
165
+ matrix.is_diagonal() and has_correct_trace and is_identity)
166
+
167
+ if np and scipy:
168
+ is_scalar_matrix = is_scalar_sparse_matrix
169
+ else:
170
+ is_scalar_matrix = is_scalar_nonsparse_matrix
171
+
172
+
173
+ def _get_min_qubits(a_gate):
174
+ if isinstance(a_gate, Pow):
175
+ return a_gate.base.min_qubits
176
+ else:
177
+ return a_gate.min_qubits
178
+
179
+
180
+ def ll_op(left, right):
181
+ """Perform a LL operation.
182
+
183
+ A LL operation multiplies both left and right circuits
184
+ with the dagger of the left circuit's leftmost gate, and
185
+ the dagger is multiplied on the left side of both circuits.
186
+
187
+ If a LL is possible, it returns the new gate rule as a
188
+ 2-tuple (LHS, RHS), where LHS is the left circuit and
189
+ and RHS is the right circuit of the new rule.
190
+ If a LL is not possible, None is returned.
191
+
192
+ Parameters
193
+ ==========
194
+
195
+ left : Gate tuple
196
+ The left circuit of a gate rule expression.
197
+ right : Gate tuple
198
+ The right circuit of a gate rule expression.
199
+
200
+ Examples
201
+ ========
202
+
203
+ Generate a new gate rule using a LL operation:
204
+
205
+ >>> from sympy.physics.quantum.identitysearch import ll_op
206
+ >>> from sympy.physics.quantum.gate import X, Y, Z
207
+ >>> x = X(0); y = Y(0); z = Z(0)
208
+ >>> ll_op((x, y, z), ())
209
+ ((Y(0), Z(0)), (X(0),))
210
+
211
+ >>> ll_op((y, z), (x,))
212
+ ((Z(0),), (Y(0), X(0)))
213
+ """
214
+
215
+ if (len(left) > 0):
216
+ ll_gate = left[0]
217
+ ll_gate_is_unitary = is_scalar_matrix(
218
+ (Dagger(ll_gate), ll_gate), _get_min_qubits(ll_gate), True)
219
+
220
+ if (len(left) > 0 and ll_gate_is_unitary):
221
+ # Get the new left side w/o the leftmost gate
222
+ new_left = left[1:len(left)]
223
+ # Add the leftmost gate to the left position on the right side
224
+ new_right = (Dagger(ll_gate),) + right
225
+ # Return the new gate rule
226
+ return (new_left, new_right)
227
+
228
+ return None
229
+
230
+
231
+ def lr_op(left, right):
232
+ """Perform a LR operation.
233
+
234
+ A LR operation multiplies both left and right circuits
235
+ with the dagger of the left circuit's rightmost gate, and
236
+ the dagger is multiplied on the right side of both circuits.
237
+
238
+ If a LR is possible, it returns the new gate rule as a
239
+ 2-tuple (LHS, RHS), where LHS is the left circuit and
240
+ and RHS is the right circuit of the new rule.
241
+ If a LR is not possible, None is returned.
242
+
243
+ Parameters
244
+ ==========
245
+
246
+ left : Gate tuple
247
+ The left circuit of a gate rule expression.
248
+ right : Gate tuple
249
+ The right circuit of a gate rule expression.
250
+
251
+ Examples
252
+ ========
253
+
254
+ Generate a new gate rule using a LR operation:
255
+
256
+ >>> from sympy.physics.quantum.identitysearch import lr_op
257
+ >>> from sympy.physics.quantum.gate import X, Y, Z
258
+ >>> x = X(0); y = Y(0); z = Z(0)
259
+ >>> lr_op((x, y, z), ())
260
+ ((X(0), Y(0)), (Z(0),))
261
+
262
+ >>> lr_op((x, y), (z,))
263
+ ((X(0),), (Z(0), Y(0)))
264
+ """
265
+
266
+ if (len(left) > 0):
267
+ lr_gate = left[len(left) - 1]
268
+ lr_gate_is_unitary = is_scalar_matrix(
269
+ (Dagger(lr_gate), lr_gate), _get_min_qubits(lr_gate), True)
270
+
271
+ if (len(left) > 0 and lr_gate_is_unitary):
272
+ # Get the new left side w/o the rightmost gate
273
+ new_left = left[0:len(left) - 1]
274
+ # Add the rightmost gate to the right position on the right side
275
+ new_right = right + (Dagger(lr_gate),)
276
+ # Return the new gate rule
277
+ return (new_left, new_right)
278
+
279
+ return None
280
+
281
+
282
+ def rl_op(left, right):
283
+ """Perform a RL operation.
284
+
285
+ A RL operation multiplies both left and right circuits
286
+ with the dagger of the right circuit's leftmost gate, and
287
+ the dagger is multiplied on the left side of both circuits.
288
+
289
+ If a RL is possible, it returns the new gate rule as a
290
+ 2-tuple (LHS, RHS), where LHS is the left circuit and
291
+ and RHS is the right circuit of the new rule.
292
+ If a RL is not possible, None is returned.
293
+
294
+ Parameters
295
+ ==========
296
+
297
+ left : Gate tuple
298
+ The left circuit of a gate rule expression.
299
+ right : Gate tuple
300
+ The right circuit of a gate rule expression.
301
+
302
+ Examples
303
+ ========
304
+
305
+ Generate a new gate rule using a RL operation:
306
+
307
+ >>> from sympy.physics.quantum.identitysearch import rl_op
308
+ >>> from sympy.physics.quantum.gate import X, Y, Z
309
+ >>> x = X(0); y = Y(0); z = Z(0)
310
+ >>> rl_op((x,), (y, z))
311
+ ((Y(0), X(0)), (Z(0),))
312
+
313
+ >>> rl_op((x, y), (z,))
314
+ ((Z(0), X(0), Y(0)), ())
315
+ """
316
+
317
+ if (len(right) > 0):
318
+ rl_gate = right[0]
319
+ rl_gate_is_unitary = is_scalar_matrix(
320
+ (Dagger(rl_gate), rl_gate), _get_min_qubits(rl_gate), True)
321
+
322
+ if (len(right) > 0 and rl_gate_is_unitary):
323
+ # Get the new right side w/o the leftmost gate
324
+ new_right = right[1:len(right)]
325
+ # Add the leftmost gate to the left position on the left side
326
+ new_left = (Dagger(rl_gate),) + left
327
+ # Return the new gate rule
328
+ return (new_left, new_right)
329
+
330
+ return None
331
+
332
+
333
+ def rr_op(left, right):
334
+ """Perform a RR operation.
335
+
336
+ A RR operation multiplies both left and right circuits
337
+ with the dagger of the right circuit's rightmost gate, and
338
+ the dagger is multiplied on the right side of both circuits.
339
+
340
+ If a RR is possible, it returns the new gate rule as a
341
+ 2-tuple (LHS, RHS), where LHS is the left circuit and
342
+ and RHS is the right circuit of the new rule.
343
+ If a RR is not possible, None is returned.
344
+
345
+ Parameters
346
+ ==========
347
+
348
+ left : Gate tuple
349
+ The left circuit of a gate rule expression.
350
+ right : Gate tuple
351
+ The right circuit of a gate rule expression.
352
+
353
+ Examples
354
+ ========
355
+
356
+ Generate a new gate rule using a RR operation:
357
+
358
+ >>> from sympy.physics.quantum.identitysearch import rr_op
359
+ >>> from sympy.physics.quantum.gate import X, Y, Z
360
+ >>> x = X(0); y = Y(0); z = Z(0)
361
+ >>> rr_op((x, y), (z,))
362
+ ((X(0), Y(0), Z(0)), ())
363
+
364
+ >>> rr_op((x,), (y, z))
365
+ ((X(0), Z(0)), (Y(0),))
366
+ """
367
+
368
+ if (len(right) > 0):
369
+ rr_gate = right[len(right) - 1]
370
+ rr_gate_is_unitary = is_scalar_matrix(
371
+ (Dagger(rr_gate), rr_gate), _get_min_qubits(rr_gate), True)
372
+
373
+ if (len(right) > 0 and rr_gate_is_unitary):
374
+ # Get the new right side w/o the rightmost gate
375
+ new_right = right[0:len(right) - 1]
376
+ # Add the rightmost gate to the right position on the right side
377
+ new_left = left + (Dagger(rr_gate),)
378
+ # Return the new gate rule
379
+ return (new_left, new_right)
380
+
381
+ return None
382
+
383
+
384
+ def generate_gate_rules(gate_seq, return_as_muls=False):
385
+ """Returns a set of gate rules. Each gate rules is represented
386
+ as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary
387
+ scalar value.
388
+
389
+ This function uses the four operations (LL, LR, RL, RR)
390
+ to generate the gate rules.
391
+
392
+ A gate rule is an expression such as ABC = D or AB = CD, where
393
+ A, B, C, and D are gates. Each value on either side of the
394
+ equal sign represents a circuit. The four operations allow
395
+ one to find a set of equivalent circuits from a gate identity.
396
+ The letters denoting the operation tell the user what
397
+ activities to perform on each expression. The first letter
398
+ indicates which side of the equal sign to focus on. The
399
+ second letter indicates which gate to focus on given the
400
+ side. Once this information is determined, the inverse
401
+ of the gate is multiplied on both circuits to create a new
402
+ gate rule.
403
+
404
+ For example, given the identity, ABCD = 1, a LL operation
405
+ means look at the left value and multiply both left sides by the
406
+ inverse of the leftmost gate A. If A is Hermitian, the inverse
407
+ of A is still A. The resulting new rule is BCD = A.
408
+
409
+ The following is a summary of the four operations. Assume
410
+ that in the examples, all gates are Hermitian.
411
+
412
+ LL : left circuit, left multiply
413
+ ABCD = E -> AABCD = AE -> BCD = AE
414
+ LR : left circuit, right multiply
415
+ ABCD = E -> ABCDD = ED -> ABC = ED
416
+ RL : right circuit, left multiply
417
+ ABC = ED -> EABC = EED -> EABC = D
418
+ RR : right circuit, right multiply
419
+ AB = CD -> ABD = CDD -> ABD = C
420
+
421
+ The number of gate rules generated is n*(n+1), where n
422
+ is the number of gates in the sequence (unproven).
423
+
424
+ Parameters
425
+ ==========
426
+
427
+ gate_seq : Gate tuple, Mul, or Number
428
+ A variable length tuple or Mul of Gates whose product is equal to
429
+ a scalar matrix
430
+ return_as_muls : bool
431
+ True to return a set of Muls; False to return a set of tuples
432
+
433
+ Examples
434
+ ========
435
+
436
+ Find the gate rules of the current circuit using tuples:
437
+
438
+ >>> from sympy.physics.quantum.identitysearch import generate_gate_rules
439
+ >>> from sympy.physics.quantum.gate import X, Y, Z
440
+ >>> x = X(0); y = Y(0); z = Z(0)
441
+ >>> generate_gate_rules((x, x))
442
+ {((X(0),), (X(0),)), ((X(0), X(0)), ())}
443
+
444
+ >>> generate_gate_rules((x, y, z))
445
+ {((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))),
446
+ ((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))),
447
+ ((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))),
448
+ ((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)),
449
+ ((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()),
450
+ ((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())}
451
+
452
+ Find the gate rules of the current circuit using Muls:
453
+
454
+ >>> generate_gate_rules(x*x, return_as_muls=True)
455
+ {(1, 1)}
456
+
457
+ >>> generate_gate_rules(x*y*z, return_as_muls=True)
458
+ {(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)),
459
+ (1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)),
460
+ (Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)),
461
+ (X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1),
462
+ (Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)),
463
+ (Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))}
464
+ """
465
+
466
+ if isinstance(gate_seq, Number):
467
+ if return_as_muls:
468
+ return {(S.One, S.One)}
469
+ else:
470
+ return {((), ())}
471
+
472
+ elif isinstance(gate_seq, Mul):
473
+ gate_seq = gate_seq.args
474
+
475
+ # Each item in queue is a 3-tuple:
476
+ # i) first item is the left side of an equality
477
+ # ii) second item is the right side of an equality
478
+ # iii) third item is the number of operations performed
479
+ # The argument, gate_seq, will start on the left side, and
480
+ # the right side will be empty, implying the presence of an
481
+ # identity.
482
+ queue = deque()
483
+ # A set of gate rules
484
+ rules = set()
485
+ # Maximum number of operations to perform
486
+ max_ops = len(gate_seq)
487
+
488
+ def process_new_rule(new_rule, ops):
489
+ if new_rule is not None:
490
+ new_left, new_right = new_rule
491
+
492
+ if new_rule not in rules and (new_right, new_left) not in rules:
493
+ rules.add(new_rule)
494
+ # If haven't reached the max limit on operations
495
+ if ops + 1 < max_ops:
496
+ queue.append(new_rule + (ops + 1,))
497
+
498
+ queue.append((gate_seq, (), 0))
499
+ rules.add((gate_seq, ()))
500
+
501
+ while len(queue) > 0:
502
+ left, right, ops = queue.popleft()
503
+
504
+ # Do a LL
505
+ new_rule = ll_op(left, right)
506
+ process_new_rule(new_rule, ops)
507
+ # Do a LR
508
+ new_rule = lr_op(left, right)
509
+ process_new_rule(new_rule, ops)
510
+ # Do a RL
511
+ new_rule = rl_op(left, right)
512
+ process_new_rule(new_rule, ops)
513
+ # Do a RR
514
+ new_rule = rr_op(left, right)
515
+ process_new_rule(new_rule, ops)
516
+
517
+ if return_as_muls:
518
+ # Convert each rule as tuples into a rule as muls
519
+ mul_rules = set()
520
+ for rule in rules:
521
+ left, right = rule
522
+ mul_rules.add((Mul(*left), Mul(*right)))
523
+
524
+ rules = mul_rules
525
+
526
+ return rules
527
+
528
+
529
+ def generate_equivalent_ids(gate_seq, return_as_muls=False):
530
+ """Returns a set of equivalent gate identities.
531
+
532
+ A gate identity is a quantum circuit such that the product
533
+ of the gates in the circuit is equal to a scalar value.
534
+ For example, XYZ = i, where X, Y, Z are the Pauli gates and
535
+ i is the imaginary value, is considered a gate identity.
536
+
537
+ This function uses the four operations (LL, LR, RL, RR)
538
+ to generate the gate rules and, subsequently, to locate equivalent
539
+ gate identities.
540
+
541
+ Note that all equivalent identities are reachable in n operations
542
+ from the starting gate identity, where n is the number of gates
543
+ in the sequence.
544
+
545
+ The max number of gate identities is 2n, where n is the number
546
+ of gates in the sequence (unproven).
547
+
548
+ Parameters
549
+ ==========
550
+
551
+ gate_seq : Gate tuple, Mul, or Number
552
+ A variable length tuple or Mul of Gates whose product is equal to
553
+ a scalar matrix.
554
+ return_as_muls: bool
555
+ True to return as Muls; False to return as tuples
556
+
557
+ Examples
558
+ ========
559
+
560
+ Find equivalent gate identities from the current circuit with tuples:
561
+
562
+ >>> from sympy.physics.quantum.identitysearch import generate_equivalent_ids
563
+ >>> from sympy.physics.quantum.gate import X, Y, Z
564
+ >>> x = X(0); y = Y(0); z = Z(0)
565
+ >>> generate_equivalent_ids((x, x))
566
+ {(X(0), X(0))}
567
+
568
+ >>> generate_equivalent_ids((x, y, z))
569
+ {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)),
570
+ (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))}
571
+
572
+ Find equivalent gate identities from the current circuit with Muls:
573
+
574
+ >>> generate_equivalent_ids(x*x, return_as_muls=True)
575
+ {1}
576
+
577
+ >>> generate_equivalent_ids(x*y*z, return_as_muls=True)
578
+ {X(0)*Y(0)*Z(0), X(0)*Z(0)*Y(0), Y(0)*X(0)*Z(0),
579
+ Y(0)*Z(0)*X(0), Z(0)*X(0)*Y(0), Z(0)*Y(0)*X(0)}
580
+ """
581
+
582
+ if isinstance(gate_seq, Number):
583
+ return {S.One}
584
+ elif isinstance(gate_seq, Mul):
585
+ gate_seq = gate_seq.args
586
+
587
+ # Filter through the gate rules and keep the rules
588
+ # with an empty tuple either on the left or right side
589
+
590
+ # A set of equivalent gate identities
591
+ eq_ids = set()
592
+
593
+ gate_rules = generate_gate_rules(gate_seq)
594
+ for rule in gate_rules:
595
+ l, r = rule
596
+ if l == ():
597
+ eq_ids.add(r)
598
+ elif r == ():
599
+ eq_ids.add(l)
600
+
601
+ if return_as_muls:
602
+ convert_to_mul = lambda id_seq: Mul(*id_seq)
603
+ eq_ids = set(map(convert_to_mul, eq_ids))
604
+
605
+ return eq_ids
606
+
607
+
608
+ class GateIdentity(Basic):
609
+ """Wrapper class for circuits that reduce to a scalar value.
610
+
611
+ A gate identity is a quantum circuit such that the product
612
+ of the gates in the circuit is equal to a scalar value.
613
+ For example, XYZ = i, where X, Y, Z are the Pauli gates and
614
+ i is the imaginary value, is considered a gate identity.
615
+
616
+ Parameters
617
+ ==========
618
+
619
+ args : Gate tuple
620
+ A variable length tuple of Gates that form an identity.
621
+
622
+ Examples
623
+ ========
624
+
625
+ Create a GateIdentity and look at its attributes:
626
+
627
+ >>> from sympy.physics.quantum.identitysearch import GateIdentity
628
+ >>> from sympy.physics.quantum.gate import X, Y, Z
629
+ >>> x = X(0); y = Y(0); z = Z(0)
630
+ >>> an_identity = GateIdentity(x, y, z)
631
+ >>> an_identity.circuit
632
+ X(0)*Y(0)*Z(0)
633
+
634
+ >>> an_identity.equivalent_ids
635
+ {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)),
636
+ (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))}
637
+ """
638
+
639
+ def __new__(cls, *args):
640
+ # args should be a tuple - a variable length argument list
641
+ obj = Basic.__new__(cls, *args)
642
+ obj._circuit = Mul(*args)
643
+ obj._rules = generate_gate_rules(args)
644
+ obj._eq_ids = generate_equivalent_ids(args)
645
+
646
+ return obj
647
+
648
+ @property
649
+ def circuit(self):
650
+ return self._circuit
651
+
652
+ @property
653
+ def gate_rules(self):
654
+ return self._rules
655
+
656
+ @property
657
+ def equivalent_ids(self):
658
+ return self._eq_ids
659
+
660
+ @property
661
+ def sequence(self):
662
+ return self.args
663
+
664
+ def __str__(self):
665
+ """Returns the string of gates in a tuple."""
666
+ return str(self.circuit)
667
+
668
+
669
+ def is_degenerate(identity_set, gate_identity):
670
+ """Checks if a gate identity is a permutation of another identity.
671
+
672
+ Parameters
673
+ ==========
674
+
675
+ identity_set : set
676
+ A Python set with GateIdentity objects.
677
+ gate_identity : GateIdentity
678
+ The GateIdentity to check for existence in the set.
679
+
680
+ Examples
681
+ ========
682
+
683
+ Check if the identity is a permutation of another identity:
684
+
685
+ >>> from sympy.physics.quantum.identitysearch import (
686
+ ... GateIdentity, is_degenerate)
687
+ >>> from sympy.physics.quantum.gate import X, Y, Z
688
+ >>> x = X(0); y = Y(0); z = Z(0)
689
+ >>> an_identity = GateIdentity(x, y, z)
690
+ >>> id_set = {an_identity}
691
+ >>> another_id = (y, z, x)
692
+ >>> is_degenerate(id_set, another_id)
693
+ True
694
+
695
+ >>> another_id = (x, x)
696
+ >>> is_degenerate(id_set, another_id)
697
+ False
698
+ """
699
+
700
+ # For now, just iteratively go through the set and check if the current
701
+ # gate_identity is a permutation of an identity in the set
702
+ for an_id in identity_set:
703
+ if (gate_identity in an_id.equivalent_ids):
704
+ return True
705
+ return False
706
+
707
+
708
+ def is_reducible(circuit, nqubits, begin, end):
709
+ """Determines if a circuit is reducible by checking
710
+ if its subcircuits are scalar values.
711
+
712
+ Parameters
713
+ ==========
714
+
715
+ circuit : Gate tuple
716
+ A tuple of Gates representing a circuit. The circuit to check
717
+ if a gate identity is contained in a subcircuit.
718
+ nqubits : int
719
+ The number of qubits the circuit operates on.
720
+ begin : int
721
+ The leftmost gate in the circuit to include in a subcircuit.
722
+ end : int
723
+ The rightmost gate in the circuit to include in a subcircuit.
724
+
725
+ Examples
726
+ ========
727
+
728
+ Check if the circuit can be reduced:
729
+
730
+ >>> from sympy.physics.quantum.identitysearch import is_reducible
731
+ >>> from sympy.physics.quantum.gate import X, Y, Z
732
+ >>> x = X(0); y = Y(0); z = Z(0)
733
+ >>> is_reducible((x, y, z), 1, 0, 3)
734
+ True
735
+
736
+ Check if an interval in the circuit can be reduced:
737
+
738
+ >>> is_reducible((x, y, z), 1, 1, 3)
739
+ False
740
+
741
+ >>> is_reducible((x, y, y), 1, 1, 3)
742
+ True
743
+ """
744
+
745
+ current_circuit = ()
746
+ # Start from the gate at "end" and go down to almost the gate at "begin"
747
+ for ndx in reversed(range(begin, end)):
748
+ next_gate = circuit[ndx]
749
+ current_circuit = (next_gate,) + current_circuit
750
+
751
+ # If a circuit as a matrix is equivalent to a scalar value
752
+ if (is_scalar_matrix(current_circuit, nqubits, False)):
753
+ return True
754
+
755
+ return False
756
+
757
+
758
+ def bfs_identity_search(gate_list, nqubits, max_depth=None,
759
+ identity_only=False):
760
+ """Constructs a set of gate identities from the list of possible gates.
761
+
762
+ Performs a breadth first search over the space of gate identities.
763
+ This allows the finding of the shortest gate identities first.
764
+
765
+ Parameters
766
+ ==========
767
+
768
+ gate_list : list, Gate
769
+ A list of Gates from which to search for gate identities.
770
+ nqubits : int
771
+ The number of qubits the quantum circuit operates on.
772
+ max_depth : int
773
+ The longest quantum circuit to construct from gate_list.
774
+ identity_only : bool
775
+ True to search for gate identities that reduce to identity;
776
+ False to search for gate identities that reduce to a scalar.
777
+
778
+ Examples
779
+ ========
780
+
781
+ Find a list of gate identities:
782
+
783
+ >>> from sympy.physics.quantum.identitysearch import bfs_identity_search
784
+ >>> from sympy.physics.quantum.gate import X, Y, Z
785
+ >>> x = X(0); y = Y(0); z = Z(0)
786
+ >>> bfs_identity_search([x], 1, max_depth=2)
787
+ {GateIdentity(X(0), X(0))}
788
+
789
+ >>> bfs_identity_search([x, y, z], 1)
790
+ {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)),
791
+ GateIdentity(Z(0), Z(0)), GateIdentity(X(0), Y(0), Z(0))}
792
+
793
+ Find a list of identities that only equal to 1:
794
+
795
+ >>> bfs_identity_search([x, y, z], 1, identity_only=True)
796
+ {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)),
797
+ GateIdentity(Z(0), Z(0))}
798
+ """
799
+
800
+ if max_depth is None or max_depth <= 0:
801
+ max_depth = len(gate_list)
802
+
803
+ id_only = identity_only
804
+
805
+ # Start with an empty sequence (implicitly contains an IdentityGate)
806
+ queue = deque([()])
807
+
808
+ # Create an empty set of gate identities
809
+ ids = set()
810
+
811
+ # Begin searching for gate identities in given space.
812
+ while (len(queue) > 0):
813
+ current_circuit = queue.popleft()
814
+
815
+ for next_gate in gate_list:
816
+ new_circuit = current_circuit + (next_gate,)
817
+
818
+ # Determines if a (strict) subcircuit is a scalar matrix
819
+ circuit_reducible = is_reducible(new_circuit, nqubits,
820
+ 1, len(new_circuit))
821
+
822
+ # In many cases when the matrix is a scalar value,
823
+ # the evaluated matrix will actually be an integer
824
+ if (is_scalar_matrix(new_circuit, nqubits, id_only) and
825
+ not is_degenerate(ids, new_circuit) and
826
+ not circuit_reducible):
827
+ ids.add(GateIdentity(*new_circuit))
828
+
829
+ elif (len(new_circuit) < max_depth and
830
+ not circuit_reducible):
831
+ queue.append(new_circuit)
832
+
833
+ return ids
834
+
835
+
836
+ def random_identity_search(gate_list, numgates, nqubits):
837
+ """Randomly selects numgates from gate_list and checks if it is
838
+ a gate identity.
839
+
840
+ If the circuit is a gate identity, the circuit is returned;
841
+ Otherwise, None is returned.
842
+ """
843
+
844
+ gate_size = len(gate_list)
845
+ circuit = ()
846
+
847
+ for i in range(numgates):
848
+ next_gate = gate_list[randint(0, gate_size - 1)]
849
+ circuit = circuit + (next_gate,)
850
+
851
+ is_scalar = is_scalar_matrix(circuit, nqubits, False)
852
+
853
+ return circuit if is_scalar else None
env-llmeval/lib/python3.10/site-packages/sympy/physics/quantum/innerproduct.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Symbolic inner product."""
2
+
3
+ from sympy.core.expr import Expr
4
+ from sympy.functions.elementary.complexes import conjugate
5
+ from sympy.printing.pretty.stringpict import prettyForm
6
+ from sympy.physics.quantum.dagger import Dagger
7
+ from sympy.physics.quantum.state import KetBase, BraBase
8
+
9
+ __all__ = [
10
+ 'InnerProduct'
11
+ ]
12
+
13
+
14
+ # InnerProduct is not an QExpr because it is really just a regular commutative
15
+ # number. We have gone back and forth about this, but we gain a lot by having
16
+ # it subclass Expr. The main challenges were getting Dagger to work
17
+ # (we use _eval_conjugate) and represent (we can use atoms and subs). Having
18
+ # it be an Expr, mean that there are no commutative QExpr subclasses,
19
+ # which simplifies the design of everything.
20
+
21
+ class InnerProduct(Expr):
22
+ """An unevaluated inner product between a Bra and a Ket [1].
23
+
24
+ Parameters
25
+ ==========
26
+
27
+ bra : BraBase or subclass
28
+ The bra on the left side of the inner product.
29
+ ket : KetBase or subclass
30
+ The ket on the right side of the inner product.
31
+
32
+ Examples
33
+ ========
34
+
35
+ Create an InnerProduct and check its properties:
36
+
37
+ >>> from sympy.physics.quantum import Bra, Ket
38
+ >>> b = Bra('b')
39
+ >>> k = Ket('k')
40
+ >>> ip = b*k
41
+ >>> ip
42
+ <b|k>
43
+ >>> ip.bra
44
+ <b|
45
+ >>> ip.ket
46
+ |k>
47
+
48
+ In simple products of kets and bras inner products will be automatically
49
+ identified and created::
50
+
51
+ >>> b*k
52
+ <b|k>
53
+
54
+ But in more complex expressions, there is ambiguity in whether inner or
55
+ outer products should be created::
56
+
57
+ >>> k*b*k*b
58
+ |k><b|*|k>*<b|
59
+
60
+ A user can force the creation of a inner products in a complex expression
61
+ by using parentheses to group the bra and ket::
62
+
63
+ >>> k*(b*k)*b
64
+ <b|k>*|k>*<b|
65
+
66
+ Notice how the inner product <b|k> moved to the left of the expression
67
+ because inner products are commutative complex numbers.
68
+
69
+ References
70
+ ==========
71
+
72
+ .. [1] https://en.wikipedia.org/wiki/Inner_product
73
+ """
74
+ is_complex = True
75
+
76
+ def __new__(cls, bra, ket):
77
+ if not isinstance(ket, KetBase):
78
+ raise TypeError('KetBase subclass expected, got: %r' % ket)
79
+ if not isinstance(bra, BraBase):
80
+ raise TypeError('BraBase subclass expected, got: %r' % ket)
81
+ obj = Expr.__new__(cls, bra, ket)
82
+ return obj
83
+
84
+ @property
85
+ def bra(self):
86
+ return self.args[0]
87
+
88
+ @property
89
+ def ket(self):
90
+ return self.args[1]
91
+
92
+ def _eval_conjugate(self):
93
+ return InnerProduct(Dagger(self.ket), Dagger(self.bra))
94
+
95
+ def _sympyrepr(self, printer, *args):
96
+ return '%s(%s,%s)' % (self.__class__.__name__,
97
+ printer._print(self.bra, *args), printer._print(self.ket, *args))
98
+
99
+ def _sympystr(self, printer, *args):
100
+ sbra = printer._print(self.bra)
101
+ sket = printer._print(self.ket)
102
+ return '%s|%s' % (sbra[:-1], sket[1:])
103
+
104
+ def _pretty(self, printer, *args):
105
+ # Print state contents
106
+ bra = self.bra._print_contents_pretty(printer, *args)
107
+ ket = self.ket._print_contents_pretty(printer, *args)
108
+ # Print brackets
109
+ height = max(bra.height(), ket.height())
110
+ use_unicode = printer._use_unicode
111
+ lbracket, _ = self.bra._pretty_brackets(height, use_unicode)
112
+ cbracket, rbracket = self.ket._pretty_brackets(height, use_unicode)
113
+ # Build innerproduct
114
+ pform = prettyForm(*bra.left(lbracket))
115
+ pform = prettyForm(*pform.right(cbracket))
116
+ pform = prettyForm(*pform.right(ket))
117
+ pform = prettyForm(*pform.right(rbracket))
118
+ return pform
119
+
120
+ def _latex(self, printer, *args):
121
+ bra_label = self.bra._print_contents_latex(printer, *args)
122
+ ket = printer._print(self.ket, *args)
123
+ return r'\left\langle %s \right. %s' % (bra_label, ket)
124
+
125
+ def doit(self, **hints):
126
+ try:
127
+ r = self.ket._eval_innerproduct(self.bra, **hints)
128
+ except NotImplementedError:
129
+ try:
130
+ r = conjugate(
131
+ self.bra.dual._eval_innerproduct(self.ket.dual, **hints)
132
+ )
133
+ except NotImplementedError:
134
+ r = None
135
+ if r is not None:
136
+ return r
137
+ return self