Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/BoxedKernel.h +176 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/BoxedKernel_impl.h +99 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/KernelFunction.h +260 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/KernelFunction_impl.h +229 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/OperatorKernel.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h +32 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h +600 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/test_helpers.h +124 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/op_registration/infer_schema.h +160 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/op_registration/op_registration.h +596 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ApplyGridUtils.cuh +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/Atomic.cuh +508 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDABlas.h +375 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContext.h +9 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContextLight.h +95 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDADataType.h +115 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDADevice.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGeneratorImpl.h +138 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGraph.h +92 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGraphsUtils.cuh +57 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDASparse.h +76 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDASparseBlas.h +318 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDATensorMethods.cuh +15 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAUtils.h +20 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CachingHostAllocator.h +37 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/DeviceUtils.cuh +121 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/EmptyTensor.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/NumericLimits.cuh +121 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PeerToPeerAccess.h +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PhiloxCudaState.h +5 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PhiloxUtils.cuh +4 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ScanUtils.cuh +78 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/Sleep.h +10 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ThrustAllocator.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/cub.cuh +413 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/cub.h +87 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/CUDAHooks.h +54 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/IndexUtils.cuh +36 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/IntegerDivider.cuh +124 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/KernelUtils.h +37 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/LazyNVRTC.h +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/OffsetCalculator.cuh +119 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/PhiloxCudaStateRaw.cuh +43 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/TensorInfo.cuh +116 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/UnpackRaw.cuh +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/jiterator.h +40 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/jiterator_impl.h +249 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/llvm_jit_strings.h +14 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/tunable/GemmCommon.h +174 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/tunable/GemmHipblaslt.h +379 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/BoxedKernel.h
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/boxing/OperatorKernel.h>
|
4 |
+
#include <c10/core/DispatchKeySet.h>
|
5 |
+
#include <c10/util/intrusive_ptr.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
struct IValue;
|
10 |
+
using Stack = std::vector<IValue>;
|
11 |
+
|
12 |
+
class OperatorHandle;
|
13 |
+
class KernelFunction;
|
14 |
+
|
15 |
+
// This kernel implements the behavior of falling through to the next available
|
16 |
+
// registered dispatch key. The implementation of this function is FAST; it is
|
17 |
+
// no overhead to fallthrough to the next key. See cpp file for some more
|
18 |
+
// implementation notes; notably, this does NOT actually go through the
|
19 |
+
// boxing/unboxing codepath.
|
20 |
+
TORCH_API void fallthrough_kernel(OperatorKernel*, const OperatorHandle&, DispatchKeySet, Stack*);
|
21 |
+
|
22 |
+
// Note [Ambiguity in AutogradOther kernel]
|
23 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
24 |
+
// This error-reporting kernel is registered to the AutogradOther entry in the
|
25 |
+
// dispatch table when there is both a CompositeImplicitAutograd kernel and a
|
26 |
+
// backend kernel for ANY backend that maps to AutogradOther. To see why
|
27 |
+
// this is necessary in the AutogradOther case, it's helpful to first see
|
28 |
+
// why everything works out fine for a backend that has a reserved Autograd
|
29 |
+
// entry (see rule 2.2 in [Note] DispatchTable computation):
|
30 |
+
//
|
31 |
+
// CPU AutogradCPU
|
32 |
+
// reg? registers with...
|
33 |
+
// -------------------------------------------------
|
34 |
+
// y Autograd registration takes precedence
|
35 |
+
// over CompositeImplicitAutograd.
|
36 |
+
// This is good, because the CPU specific backend
|
37 |
+
// implementation is more specialized and typically better;
|
38 |
+
// if we used the composite, we would bypass it.
|
39 |
+
// (NB: the Autograd key is guaranteed to exist because
|
40 |
+
// the autograd codegen requires it!)
|
41 |
+
//
|
42 |
+
// n CompositeImplicitAutograd takes precedence.
|
43 |
+
// This is also good, because the Autograd
|
44 |
+
// registration (if it exists) would try to redispatch
|
45 |
+
// to the (non-existent) CPU implementation; by
|
46 |
+
// using the composite, we ensure the operator
|
47 |
+
// actually works.
|
48 |
+
//
|
49 |
+
// As you can see, when we have a specific Autograd key (AutogradCPU), we can
|
50 |
+
// decide whether or not to use the CompositeImplicitAutograd kernel or the
|
51 |
+
// Autograd kernel based on whether or not the backend kernel exists.
|
52 |
+
//
|
53 |
+
// However, for AutogradOther (which is the catchall autograd kernel for
|
54 |
+
// everything that doesn't have a specific Autograd key), we can't do this
|
55 |
+
// trick because there isn't any unique backend to peek at to disambiguate;
|
56 |
+
// if there are some backends that have implementations they prefer Autograd,
|
57 |
+
// but unimplemented backends would prefer CompositeImplicitAutograd. Rather
|
58 |
+
// than arbitrarily pick one or the other, we just register a kernel that raises
|
59 |
+
// an error and let the user decide how to proceed.
|
60 |
+
TORCH_API void ambiguous_autogradother_kernel(OperatorKernel*, const OperatorHandle&, DispatchKeySet, Stack*);
|
61 |
+
|
62 |
+
// Note [named_not_supported_kernel]
|
63 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
64 |
+
// This kernel implements reporting an error message saying that named tensor is
|
65 |
+
// not supported. This kernel doesn't rely on the Stack, and so it is special
|
66 |
+
// cased in the dispatcher to be triggered before we attempt boxing (so we can
|
67 |
+
// give a good error message in cases when boxing is not supported). When
|
68 |
+
// boxing is universally supported this can be removed.
|
69 |
+
[[noreturn]] TORCH_API void named_not_supported_kernel(OperatorKernel*, const OperatorHandle&, DispatchKeySet, Stack*);
|
70 |
+
|
71 |
+
/**
|
72 |
+
* BoxedKernel is similar to a std::function storing a boxed kernel.
|
73 |
+
*/
|
74 |
+
class TORCH_API BoxedKernel final {
|
75 |
+
public:
|
76 |
+
// This is how boxed kernels are actually stored
|
77 |
+
//
|
78 |
+
// Note [Plumbing Keys Through The Dispatcher]
|
79 |
+
// Benchmarks have shown that it is expensive for the dispatcher to read from thread-local storage (TLS)
|
80 |
+
// upon every dispatch call into order to compute which kernel to dispatch to.
|
81 |
+
//
|
82 |
+
// To mitigate this, we've updated the calling convention inside the dispatcher to expect every kernel that it stores
|
83 |
+
// to have a first argument of type DispatchKeySet.
|
84 |
+
//
|
85 |
+
// What are the invariants of the DispatchKeySet when it gets passed to a kernel?
|
86 |
+
// - All keys to the left of the current dispatch key have been masked out.
|
87 |
+
// (e.g. a Tracing kernel that takes in the DispatchKeySet will expect the highest bit to be DispatchKey::Tracer)
|
88 |
+
// - All other keys that dispatcher normally would have computed through TLS + global state + op arguments
|
89 |
+
// are still in the set.
|
90 |
+
//
|
91 |
+
// Kernels can then opt into using this keyset to save the dispatcher from doing repeated work during redispatches:
|
92 |
+
// recalculating the highest-priority dispatch key, which involves reading from TLS. Instead, the kernels that opt in will
|
93 |
+
// calculate an updated DispatchKeySet directly from the old one, and pass the updated set directly into the dispatcher
|
94 |
+
// upon redispatching.
|
95 |
+
//
|
96 |
+
// This is an opt-in mechanism: Kernels can automatically opt in by setting the first argument in their signature
|
97 |
+
// to be of type DispatchKeySet. See the kernels in VariableTypeEverything.cpp and TraceTypeEverything.cpp for examples.
|
98 |
+
//
|
99 |
+
// The mechanism for optionally passing that DispatchKeySet into the kernel lives in make_boxed_from_unboxed_functor.h.
|
100 |
+
// See Note [Plumbing Keys Through The Dispatcher 2] for details.
|
101 |
+
using InternalBoxedKernelFunction = void(OperatorKernel*, const OperatorHandle&, DispatchKeySet, Stack*);
|
102 |
+
// This is the public API for how boxed kernels are defined
|
103 |
+
using BoxedKernelFunction = void(const OperatorHandle&, Stack*);
|
104 |
+
using BoxedKernelFunction_withDispatchKeys = void(const OperatorHandle&, DispatchKeySet, Stack*);
|
105 |
+
|
106 |
+
BoxedKernel();
|
107 |
+
|
108 |
+
// Fast path for dispatch to allow not touching the boxed kernel in
|
109 |
+
// the common case where unboxed is available.
|
110 |
+
bool isValid() const;
|
111 |
+
bool isFallthrough() const;
|
112 |
+
|
113 |
+
/**
|
114 |
+
* Call the function with boxed arguments.
|
115 |
+
*/
|
116 |
+
void callBoxed(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Stack* stack) const;
|
117 |
+
|
118 |
+
/**
|
119 |
+
* Create a KernelFunction from a boxed function.
|
120 |
+
*
|
121 |
+
* Example:
|
122 |
+
*
|
123 |
+
* > void boxed_func(OperatorKernel*, Stack* stack) {...}
|
124 |
+
* > BoxedFunction func = BoxedKernel::makeFromFunction<&boxed_func>();
|
125 |
+
*/
|
126 |
+
template<BoxedKernelFunction* func>
|
127 |
+
static BoxedKernel makeFromFunction();
|
128 |
+
|
129 |
+
/**
|
130 |
+
* TODO: This will only be useful if we write a backend fallback that plumbs dispatch keys (currently there are none)
|
131 |
+
* See Note [Plumbing Keys Through The Dispatcher] for details.
|
132 |
+
*/
|
133 |
+
template<BoxedKernelFunction_withDispatchKeys* func>
|
134 |
+
static BoxedKernel makeFromFunction();
|
135 |
+
|
136 |
+
/**
|
137 |
+
* Create a KernelFunction from a boxed functor.
|
138 |
+
*
|
139 |
+
* Example:
|
140 |
+
*
|
141 |
+
* > class MyFunctor final : public c10::OperatorKernel {
|
142 |
+
* > public:
|
143 |
+
* > void operator()(const OperatorHandle&, DispatchKeySet, Stack*) {...}
|
144 |
+
* > };
|
145 |
+
* > BoxedKernel func = BoxedKernel::makeFromFunctor(std::make_unique<MyFunctor>());
|
146 |
+
*/
|
147 |
+
template<class KernelFunctor>
|
148 |
+
static BoxedKernel makeFromFunctor(std::unique_ptr<KernelFunctor> kernelFunctor);
|
149 |
+
|
150 |
+
|
151 |
+
static BoxedKernel makeFallthrough();
|
152 |
+
static BoxedKernel makeAmbiguousAutogradOther();
|
153 |
+
static BoxedKernel makeNamedNotSupported();
|
154 |
+
|
155 |
+
private:
|
156 |
+
|
157 |
+
friend class KernelFunction;
|
158 |
+
|
159 |
+
template<BoxedKernelFunction* func>
|
160 |
+
static void make_boxed_function(OperatorKernel*, const OperatorHandle& opHandle, DispatchKeySet, Stack* stack);
|
161 |
+
|
162 |
+
template<BoxedKernelFunction_withDispatchKeys* func>
|
163 |
+
static void make_boxed_function(OperatorKernel*, const OperatorHandle& opHandle, DispatchKeySet, Stack* stack);
|
164 |
+
|
165 |
+
explicit BoxedKernel(std::unique_ptr<OperatorKernel> functor, InternalBoxedKernelFunction* boxed_kernel_func);
|
166 |
+
|
167 |
+
OperatorKernel* getFunctor() const;
|
168 |
+
InternalBoxedKernelFunction* getFnPtr() const;
|
169 |
+
|
170 |
+
c10::intrusive_ptr<OperatorKernel> functor_;
|
171 |
+
InternalBoxedKernelFunction* boxed_kernel_func_;
|
172 |
+
};
|
173 |
+
|
174 |
+
} // namespace c10
|
175 |
+
|
176 |
+
#include <ATen/core/boxing/BoxedKernel_impl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/BoxedKernel_impl.h
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace c10 {
|
4 |
+
|
5 |
+
inline BoxedKernel::BoxedKernel()
|
6 |
+
: functor_()
|
7 |
+
, boxed_kernel_func_(nullptr)
|
8 |
+
{}
|
9 |
+
|
10 |
+
inline BoxedKernel::BoxedKernel(std::unique_ptr<OperatorKernel> functor, InternalBoxedKernelFunction* boxed_kernel_func)
|
11 |
+
: functor_(std::move(functor))
|
12 |
+
, boxed_kernel_func_(boxed_kernel_func)
|
13 |
+
{}
|
14 |
+
|
15 |
+
template<BoxedKernel::BoxedKernelFunction* func>
|
16 |
+
inline void BoxedKernel::make_boxed_function(OperatorKernel*, const OperatorHandle& opHandle, DispatchKeySet, Stack* stack) {
|
17 |
+
// Note that we're dropping the DispatchKeySet argument.
|
18 |
+
// See Note [Plumbing Keys Through The Dispatcher 2] for details.
|
19 |
+
func(opHandle, stack);
|
20 |
+
}
|
21 |
+
|
22 |
+
template<BoxedKernel::BoxedKernelFunction_withDispatchKeys* func>
|
23 |
+
inline void BoxedKernel::make_boxed_function(OperatorKernel*, const OperatorHandle& opHandle, DispatchKeySet ks, Stack* stack) {
|
24 |
+
// See Note [Plumbing Keys Through The Dispatcher 2] for details.
|
25 |
+
func(opHandle, ks, stack);
|
26 |
+
}
|
27 |
+
|
28 |
+
inline bool BoxedKernel::isValid() const {
|
29 |
+
return boxed_kernel_func_ != nullptr;
|
30 |
+
}
|
31 |
+
|
32 |
+
inline bool BoxedKernel::isFallthrough() const {
|
33 |
+
return boxed_kernel_func_ == &fallthrough_kernel;
|
34 |
+
}
|
35 |
+
|
36 |
+
inline void BoxedKernel::callBoxed(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Stack* stack) const {
|
37 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
38 |
+
boxed_kernel_func_ != nullptr,
|
39 |
+
"Tried to call BoxedKernel::callBoxed() on an uninitialized BoxedKernel."
|
40 |
+
);
|
41 |
+
(*boxed_kernel_func_)(functor_.get(), opHandle, dispatchKeySet, stack);
|
42 |
+
}
|
43 |
+
|
44 |
+
template<BoxedKernel::BoxedKernelFunction* func>
|
45 |
+
inline BoxedKernel BoxedKernel::makeFromFunction() {
|
46 |
+
return BoxedKernel(
|
47 |
+
nullptr, // no functor_ object
|
48 |
+
&make_boxed_function<func>
|
49 |
+
);
|
50 |
+
}
|
51 |
+
|
52 |
+
template<BoxedKernel::BoxedKernelFunction_withDispatchKeys* func>
|
53 |
+
inline BoxedKernel BoxedKernel::makeFromFunction() {
|
54 |
+
return BoxedKernel(
|
55 |
+
nullptr, // no functor_ object
|
56 |
+
&make_boxed_function<func>
|
57 |
+
);
|
58 |
+
}
|
59 |
+
|
60 |
+
inline BoxedKernel BoxedKernel::makeFallthrough() {
|
61 |
+
return BoxedKernel(
|
62 |
+
nullptr, // no functor_ object
|
63 |
+
&fallthrough_kernel
|
64 |
+
);
|
65 |
+
}
|
66 |
+
|
67 |
+
inline BoxedKernel BoxedKernel::makeAmbiguousAutogradOther() {
|
68 |
+
return BoxedKernel(
|
69 |
+
nullptr, // no functor_ object
|
70 |
+
&ambiguous_autogradother_kernel
|
71 |
+
);
|
72 |
+
}
|
73 |
+
|
74 |
+
inline BoxedKernel BoxedKernel::makeNamedNotSupported() {
|
75 |
+
return BoxedKernel(
|
76 |
+
nullptr, // no functor_ object
|
77 |
+
&named_not_supported_kernel
|
78 |
+
);
|
79 |
+
}
|
80 |
+
|
81 |
+
template<class KernelFunctor>
|
82 |
+
inline BoxedKernel BoxedKernel::makeFromFunctor(std::unique_ptr<KernelFunctor> kernelFunctor) {
|
83 |
+
static_assert(std::is_base_of<OperatorKernel, KernelFunctor>::value, "Tried to call BoxedKernel::makeFromFunctor<KernelFunctor>, but the functor doesn't inherit from c10::OperatorKernel. Please have the functor inherit from it.");
|
84 |
+
return BoxedKernel(
|
85 |
+
std::move(kernelFunctor),
|
86 |
+
[](OperatorKernel* kernel, const OperatorHandle& op, DispatchKeySet ks, Stack* stack) {
|
87 |
+
(*static_cast<KernelFunctor*>(kernel))(op, ks, stack);
|
88 |
+
}
|
89 |
+
);
|
90 |
+
}
|
91 |
+
|
92 |
+
inline OperatorKernel* BoxedKernel::getFunctor() const {
|
93 |
+
return functor_.get();
|
94 |
+
}
|
95 |
+
inline BoxedKernel::InternalBoxedKernelFunction* BoxedKernel::getFnPtr() const {
|
96 |
+
return boxed_kernel_func_;
|
97 |
+
}
|
98 |
+
|
99 |
+
} // namespace c10
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/KernelFunction.h
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/ATen_fwd.h>
|
4 |
+
#include <ATen/core/boxing/BoxedKernel.h>
|
5 |
+
#include <ATen/core/stack.h>
|
6 |
+
#include <c10/core/DispatchKeySet.h>
|
7 |
+
#include <c10/util/intrusive_ptr.h>
|
8 |
+
#include <c10/util/TypeList.h>
|
9 |
+
#include <type_traits>
|
10 |
+
|
11 |
+
namespace c10 {
|
12 |
+
|
13 |
+
using Stack = torch::jit::Stack; // TODO Instead of this, move torch::jit::Stack to the c10 namespace.
|
14 |
+
|
15 |
+
class OperatorHandle;
|
16 |
+
struct OperatorKernel;
|
17 |
+
class KernelFunction;
|
18 |
+
|
19 |
+
template <typename T>
|
20 |
+
using has_symint =
|
21 |
+
std::disjunction<
|
22 |
+
std::is_same<c10::SymInt, T>,
|
23 |
+
std::is_same<c10::SymIntArrayRef, T>,
|
24 |
+
std::is_same<at::OptionalSymIntArrayRef, T>,
|
25 |
+
std::is_same<c10::optional<c10::SymInt>, T>
|
26 |
+
>;
|
27 |
+
|
28 |
+
template <typename T>
|
29 |
+
struct remove_symint {
|
30 |
+
using type = T;
|
31 |
+
};
|
32 |
+
|
33 |
+
template <>
|
34 |
+
struct remove_symint<c10::SymInt> {
|
35 |
+
using type = int64_t;
|
36 |
+
};
|
37 |
+
|
38 |
+
template <>
|
39 |
+
struct remove_symint<at::OptionalSymIntArrayRef> {
|
40 |
+
using type = OptionalIntArrayRef;
|
41 |
+
};
|
42 |
+
|
43 |
+
template <>
|
44 |
+
struct remove_symint<c10::SymIntArrayRef> {
|
45 |
+
using type = c10::IntArrayRef;
|
46 |
+
};
|
47 |
+
|
48 |
+
template <>
|
49 |
+
struct remove_symint<c10::optional<c10::SymInt>> {
|
50 |
+
using type = c10::optional<int64_t>;
|
51 |
+
};
|
52 |
+
|
53 |
+
|
54 |
+
template <bool symint, typename T>
|
55 |
+
struct maybe_keep_symint final {};
|
56 |
+
|
57 |
+
template <typename T>
|
58 |
+
struct maybe_keep_symint<true, T> { using type = T; };
|
59 |
+
|
60 |
+
template <typename T>
|
61 |
+
struct maybe_keep_symint<false, T> { using type = typename remove_symint<T>::type; };
|
62 |
+
|
63 |
+
template <typename T>
|
64 |
+
using fn_has_symint = typename guts::typelist::true_for_any_type<
|
65 |
+
has_symint,
|
66 |
+
typename guts::infer_function_traits<T>::type::parameter_types
|
67 |
+
>;
|
68 |
+
|
69 |
+
template <typename T>
|
70 |
+
struct fn_remove_symint;
|
71 |
+
|
72 |
+
template <typename Ret, typename... Args>
|
73 |
+
struct fn_remove_symint<Ret(Args...)> {
|
74 |
+
using type = Ret(typename remove_symint<Args>::type...);
|
75 |
+
};
|
76 |
+
|
77 |
+
/**
|
78 |
+
* KernelFunction is similar to std::function but stores a kernel function.
|
79 |
+
* You can create a KernelFunction from a boxed or unboxed function/functor/lambda
|
80 |
+
* and call it in a boxed or unboxed way. If the way it was created doesn't
|
81 |
+
* match the way it was called, it will do boxing or unboxing as necessary.
|
82 |
+
*/
|
83 |
+
class TORCH_API KernelFunction final {
|
84 |
+
public:
|
85 |
+
using InternalBoxedKernelFunction = BoxedKernel::InternalBoxedKernelFunction;
|
86 |
+
using BoxedKernelFunction = BoxedKernel::BoxedKernelFunction;
|
87 |
+
using BoxedKernelFunction_withDispatchKeys = BoxedKernel::BoxedKernelFunction_withDispatchKeys;
|
88 |
+
|
89 |
+
KernelFunction();
|
90 |
+
|
91 |
+
// Fast path for dispatch to allow not touching the boxed kernel in
|
92 |
+
// the common case where unboxed is available.
|
93 |
+
bool isValidUnboxed() const;
|
94 |
+
bool isValidSymUnboxed() const;
|
95 |
+
bool isValid() const;
|
96 |
+
bool isFallthrough() const;
|
97 |
+
|
98 |
+
/**
|
99 |
+
* Call the function in a boxed way.
|
100 |
+
* If the kernel function was created with an unboxed function,
|
101 |
+
* this will call an unboxing wrapper which then calls into that
|
102 |
+
* unboxed function.
|
103 |
+
*
|
104 |
+
* Example:
|
105 |
+
*
|
106 |
+
* > void boxed_func(OperatorKernel*, Stack* stack) {...}
|
107 |
+
* > KernelFunction func = KernelFunction::makeFromBoxedFunction(&boxed_func);
|
108 |
+
* > Tensor result = func.callBoxed(stack);
|
109 |
+
*
|
110 |
+
* Or, with an unboxed implementation:
|
111 |
+
*
|
112 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedLambda(
|
113 |
+
* > [] (Tensor a, bool b) -> Tensor {...});
|
114 |
+
* > Tensor result = func.callBoxed(stack);
|
115 |
+
*/
|
116 |
+
void callBoxed(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Stack* stack) const;
|
117 |
+
|
118 |
+
/**
|
119 |
+
* Call the function in an unboxed way.
|
120 |
+
* If the kernel function was created with a boxed function,
|
121 |
+
* this will box all inputs and then call into that boxed function.
|
122 |
+
*
|
123 |
+
* Note that this doesn't work for all types yet.
|
124 |
+
*
|
125 |
+
* Example:
|
126 |
+
*
|
127 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedLambda(
|
128 |
+
* > [] (Tensor a, bool b) -> Tensor {...});
|
129 |
+
* > Tensor result = func.call<Tensor, Tensor, bool>(tensor1, true);
|
130 |
+
*
|
131 |
+
* Or, with a boxed implementation:
|
132 |
+
*
|
133 |
+
* > void boxed_func(OperatorKernel*, Stack* stack) {...}
|
134 |
+
* > KernelFunction func = KernelFunction::makeFromBoxedFunction(&boxed_func);
|
135 |
+
* > Tensor result = func.call<Tensor, Tensor, bool>(tensor1, true);
|
136 |
+
*/
|
137 |
+
template<class Return, class... Args>
|
138 |
+
Return call(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Args... args) const;
|
139 |
+
|
140 |
+
/**
|
141 |
+
* Create a KernelFunction from a BoxedKernel.
|
142 |
+
*/
|
143 |
+
static KernelFunction makeFromBoxedKernel(BoxedKernel boxed_fn);
|
144 |
+
|
145 |
+
/**
|
146 |
+
* Create a KernelFunction from a boxed function.
|
147 |
+
*
|
148 |
+
* Example:
|
149 |
+
*
|
150 |
+
* > void boxed_func(OperatorKernel*, Stack* stack) {...}
|
151 |
+
* > KernelFunction func = KernelFunction::makeFromBoxedFunction<&boxed_func>();
|
152 |
+
*/
|
153 |
+
template<BoxedKernelFunction* func>
|
154 |
+
static KernelFunction makeFromBoxedFunction();
|
155 |
+
|
156 |
+
/**
|
157 |
+
* TODO: This will only be useful if we write a backend fallback that plumbs dispatch keys (currently there are none)
|
158 |
+
* See Note [Plumbing Keys Through The Dispatcher] for details.
|
159 |
+
*/
|
160 |
+
template<BoxedKernelFunction_withDispatchKeys* func>
|
161 |
+
static KernelFunction makeFromBoxedFunction();
|
162 |
+
|
163 |
+
/**
|
164 |
+
* Create a KernelFunction from an unboxed functor.
|
165 |
+
*
|
166 |
+
* Example:
|
167 |
+
*
|
168 |
+
* > class MyFunctor final : public c10::OperatorKernel {
|
169 |
+
* > public:
|
170 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
171 |
+
* > };
|
172 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedFunctor<MyFunctor>(std::make_unique<MyFunctor>());
|
173 |
+
*/
|
174 |
+
template<bool AllowLegacyTypes = false, class KernelFunctor>
|
175 |
+
static KernelFunction makeFromUnboxedFunctor(std::unique_ptr<OperatorKernel> kernelFunctor);
|
176 |
+
|
177 |
+
/**
|
178 |
+
* Create a KernelFunction from a boxed functor.
|
179 |
+
*
|
180 |
+
* Example:
|
181 |
+
*
|
182 |
+
* > class MyFunctor final : public c10::OperatorKernel {
|
183 |
+
* > public:
|
184 |
+
* > void operator()(const OperatorHandle&, DispatchKeySet, Stack*) {...}
|
185 |
+
* > };
|
186 |
+
* > KernelFunction func = KernelFunction::makeFromBoxedFunctor(std::make_unique<MyFunctor>());
|
187 |
+
*/
|
188 |
+
template<class KernelFunctor>
|
189 |
+
static KernelFunction makeFromBoxedFunctor(std::unique_ptr<KernelFunctor> kernelFunctor);
|
190 |
+
|
191 |
+
/**
|
192 |
+
* Create a KernelFunction from an unboxed function.
|
193 |
+
* This is usually better than KernelFunction::makeFromUnboxedRuntimeFunction
|
194 |
+
* because knowing the function pointer as a template argument (i.e. at
|
195 |
+
* compile time) allows the compiler to inline the function into its
|
196 |
+
* unboxing wrapper and yields better performance when calling the function.
|
197 |
+
*
|
198 |
+
* Example:
|
199 |
+
*
|
200 |
+
* > Tensor unboxed_func(Tensor a, Tensor b) {...}
|
201 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedFunction<decltype(unboxed_func), &unboxed_func>();
|
202 |
+
*/
|
203 |
+
template<class FuncPtr, bool AllowLegacyTypes = false>
|
204 |
+
static KernelFunction makeFromUnboxedFunction(FuncPtr);
|
205 |
+
|
206 |
+
/**
|
207 |
+
* Create a KernelFunction from an unboxed function.
|
208 |
+
* KernelFunction::makeFromUnboxedFunction is usually a better choice than
|
209 |
+
* this if you know the function pointer at compile time, see doc comment
|
210 |
+
* there for an explanation.
|
211 |
+
*
|
212 |
+
* Example:
|
213 |
+
*
|
214 |
+
* > Tensor unboxed_func(Tensor a, Tensor b) {...}
|
215 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedRuntimeFunction(&unboxed_func);
|
216 |
+
*/
|
217 |
+
template<bool AllowLegacyTypes = false, class FuncType>
|
218 |
+
static KernelFunction makeFromUnboxedRuntimeFunction(FuncType* func);
|
219 |
+
|
220 |
+
static KernelFunction makeFallthrough();
|
221 |
+
static KernelFunction makeAmbiguousAutogradOther();
|
222 |
+
static KernelFunction makeNamedNotSupported();
|
223 |
+
|
224 |
+
/**
|
225 |
+
* Create a KernelFunction from an unboxed lambda.
|
226 |
+
*
|
227 |
+
* Example:
|
228 |
+
*
|
229 |
+
* > KernelFunction func = KernelFunction::makeFromUnboxedLambda(
|
230 |
+
* > [] (Tensor a, bool b) -> Tensor {...});
|
231 |
+
*/
|
232 |
+
template<bool AllowLegacyTypes = false, class Lambda>
|
233 |
+
static std::enable_if_t<guts::is_stateless_lambda<std::decay_t<Lambda>>::value, KernelFunction> makeFromUnboxedLambda(Lambda&& lambda);
|
234 |
+
template<bool AllowLegacyTypes = false, class Lambda>
|
235 |
+
static std::enable_if_t<!guts::is_stateless_lambda<std::decay_t<Lambda>>::value, KernelFunction> makeFromUnboxedLambda(Lambda&& lambda);
|
236 |
+
|
237 |
+
std::string dumpState() const;
|
238 |
+
// For testing internal invariants only
|
239 |
+
bool _equalsBoxedAndUnboxed(const KernelFunction&) const;
|
240 |
+
|
241 |
+
private:
|
242 |
+
|
243 |
+
explicit KernelFunction(
|
244 |
+
std::unique_ptr<OperatorKernel> functor,
|
245 |
+
InternalBoxedKernelFunction* boxed_kernel_func,
|
246 |
+
void* unboxed_kernel_func,
|
247 |
+
void* sym_unboxed_kernel_func);
|
248 |
+
explicit KernelFunction(
|
249 |
+
BoxedKernel boxed_fn,
|
250 |
+
void* unboxed_kernel_func,
|
251 |
+
void* sym_unboxed_kernel_func);
|
252 |
+
|
253 |
+
BoxedKernel boxed_kernel_func_;
|
254 |
+
void* unboxed_kernel_func_;
|
255 |
+
void* sym_unboxed_kernel_func_;
|
256 |
+
};
|
257 |
+
|
258 |
+
}
|
259 |
+
|
260 |
+
#include <ATen/core/boxing/KernelFunction_impl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/KernelFunction_impl.h
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/boxing/impl/boxing.h>
|
2 |
+
#include <ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h>
|
3 |
+
#include <ATen/core/boxing/impl/WrapFunctionIntoFunctor.h>
|
4 |
+
#include <ATen/core/boxing/impl/WrapFunctionIntoRuntimeFunctor.h>
|
5 |
+
|
6 |
+
#include <c10/util/C++17.h>
|
7 |
+
#include <type_traits>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
inline KernelFunction::KernelFunction()
|
12 |
+
: boxed_kernel_func_()
|
13 |
+
, unboxed_kernel_func_(nullptr)
|
14 |
+
, sym_unboxed_kernel_func_(nullptr)
|
15 |
+
{}
|
16 |
+
|
17 |
+
inline KernelFunction::KernelFunction(std::unique_ptr<OperatorKernel> functor, InternalBoxedKernelFunction* boxed_kernel_func, void* unboxed_kernel_func, void* sym_unboxed_kernel_func = nullptr)
|
18 |
+
: boxed_kernel_func_(std::move(functor), boxed_kernel_func)
|
19 |
+
, unboxed_kernel_func_(unboxed_kernel_func)
|
20 |
+
, sym_unboxed_kernel_func_(sym_unboxed_kernel_func)
|
21 |
+
{}
|
22 |
+
|
23 |
+
inline KernelFunction::KernelFunction(BoxedKernel boxed_fn, void* unboxed_kernel_func, void* sym_unboxed_kernel_func = nullptr)
|
24 |
+
: boxed_kernel_func_(std::move(boxed_fn))
|
25 |
+
, unboxed_kernel_func_(unboxed_kernel_func)
|
26 |
+
, sym_unboxed_kernel_func_(sym_unboxed_kernel_func)
|
27 |
+
{}
|
28 |
+
|
29 |
+
inline bool KernelFunction::isValidUnboxed() const {
|
30 |
+
return unboxed_kernel_func_ != nullptr;
|
31 |
+
}
|
32 |
+
|
33 |
+
inline bool KernelFunction::isValidSymUnboxed() const {
|
34 |
+
return sym_unboxed_kernel_func_ != nullptr;
|
35 |
+
}
|
36 |
+
|
37 |
+
inline bool KernelFunction::isValid() const {
|
38 |
+
return boxed_kernel_func_.isValid();
|
39 |
+
}
|
40 |
+
|
41 |
+
inline bool KernelFunction::isFallthrough() const {
|
42 |
+
return boxed_kernel_func_.isFallthrough();
|
43 |
+
}
|
44 |
+
|
45 |
+
inline void KernelFunction::callBoxed(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Stack* stack) const {
|
46 |
+
boxed_kernel_func_.callBoxed(opHandle, dispatchKeySet, stack);
|
47 |
+
}
|
48 |
+
|
49 |
+
template<class Return, class... Args>
|
50 |
+
inline Return callUnboxedKernelFunction(void* unboxed_kernel_func, OperatorKernel* functor, DispatchKeySet dispatchKeySet, Args&&... args) {
|
51 |
+
using ActualSignature = Return (OperatorKernel*, DispatchKeySet, Args...);
|
52 |
+
ActualSignature* func = reinterpret_cast<ActualSignature*>(unboxed_kernel_func);
|
53 |
+
return (*func)(functor, dispatchKeySet, std::forward<Args>(args)...);
|
54 |
+
}
|
55 |
+
|
56 |
+
// This template requires you to explicitly specify the argument you want to
|
57 |
+
// forward; it doesn't work if you try to deduce it
|
58 |
+
// NB: keep this in sync with cloneWithRealTypes in function_schema.cpp
|
59 |
+
|
60 |
+
template <typename T>
|
61 |
+
inline typename remove_symint<T>::type unpackSymInt(T x) { return x; }
|
62 |
+
|
63 |
+
template <>
|
64 |
+
inline typename remove_symint<c10::SymInt>::type unpackSymInt(c10::SymInt x) {
|
65 |
+
return x.guard_int(__FILE__, __LINE__);
|
66 |
+
}
|
67 |
+
|
68 |
+
template <>
|
69 |
+
inline typename remove_symint<c10::SymIntArrayRef>::type unpackSymInt(c10::SymIntArrayRef x) {
|
70 |
+
return C10_AS_INTARRAYREF_SLOW(x);
|
71 |
+
}
|
72 |
+
|
73 |
+
template <>
|
74 |
+
inline typename remove_symint<c10::optional<c10::SymInt>>::type unpackSymInt(c10::optional<c10::SymInt> x) {
|
75 |
+
return x.has_value() ? c10::make_optional(x->guard_int(__FILE__, __LINE__)) : c10::nullopt;
|
76 |
+
}
|
77 |
+
|
78 |
+
template <>
|
79 |
+
inline typename remove_symint<at::OptionalSymIntArrayRef>::type unpackSymInt(at::OptionalSymIntArrayRef x) {
|
80 |
+
return x.has_value() ? c10::make_optional(C10_AS_INTARRAYREF_SLOW(*x)) : c10::nullopt;
|
81 |
+
}
|
82 |
+
|
83 |
+
template<class Return, class... Args>
|
84 |
+
C10_ALWAYS_INLINE Return KernelFunction::call(const OperatorHandle& opHandle, DispatchKeySet dispatchKeySet, Args... args) const {
|
85 |
+
// note: Args above is intentionally not Args&&. We don't want perfect
|
86 |
+
// forwarding, which would require Args to be deduced, but instead we
|
87 |
+
// want callers to explicitly specify the Args.
|
88 |
+
|
89 |
+
if constexpr (std::disjunction_v<has_symint<Args>...>) {
|
90 |
+
if (sym_unboxed_kernel_func_ != nullptr) {
|
91 |
+
auto *functor = boxed_kernel_func_.getFunctor();
|
92 |
+
return callUnboxedKernelFunction<Return, Args...>(
|
93 |
+
sym_unboxed_kernel_func_, functor, dispatchKeySet, std::forward<Args>(args)...);
|
94 |
+
}
|
95 |
+
|
96 |
+
if (unboxed_kernel_func_ != nullptr) {
|
97 |
+
auto *functor = boxed_kernel_func_.getFunctor();
|
98 |
+
return callUnboxedKernelFunction<Return, typename remove_symint<Args>::type...>(
|
99 |
+
unboxed_kernel_func_, functor, dispatchKeySet, unpackSymInt<Args>(args)...);
|
100 |
+
}
|
101 |
+
} else {
|
102 |
+
if (C10_LIKELY(unboxed_kernel_func_ != nullptr)) {
|
103 |
+
auto *functor = boxed_kernel_func_.getFunctor();
|
104 |
+
return callUnboxedKernelFunction<Return, Args...>(
|
105 |
+
unboxed_kernel_func_, functor, dispatchKeySet, std::forward<Args>(args)...);
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
return impl::BoxedKernelWrapper<Return(Args...)>::call(
|
110 |
+
boxed_kernel_func_,
|
111 |
+
opHandle,
|
112 |
+
dispatchKeySet,
|
113 |
+
std::forward<Args>(args)...
|
114 |
+
);
|
115 |
+
}
|
116 |
+
|
117 |
+
inline KernelFunction KernelFunction::makeFromBoxedKernel(BoxedKernel boxed_fn) {
|
118 |
+
return KernelFunction(std::move(boxed_fn), nullptr); // no unboxed function pointer
|
119 |
+
}
|
120 |
+
|
121 |
+
template<KernelFunction::BoxedKernelFunction* func>
|
122 |
+
inline KernelFunction KernelFunction::makeFromBoxedFunction() {
|
123 |
+
return KernelFunction::makeFromBoxedKernel(
|
124 |
+
BoxedKernel::makeFromFunction<func>());
|
125 |
+
}
|
126 |
+
|
127 |
+
template<KernelFunction::BoxedKernelFunction_withDispatchKeys* func>
|
128 |
+
inline KernelFunction KernelFunction::makeFromBoxedFunction() {
|
129 |
+
return KernelFunction::makeFromBoxedKernel(
|
130 |
+
BoxedKernel::makeFromFunction<func>());
|
131 |
+
}
|
132 |
+
|
133 |
+
inline KernelFunction KernelFunction::makeFallthrough() {
|
134 |
+
return KernelFunction::makeFromBoxedKernel(
|
135 |
+
BoxedKernel::makeFallthrough());
|
136 |
+
}
|
137 |
+
|
138 |
+
inline KernelFunction KernelFunction::makeAmbiguousAutogradOther() {
|
139 |
+
return KernelFunction::makeFromBoxedKernel(
|
140 |
+
BoxedKernel::makeAmbiguousAutogradOther());
|
141 |
+
}
|
142 |
+
|
143 |
+
inline KernelFunction KernelFunction::makeNamedNotSupported() {
|
144 |
+
return KernelFunction::makeFromBoxedKernel(
|
145 |
+
BoxedKernel::makeNamedNotSupported());
|
146 |
+
}
|
147 |
+
|
148 |
+
template<bool AllowLegacyTypes, class KernelFunctor>
|
149 |
+
inline KernelFunction KernelFunction::makeFromUnboxedFunctor(std::unique_ptr<OperatorKernel> kernelFunctor) {
|
150 |
+
#ifndef NDEBUG
|
151 |
+
// This assertion is costly for build time so it's debug-gated.
|
152 |
+
static_assert(guts::is_functor<KernelFunctor>::value, "Tried to call KernelFunction::makeFromUnboxedFunctor<KernelFunctor> but the argument is not a functor.");
|
153 |
+
#endif
|
154 |
+
static_assert(std::is_base_of<OperatorKernel, KernelFunctor>::value, "Tried to call KernelFunction::makeFromUnboxedFunctor<KernelFunctor>, but the functor doesn't inherit from c10::OperatorKernel. Please have the functor inherit from it.");
|
155 |
+
|
156 |
+
auto* unboxed_fn = &impl::wrap_kernel_functor_unboxed<KernelFunctor>::call;
|
157 |
+
void* void_unboxed_fn = reinterpret_cast<void*>(unboxed_fn);
|
158 |
+
bool is_symint = fn_has_symint<decltype(unboxed_fn)>::value;
|
159 |
+
return KernelFunction(
|
160 |
+
std::move(kernelFunctor),
|
161 |
+
&impl::make_boxed_from_unboxed_functor<KernelFunctor, AllowLegacyTypes>::call,
|
162 |
+
is_symint ? nullptr : void_unboxed_fn,
|
163 |
+
is_symint ? void_unboxed_fn : nullptr
|
164 |
+
);
|
165 |
+
}
|
166 |
+
|
167 |
+
template<class KernelFunctor>
|
168 |
+
inline KernelFunction KernelFunction::makeFromBoxedFunctor(std::unique_ptr<KernelFunctor> kernelFunctor) {
|
169 |
+
return KernelFunction::makeFromBoxedKernel(
|
170 |
+
BoxedKernel::makeFromFunctor(std::move(kernelFunctor)));
|
171 |
+
}
|
172 |
+
|
173 |
+
template<class FuncPtr, bool AllowLegacyTypes>
|
174 |
+
inline KernelFunction KernelFunction::makeFromUnboxedFunction(FuncPtr func_ptr) {
|
175 |
+
static_assert(is_compile_time_function_pointer<FuncPtr>::value, "Tried to call KernelFunction::makeFromUnboxedFunction with an invalid parameter. It must be a function pointer created with TORCH_FN.");
|
176 |
+
static_assert(!std::is_same<typename FuncPtr::FuncType, BoxedKernelFunction>::value, "Tried to call KernelFunction::makeFromUnboxedFunction with a boxed function pointer. Please use KernelFunction::makeFromBoxedFunction instead.");
|
177 |
+
static_assert(FuncPtr::func_ptr() != nullptr, "Kernel function cannot be nullptr");
|
178 |
+
|
179 |
+
#if !defined(C10_MOBILE)
|
180 |
+
(void)func_ptr; // Suppress unused variable warning
|
181 |
+
return makeFromUnboxedFunctor<AllowLegacyTypes, typename impl::WrapFunctionIntoFunctor<FuncPtr>::type>(
|
182 |
+
guts::make_unique_base<OperatorKernel, typename impl::WrapFunctionIntoFunctor<FuncPtr>::type>()
|
183 |
+
);
|
184 |
+
#else
|
185 |
+
// On mobile, we rather want to optimize for binary size than for performance,
|
186 |
+
// so let's not inline the kernel into the wrapper but use makeFromUnboxedRuntimeFunction
|
187 |
+
// instead.
|
188 |
+
return makeFromUnboxedRuntimeFunction(func_ptr.func_ptr());
|
189 |
+
#endif
|
190 |
+
}
|
191 |
+
|
192 |
+
template<bool AllowLegacyTypes, class FuncType>
|
193 |
+
inline KernelFunction KernelFunction::makeFromUnboxedRuntimeFunction(FuncType* func) {
|
194 |
+
static_assert(guts::is_function_type<FuncType>::value, "Tried to call KernelFunction::makeFromUnboxedRuntimeFunction with a non-function type.");
|
195 |
+
static_assert(!std::is_same<FuncType, BoxedKernelFunction>::value, "Tried to call KernelFunction::makeFromUnboxedRuntimeFunction with a boxed function pointer. Please use KernelFunction::makeFromBoxedFunction instead.");
|
196 |
+
TORCH_INTERNAL_ASSERT(func != nullptr, "Kernel function cannot be nullptr");
|
197 |
+
|
198 |
+
return makeFromUnboxedFunctor<AllowLegacyTypes, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<FuncType>>>(
|
199 |
+
guts::make_unique_base<OperatorKernel, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<FuncType>>>(func)
|
200 |
+
);
|
201 |
+
}
|
202 |
+
|
203 |
+
template<bool AllowLegacyTypes, class Lambda>
|
204 |
+
inline std::enable_if_t<guts::is_stateless_lambda<std::decay_t<Lambda>>::value, KernelFunction> KernelFunction::makeFromUnboxedLambda(Lambda&& lambda) {
|
205 |
+
static_assert(guts::is_functor<std::decay_t<Lambda>>::value, "Tried to call KernelFunction::makeFromUnboxedLambda with a non-lambda type.");
|
206 |
+
|
207 |
+
#if !defined(C10_MOBILE)
|
208 |
+
return makeFromUnboxedFunctor<AllowLegacyTypes, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>(
|
209 |
+
guts::make_unique_base<OperatorKernel, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>(std::forward<Lambda>(lambda))
|
210 |
+
);
|
211 |
+
#else
|
212 |
+
// On mobile, we rather want to optimize for binary size than for performance,
|
213 |
+
// so let's not inline the kernel into the wrapper but use makeFromUnboxedRuntimeFunction
|
214 |
+
// instead.
|
215 |
+
using FuncType = typename guts::infer_function_traits_t<std::decay_t<Lambda>>::func_type;
|
216 |
+
return makeFromUnboxedRuntimeFunction<AllowLegacyTypes, FuncType>(lambda);
|
217 |
+
#endif
|
218 |
+
}
|
219 |
+
|
220 |
+
template<bool AllowLegacyTypes, class Lambda>
|
221 |
+
inline std::enable_if_t<!guts::is_stateless_lambda<std::decay_t<Lambda>>::value, KernelFunction> KernelFunction::makeFromUnboxedLambda(Lambda&& lambda) {
|
222 |
+
static_assert(guts::is_functor<std::decay_t<Lambda>>::value, "Tried to call KernelFunction::makeFromUnboxedLambda with a non-lambda type.");
|
223 |
+
|
224 |
+
return makeFromUnboxedFunctor<AllowLegacyTypes, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>(
|
225 |
+
guts::make_unique_base<OperatorKernel, impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>(std::forward<Lambda>(lambda))
|
226 |
+
);
|
227 |
+
}
|
228 |
+
|
229 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/OperatorKernel.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/util/intrusive_ptr.h>
|
3 |
+
|
4 |
+
namespace c10 {
|
5 |
+
|
6 |
+
/**
|
7 |
+
* Inherit from OperatorKernel to implement a c10 kernel.
|
8 |
+
*
|
9 |
+
* Example:
|
10 |
+
* > namespace {
|
11 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
12 |
+
* > public:
|
13 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
14 |
+
* > };
|
15 |
+
* > }
|
16 |
+
*
|
17 |
+
* The kernel class is allowed to have members but these are equivalent
|
18 |
+
* to global variables. The kernel implementation is responsible for
|
19 |
+
* preventing race conditions on them.
|
20 |
+
*
|
21 |
+
* See below for how to register this kernel with PyTorch.
|
22 |
+
*/
|
23 |
+
struct TORCH_API OperatorKernel : public c10::intrusive_ptr_target {
|
24 |
+
~OperatorKernel() override = default;
|
25 |
+
};
|
26 |
+
|
27 |
+
} // namespace c10
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/CompileTimeFunctionPointer.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
namespace impl {
|
7 |
+
namespace detail {
|
8 |
+
template<class FuncPtr, class ReturnType, class ParameterList> class WrapFunctionIntoFunctor_ {};
|
9 |
+
template<class FuncPtr, class ReturnType, class... Parameters>
|
10 |
+
class WrapFunctionIntoFunctor_<FuncPtr, ReturnType, guts::typelist::typelist<Parameters...>> final : public c10::OperatorKernel {
|
11 |
+
public:
|
12 |
+
C10_ALWAYS_INLINE decltype(auto) operator()(Parameters... args) {
|
13 |
+
return (*FuncPtr::func_ptr())(std::forward<Parameters>(args)...);
|
14 |
+
}
|
15 |
+
};
|
16 |
+
}
|
17 |
+
|
18 |
+
// WrapFunctionIntoFunctor: Wraps a compile time function pointer into a kernel functor.
|
19 |
+
// Since it is a compile time function pointer, many compilers can inline it
|
20 |
+
// into the wrapper and you don't get any performance overhead for wrapping.
|
21 |
+
template<class FuncPtr>
|
22 |
+
struct WrapFunctionIntoFunctor final {
|
23 |
+
static_assert(c10::is_compile_time_function_pointer<FuncPtr>::value, "WrapFunctionIntoFunctor can only wrap functions created with TORCH_FN.");
|
24 |
+
using type = detail::WrapFunctionIntoFunctor_<
|
25 |
+
FuncPtr,
|
26 |
+
typename guts::function_traits<typename FuncPtr::FuncType>::return_type,
|
27 |
+
typename guts::function_traits<typename FuncPtr::FuncType>::parameter_types
|
28 |
+
>;
|
29 |
+
};
|
30 |
+
}
|
31 |
+
|
32 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h
ADDED
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/boxing/OperatorKernel.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/stack.h>
|
6 |
+
#include <c10/util/TypeList.h>
|
7 |
+
#include <ATen/core/IListRef.h>
|
8 |
+
#include <c10/util/intrusive_ptr.h>
|
9 |
+
#include <c10/util/Metaprogramming.h>
|
10 |
+
|
11 |
+
#include <utility>
|
12 |
+
|
13 |
+
namespace c10 {
|
14 |
+
|
15 |
+
using Stack = torch::jit::Stack; // TODO Instead of this, move torch::jit::Stack to the c10 namespace.
|
16 |
+
class OperatorHandle;
|
17 |
+
|
18 |
+
/*
|
19 |
+
* [Note: Argument forwarding in the dispatcher]
|
20 |
+
*
|
21 |
+
* The dispatcher uses a somewhat unusual way to forward arguments through several layers of
|
22 |
+
* wrapper functions. This can be confusing because an experienced C++ programmer would look at this
|
23 |
+
* and think "oh this is supposed to be forwarding a universal reference but the && is missing. This is a bug.".
|
24 |
+
* It is not a bug. The common way in C++ to forward arguments is to use universal references:
|
25 |
+
*
|
26 |
+
* > template<class T> void func(T&& arg) { func2(std::forward<T>(arg)); }
|
27 |
+
*
|
28 |
+
* but that relies on inferring the correct reference type (i.e. value vs & vs &&) from the argument.
|
29 |
+
* In our case, we cannot rely on the argument as supplied by the caller, because that could infer a
|
30 |
+
* different reference type than was used in the kernel function. The correct reference type
|
31 |
+
* is dictated by the kernel signature and must be identical since we cast function pointers
|
32 |
+
* through void* pointers and mismatches would be UB. So we need a forwarding pattern that determines
|
33 |
+
* the reference type to use by looking at the explicitly supplied operator signature, not by looking at
|
34 |
+
* the argument we're calling it with.
|
35 |
+
*
|
36 |
+
* What does std::forward do, exactly?
|
37 |
+
* ------------------------------------
|
38 |
+
* std::forward<T>(t) is a way to cast t to the reference type supplied in T.
|
39 |
+
* Let's assume decay_t<T> == U and T is either U or some reference of U.
|
40 |
+
* - std::forward<T&>(t) will return U&, no matter what kind of reference t is.
|
41 |
+
* - std::forward<T&&>(t) will return U&&, no matter what kind of reference t is.
|
42 |
+
* - std::forward<T>(t) will return U&& (not U!), no matter what kind of reference t is.
|
43 |
+
*
|
44 |
+
* For universal references, that means that in the following function
|
45 |
+
* > template<class T> void func(T&& arg) { func2(std::forward<T>(arg)); }
|
46 |
+
*
|
47 |
+
* - when called with arg being a rvalue reference or non-reference value, T gets inferred to be
|
48 |
+
* a non-reference U, and std::forward<T>(t) will return U&&, correctly moving the argument.
|
49 |
+
* - when called with arg behind a lvalue reference, T gets inferred to be U& because that's the only
|
50 |
+
* way to match the signature (in C++, a type that is (T&)&& will collapse to T&).
|
51 |
+
* That means std::forward<T>(t) will return U& and the value will not be moved but passed on as
|
52 |
+
* a lvalue reference.
|
53 |
+
*
|
54 |
+
* How do we use that?
|
55 |
+
* ------------------------------------
|
56 |
+
* But std::forward can also be used outside of the common "universal forwarding" pattern to change
|
57 |
+
* reference types. So instead of following the common C++ pattern, we notice what
|
58 |
+
* std::forward<T>() actually does, and that is it takes a value and changes its reference to the
|
59 |
+
* type of reference passed in as T. If we don't infer T but explicitly specify it, we can use this
|
60 |
+
* to forward based on an explicitly specified reference type instead of the inferred argument type.
|
61 |
+
*
|
62 |
+
* This is why many of the dispatcher functions look like
|
63 |
+
* > template<class T> func(T t) { func2<T>(std::forward<T>(t)); }
|
64 |
+
* instead of the common
|
65 |
+
* > template<class T> func(T&& t) { func2(std::forward<T>(t)); }
|
66 |
+
*
|
67 |
+
* and are expected to be called by explicitly specifying the template parameters in a way that matches
|
68 |
+
* the expected operator signature at each call site.
|
69 |
+
*/
|
70 |
+
|
71 |
+
namespace impl {
|
72 |
+
// supported_primitive_arg_types defines which primitive types we allow in
|
73 |
+
// kernel functions as arguments or returns.
|
74 |
+
// Additionally, we support lists, dicts and optionals containing these types.
|
75 |
+
using supported_primitive_arg_types = guts::typelist::typelist<
|
76 |
+
int64_t,
|
77 |
+
double,
|
78 |
+
bool,
|
79 |
+
c10::string_view,
|
80 |
+
at::Tensor,
|
81 |
+
at::Scalar,
|
82 |
+
c10::QScheme,
|
83 |
+
c10::ScalarType,
|
84 |
+
c10::Device,
|
85 |
+
c10::DeviceIndex,
|
86 |
+
c10::Layout,
|
87 |
+
c10::MemoryFormat,
|
88 |
+
at::Dimname
|
89 |
+
>;
|
90 |
+
|
91 |
+
// We have an unboxed functor in hand that takes C++ arguments, and
|
92 |
+
// we're building a boxed functor wrapper for it that takes IValues.
|
93 |
+
// So "outside" is boxed and "inside" is unboxed.
|
94 |
+
//
|
95 |
+
// So a valid input type is one that our boxed functor wrapper can
|
96 |
+
// unbox from an IValue into a C++ value.
|
97 |
+
//
|
98 |
+
// Whereas a valid output type is one that our wrapper can recieve
|
99 |
+
// as a C++ value from the unboxed functor, and box into an IValue.
|
100 |
+
|
101 |
+
//
|
102 |
+
// assert_is_valid_input_type
|
103 |
+
// checks that T can be unboxed from an IValue into a C++ value.
|
104 |
+
//
|
105 |
+
|
106 |
+
template<class T, bool AllowDeprecatedTypes, class Enable = void>
|
107 |
+
struct assert_is_valid_input_type {
|
108 |
+
assert_is_valid_input_type() {
|
109 |
+
if constexpr (guts::typelist::contains<supported_primitive_arg_types, T>::value) {
|
110 |
+
/* everything is ok, this is a primitive type */
|
111 |
+
} else {
|
112 |
+
/* otherwise this must be an instance of a valid custom class, since it can only
|
113 |
+
have been created via IValue(x), which ensures this. */
|
114 |
+
}
|
115 |
+
}
|
116 |
+
};
|
117 |
+
|
118 |
+
template<class T, bool AllowDeprecatedTypes>
|
119 |
+
struct assert_is_valid_input_type<c10::optional<T>, AllowDeprecatedTypes>
|
120 |
+
: assert_is_valid_input_type<T, AllowDeprecatedTypes> {};
|
121 |
+
|
122 |
+
template <bool AllowDeprecatedTypes, class... Args>
|
123 |
+
struct TypeCheckHelper;
|
124 |
+
|
125 |
+
template <bool AllowDeprecatedTypes>
|
126 |
+
struct TypeCheckHelper<AllowDeprecatedTypes> {};
|
127 |
+
|
128 |
+
template <bool AllowDeprecatedTypes, class Head, class... Rest>
|
129 |
+
struct TypeCheckHelper<AllowDeprecatedTypes, Head, Rest...>
|
130 |
+
: TypeCheckHelper<AllowDeprecatedTypes, Rest...> {
|
131 |
+
assert_is_valid_input_type<Head, AllowDeprecatedTypes> check;
|
132 |
+
};
|
133 |
+
|
134 |
+
template<class... Contained, bool AllowDeprecatedTypes>
|
135 |
+
struct assert_is_valid_input_type<std::tuple<Contained...>, AllowDeprecatedTypes>
|
136 |
+
: TypeCheckHelper<AllowDeprecatedTypes, Contained...> {};
|
137 |
+
|
138 |
+
template<class Key, class Value, bool AllowDeprecatedTypes>
|
139 |
+
struct assert_is_valid_input_type<Dict<Key, Value>, AllowDeprecatedTypes>
|
140 |
+
: assert_is_valid_input_type<Value, AllowDeprecatedTypes> {
|
141 |
+
static_assert(guts::typelist::contains<impl::valid_dict_key_types, Key>::value,
|
142 |
+
"You tried to register a kernel with an unsupported input type: Dict<Key, Value> where Key is invalid. We only support int64_t, double, bool, and string.");
|
143 |
+
};
|
144 |
+
|
145 |
+
template<class Key, class Value, bool AllowDeprecatedTypes>
|
146 |
+
struct assert_is_valid_input_type<std::unordered_map<Key, Value>, AllowDeprecatedTypes>
|
147 |
+
: assert_is_valid_input_type<Value, AllowDeprecatedTypes> {
|
148 |
+
static_assert(AllowDeprecatedTypes,
|
149 |
+
"You tried to register a kernel with an unsupported input type: std::unordered_map<Key, Value>. Please use Dict<Key, Value> instead.");
|
150 |
+
static_assert(guts::typelist::contains<impl::valid_dict_key_types, Key>::value,
|
151 |
+
"You tried to register a kernel with an unsupported input type: std::unordered_map<Key, Value> where Key is invalid. We only support int64_t, double, bool, and string.");
|
152 |
+
};
|
153 |
+
|
154 |
+
template<class T, bool AllowDeprecatedTypes>
|
155 |
+
struct assert_is_valid_input_type<List<T>, AllowDeprecatedTypes>
|
156 |
+
: assert_is_valid_input_type<T, AllowDeprecatedTypes> {
|
157 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
158 |
+
"You tried to register a kernel with an unsupported input type: List<Scalar>. Please use List<int64_t>, List<double> or Tensor instead.");
|
159 |
+
};
|
160 |
+
|
161 |
+
template<class T, bool AllowDeprecatedTypes>
|
162 |
+
struct assert_is_valid_input_type<c10::ArrayRef<T>, AllowDeprecatedTypes>
|
163 |
+
: assert_is_valid_input_type<T, AllowDeprecatedTypes> {
|
164 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
165 |
+
"You tried to register a kernel with an unsupported input type: ArrayRef<Scalar>. Please use List<int64_t>, List<double> or Tensor instead.");
|
166 |
+
};
|
167 |
+
|
168 |
+
template<class T, bool AllowDeprecatedTypes>
|
169 |
+
struct assert_is_valid_input_type<c10::OptionalArrayRef<T>, AllowDeprecatedTypes>
|
170 |
+
: assert_is_valid_input_type<T, AllowDeprecatedTypes> {
|
171 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
172 |
+
"You tried to register a kernel with an unsupported input type: OptionalArrayRef<Scalar>. Please use List<int64_t>, List<double> or Tensor instead.");
|
173 |
+
};
|
174 |
+
|
175 |
+
template<class T, size_t N, bool AllowDeprecatedTypes>
|
176 |
+
struct assert_is_valid_input_type<std::array<T, N>, AllowDeprecatedTypes>
|
177 |
+
: assert_is_valid_input_type<T, AllowDeprecatedTypes> {
|
178 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
179 |
+
"You tried to register a kernel with an unsupported input type: std::array<Scalar, N>. Please use std::array<int64_t, N> instead.");
|
180 |
+
};
|
181 |
+
|
182 |
+
template<class T, bool AllowDeprecatedTypes>
|
183 |
+
struct assert_is_valid_input_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<float, T>::value>> {
|
184 |
+
// There is no reason to support float when we have double. Keep the API lean.
|
185 |
+
static_assert(guts::false_t<T>::value,
|
186 |
+
"You tried to register a kernel with an unsupported input type: float. Please use double instead.");
|
187 |
+
};
|
188 |
+
template<class T, bool AllowDeprecatedTypes>
|
189 |
+
struct assert_is_valid_input_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<const char*, T>::value>> {
|
190 |
+
static_assert(guts::false_t<T>::value,
|
191 |
+
"You tried to register a kernel with an unsupported input type: const char*. Please use c10::string_view instead.");
|
192 |
+
};
|
193 |
+
template<class T, bool AllowDeprecatedTypes>
|
194 |
+
struct assert_is_valid_input_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<std::vector<bool>, T>::value>> {
|
195 |
+
static_assert(guts::false_t<T>::value,
|
196 |
+
"You tried to register a kernel with an unsupported input type: vector<bool>. Please use List<bool> instead.");
|
197 |
+
};
|
198 |
+
template<class T, bool AllowDeprecatedTypes>
|
199 |
+
struct assert_is_valid_input_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_integral<T>::value && !guts::typelist::contains<supported_primitive_arg_types, T>::value>> {
|
200 |
+
static_assert(guts::false_t<T>::value,
|
201 |
+
"You tried to register a kernel with an unsupported integral input type. Please use int64_t instead.");
|
202 |
+
};
|
203 |
+
template<class T, bool AllowDeprecatedTypes>
|
204 |
+
struct assert_is_valid_input_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<const c10::SymInt&, T>::value>> {
|
205 |
+
static_assert(guts::false_t<T>::value,
|
206 |
+
"You tried to register a kernel taking c10::SymInt by reference. Please accept it by value instead.");
|
207 |
+
};
|
208 |
+
|
209 |
+
// TODO: it probably would be good to tighten this up quite a bit more with
|
210 |
+
// an explicit list for everything
|
211 |
+
|
212 |
+
//
|
213 |
+
// assert_is_valid_output_type
|
214 |
+
//
|
215 |
+
|
216 |
+
template<class T, bool AllowDeprecatedTypes, class Enable = void>
|
217 |
+
struct assert_is_valid_output_type {
|
218 |
+
assert_is_valid_output_type() {
|
219 |
+
if constexpr(guts::typelist::contains<supported_primitive_arg_types, T>::value) {
|
220 |
+
/* everything is ok, this is a primitive type */
|
221 |
+
} else {
|
222 |
+
/* otherwise T is verified to be a registered custom class in the IValue
|
223 |
+
constructor, so no benefit in double-checking here */
|
224 |
+
}
|
225 |
+
}
|
226 |
+
};
|
227 |
+
|
228 |
+
template<class T, bool AllowDeprecatedTypes>
|
229 |
+
struct assert_is_valid_output_type<c10::optional<T>, AllowDeprecatedTypes>
|
230 |
+
: assert_is_valid_output_type<T, AllowDeprecatedTypes> {};
|
231 |
+
|
232 |
+
template<class T, bool AllowDeprecatedTypes>
|
233 |
+
struct assert_is_valid_output_type<c10::OptionalArrayRef<T>, AllowDeprecatedTypes>
|
234 |
+
: assert_is_valid_output_type<T, AllowDeprecatedTypes> {};
|
235 |
+
|
236 |
+
template<class Key, class Value, bool AllowDeprecatedTypes>
|
237 |
+
struct assert_is_valid_output_type<Dict<Key, Value>, AllowDeprecatedTypes>
|
238 |
+
: assert_is_valid_output_type<Value, AllowDeprecatedTypes> {
|
239 |
+
static_assert(guts::typelist::contains<impl::valid_dict_key_types, Key>::value,
|
240 |
+
"You tried to register a kernel with an unsupported output type: Dict<Key, Value> where Key is invalid. We only support int64_t, double, bool, and string.");
|
241 |
+
static_assert(!std::is_same<Value, at::Scalar>::value,
|
242 |
+
"You tried to register a kernel with an unsupported output type: Dict<Key, Scalar>. Please use Dict<Key, int64_t> or Dict<Key, double>.");
|
243 |
+
};
|
244 |
+
|
245 |
+
template<class Key, class Value, bool AllowDeprecatedTypes>
|
246 |
+
struct assert_is_valid_output_type<std::unordered_map<Key, Value>, AllowDeprecatedTypes>
|
247 |
+
: assert_is_valid_output_type<Value, AllowDeprecatedTypes> {
|
248 |
+
static_assert(AllowDeprecatedTypes,
|
249 |
+
"You tried to register a kernel with an unsupported output type: std::unordered_map<Key, Value>. Please use Dict<Key, Value> instead.");
|
250 |
+
static_assert(guts::typelist::contains<impl::valid_dict_key_types, Key>::value,
|
251 |
+
"You tried to register a kernel with an unsupported output type: std::unordered_map<Key, Value> where Key is invalid. We only support int64_t, double, bool, and string.");
|
252 |
+
static_assert(!std::is_same<Value, at::Scalar>::value,
|
253 |
+
"You tried to register a kernel with an unsupported output type: std::unordered_map<Key, Scalar>. Please use Dict<Key, int64_t> or Dict<Key, double>.");
|
254 |
+
};
|
255 |
+
|
256 |
+
template<class T, bool AllowDeprecatedTypes>
|
257 |
+
struct assert_is_valid_output_type<List<T>, AllowDeprecatedTypes>
|
258 |
+
: assert_is_valid_output_type<T, AllowDeprecatedTypes> {
|
259 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
260 |
+
"You tried to register a kernel with an unsupported output type: List<Scalar>. Please use List<int64_t>, List<double> or Tensor instead.");
|
261 |
+
};
|
262 |
+
|
263 |
+
template<class T, bool AllowDeprecatedTypes>
|
264 |
+
struct assert_is_valid_output_type<std::vector<T>, AllowDeprecatedTypes>
|
265 |
+
: assert_is_valid_output_type<T, AllowDeprecatedTypes> {
|
266 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
267 |
+
"You tried to register a kernel with an unsupported output type: std::vector<Scalar>. Please use List<int64_t>, List<double> or Tensor instead.");
|
268 |
+
// TODO static_assert(AllowDeprecatedTypes, "You tried to register a kernel with an unsupported output type: std::vector<T>. Please use List<T> instead.");
|
269 |
+
};
|
270 |
+
|
271 |
+
template<class T, size_t N, bool AllowDeprecatedTypes>
|
272 |
+
struct assert_is_valid_output_type<std::array<T, N>, AllowDeprecatedTypes>
|
273 |
+
: assert_is_valid_output_type<T, AllowDeprecatedTypes> {
|
274 |
+
static_assert(!std::is_same<T, at::Scalar>::value,
|
275 |
+
"You tried to register a kernel with an unsupported output type: std::array<Scalar, N>. Please use std::array<int64_t, N> instead.");
|
276 |
+
};
|
277 |
+
|
278 |
+
// The following specialisations of assert_is_valid_output_type are technically not
|
279 |
+
// necessary since we would hit the base case and show an error message
|
280 |
+
// there if they didn't exist, but we can show a better error message
|
281 |
+
// in some common error scenarios.
|
282 |
+
template<class T, bool AllowDeprecatedTypes>
|
283 |
+
struct assert_is_valid_output_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<float, T>::value>> {
|
284 |
+
// There is no reason to support float when we have double. Keep the API lean.
|
285 |
+
static_assert(guts::false_t<T>::value,
|
286 |
+
"You tried to register a kernel with an unsupported output type: float. Please use double instead.");
|
287 |
+
};
|
288 |
+
template<class T, bool AllowDeprecatedTypes>
|
289 |
+
struct assert_is_valid_output_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<const char*, T>::value>> {
|
290 |
+
static_assert(guts::false_t<T>::value,
|
291 |
+
"You tried to register a kernel with an unsupported output type: const char*. Please use c10::string_view instead.");
|
292 |
+
};
|
293 |
+
template<class T, bool AllowDeprecatedTypes>
|
294 |
+
struct assert_is_valid_output_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_same<std::vector<bool>, T>::value>> {
|
295 |
+
static_assert(guts::false_t<T>::value,
|
296 |
+
"You tried to register a kernel with an unsupported output type: vector<bool>. Please use List<bool> instead.");
|
297 |
+
};
|
298 |
+
template<class T, bool AllowDeprecatedTypes>
|
299 |
+
struct assert_is_valid_output_type<T, AllowDeprecatedTypes, std::enable_if_t<std::is_integral<T>::value && !guts::typelist::contains<supported_primitive_arg_types, T>::value>> {
|
300 |
+
static_assert(guts::false_t<T>::value,
|
301 |
+
"You tried to register a kernel with an unsupported integral output type. Please use int64_t instead.");
|
302 |
+
};
|
303 |
+
|
304 |
+
// ivalue_to_arg
|
305 |
+
|
306 |
+
template<class T>
|
307 |
+
struct decay_if_not_tensor final {
|
308 |
+
using type = std::decay_t<T>;
|
309 |
+
};
|
310 |
+
|
311 |
+
template<>
|
312 |
+
struct decay_if_not_tensor<at::Tensor&> final {
|
313 |
+
using type = at::Tensor&;
|
314 |
+
};
|
315 |
+
|
316 |
+
template<>
|
317 |
+
struct decay_if_not_tensor<const at::Tensor&> final {
|
318 |
+
using type = const at::Tensor&;
|
319 |
+
};
|
320 |
+
|
321 |
+
template<class T, bool AllowDeprecatedTypes>
|
322 |
+
struct ivalue_to_arg final {
|
323 |
+
static decltype(auto) call(IValue& v) {
|
324 |
+
assert_is_valid_input_type<T, AllowDeprecatedTypes>();
|
325 |
+
return std::move(v).to<T>();
|
326 |
+
}
|
327 |
+
};
|
328 |
+
|
329 |
+
// The following two specializations take advantage of specialized
|
330 |
+
// `toTensor()` overloads on IValue to avoid copying.
|
331 |
+
template<bool AllowDeprecatedTypes>
|
332 |
+
struct ivalue_to_arg<at::Tensor&, AllowDeprecatedTypes> final {
|
333 |
+
// We cannot use the default implementation if they asked for a
|
334 |
+
// `at::Tensor&` because it moves from the IValue, so it can't get
|
335 |
+
// an lvalue reference.
|
336 |
+
static at::Tensor& call(IValue& v) {
|
337 |
+
// Tensor& is valid, don't bother asserting
|
338 |
+
return v.toTensor();
|
339 |
+
}
|
340 |
+
};
|
341 |
+
|
342 |
+
template<bool AllowDeprecatedTypes>
|
343 |
+
struct ivalue_to_arg<const at::Tensor&, AllowDeprecatedTypes> final {
|
344 |
+
// We should not use the default implementation if they asked for
|
345 |
+
// a `const at::Tensor&` because it moves from the IValue and they
|
346 |
+
// didn't ask for that.
|
347 |
+
static const at::Tensor& call(IValue& v) {
|
348 |
+
// const Tensor& is valid, don't bother asserting
|
349 |
+
return v.toTensor();
|
350 |
+
}
|
351 |
+
};
|
352 |
+
|
353 |
+
template<bool AllowDeprecatedTypes>
|
354 |
+
struct ivalue_to_arg<at::ITensorListRef, AllowDeprecatedTypes> final {
|
355 |
+
static List<at::Tensor> call(IValue& v) {
|
356 |
+
return v.toTensorList();
|
357 |
+
}
|
358 |
+
};
|
359 |
+
|
360 |
+
template<class T, bool AllowDeprecatedTypes>
|
361 |
+
struct ivalue_to_arg<ArrayRef<T>, AllowDeprecatedTypes> final {
|
362 |
+
// If an argument is ArrayRef<T>, convert the IValue to a std::vector<T> and pass that
|
363 |
+
// to the operator. std::vector<T> is implicitly convertible to ArrayRef<T>.
|
364 |
+
static std::vector<T> call(IValue& v) {
|
365 |
+
return ivalue_to_arg<std::vector<T>, AllowDeprecatedTypes>::call(v);
|
366 |
+
}
|
367 |
+
};
|
368 |
+
template<bool AllowDeprecatedTypes>
|
369 |
+
struct ivalue_to_arg<c10::SymIntArrayRef, AllowDeprecatedTypes> final {
|
370 |
+
static std::vector<c10::SymInt> call(IValue& v) {
|
371 |
+
if (v.isIntList()) {
|
372 |
+
std::vector<c10::SymInt> r;
|
373 |
+
auto src = v.toIntList();
|
374 |
+
std::transform(src.begin(), src.end(), std::back_inserter(r), [](int64_t i) { return c10::SymInt(i); });
|
375 |
+
return r;
|
376 |
+
} else {
|
377 |
+
return ivalue_to_arg<std::vector<c10::SymInt>, AllowDeprecatedTypes>::call(v);
|
378 |
+
}
|
379 |
+
}
|
380 |
+
};
|
381 |
+
template<bool AllowDeprecatedTypes>
|
382 |
+
struct ivalue_to_arg<c10::OptionalArray<c10::SymInt>, AllowDeprecatedTypes> final {
|
383 |
+
static OptionalArray<c10::SymInt> call(IValue& v) {
|
384 |
+
if (v.isIntList()) {
|
385 |
+
std::vector<c10::SymInt> r;
|
386 |
+
auto src = v.toIntList();
|
387 |
+
std::transform(src.begin(), src.end(), std::back_inserter(r), [](int64_t i) { return c10::SymInt(i); });
|
388 |
+
return OptionalArray<c10::SymInt>(std::move(r));
|
389 |
+
} else {
|
390 |
+
return std::move(v).to<OptionalArray<c10::SymInt>>();
|
391 |
+
}
|
392 |
+
}
|
393 |
+
};
|
394 |
+
template<class T, bool AllowDeprecatedTypes>
|
395 |
+
struct ivalue_to_arg<optional<ArrayRef<T>>, AllowDeprecatedTypes> final {
|
396 |
+
// If an argument is optional<ArrayRef<T>>, convert the IValue to an optional<std::vector<T>> and pass that
|
397 |
+
// to the operator. OptionalArray<T> is basically a optional<std::vector<T>> but implicitly convertible
|
398 |
+
// to optional<ArrayRef<T>>.
|
399 |
+
static OptionalArray<T> call(IValue& v) {
|
400 |
+
return ivalue_to_arg<OptionalArray<T>, AllowDeprecatedTypes>::call(v);
|
401 |
+
}
|
402 |
+
};
|
403 |
+
|
404 |
+
template<class T, bool AllowDeprecatedTypes>
|
405 |
+
struct ivalue_to_arg<OptionalArrayRef<T>, AllowDeprecatedTypes> final {
|
406 |
+
// If an argument is OptionalArrayRef<T>, convert the IValue to an
|
407 |
+
// optional<std::vector<T>> and pass that to the operator. OptionalArray<T>
|
408 |
+
// is basically a optional<std::vector<T>> but implicitly convertible to
|
409 |
+
// OptionalArrayRef<T>
|
410 |
+
static OptionalArray<T> call(IValue& v) {
|
411 |
+
return ivalue_to_arg<OptionalArray<T>, AllowDeprecatedTypes>::call(v);
|
412 |
+
}
|
413 |
+
};
|
414 |
+
|
415 |
+
// return_to_ivalue
|
416 |
+
template<class T, bool AllowDeprecatedTypes, class Enable = void>
|
417 |
+
struct return_to_ivalue final {};
|
418 |
+
|
419 |
+
template<class T, bool AllowDeprecatedTypes>
|
420 |
+
struct return_to_ivalue<T, AllowDeprecatedTypes, std::enable_if_t<!std::is_same<at::Tensor&, T>::value>> final {
|
421 |
+
static IValue call(T&& v) {
|
422 |
+
assert_is_valid_output_type<T, AllowDeprecatedTypes>();
|
423 |
+
return c10::ivalue::from(std::move(v));
|
424 |
+
}
|
425 |
+
static IValue copy(const T& v) {
|
426 |
+
assert_is_valid_output_type<T, AllowDeprecatedTypes>();
|
427 |
+
return IValue(v);
|
428 |
+
}
|
429 |
+
};
|
430 |
+
|
431 |
+
// Special case to allow kernels to return `Tensor&`.
|
432 |
+
// TODO Delete this once kernels don't do that anymore
|
433 |
+
template<bool AllowDeprecatedTypes>
|
434 |
+
struct return_to_ivalue<at::Tensor&, AllowDeprecatedTypes, void> final {
|
435 |
+
static IValue call(at::Tensor& v) {
|
436 |
+
return c10::ivalue::from(v);
|
437 |
+
}
|
438 |
+
static IValue copy(at::Tensor& v) {
|
439 |
+
return IValue(v);
|
440 |
+
}
|
441 |
+
};
|
442 |
+
|
443 |
+
// wrap_kernel_functor_unboxed_
|
444 |
+
|
445 |
+
template<class KernelFunctor, class OpSignature>
|
446 |
+
struct wrap_kernel_functor_unboxed_ final {};
|
447 |
+
|
448 |
+
// This specialization is for kernels with a first argument that is NOT of type DispatchKeySet
|
449 |
+
// This includes kernels with 0 arguments.
|
450 |
+
template<class KernelFunctor, class ReturnType, class... ParameterTypes>
|
451 |
+
struct wrap_kernel_functor_unboxed_<KernelFunctor, ReturnType(ParameterTypes...)> final {
|
452 |
+
static_assert(std::is_same<ReturnType, typename guts::infer_function_traits_t<KernelFunctor>::return_type>::value,
|
453 |
+
"Return type mismatch");
|
454 |
+
static_assert(std::is_same<guts::typelist::typelist<ParameterTypes...>, typename guts::infer_function_traits_t<KernelFunctor>::parameter_types>::value,
|
455 |
+
"Parameter types mismatch");
|
456 |
+
|
457 |
+
// See [Note: Argument forwarding in the dispatcher] for why ParameterTypes doesn't use &&
|
458 |
+
static ReturnType call(OperatorKernel* functor, DispatchKeySet, ParameterTypes... args) {
|
459 |
+
KernelFunctor* functor_ = static_cast<KernelFunctor*>(functor);
|
460 |
+
// Note [Plumbing Keys Through The Dispatcher 2]
|
461 |
+
// See Note [Plumbing Keys Through The Dispatcher] for the background.
|
462 |
+
// This functor explicitly takes in a dispatchKeySet and drops it on the floor- it does not forward it to the registered kernel.
|
463 |
+
//
|
464 |
+
// This is due to the calling convention within the dispatcher, which expects all registered kernels to have a first argument of type
|
465 |
+
// DispatchKeySet.
|
466 |
+
// This is not the case for pretty much all manually written kernels, however- this functor serves to separate the calling convention
|
467 |
+
// of the dispatcher from the calling convention of manually written kernels.
|
468 |
+
return (*functor_)(std::forward<ParameterTypes>(args)...);
|
469 |
+
}
|
470 |
+
};
|
471 |
+
|
472 |
+
// This specialization is for kernels with a first argument of type DispatchKeySet
|
473 |
+
template<class KernelFunctor, class ReturnType, class... ParameterTypes>
|
474 |
+
struct wrap_kernel_functor_unboxed_<KernelFunctor, ReturnType(DispatchKeySet, ParameterTypes...)> final {
|
475 |
+
static_assert(std::is_same<ReturnType, typename guts::infer_function_traits_t<KernelFunctor>::return_type>::value,
|
476 |
+
"Return type mismatch");
|
477 |
+
static_assert(std::is_same<guts::typelist::typelist<DispatchKeySet, ParameterTypes...>, typename guts::infer_function_traits_t<KernelFunctor>::parameter_types>::value,
|
478 |
+
"Parameter types mismatch");
|
479 |
+
|
480 |
+
// See [Note: Argument forwarding in the dispatcher] for why ParameterTypes doesn't use &&
|
481 |
+
static ReturnType call(OperatorKernel* functor, DispatchKeySet dispatchKeySet, ParameterTypes... args) {
|
482 |
+
KernelFunctor* functor_ = static_cast<KernelFunctor*>(functor);
|
483 |
+
// We're explicitly taking in a dispatchKeySet and forwarding it to the registered kernel.
|
484 |
+
// See Note [Plumbing Keys Through The Dispatcher 2] for details.
|
485 |
+
return (*functor_)(dispatchKeySet, std::forward<ParameterTypes>(args)...);
|
486 |
+
}
|
487 |
+
};
|
488 |
+
|
489 |
+
template<class KernelFunctor>
|
490 |
+
using wrap_kernel_functor_unboxed = wrap_kernel_functor_unboxed_<KernelFunctor, typename guts::infer_function_traits_t<KernelFunctor>::func_type>;
|
491 |
+
|
492 |
+
// call_functor_with_args_from_stack
|
493 |
+
|
494 |
+
template<class Functor, bool AllowDeprecatedTypes, size_t... ivalue_arg_indices, typename... ArgTypes>
|
495 |
+
std::decay_t<typename guts::infer_function_traits_t<Functor>::return_type>
|
496 |
+
call_functor_with_args_from_stack_(OperatorKernel* functor, DispatchKeySet dispatchKeySet, Stack* stack, std::index_sequence<ivalue_arg_indices...>, guts::typelist::typelist<ArgTypes...>*) {
|
497 |
+
(void)(stack); // when sizeof...(ivalue_arg_indices) == 0, this argument would be unused and we have to silence the compiler warning.
|
498 |
+
|
499 |
+
// We're explicitly filtering out DispatchKeySet from the argument list.
|
500 |
+
// Some kernels take a DispatchKeySet as their first argument in order to plumb keys through the dispatcher.
|
501 |
+
// We don't want to expose the DispatchKeySet type to jit, so we don't include this argument on the stack.
|
502 |
+
// See Note [Plumbing Keys Through The Dispatcher] for the background.
|
503 |
+
return wrap_kernel_functor_unboxed<Functor>::call(functor, dispatchKeySet,
|
504 |
+
ivalue_to_arg<typename decay_if_not_tensor<ArgTypes>::type, AllowDeprecatedTypes>::call(
|
505 |
+
torch::jit::peek(*stack, ivalue_arg_indices, sizeof...(ivalue_arg_indices))
|
506 |
+
)...);
|
507 |
+
}
|
508 |
+
|
509 |
+
template<class Functor, bool AllowDeprecatedTypes>
|
510 |
+
std::decay_t<typename guts::infer_function_traits_t<Functor>::return_type>
|
511 |
+
call_functor_with_args_from_stack(OperatorKernel* functor, DispatchKeySet dispatchKeySet, Stack* stack) {
|
512 |
+
// We're explicitly filtering out DispatchKeySet from the argument list.
|
513 |
+
// Some kernels take a DispatchKeySet as their first argument in order to plumb keys through the dispatcher.
|
514 |
+
// We don't want to expose the DispatchKeySet type to jit, so we don't include this argument on the stack.
|
515 |
+
// See Note [Plumbing Keys Through The Dispatcher] for the background.
|
516 |
+
using ArgTypes = typename c10::remove_DispatchKeySet_arg_from_func<Functor>::parameter_types;
|
517 |
+
constexpr size_t num_ivalue_args = guts::typelist::size<ArgTypes>::value;
|
518 |
+
return call_functor_with_args_from_stack_<Functor, AllowDeprecatedTypes>(functor, dispatchKeySet, stack, std::make_index_sequence<num_ivalue_args>(), static_cast<ArgTypes*>(nullptr));
|
519 |
+
}
|
520 |
+
|
521 |
+
// push_outputs
|
522 |
+
|
523 |
+
template<class OutputType, bool AllowDeprecatedTypes>
|
524 |
+
struct push_outputs final {
|
525 |
+
// Contrary to [Note: Argument forwarding in the dispatcher], we use OutputType&& here
|
526 |
+
// to avoid one extra call to the move constructor in this case. This is still not a
|
527 |
+
// universal reference though because OutputType is an explicitly specified class
|
528 |
+
// template parameter.
|
529 |
+
static void call(OutputType&& output, Stack* stack) {
|
530 |
+
torch::jit::push(*stack, return_to_ivalue<OutputType, AllowDeprecatedTypes>::call(std::forward<OutputType>(output)));
|
531 |
+
}
|
532 |
+
static void copy(const OutputType& output, Stack* stack) {
|
533 |
+
torch::jit::push(*stack, return_to_ivalue<OutputType, AllowDeprecatedTypes>::copy(output));
|
534 |
+
}
|
535 |
+
};
|
536 |
+
template<class... OutputTypes, bool AllowDeprecatedTypes>
|
537 |
+
struct push_outputs<std::tuple<OutputTypes...>, AllowDeprecatedTypes> final {
|
538 |
+
static void call(std::tuple<OutputTypes...>&& output, Stack* stack) {
|
539 |
+
call_(std::move(output), stack, std::make_index_sequence<sizeof...(OutputTypes)>());
|
540 |
+
}
|
541 |
+
static void copy(const std::tuple<OutputTypes...>& output, Stack* stack) {
|
542 |
+
copy_(output, stack, std::make_index_sequence<sizeof...(OutputTypes)>());
|
543 |
+
}
|
544 |
+
|
545 |
+
private:
|
546 |
+
template<size_t... indices>
|
547 |
+
static void call_(std::tuple<OutputTypes...>&& output, Stack* stack, std::index_sequence<indices...>) {
|
548 |
+
torch::jit::push(*stack, return_to_ivalue<OutputTypes, AllowDeprecatedTypes>::call(std::forward<OutputTypes>(std::get<indices>(output)))...);
|
549 |
+
}
|
550 |
+
template<size_t... indices>
|
551 |
+
static void copy_(const std::tuple<OutputTypes...>& output, Stack* stack, std::index_sequence<indices...>) {
|
552 |
+
torch::jit::push(*stack, return_to_ivalue<OutputTypes, AllowDeprecatedTypes>::copy(std::get<indices>(output))...);
|
553 |
+
}
|
554 |
+
};
|
555 |
+
template<bool AllowDeprecatedTypes>
|
556 |
+
struct push_outputs<void, AllowDeprecatedTypes> final {
|
557 |
+
static void call(int /*dummy*/, Stack* /*stack*/) {
|
558 |
+
}
|
559 |
+
static void copy(int /*dummy*/, Stack* /*stack*/) {
|
560 |
+
}
|
561 |
+
};
|
562 |
+
|
563 |
+
// make_boxed_from_unboxed_functor
|
564 |
+
|
565 |
+
template<class KernelFunctor, bool AllowDeprecatedTypes>
|
566 |
+
struct make_boxed_from_unboxed_functor final {
|
567 |
+
static_assert(std::is_base_of<OperatorKernel, KernelFunctor>::value,
|
568 |
+
"Tried to register a kernel functor using the kernel<Functor>() API, but it doesn't inherit from c10::OperatorKernel. Please have the functor inherit from it.");
|
569 |
+
|
570 |
+
static void call(OperatorKernel* functor, const OperatorHandle&, DispatchKeySet dispatchKeySet, Stack* stack) {
|
571 |
+
using ReturnType = typename guts::infer_function_traits_t<KernelFunctor>::return_type;
|
572 |
+
// We're explicitly filtering out DispatchKeySet from the argument list.
|
573 |
+
// Some kernels take a DispatchKeySet as their first argument in order to plumb keys through the dispatcher.
|
574 |
+
// We don't want to expose the DispatchKeySet type to jit, so we don't include this argument on the stack.
|
575 |
+
// See Note [Plumbing Keys Through The Dispatcher] for the background.
|
576 |
+
using ArgTypes = typename c10::remove_DispatchKeySet_arg_from_func<KernelFunctor>::parameter_types;
|
577 |
+
constexpr bool has_outputs = !std::is_same<void, ReturnType>::value;
|
578 |
+
constexpr size_t num_inputs = guts::typelist::size<ArgTypes>::value;
|
579 |
+
if constexpr (has_outputs) {
|
580 |
+
// Decay ReturnType to ReturnType_ so that if a reference gets returned, we actually store it by value
|
581 |
+
// and don't get a dangling reference. This is only required because some kernels still return `Tensor&`.
|
582 |
+
// [Note: VC++ and 'std': ambiguous symbol]
|
583 |
+
using ReturnType_ = ::std::decay_t<ReturnType>;
|
584 |
+
ReturnType_ output = call_functor_with_args_from_stack<KernelFunctor, AllowDeprecatedTypes>(functor, dispatchKeySet, stack);
|
585 |
+
torch::jit::drop(*stack, num_inputs);
|
586 |
+
// See note [ VC++ and 'std': ambiguous symbol]
|
587 |
+
push_outputs<ReturnType_, AllowDeprecatedTypes>::call(::std::move(output), stack);
|
588 |
+
} else {
|
589 |
+
call_functor_with_args_from_stack<KernelFunctor, AllowDeprecatedTypes>(functor, dispatchKeySet, stack);
|
590 |
+
torch::jit::drop(*stack, num_inputs);
|
591 |
+
}
|
592 |
+
}
|
593 |
+
};
|
594 |
+
} // namespace impl
|
595 |
+
|
596 |
+
} // namespace c10
|
597 |
+
|
598 |
+
namespace torch {
|
599 |
+
using OperatorKernel = c10::OperatorKernel;
|
600 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/boxing/impl/test_helpers.h
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <gtest/gtest.h>
|
4 |
+
#include <gmock/gmock.h>
|
5 |
+
|
6 |
+
#include <ATen/core/Tensor.h>
|
7 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
8 |
+
#include <ATen/core/ivalue.h>
|
9 |
+
#include <c10/core/CPUAllocator.h>
|
10 |
+
#include <c10/util/irange.h>
|
11 |
+
|
12 |
+
template<class... Inputs>
|
13 |
+
inline std::vector<c10::IValue> makeStack(Inputs&&... inputs) {
|
14 |
+
return {std::forward<Inputs>(inputs)...};
|
15 |
+
}
|
16 |
+
|
17 |
+
inline at::Tensor dummyTensor(c10::DispatchKeySet ks, bool requires_grad=false) {
|
18 |
+
auto* allocator = c10::GetCPUAllocator();
|
19 |
+
int64_t nelements = 1;
|
20 |
+
auto dtype = caffe2::TypeMeta::Make<float>();
|
21 |
+
int64_t size_bytes = nelements * dtype.itemsize();
|
22 |
+
auto storage_impl = c10::make_intrusive<c10::StorageImpl>(
|
23 |
+
c10::StorageImpl::use_byte_size_t(),
|
24 |
+
size_bytes,
|
25 |
+
allocator->allocate(size_bytes),
|
26 |
+
allocator,
|
27 |
+
/*resizable=*/true);
|
28 |
+
at::Tensor t = at::detail::make_tensor<c10::TensorImpl>(storage_impl, ks, dtype);
|
29 |
+
// TODO: We add this to simulate the ideal case where we only have Autograd backend keys
|
30 |
+
// on Tensor when it requires grad. But currently Autograd keys are added in TensorImpl
|
31 |
+
// constructor by default.
|
32 |
+
if (!requires_grad) {
|
33 |
+
t.unsafeGetTensorImpl()->remove_autograd_key();
|
34 |
+
}
|
35 |
+
return t;
|
36 |
+
}
|
37 |
+
|
38 |
+
inline at::Tensor dummyTensor(c10::DispatchKey dispatch_key, bool requires_grad=false) {
|
39 |
+
return dummyTensor(c10::DispatchKeySet(dispatch_key), requires_grad);
|
40 |
+
}
|
41 |
+
|
42 |
+
template<class... Args>
|
43 |
+
inline std::vector<c10::IValue> callOp(const c10::OperatorHandle& op, Args... args) {
|
44 |
+
auto stack = makeStack(std::forward<Args>(args)...);
|
45 |
+
op.callBoxed(&stack);
|
46 |
+
return stack;
|
47 |
+
}
|
48 |
+
|
49 |
+
template<class Result, class... Args>
|
50 |
+
inline Result callOpUnboxed(const c10::OperatorHandle& op, Args... args) {
|
51 |
+
return op.typed<Result(Args...)>().call(std::forward<Args>(args)...);
|
52 |
+
}
|
53 |
+
|
54 |
+
template<class Result, class... Args>
|
55 |
+
inline Result callOpUnboxedWithDispatchKey(const c10::OperatorHandle& op, c10::DispatchKey dispatchKey, Args... args) {
|
56 |
+
return op.typed<Result(Args...)>().callWithDispatchKey(dispatchKey, std::forward<Args>(args)...);
|
57 |
+
}
|
58 |
+
|
59 |
+
template<class Result, class... Args>
|
60 |
+
inline Result callOpUnboxedWithPrecomputedDispatchKeySet(const c10::OperatorHandle& op, c10::DispatchKeySet ks, Args... args) {
|
61 |
+
return op.typed<Result(Args...)>().redispatch(ks, std::forward<Args>(args)...);
|
62 |
+
}
|
63 |
+
|
64 |
+
inline void expectDoesntFindKernel(const char* op_name, c10::DispatchKey dispatch_key) {
|
65 |
+
auto op = c10::Dispatcher::singleton().findSchema({op_name, ""});
|
66 |
+
EXPECT_ANY_THROW(
|
67 |
+
callOp(*op, dummyTensor(dispatch_key), 5);
|
68 |
+
);
|
69 |
+
}
|
70 |
+
|
71 |
+
inline void expectDoesntFindOperator(const char* op_name) {
|
72 |
+
auto op = c10::Dispatcher::singleton().findSchema({op_name, ""});
|
73 |
+
EXPECT_FALSE(op.has_value());
|
74 |
+
}
|
75 |
+
|
76 |
+
template<class Exception, class Functor>
|
77 |
+
inline void expectThrows(Functor&& functor, const char* expectMessageContains) {
|
78 |
+
try {
|
79 |
+
std::forward<Functor>(functor)();
|
80 |
+
} catch (const Exception& e) {
|
81 |
+
EXPECT_THAT(e.what(), testing::HasSubstr(expectMessageContains));
|
82 |
+
return;
|
83 |
+
}
|
84 |
+
ADD_FAILURE() << "Expected to throw exception containing \""
|
85 |
+
<< expectMessageContains << "\" but didn't throw";
|
86 |
+
}
|
87 |
+
|
88 |
+
template<class T, size_t N>
|
89 |
+
void expectListEquals(c10::ArrayRef<T> expected, std::array<T, N> actual) {
|
90 |
+
EXPECT_EQ(expected.size(), actual.size());
|
91 |
+
for (const auto i : c10::irange(expected.size())) {
|
92 |
+
EXPECT_EQ(expected[i], actual[i]);
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
template<class T>
|
97 |
+
void expectListEquals(c10::ArrayRef<T> expected, c10::ArrayRef<T> actual) {
|
98 |
+
EXPECT_EQ(expected.size(), actual.size());
|
99 |
+
for (const auto i : c10::irange(expected.size())) {
|
100 |
+
EXPECT_EQ(expected[i], actual[i]);
|
101 |
+
}
|
102 |
+
}
|
103 |
+
|
104 |
+
template<class T>
|
105 |
+
void expectListEquals(c10::ArrayRef<T> expected, c10::List<T> actual) {
|
106 |
+
EXPECT_EQ(expected.size(), actual.size());
|
107 |
+
for (const auto i : c10::irange(expected.size())) {
|
108 |
+
EXPECT_EQ(expected[i], actual.get(i));
|
109 |
+
}
|
110 |
+
}
|
111 |
+
|
112 |
+
template<class T>
|
113 |
+
void expectListEquals(c10::ArrayRef<T> expected, std::vector<T> actual) {
|
114 |
+
EXPECT_EQ(expected.size(), actual.size());
|
115 |
+
for (const auto i : c10::irange(expected.size())) {
|
116 |
+
EXPECT_EQ(expected[i], actual[i]);
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
// NB: This is not really sound, but all of the type sets constructed here
|
121 |
+
// are singletons so it's fine
|
122 |
+
static inline c10::DispatchKey extractDispatchKey(const at::Tensor& t) {
|
123 |
+
return legacyExtractDispatchKey(t.key_set());
|
124 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/op_registration/infer_schema.h
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
/**
|
4 |
+
* This file contains functionality to take a C++ function and infer its
|
5 |
+
* c10::FunctionSchema.
|
6 |
+
*/
|
7 |
+
|
8 |
+
#include <ATen/core/function_schema.h>
|
9 |
+
#include <c10/util/Metaprogramming.h>
|
10 |
+
|
11 |
+
namespace c10 {
|
12 |
+
namespace detail {
|
13 |
+
|
14 |
+
namespace infer_schema {
|
15 |
+
|
16 |
+
/// The templated inference code creates `ArgumentDef` instead of `Argument`,
|
17 |
+
/// because that can be constructed at compile time and has a much smaller
|
18 |
+
/// binary size than having calls to `Argument` constructors in the template.
|
19 |
+
/// Creating `Argument` objects from `ArgumentDef` can then be done at
|
20 |
+
/// runtime in a non-templated way.
|
21 |
+
struct ArgumentDef final {
|
22 |
+
using GetTypeFn = TypePtr();
|
23 |
+
GetTypeFn* getTypeFn;
|
24 |
+
GetTypeFn* getFakeTypeFn;
|
25 |
+
constexpr ArgumentDef(): getTypeFn(nullptr), getFakeTypeFn(nullptr) {}
|
26 |
+
explicit constexpr ArgumentDef(GetTypeFn *getTypeFn, GetTypeFn *getFakeTypeFn): getTypeFn(getTypeFn), getFakeTypeFn(getFakeTypeFn) {}
|
27 |
+
};
|
28 |
+
|
29 |
+
template<bool V>
|
30 |
+
struct bool_t {};
|
31 |
+
template<> struct bool_t<true> : std::true_type {};
|
32 |
+
template<> struct bool_t<false> : std::false_type {};
|
33 |
+
|
34 |
+
/// Checks the static C++ types `Types` for correctness to catch common error cases.
|
35 |
+
template <class... Types>
|
36 |
+
constexpr int checkStaticTypes() {
|
37 |
+
// Give nice error messages for some of the common error cases.
|
38 |
+
// Use a LOUD ERROR MESSAGE SO USERS SEE THE STATIC_ASSERT
|
39 |
+
static_assert(std::conjunction<
|
40 |
+
bool_t<!std::is_integral<Types>::value || std::is_same<Types, int8_t>::value || std::is_same<Types, int64_t>::value || std::is_same<Types, bool>::value>...
|
41 |
+
>::value, "INVALID TYPE: Only int8_t, int64_t and bool are supported as an integral argument type");
|
42 |
+
static_assert(std::conjunction<
|
43 |
+
bool_t<!std::is_same<Types, float>::value>...
|
44 |
+
>::value, "INVALID TYPE: float is not supported as an argument type, use double instead");
|
45 |
+
return 0;
|
46 |
+
}
|
47 |
+
|
48 |
+
template <typename... Ts, size_t... Is>
|
49 |
+
constexpr std::array<ArgumentDef, sizeof...(Ts)> createArgumentVectorFromTypes(std::index_sequence<Is...>) {
|
50 |
+
return (
|
51 |
+
// Check types for common errors
|
52 |
+
checkStaticTypes<Ts...>(),
|
53 |
+
|
54 |
+
// Create the return value
|
55 |
+
std::array<ArgumentDef, sizeof...(Ts)>{
|
56 |
+
ArgumentDef(&getTypePtrCopy<std::decay_t<Ts>>, &getFakeTypePtrCopy<std::decay_t<Ts>>)...}
|
57 |
+
);
|
58 |
+
}
|
59 |
+
|
60 |
+
/// Creates a vector of `ArgumentDef` from a list of C++ types that are specified
|
61 |
+
/// as template arguments.
|
62 |
+
template<class ParameterTypes> struct createArguments final {};
|
63 |
+
template<class... ParameterTypes>
|
64 |
+
struct createArguments<guts::typelist::typelist<ParameterTypes...>> final {
|
65 |
+
static constexpr std::array<ArgumentDef, sizeof...(ParameterTypes)> call() {
|
66 |
+
return createArgumentVectorFromTypes<ParameterTypes...>(
|
67 |
+
std::make_index_sequence<sizeof...(ParameterTypes)>()
|
68 |
+
);
|
69 |
+
}
|
70 |
+
};
|
71 |
+
|
72 |
+
/// Creates a vector of `ArgumentDef` from a list of C++ types that are specified
|
73 |
+
/// as a tuple (i.e. in the way c10 kernels return values).
|
74 |
+
/// It can be a tuple<A, B, C> if there's three output arguments with types A, B, C.
|
75 |
+
/// It can be an empty tuple<>, or void for kernels that don't return anything.
|
76 |
+
/// It can be a single type A (i.e. no tuple) for the case where a kernel just
|
77 |
+
/// returns one value.
|
78 |
+
template<class ReturnTypeTuple, class Enable = void> struct createReturns final {};
|
79 |
+
|
80 |
+
template<class... ReturnTypes>
|
81 |
+
struct createReturns<std::tuple<ReturnTypes...>, void> final {
|
82 |
+
static constexpr std::array<ArgumentDef, sizeof...(ReturnTypes)> call() {
|
83 |
+
return createArgumentVectorFromTypes<ReturnTypes...>(
|
84 |
+
std::make_index_sequence<sizeof...(ReturnTypes)>()
|
85 |
+
);
|
86 |
+
}
|
87 |
+
};
|
88 |
+
|
89 |
+
template<class ReturnType>
|
90 |
+
struct createReturns<ReturnType, std::enable_if_t<!std::is_same<void, ReturnType>::value && !guts::is_instantiation_of<std::tuple, ReturnType>::value>> final {
|
91 |
+
static constexpr std::array<ArgumentDef, 1> call() {
|
92 |
+
return createReturns<std::tuple<ReturnType>>::call();
|
93 |
+
}
|
94 |
+
};
|
95 |
+
|
96 |
+
template<>
|
97 |
+
struct createReturns<void, void> final {
|
98 |
+
static constexpr std::array<ArgumentDef, 0> call() {
|
99 |
+
return createReturns<std::tuple<>>::call();
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
template <typename ReturnType>
|
104 |
+
struct createSingleReturn {
|
105 |
+
static constexpr std::array<ArgumentDef, 1> call() {
|
106 |
+
return createArgumentVectorFromTypes<ReturnType>(std::make_index_sequence<1>());
|
107 |
+
}
|
108 |
+
};
|
109 |
+
|
110 |
+
TORCH_API FunctionSchema make_function_schema(std::string&& name, std::string&& overload_name, c10::ArrayRef<ArgumentDef> arguments, c10::ArrayRef<ArgumentDef> returns);
|
111 |
+
TORCH_API FunctionSchema make_function_schema(c10::ArrayRef<ArgumentDef> arguments, c10::ArrayRef<ArgumentDef> returns);
|
112 |
+
|
113 |
+
/// Creates a `FunctionSchema` object from a `FunctionTraits` type for a
|
114 |
+
/// function. Flattens std::tuple returns into multiple return types
|
115 |
+
template <typename FunctionTraits>
|
116 |
+
FunctionSchema createFunctionSchemaFromTraitsFlattenedReturns() {
|
117 |
+
using ReturnType = typename FunctionTraits::return_type;
|
118 |
+
using ParameterTypes = typename FunctionTraits::parameter_types;
|
119 |
+
|
120 |
+
// arguments and returns are computed into a std::array at compile time and embedded into the binary.
|
121 |
+
// The only code executed at runtime here is the one that creates a std::vector
|
122 |
+
// of the arguments/returns from the std::array.
|
123 |
+
constexpr auto arguments = createArguments<ParameterTypes>::call();
|
124 |
+
constexpr auto returns = createReturns<ReturnType>::call();
|
125 |
+
|
126 |
+
return make_function_schema(arguments, returns);
|
127 |
+
}
|
128 |
+
|
129 |
+
/// Creates a `FunctionSchema` object from a `FunctionTraits` type for a
|
130 |
+
/// function. Preserves std::tuple returns as a Tuple return type
|
131 |
+
template <typename FunctionTraits>
|
132 |
+
FunctionSchema createFunctionSchemaFromTraitsSingleReturn(std::string&& name, std::string&& overload_name) {
|
133 |
+
using ReturnType = typename FunctionTraits::return_type;
|
134 |
+
using ParameterTypes = typename FunctionTraits::parameter_types;
|
135 |
+
|
136 |
+
// arguments and returns are computed into a std::array at compile time and embedded into the binary.
|
137 |
+
// The only code executed at runtime here is the one that creates a std::vector
|
138 |
+
// of the arguments/returns from the std::array.
|
139 |
+
constexpr auto arguments = createArguments<ParameterTypes>::call();
|
140 |
+
constexpr auto returns = createSingleReturn<ReturnType>::call();
|
141 |
+
|
142 |
+
return make_function_schema(std::move(name), std::move(overload_name), arguments, returns);
|
143 |
+
}
|
144 |
+
|
145 |
+
}
|
146 |
+
}
|
147 |
+
|
148 |
+
template<class FuncType>
|
149 |
+
FunctionSchema inferFunctionSchemaFlattenedReturns() {
|
150 |
+
return detail::infer_schema::createFunctionSchemaFromTraitsFlattenedReturns<guts::infer_function_traits_t<FuncType>>();
|
151 |
+
}
|
152 |
+
|
153 |
+
template<class FuncType>
|
154 |
+
FunctionSchema inferFunctionSchemaSingleReturn(std::string&& name, std::string&& overload_name) {
|
155 |
+
return detail::infer_schema::createFunctionSchemaFromTraitsSingleReturn<guts::infer_function_traits_t<FuncType>>(std::move(name), std::move(overload_name));
|
156 |
+
}
|
157 |
+
|
158 |
+
TORCH_API c10::optional<std::string> findSchemaDifferences(const FunctionSchema& inferred, const FunctionSchema& specified);
|
159 |
+
|
160 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/core/op_registration/op_registration.h
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
/**
|
4 |
+
* Include this file if you want to register operators. It includes all
|
5 |
+
* functionality needed to do so for you.
|
6 |
+
*/
|
7 |
+
|
8 |
+
#include <c10/core/DispatchKey.h>
|
9 |
+
#include <c10/core/DispatchKeySet.h>
|
10 |
+
#include <c10/core/CompileTimeFunctionPointer.h>
|
11 |
+
#include <ATen/core/boxing/KernelFunction.h>
|
12 |
+
#include <ATen/core/dispatch/CppSignature.h>
|
13 |
+
#include <ATen/core/dispatch/RegistrationHandleRAII.h>
|
14 |
+
#include <ATen/core/op_registration/infer_schema.h>
|
15 |
+
#if defined(EXPOSE_C2_OPS) || !defined(CAFFE2_IS_XPLAT_BUILD)
|
16 |
+
#include <torch/csrc/jit/frontend/function_schema_parser.h>
|
17 |
+
#endif
|
18 |
+
#include <ATen/core/ATenOpList.h>
|
19 |
+
|
20 |
+
namespace c10 {
|
21 |
+
|
22 |
+
namespace detail {
|
23 |
+
// The first argument of the schema might be of type DispatchKeySet, in which case we remove it.
|
24 |
+
// We do this because every argument in a function schema is expected to be convertable
|
25 |
+
// to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of.
|
26 |
+
// See Note [Plumbing Keys Through The Dispatcher]
|
27 |
+
template<class KernelFunctor>
|
28 |
+
std::unique_ptr<FunctionSchema> inferFunctionSchemaFromFunctor() {
|
29 |
+
using func_type = typename c10::remove_DispatchKeySet_arg_from_func<KernelFunctor>::func_type;
|
30 |
+
return std::make_unique<FunctionSchema>(inferFunctionSchemaFlattenedReturns<func_type>());
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
/**
|
35 |
+
* An instance of this class handles the registration for one or more operators.
|
36 |
+
* Make sure you keep the RegisterOperators instance around since it will
|
37 |
+
* deregister the operator it's responsible for in its destructor.
|
38 |
+
*
|
39 |
+
* Example:
|
40 |
+
*
|
41 |
+
* > namespace {
|
42 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
43 |
+
* > public:
|
44 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
45 |
+
* > };
|
46 |
+
* > }
|
47 |
+
* >
|
48 |
+
* > static auto registry = c10::RegisterOperators()
|
49 |
+
* > .op(c10::RegisterOperators::options()
|
50 |
+
* > .schema("my_op")
|
51 |
+
* > .kernel<my_kernel_cpu>(DispatchKey::CPU));
|
52 |
+
*/
|
53 |
+
class TORCH_API RegisterOperators final {
|
54 |
+
public:
|
55 |
+
RegisterOperators() = default;
|
56 |
+
~RegisterOperators() = default;
|
57 |
+
|
58 |
+
RegisterOperators(const RegisterOperators&) = delete;
|
59 |
+
RegisterOperators& operator=(const RegisterOperators&) = delete;
|
60 |
+
RegisterOperators(RegisterOperators&&) noexcept = default;
|
61 |
+
RegisterOperators& operator=(RegisterOperators&&) noexcept = default;
|
62 |
+
|
63 |
+
class TORCH_API Options final {
|
64 |
+
public:
|
65 |
+
Options(const Options&) = delete;
|
66 |
+
Options(Options&&) noexcept = delete;
|
67 |
+
Options& operator=(const Options&) = delete;
|
68 |
+
Options& operator=(Options&&) noexcept = delete;
|
69 |
+
|
70 |
+
// internal-only for registering stack based kernels
|
71 |
+
template<KernelFunction::BoxedKernelFunction* kernel_func>
|
72 |
+
Options&& kernel(DispatchKey dispatch_key) && {
|
73 |
+
return std::move(*this).kernel(dispatch_key, KernelFunction::makeFromBoxedFunction<kernel_func>(), nullopt, nullptr);
|
74 |
+
}
|
75 |
+
|
76 |
+
// internal-only for registering stack based catch-all kernels
|
77 |
+
template<KernelFunction::BoxedKernelFunction* kernel_func>
|
78 |
+
Options&& catchAllKernel() && {
|
79 |
+
return std::move(*this).kernel(c10::nullopt, KernelFunction::makeFromBoxedFunction<kernel_func>(), nullopt, nullptr);
|
80 |
+
}
|
81 |
+
|
82 |
+
// internal only for registering caffe2 ops
|
83 |
+
Options&& schema(FunctionSchema&& schema) {
|
84 |
+
TORCH_CHECK(!schemaOrName_.has_value(), "You can only specify the schema once per operator registration.");
|
85 |
+
schemaOrName_ = FunctionSchema(std::move(schema));
|
86 |
+
return std::move(*this);
|
87 |
+
}
|
88 |
+
|
89 |
+
/**
|
90 |
+
* Use this to specify the schema for an operator. You can also specify
|
91 |
+
* the operator name only to have the function signature part of the
|
92 |
+
* schema be inferred from the kernel function.
|
93 |
+
*
|
94 |
+
* Example:
|
95 |
+
*
|
96 |
+
* > // Infer function signature from my_kernel_cpu
|
97 |
+
* > static auto registry = c10::RegisterOperators()
|
98 |
+
* > .op(c10::RegisterOperators::options()
|
99 |
+
* > .schema("my_op")
|
100 |
+
* > .kernel<my_kernel_cpu>(DispatchKey::CPU));
|
101 |
+
* >
|
102 |
+
* >
|
103 |
+
* > // Explicitly specify full schema
|
104 |
+
* > static auto registry = c10::RegisterOperators()
|
105 |
+
* > .op(c10::RegisterOperators::options()
|
106 |
+
* > .schema("my_op(Tensor a) -> Tensor")
|
107 |
+
* > .kernel<my_kernel_cpu>(DispatchKey::CPU));
|
108 |
+
*/
|
109 |
+
Options&& schema(const std::string& schemaOrName) {
|
110 |
+
TORCH_CHECK(!schemaOrName_.has_value(), "Tried to register operator ", schemaOrName," but specified schema multiple times. You can only specify the schema once per operator registration.");
|
111 |
+
|
112 |
+
#if !defined(EXPOSE_C2_OPS) && defined(CAFFE2_IS_XPLAT_BUILD)
|
113 |
+
throw std::logic_error("Tried to register operator " + schemaOrName + ". We don't support registering c10 ops on mobile yet because the function schema parser isn't present in the mobile build.");
|
114 |
+
#else
|
115 |
+
schemaOrName_ = torch::jit::parseSchemaOrName(schemaOrName);
|
116 |
+
#endif
|
117 |
+
|
118 |
+
return std::move(*this);
|
119 |
+
}
|
120 |
+
|
121 |
+
/**
|
122 |
+
* Use this to register an operator whose kernel is implemented as a functor.
|
123 |
+
* The kernel is only called for inputs matching the given dispatch key.
|
124 |
+
* You can register multiple kernels for different dispatch keys.
|
125 |
+
*
|
126 |
+
* Example:
|
127 |
+
*
|
128 |
+
* > namespace {
|
129 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
130 |
+
* > public:
|
131 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
132 |
+
* > };
|
133 |
+
* > }
|
134 |
+
* >
|
135 |
+
* > static auto registry = c10::RegisterOperators()
|
136 |
+
* > .op(c10::RegisterOperators::options()
|
137 |
+
* > .schema("my_op")
|
138 |
+
* > .kernel<my_kernel_cpu>(DispatchKey::CPU));
|
139 |
+
*
|
140 |
+
* The functor constructor can take arguments to configure the kernel.
|
141 |
+
* The arguments are defined in the kernel registration.
|
142 |
+
* Example:
|
143 |
+
*
|
144 |
+
* > namespace {
|
145 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
146 |
+
* > public:
|
147 |
+
* > explicit my_kernel_cpu(std::string some_configuration, int a, bool b)
|
148 |
+
* > : ... {...}
|
149 |
+
* >
|
150 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
151 |
+
* > };
|
152 |
+
* > }
|
153 |
+
* >
|
154 |
+
* > static auto registry = c10::RegisterOperators()
|
155 |
+
* > .op(c10::RegisterOperators::options()
|
156 |
+
* > .schema("my_op")
|
157 |
+
* > .kernel<my_kernel_cpu>(DispatchKey::CPU, "some_configuration", 3, true));
|
158 |
+
*/
|
159 |
+
template<class KernelFunctor, class... ConstructorParameters>
|
160 |
+
// enable_if: only enable it if KernelFunctor is actually a functor
|
161 |
+
std::enable_if_t<guts::is_functor<KernelFunctor>::value, Options&&> kernel(DispatchKey dispatch_key, ConstructorParameters&&... constructorParameters) && {
|
162 |
+
static_assert(std::is_base_of<OperatorKernel, KernelFunctor>::value, "Tried to register a kernel functor using the kernel<Functor>() API, but it doesn't inherit from c10::OperatorKernel. Please have the functor inherit from it.");
|
163 |
+
static_assert(std::is_constructible<KernelFunctor, ConstructorParameters...>::value, "Wrong argument list for constructor of kernel functor. The arguments to kernel<Functor>(arguments...) must match one of the constructors of Functor.");
|
164 |
+
|
165 |
+
return std::move(*this).kernel(
|
166 |
+
dispatch_key,
|
167 |
+
KernelFunction::makeFromUnboxedFunctor<false, KernelFunctor>(std::make_unique<KernelFunctor>(std::forward<ConstructorParameters>(constructorParameters)...)),
|
168 |
+
impl::CppSignature::make<KernelFunctor>(),
|
169 |
+
detail::inferFunctionSchemaFromFunctor<KernelFunctor>()
|
170 |
+
);
|
171 |
+
}
|
172 |
+
|
173 |
+
/**
|
174 |
+
* Use this to register an operator whose kernel is implemented as a functor.
|
175 |
+
* The kernel is a catch-all kernel, meaning it's called independent from
|
176 |
+
* the input. Dispatch is disabled for this operator.
|
177 |
+
*
|
178 |
+
* Example:
|
179 |
+
*
|
180 |
+
* > namespace {
|
181 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
182 |
+
* > public:
|
183 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
184 |
+
* > };
|
185 |
+
* > }
|
186 |
+
* >
|
187 |
+
* > static auto registry = c10::RegisterOperators()
|
188 |
+
* > .op(c10::RegisterOperators::options()
|
189 |
+
* > .schema("my_op")
|
190 |
+
* > .catchAllKernel<my_kernel_cpu>());
|
191 |
+
*
|
192 |
+
* The functor constructor can take arguments to configure the kernel.
|
193 |
+
* The arguments are defined in the kernel registration.
|
194 |
+
* Example:
|
195 |
+
*
|
196 |
+
* > namespace {
|
197 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
198 |
+
* > public:
|
199 |
+
* > explicit my_kernel_cpu(std::string some_configuration, int a, bool b)
|
200 |
+
* > : ... {...}
|
201 |
+
* >
|
202 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
203 |
+
* > };
|
204 |
+
* > }
|
205 |
+
* >
|
206 |
+
* > static auto registry = c10::RegisterOperators()
|
207 |
+
* > .op(c10::RegisterOperators::options()
|
208 |
+
* > .schema("my_op")
|
209 |
+
* > .catchAllKernel<my_kernel_cpu>("some_configuration", 3, true));
|
210 |
+
*/
|
211 |
+
template<class KernelFunctor, class... ConstructorParameters>
|
212 |
+
// enable_if: only enable it if KernelFunctor is actually a functor
|
213 |
+
std::enable_if_t<guts::is_functor<KernelFunctor>::value, Options&&> catchAllKernel(ConstructorParameters&&... constructorParameters) && {
|
214 |
+
static_assert(std::is_base_of<OperatorKernel, KernelFunctor>::value, "Tried to register a kernel functor using the kernel<Functor>() API, but it doesn't inherit from c10::OperatorKernel. Please have the functor inherit from it.");
|
215 |
+
static_assert(std::is_constructible<KernelFunctor, ConstructorParameters...>::value, "Wrong argument list for constructor of kernel functor. The arguments to kernel<Functor>(arguments...) must match one of the constructors of Functor.");
|
216 |
+
|
217 |
+
return std::move(*this).kernel(
|
218 |
+
c10::nullopt,
|
219 |
+
KernelFunction::makeFromUnboxedFunctor<false, KernelFunctor>(std::make_unique<KernelFunctor>(std::forward<ConstructorParameters>(constructorParameters)...)),
|
220 |
+
impl::CppSignature::make<KernelFunctor>(),
|
221 |
+
detail::inferFunctionSchemaFromFunctor<KernelFunctor>()
|
222 |
+
);
|
223 |
+
}
|
224 |
+
|
225 |
+
/**
|
226 |
+
* Use this to register an operator whose kernel is implemented by a function.
|
227 |
+
* The kernel is only called for inputs matching the given dispatch key.
|
228 |
+
* You can register multiple kernels for different dispatch keys.
|
229 |
+
*
|
230 |
+
* Example:
|
231 |
+
*
|
232 |
+
* > namespace { Tensor my_kernel_cpu(Tensor a, Tensor b) {...} }
|
233 |
+
* >
|
234 |
+
* > static auto registry = c10::RegisterOperators()
|
235 |
+
* > .op(c10::RegisterOperators::options()
|
236 |
+
* > .schema("my_op")
|
237 |
+
* > .kernel<decltype(my_kernel_cpu), &my_kernel_cpu>(DispatchKey::CPU));
|
238 |
+
*/
|
239 |
+
template<class FuncType, FuncType* kernel_func>
|
240 |
+
// enable_if: only enable it if FuncType is actually a function
|
241 |
+
std::enable_if_t<guts::is_function_type<FuncType>::value, Options&&> kernel(DispatchKey dispatch_key) && {
|
242 |
+
static_assert(!std::is_same<FuncType, KernelFunction::BoxedKernelFunction>::value, "Tried to register a stackbased (i.e. internal) kernel function using the public kernel<...>() API. Please either use the internal kernel(...) API or also implement the kernel function as defined by the public API.");
|
243 |
+
static_assert(kernel_func != nullptr, "Kernel function cannot be nullptr");
|
244 |
+
|
245 |
+
return std::move(*this).kernel(
|
246 |
+
dispatch_key,
|
247 |
+
KernelFunction::makeFromUnboxedFunction(TORCH_FN(kernel_func)),
|
248 |
+
impl::CppSignature::make<FuncType>(),
|
249 |
+
// TODO Do schema inference without relying on WrapFunctionIntoFunctor
|
250 |
+
detail::inferFunctionSchemaFromFunctor<typename impl::WrapFunctionIntoFunctor<CompileTimeFunctionPointer<FuncType, kernel_func>>::type>()
|
251 |
+
);
|
252 |
+
}
|
253 |
+
|
254 |
+
/**
|
255 |
+
* Use this to register an operator whose kernel is implemented by a function.
|
256 |
+
* The kernel is a catch-all kernel, meaning it's called independent from
|
257 |
+
* the input. Dispatch is disabled for this operator.
|
258 |
+
*
|
259 |
+
* Example:
|
260 |
+
*
|
261 |
+
* > namespace { Tensor my_kernel_cpu(Tensor a, Tensor b) {...} }
|
262 |
+
* >
|
263 |
+
* > static auto registry = c10::RegisterOperators()
|
264 |
+
* > .op(c10::RegisterOperators::options()
|
265 |
+
* > .schema("my_op")
|
266 |
+
* > .catchAllKernel<decltype(my_kernel_cpu), &my_kernel_cpu>());
|
267 |
+
*/
|
268 |
+
template<class FuncType, FuncType* kernel_func>
|
269 |
+
// enable_if: only enable it if FuncType is actually a function
|
270 |
+
std::enable_if_t<guts::is_function_type<FuncType>::value, Options&&> catchAllKernel() && {
|
271 |
+
static_assert(!std::is_same<FuncType, KernelFunction::BoxedKernelFunction>::value, "Tried to register a stackbased (i.e. internal) kernel function using the public kernel<...>() API. Please either use the internal kernel(...) API or also implement the kernel function as defined by the public API.");
|
272 |
+
static_assert(kernel_func != nullptr, "Kernel function cannot be nullptr");
|
273 |
+
|
274 |
+
return std::move(*this).kernel(
|
275 |
+
c10::nullopt,
|
276 |
+
KernelFunction::makeFromUnboxedFunction(TORCH_FN(kernel_func)),
|
277 |
+
impl::CppSignature::make<FuncType>(),
|
278 |
+
// TODO Do schema inference without relying on WrapFunctionIntoFunctor
|
279 |
+
detail::inferFunctionSchemaFromFunctor<typename impl::WrapFunctionIntoFunctor<CompileTimeFunctionPointer<FuncType, kernel_func>>::type>()
|
280 |
+
);
|
281 |
+
}
|
282 |
+
|
283 |
+
template<class FuncType>
|
284 |
+
// enable_if: only enable it if FuncType is actually a function
|
285 |
+
std::enable_if_t<guts::is_function_type<FuncType>::value, Options&&> kernel(DispatchKey dispatch_key, FuncType* kernel_func) && {
|
286 |
+
static_assert(!std::is_same<FuncType, KernelFunction::BoxedKernelFunction>::value, "Tried to register a stackbased (i.e. internal) kernel function using the public kernel<...>() API. Please either use the internal kernel(...) API or also implement the kernel function as defined by the public API.");
|
287 |
+
TORCH_INTERNAL_ASSERT(kernel_func != nullptr, "Kernel function cannot be nullptr");
|
288 |
+
|
289 |
+
return std::move(*this).kernel(
|
290 |
+
dispatch_key,
|
291 |
+
KernelFunction::makeFromUnboxedRuntimeFunction(kernel_func),
|
292 |
+
impl::CppSignature::make<FuncType>(),
|
293 |
+
// TODO Do schema inference without relying on WrapFunctionIntoFunctor
|
294 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<FuncType>>>()
|
295 |
+
);
|
296 |
+
}
|
297 |
+
|
298 |
+
template<class FuncType>
|
299 |
+
// enable_if: only enable it if FuncType is actually a function
|
300 |
+
std::enable_if_t<guts::is_function_type<FuncType>::value, Options&&> catchAllKernel(FuncType* kernel_func) && {
|
301 |
+
static_assert(!std::is_same<FuncType, KernelFunction::BoxedKernelFunction>::value, "Tried to register a stackbased (i.e. internal) kernel function using the public kernel<...>() API. Please either use the internal kernel(...) API or also implement the kernel function as defined by the public API.");
|
302 |
+
TORCH_INTERNAL_ASSERT(kernel_func != nullptr, "Kernel function cannot be nullptr");
|
303 |
+
|
304 |
+
return std::move(*this).kernel(
|
305 |
+
c10::nullopt,
|
306 |
+
KernelFunction::makeFromUnboxedRuntimeFunction(kernel_func),
|
307 |
+
impl::CppSignature::make<FuncType>(),
|
308 |
+
// TODO Do schema inference without relying on WrapFunctionIntoFunctor
|
309 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<FuncType>>>()
|
310 |
+
);
|
311 |
+
}
|
312 |
+
|
313 |
+
/**
|
314 |
+
* Use this to register an operator whose kernel is implemented as a lambda.
|
315 |
+
* The kernel is only called for inputs matching the given dispatch key.
|
316 |
+
* You can register multiple kernels for different dispatch keys.
|
317 |
+
*
|
318 |
+
* The lambda must be stateless, i.e. not have a capture. If your kernel
|
319 |
+
* needs to store some configuration parameters, write the kernel as a
|
320 |
+
* functor instead.
|
321 |
+
*
|
322 |
+
* Example:
|
323 |
+
*
|
324 |
+
* > static auto registry = c10::RegisterOperators()
|
325 |
+
* > .op(c10::RegisterOperators::options()
|
326 |
+
* > .schema("my_op")
|
327 |
+
* > .kernel(DispatchKey::CPU, [] (Tensor a) -> Tensor {...}));
|
328 |
+
*/
|
329 |
+
template<class Lambda>
|
330 |
+
// enable_if: only enable it if Lambda is a functor (note: lambdas are functors)
|
331 |
+
std::enable_if_t<
|
332 |
+
guts::is_functor<std::decay_t<Lambda>>::value
|
333 |
+
&& !std::is_same<typename guts::infer_function_traits_t<std::decay_t<Lambda>>::func_type, KernelFunction::BoxedKernelFunction>::value,
|
334 |
+
Options&&> kernel(DispatchKey dispatch_key, Lambda&& functor) && {
|
335 |
+
static_assert(!std::is_base_of<OperatorKernel, std::decay_t<Lambda>>::value, "The kernel(x) API for registering a kernel is only meant to be used with lambdas. Your kernel is a functor. Please use the kernel<Functor>() API instead.");
|
336 |
+
|
337 |
+
// We don't support stateful lambdas (i.e. lambdas with a capture), because their
|
338 |
+
// behavior would be nonobvious. A functor kernel with cache gets a new instance of
|
339 |
+
// its cache each time the kernel is looked up from the dispatch table.
|
340 |
+
// A lambda with a capture would be global and share its capture between all kernel lookups.
|
341 |
+
// So, instead of making users having to think about it (including the thread-safety
|
342 |
+
// issues this causes), let's just forbid stateful lambdas altogether.
|
343 |
+
static_assert(guts::is_stateless_lambda<std::decay_t<Lambda>>::value, "The kernel(x) API for registering a kernel only works for stateless lambdas (i.e. lambdas without captures). If you need a cache, please use the functor based API kernel<Functor>() instead.");
|
344 |
+
|
345 |
+
return std::move(*this).kernel(
|
346 |
+
dispatch_key,
|
347 |
+
KernelFunction::makeFromUnboxedLambda(std::forward<Lambda>(functor)),
|
348 |
+
impl::CppSignature::make<Lambda>(),
|
349 |
+
// TODO Do schema inference without relying on WrapFunctionIntoRuntimeFunctor
|
350 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>()
|
351 |
+
);
|
352 |
+
}
|
353 |
+
|
354 |
+
/**
|
355 |
+
* Use this to register an operator whose kernel is implemented as a lambda.
|
356 |
+
* The kernel is a catch-all kernel, meaning it's called independent from
|
357 |
+
* the input. Dispatch is disabled for this operator.
|
358 |
+
*
|
359 |
+
* The lambda must be stateless, i.e. not have a capture. If your kernel
|
360 |
+
* needs to store some configuration parameters, write the kernel as a
|
361 |
+
* functor instead.
|
362 |
+
*
|
363 |
+
* Example:
|
364 |
+
*
|
365 |
+
* > static auto registry = c10::RegisterOperators()
|
366 |
+
* > .op(c10::RegisterOperators::options()
|
367 |
+
* > .schema("my_op")
|
368 |
+
* > .catchAllKernel([] (Tensor a) -> Tensor {...}));
|
369 |
+
*/
|
370 |
+
template<class Lambda>
|
371 |
+
// enable_if: only enable it if Lambda is a functor (note: lambdas are functors)
|
372 |
+
std::enable_if_t<
|
373 |
+
guts::is_functor<std::decay_t<Lambda>>::value
|
374 |
+
&& !std::is_same<typename guts::infer_function_traits_t<std::decay_t<Lambda>>::func_type, KernelFunction::BoxedKernelFunction>::value,
|
375 |
+
Options&&> catchAllKernel(Lambda&& lambda) && {
|
376 |
+
static_assert(!std::is_base_of<OperatorKernel, std::decay_t<Lambda>>::value, "The kernel(x) API for registering a kernel is only meant to be used with lambdas. Your kernel is a functor. Please use the kernel<Functor>() API instead.");
|
377 |
+
|
378 |
+
// We don't support stateful lambdas (i.e. lambdas with a capture), because their
|
379 |
+
// behavior would be nonobvious.
|
380 |
+
// A lambda with a capture would be global and share its capture between all kernel lookups.
|
381 |
+
// This would be a likely source for unexpected race conditions, so we forbid it.
|
382 |
+
// If a kernel really needs global state, they can just have regular global state
|
383 |
+
// in their .cpp file next to the kernel lambda.
|
384 |
+
static_assert(guts::is_stateless_lambda<std::decay_t<Lambda>>::value, "The kernel(x) API for registering a kernel only works for stateless lambdas (i.e. lambdas without captures). If you need a cache, please use the functor based API kernel<Functor>() instead.");
|
385 |
+
|
386 |
+
return std::move(*this).kernel(
|
387 |
+
c10::nullopt,
|
388 |
+
KernelFunction::makeFromUnboxedLambda(std::forward<Lambda>(lambda)),
|
389 |
+
impl::CppSignature::make<Lambda>(),
|
390 |
+
// TODO Do schema inference without relying on WrapFunctionIntoRuntimeFunctor
|
391 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>()
|
392 |
+
);
|
393 |
+
}
|
394 |
+
|
395 |
+
Options&& aliasAnalysis(AliasAnalysisKind aliasAnalysisKind) && {
|
396 |
+
TORCH_CHECK(!aliasAnalysisKind_.has_value(), "You can only call aliasAnalysis() once per operator registration.");
|
397 |
+
aliasAnalysisKind_ = aliasAnalysisKind;
|
398 |
+
return std::move(*this);
|
399 |
+
}
|
400 |
+
|
401 |
+
private:
|
402 |
+
Options&& kernel(c10::optional<DispatchKey> dispatch_key, KernelFunction&& func, c10::optional<impl::CppSignature> cpp_signature, std::unique_ptr<FunctionSchema>&& inferred_function_schema) && {
|
403 |
+
KernelRegistrationConfig config;
|
404 |
+
config.dispatch_key = dispatch_key;
|
405 |
+
config.func = std::move(func);
|
406 |
+
config.cpp_signature = cpp_signature;
|
407 |
+
config.inferred_function_schema = std::move(inferred_function_schema);
|
408 |
+
kernels.push_back(std::move(config));
|
409 |
+
return std::move(*this);
|
410 |
+
}
|
411 |
+
|
412 |
+
Options()
|
413 |
+
: schemaOrName_(c10::nullopt)
|
414 |
+
, kernels()
|
415 |
+
, aliasAnalysisKind_(c10::nullopt)
|
416 |
+
{}
|
417 |
+
|
418 |
+
// KernelRegistrationConfig accumulates all information from the config
|
419 |
+
// parameters passed to a RegisterOperators::op() call into one object.
|
420 |
+
struct KernelRegistrationConfig final {
|
421 |
+
KernelRegistrationConfig()
|
422 |
+
: dispatch_key(c10::nullopt)
|
423 |
+
, func()
|
424 |
+
, cpp_signature(c10::nullopt)
|
425 |
+
, inferred_function_schema(nullptr)
|
426 |
+
{}
|
427 |
+
|
428 |
+
c10::optional<DispatchKey> dispatch_key;
|
429 |
+
KernelFunction func;
|
430 |
+
c10::optional<impl::CppSignature> cpp_signature;
|
431 |
+
std::unique_ptr<FunctionSchema> inferred_function_schema;
|
432 |
+
};
|
433 |
+
|
434 |
+
c10::optional<std::variant<OperatorName, FunctionSchema>> schemaOrName_;
|
435 |
+
|
436 |
+
std::vector<KernelRegistrationConfig> kernels;
|
437 |
+
optional<AliasAnalysisKind> aliasAnalysisKind_;
|
438 |
+
friend class RegisterOperators;
|
439 |
+
friend class Library;
|
440 |
+
};
|
441 |
+
|
442 |
+
/**
|
443 |
+
* Call this to get an instance of registration options, which
|
444 |
+
* can be passed to a call to RegisterOperators::op() to specify
|
445 |
+
* these options for the operator registration.
|
446 |
+
* See class doc comment for examples.
|
447 |
+
*/
|
448 |
+
static Options options() {
|
449 |
+
return {};
|
450 |
+
}
|
451 |
+
|
452 |
+
/**
|
453 |
+
* Call this to register an operator. See class doc comment for examples.
|
454 |
+
*/
|
455 |
+
RegisterOperators&& op(Options&& options) && {
|
456 |
+
checkSchemaAndRegisterOp_(std::move(options));
|
457 |
+
return std::move(*this);
|
458 |
+
}
|
459 |
+
|
460 |
+
// Regular mutator version of the && version above
|
461 |
+
RegisterOperators& op(Options&& options) & {
|
462 |
+
checkSchemaAndRegisterOp_(std::move(options));
|
463 |
+
return *this;
|
464 |
+
}
|
465 |
+
|
466 |
+
/**
|
467 |
+
* This is a shorthand for RegisterOperators::op(Options) where you can
|
468 |
+
* specify the operator schema outside of the options parameter.
|
469 |
+
* See class doc comment for examples.
|
470 |
+
*/
|
471 |
+
RegisterOperators&& op(const std::string& schemaOrName, Options&& options = RegisterOperators::options()) && {
|
472 |
+
return std::move(*this).op(std::move(options).schema(schemaOrName));
|
473 |
+
}
|
474 |
+
|
475 |
+
// internal only for registering caffe2 ops
|
476 |
+
RegisterOperators&& op(FunctionSchema schema, Options&& options) && {
|
477 |
+
return std::move(*this).op(std::move(options).schema(std::move(schema)));
|
478 |
+
}
|
479 |
+
|
480 |
+
template<class FuncType>
|
481 |
+
explicit RegisterOperators(const std::string& schemaOrName, FuncType&& func, Options&& options = RegisterOperators::options())
|
482 |
+
: RegisterOperators() {
|
483 |
+
std::move(*this).op(schemaOrName, std::forward<FuncType>(func), std::move(options));
|
484 |
+
}
|
485 |
+
|
486 |
+
/**
|
487 |
+
* This API registers an operator based on a kernel function pointer.
|
488 |
+
*
|
489 |
+
* Given a kernel
|
490 |
+
*
|
491 |
+
* > namespace { Tensor my_kernel_cpu(Tensor a, Tensor b) {...} }
|
492 |
+
*
|
493 |
+
* This API looks like:
|
494 |
+
*
|
495 |
+
* > static auto registry = c10::RegisterOperators()
|
496 |
+
* > .op("my_op", &my_kernel_cpu);
|
497 |
+
*
|
498 |
+
* If your kernel is small and the overhead of calling it matters,
|
499 |
+
* then this API might be the wrong choice since the following API
|
500 |
+
* has a slightly lower overhead for calling into the kernel:
|
501 |
+
*
|
502 |
+
* > static auto registry = c10::RegisterOperators()
|
503 |
+
* > .op("my_op", c10::RegisterOperators::options()
|
504 |
+
* > .kernel<decltype(my_kernel_cpu), &my_kernel_cpu>());
|
505 |
+
*
|
506 |
+
* Or, alternatively, write your kernel as a functor:
|
507 |
+
*
|
508 |
+
* > namespace {
|
509 |
+
* > class my_kernel_cpu final : public c10::OperatorKernel {
|
510 |
+
* > public:
|
511 |
+
* > Tensor operator()(Tensor a, Tensor b) {...}
|
512 |
+
* > };
|
513 |
+
* > }
|
514 |
+
* >
|
515 |
+
* > static auto registry = c10::RegisterOperators()
|
516 |
+
* > .op("my_op", c10::RegisterOperators::options()
|
517 |
+
* > .kernel<my_kernel_cpu>());
|
518 |
+
*/
|
519 |
+
template<class FuncType>
|
520 |
+
// enable_if: only enable it if FuncType is actually a function, but not a stack based BoxedKernelFunction.
|
521 |
+
std::enable_if_t<guts::is_function_type<FuncType>::value && !std::is_same<FuncType, KernelFunction::BoxedKernelFunction>::value, RegisterOperators&&>
|
522 |
+
op(const std::string& schemaOrName, FuncType* func, Options&& options = RegisterOperators::options()) && {
|
523 |
+
constexpr bool AllowLegacyTypes = true;
|
524 |
+
return std::move(*this).op(std::move(options).schema(schemaOrName).kernel(
|
525 |
+
c10::nullopt,
|
526 |
+
KernelFunction::makeFromUnboxedRuntimeFunction<AllowLegacyTypes>(func),
|
527 |
+
impl::CppSignature::make<FuncType>(),
|
528 |
+
// TODO Do schema inference without relying on WrapFunctionIntoRuntimeFunctor
|
529 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<FuncType>>>()
|
530 |
+
));
|
531 |
+
}
|
532 |
+
|
533 |
+
/**
|
534 |
+
* This API registers an operator based on a kernel lambda.
|
535 |
+
*
|
536 |
+
* This API looks like:
|
537 |
+
*
|
538 |
+
* > static auto registry = c10::RegisterOperators()
|
539 |
+
* > .op("my_op", [] (Tensor a, Tensor b) {...});
|
540 |
+
*
|
541 |
+
* This is equivalent to:
|
542 |
+
*
|
543 |
+
* > static auto registry = c10::RegisterOperators()
|
544 |
+
* > .op("my_op", c10::RegisterOperators::options()
|
545 |
+
* > .catchAllKernel([] (Tensor a, Tensor b) {...}));
|
546 |
+
*
|
547 |
+
*/
|
548 |
+
template<class Lambda>
|
549 |
+
// enable_if: only enable it if Lambda is actually a stateless lambda
|
550 |
+
std::enable_if_t<guts::is_functor<Lambda>::value && guts::is_stateless_lambda<std::decay_t<Lambda>>::value, RegisterOperators&&>
|
551 |
+
op(const std::string& schemaOrName, Lambda&& lambda, Options&& options = RegisterOperators::options()) && {
|
552 |
+
static_assert(!std::is_base_of<OperatorKernel, Lambda>::value, "c10::OperatorKernel is part of the new kernel registration API and shouldn't be used together with the deprecated registration API. Please use the new RegisterOperators::options().kernel() based API instead.");
|
553 |
+
|
554 |
+
constexpr bool AllowLegacyTypes = true;
|
555 |
+
return std::move(*this).op(std::move(options).schema(schemaOrName).kernel(
|
556 |
+
c10::nullopt,
|
557 |
+
KernelFunction::makeFromUnboxedLambda<AllowLegacyTypes>(std::forward<Lambda>(lambda)),
|
558 |
+
impl::CppSignature::make<Lambda>(),
|
559 |
+
// TODO Do schema inference without relying on WrapFunctionIntoRuntimeFunctor
|
560 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>()
|
561 |
+
));
|
562 |
+
}
|
563 |
+
|
564 |
+
template<class Lambda>
|
565 |
+
C10_DEPRECATED_MESSAGE("Registering operator kernels with stateful lambdas (i.e. lambdas with a capture) has non-obvious behavior. This is deprecated. Please use a lambda without a capture or a functor class instead.")
|
566 |
+
// enable_if: only enable it if Lambda is actually a functor but not a stateless lambda
|
567 |
+
std::enable_if_t<guts::is_functor<Lambda>::value && !guts::is_stateless_lambda<std::decay_t<Lambda>>::value, RegisterOperators&&>
|
568 |
+
op(const std::string& schemaOrName, Lambda&& lambda, Options&& options = RegisterOperators::options()) && {
|
569 |
+
static_assert(!std::is_base_of<OperatorKernel, Lambda>::value, "c10::OperatorKernel is part of the new kernel registration API and shouldn't be used together with the deprecated registration API. Please use the new RegisterOperators::options().kernel() based API instead.");
|
570 |
+
|
571 |
+
constexpr bool AllowLegacyTypes = true;
|
572 |
+
return std::move(*this).op(std::move(options).schema(schemaOrName).kernel(
|
573 |
+
c10::nullopt,
|
574 |
+
KernelFunction::makeFromUnboxedLambda<AllowLegacyTypes>(std::forward<Lambda>(lambda)),
|
575 |
+
impl::CppSignature::make<Lambda>(),
|
576 |
+
// TODO Do schema inference without relying on WrapFunctionIntoRuntimeFunctor
|
577 |
+
detail::inferFunctionSchemaFromFunctor<impl::WrapFunctionIntoRuntimeFunctor<std::decay_t<Lambda>>>()
|
578 |
+
));
|
579 |
+
}
|
580 |
+
|
581 |
+
private:
|
582 |
+
void checkSchemaAndRegisterOp_(Options&& config);
|
583 |
+
|
584 |
+
static c10::FunctionSchema inferSchemaFromKernels_(const OperatorName& opNameStr, const Options& options);
|
585 |
+
void checkNoDuplicateKernels_(const Options& options);
|
586 |
+
void registerOp_(Options&& options);
|
587 |
+
|
588 |
+
std::vector<RegistrationHandleRAII> registrars_;
|
589 |
+
};
|
590 |
+
|
591 |
+
} // namespace c10
|
592 |
+
|
593 |
+
namespace torch {
|
594 |
+
// Old-style API
|
595 |
+
using RegisterOperators = c10::RegisterOperators;
|
596 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ApplyGridUtils.cuh
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/cuda/CUDAContext.h>
|
2 |
+
|
3 |
+
#include <cuda_runtime.h>
|
4 |
+
|
5 |
+
namespace at::cuda {
|
6 |
+
|
7 |
+
/**
|
8 |
+
Computes ceil(a / b)
|
9 |
+
*/
|
10 |
+
template <typename T>
|
11 |
+
__host__ __device__ __forceinline__ T ATenCeilDiv(T a, T b) {
|
12 |
+
return (a + b - 1) / b;
|
13 |
+
}
|
14 |
+
|
15 |
+
namespace {
|
16 |
+
|
17 |
+
// Threads per block for our apply kernel
|
18 |
+
// FIXME: use occupancy calculator instead
|
19 |
+
constexpr uint32_t AT_APPLY_THREADS_PER_BLOCK = 512;
|
20 |
+
constexpr uint32_t AT_APPLY_BLOCKS_PER_SM = 4;
|
21 |
+
|
22 |
+
template <int step = 1>
|
23 |
+
inline bool getApplyGrid(uint64_t totalElements, dim3& grid, c10::DeviceIndex curDevice, int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) {
|
24 |
+
if (curDevice == -1) return false;
|
25 |
+
uint64_t numel_per_thread = static_cast<uint64_t>(max_threads_per_block) * static_cast<uint64_t>(step);
|
26 |
+
uint64_t numBlocks = ATenCeilDiv(totalElements, numel_per_thread);
|
27 |
+
uint64_t maxGridX = at::cuda::getDeviceProperties(curDevice)->maxGridSize[0];
|
28 |
+
if (numBlocks > maxGridX)
|
29 |
+
numBlocks = maxGridX;
|
30 |
+
grid = dim3(numBlocks);
|
31 |
+
return true;
|
32 |
+
}
|
33 |
+
|
34 |
+
constexpr int getApplyBlocksPerSM() {
|
35 |
+
return AT_APPLY_BLOCKS_PER_SM;
|
36 |
+
}
|
37 |
+
|
38 |
+
constexpr int getApplyBlockSize() {
|
39 |
+
return AT_APPLY_THREADS_PER_BLOCK;
|
40 |
+
}
|
41 |
+
|
42 |
+
inline dim3 getApplyBlock(int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) {
|
43 |
+
return dim3(max_threads_per_block);
|
44 |
+
}
|
45 |
+
|
46 |
+
} // anonymous namespace
|
47 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/Atomic.cuh
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cuda.h>
|
4 |
+
#include <c10/util/Half.h>
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
|
7 |
+
#include <ATen/NumericUtils.h>
|
8 |
+
|
9 |
+
#if !(defined(USE_ROCM) || ((defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))))
|
10 |
+
#include <cuda_bf16.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
template <typename T>
|
14 |
+
struct AtomicFPOp;
|
15 |
+
|
16 |
+
template <>
|
17 |
+
struct AtomicFPOp<at::Half> {
|
18 |
+
template <typename func_t>
|
19 |
+
inline __device__ at::Half operator() (at::Half *address, at::Half val, const func_t& func) {
|
20 |
+
unsigned int * address_as_ui =
|
21 |
+
(unsigned int *) ((char *)address - ((size_t)address & 2));
|
22 |
+
unsigned int old = *address_as_ui;
|
23 |
+
unsigned int assumed;
|
24 |
+
|
25 |
+
at::Half hsum;
|
26 |
+
do {
|
27 |
+
assumed = old;
|
28 |
+
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
|
29 |
+
hsum = func(hsum, val);
|
30 |
+
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
|
31 |
+
old = atomicCAS(address_as_ui, assumed, old);
|
32 |
+
} while (assumed != old);
|
33 |
+
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
|
34 |
+
return hsum;
|
35 |
+
}
|
36 |
+
};
|
37 |
+
|
38 |
+
template <>
|
39 |
+
struct AtomicFPOp<at::BFloat16> {
|
40 |
+
template <typename func_t>
|
41 |
+
inline __device__ at::BFloat16 operator() (at::BFloat16 *address, at::BFloat16 val, const func_t& func) {
|
42 |
+
unsigned int * address_as_ui =
|
43 |
+
(unsigned int *) ((char *)address - ((size_t)address & 2));
|
44 |
+
unsigned int old = *address_as_ui;
|
45 |
+
unsigned int assumed;
|
46 |
+
|
47 |
+
at::BFloat16 bsum;
|
48 |
+
do {
|
49 |
+
assumed = old;
|
50 |
+
bsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
|
51 |
+
bsum = func(bsum, val);
|
52 |
+
old = (size_t)address & 2 ? (old & 0xffff) | (bsum.x << 16) : (old & 0xffff0000) | bsum.x;
|
53 |
+
old = atomicCAS(address_as_ui, assumed, old);
|
54 |
+
} while (assumed != old);
|
55 |
+
bsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
|
56 |
+
return bsum.x;
|
57 |
+
}
|
58 |
+
};
|
59 |
+
|
60 |
+
template <>
|
61 |
+
struct AtomicFPOp<double> {
|
62 |
+
template <typename func_t>
|
63 |
+
inline __device__ double operator() (double * address, double val, const func_t& func) {
|
64 |
+
unsigned long long int* address_as_ull = (unsigned long long int*)address;
|
65 |
+
unsigned long long int old = *address_as_ull;
|
66 |
+
unsigned long long int assumed;
|
67 |
+
|
68 |
+
do {
|
69 |
+
assumed = old;
|
70 |
+
old = atomicCAS(address_as_ull, assumed, func(val, assumed));
|
71 |
+
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
72 |
+
} while (assumed != old);
|
73 |
+
|
74 |
+
return __longlong_as_double(old);
|
75 |
+
}
|
76 |
+
};
|
77 |
+
|
78 |
+
#define ATOMIC_INTEGER_IMPL(NAME) \
|
79 |
+
template <typename T, size_t n> \
|
80 |
+
struct Atomic##NAME##IntegerImpl; \
|
81 |
+
\
|
82 |
+
template<typename T> \
|
83 |
+
struct Atomic##NAME##IntegerImpl<T, 1> { \
|
84 |
+
template <typename func_t> \
|
85 |
+
inline __device__ void operator()(T *address, T val, const func_t& func) { \
|
86 |
+
size_t offset = (size_t)address & 3; \
|
87 |
+
uint32_t * address_as_ui = (uint32_t *)((char *)address - offset); \
|
88 |
+
uint32_t old = *address_as_ui; \
|
89 |
+
uint32_t shift = offset * 8; \
|
90 |
+
uint32_t old_byte; \
|
91 |
+
uint32_t newval; \
|
92 |
+
uint32_t assumed; \
|
93 |
+
\
|
94 |
+
do { \
|
95 |
+
assumed = old; \
|
96 |
+
old_byte = (old >> shift) & 0xff; \
|
97 |
+
newval = static_cast<uint8_t>(func(val, static_cast<T>(old_byte))); \
|
98 |
+
newval = (old & ~(0x000000ff << shift)) | (newval << shift); \
|
99 |
+
old = atomicCAS(address_as_ui, assumed, newval); \
|
100 |
+
} while (assumed != old); \
|
101 |
+
} \
|
102 |
+
}; \
|
103 |
+
\
|
104 |
+
template<typename T> \
|
105 |
+
struct Atomic##NAME##IntegerImpl<T, 2> { \
|
106 |
+
template <typename func_t> \
|
107 |
+
inline __device__ void operator()(T *address, T val, const func_t& func) { \
|
108 |
+
size_t offset = (size_t)address & 2; \
|
109 |
+
uint32_t * address_as_ui = (uint32_t *)((char *)address - offset); \
|
110 |
+
bool is_32_align = offset; \
|
111 |
+
uint32_t old = *address_as_ui; \
|
112 |
+
uint32_t old_bytes; \
|
113 |
+
uint32_t newval; \
|
114 |
+
uint32_t assumed; \
|
115 |
+
\
|
116 |
+
do { \
|
117 |
+
assumed = old; \
|
118 |
+
old_bytes = is_32_align ? old >> 16 : old & 0xffff; \
|
119 |
+
newval = static_cast<uint16_t>(func(val, static_cast<T>(old_bytes))); \
|
120 |
+
newval = is_32_align ? (old & 0xffff) | (newval << 16) : (old & 0xffff0000) | newval; \
|
121 |
+
old = atomicCAS(address_as_ui, assumed, newval); \
|
122 |
+
} while (assumed != old); \
|
123 |
+
} \
|
124 |
+
}; \
|
125 |
+
\
|
126 |
+
template<typename T> \
|
127 |
+
struct Atomic##NAME##IntegerImpl<T, 4> { \
|
128 |
+
template <typename func_t> \
|
129 |
+
inline __device__ void operator()(T *address, T val, const func_t& func) { \
|
130 |
+
uint32_t * address_as_ui = (uint32_t *) (address); \
|
131 |
+
uint32_t old = *address_as_ui; \
|
132 |
+
uint32_t newval; \
|
133 |
+
uint32_t assumed; \
|
134 |
+
\
|
135 |
+
do { \
|
136 |
+
assumed = old; \
|
137 |
+
newval = static_cast<uint32_t>(func(val, static_cast<T>(old))); \
|
138 |
+
old = atomicCAS(address_as_ui, assumed, newval); \
|
139 |
+
} while (assumed != old); \
|
140 |
+
} \
|
141 |
+
}; \
|
142 |
+
\
|
143 |
+
template<typename T> \
|
144 |
+
struct Atomic##NAME##IntegerImpl<T, 8> { \
|
145 |
+
template <typename func_t> \
|
146 |
+
inline __device__ void operator()(T *address, T val, const func_t& func) { \
|
147 |
+
unsigned long long * address_as_ui = (unsigned long long *) (address); \
|
148 |
+
unsigned long long old = *address_as_ui; \
|
149 |
+
unsigned long long newval; \
|
150 |
+
unsigned long long assumed; \
|
151 |
+
\
|
152 |
+
do { \
|
153 |
+
assumed = old; \
|
154 |
+
newval = static_cast<uint64_t>(func(val, static_cast<T>(old))); \
|
155 |
+
old = atomicCAS(address_as_ui, assumed, newval); \
|
156 |
+
} while (assumed != old); \
|
157 |
+
} \
|
158 |
+
};
|
159 |
+
|
160 |
+
|
161 |
+
# define GPU_ATOMIC_INTEGER(NAME, OP, DTYPE) \
|
162 |
+
static inline __device__ void gpuAtomic##NAME(DTYPE *address, DTYPE val) { \
|
163 |
+
Atomic##NAME##IntegerImpl<DTYPE, sizeof(DTYPE)>()(address, \
|
164 |
+
val, \
|
165 |
+
[](DTYPE a, DTYPE b) { \
|
166 |
+
return OP; \
|
167 |
+
}); \
|
168 |
+
} \
|
169 |
+
|
170 |
+
ATOMIC_INTEGER_IMPL(Add)
|
171 |
+
GPU_ATOMIC_INTEGER(Add, a || b, bool)
|
172 |
+
|
173 |
+
// Don't instantiate gpuAtomicAdd with the macro as it seems non-standard (see int32, int64)
|
174 |
+
static inline __device__ void gpuAtomicAdd(uint8_t *address, uint8_t val) {
|
175 |
+
AtomicAddIntegerImpl<uint8_t, sizeof(uint8_t)>()(address,
|
176 |
+
val,
|
177 |
+
[](uint8_t a, uint8_t b) {
|
178 |
+
return a + b;
|
179 |
+
});
|
180 |
+
}
|
181 |
+
|
182 |
+
static inline __device__ void gpuAtomicAdd(int8_t *address, int8_t val) {
|
183 |
+
AtomicAddIntegerImpl<int8_t, sizeof(int8_t)>()(address,
|
184 |
+
val,
|
185 |
+
[](int8_t a, int8_t b) {
|
186 |
+
return a + b;
|
187 |
+
});
|
188 |
+
}
|
189 |
+
|
190 |
+
static inline __device__ void gpuAtomicAdd(int16_t *address, int16_t val) {
|
191 |
+
AtomicAddIntegerImpl<int16_t, sizeof(int16_t)>()(address,
|
192 |
+
val,
|
193 |
+
[](int16_t a, int16_t b) {
|
194 |
+
return a + b;
|
195 |
+
});
|
196 |
+
}
|
197 |
+
|
198 |
+
static inline __device__ int32_t gpuAtomicAdd(int32_t *address, int32_t val) {
|
199 |
+
return atomicAdd(address, val);
|
200 |
+
}
|
201 |
+
|
202 |
+
static inline __device__ void gpuAtomicAdd(int64_t *address, int64_t val) {
|
203 |
+
#if defined(USE_ROCM)
|
204 |
+
__atomic_fetch_add(address, val, __ATOMIC_RELAXED);
|
205 |
+
#else
|
206 |
+
static_assert(sizeof(unsigned long long int) == sizeof(int64_t), "bitwidth change is not allowed");
|
207 |
+
atomicAdd(reinterpret_cast<unsigned long long int *>(address), static_cast<unsigned long long int>(val));
|
208 |
+
#endif
|
209 |
+
}
|
210 |
+
|
211 |
+
static inline __device__ at::Half gpuAtomicAdd(at::Half *address, at::Half val) {
|
212 |
+
#if defined(USE_ROCM) || ((defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
|
213 |
+
return AtomicFPOp<at::Half>()(address, val,
|
214 |
+
[](at::Half hsum, at::Half val) {
|
215 |
+
return hsum + val;
|
216 |
+
});
|
217 |
+
#else
|
218 |
+
return atomicAdd(reinterpret_cast<__half*>(address), val);
|
219 |
+
#endif
|
220 |
+
}
|
221 |
+
|
222 |
+
static inline __device__ at::BFloat16 gpuAtomicAdd(at::BFloat16 *address, at::BFloat16 val) {
|
223 |
+
#if defined(USE_ROCM) || ((defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)))
|
224 |
+
return AtomicFPOp<at::BFloat16>()(address, val,
|
225 |
+
[](at::BFloat16 bsum, at::BFloat16 val) {
|
226 |
+
return bsum + val;
|
227 |
+
});
|
228 |
+
#else
|
229 |
+
__nv_bfloat16 r = atomicAdd(reinterpret_cast<__nv_bfloat16*>(address), *reinterpret_cast<__nv_bfloat16*>(&val));
|
230 |
+
return *reinterpret_cast<c10::BFloat16*>(&r);
|
231 |
+
#endif
|
232 |
+
}
|
233 |
+
|
234 |
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 600)
|
235 |
+
// from CUDA C Programmic Guide
|
236 |
+
static inline __device__ double atomicAdd(double* address, double val)
|
237 |
+
#if defined(__clang__) && defined(__CUDA__)
|
238 |
+
#pragma GCC diagnostic push
|
239 |
+
#pragma GCC diagnostic ignored "-Wgcc-compat"
|
240 |
+
__attribute__((enable_if(true, "")))
|
241 |
+
#pragma GCC diagnostic pop
|
242 |
+
#endif
|
243 |
+
{
|
244 |
+
|
245 |
+
return AtomicFPOp<double>()(address, val,
|
246 |
+
[](double val, unsigned long long int assumed) {
|
247 |
+
return __double_as_longlong(val + __longlong_as_double(assumed));
|
248 |
+
});
|
249 |
+
}
|
250 |
+
#elif defined(USE_ROCM) || !(defined(__CUDA_ARCH__))
|
251 |
+
|
252 |
+
/* Note [hip-clang differences to hcc]
|
253 |
+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
254 |
+
* The upcoming hip-clang compiler for ROCm differs from hcc in a few details.
|
255 |
+
* It exports the __HIP__ macro, we can hence differentiate between hcc and
|
256 |
+
* hip-clang. In the below, hcc only received support for atomicAdd with double
|
257 |
+
* typing after work week 18312. hip-clang had support from the first version.
|
258 |
+
* In general, the code-visible differences between hip-clang and hcc will be
|
259 |
+
* minimal.
|
260 |
+
*/
|
261 |
+
|
262 |
+
#if defined(USE_ROCM) && __hcc_workweek__ < 18312 && !__HIP__
|
263 |
+
// This needs to be defined for the host side pass
|
264 |
+
static inline __device__ double atomicAdd(double *address, double val) { }
|
265 |
+
#endif
|
266 |
+
#endif
|
267 |
+
|
268 |
+
static inline __device__ double gpuAtomicAdd(double *address, double val) {
|
269 |
+
return atomicAdd(address, val);
|
270 |
+
}
|
271 |
+
|
272 |
+
static inline __device__ float gpuAtomicAdd(float *address, float val) {
|
273 |
+
return atomicAdd(address, val);
|
274 |
+
}
|
275 |
+
|
276 |
+
template<typename T>
|
277 |
+
static inline __device__ void gpuAtomicAdd(c10::complex<T> *address, c10::complex<T> val) {
|
278 |
+
gpuAtomicAdd(&address->real_, val.real_);
|
279 |
+
gpuAtomicAdd(&address->imag_, val.imag_);
|
280 |
+
}
|
281 |
+
|
282 |
+
/* Note [gpuAtomicAdd vs atomicAdd]
|
283 |
+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
284 |
+
* Some extensions such as torchvision call atomicAdd()
|
285 |
+
* directly and require non-library provided data type support. Only for these, we
|
286 |
+
* continue to provide atomicAdd overloads.
|
287 |
+
*/
|
288 |
+
static inline __device__ at::Half atomicAdd(at::Half *address, at::Half val) {
|
289 |
+
return gpuAtomicAdd(address, val);
|
290 |
+
}
|
291 |
+
|
292 |
+
static inline __device__ at::BFloat16 atomicAdd(at::BFloat16 *address, at::BFloat16 val) {
|
293 |
+
return gpuAtomicAdd(address, val);
|
294 |
+
}
|
295 |
+
|
296 |
+
static inline __device__ void atomicAdd(uint8_t *address, uint8_t val) {
|
297 |
+
gpuAtomicAdd(address, val);
|
298 |
+
}
|
299 |
+
|
300 |
+
static inline __device__ void atomicAdd(int8_t *address, int8_t val) {
|
301 |
+
gpuAtomicAdd(address, val);
|
302 |
+
}
|
303 |
+
|
304 |
+
static inline __device__ void atomicAdd(int16_t *address, int16_t val) {
|
305 |
+
gpuAtomicAdd(address, val);
|
306 |
+
}
|
307 |
+
|
308 |
+
static inline __device__ void atomicAdd(int64_t *address, int64_t val) {
|
309 |
+
gpuAtomicAdd(address, val);
|
310 |
+
}
|
311 |
+
|
312 |
+
static inline __device__ void atomicAdd(bool *address, bool val) {
|
313 |
+
gpuAtomicAdd(address, val);
|
314 |
+
}
|
315 |
+
|
316 |
+
/* Note [explicitly non-returning atomics]
|
317 |
+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
318 |
+
* AMD's MI100 (gfx908) provides an optimized fp32 atomicAdd, exposed via atomicAddNoRet().
|
319 |
+
* Due to compiler limitations, callers must opt-in to guarantee the optimized instruction.
|
320 |
+
* This non-returning atomicAddNoRet cannot be used to implement the returning atomicAdd,
|
321 |
+
* therefore we need a new API 'gpuAtomicAddNoReturn'.
|
322 |
+
*/
|
323 |
+
template<typename T>
|
324 |
+
static inline __device__ void gpuAtomicAddNoReturn(c10::complex<T> *address, c10::complex<T> val) { gpuAtomicAdd(address, val); }
|
325 |
+
static inline __device__ void gpuAtomicAddNoReturn(uint8_t *address, uint8_t val) { gpuAtomicAdd(address, val); }
|
326 |
+
static inline __device__ void gpuAtomicAddNoReturn(int8_t *address, int8_t val) { gpuAtomicAdd(address, val); }
|
327 |
+
static inline __device__ void gpuAtomicAddNoReturn(int16_t *address, int16_t val) { gpuAtomicAdd(address, val); }
|
328 |
+
static inline __device__ void gpuAtomicAddNoReturn(int32_t *address, int32_t val) { gpuAtomicAdd(address, val); }
|
329 |
+
static inline __device__ void gpuAtomicAddNoReturn(int64_t *address, int64_t val) { gpuAtomicAdd(address, val); }
|
330 |
+
static inline __device__ void gpuAtomicAddNoReturn(bool *address, bool val) { gpuAtomicAdd(address, val); }
|
331 |
+
static inline __device__ void gpuAtomicAddNoReturn(at::Half *address, at::Half val) { gpuAtomicAdd(address, val); }
|
332 |
+
static inline __device__ void gpuAtomicAddNoReturn(at::BFloat16 *address, at::BFloat16 val) { gpuAtomicAdd(address, val); }
|
333 |
+
static inline __device__ void gpuAtomicAddNoReturn(double *address, double val) { gpuAtomicAdd(address, val); }
|
334 |
+
|
335 |
+
/* Special case fp32 atomic. */
|
336 |
+
#if defined(USE_ROCM)
|
337 |
+
static inline __device__ void gpuAtomicAddNoReturn(float *address, float val) { atomicAddNoRet(address, val); }
|
338 |
+
#else
|
339 |
+
static inline __device__ void gpuAtomicAddNoReturn(float *address, float val) { gpuAtomicAdd(address, val); }
|
340 |
+
#endif
|
341 |
+
|
342 |
+
// Atomic multiplication implementation.
|
343 |
+
|
344 |
+
ATOMIC_INTEGER_IMPL(Mul)
|
345 |
+
GPU_ATOMIC_INTEGER(Mul, a * b, uint8_t)
|
346 |
+
GPU_ATOMIC_INTEGER(Mul, a * b, int8_t)
|
347 |
+
GPU_ATOMIC_INTEGER(Mul, a * b, int16_t)
|
348 |
+
GPU_ATOMIC_INTEGER(Mul, a * b, int32_t)
|
349 |
+
GPU_ATOMIC_INTEGER(Mul, a * b, int64_t)
|
350 |
+
|
351 |
+
inline __device__ at::Half gpuAtomicMul(at::Half * address, at::Half val) {
|
352 |
+
return AtomicFPOp<at::Half>()(address, val,
|
353 |
+
[](at::Half bsum, at::Half val) {
|
354 |
+
return bsum * val;
|
355 |
+
});
|
356 |
+
}
|
357 |
+
|
358 |
+
inline __device__ at::BFloat16 gpuAtomicMul(at::BFloat16 * address, at::BFloat16 val) {
|
359 |
+
return AtomicFPOp<at::BFloat16>()(address, val,
|
360 |
+
[](at::BFloat16 bsum, at::BFloat16 val) {
|
361 |
+
return bsum * val;
|
362 |
+
});
|
363 |
+
}
|
364 |
+
|
365 |
+
inline __device__ double gpuAtomicMul(double * address, double val) {
|
366 |
+
return AtomicFPOp<double>()(address, val,
|
367 |
+
[](double val, unsigned long long int assumed) {
|
368 |
+
return __double_as_longlong(val * __longlong_as_double(assumed));
|
369 |
+
});
|
370 |
+
}
|
371 |
+
|
372 |
+
// Dont use a templated function for this since the addition function defaults to the CUDA built-in.
|
373 |
+
inline __device__ float gpuAtomicMul (float * address, float val) {
|
374 |
+
unsigned int* address_as_ull = (unsigned int*)address;
|
375 |
+
unsigned int old = *address_as_ull;
|
376 |
+
unsigned int assumed;
|
377 |
+
|
378 |
+
do {
|
379 |
+
assumed = old;
|
380 |
+
old = atomicCAS(address_as_ull, assumed,
|
381 |
+
__float_as_int(val *
|
382 |
+
__int_as_float(assumed)));
|
383 |
+
|
384 |
+
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
385 |
+
} while (assumed != old);
|
386 |
+
|
387 |
+
return __int_as_float(old);
|
388 |
+
}
|
389 |
+
|
390 |
+
// Atomic maximum implementation.
|
391 |
+
|
392 |
+
template <typename T>
|
393 |
+
__host__ __device__ T safe_max(T a, T b) {
|
394 |
+
#if defined(__HIPCC__)
|
395 |
+
// TODO: remove this special case for HIP when issue is fixed:
|
396 |
+
// https://github.com/ROCm-Developer-Tools/HIP/issues/2209
|
397 |
+
T max = at::_isnan(a) ? a : (at::_isnan(b) ? b : std::max<T>(a, b));
|
398 |
+
#else
|
399 |
+
T max = at::_isnan(b) ? b : std::max<T>(a, b);
|
400 |
+
#endif
|
401 |
+
|
402 |
+
return max;
|
403 |
+
}
|
404 |
+
|
405 |
+
ATOMIC_INTEGER_IMPL(Max)
|
406 |
+
GPU_ATOMIC_INTEGER(Max, safe_max(a, b), uint8_t)
|
407 |
+
GPU_ATOMIC_INTEGER(Max, safe_max(a, b), int8_t)
|
408 |
+
GPU_ATOMIC_INTEGER(Max, safe_max(a, b), int16_t)
|
409 |
+
GPU_ATOMIC_INTEGER(Max, safe_max(a, b), int32_t)
|
410 |
+
GPU_ATOMIC_INTEGER(Max, safe_max(a, b), int64_t)
|
411 |
+
|
412 |
+
inline __device__ at::Half gpuAtomicMax(at::Half * address, at::Half val) {
|
413 |
+
return AtomicFPOp<at::Half>()(address, val,
|
414 |
+
[](at::Half bsum, at::Half val) {
|
415 |
+
return safe_max(bsum, val);
|
416 |
+
});
|
417 |
+
}
|
418 |
+
|
419 |
+
inline __device__ at::BFloat16 gpuAtomicMax(at::BFloat16 * address, at::BFloat16 val) {
|
420 |
+
return AtomicFPOp<at::BFloat16>()(address, val,
|
421 |
+
[](at::BFloat16 bsum, at::BFloat16 val) {
|
422 |
+
return safe_max(bsum, val);
|
423 |
+
});
|
424 |
+
}
|
425 |
+
|
426 |
+
inline __device__ double gpuAtomicMax(double * address, double val) {
|
427 |
+
return AtomicFPOp<double>()(address, val,
|
428 |
+
[](double val, unsigned long long int assumed) {
|
429 |
+
return __double_as_longlong(safe_max(val, __longlong_as_double(assumed)));
|
430 |
+
});
|
431 |
+
}
|
432 |
+
|
433 |
+
// Dont use a templated function for this since the addition function defaults to the CUDA built-in.
|
434 |
+
inline __device__ float gpuAtomicMax(float * address, float val) {
|
435 |
+
unsigned int* address_as_ull = (unsigned int*)address;
|
436 |
+
unsigned int old = *address_as_ull;
|
437 |
+
unsigned int assumed;
|
438 |
+
|
439 |
+
do {
|
440 |
+
assumed = old;
|
441 |
+
old = atomicCAS(address_as_ull, assumed,
|
442 |
+
__float_as_int(safe_max(val, __int_as_float(assumed))));
|
443 |
+
|
444 |
+
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
445 |
+
} while (assumed != old);
|
446 |
+
|
447 |
+
return __int_as_float(old);
|
448 |
+
}
|
449 |
+
|
450 |
+
// Atomic minimum implementation.
|
451 |
+
|
452 |
+
template <typename T>
|
453 |
+
__host__ __device__ T safe_min(T a, T b) {
|
454 |
+
#if defined(__HIPCC__)
|
455 |
+
// TODO: remove this special case for HIP when issue is fixed:
|
456 |
+
// https://github.com/ROCm-Developer-Tools/HIP/issues/2209
|
457 |
+
T min = at::_isnan(a) ? a : (at::_isnan(b) ? b : std::min<T>(a, b));
|
458 |
+
#else
|
459 |
+
T min = at::_isnan(b) ? b : std::min<T>(a, b);
|
460 |
+
#endif
|
461 |
+
|
462 |
+
return min;
|
463 |
+
}
|
464 |
+
|
465 |
+
ATOMIC_INTEGER_IMPL(Min)
|
466 |
+
GPU_ATOMIC_INTEGER(Min, safe_min(a, b), uint8_t)
|
467 |
+
GPU_ATOMIC_INTEGER(Min, safe_min(a, b), int8_t)
|
468 |
+
GPU_ATOMIC_INTEGER(Min, safe_min(a, b), int16_t)
|
469 |
+
GPU_ATOMIC_INTEGER(Min, safe_min(a, b), int32_t)
|
470 |
+
GPU_ATOMIC_INTEGER(Min, safe_min(a, b), int64_t)
|
471 |
+
|
472 |
+
inline __device__ at::Half gpuAtomicMin(at::Half * address, at::Half val) {
|
473 |
+
return AtomicFPOp<at::Half>()(address, val,
|
474 |
+
[](at::Half bsum, at::Half val) {
|
475 |
+
return safe_min(bsum, val);
|
476 |
+
});
|
477 |
+
}
|
478 |
+
|
479 |
+
inline __device__ at::BFloat16 gpuAtomicMin(at::BFloat16 * address, at::BFloat16 val) {
|
480 |
+
return AtomicFPOp<at::BFloat16>()(address, val,
|
481 |
+
[](at::BFloat16 bsum, at::BFloat16 val) {
|
482 |
+
return safe_min(bsum, val);
|
483 |
+
});
|
484 |
+
}
|
485 |
+
|
486 |
+
inline __device__ double gpuAtomicMin(double * address, double val) {
|
487 |
+
return AtomicFPOp<double>()(address, val,
|
488 |
+
[](double val, unsigned long long int assumed) {
|
489 |
+
return __double_as_longlong(safe_min(val, __longlong_as_double(assumed)));
|
490 |
+
});
|
491 |
+
}
|
492 |
+
|
493 |
+
// Dont use a templated function for this since the addition function defaults to the CUDA built-in.
|
494 |
+
inline __device__ float gpuAtomicMin(float * address, float val) {
|
495 |
+
unsigned int* address_as_ull = (unsigned int*)address;
|
496 |
+
unsigned int old = *address_as_ull;
|
497 |
+
unsigned int assumed;
|
498 |
+
|
499 |
+
do {
|
500 |
+
assumed = old;
|
501 |
+
old = atomicCAS(address_as_ull, assumed,
|
502 |
+
__float_as_int(safe_min(val, __int_as_float(assumed))));
|
503 |
+
|
504 |
+
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
505 |
+
} while (assumed != old);
|
506 |
+
|
507 |
+
return __int_as_float(old);
|
508 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDABlas.h
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
/*
|
3 |
+
Provides a subset of CUDA BLAS functions as templates:
|
4 |
+
|
5 |
+
gemm<Dtype>(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c,
|
6 |
+
ldc)
|
7 |
+
|
8 |
+
gemv<Dtype>(transa, m, n, alpha, a, lda, x, incx, beta, y, incy)
|
9 |
+
|
10 |
+
dot<Dtype>(n, x, incx, y, incy, result)
|
11 |
+
|
12 |
+
where Dtype is double, float, at::Half or at::BFloat16 (ROCm, NOT for dot).
|
13 |
+
The functions are available in at::cuda::blas namespace.
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include <ATen/cuda/CUDAContext.h>
|
17 |
+
#include <ATen/OpMathType.h>
|
18 |
+
|
19 |
+
namespace at::cuda::blas {
|
20 |
+
|
21 |
+
// RAII guard that sets the CuBLAS pointer mode and restores it to
|
22 |
+
// its previous value when the guard is destroyed
|
23 |
+
class PointerModeGuard {
|
24 |
+
public:
|
25 |
+
PointerModeGuard(cublasHandle_t handle, cublasPointerMode_t mode) :
|
26 |
+
handle(handle) {
|
27 |
+
TORCH_CUDABLAS_CHECK(cublasGetPointerMode(handle, &previous_mode));
|
28 |
+
TORCH_CUDABLAS_CHECK(cublasSetPointerMode(handle, mode));
|
29 |
+
}
|
30 |
+
|
31 |
+
~PointerModeGuard() {
|
32 |
+
cublasSetPointerMode(handle, previous_mode);
|
33 |
+
}
|
34 |
+
|
35 |
+
private:
|
36 |
+
cublasHandle_t handle;
|
37 |
+
cublasPointerMode_t previous_mode;
|
38 |
+
};
|
39 |
+
|
40 |
+
/* LEVEL 3 BLAS FUNCTIONS */
|
41 |
+
|
42 |
+
#define CUDABLAS_GEMM_ARGTYPES(Dtype) \
|
43 |
+
char transa, char transb, int64_t m, int64_t n, int64_t k, at::opmath_type<Dtype> alpha, \
|
44 |
+
const Dtype *a, int64_t lda, const Dtype *b, int64_t ldb, at::opmath_type<Dtype> beta,\
|
45 |
+
Dtype *c, int64_t ldc
|
46 |
+
|
47 |
+
#define CUDABLAS_GEMM_ARGS(Dtype) transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc
|
48 |
+
|
49 |
+
template <typename Dtype>
|
50 |
+
inline void gemm(CUDABLAS_GEMM_ARGTYPES(Dtype)) {
|
51 |
+
AT_ERROR("at::cuda::blas::gemm: not implemented for ", typeid(Dtype).name());
|
52 |
+
}
|
53 |
+
|
54 |
+
template <>
|
55 |
+
void gemm<double>(CUDABLAS_GEMM_ARGTYPES(double));
|
56 |
+
template <>
|
57 |
+
void gemm<float>(CUDABLAS_GEMM_ARGTYPES(float));
|
58 |
+
template <>
|
59 |
+
void gemm<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>));
|
60 |
+
template <>
|
61 |
+
void gemm<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>));
|
62 |
+
template <>
|
63 |
+
void gemm<at::Half>(CUDABLAS_GEMM_ARGTYPES(at::Half));
|
64 |
+
template <>
|
65 |
+
void gemm<at::BFloat16>(CUDABLAS_GEMM_ARGTYPES(at::BFloat16));
|
66 |
+
|
67 |
+
template <typename Dtype>
|
68 |
+
inline void gemm_internal(CUDABLAS_GEMM_ARGTYPES(Dtype)) {
|
69 |
+
AT_ERROR("at::cuda::blas::gemm_internal: not implemented for ", typeid(Dtype).name());
|
70 |
+
}
|
71 |
+
|
72 |
+
template <>
|
73 |
+
void gemm_internal<double>(CUDABLAS_GEMM_ARGTYPES(double));
|
74 |
+
template <>
|
75 |
+
void gemm_internal<float>(CUDABLAS_GEMM_ARGTYPES(float));
|
76 |
+
template <>
|
77 |
+
void gemm_internal<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>));
|
78 |
+
template <>
|
79 |
+
void gemm_internal<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>));
|
80 |
+
template <>
|
81 |
+
void gemm_internal<at::Half>(CUDABLAS_GEMM_ARGTYPES(at::Half));
|
82 |
+
template <>
|
83 |
+
void gemm_internal<at::BFloat16>(CUDABLAS_GEMM_ARGTYPES(at::BFloat16));
|
84 |
+
|
85 |
+
#if (!defined(USE_ROCM) && !defined(_MSC_VER)) || (defined(USE_ROCM) && ROCM_VERSION >= 50700)
|
86 |
+
enum GEMMAndBiasActivationEpilogue {
|
87 |
+
None,
|
88 |
+
RELU,
|
89 |
+
GELU,
|
90 |
+
};
|
91 |
+
|
92 |
+
// NOTE: GELU activation is not supported prior to CUDA 11.4 and will
|
93 |
+
// do nothing if passed in that case.
|
94 |
+
template <typename Dtype>
|
95 |
+
void gemm_and_bias(
|
96 |
+
bool transpose_mat1,
|
97 |
+
bool transpose_mat2,
|
98 |
+
int64_t m,
|
99 |
+
int64_t n,
|
100 |
+
int64_t k,
|
101 |
+
at::opmath_type<Dtype> alpha_val,
|
102 |
+
const Dtype* mat1_ptr,
|
103 |
+
int64_t mat1_ld,
|
104 |
+
const Dtype* mat2_ptr,
|
105 |
+
int64_t mat2_ld,
|
106 |
+
const Dtype* bias,
|
107 |
+
Dtype* result_ptr,
|
108 |
+
int64_t result_ld,
|
109 |
+
GEMMAndBiasActivationEpilogue activation = GEMMAndBiasActivationEpilogue::None);
|
110 |
+
|
111 |
+
void int8_gemm(
|
112 |
+
bool transpose_mat1,
|
113 |
+
bool transpose_mat2,
|
114 |
+
int64_t m,
|
115 |
+
int64_t n,
|
116 |
+
int64_t k,
|
117 |
+
const int8_t* mat1_ptr,
|
118 |
+
int64_t mat1_ld,
|
119 |
+
const int8_t* mat2_ptr,
|
120 |
+
int64_t mat2_ld,
|
121 |
+
int32_t* result_ptr,
|
122 |
+
int64_t result_ld);
|
123 |
+
|
124 |
+
void scaled_gemm(
|
125 |
+
char transa,
|
126 |
+
char transb,
|
127 |
+
int64_t m,
|
128 |
+
int64_t n,
|
129 |
+
int64_t k,
|
130 |
+
const void* mat1_ptr,
|
131 |
+
const void* mat1_scale_ptr,
|
132 |
+
int64_t mat1_ld,
|
133 |
+
ScalarType mat1_dtype,
|
134 |
+
const void* mat2_ptr,
|
135 |
+
const void* mat2_scale_ptr,
|
136 |
+
int64_t mat2_ld,
|
137 |
+
ScalarType mat2_dtype,
|
138 |
+
const void* bias_ptr,
|
139 |
+
ScalarType bias_dtype,
|
140 |
+
void* result_ptr,
|
141 |
+
const void* result_scale_ptr,
|
142 |
+
int64_t result_ld,
|
143 |
+
ScalarType result_dtype,
|
144 |
+
void* amax_ptr,
|
145 |
+
bool use_fast_accum);
|
146 |
+
#endif
|
147 |
+
|
148 |
+
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) \
|
149 |
+
char transa, char transb, int64_t m, int64_t n, int64_t k, at::opmath_type<Dtype> alpha, \
|
150 |
+
const Dtype *a, int64_t lda, int64_t stridea, \
|
151 |
+
const Dtype *b, int64_t ldb, int64_t strideb, \
|
152 |
+
at::opmath_type<Dtype> beta, Dtype *c, int64_t ldc, int64_t stridec, int64_t num_batches
|
153 |
+
|
154 |
+
#define CUDABLAS_BGEMM_ARGS(Dtype) \
|
155 |
+
transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb, strideb, beta, c, ldc, stridec, num_batches
|
156 |
+
|
157 |
+
template <typename Dtype>
|
158 |
+
inline void bgemm(CUDABLAS_BGEMM_ARGTYPES(Dtype)) {
|
159 |
+
AT_ERROR("at::cuda::blas::bgemm: not implemented for ", typeid(Dtype).name());
|
160 |
+
}
|
161 |
+
|
162 |
+
template <>
|
163 |
+
void bgemm<double>(CUDABLAS_BGEMM_ARGTYPES(double));
|
164 |
+
template <>
|
165 |
+
void bgemm<float>(CUDABLAS_BGEMM_ARGTYPES(float));
|
166 |
+
template <>
|
167 |
+
void bgemm<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>));
|
168 |
+
template <>
|
169 |
+
void bgemm<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>));
|
170 |
+
template <>
|
171 |
+
void bgemm<at::Half>(CUDABLAS_BGEMM_ARGTYPES(at::Half));
|
172 |
+
template <>
|
173 |
+
void bgemm<at::BFloat16>(CUDABLAS_BGEMM_ARGTYPES(at::BFloat16));
|
174 |
+
|
175 |
+
template <typename Dtype>
|
176 |
+
inline void bgemm_internal(CUDABLAS_BGEMM_ARGTYPES(Dtype)) {
|
177 |
+
AT_ERROR("at::cuda::blas::bgemm_internal: not implemented for ", typeid(Dtype).name());
|
178 |
+
}
|
179 |
+
|
180 |
+
template <>
|
181 |
+
void bgemm_internal<double>(CUDABLAS_BGEMM_ARGTYPES(double));
|
182 |
+
template <>
|
183 |
+
void bgemm_internal<float>(CUDABLAS_BGEMM_ARGTYPES(float));
|
184 |
+
template <>
|
185 |
+
void bgemm_internal<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>));
|
186 |
+
template <>
|
187 |
+
void bgemm_internal<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>));
|
188 |
+
template <>
|
189 |
+
void bgemm_internal<at::Half>(CUDABLAS_BGEMM_ARGTYPES(at::Half));
|
190 |
+
template <>
|
191 |
+
void bgemm_internal<at::BFloat16>(CUDABLAS_BGEMM_ARGTYPES(at::BFloat16));
|
192 |
+
|
193 |
+
#if defined(USE_ROCM) && ROCM_VERSION <= 50500
|
194 |
+
// ROCm 5.6 hipblas matches the const Dtype *A API, but prior hipblas does not.
|
195 |
+
#define CUDABLAS_TRSM_ARGTYPES(Dtype) \
|
196 |
+
hipblasHandle_t handle, hipblasSideMode_t side, hipblasFillMode_t uplo, \
|
197 |
+
hipblasOperation_t trans, hipblasDiagType_t diag, int m, int n, \
|
198 |
+
const Dtype *alpha, Dtype *A, int lda, Dtype *B, int ldb
|
199 |
+
#else
|
200 |
+
#define CUDABLAS_TRSM_ARGTYPES(Dtype) \
|
201 |
+
cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo, \
|
202 |
+
cublasOperation_t trans, cublasDiagType_t diag, int m, int n, \
|
203 |
+
const Dtype *alpha, const Dtype *A, int lda, Dtype *B, int ldb
|
204 |
+
#endif
|
205 |
+
|
206 |
+
template <typename Dtype>
|
207 |
+
inline void trsm(CUDABLAS_TRSM_ARGTYPES(Dtype)) {
|
208 |
+
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::trsm: not implemented for ", typeid(Dtype).name());
|
209 |
+
}
|
210 |
+
|
211 |
+
template <>
|
212 |
+
TORCH_CUDA_CU_API void trsm<float>(CUDABLAS_TRSM_ARGTYPES(float));
|
213 |
+
template <>
|
214 |
+
TORCH_CUDA_CU_API void trsm<double>(CUDABLAS_TRSM_ARGTYPES(double));
|
215 |
+
template <>
|
216 |
+
TORCH_CUDA_CU_API void trsm<c10::complex<float>>(CUDABLAS_TRSM_ARGTYPES(c10::complex<float>));
|
217 |
+
template <>
|
218 |
+
TORCH_CUDA_CU_API void trsm<c10::complex<double>>(CUDABLAS_TRSM_ARGTYPES(c10::complex<double>));
|
219 |
+
|
220 |
+
#define CUDABLAS_TRSM_BATCHED_ARGTYPES(Dtype) \
|
221 |
+
cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo, \
|
222 |
+
cublasOperation_t trans, cublasDiagType_t diag, int m, int n, \
|
223 |
+
const Dtype *alpha, Dtype *A[], int lda, Dtype *B[], int ldb, \
|
224 |
+
int batchCount
|
225 |
+
|
226 |
+
template <typename Dtype>
|
227 |
+
inline void trsmBatched(CUDABLAS_TRSM_BATCHED_ARGTYPES(Dtype)) {
|
228 |
+
TORCH_INTERNAL_ASSERT(
|
229 |
+
false,
|
230 |
+
"at::cuda::blas::trsmBatched: not implemented for ",
|
231 |
+
typeid(Dtype).name());
|
232 |
+
}
|
233 |
+
|
234 |
+
template <>
|
235 |
+
TORCH_CUDA_CU_API void trsmBatched<float>(CUDABLAS_TRSM_BATCHED_ARGTYPES(float));
|
236 |
+
template <>
|
237 |
+
TORCH_CUDA_CU_API void trsmBatched<double>(CUDABLAS_TRSM_BATCHED_ARGTYPES(double));
|
238 |
+
template <>
|
239 |
+
TORCH_CUDA_CU_API void trsmBatched<c10::complex<float>>(CUDABLAS_TRSM_BATCHED_ARGTYPES(c10::complex<float>));
|
240 |
+
template <>
|
241 |
+
TORCH_CUDA_CU_API void trsmBatched<c10::complex<double>>(CUDABLAS_TRSM_BATCHED_ARGTYPES(c10::complex<double>));
|
242 |
+
|
243 |
+
/* LEVEL 2 BLAS FUNCTIONS */
|
244 |
+
|
245 |
+
#define CUDABLAS_GEMV_ARGTYPES(Dtype) \
|
246 |
+
char trans, int64_t m, int64_t n, Dtype alpha, const Dtype *a, int64_t lda, \
|
247 |
+
const Dtype *x, int64_t incx, Dtype beta, Dtype *y, int64_t incy
|
248 |
+
|
249 |
+
template <typename Dtype>
|
250 |
+
inline void gemv(CUDABLAS_GEMV_ARGTYPES(Dtype)) {
|
251 |
+
AT_ERROR("at::cuda::blas::gemv: not implemented for ", typeid(Dtype).name());
|
252 |
+
}
|
253 |
+
|
254 |
+
template <>
|
255 |
+
void gemv<double>(CUDABLAS_GEMV_ARGTYPES(double));
|
256 |
+
template <>
|
257 |
+
void gemv<float>(CUDABLAS_GEMV_ARGTYPES(float));
|
258 |
+
template <>
|
259 |
+
void gemv<c10::complex<double>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<double>));
|
260 |
+
template <>
|
261 |
+
void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>));
|
262 |
+
template <>
|
263 |
+
void gemv<at::Half>(CUDABLAS_GEMV_ARGTYPES(at::Half));
|
264 |
+
template <>
|
265 |
+
void gemv<at::BFloat16>(CUDABLAS_GEMV_ARGTYPES(at::BFloat16));
|
266 |
+
|
267 |
+
/* LEVEL 1 BLAS FUNCTIONS */
|
268 |
+
|
269 |
+
#define CUDABLAS_DOT_ARGTYPES(Dtype) \
|
270 |
+
cublasHandle_t handle, int n, const Dtype *x, int incx, const Dtype *y, \
|
271 |
+
int incy, Dtype *result
|
272 |
+
|
273 |
+
template <typename Dtype>
|
274 |
+
inline void dot(CUDABLAS_DOT_ARGTYPES(Dtype)) {
|
275 |
+
AT_ERROR("at::cuda::blas::dot: not implemented for ", typeid(Dtype).name());
|
276 |
+
}
|
277 |
+
|
278 |
+
template <>
|
279 |
+
void dot<double>(CUDABLAS_DOT_ARGTYPES(double));
|
280 |
+
template <>
|
281 |
+
void dot<float>(CUDABLAS_DOT_ARGTYPES(float));
|
282 |
+
template <>
|
283 |
+
void dot<at::Half>(CUDABLAS_DOT_ARGTYPES(at::Half));
|
284 |
+
template <>
|
285 |
+
void dot<at::BFloat16>(CUDABLAS_DOT_ARGTYPES(at::BFloat16));
|
286 |
+
template <>
|
287 |
+
void dot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>));
|
288 |
+
template <>
|
289 |
+
void dot<c10::complex<float>>(CUDABLAS_DOT_ARGTYPES(c10::complex<float>));
|
290 |
+
|
291 |
+
template <typename Dtype>
|
292 |
+
inline void vdot(CUDABLAS_DOT_ARGTYPES(Dtype)) {
|
293 |
+
AT_ERROR("at::cuda::blas::vdot: not implemented for ", typeid(Dtype).name());
|
294 |
+
}
|
295 |
+
|
296 |
+
template <>
|
297 |
+
void vdot<c10::complex<float>>(CUDABLAS_DOT_ARGTYPES(c10::complex<float>));
|
298 |
+
template <>
|
299 |
+
void vdot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>));
|
300 |
+
|
301 |
+
#define CUDABLAS_GETRS_ARGTYPES(Dtype) \
|
302 |
+
cublasHandle_t handle, cublasOperation_t trans, \
|
303 |
+
int n, int nrhs, Dtype** dA_array, int lda, int* ipiv_array, \
|
304 |
+
Dtype** dB_array, int ldb, int* info_array, int batchsize
|
305 |
+
|
306 |
+
template<class Dtype>
|
307 |
+
void getrsBatched(CUDABLAS_GETRS_ARGTYPES(Dtype)) {
|
308 |
+
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::getrsBatched: not implemented for ",
|
309 |
+
typeid(Dtype).name());
|
310 |
+
}
|
311 |
+
template<>
|
312 |
+
TORCH_CUDA_CU_API void getrsBatched<float>(CUDABLAS_GETRS_ARGTYPES(float));
|
313 |
+
template<>
|
314 |
+
TORCH_CUDA_CU_API void getrsBatched<double>(CUDABLAS_GETRS_ARGTYPES(double));
|
315 |
+
template<>
|
316 |
+
TORCH_CUDA_CU_API void getrsBatched<c10::complex<float>>(CUDABLAS_GETRS_ARGTYPES(c10::complex<float>));
|
317 |
+
template<>
|
318 |
+
TORCH_CUDA_CU_API void getrsBatched<c10::complex<double>>(CUDABLAS_GETRS_ARGTYPES(c10::complex<double>));
|
319 |
+
|
320 |
+
#define CUDABLAS_GEQRF_BATCHED_ARGTYPES(Dtype) \
|
321 |
+
cublasHandle_t handle, int m, int n, Dtype **A_array, int lda, \
|
322 |
+
Dtype **tau_array, int *info, int batchsize
|
323 |
+
|
324 |
+
template <class Dtype>
|
325 |
+
void geqrfBatched(CUDABLAS_GEQRF_BATCHED_ARGTYPES(Dtype)) {
|
326 |
+
TORCH_INTERNAL_ASSERT(
|
327 |
+
false,
|
328 |
+
"at::cuda::blas::geqrfBatched: not implemented for ",
|
329 |
+
typeid(Dtype).name());
|
330 |
+
}
|
331 |
+
template <>
|
332 |
+
TORCH_CUDA_CU_API void geqrfBatched<float>(CUDABLAS_GEQRF_BATCHED_ARGTYPES(float));
|
333 |
+
template <>
|
334 |
+
TORCH_CUDA_CU_API void geqrfBatched<double>(CUDABLAS_GEQRF_BATCHED_ARGTYPES(double));
|
335 |
+
template <>
|
336 |
+
TORCH_CUDA_CU_API void geqrfBatched<c10::complex<double>>(
|
337 |
+
CUDABLAS_GEQRF_BATCHED_ARGTYPES(c10::complex<double>));
|
338 |
+
template <>
|
339 |
+
TORCH_CUDA_CU_API void geqrfBatched<c10::complex<float>>(
|
340 |
+
CUDABLAS_GEQRF_BATCHED_ARGTYPES(c10::complex<float>));
|
341 |
+
|
342 |
+
#define CUDABLAS_GETRF_ARGTYPES(Dtype) \
|
343 |
+
int n, Dtype** dA_array, int ldda, int* ipiv_array, int* info_array, int batchsize
|
344 |
+
|
345 |
+
template<class Dtype>
|
346 |
+
void getrfBatched(CUDABLAS_GETRF_ARGTYPES(Dtype)) {
|
347 |
+
TORCH_CHECK(false, "at::cuda::blas::getrfBatched: not implemented for ", typeid(Dtype).name());
|
348 |
+
}
|
349 |
+
template<>
|
350 |
+
TORCH_CUDA_CU_API void getrfBatched<float>(CUDABLAS_GETRF_ARGTYPES(float));
|
351 |
+
template<>
|
352 |
+
TORCH_CUDA_CU_API void getrfBatched<double>(CUDABLAS_GETRF_ARGTYPES(double));
|
353 |
+
template<>
|
354 |
+
TORCH_CUDA_CU_API void getrfBatched<c10::complex<double>>(CUDABLAS_GETRF_ARGTYPES(c10::complex<double>));
|
355 |
+
template<>
|
356 |
+
TORCH_CUDA_CU_API void getrfBatched<c10::complex<float>>(CUDABLAS_GETRF_ARGTYPES(c10::complex<float>));
|
357 |
+
|
358 |
+
#define CUDABLAS_GELS_BATCHED_ARGTYPES(Dtype) \
|
359 |
+
cublasHandle_t handle, cublasOperation_t trans, int m, int n, int nrhs, Dtype** dA_array, int ldda, Dtype** dC_array, int lddc, int* info, int *devInfoArray, int batchSize
|
360 |
+
|
361 |
+
template <class Dtype>
|
362 |
+
void gelsBatched(CUDABLAS_GELS_BATCHED_ARGTYPES(Dtype)) {
|
363 |
+
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::gelsBatched: not implemented for ", typeid(Dtype).name());
|
364 |
+
}
|
365 |
+
|
366 |
+
template<>
|
367 |
+
TORCH_CUDA_CU_API void gelsBatched<double>(CUDABLAS_GELS_BATCHED_ARGTYPES(double));
|
368 |
+
template<>
|
369 |
+
TORCH_CUDA_CU_API void gelsBatched<float>(CUDABLAS_GELS_BATCHED_ARGTYPES(float));
|
370 |
+
template<>
|
371 |
+
TORCH_CUDA_CU_API void gelsBatched<c10::complex<double>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::complex<double>));
|
372 |
+
template<>
|
373 |
+
TORCH_CUDA_CU_API void gelsBatched<c10::complex<float>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::complex<float>));
|
374 |
+
|
375 |
+
} // namespace at::cuda::blas
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContext.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/CUDAContextLight.h>
|
4 |
+
|
5 |
+
// Preserved for BC, as many files depend on these includes
|
6 |
+
#include <ATen/Context.h>
|
7 |
+
#include <c10/cuda/CUDAStream.h>
|
8 |
+
#include <c10/util/Logging.h>
|
9 |
+
#include <ATen/cuda/Exceptions.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContextLight.h
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// Light-weight version of CUDAContext.h with fewer transitive includes
|
3 |
+
|
4 |
+
#include <cstdint>
|
5 |
+
|
6 |
+
#include <cuda_runtime_api.h>
|
7 |
+
#include <cusparse.h>
|
8 |
+
#include <cublas_v2.h>
|
9 |
+
|
10 |
+
// cublasLT was introduced in CUDA 10.1 but we enable only for 11.1 that also
|
11 |
+
// added bf16 support
|
12 |
+
#if (!defined(USE_ROCM) && !defined(_MSC_VER)) || (defined(USE_ROCM) && ROCM_VERSION >= 50700)
|
13 |
+
#include <cublasLt.h>
|
14 |
+
#endif
|
15 |
+
|
16 |
+
#ifdef CUDART_VERSION
|
17 |
+
#include <cusolverDn.h>
|
18 |
+
#endif
|
19 |
+
|
20 |
+
#if defined(USE_ROCM) && ROCM_VERSION >= 50300
|
21 |
+
#include <hipsolver/hipsolver.h>
|
22 |
+
#endif
|
23 |
+
|
24 |
+
#include <c10/core/Allocator.h>
|
25 |
+
#include <c10/cuda/CUDAFunctions.h>
|
26 |
+
|
27 |
+
namespace c10 {
|
28 |
+
struct Allocator;
|
29 |
+
}
|
30 |
+
|
31 |
+
namespace at::cuda {
|
32 |
+
|
33 |
+
/*
|
34 |
+
A common CUDA interface for ATen.
|
35 |
+
|
36 |
+
This interface is distinct from CUDAHooks, which defines an interface that links
|
37 |
+
to both CPU-only and CUDA builds. That interface is intended for runtime
|
38 |
+
dispatch and should be used from files that are included in both CPU-only and
|
39 |
+
CUDA builds.
|
40 |
+
|
41 |
+
CUDAContext, on the other hand, should be preferred by files only included in
|
42 |
+
CUDA builds. It is intended to expose CUDA functionality in a consistent
|
43 |
+
manner.
|
44 |
+
|
45 |
+
This means there is some overlap between the CUDAContext and CUDAHooks, but
|
46 |
+
the choice of which to use is simple: use CUDAContext when in a CUDA-only file,
|
47 |
+
use CUDAHooks otherwise.
|
48 |
+
|
49 |
+
Note that CUDAContext simply defines an interface with no associated class.
|
50 |
+
It is expected that the modules whose functions compose this interface will
|
51 |
+
manage their own state. There is only a single CUDA context/state.
|
52 |
+
*/
|
53 |
+
|
54 |
+
/**
|
55 |
+
* DEPRECATED: use device_count() instead
|
56 |
+
*/
|
57 |
+
inline int64_t getNumGPUs() {
|
58 |
+
return c10::cuda::device_count();
|
59 |
+
}
|
60 |
+
|
61 |
+
/**
|
62 |
+
* CUDA is available if we compiled with CUDA, and there are one or more
|
63 |
+
* devices. If we compiled with CUDA but there is a driver problem, etc.,
|
64 |
+
* this function will report CUDA is not available (rather than raise an error.)
|
65 |
+
*/
|
66 |
+
inline bool is_available() {
|
67 |
+
return c10::cuda::device_count() > 0;
|
68 |
+
}
|
69 |
+
|
70 |
+
TORCH_CUDA_CPP_API cudaDeviceProp* getCurrentDeviceProperties();
|
71 |
+
|
72 |
+
TORCH_CUDA_CPP_API int warp_size();
|
73 |
+
|
74 |
+
TORCH_CUDA_CPP_API cudaDeviceProp* getDeviceProperties(c10::DeviceIndex device);
|
75 |
+
|
76 |
+
TORCH_CUDA_CPP_API bool canDeviceAccessPeer(
|
77 |
+
c10::DeviceIndex device,
|
78 |
+
c10::DeviceIndex peer_device);
|
79 |
+
|
80 |
+
TORCH_CUDA_CPP_API c10::Allocator* getCUDADeviceAllocator();
|
81 |
+
|
82 |
+
/* Handles */
|
83 |
+
TORCH_CUDA_CPP_API cusparseHandle_t getCurrentCUDASparseHandle();
|
84 |
+
TORCH_CUDA_CPP_API cublasHandle_t getCurrentCUDABlasHandle();
|
85 |
+
#if (!defined(USE_ROCM) && !defined(_MSC_VER)) || (defined(USE_ROCM) && ROCM_VERSION >= 50700)
|
86 |
+
TORCH_CUDA_CPP_API cublasLtHandle_t getCurrentCUDABlasLtHandle();
|
87 |
+
#endif
|
88 |
+
|
89 |
+
TORCH_CUDA_CPP_API void clearCublasWorkspaces();
|
90 |
+
|
91 |
+
#if defined(CUDART_VERSION) || defined(USE_ROCM) && ROCM_VERSION >= 50300
|
92 |
+
TORCH_CUDA_CPP_API cusolverDnHandle_t getCurrentCUDASolverDnHandle();
|
93 |
+
#endif
|
94 |
+
|
95 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDADataType.h
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
|
5 |
+
#include <cuda.h>
|
6 |
+
#include <library_types.h>
|
7 |
+
|
8 |
+
namespace at::cuda {
|
9 |
+
|
10 |
+
template <typename scalar_t>
|
11 |
+
cudaDataType getCudaDataType() {
|
12 |
+
TORCH_INTERNAL_ASSERT(false, "Cannot convert type ", typeid(scalar_t).name(), " to cudaDataType.")
|
13 |
+
}
|
14 |
+
|
15 |
+
template<> inline cudaDataType getCudaDataType<at::Half>() {
|
16 |
+
return CUDA_R_16F;
|
17 |
+
}
|
18 |
+
template<> inline cudaDataType getCudaDataType<float>() {
|
19 |
+
return CUDA_R_32F;
|
20 |
+
}
|
21 |
+
template<> inline cudaDataType getCudaDataType<double>() {
|
22 |
+
return CUDA_R_64F;
|
23 |
+
}
|
24 |
+
template<> inline cudaDataType getCudaDataType<c10::complex<c10::Half>>() {
|
25 |
+
return CUDA_C_16F;
|
26 |
+
}
|
27 |
+
template<> inline cudaDataType getCudaDataType<c10::complex<float>>() {
|
28 |
+
return CUDA_C_32F;
|
29 |
+
}
|
30 |
+
template<> inline cudaDataType getCudaDataType<c10::complex<double>>() {
|
31 |
+
return CUDA_C_64F;
|
32 |
+
}
|
33 |
+
|
34 |
+
// HIP doesn't define integral types
|
35 |
+
#ifndef USE_ROCM
|
36 |
+
template<> inline cudaDataType getCudaDataType<uint8_t>() {
|
37 |
+
return CUDA_R_8U;
|
38 |
+
}
|
39 |
+
template<> inline cudaDataType getCudaDataType<int8_t>() {
|
40 |
+
return CUDA_R_8I;
|
41 |
+
}
|
42 |
+
template<> inline cudaDataType getCudaDataType<int>() {
|
43 |
+
return CUDA_R_32I;
|
44 |
+
}
|
45 |
+
#endif
|
46 |
+
|
47 |
+
#if !defined(USE_ROCM)
|
48 |
+
template<> inline cudaDataType getCudaDataType<int16_t>() {
|
49 |
+
return CUDA_R_16I;
|
50 |
+
}
|
51 |
+
template<> inline cudaDataType getCudaDataType<int64_t>() {
|
52 |
+
return CUDA_R_64I;
|
53 |
+
}
|
54 |
+
template<> inline cudaDataType getCudaDataType<at::BFloat16>() {
|
55 |
+
return CUDA_R_16BF;
|
56 |
+
}
|
57 |
+
#endif
|
58 |
+
|
59 |
+
inline cudaDataType ScalarTypeToCudaDataType(const c10::ScalarType& scalar_type) {
|
60 |
+
switch (scalar_type) {
|
61 |
+
// HIP doesn't define integral types
|
62 |
+
#ifndef USE_ROCM
|
63 |
+
case c10::ScalarType::Byte:
|
64 |
+
return CUDA_R_8U;
|
65 |
+
case c10::ScalarType::Char:
|
66 |
+
return CUDA_R_8I;
|
67 |
+
case c10::ScalarType::Int:
|
68 |
+
return CUDA_R_32I;
|
69 |
+
#endif
|
70 |
+
case c10::ScalarType::Half:
|
71 |
+
return CUDA_R_16F;
|
72 |
+
case c10::ScalarType::Float:
|
73 |
+
return CUDA_R_32F;
|
74 |
+
case c10::ScalarType::Double:
|
75 |
+
return CUDA_R_64F;
|
76 |
+
case c10::ScalarType::ComplexHalf:
|
77 |
+
return CUDA_C_16F;
|
78 |
+
case c10::ScalarType::ComplexFloat:
|
79 |
+
return CUDA_C_32F;
|
80 |
+
case c10::ScalarType::ComplexDouble:
|
81 |
+
return CUDA_C_64F;
|
82 |
+
#if !defined(USE_ROCM)
|
83 |
+
case c10::ScalarType::Short:
|
84 |
+
return CUDA_R_16I;
|
85 |
+
case c10::ScalarType::Long:
|
86 |
+
return CUDA_R_64I;
|
87 |
+
case c10::ScalarType::BFloat16:
|
88 |
+
return CUDA_R_16BF;
|
89 |
+
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11080
|
90 |
+
case c10::ScalarType::Float8_e4m3fn:
|
91 |
+
return CUDA_R_8F_E4M3;
|
92 |
+
case c10::ScalarType::Float8_e5m2:
|
93 |
+
return CUDA_R_8F_E5M2;
|
94 |
+
#endif
|
95 |
+
#else // USE_ROCM
|
96 |
+
case c10::ScalarType::BFloat16:
|
97 |
+
return CUDA_R_16BF;
|
98 |
+
#if defined(HIP_NEW_TYPE_ENUMS)
|
99 |
+
case c10::ScalarType::Float8_e4m3fnuz:
|
100 |
+
return HIP_R_8F_E4M3_FNUZ;
|
101 |
+
case c10::ScalarType::Float8_e5m2fnuz:
|
102 |
+
return HIP_R_8F_E5M2_FNUZ;
|
103 |
+
#else
|
104 |
+
case c10::ScalarType::Float8_e4m3fnuz:
|
105 |
+
return static_cast<hipDataType>(1000);
|
106 |
+
case c10::ScalarType::Float8_e5m2fnuz:
|
107 |
+
return static_cast<hipDataType>(1001);
|
108 |
+
#endif
|
109 |
+
#endif
|
110 |
+
default:
|
111 |
+
TORCH_INTERNAL_ASSERT(false, "Cannot convert ScalarType ", scalar_type, " to cudaDataType.")
|
112 |
+
}
|
113 |
+
}
|
114 |
+
|
115 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDADevice.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/Exceptions.h>
|
4 |
+
|
5 |
+
#include <cuda.h>
|
6 |
+
#include <cuda_runtime.h>
|
7 |
+
|
8 |
+
namespace at::cuda {
|
9 |
+
|
10 |
+
inline Device getDeviceFromPtr(void* ptr) {
|
11 |
+
cudaPointerAttributes attr{};
|
12 |
+
|
13 |
+
AT_CUDA_CHECK(cudaPointerGetAttributes(&attr, ptr));
|
14 |
+
|
15 |
+
#if !defined(USE_ROCM)
|
16 |
+
TORCH_CHECK(attr.type != cudaMemoryTypeUnregistered,
|
17 |
+
"The specified pointer resides on host memory and is not registered with any CUDA device.");
|
18 |
+
#endif
|
19 |
+
|
20 |
+
return {c10::DeviceType::CUDA, static_cast<DeviceIndex>(attr.device)};
|
21 |
+
}
|
22 |
+
|
23 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGeneratorImpl.h
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Generator.h>
|
4 |
+
#include <ATen/cuda/PhiloxCudaState.h>
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <limits>
|
7 |
+
#include <atomic>
|
8 |
+
|
9 |
+
namespace at {
|
10 |
+
/**
|
11 |
+
* Note [CUDA Graph-safe RNG states]
|
12 |
+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
13 |
+
*
|
14 |
+
* Strategy:
|
15 |
+
* ~~~~~~~~~
|
16 |
+
* (It helps to look at
|
17 |
+
* cuda/detail/PhiloxCudaStateRaw.cuh and
|
18 |
+
* cuda/detail/UnpackRaw.cuh
|
19 |
+
* while you read this.)
|
20 |
+
*
|
21 |
+
* A CUDA graph containing multiple RNG ops behaves like a
|
22 |
+
* single giant kernel from the perspective of ops external
|
23 |
+
* to the graph. During graph capture, logic in CUDAGeneratorImpl
|
24 |
+
* records the total of all offset increments that occur in the
|
25 |
+
* graphed region, and records the final total as the offset for
|
26 |
+
* the entire graph.
|
27 |
+
*
|
28 |
+
* When the graph reruns, the logic that reruns it
|
29 |
+
* increments this device's CUDA generator's offset
|
30 |
+
* by that total.
|
31 |
+
*
|
32 |
+
* Meanwhile, within the graph, at capture time, instead of
|
33 |
+
* populating PhiloxCudaStates with the uint64_t offset pulled
|
34 |
+
* directly from the global state, PhiloxCudaState uses a pointer
|
35 |
+
* to a one-element stream-local int64_t device tensor
|
36 |
+
* holding an initial offset value, and a uint64_t holding an
|
37 |
+
* intra-graph offset. (The intra-graph offset starts from zero
|
38 |
+
* when capture begins.) In each consumer kernel,
|
39 |
+
* at::cuda::philox::unpack computes the offset to use for this kernel
|
40 |
+
* as intra-graph offset + *initial offset.
|
41 |
+
*
|
42 |
+
* When the graph reruns, the logic that reruns it first
|
43 |
+
* fill_s the initial offset tensor with this device's
|
44 |
+
* CUDA generator's current offset.
|
45 |
+
*
|
46 |
+
* The control flow above ensures graphed execution is bitwise
|
47 |
+
* identical to eager execution as long as RNG ops are enqueued
|
48 |
+
* from a single thread, even if RNG ops and graphs containing
|
49 |
+
* RNG ops are enqueued and run simultaneously on multiple streams.
|
50 |
+
*
|
51 |
+
* Usage:
|
52 |
+
* ~~~~~~
|
53 |
+
* PhiloxCudaState in this file, and unpack() in
|
54 |
+
* cuda/CUDAGraphsUtils.cuh allow non-divergent use of
|
55 |
+
* CUDAGeneratorImpl whether graph capture is underway or not.
|
56 |
+
*
|
57 |
+
* Each PhiloxCudaState instance should be used for one and only one
|
58 |
+
* consumer kernel.
|
59 |
+
*
|
60 |
+
* Example (see e.g. native/cuda/Dropout.cu):
|
61 |
+
*
|
62 |
+
* #include <ATen/cuda/CUDAGeneratorImpl.h>
|
63 |
+
* #include <ATen/cuda/CUDAGraphsUtils.cuh>
|
64 |
+
*
|
65 |
+
* __global__ void kernel(..., PhiloxCudaState philox_args) {
|
66 |
+
* auto seeds = at::cuda::philox::unpack(philox_args);
|
67 |
+
* IndexType idx = blockIdx.x * blockDim.x + threadIdx.x;
|
68 |
+
* curandStatePhilox4_32_10_t state;
|
69 |
+
* curand_init(std::get<0>(seeds), // seed
|
70 |
+
* idx, // per-thread subsequence
|
71 |
+
* std::get<1>(seeds), // offset in subsequence
|
72 |
+
* &state);
|
73 |
+
* ...
|
74 |
+
* }
|
75 |
+
*
|
76 |
+
* host_caller(...) {
|
77 |
+
* PhiloxCudaState rng_engine_inputs;
|
78 |
+
* {
|
79 |
+
* // See Note [Acquire lock when using random generators]
|
80 |
+
* std::lock_guard<std::mutex> lock(gen->mutex_);
|
81 |
+
*
|
82 |
+
* // gen could be HostState or DevState here! No divergent code needed!
|
83 |
+
* rng_engine_inputs = gen->philox_cuda_state(offset_increment);
|
84 |
+
* }
|
85 |
+
* kernel<<<...>>>(..., rng_engine_inputs);
|
86 |
+
* }
|
87 |
+
*
|
88 |
+
*/
|
89 |
+
|
90 |
+
struct TORCH_CUDA_CPP_API CUDAGeneratorImpl : public c10::GeneratorImpl {
|
91 |
+
// Constructors
|
92 |
+
CUDAGeneratorImpl(DeviceIndex device_index = -1);
|
93 |
+
~CUDAGeneratorImpl() override = default;
|
94 |
+
|
95 |
+
// CUDAGeneratorImpl methods
|
96 |
+
std::shared_ptr<CUDAGeneratorImpl> clone() const;
|
97 |
+
void set_current_seed(uint64_t seed) override;
|
98 |
+
void set_offset(uint64_t offset) override;
|
99 |
+
uint64_t get_offset() const override;
|
100 |
+
uint64_t current_seed() const override;
|
101 |
+
uint64_t seed() override;
|
102 |
+
void set_state(const c10::TensorImpl& new_state) override;
|
103 |
+
c10::intrusive_ptr<c10::TensorImpl> get_state() const override;
|
104 |
+
void set_philox_offset_per_thread(uint64_t offset);
|
105 |
+
uint64_t philox_offset_per_thread() const;
|
106 |
+
void capture_prologue(int64_t* seed_extragraph, int64_t* offset_extragraph);
|
107 |
+
uint64_t capture_epilogue();
|
108 |
+
PhiloxCudaState philox_cuda_state(uint64_t increment);
|
109 |
+
|
110 |
+
bool reset_rnn_state() {
|
111 |
+
return !no_reset_rnn_state_.test_and_set();
|
112 |
+
}
|
113 |
+
|
114 |
+
// Temporarily accommodates call sites that use philox_engine_inputs.
|
115 |
+
// Allows incremental refactor of call sites to use philox_cuda_state.
|
116 |
+
std::pair<uint64_t, uint64_t> philox_engine_inputs(uint64_t increment);
|
117 |
+
|
118 |
+
static c10::DeviceType device_type();
|
119 |
+
|
120 |
+
private:
|
121 |
+
CUDAGeneratorImpl* clone_impl() const override;
|
122 |
+
uint64_t seed_ = default_rng_seed_val;
|
123 |
+
uint64_t philox_offset_per_thread_ = 0;
|
124 |
+
int64_t* seed_extragraph_{};
|
125 |
+
int64_t* offset_extragraph_{};
|
126 |
+
uint32_t offset_intragraph_ = 0;
|
127 |
+
bool graph_expects_this_gen_ = false;
|
128 |
+
std::atomic_flag no_reset_rnn_state_;
|
129 |
+
};
|
130 |
+
|
131 |
+
namespace cuda::detail {
|
132 |
+
|
133 |
+
TORCH_CUDA_CPP_API const Generator& getDefaultCUDAGenerator(
|
134 |
+
DeviceIndex device_index = -1);
|
135 |
+
TORCH_CUDA_CPP_API Generator createCUDAGenerator(DeviceIndex device_index = -1);
|
136 |
+
|
137 |
+
} // namespace cuda::detail
|
138 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGraph.h
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <c10/core/Device.h>
|
5 |
+
#include <c10/cuda/CUDAGraphsC10Utils.h>
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
|
8 |
+
#include <mutex>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
|
12 |
+
struct CUDAGeneratorImpl;
|
13 |
+
|
14 |
+
namespace cuda {
|
15 |
+
|
16 |
+
// Standalone way to get a unique mempool id usable as a pool=... argument
|
17 |
+
// to CUDAGraph::capture_begin
|
18 |
+
TORCH_CUDA_CPP_API MempoolId_t graph_pool_handle();
|
19 |
+
|
20 |
+
struct TORCH_CUDA_CPP_API CUDAGraph {
|
21 |
+
CUDAGraph();
|
22 |
+
~CUDAGraph();
|
23 |
+
|
24 |
+
static void inc_pending_event_queries();
|
25 |
+
static void dec_pending_event_queries();
|
26 |
+
static int num_pending_event_queries();
|
27 |
+
void capture_begin(MempoolId_t pool={0, 0}, cudaStreamCaptureMode capture_mode = cudaStreamCaptureModeGlobal);
|
28 |
+
void capture_end();
|
29 |
+
void replay();
|
30 |
+
void reset();
|
31 |
+
MempoolId_t pool();
|
32 |
+
void enable_debug_mode();
|
33 |
+
void debug_dump(const std::string& debug_path);
|
34 |
+
|
35 |
+
protected:
|
36 |
+
#if !defined(USE_ROCM) || ROCM_VERSION >= 50300
|
37 |
+
cudaGraph_t graph_ = NULL;
|
38 |
+
cudaGraphExec_t graph_exec_ = NULL;
|
39 |
+
#endif
|
40 |
+
|
41 |
+
static std::atomic<int> pending_event_queries;
|
42 |
+
|
43 |
+
// internal states so reset() can do its best cleaning up
|
44 |
+
// Set to true in capture_end if cudaStreamEndCapture succeeded
|
45 |
+
// Set back to false soon after, when graph_ is consumed by cudaGraphInstantiate
|
46 |
+
// to create graph_exec_, then graph_ is deleted
|
47 |
+
bool has_graph_ = false;
|
48 |
+
// Set to true in capture_end if cudaGraphInstantiate succeeded
|
49 |
+
bool has_graph_exec_ = false;
|
50 |
+
|
51 |
+
// uuid of this instance's current capture, used to
|
52 |
+
// specify the pool.
|
53 |
+
CaptureId_t id_;
|
54 |
+
|
55 |
+
// the ID assigned by cuda during graph capture,
|
56 |
+
// used to identify when a stream is participating in capture
|
57 |
+
CaptureId_t capture_id_ = -1;
|
58 |
+
|
59 |
+
// uuid used to request a particular private mempool from CUDACachingAllocator.
|
60 |
+
// By default, this will be set to {id_, 0}.
|
61 |
+
//
|
62 |
+
// If capture_begin is called with "pool=other_graph.pool()", this graph's mempool_id_
|
63 |
+
// will be set to the other graph's mempool_id_, and therefore share a mempool with the
|
64 |
+
// other graph.
|
65 |
+
//
|
66 |
+
// If capture_begin is called with "pool=handle" where "handle" came from graph_pool_handle(),
|
67 |
+
// it will share a mempool with any other captures that used "pool=handle".
|
68 |
+
//
|
69 |
+
// Sharing a mempool across graphs saves memory, and it's safe if you
|
70 |
+
// know you'll replay those graphs in the same order you captured them.
|
71 |
+
MempoolId_t mempool_id_;
|
72 |
+
|
73 |
+
// Stream on which capture began
|
74 |
+
at::cuda::CUDAStream capture_stream_;
|
75 |
+
|
76 |
+
// Default generator on device where capture began
|
77 |
+
at::CUDAGeneratorImpl* capture_gen_;
|
78 |
+
|
79 |
+
// Device where capture occurred. Right now, for simplicity, we require all ops
|
80 |
+
// in a capture to run on the same device, but this is a limitation of CUDAGraph,
|
81 |
+
// not CUDA itself. We can straightforwardly modify CUDAGraph to support multi-device
|
82 |
+
// captures if needed.
|
83 |
+
int capture_dev_;
|
84 |
+
|
85 |
+
// RNG state trackers
|
86 |
+
at::Tensor seed_extragraph_;
|
87 |
+
at::Tensor offset_extragraph_;
|
88 |
+
uint64_t wholegraph_increment_;
|
89 |
+
};
|
90 |
+
|
91 |
+
} // namespace cuda
|
92 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAGraphsUtils.cuh
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/CUDAGeneratorImpl.h>
|
4 |
+
#include <ATen/cuda/CUDAEvent.h>
|
5 |
+
#include <ATen/cuda/PhiloxUtils.cuh>
|
6 |
+
#include <ATen/cuda/detail/CUDAHooks.h>
|
7 |
+
#include <ATen/detail/CUDAHooksInterface.h>
|
8 |
+
#include <c10/core/StreamGuard.h>
|
9 |
+
#include <c10/cuda/CUDAGraphsC10Utils.h>
|
10 |
+
#include <c10/cuda/CUDAGuard.h>
|
11 |
+
|
12 |
+
// c10/cuda/CUDAGraphsC10Utils.h has utils used by both c10 and aten.
|
13 |
+
// This file adds utils used by aten only.
|
14 |
+
|
15 |
+
namespace at::cuda {
|
16 |
+
|
17 |
+
using CaptureId_t = c10::cuda::CaptureId_t;
|
18 |
+
using CaptureStatus = c10::cuda::CaptureStatus;
|
19 |
+
|
20 |
+
// Use this version where you don't want to create a CUDA context if none exists.
|
21 |
+
inline CaptureStatus currentStreamCaptureStatus() {
|
22 |
+
#if !defined(USE_ROCM) || ROCM_VERSION >= 50300
|
23 |
+
// don't create a context if we don't have to
|
24 |
+
if (c10::cuda::hasPrimaryContext(c10::cuda::current_device())) {
|
25 |
+
return c10::cuda::currentStreamCaptureStatusMayInitCtx();
|
26 |
+
} else {
|
27 |
+
return CaptureStatus::None;
|
28 |
+
}
|
29 |
+
#else
|
30 |
+
return CaptureStatus::None;
|
31 |
+
#endif
|
32 |
+
}
|
33 |
+
|
34 |
+
inline void assertNotCapturing(std::string attempt) {
|
35 |
+
auto status = currentStreamCaptureStatus();
|
36 |
+
TORCH_CHECK(status == CaptureStatus::None,
|
37 |
+
attempt,
|
38 |
+
" during CUDA graph capture. If you need this call to be captured, "
|
39 |
+
"please file an issue. "
|
40 |
+
"Current cudaStreamCaptureStatus: ",
|
41 |
+
status);
|
42 |
+
}
|
43 |
+
|
44 |
+
inline void errorIfCapturingCudnnBenchmark(std::string version_specific) {
|
45 |
+
auto status = currentStreamCaptureStatus();
|
46 |
+
TORCH_CHECK(status == CaptureStatus::None,
|
47 |
+
"Current cudaStreamCaptureStatus: ",
|
48 |
+
status,
|
49 |
+
"\nCapturing ",
|
50 |
+
version_specific,
|
51 |
+
"is prohibited. Possible causes of this error:\n"
|
52 |
+
"1. No warmup iterations occurred before capture.\n"
|
53 |
+
"2. The convolutions you're trying to capture use dynamic shapes, "
|
54 |
+
"in which case capturing them is generally prohibited.");
|
55 |
+
}
|
56 |
+
|
57 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDASparse.h
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/CUDAContext.h>
|
4 |
+
#if defined(USE_ROCM)
|
5 |
+
#include <hipsparse/hipsparse-version.h>
|
6 |
+
#define HIPSPARSE_VERSION ((hipsparseVersionMajor*100000) + (hipsparseVersionMinor*100) + hipsparseVersionPatch)
|
7 |
+
#endif
|
8 |
+
|
9 |
+
// cuSparse Generic API added in CUDA 10.1
|
10 |
+
// Windows support added in CUDA 11.0
|
11 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && ((CUSPARSE_VERSION >= 10300) || (CUSPARSE_VERSION >= 11000 && defined(_WIN32)))
|
12 |
+
#define AT_USE_CUSPARSE_GENERIC_API() 1
|
13 |
+
#else
|
14 |
+
#define AT_USE_CUSPARSE_GENERIC_API() 0
|
15 |
+
#endif
|
16 |
+
|
17 |
+
// cuSparse Generic API descriptor pointers were changed to const in CUDA 12.0
|
18 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
|
19 |
+
(CUSPARSE_VERSION < 12000)
|
20 |
+
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 1
|
21 |
+
#else
|
22 |
+
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 0
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
|
26 |
+
(CUSPARSE_VERSION >= 12000)
|
27 |
+
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 1
|
28 |
+
#else
|
29 |
+
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 0
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#if defined(USE_ROCM)
|
33 |
+
// hipSparse const API added in v2.4.0
|
34 |
+
#if HIPSPARSE_VERSION >= 200400
|
35 |
+
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 1
|
36 |
+
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
|
37 |
+
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
38 |
+
#else
|
39 |
+
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
|
40 |
+
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 1
|
41 |
+
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
42 |
+
#endif
|
43 |
+
#else // USE_ROCM
|
44 |
+
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
|
45 |
+
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
|
46 |
+
#define AT_USE_HIPSPARSE_GENERIC_API() 0
|
47 |
+
#endif // USE_ROCM
|
48 |
+
|
49 |
+
// cuSparse Generic API spsv function was added in CUDA 11.3.0
|
50 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11500)
|
51 |
+
#define AT_USE_CUSPARSE_GENERIC_SPSV() 1
|
52 |
+
#else
|
53 |
+
#define AT_USE_CUSPARSE_GENERIC_SPSV() 0
|
54 |
+
#endif
|
55 |
+
|
56 |
+
// cuSparse Generic API spsm function was added in CUDA 11.3.1
|
57 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11600)
|
58 |
+
#define AT_USE_CUSPARSE_GENERIC_SPSM() 1
|
59 |
+
#else
|
60 |
+
#define AT_USE_CUSPARSE_GENERIC_SPSM() 0
|
61 |
+
#endif
|
62 |
+
|
63 |
+
// cuSparse Generic API sddmm function was added in CUDA 11.2.1 (cuSparse version 11400)
|
64 |
+
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11400)
|
65 |
+
#define AT_USE_CUSPARSE_GENERIC_SDDMM() 1
|
66 |
+
#else
|
67 |
+
#define AT_USE_CUSPARSE_GENERIC_SDDMM() 0
|
68 |
+
#endif
|
69 |
+
|
70 |
+
// BSR triangular solve functions were added in hipSPARSE 1.11.2 (ROCm 4.5.0)
|
71 |
+
#if defined(CUDART_VERSION) || \
|
72 |
+
(defined(USE_ROCM) && ROCM_VERSION >= 40500 )
|
73 |
+
#define AT_USE_HIPSPARSE_TRIANGULAR_SOLVE() 1
|
74 |
+
#else
|
75 |
+
#define AT_USE_HIPSPARSE_TRIANGULAR_SOLVE() 0
|
76 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDASparseBlas.h
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
/*
|
4 |
+
Provides a subset of cuSPARSE functions as templates:
|
5 |
+
|
6 |
+
csrgeam2<scalar_t>(...)
|
7 |
+
|
8 |
+
where scalar_t is double, float, c10::complex<double> or c10::complex<float>.
|
9 |
+
The functions are available in at::cuda::sparse namespace.
|
10 |
+
*/
|
11 |
+
|
12 |
+
#include <ATen/cuda/CUDAContext.h>
|
13 |
+
#include <ATen/cuda/CUDASparse.h>
|
14 |
+
|
15 |
+
namespace at::cuda::sparse {
|
16 |
+
|
17 |
+
#define CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(scalar_t) \
|
18 |
+
cusparseHandle_t handle, int m, int n, const scalar_t *alpha, \
|
19 |
+
const cusparseMatDescr_t descrA, int nnzA, \
|
20 |
+
const scalar_t *csrSortedValA, const int *csrSortedRowPtrA, \
|
21 |
+
const int *csrSortedColIndA, const scalar_t *beta, \
|
22 |
+
const cusparseMatDescr_t descrB, int nnzB, \
|
23 |
+
const scalar_t *csrSortedValB, const int *csrSortedRowPtrB, \
|
24 |
+
const int *csrSortedColIndB, const cusparseMatDescr_t descrC, \
|
25 |
+
const scalar_t *csrSortedValC, const int *csrSortedRowPtrC, \
|
26 |
+
const int *csrSortedColIndC, size_t *pBufferSizeInBytes
|
27 |
+
|
28 |
+
template <typename scalar_t>
|
29 |
+
inline void csrgeam2_bufferSizeExt(
|
30 |
+
CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(scalar_t)) {
|
31 |
+
TORCH_INTERNAL_ASSERT(
|
32 |
+
false,
|
33 |
+
"at::cuda::sparse::csrgeam2_bufferSizeExt: not implemented for ",
|
34 |
+
typeid(scalar_t).name());
|
35 |
+
}
|
36 |
+
|
37 |
+
template <>
|
38 |
+
void csrgeam2_bufferSizeExt<float>(
|
39 |
+
CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(float));
|
40 |
+
template <>
|
41 |
+
void csrgeam2_bufferSizeExt<double>(
|
42 |
+
CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(double));
|
43 |
+
template <>
|
44 |
+
void csrgeam2_bufferSizeExt<c10::complex<float>>(
|
45 |
+
CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(c10::complex<float>));
|
46 |
+
template <>
|
47 |
+
void csrgeam2_bufferSizeExt<c10::complex<double>>(
|
48 |
+
CUSPARSE_CSRGEAM2_BUFFERSIZE_ARGTYPES(c10::complex<double>));
|
49 |
+
|
50 |
+
#define CUSPARSE_CSRGEAM2_NNZ_ARGTYPES() \
|
51 |
+
cusparseHandle_t handle, int m, int n, const cusparseMatDescr_t descrA, \
|
52 |
+
int nnzA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, \
|
53 |
+
const cusparseMatDescr_t descrB, int nnzB, const int *csrSortedRowPtrB, \
|
54 |
+
const int *csrSortedColIndB, const cusparseMatDescr_t descrC, \
|
55 |
+
int *csrSortedRowPtrC, int *nnzTotalDevHostPtr, void *workspace
|
56 |
+
|
57 |
+
template <typename scalar_t>
|
58 |
+
inline void csrgeam2Nnz(CUSPARSE_CSRGEAM2_NNZ_ARGTYPES()) {
|
59 |
+
TORCH_CUDASPARSE_CHECK(cusparseXcsrgeam2Nnz(
|
60 |
+
handle,
|
61 |
+
m,
|
62 |
+
n,
|
63 |
+
descrA,
|
64 |
+
nnzA,
|
65 |
+
csrSortedRowPtrA,
|
66 |
+
csrSortedColIndA,
|
67 |
+
descrB,
|
68 |
+
nnzB,
|
69 |
+
csrSortedRowPtrB,
|
70 |
+
csrSortedColIndB,
|
71 |
+
descrC,
|
72 |
+
csrSortedRowPtrC,
|
73 |
+
nnzTotalDevHostPtr,
|
74 |
+
workspace));
|
75 |
+
}
|
76 |
+
|
77 |
+
#define CUSPARSE_CSRGEAM2_ARGTYPES(scalar_t) \
|
78 |
+
cusparseHandle_t handle, int m, int n, const scalar_t *alpha, \
|
79 |
+
const cusparseMatDescr_t descrA, int nnzA, \
|
80 |
+
const scalar_t *csrSortedValA, const int *csrSortedRowPtrA, \
|
81 |
+
const int *csrSortedColIndA, const scalar_t *beta, \
|
82 |
+
const cusparseMatDescr_t descrB, int nnzB, \
|
83 |
+
const scalar_t *csrSortedValB, const int *csrSortedRowPtrB, \
|
84 |
+
const int *csrSortedColIndB, const cusparseMatDescr_t descrC, \
|
85 |
+
scalar_t *csrSortedValC, int *csrSortedRowPtrC, int *csrSortedColIndC, \
|
86 |
+
void *pBuffer
|
87 |
+
|
88 |
+
template <typename scalar_t>
|
89 |
+
inline void csrgeam2(CUSPARSE_CSRGEAM2_ARGTYPES(scalar_t)) {
|
90 |
+
TORCH_INTERNAL_ASSERT(
|
91 |
+
false,
|
92 |
+
"at::cuda::sparse::csrgeam2: not implemented for ",
|
93 |
+
typeid(scalar_t).name());
|
94 |
+
}
|
95 |
+
|
96 |
+
template <>
|
97 |
+
void csrgeam2<float>(CUSPARSE_CSRGEAM2_ARGTYPES(float));
|
98 |
+
template <>
|
99 |
+
void csrgeam2<double>(CUSPARSE_CSRGEAM2_ARGTYPES(double));
|
100 |
+
template <>
|
101 |
+
void csrgeam2<c10::complex<float>>(
|
102 |
+
CUSPARSE_CSRGEAM2_ARGTYPES(c10::complex<float>));
|
103 |
+
template <>
|
104 |
+
void csrgeam2<c10::complex<double>>(
|
105 |
+
CUSPARSE_CSRGEAM2_ARGTYPES(c10::complex<double>));
|
106 |
+
|
107 |
+
#define CUSPARSE_BSRMM_ARGTYPES(scalar_t) \
|
108 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
109 |
+
cusparseOperation_t transA, cusparseOperation_t transB, int mb, int n, \
|
110 |
+
int kb, int nnzb, const scalar_t *alpha, \
|
111 |
+
const cusparseMatDescr_t descrA, const scalar_t *bsrValA, \
|
112 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
113 |
+
const scalar_t *B, int ldb, const scalar_t *beta, scalar_t *C, int ldc
|
114 |
+
|
115 |
+
template <typename scalar_t>
|
116 |
+
inline void bsrmm(CUSPARSE_BSRMM_ARGTYPES(scalar_t)) {
|
117 |
+
TORCH_INTERNAL_ASSERT(
|
118 |
+
false,
|
119 |
+
"at::cuda::sparse::bsrmm: not implemented for ",
|
120 |
+
typeid(scalar_t).name());
|
121 |
+
}
|
122 |
+
|
123 |
+
template <>
|
124 |
+
void bsrmm<float>(CUSPARSE_BSRMM_ARGTYPES(float));
|
125 |
+
template <>
|
126 |
+
void bsrmm<double>(CUSPARSE_BSRMM_ARGTYPES(double));
|
127 |
+
template <>
|
128 |
+
void bsrmm<c10::complex<float>>(CUSPARSE_BSRMM_ARGTYPES(c10::complex<float>));
|
129 |
+
template <>
|
130 |
+
void bsrmm<c10::complex<double>>(CUSPARSE_BSRMM_ARGTYPES(c10::complex<double>));
|
131 |
+
|
132 |
+
#define CUSPARSE_BSRMV_ARGTYPES(scalar_t) \
|
133 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
134 |
+
cusparseOperation_t transA, int mb, int nb, int nnzb, \
|
135 |
+
const scalar_t *alpha, const cusparseMatDescr_t descrA, \
|
136 |
+
const scalar_t *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, \
|
137 |
+
int blockDim, const scalar_t *x, const scalar_t *beta, scalar_t *y
|
138 |
+
|
139 |
+
template <typename scalar_t>
|
140 |
+
inline void bsrmv(CUSPARSE_BSRMV_ARGTYPES(scalar_t)) {
|
141 |
+
TORCH_INTERNAL_ASSERT(
|
142 |
+
false,
|
143 |
+
"at::cuda::sparse::bsrmv: not implemented for ",
|
144 |
+
typeid(scalar_t).name());
|
145 |
+
}
|
146 |
+
|
147 |
+
template <>
|
148 |
+
void bsrmv<float>(CUSPARSE_BSRMV_ARGTYPES(float));
|
149 |
+
template <>
|
150 |
+
void bsrmv<double>(CUSPARSE_BSRMV_ARGTYPES(double));
|
151 |
+
template <>
|
152 |
+
void bsrmv<c10::complex<float>>(CUSPARSE_BSRMV_ARGTYPES(c10::complex<float>));
|
153 |
+
template <>
|
154 |
+
void bsrmv<c10::complex<double>>(CUSPARSE_BSRMV_ARGTYPES(c10::complex<double>));
|
155 |
+
|
156 |
+
#if AT_USE_HIPSPARSE_TRIANGULAR_SOLVE()
|
157 |
+
|
158 |
+
#define CUSPARSE_BSRSV2_BUFFER_ARGTYPES(scalar_t) \
|
159 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
160 |
+
cusparseOperation_t transA, int mb, int nnzb, \
|
161 |
+
const cusparseMatDescr_t descrA, scalar_t *bsrValA, \
|
162 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
163 |
+
bsrsv2Info_t info, int *pBufferSizeInBytes
|
164 |
+
|
165 |
+
template <typename scalar_t>
|
166 |
+
inline void bsrsv2_bufferSize(CUSPARSE_BSRSV2_BUFFER_ARGTYPES(scalar_t)) {
|
167 |
+
TORCH_INTERNAL_ASSERT(
|
168 |
+
false,
|
169 |
+
"at::cuda::sparse::bsrsv2_bufferSize: not implemented for ",
|
170 |
+
typeid(scalar_t).name());
|
171 |
+
}
|
172 |
+
|
173 |
+
template <>
|
174 |
+
void bsrsv2_bufferSize<float>(CUSPARSE_BSRSV2_BUFFER_ARGTYPES(float));
|
175 |
+
template <>
|
176 |
+
void bsrsv2_bufferSize<double>(CUSPARSE_BSRSV2_BUFFER_ARGTYPES(double));
|
177 |
+
template <>
|
178 |
+
void bsrsv2_bufferSize<c10::complex<float>>(
|
179 |
+
CUSPARSE_BSRSV2_BUFFER_ARGTYPES(c10::complex<float>));
|
180 |
+
template <>
|
181 |
+
void bsrsv2_bufferSize<c10::complex<double>>(
|
182 |
+
CUSPARSE_BSRSV2_BUFFER_ARGTYPES(c10::complex<double>));
|
183 |
+
|
184 |
+
#define CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(scalar_t) \
|
185 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
186 |
+
cusparseOperation_t transA, int mb, int nnzb, \
|
187 |
+
const cusparseMatDescr_t descrA, const scalar_t *bsrValA, \
|
188 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
189 |
+
bsrsv2Info_t info, cusparseSolvePolicy_t policy, void *pBuffer
|
190 |
+
|
191 |
+
template <typename scalar_t>
|
192 |
+
inline void bsrsv2_analysis(CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(scalar_t)) {
|
193 |
+
TORCH_INTERNAL_ASSERT(
|
194 |
+
false,
|
195 |
+
"at::cuda::sparse::bsrsv2_analysis: not implemented for ",
|
196 |
+
typeid(scalar_t).name());
|
197 |
+
}
|
198 |
+
|
199 |
+
template <>
|
200 |
+
void bsrsv2_analysis<float>(CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(float));
|
201 |
+
template <>
|
202 |
+
void bsrsv2_analysis<double>(CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(double));
|
203 |
+
template <>
|
204 |
+
void bsrsv2_analysis<c10::complex<float>>(
|
205 |
+
CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(c10::complex<float>));
|
206 |
+
template <>
|
207 |
+
void bsrsv2_analysis<c10::complex<double>>(
|
208 |
+
CUSPARSE_BSRSV2_ANALYSIS_ARGTYPES(c10::complex<double>));
|
209 |
+
|
210 |
+
#define CUSPARSE_BSRSV2_SOLVE_ARGTYPES(scalar_t) \
|
211 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
212 |
+
cusparseOperation_t transA, int mb, int nnzb, const scalar_t *alpha, \
|
213 |
+
const cusparseMatDescr_t descrA, const scalar_t *bsrValA, \
|
214 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
215 |
+
bsrsv2Info_t info, const scalar_t *x, scalar_t *y, \
|
216 |
+
cusparseSolvePolicy_t policy, void *pBuffer
|
217 |
+
|
218 |
+
template <typename scalar_t>
|
219 |
+
inline void bsrsv2_solve(CUSPARSE_BSRSV2_SOLVE_ARGTYPES(scalar_t)) {
|
220 |
+
TORCH_INTERNAL_ASSERT(
|
221 |
+
false,
|
222 |
+
"at::cuda::sparse::bsrsv2_solve: not implemented for ",
|
223 |
+
typeid(scalar_t).name());
|
224 |
+
}
|
225 |
+
|
226 |
+
template <>
|
227 |
+
void bsrsv2_solve<float>(CUSPARSE_BSRSV2_SOLVE_ARGTYPES(float));
|
228 |
+
template <>
|
229 |
+
void bsrsv2_solve<double>(CUSPARSE_BSRSV2_SOLVE_ARGTYPES(double));
|
230 |
+
template <>
|
231 |
+
void bsrsv2_solve<c10::complex<float>>(
|
232 |
+
CUSPARSE_BSRSV2_SOLVE_ARGTYPES(c10::complex<float>));
|
233 |
+
template <>
|
234 |
+
void bsrsv2_solve<c10::complex<double>>(
|
235 |
+
CUSPARSE_BSRSV2_SOLVE_ARGTYPES(c10::complex<double>));
|
236 |
+
|
237 |
+
#define CUSPARSE_BSRSM2_BUFFER_ARGTYPES(scalar_t) \
|
238 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
239 |
+
cusparseOperation_t transA, cusparseOperation_t transX, int mb, int n, \
|
240 |
+
int nnzb, const cusparseMatDescr_t descrA, scalar_t *bsrValA, \
|
241 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
242 |
+
bsrsm2Info_t info, int *pBufferSizeInBytes
|
243 |
+
|
244 |
+
template <typename scalar_t>
|
245 |
+
inline void bsrsm2_bufferSize(CUSPARSE_BSRSM2_BUFFER_ARGTYPES(scalar_t)) {
|
246 |
+
TORCH_INTERNAL_ASSERT(
|
247 |
+
false,
|
248 |
+
"at::cuda::sparse::bsrsm2_bufferSize: not implemented for ",
|
249 |
+
typeid(scalar_t).name());
|
250 |
+
}
|
251 |
+
|
252 |
+
template <>
|
253 |
+
void bsrsm2_bufferSize<float>(CUSPARSE_BSRSM2_BUFFER_ARGTYPES(float));
|
254 |
+
template <>
|
255 |
+
void bsrsm2_bufferSize<double>(CUSPARSE_BSRSM2_BUFFER_ARGTYPES(double));
|
256 |
+
template <>
|
257 |
+
void bsrsm2_bufferSize<c10::complex<float>>(
|
258 |
+
CUSPARSE_BSRSM2_BUFFER_ARGTYPES(c10::complex<float>));
|
259 |
+
template <>
|
260 |
+
void bsrsm2_bufferSize<c10::complex<double>>(
|
261 |
+
CUSPARSE_BSRSM2_BUFFER_ARGTYPES(c10::complex<double>));
|
262 |
+
|
263 |
+
#define CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(scalar_t) \
|
264 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
265 |
+
cusparseOperation_t transA, cusparseOperation_t transX, int mb, int n, \
|
266 |
+
int nnzb, const cusparseMatDescr_t descrA, const scalar_t *bsrValA, \
|
267 |
+
const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, \
|
268 |
+
bsrsm2Info_t info, cusparseSolvePolicy_t policy, void *pBuffer
|
269 |
+
|
270 |
+
template <typename scalar_t>
|
271 |
+
inline void bsrsm2_analysis(CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(scalar_t)) {
|
272 |
+
TORCH_INTERNAL_ASSERT(
|
273 |
+
false,
|
274 |
+
"at::cuda::sparse::bsrsm2_analysis: not implemented for ",
|
275 |
+
typeid(scalar_t).name());
|
276 |
+
}
|
277 |
+
|
278 |
+
template <>
|
279 |
+
void bsrsm2_analysis<float>(CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(float));
|
280 |
+
template <>
|
281 |
+
void bsrsm2_analysis<double>(CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(double));
|
282 |
+
template <>
|
283 |
+
void bsrsm2_analysis<c10::complex<float>>(
|
284 |
+
CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(c10::complex<float>));
|
285 |
+
template <>
|
286 |
+
void bsrsm2_analysis<c10::complex<double>>(
|
287 |
+
CUSPARSE_BSRSM2_ANALYSIS_ARGTYPES(c10::complex<double>));
|
288 |
+
|
289 |
+
#define CUSPARSE_BSRSM2_SOLVE_ARGTYPES(scalar_t) \
|
290 |
+
cusparseHandle_t handle, cusparseDirection_t dirA, \
|
291 |
+
cusparseOperation_t transA, cusparseOperation_t transX, int mb, int n, \
|
292 |
+
int nnzb, const scalar_t *alpha, const cusparseMatDescr_t descrA, \
|
293 |
+
const scalar_t *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, \
|
294 |
+
int blockDim, bsrsm2Info_t info, const scalar_t *B, int ldb, \
|
295 |
+
scalar_t *X, int ldx, cusparseSolvePolicy_t policy, void *pBuffer
|
296 |
+
|
297 |
+
template <typename scalar_t>
|
298 |
+
inline void bsrsm2_solve(CUSPARSE_BSRSM2_SOLVE_ARGTYPES(scalar_t)) {
|
299 |
+
TORCH_INTERNAL_ASSERT(
|
300 |
+
false,
|
301 |
+
"at::cuda::sparse::bsrsm2_solve: not implemented for ",
|
302 |
+
typeid(scalar_t).name());
|
303 |
+
}
|
304 |
+
|
305 |
+
template <>
|
306 |
+
void bsrsm2_solve<float>(CUSPARSE_BSRSM2_SOLVE_ARGTYPES(float));
|
307 |
+
template <>
|
308 |
+
void bsrsm2_solve<double>(CUSPARSE_BSRSM2_SOLVE_ARGTYPES(double));
|
309 |
+
template <>
|
310 |
+
void bsrsm2_solve<c10::complex<float>>(
|
311 |
+
CUSPARSE_BSRSM2_SOLVE_ARGTYPES(c10::complex<float>));
|
312 |
+
template <>
|
313 |
+
void bsrsm2_solve<c10::complex<double>>(
|
314 |
+
CUSPARSE_BSRSM2_SOLVE_ARGTYPES(c10::complex<double>));
|
315 |
+
|
316 |
+
#endif // AT_USE_HIPSPARSE_TRIANGULAR_SOLVE
|
317 |
+
|
318 |
+
} // namespace at::cuda::sparse
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDATensorMethods.cuh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <c10/util/Half.h>
|
5 |
+
|
6 |
+
#include <cuda.h>
|
7 |
+
#include <cuda_runtime.h>
|
8 |
+
#include <cuda_fp16.h>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
template <>
|
12 |
+
inline __half* Tensor::data() const {
|
13 |
+
return reinterpret_cast<__half*>(data<Half>());
|
14 |
+
}
|
15 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAUtils.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/CUDAContext.h>
|
4 |
+
|
5 |
+
namespace at::cuda {
|
6 |
+
|
7 |
+
// Check if every tensor in a list of tensors matches the current
|
8 |
+
// device.
|
9 |
+
inline bool check_device(ArrayRef<Tensor> ts) {
|
10 |
+
if (ts.empty()) {
|
11 |
+
return true;
|
12 |
+
}
|
13 |
+
Device curDevice = Device(kCUDA, current_device());
|
14 |
+
for (const Tensor& t : ts) {
|
15 |
+
if (t.device() != curDevice) return false;
|
16 |
+
}
|
17 |
+
return true;
|
18 |
+
}
|
19 |
+
|
20 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/CachingHostAllocator.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/cuda/CUDAStream.h>
|
5 |
+
|
6 |
+
namespace at::cuda {
|
7 |
+
|
8 |
+
//
|
9 |
+
// A caching allocator for CUDA host allocations (pinned memory).
|
10 |
+
//
|
11 |
+
// This provides a drop-in replacement for THCudaHostAllocator, which re-uses
|
12 |
+
// freed pinned (page-locked) memory allocations. This avoids device
|
13 |
+
// synchronizations due to cudaFreeHost calls.
|
14 |
+
//
|
15 |
+
// To ensure correct behavior, THCCachingHostAllocator_recordEvent must be
|
16 |
+
// called anytime a pointer from this allocator is used in a cudaMemcpyAsync
|
17 |
+
// call between host and device, and passed the corresponding context from the
|
18 |
+
// allocation. This is currently invoked by at::native::copy_kernel_cuda.
|
19 |
+
//
|
20 |
+
// Note that this allocator does not split larger allocations into smaller
|
21 |
+
// blocks, unlike the caching device allocator.
|
22 |
+
//
|
23 |
+
TORCH_CUDA_CPP_API c10::Allocator* getCachingHostAllocator();
|
24 |
+
|
25 |
+
// Records an event in the specified stream. The allocation corresponding to the
|
26 |
+
// input `ptr`/`ctx` will not be re-used until the event has occurred.
|
27 |
+
TORCH_CUDA_CPP_API bool
|
28 |
+
CachingHostAllocator_recordEvent(void* ptr, void* ctx, c10::cuda::CUDAStream stream);
|
29 |
+
|
30 |
+
// Releases cached pinned memory allocations via cudaHostFree
|
31 |
+
TORCH_CUDA_CPP_API void CachingHostAllocator_emptyCache();
|
32 |
+
|
33 |
+
inline TORCH_CUDA_CPP_API at::DataPtr HostAlloc(size_t size) {
|
34 |
+
return getCachingHostAllocator()->allocate(size);
|
35 |
+
}
|
36 |
+
|
37 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/DeviceUtils.cuh
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cuda.h>
|
4 |
+
#include <c10/util/complex.h>
|
5 |
+
#include <c10/util/Half.h>
|
6 |
+
|
7 |
+
__device__ __forceinline__ unsigned int ACTIVE_MASK()
|
8 |
+
{
|
9 |
+
#if !defined(USE_ROCM)
|
10 |
+
return __activemask();
|
11 |
+
#else
|
12 |
+
// will be ignored anyway
|
13 |
+
return 0xffffffff;
|
14 |
+
#endif
|
15 |
+
}
|
16 |
+
|
17 |
+
__device__ __forceinline__ void WARP_SYNC(unsigned mask = 0xffffffff) {
|
18 |
+
#if !defined(USE_ROCM)
|
19 |
+
return __syncwarp(mask);
|
20 |
+
#endif
|
21 |
+
}
|
22 |
+
|
23 |
+
#if defined(USE_ROCM)
|
24 |
+
__device__ __forceinline__ unsigned long long int WARP_BALLOT(int predicate)
|
25 |
+
{
|
26 |
+
return __ballot(predicate);
|
27 |
+
}
|
28 |
+
#else
|
29 |
+
__device__ __forceinline__ unsigned int WARP_BALLOT(int predicate, unsigned int mask = 0xffffffff)
|
30 |
+
{
|
31 |
+
#if !defined(USE_ROCM)
|
32 |
+
return __ballot_sync(mask, predicate);
|
33 |
+
#else
|
34 |
+
return __ballot(predicate);
|
35 |
+
#endif
|
36 |
+
}
|
37 |
+
#endif
|
38 |
+
|
39 |
+
template <typename T>
|
40 |
+
__device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
|
41 |
+
{
|
42 |
+
#if !defined(USE_ROCM)
|
43 |
+
return __shfl_xor_sync(mask, value, laneMask, width);
|
44 |
+
#else
|
45 |
+
return __shfl_xor(value, laneMask, width);
|
46 |
+
#endif
|
47 |
+
}
|
48 |
+
|
49 |
+
template <typename T>
|
50 |
+
__device__ __forceinline__ T WARP_SHFL(T value, int srcLane, int width = warpSize, unsigned int mask = 0xffffffff)
|
51 |
+
{
|
52 |
+
#if !defined(USE_ROCM)
|
53 |
+
return __shfl_sync(mask, value, srcLane, width);
|
54 |
+
#else
|
55 |
+
return __shfl(value, srcLane, width);
|
56 |
+
#endif
|
57 |
+
}
|
58 |
+
|
59 |
+
template <typename T>
|
60 |
+
__device__ __forceinline__ T WARP_SHFL_UP(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
|
61 |
+
{
|
62 |
+
#if !defined(USE_ROCM)
|
63 |
+
return __shfl_up_sync(mask, value, delta, width);
|
64 |
+
#else
|
65 |
+
return __shfl_up(value, delta, width);
|
66 |
+
#endif
|
67 |
+
}
|
68 |
+
|
69 |
+
template <typename T>
|
70 |
+
__device__ __forceinline__ T WARP_SHFL_DOWN(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
|
71 |
+
{
|
72 |
+
#if !defined(USE_ROCM)
|
73 |
+
return __shfl_down_sync(mask, value, delta, width);
|
74 |
+
#else
|
75 |
+
return __shfl_down(value, delta, width);
|
76 |
+
#endif
|
77 |
+
}
|
78 |
+
|
79 |
+
#if defined(USE_ROCM)
|
80 |
+
template<>
|
81 |
+
__device__ __forceinline__ int64_t WARP_SHFL_DOWN<int64_t>(int64_t value, unsigned int delta, int width , unsigned int mask)
|
82 |
+
{
|
83 |
+
//(HIP doesn't support int64_t). Trick from https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
|
84 |
+
int2 a = *reinterpret_cast<int2*>(&value);
|
85 |
+
a.x = __shfl_down(a.x, delta);
|
86 |
+
a.y = __shfl_down(a.y, delta);
|
87 |
+
return *reinterpret_cast<int64_t*>(&a);
|
88 |
+
}
|
89 |
+
#endif
|
90 |
+
|
91 |
+
template<>
|
92 |
+
__device__ __forceinline__ c10::Half WARP_SHFL_DOWN<c10::Half>(c10::Half value, unsigned int delta, int width, unsigned int mask)
|
93 |
+
{
|
94 |
+
return c10::Half(WARP_SHFL_DOWN<unsigned short>(value.x, delta, width, mask), c10::Half::from_bits_t{});
|
95 |
+
}
|
96 |
+
|
97 |
+
template <typename T>
|
98 |
+
__device__ __forceinline__ c10::complex<T> WARP_SHFL_DOWN(c10::complex<T> value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
|
99 |
+
{
|
100 |
+
#if !defined(USE_ROCM)
|
101 |
+
return c10::complex<T>(
|
102 |
+
__shfl_down_sync(mask, value.real_, delta, width),
|
103 |
+
__shfl_down_sync(mask, value.imag_, delta, width));
|
104 |
+
#else
|
105 |
+
return c10::complex<T>(
|
106 |
+
__shfl_down(value.real_, delta, width),
|
107 |
+
__shfl_down(value.imag_, delta, width));
|
108 |
+
#endif
|
109 |
+
}
|
110 |
+
|
111 |
+
/**
|
112 |
+
* For CC 3.5+, perform a load using __ldg
|
113 |
+
*/
|
114 |
+
template <typename T>
|
115 |
+
__device__ __forceinline__ T doLdg(const T* p) {
|
116 |
+
#if __CUDA_ARCH__ >= 350 && !defined(USE_ROCM)
|
117 |
+
return __ldg(p);
|
118 |
+
#else
|
119 |
+
return *p;
|
120 |
+
#endif
|
121 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/EmptyTensor.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/TensorBase.h>
|
3 |
+
|
4 |
+
namespace at::detail {
|
5 |
+
|
6 |
+
TORCH_CUDA_CPP_API TensorBase empty_cuda(
|
7 |
+
IntArrayRef size,
|
8 |
+
ScalarType dtype,
|
9 |
+
c10::optional<Device> device_opt,
|
10 |
+
c10::optional<c10::MemoryFormat> memory_format_opt);
|
11 |
+
|
12 |
+
TORCH_CUDA_CPP_API TensorBase empty_cuda(
|
13 |
+
IntArrayRef size,
|
14 |
+
c10::optional<ScalarType> dtype_opt,
|
15 |
+
c10::optional<Layout> layout_opt,
|
16 |
+
c10::optional<Device> device_opt,
|
17 |
+
c10::optional<bool> pin_memory_opt,
|
18 |
+
c10::optional<c10::MemoryFormat> memory_format_opt);
|
19 |
+
|
20 |
+
TORCH_CUDA_CPP_API TensorBase empty_cuda(
|
21 |
+
IntArrayRef size,
|
22 |
+
const TensorOptions &options);
|
23 |
+
|
24 |
+
TORCH_CUDA_CPP_API TensorBase empty_strided_cuda(
|
25 |
+
IntArrayRef size,
|
26 |
+
IntArrayRef stride,
|
27 |
+
ScalarType dtype,
|
28 |
+
c10::optional<Device> device_opt);
|
29 |
+
|
30 |
+
TORCH_CUDA_CPP_API TensorBase empty_strided_cuda(
|
31 |
+
IntArrayRef size,
|
32 |
+
IntArrayRef stride,
|
33 |
+
c10::optional<ScalarType> dtype_opt,
|
34 |
+
c10::optional<Layout> layout_opt,
|
35 |
+
c10::optional<Device> device_opt,
|
36 |
+
c10::optional<bool> pin_memory_opt);
|
37 |
+
|
38 |
+
TORCH_CUDA_CPP_API TensorBase empty_strided_cuda(
|
39 |
+
IntArrayRef size,
|
40 |
+
IntArrayRef stride,
|
41 |
+
const TensorOptions &options);
|
42 |
+
|
43 |
+
|
44 |
+
} // namespace at::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/NumericLimits.cuh
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cuda.h>
|
4 |
+
#include <limits.h>
|
5 |
+
#include <math.h>
|
6 |
+
#include <float.h>
|
7 |
+
|
8 |
+
// NumericLimits.cuh is a holder for numeric limits definitions of commonly used
|
9 |
+
// types. This header is very specific to ROCm HIP and may be removed in the future.
|
10 |
+
// This header is derived from the legacy THCNumerics.cuh.
|
11 |
+
|
12 |
+
// The lower_bound and upper_bound constants are same as lowest and max for
|
13 |
+
// integral types, but are -inf and +inf for floating point types. They are
|
14 |
+
// useful in implementing min, max, etc.
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
template <typename T>
|
19 |
+
struct numeric_limits {
|
20 |
+
};
|
21 |
+
|
22 |
+
// WARNING: the following at::numeric_limits definitions are there only to support
|
23 |
+
// HIP compilation for the moment. Use std::numeric_limits if you are not
|
24 |
+
// compiling for ROCm.
|
25 |
+
// from @colesbury: "The functions on numeric_limits aren't marked with
|
26 |
+
// __device__ which is why they don't work with ROCm. CUDA allows them
|
27 |
+
// because they're constexpr."
|
28 |
+
|
29 |
+
namespace {
|
30 |
+
// ROCm doesn't like INFINITY too.
|
31 |
+
constexpr double inf = INFINITY;
|
32 |
+
}
|
33 |
+
|
34 |
+
template <>
|
35 |
+
struct numeric_limits<bool> {
|
36 |
+
static inline __host__ __device__ bool lowest() { return false; }
|
37 |
+
static inline __host__ __device__ bool max() { return true; }
|
38 |
+
static inline __host__ __device__ bool lower_bound() { return false; }
|
39 |
+
static inline __host__ __device__ bool upper_bound() { return true; }
|
40 |
+
};
|
41 |
+
|
42 |
+
template <>
|
43 |
+
struct numeric_limits<uint8_t> {
|
44 |
+
static inline __host__ __device__ uint8_t lowest() { return 0; }
|
45 |
+
static inline __host__ __device__ uint8_t max() { return UINT8_MAX; }
|
46 |
+
static inline __host__ __device__ uint8_t lower_bound() { return 0; }
|
47 |
+
static inline __host__ __device__ uint8_t upper_bound() { return UINT8_MAX; }
|
48 |
+
};
|
49 |
+
|
50 |
+
template <>
|
51 |
+
struct numeric_limits<int8_t> {
|
52 |
+
static inline __host__ __device__ int8_t lowest() { return INT8_MIN; }
|
53 |
+
static inline __host__ __device__ int8_t max() { return INT8_MAX; }
|
54 |
+
static inline __host__ __device__ int8_t lower_bound() { return INT8_MIN; }
|
55 |
+
static inline __host__ __device__ int8_t upper_bound() { return INT8_MAX; }
|
56 |
+
};
|
57 |
+
|
58 |
+
template <>
|
59 |
+
struct numeric_limits<int16_t> {
|
60 |
+
static inline __host__ __device__ int16_t lowest() { return INT16_MIN; }
|
61 |
+
static inline __host__ __device__ int16_t max() { return INT16_MAX; }
|
62 |
+
static inline __host__ __device__ int16_t lower_bound() { return INT16_MIN; }
|
63 |
+
static inline __host__ __device__ int16_t upper_bound() { return INT16_MAX; }
|
64 |
+
};
|
65 |
+
|
66 |
+
template <>
|
67 |
+
struct numeric_limits<int32_t> {
|
68 |
+
static inline __host__ __device__ int32_t lowest() { return INT32_MIN; }
|
69 |
+
static inline __host__ __device__ int32_t max() { return INT32_MAX; }
|
70 |
+
static inline __host__ __device__ int32_t lower_bound() { return INT32_MIN; }
|
71 |
+
static inline __host__ __device__ int32_t upper_bound() { return INT32_MAX; }
|
72 |
+
};
|
73 |
+
|
74 |
+
template <>
|
75 |
+
struct numeric_limits<int64_t> {
|
76 |
+
#ifdef _MSC_VER
|
77 |
+
static inline __host__ __device__ int64_t lowest() { return _I64_MIN; }
|
78 |
+
static inline __host__ __device__ int64_t max() { return _I64_MAX; }
|
79 |
+
static inline __host__ __device__ int64_t lower_bound() { return _I64_MIN; }
|
80 |
+
static inline __host__ __device__ int64_t upper_bound() { return _I64_MAX; }
|
81 |
+
#else
|
82 |
+
static inline __host__ __device__ int64_t lowest() { return INT64_MIN; }
|
83 |
+
static inline __host__ __device__ int64_t max() { return INT64_MAX; }
|
84 |
+
static inline __host__ __device__ int64_t lower_bound() { return INT64_MIN; }
|
85 |
+
static inline __host__ __device__ int64_t upper_bound() { return INT64_MAX; }
|
86 |
+
#endif
|
87 |
+
};
|
88 |
+
|
89 |
+
template <>
|
90 |
+
struct numeric_limits<at::Half> {
|
91 |
+
static inline __host__ __device__ at::Half lowest() { return at::Half(0xFBFF, at::Half::from_bits()); }
|
92 |
+
static inline __host__ __device__ at::Half max() { return at::Half(0x7BFF, at::Half::from_bits()); }
|
93 |
+
static inline __host__ __device__ at::Half lower_bound() { return at::Half(0xFC00, at::Half::from_bits()); }
|
94 |
+
static inline __host__ __device__ at::Half upper_bound() { return at::Half(0x7C00, at::Half::from_bits()); }
|
95 |
+
};
|
96 |
+
|
97 |
+
template <>
|
98 |
+
struct numeric_limits<at::BFloat16> {
|
99 |
+
static inline __host__ __device__ at::BFloat16 lowest() { return at::BFloat16(0xFF7F, at::BFloat16::from_bits()); }
|
100 |
+
static inline __host__ __device__ at::BFloat16 max() { return at::BFloat16(0x7F7F, at::BFloat16::from_bits()); }
|
101 |
+
static inline __host__ __device__ at::BFloat16 lower_bound() { return at::BFloat16(0xFF80, at::BFloat16::from_bits()); }
|
102 |
+
static inline __host__ __device__ at::BFloat16 upper_bound() { return at::BFloat16(0x7F80, at::BFloat16::from_bits()); }
|
103 |
+
};
|
104 |
+
|
105 |
+
template <>
|
106 |
+
struct numeric_limits<float> {
|
107 |
+
static inline __host__ __device__ float lowest() { return -FLT_MAX; }
|
108 |
+
static inline __host__ __device__ float max() { return FLT_MAX; }
|
109 |
+
static inline __host__ __device__ float lower_bound() { return -static_cast<float>(inf); }
|
110 |
+
static inline __host__ __device__ float upper_bound() { return static_cast<float>(inf); }
|
111 |
+
};
|
112 |
+
|
113 |
+
template <>
|
114 |
+
struct numeric_limits<double> {
|
115 |
+
static inline __host__ __device__ double lowest() { return -DBL_MAX; }
|
116 |
+
static inline __host__ __device__ double max() { return DBL_MAX; }
|
117 |
+
static inline __host__ __device__ double lower_bound() { return -inf; }
|
118 |
+
static inline __host__ __device__ double upper_bound() { return inf; }
|
119 |
+
};
|
120 |
+
|
121 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PeerToPeerAccess.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/macros/Macros.h>
|
2 |
+
#include <cstdint>
|
3 |
+
|
4 |
+
namespace at::cuda {
|
5 |
+
namespace detail {
|
6 |
+
void init_p2p_access_cache(int64_t num_devices);
|
7 |
+
}
|
8 |
+
|
9 |
+
TORCH_CUDA_CPP_API bool get_p2p_access(int source_dev, int dest_dev);
|
10 |
+
|
11 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PhiloxCudaState.h
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
#include <ATen/cuda/detail/PhiloxCudaStateRaw.cuh>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/PhiloxUtils.cuh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cuda/PhiloxCudaState.h>
|
4 |
+
#include <ATen/cuda/detail/UnpackRaw.cuh>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ScanUtils.cuh
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ceil_div.h>
|
4 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
5 |
+
#include <ATen/cuda/AsmUtils.cuh>
|
6 |
+
#include <c10/macros/Macros.h>
|
7 |
+
|
8 |
+
// Collection of in-kernel scan / prefix sum utilities
|
9 |
+
|
10 |
+
namespace at::cuda {
|
11 |
+
|
12 |
+
// Inclusive prefix sum for binary vars using intra-warp voting +
|
13 |
+
// shared memory
|
14 |
+
template <typename T, bool KillWARDependency, class BinaryFunction>
|
15 |
+
__device__ void inclusiveBinaryPrefixScan(T* smem, bool in, T* out, BinaryFunction binop) {
|
16 |
+
// Within-warp, we use warp voting.
|
17 |
+
#if defined (USE_ROCM)
|
18 |
+
unsigned long long int vote = WARP_BALLOT(in);
|
19 |
+
T index = __popcll(getLaneMaskLe() & vote);
|
20 |
+
T carry = __popcll(vote);
|
21 |
+
#else
|
22 |
+
T vote = WARP_BALLOT(in);
|
23 |
+
T index = __popc(getLaneMaskLe() & vote);
|
24 |
+
T carry = __popc(vote);
|
25 |
+
#endif
|
26 |
+
|
27 |
+
int warp = threadIdx.x / C10_WARP_SIZE;
|
28 |
+
|
29 |
+
// Per each warp, write out a value
|
30 |
+
if (getLaneId() == 0) {
|
31 |
+
smem[warp] = carry;
|
32 |
+
}
|
33 |
+
|
34 |
+
__syncthreads();
|
35 |
+
|
36 |
+
// Sum across warps in one thread. This appears to be faster than a
|
37 |
+
// warp shuffle scan for CC 3.0+
|
38 |
+
if (threadIdx.x == 0) {
|
39 |
+
int current = 0;
|
40 |
+
for (int i = 0; i < blockDim.x / C10_WARP_SIZE; ++i) {
|
41 |
+
T v = smem[i];
|
42 |
+
smem[i] = binop(smem[i], current);
|
43 |
+
current = binop(current, v);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
__syncthreads();
|
48 |
+
|
49 |
+
// load the carry from the preceding warp
|
50 |
+
if (warp >= 1) {
|
51 |
+
index = binop(index, smem[warp - 1]);
|
52 |
+
}
|
53 |
+
|
54 |
+
*out = index;
|
55 |
+
|
56 |
+
if (KillWARDependency) {
|
57 |
+
__syncthreads();
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
// Exclusive prefix sum for binary vars using intra-warp voting +
|
62 |
+
// shared memory
|
63 |
+
template <typename T, bool KillWARDependency, class BinaryFunction>
|
64 |
+
__device__ void exclusiveBinaryPrefixScan(T* smem, bool in, T* out, T* carry, BinaryFunction binop) {
|
65 |
+
inclusiveBinaryPrefixScan<T, false, BinaryFunction>(smem, in, out, binop);
|
66 |
+
|
67 |
+
// Inclusive to exclusive
|
68 |
+
*out -= (T) in;
|
69 |
+
|
70 |
+
// The outgoing carry for all threads is the last warp's sum
|
71 |
+
*carry = smem[at::ceil_div<int>(blockDim.x, C10_WARP_SIZE) - 1];
|
72 |
+
|
73 |
+
if (KillWARDependency) {
|
74 |
+
__syncthreads();
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/Sleep.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/macros/Export.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at::cuda {
|
6 |
+
|
7 |
+
// enqueues a kernel that spins for the specified number of cycles
|
8 |
+
TORCH_CUDA_CU_API void sleep(int64_t cycles);
|
9 |
+
|
10 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/ThrustAllocator.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstddef>
|
4 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
5 |
+
|
6 |
+
namespace at::cuda {
|
7 |
+
|
8 |
+
/// Allocator for Thrust to re-route its internal device allocations
|
9 |
+
/// to the THC allocator
|
10 |
+
class ThrustAllocator {
|
11 |
+
public:
|
12 |
+
typedef char value_type;
|
13 |
+
|
14 |
+
char* allocate(std::ptrdiff_t size) {
|
15 |
+
return static_cast<char*>(c10::cuda::CUDACachingAllocator::raw_alloc(size));
|
16 |
+
}
|
17 |
+
|
18 |
+
void deallocate(char* p, size_t size) {
|
19 |
+
c10::cuda::CUDACachingAllocator::raw_delete(p);
|
20 |
+
}
|
21 |
+
};
|
22 |
+
|
23 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/cub.cuh
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/cuda/cub.h>
|
3 |
+
|
4 |
+
#include <cstddef>
|
5 |
+
#include <type_traits>
|
6 |
+
#include <iterator>
|
7 |
+
#include <limits>
|
8 |
+
|
9 |
+
#include <ATen/cuda/cub_definitions.cuh>
|
10 |
+
|
11 |
+
#if USE_GLOBAL_CUB_WRAPPED_NAMESPACE()
|
12 |
+
|
13 |
+
#include <cub/cub.cuh>
|
14 |
+
|
15 |
+
#else
|
16 |
+
|
17 |
+
// include cub in a safe manner, see:
|
18 |
+
// https://github.com/pytorch/pytorch/pull/55292
|
19 |
+
#undef CUB_NS_POSTFIX //undef to avoid redefinition warnings
|
20 |
+
#undef CUB_NS_PREFIX
|
21 |
+
#undef CUB_NS_QUALIFIER
|
22 |
+
#define CUB_NS_PREFIX namespace at_cuda_detail {
|
23 |
+
#define CUB_NS_POSTFIX }
|
24 |
+
#define CUB_NS_QUALIFIER ::at_cuda_detail::cub
|
25 |
+
#include <cub/cub.cuh>
|
26 |
+
#undef CUB_NS_POSTFIX
|
27 |
+
#undef CUB_NS_PREFIX
|
28 |
+
#undef CUB_NS_QUALIFIER
|
29 |
+
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#include <ATen/cuda/Exceptions.h>
|
33 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
34 |
+
#include <c10/cuda/CUDAStream.h>
|
35 |
+
|
36 |
+
// handle the temporary storage and 'twice' calls for cub API
|
37 |
+
#define CUB_WRAPPER(func, ...) do { \
|
38 |
+
size_t temp_storage_bytes = 0; \
|
39 |
+
func(nullptr, temp_storage_bytes, __VA_ARGS__); \
|
40 |
+
auto& caching_allocator = *::c10::cuda::CUDACachingAllocator::get(); \
|
41 |
+
auto temp_storage = caching_allocator.allocate(temp_storage_bytes); \
|
42 |
+
func(temp_storage.get(), temp_storage_bytes, __VA_ARGS__); \
|
43 |
+
AT_CUDA_CHECK(cudaGetLastError()); \
|
44 |
+
} while (false)
|
45 |
+
|
46 |
+
#ifdef USE_ROCM
|
47 |
+
#define NO_ROCM(x)
|
48 |
+
#define ROCM_HIPCUB(x) ::hipcub
|
49 |
+
#else
|
50 |
+
#define NO_ROCM(x) x
|
51 |
+
#define ROCM_HIPCUB(x) x
|
52 |
+
#endif
|
53 |
+
|
54 |
+
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || \
|
55 |
+
(defined(USE_ROCM) && ROCM_VERSION >= 40500)
|
56 |
+
|
57 |
+
#if !defined(USE_ROCM)
|
58 |
+
namespace at_cuda_detail {
|
59 |
+
#endif
|
60 |
+
|
61 |
+
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
|
62 |
+
|
63 |
+
template <>
|
64 |
+
struct ROCM_HIPCUB(cub)::FpLimits<c10::BFloat16>
|
65 |
+
{
|
66 |
+
static __host__ __device__ __forceinline__ c10::BFloat16 Max() {
|
67 |
+
unsigned short max_word = 0x7F7F;
|
68 |
+
return reinterpret_cast<c10::BFloat16&>(max_word);
|
69 |
+
}
|
70 |
+
|
71 |
+
static __host__ __device__ __forceinline__ c10::BFloat16 Lowest() {
|
72 |
+
unsigned short lowest_word = 0xFF7F;
|
73 |
+
return reinterpret_cast<c10::BFloat16&>(lowest_word);
|
74 |
+
}
|
75 |
+
};
|
76 |
+
|
77 |
+
template <>
|
78 |
+
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
|
79 |
+
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
|
80 |
+
|
81 |
+
#if !defined(USE_ROCM)
|
82 |
+
} // namespace at_cuda_detail
|
83 |
+
#endif
|
84 |
+
|
85 |
+
#endif
|
86 |
+
|
87 |
+
#if !defined(USE_ROCM)
|
88 |
+
namespace at::native {
|
89 |
+
namespace cub = ::at_cuda_detail::cub;
|
90 |
+
} // namespace at::native
|
91 |
+
#endif
|
92 |
+
|
93 |
+
namespace at::cuda::cub {
|
94 |
+
|
95 |
+
namespace detail {
|
96 |
+
|
97 |
+
template<typename T>
|
98 |
+
struct cuda_type {
|
99 |
+
using type = T;
|
100 |
+
};
|
101 |
+
template<>
|
102 |
+
struct cuda_type<c10::Half> {
|
103 |
+
using type = __half;
|
104 |
+
};
|
105 |
+
|
106 |
+
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
|
107 |
+
|
108 |
+
template<>
|
109 |
+
struct cuda_type<c10::BFloat16> {
|
110 |
+
using type = __nv_bfloat16;
|
111 |
+
};
|
112 |
+
|
113 |
+
#elif (defined(USE_ROCM) && ROCM_VERSION >= 40500)
|
114 |
+
|
115 |
+
template<>
|
116 |
+
struct cuda_type<c10::BFloat16> {
|
117 |
+
using type = hip_bfloat16;
|
118 |
+
};
|
119 |
+
|
120 |
+
#endif
|
121 |
+
|
122 |
+
} // namespace detail
|
123 |
+
|
124 |
+
template<typename key_t, typename value_t, typename OffsetIteratorT>
|
125 |
+
inline void segmented_sort_pairs(
|
126 |
+
const key_t *keys_in, key_t *keys_out,
|
127 |
+
const value_t *values_in, value_t *values_out,
|
128 |
+
int64_t num_elements, int64_t num_segments,
|
129 |
+
OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets,
|
130 |
+
bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8
|
131 |
+
) {
|
132 |
+
TORCH_CHECK(num_elements <= std::numeric_limits<int>::max(),
|
133 |
+
"cub sort does not support sorting more than INT_MAX elements");
|
134 |
+
TORCH_CHECK(num_segments <= std::numeric_limits<int>::max(),
|
135 |
+
"cub sort does not support sorting more than INT_MAX elements");
|
136 |
+
using key_t_ = typename detail::cuda_type<key_t>::type;
|
137 |
+
|
138 |
+
auto allocator = c10::cuda::CUDACachingAllocator::get();
|
139 |
+
c10::DataPtr keys_out_owner;
|
140 |
+
|
141 |
+
if (keys_out == nullptr) {
|
142 |
+
keys_out_owner = allocator->allocate(num_elements * sizeof(key_t));
|
143 |
+
keys_out = reinterpret_cast<key_t *>(keys_out_owner.get());
|
144 |
+
}
|
145 |
+
|
146 |
+
const key_t_ *keys_in_ = reinterpret_cast<const key_t_*>(keys_in);
|
147 |
+
key_t_ *keys_out_ = reinterpret_cast<key_t_*>(keys_out);
|
148 |
+
|
149 |
+
if (descending) {
|
150 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairsDescending,
|
151 |
+
keys_in_, keys_out_, values_in, values_out,
|
152 |
+
num_elements, num_segments, begin_offsets, end_offsets,
|
153 |
+
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream());
|
154 |
+
} else {
|
155 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairs,
|
156 |
+
keys_in_, keys_out_, values_in, values_out,
|
157 |
+
num_elements, num_segments, begin_offsets, end_offsets,
|
158 |
+
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream());
|
159 |
+
}
|
160 |
+
}
|
161 |
+
|
162 |
+
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
163 |
+
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename KeysOutputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
|
164 |
+
inline void unique_by_key(
|
165 |
+
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
|
166 |
+
KeysOutputIteratorT keys_out, ValuesOutputIteratorT values_out,
|
167 |
+
NumSelectedIteratorT num_selected, int64_t num_input_items)
|
168 |
+
{
|
169 |
+
// TODO: use thrust::discard_iterator to handle null keys_out when https://github.com/NVIDIA/cub/issues/406 is fixed.
|
170 |
+
constexpr bool null_keys_out = std::is_same<KeysOutputIteratorT, std::nullptr_t>::value;
|
171 |
+
using KeyT = typename std::iterator_traits<KeysInputIteratorT>::value_type;
|
172 |
+
using RealKeysOutputIteratorT = typename std::conditional<null_keys_out, KeyT *, KeysOutputIteratorT>::type;
|
173 |
+
RealKeysOutputIteratorT keys_out_;
|
174 |
+
auto allocator = c10::cuda::CUDACachingAllocator::get();
|
175 |
+
c10::DataPtr keys_out_owner;
|
176 |
+
if constexpr (null_keys_out) {
|
177 |
+
keys_out_owner = allocator->allocate(num_input_items * sizeof(KeyT));
|
178 |
+
keys_out_ = static_cast<KeyT *>(keys_out_owner.get());
|
179 |
+
} else {
|
180 |
+
keys_out_ = keys_out;
|
181 |
+
}
|
182 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
|
183 |
+
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
|
184 |
+
}
|
185 |
+
#endif
|
186 |
+
|
187 |
+
namespace impl {
|
188 |
+
|
189 |
+
template<typename InputIteratorT1, typename InputIteratorT2, typename OutputIteratorT, class ScanOpT>
|
190 |
+
C10_LAUNCH_BOUNDS_1(1)
|
191 |
+
__global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputIteratorT out, ScanOpT scan_op){
|
192 |
+
// NOTE: out here not the final scan output, but an intermediate of the accumulation type.
|
193 |
+
using acc_t = typename std::iterator_traits<OutputIteratorT>::value_type;
|
194 |
+
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
|
195 |
+
}
|
196 |
+
|
197 |
+
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
198 |
+
template<typename ValueT, typename InputIteratorT>
|
199 |
+
struct chained_iterator {
|
200 |
+
using iterator_category = std::random_access_iterator_tag;
|
201 |
+
using difference_type = std::ptrdiff_t;
|
202 |
+
using value_type = ValueT;
|
203 |
+
using pointer = ValueT*;
|
204 |
+
using reference = ValueT&;
|
205 |
+
|
206 |
+
InputIteratorT iter;
|
207 |
+
ValueT *first;
|
208 |
+
difference_type offset = 0;
|
209 |
+
|
210 |
+
__device__ ValueT operator[](difference_type i) {
|
211 |
+
i += offset;
|
212 |
+
if (i == 0) {
|
213 |
+
return *first;
|
214 |
+
} else {
|
215 |
+
return ValueT(iter[i - 1]);
|
216 |
+
}
|
217 |
+
}
|
218 |
+
__device__ chained_iterator operator+(difference_type i) {
|
219 |
+
return chained_iterator{iter, first, i};
|
220 |
+
}
|
221 |
+
__device__ ValueT operator*() {
|
222 |
+
return (*this)[0];
|
223 |
+
}
|
224 |
+
};
|
225 |
+
#endif
|
226 |
+
|
227 |
+
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
228 |
+
// so split at int_max/2
|
229 |
+
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
|
230 |
+
}
|
231 |
+
|
232 |
+
// non synchronizing cub call
|
233 |
+
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
234 |
+
// so split at int_max/2
|
235 |
+
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, int max_cub_size=impl::max_cub_size>
|
236 |
+
inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, int64_t num_items) {
|
237 |
+
#if defined(USE_ROCM) && (ROCM_VERSION >= 50000)
|
238 |
+
//For ROCm, use hipCUB chained iterators
|
239 |
+
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::InclusiveScan,
|
240 |
+
input,
|
241 |
+
output,
|
242 |
+
scan_op,
|
243 |
+
num_items,
|
244 |
+
at::cuda::getCurrentCUDAStream());
|
245 |
+
C10_HIP_KERNEL_LAUNCH_CHECK();
|
246 |
+
#else
|
247 |
+
// non synchronizing cub call
|
248 |
+
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
249 |
+
// so split at int_max/2
|
250 |
+
int size_cub = std::min<int64_t>(num_items, max_cub_size);
|
251 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
252 |
+
input,
|
253 |
+
output,
|
254 |
+
scan_op,
|
255 |
+
size_cub,
|
256 |
+
at::cuda::getCurrentCUDAStream());
|
257 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
258 |
+
using input_t = typename std::iterator_traits<InputIteratorT>::value_type;
|
259 |
+
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) {
|
260 |
+
auto allocator = c10::cuda::CUDACachingAllocator::get();
|
261 |
+
c10::DataPtr first_elem = allocator->allocate(sizeof(input_t));
|
262 |
+
auto first_elem_ptr = reinterpret_cast<input_t *>(first_elem.get());
|
263 |
+
|
264 |
+
size_cub = std::min<int64_t>(num_items - i, max_cub_size);
|
265 |
+
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
|
266 |
+
output + i - 1,
|
267 |
+
input + i,
|
268 |
+
first_elem_ptr,
|
269 |
+
scan_op);
|
270 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
271 |
+
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
272 |
+
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
|
273 |
+
using tuple = typename ArgIndexInputIterator::value_type;
|
274 |
+
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
|
275 |
+
if (x.key == 0) {
|
276 |
+
return *first_elem_ptr;
|
277 |
+
} else {
|
278 |
+
return x.value;
|
279 |
+
}
|
280 |
+
};
|
281 |
+
auto input_ = NO_ROCM(at_cuda_detail)::cub::TransformInputIterator<input_t, decltype(input_iter_transform), ArgIndexInputIterator>(
|
282 |
+
ArgIndexInputIterator(input + i), input_iter_transform);
|
283 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
284 |
+
input_,
|
285 |
+
output + i,
|
286 |
+
scan_op,
|
287 |
+
size_cub,
|
288 |
+
at::cuda::getCurrentCUDAStream());
|
289 |
+
#else
|
290 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
291 |
+
input + i + 1,
|
292 |
+
output + i,
|
293 |
+
scan_op,
|
294 |
+
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
|
295 |
+
size_cub,
|
296 |
+
at::cuda::getCurrentCUDAStream());
|
297 |
+
#endif
|
298 |
+
}
|
299 |
+
#endif
|
300 |
+
}
|
301 |
+
|
302 |
+
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, typename InitValueT, int max_cub_size=impl::max_cub_size>
|
303 |
+
inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, InitValueT init_value, int64_t num_items) {
|
304 |
+
#if defined(USE_ROCM) && (ROCM_VERSION >= 50000)
|
305 |
+
//For ROCm, use hipCUB chained iterators
|
306 |
+
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::ExclusiveScan,
|
307 |
+
input,
|
308 |
+
output,
|
309 |
+
scan_op,
|
310 |
+
init_value,
|
311 |
+
num_items,
|
312 |
+
at::cuda::getCurrentCUDAStream());
|
313 |
+
C10_HIP_KERNEL_LAUNCH_CHECK();
|
314 |
+
#else
|
315 |
+
// non synchronizing cub call
|
316 |
+
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
317 |
+
// so split at int_max/2
|
318 |
+
int size_cub = std::min<int64_t>(num_items, max_cub_size);
|
319 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
320 |
+
input,
|
321 |
+
output,
|
322 |
+
scan_op,
|
323 |
+
init_value,
|
324 |
+
size_cub,
|
325 |
+
at::cuda::getCurrentCUDAStream());
|
326 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
327 |
+
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) {
|
328 |
+
auto allocator = c10::cuda::CUDACachingAllocator::get();
|
329 |
+
c10::DataPtr first_elem = allocator->allocate(sizeof(InitValueT));
|
330 |
+
auto first_elem_ptr = reinterpret_cast<InitValueT *>(first_elem.get());
|
331 |
+
|
332 |
+
size_cub = std::min<int64_t>(num_items - i, max_cub_size);
|
333 |
+
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
|
334 |
+
output + i - 1,
|
335 |
+
input + i - 1,
|
336 |
+
first_elem_ptr,
|
337 |
+
scan_op);
|
338 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
339 |
+
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
340 |
+
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
|
341 |
+
input + i, first_elem_ptr};
|
342 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
343 |
+
input_,
|
344 |
+
output + i,
|
345 |
+
scan_op,
|
346 |
+
size_cub,
|
347 |
+
at::cuda::getCurrentCUDAStream());
|
348 |
+
#else
|
349 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
350 |
+
input + i,
|
351 |
+
output + i,
|
352 |
+
scan_op,
|
353 |
+
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
|
354 |
+
size_cub,
|
355 |
+
at::cuda::getCurrentCUDAStream());
|
356 |
+
#endif
|
357 |
+
}
|
358 |
+
#endif
|
359 |
+
}
|
360 |
+
|
361 |
+
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
362 |
+
|
363 |
+
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
|
364 |
+
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
|
365 |
+
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
|
366 |
+
"cub InclusiveSumByKey does not support more than INT_MAX elements");
|
367 |
+
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveSumByKey,
|
368 |
+
keys, input, output, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream());
|
369 |
+
}
|
370 |
+
|
371 |
+
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename ScanOpT>
|
372 |
+
inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, ScanOpT scan_op, int64_t num_items) {
|
373 |
+
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
|
374 |
+
"cub InclusiveSumByKey does not support more than INT_MAX elements");
|
375 |
+
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveScanByKey,
|
376 |
+
keys, input, output, scan_op, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream());
|
377 |
+
}
|
378 |
+
|
379 |
+
#endif
|
380 |
+
|
381 |
+
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
|
382 |
+
void unique(InputIteratorT input, OutputIteratorT output,
|
383 |
+
NumSelectedIteratorT num_selected_out, int64_t num_items) {
|
384 |
+
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
|
385 |
+
"cub unique does not support more than INT_MAX elements");
|
386 |
+
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::Unique,
|
387 |
+
input, output, num_selected_out, num_items, at::cuda::getCurrentCUDAStream());
|
388 |
+
}
|
389 |
+
|
390 |
+
template <typename InputIteratorT, typename OutputIteratorT, typename CountsOutputIteratorT,
|
391 |
+
typename LengthOutputIteratorT>
|
392 |
+
void run_length_encode(InputIteratorT input, OutputIteratorT output, CountsOutputIteratorT counts_out,
|
393 |
+
LengthOutputIteratorT length_out, int64_t num_items) {
|
394 |
+
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
|
395 |
+
"cub run_length_encode does not support more than INT_MAX elements");
|
396 |
+
CUB_WRAPPER(
|
397 |
+
NO_ROCM(at_cuda_detail)::cub::DeviceRunLengthEncode::Encode,
|
398 |
+
input, output, counts_out, length_out, num_items,
|
399 |
+
at::cuda::getCurrentCUDAStream());
|
400 |
+
}
|
401 |
+
|
402 |
+
template <typename InputIteratorT, typename OutputIteratorT, typename ReductionOpT, typename T>
|
403 |
+
void reduce(InputIteratorT input, OutputIteratorT output, int64_t num_items, ReductionOpT op, T init) {
|
404 |
+
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
|
405 |
+
"cub reduce does not support more than INT_MAX elements");
|
406 |
+
CUB_WRAPPER(
|
407 |
+
NO_ROCM(at_cuda_detail)::cub::DeviceReduce::Reduce,
|
408 |
+
input, output, num_items, op, init,
|
409 |
+
at::cuda::getCurrentCUDAStream());
|
410 |
+
|
411 |
+
}
|
412 |
+
|
413 |
+
} // namespace at::cuda::cub
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/cub.h
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <ATen/cuda/CUDAConfig.h>
|
5 |
+
|
6 |
+
// NOTE: These templates are intentionally not defined in this header,
|
7 |
+
// which aviods re-compiling them for each translation unit. If you get
|
8 |
+
// a link error, you need to add an explicit instantiation for your
|
9 |
+
// types in cub.cu
|
10 |
+
|
11 |
+
namespace at::cuda::cub {
|
12 |
+
|
13 |
+
inline int get_num_bits(uint64_t max_key) {
|
14 |
+
int num_bits = 1;
|
15 |
+
while (max_key > 1) {
|
16 |
+
max_key >>= 1;
|
17 |
+
num_bits++;
|
18 |
+
}
|
19 |
+
return num_bits;
|
20 |
+
}
|
21 |
+
|
22 |
+
namespace detail {
|
23 |
+
|
24 |
+
// radix_sort_pairs doesn't interact with value_t other than to copy
|
25 |
+
// the data, so we can save template instantiations by reinterpreting
|
26 |
+
// it as an opaque type.
|
27 |
+
template <int N> struct alignas(N) OpaqueType { char data[N]; };
|
28 |
+
|
29 |
+
template<typename key_t, int value_size>
|
30 |
+
void radix_sort_pairs_impl(
|
31 |
+
const key_t *keys_in, key_t *keys_out,
|
32 |
+
const OpaqueType<value_size> *values_in, OpaqueType<value_size> *values_out,
|
33 |
+
int64_t n, bool descending, int64_t begin_bit, int64_t end_bit);
|
34 |
+
|
35 |
+
} // namespace detail
|
36 |
+
|
37 |
+
template<typename key_t, typename value_t>
|
38 |
+
void radix_sort_pairs(
|
39 |
+
const key_t *keys_in, key_t *keys_out,
|
40 |
+
const value_t *values_in, value_t *values_out,
|
41 |
+
int64_t n, bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8) {
|
42 |
+
static_assert(std::is_trivially_copyable<value_t>::value ||
|
43 |
+
AT_ROCM_ENABLED(), // ROCm incorrectly fails this check for vector types
|
44 |
+
"radix_sort_pairs value type must be trivially copyable");
|
45 |
+
// Make value type opaque, so all inputs of a certain size use the same template instantiation
|
46 |
+
using opaque_t = detail::OpaqueType<sizeof(value_t)>;
|
47 |
+
static_assert(sizeof(value_t) <= 8 && (sizeof(value_t) & (sizeof(value_t) - 1)) == 0,
|
48 |
+
"This size of value_t is not instantiated. Please instantiate it in cub.cu"
|
49 |
+
" and modify this check.");
|
50 |
+
static_assert(sizeof(value_t) == alignof(value_t), "Expected value_t to be size-aligned");
|
51 |
+
detail::radix_sort_pairs_impl(
|
52 |
+
keys_in, keys_out,
|
53 |
+
reinterpret_cast<const opaque_t*>(values_in),
|
54 |
+
reinterpret_cast<opaque_t*>(values_out),
|
55 |
+
n, descending, begin_bit, end_bit);
|
56 |
+
}
|
57 |
+
|
58 |
+
template<typename key_t>
|
59 |
+
void radix_sort_keys(
|
60 |
+
const key_t *keys_in, key_t *keys_out,
|
61 |
+
int64_t n, bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8);
|
62 |
+
|
63 |
+
// NOTE: Intermediate sums will be truncated to input_t precision
|
64 |
+
template <typename input_t, typename output_t>
|
65 |
+
void inclusive_sum_truncating(const input_t *input, output_t *output, int64_t n);
|
66 |
+
|
67 |
+
template <typename scalar_t>
|
68 |
+
void inclusive_sum(const scalar_t *input, scalar_t *output, int64_t n) {
|
69 |
+
return inclusive_sum_truncating(input, output, n);
|
70 |
+
}
|
71 |
+
|
72 |
+
// NOTE: Sums are done is common_type<input_t, output_t>
|
73 |
+
template <typename input_t, typename output_t>
|
74 |
+
void exclusive_sum_in_common_type(const input_t *input, output_t *output, int64_t n);
|
75 |
+
|
76 |
+
template <typename scalar_t>
|
77 |
+
void exclusive_sum(const scalar_t *input, scalar_t *output, int64_t n) {
|
78 |
+
return exclusive_sum_in_common_type(input, output, n);
|
79 |
+
}
|
80 |
+
|
81 |
+
void mask_exclusive_sum(const uint8_t *mask, int64_t *output_idx, int64_t n);
|
82 |
+
inline void mask_exclusive_sum(const bool *mask, int64_t *output_idx, int64_t n) {
|
83 |
+
return mask_exclusive_sum(
|
84 |
+
reinterpret_cast<const uint8_t*>(mask), output_idx, n);
|
85 |
+
}
|
86 |
+
|
87 |
+
} // namespace at::cuda::cub
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/CUDAHooks.h
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/detail/CUDAHooksInterface.h>
|
4 |
+
|
5 |
+
#include <ATen/Generator.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
|
8 |
+
// TODO: No need to have this whole header, we can just put it all in
|
9 |
+
// the cpp file
|
10 |
+
|
11 |
+
namespace at::cuda::detail {
|
12 |
+
|
13 |
+
// Set the callback to initialize Magma, which is set by
|
14 |
+
// torch_cuda_cu. This indirection is required so magma_init is called
|
15 |
+
// in the same library where Magma will be used.
|
16 |
+
TORCH_CUDA_CPP_API void set_magma_init_fn(void (*magma_init_fn)());
|
17 |
+
|
18 |
+
|
19 |
+
// The real implementation of CUDAHooksInterface
|
20 |
+
struct CUDAHooks : public at::CUDAHooksInterface {
|
21 |
+
CUDAHooks(at::CUDAHooksArgs) {}
|
22 |
+
void initCUDA() const override;
|
23 |
+
Device getDeviceFromPtr(void* data) const override;
|
24 |
+
bool isPinnedPtr(const void* data) const override;
|
25 |
+
const Generator& getDefaultCUDAGenerator(DeviceIndex device_index = -1) const override;
|
26 |
+
bool hasCUDA() const override;
|
27 |
+
bool hasMAGMA() const override;
|
28 |
+
bool hasCuDNN() const override;
|
29 |
+
bool hasCuSOLVER() const override;
|
30 |
+
bool hasROCM() const override;
|
31 |
+
const at::cuda::NVRTC& nvrtc() const override;
|
32 |
+
DeviceIndex current_device() const override;
|
33 |
+
bool hasPrimaryContext(DeviceIndex device_index) const override;
|
34 |
+
Allocator* getCUDADeviceAllocator() const override;
|
35 |
+
Allocator* getPinnedMemoryAllocator() const override;
|
36 |
+
bool compiledWithCuDNN() const override;
|
37 |
+
bool compiledWithMIOpen() const override;
|
38 |
+
bool supportsDilatedConvolutionWithCuDNN() const override;
|
39 |
+
bool supportsDepthwiseConvolutionWithCuDNN() const override;
|
40 |
+
bool supportsBFloat16ConvolutionWithCuDNNv8() const override;
|
41 |
+
bool hasCUDART() const override;
|
42 |
+
long versionCUDART() const override;
|
43 |
+
long versionCuDNN() const override;
|
44 |
+
std::string showConfig() const override;
|
45 |
+
double batchnormMinEpsilonCuDNN() const override;
|
46 |
+
int64_t cuFFTGetPlanCacheMaxSize(DeviceIndex device_index) const override;
|
47 |
+
void cuFFTSetPlanCacheMaxSize(DeviceIndex device_index, int64_t max_size) const override;
|
48 |
+
int64_t cuFFTGetPlanCacheSize(DeviceIndex device_index) const override;
|
49 |
+
void cuFFTClearPlanCache(DeviceIndex device_index) const override;
|
50 |
+
int getNumGPUs() const override;
|
51 |
+
void deviceSynchronize(DeviceIndex device_index) const override;
|
52 |
+
};
|
53 |
+
|
54 |
+
} // at::cuda::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/IndexUtils.cuh
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/TensorBase.h>
|
4 |
+
#include <ATen/cuda/detail/TensorInfo.cuh>
|
5 |
+
#include <ATen/native/CanUse32BitIndexMath.h>
|
6 |
+
|
7 |
+
namespace at::cuda::detail {
|
8 |
+
|
9 |
+
TORCH_CUDA_CU_API bool maybeOverlappingIndices(const at::TensorBase &t);
|
10 |
+
using at::native::canUse32BitIndexMath;
|
11 |
+
|
12 |
+
template <typename scalar, typename IndexType>
|
13 |
+
TensorInfo<scalar, IndexType>
|
14 |
+
getTensorInfo(const at::TensorBase &t) {
|
15 |
+
IndexType sz[MAX_TENSORINFO_DIMS];
|
16 |
+
IndexType st[MAX_TENSORINFO_DIMS];
|
17 |
+
|
18 |
+
int dims = t.dim();
|
19 |
+
for (int i = 0; i < dims; ++i) {
|
20 |
+
sz[i] = t.size(i);
|
21 |
+
st[i] = t.stride(i);
|
22 |
+
}
|
23 |
+
|
24 |
+
scalar* data_ptr = nullptr;
|
25 |
+
|
26 |
+
if constexpr (std::is_const<scalar>::value) {
|
27 |
+
data_ptr = t.const_data_ptr<scalar>();
|
28 |
+
} else {
|
29 |
+
data_ptr = t.mutable_data_ptr<scalar>();
|
30 |
+
}
|
31 |
+
|
32 |
+
return TensorInfo<scalar, IndexType>(
|
33 |
+
data_ptr, dims, sz, st);
|
34 |
+
}
|
35 |
+
|
36 |
+
} // namespace at::cuda::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/IntegerDivider.cuh
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <assert.h>
|
4 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
|
5 |
+
#include <cuda_runtime.h>
|
6 |
+
#endif
|
7 |
+
|
8 |
+
namespace at::cuda::detail {
|
9 |
+
|
10 |
+
// A utility class to implement integer division by multiplication, given a fixed
|
11 |
+
// divisor.
|
12 |
+
//
|
13 |
+
// WARNING: The fast divider algorithm is only implemented for unsigned int;
|
14 |
+
// otherwise we default to plain integer division. For unsigned int,
|
15 |
+
// we further assume that the dividend is at most INT32_MAX. Thus,
|
16 |
+
// IntDivider must NOT be used for general integer division.
|
17 |
+
//
|
18 |
+
// This reduced range is enough for our purpose, and it allows us to
|
19 |
+
// slightly simplify the computation.
|
20 |
+
//
|
21 |
+
// (NOTE: Below, "2^k" denotes exponentiation, i.e., 1<<k.)
|
22 |
+
//
|
23 |
+
// For any N-bit unsigned integer d (> 0), we can find a "magic number" m (2^N
|
24 |
+
// <= m < 2^(N+1)) and shift s such that:
|
25 |
+
//
|
26 |
+
// \floor(n / d) = \floor((m * n) / 2^(N+s)).
|
27 |
+
//
|
28 |
+
// Given such m and s, the integer division can be then implemented as:
|
29 |
+
//
|
30 |
+
// let m' = m - 2^N // 0 <= m' < 2^N
|
31 |
+
//
|
32 |
+
// fast_integer_division(n):
|
33 |
+
// // Multiply two N-bit unsigned integers: the result is a 2N-bit unsigned
|
34 |
+
// // integer. Then take the higher N bits.
|
35 |
+
// t = (m' * n) >> N
|
36 |
+
//
|
37 |
+
// // Here we use the fact that n is less than 2^(N-1): otherwise the value
|
38 |
+
// // of (t + n) may not fit in an N-bit integer.
|
39 |
+
// return (t + n) >> s
|
40 |
+
//
|
41 |
+
// Finding such a magic number is surprisingly easy:
|
42 |
+
//
|
43 |
+
// s = \ceil(\log_2 d)
|
44 |
+
// m' = \floor(2^N * (2^s - d) / d) + 1 // Need 2N-bit integer arithmetic.
|
45 |
+
//
|
46 |
+
// See also:
|
47 |
+
// - Division by Invariant Integers Using Multiplication,
|
48 |
+
// Torbjörn Granlund and Peter L. Montgomery, 1994.
|
49 |
+
//
|
50 |
+
// - http://www.hackersdelight.org/magic.htm
|
51 |
+
//
|
52 |
+
// - http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
|
53 |
+
|
54 |
+
// Result of div/mod operation stored together.
|
55 |
+
template <typename Value>
|
56 |
+
struct DivMod {
|
57 |
+
Value div, mod;
|
58 |
+
|
59 |
+
C10_HOST_DEVICE DivMod(Value div, Value mod) : div(div), mod(mod) { }
|
60 |
+
};
|
61 |
+
|
62 |
+
// Base case: we only have an implementation for uint32_t for now. For
|
63 |
+
// everything else, we use plain division.
|
64 |
+
template <typename Value>
|
65 |
+
struct IntDivider {
|
66 |
+
IntDivider() = default;
|
67 |
+
IntDivider(Value d) : divisor(d) { }
|
68 |
+
|
69 |
+
C10_HOST_DEVICE inline Value div(Value n) const { return n / divisor; }
|
70 |
+
C10_HOST_DEVICE inline Value mod(Value n) const { return n % divisor; }
|
71 |
+
C10_HOST_DEVICE inline DivMod<Value> divmod(Value n) const {
|
72 |
+
return DivMod<Value>(n / divisor, n % divisor);
|
73 |
+
}
|
74 |
+
|
75 |
+
Value divisor;
|
76 |
+
};
|
77 |
+
|
78 |
+
// Implement fast integer division.
|
79 |
+
template <>
|
80 |
+
struct IntDivider<unsigned int> {
|
81 |
+
static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int.");
|
82 |
+
|
83 |
+
IntDivider() = default;
|
84 |
+
|
85 |
+
IntDivider(unsigned int d) : divisor(d) {
|
86 |
+
assert(divisor >= 1 && divisor <= INT32_MAX);
|
87 |
+
|
88 |
+
// TODO: gcc/clang has __builtin_clz() but it's not portable.
|
89 |
+
for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break;
|
90 |
+
|
91 |
+
uint64_t one = 1;
|
92 |
+
uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
|
93 |
+
m1 = magic;
|
94 |
+
assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits.
|
95 |
+
}
|
96 |
+
|
97 |
+
C10_HOST_DEVICE inline unsigned int div(unsigned int n) const {
|
98 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
|
99 |
+
// 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and
|
100 |
+
// 'm1'.
|
101 |
+
unsigned int t = __umulhi(n, m1);
|
102 |
+
return (t + n) >> shift;
|
103 |
+
#else
|
104 |
+
// Using uint64_t so that the addition does not overflow.
|
105 |
+
uint64_t t = ((uint64_t) n * m1) >> 32;
|
106 |
+
return (t + n) >> shift;
|
107 |
+
#endif
|
108 |
+
}
|
109 |
+
|
110 |
+
C10_HOST_DEVICE inline unsigned int mod(unsigned int n) const {
|
111 |
+
return n - div(n) * divisor;
|
112 |
+
}
|
113 |
+
|
114 |
+
C10_HOST_DEVICE inline DivMod<unsigned int> divmod(unsigned int n) const {
|
115 |
+
unsigned int q = div(n);
|
116 |
+
return DivMod<unsigned int>(q, n - q * divisor);
|
117 |
+
}
|
118 |
+
|
119 |
+
unsigned int divisor; // d above.
|
120 |
+
unsigned int m1; // Magic number: m' above.
|
121 |
+
unsigned int shift; // Shift amounts.
|
122 |
+
};
|
123 |
+
|
124 |
+
} // namespace at::cuda::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/KernelUtils.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <limits>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
|
6 |
+
namespace at::cuda::detail {
|
7 |
+
|
8 |
+
// CUDA: grid stride looping
|
9 |
+
//
|
10 |
+
// int64_t _i_n_d_e_x specifically prevents overflow in the loop increment.
|
11 |
+
// If input.numel() < INT_MAX, _i_n_d_e_x < INT_MAX, except after the final
|
12 |
+
// iteration of the loop where _i_n_d_e_x += blockDim.x * gridDim.x can be
|
13 |
+
// greater than INT_MAX. But in that case _i_n_d_e_x >= n, so there are no
|
14 |
+
// further iterations and the overflowed value in i=_i_n_d_e_x is not used.
|
15 |
+
#define CUDA_KERNEL_LOOP_TYPE(i, n, index_type) \
|
16 |
+
int64_t _i_n_d_e_x = blockIdx.x * blockDim.x + threadIdx.x; \
|
17 |
+
for (index_type i=_i_n_d_e_x; _i_n_d_e_x < (n); _i_n_d_e_x+=blockDim.x * gridDim.x, i=_i_n_d_e_x)
|
18 |
+
|
19 |
+
#define CUDA_KERNEL_LOOP(i, n) CUDA_KERNEL_LOOP_TYPE(i, n, int)
|
20 |
+
|
21 |
+
|
22 |
+
// Use 1024 threads per block, which requires cuda sm_2x or above
|
23 |
+
constexpr int CUDA_NUM_THREADS = 1024;
|
24 |
+
|
25 |
+
// CUDA: number of blocks for threads.
|
26 |
+
inline int GET_BLOCKS(const int64_t N, const int64_t max_threads_per_block=CUDA_NUM_THREADS) {
|
27 |
+
TORCH_INTERNAL_ASSERT(N > 0, "CUDA kernel launch blocks must be positive, but got N=", N);
|
28 |
+
constexpr int64_t max_int = std::numeric_limits<int>::max();
|
29 |
+
|
30 |
+
// Round up division for positive number that cannot cause integer overflow
|
31 |
+
auto block_num = (N - 1) / max_threads_per_block + 1;
|
32 |
+
TORCH_INTERNAL_ASSERT(block_num <= max_int, "Can't schedule too many blocks on CUDA device");
|
33 |
+
|
34 |
+
return static_cast<int>(block_num);
|
35 |
+
}
|
36 |
+
|
37 |
+
} // namespace at::cuda::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/LazyNVRTC.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/detail/CUDAHooksInterface.h>
|
3 |
+
namespace at::cuda {
|
4 |
+
// Forward-declares at::cuda::NVRTC
|
5 |
+
struct NVRTC;
|
6 |
+
|
7 |
+
namespace detail {
|
8 |
+
extern NVRTC lazyNVRTC;
|
9 |
+
} // namespace detail
|
10 |
+
|
11 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/OffsetCalculator.cuh
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <array>
|
4 |
+
#include <cstdint>
|
5 |
+
#include <type_traits>
|
6 |
+
#include <c10/macros/Macros.h>
|
7 |
+
#include <ATen/core/Array.h>
|
8 |
+
#include <ATen/native/TensorIterator.h>
|
9 |
+
#include <ATen/cuda/detail/IntegerDivider.cuh>
|
10 |
+
|
11 |
+
// If element_sizes is nullptr, then the strides will be in bytes, otherwise
|
12 |
+
// the strides will be in # of elements.
|
13 |
+
// Operands that share the same shape, but may have different strides.
|
14 |
+
// OffsetCalculator iterates the tensor in a column-major order
|
15 |
+
|
16 |
+
#if defined(USE_ROCM)
|
17 |
+
constexpr int MAX_DIMS = 16;
|
18 |
+
#else
|
19 |
+
constexpr int MAX_DIMS = 25;
|
20 |
+
#endif
|
21 |
+
|
22 |
+
template <int NARGS, typename index_t = uint32_t, bool signed_strides = false>
|
23 |
+
struct OffsetCalculator {
|
24 |
+
// We allow having negative strides to implement some operations like torch.flip
|
25 |
+
using stride_t = std::conditional_t<signed_strides,
|
26 |
+
std::make_signed_t<index_t>,
|
27 |
+
index_t>;
|
28 |
+
// The offset for each argument. Wrapper around fixed-size array.
|
29 |
+
// On CUDA, zero sized array is not allowed, so when we are handling nullary
|
30 |
+
// operators, we need to create a size 1 offset to avoid compiler failure.
|
31 |
+
// This size 1 offset is just a placeholder, and we will not use it.
|
32 |
+
using offset_type = at::detail::Array<stride_t, std::max<int>(NARGS, 1)>;
|
33 |
+
|
34 |
+
// if element_sizes is nullptr, then the strides will be in bytes, otherwise
|
35 |
+
// the strides will be in # of elements.
|
36 |
+
OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides, const int64_t* element_sizes=nullptr) : dims(dims) {
|
37 |
+
TORCH_CHECK(dims <= MAX_DIMS, "tensor has too many (>", MAX_DIMS, ") dims");
|
38 |
+
for (int i=0; i < dims; i++){
|
39 |
+
sizes_[i] = at::cuda::detail::IntDivider<index_t>(sizes[i]);
|
40 |
+
for (int arg = 0; arg < NARGS; arg++) {
|
41 |
+
int64_t element_size = (element_sizes == nullptr ? 1LL : element_sizes[arg]);
|
42 |
+
strides_[i][arg] = strides[arg][i] / element_size;
|
43 |
+
}
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
|
48 |
+
offset_type offsets;
|
49 |
+
#pragma unroll
|
50 |
+
for (int arg = 0; arg < NARGS; arg++) {
|
51 |
+
offsets[arg] = 0;
|
52 |
+
}
|
53 |
+
|
54 |
+
#pragma unroll
|
55 |
+
for (int dim = 0; dim < MAX_DIMS; ++dim) {
|
56 |
+
if (dim == dims) {
|
57 |
+
break;
|
58 |
+
}
|
59 |
+
auto divmod = sizes_[dim].divmod(linear_idx);
|
60 |
+
linear_idx = divmod.div;
|
61 |
+
|
62 |
+
#pragma unroll
|
63 |
+
for (int arg = 0; arg < NARGS; arg++) {
|
64 |
+
offsets[arg] += divmod.mod * strides_[dim][arg];
|
65 |
+
}
|
66 |
+
|
67 |
+
}
|
68 |
+
return offsets;
|
69 |
+
}
|
70 |
+
|
71 |
+
int dims;
|
72 |
+
at::cuda::detail::IntDivider<index_t> sizes_[MAX_DIMS];
|
73 |
+
stride_t strides_[MAX_DIMS][std::max<int>(NARGS, 1)];
|
74 |
+
};
|
75 |
+
|
76 |
+
template <int NARGS, typename index_t = uint32_t>
|
77 |
+
struct TrivialOffsetCalculator {
|
78 |
+
// The offset for each argument. Wrapper around fixed-size array.
|
79 |
+
// The offsets are in # of elements, not in bytes.
|
80 |
+
// On CUDA, zero sized array is not allowed, so when we are handling nullary
|
81 |
+
// operators, we need to create a size 1 offset to avoid compiler failure.
|
82 |
+
// This size 1 offset is just a placeholder, and we will not use it.
|
83 |
+
using offset_type = at::detail::Array<index_t, std::max<int>(NARGS, 1)>;
|
84 |
+
|
85 |
+
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
|
86 |
+
offset_type offsets;
|
87 |
+
#pragma unroll
|
88 |
+
for (int arg = 0; arg < NARGS; arg++) {
|
89 |
+
offsets[arg] = linear_idx;
|
90 |
+
}
|
91 |
+
return offsets;
|
92 |
+
}
|
93 |
+
};
|
94 |
+
|
95 |
+
// Make an OffsetCalculator with byte offsets
|
96 |
+
template<int N, bool signed_strides = false>
|
97 |
+
static OffsetCalculator<N, uint32_t, signed_strides> make_offset_calculator(const at::TensorIteratorBase& iter) {
|
98 |
+
TORCH_INTERNAL_ASSERT(N <= iter.ntensors());
|
99 |
+
std::array<const int64_t*, N> strides;
|
100 |
+
for (int i = 0; i < N; i++) {
|
101 |
+
strides[i] = iter.strides(i).data();
|
102 |
+
}
|
103 |
+
return OffsetCalculator<N, uint32_t, signed_strides>(iter.ndim(), iter.shape().data(), strides.data());
|
104 |
+
}
|
105 |
+
|
106 |
+
// Make an OffsetCalculator with element offsets
|
107 |
+
template<int N, bool signed_strides = false>
|
108 |
+
static OffsetCalculator<N, uint32_t, signed_strides> make_element_offset_calculator(
|
109 |
+
const at::TensorIteratorBase& iter) {
|
110 |
+
TORCH_INTERNAL_ASSERT(N <= iter.ntensors());
|
111 |
+
std::array<const int64_t*, N> strides;
|
112 |
+
std::array<int64_t, N> element_sizes;
|
113 |
+
for (int i = 0; i < N; i++) {
|
114 |
+
strides[i] = iter.strides(i).data();
|
115 |
+
element_sizes[i] = iter.element_size(i);
|
116 |
+
}
|
117 |
+
return OffsetCalculator<N, uint32_t, signed_strides>(
|
118 |
+
iter.ndim(), iter.shape().data(), strides.data(), element_sizes.data());
|
119 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/PhiloxCudaStateRaw.cuh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// No "#pragma once" because this is a raw definition that can be copied by jit codegen.
|
2 |
+
// Eager mode clients should not include this file directly, instead,
|
3 |
+
// they should #include <ATen/cuda/PhiloxCudaState.h>, which has a #pragma once.
|
4 |
+
|
5 |
+
// Stores RNG state values. Passed as a kernel argument.
|
6 |
+
// See Note [CUDA Graph-safe RNG states].
|
7 |
+
//
|
8 |
+
// The raw definition lives in its own file so jit codegen can easily copy it.
|
9 |
+
namespace at {
|
10 |
+
|
11 |
+
struct PhiloxCudaState {
|
12 |
+
PhiloxCudaState() = default;
|
13 |
+
// Called if graph capture is not underway
|
14 |
+
PhiloxCudaState(uint64_t seed,
|
15 |
+
uint64_t offset) {
|
16 |
+
seed_.val = seed;
|
17 |
+
offset_.val = offset;
|
18 |
+
}
|
19 |
+
// Called if graph capture is underway
|
20 |
+
PhiloxCudaState(int64_t* seed,
|
21 |
+
int64_t* offset_extragraph,
|
22 |
+
uint32_t offset_intragraph) {
|
23 |
+
seed_.ptr = seed;
|
24 |
+
offset_.ptr = offset_extragraph;
|
25 |
+
offset_intragraph_ = offset_intragraph;
|
26 |
+
captured_ = true;
|
27 |
+
}
|
28 |
+
|
29 |
+
// Public members, directly accessible by at::cuda::philox::unpack.
|
30 |
+
// If we made them private with getters/setters, the getters/setters
|
31 |
+
// would have to be __device__, and we can't declare __device__ in ATen.
|
32 |
+
union Payload {
|
33 |
+
uint64_t val;
|
34 |
+
int64_t* ptr;
|
35 |
+
};
|
36 |
+
|
37 |
+
Payload seed_;
|
38 |
+
Payload offset_;
|
39 |
+
uint32_t offset_intragraph_ = 0;
|
40 |
+
bool captured_ = false;
|
41 |
+
};
|
42 |
+
|
43 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/TensorInfo.cuh
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CollapseDims.h>
|
4 |
+
|
5 |
+
namespace at::cuda::detail {
|
6 |
+
|
7 |
+
#define MAX_TENSORINFO_DIMS 25
|
8 |
+
|
9 |
+
// CUDA kernel argument that defines tensor layout
|
10 |
+
template <typename T, typename IndexType>
|
11 |
+
struct TensorInfo {
|
12 |
+
TensorInfo();
|
13 |
+
TensorInfo(T* p,
|
14 |
+
int dim,
|
15 |
+
IndexType sz[MAX_TENSORINFO_DIMS],
|
16 |
+
IndexType st[MAX_TENSORINFO_DIMS]);
|
17 |
+
|
18 |
+
// Set the size of the given dimension to 1, as if it were a
|
19 |
+
// reduction dim (allows you to calculate offsets of the reduction
|
20 |
+
// slice)
|
21 |
+
void reduceDim(int dim);
|
22 |
+
|
23 |
+
// See note on [collapse dims].
|
24 |
+
int collapseDims(const int excludeDim = -1);
|
25 |
+
|
26 |
+
// Contiguous tensors of more than one dimension are collapsed down
|
27 |
+
// to one tensor
|
28 |
+
__host__ __device__ inline bool isContiguous() const {
|
29 |
+
return (dims == 1 && strides[0] == 1);
|
30 |
+
}
|
31 |
+
|
32 |
+
T* data;
|
33 |
+
IndexType sizes[MAX_TENSORINFO_DIMS];
|
34 |
+
IndexType strides[MAX_TENSORINFO_DIMS];
|
35 |
+
int dims;
|
36 |
+
};
|
37 |
+
|
38 |
+
template <typename T, typename IndexType>
|
39 |
+
TensorInfo<T, IndexType>::TensorInfo() {
|
40 |
+
data = nullptr;
|
41 |
+
dims = 0;
|
42 |
+
}
|
43 |
+
|
44 |
+
template <typename T, typename IndexType>
|
45 |
+
TensorInfo<T, IndexType>::TensorInfo(T* p,
|
46 |
+
int dim,
|
47 |
+
IndexType sz[MAX_TENSORINFO_DIMS],
|
48 |
+
IndexType st[MAX_TENSORINFO_DIMS]) {
|
49 |
+
data = p;
|
50 |
+
dims = dim;
|
51 |
+
TORCH_CHECK(dims < MAX_TENSORINFO_DIMS, "CUDA Tensors cannot have more than 25 dimensions");
|
52 |
+
|
53 |
+
for (int i = 0; i < dim; ++i) {
|
54 |
+
sizes[i] = sz[i];
|
55 |
+
strides[i] = st[i];
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
template <typename T, typename IndexType>
|
60 |
+
void
|
61 |
+
TensorInfo<T, IndexType>::reduceDim(int dim) {
|
62 |
+
TORCH_CHECK(dim < dims && dim >= 0, "expected dim between 0 and dims - 1");
|
63 |
+
sizes[dim] = 1;
|
64 |
+
}
|
65 |
+
|
66 |
+
template <typename T, typename IndexType>
|
67 |
+
int
|
68 |
+
TensorInfo<T, IndexType>::collapseDims(const int excludeDim) {
|
69 |
+
auto result = at::collapse_dims(sizes, strides, dims, excludeDim);
|
70 |
+
dims = std::get<1>(result);
|
71 |
+
return std::get<0>(result);
|
72 |
+
}
|
73 |
+
|
74 |
+
// Translate a linear index for the apply to a T* offset;
|
75 |
+
// specialized on `Dims` to reduce nvcc compilation time
|
76 |
+
template <typename T, typename IndexType, int Dims>
|
77 |
+
struct IndexToOffset {
|
78 |
+
static __host__ __device__ IndexType get(
|
79 |
+
IndexType linearId,
|
80 |
+
const TensorInfo<T, IndexType>& info) {
|
81 |
+
|
82 |
+
IndexType offset = 0;
|
83 |
+
|
84 |
+
// Uses static dims
|
85 |
+
for (int i = Dims - 1; i > 0; --i) {
|
86 |
+
IndexType curDimIndex = linearId % info.sizes[i];
|
87 |
+
IndexType curDimOffset = curDimIndex * info.strides[i];
|
88 |
+
offset += curDimOffset;
|
89 |
+
linearId /= info.sizes[i];
|
90 |
+
}
|
91 |
+
|
92 |
+
return offset + linearId * info.strides[0];
|
93 |
+
}
|
94 |
+
};
|
95 |
+
|
96 |
+
// Uses dynamic (runtime) instead of static (compiletime) dims
|
97 |
+
template <typename T, typename IndexType>
|
98 |
+
struct IndexToOffset<T, IndexType, -1> {
|
99 |
+
static inline __host__ __device__ IndexType get(
|
100 |
+
IndexType linearId,
|
101 |
+
const TensorInfo<T, IndexType>& info) {
|
102 |
+
|
103 |
+
IndexType offset = 0;
|
104 |
+
|
105 |
+
for (int i = info.dims - 1; i > 0; --i) {
|
106 |
+
IndexType curDimIndex = linearId % info.sizes[i];
|
107 |
+
IndexType curDimOffset = curDimIndex * info.strides[i];
|
108 |
+
offset += curDimOffset;
|
109 |
+
linearId /= info.sizes[i];
|
110 |
+
}
|
111 |
+
|
112 |
+
return offset + linearId * info.strides[0];
|
113 |
+
}
|
114 |
+
};
|
115 |
+
|
116 |
+
} // namespace at::cuda::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/detail/UnpackRaw.cuh
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// No "#pragma once" because this is a raw definition that can be copied by jit codegen.
|
2 |
+
// Eager mode clients should not include this file directly, instead,
|
3 |
+
// they should #include <ATen/cuda/PhiloxUtils.cuh>, which has a #pragma once.
|
4 |
+
|
5 |
+
namespace at::cuda::philox {
|
6 |
+
|
7 |
+
// In-kernel call to retrieve philox seed and offset from a PhiloxCudaState instance whether
|
8 |
+
// that instance was created with graph capture underway or not.
|
9 |
+
// See Note [CUDA Graph-safe RNG states].
|
10 |
+
//
|
11 |
+
// We can't write a __device__ function in CUDAGeneratorImpl.h, because it's in ATen.
|
12 |
+
// Also, whatever call unpacks PhiloxCudaState in consumer kernels must be inlineable.
|
13 |
+
// Easiest thing that comes to mind is, define a __device__ unpack helper here, in ATen/cuda.
|
14 |
+
//
|
15 |
+
// The raw definition lives in its own file so jit codegen can easily copy it.
|
16 |
+
__host__ __device__ __forceinline__ std::tuple<uint64_t, uint64_t>
|
17 |
+
unpack(at::PhiloxCudaState arg) {
|
18 |
+
if (arg.captured_) {
|
19 |
+
// static_cast avoids "warning: invalid narrowing conversion from "long" to "unsigned long".
|
20 |
+
// *(arg.offset_.ptr) is a broadcast load of a single int64_t to the entire kernel.
|
21 |
+
// For most threads' reads it will hit in cache, so it shouldn't hurt performance.
|
22 |
+
return std::make_tuple(static_cast<uint64_t>(*arg.seed_.ptr), static_cast<uint64_t>(*(arg.offset_.ptr) + arg.offset_intragraph_));
|
23 |
+
} else {
|
24 |
+
return std::make_tuple(arg.seed_.val, arg.offset_.val);
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
} // namespace at::cuda::philox
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/jiterator.h
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/jit_macros.h>
|
3 |
+
|
4 |
+
#if AT_USE_JITERATOR()
|
5 |
+
|
6 |
+
#include <c10/macros/Export.h>
|
7 |
+
#include <c10/util/SmallVector.h>
|
8 |
+
#include <ATen/core/Tensor.h>
|
9 |
+
|
10 |
+
#include <string>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace at::cuda {
|
14 |
+
|
15 |
+
TORCH_CUDA_CPP_API c10::SmallVector<at::Tensor> CompileAndLaunchKernel(
|
16 |
+
const std::string& code_string,
|
17 |
+
const std::string& kernel_name,
|
18 |
+
const int num_outputs,
|
19 |
+
const c10::SmallVector<at::Tensor>& tensors,
|
20 |
+
const c10::SmallVector<at::Scalar>& extra_args,
|
21 |
+
bool return_by_ref);
|
22 |
+
|
23 |
+
} // namespace at::cuda
|
24 |
+
|
25 |
+
#else
|
26 |
+
|
27 |
+
namespace at::cuda {
|
28 |
+
|
29 |
+
TORCH_CUDA_CPP_API c10::SmallVector<at::Tensor> CompileAndLaunchKernel(
|
30 |
+
const std::string& code_string,
|
31 |
+
const std::string& kernel_name,
|
32 |
+
const int num_outputs,
|
33 |
+
const c10::SmallVector<at::Tensor>& tensors,
|
34 |
+
const c10::SmallVector<at::Scalar>& extra_args,
|
35 |
+
bool return_by_ref) {
|
36 |
+
TORCH_CHECK(false, "Jiterator is not supported");
|
37 |
+
}
|
38 |
+
} // namespace at::cuda
|
39 |
+
|
40 |
+
#endif // AT_USE_JITERATOR()
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/jiterator_impl.h
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/jit_macros.h>
|
3 |
+
|
4 |
+
#if AT_USE_JITERATOR()
|
5 |
+
|
6 |
+
#include <ATen/native/TensorIterator.h>
|
7 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
8 |
+
#include <ATen/native/cuda/jit_utils.h>
|
9 |
+
#include <ATen/native/cuda/MemoryAccess.cuh>
|
10 |
+
#include <ATen/native/cuda/JitLoops.cuh>
|
11 |
+
|
12 |
+
#include <string>
|
13 |
+
#include <variant>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
namespace at::native {
|
17 |
+
|
18 |
+
|
19 |
+
#define AT_FOR_8_CASES(_) \
|
20 |
+
_(1) \
|
21 |
+
_(2) \
|
22 |
+
_(3) \
|
23 |
+
_(4) \
|
24 |
+
_(5) \
|
25 |
+
_(6) \
|
26 |
+
_(7) \
|
27 |
+
_(8)
|
28 |
+
|
29 |
+
#define AT_FOR_8_CASES_WITH_COMMA(_) \
|
30 |
+
_(1) , \
|
31 |
+
_(2) , \
|
32 |
+
_(3) , \
|
33 |
+
_(4) , \
|
34 |
+
_(5) , \
|
35 |
+
_(6) , \
|
36 |
+
_(7) , \
|
37 |
+
_(8)
|
38 |
+
|
39 |
+
c10::SmallVector<std::string> get_extra_args_typenames(const c10::SmallVector<at::Scalar>& extra_args) {
|
40 |
+
c10::SmallVector<std::string> args_typenames(extra_args.size());
|
41 |
+
for (const auto i : c10::irange(extra_args.size())) {
|
42 |
+
args_typenames[i] = at::cuda::jit::typeName(extra_args[i].type());
|
43 |
+
}
|
44 |
+
return args_typenames;
|
45 |
+
}
|
46 |
+
|
47 |
+
int can_vectorize_up_to(at::ScalarType type, char* pointer) {
|
48 |
+
switch(type) {
|
49 |
+
#define DEFINE_CASE(ctype, scalartype) \
|
50 |
+
case ScalarType::scalartype : return memory::can_vectorize_up_to<ctype>(pointer);
|
51 |
+
|
52 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CASE)
|
53 |
+
#undef DEFINE_CASE
|
54 |
+
|
55 |
+
default: TORCH_INTERNAL_ASSERT(false, "Unrecognized ScalarType: ", type);
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
// jitted version of the above
|
60 |
+
// See Note [Jiterator], this relies on the assumptions enumerated there
|
61 |
+
int jitted_can_vectorize_up_to(const TensorIteratorBase& iter) {
|
62 |
+
const at::ScalarType common_dtype = iter.common_dtype();
|
63 |
+
const at::ScalarType result_dtype = common_dtype;
|
64 |
+
|
65 |
+
// Deals with output
|
66 |
+
int result = can_vectorize_up_to(result_dtype, static_cast<char*>(iter.data_ptr(0)));
|
67 |
+
|
68 |
+
// Incorporates input(s)
|
69 |
+
for (auto i = 1; i < iter.ntensors(); ++i) {
|
70 |
+
result = std::min<int>(result, can_vectorize_up_to(common_dtype, static_cast<char*>(iter.data_ptr(i))));
|
71 |
+
}
|
72 |
+
|
73 |
+
return result;
|
74 |
+
}
|
75 |
+
|
76 |
+
template<bool IS_INPUT, int N>
|
77 |
+
static std::unique_ptr<OffsetCalculator<N>> make_unique_offset_calculator(
|
78 |
+
const TensorIteratorBase& iter) {
|
79 |
+
// array size can not be 0, this happens when N == 0
|
80 |
+
constexpr int array_size = std::max<int>(N, 1);
|
81 |
+
TORCH_INTERNAL_ASSERT(N == (IS_INPUT ? iter.ninputs() : iter.noutputs()));
|
82 |
+
|
83 |
+
std::array<const int64_t*, array_size> strides;
|
84 |
+
int64_t element_sizes[array_size];
|
85 |
+
for (int i = 0; i < N; i++) {
|
86 |
+
int index = IS_INPUT ? i + iter.noutputs() : i;
|
87 |
+
strides[i] = iter.strides(index).data();
|
88 |
+
element_sizes[i] = iter.element_size(index);
|
89 |
+
}
|
90 |
+
return std::make_unique<OffsetCalculator<N>>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
|
91 |
+
}
|
92 |
+
|
93 |
+
template <bool IS_INPUT>
|
94 |
+
struct OffsetCalculatorVariant {
|
95 |
+
#define DEFINE_CASE(index) std::unique_ptr<OffsetCalculator<index>>
|
96 |
+
using OffsetCalculatorTypes = std::variant<
|
97 |
+
AT_FOR_8_CASES_WITH_COMMA(DEFINE_CASE)
|
98 |
+
>;
|
99 |
+
#undef DEFINE_CASE
|
100 |
+
|
101 |
+
OffsetCalculatorVariant(const TensorIteratorBase& iter) {
|
102 |
+
int num = IS_INPUT ? iter.ninputs() : iter.noutputs();
|
103 |
+
|
104 |
+
switch(num) {
|
105 |
+
#define DEFINE_CASE(index) \
|
106 |
+
case index : v = make_unique_offset_calculator<IS_INPUT, index>(iter); break;
|
107 |
+
|
108 |
+
AT_FOR_8_CASES(DEFINE_CASE)
|
109 |
+
#undef DEFINE_CASE
|
110 |
+
default:
|
111 |
+
TORCH_CHECK(false, "OffsetCalculatorVariant is not implemented for num_tensor = ", num);
|
112 |
+
}
|
113 |
+
}
|
114 |
+
|
115 |
+
void* data_ptr() {
|
116 |
+
return std::visit([](auto & v){ return static_cast<void*>(v.get()); }, v);
|
117 |
+
}
|
118 |
+
|
119 |
+
private:
|
120 |
+
OffsetCalculatorTypes v;
|
121 |
+
};
|
122 |
+
|
123 |
+
struct ArrayVariant {
|
124 |
+
// works for up to 8 input + 8 outputs
|
125 |
+
#define DEFINE_CASE(index) at::detail::Array<char*, index>, at::detail::Array<char*, index+8>
|
126 |
+
using ArrayTypes = std::variant<
|
127 |
+
AT_FOR_8_CASES_WITH_COMMA(DEFINE_CASE)
|
128 |
+
>;
|
129 |
+
#undef DEFINE_CASE
|
130 |
+
|
131 |
+
ArrayVariant(const TensorIteratorBase& iter) {
|
132 |
+
int ntensors = iter.ntensors();
|
133 |
+
switch(ntensors) {
|
134 |
+
#define DEFINE_CASE(index) \
|
135 |
+
case index: array = at::detail::Array<char*, index>{}; break; \
|
136 |
+
case index+8: array = at::detail::Array<char*, index+8>{}; break;
|
137 |
+
|
138 |
+
AT_FOR_8_CASES(DEFINE_CASE)
|
139 |
+
#undef DEFINE_CASE
|
140 |
+
|
141 |
+
default:
|
142 |
+
TORCH_CHECK(false, "ArrayVariant is not implemented for ntensors = ", ntensors);
|
143 |
+
}
|
144 |
+
|
145 |
+
std::visit([&](auto& a) {
|
146 |
+
for (auto i = 0; i < ntensors; ++i) {
|
147 |
+
a[i] = (char*)iter.data_ptr(i);
|
148 |
+
}
|
149 |
+
}, array);
|
150 |
+
}
|
151 |
+
|
152 |
+
void* data_ptr() {
|
153 |
+
return std::visit([](auto & a){ return static_cast<void*>(&a); }, array);
|
154 |
+
}
|
155 |
+
|
156 |
+
private:
|
157 |
+
ArrayTypes array;
|
158 |
+
};
|
159 |
+
|
160 |
+
struct TrivialOffsetCalculatorVariant {
|
161 |
+
#define DEFINE_CASE(index) TrivialOffsetCalculator<index>
|
162 |
+
using TrivialOffsetCalculatorTypes = std::variant<
|
163 |
+
AT_FOR_8_CASES_WITH_COMMA(DEFINE_CASE)
|
164 |
+
>;
|
165 |
+
#undef DEFINE_CASE
|
166 |
+
|
167 |
+
TrivialOffsetCalculatorVariant(int num) {
|
168 |
+
switch(num) {
|
169 |
+
#define DEFINE_CASE(index) \
|
170 |
+
case index: v = TrivialOffsetCalculator<index>(); break;
|
171 |
+
|
172 |
+
AT_FOR_8_CASES(DEFINE_CASE)
|
173 |
+
#undef DEFINE_CASE
|
174 |
+
|
175 |
+
default:
|
176 |
+
TORCH_CHECK(false, "TrivialOffsetCalculatorVariant is not implemented for num_tensors = ", num);
|
177 |
+
}
|
178 |
+
}
|
179 |
+
|
180 |
+
void* data_ptr() {
|
181 |
+
return std::visit([](auto & v){ return static_cast<void*>(&v); }, v);
|
182 |
+
}
|
183 |
+
|
184 |
+
private:
|
185 |
+
TrivialOffsetCalculatorTypes v;
|
186 |
+
};
|
187 |
+
|
188 |
+
struct LoadWithCastVariant {
|
189 |
+
#define DEFINE_CASE(index) std::unique_ptr<memory::LoadWithCast<index>>
|
190 |
+
using LoadWithCastPtr = std::variant<
|
191 |
+
AT_FOR_8_CASES_WITH_COMMA(DEFINE_CASE)
|
192 |
+
>;
|
193 |
+
#undef DEFINE_CASE
|
194 |
+
|
195 |
+
LoadWithCastVariant(const TensorIteratorBase& iter) {
|
196 |
+
int arity = iter.ninputs();
|
197 |
+
switch(arity) {
|
198 |
+
#define DEFINE_CASE(index) \
|
199 |
+
case index: v = std::make_unique<memory::LoadWithCast<index>>(iter); break;
|
200 |
+
|
201 |
+
AT_FOR_8_CASES(DEFINE_CASE)
|
202 |
+
#undef DEFINE_CASE
|
203 |
+
|
204 |
+
default:
|
205 |
+
TORCH_CHECK(false, "LoadWithCastVariant is not implemented for ninputs = ", arity);
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
void* data_ptr() {
|
210 |
+
return std::visit([](auto & v){ return static_cast<void*>(v.get()); }, v);
|
211 |
+
}
|
212 |
+
|
213 |
+
private:
|
214 |
+
LoadWithCastPtr v;
|
215 |
+
};
|
216 |
+
|
217 |
+
struct StoreWithCastVariant {
|
218 |
+
#define DEFINE_CASE(index) std::unique_ptr<memory::StoreWithCast<index>>
|
219 |
+
using StoreWithCastPtr = std::variant<
|
220 |
+
AT_FOR_8_CASES_WITH_COMMA(DEFINE_CASE)
|
221 |
+
>;
|
222 |
+
#undef DEFINE_CASE
|
223 |
+
|
224 |
+
StoreWithCastVariant(const TensorIteratorBase& iter) {
|
225 |
+
int num = iter.noutputs();
|
226 |
+
switch(num) {
|
227 |
+
#define DEFINE_CASE(index) \
|
228 |
+
case index: v = std::make_unique<memory::StoreWithCast<index>>(iter); break;
|
229 |
+
|
230 |
+
AT_FOR_8_CASES(DEFINE_CASE)
|
231 |
+
#undef DEFINE_CASE
|
232 |
+
|
233 |
+
default:
|
234 |
+
TORCH_CHECK(false, "StoreWithCastVariant is not implemented for noutputs = ", num);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
|
238 |
+
void* data_ptr() {
|
239 |
+
return std::visit([](auto & v){ return static_cast<void*>(v.get()); }, v);
|
240 |
+
}
|
241 |
+
|
242 |
+
private:
|
243 |
+
StoreWithCastPtr v;
|
244 |
+
};
|
245 |
+
|
246 |
+
} // namespace at::native
|
247 |
+
|
248 |
+
|
249 |
+
#endif // AT_USE_JITERATOR()
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/llvm_jit_strings.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <string>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
namespace at::cuda {
|
7 |
+
|
8 |
+
TORCH_CUDA_CPP_API const std::string &get_traits_string();
|
9 |
+
TORCH_CUDA_CPP_API const std::string &get_cmath_string();
|
10 |
+
TORCH_CUDA_CPP_API const std::string &get_complex_body_string();
|
11 |
+
TORCH_CUDA_CPP_API const std::string &get_complex_half_body_string();
|
12 |
+
TORCH_CUDA_CPP_API const std::string &get_complex_math_string();
|
13 |
+
|
14 |
+
} // namespace at::cuda
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/tunable/GemmCommon.h
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Original TunableOp is from onnxruntime.
|
2 |
+
// https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/core/framework/tunable.h
|
3 |
+
// https://github.com/microsoft/onnxruntime/tree/main/onnxruntime/core/providers/rocm/tunable
|
4 |
+
// Copyright (c) Microsoft Corporation.
|
5 |
+
// Licensed under the MIT license.
|
6 |
+
//
|
7 |
+
// Adapting TunableOp into PyTorch
|
8 |
+
// Copyright (c) Advanced Micro Devices, Inc.
|
9 |
+
//
|
10 |
+
#pragma once
|
11 |
+
|
12 |
+
#include <string>
|
13 |
+
|
14 |
+
#include <ATen/cuda/tunable/TunableOp.h>
|
15 |
+
#include <ATen/cuda/Exceptions.h>
|
16 |
+
#include <c10/util/StringUtil.h>
|
17 |
+
|
18 |
+
namespace at::cuda::tunable {
|
19 |
+
|
20 |
+
enum class BlasOp {
|
21 |
+
N = 0,
|
22 |
+
T = 1
|
23 |
+
};
|
24 |
+
|
25 |
+
inline std::string BlasOpToString(BlasOp op) {
|
26 |
+
switch (op) {
|
27 |
+
case BlasOp::N:
|
28 |
+
return "N";
|
29 |
+
case BlasOp::T:
|
30 |
+
return "T";
|
31 |
+
}
|
32 |
+
TORCH_CHECK(false, "unrecognized BlasOp");
|
33 |
+
return "N";
|
34 |
+
}
|
35 |
+
|
36 |
+
template <typename T>
|
37 |
+
struct GemmParams : OpParams {
|
38 |
+
std::string Signature() const override {
|
39 |
+
return c10::str(transa, transb, "_", m, "_", n, "_", k);
|
40 |
+
}
|
41 |
+
|
42 |
+
GemmParams* DeepCopy() const {
|
43 |
+
GemmParams* copy = new GemmParams;
|
44 |
+
*copy = *this;
|
45 |
+
c10::DeviceIndex device = 0;
|
46 |
+
AT_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
47 |
+
size_t c_size = m * n * sizeof(T);
|
48 |
+
copy->c = static_cast<T*>(c10::cuda::CUDACachingAllocator::raw_alloc(c_size));
|
49 |
+
AT_CUDA_CHECK(c10::cuda::CUDACachingAllocator::memcpyAsync(
|
50 |
+
copy->c, device, c, device, c_size, getCurrentCUDAStream(device), true));
|
51 |
+
return copy;
|
52 |
+
}
|
53 |
+
|
54 |
+
// only call on object returned by DeepCopy
|
55 |
+
void Delete() {
|
56 |
+
c10::cuda::CUDACachingAllocator::raw_delete(c);
|
57 |
+
}
|
58 |
+
|
59 |
+
TuningStatus NumericalCheck(GemmParams<T> *other) {
|
60 |
+
auto options = at::TensorOptions().dtype(c10::CppTypeToScalarType<T>::value).device(at::kCUDA);
|
61 |
+
// comparison done as 1D tensor
|
62 |
+
at::Tensor ref = at::from_blob(c, {m*n}, options);
|
63 |
+
at::Tensor oth = at::from_blob(other->c, {m*n}, options);
|
64 |
+
at::Tensor ref_float = ref.to(at::kFloat);
|
65 |
+
at::Tensor oth_float = oth.to(at::kFloat);
|
66 |
+
std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
67 |
+
std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
68 |
+
double last_succeed_atol = 1;
|
69 |
+
double last_succeed_rtol = 1;
|
70 |
+
for (auto& atol : atols) {
|
71 |
+
for (auto& rtol : rtols) {
|
72 |
+
if (at::allclose(ref_float, oth_float, rtol, atol)) {
|
73 |
+
last_succeed_atol = atol;
|
74 |
+
last_succeed_rtol = rtol;
|
75 |
+
}
|
76 |
+
}
|
77 |
+
}
|
78 |
+
if (last_succeed_atol == 1) {
|
79 |
+
return FAIL;
|
80 |
+
}
|
81 |
+
else {
|
82 |
+
TUNABLE_LOG("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol);
|
83 |
+
}
|
84 |
+
|
85 |
+
return OK;
|
86 |
+
}
|
87 |
+
|
88 |
+
char transa;
|
89 |
+
char transb;
|
90 |
+
int64_t m;
|
91 |
+
int64_t n;
|
92 |
+
int64_t k;
|
93 |
+
at::opmath_type<T> alpha;
|
94 |
+
const T* a;
|
95 |
+
int64_t lda;
|
96 |
+
const T* b;
|
97 |
+
int64_t ldb;
|
98 |
+
at::opmath_type<T> beta;
|
99 |
+
T* c;
|
100 |
+
int64_t ldc;
|
101 |
+
};
|
102 |
+
|
103 |
+
template <typename T>
|
104 |
+
struct GemmStridedBatchedParams : OpParams {
|
105 |
+
std::string Signature() const override {
|
106 |
+
return c10::str(transa, transb, "_", m, "_", n, "_", k, "_B_", batch);
|
107 |
+
}
|
108 |
+
|
109 |
+
GemmStridedBatchedParams* DeepCopy() const {
|
110 |
+
GemmStridedBatchedParams* copy = new GemmStridedBatchedParams;
|
111 |
+
*copy = *this;
|
112 |
+
c10::DeviceIndex device = 0;
|
113 |
+
AT_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
114 |
+
size_t c_size = batch * stride_c * sizeof(T);
|
115 |
+
copy->c = static_cast<T*>(c10::cuda::CUDACachingAllocator::raw_alloc(c_size));
|
116 |
+
AT_CUDA_CHECK(c10::cuda::CUDACachingAllocator::memcpyAsync(
|
117 |
+
copy->c, device, c, device, c_size, getCurrentCUDAStream(device), true));
|
118 |
+
return copy;
|
119 |
+
}
|
120 |
+
|
121 |
+
// only call on object returned by DeepCopy
|
122 |
+
void Delete() {
|
123 |
+
c10::cuda::CUDACachingAllocator::raw_delete(c);
|
124 |
+
}
|
125 |
+
|
126 |
+
TuningStatus NumericalCheck(GemmStridedBatchedParams<T> *other) {
|
127 |
+
auto options = at::TensorOptions().dtype(c10::CppTypeToScalarType<T>::value).device(at::kCUDA);
|
128 |
+
// comparison done as 1D tensor
|
129 |
+
at::Tensor ref = at::from_blob(c, {batch*stride_c}, options);
|
130 |
+
at::Tensor oth = at::from_blob(other->c, {batch*stride_c}, options);
|
131 |
+
at::Tensor ref_float = ref.to(at::kFloat);
|
132 |
+
at::Tensor oth_float = oth.to(at::kFloat);
|
133 |
+
std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
134 |
+
std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
135 |
+
double last_succeed_atol = 1;
|
136 |
+
double last_succeed_rtol = 1;
|
137 |
+
for (auto& atol : atols) {
|
138 |
+
for (auto& rtol : rtols) {
|
139 |
+
if (at::allclose(ref_float, oth_float, rtol, atol)) {
|
140 |
+
last_succeed_atol = atol;
|
141 |
+
last_succeed_rtol = rtol;
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
if (last_succeed_atol == 1) {
|
146 |
+
return FAIL;
|
147 |
+
}
|
148 |
+
else {
|
149 |
+
TUNABLE_LOG("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol);
|
150 |
+
}
|
151 |
+
|
152 |
+
return OK;
|
153 |
+
}
|
154 |
+
|
155 |
+
char transa;
|
156 |
+
char transb;
|
157 |
+
int64_t m;
|
158 |
+
int64_t n;
|
159 |
+
int64_t k;
|
160 |
+
at::opmath_type<T> alpha;
|
161 |
+
const T* a;
|
162 |
+
int64_t lda;
|
163 |
+
int64_t stride_a;
|
164 |
+
const T* b;
|
165 |
+
int64_t ldb;
|
166 |
+
int64_t stride_b;
|
167 |
+
at::opmath_type<T> beta;
|
168 |
+
T* c;
|
169 |
+
int64_t ldc;
|
170 |
+
int64_t stride_c;
|
171 |
+
int64_t batch;
|
172 |
+
};
|
173 |
+
|
174 |
+
} // namespace at::cuda::tunable
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cuda/tunable/GemmHipblaslt.h
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation. All rights reserved.
|
2 |
+
// Licensed under the MIT License.
|
3 |
+
|
4 |
+
#pragma once
|
5 |
+
|
6 |
+
#include <ATen/cuda/CUDAContext.h>
|
7 |
+
#include <ATen/cuda/tunable/TunableOp.h>
|
8 |
+
#include <ATen/cuda/tunable/GemmCommon.h>
|
9 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
10 |
+
#include <c10/util/StringUtil.h>
|
11 |
+
|
12 |
+
#include <hipblaslt/hipblaslt.h>
|
13 |
+
#include <hipblaslt/hipblaslt-ext.hpp>
|
14 |
+
|
15 |
+
#define TORCH_HIPBLASLT_CHECK(EXPR) \
|
16 |
+
do { \
|
17 |
+
hipblasStatus_t __err = EXPR; \
|
18 |
+
TORCH_CHECK(__err == HIPBLAS_STATUS_SUCCESS, \
|
19 |
+
"hipblaslt error: ", \
|
20 |
+
hipblasStatusToString(__err), \
|
21 |
+
" when calling `" #EXPR "`"); \
|
22 |
+
} while (0)
|
23 |
+
|
24 |
+
namespace at::cuda::tunable {
|
25 |
+
|
26 |
+
#ifdef HIPBLASLT_HAS_GETINDEXFROMALGO
|
27 |
+
#define GETINDEXFROMALGO(algo) hipblaslt_ext::getIndexFromAlgo(algo)
|
28 |
+
#else
|
29 |
+
static int getIndexFromAlgo(hipblasLtMatmulAlgo_t& algo) {
|
30 |
+
int* algo_ptr = (int*)algo.data;
|
31 |
+
if(*algo_ptr < 0) {
|
32 |
+
return -1;
|
33 |
+
}
|
34 |
+
return *algo_ptr;
|
35 |
+
}
|
36 |
+
#define GETINDEXFROMALGO(algo) getIndexFromAlgo(algo)
|
37 |
+
#endif
|
38 |
+
|
39 |
+
#ifdef HIPBLASLT_CUSTOM_COMPUTE_TYPE
|
40 |
+
#define COMPUTE_TYPE_32 HIPBLASLT_COMPUTE_F32
|
41 |
+
#else
|
42 |
+
#define COMPUTE_TYPE_32 HIPBLAS_COMPUTE_32F
|
43 |
+
#endif
|
44 |
+
|
45 |
+
#ifdef HIPBLASLT_CUSTOM_DATA_TYPE
|
46 |
+
|
47 |
+
template <typename T>
|
48 |
+
constexpr hipblasltDatatype_t HipBlasDataTypeFor();
|
49 |
+
|
50 |
+
template <>
|
51 |
+
constexpr hipblasltDatatype_t HipBlasDataTypeFor<float>() {
|
52 |
+
return HIPBLASLT_R_32F;
|
53 |
+
}
|
54 |
+
|
55 |
+
template <>
|
56 |
+
constexpr hipblasltDatatype_t HipBlasDataTypeFor<Half>() {
|
57 |
+
return HIPBLASLT_R_16F;
|
58 |
+
}
|
59 |
+
|
60 |
+
template <>
|
61 |
+
constexpr hipblasltDatatype_t HipBlasDataTypeFor<BFloat16>() {
|
62 |
+
return HIPBLASLT_R_16B;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <>
|
66 |
+
constexpr hipblasltDatatype_t HipBlasDataTypeFor<double>() {
|
67 |
+
return HIPBLASLT_R_64F;
|
68 |
+
}
|
69 |
+
|
70 |
+
#define DATA_TYPE_R_32 HIPBLASLT_R_32F
|
71 |
+
|
72 |
+
#else
|
73 |
+
|
74 |
+
template <typename T>
|
75 |
+
constexpr hipblasDatatype_t HipBlasDataTypeFor();
|
76 |
+
|
77 |
+
template <>
|
78 |
+
constexpr hipblasDatatype_t HipBlasDataTypeFor<float>() {
|
79 |
+
return HIPBLAS_R_32F;
|
80 |
+
}
|
81 |
+
|
82 |
+
template <>
|
83 |
+
constexpr hipblasDatatype_t HipBlasDataTypeFor<Half>() {
|
84 |
+
return HIPBLAS_R_16F;
|
85 |
+
}
|
86 |
+
|
87 |
+
template <>
|
88 |
+
constexpr hipblasDatatype_t HipBlasDataTypeFor<BFloat16>() {
|
89 |
+
return HIPBLAS_R_16B;
|
90 |
+
}
|
91 |
+
|
92 |
+
template <>
|
93 |
+
constexpr hipblasDatatype_t HipBlasDataTypeFor<double>() {
|
94 |
+
return HIPBLAS_R_64F;
|
95 |
+
}
|
96 |
+
|
97 |
+
#ifdef HIPBLAS_V2
|
98 |
+
#define DATA_TYPE_R_32 HIP_R_32F
|
99 |
+
#else
|
100 |
+
#define DATA_TYPE_R_32 HIPBLAS_R_32F
|
101 |
+
#endif
|
102 |
+
|
103 |
+
#endif
|
104 |
+
|
105 |
+
template <typename T, typename ParamsT>
|
106 |
+
int GetBatchFromParams(const ParamsT* params) {
|
107 |
+
return 1;
|
108 |
+
}
|
109 |
+
|
110 |
+
template <typename T>
|
111 |
+
int GetBatchFromParams(const GemmStridedBatchedParams<T>* params) {
|
112 |
+
return params->batch;
|
113 |
+
}
|
114 |
+
|
115 |
+
template <typename T, typename ParamsT>
|
116 |
+
int GetStrideAFromParams(const ParamsT* params) {
|
117 |
+
return 1;
|
118 |
+
}
|
119 |
+
|
120 |
+
template <typename T>
|
121 |
+
int GetStrideAFromParams(const GemmStridedBatchedParams<T>* params) {
|
122 |
+
return params->stride_a;
|
123 |
+
}
|
124 |
+
|
125 |
+
template <typename T, typename ParamsT>
|
126 |
+
int GetStrideBFromParams(const ParamsT* params) {
|
127 |
+
return 1;
|
128 |
+
}
|
129 |
+
|
130 |
+
template <typename T>
|
131 |
+
int GetStrideBFromParams(const GemmStridedBatchedParams<T>* params) {
|
132 |
+
return params->stride_b;
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename T, typename ParamsT>
|
136 |
+
int GetStrideCFromParams(const ParamsT* params) {
|
137 |
+
return 1;
|
138 |
+
}
|
139 |
+
|
140 |
+
template <typename T>
|
141 |
+
int GetStrideCFromParams(const GemmStridedBatchedParams<T>* params) {
|
142 |
+
return params->stride_c;
|
143 |
+
}
|
144 |
+
|
145 |
+
static hipblasOperation_t _hipblasOpFromChar(char op) {
|
146 |
+
switch (op) {
|
147 |
+
case 'n':
|
148 |
+
case 'N':
|
149 |
+
return HIPBLAS_OP_N;
|
150 |
+
case 't':
|
151 |
+
case 'T':
|
152 |
+
return HIPBLAS_OP_T;
|
153 |
+
case 'c':
|
154 |
+
case 'C':
|
155 |
+
return HIPBLAS_OP_C;
|
156 |
+
}
|
157 |
+
AT_ERROR(
|
158 |
+
"_hipblasOpFromChar input should be 't', 'n' or 'c' but got `", op, "`");
|
159 |
+
}
|
160 |
+
|
161 |
+
static char _charFromhipblasOp(hipblasOperation_t op) {
|
162 |
+
switch (op) {
|
163 |
+
case HIPBLAS_OP_N:
|
164 |
+
return 'N';
|
165 |
+
case HIPBLAS_OP_T:
|
166 |
+
return 'T';
|
167 |
+
case HIPBLAS_OP_C:
|
168 |
+
return 'C';
|
169 |
+
}
|
170 |
+
AT_ERROR(
|
171 |
+
"_charFromhipblasOp input should be HIPBLAS_OP_N/T/C but got `", op, "`");
|
172 |
+
}
|
173 |
+
|
174 |
+
static hipblasOperation_t MapLayoutToHipBlasLt(BlasOp layout) {
|
175 |
+
if (layout == BlasOp::N) {
|
176 |
+
return HIPBLAS_OP_N;
|
177 |
+
}
|
178 |
+
return HIPBLAS_OP_T;
|
179 |
+
}
|
180 |
+
|
181 |
+
static size_t GetHipblasltWorkspaceSize() {
|
182 |
+
static const char * env = getenv("HIPBLASLT_WORKSPACE_SIZE");
|
183 |
+
// 256MB is max workspace size allowed for hipblaslt
|
184 |
+
// hipblaslt-bench uses 32MB
|
185 |
+
// recommendation from hipblaslt author was 76MB
|
186 |
+
size_t workspace_size = 2*128*1024*1024; // default 256MB
|
187 |
+
if (env) {
|
188 |
+
try {
|
189 |
+
workspace_size = std::stoi(env);
|
190 |
+
} catch(std::invalid_argument const& e) {
|
191 |
+
TORCH_WARN("invalid HIPBLASLT_WORKSPACE_SIZE,",
|
192 |
+
" using default workspace size of ", workspace_size, " bytes.");
|
193 |
+
} catch(std::out_of_range const& e) {
|
194 |
+
TORCH_WARN("HIPBLASLT_WORKSPACE_SIZE out of range,",
|
195 |
+
" using default workspace size of ", workspace_size, " bytes.");
|
196 |
+
}
|
197 |
+
}
|
198 |
+
return workspace_size;
|
199 |
+
}
|
200 |
+
|
201 |
+
template <typename T, BlasOp ALayout, BlasOp BLayout, typename ParamsT>
|
202 |
+
class HipblasltGemmOp : public Callable<ParamsT> {
|
203 |
+
public:
|
204 |
+
HipblasltGemmOp(hipblasLtMatmulAlgo_t algo) : algo_{algo} {}
|
205 |
+
|
206 |
+
TuningStatus Call(const ParamsT* params) override {
|
207 |
+
hipblasOperation_t transa_outer = MapLayoutToHipBlasLt(ALayout);
|
208 |
+
hipblasOperation_t transb_outer = MapLayoutToHipBlasLt(BLayout);
|
209 |
+
auto in_out_datatype = HipBlasDataTypeFor<T>();
|
210 |
+
auto opa = _hipblasOpFromChar(params->transa);
|
211 |
+
auto opb = _hipblasOpFromChar(params->transb);
|
212 |
+
|
213 |
+
TORCH_CHECK(transa_outer == opa && transb_outer == opb, "trans mismatch, shouldn't happen");
|
214 |
+
|
215 |
+
float alpha = static_cast<float>(params->alpha);
|
216 |
+
float beta = static_cast<float>(params->beta);
|
217 |
+
|
218 |
+
hipblasLtMatrixLayout_t mat_a, mat_b, mat_c;
|
219 |
+
hipblasLtMatmulDesc_t matmul;
|
220 |
+
if (opa == HIPBLAS_OP_N) {
|
221 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutCreate(&mat_a, in_out_datatype, params->m, params->k, params->lda));
|
222 |
+
}
|
223 |
+
else {
|
224 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutCreate(&mat_a, in_out_datatype, params->k, params->m, params->lda));
|
225 |
+
}
|
226 |
+
if (opb == HIPBLAS_OP_N) {
|
227 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutCreate(&mat_b, in_out_datatype, params->k, params->n, params->ldb));
|
228 |
+
}
|
229 |
+
else {
|
230 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutCreate(&mat_b, in_out_datatype, params->n, params->k, params->ldb));
|
231 |
+
}
|
232 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutCreate(&mat_c, in_out_datatype, params->m, params->n, params->ldc));
|
233 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatmulDescCreate(&matmul, COMPUTE_TYPE_32, DATA_TYPE_R_32));
|
234 |
+
|
235 |
+
int batch = GetBatchFromParams<T>(params);
|
236 |
+
if (batch > 1) {
|
237 |
+
int64_t stride_a = GetStrideAFromParams<T>(params);
|
238 |
+
int64_t stride_b = GetStrideBFromParams<T>(params);
|
239 |
+
int64_t stride_c = GetStrideCFromParams<T>(params);
|
240 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
241 |
+
mat_a, HIPBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch, sizeof(batch)));
|
242 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
243 |
+
mat_a, HIPBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &stride_a, sizeof(stride_a)));
|
244 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
245 |
+
mat_b, HIPBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch, sizeof(batch)));
|
246 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
247 |
+
mat_b, HIPBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &stride_b, sizeof(stride_b)));
|
248 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
249 |
+
mat_c, HIPBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch, sizeof(batch)));
|
250 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutSetAttribute(
|
251 |
+
mat_c, HIPBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &stride_c, sizeof(stride_c)));
|
252 |
+
}
|
253 |
+
|
254 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatmulDescSetAttribute(
|
255 |
+
matmul, HIPBLASLT_MATMUL_DESC_TRANSA, &opa, sizeof(int32_t)));
|
256 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatmulDescSetAttribute(
|
257 |
+
matmul, HIPBLASLT_MATMUL_DESC_TRANSB, &opb, sizeof(int32_t)));
|
258 |
+
|
259 |
+
size_t workspace_size = GetHipblasltWorkspaceSize();
|
260 |
+
|
261 |
+
auto op_handle = at::cuda::getCurrentCUDABlasLtHandle();
|
262 |
+
|
263 |
+
size_t ret_workspace_size = 0;
|
264 |
+
auto status = hipblaslt_ext::matmulIsAlgoSupported(op_handle,
|
265 |
+
matmul,
|
266 |
+
&alpha,
|
267 |
+
mat_a,
|
268 |
+
mat_b,
|
269 |
+
&beta,
|
270 |
+
mat_c,
|
271 |
+
mat_c,
|
272 |
+
algo_,
|
273 |
+
ret_workspace_size);
|
274 |
+
|
275 |
+
if (status == HIPBLAS_STATUS_SUCCESS) {
|
276 |
+
if (ret_workspace_size >= workspace_size) {
|
277 |
+
//TUNABLE_LOG("[hipBLASLt] Solution #", algo_index, " workspace too large");
|
278 |
+
return FAIL;
|
279 |
+
}
|
280 |
+
}
|
281 |
+
else {
|
282 |
+
//TUNABLE_LOG("[hipBLASLt] Solution #", algo_index, " not supported");
|
283 |
+
return FAIL;
|
284 |
+
}
|
285 |
+
|
286 |
+
void* workspace_buffer = nullptr;
|
287 |
+
if (workspace_size > 0) {
|
288 |
+
workspace_buffer = c10::cuda::CUDACachingAllocator::raw_alloc(workspace_size);
|
289 |
+
}
|
290 |
+
|
291 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatmul(op_handle,
|
292 |
+
matmul,
|
293 |
+
&alpha,
|
294 |
+
params->a,
|
295 |
+
mat_a,
|
296 |
+
params->b,
|
297 |
+
mat_b,
|
298 |
+
&beta,
|
299 |
+
params->c,
|
300 |
+
mat_c,
|
301 |
+
params->c,
|
302 |
+
mat_c,
|
303 |
+
&algo_,
|
304 |
+
workspace_buffer,
|
305 |
+
workspace_size,
|
306 |
+
at::cuda::getCurrentCUDAStream()));
|
307 |
+
|
308 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatmulDescDestroy(matmul));
|
309 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutDestroy(mat_a));
|
310 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutDestroy(mat_b));
|
311 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtMatrixLayoutDestroy(mat_c));
|
312 |
+
if (workspace_size > 0) {
|
313 |
+
c10::cuda::CUDACachingAllocator::raw_delete(workspace_buffer);
|
314 |
+
}
|
315 |
+
return OK;
|
316 |
+
}
|
317 |
+
|
318 |
+
private:
|
319 |
+
hipblasLtMatmulAlgo_t algo_;
|
320 |
+
};
|
321 |
+
|
322 |
+
template <typename T, BlasOp ALayout, BlasOp BLayout, typename ParamsT>
|
323 |
+
auto GetHipBlasLtTypeStringAndOps() {
|
324 |
+
hipblasOperation_t transa_outer = MapLayoutToHipBlasLt(ALayout);
|
325 |
+
hipblasOperation_t transb_outer = MapLayoutToHipBlasLt(BLayout);
|
326 |
+
auto in_out_datatype = HipBlasDataTypeFor<T>();
|
327 |
+
std::vector<hipblasLtMatmulHeuristicResult_t> heuristic_result;
|
328 |
+
|
329 |
+
hipblasLtHandle_t handle;
|
330 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtCreate(&handle));
|
331 |
+
TORCH_HIPBLASLT_CHECK(hipblaslt_ext::getAllAlgos(handle,
|
332 |
+
hipblaslt_ext::GemmType::HIPBLASLT_GEMM,
|
333 |
+
transa_outer,
|
334 |
+
transb_outer,
|
335 |
+
in_out_datatype,
|
336 |
+
in_out_datatype,
|
337 |
+
in_out_datatype,
|
338 |
+
in_out_datatype,
|
339 |
+
COMPUTE_TYPE_32,
|
340 |
+
heuristic_result));
|
341 |
+
TORCH_HIPBLASLT_CHECK(hipblasLtDestroy(handle));
|
342 |
+
|
343 |
+
// Sort heuristic_result by algo index to make sure the order of returned algos is deterministic.
|
344 |
+
std::sort(heuristic_result.begin(),
|
345 |
+
heuristic_result.end(),
|
346 |
+
[](hipblasLtMatmulHeuristicResult_t& a, hipblasLtMatmulHeuristicResult_t& b) {
|
347 |
+
return GETINDEXFROMALGO(a.algo) < GETINDEXFROMALGO(b.algo);
|
348 |
+
});
|
349 |
+
|
350 |
+
int returned_algo_count = heuristic_result.size();
|
351 |
+
std::vector<std::pair<std::string, std::unique_ptr<Callable<ParamsT>>>> ret;
|
352 |
+
for (int i = 0; i < returned_algo_count; i++) {
|
353 |
+
auto algo = heuristic_result[i].algo;
|
354 |
+
int algo_index = GETINDEXFROMALGO(algo);
|
355 |
+
auto callable = std::make_unique<HipblasltGemmOp<T, ALayout, BLayout, ParamsT>>(algo);
|
356 |
+
std::string type_string = c10::str(
|
357 |
+
"Gemm_Hipblaslt_", _charFromhipblasOp(transa_outer), _charFromhipblasOp(transb_outer), "_", algo_index);
|
358 |
+
ret.emplace_back(type_string, std::move(callable));
|
359 |
+
}
|
360 |
+
|
361 |
+
return ret;
|
362 |
+
}
|
363 |
+
|
364 |
+
template <typename T, BlasOp ALayout, BlasOp BLayout>
|
365 |
+
auto GetHipBlasLtGemmTypeStringAndOps() {
|
366 |
+
return GetHipBlasLtTypeStringAndOps<T, ALayout, BLayout, GemmParams<T>>();
|
367 |
+
}
|
368 |
+
|
369 |
+
template <typename T, BlasOp ALayout, BlasOp BLayout>
|
370 |
+
auto GetHipBlasLtGemmStridedBatchedTypeStringAndOps() {
|
371 |
+
return GetHipBlasLtTypeStringAndOps<T, ALayout, BLayout, GemmStridedBatchedParams<T>>();
|
372 |
+
}
|
373 |
+
|
374 |
+
#undef TORCH_HIPBLASLT_CHECK
|
375 |
+
#undef GETINDEXFROMALGO
|
376 |
+
#undef COMPUTE_TYPE_32
|
377 |
+
#undef DATA_TYPE_R_32
|
378 |
+
|
379 |
+
} // namespace at::cuda::tunable
|