applied-ai-018 commited on
Commit
6d7e0eb
·
verified ·
1 Parent(s): 7e3c8e3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/_compatibility.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/_symbolic_trace.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/annotate.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/config.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/graph.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/interpreter.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/node.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/operator_schemas.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/subgraph_rewriter.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/tensor_type.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/traceback.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__init__.py +0 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/_sym_dispatch_mode.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/accelerator_partitioner.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/debug.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/merge_matmul.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/meta_tracer.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/proxy_tensor.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/recording.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/sym_node.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/_config.py +42 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/_sym_dispatch_mode.py +58 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/accelerator_partitioner.py +1078 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/const_fold.py +289 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/debug.py +31 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/graph_gradual_typechecker.py +914 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/merge_matmul.py +171 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/meta_tracer.py +268 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__init__.py +0 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__pycache__/util.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__pycache__/z3_types.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint.py +557 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint_generator.py +1281 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint_transformation.py +1040 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/operation.py +14 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/transform_to_z3.py +348 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/util.py +52 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/z3_types.py +29 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/normalize.py +162 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/optimization.py +405 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/partitioner_utils.py +317 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py +924 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/recording.py +453 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/refinement_types.py +16 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py +121 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/schema_type_annotation.py +111 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/sym_node.py +1145 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py +0 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/unification/__init__.py +4 -0
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/_compatibility.cpython-310.pyc ADDED
Binary file (1.21 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/_symbolic_trace.cpython-310.pyc ADDED
Binary file (33.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/annotate.cpython-310.pyc ADDED
Binary file (823 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/config.cpython-310.pyc ADDED
Binary file (216 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/graph.cpython-310.pyc ADDED
Binary file (54.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/interpreter.cpython-310.pyc ADDED
Binary file (20 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/node.cpython-310.pyc ADDED
Binary file (25.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/operator_schemas.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/subgraph_rewriter.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/tensor_type.cpython-310.pyc ADDED
Binary file (3.77 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/__pycache__/traceback.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/_sym_dispatch_mode.cpython-310.pyc ADDED
Binary file (1.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/accelerator_partitioner.cpython-310.pyc ADDED
Binary file (29.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/debug.cpython-310.pyc ADDED
Binary file (1.23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/merge_matmul.cpython-310.pyc ADDED
Binary file (4.52 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/meta_tracer.cpython-310.pyc ADDED
Binary file (9.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/proxy_tensor.cpython-310.pyc ADDED
Binary file (26.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/recording.cpython-310.pyc ADDED
Binary file (9.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/__pycache__/sym_node.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/_config.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ # [@compile_ignored: debug] Uses z3 for validating the guard optimizations transformations.
5
+ translation_validation = (
6
+ os.environ.get("TORCHDYNAMO_TRANSLATION_VALIDATION", "0") == "1"
7
+ )
8
+ # Timeout (in milliseconds) for z3 finding a solution.
9
+ # [@compile_ignored: debug]
10
+ translation_validation_timeout = int(
11
+ os.environ.get("TORCHDYNAMO_TRANSLATION_VALIDATION_TIMEOUT", "600000")
12
+ )
13
+ # Disables bisection for translation validation.
14
+ #
15
+ # Translation validation bisection is enabled by default, if translation validation
16
+ # is also enabled. This should help finding guard simplification issues. However,
17
+ # since validation uses Z3 for bisecting, it might take a lot of time.
18
+ #
19
+ # Set this configuration option so as to avoid bisecting.
20
+ # [@compile_ignored: debug]
21
+ translation_validation_no_bisect = (
22
+ os.environ.get("TORCHDYNAMO_TRANSLATION_NO_BISECT", "0") == "1"
23
+ )
24
+ # Checks whether replaying ShapeEnv events on a freshly constructed one yields
25
+ # the a ShapeEnv with the same state. This should be used only in testing.
26
+ check_shape_env_recorded_events = False
27
+
28
+
29
+ # [@compile_ignored: debug] Show a warning for every specialization
30
+ print_specializations = False
31
+
32
+ # wraps (un)equalities with 'Not' class after recording the correct expression
33
+ # in the FX graph. This should incorrectly construct the divisible and replacement
34
+ # lists, and incorrectly issue guards.
35
+ inject_EVALUATE_EXPR_flip_equality_TESTING_ONLY = False
36
+
37
+ # [@compile_ignored: debug] Validate that ShapeEnv's version key is updated correctly
38
+ validate_shape_env_verison_key = False
39
+
40
+ from torch.utils._config_module import install_config_module
41
+
42
+ install_config_module(sys.modules[__name__])
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/_sym_dispatch_mode.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Type
2
+
3
+ __all__ = ["SymDispatchMode", "handle_sym_dispatch", "sym_function_mode"]
4
+
5
+ SYM_FUNCTION_MODE = None
6
+
7
+
8
+ # SymDispatchMode gets invoked whenever an operation is processed on
9
+ # a PySymInt. When this occurs, you get called at __sym_dispatch__
10
+ # with the operation in question. This is symmetric to TorchDispatchMode
11
+ # but with some caveats:
12
+ #
13
+ # - In TorchDispatchMode, you get the same arguments as what a user
14
+ # invoked your API with; e.g., if you call torch.ops.aten.foo(a, b),
15
+ # you get (a, b) as args to your call. In SymDispatchMode, if
16
+ # you call a + b (where a and b are SymInts), you will get
17
+ # (a.node, b.node) as your args (these are PySymInts)
18
+ #
19
+ # - SymInt/PySymInt don't have FX proxy support (unlike, e.g., Tensor).
20
+ # So you have to manually call Tracer/create_node to write into
21
+ # the graph. See ProxySymDispatchMode for an example
22
+ #
23
+ class SymDispatchMode:
24
+ def __sym_dispatch__(self, func, types, args, kwargs):
25
+ raise NotImplementedError()
26
+
27
+ def __enter__(self):
28
+ global SYM_FUNCTION_MODE
29
+ old = SYM_FUNCTION_MODE
30
+ if hasattr(self, "inner"):
31
+ raise RuntimeError(
32
+ f"{self} has already been used as a mode. Please use a fresh version"
33
+ )
34
+ else:
35
+ self.inner = old
36
+ SYM_FUNCTION_MODE = self
37
+ return self
38
+
39
+ def __exit__(self, exc_type, exc_val, exc_tb):
40
+ global SYM_FUNCTION_MODE
41
+ SYM_FUNCTION_MODE = self.inner
42
+
43
+
44
+ def handle_sym_dispatch(func, args, kwargs):
45
+ global SYM_FUNCTION_MODE
46
+ mode = sym_function_mode()
47
+ assert mode
48
+ SYM_FUNCTION_MODE = mode.inner
49
+ try:
50
+ # TODO: properly compute types
51
+ types: List[Type] = []
52
+ return mode.__sym_dispatch__(func, types, args, kwargs)
53
+ finally:
54
+ SYM_FUNCTION_MODE = mode
55
+
56
+
57
+ def sym_function_mode():
58
+ return SYM_FUNCTION_MODE
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/accelerator_partitioner.py ADDED
@@ -0,0 +1,1078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+ from collections import deque
3
+ from typing import Dict, List, Set, NamedTuple, Tuple, Deque
4
+
5
+ import torch
6
+ from torch.fx.passes.graph_manipulation import get_size_of_all_nodes
7
+ from torch.fx.experimental.partitioner_utils import (
8
+ Partition,
9
+ Device,
10
+ PartitionerConfig,
11
+ get_partition_to_latency_mapping,
12
+ get_latency_of_partitioned_graph,
13
+ NodeLatency,
14
+ get_extra_size_of,
15
+ PartitionMode,
16
+ )
17
+ from torch.fx.graph_module import GraphModule
18
+ from torch.fx.node import Node, map_arg
19
+ from torch.fx.passes.split_module import split_module
20
+
21
+
22
+ class DAGNode:
23
+ """DAGNode class maintains useful information for a partition (submodule),
24
+ and its input submodules and output submodules.
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ submodule_node: Node,
30
+ input_nodes: List[Node],
31
+ output_nodes: List[Node],
32
+ logical_device_ids: List[int],
33
+ size_bytes: int,
34
+ ) -> None:
35
+ self.submodule_node: Node = submodule_node
36
+ self.input_nodes: List[Node] = input_nodes
37
+ self.output_nodes: List[Node] = output_nodes
38
+ self.logical_device_ids: List[int] = logical_device_ids
39
+ self.size_bytes = size_bytes
40
+
41
+ def __str__(self) -> str:
42
+ return str(self.submodule_node)
43
+
44
+
45
+ class DAG:
46
+ """DAG class contains all the DAG nodes"""
47
+
48
+ def __init__(self) -> None:
49
+ self.nodes: List[DAGNode] = []
50
+
51
+ def create_node(
52
+ self,
53
+ submodule_node: Node,
54
+ input_nodes: List[Node],
55
+ output_nodes: List[Node],
56
+ logical_devices: List[int],
57
+ size_bytes: int,
58
+ ) -> None:
59
+ node = DAGNode(
60
+ submodule_node, input_nodes, output_nodes, logical_devices, size_bytes
61
+ )
62
+ self.nodes.append(node)
63
+
64
+
65
+ class PartitionResult(NamedTuple):
66
+ """NameTuple used for returning DAG and a new fx module"""
67
+
68
+ dag: DAG
69
+ module_with_submodules: GraphModule
70
+
71
+
72
+ """Followings are some helper functions for partition manipulation"""
73
+
74
+
75
+ def reset_partition_device(partitions):
76
+ for partition in partitions:
77
+ partition.logical_device_ids = []
78
+
79
+
80
+ def combine_two_partitions(
81
+ partition_0: Partition, partition_1: Partition, partitions: List[Partition]
82
+ ) -> None:
83
+ """Given a list of partitions and its two partitions,
84
+ combine these two partitions into a new one appending to the partitions
85
+ and remove the previous two partitions from the list of partitions
86
+ """
87
+ partition = Partition(len(partitions))
88
+ partition.nodes = partition_0.nodes.union(partition_1.nodes)
89
+ partition.recalculate_mem_size()
90
+ partitions.append(partition)
91
+ partitions.remove(partition_0)
92
+ partitions.remove(partition_1)
93
+ reorganize_partitions(partitions)
94
+ return
95
+
96
+
97
+ def set_parents_and_children(partitions: List[Partition]) -> None:
98
+ """Given a list of partitions, mark parents and children for each partition"""
99
+ # Go through all nodes in a partition.
100
+ # If a node's user is in other partition,
101
+ # then the other partition is this partition's children.
102
+ # This partition is the other partition's parent
103
+ for partition in partitions:
104
+ partition.children = set()
105
+ partition.parents = set()
106
+ for partition in partitions:
107
+ for node in partition.nodes:
108
+ # For each node in the current partition, find its users
109
+ users = node.users
110
+ for n in users:
111
+ # Find which the partition the user node belongs to.
112
+ # Note that if the node itself is also belongs to that partition,
113
+ # that partition is not the child of the current partition
114
+ for p in partitions:
115
+ if p != partition and n in p.nodes and node not in p.nodes:
116
+ partition.children.add(p)
117
+ p.parents.add(partition)
118
+ return
119
+
120
+
121
+ def reorganize_partitions(partitions: List[Partition]) -> None:
122
+ """Given a list of partitions, reorganize partition id,
123
+ its parents and its children for each partition
124
+ """
125
+ # Rearrange partition ids
126
+ for i, partition in enumerate(partitions):
127
+ partition.partition_id = i
128
+ set_parents_and_children(partitions)
129
+ return
130
+
131
+
132
+ def get_bfs_level_partition(partitions: List[Partition]) -> None:
133
+ """Given a list of partitions,
134
+ mark the bfs level for each partition
135
+ """
136
+ current_level: Set[Partition] = set()
137
+ visited: Set[Partition] = set()
138
+ for partition in partitions:
139
+ # If a partition has no parent, it should be in root level
140
+ if len(partition.parents) == 0:
141
+ current_level.add(partition)
142
+ next_level: Set[Partition] = set()
143
+ level = 0
144
+ # bfs
145
+ while current_level:
146
+ partition = current_level.pop()
147
+ partition.bfs_level = level
148
+ visited.add(partition)
149
+ children = partition.children
150
+ for child in children:
151
+ if child not in next_level:
152
+ next_level.add(child)
153
+ if not current_level:
154
+ current_level = next_level.copy()
155
+ next_level = set()
156
+ level += 1
157
+ return
158
+
159
+
160
+ def get_node_to_partition_mapping(partitions: List[Partition]) -> Dict[Node, int]:
161
+ """Given a list of partitions,return node to partition mapping"""
162
+ node_to_partition: Dict[Node, int] = {}
163
+ for partition in partitions:
164
+ for node in partition.nodes:
165
+ node_to_partition[node] = partition.partition_id
166
+ return node_to_partition
167
+
168
+
169
+ def get_logical_id_to_device(devices: List[Device]) -> Dict[int, Device]:
170
+ """Get a mapping from device logical ID to Device object."""
171
+ logical_id_to_device: Dict[int, Device] = {}
172
+ for d in devices:
173
+ logical_id_to_device[d.logical_id] = d
174
+ return logical_id_to_device
175
+
176
+
177
+ def get_device_partition_stats(
178
+ partitions: List[Partition], devices: List[Device]
179
+ ) -> Tuple[Dict[Device, List[Partition]], Dict[Device, int], List[Partition]]:
180
+ """Given a list of partitions and a list of devices, returns:
181
+ 1. A mapping from device to partitions on it;
182
+ 2. A mapping from device to its remaining memory size;
183
+ 3. A list of partitions that do not have a device.
184
+ """
185
+ # logical id to device
186
+ logical_id_to_device = get_logical_id_to_device(devices)
187
+ # Track partitions on device
188
+ device_to_partitions: Dict[Device, List[Partition]] = {}
189
+ # Track device's left mem size
190
+ device_to_left_mem_bytes: Dict[Device, int] = {}
191
+ for d in devices:
192
+ device_to_partitions[d] = []
193
+ device_to_left_mem_bytes[d] = d.available_mem_bytes
194
+
195
+ # Deal with the partitions that already have a device
196
+ # and also collect all partitions without a device (no_device_partitions)
197
+ no_device_partitions = []
198
+ for partition in partitions:
199
+ if partition.logical_device_ids != []:
200
+ for logical_id in partition.logical_device_ids:
201
+ device = logical_id_to_device[logical_id]
202
+ device_to_partitions[device].append(partition)
203
+ device_to_left_mem_bytes[device] -= partition.used_mem_bytes
204
+ else:
205
+ no_device_partitions.append(partition)
206
+
207
+ return (
208
+ device_to_partitions,
209
+ device_to_left_mem_bytes,
210
+ no_device_partitions,
211
+ )
212
+
213
+
214
+ def get_device_to_partitions_mapping(
215
+ partitions: List[Partition], devices: List[Device]
216
+ ):
217
+ """Given a list of partitions and a list of devices,
218
+ map each partition into a device.
219
+ """
220
+
221
+ def calculate_extra_mem_bytes_needed_for(
222
+ partition: Partition, partitions: List[Partition]
223
+ ):
224
+ all_nodes: Set[Node] = set()
225
+ for p in partitions:
226
+ all_nodes = all_nodes.union(p.nodes)
227
+ if len(all_nodes) == 0:
228
+ return partition.used_mem_bytes
229
+ all_nodes = all_nodes.union(partition.nodes)
230
+ extra_size_needed = 0
231
+ for node in partition.nodes:
232
+ extra_size_needed += get_extra_size_of(node, all_nodes)
233
+ return extra_size_needed
234
+
235
+ def find_device_for(partition: Partition):
236
+ """Given a partition, find a logical device for the partition
237
+ The algorithm is to put the partition on the device
238
+ that has just enough mem left for that partition.
239
+ device_to_left_mem_bytes is a dictionary between device and its left mem size
240
+ sorted by its left mem size
241
+ """
242
+ for d in device_to_left_mem_bytes:
243
+ extra_size_needed = calculate_extra_mem_bytes_needed_for(
244
+ partition, device_to_partitions[d]
245
+ )
246
+ if extra_size_needed < device_to_left_mem_bytes[d]:
247
+ device_to_partitions[d].append(partition)
248
+ partition.logical_device_ids.append(d.logical_id)
249
+ device_to_left_mem_bytes[d] -= extra_size_needed
250
+ return True
251
+ return False
252
+
253
+ (
254
+ device_to_partitions,
255
+ device_to_left_mem_bytes,
256
+ no_device_partitions,
257
+ ) = get_device_partition_stats(partitions, devices)
258
+
259
+ # Find devices for all the partitions without a device
260
+ found_device = True
261
+ for partition in no_device_partitions:
262
+ device_to_left_mem_bytes = dict(sorted(device_to_left_mem_bytes.items(), key=lambda item: item[1]))
263
+ found_device = find_device_for(partition)
264
+ if not found_device:
265
+ break
266
+ return found_device
267
+
268
+
269
+ def check_dependency(partition):
270
+ """Given a partition,check if there is a circular dependency on
271
+ this partition using bfs
272
+ """
273
+ visited: Set[Partition] = {partition}
274
+ queue: Deque[Partition] = deque([partition])
275
+ while queue:
276
+ p = queue.popleft()
277
+ for child in p.children:
278
+ if child == partition:
279
+ return True
280
+ else:
281
+ if child not in visited:
282
+ visited.add(child)
283
+ queue.append(child)
284
+ return False
285
+
286
+
287
+ class Partitioner:
288
+ """A fx module may not fit into one device.
289
+ Partitioner class helps partition one fx module into submodules (partitions),
290
+ so that the submodules can be executed crossing different accelerators.
291
+ The main function of this class is self.partition_graph.
292
+ It partitions the fx module based on the scheme specified in partition_config
293
+ A DAG structure is returned
294
+ along with a new fx module with submodule nodes.
295
+ """
296
+
297
+ def __init__(self) -> None:
298
+ self.partitions: List[Partition] = []
299
+ self.node_to_partition: Dict[Node, int] = {}
300
+ self.devices: List[Device] = []
301
+
302
+ def partition_graph(
303
+ self,
304
+ fx_module: GraphModule,
305
+ torch_module: torch.nn.Module,
306
+ partitioner_config: PartitionerConfig,
307
+ ) -> PartitionResult:
308
+ """Given the fx module, torch module and partitioner_config,
309
+ find the partitions, do the partitions,
310
+ and then return a DAG and a new fx module with submodule nodes (partitions)
311
+ """
312
+ self.graph_module = fx_module
313
+ self.torch_module = torch_module
314
+ self.devices = partitioner_config.devices
315
+ if len(self.devices) == 0:
316
+ raise RuntimeError("No devices")
317
+ # Tag the size in bytes to all nodes in the graph_module.
318
+ get_size_of_all_nodes(self.graph_module)
319
+ # Check if there are op nodes in the fx module
320
+ nodes = self.graph_module.graph.nodes
321
+ if all(node.op in {"placeholder", "get_attr", "output"} for node in nodes):
322
+ raise RuntimeError("No Partition since no operations in the module")
323
+ # Calculate total size of the fx module
324
+ total_size_of_graph = 0
325
+ for node in nodes:
326
+ if node.op == "output":
327
+ break
328
+ total_size_of_graph += node.size_bytes.total_size
329
+ # Find the device with the max mem size
330
+ device_with_max_mem = max(self.devices, key=lambda d: d.available_mem_bytes)
331
+ # AOT based partition
332
+ if partitioner_config.mode == PartitionMode.aot_based:
333
+ self.aot_based_partition(
334
+ partitioner_config.node_to_partition_mapping,
335
+ partitioner_config.partition_to_logical_device_mapping,
336
+ )
337
+ # Single partition if the whole module can be fit into one device
338
+ elif total_size_of_graph <= device_with_max_mem.available_mem_bytes:
339
+ self.find_single_partition(
340
+ total_size_of_graph, logical_device_id=device_with_max_mem.logical_id
341
+ )
342
+ elif total_size_of_graph > sum([d.available_mem_bytes for d in self.devices]):
343
+ raise RuntimeError("Devices have no enough memory for the module")
344
+ else:
345
+ # Sparse nn based partition
346
+ if partitioner_config.mode == PartitionMode.sparse_nn:
347
+ available_mem_bytes = self.devices[0].available_mem_bytes
348
+ if not all(
349
+ device.available_mem_bytes == available_mem_bytes
350
+ for device in self.devices
351
+ ):
352
+ raise RuntimeError("All devices must have same memory size!")
353
+ # sparse_nn_partition only support same memory size
354
+ # TODO: add different size support for sparse_nn_partition
355
+ self.sparse_nn_partition(available_mem_bytes)
356
+ # Cost aware partition
357
+ elif partitioner_config.mode == PartitionMode.cost_aware:
358
+ self.cost_aware_partition(
359
+ partitioner_config.transfer_rate_bytes_per_sec,
360
+ partitioner_config.node_to_latency_mapping,
361
+ )
362
+ # KL based partition
363
+ elif partitioner_config.mode == PartitionMode.kl_based:
364
+ self.kl_based_partition(
365
+ partitioner_config.transfer_rate_bytes_per_sec,
366
+ partitioner_config.node_to_latency_mapping,
367
+ )
368
+ else:
369
+ self.size_based_partition()
370
+
371
+ # Saturate host if possible.
372
+ if partitioner_config.saturate_host:
373
+ self.saturate_host()
374
+
375
+ # Partition the graph module based on the partition assignment.
376
+ module_with_submodules = self.do_partition()
377
+
378
+ # The DAG contains DAGNodes with info of each partition's input nodes, output nodes
379
+ # and how partitions are connected.
380
+ dag = self.dump_dag(module_with_submodules)
381
+ ret = PartitionResult(dag, module_with_submodules)
382
+ return ret
383
+
384
+ def find_single_partition(
385
+ self, total_size_of_graph, logical_device_id: int = 0
386
+ ) -> None:
387
+ """Fit the whole fx module into one device"""
388
+ partition_0 = self.create_partition()
389
+ for node in self.graph_module.graph.nodes:
390
+ if node.op == "output":
391
+ # Skip the output node, but there can
392
+ # be nodes after the output in certain cases.
393
+ continue
394
+ partition_0.nodes.add(node)
395
+ partition_0.used_mem_bytes = total_size_of_graph
396
+ partition_0.logical_device_ids = [logical_device_id]
397
+ # Get the node to partition mapping
398
+ self.node_to_partition = get_node_to_partition_mapping(self.partitions)
399
+ return
400
+
401
+ def size_based_partition(self) -> None:
402
+ """This method is to partition the fx module based on memory size.
403
+ It uses greedy approach. The result may not be the best.
404
+ The basic idea is:
405
+ Step 1:
406
+ Find a device which has enough memory to fit the current node, create a empty partition
407
+ with the size of that device.
408
+ Then keep adding the following nodes into the partition until the partition is full.
409
+ Step 2:
410
+ Repeat Step 1 until no device left
411
+ Step 3:
412
+ If some nodes are left, create a partition for each left node (single node partition).
413
+ and then try to map those partitions into logical devices with enough mem left.
414
+ """
415
+
416
+ def find_device_based_on_size(node) -> Device:
417
+ """Given a node, this function is to find a logical device
418
+ that could fit the node.
419
+ """
420
+ mem_size_needed = get_extra_size_of(node, set())
421
+ device = Device("", -1, -1)
422
+ for d in self.devices:
423
+ if (
424
+ d not in occupied_devices
425
+ and d.available_mem_bytes >= mem_size_needed
426
+ ):
427
+ device = d
428
+ break
429
+ if device.available_mem_bytes < 0:
430
+ raise RuntimeError(str(node) + "is too large to fit any device")
431
+ occupied_devices.append(device)
432
+ return device
433
+
434
+ # Track partition and its left mem size
435
+ partition_to_left_mem_bytes: Dict[Partition, int] = {}
436
+ # Track all the devices that have been used
437
+ occupied_devices: List[Device] = []
438
+ partition = self.create_partition()
439
+ for node in self.graph_module.graph.nodes:
440
+ if node.op in {"call_module", "call_method", "call_function"}:
441
+ # Check if there are devices left
442
+ if len(self.partitions) <= len(self.devices):
443
+ total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
444
+ # Check if the current partition is the very first partition
445
+ if partition.used_mem_bytes == 0:
446
+ # Find a device to fit the first node, return available mem size
447
+ device = find_device_based_on_size(node)
448
+ occupied_devices.append(device)
449
+ # Update partition and its left mem size
450
+ partition_to_left_mem_bytes[
451
+ partition
452
+ ] = device.available_mem_bytes
453
+ # Update available mem for the current partition
454
+ partition.logical_device_ids.append(device.logical_id)
455
+ else:
456
+ # The current partition is not the first partition
457
+ # Check if the current node can fit into current partition
458
+ if (
459
+ partition_to_left_mem_bytes[partition]
460
+ < total_size_of_input_nodes
461
+ ):
462
+ # Check if no device is left
463
+ if len(self.partitions) == len(self.devices):
464
+ # No device is left
465
+ # Put the previous partitions into a list (non_single_node_partitions)
466
+ non_single_node_partitions = self.partitions[:]
467
+ # Create the first single node partition for the current node
468
+ self.create_single_node_partition(node)
469
+ continue
470
+ # Some devices are still left
471
+ # Create a new partition with a mem size that is enough for the current node
472
+ device = find_device_based_on_size(node)
473
+ partition = self.create_partition()
474
+ total_size_of_input_nodes = get_extra_size_of(
475
+ node, partition.nodes
476
+ )
477
+ partition_to_left_mem_bytes[
478
+ partition
479
+ ] = device.available_mem_bytes
480
+ partition.logical_device_ids.append(device.logical_id)
481
+ partition.add_node(node)
482
+ partition_to_left_mem_bytes[partition] -= total_size_of_input_nodes
483
+ # Create single node partitions if no device is left
484
+ else:
485
+ self.create_single_node_partition(node)
486
+ reorganize_partitions(self.partitions)
487
+ # Get the node to partition mapping
488
+ self.node_to_partition = get_node_to_partition_mapping(self.partitions)
489
+ # Mapping all partitions into device
490
+ found_partition_to_device_mapping = get_device_to_partitions_mapping(
491
+ self.partitions, self.devices
492
+ )
493
+ if not found_partition_to_device_mapping:
494
+ raise RuntimeError("Cannot Get a Valid Partition to Logical Device Mapping")
495
+ return
496
+
497
+ def saturate_host(self) -> None:
498
+ """Saturate host by assigning replicates to unused devices with enough memory.
499
+ It uses a greedy approach to find a next available set of devices to place all split
500
+ partitions: For each used device, it searches for an idle device with minimal memory
501
+ size that can hold all the partition located on that device; If the search is successful
502
+ for all used devices, it then assigns the new devices' logical ID to the corresponding
503
+ partition.
504
+ """
505
+ (
506
+ device_to_partitions,
507
+ device_to_left_mem_bytes,
508
+ no_device_partitions,
509
+ ) = get_device_partition_stats(self.partitions, self.devices)
510
+
511
+ assert (
512
+ len(no_device_partitions) == 0
513
+ ), f"Expect no_device_partitions has 0 device, but get {len(no_device_partitions)}"
514
+
515
+ # Devices that hold partitions
516
+ used_devices = [d for d in self.devices if len(device_to_partitions[d]) > 0]
517
+ # Track replicates of the assigned devices
518
+ replicated_device_to_used_device: Dict[Device, Device] = {}
519
+
520
+ while len(used_devices) * 2 + len(replicated_device_to_used_device) <= len(
521
+ self.devices
522
+ ):
523
+ # Success flag for this round
524
+ success = True
525
+ # Devices that have not been assigned
526
+ idle_devices = [
527
+ d
528
+ for d in self.devices
529
+ if d not in used_devices and d not in replicated_device_to_used_device
530
+ ]
531
+ # Temporary mapping from replicated device to original device
532
+ temp_replicate_mapping = {}
533
+
534
+ # Find a new device to replicate all partitions on an used device
535
+ for used_device in used_devices:
536
+ # Idle devices that have enough memory
537
+ available_devices = [
538
+ d
539
+ for d in idle_devices
540
+ if d.available_mem_bytes
541
+ >= used_device.available_mem_bytes
542
+ - device_to_left_mem_bytes[used_device]
543
+ ]
544
+ if len(available_devices) == 0:
545
+ success = False
546
+ break
547
+ new_device = min(available_devices, key=lambda d: d.available_mem_bytes)
548
+ idle_devices.remove(new_device)
549
+ temp_replicate_mapping[new_device] = used_device
550
+
551
+ if not success:
552
+ break
553
+ replicated_device_to_used_device.update(temp_replicate_mapping)
554
+
555
+ # Update logical device IDs assigned to the partitions
556
+ for (
557
+ replicate_device,
558
+ original_device,
559
+ ) in replicated_device_to_used_device.items():
560
+ logical_id = replicate_device.logical_id
561
+ for partition in device_to_partitions[original_device]:
562
+ partition.logical_device_ids.append(logical_id)
563
+ for p in self.partitions:
564
+ print(p.logical_device_ids)
565
+
566
+ def do_partition(self) -> GraphModule:
567
+ """Return a new fx module with submodule nodes (partitions)."""
568
+ module_with_submodules = split_module(
569
+ self.graph_module,
570
+ self.torch_module,
571
+ lambda node: self.node_to_partition[node],
572
+ )
573
+ return module_with_submodules
574
+
575
+ def dump_dag(self, module_with_submodules: GraphModule) -> DAG:
576
+ """Return the dag structure and the new fx module with submodules."""
577
+ dag = DAG()
578
+ for node in module_with_submodules.graph.nodes:
579
+ if node.op == "output":
580
+ break
581
+ if node.op in {"placeholder", "get_attr"}:
582
+ continue
583
+ if node.target == operator.__getitem__:
584
+ continue
585
+ input_nodes: Dict[Node, None] = {}
586
+ map_arg(node.args, input_nodes.setdefault)
587
+ map_arg(node.kwargs, input_nodes.setdefault)
588
+ # When a node has two or more output nodes,
589
+ # it outputs its result to 'getitem' nodes.
590
+ # Those 'getitem' nodes are the output node for this node.
591
+ # Otherwise, the output node is this node itself.
592
+ if len(node.users) > 1:
593
+ output_nodes = list(node.users)
594
+ else:
595
+ output_nodes = [node]
596
+ partition_id = int(node.name.rsplit("_", 1)[-1])
597
+ device_ids = self.partitions[partition_id].logical_device_ids
598
+ size_bytes = self.partitions[partition_id].used_mem_bytes
599
+ dag.create_node(
600
+ node, list(input_nodes), output_nodes, device_ids, size_bytes
601
+ )
602
+ return dag
603
+
604
+ def create_partition(self) -> Partition:
605
+ """Create a partition and append it to self.partitions."""
606
+ partition_id = len(self.partitions)
607
+ partition = Partition(partition_id)
608
+ self.partitions.append(partition)
609
+ return partition
610
+
611
+ def create_single_node_partition(self, node):
612
+ """Create a partition for a single node"""
613
+ partition = self.create_partition()
614
+ partition.add_node(node)
615
+ return
616
+
617
+ def sparse_nn_partition(self, available_mem_bytes: int) -> None:
618
+ """This method partition a sparse nn module.
619
+ It is size based partition but different from size_based_partition,
620
+ it only works when all the devices have same memory size (available_mem_bytes).
621
+ In the future, devices with different mem sizes will be supported like size_based_partition.
622
+ It first traverse all the nodes and do the partitions based on the same memory size.
623
+ If the current partition has no enough memory left for a new op node
624
+ (call_module, call_method, call_function), a new partition is created.
625
+ When crossing the boundary between non-embedding nodes and embedding nodes,
626
+ a new partition is created regardlessly.
627
+ For example, if the current node is a non-embedding node but the next node is an
628
+ embedding node, a new partition is created for the next node.
629
+ After the partition, the partitions are combined as much as possible.
630
+ The rule is that a non-embedding partition only
631
+ combines with another non-embedding one.
632
+ So as the embedding partitions.
633
+ """
634
+
635
+ def combine_partitions_based_on_size(
636
+ partitions: List[Partition], available_mem_bytes: int
637
+ ) -> None:
638
+ """Combining small partitions together to keep as less partitions as possible.
639
+ Here is an example of the algorithm to do this:
640
+ Assume some partitions, we first sort them based on partition used memory size.
641
+ [(partition_4, 1), (partition_3, 1), (partition_2, 2), (partition_1, 7), (partition_0, 9)]
642
+ The available memory is 10.
643
+ step 1: self.find_partition_to_combine_based_on_size()
644
+ First, mark bfs level for each partition
645
+ Second, look the smallest partition, partition_4: 10 - 1 = 9
646
+ It means any partition has a used memory equal or less than 9 could combine this partition
647
+ We go from the largest and selection partition_0.
648
+ Check the bfs level for two partitions, if the level difference is less than 2,
649
+ it can be combined.
650
+ step 2: repeat step 1 until no partitions can be combined
651
+ """
652
+ find_combination = True
653
+ while find_combination:
654
+ # Sort partitions based on memory size
655
+ sorted_partitions = sorted(partitions, key=lambda p: p.used_mem_bytes)
656
+ # Mark bfs level
657
+ get_bfs_level_partition(self.partitions)
658
+ find_combination, partitions = find_partition_to_combine_based_on_size(
659
+ sorted_partitions, available_mem_bytes, partitions
660
+ )
661
+ return
662
+
663
+ def calculate_mem_bytes_needed(p1, p2):
664
+ """Given two partitions, calculate how many mem bytes
665
+ are needed if two partitions are combined
666
+ """
667
+ nodes = p1.nodes.union(p2.nodes)
668
+ mem_bytes_needed = 0
669
+ for node in nodes:
670
+ mem_bytes_needed += get_extra_size_of(node, nodes)
671
+ return mem_bytes_needed
672
+
673
+ def find_partition_to_combine_based_on_size(
674
+ sorted_partitions: List[Partition],
675
+ available_mem_bytes: int,
676
+ partitions: List[Partition],
677
+ ) -> Tuple[bool, List[Partition]]:
678
+ """step 1 in combine_partition_based_on_size()"""
679
+ find_combination = False
680
+ smallest_partition = sorted_partitions.pop(0)
681
+ for p in sorted_partitions[::-1]:
682
+ if abs(smallest_partition.bfs_level - p.bfs_level) <= 1:
683
+ # Calculate how many bytes needed if combined
684
+ mem_bytes_needed = calculate_mem_bytes_needed(p, smallest_partition)
685
+ if mem_bytes_needed <= available_mem_bytes:
686
+ combine_two_partitions(p, smallest_partition, self.partitions)
687
+ partitions.remove(smallest_partition)
688
+ partitions.remove(p)
689
+ partitions.append(self.partitions[-1])
690
+ find_combination = True
691
+ break
692
+ return find_combination, partitions
693
+
694
+ def reset_partition_in_sparse_nn(partition, new_partition=True):
695
+ """If crossing the boundary between non-embedding nodes and
696
+ embedding nodes, create a new partition
697
+ """
698
+ if in_embedding_region:
699
+ embedding_partitions.append(partition)
700
+ else:
701
+ non_embedding_partitions.append(partition)
702
+ if new_partition:
703
+ partition = self.create_partition()
704
+ partition.left_mem_bytes = available_mem_bytes
705
+ return partition
706
+ return None
707
+
708
+ def is_embedding_node(node: Node) -> bool:
709
+ """Check if a node is an embedding node"""
710
+ if node.op == "call_module":
711
+ submodule = self.graph_module
712
+ for atom in str(node.target).split("."):
713
+ if not hasattr(submodule, atom):
714
+ raise RuntimeError(
715
+ f"Module {submodule} has no attribute {atom}"
716
+ )
717
+ submodule = getattr(submodule, atom)
718
+ if "Embedding" in str(submodule):
719
+ return True
720
+ return False
721
+
722
+ # Track embedding partitions and non-embedding partitions separately
723
+ embedding_partitions: List[Partition] = []
724
+ non_embedding_partitions: List[Partition] = []
725
+ # A Flag to check the boundary
726
+ in_embedding_region: bool = False
727
+ partition = self.create_partition()
728
+ for node in self.graph_module.graph.nodes:
729
+ if node.op in {"call_module", "call_method", "call_function"}:
730
+ # Check if crossing the boundary between embedding nodes and non embedding nodes
731
+ if is_embedding_node(node) != in_embedding_region:
732
+ # Crossing the boundary
733
+ # Check if the current partition is an empty partition
734
+ if partition.used_mem_bytes != 0:
735
+ # The current partition isn't an empty partition. Create a new one.
736
+ partition = reset_partition_in_sparse_nn(partition)
737
+ in_embedding_region = not in_embedding_region
738
+ total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
739
+ if (
740
+ total_size_of_input_nodes + partition.used_mem_bytes
741
+ > available_mem_bytes
742
+ ):
743
+ partition = reset_partition_in_sparse_nn(partition)
744
+ total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
745
+ if total_size_of_input_nodes > available_mem_bytes:
746
+ raise RuntimeError(
747
+ node.target + "is too large to fit into a device"
748
+ )
749
+ partition.add_node(node)
750
+ reset_partition_in_sparse_nn(partition, new_partition=False)
751
+ # Set parents and children for partitions
752
+ set_parents_and_children(self.partitions)
753
+ # Combining non-embedding partitions
754
+ combine_partitions_based_on_size(non_embedding_partitions, available_mem_bytes)
755
+ # Combining embedding partitions
756
+ combine_partitions_based_on_size(embedding_partitions, available_mem_bytes)
757
+ total_size_of_non_embedding_partitions = 0
758
+ for partition in non_embedding_partitions:
759
+ total_size_of_non_embedding_partitions += partition.used_mem_bytes
760
+ # Check if devices are enough for all partitions
761
+ if len(embedding_partitions) > len(self.devices):
762
+ msg = (
763
+ "Need "
764
+ + str(len(embedding_partitions))
765
+ + " devices, but only "
766
+ + str(len(self.devices))
767
+ + " provided"
768
+ )
769
+ raise RuntimeError(msg)
770
+ occupied_devices = []
771
+ for i, partition in enumerate(embedding_partitions):
772
+ # Check if all non-embedding partitions can fit into embedding partition devices
773
+ if (
774
+ total_size_of_non_embedding_partitions + partition.used_mem_bytes
775
+ > available_mem_bytes
776
+ ):
777
+ raise RuntimeError(
778
+ "partition_"
779
+ + str(partition.partition_id)
780
+ + "(embedding partition) and non embedding partitions can not fit into one device"
781
+ )
782
+ else:
783
+ # Add logical device to the partition
784
+ partition.logical_device_ids = [self.devices[i].logical_id]
785
+ occupied_devices.append(self.devices[i].logical_id)
786
+ # Add logical devices to the non_embedding_partitions
787
+ for partition in non_embedding_partitions:
788
+ partition.logical_device_ids = occupied_devices
789
+ # Get the node to partition mapping
790
+ self.node_to_partition = get_node_to_partition_mapping(self.partitions)
791
+ return
792
+
793
+ def cost_aware_partition(
794
+ self,
795
+ transfer_rate_bytes_per_sec: float,
796
+ node_to_latency_mapping: Dict[Node, NodeLatency],
797
+ ) -> None:
798
+ """This method is to partition the fx module based on the cost.
799
+ The cost is the total latency of running the whole fx module.
800
+ In partitioner_utils.py, the cost model is built.
801
+ The cost aware partition algorithm is:
802
+ #1. At every beginning, each node is a partition.
803
+ Then we map all the partitions to the devices
804
+ and calculate the cost
805
+ #2. Then try to pre-combine any two of the partitions if the two
806
+ partitions can be combined.
807
+ (the bfs level is less than 2 or two partitions are connected and
808
+ can find partition to device mapping)
809
+ See if any partition pair could reduce the current cost.
810
+ Choose the pair that shows the minimum cost and then combine them
811
+ #3. Repeat #2 until the cost cannot be reduced.
812
+ """
813
+
814
+ def try_combining_partitions(p0_index, p1_index, partitions) -> float:
815
+ """Given two partitions and a list of partitions, combine these two partitions
816
+ and see what is the cost of the modified partition list
817
+ """
818
+ p0 = partitions[p0_index]
819
+ p1 = partitions[p1_index]
820
+ """If two partitions' bfs level are less than 2 or two partitions are connected to each other,
821
+ then they can be combined
822
+ """
823
+ if (
824
+ (abs(p0.bfs_level - p1.bfs_level) <= 1)
825
+ or (p0 in p1.parents)
826
+ or p0 in (p1.children)
827
+ ):
828
+ combine_two_partitions(p0, p1, partitions)
829
+ # Check if a circular dependency exists after combining
830
+ if check_dependency(partitions[-1]):
831
+ return float("inf")
832
+ # Check if the modified partition list can be mapped to devices after combination
833
+ reset_partition_device(partitions)
834
+ found_deivce = get_device_to_partitions_mapping(
835
+ partitions, self.devices
836
+ )
837
+ if not found_deivce:
838
+ return float("inf")
839
+ # Calculate the new cost
840
+ partition_to_latency_mapping = get_partition_to_latency_mapping(
841
+ partitions, node_to_latency_mapping
842
+ )
843
+ cost = get_latency_of_partitioned_graph(
844
+ partitions,
845
+ partition_to_latency_mapping,
846
+ transfer_rate_bytes_per_sec,
847
+ )
848
+ return cost
849
+ # If two partition can not be combined, the cost is inf
850
+ return float("inf")
851
+
852
+ def search_combination(
853
+ transfer_rate_bytes_per_sec, node_to_latency_mapping
854
+ ) -> bool:
855
+ """Given transfer rate between partitions and each node's latency,
856
+ find two partitions to combine so the cost of the partitions can
857
+ be reduced.
858
+ The algorithm is :
859
+ 1. Go through all the partition pairs and see
860
+ if any pair of partitions can be combined.
861
+ 2. Calculate the cost after the combination.
862
+ 3. Select the minimum cost and combine its corresponding partition pair.
863
+ """
864
+ partition_to_latency_mapping = get_partition_to_latency_mapping(
865
+ self.partitions, node_to_latency_mapping
866
+ )
867
+ cost = get_latency_of_partitioned_graph(
868
+ self.partitions,
869
+ partition_to_latency_mapping,
870
+ transfer_rate_bytes_per_sec,
871
+ )
872
+ if len(self.partitions) == 1:
873
+ return False
874
+ partition_pair: List[int] = []
875
+ for i in range(len(self.partitions) - 1):
876
+ for j in range(i + 1, len(self.partitions)):
877
+ # Try to combine the partition pair
878
+ # and see the new cost after combination
879
+ new_cost = try_combining_partitions(i, j, self.partitions[:])
880
+ if new_cost <= cost:
881
+ partition_pair = [i, j]
882
+ cost = new_cost
883
+ reorganize_partitions(self.partitions)
884
+ # If a partition pair is found, combine them
885
+ if len(partition_pair) != 0:
886
+ p0 = self.partitions[partition_pair[0]]
887
+ p1 = self.partitions[partition_pair[1]]
888
+ combine_two_partitions(p0, p1, self.partitions)
889
+ get_bfs_level_partition(self.partitions)
890
+ reset_partition_device(self.partitions)
891
+ get_device_to_partitions_mapping(self.partitions, self.devices)
892
+ return len(partition_pair) != 0
893
+
894
+ for node in self.graph_module.graph.nodes:
895
+ if node.op not in {"placeholder", "get_attr", "output"}:
896
+ self.create_single_node_partition(node)
897
+ # Set up parent partitions and children partitions for each partition
898
+ set_parents_and_children(self.partitions)
899
+ # Get bfs level for each partition
900
+ get_bfs_level_partition(self.partitions)
901
+ find_combination = True
902
+ while find_combination:
903
+ # Search for a pair partition to generate the minimum new cost,
904
+ # then combine them
905
+ find_combination = search_combination(
906
+ transfer_rate_bytes_per_sec, node_to_latency_mapping
907
+ )
908
+ # Make sure all partitions are set up correctly
909
+ reorganize_partitions(self.partitions)
910
+ # Set up node to partition mapping
911
+ self.node_to_partition = get_node_to_partition_mapping(self.partitions)
912
+ return
913
+
914
+ def kl_based_partition(
915
+ self,
916
+ transfer_rate_bytes_per_sec: float,
917
+ node_to_latency_mapping: Dict[Node, NodeLatency],
918
+ ) -> None:
919
+ """This function is a cost aware partition based
920
+ on Kernighan-Lin algorithm.
921
+ First, the graph is partitioned using size_based_partition.
922
+ Then, each node is swapped with any other node in a different
923
+ partition, and at the same time, the cost is estimated after
924
+ the swapping.
925
+ For example, we have nodes n0, n1, n2, n3 and n4.
926
+ Using size_based_partition, n0 and n1 are in Partition p0.
927
+ n2, n3 and n4 in Partition p1. The current cost is estimated.
928
+ We first tried using n0 to swap with n2 from the other partition.
929
+ Then we see that swapping n0 and n2 shows a lower cost
930
+ than the current cost and it is the minimum among other pairs like
931
+ (n0, None)(This means moving n0 to Partition without swapping other nodes),
932
+ (n0, n3) and (n0, n4). We swap n0 and n2 and set the new cost
933
+ as the current cost.
934
+ Then We repeat this process for all the other nodes until all swapping pairs
935
+ are tried.
936
+ """
937
+
938
+ def swap_nodes(n0, n1, p0, p1):
939
+ # Either n0 or n1 could be None
940
+ # That means we simply move the node
941
+ # to another partition
942
+ if n0 is not None:
943
+ p0.remove_node(n0)
944
+ p1.add_node(n0)
945
+ if n1 is not None:
946
+ p0.add_node(n1)
947
+ p1.remove_node(n1)
948
+
949
+ def try_swap_nodes(
950
+ n0, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
951
+ ):
952
+ cost = float("inf")
953
+ swap_nodes(n0, n1, p0, p1)
954
+ # Reorganize partitions after swapping
955
+ reorganize_partitions(self.partitions)
956
+ # Check if there is a circular dependency after swapping
957
+ if (not check_dependency(p0)) and (not check_dependency(p1)):
958
+ reset_partition_device(self.partitions)
959
+ partition_to_latency_mapping = get_partition_to_latency_mapping(
960
+ self.partitions, node_to_latency_mapping
961
+ )
962
+ # Check if all partitions can be mapped to logical devices after swapping
963
+ found_device = get_device_to_partitions_mapping(
964
+ self.partitions, self.devices
965
+ )
966
+ if not found_device:
967
+ cost = float("inf")
968
+ else:
969
+ cost = get_latency_of_partitioned_graph(
970
+ self.partitions,
971
+ partition_to_latency_mapping,
972
+ transfer_rate_bytes_per_sec,
973
+ )
974
+ # Swap back and reset all partitions back to original
975
+ swap_nodes(n1, n0, p0, p1)
976
+ reorganize_partitions(self.partitions)
977
+ reset_partition_device(self.partitions)
978
+ get_device_to_partitions_mapping(self.partitions, self.devices)
979
+ return cost
980
+
981
+ def swap_node_to_partition(
982
+ node, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
983
+ ):
984
+ """This function helps to swap one node from partition p0
985
+ with all the nodes in another partition p1
986
+ """
987
+ p1_nodes = list(p1.nodes) + [None]
988
+ min_cost = float("inf")
989
+ node_pair: List[Node] = []
990
+ for n1 in p1_nodes:
991
+ # Ignore the node if it is not a op node
992
+ if n1 is not None and n1.op in {"placeholder", "get_attr"}:
993
+ continue
994
+ # Try swapping node in p0 with n1 in p1
995
+ cost = try_swap_nodes(
996
+ node, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
997
+ )
998
+ if cost < min_cost:
999
+ node_pair = [node, n1]
1000
+ min_cost = cost
1001
+ return cost, node_pair
1002
+
1003
+ # First use size_base_partition
1004
+ self.size_based_partition()
1005
+ partition_to_latency_mapping = get_partition_to_latency_mapping(
1006
+ self.partitions, node_to_latency_mapping
1007
+ )
1008
+ # Calculate the cost of the partitions
1009
+ cost = get_latency_of_partitioned_graph(
1010
+ self.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec
1011
+ )
1012
+ # Keep tracking the node pair that shows the better cost
1013
+ node_pair: List[Node] = []
1014
+ # Keep tracking the partition pair of node pair
1015
+ partition_pair: List[Partition] = []
1016
+ # Collect all the op nodes from the graph
1017
+ op_nodes = []
1018
+ for n in self.graph_module.graph.nodes:
1019
+ if n.op not in {"placeholder", "get_attr", "output"}:
1020
+ op_nodes.append(n)
1021
+ for node in op_nodes:
1022
+ # Find which partition the current node belongs
1023
+ p0_index = self.node_to_partition[node]
1024
+ p0 = self.partitions[p0_index]
1025
+ # Go through all the other partitions to swap
1026
+ # with other nodes from those partitions
1027
+ for p1_index, _ in enumerate(self.partitions):
1028
+ if p0_index != p1_index:
1029
+ p1 = self.partitions[p1_index]
1030
+ new_cost, new_node_pair = swap_node_to_partition(
1031
+ node,
1032
+ p0,
1033
+ p1,
1034
+ node_to_latency_mapping,
1035
+ transfer_rate_bytes_per_sec,
1036
+ )
1037
+ # Update the cost
1038
+ # Track the swapped node pair and their partitions
1039
+ if new_cost < cost:
1040
+ cost = new_cost
1041
+ node_pair = new_node_pair
1042
+ partition_pair = [p0, p1]
1043
+ # Do the swapping after trying all the nodes from a partition
1044
+ if len(node_pair) != 0:
1045
+ swap_nodes(
1046
+ node_pair[0], node_pair[1], partition_pair[0], partition_pair[1]
1047
+ )
1048
+ reorganize_partitions(self.partitions)
1049
+ get_device_to_partitions_mapping(self.partitions, self.devices)
1050
+ reorganize_partitions(self.partitions)
1051
+ # Mapping the device to the partition
1052
+ get_device_to_partitions_mapping(self.partitions, self.devices)
1053
+ return
1054
+
1055
+ def aot_based_partition(
1056
+ self, node_to_partition_mapping, partition_to_logical_device_mapping
1057
+ ):
1058
+ """This function helps to rebuild the partitions given the nodes and its
1059
+ corresponding partition id
1060
+ """
1061
+ partition_id_to_partition_mapping: Dict[int, Partition] = {}
1062
+ self.node_to_partition = node_to_partition_mapping
1063
+ for node in self.node_to_partition:
1064
+ partition_id = self.node_to_partition[node]
1065
+ # If the requested partition has not been created, create the partition
1066
+ if partition_id not in partition_id_to_partition_mapping:
1067
+ partition = Partition(partition_id)
1068
+ self.partitions.append(partition)
1069
+ partition_id_to_partition_mapping[partition_id] = partition
1070
+ partition.logical_device_ids = partition_to_logical_device_mapping[
1071
+ partition_id
1072
+ ]
1073
+ else:
1074
+ partition = partition_id_to_partition_mapping[
1075
+ self.node_to_partition[node]
1076
+ ]
1077
+ # Add the current node into the partition
1078
+ partition.add_node(node)
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/const_fold.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from typing import Callable, Dict, Optional, Set, Union
3
+
4
+ import torch.fx
5
+ from torch.fx.node import map_arg
6
+ from torch.fx.passes.split_module import split_module
7
+
8
+
9
+ __all__ = ['FoldedGraphModule', 'get_unique_attr_name_in_module', 'split_const_subgraphs']
10
+
11
+ class FoldedGraphModule(torch.fx.GraphModule):
12
+ """
13
+ FoldedGraphModule is a GraphModule which also contains another
14
+ `const_subgraph_module` representing a subgraph which has all const attr
15
+ inputs and which can be run once before running the main standard
16
+ `graph`. The `const_output_names` are the ordered list names of attrs which
17
+ represent what each respective output from the const_subgraph should be set
18
+ on which attrs.
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ root: torch.nn.Module,
24
+ graph: torch.fx.Graph,
25
+ const_subgraph: Optional[torch.fx.Graph] = None,
26
+ fx_const_folded_attrs_name: Optional[str] = None,
27
+ device_for_folded_attrs: str = "cuda",
28
+ ):
29
+ super().__init__(root, graph)
30
+ self.const_subgraph_module = (
31
+ None
32
+ if const_subgraph is None
33
+ else torch.fx.GraphModule(root, const_subgraph)
34
+ )
35
+ self.has_folding_been_run = False
36
+ self.fx_const_folded_attrs_name = fx_const_folded_attrs_name
37
+ self.device_for_folded_attrs = device_for_folded_attrs
38
+
39
+ def __call__(self, *args, **kwargs):
40
+ if not self.has_folding_been_run:
41
+ self.run_folding()
42
+ return super().__call__(*args)
43
+
44
+ def run_folding(self):
45
+ # If there's no const subgraph module or attr output names to use, return
46
+ # early as there is no const folding to perform.
47
+ if (
48
+ self.const_subgraph_module is None
49
+ or self.fx_const_folded_attrs_name is None
50
+ ):
51
+ return
52
+
53
+ assert not self.has_folding_been_run
54
+ self.has_folding_been_run = True
55
+
56
+ # Actually run const folding subgraph. Note that single attr const fold
57
+ # subgraphs output a single Tensor while multiple outputs are returned as
58
+ # Tuple[Tensor,].
59
+ folded_attrs = self.const_subgraph_module()
60
+
61
+ def _create_param(i):
62
+ return torch.nn.Parameter(
63
+ i
64
+ if not isinstance(i, int)
65
+ else torch.Tensor([i]).to(device=self.device_for_folded_attrs),
66
+ requires_grad=i.requires_grad if isinstance(i, torch.Tensor) else False,
67
+ )
68
+
69
+ params = (
70
+ torch.nn.ParameterList([_create_param(i) for i in folded_attrs])
71
+ if isinstance(folded_attrs, tuple)
72
+ else _create_param(folded_attrs)
73
+ )
74
+ setattr(self, self.fx_const_folded_attrs_name, params)
75
+
76
+
77
+ def _inline_module(gm: torch.fx.GraphModule, inline_mod_name: str):
78
+ """
79
+ Given `gm` and some graph module which is called with target name `inline_mod_name`,
80
+ this helper will inline all of the nodes from that called graph module into `gm`.
81
+ """
82
+ # Fetch the inner graph module that we want to inline inside `gm`.
83
+ inline_mod = dict(gm.named_modules())[inline_mod_name]
84
+ assert isinstance(inline_mod, torch.fx.GraphModule)
85
+ call_mod_node_to_replace = None
86
+ for node in gm.graph.nodes:
87
+ if node.op == "call_module" and node.target == inline_mod_name:
88
+ call_mod_node_to_replace = node
89
+ break
90
+ assert call_mod_node_to_replace is not None
91
+
92
+ # Now actually do the swap. Note that we have to keep track of new nodes that are
93
+ # copied into `gm` -- we do this via replacement_mapping.
94
+ call_mod_args = call_mod_node_to_replace.args
95
+ replacement_mapping: Dict[torch.fx.Node, torch.fx.Node] = {}
96
+ ph_count = 0
97
+
98
+ def replacement_fn(node):
99
+ new_node = replacement_mapping[node]
100
+ new_node.meta = node.meta.copy()
101
+ return new_node
102
+
103
+ for inline_node in inline_mod.graph.nodes:
104
+ if inline_node.op == "placeholder":
105
+ replacement_mapping[inline_node] = call_mod_args[ph_count]
106
+ ph_count += 1
107
+ continue
108
+
109
+ if inline_node.op == "output":
110
+ outputs = inline_node.args[0]
111
+ output_replacements = map_arg(outputs, replacement_fn)
112
+ call_mod_node_to_replace.replace_all_uses_with(output_replacements)
113
+ continue
114
+
115
+ with gm.graph.inserting_before(call_mod_node_to_replace):
116
+ new_node = gm.graph.node_copy(inline_node, replacement_fn)
117
+ replacement_mapping[inline_node] = new_node
118
+
119
+ gm.graph.eliminate_dead_code()
120
+
121
+
122
+ def get_unique_attr_name_in_module(mod_traced: torch.fx.GraphModule, name: str) -> str:
123
+ """
124
+ Make sure the name is unique (in a module) and can represents an attr.
125
+ """
126
+ # Delete all characters that are illegal in a Python identifier.
127
+ name = re.sub("[^0-9a-zA-Z_]+", "_", name)
128
+ if name[0].isdigit():
129
+ name = f"_{name}"
130
+ # Now make sure it is in fact unique to the module by incrementing suffix value.
131
+ while hasattr(mod_traced, name):
132
+ match = re.match(r"(.*)_(\d+)$", name)
133
+ if match is None:
134
+ name = name + "_1"
135
+ else:
136
+ base, num = match.group(1, 2)
137
+ name = f"{base}_{int(num) + 1}"
138
+
139
+ return name
140
+
141
+
142
+ def split_const_subgraphs(
143
+ module: Union[torch.nn.Module, torch.fx.GraphModule],
144
+ skip_folding_node_fn: Optional[Callable[[torch.fx.Node], bool]] = None,
145
+ device_for_folded_attrs: str = "cpu",
146
+ ) -> FoldedGraphModule:
147
+ """
148
+ Looks through `module` for any nodes that have all constant attribute inputs
149
+ and separates them out into their own constant subgraph, and returns a
150
+ FoldedGraphModule which runs that constant subgraph on the first run to set
151
+ attributes on the module prior to running the non-constant portion of the
152
+ graph.
153
+ """
154
+ if not isinstance(module, torch.fx.GraphModule):
155
+ mod_traced = torch.fx.symbolic_trace(module)
156
+ else:
157
+ mod_traced = module
158
+
159
+ # Build up a list of const_nodes, defined as nodes that are themselves
160
+ # get_attrs, or have all get_attr or other constant node inputs.
161
+ const_nodes: Set[torch.fx.Node] = set()
162
+ found_const_folding = False
163
+ for node in mod_traced.graph.nodes:
164
+ # Skip over placeholders/outputs because they can't be const folded and
165
+ # we don't want to add tags to them.
166
+ if node.op in {"placeholder", "output"}:
167
+ continue
168
+
169
+ # If the node itself is constant, or all of its inputs are constant,
170
+ # then tag it as constant.
171
+ if node.op != "get_attr" and not set(node.all_input_nodes).issubset(
172
+ const_nodes
173
+ ):
174
+ continue
175
+
176
+ # If provided skip folding function says to skip, then skip.
177
+ if skip_folding_node_fn and skip_folding_node_fn(node):
178
+ continue
179
+
180
+ # Skip folding side-effectful functions
181
+ if node.is_impure():
182
+ continue
183
+
184
+ # Must be a constant foldable node at this point.
185
+ const_nodes.add(node)
186
+ if node.op != "get_attr":
187
+ found_const_folding = True
188
+
189
+ # If we did not find any const folding then return early without a const fold subgraph.
190
+ if not found_const_folding:
191
+ return FoldedGraphModule(mod_traced, mod_traced.graph)
192
+
193
+ # Partition the module into two: submod_0 for constant folding subgraph, and
194
+ # submod_1 for the rest.
195
+ def mod_partition(node: torch.fx.Node):
196
+ return 0 if node in const_nodes else 1
197
+
198
+ split = split_module(mod_traced, module, mod_partition)
199
+
200
+ const_gm, non_const_gm = split.submod_0, split.submod_1
201
+ const_mod_name, non_const_mod_name = "submod_0", "submod_1"
202
+
203
+ # The module that a call_module node refers to gets copied to submodules during split.
204
+ # The path to the module also gets inlined, i.e. mod.a.b -> mod_a_b. Here we need to
205
+ # attach inlined modules to `split` as it's the owning module now.
206
+ for node in non_const_gm.graph.nodes:
207
+ if node.op == "call_module":
208
+ setattr(split, node.target, getattr(non_const_gm, node.target))
209
+ for node in const_gm.graph.nodes:
210
+ if node.op == "call_module":
211
+ setattr(split, node.target, getattr(const_gm, node.target))
212
+
213
+ # split_module currently does not use get_attrs for attrs. Instead it passes
214
+ # them in as args from the parent module, which used get_attrs. Here we set
215
+ # them as get_attrs inside const_gm, allowing for running folding without
216
+ # somehow a priori knowing the attrs that should be passed as args. We can
217
+ # unconditionally do this for all placeholders because we know all
218
+ # placeholders to const_gm must be constants accessible via get_attr.
219
+ call_const_gm_args = None
220
+ for node in split.graph.nodes:
221
+ if node.op == "call_module":
222
+ if node.target == const_mod_name:
223
+ call_const_gm_args = node.args
224
+ break
225
+ assert call_const_gm_args is not None
226
+
227
+ # Here we do the actual replacement of placeholders to get_attrs. Note that here we
228
+ # set the const_gm.graph into a new root_const_gm with split as the root module,
229
+ # because we are fetching attributes directly from the root module, instead of
230
+ # fetching them from const_gm. Example: The const_gm must have some format like:
231
+ # graph():
232
+ # %inp : [num_users=1] = placeholder[target=const_inp]
233
+ # %add : [num_users=1] = call_function[target=operator.add](args = (%inp, %inp), kwargs = {})
234
+ # return add
235
+ # We replace that with the following, which does not have any placeholders:
236
+ # graph():
237
+ # %inp_1 : [num_users=1] = get_attr[target=const_inp]
238
+ # %add : [num_users=1] = call_function[target=operator.add](args = (%inp_1, %inp_1), kwargs = {})
239
+ # return add
240
+ root_const_gm = torch.fx.GraphModule(split, const_gm.graph)
241
+ for node in root_const_gm.graph.nodes:
242
+ if node.op == "output":
243
+ multiple_outputs = isinstance(node.args[0], tuple)
244
+ continue
245
+ if node.op != "placeholder":
246
+ continue
247
+ in_node = next(n for n in call_const_gm_args if n.name == node.target)
248
+ assert in_node.op == "get_attr"
249
+ with root_const_gm.graph.inserting_before(node):
250
+ new_node = root_const_gm.graph.get_attr(in_node.target)
251
+ new_node.meta = node.meta.copy()
252
+ node.replace_all_uses_with(new_node)
253
+ root_const_gm.graph.erase_node(node)
254
+ assert "multiple_outputs" in locals()
255
+
256
+ # Now find the call to const_gm inside split, and replace it with a getattr to the
257
+ # folded tensor(s) that result from constant folding. Note that we don't need to
258
+ # worry about whether this is one or more tensors because the original graph
259
+ # correctly uses getitem to extract individual tensors if there are multiple folded.
260
+ fx_const_folded_attrs_name = get_unique_attr_name_in_module(
261
+ split, "_FX_CONST_FOLDED_ATTRS"
262
+ )
263
+ setattr(
264
+ split,
265
+ fx_const_folded_attrs_name,
266
+ torch.nn.ParameterList() if multiple_outputs else torch.nn.Parameter(),
267
+ )
268
+ for node in split.graph.nodes:
269
+ if node.op == "call_module" and node.target == const_mod_name:
270
+ with node.graph.inserting_before(node):
271
+ folded_attrs = node.graph.get_attr(fx_const_folded_attrs_name)
272
+ folded_attrs.meta = node.meta.copy()
273
+ node.replace_all_uses_with(folded_attrs)
274
+ break
275
+
276
+ split.graph.eliminate_dead_code()
277
+
278
+ # Finally, inline the non-constant submod into the split submod. This is so that the
279
+ # original caller who may have passed in a graph module will get back out a graph
280
+ # module whose graph is traced to the same granularity.
281
+ _inline_module(split, non_const_mod_name)
282
+
283
+ return FoldedGraphModule(
284
+ split,
285
+ split.graph,
286
+ root_const_gm.graph,
287
+ fx_const_folded_attrs_name,
288
+ device_for_folded_attrs,
289
+ )
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/debug.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.fx as fx
2
+
3
+ def set_trace(gm: fx.GraphModule) -> fx.GraphModule:
4
+ """
5
+ Sets a breakpoint in `gm`'s generated python code. It drops into pdb when
6
+ `gm` gets run.
7
+
8
+ Args:
9
+ gm: graph module to insert breakpoint. It is then recompiled for it to
10
+ take effect.
11
+
12
+ Returns:
13
+ the `gm` with breakpoint inserted.
14
+ """
15
+ def insert_pdb(body):
16
+ return ["import pdb; pdb.set_trace()\n", *body]
17
+
18
+ with gm.graph.on_generate_code(
19
+ make_transformer=lambda cur_transform: (
20
+ # new code transformer to register
21
+ lambda body: (
22
+ insert_pdb(
23
+ cur_transform(body) if cur_transform
24
+ else body
25
+ )
26
+ )
27
+ )
28
+ ):
29
+ gm.recompile()
30
+
31
+ return gm
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/graph_gradual_typechecker.py ADDED
@@ -0,0 +1,914 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ import torch
3
+ import operator
4
+ from torch.fx.tensor_type import Dyn, is_consistent, TensorType, is_more_precise
5
+ from typing import Callable, Dict
6
+ from torch.fx.node import Target, Node
7
+ from torch.nn.modules.batchnorm import BatchNorm2d
8
+ from torch.nn.modules.conv import Conv2d
9
+ from torch.fx.experimental.refinement_types import Equality
10
+ import itertools
11
+
12
+ from torch.fx.experimental.unification import Var # type: ignore[attr-defined]
13
+
14
+ import sympy
15
+
16
+ _INFERENCE_RULES: Dict[Target, Callable] = {}
17
+ _REFINEMENT_RULES: Dict[Target, Callable] = {}
18
+ _RULES: Dict[Target, Callable] = {}
19
+
20
+
21
+ def expand_to_tensor_dim(t, n):
22
+ """
23
+ Expand a type to the desired tensor dimension if possible
24
+ Raise an error otherwise.
25
+ - t is the given type
26
+ - n is a number of dimensions to expand to
27
+ """
28
+ if t == Dyn:
29
+ dims = [Dyn] * n
30
+ return TensorType(tuple(dims))
31
+ elif isinstance(t, TensorType):
32
+ if len(t.__args__) != n:
33
+ raise TypeError(f'Cannot extend tensor. Tensor {t} has rank {len(t.__args__)}. It should have rank {n}')
34
+ return t
35
+ else:
36
+ raise TypeError(f'Cannot match the type {t}')
37
+
38
+
39
+ def broadcast_types(t1, t2):
40
+ """
41
+ Applies broadcasting to both given types such that they
42
+ become consistent with eachother and returns two new
43
+ resulting types
44
+ """
45
+
46
+ # if either type is Dyn, do nothing since the types are already consistent
47
+ if t1 == Dyn or t2 == Dyn or isinstance(t1, Var) or isinstance(t2, Var):
48
+ return t1, t2
49
+
50
+ if isinstance(t1, TensorType) and isinstance(t2, TensorType):
51
+ s1 = len(t1.__args__)
52
+ s2 = len(t2.__args__)
53
+
54
+ new_t1 = list(t1.__args__)
55
+ new_t2 = list(t2.__args__)
56
+
57
+ # We make the types the same length which is the first requirement
58
+ # for consistency
59
+ if s1 > s2:
60
+ for i in range(s1 - s2):
61
+ new_t2.insert(0, 1)
62
+
63
+ elif s2 > s1:
64
+ for i in range(s2 - s1):
65
+ new_t1.insert(0, 1)
66
+
67
+ # we replace occurrences of "1" with each tensor with
68
+ # the corresponding type from the other tensor
69
+ for i, (x, y) in enumerate(zip(new_t1, new_t2)):
70
+ if x == 1:
71
+ new_t1[i] = y
72
+ elif y == 1:
73
+ new_t2[i] = x
74
+
75
+ # at this point our tensors should be consistent
76
+ # and we can apply the element-wise operation and find the right dimension
77
+ # for the output of the operation
78
+ (t1, t2) = TensorType(tuple(new_t1)), TensorType(tuple(new_t2))
79
+ return (t1, t2)
80
+ else:
81
+ raise TypeError(f'Cannot broadcast types {t1} and {t2}')
82
+
83
+ def register_inference_rule(call_target):
84
+ def register(fn):
85
+ if call_target in _INFERENCE_RULES:
86
+ raise RuntimeError(f'Inference rule already registered for {call_target}!')
87
+ _INFERENCE_RULES[call_target] = fn
88
+ return fn
89
+ return register
90
+
91
+ def register_refinement_rule(call_target):
92
+ def register(fn):
93
+ if call_target in _REFINEMENT_RULES:
94
+ raise RuntimeError(f'Refinement rule already registered for {call_target}!')
95
+ _REFINEMENT_RULES[call_target] = fn
96
+ return fn
97
+ return register
98
+
99
+ def register_algebraic_expressions_inference_rule(call_target):
100
+ def register(fn):
101
+ if call_target in _RULES:
102
+ raise RuntimeError(f'Rule already registered for {call_target}!')
103
+ _RULES[call_target] = fn
104
+ return fn
105
+ return register
106
+
107
+ @register_inference_rule(torch.add)
108
+ @register_inference_rule(operator.add)
109
+ def add_inference_rule(n: Node):
110
+ """
111
+ Apply the addition inference rule. This includes:
112
+ - scalar addition
113
+ - broadcasting semantics
114
+
115
+ Note that we always return the least precise type between
116
+ the operands (after applying broadcasting) to be the final type of the operation
117
+
118
+ Note that we do not modify the operand types themselves after applying broadcasting
119
+ to them. We only use them to calculate the final type
120
+ """
121
+ assert isinstance(n.args[0], Node)
122
+ assert isinstance(n.args[1], Node)
123
+ t1 = n.args[0].type
124
+ t2 = n.args[1].type
125
+
126
+ # handle scalar addition
127
+ if t1 == int and isinstance(t2, TensorType):
128
+ n.type = t2
129
+ return n.type
130
+
131
+ # handle scalar addition
132
+ elif t2 == int and isinstance(t1, TensorType):
133
+ n.type = t1
134
+ return n.type
135
+
136
+ # we bring the new types to the point where
137
+ # we can check for consistency
138
+ # any inconsistency would not have been caused
139
+ # by broadcasting at this point
140
+ (new_t1, new_t2) = broadcast_types(t1, t2)
141
+
142
+ if new_t1 != t1 or new_t2 != t2:
143
+ n.meta['broadcast'] = True
144
+ n.meta[str(n.args[0])] = new_t1
145
+ n.meta[str(n.args[1])] = new_t2
146
+
147
+ else:
148
+ n.meta['broadcast'] = False
149
+
150
+ new_t1 = t1 if not n.meta['broadcast'] else new_t1
151
+ new_t2 = t2 if not n.meta['broadcast'] else new_t2
152
+
153
+ # we check for consistency between the new types
154
+ if is_consistent(new_t1, new_t2):
155
+ # we return the less precise type because
156
+ # broadcasting may have happened
157
+ # for operands with shape [1,2,Dyn] and [1,2,1]
158
+ # we have to assign the node [1,2,Dyn]
159
+ if is_more_precise(new_t1, new_t2):
160
+ n.type = new_t2
161
+ else:
162
+ n.type = new_t1
163
+ return n.type
164
+ else:
165
+ raise TypeError(f'Cannot add arguments {n.args[0]} ({ n.args[0].type}) and {n.args[1]} ({ n.args[1].type}) in node {n}.'
166
+ f' Types should match ')
167
+
168
+ @register_inference_rule(getattr)
169
+ def get_attr_inference_rule(n: Node, traced):
170
+ """
171
+ The current getattr rule only handles the shape attribute
172
+ Can be extended to other attributes
173
+ The most representitive type we have is "Dyn" but the system
174
+ can be extended with more types, such as a type to represent shapes
175
+ """
176
+ attr_node = n.args[0]
177
+ attr_name = n.args[1]
178
+
179
+ if attr_name == "shape":
180
+ n.type = Dyn
181
+ else:
182
+ raise TypeError("Not yet implemented")
183
+
184
+ # TODO. We leave it like this till we add a type to represent tensor sizes
185
+ return n.type
186
+
187
+ @register_inference_rule(torch.transpose)
188
+ def transpose_inference_rule(n: Node):
189
+ """
190
+ We check that dimensions for the transpose operations
191
+ are within range of the tensor type of the node
192
+ """
193
+ if n.target == torch.transpose:
194
+ assert isinstance(n.args[0], Node)
195
+ t = n.args[0].type
196
+
197
+ assert isinstance(n.args[1], int)
198
+ assert isinstance(n.args[2], int)
199
+ dim1, dim2 = n.args[1], n.args[2]
200
+
201
+ if t == Dyn:
202
+ n.type = Dyn
203
+ return n.type
204
+
205
+ elif isinstance(t, TensorType):
206
+ if 0 <= dim1 < len(t.__args__) and 0 <= dim2 < len(t.__args__):
207
+ new_type = list(t.__args__)
208
+ new_type[dim1], new_type[dim2] = new_type[dim2], new_type[dim1]
209
+ final = TensorType(new_type)
210
+ n.type = get_greatest_upper_bound(n.type, final)
211
+ return n.type
212
+ else:
213
+ raise TypeError(f'Cannot transpose {dim1} and {dim2} in type {t} for node {n}')
214
+ else:
215
+ raise TypeError(f'Cannot transpose {dim1} and {dim2} in type {t} for node {n}')
216
+
217
+
218
+ @register_inference_rule(torch.reshape)
219
+ def reshape_inference_rule(n: Node):
220
+ """
221
+ Without dynamism, the rule checks that the
222
+ product of the elements of the argument tensor
223
+ type is equal to the product of the elements
224
+ of the required shape. We gradualize this rule
225
+ by adding a case to handle fully dynamic input
226
+ as well as input where some of the tensor dimensions
227
+ are unknown. In this case we check for divisibility
228
+ """
229
+ assert isinstance(n.args[0], Node)
230
+ t1 = n.args[0].type
231
+
232
+ assert isinstance(n.args[1], list)
233
+ t2 = n.args[1]
234
+ t2_type = TensorType([Dyn if elem == -1 else elem for elem in t2])
235
+
236
+ # if we do not know the original tensor dimension,
237
+ # we return the required dimension
238
+ if t1 == Dyn:
239
+ n.type = t2_type
240
+ return t2_type
241
+
242
+ # if any of the dimensions are unknown,
243
+ # we check for divisibility
244
+ elif isinstance(t1, TensorType):
245
+ assert isinstance(t1, TensorType)
246
+ a = [e if e != Dyn else 1 for e in t1.__args__]
247
+ p1 = reduce(lambda x, y: x * y, a)
248
+ p2 = reduce(lambda x, y: x * y, t2)
249
+ if p1 % p2 == 0 or p2 % p1 == 0:
250
+ n.type = t2_type
251
+ return t2_type
252
+ else:
253
+ raise TypeError(f'Cannot reshape in node {n} from {t1} to {t2_type}')
254
+ else:
255
+ raise TypeError(f'Cannot reshape in node {n} from {t1} to {t2_type}')
256
+
257
+ @register_inference_rule(BatchNorm2d)
258
+ def bn2d_inference_rule(n: Node, module_instance):
259
+ """
260
+ Given a BatchNorm2D instance and a node check the following conditions:
261
+ - the input type can be expanded to a size 4 tensor: t = (x_1, x_2, x_3, x_4)
262
+ - the current node type can be expanded to a size 4 tensor: t' = (x_1', x_2', x_3', x_4')
263
+ - t is consistent with t'
264
+ - x_2 is consistent with the module's num_features
265
+ - x_2' is consistent with the module's num_features
266
+ output type: the more precise type of t and t'
267
+ """
268
+ assert isinstance(n.args[0], Node)
269
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, 4)
270
+ arg_type = n.args[0].type
271
+ n.type = expand_to_tensor_dim(n.type, 4)
272
+
273
+ # we check the conditions on the incoming argument
274
+ # and any existing annotation
275
+ # we also check for consistency between both annotations
276
+ if is_consistent(arg_type.__args__[1], module_instance.num_features) and \
277
+ is_consistent(n.type.__args__[1], module_instance.num_features) and \
278
+ is_consistent(arg_type, n.type):
279
+
280
+ # we choose the more precise type
281
+ # to be the node type
282
+ # so if an incoming argument has more type information
283
+ # we set this node's type to be the argument type
284
+ n.type = get_greatest_upper_bound(arg_type, n.type)
285
+ return n.type
286
+ else:
287
+ raise TypeError(f'Cannot apply {module_instance} with input type {arg_type} and existing type {n.type} on {n}')
288
+
289
+
290
+ def calculate_out_dimension(d_in, module_instance, index):
291
+ """
292
+ For calculating h_in and w_out according to the conv2D documentation
293
+ """
294
+ padding = (module_instance.padding, module_instance.padding) \
295
+ if isinstance(module_instance.padding, int) else module_instance.padding
296
+ kernel_size = (module_instance.kernel_size, module_instance.kernel_size) \
297
+ if isinstance(module_instance.kernel_size, int) else module_instance.kernel_size
298
+ stride = (module_instance.stride, module_instance.stride) \
299
+ if isinstance(module_instance.stride, int) else module_instance.stride
300
+ dilation = (module_instance.dilation, module_instance.dilation) \
301
+ if isinstance(module_instance.dilation, int) else module_instance.dilation
302
+
303
+ DIMENSION_TYPES = (int, sympy.Symbol)
304
+
305
+ if d_in == Dyn:
306
+ return Dyn
307
+
308
+ elif isinstance(d_in, DIMENSION_TYPES):
309
+ n = d_in + 2 * padding[index] - \
310
+ dilation[index] * \
311
+ (kernel_size[index] - 1) - 1
312
+
313
+ return (n // stride[0]) + 1
314
+
315
+ else:
316
+ raise TypeError(f'{d_in} in {module_instance} must be a number or Dyn. Received {type(d_in)}')
317
+
318
+
319
+ def get_greatest_upper_bound(type1, type2):
320
+ """
321
+ Get the most precise type that's consistent with the given types
322
+ """
323
+ if type1 == Dyn:
324
+ return type2
325
+ elif type2 == Dyn:
326
+ return type1
327
+ elif isinstance(type1, TensorType) and isinstance(type2, TensorType):
328
+ if not is_consistent(type1, type2):
329
+ raise TypeError(f'Inconsistent types {type1}, {type2}')
330
+ gub = [t1 if is_more_precise(t1, t2) else t2 for (t1, t2) in zip(type1.__args__, type2.__args__)]
331
+ return TensorType(tuple(gub))
332
+
333
+
334
+ @register_inference_rule(Conv2d)
335
+ def conv2d_inference_rule(n: Node, module_instance):
336
+ """
337
+ Given a Conv2D instance and a node check the following conditions:
338
+ - the input type can be expanded to a size 4 tensor: t = (x_1, x_2, H, W)
339
+ - the current node type can be expanded to a size 4 tensor: t' = (x_1', x_2', x_3', x_4')
340
+ - x_2 is consistent with the module's in_channels
341
+ - let o = (x_1, out_channels, H_out, W_out)
342
+ then the output is the greatest upper bound of o and the existing node type t'.
343
+ """
344
+ assert isinstance(n.args[0], Node)
345
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, 4)
346
+ arg_type = n.args[0].type
347
+ curr_node_type = expand_to_tensor_dim(n.type, 4)
348
+
349
+ if is_consistent(arg_type.__args__[1], module_instance.in_channels):
350
+ w_in = arg_type.__args__[3]
351
+ h_in = arg_type.__args__[2]
352
+ h_out = calculate_out_dimension(h_in, module_instance, 0)
353
+ w_out = calculate_out_dimension(w_in, module_instance, 1)
354
+ new_type = TensorType((arg_type.__args__[0], module_instance.out_channels, h_out, w_out))
355
+ gub = get_greatest_upper_bound(new_type, curr_node_type)
356
+ n.type = gub
357
+ return n.type
358
+ else:
359
+ raise TypeError(f'Cannot apply {module_instance} with input type { arg_type} and existing type {n.type} on {n}')
360
+
361
+
362
+ @register_inference_rule(torch.nn.ReLU)
363
+ def relu_inference_rule(n: Node, module_instance):
364
+ """
365
+ Input and output shapes should be equal.
366
+ """
367
+ assert isinstance(n.args[0], Node)
368
+
369
+ if n.args[0].type == Dyn and isinstance(n.type, TensorType):
370
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
371
+
372
+ if isinstance(n.args[0].type, TensorType):
373
+ n.type = get_greatest_upper_bound(n.args[0].type, n.type)
374
+ return n.type
375
+
376
+
377
+ def maxpool2d_check(typ, module_instance):
378
+ """
379
+ Applies the maxpool2d shape information to the input
380
+ this affects the last two dimensions
381
+ """
382
+ new_type_list = list(typ.__args__)
383
+ if len(new_type_list) == 4 or len(new_type_list) == 3:
384
+ w_in = new_type_list[-1]
385
+ h_in = new_type_list[-2]
386
+
387
+ h_out = calculate_out_dimension(h_in, module_instance, 0)
388
+ w_out = calculate_out_dimension(w_in, module_instance, 1)
389
+
390
+ new_type_list[-1] = w_out
391
+ new_type_list[-2] = h_out
392
+ return TensorType(tuple(new_type_list))
393
+
394
+ else:
395
+ raise TypeError(f'Wrong size {typ} for {module_instance}')
396
+
397
+
398
+ @register_inference_rule(torch.nn.MaxPool2d)
399
+ def maxpool2d_inference_rule(n: Node, module_instance):
400
+ """
401
+ Given a MaxPool2D instance and a node check the following conditions:
402
+ - Input size matches size 3 or 4
403
+ - Current node type is consistent with the output type we will calculate
404
+ - Input size matches output size and the last two dimensions of the output
405
+ are w_out and h_out. The remaining dimensions are the same as the input
406
+ - Our final result is the greatest upper bound of the output we calculate
407
+ and the current node type.
408
+ """
409
+ assert isinstance(n.args[0], Node)
410
+
411
+ if n.args[0].type == Dyn and isinstance(n.type, TensorType):
412
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
413
+ if isinstance(n.args[0].type, TensorType):
414
+ output = maxpool2d_check(n.args[0].type, module_instance)
415
+ n.type = get_greatest_upper_bound(output, n.type)
416
+ return n.type
417
+
418
+
419
+
420
+ def linear_check(tensor_type, module_instance):
421
+ """
422
+ Checks that an input tensor type satisfies the conditions for linear operation
423
+ and returns the output type based on in and out features given by module_instance
424
+ """
425
+ if len(tensor_type.__args__) >= 2:
426
+ if is_consistent(module_instance.in_features, tensor_type.__args__[-1]):
427
+ new_type_args = list(tensor_type.__args__)
428
+ new_type_args[-1] = module_instance.out_features
429
+ return TensorType(tuple(new_type_args))
430
+ else:
431
+ raise TypeError(f'Inconsistent {module_instance.in_features} and {tensor_type.__args__[-1]} in {module_instance}')
432
+ else:
433
+ raise TypeError(f'Type {tensor_type} must have rank 2 or more.')
434
+
435
+
436
+ @register_inference_rule(torch.nn.Linear)
437
+ def linear_inference_rule(n: Node, module_instance):
438
+ """
439
+ Applies the shape information to the input then gets the greatest upper bound
440
+ of the resulting type and the existing type
441
+ """
442
+ assert isinstance(n.args[0], Node)
443
+ if n.args[0].type == Dyn and isinstance(n.type, TensorType):
444
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
445
+ if isinstance(n.args[0].type, TensorType):
446
+ output_type = linear_check(n.args[0].type, module_instance)
447
+ n.type = get_greatest_upper_bound(output_type, n.type)
448
+ return n.type
449
+
450
+
451
+ def adaptiveavgpool2d_check(tensor_type, module_instance):
452
+ output_size = module_instance.output_size
453
+ if isinstance(output_size, int):
454
+ output_size = [output_size, output_size]
455
+ elif isinstance(output_size, tuple):
456
+ output_size = list(output_size)
457
+ if output_size[0] is None:
458
+ output_size[0] = output_size[1]
459
+ if output_size[1] is None:
460
+ output_size[1] = output_size[0]
461
+
462
+ new_type_list = list(tensor_type.__args__)
463
+
464
+ if len(tensor_type.__args__) == 4 or len(tensor_type.__args__) == 3:
465
+ new_type_list[-1] = output_size[1]
466
+ new_type_list[-2] = output_size[0]
467
+
468
+ return TensorType(tuple(new_type_list))
469
+
470
+ else:
471
+ raise TypeError(f'Tensor ranks must be 3 or 4. Got {tensor_type}')
472
+
473
+ @register_inference_rule(torch.nn.AdaptiveAvgPool2d)
474
+ def adaptiveavgpool2d_inference_rule(n: Node, module_instance):
475
+ """
476
+ The input and output sizes should be the same except for the last
477
+ two dimensions taken from the input, which represent width and height
478
+ """
479
+ assert isinstance(n.args[0], Node)
480
+ if n.args[0].type == Dyn and isinstance(n.type, TensorType):
481
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
482
+ if isinstance(n.args[0].type, TensorType):
483
+ output_type = adaptiveavgpool2d_check(n.args[0].type, module_instance)
484
+ n.type = get_greatest_upper_bound(n.type, output_type)
485
+ return n.type
486
+
487
+ def flatten_check(tensor_type, start_dim, end_dim):
488
+ l = len(tensor_type.__args__)
489
+
490
+ start_dim = l if start_dim == -1 else abs(start_dim)
491
+ end_dim = l + end_dim + 1 if end_dim < 0 else end_dim + 1
492
+
493
+ if 0 <= start_dim <= (l - 1) and 0 <= end_dim <= l and start_dim < end_dim:
494
+ my_args = list(tensor_type.__args__)
495
+ lhs = my_args[0:start_dim]
496
+ rhs = my_args[end_dim:]
497
+ mid = my_args[start_dim:end_dim]
498
+ if Dyn in mid:
499
+ mid = [Dyn]
500
+ else:
501
+ mid = [reduce(lambda x, y: x * y, my_args[start_dim:end_dim])]
502
+ new_type_list = lhs + mid + rhs
503
+ return TensorType(tuple(new_type_list))
504
+ else:
505
+ raise TypeError(f'Incompatible dimensions {start_dim}, {end_dim - 1} in type {tensor_type}')
506
+
507
+ @register_inference_rule(torch.flatten)
508
+ def flatten_inference_rule(n: Node):
509
+ """
510
+ Applies the flatten shape information to the input then gets the
511
+ greatest upper bound of the resulting type and the existing type
512
+ """
513
+ assert isinstance(n.args[0], Node)
514
+
515
+ # set the default start and end dims
516
+ start_dim = 1
517
+ end_dim = -1
518
+
519
+ if len(n.args) > 1:
520
+ assert isinstance(n.args[1], int)
521
+ start_dim = n.args[1]
522
+
523
+ if len(n.args) > 2:
524
+ assert isinstance(n.args[2], int)
525
+ end_dim = n.args[2]
526
+
527
+ if n.args[0].type == Dyn and isinstance(n.type, TensorType):
528
+ n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
529
+
530
+ if isinstance(n.args[0].type, TensorType):
531
+ output_type = flatten_check(n.args[0].type, start_dim, end_dim)
532
+ n.type = get_greatest_upper_bound(output_type , n.type)
533
+
534
+ return n.type
535
+
536
+ class GraphTypeChecker:
537
+ def __init__(self, env, traced):
538
+ self.env = env
539
+ self.traced = traced
540
+
541
+ def type_check(self):
542
+ """
543
+ A gradual type checker for graphs
544
+ Effect: every node's field type will be
545
+ populated with a type after type-checking is done
546
+ """
547
+ graph = self.traced.graph
548
+
549
+ # type check every node with gradual type rules
550
+ # if any node does not type check return false
551
+ for n in graph.nodes:
552
+ self.type_check_node(n)
553
+ return True
554
+
555
+ def type_check_node(self, n: Node):
556
+ """
557
+ Type check a given fx node.
558
+ Current operations:
559
+ - Reshape
560
+ - Transpose
561
+ - Add
562
+ - Relu
563
+ - conv2d
564
+ - batchnorm2d
565
+ - flatten
566
+ - maxpool2d
567
+ - adaptiveavgpool2d
568
+ - linear
569
+ """
570
+ if n.type is None:
571
+ n.type = Dyn
572
+
573
+ if n.op == 'placeholder':
574
+ return n.type
575
+
576
+ elif n.op == 'get_attr':
577
+ t = get_parameter(self.traced, n.target) # type: ignore[arg-type]
578
+ if isinstance(t.data, torch.Tensor):
579
+ n.type = TensorType(t.data.shape)
580
+ return n.type
581
+
582
+ elif n.op == 'call_function':
583
+ if n.target == getattr:
584
+ assert getattr in _INFERENCE_RULES
585
+ return _INFERENCE_RULES[n.target](n, self.traced)
586
+
587
+ elif n.target in _INFERENCE_RULES:
588
+ return _INFERENCE_RULES[n.target](n)
589
+ else:
590
+ raise RuntimeError(f'No inference rule registered for target {n.target}!')
591
+
592
+ elif n.op == 'call_module':
593
+ module_instance = self.traced.get_submodule(n.target)
594
+ if type(module_instance) in _INFERENCE_RULES:
595
+ return _INFERENCE_RULES[type(module_instance)](n, module_instance)
596
+ else:
597
+ raise RuntimeError(f'No inference rule registered for class {type(module_instance)}!')
598
+
599
+ elif n.op == 'output':
600
+ def get_node_type(a):
601
+ return a.type
602
+ n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
603
+ return n.type
604
+
605
+ else:
606
+ raise NotImplementedError(f"Method {n.op} not yet implemented")
607
+
608
+
609
+ @register_refinement_rule(Conv2d)
610
+ def conv_refinement_rule(n: Node):
611
+ """
612
+ The equality constraints are between the first dimension of
613
+ the input and output
614
+ """
615
+ res = []
616
+ assert isinstance(n.args[0], Node)
617
+ arg_type = n.args[0].type
618
+ if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
619
+ res = [Equality(arg_type.__args__[0], n.type.__args__[0])]
620
+ return res
621
+
622
+
623
+ @register_refinement_rule(torch.nn.Linear)
624
+ def linear_refinement_rule(n: Node):
625
+ """
626
+ The equality constraints are between the first dimension of
627
+ the input and output
628
+ """
629
+ res = []
630
+ assert isinstance(n.args[0], Node)
631
+ arg_type = n.args[0].type
632
+ if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
633
+ res = [Equality(arg_type.__args__[0], n.type.__args__[0])]
634
+ return res
635
+
636
+ @register_refinement_rule(BatchNorm2d)
637
+ @register_refinement_rule(torch.nn.ReLU)
638
+ def all_eq(n: Node):
639
+ """
640
+ For operations where the input shape is equal to the output shape
641
+ """
642
+ res = []
643
+ assert isinstance(n.args[0], Node)
644
+ arg_type = n.args[0].type
645
+ if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
646
+ args1 = arg_type.__args__
647
+ args2 = n.type.__args__
648
+ res = [Equality(args1[i], args2[i]) for i in range(len(args1))]
649
+ return res
650
+
651
+
652
+ @register_refinement_rule(torch.nn.AdaptiveAvgPool2d)
653
+ @register_refinement_rule(torch.nn.MaxPool2d)
654
+ def first_two_eq(n: Node):
655
+ """
656
+ For operations where the first two dimensions of the input and output shape
657
+ are equal
658
+ """
659
+ res = []
660
+ assert isinstance(n.args[0], Node)
661
+ arg_type = n.args[0].type
662
+ if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
663
+ args1 = arg_type.__args__
664
+ args2 = n.type.__args__
665
+ res = [Equality(args1[0], args2[0]), Equality(args1[1], args2[1])]
666
+ return res
667
+
668
+
669
+ @register_refinement_rule(torch.add)
670
+ @register_refinement_rule(operator.add)
671
+ def element_wise_eq(n: Node):
672
+ """
673
+ For element-wise operations and handles broadcasting.
674
+ Note that after applying broadcasting to the arguments
675
+ we are able to determine if certain dimensions have not been broadcast
676
+ if they are symbolicallu equal.
677
+
678
+ in this case, we can establish equality between those dimensions and the
679
+ corresponding output dimensions.
680
+
681
+ Note that it takes two iterations for this result. One iteration to establish
682
+ equality between certain dimensions of the operands (requiring the whole solver
683
+ including unification) and another iteration to establish equality between the operands
684
+ and the resulting type, requiring another round of constraint generation and unificaiton.
685
+ """
686
+ res = []
687
+ if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
688
+ arg_type1 = n.args[0].type
689
+ arg_type2 = n.args[1].type
690
+ if isinstance(arg_type1, TensorType) and isinstance(arg_type2, TensorType) and isinstance(n.type, TensorType):
691
+ args1, args2 = broadcast_types(arg_type1, arg_type2)
692
+ # by this point, we know that args1 and args2 are the same size.
693
+ a1 = args1.__args__
694
+ a2 = args2.__args__
695
+ a3 = n.type.__args__
696
+
697
+ # we would be here in the second iteration where we establish equality
698
+ # between operand type dimensions and the resulting type dimensions
699
+ r = []
700
+ for x, y, z in zip(a1, a2, a3):
701
+ if x == y:
702
+ r.append(Equality(x, z))
703
+ res = r
704
+ return res
705
+
706
+
707
+ @register_refinement_rule(torch.flatten)
708
+ def flatten_refinement_rule(n: Node):
709
+ """
710
+ Generates equality constraints between the dimensions of the input and output
711
+ that will not be involved in the flatten operation
712
+ """
713
+ assert isinstance(n.args[0], Node)
714
+
715
+ eq_const = []
716
+
717
+ start_dim = 1
718
+ end_dim = -1
719
+
720
+ if len(n.args) > 1:
721
+ assert isinstance(n.args[1], int)
722
+ start_dim = n.args[1]
723
+
724
+ if len(n.args) > 2:
725
+ assert isinstance(n.args[2], int)
726
+ end_dim = n.args[2]
727
+
728
+ if isinstance(n.type, TensorType) and isinstance(n.args[0].type, TensorType):
729
+ l = len(n.type.__args__)
730
+ arg_type = n.args[0].type
731
+ start_dim = l if start_dim == -1 else start_dim
732
+ end_dim = l + end_dim + 1 if end_dim < 0 else end_dim + 1
733
+
734
+ for t1, t2 in zip(n.type.__args__[0:start_dim], arg_type.__args__[0:start_dim]):
735
+ eq_const.append(Equality(t1, t2))
736
+
737
+ for t1, t2 in zip(n.type.__args__[end_dim:], arg_type.__args__[end_dim:]):
738
+ eq_const.append(Equality(t1, t2))
739
+ return eq_const
740
+
741
+
742
+ @register_algebraic_expressions_inference_rule(Conv2d)
743
+ def conv_rule(n: Node, module_instance):
744
+ """
745
+ Represents the outout in terms of an algrbraic expression w.r.t
746
+ the input when possible
747
+ """
748
+ assert isinstance(n.args[0], Node)
749
+ arg_type = n.args[0].type
750
+ if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
751
+ w_in = arg_type.__args__[3]
752
+ h_in = arg_type.__args__[2]
753
+ h_out = calculate_out_dimension(h_in, module_instance, 0)
754
+ w_out = calculate_out_dimension(w_in, module_instance, 1)
755
+ new_type = TensorType((n.type.__args__[0], n.type.__args__[1], h_out, w_out))
756
+ n.type = new_type
757
+ return new_type
758
+
759
+ class Refine:
760
+ """
761
+ Symbolic shape inference.
762
+ Generates constraints over type variables.
763
+ Currently all constraints are equality constraints.
764
+ """
765
+ def __init__(self, traced):
766
+ self.constraints = []
767
+ self.traced = traced
768
+ self.symbol_iter = itertools.count(start=0, step=1)
769
+
770
+ def refine(self):
771
+ """
772
+ Generates constraints for
773
+ every node in the graph based on
774
+ the operation.
775
+ """
776
+ graph = self.traced.graph
777
+ for n in graph.nodes:
778
+ self.refine_node(n)
779
+ return True
780
+
781
+ def symbolic_relations(self):
782
+ """
783
+ Infers algebraic relations
784
+ """
785
+ graph = self.traced.graph
786
+ for n in graph.nodes:
787
+ self.infer_symbolic_relations(n)
788
+ return True
789
+
790
+ def replace_dyn_with_fresh_var(self, typ):
791
+ """
792
+ Replace all unknown types with fresh type variables.
793
+ """
794
+ if typ == Dyn:
795
+ new_symbol = Var(next(self.symbol_iter))
796
+ return new_symbol
797
+ elif isinstance(typ, TensorType):
798
+ new_args = [self.replace_dyn_with_fresh_var(a) for a in typ.__args__]
799
+ return TensorType(tuple(new_args))
800
+ elif isinstance(typ, list):
801
+ return [self.replace_dyn_with_fresh_var(t) for t in typ]
802
+ elif isinstance(typ, tuple):
803
+ return (self.replace_dyn_with_fresh_var(t) for t in typ)
804
+ else:
805
+ return typ
806
+
807
+
808
+ def convert_to_sympy_symbols(self, typ):
809
+ """
810
+ Replace all unknown types with fresh type variables.
811
+ """
812
+ if isinstance(typ, Var):
813
+ return sympy.symbols(str(typ))
814
+ elif isinstance(typ, TensorType):
815
+ new_args = [self.convert_to_sympy_symbols(a) for a in typ.__args__]
816
+ return TensorType(tuple(new_args))
817
+ elif isinstance(typ, list):
818
+ return [self.convert_to_sympy_symbols(t) for t in typ]
819
+ elif isinstance(typ, tuple):
820
+ return (self.convert_to_sympy_symbols(t) for t in typ)
821
+ else:
822
+ return typ
823
+
824
+ def refine_node(self, n: Node):
825
+ """
826
+ Returns a list of equality constraints for
827
+ call_module and call_function nodes.
828
+ Models the relation between input and output dimensions
829
+ using constraints in case they are both tensors.
830
+ All operations used in resnet50 are defined.
831
+ """
832
+ if n.type is None:
833
+ n.type = Dyn
834
+
835
+ n.type = self.replace_dyn_with_fresh_var(n.type)
836
+
837
+ if n.op == 'call_function':
838
+ if n.target in _REFINEMENT_RULES:
839
+ self.constraints += _REFINEMENT_RULES[n.target](n)
840
+ else:
841
+ pass
842
+
843
+ if n.op == 'call_module':
844
+ module_instance = self.traced.get_submodule(n.target)
845
+ if type(module_instance) in _REFINEMENT_RULES:
846
+ self.constraints += _REFINEMENT_RULES[type(module_instance)](n)
847
+ else:
848
+ pass
849
+
850
+ if n.op == 'output':
851
+ def get_node_type(a):
852
+ return a.type
853
+ n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
854
+ return n.type
855
+
856
+ else:
857
+ pass
858
+
859
+ def infer_symbolic_relations(self, n: Node):
860
+ n.type = self.convert_to_sympy_symbols(n.type)
861
+ if n.op == 'call_function':
862
+ if n.target in _RULES:
863
+ return _RULES[n.target](n)
864
+ else:
865
+ pass
866
+
867
+ if n.op == 'call_module':
868
+ module_instance = self.traced.get_submodule(n.target)
869
+ if type(module_instance) in _RULES:
870
+ return _RULES[type(module_instance)](n, module_instance)
871
+ else:
872
+ pass
873
+
874
+ if n.op == 'output':
875
+ def get_node_type(a):
876
+ return a.type
877
+ n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
878
+ return n.type
879
+
880
+ else:
881
+ pass
882
+
883
+ def get_parameter(traced, target: str):
884
+ """
885
+ Returns the parameter given by ``target`` if it exists,
886
+ otherwise throws an error.
887
+
888
+ See the docstring for ``get_submodule`` for a more detailed
889
+ explanation of this method's functionality as well as how to
890
+ correctly specify ``target``.
891
+
892
+ Args:
893
+ target: The fully-qualified string name of the Parameter
894
+ to look for. (See ``get_submodule`` for how to specify a
895
+ fully-qualified string.)
896
+
897
+ Returns:
898
+ torch.nn.Parameter: The Parameter referenced by ``target``
899
+
900
+ Raises:
901
+ AttributeError: If the target string references an invalid
902
+ path or resolves to something that is not an
903
+ ``nn.Parameter``
904
+ """
905
+ module_path, _, param_name = target.rpartition(".")
906
+
907
+ mod: torch.nn.Module = traced.get_submodule(module_path)
908
+
909
+ if not hasattr(mod, param_name):
910
+ raise AttributeError(mod._get_name() + " has no attribute `" + param_name + "`")
911
+
912
+ param: torch.nn.Parameter = getattr(mod, param_name)
913
+
914
+ return param
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/merge_matmul.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch.fx.node import Node
4
+ from torch.fx._symbolic_trace import symbolic_trace
5
+ from torch.fx.passes.tools_common import legalize_graph
6
+ import itertools
7
+ import operator
8
+
9
+ from typing import Dict, List, Tuple
10
+
11
+
12
+ def split_result_tensors(
13
+ result: torch.Tensor, inputs: List[torch.Tensor]
14
+ ) -> Tuple[torch.Tensor, ...]:
15
+ """
16
+ A free function for use in the merge_matmul graph transformation below that
17
+ splits the output from a merged matmul into the individual results for each
18
+ input tensor.
19
+
20
+ Arguments:
21
+ result: The merged matmul result tensor.
22
+ inputs: The list of inputs that were merged into one for the matmul.
23
+
24
+ Returns:
25
+ List of matmul results for each input tensor.
26
+ """
27
+ # When fx tracer is running, x.shape[0] will be torch.fx.Attribute but we
28
+ # need an int even when tracing
29
+ if isinstance(result, torch.fx.Proxy):
30
+ splits = [0] * len(inputs)
31
+ else:
32
+ splits = [x.shape[0] for x in inputs]
33
+
34
+ return torch.split(result, splits)
35
+
36
+
37
+ def may_depend_on(a: Node, b: Node, search_depth: int = 6):
38
+ """
39
+ Determine if one node depends on another in a torch.fx.Graph.
40
+
41
+ Arguments:
42
+ a: The node that may have a dependency on b.
43
+ b: The node that a may have a dependency on.
44
+ search_depth: In the case of an indirect dependency, this function
45
+ searches upto this many nodes away in search of a
46
+ data dependency. If none is found, the function
47
+ makes the conservative assumption that there is a
48
+ dependency.
49
+
50
+ Returns:
51
+ True if a may depend on b, False if it definitely does not.
52
+ """
53
+ # Equivalence is defined as dependence.
54
+ if a == b:
55
+ return True
56
+
57
+ # If a has no inputs, it cannot depend on b.
58
+ if len(a.all_input_nodes) == 0:
59
+ return False
60
+
61
+ # If the search depth has been exhausted and no conclusion has been
62
+ # reached, assume that there is a data dependency.
63
+ if search_depth == 0:
64
+ return True
65
+
66
+ # Recursively check all inputs of a.
67
+ for inp in a.all_input_nodes:
68
+ if may_depend_on(inp, b, search_depth - 1):
69
+ return True
70
+
71
+ return False
72
+
73
+
74
+ def are_nodes_independent(nodes: List[Node]):
75
+ """
76
+ Check if all of the given nodes are pairwise-data independent.
77
+
78
+ Arguments:
79
+ nodes: The nodes to check for data dependencies.
80
+
81
+ Returns:
82
+ True if any pair in nodes has a data dependency.
83
+ """
84
+ # For each pair in nodes:
85
+ for i, j in itertools.combinations(nodes, 2):
86
+ if may_depend_on(i, j) or may_depend_on(j, i):
87
+ return False
88
+
89
+ return True
90
+
91
+
92
+ def merge_matmul(in_mod: torch.nn.Module):
93
+ """
94
+ A graph transformation that merges matrix multiplication operations that share the same right-hand
95
+ side operand into one large matrix multiplication.
96
+ ____ _________ _________
97
+ ---- | | | | M| A * C |
98
+ M| A | T| B | * K| C | = |---------|
99
+ ---- , | | | | T| B * C |
100
+ K ---- --------- ---------
101
+ K R R
102
+ """
103
+ gm = symbolic_trace(in_mod)
104
+
105
+ rhs_users: Dict[Node, List[Node]] = {}
106
+ lhs_users: Dict[Node, List[Node]] = {}
107
+
108
+ # Populate rhs_users and lhs_users - maps from LHS/RHS matrix multiply operands to
109
+ # the matmul of which they are the LHS/RHS.
110
+ for node in gm.graph.nodes:
111
+ if node.op != "call_function" or node.target is not torch.matmul:
112
+ continue
113
+
114
+ lhs, rhs = node.args
115
+
116
+ # TODO: Properly handle aliasing caused by get_attr. For now,
117
+ # use the attribute name as the operand if the node is a
118
+ # get_attr.
119
+ lhs = lhs.target if lhs.op == "get_attr" else lhs
120
+ rhs = rhs.target if rhs.op == "get_attr" else rhs
121
+
122
+ lhs_users.setdefault(lhs, []).append(node)
123
+ rhs_users.setdefault(rhs, []).append(node)
124
+
125
+ for rhs, mms in rhs_users.items():
126
+ # There must be at least matmuls for a merge to make sense.
127
+ if len(mms) < 2:
128
+ continue
129
+
130
+ # All matmuls must not depend on each other directly or indirectly
131
+ # in order for the merge to be possible.
132
+ if not are_nodes_independent(mms):
133
+ continue
134
+
135
+ lhs_vals = [mm.args[0] for mm in mms]
136
+
137
+ # Merge the matmul.
138
+ # Collect a list of LHS operands and the single RHS operand.
139
+ lhs = [gm.graph.get_attr(l) if isinstance(l, str) else l for l in lhs_vals]
140
+ rhs = gm.graph.get_attr(rhs) if isinstance(rhs, str) else rhs
141
+
142
+ # Concatenate all the LHS operands.
143
+ merge_mm_cat = gm.graph.call_function(torch.cat, (lhs,), {})
144
+
145
+ # Multiply the concatenated LHS operands with the one RHS. This will produce
146
+ # the same results as all the individual matmuls involving rhs in the original graph,
147
+ # but they will all be concatenated together.
148
+ merge_mm = gm.graph.call_function(torch.matmul, (merge_mm_cat, rhs,), {})
149
+
150
+ # Split the result of the merged matmul using the shapes of the LHS operands
151
+ # to ascertain how large each chunk should be.
152
+ merge_mm_split = gm.graph.call_function(
153
+ split_result_tensors, (merge_mm, lhs), {}
154
+ )
155
+ merge_mm_res = [
156
+ gm.graph.call_function(operator.getitem, (merge_mm_split, out), {})
157
+ for out in range(len(lhs))
158
+ ]
159
+
160
+ # Replace all uses of the original, unmerged matmuls with the equivalent split chunk from the merged matmul.
161
+ for old, new in zip(mms, merge_mm_res):
162
+ old.replace_all_uses_with(new)
163
+ gm.graph.erase_node(old)
164
+
165
+ # All of the new nodes created above were inserted at the end, so we need to sort
166
+ # the nodes topologically to make sure all definitions precede uses.
167
+ legalize_graph(gm)
168
+
169
+ gm.recompile()
170
+ gm.graph.lint()
171
+ return gm
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/meta_tracer.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.fx
3
+ import warnings
4
+ import functools
5
+ import builtins
6
+
7
+ from typing import Any, Callable, Dict, Optional, Union
8
+
9
+ def embedding_override(self, input):
10
+ return torch.empty(*input.shape, self.weight.shape[-1], device='meta')
11
+
12
+
13
+ def nn_layernorm_override(self, input):
14
+ return input
15
+
16
+
17
+ def torch_relu_override(x):
18
+ return x
19
+
20
+
21
+ def torch_nn_relu_override(self, x):
22
+ return x
23
+
24
+
25
+ def functional_relu_override(x, inplace=False):
26
+ assert not inplace, 'dont support inplace functional.relu for metatensor analysis'
27
+ return x
28
+
29
+
30
+ def torch_where_override(condition, x, y):
31
+ # torch.where returns the broadcasted tensor of condition, x, and y,
32
+ # so hack it by using addition
33
+ return condition.to(device='meta') + x.to(device='meta') + y.to(device='meta')
34
+
35
+
36
+ def torch_abs_override(input, *, out=None):
37
+ assert out is None, 'Dont support in-place abs for MetaTensor analysis'
38
+ return input
39
+
40
+ manual_meta_overrides : Dict[Callable, Callable] = {
41
+ torch.nn.Embedding: embedding_override,
42
+ torch.nn.LayerNorm: nn_layernorm_override,
43
+ torch.relu: torch_relu_override,
44
+ torch.nn.functional.relu: functional_relu_override,
45
+ torch.nn.ReLU: torch_nn_relu_override,
46
+ torch.where: torch_where_override,
47
+ torch.abs: torch_abs_override,
48
+ }
49
+
50
+ def gen_constructor_wrapper(target):
51
+ @functools.wraps(target)
52
+ def wrapper(*args, **kwargs):
53
+ proxy = None
54
+
55
+ def check_has_proxy(v):
56
+ if isinstance(v, torch.fx.Proxy):
57
+ nonlocal proxy
58
+ proxy = v
59
+ torch.fx.node.map_aggregate(args, check_has_proxy)
60
+ torch.fx.node.map_aggregate(kwargs, check_has_proxy)
61
+
62
+ if proxy is not None:
63
+ return proxy.tracer.create_proxy('call_function', target, args, kwargs)
64
+ else:
65
+ return target(*args, **kwargs)
66
+ return wrapper, target
67
+
68
+ class MetaProxy(torch.fx.Proxy):
69
+ def install_tensor_meta(self, tensor_meta):
70
+ self._tensor_meta = tensor_meta
71
+
72
+ def size(self, dim=None):
73
+ if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
74
+ return self._tensor_meta.size(*[dim] if dim else [])
75
+ return self.tracer.create_proxy('call_method', 'size', (self, dim) if dim else (self,), {})
76
+
77
+ def dim(self):
78
+ if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
79
+ return self._tensor_meta.dim()
80
+ return self.tracer.create_proxy('call_method', 'dim', (self,), {})
81
+
82
+ @property
83
+ def shape(self):
84
+ if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
85
+ return self._tensor_meta.shape
86
+ return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'shape'), {})
87
+
88
+ @property
89
+ def dtype(self):
90
+ if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
91
+ return self._tensor_meta.dtype
92
+ return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'dtype'), {})
93
+
94
+ @property
95
+ def device(self):
96
+ # Hack so we can track when devices are used. During meta-tensor propagation,
97
+ # replace these values with a constant 'meta'
98
+ return MetaDeviceAttribute(self, 'device')
99
+
100
+ def __getattr__(self, k):
101
+ if k == '_tensor_meta':
102
+ return self.__getattribute__(k)
103
+ # note: not added to the graph yet, if this is a method call
104
+ # we peephole optimize to the method invocation
105
+ return MetaAttribute(self, k)
106
+
107
+ class MetaAttribute(MetaProxy):
108
+ def __init__(self, root, attr: str):
109
+
110
+ self.root = root
111
+ self.attr = attr
112
+ self.tracer = root.tracer
113
+ self._node = None
114
+
115
+ @property
116
+ def node(self):
117
+ # the node for attributes is added lazily, since most will just be method calls
118
+ # which do not rely on the getitem call
119
+ if self._node is None:
120
+ self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
121
+ return self._node
122
+
123
+ def __call__(self, *args, **kwargs):
124
+ return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
125
+
126
+ class MetaDeviceAttribute(MetaAttribute):
127
+ pass
128
+
129
+ def proxys_to_metas(v):
130
+ if isinstance(v, MetaDeviceAttribute):
131
+ return 'meta'
132
+ if isinstance(v, torch.fx.Proxy):
133
+ assert isinstance(v, MetaProxy), f'Expected MetaProxy but got {type(v)}'
134
+ assert hasattr(v, '_tensor_meta'), 'MetaProxy does not have an associated meta'
135
+ return v._tensor_meta
136
+ return v
137
+
138
+ class MetaTracer(torch.fx.Tracer):
139
+ allow_insert_stateless_mods : bool = True
140
+
141
+ _TORCH_METHODS_TO_PATCH = ['arange', 'zeros', 'ones', 'full_like', 'eye']
142
+
143
+ def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
144
+ rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
145
+
146
+ if kind == 'placeholder' and target in self.meta_args:
147
+ rv.install_tensor_meta(self.meta_args[target])
148
+ return rv
149
+
150
+ if target in self.orig_fns:
151
+ # NOTE: tensor constructors in PyTorch define the `device` argument as
152
+ # *kwargs-only*. That is why this works. If you add methods to
153
+ # _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
154
+ # this will break and you will likely see issues where we cannot infer
155
+ # the size of the output.
156
+ if 'device' in kwargs:
157
+ kwargs['device'] = 'meta'
158
+
159
+ try:
160
+ args_metas = torch.fx.node.map_aggregate(args, proxys_to_metas)
161
+ kwargs_metas = torch.fx.node.map_aggregate(kwargs, proxys_to_metas)
162
+
163
+ if kind == 'call_function':
164
+ meta_target = manual_meta_overrides.get(target, target)
165
+ meta_out = meta_target(*args_metas, **kwargs_metas)
166
+ elif kind == 'call_method':
167
+ meta_out = getattr(args_metas[0], target)(*args_metas[1:], **kwargs_metas)
168
+ elif kind == 'call_module':
169
+ assert hasattr(self, 'orig_forward')
170
+ self._disable_module_getattr = True
171
+ try:
172
+ mod = self.root.get_submodule(target)
173
+ mod_type = type(mod)
174
+ if mod_type in manual_meta_overrides:
175
+ meta_out = manual_meta_overrides[mod_type](mod, *args_metas, **kwargs_metas)
176
+ else:
177
+ meta_out = self.orig_forward(*args_metas, **kwargs_metas)
178
+ finally:
179
+ self._disable_module_getattr = False
180
+ elif kind == 'get_attr':
181
+ self._disable_module_getattr = True
182
+ try:
183
+ attr_itr = self.root
184
+ atoms = target.split('.')
185
+ for atom in atoms:
186
+ attr_itr = getattr(attr_itr, atom)
187
+ assert isinstance(attr_itr, torch.Tensor)
188
+ meta_out = attr_itr.to(device='meta')
189
+ finally:
190
+ self._disable_module_getattr = False
191
+ else:
192
+ return rv
193
+
194
+ # TODO
195
+ assert isinstance(rv, torch.fx.Proxy), 'Dont support composite output yet'
196
+ rv.install_tensor_meta(meta_out)
197
+ except Exception as e:
198
+ warnings.warn(f'Could not compute metadata for {kind} target {target}: {e}')
199
+
200
+ return rv
201
+
202
+ def getattr(self, attr, attr_val, parameter_proxy_cache):
203
+ if getattr(self, '_disable_module_getattr', False):
204
+ return attr_val
205
+ else:
206
+ return super().getattr(attr, attr_val, parameter_proxy_cache)
207
+
208
+ def call_module(self, m, forward, args, kwargs):
209
+ self.orig_forward = forward
210
+ return super().call_module(m, forward, args, kwargs)
211
+
212
+ def _insert_module_as_submodule(self, mod: torch.nn.Module) -> str:
213
+ """
214
+ Helper method which tries to insert a module that was not declared as submodule.
215
+ """
216
+ idx = 0
217
+ mod_name = mod.__class__.__name__.lower()
218
+ path = f"{mod_name}_{idx}"
219
+ while hasattr(self.root, path):
220
+ path = f"{mod_name}_{idx}"
221
+ idx += 1
222
+
223
+ self.root.add_module(path, mod)
224
+ return path
225
+
226
+ def path_of_module(self, mod: torch.nn.Module) -> str:
227
+ try:
228
+ return super().path_of_module(mod)
229
+ except NameError as e:
230
+ if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
231
+ path = self._insert_module_as_submodule(mod)
232
+ self.prev_module = path
233
+ return path
234
+ raise
235
+
236
+ def proxy(self, node):
237
+ return MetaProxy(node, self)
238
+
239
+ def trace(self, root, meta_args : Dict[str, torch.Tensor], concrete_args=None):
240
+ assert isinstance(meta_args, dict)
241
+ self.meta_args = meta_args
242
+
243
+ self.patched_torch_methods = {
244
+ target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
245
+ }
246
+ self.orig_fns = set()
247
+
248
+ for name, (wrapper, orig) in self.patched_torch_methods.items():
249
+ setattr(torch, name, wrapper)
250
+ self.orig_fns.add(orig)
251
+
252
+ try:
253
+ graph = super().trace(root, concrete_args)
254
+ graph._tracer_extras = {'meta_args': meta_args}
255
+ return graph
256
+ finally:
257
+ for name, (_, orig) in self.patched_torch_methods.items():
258
+ setattr(torch, name, orig)
259
+
260
+
261
+ def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]],
262
+ meta_args : Optional[Dict[str, torch.Tensor]] = None,
263
+ concrete_args: Optional[Dict[str, Any]] = None) -> torch.fx.GraphModule:
264
+ tracer = MetaTracer()
265
+ graph = tracer.trace(root, meta_args, concrete_args)
266
+ name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
267
+ gm = torch.fx.GraphModule(tracer.root, graph, name)
268
+ return gm
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__pycache__/util.cpython-310.pyc ADDED
Binary file (1.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/__pycache__/z3_types.cpython-310.pyc ADDED
Binary file (715 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint.py ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.fx.experimental.migrate_gradual_types.operation import op_add, op_sub, op_mul, op_div, \
2
+ op_mod, op_gt, op_lt, op_neq, op_eq
3
+ from torch.fx.tensor_type import TensorType, Dyn
4
+
5
+
6
+ class Constraint:
7
+ pass
8
+
9
+
10
+ class Conj(Constraint):
11
+ def __init__(self, conjuncts):
12
+ """
13
+ :param conjuncts: Conjunction of constraints
14
+ """
15
+ self.conjucts = conjuncts
16
+
17
+ def __eq__(self, other):
18
+ if isinstance(other, Conj):
19
+ return self.conjucts == other.conjucts and self.conjucts == other.conjucts
20
+ else:
21
+ return False
22
+
23
+ def __repr__(self):
24
+ return f'And({self.conjucts})'
25
+
26
+
27
+ class Disj(Constraint):
28
+ def __init__(self, disjuncts):
29
+ """
30
+ :param disjuncts: Disjunction of constraints
31
+ """
32
+ self.disjuncts = disjuncts
33
+
34
+ def __eq__(self, other):
35
+ if isinstance(other, Disj):
36
+ return self.disjuncts == other.disjuncts and self.disjuncts == other.disjuncts
37
+ else:
38
+ return False
39
+
40
+ def __repr__(self):
41
+ return f'Or({self.disjuncts})'
42
+
43
+
44
+ class Prod(Constraint):
45
+ def __init__(self, products):
46
+ """
47
+ :param products: lists of dimensions to multiply
48
+ """
49
+ self.products = products
50
+
51
+ def __eq__(self, other):
52
+ if isinstance(other, Prod):
53
+ return self.products == other.products and self.products == other.products
54
+ else:
55
+ return False
56
+
57
+ def __repr__(self):
58
+ return f'Product({self.products})'
59
+
60
+
61
+ class T(Constraint):
62
+ """
63
+ True
64
+ """
65
+ def __init__(self):
66
+ pass
67
+
68
+ def __eq__(self, other):
69
+ return isinstance(other, T)
70
+
71
+ def __repr__(self):
72
+ return 'True'
73
+
74
+ class F(Constraint):
75
+ """
76
+ False
77
+ """
78
+ def __init__(self):
79
+ pass
80
+
81
+ def __eq__(self, other):
82
+ return isinstance(other, F)
83
+
84
+ def __repr__(self):
85
+ return 'False'
86
+
87
+
88
+ class BinaryConstraint(Constraint):
89
+ """
90
+ Represents all binary operations
91
+ """
92
+ def __init__(self, lhs, rhs, op):
93
+ """
94
+ :param lhs: lhs of the constraint
95
+ :param rhs: rhs of the constraint
96
+ :param op: string representing the operation
97
+ """
98
+ self.lhs = lhs
99
+ self.rhs = rhs
100
+ self.op = op
101
+
102
+ def __eq__(self, other):
103
+ if isinstance(other, BinaryConstraint):
104
+ return self.lhs == other.lhs and self.rhs == other.rhs and self.op == other.op
105
+ else:
106
+ return False
107
+
108
+ def __repr__(self):
109
+ return f'({self.lhs} {self.op} {self.rhs})'
110
+
111
+
112
+ class BinConstraintT(BinaryConstraint):
113
+ """
114
+ Binary constraints about tensors
115
+ """
116
+ def __init__(self, lhs, rhs, op):
117
+ assert (isinstance(lhs, (TVar, TensorType, int)) or lhs == Dyn) and \
118
+ (isinstance(rhs, (TVar, TensorType, int)) or rhs == Dyn)
119
+ super().__init__(lhs, rhs, op)
120
+
121
+ def __eq__(self, other):
122
+ return super().__eq__(other)
123
+
124
+
125
+ class BinConstraintD(BinaryConstraint):
126
+ """
127
+ Binary constraints about dimensions
128
+ """
129
+ def __init__(self, lhs, rhs, op):
130
+ assert is_algebraic_expression(lhs) or is_dim(lhs) or is_bool_expr(lhs)
131
+ assert is_algebraic_expression(rhs) or is_dim(rhs) or is_bool_expr(rhs)
132
+
133
+ super().__init__(lhs, rhs, op)
134
+
135
+ def __eq__(self, other):
136
+ return super().__eq__(other)
137
+
138
+
139
+
140
+ class TGreatestUpperBound(Constraint):
141
+ """
142
+ Greatest Upper bound for tensors with dynamic type
143
+ """
144
+ def __init__(self, res, rhs1, rhs2):
145
+ """
146
+ :param res: tensor variable that stores the result of the outout
147
+ :param rhs1: tensor or tensor variable
148
+ :param rhs2: tensor or tensor variabke
149
+ """
150
+ self.res = res
151
+ self.rhs1 = rhs1
152
+ self.rhs2 = rhs2
153
+
154
+ def __repr__(self):
155
+ return f'{self.res} = {self.rhs1}⊔*{self.rhs2}'
156
+
157
+ def __eq__(self, other):
158
+ if isinstance(other, TGreatestUpperBound):
159
+ return self.res == other.res and self.rhs1 == other.rhs1 and self.rhs2 == other.rhs2
160
+ else:
161
+ return False
162
+
163
+
164
+ class DGreatestUpperBound(Constraint):
165
+ """
166
+ Greatest Upper bound for dimensions
167
+ """
168
+ def __init__(self, res, rhs1, rhs2):
169
+ """
170
+ :param res: Dimension variable to store the result
171
+ :param rhs1: dimension variable 1
172
+ :param rhs2: dimension variable 2
173
+ """
174
+ assert is_dim(res)
175
+ assert is_dim(rhs1)
176
+ assert is_dim(rhs2)
177
+
178
+ self.res = res
179
+ self.rhs1 = rhs1
180
+ self.rhs2 = rhs2
181
+
182
+ def __repr__(self):
183
+ return f'{self.res} = {self.rhs1}⊔{self.rhs2}'
184
+
185
+ def __eq__(self, other):
186
+ if isinstance(other, DGreatestUpperBound):
187
+ return self.res == other.res and self.rhs1 == other.rhs1 and self.rhs2 == other.rhs2
188
+ else:
189
+ return False
190
+
191
+
192
+ class CanReshape(Constraint):
193
+ """
194
+ can_reshape constraint
195
+ """
196
+ def __init__(self, src, target):
197
+ """
198
+ :param src: tensor variable
199
+ :param target: tensor
200
+ """
201
+ self.src = src
202
+ self.target = target
203
+
204
+ def __repr__(self):
205
+ return f'can-reshape({self.src}, {self.target})'
206
+
207
+ def __eq__(self, other):
208
+ if isinstance(other, CanReshape):
209
+ return self.src == other.src and self.target == other.target
210
+ else:
211
+ return False
212
+
213
+
214
+ class IndexSelect(Constraint):
215
+
216
+ def __init__(self, tensor_size, input_var, dim_replace, index, output):
217
+ """
218
+ Args:
219
+ input_var: input to index_select
220
+ tensor_size: tensor size we are considering
221
+ dim_replace: the dimension of the output at "index"
222
+ index: location of the dimensions to replace in the input
223
+ output: variable to store the result
224
+ """
225
+ assert isinstance(input_var, TVar)
226
+ assert isinstance(output, TVar)
227
+ assert isinstance(dim_replace, DVar) or dim_replace == Dyn
228
+ assert isinstance(index, int)
229
+
230
+ self.input_var = input_var
231
+ self.tensor_size = tensor_size
232
+ self.dim_replace = dim_replace
233
+ self.index = index
234
+ self.output = output
235
+
236
+ def __repr__(self):
237
+
238
+ return f' {self.output} = ' \
239
+ f'IndexSelect({self.input_var}, ' \
240
+ f'tensor_size: {self.tensor_size}, ' \
241
+ f'{self.dim_replace}, ' \
242
+ f'{self.index})'
243
+
244
+ def __eq__(self, other):
245
+ if isinstance(other, IndexSelect):
246
+ return self.tensor_size == other.tensor_size and \
247
+ self.dim_replace == other.dim_replace and \
248
+ self.index == other.index and \
249
+ self.output == other.output and \
250
+ self.input_var == other.input_var
251
+ else:
252
+ return False
253
+
254
+
255
+ class Transpose(Constraint):
256
+
257
+ def __init__(self, tensor_size, input_var, index1, index2, output):
258
+ """
259
+ Args:
260
+ tensor_size: current tensor size
261
+ input_var: variable to hold input
262
+ index1: dimension 1
263
+ index2: dimension 2
264
+ output: output that stores result
265
+ """
266
+ assert isinstance(input_var, TVar)
267
+ assert isinstance(output, TVar)
268
+ assert isinstance(index1, int)
269
+ assert isinstance(index2, int)
270
+
271
+ self.input_var = input_var
272
+ self.tensor_size = tensor_size
273
+ self.index1 = index1
274
+ self.index2 = index2
275
+ self.output = output
276
+
277
+ def __repr__(self):
278
+
279
+ return f' {self.output} = ' \
280
+ f'Transpose({self.input_var}, ' \
281
+ f'tensor_size: {self.tensor_size}, ' \
282
+ f'{self.index1}, ' \
283
+ f'{self.index2})'
284
+
285
+ def __eq__(self, other):
286
+ if isinstance(other, Transpose):
287
+ return self.tensor_size == other.tensor_size and \
288
+ self.index1 == other.index1 and \
289
+ self.index2 == other.index2 and \
290
+ self.output == other.output and \
291
+ self.input_var == other.input_var
292
+ else:
293
+ return False
294
+
295
+
296
+ class GetItem(Constraint):
297
+
298
+ def __init__(self, tensor_size, index, res, input_var):
299
+ """
300
+ Constraint for getting item given a tensor size
301
+ :param tensor_size: actual number
302
+ :param index: actual number representing the index
303
+ :param res: dimension variable to carry the item we get
304
+ :param input_var: a tensor variable from which we will get item
305
+ """
306
+ assert isinstance(res, DVar)
307
+
308
+ self.res = res
309
+ self.tensor_size = tensor_size
310
+ self.index = index
311
+ self.input_var = input_var
312
+
313
+ def __repr__(self):
314
+ return f' {self.res} = GetItem({self.input_var}, tensor_size: {self.tensor_size}, {self.index})'
315
+
316
+ def __eq__(self, other):
317
+ if isinstance(other, GetItem):
318
+ return self.res == other.res and \
319
+ self.tensor_size == other.tensor_size and \
320
+ self.index == other.index and \
321
+ self.input_var == other.input_var
322
+ else:
323
+ return False
324
+
325
+ class GetItemTensor(Constraint):
326
+
327
+ def __init__(self, tensor_size, index_tuple, res, input_var):
328
+ """
329
+ Constraint for getting item given a tensor size
330
+ However, when the argument is a tuple, we will
331
+ expect a tensor
332
+ :param tensor_size: actual number representing the rank
333
+ :param index_tuple: tuple for indexing
334
+ :param res: tensor variable to carry the item we get
335
+ :param input_var: a tensor variable from which we will get item
336
+ """
337
+ assert isinstance(res, TVar)
338
+
339
+ self.res = res
340
+ self.tensor_size = tensor_size
341
+ self.index_tuple = index_tuple
342
+ self.input_var = input_var
343
+
344
+ def __repr__(self):
345
+ return f' {self.res} = GetItemT({self.input_var}, tensor_size: {self.tensor_size}, {self.index_tuple})'
346
+
347
+ def __eq__(self, other):
348
+ if isinstance(other, GetItemTensor):
349
+ return self.res == other.res and \
350
+ self.tensor_size == other.tensor_size and \
351
+ self.index_tuple == other.index_tuple and \
352
+ self.input_var == other.input_var
353
+ else:
354
+ return False
355
+
356
+ class CalcConv(Constraint):
357
+
358
+ def __init__(self, conv_result, input_var, c_out, kernel, padding, stride, dilation, matching_constraint_vars):
359
+ """
360
+ :param conv_result: the convolution result
361
+ :param input_var: input to convolution
362
+ :param c_out: output chanel type
363
+ :param kernel: kernel tuple
364
+ """
365
+ self.conv_result = conv_result
366
+ self.input_var = input_var
367
+ self.c_out = c_out
368
+ self.kernel = kernel
369
+ self.padding = padding
370
+ self.stride = stride
371
+ self.dilation = dilation
372
+ self.matching_constraint = matching_constraint_vars
373
+
374
+ def __repr__(self):
375
+ return f'{self.conv_result} =' \
376
+ f' calc-conv({self.input_var},' \
377
+ f' {self.c_out}, {self.kernel}, ' \
378
+ f'{self.padding}, {self.stride},' \
379
+ f' {self.dilation})'
380
+
381
+ def __eq__(self, other):
382
+ if isinstance(other, CalcConv):
383
+ return self.conv_result == other.conv_result and self.input_var == other.input_var and \
384
+ self.c_out == other.c_out and self.kernel == other.kernel and self.padding == other.padding \
385
+ and self.stride == other.stride and self.dilation == other.dilation \
386
+ and self.matching_constraint == other.matching_constraint
387
+ else:
388
+ return False
389
+
390
+
391
+ class CalcMaxPool(Constraint):
392
+
393
+ def __init__(self, maxpool_result, input_var, kernel, padding, stride, dilation, matching_constraint_vars):
394
+ """
395
+ :param maxpool_result: the result of maxpool
396
+ :param input_var: input to convolution
397
+ :param kernel: kernel tuple
398
+ """
399
+ self.maxpool_result = maxpool_result
400
+ self.input_var = input_var
401
+ self.kernel = kernel
402
+ self.padding = padding
403
+ self.stride = stride
404
+ self.dilation = dilation
405
+ self.matching_constraint = matching_constraint_vars
406
+
407
+ def __repr__(self):
408
+ return f'{self.maxpool_result} =' \
409
+ f' calc-maxpool({self.input_var},' \
410
+ f' {self.kernel}, ' \
411
+ f'{self.padding}, {self.stride},' \
412
+ f' {self.dilation})'
413
+
414
+ def __eq__(self, other):
415
+ if isinstance(other, CalcMaxPool):
416
+ return self.maxpool_result == other.maxpool_result and self.input_var == other.input_var \
417
+ and self.kernel == other.kernel and self.padding == other.padding \
418
+ and self.stride == other.stride and self.dilation == other.dilation \
419
+ and self.matching_constraint == other.matching_constraint
420
+ else:
421
+ return False
422
+
423
+
424
+ class ApplyBroadcasting(Constraint):
425
+ def __init__(self, res1, res2, input1, input2):
426
+ """
427
+ :param res1: resulting tensor 1
428
+ :param res2: resulting tensor 2
429
+ :param input1: tensor variable 1
430
+ :param input2: tensor variable 2
431
+ """
432
+ self.res1 = res1
433
+ self.res2 = res2
434
+ self.input1 = input1
435
+ self.input2 = input2
436
+
437
+ def __eq__(self, other):
438
+ if isinstance(other, ApplyBroadcasting):
439
+ return self.res1 == other.res1 \
440
+ and self.res2 == other.res2 \
441
+ and self.input1 == other.input1 \
442
+ and self.input2 == other.input2
443
+ else:
444
+ return False
445
+
446
+ def __repr__(self):
447
+ return f'{self.res1}, {self.res2} ='f' apply-broadcasting({self.input1},' f' {self.input2})'
448
+
449
+
450
+ class CalcProduct(Constraint):
451
+ """
452
+ Given correct dimensions, calculate the product for flatten accounting for Dyn
453
+ """
454
+ def __init__(self, start, end, flattened, dims_to_flatten):
455
+ """
456
+ :param start: start index
457
+ :param end: end index
458
+ :param flattened: variable to store the product
459
+ :param dims_to_flatten: the type which we will flatten
460
+ """
461
+ assert isinstance(dims_to_flatten, list)
462
+ assert isinstance(flattened, TVar)
463
+ assert isinstance(start, int)
464
+ assert isinstance(end, int)
465
+
466
+ self.start = start
467
+ self.end = end
468
+ self.dims_to_flatten = dims_to_flatten
469
+ self.flattened = flattened
470
+
471
+ def __eq__(self, other):
472
+ if isinstance(other, CalcProduct):
473
+ return self.start == other.start and self.end == other.end and \
474
+ self.dims_to_flatten == other.dims_to_flatten and self.flattened == other.flattened
475
+
476
+ else:
477
+ return False
478
+
479
+ def __repr__(self):
480
+ return f'{self.flattened} = CalcProduct({self.start}, {self.end}, {self.dims_to_flatten})'
481
+
482
+
483
+ class TVar:
484
+ """
485
+ Tensor variable with no tensor constructor
486
+ """
487
+ def __init__(self, tvar):
488
+ """
489
+ :param tvar: tensor variable
490
+ """
491
+ self.tvar = tvar
492
+
493
+ def __repr__(self):
494
+ return f'TV({self.tvar})'
495
+
496
+ def __eq__(self, other):
497
+ if isinstance(other, TVar):
498
+ return self.tvar == other.tvar
499
+ else:
500
+ return False
501
+
502
+
503
+ class DVar:
504
+ """
505
+ Dimension variable
506
+ """
507
+ def __init__(self, c):
508
+ """
509
+ :param c: character or number
510
+ """
511
+ self.c = c
512
+
513
+ def __repr__(self):
514
+ return f'DV({self.c})'
515
+
516
+ def __eq__(self, other):
517
+ if isinstance(other, DVar):
518
+ return self.c == other.c
519
+ else:
520
+ return False
521
+
522
+
523
+ class BVar:
524
+ """
525
+ Boolean variable
526
+ """
527
+ def __init__(self, c):
528
+ """
529
+ :param c: character or number
530
+ """
531
+ self.c = c
532
+
533
+ def __repr__(self):
534
+ return f'BV({self.c})'
535
+
536
+ def __eq__(self, other):
537
+ if isinstance(other, BVar):
538
+ return self.c == other.c
539
+ else:
540
+ return False
541
+
542
+
543
+ def is_algebraic_expression(constraint):
544
+ if isinstance(constraint, BinConstraintD):
545
+ return constraint.op in [op_add, op_sub, op_div, op_mul, op_mod]
546
+ else:
547
+ return isinstance(constraint, Prod)
548
+
549
+
550
+ def is_bool_expr(constraint):
551
+ if isinstance(constraint, BinConstraintD):
552
+ return constraint.op in [op_gt, op_lt, op_neq, op_eq]
553
+ else:
554
+ return isinstance(constraint, (BVar, Conj, Disj))
555
+
556
+ def is_dim(d):
557
+ return isinstance(d, (DVar, int)) or d == Dyn
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint_generator.py ADDED
@@ -0,0 +1,1281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import operator
3
+ import warnings
4
+ from typing import Callable, Dict, Iterable
5
+
6
+ from torch.fx._symbolic_trace import _assert_is_none
7
+ from torch.fx.experimental.migrate_gradual_types.constraint import ApplyBroadcasting, CalcProduct, \
8
+ Disj, TGreatestUpperBound, CalcMaxPool, CalcConv, Conj, BinConstraintT, CanReshape, BinConstraintD, GetItem, T, F, \
9
+ TVar, DVar, GetItemTensor, IndexSelect, Transpose, DGreatestUpperBound
10
+ from torch.fx.experimental.migrate_gradual_types.operation import \
11
+ op_eq, op_matching, op_consistency, op_leq, op_precision, op_gt, op_div, op_sub, op_neq, op_lt, op_add, op_mul
12
+ from torch.fx.node import Target, Node
13
+ from torch.fx.experimental.migrate_gradual_types.util import gen_tensor_dims, gen_nat_constraints, gen_dvar, gen_tvar, \
14
+ gen_bvar
15
+
16
+ from torch.fx.tensor_type import Dyn, TensorType
17
+ from torch.nn.modules.conv import Conv2d
18
+ from torch.nn.modules.batchnorm import BatchNorm2d
19
+
20
+ _INFERENCE_RULES: Dict[Target, Callable] = {}
21
+
22
+ MAX_TENSOR_RANK = 4
23
+
24
+ def register_inference_rule(call_target):
25
+ def register(fn):
26
+ if call_target in _INFERENCE_RULES:
27
+ raise RuntimeError(f'Inference rule already registered for {call_target}!')
28
+ _INFERENCE_RULES[call_target] = fn
29
+ return fn
30
+ return register
31
+
32
+
33
+ def generate_flatten_constraints(start_dim, end_dim, input, flattened, n, counter):
34
+ d, counter = gen_tensor_dims(n, counter)
35
+ c1 = BinConstraintT(input, TensorType(d), op_eq)
36
+ start_dim = n if start_dim == -1 else abs(start_dim)
37
+ end_dim = n + end_dim + 1 if end_dim < 0 else end_dim + 1
38
+ c2 = CalcProduct(start_dim, end_dim, flattened, d)
39
+ nat_constraints = gen_nat_constraints(d)
40
+ return Conj([c1, c2, *nat_constraints]), counter
41
+
42
+
43
+ @register_inference_rule(getattr)
44
+ def get_attr_inference_rule(n: Node, symbols, constraints, counter):
45
+ """
46
+ If the attribute is "device" then the tensor shape is preserved
47
+ """
48
+ assert isinstance(n.args[0], Node)
49
+ assert isinstance(n.args[1], str)
50
+ output, counter = gen_tvar(counter)
51
+ symbols[n] = output
52
+
53
+ input = symbols[n.args[0]]
54
+ attr = n.args[1]
55
+
56
+ if attr == 'device':
57
+ return [BinConstraintT(input, output, op_eq)], counter
58
+ else:
59
+ raise NotImplementedError('Not yet implemented')
60
+
61
+ @register_inference_rule(torch.bmm)
62
+ def bmm_inference_rule(n: Node, symbols, constraints, counter):
63
+ """
64
+ Constraints that match the input to a size 3 tensor
65
+ and switch the dimensions according to the rules
66
+ of batch multiplication
67
+ """
68
+ assert isinstance(n.args[0], Node)
69
+ assert isinstance(n.args[1], Node)
70
+
71
+ bmm_output, counter = gen_tvar(counter)
72
+ symbols[n] = bmm_output
73
+
74
+ bmm_input1 = symbols[n.args[0]]
75
+ bmm_input2 = symbols[n.args[1]]
76
+
77
+ dims_input1, counter = gen_tensor_dims(3, counter)
78
+ dims_input2, counter = gen_tensor_dims(3, counter)
79
+
80
+ inputs_dyn = Conj([BinConstraintT(bmm_input1, Dyn, op_eq),
81
+ BinConstraintT(bmm_input2, Dyn, op_eq),
82
+ BinConstraintT(bmm_output, Dyn, op_eq)])
83
+
84
+ input1_dyn = Conj([BinConstraintT(bmm_input1, Dyn, op_eq),
85
+ BinConstraintT(bmm_input2, TensorType(dims_input2), op_eq),
86
+ BinConstraintT(bmm_output, TensorType([dims_input2[0], Dyn, dims_input2[2]]), op_eq)])
87
+
88
+ input2_dyn = Conj([BinConstraintT(bmm_input2, Dyn, op_eq),
89
+ BinConstraintT(bmm_input1, TensorType(dims_input1), op_eq),
90
+ BinConstraintT(bmm_output, TensorType([dims_input1[0], dims_input1[1], Dyn]), op_eq)])
91
+
92
+ consistency_constraints = [BinConstraintD(dims_input1[0], dims_input2[0], op_consistency)]
93
+
94
+ batch_size, counter = gen_dvar(counter)
95
+
96
+ inputs_are_tensors = Conj([BinConstraintT(bmm_input1, TensorType(dims_input1), op_eq),
97
+ BinConstraintT(bmm_input2, TensorType(dims_input2), op_eq),
98
+ BinConstraintT(bmm_output, TensorType([batch_size, dims_input1[1], dims_input2[2]]), op_eq),
99
+ *consistency_constraints, DGreatestUpperBound(batch_size, dims_input1[0], dims_input2[0])])
100
+
101
+ return [Disj([inputs_dyn, input1_dyn, input2_dyn, inputs_are_tensors])], counter
102
+
103
+
104
+ @register_inference_rule("index_select")
105
+ def index_select_inference_rule(n: Node, symbols, constraints, counter):
106
+ """
107
+ We constrain the second argument to a vector or Dyn.
108
+ The output replaces the input with the shape of the vector
109
+ at the position given by the index (first argument)
110
+ """
111
+ # print(n.args)
112
+ assert isinstance(n.args[0], Node)
113
+ assert isinstance(n.args[1], int)
114
+ assert isinstance(n.args[2], Node)
115
+
116
+
117
+
118
+ index_select, counter = gen_tvar(counter)
119
+ symbols[n] = index_select
120
+
121
+ dims, counter = gen_tensor_dims(1, counter)
122
+
123
+ # equality constraint
124
+ is_size_1 = BinConstraintT(symbols[n.args[2]], TensorType(dims), op_eq)
125
+ is_dyn = BinConstraintT(symbols[n.args[2]], Dyn, op_eq)
126
+
127
+ c2 = Conj([is_size_1, Disj([IndexSelect(i + 1, symbols[n.args[0]], dims[0], n.args[1], index_select)
128
+ for i in range(MAX_TENSOR_RANK)])])
129
+ c3 = Conj([is_dyn, Disj([IndexSelect(i + 1, symbols[n.args[0]], Dyn, n.args[1], index_select)
130
+ for i in range(MAX_TENSOR_RANK)])])
131
+
132
+ return [Disj([c2, c3])], counter
133
+
134
+
135
+ @register_inference_rule("expand")
136
+ def expand_inference_rule(n: Node, symbols, constraints, counter):
137
+ """
138
+ We generate the exact constraints as we do for tensor additions but we constraint
139
+ the rank of this expression to be equal to len(n.args[1:]) so that only
140
+ those cases get considered for the output
141
+ """
142
+ assert isinstance(n.args[0], Node)
143
+
144
+ # define the output for expand
145
+ expand, counter = gen_tvar(counter)
146
+ symbols[n] = expand
147
+
148
+ # since we do not have two nodes here, we will construct an argument variable
149
+ e1 = symbols[n.args[0]]
150
+ e2, counter = gen_tvar(counter)
151
+
152
+ e2_nat_constraints = []
153
+ for arg in n.args[1:]:
154
+ assert isinstance(arg, (Node, int))
155
+ if isinstance(arg, Node):
156
+ assert isinstance(symbols[arg], DVar)
157
+ e2_nat_constraints.append(BinConstraintD(0, symbols[arg], op_leq))
158
+
159
+ e2_constraint = BinConstraintT(e2, TensorType([arg if isinstance(arg, int) else symbols[arg] for arg in n.args[1:]]), op_eq)
160
+
161
+ constraints, counter = gen_broadcasting_constraints(e1, e2, symbols, counter, expand)
162
+
163
+ # constraint the output size
164
+ dims, counter = gen_tensor_dims(len(n.args[1:]), counter)
165
+ nat_constraints = gen_nat_constraints(dims)
166
+ c = [BinConstraintT(expand, TensorType(dims), op_eq), *nat_constraints, e2_constraint, *e2_nat_constraints]
167
+ constraints += c
168
+
169
+ return constraints, counter
170
+
171
+
172
+ @register_inference_rule(torch.nn.functional.gelu)
173
+ @register_inference_rule(torch.nn.functional.dropout)
174
+ @register_inference_rule(torch.nn.functional.softmax)
175
+ @register_inference_rule("detach")
176
+ @register_inference_rule("to")
177
+ @register_inference_rule("int")
178
+ @register_inference_rule("long")
179
+ @register_inference_rule("contiguous")
180
+ @register_inference_rule(torch.ones)
181
+ @register_inference_rule(torch.zeros)
182
+ def equality_inference_rule(n: Node, symbols, constraints, counter):
183
+ """
184
+ We generate the constraint: input = output
185
+ """
186
+ output, counter = gen_tvar(counter)
187
+ symbols[n] = output
188
+
189
+ if isinstance(n.args[0], Node):
190
+ input = symbols[n.args[0]]
191
+ if isinstance(input, TVar):
192
+ return [BinConstraintT(input, output, op_eq)], counter
193
+
194
+ # then we have dimension variables
195
+ else:
196
+ for arg in n.args:
197
+ assert isinstance(symbols[arg], DVar)
198
+ my_size = [symbols[arg] for arg in n.args]
199
+ return [BinConstraintT(output, TensorType(my_size), op_eq)], counter
200
+
201
+ elif isinstance(n.args[0], tuple):
202
+ # then the tuple is the size
203
+ assert len(n.args[0]) <= 4
204
+ my_size = [symbols[arg] for arg in n.args[0]]
205
+ return [BinConstraintT(output, TensorType(my_size), op_eq)], counter
206
+ else:
207
+ raise NotImplementedError('Method not yet implemented')
208
+
209
+
210
+ @register_inference_rule("transpose")
211
+ def transpose_inference_rule(n: Node, symbols, constraints, counter):
212
+ """
213
+ Can be considered as a sequence of two index selects, so we generate constraints accordingly
214
+ """
215
+ assert isinstance(n.args[0], Node)
216
+ assert isinstance(n.args[1], int)
217
+ assert isinstance(n.args[2], int)
218
+
219
+ output, counter = gen_tvar(counter)
220
+ symbols[n] = output
221
+
222
+ from_arg = symbols[n.args[0]]
223
+ assert isinstance(from_arg, TVar)
224
+
225
+ # input and output are dyn
226
+ is_dyn = Conj([BinConstraintT(from_arg, Dyn, op_eq), BinConstraintT(output, Dyn, op_eq)])
227
+
228
+ # or input is a tensor and we actually do the replacement
229
+ c3 = Disj([Transpose(i + 1, from_arg, n.args[1], n.args[2], output) for i in range(MAX_TENSOR_RANK)])
230
+
231
+ return [Disj([is_dyn, c3])], counter
232
+
233
+
234
+ @register_inference_rule("type_as")
235
+ def type_inference_rule(n: Node, symbols, constraints, counter):
236
+ """
237
+ We generate the constraint: input = output
238
+ """
239
+ assert isinstance(n.args[0], Node)
240
+ assert isinstance(n.args[1], Node)
241
+
242
+ output, counter = gen_tvar(counter)
243
+ symbols[n] = output
244
+
245
+ from_arg = symbols[n.args[0]]
246
+ to_arg = symbols[n.args[1]]
247
+
248
+ assert isinstance(from_arg, TVar)
249
+ assert isinstance(to_arg, TVar)
250
+
251
+ return [BinConstraintT(from_arg, to_arg, op_consistency),
252
+ BinConstraintT(output, to_arg, op_eq)], counter
253
+
254
+ @register_inference_rule("masked_fill_")
255
+ def masked_fill_inference_rule(n: Node, symbols, constraints, counter):
256
+ """
257
+ Similar to addition. For now we implement the constraints when
258
+ the argument is a boolean tensor. There is also a case for when
259
+ it is a condition. We will leave this out for now.
260
+ """
261
+
262
+ assert isinstance(n.args[0], Node)
263
+ assert isinstance(n.args[1], Node)
264
+
265
+ # We will retrieve the type variables from the symbol table
266
+ # and confirm they are tensor variables
267
+
268
+ e1 = symbols[n.args[0]]
269
+ e2 = symbols[n.args[1]]
270
+
271
+ if isinstance(e1, TVar) and isinstance(e2, TVar):
272
+ masked_fill_tensor, counter = gen_tvar(counter)
273
+ symbols[n] = masked_fill_tensor
274
+ return gen_broadcasting_constraints(e1, e2, symbols, counter, masked_fill_tensor)
275
+ else:
276
+ raise NotImplementedError('Not yet implemented')
277
+
278
+
279
+ @register_inference_rule(torch.nn.functional.embedding)
280
+ def embedding_inference_rule_functional(n: Node, symbols, constraints, counter):
281
+ assert isinstance(n.args[0], Node)
282
+
283
+ embedding_dim_weights = symbols[n.args[1]]
284
+
285
+ # will treat this as a static shape. So we will not use matching.
286
+ weight_dims, counter = gen_tensor_dims(2, counter)
287
+ equality_constraint = BinConstraintT(embedding_dim_weights, TensorType(weight_dims), op_eq)
288
+ embedding_dim = weight_dims[1]
289
+ constraints, counter = gen_embedding_rules(n, symbols, embedding_dim, counter)
290
+ return [equality_constraint] + constraints, counter
291
+
292
+
293
+ @register_inference_rule(torch.nn.modules.sparse.Embedding)
294
+ def embedding_inference_rule(n: Node, module_instance, symbols, constraints, counter):
295
+ """
296
+ The output shape differs from the input shape in the last dimension
297
+ """
298
+ assert isinstance(n.args[0], Node)
299
+ return gen_embedding_rules(n, symbols, module_instance.embedding_dim, counter)
300
+
301
+
302
+ def gen_embedding_rules(n: Node, symbols, embedding_dim, counter):
303
+
304
+ embedding_output, counter = gen_tvar(counter)
305
+ symbols[n] = embedding_output
306
+ embedding_input = symbols[n.args[0]]
307
+
308
+ input_dyn = BinConstraintT(embedding_input, Dyn, op_eq)
309
+ output_dyn = BinConstraintT(embedding_output, Dyn, op_eq)
310
+
311
+ c1 = Conj([input_dyn, output_dyn])
312
+ c2 = []
313
+
314
+ for i in range(1, MAX_TENSOR_RANK):
315
+ new_dims, counter = gen_tensor_dims(i, counter)
316
+ nat_constraints = gen_nat_constraints(new_dims)
317
+
318
+ # we consider all tensor sizes and append embedding_dim to the end of the output dimension in all cases
319
+ c_tensor_i = Conj([BinConstraintT(embedding_input, TensorType(new_dims), op_eq),
320
+ BinConstraintT(embedding_output, TensorType(new_dims + [embedding_dim]), op_eq)] +
321
+ nat_constraints)
322
+ c2.append(c_tensor_i)
323
+
324
+ return [Disj([c1, Disj(c2)])], counter
325
+
326
+
327
+ @register_inference_rule(torch.tensor)
328
+ def tensor_inference_rule(n: Node, symbols, constraints, counter):
329
+ """
330
+ If the tensor is a scalar, we will skip it since we
331
+ do not support scalars yet. We will add support in the future
332
+ if it's needed. For our examples so far, scalars are not needed.
333
+ """
334
+ return [], counter
335
+
336
+
337
+ @register_inference_rule("reshape")
338
+ @register_inference_rule("view")
339
+ def view_inference_rule(n: Node, symbols, constraints, counter):
340
+ """
341
+ Similar to reshape but with an extra condition on the strides
342
+ """
343
+ assert isinstance(n.args[0], Node)
344
+
345
+ # generate the new variable
346
+ my_view, counter = gen_tvar(counter)
347
+ symbols[n] = my_view
348
+
349
+
350
+ src_var = symbols[n.args[0]]
351
+ t2 = [symbols[elem] if isinstance(elem, Node) else elem for elem in n.args[1:]] # target shape
352
+ t2_type = []
353
+ num_constraints = []
354
+
355
+ for t in t2:
356
+ if t == -1:
357
+ var, counter = gen_dvar(counter)
358
+ t2_type.append(var)
359
+ num_constraints.append(BinConstraintD(var, Dyn, op_neq))
360
+
361
+ else:
362
+ num_constraints.append(BinConstraintD(t, Dyn, op_neq))
363
+ t2_type.append(t)
364
+
365
+ t2_type = TensorType(t2_type) # type: ignore[assignment]
366
+
367
+ c1 = BinConstraintT(my_view, t2_type, op_eq)
368
+ c2 = CanReshape(src_var, t2_type)
369
+
370
+ # TODO: add the extra check mentioned here:
371
+ # https://pytorch.org/docs/stable/generated/torch.Tensor.view.html#torch.Tensor.view
372
+
373
+ return [c1, c2] + num_constraints, counter # type: ignore[operator]
374
+
375
+
376
+ @register_inference_rule("size")
377
+ def size_inference_rule(n: Node, symbols, constraints, counter):
378
+ """
379
+ The constraint is just lhs = rhs.
380
+ Ex: size = input_ids.size()
381
+ """
382
+
383
+
384
+ if len(n.args) == 1:
385
+ # generate the new variable
386
+ size, counter = gen_tvar(counter)
387
+ symbols[n] = size
388
+ input = symbols[n.args[0]]
389
+ c = BinConstraintT(input, size, op_eq)
390
+ return [c], counter
391
+
392
+ elif len(n.args) == 2:
393
+ # TODO: review this rule; should input = dyn; output = dyn be included here?
394
+ if isinstance(n.args[1], int):
395
+ # generate the new variable
396
+ size_index, counter = gen_dvar(counter)
397
+ symbols[n] = size_index
398
+ input = symbols[n.args[0]]
399
+ c2 = [GetItem(i + 1, n.args[1], size_index, input) for i in range(MAX_TENSOR_RANK)]
400
+ c3 = BinConstraintD(0, size_index, op_leq)
401
+
402
+ input_dyn = BinConstraintT(input, Dyn, op_eq)
403
+ output_dyn = BinConstraintD(size_index, Dyn, op_eq)
404
+ c1 = Conj([input_dyn, output_dyn])
405
+
406
+ return [Disj([c1, Conj([Disj(c2), c3])])], counter
407
+
408
+ else:
409
+ raise NotImplementedError
410
+
411
+ else:
412
+ raise NotImplementedError
413
+
414
+
415
+ def range_check(i, n):
416
+ """
417
+ Checks if an index i is within range of a size n list
418
+ Args:
419
+ i: index
420
+ n: list size
421
+
422
+ Returns: Boolean
423
+ """
424
+ if i >= 0:
425
+ return T() if i < n else F()
426
+ else:
427
+ return T() if i >= n else F()
428
+
429
+
430
+ @register_inference_rule(torch.cumsum)
431
+ def cumsum_inference_rule(n: Node, symbols, constraints, counter):
432
+ """
433
+ Input and output shapes should be equal
434
+ We should verify that the index is valid
435
+ """
436
+ assert isinstance(n.args[0], Node)
437
+ arg_1 = n.args[1] if len(n.args) > 1 else n.kwargs["dim"]
438
+ assert isinstance(arg_1, int)
439
+
440
+ output, counter = gen_tvar(counter)
441
+ symbols[n] = output
442
+ input = symbols[n.args[0]]
443
+
444
+ input_dyn = BinConstraintT(input, Dyn, op_eq)
445
+ output_dyn = BinConstraintT(output, Dyn, op_eq)
446
+ c1 = Conj([input_dyn, output_dyn])
447
+ c2 = []
448
+ for i in range(1, MAX_TENSOR_RANK + 1):
449
+ new_dims, counter = gen_tensor_dims(i, counter)
450
+
451
+ nat_constraints = gen_nat_constraints(new_dims)
452
+
453
+ c_tensor_i = Conj([BinConstraintT(input, TensorType(new_dims), op_eq),
454
+ BinConstraintT(output, TensorType(new_dims), op_eq)] +
455
+ [range_check(arg_1, i)] + nat_constraints)
456
+
457
+ c2.append(c_tensor_i)
458
+ dyn_or_tensor = Disj([c1, Disj(c2)])
459
+ return [dyn_or_tensor], counter
460
+
461
+
462
+ @register_inference_rule(_assert_is_none)
463
+ def assert_inference_rule(n: Node, symbols, constraints, counter):
464
+ assert len(n.users) == 0
465
+ return [], counter
466
+
467
+
468
+ @register_inference_rule(operator.getitem)
469
+ def getitem_inference_rule(n: Node, symbols, constraints, counter):
470
+ assert isinstance(n.args[0], Node)
471
+
472
+ # dimension output case
473
+ if isinstance(n.args[1], int):
474
+ # create and store the new dimension variable
475
+ get_item_output, counter = gen_dvar(counter)
476
+ symbols[n] = get_item_output
477
+
478
+ # retrieve arg variables
479
+ get_item_arg = symbols[n.args[0]]
480
+ assert isinstance(get_item_arg, TVar)
481
+
482
+
483
+ # if the input is dynamic, we accept any index and return
484
+ # a dynamic dimension as output
485
+ input_dyn = BinConstraintT(get_item_arg, Dyn, op_eq)
486
+ output_dyn = BinConstraintD(get_item_output, Dyn, op_eq)
487
+ c1 = Conj([input_dyn, output_dyn])
488
+
489
+ # if the input is a tensor,
490
+ # generate a getItem constraint which will be expanded based on the
491
+ # tensor dimension.
492
+
493
+ c2 = [GetItem(i + 1, n.args[1], get_item_output, get_item_arg) for i in range(MAX_TENSOR_RANK)]
494
+
495
+
496
+ # since the output is a dimension, we make sure it's a natural number
497
+ # added as a conjunction to the disjunction of c2
498
+ c3 = BinConstraintD(0, get_item_output, op_leq)
499
+ return [Disj([c1, Conj([Disj(c2), c3])])], counter
500
+
501
+ # tensor output case
502
+ elif isinstance(n.args[1], tuple):
503
+ # create and store the new tensor variable
504
+ get_item_output, counter = gen_tvar(counter)
505
+ symbols[n] = get_item_output
506
+
507
+ # retrieve arg variables
508
+ if n.args[0] in symbols:
509
+ get_item_arg = symbols[n.args[0]]
510
+ assert isinstance(get_item_arg, TVar)
511
+
512
+ input_dyn = BinConstraintT(get_item_arg, Dyn, op_eq)
513
+ output_dyn = BinConstraintT(get_item_output, Dyn, op_eq) # type: ignore[assignment]
514
+ c1 = Conj([input_dyn, output_dyn])
515
+
516
+ c2 = [GetItemTensor(i + 1, n.args[1], get_item_output, get_item_arg) # type: ignore[misc]
517
+ for i in range(MAX_TENSOR_RANK)]
518
+ else:
519
+ # TODO: we should figure out why there is a key-error here.
520
+ return [], counter
521
+
522
+ return [Disj([c1, *c2])], counter
523
+
524
+ else:
525
+ raise RuntimeError('Method not yet implemented')
526
+
527
+
528
+ @register_inference_rule(operator.gt)
529
+ def gt_inference_rule(n: Node, symbols, constraints, counter):
530
+ assert isinstance(n.args[0], (Node, int))
531
+ assert isinstance(n.args[1], (Node, int))
532
+
533
+ # We make sure this node will not be used again. We do not
534
+ # generate a constraint about that node. Only about the operands.
535
+
536
+ e1 = symbols[n.args[0]] if isinstance(n.args[0], Node) else n.args[0]
537
+ e2 = symbols[n.args[1]] if isinstance(n.args[1], Node) else n.args[1]
538
+
539
+ if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
540
+ if isinstance(e1, TVar) and isinstance(e2, TVar):
541
+ gt_tensor, counter = gen_tvar(counter)
542
+ symbols[n] = gt_tensor
543
+ return gen_broadcasting_constraints(e1, e2, symbols, counter, gt_tensor)
544
+
545
+ elif isinstance(e1, DVar) and isinstance(e2, DVar):
546
+ # This is meant to be used for flow analysis only
547
+ gt_constraint = BinConstraintD(e1, e2, op_gt)
548
+
549
+ my_gt, counter = gen_bvar(counter)
550
+ equality_constraint = BinConstraintD(my_gt, gt_constraint, op_eq)
551
+ return [equality_constraint], counter
552
+
553
+ else:
554
+ raise RuntimeError('Sort Mismatch')
555
+
556
+ elif isinstance(n.args[0], Node) and not isinstance(n.args[1], Node):
557
+ if isinstance(e1, DVar):
558
+ # This is meant to be used for flow analysis only
559
+ gt_constraint = BinConstraintD(e1, e2, op_gt)
560
+
561
+ my_gt, counter = gen_bvar(counter)
562
+ equality_constraint = BinConstraintD(my_gt, gt_constraint, op_eq)
563
+ return [equality_constraint], counter
564
+
565
+ elif isinstance(e1, TVar) and isinstance(e2, int):
566
+ # then we made the wrong assumption about the argument being a tensor
567
+ # so we should fix the assumption
568
+ warnings.warn(f'Made the wrong assumption for node {n}. Correctness not guaranteed.')
569
+
570
+ new_e1, counter = gen_dvar(counter)
571
+ symbols[n.args[0]] = new_e1
572
+ symbols[n.args[0]]
573
+
574
+ gt_constraint = BinConstraintD(new_e1, e2, op_gt)
575
+
576
+ my_gt, counter = gen_bvar(counter)
577
+ equality_constraint = BinConstraintD(my_gt, gt_constraint, op_eq)
578
+ return [equality_constraint], counter
579
+
580
+ else:
581
+ raise NotImplementedError('Method not yet implemented')
582
+
583
+ else:
584
+ raise NotImplementedError('Method not yet implemented')
585
+
586
+
587
+ @register_inference_rule(operator.eq)
588
+ def eq_inference_rule(n: Node, symbols, constraints, counter):
589
+ assert isinstance(n.args[0], (Node, int))
590
+ assert isinstance(n.args[1], (Node, int))
591
+
592
+ e1 = symbols[n.args[0]] if isinstance(n.args[0], Node) else n.args[0]
593
+ e2 = symbols[n.args[1]] if isinstance(n.args[1], Node) else n.args[1]
594
+
595
+ if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
596
+ if isinstance(e1, TVar) and isinstance(e2, TVar):
597
+ eq_tensor, counter = gen_tvar(counter)
598
+ symbols[n] = eq_tensor
599
+ return gen_broadcasting_constraints(e1, e2, symbols, counter, eq_tensor)
600
+
601
+ elif isinstance(e1, DVar) and isinstance(e2, DVar):
602
+ # This is meant to be used for flow analysis only
603
+ eq_constraint = BinConstraintD(e1, e2, op_eq)
604
+
605
+ my_eq, counter = gen_bvar(counter)
606
+ equality_constraint = BinConstraintD(my_eq, eq_constraint, op_eq)
607
+ return [equality_constraint], counter
608
+
609
+ else:
610
+ raise RuntimeError('Sort Mismatch')
611
+
612
+ elif isinstance(n.args[0], Node) and not isinstance(n.args[1], Node):
613
+ if isinstance(e1, DVar):
614
+ # This is meant to be used for flow analysis only
615
+ eq_constraint = BinConstraintD(e1, e2, op_eq)
616
+
617
+ my_eq, counter = gen_bvar(counter)
618
+ equality_constraint = BinConstraintD(my_eq, eq_constraint, op_eq)
619
+ return [equality_constraint], counter
620
+ else:
621
+ raise NotImplementedError('Method not yet implemented')
622
+ else:
623
+ raise NotImplementedError('Method not yet implemented')
624
+
625
+ @register_inference_rule(operator.ne)
626
+ def neq_inference_rule(n: Node, symbols, constraints, counter):
627
+ """
628
+ Translates to inconsistent in gradual types.
629
+ To prove inequality, we should prove that
630
+ tensors are either different sizes or
631
+ disagree on at least one dimension
632
+
633
+ This is a WIP (works when the condition
634
+ is false. We are working on making this operation work
635
+ when the condition is true as well)
636
+ """
637
+ assert isinstance(n.args[0], Node)
638
+ assert isinstance(n.args[1], tuple)
639
+
640
+ # implementing for size 3 and 4
641
+ if len(n.args[1]) == 3:
642
+
643
+ assert isinstance(n.args[1][0], (Node, int))
644
+ assert isinstance(n.args[1][1], (Node, int))
645
+ assert isinstance(n.args[1][2], (Node, int))
646
+
647
+ lhs = symbols[n.args[0]]
648
+
649
+ b, counter = gen_tensor_dims(4, counter)
650
+ input_is_size3 = BinConstraintT(lhs, TensorType([b[0], b[1], b[2]]), op_eq)
651
+
652
+ d1 = n.args[1][0] if isinstance(n.args[1][0], int) else symbols[n.args[1][0]]
653
+ d2 = n.args[1][1] if isinstance(n.args[1][1], int) else symbols[n.args[1][1]]
654
+ d3 = n.args[1][2] if isinstance(n.args[1][2], int) else symbols[n.args[1][2]]
655
+
656
+ # dimensions not equal
657
+ my_ne, counter = gen_bvar(counter)
658
+ neq_1 = BinConstraintD(d1, b[0], op_neq)
659
+ neq_2 = BinConstraintD(d2, b[1], op_neq)
660
+ neq_3 = BinConstraintD(d3, b[2], op_neq)
661
+
662
+ # dimensions inconsistent
663
+ dims_inconsistent1 = Conj([BinConstraintD(d1, Dyn, op_neq), BinConstraintD(b[0], Dyn, op_neq), neq_1])
664
+ dims_inconsistent2 = Conj([BinConstraintD(d2, Dyn, op_neq), BinConstraintD(b[1], Dyn, op_neq), neq_2])
665
+ dims_inconsistent3 = Conj([BinConstraintD(d3, Dyn, op_neq), BinConstraintD(b[2], Dyn, op_neq), neq_3])
666
+
667
+ dims_inconsistent = Disj([dims_inconsistent1, dims_inconsistent2, dims_inconsistent3])
668
+
669
+ # we are covering size 3 and 4 only for now
670
+ ne_constraint = Conj([input_is_size3, dims_inconsistent])
671
+
672
+ my_ne, counter = gen_bvar(counter)
673
+ equality_constraint = BinConstraintD(my_ne, ne_constraint, op_eq)
674
+
675
+ elif len(n.args[1]) == 4:
676
+
677
+ assert isinstance(n.args[1][0], (Node, int))
678
+ assert isinstance(n.args[1][1], (Node, int))
679
+ assert isinstance(n.args[1][2], (Node, int))
680
+ assert isinstance(n.args[1][3], (Node, int))
681
+
682
+ lhs = symbols[n.args[0]]
683
+
684
+ b1, counter = gen_dvar(counter)
685
+ b2, counter = gen_dvar(counter)
686
+ b3, counter = gen_dvar(counter)
687
+ b4, counter = gen_dvar(counter)
688
+
689
+ input_is_size4 = BinConstraintT(lhs, TensorType([b1, b2, b3, b4]), op_eq)
690
+
691
+ d1 = n.args[1][0] if isinstance(n.args[1][0], int) else symbols[n.args[1][0]]
692
+ d2 = n.args[1][1] if isinstance(n.args[1][1], int) else symbols[n.args[1][1]]
693
+ d3 = n.args[1][2] if isinstance(n.args[1][2], int) else symbols[n.args[1][2]]
694
+ d4 = n.args[1][3] if isinstance(n.args[1][3], int) else symbols[n.args[1][3]]
695
+
696
+ # dimensions not equal
697
+ my_ne, counter = gen_bvar(counter)
698
+ neq_1 = BinConstraintD(d1, b1, op_neq)
699
+ neq_2 = BinConstraintD(d2, b2, op_neq)
700
+ neq_3 = BinConstraintD(d3, b3, op_neq)
701
+ neq_4 = BinConstraintD(d4, b4, op_neq)
702
+
703
+ # dimensions to inconsistent
704
+ dims_inconsistent1 = Conj([BinConstraintD(d1, Dyn, op_neq), BinConstraintD(b1, Dyn, op_neq), neq_1])
705
+ dims_inconsistent2 = Conj([BinConstraintD(d2, Dyn, op_neq), BinConstraintD(b2, Dyn, op_neq), neq_2])
706
+ dims_inconsistent3 = Conj([BinConstraintD(d3, Dyn, op_neq), BinConstraintD(b3, Dyn, op_neq), neq_3])
707
+ dims_inconsistent4 = Conj([BinConstraintD(d4, Dyn, op_neq), BinConstraintD(b3, Dyn, op_neq), neq_4])
708
+
709
+ dims_inconsistent = Disj([dims_inconsistent1, dims_inconsistent2, dims_inconsistent3, dims_inconsistent4])
710
+
711
+ ne_constraint = Conj([input_is_size4, dims_inconsistent])
712
+
713
+ my_ne, counter = gen_bvar(counter)
714
+
715
+ equality_constraint = BinConstraintD(my_ne, ne_constraint, op_eq)
716
+
717
+ else:
718
+ raise NotImplementedError('Method not yet implemented')
719
+
720
+ return [equality_constraint], counter
721
+
722
+
723
+ @register_inference_rule(operator.lt)
724
+ def lt_inference_rule(n: Node, symbols, constraints, counter):
725
+ assert isinstance(n.args[0], (Node, int))
726
+ assert isinstance(n.args[1], (Node, int))
727
+
728
+ # We make sure this node will not be used again. We do not
729
+ # generate a constraint about that node. Only about the operands.
730
+
731
+ e1 = symbols[n.args[0]] if isinstance(n.args[0], Node) else n.args[0]
732
+ e2 = symbols[n.args[1]] if isinstance(n.args[1], Node) else n.args[1]
733
+
734
+ if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
735
+ if isinstance(e1, TVar) and isinstance(e2, TVar):
736
+ lt_tensor, counter = gen_tvar(counter)
737
+ symbols[n] = lt_tensor
738
+ return gen_broadcasting_constraints(e1, e2, symbols, counter, lt_tensor)
739
+
740
+ elif isinstance(e1, DVar) and isinstance(e2, DVar):
741
+ # This is meant to be used for flow analysis only
742
+ lt_constraint = BinConstraintD(e1, e2, op_lt)
743
+
744
+ my_lt, counter = gen_bvar(counter)
745
+ equality_constraint = BinConstraintD(my_lt, lt_constraint, op_eq)
746
+ return [equality_constraint], counter
747
+
748
+ else:
749
+ raise RuntimeError('Sort Mismatch')
750
+
751
+ elif isinstance(n.args[0], Node) and not isinstance(n.args[1], Node):
752
+ if isinstance(e1, DVar):
753
+ # This is meant to be used for flow analysis only
754
+ lt_constraint = BinConstraintD(e1, e2, op_lt)
755
+
756
+ my_lt, counter = gen_bvar(counter)
757
+ equality_constraint = BinConstraintD(my_lt, lt_constraint, op_eq)
758
+ return [equality_constraint], counter
759
+ else:
760
+ raise NotImplementedError('Method not yet implemented')
761
+
762
+ else:
763
+ raise NotImplementedError('Method not yet implemented')
764
+
765
+
766
+ @register_inference_rule(torch.full)
767
+ def full_inference_rule(n: Node, symbols, constraints, counter):
768
+ full, counter = gen_tvar(counter)
769
+ symbols[n] = full
770
+ res = []
771
+
772
+ assert isinstance(n.args[0], Iterable)
773
+ for arg in n.args[0]:
774
+ dim = arg if isinstance(arg, int) else symbols[arg]
775
+ res.append(dim)
776
+ c = BinConstraintT(full, TensorType(list(res)), op_eq) # type: ignore[arg-type]
777
+ return [c], counter
778
+
779
+
780
+ # TODO normalize index
781
+ @register_inference_rule(torch.arange)
782
+ def arange_inference_rule(n: Node, symbols, constraints, counter):
783
+ start = 0
784
+ step = 1
785
+
786
+ if len(n.args) == 1:
787
+ end = symbols[n.args[0]]
788
+ else:
789
+ raise NotImplementedError('Not yet implemented')
790
+
791
+ # int((end - start) / step)
792
+ d1, counter = gen_dvar(counter)
793
+ size_constraint = BinConstraintD(d1, BinConstraintD(BinConstraintD(end, start, op_sub), step, op_div), op_eq)
794
+ arange, counter = gen_tvar(counter)
795
+ symbols[n] = arange
796
+
797
+ # either the a parameter is a number or it is Dyn
798
+ c1 = Disj([BinConstraintD(end, Dyn, op_eq),
799
+ BinConstraintD(start, Dyn, op_eq),
800
+ BinConstraintD(step, Dyn, op_eq)])
801
+ c2 = BinConstraintD(d1, Dyn, op_eq)
802
+ both_dyn = Conj([c1, c2])
803
+
804
+ c11 = Conj([BinConstraintD(end, Dyn, op_neq),
805
+ BinConstraintD(start, Dyn, op_neq),
806
+ BinConstraintD(step, Dyn, op_neq)])
807
+ c22 = BinConstraintD(d1, Dyn, op_neq)
808
+ both_numbers = Conj([c11, c22, size_constraint])
809
+
810
+ return [BinConstraintT(arange, TensorType([d1]), op_eq), Disj([both_dyn, both_numbers])], counter
811
+
812
+ def gen_broadcasting_constraints(e1, e2, symbols, counter, output_var):
813
+ # additional vars that don't correspond to expressions
814
+ e11, counter = gen_tvar(counter)
815
+ e22, counter = gen_tvar(counter)
816
+
817
+ # generate constraints
818
+ c1 = TGreatestUpperBound(output_var, e11, e22)
819
+ c2 = ApplyBroadcasting(e11, e22, e1, e2)
820
+ c3 = BinConstraintT(e11, e22, op_consistency)
821
+ return [c1, c2, c3], counter
822
+
823
+
824
+ @register_inference_rule(operator.mul)
825
+ @register_inference_rule(torch.ne)
826
+ @register_inference_rule("ne")
827
+ @register_inference_rule(torch.add)
828
+ @register_inference_rule(operator.add)
829
+ def broadcasting_inference_rule(n: Node, symbols, constraints, counter):
830
+
831
+ op_code = None
832
+ if n.target == operator.add or n.target == torch.add:
833
+ op_code = op_add
834
+ elif n.target == operator.mul:
835
+ op_code = op_mul
836
+
837
+ if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
838
+ if isinstance(symbols[n.args[0]], TVar) and isinstance(symbols[n.args[1]], TVar):
839
+ my_output, counter = gen_tvar(counter)
840
+ symbols[n] = my_output
841
+ e1 = symbols[n.args[0]]
842
+ e2 = symbols[n.args[1]]
843
+
844
+ return gen_broadcasting_constraints(e1, e2, symbols, counter, my_output)
845
+ else:
846
+ raise NotImplementedError('Method not yet implemented')
847
+
848
+ elif isinstance(n.args[0], Node) and isinstance(n.args[1], (int, float)):
849
+ if isinstance(symbols[n.args[0]], TVar):
850
+ my_output, counter = gen_tvar(counter)
851
+ symbols[n] = my_output
852
+ e1 = symbols[n.args[0]]
853
+ return [BinConstraintT(my_output, e1, op_eq)], counter
854
+ elif isinstance(symbols[n.args[0]], DVar):
855
+ my_output, counter = gen_dvar(counter)
856
+ symbols[n] = my_output
857
+ e1 = symbols[n.args[0]]
858
+
859
+ # we will propagate the runtime value here since this is regular addition
860
+ c = Conj([BinConstraintD(my_output, BinConstraintD(e1, n.args[1], op_code), op_eq),
861
+ BinConstraintD(0, my_output, op_leq)])
862
+ return [c], counter
863
+
864
+ elif isinstance(n.args[1], Node) and isinstance(n.args[0], (int, float)):
865
+ if isinstance(symbols[n.args[1]], TVar):
866
+ my_output, counter = gen_tvar(counter)
867
+ symbols[n] = my_output
868
+ e2 = symbols[n.args[1]]
869
+ return [BinConstraintT(my_output, e2, op_eq)], counter
870
+ elif isinstance(symbols[n.args[1]], DVar):
871
+ my_output, counter = gen_dvar(counter)
872
+ symbols[n] = my_output
873
+ e2 = symbols[n.args[1]]
874
+
875
+ # we will propagate the runtime value here since this is regular addition
876
+ c = Conj([BinConstraintD(my_output, BinConstraintD(e2, n.args[0], op_code), op_eq),
877
+ BinConstraintD(0, my_output, op_leq)])
878
+ return [c], counter
879
+
880
+ else:
881
+ raise NotImplementedError('Method not yet implemented')
882
+
883
+ else:
884
+ # TODO generate add constraints for scalar addition
885
+ raise NotImplementedError('Addition not yet implemented')
886
+
887
+
888
+ @register_inference_rule(torch.flatten)
889
+ def flatten_inference_rule(n: Node, symbols, constraints, counter):
890
+ assert isinstance(n.args[0], Node)
891
+
892
+ # generate the new variable
893
+ flattened, counter = gen_tvar(counter)
894
+ symbols[n] = flattened
895
+
896
+ input = symbols[n.args[0]]
897
+
898
+ # set the default start and end dims
899
+ start_dim = 1
900
+ end_dim = -1
901
+
902
+ if len(n.args) > 1:
903
+ assert isinstance(n.args[1], int)
904
+ start_dim = n.args[1]
905
+
906
+ if len(n.args) > 2:
907
+ assert isinstance(n.args[2], int)
908
+ end_dim = n.args[2]
909
+
910
+ c1 = BinConstraintT(input, Dyn, op_eq)
911
+ c2 = BinConstraintT(flattened, Dyn, op_eq)
912
+ both_dyn = Conj([c1, c2])
913
+
914
+ const = []
915
+ for i in range(1, MAX_TENSOR_RANK + 1):
916
+ c, counter = generate_flatten_constraints(start_dim, end_dim, input, flattened, i, counter)
917
+ const.append(c)
918
+
919
+ return [Disj([both_dyn, *const])], counter
920
+
921
+
922
+ @register_inference_rule(torch.nn.functional.layer_norm)
923
+ def layer_norm_functional(n: Node, symbols, constraints, counter):
924
+ """
925
+ We generate the constraint: input = output
926
+ """
927
+ assert isinstance(n.args[0], Node)
928
+ return gen_layer_norm_constraints(n, n.args[1], symbols, counter)
929
+
930
+
931
+ @register_inference_rule(torch.nn.LayerNorm)
932
+ def layer_norm_inference_rule(n: Node, module_instance, symbols, constraints, counter):
933
+ """
934
+ Input and output shapes should be equal.
935
+ Input should be consistent with the normalized_shape
936
+ """
937
+ assert isinstance(n.args[0], Node)
938
+ return gen_layer_norm_constraints(n, module_instance.normalized_shape, symbols, counter)
939
+
940
+
941
+ def gen_layer_norm_constraints(n: Node, normalized_shape, symbols, counter):
942
+ output, counter = gen_tvar(counter)
943
+ symbols[n] = output
944
+ input = symbols[n.args[0]]
945
+
946
+ input_dyn = BinConstraintT(input, Dyn, op_eq)
947
+ output_dyn = BinConstraintT(output, Dyn, op_eq)
948
+
949
+ c1 = Conj([input_dyn, output_dyn])
950
+
951
+ c2 = []
952
+ for i in range(1, MAX_TENSOR_RANK + 1):
953
+ new_dims_rhs, counter = gen_tensor_dims(i, counter)
954
+ nat_constraints = gen_nat_constraints(new_dims_rhs)
955
+
956
+ c_tensor_i = Conj([BinConstraintT(input, TensorType(new_dims_rhs), op_eq),
957
+ BinConstraintT(output, TensorType(new_dims_rhs), op_eq)] +
958
+ add_layer_norm_constraints(new_dims_rhs, list(normalized_shape)) +
959
+ nat_constraints)
960
+ c2.append(c_tensor_i)
961
+ return [Disj([c1, Disj(c2)])], counter
962
+
963
+ @register_inference_rule(torch.nn.Dropout)
964
+ @register_inference_rule(torch.nn.ReLU)
965
+ def relu_inference_rule(n: Node, module_instance, symbols, constraints, counter):
966
+ """
967
+ Input and output shapes should be equal.
968
+ """
969
+ assert isinstance(n.args[0], Node)
970
+ output, counter = gen_tvar(counter)
971
+ symbols[n] = output
972
+ input = symbols[n.args[0]]
973
+ assert isinstance(input, TVar)
974
+ return [BinConstraintT(input, output, op_eq)], counter
975
+
976
+
977
+ @register_inference_rule(torch.nn.Linear)
978
+ def linear_inference_rule(n: Node, module_instance, symbols, constraints, counter):
979
+ """
980
+ Input and output sizes should be the same except for the last dimension
981
+ If the input is Dyn, then so should the output
982
+ """
983
+ assert isinstance(n.args[0], Node)
984
+ return linear_constraints(n, module_instance.in_features, module_instance.out_features, symbols, counter)
985
+
986
+
987
+ @register_inference_rule("dim") # type: ignore[attr-defined]
988
+ def torch_dim_inference_rule(n: Node, symbols, constraints, counter):
989
+ assert isinstance(n.args[0], Node)
990
+ my_dim, counter = gen_dvar(counter)
991
+ symbols[n] = my_dim
992
+ input = symbols[n.args[0]]
993
+
994
+ input_dyn = BinConstraintT(input, Dyn, op_eq)
995
+ output_dyn = BinConstraintD(my_dim, Dyn, op_eq)
996
+
997
+ c1 = []
998
+
999
+ for i in range(1, MAX_TENSOR_RANK + 1):
1000
+ new_dims_rhs_1, counter = gen_tensor_dims(i, counter)
1001
+
1002
+ c_tensor_i = Conj([BinConstraintT(input, TensorType(new_dims_rhs_1), op_eq),
1003
+ BinConstraintD(my_dim, i, op_eq)])
1004
+ c1.append(c_tensor_i)
1005
+
1006
+ return [Disj([Conj([input_dyn, output_dyn]), Disj(c1)])], counter
1007
+
1008
+
1009
+ @register_inference_rule(torch._C._nn.linear) # type: ignore[attr-defined]
1010
+ def torch_linear_inference_rule(n: Node, symbols, constraints, counter):
1011
+ assert isinstance(n.args[0], Node)
1012
+ weight_dims, counter = gen_tensor_dims(2, counter)
1013
+ equality_constraint = BinConstraintT(symbols[n.args[1]], TensorType(weight_dims), op_eq)
1014
+ constraints, counter = linear_constraints(n, weight_dims[1], weight_dims[0], symbols, counter)
1015
+ return [equality_constraint] + constraints, counter
1016
+
1017
+
1018
+ def linear_constraints(n: Node, in_features, out_features, symbols, counter):
1019
+ linear_output, counter = gen_tvar(counter)
1020
+ symbols[n] = linear_output
1021
+ linear_input = symbols[n.args[0]]
1022
+
1023
+ input_dyn = BinConstraintT(linear_input, Dyn, op_eq)
1024
+ output_dyn = BinConstraintT(linear_output, Dyn, op_eq)
1025
+
1026
+ c1 = Conj([input_dyn, output_dyn])
1027
+
1028
+ c2 = []
1029
+ for i in range(1, MAX_TENSOR_RANK + 1):
1030
+ new_dims_rhs_1, counter = gen_tensor_dims(i, counter)
1031
+ new_dims_rhs_2, counter = gen_tensor_dims(i, counter)
1032
+
1033
+ nat_constraints = gen_nat_constraints(new_dims_rhs_1 + new_dims_rhs_2)
1034
+
1035
+ c_tensor_i = Conj([BinConstraintT(linear_input, TensorType(new_dims_rhs_1), op_eq),
1036
+ BinConstraintT(linear_output, TensorType(new_dims_rhs_2), op_eq)] +
1037
+ add_linear_constraints(new_dims_rhs_1, new_dims_rhs_2, in_features, out_features) +
1038
+ nat_constraints)
1039
+ c2.append(c_tensor_i)
1040
+ return [Disj([c1, Disj(c2)])], counter
1041
+
1042
+ def add_layer_norm_constraints(input_dim, normalized_dim):
1043
+ """
1044
+ The constraints say that the type has te form: [*, 1024, 1024]
1045
+ while the normalized_dim have the form [1024, 1024]
1046
+ Args:
1047
+ input_dim: Input shape of layer norm
1048
+ normalized_dim: normalized_dim parameter of the module instance
1049
+
1050
+ """
1051
+
1052
+ # in this case we return false since there's a pattern mismatch
1053
+ if len(normalized_dim) > len(input_dim):
1054
+ return [F()]
1055
+
1056
+ else:
1057
+ constraints = []
1058
+ for i, n in zip(reversed(input_dim), reversed(normalized_dim)):
1059
+ constraints.append(BinConstraintD(i, n, op_consistency))
1060
+ return constraints
1061
+
1062
+
1063
+ def add_linear_constraints(dims1, dims2, in_features, out_features):
1064
+ assert len(dims1) == len(dims2)
1065
+ constraints = []
1066
+ for i in range(len(dims1)):
1067
+ if i == len(dims1) - 1:
1068
+ constraints.append(BinConstraintD(dims1[i], in_features, op_consistency))
1069
+ constraints.append(BinConstraintD(dims2[i], out_features, op_eq))
1070
+ else:
1071
+ constraints.append(BinConstraintD(dims1[i], dims2[i], op_eq))
1072
+
1073
+ return constraints
1074
+
1075
+
1076
+ @register_inference_rule(torch.reshape)
1077
+ def reshape_inference_rule(n: Node, symbols, constraints, counter):
1078
+ assert isinstance(n.args[0], Node)
1079
+
1080
+ # generate the new variable
1081
+ my_reshape, counter = gen_tvar(counter)
1082
+ symbols[n] = my_reshape
1083
+
1084
+ src_var = symbols[n.args[0]]
1085
+ t2 = n.args[1]
1086
+ t2_type = TensorType([Dyn if elem == -1 else elem for elem in t2]) # type: ignore[union-attr]
1087
+ c1 = BinConstraintT(my_reshape, t2_type, op_eq) # type: ignore[union-attr]
1088
+ c2 = CanReshape(src_var, t2_type)
1089
+
1090
+ return [c1, c2], counter
1091
+
1092
+
1093
+ @register_inference_rule(BatchNorm2d)
1094
+ def batchnorm_inference_rule(n: Node, module_instance, symbols, constraints, counter):
1095
+ assert isinstance(n.args[0], Node)
1096
+
1097
+ # generate the new variable
1098
+ batchnorm_output, counter = gen_tvar(counter)
1099
+ symbols[n] = batchnorm_output
1100
+ batchnorm_input = symbols[n.args[0]]
1101
+
1102
+ # dim vars
1103
+ d1, counter = gen_dvar(counter)
1104
+ d2, counter = gen_dvar(counter)
1105
+ d3, counter = gen_dvar(counter)
1106
+ d4, counter = gen_dvar(counter)
1107
+
1108
+ nat_constraints = gen_nat_constraints([d1, d2, d3, d4])
1109
+
1110
+ c1 = BinConstraintT(batchnorm_input, TensorType([d1, d2, d3, d4]), op_matching)
1111
+ c2 = BinConstraintT(batchnorm_input, batchnorm_output, op_eq)
1112
+ return [c1, c2, *nat_constraints], counter
1113
+
1114
+
1115
+ @register_inference_rule(torch.nn.AdaptiveAvgPool2d)
1116
+ def adaptive_inference_rule(n: Node, module_instance, symbols, constraints, counter):
1117
+ assert isinstance(n.args[0], Node)
1118
+
1119
+ avg_pool, counter = gen_tvar(counter)
1120
+
1121
+ symbols[n] = avg_pool
1122
+ input_var = symbols[n.args[0]]
1123
+
1124
+ # dim vars
1125
+ d1, counter = gen_dvar(counter)
1126
+ d2, counter = gen_dvar(counter)
1127
+ d3, counter = gen_dvar(counter)
1128
+ d4, counter = gen_dvar(counter)
1129
+ nat_constraints = gen_nat_constraints([d1, d2, d3, d4])
1130
+ c1 = BinConstraintT(input_var, TensorType([d1, d2, d3, d4]), op_matching)
1131
+ c2 = BinConstraintT(avg_pool, TensorType([d1, d2, module_instance.output_size[0], module_instance.output_size[1]]), op_eq)
1132
+
1133
+ return [c1, c2, *nat_constraints], counter
1134
+
1135
+
1136
+ @register_inference_rule(Conv2d)
1137
+ def conv2d_inference_rule(n: Node, module_instance, symbols, constraints, counter):
1138
+ assert isinstance(n.args[0], Node)
1139
+
1140
+ my_conv, counter = gen_tvar(counter)
1141
+ symbols[n] = my_conv
1142
+ input_var = symbols[n.args[0]]
1143
+
1144
+ # dim vars
1145
+ [d1, d2, d3, d4], counter = gen_tensor_dims(MAX_TENSOR_RANK, counter)
1146
+
1147
+ # c1 = Matching(input_var, TensorType([d1, d2, d3, d4]))
1148
+ c1 = BinConstraintT(input_var, TensorType([d1, d2, d3, d4]), op_matching)
1149
+
1150
+ # c2 = DConsistency(module_instance.in_channels, d2)
1151
+ c2 = BinConstraintD(module_instance.in_channels, d2, op_consistency)
1152
+
1153
+ c3 = CalcConv(my_conv, input_var,
1154
+ module_instance.out_channels,
1155
+ module_instance.kernel_size,
1156
+ module_instance.padding,
1157
+ module_instance.stride,
1158
+ module_instance.dilation, [d1, d2, d3, d4])
1159
+
1160
+ nat_constraints = gen_nat_constraints([d1, d2, d3, d4])
1161
+
1162
+ return [c1, c2, c3, *nat_constraints], counter
1163
+
1164
+
1165
+ @register_inference_rule(torch.nn.MaxPool2d)
1166
+ def maxpool_inference_rule(n: Node, module_instance, symbols, constraints, counter):
1167
+ assert isinstance(n.args[0], Node)
1168
+ maxpool, counter = gen_tvar(counter)
1169
+ symbols[n] = maxpool
1170
+ input_var = symbols[n.args[0]]
1171
+
1172
+ # dim vars
1173
+ [d1, d2, d3, d4], counter = gen_tensor_dims(MAX_TENSOR_RANK, counter)
1174
+
1175
+ c1 = BinConstraintT(input_var, TensorType([d1, d2, d3, d4]), op_matching)
1176
+
1177
+ c2 = CalcMaxPool(maxpool, input_var, module_instance.kernel_size, module_instance.padding,
1178
+ module_instance.stride, module_instance.dilation, [d1, d2, d3, d4])
1179
+
1180
+ nat_constraints = gen_nat_constraints([d1, d2, d3, d4])
1181
+
1182
+ return [c1, c2, *nat_constraints], counter
1183
+
1184
+
1185
+ class ConstraintGenerator:
1186
+ def __init__(self, traced, graph=None):
1187
+ self.traced = traced # traced or tracer.root
1188
+ self.traced_params = dict(self.traced.named_parameters())
1189
+ self.constraints = []
1190
+ self.symbol_dict = {}
1191
+ self.graph = traced.graph if hasattr(traced, 'graph') else graph
1192
+
1193
+
1194
+ def generate_constraints(self, counter=0):
1195
+ """
1196
+ Iterate through every node and generate constraints
1197
+ Effect: self.constraints will be populated with the final constraints
1198
+ """
1199
+ graph = self.graph
1200
+
1201
+ all_constraints = []
1202
+
1203
+ for n in graph.nodes:
1204
+ (constraints, counter) = self.generate_constraints_node(n, counter)
1205
+ all_constraints += constraints
1206
+
1207
+ return Conj(all_constraints), counter
1208
+
1209
+ def generate_constraints_node(self, n: Node, counter):
1210
+ """
1211
+ Generate constraints the given node:
1212
+ Currently supported operations:
1213
+ - Reshape
1214
+ - Add
1215
+ - conv2d
1216
+ """
1217
+
1218
+ if n.op == 'placeholder':
1219
+ x, counter = gen_tvar(counter)
1220
+ self.symbol_dict[n] = x
1221
+
1222
+ my_type = n.type
1223
+
1224
+ if n.type != Dyn and (not isinstance(n.type, TensorType)):
1225
+ if n.type == torch.nn.parameter.Parameter:
1226
+ # since we have a parameter, the shape must be static
1227
+ assert 'example_value' in n.meta
1228
+ my_type = TensorType(n.meta['example_value'].size())
1229
+ else:
1230
+ my_type = Dyn
1231
+
1232
+ c1 = BinConstraintT(my_type, x, op_precision)
1233
+ c2 = BinConstraintT(x, MAX_TENSOR_RANK, op_leq)
1234
+ return [c1, c2], counter
1235
+
1236
+ elif n.op == 'call_function':
1237
+ if n.target in _INFERENCE_RULES:
1238
+ return _INFERENCE_RULES[n.target](n, self.symbol_dict, self.constraints, counter)
1239
+ else:
1240
+ raise RuntimeError(f'No inference rule registered for target {n.target}!')
1241
+
1242
+ elif n.op == 'call_module':
1243
+
1244
+ module_instance = self.traced.get_submodule(n.target)
1245
+ if type(module_instance) in _INFERENCE_RULES:
1246
+ return _INFERENCE_RULES[type(module_instance)](n,
1247
+ module_instance,
1248
+ self.symbol_dict,
1249
+ self.constraints, counter)
1250
+ else:
1251
+ raise RuntimeError(f'No inference rule registered for class {type(module_instance)}!')
1252
+
1253
+ elif n.op == 'call_method':
1254
+ if n.target in _INFERENCE_RULES:
1255
+ return _INFERENCE_RULES[n.target](n, self.symbol_dict, self.constraints, counter)
1256
+ else:
1257
+ raise RuntimeError(f'No inference rule registered for target {n.target}!')
1258
+
1259
+ elif n.op == 'get_attr':
1260
+ t = self.traced_params.get(n.target, None)
1261
+
1262
+ if isinstance(t, torch.Tensor):
1263
+ if len(t.shape) > 0:
1264
+ res = []
1265
+ for d in t.shape:
1266
+ res.append(d)
1267
+ attr_type = TensorType(res)
1268
+ output, counter = gen_tvar(counter)
1269
+ self.symbol_dict[n] = output
1270
+ return [BinConstraintT(output, attr_type, op_eq)], counter
1271
+ else:
1272
+ # scalar?
1273
+ return [], counter
1274
+ else:
1275
+ return [], counter
1276
+
1277
+ elif n.op == 'output':
1278
+ return [], counter
1279
+
1280
+ else:
1281
+ raise NotImplementedError(f"Method {n.op} not yet implemented")
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/constraint_transformation.py ADDED
@@ -0,0 +1,1040 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: ignore-errors
2
+ import copy
3
+ import itertools
4
+ from torch.fx.experimental.migrate_gradual_types.constraint_generator import BinConstraintT, MAX_TENSOR_RANK
5
+ from torch.fx.experimental.migrate_gradual_types.constraint import T, BinConstraintD, Conj, Constraint, DVar, TVar, \
6
+ Transpose
7
+ from torch.fx.experimental.migrate_gradual_types.constraint import Disj, TGreatestUpperBound
8
+ from torch.fx.experimental.migrate_gradual_types.constraint import DGreatestUpperBound
9
+ from torch.fx.experimental.migrate_gradual_types.constraint import CalcConv, CalcMaxPool
10
+ from torch.fx.experimental.migrate_gradual_types.constraint import CalcProduct, CanReshape
11
+ from torch.fx.experimental.migrate_gradual_types.constraint import ApplyBroadcasting, Prod, F, GetItem, GetItemTensor, IndexSelect
12
+ from torch.fx.experimental.migrate_gradual_types.operation import op_eq, op_precision, op_leq, op_matching
13
+ from torch.fx.experimental.migrate_gradual_types.operation import op_consistency, op_neq
14
+ from torch.fx.experimental.migrate_gradual_types.operation import op_mul, op_add, op_sub, op_div, op_mod
15
+ from torch.fx.experimental.migrate_gradual_types.util import gen_tensor_dims, gen_nat_constraints, gen_dvar
16
+ from torch.fx.tensor_type import TensorType, Dyn
17
+ from typing import Callable, Dict, List
18
+
19
+ _TRANSFORMATION_RULES: Dict[Constraint, Callable] = {}
20
+
21
+
22
+ def register_transformation_rule(call_target):
23
+ def register(fn):
24
+ if call_target in _TRANSFORMATION_RULES:
25
+ raise RuntimeError(f'Transformation rule already registered for {call_target}!')
26
+ _TRANSFORMATION_RULES[call_target] = fn
27
+ return fn
28
+ return register
29
+
30
+
31
+ def valid_index(index, dims):
32
+ """
33
+ Given a list of dimensions, checks if an index is valid in the list
34
+ """
35
+ try:
36
+ dims[index]
37
+ return T()
38
+ except IndexError:
39
+ return F()
40
+
41
+
42
+ @register_transformation_rule(Transpose)
43
+ def transform_transpose(constraint, counter):
44
+ """
45
+ Similar to a sequence of two index-selects
46
+ """
47
+ dims, counter = gen_tensor_dims(constraint.tensor_size, counter)
48
+ is_valid_index1 = valid_index(constraint.index1, dims)
49
+ is_valid_index2 = valid_index(constraint.index2, dims)
50
+ new_dims = copy.deepcopy(dims)
51
+ nat_constraints = gen_nat_constraints(dims)
52
+
53
+ if is_valid_index1 == T() and is_valid_index2 == T():
54
+ new_dims[constraint.index1] = dims[constraint.index2]
55
+ new_dims[constraint.index2] = dims[constraint.index1]
56
+
57
+ transformed_constraint = Conj([BinConstraintT(constraint.input_var, TensorType(dims), op_eq),
58
+ *nat_constraints,
59
+ is_valid_index1, is_valid_index2,
60
+ BinConstraintT(constraint.output, TensorType(new_dims), op_eq)])
61
+ return transformed_constraint, counter
62
+
63
+
64
+ @register_transformation_rule(IndexSelect)
65
+ def transform_index_select(constraint, counter):
66
+ """
67
+ The constraints consider the given tensor size, checks if the index is valid
68
+ and if so, generates a constraint for replacing the input dimension
69
+ with the required dimension
70
+ """
71
+ dims, counter = gen_tensor_dims(constraint.tensor_size, counter)
72
+ is_valid_index = valid_index(constraint.index, dims)
73
+ nat_constraints = gen_nat_constraints(dims)
74
+
75
+ # if the index is valid then replace the input dimension with the new dimension
76
+ # otherwise the dimension will not be replaced and the clause will contain False
77
+ if is_valid_index == T():
78
+ new_dims = copy.deepcopy(dims)
79
+ new_dims[constraint.index] = constraint.dim_replace
80
+
81
+ transformed_constraint = Conj([BinConstraintT(constraint.input_var, TensorType(dims), op_eq),
82
+ *nat_constraints,
83
+ is_valid_index,
84
+ BinConstraintT(constraint.output, TensorType(new_dims), op_eq)])
85
+
86
+ # print(constraints)
87
+ return transformed_constraint, counter
88
+
89
+
90
+ @register_transformation_rule(GetItem)
91
+ def transform_get_item(constraint, counter):
92
+ """
93
+ generate an equality of the form:
94
+ t = [a1, ..., an]
95
+ then generate constraints that check if the given index is valid
96
+ given this particular tensor size.
97
+ If the index is valid, generate a constraint to get the item
98
+ Note that we already handled the Dyn input case in the previous
99
+ step.
100
+ Args:
101
+ constraint: GetItem which assumes we are getting an item from a tensor (not Dyn)
102
+ counter: variable tracking
103
+ Returns: simplified constraints for GetItem
104
+
105
+ """
106
+ dims, counter = gen_tensor_dims(constraint.tensor_size, counter)
107
+ nat_constraints = gen_nat_constraints(dims)
108
+
109
+
110
+ is_valid_index = valid_index(constraint.index, dims)
111
+
112
+ all_constraints = [BinConstraintT(constraint.input_var, TensorType(dims), op_eq),
113
+ *nat_constraints,
114
+ is_valid_index]
115
+
116
+ # if the index is valid, we generate a constraint for getting an item
117
+ # otherwise this clause will have been UNSAT due to the wrong index
118
+ if is_valid_index == T():
119
+ all_constraints.append(BinConstraintD(constraint.res, dims[constraint.index], op_eq))
120
+
121
+ return Conj(all_constraints), counter
122
+
123
+ def valid_index_tensor(index, dims):
124
+ """
125
+ if the slice instances exceed the length of the dimensions
126
+ then this is a type error so we return False
127
+ """
128
+ slice_count = 0
129
+ for s in index:
130
+ if isinstance(s, slice):
131
+ slice_count += 1
132
+ if slice_count > len(dims):
133
+ return F()
134
+ else:
135
+ return T()
136
+
137
+ @register_transformation_rule(GetItemTensor)
138
+ def transform_get_item_tensor(constraint, counter):
139
+ """
140
+ When the index is a tuple, then the output will be a tensor
141
+ TODO: we have to check if this is the case for all HF models
142
+
143
+ The cases we are covering here are a tuple with one of:
144
+ - slice with default argument
145
+ - None
146
+
147
+ None appends 1 to the input tensor dimensions
148
+ so each occurrence of 'None' increases the rank by 1
149
+
150
+ slice with default arguments does not change the rank
151
+ """
152
+ assert isinstance(constraint.index_tuple, tuple)
153
+
154
+
155
+ # generate a result tensor of the expected size
156
+ dims, counter = gen_tensor_dims(constraint.tensor_size, counter)
157
+ nat_constraints = gen_nat_constraints(dims)
158
+
159
+ # generate a place-holder list of the right rank
160
+ # where "slice" does not contribute to the rank and "None" does
161
+ none_c = constraint.index_tuple.count(None)
162
+ resulting_tensor_dims = (none_c + len(dims)) * [None]
163
+
164
+ dim_index = 0
165
+ for i in range(len(constraint.index_tuple)):
166
+
167
+ # append 1 to the right location of the resulting tensor
168
+ if constraint.index_tuple[i] is None:
169
+ resulting_tensor_dims[i] = 1
170
+
171
+ elif constraint.index_tuple[i] == slice(None, None, None):
172
+ pass
173
+
174
+ else:
175
+ raise NotImplementedError('Method not yet implemented')
176
+
177
+ # append the remaining dimensions to the right location
178
+ dim_index = 0
179
+ for i in range(len(resulting_tensor_dims)):
180
+ if resulting_tensor_dims[i] is None:
181
+ resulting_tensor_dims[i] = dims[dim_index]
182
+ dim_index += 1
183
+
184
+ # check if the index is valid
185
+ is_valid_index = valid_index_tensor(constraint.index_tuple, dims)
186
+
187
+ # check if the resulting tensor is within bounds
188
+ if len(resulting_tensor_dims) > 4:
189
+ return F(), counter
190
+
191
+ else:
192
+ constraints = [BinConstraintT(constraint.input_var, TensorType(dims), op_eq),
193
+ BinConstraintT(constraint.res, TensorType(resulting_tensor_dims), op_eq),
194
+ *nat_constraints,
195
+ is_valid_index]
196
+ return Conj(constraints), counter
197
+
198
+
199
+ @register_transformation_rule(BinConstraintT)
200
+ def generate_binconstraint_t(constraint, counter):
201
+ """
202
+ Transform binary constraints for tensors
203
+ """
204
+
205
+ # precision constraints
206
+ if constraint.op == op_precision:
207
+ if constraint.lhs == Dyn:
208
+ return T(), counter
209
+ elif isinstance(constraint.lhs, TensorType):
210
+ is_fully_static = all(d != Dyn for d in constraint.lhs.__args__)
211
+ if is_fully_static:
212
+ return BinConstraintT(constraint.lhs, constraint.rhs, op_eq), counter
213
+ else:
214
+ new_dims = []
215
+
216
+ for _ in range(len(constraint.lhs.__args__)):
217
+ dim, counter = gen_dvar(counter)
218
+ new_dims.append(dim)
219
+
220
+ new_dim_constraints = [BinConstraintD(old_dim, new_dim, op_precision) for
221
+ new_dim, old_dim in zip(new_dims, constraint.lhs.__args__)] + \
222
+ [BinConstraintT(constraint.rhs, TensorType(new_dims), op_eq)] + \
223
+ [BinConstraintD(1, new_dim, op_leq) for
224
+ new_dim in new_dims]
225
+ return Conj(new_dim_constraints), counter
226
+
227
+ # matching
228
+ elif constraint.op == op_matching:
229
+ assert isinstance(constraint.rhs, TensorType)
230
+ d1 = constraint.rhs.__args__[0]
231
+ d2 = constraint.rhs.__args__[1]
232
+ d3 = constraint.rhs.__args__[2]
233
+ d4 = constraint.rhs.__args__[3]
234
+
235
+ conj = [BinConstraintT(constraint.lhs, Dyn, op_eq),
236
+ BinConstraintD(d1, Dyn, op_eq),
237
+ BinConstraintD(d2, Dyn, op_eq),
238
+ BinConstraintD(d3, Dyn, op_eq),
239
+ BinConstraintD(d4, Dyn, op_eq)]
240
+ return Disj([Conj(conj),
241
+ BinConstraintT(constraint.lhs, TensorType([d1, d2, d3, d4]), op_eq)]), counter
242
+
243
+ elif constraint.op == op_consistency:
244
+ c_dyn = Disj([BinConstraintT(constraint.lhs, Dyn, op_eq), BinConstraintT(constraint.rhs, Dyn, op_eq)])
245
+ [c_tensor_1, c_tensor_2, c_tensor_3, c_tensor_4], counter = gen_consistency_constraints(constraint, counter)
246
+
247
+ return Disj([c_dyn, c_tensor_1, c_tensor_2, c_tensor_3, c_tensor_4]), counter
248
+
249
+ elif constraint.op == op_leq:
250
+ assert isinstance(constraint.rhs, int)
251
+ disj = [BinConstraintT(constraint.lhs, Dyn, op_eq)]
252
+ for i in range(1, constraint.rhs + 1):
253
+ dims = []
254
+ for j in range(1, i + 1):
255
+ dim_var, counter = gen_dvar(counter)
256
+ dims.append(dim_var)
257
+ disj.append(BinConstraintT(constraint.lhs, TensorType(dims), op_eq))
258
+ return Disj(disj), counter
259
+ else:
260
+ return constraint, counter
261
+
262
+
263
+ @register_transformation_rule(BinConstraintD)
264
+ def generate_binconstraint_d(constraint, counter):
265
+ """
266
+ Transform binary constraints for dimensions
267
+ """
268
+ if constraint.op == op_precision:
269
+ if isinstance(constraint.lhs, int):
270
+ return BinConstraintD(constraint.lhs, constraint.rhs, op_eq), counter
271
+ elif constraint.lhs == Dyn:
272
+ return T(), counter
273
+
274
+ elif constraint.op == op_consistency:
275
+ return Disj([BinConstraintD(constraint.lhs, constraint.rhs, op_eq),
276
+ BinConstraintD(constraint.rhs, Dyn, op_eq), BinConstraintD(constraint.lhs, Dyn, op_eq)]), counter
277
+
278
+ else:
279
+ return constraint, counter
280
+
281
+
282
+ @register_transformation_rule(Conj)
283
+ def generate_conj(constraint, counter):
284
+ """
285
+ Transform conjunctions
286
+ """
287
+ new = []
288
+ for c in constraint.conjucts:
289
+ new_c, counter = transform_constraint(c, counter)
290
+ new.append(new_c)
291
+ return Conj(new), counter
292
+
293
+
294
+ @register_transformation_rule(Disj)
295
+ def generate_disj(constraint, counter):
296
+ """
297
+ Transform disjunctions
298
+ """
299
+ new = []
300
+ for c in constraint.disjuncts:
301
+ new_c, counter = transform_constraint(c, counter)
302
+ new.append(new_c)
303
+ return Disj(new), counter
304
+
305
+
306
+ @register_transformation_rule(TGreatestUpperBound)
307
+ def generate_gub(constraint, counter):
308
+ """
309
+ Transform greatest upper bound for tensors. Results in equality and Greatest Upper Bound
310
+ on dimensions
311
+ """
312
+ c1 = Conj([Disj([BinConstraintT(constraint.rhs1, Dyn, op_eq),
313
+ BinConstraintT(constraint.rhs2, Dyn, op_eq)]), BinConstraintT(constraint.res, Dyn, op_eq)])
314
+
315
+ [c2, c3, c4, c5], counter = gen_greatest_upper_bound(constraint, counter)
316
+
317
+ return Disj([c1, c2, c3, c4, c5]), counter
318
+
319
+
320
+ @register_transformation_rule(DGreatestUpperBound)
321
+ def generate_d_gub(constraint, counter):
322
+ """
323
+ Transform greatest upper bound for dimensions into equality constraints
324
+ """
325
+ c1 = Conj([BinConstraintD(constraint.rhs1, Dyn, op_eq), BinConstraintD(constraint.res, constraint.rhs2, op_eq)])
326
+ c2 = Conj([BinConstraintD(constraint.rhs2, Dyn, op_eq), BinConstraintD(constraint.res, constraint.rhs1, op_eq)])
327
+ c3 = Conj([BinConstraintD(constraint.rhs2, constraint.rhs1, op_eq), BinConstraintD(constraint.res, constraint.rhs1, op_eq)])
328
+ return Disj([c1, c2, c3]), counter
329
+
330
+
331
+ @register_transformation_rule(CalcConv)
332
+ def generate_calc_conv(constraint, counter):
333
+ d, counter = gen_tensor_dims(4, counter)
334
+ conv_result = TensorType([d[0], d[1], d[2], d[3]])
335
+
336
+ # the convolution result is a tensor of size 4
337
+ c1 = BinConstraintT(constraint.conv_result, conv_result, op_eq)
338
+
339
+ # the second dimension of the output is equal to the output channels
340
+ c2 = Conj([BinConstraintD(d[1], constraint.c_out, op_eq), BinConstraintD(d[1], Dyn, op_neq)])
341
+
342
+ # the input corresponds to the output in the first dimension of the convolution
343
+ c3 = BinConstraintD(constraint.matching_constraint[0], d[0], op_eq)
344
+
345
+ c4, c5 = calc_last_two_dims(constraint, d)
346
+
347
+ leq_constraints = Conj([BinConstraintD(0, d[0], op_leq),
348
+ BinConstraintD(0, d[1], op_leq),
349
+ BinConstraintD(0, d[2], op_leq),
350
+ BinConstraintD(0, d[3], op_leq)])
351
+
352
+ return Conj([c1, c2, c3, c4, c5, leq_constraints]), counter
353
+
354
+
355
+ @register_transformation_rule(CalcMaxPool)
356
+ def generate_calc_maxpool(constraint, counter):
357
+ """
358
+ Transform maxpool constraints
359
+ """
360
+ d, counter = gen_tensor_dims(4, counter)
361
+ maxpool_result = TensorType([d[0], d[1], d[2], d[3]])
362
+
363
+ # the maxpool result is a tensor of size 4
364
+ c1 = BinConstraintT(constraint.maxpool_result, maxpool_result, op_eq)
365
+
366
+ # the input corresponds to the output in the first and second dimension of maxpool
367
+ c2 = BinConstraintD(constraint.matching_constraint[1], d[1], op_eq)
368
+ c3 = BinConstraintD(constraint.matching_constraint[0], d[0], op_eq)
369
+ c4, c5 = calc_last_two_dims(constraint, d)
370
+
371
+ leq_constraints = Conj([BinConstraintD(0, d[0], op_leq),
372
+ BinConstraintD(0, d[1], op_leq),
373
+ BinConstraintD(0, d[2], op_leq),
374
+ BinConstraintD(0, d[3], op_leq)])
375
+
376
+ return Conj([c1, c2, c3, c4, c5, leq_constraints]), counter
377
+
378
+
379
+ @register_transformation_rule(CalcProduct)
380
+ def generate_calc_product(constraint, counter):
381
+ """
382
+ Transform flatten constraints
383
+ """
384
+ start = constraint.start
385
+ end = constraint.end
386
+ dims = constraint.dims_to_flatten
387
+ flattened = constraint.flattened
388
+ n = len(constraint.dims_to_flatten)
389
+
390
+ # this will be evaluated right here
391
+ boundary_check = (0 <= start and start < end and end <= n)
392
+
393
+ c_boundary = T() if boundary_check else F()
394
+
395
+ lhs = dims[0:start]
396
+ rhs = dims[end:]
397
+ mid = dims[start:end]
398
+
399
+ all_possibilities = generate_all_int_dyn_dim_possibilities(mid)
400
+
401
+ all_constraints = []
402
+
403
+ for p in all_possibilities:
404
+ p = list(p)
405
+ # this tells us there is a dynamic variable
406
+ contains_dyn = not(all(constraint.op == op_neq for constraint in p))
407
+ if contains_dyn:
408
+ mid_var = [Dyn]
409
+ total_constraints = lhs + mid_var + rhs
410
+ if len(total_constraints) > 4:
411
+ all_constraints.append(F())
412
+ else:
413
+ all_constraints.append(Conj([BinConstraintT(flattened, TensorType(lhs + mid_var + rhs), op_eq)] + p))
414
+ else:
415
+ new_var, counter = gen_dvar(counter)
416
+ mid_eq_prod = Conj([BinConstraintD(new_var, Prod(mid), op_eq), BinConstraintD(new_var, Dyn, op_neq)])
417
+ mid_var = [new_var]
418
+ total_constraints = lhs + mid_var + rhs
419
+ if len(total_constraints) > 4:
420
+ all_constraints.append(F())
421
+ else:
422
+ all_constraints.append(Conj([BinConstraintT(flattened, TensorType(lhs + mid_var + rhs), op_eq), mid_eq_prod] + p))
423
+
424
+ return Conj([Disj(all_constraints), c_boundary]), counter
425
+
426
+
427
+ @register_transformation_rule(CanReshape)
428
+ def generate_reshape(constraint, counter):
429
+ """
430
+ Transform reshape constraints
431
+ """
432
+ d, counter = gen_tensor_dims(4, counter)
433
+
434
+ d1 = d[0]
435
+ d2 = d[1]
436
+ d3 = d[2]
437
+ d4 = d[3]
438
+
439
+ target = constraint.target.__args__
440
+
441
+ is_fully_static = all(d != Dyn for d in target)
442
+
443
+ # dynamic tensor
444
+ c1_dyn = BinConstraintT(constraint.src, Dyn, op_eq)
445
+ c2_tensor1 = BinConstraintT(constraint.src, TensorType([d1]), op_eq)
446
+ c2_tensor2 = BinConstraintT(constraint.src, TensorType([d1, d2]), op_eq)
447
+ c2_tensor3 = BinConstraintT(constraint.src, TensorType([d1, d2, d3]), op_eq)
448
+ c2_tensor4 = BinConstraintT(constraint.src, TensorType([d1, d2, d3, d4]), op_eq)
449
+
450
+ d1_eq_dyn = BinConstraintD(d1, Dyn, op_eq)
451
+ d1_neq_dyn = BinConstraintD(d1, Dyn, op_neq)
452
+
453
+ d2_eq_dyn = BinConstraintD(d2, Dyn, op_eq)
454
+ d2_neq_dyn = BinConstraintD(d2, Dyn, op_neq)
455
+
456
+ d3_eq_dyn = BinConstraintD(d3, Dyn, op_eq)
457
+ d3_neq_dyn = BinConstraintD(d3, Dyn, op_neq)
458
+
459
+ d4_eq_dyn = BinConstraintD(d3, Dyn, op_eq)
460
+ d4_neq_dyn = BinConstraintD(d3, Dyn, op_neq)
461
+
462
+ nat_d1 = BinConstraintD(0, d1, op_leq)
463
+ nat_d2 = BinConstraintD(0, d2, op_leq)
464
+ nat_d3 = BinConstraintD(0, d3, op_leq)
465
+ nat_d4 = BinConstraintD(0, d4, op_leq)
466
+
467
+ if is_fully_static:
468
+ # size 1 tensor
469
+ c3_tensor1 = Disj([d1_eq_dyn,
470
+ (Conj([d1_neq_dyn,
471
+ BinConstraintD(d1, Prod(target), op_eq)]))])
472
+ all_tensor_1 = Conj([c2_tensor1, c3_tensor1])
473
+
474
+ # size 2 tensor
475
+ all_tensor_2 = Conj([c2_tensor2, gen_all_reshape_possibilities([d1, d2], target)])
476
+
477
+ # size 3 tensor
478
+ all_tensor_3 = Conj([c2_tensor3, gen_all_reshape_possibilities([d1, d2, d3], target)])
479
+
480
+ # size 4 tensor
481
+ all_tensor_4 = Conj([c2_tensor4, gen_all_reshape_possibilities([d1, d2, d3, d4], target)])
482
+
483
+ return Conj([Disj([c1_dyn, all_tensor_1, all_tensor_2, all_tensor_3, all_tensor_4]),
484
+ nat_d1, nat_d2, nat_d3, nat_d4]), counter
485
+
486
+ # then there must be exactly one occurrence of dyn
487
+ else:
488
+ new_target = []
489
+
490
+ for n in target:
491
+ if n != Dyn:
492
+ new_target.append(n)
493
+
494
+ # tensor 1
495
+ c3_tensor1 = Disj([d1_eq_dyn,
496
+ (Conj([d1_neq_dyn,
497
+ is_dim_div_by_target(new_target, d1)]))])
498
+ all_tensor_1 = Conj([c2_tensor1, c3_tensor1])
499
+
500
+ # tensor 2
501
+ c21 = Disj([d1_eq_dyn, d2_eq_dyn])
502
+ c22 = Conj([d1_neq_dyn, d2_neq_dyn, is_dim_div_by_target(new_target, Prod([d1, d2]))])
503
+ all_tensor_2 = Conj([c2_tensor2, Disj([c21, c22])])
504
+
505
+ # tensor 3
506
+ c31 = Disj([d1_eq_dyn, d2_eq_dyn, d3_eq_dyn])
507
+ c32 = Conj([d1_neq_dyn, d2_neq_dyn, d3_neq_dyn, is_dim_div_by_target(new_target, Prod([d1, d2, d3]))])
508
+ all_tensor_3 = Conj([c2_tensor3, Disj([c31, c32])])
509
+
510
+ # tensor 4
511
+ c41 = Disj([d1_eq_dyn, d2_eq_dyn, d3_eq_dyn, d4_eq_dyn])
512
+ c42 = Conj([d1_neq_dyn, d2_neq_dyn, d3_neq_dyn, d4_neq_dyn, is_dim_div_by_target(new_target, Prod([d1, d2, d3, d4]))])
513
+ all_tensor_4 = Conj([c2_tensor4, Disj([c41, c42])])
514
+
515
+ return Conj([Disj([c1_dyn, all_tensor_1, all_tensor_2, all_tensor_3, all_tensor_4]),
516
+ nat_d1, nat_d2, nat_d3, nat_d4]), counter
517
+
518
+
519
+ @register_transformation_rule(ApplyBroadcasting)
520
+ def generate_broadcasting(constraint, counter):
521
+ """
522
+ Transform broadcasting constraints
523
+ """
524
+ e11, e12 = constraint.res1, constraint.res2
525
+ e1, e2 = constraint.input1, constraint.input2
526
+
527
+ e1_dyn = BinConstraintT(e1, Dyn, op_eq)
528
+ e2_dyn = BinConstraintT(e2, Dyn, op_eq)
529
+
530
+ # Introduce dimensions
531
+ e1_equal_e11 = BinConstraintT(e1, e11, op_eq)
532
+ e2_equal_e12 = BinConstraintT(e2, e12, op_eq)
533
+
534
+ # dyn possibility
535
+ e1_dyn_constraint = Conj([e1_dyn, e1_equal_e11, e2_equal_e12])
536
+ e2_dyn_constraint = Conj([e2_dyn, e1_equal_e11, e2_equal_e12])
537
+
538
+ # tensor possibility
539
+ # generate dimensions to create tensors of size 1
540
+ final_tensor_1_constraint, _, _, nat_dims_1, counter = \
541
+ gen_broadcasting_constraints(e1, e2, e11, e12, 1, counter)
542
+
543
+ # generate dimensions to create tensors of size 2
544
+ final_tensor_2_constraint_no_padding, final_tensor_2_constraint_padding_arg1, \
545
+ final_tensor_2_constraint_padding_arg2, nat_dims_2, counter = \
546
+ gen_broadcasting_constraints(e1, e2, e11, e12, 2, counter)
547
+
548
+ # generate dimensions to create tensors of size 3
549
+ final_tensor_3_constraint_no_padding, final_tensor_3_constraint_padding_arg1, \
550
+ final_tensor_3_constraint_padding_arg2, nat_dims_3, counter = \
551
+ gen_broadcasting_constraints(e1, e2, e11, e12, 3, counter)
552
+
553
+ # generate dimensions to create tensors of size 4
554
+ final_tensor_4_constraint_no_padding, final_tensor_4_constraint_padding_arg1, \
555
+ final_tensor_4_constraint_padding_arg2, nat_dims_4, counter = \
556
+ gen_broadcasting_constraints(e1, e2, e11, e12, 4, counter)
557
+
558
+ final_result = Disj([
559
+ e1_dyn_constraint,
560
+ e2_dyn_constraint,
561
+ final_tensor_1_constraint,
562
+ final_tensor_2_constraint_no_padding,
563
+ final_tensor_2_constraint_padding_arg1,
564
+ final_tensor_2_constraint_padding_arg2,
565
+ final_tensor_3_constraint_no_padding,
566
+ final_tensor_3_constraint_padding_arg1,
567
+ final_tensor_3_constraint_padding_arg2,
568
+ final_tensor_4_constraint_no_padding,
569
+ final_tensor_4_constraint_padding_arg1,
570
+ final_tensor_4_constraint_padding_arg2
571
+ ])
572
+
573
+ return Conj([final_result, *nat_dims_1, *nat_dims_2, *nat_dims_3, *nat_dims_4]), counter
574
+
575
+
576
+ def transform_constraint(constraint: Constraint, counter: int):
577
+ """
578
+ Transforms a constraint into a simpler constraint.
579
+ Ex: precision and consistency are transformed to equality
580
+ Args:
581
+ constraint: constraint to be transformed
582
+ counter: for variable tracking
583
+
584
+ Returns: Constraint
585
+
586
+ """
587
+ if type(constraint) in _TRANSFORMATION_RULES:
588
+ return _TRANSFORMATION_RULES[type(constraint)](constraint, counter)
589
+
590
+ else:
591
+ return constraint, counter
592
+
593
+
594
+
595
+
596
+ def calc_last_two_dims(constraint, d: List[DVar]):
597
+ """
598
+ Generates constraints for the last two dimensions of a convolution or a maxpool output
599
+ Args:
600
+ constraint: CalcConv or CalcMaxPool
601
+ d: The list of output dimensions
602
+
603
+ Returns: Constraints for calculating the last two dimensions of the output
604
+
605
+ """
606
+
607
+ assert isinstance(constraint, (CalcConv, CalcMaxPool))
608
+
609
+ b3 = constraint.matching_constraint[2]
610
+ b4 = constraint.matching_constraint[3]
611
+
612
+ b3_dyn = Conj([BinConstraintD(d[2], Dyn, op_eq), BinConstraintD(b3, Dyn, op_eq)])
613
+ b4_dyn = Conj([BinConstraintD(d[3], Dyn, op_eq), BinConstraintD(b4, Dyn, op_eq)])
614
+
615
+ d3_not_dyn = Conj([BinConstraintD(d[2], Dyn, op_neq), BinConstraintD(b3, Dyn, op_neq)])
616
+ d4_not_dyn = Conj([BinConstraintD(d[3], Dyn, op_neq), BinConstraintD(b4, Dyn, op_neq)])
617
+
618
+ # transform parameters into tuples incase they are not already
619
+ padding = (constraint.padding, constraint.padding) \
620
+ if isinstance(constraint.padding, int) else constraint.padding
621
+ kernel = (constraint.kernel, constraint.kernel) \
622
+ if isinstance(constraint.kernel, int) else constraint.kernel
623
+ stride = (constraint.stride, constraint.stride) \
624
+ if isinstance(constraint.stride, int) else constraint.stride
625
+ dilation = (constraint.dilation, constraint.dilation) \
626
+ if isinstance(constraint.dilation, int) else constraint.dilation
627
+
628
+ f1 = BinConstraintD(b3, BinConstraintD(2, padding[0], op_mul), op_add)
629
+ f2 = BinConstraintD(dilation[0], BinConstraintD(kernel[0], 1, op_sub), op_mul)
630
+ f3 = BinConstraintD(BinConstraintD(BinConstraintD(f1, f2, op_sub), 1, op_sub), stride[0], op_div)
631
+ f4 = BinConstraintD(f3, 1, op_add)
632
+
633
+ c4 = Disj([b3_dyn, Conj([d3_not_dyn, BinConstraintD(d[2], f4, op_eq)])])
634
+
635
+ f11 = BinConstraintD(b4, BinConstraintD(2, padding[1], op_mul), op_add)
636
+ f22 = BinConstraintD(dilation[1], BinConstraintD(kernel[1], 1, op_sub), op_mul)
637
+ f33 = BinConstraintD(BinConstraintD(BinConstraintD(f11, f22, op_sub), 1, op_sub), stride[1], op_div)
638
+ f44 = BinConstraintD(f33, 1, op_add)
639
+
640
+ c5 = Disj([b4_dyn, Conj([d4_not_dyn, BinConstraintD(d[3], f44, op_eq)])])
641
+
642
+ return c4, c5
643
+
644
+
645
+ def generate_all_int_dyn_dim_possibilities(my_list: List[DVar]):
646
+ """
647
+ Generate all possibilities of being equal or not equal to dyn for my_list
648
+ Args:
649
+ my_list: List of tensor dimensions
650
+
651
+ Returns: A list of a list of constraints. Each list of constraints corresponds to
652
+ one possibility about the values of the dimension variables
653
+ """
654
+ # generate all possibilities of being equal or not equal to dyn for my_list
655
+ eq_possibilities = [BinConstraintD(my_list[i], Dyn, op_eq) for i in range(len(my_list))]
656
+ neq_possibilities = [BinConstraintD(my_list[i], Dyn, op_neq) for i in range(len(my_list))]
657
+ d_possibilities = []
658
+
659
+ for i in zip(eq_possibilities, neq_possibilities):
660
+ d_possibilities.append(list(i))
661
+ all_possibilities = list(itertools.product(*d_possibilities))
662
+ return all_possibilities
663
+
664
+
665
+ def is_target_div_by_dim(target: List[int], dim: List[DVar]):
666
+ """
667
+ Generate constraints to check if the target dimensions are divisible by the input dimensions
668
+ Args:
669
+ target: Target dimensions
670
+ dim: Input dimensions
671
+
672
+ Returns: Constraints to check divisibility
673
+
674
+ """
675
+ return BinConstraintD(BinConstraintD(Prod(target), dim, op_mod), 0, op_eq)
676
+
677
+
678
+ def is_dim_div_by_target(target: List[int], dim: List[DVar]):
679
+ """
680
+ Generate constraints to check if the input dimensions is divisible by the target dimensions
681
+ Args:
682
+ target: Target dimensions
683
+ dim: Input dimensions
684
+
685
+ Returns: Constraints to check divisibility
686
+
687
+ """
688
+ return BinConstraintD(BinConstraintD(dim, Prod(target), op_mod), 0, op_eq)
689
+
690
+
691
+ def gen_all_reshape_possibilities(list_of_dims, target):
692
+ """
693
+ Consider all possibilities what the input dimensions could be (number or dynamic)
694
+ Then generate the appropriate constraints using multiplication or mod depending on the possibility
695
+ The possibilities we consider here are the cross product of being equal to dyn or not equal to dyn
696
+ for the input. Target is fixed because at most one dimension could be dyn.
697
+ We have different cases for this.
698
+
699
+ Args:
700
+ list_of_dims: The input list of dimensions
701
+ target: The tensor we want to reshape to
702
+
703
+ Returns: A disjunction of transformed reshape constraints
704
+
705
+ """
706
+ all_possibilities = generate_all_int_dyn_dim_possibilities(list_of_dims)
707
+
708
+ all_constraints = []
709
+
710
+ for p in all_possibilities:
711
+ to_multiply = []
712
+
713
+ p = list(p)
714
+
715
+ for constraint in p:
716
+ assert isinstance(constraint, BinConstraintD)
717
+ if constraint.op == op_neq:
718
+ to_multiply.append(constraint.lhs)
719
+
720
+ if not to_multiply:
721
+ all_constraints.append(Conj(p))
722
+
723
+ elif len(to_multiply) < len(list_of_dims):
724
+ all_constraints.append(Conj(p + [is_target_div_by_dim(target, Prod(to_multiply))]))
725
+ else:
726
+ all_constraints.append(Conj(p + [BinConstraintD(Prod(list_of_dims),
727
+ Prod(target), op_eq)]))
728
+
729
+ return Disj(all_constraints)
730
+
731
+
732
+ def broadcast_dim(tensor_input1, tensor_input2, res1, res2, index, padding=False):
733
+ """
734
+ Apply broadcasting to the 'index' dimension of tensor_input1.
735
+ Args:
736
+ tensor_input1: should represent [d1, ..., d_index, ...] where d_index = 1
737
+ tensor_input2: represents the second input
738
+ res1: broadcasted result 1
739
+ res2: broadcasted result 2
740
+ index: the index to broadcast
741
+ padding: If padding was used, then tensor_input1[index] does not exist
742
+
743
+ Returns:
744
+
745
+ """
746
+ if tensor_input1[index] is None:
747
+ assert padding
748
+
749
+
750
+ if not padding:
751
+ # then the inputs are the same length so they all have dimensions at "index"
752
+ return Conj([BinConstraintD(tensor_input1[index], 1, op_eq),
753
+ BinConstraintD(res1[index], res2[index], op_eq),
754
+ BinConstraintD(res2[index], tensor_input2[index], op_eq)])
755
+
756
+ else:
757
+ # we don't set the input dimension to 1, since it doesn't exist.
758
+ return Conj([BinConstraintD(res1[index], res2[index], op_eq),
759
+ BinConstraintD(res2[index], tensor_input2[index], op_eq)])
760
+
761
+
762
+ def apply_padding(e1_var: TVar,
763
+ e11: BinConstraintT,
764
+ e2: BinConstraintT,
765
+ e12: BinConstraintT,
766
+ d2: List[DVar],
767
+ d11: List[DVar],
768
+ d12: List[DVar],
769
+ counter: int):
770
+ """
771
+ We are considering the possibility where one input has less dimensions than
772
+ another input, so we apply padding to the broadcasted results
773
+
774
+ Args:
775
+ e1_var: Variable representing the first input where padding will be
776
+ e11: constraint of the form e11 = Tensortype[d1, ..., dn]
777
+ e2: constraint of the form e2 = Tensortype[d1, ..., dn]
778
+ e12: constraint of the form e11 = Tensortype[d1, ..., dn]
779
+ d2: Tensor variables for the second input
780
+ d11: Tensor variables for the broadcasted first input
781
+ d12: Tensor variables for the broadcasted second input
782
+ counter: variable tracking
783
+
784
+ Returns: A new constraint whose goal is to apply padding to the broadcasted result
785
+
786
+ """
787
+
788
+ res = []
789
+
790
+ # pad the shorter input with None so we can pass it to the broadcasting helper function
791
+ for i in range(1, len(d2)):
792
+
793
+ d1, counter = gen_tensor_dims(i, counter)
794
+
795
+ nat_constraints = gen_nat_constraints(d1 + d2 + d11 + d12)
796
+
797
+ e1 = BinConstraintT(e1_var, TensorType(d1), op_eq)
798
+
799
+ simulate_padding = [None] * (len(d2) - i)
800
+
801
+ assert len(simulate_padding + d1) == len(d2)
802
+
803
+ broadcast_padding = []
804
+
805
+ # for every padding size, we also consider broadcasting
806
+ for j in range(len(d2) - i):
807
+ broadcast_padding.append(broadcast_dim(simulate_padding, d2, d11, d12, j, True))
808
+
809
+ # we consider the possibilities for broadcasting for every dimension. Since we already
810
+ # padded d1, we do not consider it while broadcasting
811
+ all_broadcasting_possibilities = generate_all_broadcasting_possibilities_no_padding(d1,
812
+ d2[(len(d2) - i):],
813
+ d11[(len(d2) - i):],
814
+ d12[(len(d2) - i):])
815
+ # combine all constraints into a conjunction
816
+ c = Conj([e1, e11, e2, e12,
817
+ *broadcast_padding,
818
+ all_broadcasting_possibilities,
819
+ *nat_constraints
820
+ ])
821
+ res.append(c)
822
+
823
+ return Disj(res), counter
824
+
825
+
826
+ def no_broadcast_dim_with_index(d1: List[DVar],
827
+ d2: List[DVar],
828
+ d3: List[DVar],
829
+ d4: List[DVar],
830
+ i: int):
831
+ """
832
+ Args:
833
+ d1: input 1
834
+ d2: input 2
835
+ d3: simulated broadcasting for input 1
836
+ d4: simulated broadcasting for input 2
837
+ i: the rank of the resulting tensor addition
838
+
839
+ Returns: Constraints for when no broadcasting occurs
840
+ """
841
+ return Conj([
842
+ Disj([
843
+ Conj([BinConstraintD(d1[i], 1, op_eq),
844
+ BinConstraintD(d2[i], 1, op_eq)]),
845
+
846
+ Conj([BinConstraintD(d1[i], 1, op_neq),
847
+ BinConstraintD(d2[i], 1, op_neq)])]),
848
+
849
+ BinConstraintD(d1[i], d3[i], op_eq),
850
+ BinConstraintD(d2[i], d4[i], op_eq)])
851
+
852
+
853
+
854
+ def gen_lists_of_dims(num_tensors: int, dim_size: int, counter: int):
855
+ """
856
+ Generate lists of DVar to represent tensor dimensions
857
+ Args:
858
+ num_tensors: the required number of tensors
859
+ dim_size: the number of dimensions for each tensor
860
+ counter: variable tracking
861
+
862
+ Returns: A list of a list of tensor dimensions
863
+
864
+ """
865
+ res = []
866
+
867
+ for _ in range(num_tensors):
868
+ dims, counter = gen_tensor_dims(dim_size, counter)
869
+ res.append(dims)
870
+
871
+ return res, counter
872
+
873
+
874
+ def create_equality_constraints_for_broadcasting(e1: TVar,
875
+ e2: TVar,
876
+ e11: TVar,
877
+ e12: TVar,
878
+ d1: List[DVar],
879
+ d2: List[DVar],
880
+ d11: List[DVar],
881
+ d12: List[DVar]):
882
+ """
883
+ Create equality constraints for when no broadcasting occurs
884
+ Args:
885
+ e1: Input 1
886
+ e2: Input 2
887
+ e11: Broadcasted input 1
888
+ e12: Broadcasted input 2
889
+ d1: Variables that store dimensions for e1
890
+ d2: Variables that store dimensions for e2
891
+ d11: Variables that store dimensions for e11
892
+ d12: Variables that store dimensions for e22
893
+
894
+ Returns: Four equality constraints
895
+
896
+ """
897
+
898
+ e1_tensor = BinConstraintT(e1, TensorType(d1), op_eq)
899
+ e11_tensor = BinConstraintT(e11, TensorType(d11), op_eq)
900
+ e2_tensor = BinConstraintT(e2, TensorType(d2), op_eq)
901
+ e12_tensor = BinConstraintT(e12, TensorType(d12), op_eq)
902
+ return [e1_tensor, e11_tensor, e2_tensor, e12_tensor]
903
+
904
+
905
+ def gen_consistency_constraints(constraint: Constraint, counter: int):
906
+ """
907
+ Args:
908
+ constraint: Consistency constraint on tensors
909
+ counter: for variable tracking
910
+
911
+ Returns: Equality and consistency constraints on dimensions
912
+
913
+ """
914
+
915
+ all_constraints = []
916
+
917
+ for i in range(1, MAX_TENSOR_RANK + 1):
918
+ new_dims_rhs_1, counter = gen_tensor_dims(i, counter)
919
+ new_dims_rhs_2, counter = gen_tensor_dims(i, counter)
920
+
921
+ nat_constraints = gen_nat_constraints(new_dims_rhs_1 + new_dims_rhs_2)
922
+
923
+ c_tensor_i = Conj([BinConstraintT(constraint.lhs, TensorType(new_dims_rhs_1), op_eq),
924
+ BinConstraintT(constraint.rhs, TensorType(new_dims_rhs_2), op_eq)] +
925
+ [BinConstraintD(d1, d2, op_consistency) for
926
+ d1, d2 in zip(new_dims_rhs_1, new_dims_rhs_2)] + nat_constraints)
927
+
928
+ all_constraints.append(c_tensor_i)
929
+
930
+ return all_constraints, counter
931
+
932
+
933
+ def gen_greatest_upper_bound(constraint: TGreatestUpperBound, counter: int):
934
+ """
935
+ Args:
936
+ constraint: Greatest upper bound on tensors
937
+ counter: variable tracking
938
+
939
+ Returns: A set of equality constraints and DGreatestUpperBound constraints
940
+
941
+ """
942
+
943
+ all_constraints = []
944
+
945
+ for i in range(1, MAX_TENSOR_RANK + 1):
946
+ c = []
947
+ dims1, counter = gen_tensor_dims(i, counter)
948
+ c1tensor = TensorType(dims1)
949
+
950
+ dims2, counter = gen_tensor_dims(i, counter)
951
+ c2tensor = TensorType(dims2)
952
+
953
+ dims3, counter = gen_tensor_dims(i, counter)
954
+ c3tensor = TensorType(dims3)
955
+
956
+ c += [BinConstraintT(constraint.rhs1, c1tensor, op_eq),
957
+ BinConstraintT(constraint.rhs2, c2tensor, op_eq),
958
+ BinConstraintT(constraint.res, c3tensor, op_eq)] + \
959
+ gen_nat_constraints(dims1 + dims2 + dims3)
960
+
961
+ assert len(c3tensor.__args__) == len(c1tensor.__args__) == len(c2tensor.__args__)
962
+ for i in range(len(c3tensor.__args__)):
963
+ c.append(DGreatestUpperBound(c3tensor.__args__[i],
964
+ c1tensor.__args__[i],
965
+ c2tensor.__args__[i]))
966
+
967
+ all_constraints.append(Conj(c))
968
+ return all_constraints, counter
969
+
970
+
971
+ def generate_all_broadcasting_possibilities_no_padding(d1: List[DVar], d2: List[DVar], d11: List[DVar], d12: List[DVar]):
972
+ """
973
+ Generate broadcasting constraints assuming no padding. Broadcasting can happen at any dimension.
974
+ We look at all combinations for all dimensions in d1 and d2
975
+ Args:
976
+ d1: input1 dimensions
977
+ d2: input2 dimensions
978
+ d11: broadcasted input1 dimensions
979
+ d12: broadcasted input2 dimensions
980
+
981
+ Returns: broadcasting constraints relating the input dimensions to the broadcasted dimensions
982
+
983
+ """
984
+
985
+ size = len(d1)
986
+
987
+ res2 = []
988
+
989
+ for i in range(size):
990
+ t1 = broadcast_dim(d1, d2, d11, d12, i)
991
+ t2 = broadcast_dim(d2, d1, d12, d11, i)
992
+ t3 = no_broadcast_dim_with_index(d1, d2, d11, d12, i)
993
+
994
+ res2.append(Disj([t1, t2, t3]))
995
+
996
+ return Conj(res2)
997
+
998
+
999
+ def gen_broadcasting_constraints(e1: TVar, e2: TVar, e11: TVar, e12: TVar, i: int, counter: int):
1000
+ """
1001
+ Simulates broadcasting on e1 and e2 and returns the results
1002
+ respectively in e11 and e12. Because of gradual types,
1003
+ e1 and e2 may not be equal. Similarly, e11 and e12 may not
1004
+ be equal. e11 and e12 should be guaranteed to be consistent
1005
+ as they represent the shapes of the tensors to be added after
1006
+ broadcasting.
1007
+ Args:
1008
+ e1: TVar representing the type of input 1
1009
+ e2: TVar representing the type of input 2
1010
+ e11: TVar representing the representing broadcasted input 1
1011
+ e12: TVar representing the representing broadcasted input 2
1012
+ i: The rank of the resulting type of addition
1013
+ counter: for variable tracking
1014
+
1015
+ Returns: Simplified broadcasting constraints
1016
+
1017
+ """
1018
+ dims, counter = gen_lists_of_dims(4, i, counter)
1019
+ [d1, d2, d3, d4] = dims
1020
+ nat_dims_i = gen_nat_constraints(list(itertools.chain(*dims)))
1021
+
1022
+ initialize_tensors_constraints = create_equality_constraints_for_broadcasting(e1, e2, e11, e12,
1023
+ d1, d2, d3, d4)
1024
+
1025
+ [e1_tensor, e11_tensor, e2_tensor, e12_tensor] = initialize_tensors_constraints
1026
+
1027
+ # without padding, broadcast all possibilities for tensors of size i
1028
+ final_tensor_constraint_no_padding = Conj([*initialize_tensors_constraints,
1029
+ generate_all_broadcasting_possibilities_no_padding(d1, d2, d3, d4)])
1030
+
1031
+ # with padding, broadcast all possibilities for tensors of size i
1032
+ final_tensor_constraint_padding_arg1, counter = \
1033
+ apply_padding(e1, e11_tensor, e2_tensor, e12_tensor, d2, d3, d4, counter)
1034
+
1035
+ final_tensor_constraint_padding_arg2, counter = \
1036
+ apply_padding(e2, e12_tensor, e1_tensor, e11_tensor, d1, d4, d3, counter)
1037
+
1038
+ return final_tensor_constraint_no_padding, \
1039
+ final_tensor_constraint_padding_arg1, \
1040
+ final_tensor_constraint_padding_arg2, nat_dims_i, counter
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/operation.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ op_add = '+'
2
+ op_sub = '-'
3
+ op_mul = '*'
4
+ op_div = '/'
5
+ op_eq = '='
6
+ op_neq = '!='
7
+ op_imp = '=>'
8
+ op_matching = '⊳'
9
+ op_consistency = '~'
10
+ op_precision = '⊑'
11
+ op_leq = '≤'
12
+ op_lt = '<'
13
+ op_gt = '>'
14
+ op_mod = '%'
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/transform_to_z3.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.fx.experimental.migrate_gradual_types.constraint import Conj, Disj, T, F, BinConstraintT, BVar, is_bool_expr
2
+ from torch.fx.experimental.migrate_gradual_types.constraint import BinConstraintD, TVar, DVar
3
+ from torch.fx.experimental.migrate_gradual_types.constraint import Prod, is_algebraic_expression, is_dim
4
+ from torch.fx.experimental.migrate_gradual_types.constraint_generator import ConstraintGenerator
5
+ from torch.fx.experimental.migrate_gradual_types.constraint_transformation import transform_constraint
6
+ from torch.fx.experimental.migrate_gradual_types.operation import op_add, op_eq, op_neq, op_gt, op_lt
7
+ from torch.fx.experimental.migrate_gradual_types.operation import op_leq, op_sub, op_div, op_mul, op_mod
8
+ from torch.fx.tensor_type import TensorType, Dyn
9
+
10
+ try:
11
+ import z3 # type: ignore[import]
12
+ from torch.fx.experimental.migrate_gradual_types.z3_types import tensor_type, z3_dyn, D
13
+ HAS_Z3 = True
14
+
15
+ def transform_to_z3(constraint, counter, dimension_dict):
16
+ if isinstance(constraint, Conj):
17
+ conjuncts = []
18
+ for c in constraint.conjucts:
19
+ new_c, counter = transform_to_z3(c, counter, dimension_dict)
20
+ conjuncts.append(new_c)
21
+ return z3.And(conjuncts), counter
22
+
23
+ elif isinstance(constraint, Disj):
24
+ disjuncts = []
25
+ for c in constraint.disjuncts:
26
+ new_c, counter = transform_to_z3(c, counter, dimension_dict)
27
+ disjuncts.append(new_c)
28
+ return z3.Or(disjuncts), counter
29
+
30
+ elif isinstance(constraint, T):
31
+ return True, counter
32
+
33
+ elif isinstance(constraint, F):
34
+ return False, counter
35
+
36
+ elif isinstance(constraint, BinConstraintT):
37
+ if constraint.op == op_eq:
38
+ lhs, counter = transform_var(constraint.lhs, counter, dimension_dict)
39
+ rhs, counter = transform_var(constraint.rhs, counter, dimension_dict)
40
+ return (lhs == rhs), counter
41
+
42
+ else:
43
+ raise NotImplementedError('Method not yet implemented')
44
+
45
+ elif isinstance(constraint, BinConstraintD):
46
+ if constraint.op == op_eq:
47
+
48
+ if isinstance(constraint.lhs, BVar) and is_bool_expr(constraint.rhs):
49
+ transformed_rhs, counter = transform_to_z3(constraint.rhs, counter, dimension_dict)
50
+ transformed_lhs = z3.Bool(constraint.lhs.c)
51
+ return transformed_lhs == transformed_rhs, counter
52
+
53
+ elif is_dim(constraint.lhs) and is_dim(constraint.rhs):
54
+ # with dimension transformations we consider the encoding
55
+ lhs, counter = transform_dimension(constraint.lhs, counter, dimension_dict)
56
+ rhs, counter = transform_dimension(constraint.rhs, counter, dimension_dict)
57
+ return lhs == rhs, counter
58
+
59
+ else:
60
+ # then we have an algebraic expression which means that we disregard the
61
+ # first element of the encoding
62
+ lhs, counter = transform_algebraic_expression(constraint.lhs, counter, dimension_dict)
63
+ rhs, counter = transform_algebraic_expression(constraint.rhs, counter, dimension_dict)
64
+ return lhs == rhs, counter
65
+
66
+ # The assumption here is that the LHS and RHS must be dimensions
67
+ elif constraint.op == op_neq:
68
+ assert is_dim(constraint.lhs)
69
+ assert is_dim(constraint.rhs)
70
+ lhs, counter = transform_dimension(constraint.lhs, counter, dimension_dict)
71
+ rhs, counter = transform_dimension(constraint.rhs, counter, dimension_dict)
72
+ if constraint.rhs == Dyn or constraint.lhs == Dyn:
73
+ if constraint.rhs == Dyn:
74
+ return lhs.arg(0) == 1, counter
75
+ elif constraint.lhs == Dyn:
76
+ return rhs.arg(0) == 1, counter
77
+
78
+ # if one of the instances is a number
79
+ elif isinstance(constraint.lhs, int) or isinstance(constraint.rhs, int):
80
+ if isinstance(constraint.lhs, int):
81
+ return z3.Or([rhs.arg(0) == 0, z3.And([rhs.arg(0) == 1, lhs.arg(1) != rhs.arg(1)])]), counter
82
+
83
+ elif isinstance(constraint.rhs, int):
84
+ return z3.Or([lhs.arg(0) == 0, z3.And([lhs.arg(0) == 1, lhs.arg(1) != rhs.arg(1)])]), counter
85
+
86
+ else:
87
+ return z3.Or([z3.And([lhs.arg(0) == 0, rhs.arg(0) != 0]),
88
+ z3.And([lhs.arg(0) != 0, rhs.arg(0) == 0]),
89
+ z3.And([lhs.arg(0) != 0, rhs.arg(0) != 0, lhs.arg(1) != rhs.arg(1)])]), counter
90
+
91
+
92
+ elif constraint.op == op_leq:
93
+ # if the dimensions are not dyn, this will come into effect
94
+ # there would have been another constraint specifying if a given dimension
95
+ # is dyn or not
96
+ assert is_dim(constraint.lhs) and is_dim(constraint.rhs)
97
+ lhs, counter = transform_algebraic_expression(constraint.lhs, counter, dimension_dict)
98
+ rhs, counter = transform_algebraic_expression(constraint.rhs, counter, dimension_dict)
99
+ return lhs <= rhs, counter
100
+
101
+ elif constraint.op == op_gt:
102
+ assert is_dim(constraint.lhs) and is_dim(constraint.rhs)
103
+ lhs, counter = transform_algebraic_expression(constraint.lhs, counter, dimension_dict)
104
+ rhs, counter = transform_algebraic_expression(constraint.rhs, counter, dimension_dict)
105
+ return lhs > rhs, counter
106
+
107
+ elif constraint.op == op_lt:
108
+ assert is_dim(constraint.lhs) and is_dim(constraint.rhs)
109
+ lhs, counter = transform_algebraic_expression(constraint.lhs, counter, dimension_dict)
110
+ rhs, counter = transform_algebraic_expression(constraint.rhs, counter, dimension_dict)
111
+ return lhs < rhs, counter
112
+
113
+ else:
114
+ raise NotImplementedError('operation not yet implemented')
115
+
116
+ else:
117
+ raise NotImplementedError('Operation not yet implemented')
118
+
119
+
120
+ def transform_var(tensor, counter, dimension_dict):
121
+ """
122
+ Transforms tensor variables to a format understood by z3
123
+ Args:
124
+ tensor: Tensor variable or a tensor type potentially with variable dimensions
125
+ Returns: Transformed variable to a z3 format
126
+
127
+ """
128
+ if isinstance(tensor, TensorType):
129
+ res = []
130
+ for t in tensor.__args__:
131
+ transformed, counter = transform_dimension(t, counter, dimension_dict)
132
+ res.append(transformed)
133
+
134
+ assert len(res) <= 4
135
+ if len(tensor.__args__) == 1:
136
+ return tensor_type.tensor1(res[0]), counter
137
+ elif len(tensor.__args__) == 2:
138
+ return tensor_type.tensor2(res[0], res[1]), counter
139
+ elif len(tensor.__args__) == 3:
140
+ return tensor_type.tensor3(res[0], res[1], res[2]), counter
141
+ elif len(tensor.__args__) == 4:
142
+ return tensor_type.tensor4(res[0], res[1], res[2], res[3]), counter
143
+
144
+ elif tensor == Dyn:
145
+ return z3_dyn, counter
146
+
147
+ elif isinstance(tensor, TVar):
148
+ return z3.Const(tensor.tvar, tensor_type), counter
149
+
150
+ def transform_dimension(dimension, counter, dimension_dict):
151
+ """
152
+ Takes a dimension variable or a number and transforms it to a tuple
153
+ according to our scheme
154
+ Args:
155
+ dimension: The dimension to be transformed
156
+ counter: variable tracking
157
+
158
+ Returns: tuple and the current counter
159
+
160
+ """
161
+ if dimension == Dyn:
162
+ counter += 1
163
+ return D(0, z3.Int(counter)), counter
164
+ elif isinstance(dimension, int):
165
+ return D(1, dimension), counter
166
+ elif isinstance(dimension, DVar):
167
+ if dimension.c in dimension_dict:
168
+ return D(z3.Int(dimension_dict[dimension.c]), z3.Int(dimension.c)), counter
169
+ else:
170
+ counter += 1
171
+ dimension_dict[dimension.c] = counter
172
+ return D(z3.Int(counter), z3.Int(dimension.c)), counter
173
+
174
+
175
+ def transform_algebraic_expression(expr, counter, dimension_dict):
176
+ """
177
+ Transforms an algebraic expression to z3 format
178
+ Args:
179
+ expr: An expression is either a dimension variable or an algebraic-expression
180
+
181
+
182
+ Returns: the transformed expression
183
+
184
+ """
185
+ assert is_algebraic_expression(expr) or is_dim(expr)
186
+
187
+ if is_dim(expr):
188
+ transformed, counter = transform_dimension(expr, counter, dimension_dict)
189
+ return transformed.arg(1), counter
190
+
191
+ elif isinstance(expr, Prod):
192
+
193
+ dims = []
194
+ for dim in expr.products:
195
+ assert is_dim(dim)
196
+ d, counter = transform_dimension(dim, counter, dimension_dict)
197
+ dims.append(d.arg(1))
198
+ return z3.Product(dims), counter
199
+
200
+ elif is_algebraic_expression(expr):
201
+
202
+ lhs, counter = transform_algebraic_expression(expr.lhs, counter, dimension_dict)
203
+ rhs, counter = transform_algebraic_expression(expr.rhs, counter, dimension_dict)
204
+
205
+ if expr.op == op_sub:
206
+ c = lhs - rhs
207
+
208
+ elif expr.op == op_add:
209
+ c = lhs + rhs
210
+
211
+ elif expr.op == op_div:
212
+ c = lhs / rhs
213
+
214
+ elif expr.op == op_mul:
215
+ c = lhs * rhs
216
+
217
+ elif expr.op == op_mod:
218
+ c = lhs % rhs
219
+
220
+ else:
221
+ raise NotImplementedError('operation not yet implemented')
222
+
223
+ return c, counter
224
+
225
+ else:
226
+ raise RuntimeError
227
+
228
+
229
+ def transform_all_constraints(traced, counter=0):
230
+ """
231
+ Given a trace, generates constraints and transforms them to z3 format
232
+
233
+ """
234
+ dimension_dict = {} # type: ignore[var-annotated]
235
+
236
+ generator = ConstraintGenerator(traced)
237
+ new_constraints, counter = generator.generate_constraints(counter)
238
+
239
+ # print(new_constraints.conjucts[0])
240
+ # print(*new_constraints.conjucts, sep='\n')
241
+
242
+ # transform precision, matching, consistency till obtaining a fixed point
243
+ new_constraints, counter = iterate_till_fixed_point(new_constraints, counter)
244
+ # print(new_constraints)
245
+ # print(new_constraints.conjucts)
246
+ # new_constraints.conjucts = new_constraints.conjucts[:-1]
247
+ # print(*new_constraints.conjucts, sep='\n')
248
+
249
+ transformed, counter = transform_to_z3(new_constraints, counter, dimension_dict)
250
+ # print(transformed)
251
+ return transformed
252
+
253
+ def iterate_till_fixed_point(constraints, counter):
254
+ """
255
+ Transform constraints till reaching a fixed point
256
+ """
257
+ old_c = None
258
+ while old_c != constraints:
259
+ old_c = constraints
260
+ constraints, counter = transform_constraint(constraints, counter)
261
+ return constraints, counter
262
+
263
+ def transform_all_constraints_trace_time(tracer_root, graph, node, counter=0):
264
+ """
265
+ Takes a node and a graph and generates two sets of constraints.
266
+ One set constraints the node's constraints and another set
267
+ constraints the negation of the node's constraints
268
+ Args:
269
+ tracer_root: the root for getting the module instances
270
+ graph: the graph so far in the tracing process
271
+ node: node that represents a conditional
272
+ counter: variable tracking
273
+
274
+ Returns: Two sets of constraints. One with a conjunction with the
275
+ the conditional constraint and the other with a conjunction with
276
+ its negation.
277
+
278
+ """
279
+ dimension_dict = {} # type: ignore[var-annotated]
280
+
281
+ generator = ConstraintGenerator(tracer_root, graph)
282
+ new_constraints, counter = generator.generate_constraints(counter)
283
+
284
+ condition_constraint = new_constraints.conjucts[-1]
285
+
286
+ # we know the constraint is a conjunction where the last constraint is about the conditional
287
+ # so remove the last constraint
288
+ new_constraints.conjucts = new_constraints.conjucts[:-1]
289
+
290
+ # transform precision, matching, consistency till obtaining a fixed point
291
+ new_constraints, counter = iterate_till_fixed_point(new_constraints, counter)
292
+
293
+
294
+ # since the function returns a list of one element, we get the first element
295
+ # we are only interested in the RHS in this case because the LHS just stores
296
+ # the result
297
+
298
+ # we make sure the constraint is of the form:
299
+ # c = b where b is a boolean expression
300
+ # and we consider b (constraint.rhs) for transformation
301
+ assert isinstance(condition_constraint.lhs, BVar)
302
+ assert is_bool_expr(condition_constraint.rhs)
303
+ condition_constraint_rhs = condition_constraint.rhs
304
+
305
+ # transform the condition constraint
306
+ condition_constraint_rhs, counter = iterate_till_fixed_point(condition_constraint_rhs, counter)
307
+
308
+ transformed, counter = transform_to_z3(new_constraints, counter, dimension_dict)
309
+
310
+ transformed_condition_constraint, counter = transform_to_z3(condition_constraint_rhs, counter, dimension_dict)
311
+
312
+ negation_transformed_condition_constraint = z3.Not(transformed_condition_constraint)
313
+
314
+ return z3.And([transformed, transformed_condition_constraint]),\
315
+ z3.And([transformed, negation_transformed_condition_constraint])
316
+
317
+
318
+ def evaluate_conditional_with_constraints(tracer_root, graph, node, counter=0, user_constraints=None):
319
+ """
320
+ Given an IR and a node representing a conditional, evaluate the conditional
321
+ and its negation
322
+ Args:
323
+ tracer_root: Tracer root for module instances
324
+ node: The node to be evaluated
325
+
326
+ Returns: the results of evaluating the condition and the negation with
327
+ the rest of the constraints
328
+
329
+ """
330
+
331
+ transformed_positive, transformed_negative = \
332
+ transform_all_constraints_trace_time(tracer_root, graph, node, counter)
333
+
334
+ s = z3.Solver()
335
+ s.add(transformed_positive)
336
+ if user_constraints is not None:
337
+ s.add(user_constraints)
338
+ condition = s.check()
339
+
340
+ s = z3.Solver()
341
+ s.add(transformed_negative)
342
+ if user_constraints is not None:
343
+ s.add(user_constraints)
344
+ negation = s.check()
345
+ return condition, negation
346
+
347
+ except ImportError:
348
+ HAS_Z3 = False
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/util.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.fx.experimental.migrate_gradual_types.constraint import TVar, DVar, BinConstraintD, \
2
+ BVar
3
+ from torch.fx.experimental.migrate_gradual_types.operation import op_leq
4
+
5
+
6
+ def gen_tvar(curr):
7
+ """
8
+ Generate a tensor variable
9
+ :param curr: The current counter
10
+ :return: a tensor variable and the updated counter
11
+ """
12
+ curr += 1
13
+ return TVar(curr), curr
14
+
15
+
16
+ def gen_dvar(curr):
17
+ """
18
+ Generate a dimension variable
19
+ :param curr: the current counter
20
+ :return: a dimension variable and an updated counter
21
+ """
22
+ curr += 1
23
+ return DVar(curr), curr
24
+
25
+ def gen_bvar(curr):
26
+ """
27
+ Generate a boolean variable
28
+ :param curr: the current counter
29
+ :return: a boolean variable and an updated counter
30
+ """
31
+ curr += 1
32
+ return BVar(curr), curr
33
+
34
+ def gen_tensor_dims(n, curr):
35
+ """
36
+ Generate a list of tensor dimensions
37
+ :param n: the number of dimensions
38
+ :param curr: the current counter
39
+ :return: a list of dimension variables and an updated counter
40
+ """
41
+ dims = []
42
+ for _ in range(n):
43
+ dvar, curr = gen_dvar(curr)
44
+ dims.append(dvar)
45
+ return dims, curr
46
+
47
+
48
+ def gen_nat_constraints(list_of_dims):
49
+ """
50
+ Generate natural number constraints for dimensions
51
+ """
52
+ return [BinConstraintD(0, d, op_leq) for d in list_of_dims]
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/migrate_gradual_types/z3_types.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ import z3 # type: ignore[import]
3
+ HAS_Z3 = True
4
+ # dynamic type
5
+ dyn = z3.DeclareSort('Dyn')
6
+ dyn_type = z3.Const('dyn', dyn)
7
+
8
+ # dimension
9
+ dim = z3.Datatype('dim')
10
+ dim.declare('dim', ('0', z3.IntSort()), ('1', z3.IntSort()))
11
+ dim = dim.create()
12
+
13
+ # tensors
14
+ tensor_type = z3.Datatype('TensorType')
15
+ tensor_type.declare('Dyn', ('dyn', dyn))
16
+ tensor_type.declare('tensor1', ('0', dim))
17
+ tensor_type.declare('tensor2', ('0', dim), ('1', dim))
18
+ tensor_type.declare('tensor3', ('0', dim), ('1', dim), ('2', dim))
19
+ tensor_type.declare('tensor4', ('0', dim), ('1', dim), ('2', dim), ('3', dim))
20
+ tensor_type = tensor_type.create()
21
+
22
+ # create dimension
23
+ D = dim.dim
24
+
25
+ z3_dyn = tensor_type.Dyn(dyn_type)
26
+
27
+
28
+ except ImportError:
29
+ HAS_Z3 = False
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/normalize.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+ from typing import Any, Callable, Dict, Tuple, Optional
3
+
4
+ import torch
5
+ import torch.fx
6
+ import torch.fx as fx
7
+ from torch.fx import Transformer, Proxy
8
+ from torch.fx.node import Argument, Target, Node, map_aggregate
9
+ from torch.fx.operator_schemas import (
10
+ normalize_module,
11
+ normalize_function,
12
+ create_type_hint,
13
+ )
14
+
15
+ from .schema_type_annotation import AnnotateTypesWithSchema
16
+
17
+
18
+ class NormalizeArgs(Transformer):
19
+ """
20
+ Normalize arguments to Python targets. This means that
21
+ `args/kwargs` will be matched up to the module/functional's
22
+ signature and rewritten to exclusively kwargs in positional order
23
+ if `normalize_to_only_use_kwargs` is true. Also populates default
24
+ values. Does not support positional-only parameters or varargs
25
+ parameters (*args, **kwargs).
26
+
27
+ If the nodes have 'type' metadata, it will use it to disambiguate
28
+ overloads. Otherwise, it will throw an error.
29
+
30
+ Example usage:
31
+ m = torchvision.models.resnet18()
32
+ traced = torch.fx.symbolic_trace(m)
33
+ traced = NormalizeArgs(traced).transform()
34
+ """
35
+
36
+ def __init__(
37
+ self, module: torch.fx.GraphModule, normalize_to_only_use_kwargs: bool = True
38
+ ):
39
+ super().__init__(module)
40
+ self.node_map: Dict[Proxy, Node] = {}
41
+ self.normalize_to_only_use_kwargs = normalize_to_only_use_kwargs
42
+
43
+ def run_node(self, n: Node) -> Any:
44
+ args, kwargs = self.fetch_args_kwargs_from_env(n)
45
+
46
+ def get_type(arg):
47
+ if isinstance(arg, fx.Node):
48
+ return n.meta["type"] if "type" in n.meta else None
49
+ return type(arg)
50
+
51
+ arg_types = map_aggregate(n.args, get_type)
52
+ assert isinstance(arg_types, tuple)
53
+ arg_types = tuple([create_type_hint(i) for i in arg_types])
54
+ kwarg_types = {k: get_type(v) for k, v in kwargs.items()}
55
+ if n.op == "call_function":
56
+ out = self.call_function(n.target, args, kwargs, arg_types, kwarg_types)
57
+ else:
58
+ out = super().run_node(n)
59
+ if n.op != "output":
60
+ self.node_map[out] = n
61
+ out.node.meta = n.meta
62
+ out.node.type = n.type
63
+ return out
64
+
65
+ def call_function(
66
+ self,
67
+ target: Target,
68
+ args: Tuple[Argument, ...],
69
+ kwargs: Dict[str, Any],
70
+ arg_types: Optional[Tuple[Any, ...]] = None,
71
+ kwarg_types: Optional[Dict[str, Any]] = None,
72
+ ):
73
+ assert callable(target)
74
+ new_args_and_kwargs = normalize_function(
75
+ target,
76
+ args, # type: ignore[arg-type]
77
+ kwargs,
78
+ arg_types, # type: ignore[arg-type]
79
+ kwarg_types,
80
+ self.normalize_to_only_use_kwargs,
81
+ )
82
+ if new_args_and_kwargs:
83
+ new_args, new_kwargs = new_args_and_kwargs
84
+ return self.tracer.create_proxy(
85
+ "call_function", target, new_args, new_kwargs
86
+ )
87
+ else:
88
+ return super().call_function(target, args, kwargs)
89
+
90
+ def call_module(
91
+ self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
92
+ ):
93
+ assert isinstance(target, str)
94
+ new_args_and_kwargs = normalize_module(
95
+ self.module,
96
+ target,
97
+ args, # type: ignore[arg-type]
98
+ kwargs,
99
+ self.normalize_to_only_use_kwargs,
100
+ )
101
+ if new_args_and_kwargs:
102
+ new_args, new_kwargs = new_args_and_kwargs
103
+ return super().call_module(target, new_args, new_kwargs)
104
+ else:
105
+ return super().call_module(target, args, kwargs)
106
+
107
+
108
+ class NormalizeOperators(AnnotateTypesWithSchema):
109
+ """
110
+ Normalize callsites that are different ways of "spelling" the same
111
+ invocation into a single, canonical call. Currently supports:
112
+
113
+ 1. Normalize operators (e.g. operator.add) to the `torch` ops they
114
+ ultimately invoke (e.g. torch.add) when it is possible to statically
115
+ reason that
116
+
117
+ Example usage:
118
+
119
+ m = torchvision.models.resnet18()
120
+
121
+ traced = torch.fx.symbolic_trace(m)
122
+
123
+ traced = NormalizeOperators(traced).transform()
124
+ """
125
+
126
+ binary_magic_method_remap: Dict[
127
+ Callable[[Any, Any], Any], Callable[[Any, Any], Any]
128
+ ] = {
129
+ torch.add: operator.add,
130
+ torch.mul: operator.mul,
131
+ torch.sub: operator.sub,
132
+ torch.div: operator.truediv,
133
+ torch.floor_divide: operator.floordiv,
134
+ torch.remainder: operator.mod,
135
+ torch.eq: operator.eq,
136
+ torch.ne: operator.ne,
137
+ torch.lt: operator.lt,
138
+ torch.le: operator.le,
139
+ torch.gt: operator.gt,
140
+ torch.ge: operator.ge,
141
+ }
142
+
143
+ def call_function(
144
+ self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
145
+ ):
146
+ # Normalize operators according to the magic methods implemented on tensors here:
147
+ # https://github.com/pytorch/pytorch/blob/28c5d90b679c6b38bf4183ec99f16d933c2f1bcd/tools/autograd/templates/python_variable_methods.cpp#L1137 # noqa: B950
148
+
149
+ assert callable(target)
150
+
151
+ if target in self.binary_magic_method_remap:
152
+ if len(args) != 2:
153
+ return super().call_function(target, args, kwargs)
154
+ lhs, rhs = args
155
+
156
+ return super().call_function(
157
+ target=self.binary_magic_method_remap[target],
158
+ args=(lhs, rhs),
159
+ kwargs={},
160
+ )
161
+
162
+ return super().call_function(target, args, kwargs)
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/optimization.py ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.fx as fx
2
+ from torch.fx.node import Argument, Target
3
+ from torch.nn.utils.fusion import fuse_conv_bn_eval
4
+ from typing import Type, Dict, Any, Tuple, Iterable, Optional, List, cast
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from torch.fx.passes.shape_prop import ShapeProp
9
+ import copy
10
+ from collections import defaultdict
11
+ import torch.utils.mkldnn as th_mkldnn
12
+ import operator
13
+ import time
14
+ import logging
15
+ from enum import Enum
16
+
17
+ def _parent_name(target : str) -> Tuple[str, str]:
18
+ """
19
+ Splits a qualname into parent path and last atom.
20
+ For example, `foo.bar.baz` -> (`foo.bar`, `baz`)
21
+ """
22
+ *parent, name = target.rsplit('.', 1)
23
+ return parent[0] if parent else '', name
24
+
25
+ # Works for length 2 patterns with 2 modules
26
+ def matches_module_pattern(pattern: Iterable[Type], node: fx.Node, modules: Dict[str, Any]):
27
+ if len(node.args) == 0:
28
+ return False
29
+ nodes: Tuple[Any, fx.Node] = (node.args[0], node)
30
+ for expected_type, current_node in zip(pattern, nodes):
31
+ if not isinstance(current_node, fx.Node):
32
+ return False
33
+ if current_node.op != 'call_module':
34
+ return False
35
+ if not isinstance(current_node.target, str):
36
+ return False
37
+ if current_node.target not in modules:
38
+ return False
39
+ if type(modules[current_node.target]) is not expected_type:
40
+ return False
41
+ return True
42
+
43
+
44
+ def replace_node_module(node: fx.Node, modules: Dict[str, Any], new_module: torch.nn.Module):
45
+ assert(isinstance(node.target, str))
46
+ parent_name, name = _parent_name(node.target)
47
+ modules[node.target] = new_module
48
+ setattr(modules[parent_name], name, new_module)
49
+
50
+ def fuse(model: torch.nn.Module, inplace=False) -> torch.nn.Module:
51
+ """
52
+ Fuses convolution/BN layers for inference purposes. Will deepcopy your
53
+ model by default, but can modify the model inplace as well.
54
+ """
55
+ patterns = [(nn.Conv1d, nn.BatchNorm1d),
56
+ (nn.Conv2d, nn.BatchNorm2d),
57
+ (nn.Conv3d, nn.BatchNorm3d)]
58
+ if not inplace:
59
+ model = copy.deepcopy(model)
60
+ fx_model = fx.symbolic_trace(model)
61
+ modules = dict(fx_model.named_modules())
62
+ new_graph = copy.deepcopy(fx_model.graph)
63
+
64
+ for pattern in patterns:
65
+ for node in new_graph.nodes:
66
+ if matches_module_pattern(pattern, node, modules):
67
+ if len(node.args[0].users) > 1: # Output of conv is used by other nodes
68
+ continue
69
+ conv = modules[node.args[0].target]
70
+ bn = modules[node.target]
71
+ if not bn.track_running_stats:
72
+ continue
73
+ fused_conv = fuse_conv_bn_eval(conv, bn)
74
+ replace_node_module(node.args[0], modules, fused_conv)
75
+ node.replace_all_uses_with(node.args[0])
76
+ new_graph.erase_node(node)
77
+ return fx.GraphModule(fx_model, new_graph)
78
+
79
+ def remove_dropout(model: nn.Module) -> nn.Module:
80
+ """
81
+ Removes all dropout layers from the module.
82
+ """
83
+ fx_model = fx.symbolic_trace(model)
84
+
85
+ class DropoutRemover(torch.fx.Transformer):
86
+ def call_module(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
87
+ if isinstance(self.submodules[target], nn.Dropout):
88
+ assert len(args) == 1
89
+ return args[0]
90
+ else:
91
+ return super().call_module(target, args, kwargs)
92
+ return DropoutRemover(fx_model).transform()
93
+
94
+ def extract_subgraph(orig_module: nn.Module, nodes: List[fx.Node], inputs: List[fx.Node], outputs: List[fx.Node]):
95
+ """
96
+ Given lists of nodes from an existing graph that represent a subgraph, returns a submodule that executes that subgraph.
97
+ """
98
+ new_graph = fx.Graph()
99
+ env: Dict[fx.Node, fx.Node] = {}
100
+ for input in inputs:
101
+ new_node = new_graph.placeholder(input.name)
102
+ env[input] = new_node
103
+ for node in nodes:
104
+ new_node = new_graph.node_copy(node, lambda x: env[x])
105
+ env[node] = new_node
106
+ new_graph.output([env[output] for output in outputs])
107
+ new_graph.lint()
108
+ return fx.GraphModule(orig_module, new_graph)
109
+
110
+ mkldnn_supported = [
111
+ nn.Conv2d, nn.Linear, nn.BatchNorm2d, nn.ReLU, nn.MaxPool2d, nn.AvgPool2d, nn.AdaptiveAvgPool2d,
112
+ torch.relu, torch.transpose, torch.sigmoid,
113
+ F.relu, F.avg_pool2d, F.adaptive_avg_pool2d
114
+ ]
115
+ # These are operators that may not be convertible into MKLDNN ops (e.g. the
116
+ # args are scalar values). Thus, we only include them in the subgraph if their
117
+ # arguments are already in MKLDNN.
118
+ # TODO: Determine whether this can be removed after type inference.
119
+ mkldnn_supported_unknown = [operator.add, operator.mul]
120
+ mkldnn_map = {
121
+ nn.Conv2d: th_mkldnn.MkldnnConv2d,
122
+ nn.Linear: th_mkldnn.MkldnnLinear,
123
+ nn.BatchNorm2d: lambda a, _: th_mkldnn.MkldnnBatchNorm(a)
124
+ }
125
+
126
+
127
+ def modules_to_mkldnn(nodes: List[fx.Node], modules: Dict[str, nn.Module]):
128
+ """
129
+ For each node, if it's a module that can be preconverted into MKLDNN,
130
+ then we do so and create a mapping to allow us to convert from the MKLDNN
131
+ version of the module to the original.
132
+ """
133
+ old_modules: Dict[nn.Module, nn.Module] = {}
134
+ for node in nodes:
135
+ if node.op == 'call_module':
136
+ assert(isinstance(node.target, str))
137
+ cur_module = modules[node.target]
138
+ if type(cur_module) in mkldnn_map:
139
+ new_module = mkldnn_map[type(cur_module)](cur_module, torch.float)
140
+ assert(isinstance(new_module, nn.Module))
141
+ old_modules[new_module] = copy.deepcopy(cur_module)
142
+ replace_node_module(node, modules, new_module)
143
+ return old_modules
144
+
145
+ def reset_modules(nodes: List[fx.Node], modules: Dict[str, nn.Module], old_modules: Dict[nn.Module, nn.Module]):
146
+ """
147
+ Maps each module that's been changed with `modules_to_mkldnn` back to its
148
+ original.
149
+ """
150
+ for node in nodes:
151
+ if node.op == 'call_module':
152
+ assert(isinstance(node.target, str))
153
+ cur_module = modules[node.target]
154
+ if cur_module in old_modules:
155
+ replace_node_module(node, modules, old_modules[cur_module])
156
+
157
+ class MklSubgraph:
158
+ def __init__(self, fx_graph: fx.Graph):
159
+ self.fx_graph = fx_graph
160
+ self.nodes: List[fx.Node] = []
161
+ self.start_nodes: List[fx.Node] = []
162
+ self.end_nodes: List[fx.Node] = []
163
+
164
+ def gen_mkl_autotuner(example_inputs, iters=10, warmup=1):
165
+ """
166
+ This generates a heuristic that can be passed into `optimize_for_inference` that
167
+ determines whether a subgraph should be run in MKL by running it with the example_inputs.
168
+
169
+ Example usage:
170
+ heuristic = gen_mkl_autotuner(example_inputs, iters=10)
171
+ fast_model = optimization.optimize_for_inference(model, heuristic)
172
+ """
173
+ fx_model = None
174
+ old_modules = None
175
+
176
+ def use_mkl_heuristic(graph: MklSubgraph) -> bool:
177
+ nonlocal fx_model, old_modules
178
+ input_nodes = graph.start_nodes
179
+ if fx_model is None:
180
+ fx_model = graph.fx_graph.owning_module
181
+ old_modules = graph.fx_graph.old_modules # type: ignore[attr-defined]
182
+ ShapeProp(fx_model).propagate(example_inputs)
183
+ sample_inputs = [torch.randn(node.shape) for node in input_nodes] # type: ignore[attr-defined]
184
+ output_args = cast(List[fx.Node], [node.args[0] for node in graph.end_nodes])
185
+ submodule = extract_subgraph(fx_model, graph.nodes, input_nodes, output_args)
186
+
187
+ def benchmark(f):
188
+ for _ in range(warmup):
189
+ f()
190
+ begin = time.time()
191
+ for _ in range(iters):
192
+ out = f()
193
+ return time.time() - begin
194
+
195
+ mkl_time = benchmark(lambda: [i.to_dense() for i in submodule(*[i.to_mkldnn() for i in sample_inputs])])
196
+
197
+ reset_modules(submodule.graph.nodes, dict(submodule.named_modules()), old_modules)
198
+ no_mkl_time = benchmark(lambda: submodule(*sample_inputs))
199
+ return mkl_time < no_mkl_time
200
+ return use_mkl_heuristic
201
+
202
+ def use_mkl_length(graph: MklSubgraph) -> bool:
203
+ """
204
+ This is a heuristic that can be passed into `optimize_for_inference` that
205
+ determines whether a subgraph should be run in MKL by checking if there
206
+ are more than 2 nodes in it
207
+ """
208
+ return len(graph.nodes) > 2
209
+
210
+ class UnionFind:
211
+ def __init__(self, n):
212
+ self.parent: List[Optional[int]] = [None] * n
213
+ self.size: List[int] = [0] * n
214
+
215
+ def make_set(self, v: int):
216
+ self.parent[v] = v
217
+ self.size[v] = 1
218
+
219
+ def find(self, v: int) -> int:
220
+ par = self.parent[v]
221
+ if v == par:
222
+ return v
223
+ assert(par is not None)
224
+ self.parent[v] = self.find(par)
225
+ return cast(int, self.parent[v])
226
+
227
+ def join(self, a: int, b: int):
228
+ a, b = self.find(a), self.find(b)
229
+ if a == b:
230
+ return a
231
+ if self.size[a] < self.size[b]:
232
+ a, b = b, a
233
+ self.parent[b] = a
234
+ self.size[a] += self.size[b]
235
+
236
+ def optimize_for_inference(
237
+ model: torch.nn.Module,
238
+ pass_config: Optional[Dict[str, Any]] = None,
239
+ tracer: Type[fx.Tracer] = fx.Tracer
240
+ ) -> torch.nn.Module:
241
+ """
242
+ Performs a set of optimization passes to optimize a model for the
243
+ purposes of inference. Specifically, the passes that are run are:
244
+ 1. Conv/BN fusion
245
+ 2. Dropout removal
246
+ 3. MKL layout optimizations
247
+
248
+ The third optimization takes a function `use_mkl_heuristic` that's used
249
+ to determine whether a subgraph should be explicitly run in MKL layout.
250
+
251
+ Note: As FX does not currently handle aliasing, this pass currently
252
+ assumes nothing aliases. If that isn't true, use at your own risk.
253
+ """
254
+ default_pass_config = {
255
+ "conv_bn_fuse": True,
256
+ "remove_dropout": True,
257
+ "mkldnn_layout_optimize": {'heuristic': use_mkl_length},
258
+ }
259
+ if pass_config is None:
260
+ pass_config = {}
261
+ default_pass_config.update(pass_config)
262
+
263
+ if default_pass_config["conv_bn_fuse"]:
264
+ model = fuse(model)
265
+ if default_pass_config["remove_dropout"]:
266
+ model = remove_dropout(model)
267
+ if default_pass_config["mkldnn_layout_optimize"] is False:
268
+ return model
269
+ if not isinstance(default_pass_config["mkldnn_layout_optimize"], dict):
270
+ raise RuntimeError("mkldnn_layout_optimize config is not a dict")
271
+ if "heuristic" not in default_pass_config["mkldnn_layout_optimize"]:
272
+ raise RuntimeError("Heuristic not found in mkldnn_layout_optimize config")
273
+ use_mkl_heuristic = default_pass_config["mkldnn_layout_optimize"]["heuristic"]
274
+
275
+ cur_tracer = tracer()
276
+ fx_graph = cur_tracer.trace(copy.deepcopy(model))
277
+ fx_model = fx.GraphModule(cur_tracer.root, fx_graph)
278
+ modules: Dict[str, nn.Module] = dict(model.named_modules())
279
+
280
+ class MklSupport(Enum):
281
+ NO = 1
282
+ YES = 2
283
+ UNKNOWN = 3
284
+
285
+ # Inserts to_mkldnn and to_dense around every node we want to be a MKLDNN node.
286
+ # If the op is in `mkldnn_supported` then we always treat it as a MKLDNN node.
287
+ # However, if it's in `mkldnn_supported_unknown`, then we only treat it as
288
+ # a MKLDNN node if its inputs are MKLDNN nodes.
289
+ for node in list(fx_graph.nodes):
290
+ supports_mkldnn = MklSupport.NO
291
+ if node.op == 'call_module':
292
+ cur_module = modules[node.target]
293
+ if type(cur_module) in mkldnn_supported:
294
+ supports_mkldnn = MklSupport.YES
295
+ sample_parameter = next(cur_module.parameters(), None)
296
+ if sample_parameter is not None:
297
+ assert(sample_parameter.dtype == torch.float), "this pass is only for torch.float modules"
298
+ assert(sample_parameter.device == torch.device('cpu')), "this pass is only for CPU modules"
299
+ elif node.op == 'call_function':
300
+ if node.target in mkldnn_supported:
301
+ supports_mkldnn = MklSupport.YES
302
+ elif node.target in mkldnn_supported_unknown:
303
+ supports_mkldnn = MklSupport.UNKNOWN
304
+
305
+ if supports_mkldnn != MklSupport.NO:
306
+ if supports_mkldnn == MklSupport.UNKNOWN:
307
+ if not any(arg.target == 'to_dense' for arg in node.args):
308
+ continue
309
+ with fx_graph.inserting_before(node):
310
+ mkldnn_args = fx.map_arg(node.args, lambda n: fx_graph.call_method('to_mkldnn', (n, )))
311
+
312
+ node.args = cast(Tuple[fx.node.Argument], mkldnn_args)
313
+
314
+ with fx_graph.inserting_after(node):
315
+ dense_x = fx_graph.create_node('call_method', 'to_dense', (node,))
316
+ node.replace_all_uses_with(dense_x)
317
+ dense_x.args = (node,)
318
+
319
+ # Does pre-conversion of all modules into MKLDNN (when possible)
320
+ old_modules = modules_to_mkldnn(list(fx_graph.nodes), modules)
321
+ fx_graph.old_modules = old_modules # type: ignore[attr-defined]
322
+
323
+ # optimizes all a -> to_dense -> to_mkldnn -> b patterns into a -> b
324
+ for node in fx_graph.nodes:
325
+ if node.op == 'call_method' and node.target == 'to_dense':
326
+ prv_node = node.args[0]
327
+ users = list(node.users)
328
+ for user in users:
329
+ if user.op == 'call_method' and user.target == 'to_mkldnn':
330
+ user.replace_all_uses_with(prv_node)
331
+ fx_graph.erase_node(user)
332
+ if len(node.users) == 0:
333
+ fx_graph.erase_node(node)
334
+
335
+
336
+ num_nodes = len(fx_graph.nodes)
337
+ uf = UnionFind(num_nodes)
338
+
339
+ def get_color(n):
340
+ if hasattr(n, 'color'): # Current node is part of a MKL subgraph
341
+ return uf.find(n.color)
342
+ if hasattr(n, 'start_color'): # Current node is input to MKL subgraph
343
+ return uf.find(n.start_color)
344
+ return None
345
+
346
+
347
+ # This code is to find each MKLDNN subgraph. Each MKLDNN subgraph consists
348
+ # of input nodes (which are only `to_mkldnn` calls), output nodes
349
+ # (`to_dense` calls), and intermediate nodes, which are run entirely on
350
+ # MKLDNN layout tensors.
351
+ #
352
+ # Specifically, this code does a flood fill on a directed acyclic graph
353
+ # (DAG), starting from each possible "start node" (i.e: `to_mkldnn` nodes).
354
+ # If every node only had one input, this would be sufficient. However, in
355
+ # the case that a node has multiple inputs coming from different start
356
+ # nodes (i.e. colors), we need to join these 2 colors into 1. That's done
357
+ # using a Disjoint Set Union.
358
+ for cur_idx, node in enumerate(fx_graph.nodes):
359
+ if node.op == 'call_method' and node.target == 'to_mkldnn':
360
+ node.start_color = cur_idx
361
+ uf.make_set(cur_idx)
362
+ elif node.op == 'call_method' and node.target == 'to_dense':
363
+ assert(get_color(node.args[0]) is not None)
364
+ node.end_color = get_color(node.args[0])
365
+ else:
366
+ cur_colors = [get_color(i) for i in node.all_input_nodes if isinstance(i, fx.Node) if get_color(i) is not None]
367
+
368
+ if len(cur_colors) == 0:
369
+ continue
370
+ assert(not any(i is None for i in cur_colors))
371
+ cur_colors = sorted(cur_colors)
372
+ node.color = cur_colors[0]
373
+ for other_color in cur_colors[1:]:
374
+ uf.join(cur_colors[0], other_color)
375
+
376
+
377
+ mkldnn_graphs: Dict[int, MklSubgraph] = defaultdict(lambda: MklSubgraph(fx_graph))
378
+ for node in fx_graph.nodes:
379
+ if hasattr(node, 'color'):
380
+ mkldnn_graphs[uf.find(node.color)].nodes.append(node)
381
+ if hasattr(node, 'start_color'):
382
+ mkldnn_graphs[uf.find(node.start_color)].start_nodes.append(node)
383
+ if hasattr(node, 'end_color'):
384
+ mkldnn_graphs[uf.find(node.end_color)].end_nodes.append(node)
385
+
386
+
387
+ # Now that we have all the subgraphs, we need to decide which MKLDNN
388
+ # subgraphs we actually want to keep in MKLDNN.
389
+ for graph in mkldnn_graphs.values():
390
+ if not use_mkl_heuristic(graph):
391
+ for node in graph.start_nodes + graph.end_nodes:
392
+ prv = node.args[0]
393
+ node.replace_all_uses_with(prv)
394
+ fx_graph.erase_node(node)
395
+ reset_modules(graph.nodes, modules, old_modules)
396
+
397
+ mkldnn_conversions = 0
398
+ for node in fx_graph.nodes:
399
+ if node.target == 'to_mkldnn' or node.target == 'to_dense':
400
+ mkldnn_conversions += 1
401
+
402
+ logging.getLogger(__name__).info(f"mkldnn conversions: {mkldnn_conversions}")
403
+ fx_graph.lint()
404
+ result = fx.GraphModule(model, fx_graph)
405
+ return result
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/partitioner_utils.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import NamedTuple, Dict, List, Set
3
+
4
+ from torch.fx.node import Node, map_arg
5
+
6
+
7
+ class Partition:
8
+ """Partition class contains all the information about an individual partition.
9
+ It also provides necessary methods for manipulation the partition.
10
+ """
11
+
12
+ def __init__(self, partition_id: int) -> None:
13
+ self.nodes: Set[Node] = set()
14
+ self.partition_id = partition_id
15
+ self.parents: Set[Partition] = set()
16
+ self.children: Set[Partition] = set()
17
+ self.bfs_level: int = -1
18
+ self.used_mem_bytes: int = 0
19
+ self.logical_device_ids: List[int] = []
20
+
21
+ def __str__(self):
22
+ return str(self.partition_id)
23
+
24
+ def recalculate_mem_size(self):
25
+ self.used_mem_bytes = 0
26
+ for node in self.nodes:
27
+ self.used_mem_bytes += get_extra_size_of(node, self.nodes)
28
+
29
+ def add_node(self, node):
30
+ input_nodes: Dict[Node, None] = {}
31
+ map_arg(node.args, input_nodes.setdefault)
32
+ map_arg(node.kwargs, input_nodes.setdefault)
33
+ # Add current node's input nodes if they are placeholder or constants
34
+ for n in input_nodes:
35
+ if n.op in {"placeholder", "get_attr"}:
36
+ self.nodes.add(n)
37
+ self.nodes.add(node)
38
+ self.recalculate_mem_size()
39
+
40
+ def remove_node(self, node):
41
+ # Remove a node only if the node is in the partition
42
+ if node in self.nodes:
43
+ self.nodes.remove(node)
44
+ # Collect the node's input nodes
45
+ input_nodes: Dict[Node, None] = {}
46
+ map_arg(node.args, input_nodes.setdefault)
47
+ map_arg(node.kwargs, input_nodes.setdefault)
48
+ # Check if an input node is a placeholder or get_attr,
49
+ # and this input node is not used by some other nodes in this partition,
50
+ # the remove this input node
51
+ for input_node in input_nodes:
52
+ if all(
53
+ n not in self.nodes for n in input_node.users
54
+ ) and input_node.op in {"placeholder", "get_attr"}:
55
+ self.nodes.remove(input_node)
56
+ self.recalculate_mem_size()
57
+
58
+
59
+ class Device(NamedTuple):
60
+ name: str
61
+ available_mem_bytes: int
62
+ logical_id: int
63
+
64
+
65
+ class NodeLatency(NamedTuple):
66
+ # Latency due to the memory bandwidth
67
+ mem_latency_sec: float
68
+ # Latency due to the computation
69
+ computer_latency_sec: float
70
+
71
+
72
+ class PartitionLatency(NamedTuple):
73
+ # Sum of all nodes' memory latency on the critical path
74
+ mem_latency_sec: float
75
+ # Sum of all nodes' compute latency on the critical path
76
+ computer_latency_sec: float
77
+ # Latency of the critical path
78
+ overall_latency_sec: float
79
+
80
+
81
+ class PartitionMode(Enum):
82
+ size_based = 0
83
+ sparse_nn = 1
84
+ cost_aware = 2
85
+ kl_based = 3
86
+ aot_based = 4
87
+
88
+
89
+ class PartitionerConfig(NamedTuple):
90
+ devices: List[Device]
91
+ mode: PartitionMode = PartitionMode.size_based
92
+ transfer_rate_bytes_per_sec: float = 0.0
93
+ node_to_latency_mapping: Dict[Node, NodeLatency] = {}
94
+ node_to_partition_mapping: Dict[Node, int] = {}
95
+ partition_to_logical_device_mapping: Dict[int, List[int]] = {}
96
+ # Saturate host by replicating partitions to the remaining idle devices.
97
+ saturate_host: bool = False
98
+
99
+
100
+ def get_extra_size_of(node: Node, nodes: Set[Node]) -> int:
101
+ """Given a node and a set of nodes,
102
+ this function return the extra size that needed
103
+ if this node is included in this set.
104
+ """
105
+ # Find all its input nodes
106
+ input_nodes: Dict[Node, None] = {}
107
+ map_arg(node.args, input_nodes.setdefault)
108
+ map_arg(node.kwargs, input_nodes.setdefault)
109
+ # Calculate total size of related nodes
110
+ total_size_of_input_nodes = 0
111
+ for n in input_nodes:
112
+ # Make sure this node hasn't been in this set yet
113
+ if n not in nodes:
114
+ size_bytes = getattr(n, "size_bytes", None)
115
+ if size_bytes:
116
+ total_size_of_input_nodes += size_bytes.output_size
117
+ else:
118
+ raise RuntimeError("node has no size_bytes attr")
119
+ # Don't forget the op node itself
120
+ size_bytes = getattr(node, "size_bytes", None)
121
+ if size_bytes:
122
+ total_size_of_input_nodes += size_bytes.total_size
123
+ else:
124
+ raise RuntimeError("node has no size_bytes attr")
125
+ return total_size_of_input_nodes
126
+
127
+
128
+ def get_latency_of_one_partition(
129
+ partition: Partition, node_to_latency_mapping: Dict[Node, NodeLatency]
130
+ ) -> PartitionLatency:
131
+ """Given a partition and its nodes' latency, return a PartitionLatency for this partition"""
132
+
133
+ def get_top_nodes(partition: Partition) -> List[Node]:
134
+ """Given a partition, return a list of nodes on the top bfs level"""
135
+ top_nodes: List[Node] = []
136
+ for node in partition.nodes:
137
+ # Skip placeholder and get_attr nodes
138
+ if node.op in {"placeholder", "get_attr"}:
139
+ continue
140
+ input_nodes: Dict[Node, None] = {}
141
+ map_arg(node.args, input_nodes.setdefault)
142
+ map_arg(node.kwargs, input_nodes.setdefault)
143
+ # If a node has no input nodes in this partition,
144
+ # or its input nodes in this partition are placeholders and get_attrs
145
+ # this node is on the top bfs level in this partition
146
+ if not any(
147
+ n in partition.nodes and n.op not in {"placeholder", "get_attr"}
148
+ for n in input_nodes
149
+ ):
150
+ top_nodes.append(node)
151
+ return top_nodes
152
+
153
+ def dfs_helper(node: Node, partition_latency) -> PartitionLatency:
154
+ """Given a top node of a partition, this function returns
155
+ the latency of the critical path in the partition
156
+ """
157
+ node_latency = node_to_latency_mapping[node]
158
+ # Calculate the current overall latency of the partition
159
+ overall_latency_sec = partition_latency.overall_latency_sec + max(
160
+ node_latency.computer_latency_sec, node_latency.mem_latency_sec
161
+ )
162
+ # Update the mem latency of this path
163
+ mem_latency_sec = (
164
+ partition_latency.mem_latency_sec + node_latency.mem_latency_sec
165
+ )
166
+ # Update the compute latency of this path
167
+ computer_latency_sec = (
168
+ partition_latency.computer_latency_sec + node_latency.computer_latency_sec
169
+ )
170
+ # Get all users of this node that are in this partition
171
+ users = set(node.users).intersection(partition.nodes)
172
+ if users:
173
+ max_latency = PartitionLatency(
174
+ mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
175
+ )
176
+ for n in users:
177
+ # Get new partition latency recursively
178
+ new_partition_latency = dfs_helper(
179
+ n,
180
+ PartitionLatency(
181
+ mem_latency_sec, computer_latency_sec, overall_latency_sec
182
+ ),
183
+ )
184
+ if (
185
+ new_partition_latency.overall_latency_sec
186
+ > max_latency.overall_latency_sec
187
+ ):
188
+ max_latency = new_partition_latency
189
+ return max_latency
190
+ # If there is no user, the node is at bottom of the partition
191
+ return PartitionLatency(
192
+ mem_latency_sec, computer_latency_sec, overall_latency_sec
193
+ )
194
+
195
+ # Main part starts
196
+ # Get all top level nodes of this partition
197
+ top_nodes = get_top_nodes(partition)
198
+ critical_path_latency = PartitionLatency(
199
+ mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
200
+ )
201
+ # Go through all top nodes and find the largest latency (critical pass latency)
202
+ for node in top_nodes:
203
+ partition_latency = dfs_helper(
204
+ node,
205
+ PartitionLatency(
206
+ mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
207
+ ),
208
+ )
209
+ if (
210
+ partition_latency.overall_latency_sec
211
+ > critical_path_latency.overall_latency_sec
212
+ ):
213
+ critical_path_latency = partition_latency
214
+ return critical_path_latency
215
+
216
+
217
+ def get_partition_to_latency_mapping(
218
+ partitions: List[Partition], node_to_latency_mapping: Dict[Node, NodeLatency]
219
+ ) -> Dict[Partition, PartitionLatency]:
220
+ """Given all the partitions and node_to_latency_mapping dictionary,
221
+ return a mapping dictionary of each partition to its overall latency
222
+ """
223
+ partition_to_latency_mapping: Dict[Partition, PartitionLatency] = {}
224
+ # Go through each partition and get its latency
225
+ for partition in partitions:
226
+ partition_latency = get_latency_of_one_partition(
227
+ partition, node_to_latency_mapping
228
+ )
229
+ partition_to_latency_mapping[partition] = partition_latency
230
+ return partition_to_latency_mapping
231
+
232
+
233
+ def get_comm_latency_between(
234
+ parent_partition: Partition,
235
+ child_partition: Partition,
236
+ transfer_rate_bytes_per_sec: float,
237
+ ):
238
+ """Given two partitions (parent and child),
239
+ calculate the communication latency between the two.
240
+ """
241
+ # If two partitions are on the same device, the comm latency is 0.
242
+ if (
243
+ parent_partition.logical_device_ids != []
244
+ and child_partition.logical_device_ids != []
245
+ and parent_partition.logical_device_ids == child_partition.logical_device_ids
246
+ ):
247
+ return 0.0
248
+ # Keep tracking the communication size between parent and child
249
+ comm_size = 0
250
+ # Keep tracking all the counted node
251
+ visited_nodes = set()
252
+ # Go through all nodes in the child partition
253
+ # If a node has input nodes from the parent partition,
254
+ # the output size of those input nodes will be counted
255
+ # and added to comm_size
256
+ for node in child_partition.nodes:
257
+ input_nodes: Dict[Node, None] = {}
258
+ map_arg(node.args, input_nodes.setdefault)
259
+ map_arg(node.kwargs, input_nodes.setdefault)
260
+ for n in input_nodes:
261
+ if n in parent_partition.nodes and n not in visited_nodes:
262
+ size_bytes = getattr(n, "size_bytes", None)
263
+ if size_bytes is not None:
264
+ comm_size += size_bytes.output_size
265
+ visited_nodes.add(n)
266
+ return comm_size / transfer_rate_bytes_per_sec
267
+
268
+
269
+ def get_latency_of_partitioned_graph(
270
+ partitions: List[Partition],
271
+ partition_to_latency_mapping: Dict[Partition, PartitionLatency],
272
+ transfer_rate_bytes_per_sec: float,
273
+ ):
274
+ """Given all partitions in a graph, find the critical path among all partitions
275
+ and return its latency as the latency of the whole graph
276
+ """
277
+
278
+ def dfs_helper(partition: Partition, latency_so_far_sec: float) -> float:
279
+ """This function helps to recursively get the latency of a path of partitions"""
280
+ # Update latency by adding current partition's latency
281
+ latency_so_far_sec += partition_to_latency_mapping[
282
+ partition
283
+ ].overall_latency_sec
284
+ children = partition.children
285
+ if partition.children:
286
+ max_latency_sec = 0.0
287
+ for child in partition.children:
288
+ # Calculate latency between
289
+ comm_latency_sec = get_comm_latency_between(
290
+ partition, child, transfer_rate_bytes_per_sec
291
+ )
292
+ new_latency_sec = dfs_helper(
293
+ child, latency_so_far_sec + comm_latency_sec
294
+ )
295
+ if new_latency_sec > max_latency_sec:
296
+ max_latency_sec = new_latency_sec
297
+ return max_latency_sec
298
+ return latency_so_far_sec
299
+
300
+ def get_top_partitions(partitions: List[Partition]) -> List[Partition]:
301
+ """This function is to return all the partitions without parents
302
+ as the starting points of all the paths
303
+ """
304
+ top_partitions = []
305
+ for partition in partitions:
306
+ # If a partition has no parents, then it is a top partition
307
+ if len(partition.parents) == 0:
308
+ top_partitions.append(partition)
309
+ return top_partitions
310
+
311
+ top_partitions = get_top_partitions(partitions)
312
+ critical_path_latency_sec = 0.0
313
+ for partition in top_partitions:
314
+ latency_sec = dfs_helper(partition, 0.0)
315
+ if latency_sec > critical_path_latency_sec:
316
+ critical_path_latency_sec = latency_sec
317
+ return critical_path_latency_sec
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py ADDED
@@ -0,0 +1,924 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ import contextlib
7
+ import functools
8
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
9
+ import torch
10
+ import torch.utils._pytree as pytree
11
+ from torch.fx import Tracer, GraphModule
12
+ from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode, unset_fake_temporarily, is_fake
13
+ from torch._dispatch.python import enable_python_dispatcher, enable_pre_dispatch
14
+ import torch.fx as fx
15
+ from torch.fx.passes.shape_prop import _extract_tensor_metadata
16
+ from contextlib import contextmanager, nullcontext
17
+ import inspect
18
+ from dataclasses import dataclass
19
+ import weakref
20
+ import operator
21
+ from torch.utils._stats import count
22
+ import logging
23
+
24
+ from torch.overrides import TorchFunctionMode
25
+
26
+ from torch.utils._python_dispatch import (
27
+ TorchDispatchMode,
28
+ _pop_mode,
29
+ _push_mode,
30
+ )
31
+
32
+ from .sym_node import SymNode
33
+ from ._sym_dispatch_mode import SymDispatchMode
34
+ from torch.fx import Proxy
35
+ import torch.fx.traceback as fx_traceback
36
+ from torch import SymInt, SymFloat, SymBool
37
+ from torch.utils.weak import WeakTensorKeyDictionary
38
+
39
+ __all__ = ["PythonKeyTracer", "dispatch_trace", "make_fx", "DecompositionInterpreter", "py_sym_types", "get_innermost_proxy_mode"]
40
+ aten = torch.ops.aten
41
+ prim = torch.ops.prim
42
+
43
+ log = logging.getLogger(__name__)
44
+ not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
45
+
46
+ CURRENT_DECOMPOSITION_TABLE: Dict[torch._ops.OperatorBase, Callable] = {}
47
+
48
+ CONSTANT_NUMEL_LIMIT = 1
49
+
50
+ # We currently convert all SymInt to proxies before we use them.
51
+ # This could plausibly be handled at the Dynamo level.
52
+ pytree.register_pytree_node(torch.Size, lambda x: (list(x), None), lambda xs, _: tuple(xs))
53
+
54
+ def fake_signature(fn, nargs):
55
+ """FX gets confused by varargs, de-confuse it"""
56
+ argnames = ",".join(f"arg{i}" for i in range(nargs))
57
+ return eval(f"lambda {argnames}: fn({argnames})", {"fn": fn})
58
+
59
+ @contextmanager
60
+ def decompose(decomposition_table):
61
+ global CURRENT_DECOMPOSITION_TABLE
62
+ old_decomposition_table = CURRENT_DECOMPOSITION_TABLE
63
+ CURRENT_DECOMPOSITION_TABLE = decomposition_table
64
+ try:
65
+ yield CURRENT_DECOMPOSITION_TABLE
66
+ finally:
67
+ CURRENT_DECOMPOSITION_TABLE = old_decomposition_table
68
+
69
+ # ensure we cannot collide with other properties
70
+ proxy_slot = object()
71
+ no_default = object()
72
+
73
+ py_sym_types = (SymInt, SymFloat, SymBool)
74
+ def is_sym_node(node):
75
+ assert hasattr(node, 'meta'), "All nodes traced with proxy_tensor should have meta"
76
+ return "val" in node.meta and isinstance(node.meta['val'], py_sym_types)
77
+
78
+ def set_proxy_slot(obj, tracer, proxy):
79
+ if isinstance(obj, torch.Tensor):
80
+ # We DO want to clobber proxies whenever we run an inplace operation
81
+ # on a tensor, and it affects the metadata on the proxy.
82
+ tracer.tensor_tracker[obj] = proxy
83
+ else:
84
+ # NB: Never clobber pre-existing proxy. Although the proxies
85
+ # are in principle equivalent, when we do graph partitioning
86
+ # we need there not to be spurious dependencies on tangent inputs.
87
+ # This works because primals get their SymInts set first, and
88
+ # THEN later we allocate tangent inputs. Make sure if a SymInt
89
+ # is derivable from a primal that we use that.
90
+ assert isinstance(obj, SymNode), type(obj)
91
+ if obj not in tracer.symnode_tracker:
92
+ tracer.symnode_tracker[obj] = proxy
93
+
94
+ def has_proxy_slot(obj, tracer):
95
+ assert isinstance(obj, (torch.Tensor, SymNode)), type(obj)
96
+ return get_proxy_slot(obj, tracer, False, lambda _: True)
97
+
98
+ # the default argument is what to return if the slot is not set.
99
+ # the transform argument is handy if you need to extract a subfield from
100
+ # the successfully looked up result (but NOT the default.)
101
+ def get_proxy_slot(obj, tracer, default=no_default, transform=lambda x: x):
102
+ if isinstance(obj, torch.Tensor):
103
+ tracker = tracer.tensor_tracker
104
+ else:
105
+ assert isinstance(obj, SymNode), type(obj)
106
+ tracker = tracer.symnode_tracker
107
+
108
+ if obj not in tracker:
109
+ if default is no_default:
110
+ raise RuntimeError(f"{obj} is not tracked with proxy for {tracer}")
111
+ return default
112
+ return transform(tracker[obj])
113
+
114
+ def snapshot_fake(val):
115
+ return val.detach()
116
+
117
+ def extract_val(val):
118
+ if is_fake(val):
119
+ return snapshot_fake(val)
120
+ elif isinstance(val, py_sym_types):
121
+ return val
122
+ elif isinstance(val, (list, tuple)):
123
+ return val.__class__([extract_val(x) for x in val])
124
+ elif isinstance(val, torch.Tensor):
125
+ if not val.is_sparse:
126
+ # NB: Kinda hacky, but we should try to get val as the metadata
127
+ # everywhere
128
+ # TODO: This doesn't properly track storages. A more robust
129
+ # approach would be to maintain a per-trace FakeTensorMode and
130
+ # from_real_tensor to create fake values (don't forget to
131
+ # snapshot_fake)
132
+ fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=True)
133
+ with fake_tensor_mode:
134
+ return torch.empty_strided(val.shape, val.stride(), device=val.device, dtype=val.dtype)
135
+ else:
136
+ return None
137
+ elif isinstance(val, (int, float, bool)):
138
+ return val
139
+
140
+ # What invariants do we have for the 'val' set on the FX node? It has accurate
141
+ # metadata... but only for metadata that exists "below" all other subsystems
142
+ # (most notably autograd, but also vmap, functorch transforms, etc). This means
143
+ # you can get the dtype, shape, stride, storage, but you CANNOT get requires_grad,
144
+ # grad_fn, _base (_base actually may be set due to recursive call to
145
+ # ADInplaceOrView, but you shouldn't rely on it.)
146
+ def set_meta(proxy, val):
147
+ proxy.node.meta['val'] = extract_val(val)
148
+ # Best effort tensor_meta setting; prefer using val!
149
+ if is_fake(val):
150
+ proxy.node.meta['tensor_meta'] = _extract_tensor_metadata(val)
151
+ elif isinstance(val, torch.Tensor) and not val.is_sparse:
152
+ proxy.node.meta['tensor_meta'] = _extract_tensor_metadata(val)
153
+ return proxy
154
+
155
+ def thunkify(f, *args, **kwargs):
156
+ """
157
+ Delays computation of f until it's called again
158
+ Also caches the result
159
+ """
160
+ return functools.lru_cache(1)(functools.partial(f, *args, **kwargs))
161
+
162
+ def track_tensor(tensor, proxy, *, constant, tracer):
163
+ def try_set_proxy_slot(outer_s, proxy_callable, *args):
164
+ assert callable(proxy_callable)
165
+ if isinstance(outer_s, SymInt):
166
+ inner_s = outer_s.node
167
+ set_proxy_slot(inner_s, tracer, thunkify(proxy_callable, outer_s, *args))
168
+
169
+ # The basic idea is that we need to associate each tensor/SymInt
170
+ # with a Proxy. How do we setup this association? We just store
171
+ # the proxy on the proxy slot of the object, keyed on the tracer
172
+ # (so that if we have multiple tracers at the same time, they
173
+ # don't clobber each other.)
174
+ for i, s in enumerate(tensor.shape):
175
+ try_set_proxy_slot(s, lambda x, i: set_meta(torch.ops.aten.sym_size.int(proxy, i), x), i)
176
+
177
+ for i, s in enumerate(tensor.stride()):
178
+ try_set_proxy_slot(s, lambda x, i: set_meta(torch.ops.aten.sym_stride.int(proxy, i), x), i)
179
+
180
+ try_set_proxy_slot(tensor.numel(), lambda x: set_meta(torch.ops.aten.sym_numel.default(proxy), x))
181
+ try_set_proxy_slot(tensor.storage_offset(), lambda x: set_meta(torch.ops.aten.sym_storage_offset.default(proxy), x))
182
+ set_proxy_slot(tensor, tracer, _ProxyTensor(proxy, constant))
183
+
184
+ def track_tensor_tree(inner_res, proxy_res, *, constant, tracer):
185
+ def wrap_with_proxy(e, proxy, constant):
186
+ if isinstance(e, torch.Tensor):
187
+ track_tensor(e, proxy, tracer=tracer, constant=constant)
188
+ set_meta(proxy, e)
189
+ elif isinstance(e, py_sym_types):
190
+ # NB: eagerly set meta here, so that the numbering is in order
191
+ set_meta(proxy, e)
192
+ set_proxy_slot(e.node, tracer, lambda: proxy)
193
+ elif isinstance(e, (tuple, list)):
194
+ if isinstance(proxy, fx.Proxy):
195
+ set_meta(proxy, e)
196
+
197
+ # example use case: allreduce_ returns ([tensor], work)
198
+ for idx, ee in enumerate(e):
199
+ wrap_with_proxy(ee, proxy[idx], get_constant(idx))
200
+ elif isinstance(e, dict):
201
+ # In theory we could support const-prop when proxy-tensor-tracing
202
+ # operators that returns dicts of tensors, but we have no use case
203
+ # for it today (since the only op we currently trace that can
204
+ # return a dict is triton_kernel_wrapper_functional/mutation,
205
+ # which does not participate in const-prop)
206
+ assert constant is None
207
+
208
+ if isinstance(proxy, fx.Proxy):
209
+ set_meta(proxy, e)
210
+
211
+ # example use case: triton_kernel_wrapper takes arguments as kwargs
212
+ for key, val in e.items():
213
+ wrap_with_proxy(val, proxy[key], None)
214
+ else:
215
+ # intentionally pass on primitives
216
+ pass
217
+
218
+
219
+ def get_constant(idx):
220
+ if constant is None:
221
+ return None
222
+ else:
223
+ return constant[idx]
224
+
225
+ wrap_with_proxy(inner_res, proxy_res, constant)
226
+
227
+ return inner_res
228
+
229
+
230
+ def maybe_disable_fake_tensor_mode():
231
+ # TODO: figure out if this API generally makes sense and bake it into the
232
+ # library
233
+ return unset_fake_temporarily()
234
+
235
+
236
+ @dataclass
237
+ class _ProxyTensor:
238
+ proxy: Proxy
239
+ constant: Optional[torch.Tensor]
240
+
241
+
242
+ def fetch_sym_proxy(tracer):
243
+ def inner(e):
244
+ n = e.node
245
+ if n.constant is not None:
246
+ return n.constant
247
+ else:
248
+ # NB: we REQUIRE all symints to be tracked
249
+ return get_proxy_slot(n, tracer)()
250
+ return inner
251
+
252
+
253
+ def fetch_tensor_proxy(tracer):
254
+ return lambda t: get_proxy_slot(t, tracer, t)
255
+
256
+ HANDLED_TYPES = (torch.Tensor, torch.nn.Parameter, FakeTensor)
257
+
258
+ def proxy_call(proxy_mode, func, pre_dispatch, args, kwargs):
259
+ unrecognized_types = []
260
+
261
+ def can_handle_tensor(x):
262
+ r = type(x) in HANDLED_TYPES or has_proxy_slot(x, proxy_mode.tracer)
263
+ if proxy_mode._allow_fake_constant:
264
+ r = r or type(x) in (torch._subclasses.FakeTensor,)
265
+ if not r:
266
+ unrecognized_types.append(type(x))
267
+ return r
268
+
269
+ # If there are any tensor subclasses, we need to handle those tensor subclasses first
270
+ # TODO: we could use types to test this
271
+ if not pytree.tree_all_only(torch.Tensor, can_handle_tensor, (args, kwargs)):
272
+ not_implemented_log.debug("ProxyTensorMode tensors without proxy had unrecognized subclasses: %s", unrecognized_types)
273
+ return NotImplemented
274
+
275
+ r = maybe_handle_decomp(proxy_mode, func, args, kwargs)
276
+ if r is not NotImplemented:
277
+ return r
278
+
279
+ # For pre-autograd tracing, we do not want to run CompositeImplicit decomps.
280
+ if not pre_dispatch and func not in [
281
+ torch.ops.aten.size.default, torch.ops.aten.stride.default, torch.ops.aten.storage_offset.default
282
+ ]:
283
+ with proxy_mode:
284
+ r = func.decompose(*args, **kwargs)
285
+ if r is not NotImplemented:
286
+ return r
287
+
288
+ tracer = proxy_mode.tracer
289
+ f_args, f_kwargs = pytree.tree_map_only(torch.Tensor, fetch_tensor_proxy(tracer), (args, kwargs))
290
+
291
+ # If there are SymInts, we also should not consider this constant.
292
+ # However, fake tensor handling of SymInts is sufficiently broken that
293
+ # I couldn't write a test for this case
294
+ all_constant = (
295
+ pytree.tree_all_only(_ProxyTensor, lambda t: t.constant is not None, (f_args, f_kwargs))
296
+ # TODO: maybe constant SymInts should also be allowed? Not sure if
297
+ # this can happen
298
+ and pytree.tree_all_only((SymInt, SymFloat, SymBool), lambda _: False, (args, kwargs))
299
+ )
300
+
301
+ if torch.Tag.data_dependent_output in func.tags:
302
+ # Check if all of the Tensor inputs are constants
303
+ if all_constant:
304
+ const_args, const_kwargs = pytree.tree_map_only(
305
+ _ProxyTensor, lambda t: t.constant, (f_args, f_kwargs)
306
+ )
307
+ with maybe_disable_fake_tensor_mode():
308
+ return func(*const_args, **const_kwargs)
309
+ # If any of the Tensor inputs are "real" (not FakeTensor), we may
310
+ # incorrectly burn in constants by allowing this access. Raise
311
+ # an error in this case
312
+ if proxy_mode._error_on_data_dependent_ops and pytree.tree_all_only(torch.Tensor, lambda t: not is_fake(t), (args, kwargs)):
313
+ raise RuntimeError(
314
+ f"It appears that you're trying to get value out of a tracing tensor with {func} - erroring out! "
315
+ "It's likely that this is caused by data-dependent control flow or similar. "
316
+ "It may be possible to trace this with dynamic shapes; try setting tracing_mode='symbolic' "
317
+ "in your make_fx call."
318
+ )
319
+ proxy_args, proxy_kwargs = pytree.tree_map_only(
320
+ (SymInt, SymFloat, SymBool),
321
+ fetch_sym_proxy(proxy_mode.tracer),
322
+ pytree.tree_map_only(_ProxyTensor, lambda e: e.proxy, (f_args, f_kwargs))
323
+ )
324
+
325
+ # When we trace through a torch.tensor invocation, you never actually
326
+ # see a torch.ops.aten.tensor call. Instead, the way this function is
327
+ # implemented internally is that we allocate a plain tensor (this is
328
+ # *guaranteed* to be a plain tensor, we disable all modes when doing
329
+ # so), and then call at::lift_fresh on it (to give modes a chance to do
330
+ # their stuff). Furthermore, the tensor argument to lift_fresh is guaranteed
331
+ # to be freshly allocated, so we want lift_fresh to be a no-op (directly
332
+ # returning the input argument).
333
+ #
334
+ # Here is the basic problem: when we trace this sequence of executions
335
+ # into an FX graph, what happens to this call sequence? Traditionally,
336
+ # tensor constants get interned as buffers on the FX GraphModule. But
337
+ # this is dangerous. Consider:
338
+ #
339
+ # x = torch.tensor(1)
340
+ # x.add_(2)
341
+ #
342
+ # Naively, this traces into:
343
+ #
344
+ # t = self._tensor_constant0 # initialized to torch.tensor(1)
345
+ # x = torch.ops.aten.lift_fresh(t)
346
+ # x.add_(2)
347
+ #
348
+ # If lift_fresh returns t directly, the subsequent add_ call will
349
+ # modify the tensor constant. Really, the problem is we've violated
350
+ # the invariant the argument to lift is fresh. So what we should
351
+ # preserve the invariant by replacing lift_fresh with lift_fresh_copy:
352
+ #
353
+ # t = self._tensor_constant0 # initialized to torch.tensor(1)
354
+ # x = torch.ops.aten.lift_fresh_copy(t)
355
+ # x.add_(2)
356
+ #
357
+ # This is what the overload modification does.
358
+ if func is torch.ops.aten.lift_fresh.default:
359
+ func = torch.ops.aten.lift_fresh_copy.default
360
+
361
+ proxy_out = proxy_mode.tracer.create_proxy('call_function', func, proxy_args, proxy_kwargs,
362
+ name=proxy_mode.tracer.graph._target_to_str(func.overloadpacket.__name__))
363
+
364
+ # This makes DCE marginally less likely to DCE inplace operations.
365
+ # It is not strictly necessary
366
+ # Kind of a hacky way to test if an op is in-place or not
367
+ if func.overloadpacket.__name__[-1] == "_" and func.overloadpacket.__name__[0] != "_":
368
+ if isinstance(args[0], List):
369
+ # e.g., c10d::allreduce_ returns a list of tensors as the first element
370
+ # in the output.
371
+ for i, a in enumerate(args[0]):
372
+ a.proxy = proxy_out[0][i]
373
+ else:
374
+ args[0].proxy = proxy_out
375
+
376
+ out = func(*args, **kwargs)
377
+
378
+ # In some circumstances, we will be tracing in a situation where a tensor
379
+ # is *statically* known to be a constant (currently, this only happens if
380
+ # you run torch.tensor; deterministic factory functions like torch.arange
381
+ # don't get this treatment). When the tensor in question is small, it's
382
+ # helpful to due constant propagation in case we call item() (in which
383
+ # case we can return the constant value that is known, rather than give
384
+ # an error.) The logic here tests if constant propagation is possible
385
+ # (because all of the inputs are constant). If so, we disable fake tensor
386
+ # mode (if it is on) and do true compute on the constant.
387
+ #
388
+ # It's worth highlighting that we're making a policy decision here.
389
+ # There is a potential that the tensor is actually quite large, and we
390
+ # don't actually want to run the compute. The tensor being quite large
391
+ # is one of the reasons why factory functions don't get this treatment
392
+ # (since they can be quite large; if a parameter is initialized to a
393
+ # constant value it will be!) Similarly, there is also a potential
394
+ # to run an operator that blows up the size of a small tensor; we don't
395
+ # protect against this case, but we could force, e.g., only single
396
+ # element constant computation by testing the numel of the result before
397
+ # propagating const-ness. Similarly, we don't require the constant to
398
+ # live on CPU, but we could.
399
+ any_constant = pytree.tree_any_only(_ProxyTensor, lambda t: t.constant is not None, (f_args, f_kwargs))
400
+
401
+ constant = None
402
+
403
+ # If this is a lift, the input tensor is guaranteed to be a
404
+ # constant, so we keep a copy of the original argument along so
405
+ # we can query it if we're asked to item() it at some later point
406
+ if func is torch.ops.aten.lift_fresh_copy.default and out.numel() <= CONSTANT_NUMEL_LIMIT:
407
+ with maybe_disable_fake_tensor_mode():
408
+ constant = args[0].clone()
409
+ elif (
410
+ torch.Tag.nondeterministic_seeded not in func.tags
411
+ and all_constant
412
+ and any_constant
413
+ and pytree.tree_all_only(torch.Tensor, lambda t: t.numel() <= CONSTANT_NUMEL_LIMIT, out)
414
+ ):
415
+ # NB: do NOT include factories as constants
416
+ with maybe_disable_fake_tensor_mode():
417
+ const_args, const_kwargs = pytree.tree_map_only(
418
+ _ProxyTensor, lambda t: t.constant, (f_args, f_kwargs)
419
+ )
420
+ constant = func(*const_args, **const_kwargs)
421
+ else:
422
+ constant = None
423
+
424
+ track_tensor_tree(out, proxy_out, constant=constant, tracer=tracer)
425
+ return out
426
+
427
+
428
+ class PythonKeyTracer(Tracer):
429
+ def __init__(self):
430
+ super().__init__(autowrap_modules=())
431
+ self.tensor_tracker = WeakTensorKeyDictionary()
432
+ self.symnode_tracker = weakref.WeakKeyDictionary() # type: ignore[var-annotated]
433
+
434
+ # In general, we don't want to make modules leaves. In principle, users of
435
+ # this tracer might want to override this in order to turn a couple specific
436
+ # modules into leaves in the traced graph.
437
+ def call_module(
438
+ self, m: torch.nn.Module, forward: Callable[..., Any], args: Tuple[Any, ...], kwargs: Dict[str, Any]
439
+ ) -> Any:
440
+ return forward(*args, **kwargs)
441
+
442
+ # We don't want to turn getattr calls into proxies. So we just return the actual value.
443
+ def getattr(self, attr, attr_val, parameter_proxy_cache):
444
+ return attr_val
445
+
446
+ def create_arg(self, a: Any):
447
+ if isinstance(a, torch.nn.Parameter):
448
+ for n, p in self.root.named_parameters():
449
+ if a is p:
450
+ return self.create_node('get_attr', n, (), {})
451
+ qualname: Optional[str] = None
452
+
453
+ if not qualname:
454
+ i = 0
455
+ while True:
456
+ qualname = f'_param_constant{i}'
457
+ if not hasattr(self.root, qualname):
458
+ break
459
+ i += 1
460
+ setattr(self.root, qualname, a)
461
+
462
+ return self.create_node('get_attr', qualname, (), {})
463
+ elif isinstance(a, (SymInt, SymFloat, SymBool)):
464
+ assert a.node.constant is not None
465
+ return a.node.constant
466
+ return super().create_arg(a)
467
+
468
+ def unwrap_proxy(self, e):
469
+ if isinstance(e, torch.Tensor):
470
+ return get_proxy_slot(e, self, e, lambda e: e.proxy)
471
+ elif isinstance(e, (torch.SymInt, torch.SymFloat, torch.SymBool)):
472
+ return get_proxy_slot(e.node, self, e, lambda e: e())
473
+ else:
474
+ return e
475
+
476
+
477
+ @torch._disable_dynamo
478
+ def dispatch_trace(
479
+ root: Union[torch.nn.Module, Callable],
480
+ tracer: Tracer,
481
+ concrete_args: Optional[Tuple[Any, ...]] = None,
482
+ ) -> GraphModule:
483
+ graph = tracer.trace(root, concrete_args)
484
+ name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
485
+ return GraphModule(tracer.root, graph, name)
486
+
487
+
488
+ @contextlib.contextmanager
489
+ def _pop_proxy_mode_temporarily(dk):
490
+ # This is a shim around the existng per-dispatch-key-mode logic.
491
+ # I'll delete the per-dispatch-key-mode logic in a followup PR
492
+ if dk is not None:
493
+ # During pre_dispatch, pop off of the PreDispatch mode stack
494
+ old = _pop_mode(dk)
495
+ try:
496
+ yield old
497
+ finally:
498
+ _push_mode(old, dk)
499
+ else:
500
+ # During normal tracing, pop off of the dedicated proxy mode stack
501
+ old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
502
+ try:
503
+ yield old
504
+ finally:
505
+ torch._C._set_dispatch_mode(old)
506
+
507
+ def wrap_key(f, tensors, tracer, pre_dispatch: bool):
508
+ flat_tensors, tensors_spec = pytree.tree_flatten(tensors)
509
+ dk = torch._C.DispatchKey.PreDispatch if pre_dispatch else None
510
+
511
+ @functools.wraps(f)
512
+ def wrapped(*proxies):
513
+ flat_proxies, proxies_spec = pytree.tree_flatten(proxies)
514
+ assert len(flat_proxies) == len(flat_tensors)
515
+ with _pop_proxy_mode_temporarily(dk) as m:
516
+ assert isinstance(m, ProxyTorchDispatchMode)
517
+ track_tensor_tree(flat_tensors, flat_proxies, constant=None, tracer=tracer)
518
+
519
+ out = f(*tensors)
520
+ out = pytree.tree_map_only(
521
+ torch.Tensor,
522
+ lambda t: get_proxy_slot(t, tracer, t, lambda x: x.proxy),
523
+ out
524
+ )
525
+ out = pytree.tree_map_only(
526
+ (SymInt, SymFloat, SymBool),
527
+ lambda t: get_proxy_slot(t.node, tracer)(),
528
+ out
529
+ )
530
+ return out
531
+
532
+ return wrapped
533
+
534
+ ORIGINAL_ATEN = None
535
+ @contextmanager
536
+ def set_original_aten_op(func):
537
+ global ORIGINAL_ATEN
538
+ if ORIGINAL_ATEN is None and fx_traceback.has_preserved_node_meta():
539
+ ORIGINAL_ATEN = func
540
+ fx_traceback.current_meta['original_aten'] = func
541
+ try:
542
+ yield
543
+ finally:
544
+ ORIGINAL_ATEN = None
545
+ fx_traceback.current_meta['original_aten'] = None
546
+ else:
547
+ yield
548
+
549
+
550
+
551
+ # This mode is **only** used for pre_dispatch tracing.
552
+ # In particular, we need to make sure that autograd/autocast API's
553
+ # that do not desugar into dispatcher operators stay in the graph.
554
+ class PreDispatchTorchFunctionMode(TorchFunctionMode):
555
+
556
+ def __init__(self, tracer):
557
+ self.tracer = tracer
558
+
559
+ def __torch_function__(self, func, types, args=(), kwargs=None):
560
+ kwargs = kwargs or {}
561
+ pre_dispatch_ops = [
562
+ torch._C._set_grad_enabled,
563
+ torch.amp._enter_autocast,
564
+ torch.amp._exit_autocast,
565
+ ]
566
+ if func in pre_dispatch_ops:
567
+ return self.tracer.create_node("call_function", func, args, {})
568
+ # Don't actually run the function! We just want to trace the calls
569
+ # into a graph. We don't actualy want to change global autograd state.
570
+ return func(*args, **kwargs)
571
+
572
+ class ProxyTorchDispatchMode(TorchDispatchMode):
573
+ def __init__(self, tracer, tracing_mode, pre_dispatch=False, _allow_fake_constant=False, _error_on_data_dependent_ops=True):
574
+ dk = torch._C.DispatchKey.PreDispatch if pre_dispatch else None
575
+ super().__init__(dk)
576
+ self.tracer = tracer
577
+ self.tracing_mode = tracing_mode
578
+ self.enable_tracing = True
579
+ self.pre_dispatch = pre_dispatch
580
+ self._allow_fake_constant = _allow_fake_constant
581
+ self._error_on_data_dependent_ops = _error_on_data_dependent_ops
582
+ self.sym_mode = ProxySymDispatchMode(tracer)
583
+ self.trace_state = {}
584
+ self._managers = []
585
+ # Indicates to our torch_dispatch dispatching infra that
586
+ # this is an "infra" mode with lower dispatching precedence.
587
+ self._mode_key = torch._C._TorchDispatchModeKey.PROXY
588
+ # Every time we enter a mode, we maintain a stack telling us what the previous
589
+ # ProxyTorchDispatchMode state was (if there was any).
590
+ # This lets us properly reset the state on exit.
591
+ self.enter_stack: List[Optional[ProxyTorchDispatchMode]] = []
592
+
593
+ @count
594
+ def __torch_dispatch__(self, func, types, args=(), kwargs=None):
595
+ with self.sym_mode.enable(False), set_original_aten_op(func):
596
+ return self.inner_torch_dispatch(func, types, args, kwargs)
597
+
598
+ def __enter__(self):
599
+ # sym mode first, then us...
600
+ m = self.sym_mode.enable(True)
601
+ self._managers.append(m)
602
+ m.__enter__()
603
+ # Stash and store the previous proxy mode (there may or may not be one)
604
+ maybe_prev_proxy_mode = torch._C._unset_dispatch_mode(self._mode_key)
605
+ self.enter_stack.append(maybe_prev_proxy_mode)
606
+ return super().__enter__()
607
+
608
+ def __exit__(self, exc_type, exc_value, traceback):
609
+ m = self._managers.pop()
610
+ # ...exit us first, then sym mode
611
+ b = super().__exit__(exc_type, exc_value, traceback)
612
+
613
+ # Re-enable the previous proxy mode, if there was one.
614
+ mb_previous_proxy_mode = self.enter_stack.pop()
615
+ if mb_previous_proxy_mode is not None:
616
+ torch._C._set_dispatch_mode(mb_previous_proxy_mode)
617
+
618
+ if not b:
619
+ return m.__exit__(exc_type, exc_value, traceback)
620
+ else:
621
+ return m.__exit__(None, None, None)
622
+
623
+
624
+ def inner_torch_dispatch(self, func, types, args=(), kwargs=None):
625
+ if not self.enable_tracing:
626
+ return func(*args, **kwargs)
627
+
628
+ if func in [prim.device.default]:
629
+ return func(*args, **kwargs)
630
+
631
+ return proxy_call(self, func, self.pre_dispatch, args, kwargs)
632
+
633
+
634
+ class ProxySymDispatchMode(SymDispatchMode):
635
+ def __init__(self, tracer):
636
+ super().__init__()
637
+ self.tracer = tracer
638
+ # When false, we don't trace operations. If you do this, you MUST
639
+ # call track_tensor/track_tensor_tree on all results of the operation
640
+ # to ensure we can adequately track the results
641
+ self.enable_tracing = True
642
+
643
+ @contextmanager
644
+ def enable(self, b):
645
+ old = self.enable_tracing
646
+ self.enable_tracing = b
647
+ try:
648
+ yield
649
+ finally:
650
+ self.enable_tracing = old
651
+
652
+ def _compute_proxy(self, func, args, out: Union[SymInt, SymFloat, SymBool]):
653
+ n_args = tuple(
654
+ get_proxy_slot(a.node, self.tracer)().node if isinstance(a, py_sym_types) else a
655
+ for a in args
656
+ )
657
+
658
+ # func doesn't have a __torch_function__ that Proxy can interpose, so
659
+ # we gotta do it manually
660
+ n_out = self.tracer.create_node("call_function", func, n_args, {})
661
+ p_out = fx.Proxy(n_out, self.tracer)
662
+ set_meta(p_out, out)
663
+ return p_out
664
+
665
+ def __sym_dispatch__(self, func, types, args, kwargs):
666
+ if not self.enable_tracing:
667
+ return func(*args, **kwargs)
668
+
669
+ # Peephole optimize multiply by one
670
+ # NB: be careful not to trigger guards here!
671
+ if func == operator.mul:
672
+ if isinstance(args[1], int) and args[1] == 1:
673
+ return args[0]
674
+ elif isinstance(args[0], int) and args[0] == 1:
675
+ return args[1]
676
+
677
+ # For speed, we assume there are no nested data structures
678
+ # (otherwise we could use tree_map)
679
+ # We also assume there are no keyword arguments.
680
+ assert not kwargs
681
+ out = func(*args, **kwargs)
682
+
683
+ # If func returned a constant, we don't need to trace; we have
684
+ # determined that the result is constant (no matter if the inputs
685
+ # were symbolic) and it is no longer necessary to trace the
686
+ # computation. This could occur if func triggered some guards.
687
+ if isinstance(out, py_sym_types):
688
+ # Delays tracing out the proxies on this op until we actually need it
689
+ p_out_thunk = thunkify(self._compute_proxy, func=func, args=args, out=out)
690
+ set_proxy_slot(out.node, self.tracer, p_out_thunk)
691
+
692
+ return out
693
+
694
+
695
+ # TODO: I'm not sure what the point of this class is; you can just
696
+ # make_fx through a regular Interpreter
697
+ class DecompositionInterpreter(torch.fx.Interpreter):
698
+ def __init__(self, module: torch.fx.GraphModule, new_graph: torch.fx.Graph, decomposition_table=None, **kwargs):
699
+ super().__init__(module, **kwargs)
700
+ self.new_graph = new_graph
701
+ self.tracer = torch.fx.proxy.GraphAppendingTracer(self.new_graph)
702
+ # Blegh
703
+ self.tracer.tensor_tracker = WeakTensorKeyDictionary() # type: ignore[attr-defined]
704
+ self.tracer.symnode_tracker = weakref.WeakKeyDictionary() # type: ignore[attr-defined]
705
+ self.decomposition_table = decomposition_table
706
+ if self.decomposition_table is None:
707
+ self.decomposition_table = {}
708
+ self.mode = ProxyTorchDispatchMode(self.tracer, tracing_mode="real")
709
+
710
+ def placeholder(self, target, args, kwargs):
711
+ out = super().placeholder(target, args, kwargs)
712
+ proxy = torch.fx.Proxy(self.new_graph.placeholder(target), self.tracer)
713
+ track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
714
+ # TODO handle case where the first character of target is '*'
715
+ return out
716
+
717
+ def get_attr(self, target, args, kwargs):
718
+ out = super().get_attr(target, args, kwargs)
719
+ proxy = torch.fx.Proxy(self.new_graph.get_attr(target), self.tracer)
720
+ track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
721
+ return out
722
+
723
+ # call_function, call_method, call_module get traced automatically by the outer mode.
724
+
725
+ def output(self, target, args, kwargs):
726
+ out = super().output(target, args, kwargs)
727
+
728
+ def unwrap(e):
729
+ return get_proxy_slot(e, self.tracer, e, lambda x: x.proxy.node)
730
+ self.new_graph.output(pytree.tree_map(unwrap, out))
731
+ return out
732
+
733
+ def run(self, *args, **kwargs):
734
+ # Should enter the mode at least once for being able to restore it later
735
+ # See: https://github.com/pytorch/pytorch/pull/82549#discussion_r934782025
736
+ with decompose(self.decomposition_table), self.mode:
737
+ return super().run(*args, **kwargs)
738
+
739
+
740
+ def wrapper_and_args_for_make_fx(func, args, kwargs):
741
+ # make_fx doesn't support kwargs, so we need to do this flattening
742
+ # and then unflatten the args before calling func
743
+ flat_args, spec = pytree.tree_flatten((args, kwargs))
744
+
745
+ def wrapped(flat_args):
746
+ fn_args, fn_kwargs = pytree.tree_unflatten(flat_args, spec)
747
+ return func(*fn_args, **fn_kwargs)
748
+ return wrapped, flat_args
749
+
750
+ @contextmanager
751
+ def disable_autocast_cache():
752
+ old_value = torch.is_autocast_cache_enabled()
753
+ torch.set_autocast_cache_enabled(False)
754
+ try:
755
+ yield
756
+ finally:
757
+ torch.set_autocast_cache_enabled(old_value)
758
+
759
+
760
+ def make_fx(f,
761
+ decomposition_table=None,
762
+ tracing_mode="real",
763
+ _allow_non_fake_inputs=False,
764
+ *,
765
+ pre_dispatch=False,
766
+ _allow_fake_constant=False,
767
+ _error_on_data_dependent_ops=True):
768
+ assert tracing_mode in ["real", "fake", "symbolic"]
769
+
770
+ if decomposition_table is None:
771
+ decomposition_table = {}
772
+
773
+ @functools.wraps(f)
774
+ def wrapped(*args):
775
+ # Avoid importing sympy at a module level
776
+ from .symbolic_shapes import ShapeEnv
777
+
778
+ phs = pytree.tree_map(lambda _: fx.PH, args) # type: ignore[attr-defined]
779
+ fx_tracer = PythonKeyTracer()
780
+ fake_tensor_mode: Any = nullcontext()
781
+ if tracing_mode == "real":
782
+ fake_tensor_mode = nullcontext()
783
+ elif tracing_mode == "fake":
784
+ import torch._dynamo
785
+ fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
786
+ if fake_tensor_mode is None:
787
+ fake_tensor_mode = FakeTensorMode(
788
+ allow_fallback_kernels=True,
789
+ allow_non_fake_inputs=_allow_non_fake_inputs,
790
+ shape_env=ShapeEnv(),
791
+ static_shapes=True,
792
+ )
793
+ elif tracing_mode == "symbolic":
794
+ import torch._dynamo
795
+ fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
796
+ if fake_tensor_mode is None:
797
+ shape_env = ShapeEnv()
798
+ fake_tensor_mode = FakeTensorMode(
799
+ allow_fallback_kernels=False,
800
+ allow_non_fake_inputs=_allow_non_fake_inputs,
801
+ shape_env=shape_env)
802
+ else:
803
+ shape_env = fake_tensor_mode.shape_env
804
+ assert shape_env is not None, "shape_env should be set if tracing with 'symbolic'"
805
+
806
+ else:
807
+ raise AssertionError(f"Unexpected tracing type: {tracing_mode}")
808
+
809
+ python_dispatcher_mode: Any = nullcontext()
810
+ pre_dispatch_mode: Any = nullcontext()
811
+ # pre-autograd tracing uses per-dispatch-key modes,
812
+ # which requires the python dispatcher
813
+ if tracing_mode == "symbolic" or pre_dispatch:
814
+ python_dispatcher_mode = enable_python_dispatcher()
815
+ if pre_dispatch:
816
+ pre_dispatch_mode = enable_pre_dispatch()
817
+
818
+ proxy_function_mode: Any = nullcontext()
819
+ if pre_dispatch:
820
+ proxy_function_mode = PreDispatchTorchFunctionMode(fx_tracer)
821
+
822
+ proxy_mode = ProxyTorchDispatchMode(fx_tracer,
823
+ tracing_mode,
824
+ pre_dispatch=pre_dispatch,
825
+ _allow_fake_constant=_allow_fake_constant,
826
+ _error_on_data_dependent_ops=_error_on_data_dependent_ops)
827
+
828
+ arg_count = 0
829
+
830
+ def wrap_fake(x):
831
+ nonlocal arg_count
832
+ # TODO: it would be nice to line these up with the names
833
+ # FX will choose for the placeholders, but we don't
834
+ # actually know what the names will be at this point yet
835
+ # NB: the Source here is actually meaningless
836
+ from torch._dynamo.source import ConstantSource
837
+ source = ConstantSource(f"input{arg_count}")
838
+ if isinstance(x, torch.Tensor):
839
+ arg_count += 1
840
+ return fake_tensor_mode.from_tensor(x, source=source) # type: ignore[attr-defined]
841
+ # NB: don't match on bools
842
+ elif type(x) is int and tracing_mode == "symbolic":
843
+ return shape_env.create_symintnode(shape_env.create_symbol(x, source, positive=None), hint=x, source=source)
844
+
845
+ return x
846
+
847
+ sym_mode = proxy_mode.sym_mode
848
+
849
+ wrap_fn_map = {
850
+ "real": lambda x: x,
851
+ "fake": wrap_fake,
852
+ "symbolic": wrap_fake,
853
+ }
854
+ args = pytree.tree_map(wrap_fn_map[tracing_mode], args)
855
+
856
+ if not hasattr(inspect.unwrap(f), '__code__') or inspect.unwrap(f).__code__.co_flags & inspect.CO_VARARGS:
857
+ # FX doesn't support varargs, so we gotta fake up a wrapper
858
+ # TODO: Would be nice to fix this at the source...
859
+ func = fake_signature(f, len(phs))
860
+ else:
861
+ func = f
862
+
863
+ # We disable the autocast cache as the autocast cache causes type conversions on parameters to
864
+ # check a cache, which introduces untracked tensors into the graph
865
+ #
866
+ # We also disable tracing by any other tensor proxy-based tracers except the current. The
867
+ # purpose of `make_fx` is to produce graphmodules as a side effect; its internal execution is
868
+ # thus irrelevant to any external functional trace.
869
+ with decompose(decomposition_table), fake_tensor_mode, python_dispatcher_mode, pre_dispatch_mode, proxy_function_mode, \
870
+ sym_mode, proxy_mode, disable_autocast_cache():
871
+ t = dispatch_trace(wrap_key(func, args, fx_tracer, pre_dispatch), tracer=fx_tracer, concrete_args=tuple(phs))
872
+
873
+ # TODO: kind of a bad way to do it, should maybe figure out a better way
874
+ if tracing_mode == "symbolic":
875
+ t.shape_env = shape_env # type: ignore[assignment]
876
+ return t
877
+
878
+ return wrapped
879
+
880
+
881
+ def get_torch_dispatch_modes():
882
+ return torch.utils._python_dispatch._get_current_dispatch_mode_stack()
883
+
884
+
885
+ def get_innermost_proxy_mode():
886
+ return torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
887
+
888
+
889
+ @contextlib.contextmanager
890
+ def disable_proxy_modes_tracing(enable_current=False):
891
+ # enable_current=True is now a no-op, since only one proxy mode
892
+ # can live on the stack at a time.
893
+ # We should kill this API in a future PR.
894
+ maybe_old = None
895
+ if not enable_current:
896
+ # Only one proxy_mode can be "active" at a time.
897
+ # So we simply remove our active mode.
898
+ maybe_old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
899
+ try:
900
+ yield
901
+ finally:
902
+ if maybe_old is not None:
903
+ torch._C._set_dispatch_mode(maybe_old)
904
+
905
+
906
+ def maybe_handle_decomp(proxy_mode, op, args, kwargs):
907
+ if op in CURRENT_DECOMPOSITION_TABLE:
908
+ with proxy_mode:
909
+ return CURRENT_DECOMPOSITION_TABLE[op](*args, **kwargs)
910
+ return NotImplemented
911
+
912
+
913
+ def get_isolated_graphmodule(func, args, kwargs, tracing_mode="real"):
914
+ """A helper function used to get the GraphModule for the given func.
915
+
916
+ It's expected to be used in the ProxyTensor tracing context.
917
+ It detaches the args and kwargs from the current tracer so that the trace of
918
+ the current graph module can be created without any side-effects.
919
+ """
920
+ wrapped, all_args = wrapper_and_args_for_make_fx(func, args, kwargs)
921
+
922
+ with disable_proxy_modes_tracing():
923
+ gm = make_fx(wrapped, tracing_mode=tracing_mode)(all_args)
924
+ return gm
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/recording.py ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import itertools
3
+ from dataclasses import dataclass
4
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.utils._pytree as pytree
8
+
9
+
10
+ __all__ = [
11
+ "ShapeEnvEvent",
12
+ "record_shapeenv_event",
13
+ "replay_shape_env_events",
14
+ "FakeTensorMeta",
15
+ "shape_env_check_state_equal",
16
+ "NotEqualError",
17
+ ]
18
+
19
+ # [Note: Recording ShapeEnv Events]
20
+ # =================================
21
+ #
22
+ # What is a ShapeEnv event?
23
+ # -------------------------
24
+ # We consider a ShapeEnv event every function call (ShapeEnv method or
25
+ # independent function) that modifies the state of the ShapeEnv instance.
26
+ # Such calls are recorded alongside their positional and keyword arguments,
27
+ # so that it may be replayed over a different ShapeEnv instance.
28
+ #
29
+ # See [Note: ShapeEnv State Equality] for what is considered the state
30
+ # of a ShapeEnv instance.
31
+ #
32
+ # What is it for?
33
+ # ---------------
34
+ # ShapeEnv events recording is used for reconstructing the ShapeEnv in an
35
+ # arbitrary state in time.
36
+ #
37
+ # Being able to arbitrarily replay events like so is useful, mainly for
38
+ # translation validation bisection. i.e. if a ValidationException has been
39
+ # raised, find the earliest point in time where the translation validation
40
+ # fails.
41
+ #
42
+ # Besides that, it also allows us to inspect the given instance and,
43
+ # for example, check the guards that would actually be issued at that point.
44
+ #
45
+ # What kind of arguments can be stored in an event?
46
+ # -------------------------------------------------
47
+ # There's no specific rule for what cannot be used as an argument.
48
+ # That said, pay special attention to the following cases:
49
+ #
50
+ # 1. Tensor inputs: there are some tests that check whether the inputs
51
+ # were garbage collected after execution. These will fail if there's
52
+ # an event that is holding a reference to those inputs.
53
+ #
54
+ # 2. ShapeEnv arguments: if there is an argument of ShapeEnv type, that
55
+ # will be automatically replaced by the new given ShapeEnv instance.
56
+ #
57
+ # 3. SymTypes arguments: they also hold references to ShapeEnv. So,
58
+ # whenever we see them, we create a new instance, replacing the
59
+ # ShapeEnv reference.
60
+ #
61
+ # 4. FX nodes: specifically, FX nodes from the FX graph for symbolic
62
+ # shapes. That argument must be replaced when replaying the event at
63
+ # ShapeEnvEvent.run, since it has to reference a node from the given
64
+ # instance, and not from the recorded instance.
65
+
66
+
67
+ # Event class for reconstructing ShapeEnv at arbitrary time.
68
+ #
69
+ # Represents a method call that mutates ShapeEnv in a way that affects the
70
+ # issued guards, when ShapeEnv.produce_guards is called.
71
+ @dataclass
72
+ class ShapeEnvEvent:
73
+ # ShapeEnv method.
74
+ f: Callable
75
+
76
+ # Arguments and keyword arguments called with.
77
+ args: Optional[List[Any]] = None
78
+ kwargs: Optional[Dict[str, Any]] = None
79
+
80
+ # List of tracked_fakes at the time the method was called.
81
+ tracked_fakes: Optional[List[Any]] = None
82
+
83
+ # Name of the captured event.
84
+ # Used for special handling of particular methods.
85
+ name: Optional[str] = None
86
+
87
+ # Replay itself, but using shape_env as self.
88
+ def run(self, shape_env=None) -> Any:
89
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv, SymTypes
90
+
91
+ # Special handling for the constructor event.
92
+ if self.f is ShapeEnv:
93
+ assert shape_env is None and self.args is None and self.kwargs is not None
94
+ return ShapeEnv(**self.kwargs)
95
+
96
+ assert shape_env is not None
97
+ args = list(self.args or list())
98
+ kwargs = dict(self.kwargs or dict())
99
+
100
+ # Replace any argument of type ShapeEnv by the given one.
101
+ args, kwargs = pytree.tree_map_only(
102
+ ShapeEnv, lambda _: shape_env, (args, kwargs)
103
+ )
104
+
105
+ # Replace any argument of type SymTypes by a new instance,
106
+ # replacing its ShapeEnv reference.
107
+ args, kwargs = pytree.tree_map_only(
108
+ SymTypes,
109
+ lambda a: type(a)(a.node.with_shape_env(shape_env)),
110
+ (args, kwargs),
111
+ )
112
+
113
+ # Converts FX nodes using the mapping argument.
114
+ def maybe_convert_node(x: Any) -> Any:
115
+ if not isinstance(x, torch.fx.Node):
116
+ # Don't do anything to x if it's not an FX node.
117
+ return x
118
+ # If, at some point, we created an FX node, it means that translation validation is on.
119
+ # It also means we are building an FX graph for symbolic shapes at shape_env.graph, and
120
+ # we are tracking node names at shape_env.name_to_node.
121
+ assert hasattr(shape_env, "name_to_node")
122
+ name_to_node = shape_env.name_to_node # type: ignore[attr-defined]
123
+ assert x.name in name_to_node
124
+ return name_to_node[x.name]
125
+
126
+ # Replaces the value of an specific argument by the result of fn.
127
+ def replacearg(index: int, key: str, fn: Callable):
128
+ if index < len(args):
129
+ args[index] = fn(args[index])
130
+ if key in kwargs:
131
+ kwargs[key] = fn(kwargs[key])
132
+
133
+ if self.is_create_fx_call_function():
134
+ # ShapeEnv.create_fx_call_function:
135
+ # "args" parameter is a tuple of FX nodes from the FX graph of the old ShapeEnv.
136
+ # They must be replaced, since a "call_function" FX node with this tuple as argument
137
+ # will be added to the FX graph of the new shape_env.
138
+ replacearg(
139
+ index=2,
140
+ key="args",
141
+ fn=lambda args: tuple(maybe_convert_node(a) for a in args),
142
+ )
143
+ if self.is_evaluate_expr() or self.is_defer_runtime_assert():
144
+ # ShapeEnv.evaluate_expr and ShapeEnv.defer_runtime_assert:
145
+ # "fx_node" parameter is an (optional) FX node that represents the evaluate expression.
146
+ # They must be replaced, since it will be part of a "call_function" FX node for
147
+ # torch._assert, which will be added to the FX graph of the new shape_env.
148
+ replacearg(index=3, key="fx_node", fn=maybe_convert_node)
149
+
150
+ # Actually call the method with the converted arguments.
151
+ return self.f(*args, **kwargs)
152
+
153
+ def __str__(self) -> str:
154
+ name = self.name if self.name is not None else self.f.__name__
155
+ return f"event: {name} ({self.args}, {self.kwargs})"
156
+
157
+ def is_create_fx_call_function(self) -> bool:
158
+ return self.name == "create_fx_call_function"
159
+
160
+ def is_evaluate_expr(self) -> bool:
161
+ return self.name == "evaluate_expr"
162
+
163
+ def is_defer_runtime_assert(self) -> bool:
164
+ return self.name == "defer_runtime_assert"
165
+
166
+
167
+ # Extracts a ShapeEnv instance inside args and kwargs.
168
+ # Specifically, it looks for:
169
+ # 1. ShapeEnv arguments
170
+ # 2. SymInt, SymFloat, or SymBool arguments
171
+ # If we find more than one object of any of the above types, we
172
+ # also check that the ShapeEnv instance is the same for all of them.
173
+ def _extract_shape_env_and_assert_equal(args, kwargs):
174
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv, SymTypes
175
+
176
+ def assert_equal(old: Optional[ShapeEnv], new: ShapeEnv) -> ShapeEnv:
177
+ if old is not None:
178
+ assert old is new, "call with different ShapeEnv"
179
+ return new
180
+
181
+ shape_env = None
182
+ for val in itertools.chain(args, kwargs.values()):
183
+ if isinstance(val, ShapeEnv):
184
+ shape_env = assert_equal(shape_env, val)
185
+ if isinstance(val, SymTypes):
186
+ shape_env = assert_equal(shape_env, val.node.shape_env)
187
+
188
+ return shape_env
189
+
190
+
191
+ # Decorator for recording the given function as a replayable event.
192
+ #
193
+ # This decorator should be used at every function that mutates the state of
194
+ # ShapeEnv in some way that affects the resulting issued guards (i.e. when
195
+ # ShapeEnv.produce_guards is called).
196
+ #
197
+ # save_tracked_fakes: saves a snapshot of the TrackedFake list.
198
+ # This is used when calling ShapeEnv.produce_guards at arbitrary points in time.
199
+ #
200
+ # When to save the list of TrackedFake?
201
+ # =====================================
202
+ # We should save the list of TrackedFake whenever the translation validation
203
+ # bisection may actually stop and call the produce_guards method at the moment
204
+ # right after the recorded function was played. In other words, since the
205
+ # bisection bisects through torch._assert calls, we should save in all methods
206
+ # that adds a torch._assert call to the symbolic shapes FX graph.
207
+ #
208
+ # At the moment, there are 2 methods that save the list:
209
+ # - ShapeEnv.evaluate_expr
210
+ # - ShapeEnv.defer_runtime_assert
211
+ def record_shapeenv_event(*, save_tracked_fakes: bool = False) -> Callable:
212
+ def decorator(fn: Callable) -> Callable:
213
+ assert callable(fn)
214
+ name = fn.__name__
215
+
216
+ @functools.wraps(fn)
217
+ def wrapper(*args, **kwargs):
218
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv
219
+
220
+ if isinstance(args[0], ShapeEnv) and args[0].is_recording: # type: ignore[has-type]
221
+ # If ShapeEnv is already recording an event, call the wrapped
222
+ # function directly.
223
+ #
224
+ # NB: here, we skip the check of whether all ShapeEnv instances
225
+ # are equal, in favor of a faster dispatch.
226
+ return fn(*args, **kwargs)
227
+
228
+ # Retrieve an instance of ShapeEnv.
229
+ # Assumption: the collection of args and kwargs may not reference
230
+ # different ShapeEnv instances.
231
+ self = _extract_shape_env_and_assert_equal(args, kwargs)
232
+
233
+ # If we are calling this function without any ShapeEnv instance
234
+ # alive in its arguments, we don't record and call the original.
235
+ if self is None:
236
+ return fn(*args, **kwargs)
237
+
238
+ # Otherwise, start recording and call the function.
239
+ with self.recording():
240
+ # Take a snapshot of the current tracked_fakes.
241
+ tracked_fakes = (
242
+ self.snapshot_tracked_fakes() if save_tracked_fakes else None
243
+ )
244
+ # Record the event for 'fn'.
245
+ event = ShapeEnvEvent(
246
+ fn, list(args), kwargs, tracked_fakes, name=fn.__name__
247
+ )
248
+ self.events.append(event)
249
+ # Play the event on this ShapeEnv.
250
+ return event.run(self)
251
+
252
+ return wrapper
253
+
254
+ return decorator
255
+
256
+
257
+ # Replays the ShapeEnvEvents list.
258
+ # It assumes the first event is the constructor call.
259
+ #
260
+ # fn: transforms an old FX node into one corresponding to the newly created ShapeEnv.
261
+ def replay_shape_env_events(events):
262
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv
263
+
264
+ constructor_event = events[0]
265
+ assert constructor_event.f == ShapeEnv
266
+
267
+ # Constructs the new ShapeEnv.
268
+ shape_env = constructor_event.run()
269
+
270
+ for event in events[1:]:
271
+ try:
272
+ # Actually replays each event.
273
+ # We need to call create_mapping_fn every time, since the node list might
274
+ # change after each event is replayed.
275
+ event.run(shape_env)
276
+ except Exception as e:
277
+ raise RuntimeError(f"failed when running event: {event}") from e
278
+
279
+ return shape_env
280
+
281
+
282
+ # FakeTensor metadata.
283
+ # This is to be used in place of FakeTensor placeholders when calling
284
+ # ShapeEnv.produce_guards.
285
+ @dataclass
286
+ class FakeTensorMeta:
287
+ tensor_size: Tuple[Union[int, torch.SymInt], ...]
288
+ tensor_stride: Tuple[Union[int, torch.SymInt], ...]
289
+ tensor_storage_offset: Union[int, torch.SymInt]
290
+ is_nested: bool
291
+
292
+ def size(self) -> Tuple[Union[int, torch.SymInt], ...]:
293
+ return self.tensor_size
294
+
295
+ def stride(self) -> Tuple[Union[int, torch.SymInt], ...]:
296
+ return self.tensor_stride
297
+
298
+ def storage_offset(self) -> Union[int, torch.SymInt]:
299
+ return self.tensor_storage_offset
300
+
301
+ def dim(self) -> int:
302
+ return len(self.tensor_size)
303
+
304
+ @staticmethod
305
+ def from_fake(fake) -> "FakeTensorMeta":
306
+ return FakeTensorMeta(
307
+ fake.size(), fake.stride(), fake.storage_offset(), fake.is_nested
308
+ )
309
+
310
+
311
+ # [Note: ShapeEnv State Equality]
312
+ # ===============================
313
+ #
314
+ # What is considered ShapeEnv state?
315
+ # ----------------------------------
316
+ # We consider to be the state of a ShapeEnv instance everything that
317
+ # is not in the inline tuple inside remove_nonstate_variables function.
318
+ # That is: the fields within ShapeEnv that modify the flow of execution
319
+ # of the program.
320
+ #
321
+ # So, for example: the replacements field might influence on how an
322
+ # expression is simplified. That, in turn, may result in a guard being
323
+ # statically known (i.e. not added).
324
+ #
325
+ # On the other hand, var_to_stack serves only changes what is printed
326
+ # in the screen, i.e. used only for debugging purposes. Therefore, we
327
+ # should not consider it when comparing states.
328
+ #
329
+ # What to do on NotEqualError?
330
+ # ----------------------------
331
+ # Here are a few possible causes for getting a NotEqualError raised:
332
+ #
333
+ # 1. New field that does not belong in the ShapeEnv state.
334
+ # For example: log field of type ShapeEnvLoggerAdapter. Different
335
+ # ShapeEnv instances will always have different ShapeEnvLoggerAdapter
336
+ # instances, i.e. equality comparison would fail.
337
+ # Solution: add it to the inlined tuple inside remove_nonstate_variables
338
+ # function inside check_equal method.
339
+ #
340
+ # 2. New field that is not directly comparable across instances.
341
+ # For example: guards field of type List[ShapeGuard]. More specifically,
342
+ # the ShapeGuard type holds an expression and a stack information
343
+ # for debugging purposes. When replaying the even on a new ShapeEnv
344
+ # instance, the stack would be different, which would trigger this error.
345
+ # Solution: add a special case to the map_value function inside
346
+ # check_equal function.
347
+ #
348
+ # 3. Mutation of ShapeEnv on some not recorded function.
349
+ # If a mutation of the state of ShapeEnv happens inside a function
350
+ # that is not recorded (or that no caller in the stack is recorded),
351
+ # then, the replayed ShapeEnv won't catch that.
352
+ # Solution: decorate the function with record_shape_env_event.
353
+
354
+
355
+ # Checks whether the state of two ShapeEnv are equal w.r.t. the guards
356
+ # returned by ShapeEnv.produce_guards.
357
+ def shape_env_check_state_equal(env1, env2, non_state_variable_names, map_value):
358
+ # Collect and remove variables that don't necessarily represent the state
359
+ # of a ShapeEnv. Note: we copy the dictionary so that we don't modify the
360
+ # instance itself.
361
+ env1_vars = vars(env1).copy()
362
+ env2_vars = vars(env2).copy()
363
+
364
+ for v in non_state_variable_names:
365
+ if v in env1_vars:
366
+ env1_vars.pop(v)
367
+ if v in env2_vars:
368
+ env2_vars.pop(v)
369
+
370
+ # Function for transforming the mismatched values into string.
371
+ # Needed, since dict and set entries order might not be the same every time.
372
+ def value_to_str(value: Any) -> str:
373
+ if isinstance(value, dict):
374
+ return (
375
+ "{"
376
+ + ", ".join(f"{k}: {value[k]}" for k in sorted(value.keys(), key=str))
377
+ + "}"
378
+ )
379
+ if isinstance(value, set):
380
+ return "{" + ", ".join(f"{v}" for v in sorted(value)) + "}"
381
+ return str(value)
382
+
383
+ # Compares env1_vars with env2_vars.
384
+ # Here, we allow the value of each field to be mapped, so that we appropriately
385
+ # compare the two values.
386
+ def compare_vars(
387
+ map_value: Callable[[str, Any], Any]
388
+ ) -> List[Tuple[str, str, str]]:
389
+ env1_set, env2_set = set(env1_vars), set(env2_vars)
390
+
391
+ # First, compare the set of keys in each vars dictionary.
392
+ if env1_set != env2_set:
393
+ raise NotEqualError(
394
+ "field set mismatch:",
395
+ [
396
+ (
397
+ "found unique fields:",
398
+ str(sorted(env1_set - env2_set)),
399
+ str(sorted(env2_set - env1_set)),
400
+ ),
401
+ ],
402
+ )
403
+
404
+ # Then, sort the keys, and compare the mapped values of each key.
405
+ sorted_keys = list(env1_set)
406
+ sorted_keys.sort()
407
+
408
+ mapped_dict = [
409
+ (k, map_value(k, env1_vars[k]), map_value(k, env2_vars[k]))
410
+ for k in sorted_keys
411
+ ]
412
+
413
+ # Return a list of tuples representing the fields that did not match
414
+ # alongside their respective mapped values.
415
+ return [
416
+ (f"{k}: values don't match.", value_to_str(val1), value_to_str(val2))
417
+ for k, val1, val2 in mapped_dict
418
+ if val1 != val2
419
+ ]
420
+
421
+ # Accumulate the mismatching fields.
422
+ errors = compare_vars(map_value)
423
+
424
+ if len(errors) > 0:
425
+ raise NotEqualError("field values don't match:", errors)
426
+
427
+
428
+ class NotEqualError(Exception):
429
+ def __init__(
430
+ self,
431
+ msg: str,
432
+ mismatched: List[Tuple[str, str, str]],
433
+ ) -> None:
434
+ details = "\n".join(
435
+ [
436
+ "\n".join(
437
+ [
438
+ f"==> {inner_msg}",
439
+ f" > Left: {str1}",
440
+ f" > Right: {str2}",
441
+ ]
442
+ )
443
+ for inner_msg, str1, str2 in mismatched
444
+ ]
445
+ )
446
+
447
+ super().__init__(
448
+ f"""\
449
+ ShapeEnv not equal: {msg}
450
+
451
+ {details}
452
+ """
453
+ )
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/refinement_types.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Equality:
2
+ def __init__(self, lhs, rhs):
3
+ self.lhs = lhs
4
+ self.rhs = rhs
5
+
6
+ def __str__(self):
7
+ return f'{self.lhs} = {self.rhs}'
8
+
9
+ def __repr__(self):
10
+ return f'{self.lhs} = {self.rhs}'
11
+
12
+ def __eq__(self, other):
13
+ if isinstance(other, Equality):
14
+ return self.lhs == other.lhs and self.rhs == other.rhs
15
+ else:
16
+ return False
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import inspect
3
+ import textwrap
4
+ import copy
5
+ import functools
6
+ from types import FunctionType
7
+ from typing import cast, Union, Callable, Dict, Optional, Any
8
+ from torch.fx._symbolic_trace import Tracer
9
+ from torch.fx.graph import Graph
10
+ from torch._sources import normalize_source_lines
11
+ import torch
12
+
13
+ class AST_Rewriter(ast.NodeTransformer):
14
+ """
15
+ Take a FunctionType object representing a `forward` method, then
16
+ perform an AST rewrite to swap out nodes that are not symbolically
17
+ traceable with a callsite to the FX alternative.
18
+
19
+ To support swapping out an AST node, define a new `visit` method on
20
+ that node. For more details, see:
21
+ https://docs.python.org/3/library/ast.html#ast.NodeTransformer
22
+ """
23
+
24
+ def rewrite(self, fn: FunctionType):
25
+
26
+ # Normalize the source lines
27
+ sourcelines, _ = inspect.getsourcelines(fn)
28
+ sourcelines = normalize_source_lines(sourcelines)
29
+ source = ''.join(sourcelines)
30
+ normalized_str = textwrap.dedent(source)
31
+
32
+ # Rewrite the original AST
33
+ source_ast = ast.parse(normalized_str)
34
+ dest_ast = ast.fix_missing_locations(self.visit(source_ast))
35
+
36
+ # Pull out the compiled function from the newly-created Module
37
+ code = compile(dest_ast, "", "exec")
38
+ globals_dict = copy.copy(fn.__globals__)
39
+ keys_before = set(globals_dict.keys())
40
+ exec(code, globals_dict)
41
+ new_keys = list(set(globals_dict.keys()) - keys_before)
42
+ assert len(new_keys) == 1
43
+ fn_compiled = globals_dict[new_keys[0]]
44
+
45
+ # return the compiled function with the original globals
46
+ def change_func_globals(f, globals):
47
+ """Based on https://stackoverflow.com/a/13503277/2988730 (@unutbu)"""
48
+ # __globals__ is a private member of the function class
49
+ # so we have to copy the function, f, all of its member, except f.__globals__
50
+ g = FunctionType(
51
+ f.__code__,
52
+ globals,
53
+ name=f.__name__,
54
+ argdefs=f.__defaults__,
55
+ closure=f.__closure__,
56
+ )
57
+ g = functools.update_wrapper(g, f)
58
+ g.__kwdefaults__ = copy.copy(f.__kwdefaults__)
59
+ return g
60
+ # Return the correct FunctionType object
61
+ return change_func_globals(fn_compiled, globals=fn.__globals__)
62
+
63
+ def visit_Assert(self, node):
64
+ """
65
+ Swap out the Assert node (Python's `assert`) with a callsite to the
66
+ symbolically-traceable torch._assert function
67
+ """
68
+ # Create the Call node
69
+ n = ast.parse('torch._assert()', mode='eval')
70
+ assert isinstance(n, ast.Expression)
71
+ call_node = n.body
72
+ assert isinstance(call_node, ast.Call)
73
+ msg = node.msg if node.msg else ast.Constant(value="", kind=None)
74
+ call_node.args = [node.test, msg]
75
+
76
+ # Ensure that the new node conforms to the Python AST grammar
77
+ expr_wrapper = ast.Expr(value=call_node)
78
+
79
+ # Return the new Call node to signify that we want to use it as
80
+ # a replacement for the original _assert node
81
+ return ast.copy_location(expr_wrapper, node)
82
+
83
+ def visit_AnnAssign(self, node):
84
+ """
85
+ Swap out Python's AnnAssign with an Assign node where the annotation function is called.
86
+ Example:
87
+ Original:
88
+ y: Tensor_Type(1,2,3, Dyn) = f2(x)
89
+ Output:
90
+ y = annotate(f2(x),Tensor_Type((1,2,3,Dyn)))
91
+ """
92
+ return ast.Assign(targets=[node.target], value=ast.Call(
93
+ func=ast.Name(id='annotate', ctx=ast.Load()),
94
+ args=[node.value, node.annotation], keywords=[]))
95
+
96
+
97
+ class RewritingTracer(Tracer):
98
+ def trace(self, root: Union[torch.nn.Module, Callable], concrete_args: Optional[Dict[str, Any]] = None) -> Graph:
99
+ return super().trace(_rewrite(root), concrete_args)
100
+
101
+
102
+ def _rewrite(fn: Union[torch.nn.Module, Callable]) -> Union[torch.nn.Module, Callable]:
103
+ if isinstance(fn, torch.nn.Module):
104
+ # Rewrite this module's `forward` as well as the `forward`s of
105
+ # all of this module's recursive descendents. Return the new,
106
+ # rewritten module hierarchy.
107
+ def rewrite_module(m : torch.nn.Module):
108
+ class RewrittenModule(torch.nn.Module):
109
+ def __init__(self, orig):
110
+ super().__init__()
111
+ for k, v in orig.__dict__.items():
112
+ if isinstance(v, torch.nn.Module):
113
+ self.__dict__[k] = copy.copy(rewrite_module(v))
114
+ else:
115
+ self.__dict__[k] = copy.copy(v)
116
+ RewrittenModule.forward = AST_Rewriter().rewrite(cast(FunctionType, m.forward))
117
+ return RewrittenModule(m)
118
+ return rewrite_module(fn)
119
+ else:
120
+ # Rewrite this single free function
121
+ return AST_Rewriter().rewrite(cast(FunctionType, fn))
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/schema_type_annotation.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.fx
3
+ import inspect
4
+ from typing import Any, Dict, Optional, Tuple
5
+ from torch.fx.node import Argument, Target
6
+ from torch._jit_internal import boolean_dispatched
7
+ from torch.fx.operator_schemas import _torchscript_type_to_python_type
8
+
9
+ from torch.fx import Transformer
10
+
11
+ class AnnotateTypesWithSchema(Transformer):
12
+ """
13
+ Use Python function signatures to annotate types for `Nodes` within an FX graph.
14
+ This pulls out Python function signatures for:
15
+
16
+ 1. Standard `torch.nn` Module calls
17
+ 2. `torch.nn.functional` calls
18
+ 3. Attribute fetches via `get_attr`
19
+
20
+ Example usage:
21
+
22
+ m = torchvision.models.resnet18()
23
+
24
+ traced = torch.fx.symbolic_trace(m)
25
+
26
+ traced = AnnotateTypesWithSchema(traced).transform()
27
+
28
+ """
29
+ def __init__(self, module : torch.nn.Module, annotate_functionals : bool = True,
30
+ annotate_modules : bool = True, annotate_get_attrs : bool = True):
31
+ super().__init__(module)
32
+ self.annotate_functionals = annotate_functionals
33
+ self.annotate_modules = annotate_modules
34
+ self.annotate_get_attrs = annotate_get_attrs
35
+
36
+ def call_function(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
37
+ python_ret_type = None
38
+ if self.annotate_functionals and target.__module__ == 'torch.nn.functional':
39
+ target_for_analysis = target
40
+ if target in boolean_dispatched:
41
+ # HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
42
+ # a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
43
+ # branches of the dispatch have exactly the same signature. If they do, use the `true`
44
+ # branch signature for analysis. Otherwise, leave this un-normalized
45
+ assert not isinstance(target, str)
46
+ dispatched = boolean_dispatched[target]
47
+ if_true, if_false = dispatched['if_true'], dispatched['if_false']
48
+ # TODO: can we emit the union of these? What are the implications on TorchScript
49
+ # compilation?
50
+ if inspect.signature(if_true).return_annotation != inspect.signature(if_false).return_annotation:
51
+ return super().call_function(target, args, kwargs)
52
+ target_for_analysis = if_true
53
+
54
+ python_ret_type = self._extract_python_return_type(target_for_analysis)
55
+
56
+ return_proxy = super().call_function(target, args, kwargs)
57
+ return_proxy.node.type = return_proxy.node.type if return_proxy.node.type else python_ret_type
58
+ return return_proxy
59
+
60
+ def call_module(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
61
+ python_ret_type = None
62
+ assert isinstance(target, str)
63
+ submod = self.fetch_attr(target)
64
+ if self.annotate_modules and hasattr(submod.__class__, '__name__'):
65
+ classname = submod.__class__.__name__
66
+ if getattr(torch.nn, classname, None) == submod.__class__:
67
+ python_ret_type = self._extract_python_return_type(submod.forward)
68
+ return_proxy = super().call_module(target, args, kwargs)
69
+ return_proxy.node.type = return_proxy.node.type if return_proxy.node.type else python_ret_type
70
+ return return_proxy
71
+
72
+ def get_attr(self, target : torch.fx.node.Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
73
+ attr_proxy = super().get_attr(target, args, kwargs)
74
+
75
+ if self.annotate_get_attrs:
76
+ module_itr = self.module
77
+ assert isinstance(target, str)
78
+ atoms = target.split('.')
79
+ for i, atom in enumerate(atoms):
80
+ if not hasattr(module_itr, atom):
81
+ raise RuntimeError(f'Node referenced nonextent target {".".join(atoms[:i])}!')
82
+ module_itr = getattr(module_itr, atom)
83
+
84
+ maybe_inferred_ts_type = torch._C._jit_try_infer_type(module_itr)
85
+ if maybe_inferred_ts_type.success():
86
+ python_type = _torchscript_type_to_python_type(maybe_inferred_ts_type.type())
87
+ attr_proxy.node.type = python_type if not attr_proxy.node.type else attr_proxy.node.type
88
+
89
+ return attr_proxy
90
+
91
+ def _extract_python_return_type(self, target : Target) -> Optional[Any]:
92
+ """
93
+ Given a Python call target, try to extract the Python return annotation
94
+ if it is available, otherwise return None
95
+
96
+ Args:
97
+
98
+ target (Callable): Python callable to get return annotation for
99
+
100
+ Returns:
101
+
102
+ Optional[Any]: Return annotation from the `target`, or None if it was
103
+ not available.
104
+ """
105
+ assert callable(target)
106
+ try:
107
+ sig = inspect.signature(target)
108
+ except (ValueError, TypeError):
109
+ return None
110
+
111
+ return sig.return_annotation if sig.return_annotation is not inspect.Signature.empty else None
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/sym_node.py ADDED
@@ -0,0 +1,1145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file does three things:
3
+ - Contains the definition of SymNode
4
+ - Installs all the magic methods into SymBool, SymFloat, SymFloat at import time
5
+ - Does not depend on sympy at import time
6
+
7
+ As this file is imported from within torch/__init__.py we do not want it to depend on SymPy
8
+ to avoid having to load SymPy at import time, as doing so is *very* slow.
9
+ """
10
+
11
+ import builtins
12
+ import itertools
13
+ import logging
14
+ import math
15
+ import operator
16
+ import sys
17
+ from functools import lru_cache
18
+ from typing import Optional, Type, TYPE_CHECKING, Union
19
+
20
+ # NB: The sym_* functions are used via getattr() and must be imported here.
21
+ from torch import ( # noqa: F401
22
+ sym_float,
23
+ sym_ite,
24
+ sym_max,
25
+ sym_min,
26
+ sym_not,
27
+ sym_sqrt,
28
+ SymBool,
29
+ SymFloat,
30
+ SymInt,
31
+ )
32
+
33
+ from torch.fx.experimental._sym_dispatch_mode import (
34
+ handle_sym_dispatch,
35
+ sym_function_mode,
36
+ )
37
+
38
+ if TYPE_CHECKING:
39
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv
40
+
41
+ log = logging.getLogger(__name__)
42
+
43
+
44
+ __all__ = ["SymNode", "method_to_operator", "magic_methods", "sym_sqrt"]
45
+
46
+
47
+ SymTypes = (SymInt, SymFloat, SymBool)
48
+
49
+
50
+ def _to_symtype(t):
51
+ if t is bool:
52
+ return SymBool
53
+ if t is int:
54
+ return SymInt
55
+ if t is float:
56
+ return SymFloat
57
+ return t
58
+
59
+
60
+ # TODO: An incomplete list
61
+ # 1. Set variables to be equal when we do equality
62
+ # 2. Specialize on 0/1 when we do subtraction
63
+ class SymNode:
64
+ """
65
+ This is a type erased SymInt/SymFloat which we use to do actual operations.
66
+ End users don't touch this. Magic methods are NOT defined on this object.
67
+ """
68
+
69
+ def __init__(
70
+ self,
71
+ expr,
72
+ shape_env,
73
+ pytype,
74
+ hint: Optional[Union[int, float, bool]],
75
+ constant=None,
76
+ fx_node=None,
77
+ ):
78
+ self._expr = expr
79
+ self.shape_env = shape_env
80
+ self.pytype = pytype
81
+ # What's the difference between hint and constant?
82
+ #
83
+ # - A constant is known to be invariant across invocations of the model;
84
+ # it will always be this value. We only really know this when we
85
+ # encounter an honest-to-goodness literal (when wrapping it into
86
+ # a SymNode, we set constant.) Most of the time, constant is None
87
+ #
88
+ # - A hint is a *particular* value from the particular run we are
89
+ # tracing, but it may vary the next time around. It's useful to
90
+ # keep this around, as if we need a concrete value from a SymNode,
91
+ # we will return the hint and guard on the expression that produced
92
+ # it giving the same hint next time around. The hint is not
93
+ # guaranteed to be set either: if you have an unbacked SymNode,
94
+ # there won't be any hint; it was the result of some tensor-dependent
95
+ # computation, but we don't know what it actually is because we
96
+ # haven't actually run the tensor computation.
97
+ #
98
+ # If _hint is None, we will query maybe_evaluate_static(compute_hint=True)
99
+ # in hopes that we've learned enough about the unbacked symints to
100
+ # discharge the hint; otherwise, you're likely to just error out.
101
+ #
102
+ # (A previous version of this system had some optimizations to only
103
+ # recompute when it was possible we had learned enough about the
104
+ # unbacked symint that a hint was now possible, but as we added more
105
+ # potential refinements to unbacked symints this got harder to keep
106
+ # in sync, so we've deleted it for now.)
107
+ if hint is not None:
108
+ assert type(hint) is pytype or type(hint) is _to_symtype(pytype), (
109
+ "Cannot create SymNode of type "
110
+ f"{pytype} with incompatible hint of type {type(hint)}"
111
+ )
112
+ self._hint = hint
113
+ self.constant: Optional[Union[int, float, bool]] = constant
114
+
115
+ # Record the FX node of the current node if we are doing translation
116
+ # validation. They will be used for building the input assertions for
117
+ # the translation validation problem.
118
+ self.fx_node = (
119
+ fx_node if self.shape_env._translation_validation_enabled else None
120
+ )
121
+
122
+ def with_shape_env(self, shape_env: "ShapeEnv") -> "SymNode":
123
+ return SymNode(
124
+ self._expr, shape_env, self.pytype, self._hint, self.constant, self.fx_node
125
+ )
126
+
127
+ @property
128
+ def expr(self):
129
+ return self.shape_env.replace(self._expr)
130
+
131
+ # Recompute the hint and see if we've got it now
132
+ # Precondition: self._hint is None
133
+ def _update_hint(self):
134
+ r = self.shape_env._maybe_evaluate_static(self.expr, compute_hint=True)
135
+ if r is not None:
136
+ self._hint = self.pytype(r) if not isinstance(r, SymTypes) else r
137
+
138
+ @property
139
+ def hint(self):
140
+ if self._hint is None:
141
+ self._update_hint()
142
+ return self._hint
143
+
144
+ def has_hint(self):
145
+ if self._hint is None:
146
+ self._update_hint()
147
+ return self._hint is not None
148
+
149
+ def require_hint(self, fallback=None):
150
+ if self._hint is None:
151
+ self._update_hint()
152
+ if self._hint is None:
153
+ if fallback is not None:
154
+ return fallback
155
+ # NB: we expect this to raise
156
+ return self.shape_env.size_hint(self.expr)
157
+ return self._hint
158
+
159
+ def maybe_as_int(self):
160
+ if self.expr.is_number:
161
+ return int(self.expr)
162
+ else:
163
+ return None
164
+
165
+ def is_int(self):
166
+ return self.pytype is int
167
+
168
+ def is_float(self):
169
+ return self.pytype is float
170
+
171
+ def is_bool(self):
172
+ return self.pytype is bool
173
+
174
+ def wrap_int(self, num):
175
+ assert type(num) is int
176
+ import sympy
177
+
178
+ return SymNode(
179
+ sympy.Integer(num), self.shape_env, int, num, constant=num, fx_node=num
180
+ )
181
+
182
+ def wrap_float(self, num):
183
+ assert type(num) is float
184
+ import sympy
185
+
186
+ return SymNode(
187
+ sympy.Float(num), self.shape_env, float, num, constant=num, fx_node=num
188
+ )
189
+
190
+ def wrap_bool(self, num):
191
+ assert type(num) is bool
192
+ import sympy
193
+
194
+ return SymNode(
195
+ sympy.true if num else sympy.false,
196
+ self.shape_env,
197
+ bool,
198
+ num,
199
+ constant=num,
200
+ fx_node=num,
201
+ )
202
+
203
+ def clone(self):
204
+ return self
205
+
206
+ def str(self):
207
+ return f"{self.expr}"
208
+
209
+ def __str__(self):
210
+ return self.str()
211
+
212
+ def __repr__(self):
213
+ return self.str()
214
+
215
+ # These methods call the metaprogrammed methods, they're hand written
216
+ # here so we get good stack traces
217
+ def abs(self) -> "SymNode":
218
+ return self._abs() # type: ignore[attr-defined]
219
+
220
+ def add(self, other) -> "SymNode":
221
+ return self._add(other) # type: ignore[attr-defined]
222
+
223
+ def sub(self, other) -> "SymNode":
224
+ return self._sub(other) # type: ignore[attr-defined]
225
+
226
+ def mul(self, other) -> "SymNode":
227
+ return self._mul(other) # type: ignore[attr-defined]
228
+
229
+ def mod(self, other) -> "SymNode":
230
+ return self._mod(other) # type: ignore[attr-defined]
231
+
232
+ def pow(self, other) -> "SymNode":
233
+ return self._pow(other) # type: ignore[attr-defined]
234
+
235
+ def and_(self, other) -> "SymNode":
236
+ return self._and_(other) # type: ignore[attr-defined]
237
+
238
+ def or_(self, other) -> "SymNode":
239
+ return self._or_(other) # type: ignore[attr-defined]
240
+
241
+ def truediv(self, other) -> "SymNode":
242
+ return self._truediv(other) # type: ignore[attr-defined]
243
+
244
+ def floordiv(self, other) -> "SymNode":
245
+ return self._floordiv(other) # type: ignore[attr-defined]
246
+
247
+ def lshift(self, other) -> "SymNode":
248
+ return self._lshift(other) # type: ignore[attr-defined]
249
+
250
+ def rshift(self, other) -> "SymNode":
251
+ return self._rshift(other) # type: ignore[attr-defined]
252
+
253
+ def sym_not(self) -> "SymNode": # noqa: F811
254
+ return self._sym_not() # type: ignore[attr-defined]
255
+
256
+ def eq(self, other) -> "SymNode":
257
+ return self._eq(other) # type: ignore[attr-defined]
258
+
259
+ def ne(self, other) -> "SymNode":
260
+ return self._ne(other) # type: ignore[attr-defined]
261
+
262
+ def gt(self, other) -> "SymNode":
263
+ return self._gt(other) # type: ignore[attr-defined]
264
+
265
+ def lt(self, other) -> "SymNode":
266
+ return self._lt(other) # type: ignore[attr-defined]
267
+
268
+ def le(self, other) -> "SymNode":
269
+ return self._le(other) # type: ignore[attr-defined]
270
+
271
+ def ge(self, other) -> "SymNode":
272
+ return self._ge(other) # type: ignore[attr-defined]
273
+
274
+ def floor(self) -> "SymNode":
275
+ return self._floor() # type: ignore[attr-defined]
276
+
277
+ def sym_float(self) -> "SymNode": # noqa: F811
278
+ return self._sym_float() # type: ignore[attr-defined]
279
+
280
+ def sym_int(self) -> "SymNode":
281
+ return self._sym_int() # type: ignore[attr-defined]
282
+
283
+ def ceil(self) -> "SymNode":
284
+ return self._ceil() # type: ignore[attr-defined]
285
+
286
+ def neg(self) -> "SymNode":
287
+ return self._neg() # type: ignore[attr-defined]
288
+
289
+ def sym_min(self, other) -> "SymNode": # noqa: F811
290
+ return self._sym_min(other) # type: ignore[attr-defined]
291
+
292
+ def sym_max(self, other) -> "SymNode": # noqa: F811
293
+ return self._sym_max(other) # type: ignore[attr-defined]
294
+
295
+ def sym_ite(self, then_val, else_val) -> "SymNode":
296
+ return self._sym_ite(then_val, else_val) # type: ignore[attr-defined]
297
+
298
+ def sym_sqrt(self) -> "SymNode":
299
+ return self._sym_sqrt() # type: ignore[attr-defined]
300
+
301
+ def is_contiguous(self, sizes, strides) -> "SymNode":
302
+ return self._is_contiguous(sizes, strides) # type: ignore[attr-defined]
303
+
304
+ def is_channels_last_contiguous_2d(self, sizes, strides) -> "SymNode":
305
+ return self._is_channels_last_contiguous_2d(sizes, strides) # type: ignore[attr-defined]
306
+
307
+ def is_channels_last_contiguous_3d(self, sizes, strides) -> "SymNode":
308
+ return self._is_channels_last_contiguous_3d(sizes, strides) # type: ignore[attr-defined]
309
+
310
+ def is_channels_last_strides_2d(self, sizes, strides) -> "SymNode":
311
+ return self._is_channels_last_strides_2d(sizes, strides) # type: ignore[attr-defined]
312
+
313
+ def is_channels_last_strides_3d(self, sizes, strides) -> "SymNode":
314
+ return self._is_channels_last_strides_3d(sizes, strides) # type: ignore[attr-defined]
315
+
316
+ def is_non_overlapping_and_dense_indicator(self, sizes, strides) -> "SymNode":
317
+ return self._is_non_overlapping_and_dense_indicator(sizes, strides) # type: ignore[attr-defined]
318
+
319
+ # Make C++ happy
320
+ def sym_or(self, other):
321
+ return self.or_(other)
322
+
323
+ def sym_and(self, other):
324
+ return self.and_(other)
325
+
326
+ def is_non_overlapping_and_dense(self, sizes, strides):
327
+ return self.is_non_overlapping_and_dense_indicator(sizes, strides).eq(to_node(self, 1)) # type: ignore[attr-defined]
328
+
329
+ def int_(self):
330
+ return self.guard_int("", 0) # NB: uses Python backtrace
331
+
332
+ # You can manually trigger a guard with this function
333
+ def guard_int(self, file, line):
334
+ # TODO: use the file/line for some useful diagnostic on why a
335
+ # guard occurred
336
+ r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node)
337
+ try:
338
+ return int(r)
339
+ except Exception:
340
+ log.warning("Failed to convert to int: %s", r)
341
+ raise
342
+
343
+ def guard_float(self, file, line):
344
+ # TODO: use the file/line for some useful diagnostic on why a
345
+ # guard occurred
346
+ r = self.shape_env.evaluate_expr(
347
+ self.expr, self.hint, fx_node=self.fx_node, expect_rational=False
348
+ )
349
+ try:
350
+ return float(r)
351
+ except Exception:
352
+ log.warning("Failed to convert to float: %s", r)
353
+ raise
354
+
355
+ def guard_bool(self, file, line):
356
+ # TODO: use the file/line for some useful diagnostic on why a
357
+ # guard occurred
358
+ r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node)
359
+ try:
360
+ return bool(r)
361
+ except Exception:
362
+ log.warning("Failed to convert to bool: %s", r)
363
+ raise
364
+
365
+ def expect_true(self, file, line):
366
+ if self.has_hint():
367
+ # OK to generate guards
368
+ return self.guard_bool(file, line)
369
+ # Generate a deferred runtime assert (this might actually end up doing
370
+ # a regular guard if we can!)
371
+ # TODO: file/line here is very important, because the assert has been
372
+ # deferred so you can't backtrace easily
373
+ return self.shape_env.defer_runtime_assert(
374
+ self.expr, f"{file}:{line}", fx_node=self.fx_node
375
+ )
376
+
377
+ def expect_size(self, file, line):
378
+ from torch.fx.experimental.symbolic_shapes import _advise_is_size
379
+
380
+ b = self.ge(self.wrap_int(0))
381
+ # Generate a deferred runtime assert
382
+ r = b.expect_true(file, line)
383
+ # Refine compile time range, but only if it's unbacked.
384
+ # If you refine range for hinted variables, you can end up making
385
+ # improper deductions since compile time reasoning may be
386
+ # incompatible with runtime reasoning.
387
+ if r and not self.has_hint():
388
+ _advise_is_size(SymInt(self))
389
+ return r
390
+
391
+ def bool_(self):
392
+ return self.guard_bool("", 0)
393
+
394
+ def is_symbolic(self):
395
+ return True
396
+
397
+ def singleton_int(self):
398
+ return None
399
+
400
+ def is_constant(self):
401
+ return False
402
+
403
+
404
+ # TODO: this probably needs the sizes-strides eval functions
405
+ METHOD_TO_OPERATOR = {
406
+ "abs": operator.abs,
407
+ "add": operator.add,
408
+ "and": operator.and_,
409
+ "ceil": math.ceil,
410
+ "eq": operator.eq,
411
+ "floor": math.floor,
412
+ "floordiv": operator.floordiv,
413
+ "ge": operator.ge,
414
+ "gt": operator.gt,
415
+ "le": operator.le,
416
+ "lshift": operator.lshift,
417
+ "lt": operator.lt,
418
+ "mod": operator.mod,
419
+ "mul": operator.mul,
420
+ "ne": operator.ne,
421
+ "neg": operator.neg,
422
+ "or": operator.or_,
423
+ "pow": operator.pow,
424
+ "rshift": operator.rshift,
425
+ "sub": operator.sub,
426
+ "sym_float": sym_float,
427
+ "sym_ite": sym_ite,
428
+ "sym_max": sym_max,
429
+ "sym_min": sym_min,
430
+ "sym_not": sym_not,
431
+ "sym_sqrt": sym_sqrt,
432
+ "truediv": operator.truediv,
433
+ }
434
+
435
+ unary_magic_methods = {
436
+ "abs",
437
+ "sym_float",
438
+ "ceil",
439
+ "floor",
440
+ "neg",
441
+ "sym_sqrt",
442
+ "sym_not",
443
+ }
444
+
445
+ # Most methods are only registered on SymInt and SymFloat
446
+ # Some methods are only be registered on SymBool
447
+ only_bool_magic_methods = {"and", "or", "sym_not", "sym_ite"}
448
+ # Methods that implicitly convert SymBool into SymInt
449
+ bool_becomes_int_magic_methods = {"add", "sub", "mul"}
450
+ # Methods that are also on SymBool, in addition to on SymInt and SymFloat
451
+ also_bool_magic_methods = {"eq"}
452
+ bool_magic_methods = only_bool_magic_methods | also_bool_magic_methods
453
+
454
+
455
+ magic_methods_on_operator_with_trailing_underscore = {"and", "or"}
456
+
457
+
458
+ always_float_magic_methods = {"truediv", "sym_float", "sym_sqrt", "pow"}
459
+ always_int_magic_methods = {"ceil", "floor"}
460
+ always_bool_magic_methods = {
461
+ "eq",
462
+ "ne",
463
+ "gt",
464
+ "lt",
465
+ "le",
466
+ "ge",
467
+ "and",
468
+ "or",
469
+ "sym_not",
470
+ "is_non_overlapping_and_dense",
471
+ }
472
+
473
+ # Methods that have a `__foo__` as well as `__rfoo__`
474
+
475
+
476
+ def _sympy_truediv(a, b):
477
+ from torch.utils._sympy.functions import TrueDiv
478
+
479
+ return TrueDiv(a, b)
480
+
481
+
482
+ def _sympy_floordiv(a, b):
483
+ from torch.utils._sympy.functions import FloorDiv
484
+
485
+ return FloorDiv(a, b)
486
+
487
+
488
+ def _sympy_mod(a, b):
489
+ from torch.utils._sympy.functions import Mod
490
+
491
+ return Mod(a, b)
492
+
493
+
494
+ def _sympy_pow(a, b):
495
+ from torch.utils._sympy.functions import Pow
496
+
497
+ return Pow(a, b)
498
+
499
+
500
+ def _sympy_and(a, b):
501
+ import sympy
502
+
503
+ return sympy.And(a, b)
504
+
505
+
506
+ def _sympy_or(a, b):
507
+ import sympy
508
+
509
+ return sympy.Or(a, b)
510
+
511
+
512
+ def _sympy_lshift(a, b):
513
+ from torch.utils._sympy.functions import LShift
514
+
515
+ return LShift(a, b)
516
+
517
+
518
+ def _sympy_rshift(a, b):
519
+ from torch.utils._sympy.functions import RShift
520
+
521
+ return RShift(a, b)
522
+
523
+
524
+ reflectable_magic_methods = {
525
+ "add": lambda a, b: a + b,
526
+ "sub": lambda a, b: a - b,
527
+ "mul": lambda a, b: a * b,
528
+ "mod": _sympy_mod,
529
+ "pow": _sympy_pow,
530
+ "and": _sympy_and,
531
+ "or": _sympy_or,
532
+ "truediv": _sympy_truediv,
533
+ "floordiv": _sympy_floordiv,
534
+ "lshift": _sympy_lshift,
535
+ "rshift": _sympy_rshift,
536
+ }
537
+
538
+
539
+ def _floor_ceil_helper(a, fn):
540
+ import sympy
541
+
542
+ if isinstance(a, sympy.Mul):
543
+ aa = a.args
544
+ if len(aa) == 2 and isinstance(aa[0], sympy.Float) and aa[1].is_integer:
545
+ coef = sympy.Integer(aa[0])
546
+ if aa[0] == coef: # structural equality test
547
+ return coef * aa[1]
548
+ if (
549
+ isinstance(a, sympy.Float)
550
+ and a == sympy.Integer(a)
551
+ or isinstance(a, sympy.Integer)
552
+ ):
553
+ return sympy.Integer(a)
554
+ return fn(a)
555
+
556
+
557
+ def _sympy_floor(a):
558
+ import sympy
559
+
560
+ return _floor_ceil_helper(a, sympy.floor)
561
+
562
+
563
+ def _sympy_ceil(a):
564
+ import sympy
565
+
566
+ return _floor_ceil_helper(a, sympy.ceiling)
567
+
568
+
569
+ def _sympy_eq(a, b):
570
+ import sympy
571
+
572
+ return sympy.Eq(a, b)
573
+
574
+
575
+ def _sympy_ne(a, b):
576
+ import sympy
577
+
578
+ return sympy.Ne(a, b)
579
+
580
+
581
+ def _sympy_gt(a, b):
582
+ import sympy
583
+
584
+ return sympy.Gt(a, b)
585
+
586
+
587
+ def _sympy_lt(a, b):
588
+ import sympy
589
+
590
+ return sympy.Lt(a, b)
591
+
592
+
593
+ def _sympy_le(a, b):
594
+ import sympy
595
+
596
+ return sympy.Le(a, b)
597
+
598
+
599
+ def _sympy_ge(a, b):
600
+ import sympy
601
+
602
+ return sympy.Ge(a, b)
603
+
604
+
605
+ def _sympy_min(a, b):
606
+ import sympy
607
+
608
+ return sympy.Min(a, b)
609
+
610
+
611
+ def _sympy_max(a, b):
612
+ import sympy
613
+
614
+ return sympy.Max(a, b)
615
+
616
+
617
+ def _sympy_ite(a, t, f):
618
+ import sympy
619
+
620
+ return sympy.Piecewise((t, a), (f, True))
621
+
622
+
623
+ def _sympy_sqrt(a):
624
+ import sympy
625
+
626
+ return sympy.sqrt(a)
627
+
628
+
629
+ def _sympy_abs(a):
630
+ import sympy
631
+
632
+ return sympy.Abs(a)
633
+
634
+
635
+ def _sympy_sym_float(a):
636
+ # Cannot use sympy.Float(a) here, coz it expects python literals
637
+ # Multiply by 1.0 to cast to float. This is needed when the input
638
+ # is a SymInt which has the assumption that it is integer and
639
+ # SymPy will otherwise assume that return value cannot be a float.
640
+ return a * 1.0
641
+
642
+
643
+ magic_methods = {
644
+ **reflectable_magic_methods,
645
+ "sym_not": lambda a: ~a,
646
+ "eq": _sympy_eq,
647
+ "ne": _sympy_ne,
648
+ "gt": _sympy_gt,
649
+ "lt": _sympy_lt,
650
+ "le": _sympy_le,
651
+ "ge": _sympy_ge,
652
+ "floor": _sympy_floor,
653
+ "sym_float": _sympy_sym_float,
654
+ "ceil": _sympy_ceil,
655
+ "neg": lambda a: -a,
656
+ "sym_min": _sympy_min,
657
+ "sym_max": _sympy_max,
658
+ "sym_ite": _sympy_ite,
659
+ "sym_sqrt": _sympy_sqrt,
660
+ "abs": _sympy_abs,
661
+ }
662
+
663
+
664
+ def sympy_is_contiguous(sizes, strides):
665
+ dim = len(sizes)
666
+ return sympy_is_contiguous_generic(sizes, strides, list(range(dim - 1, -1, -1)))
667
+
668
+
669
+ def sympy_is_contiguous_generic(sizes, strides, dim_order):
670
+ import sympy
671
+
672
+ dim = len(sizes)
673
+
674
+ if len(dim_order) != dim:
675
+ return sympy.false
676
+
677
+ is_contiguous = sympy.true
678
+ z = sympy.Integer(1)
679
+ # Contiguous if the strides make sense (or the dim is size 1)
680
+ for d in dim_order:
681
+ is_contiguous &= sympy.Eq(sizes[d], sympy.Integer(1)) | sympy.Eq(strides[d], z)
682
+ z *= sizes[d]
683
+ # OR if any size is zero
684
+ for d in range(dim):
685
+ is_contiguous |= sympy.Eq(sizes[d], sympy.Integer(0))
686
+ return is_contiguous
687
+
688
+
689
+ # NB: There is a TODO in C++ to allow omitting the batch dim. If that
690
+ # happens you will need to refactor this
691
+
692
+
693
+ def sympy_is_channels_last_contiguous_2d(sizes, strides):
694
+ return sympy_is_contiguous_generic(sizes, strides, [1, 3, 2, 0])
695
+
696
+
697
+ def sympy_is_channels_last_contiguous_3d(sizes, strides):
698
+ return sympy_is_contiguous_generic(sizes, strides, [1, 4, 3, 2, 0])
699
+
700
+
701
+ def sympy_is_channels_last_strides_generic(sizes, strides, dim_order):
702
+ import sympy
703
+
704
+ dim = len(sizes)
705
+
706
+ if dim != len(dim_order):
707
+ return sympy.false
708
+
709
+ m = sympy.Integer(0)
710
+ r = sympy.true
711
+
712
+ # special case for trivial C dimension. default to NCHW
713
+ r &= sympy.Ne(strides[1], 0)
714
+
715
+ for d in dim_order:
716
+ r &= sympy.Ne(sizes[d], 0) & (strides[d] >= m)
717
+ # Fallback to NCHW as default layout for ambiguous cases
718
+ # This is the flaw of implicit memory_format from strides.
719
+ # N111 tensor with identical strides for size 1 dimension;
720
+ # Two cases could lead us here:
721
+ # a. N111 contiguous Tensor ([N,1,1,1]@[1,1,1,1])
722
+ # b. N11W contiguous Tensor sliced on the W-dimension.
723
+ # ([N,1,1,1]@[W,W,W,W])
724
+ if d == 0:
725
+ r &= sympy.Ne(m, strides[1])
726
+ # This is necessary to:
727
+ # 1. distinguish the memory_format of N1H1;
728
+ # [H, 1, 1, 1] channels_last stride
729
+ # [H, H, 1, 1] contiguous stride
730
+ # 2. permutation of 1C1W:
731
+ # [1, C, 1, H]@[HC, H, H, 1] transpose(1, 3)
732
+ # [1, H, 1, C]@[HC, 1, H, H] shouldn't be identified as
733
+ # channels_last
734
+ m = strides[d] * sympy.Max(sizes[d], 1)
735
+
736
+ return r
737
+
738
+
739
+ def sympy_is_channels_last_strides_2d(sizes, strides):
740
+ return sympy_is_channels_last_strides_generic(sizes, strides, [1, 3, 2, 0])
741
+
742
+
743
+ def sympy_is_channels_last_strides_3d(sizes, strides):
744
+ return sympy_is_channels_last_strides_generic(sizes, strides, [1, 4, 3, 2, 0])
745
+
746
+
747
+ def _sympy_is_non_overlapping_and_dense_indicator(sizes, strides):
748
+ from torch.utils._sympy.functions import IsNonOverlappingAndDenseIndicator
749
+
750
+ return IsNonOverlappingAndDenseIndicator(*sizes, *strides)
751
+
752
+
753
+ sizes_strides_methods = {
754
+ # TODO: These could also be done with indicators, maybe it is better
755
+ # for reasoning to do it that way
756
+ "is_contiguous": sympy_is_contiguous,
757
+ "is_channels_last_contiguous_2d": sympy_is_channels_last_contiguous_2d,
758
+ "is_channels_last_contiguous_3d": sympy_is_channels_last_contiguous_3d,
759
+ "is_channels_last_strides_2d": sympy_is_channels_last_strides_2d,
760
+ "is_channels_last_strides_3d": sympy_is_channels_last_strides_3d,
761
+ "is_non_overlapping_and_dense_indicator": _sympy_is_non_overlapping_and_dense_indicator,
762
+ }
763
+
764
+ alternate_impl_if_hinted_methods = {
765
+ "sym_min": builtins.min,
766
+ "sym_max": builtins.max,
767
+ }
768
+
769
+
770
+ def to_node(self, num):
771
+ if isinstance(num, SymTypes):
772
+ return num.node
773
+ elif type(num) is bool:
774
+ return self.wrap_bool(num)
775
+ elif type(num) is int:
776
+ return self.wrap_int(num)
777
+ elif type(num) is float:
778
+ return self.wrap_float(num)
779
+ else:
780
+ # NotImplemented is important so that Python tries the
781
+ # other magic method
782
+ return NotImplemented
783
+
784
+
785
+ def wrap_node(x):
786
+ # TODO: let C++ also take advantage of this
787
+ if isinstance(x, SymNode) and x.constant is not None:
788
+ return x.constant
789
+ if x.is_int():
790
+ return SymInt(x)
791
+ elif x.is_float():
792
+ return SymFloat(x)
793
+ elif x.is_bool():
794
+ return SymBool(x)
795
+ else:
796
+ raise AssertionError(f"unrecognized return type {x}")
797
+
798
+
799
+ def method_to_operator(method):
800
+ return METHOD_TO_OPERATOR[method]
801
+
802
+
803
+ def _make_node_magic(method, func):
804
+ func = lru_cache(256)(func)
805
+
806
+ if method in magic_methods_on_operator_with_trailing_underscore:
807
+ method_attr = f"{method}_"
808
+ else:
809
+ method_attr = method
810
+
811
+ def binary_magic_impl(self, other):
812
+ from torch.fx.experimental.symbolic_shapes import safe_expand
813
+
814
+ op = method_to_operator(method)
815
+
816
+ out_hint = None
817
+ if self.hint is not None and other.hint is not None:
818
+ out_hint = op(self.hint, other.hint)
819
+
820
+ alternate_impl = alternate_impl_if_hinted_methods.get(method)
821
+ if alternate_impl and out_hint is not None:
822
+ return to_node(self, alternate_impl(wrap_node(self), wrap_node(other)))
823
+
824
+ if sym_function_mode():
825
+ return to_node(
826
+ self, handle_sym_dispatch(op, (wrap_node(self), wrap_node(other)), {})
827
+ )
828
+ assert isinstance(other, SymNode)
829
+ # TODO: consider constant prop here
830
+ try:
831
+ out = func(self.expr, other.expr)
832
+ except Exception:
833
+ log.warning("failed to eval %s(%s, %s)", method, self.expr, other.expr)
834
+ raise
835
+ out = safe_expand(out)
836
+ pytype: Type
837
+ # This is not strictly correct. In Python, a**b may return complex when
838
+ # a < 0 and b is a float: (-1)**2.1. Same for sympy.sqrt(-3.14). This
839
+ # returns a float while both arguments are ints: 2**(-1). Also, max and
840
+ # min do not type promote. To avoid having data-dependent control flow
841
+ # here, we just set the type to float if one of the args is a float. In
842
+ # case of a type mismatch, we assume that it will be detected during
843
+ # evaluation.
844
+ if method in always_float_magic_methods:
845
+ pytype = float
846
+ elif method in always_bool_magic_methods:
847
+ pytype = bool
848
+ elif self.pytype is float or other.pytype is float:
849
+ pytype = float
850
+ else:
851
+ pytype = self.pytype
852
+
853
+ if (
854
+ pytype is not None
855
+ and out_hint is not None
856
+ and not isinstance(out_hint, SymTypes)
857
+ ):
858
+ out_hint = pytype(out_hint)
859
+
860
+ # Create a FX node that corresponds to the operation being applied to
861
+ # this node.
862
+ fx_node, _ = self.shape_env.create_fx_call_function(
863
+ op, (self.fx_node, other.fx_node)
864
+ )
865
+ return SymNode(out, self.shape_env, pytype, out_hint, fx_node=fx_node)
866
+
867
+ def unary_magic_impl(self):
868
+ from torch.fx.experimental.symbolic_shapes import safe_expand
869
+
870
+ op = method_to_operator(method)
871
+ if sym_function_mode():
872
+ return to_node(self, handle_sym_dispatch(op, (wrap_node(self),), {}))
873
+ # TODO: consider constant prop here
874
+ expr = self.expr
875
+ if method == "floor" or method == "ceiling":
876
+ expr = self.shape_env._simplify_floor_div(expr)
877
+
878
+ try:
879
+ out = func(expr)
880
+ except Exception:
881
+ log.warning("failed to eval %s(%s)", method, expr)
882
+ raise
883
+
884
+ out_hint = None
885
+ if self.hint is not None:
886
+ out_hint = op(self.hint)
887
+ out = safe_expand(out)
888
+ pytype: Type
889
+ if method in always_int_magic_methods:
890
+ pytype = int
891
+ elif method in always_float_magic_methods:
892
+ pytype = float
893
+ else:
894
+ pytype = self.pytype
895
+
896
+ fx_node, _ = self.shape_env.create_fx_call_function(op, (self.fx_node,))
897
+ return SymNode(out, self.shape_env, pytype, out_hint, fx_node=fx_node)
898
+
899
+ if method in unary_magic_methods:
900
+ setattr(SymNode, f"_{method_attr}", unary_magic_impl)
901
+ elif method == "sym_ite":
902
+
903
+ def sym_ite_impl(pred_node, then_node, else_node):
904
+ from torch.fx.experimental.symbolic_shapes import safe_expand
905
+
906
+ out_hint = then_node.hint if pred_node.hint else else_node.hint
907
+ if sym_function_mode():
908
+ return to_node(
909
+ pred_node,
910
+ handle_sym_dispatch(
911
+ sym_ite,
912
+ (
913
+ wrap_node(pred_node),
914
+ wrap_node(then_node),
915
+ wrap_node(else_node),
916
+ ),
917
+ {},
918
+ ),
919
+ )
920
+
921
+ try:
922
+ out = func(pred_node.expr, then_node.expr, else_node.expr)
923
+ except Exception:
924
+ log.warning(
925
+ "failed to eval %s(%s, %s, %s)",
926
+ method,
927
+ pred_node.expr,
928
+ then_node.expr,
929
+ else_node.expr,
930
+ )
931
+ raise
932
+
933
+ out = safe_expand(out)
934
+ fx_node, _ = pred_node.shape_env.create_fx_call_function(
935
+ sym_ite, (pred_node.fx_node, then_node.fx_node, else_node.fx_node)
936
+ )
937
+ return SymNode(
938
+ out, pred_node.shape_env, then_node.pytype, out_hint, fx_node=fx_node
939
+ )
940
+
941
+ setattr(SymNode, f"_{method_attr}", sym_ite_impl)
942
+ else:
943
+ setattr(SymNode, f"_{method_attr}", binary_magic_impl)
944
+
945
+
946
+ def _make_node_sizes_strides(method, func):
947
+ # NB: don't LRU cache, lots of arguments
948
+
949
+ def sizes_strides_impl(self, sizes, strides):
950
+ op = getattr(sys.modules[__name__], method)
951
+ if sym_function_mode():
952
+ return to_node(
953
+ self,
954
+ handle_sym_dispatch(
955
+ op,
956
+ ([wrap_node(s) for s in sizes], [wrap_node(s) for s in strides]),
957
+ {},
958
+ ),
959
+ )
960
+ size_exprs = [s.expr for s in sizes]
961
+ stride_exprs = [s.expr for s in strides]
962
+ try:
963
+ out = func(size_exprs, stride_exprs)
964
+ except Exception:
965
+ log.warning("failed to eval %s(%s, %s)", method, size_exprs, stride_exprs)
966
+ raise
967
+ # bool is never expandable
968
+
969
+ size_hints = []
970
+ out_hint = None
971
+ for s in sizes:
972
+ if s.hint is None:
973
+ break
974
+ size_hints.append(s.hint)
975
+ else:
976
+ stride_hints = []
977
+ for s in strides:
978
+ if s.hint is None:
979
+ break
980
+ stride_hints.append(s.hint)
981
+ else:
982
+ out_hint = op(size_hints, stride_hints)
983
+
984
+ # NB: This is the indicator function, not the actual bool!
985
+ pytype: Type
986
+ if method.endswith("_indicator"):
987
+ pytype = int
988
+ else:
989
+ pytype = bool
990
+ return SymNode(out, self.shape_env, pytype, out_hint)
991
+
992
+ setattr(SymNode, f"_{method}", sizes_strides_impl)
993
+
994
+ # TODO: This is technically hotpath, but in the ideal end state
995
+ # guards on this will resolve at a higher level so you never
996
+ # spend time in this code
997
+ def sizes_strides_user(sizes, strides):
998
+ import sympy
999
+
1000
+ from torch.fx.experimental.symbolic_shapes import (
1001
+ eval_is_non_overlapping_and_dense,
1002
+ )
1003
+
1004
+ for a in itertools.chain(sizes, strides):
1005
+ if isinstance(a, SymInt):
1006
+ return wrap_node(
1007
+ getattr(a.node, method)(
1008
+ [to_node(a.node, b) for b in sizes],
1009
+ [to_node(a.node, b) for b in strides],
1010
+ )
1011
+ )
1012
+ if method == "is_non_overlapping_and_dense_indicator":
1013
+ return eval_is_non_overlapping_and_dense(sizes, strides)
1014
+ else:
1015
+ # TODO: this is an awful implementation
1016
+ return bool(
1017
+ func(
1018
+ [sympy.sympify(a) for a in sizes],
1019
+ [sympy.sympify(a) for a in strides],
1020
+ )
1021
+ )
1022
+
1023
+ # Skip for is_non_overlapping_and_dense_indicator
1024
+ if not hasattr(sys.modules[__name__], method):
1025
+ setattr(sys.modules[__name__], method, sizes_strides_user)
1026
+
1027
+
1028
+ for method, func in magic_methods.items():
1029
+ _make_node_magic(method, func)
1030
+
1031
+ for method, func in sizes_strides_methods.items():
1032
+ _make_node_sizes_strides(method, func)
1033
+
1034
+
1035
+ def _make_user_magic(method, user_type):
1036
+ # User magic takes care of wrapping the other operand into a node,
1037
+ # so that our internal logic can assume everything is nodes
1038
+
1039
+ if method in magic_methods_on_operator_with_trailing_underscore:
1040
+ method_attr = f"{method}_"
1041
+ else:
1042
+ method_attr = method
1043
+
1044
+ def get_constant(x: Union[SymInt, int, SymFloat, float, SymBool, bool]):
1045
+ if isinstance(x, (int, float, bool)):
1046
+ return x
1047
+ if isinstance(x, SymBool):
1048
+ return x.node.guard_bool("", 0)
1049
+ raise AssertionError("expect to be called with constant SymBools")
1050
+
1051
+ def is_constant(x):
1052
+ if isinstance(x, (int, float, bool)):
1053
+ return True
1054
+ if isinstance(x, (SymInt, SymFloat, SymBool)):
1055
+ return x.node.is_constant()
1056
+ return False
1057
+
1058
+ if method in bool_becomes_int_magic_methods:
1059
+
1060
+ def promote(x):
1061
+ """Implements True+True=2, which works in python but not sympy"""
1062
+ if isinstance(x, SymBool):
1063
+ return SymInt(x.node.wrap_int(int(x)))
1064
+ return x
1065
+
1066
+ else:
1067
+
1068
+ def promote(x):
1069
+ return x
1070
+
1071
+ # Before and after performing the operation, check if any operands are constant.
1072
+ # If so, extract out the constant values first. If `self` itself is a
1073
+ # constant, then "redispatch" by calling back into the operator. Sometimes
1074
+ # this means that operations involving SymBool return plain bools.
1075
+ # Alternatively, we could also rewrap into constant Symbool (i.e. by
1076
+ # implementing wrap_bool in ConstantSymNodeImpl), but we're not doing that
1077
+ # today for no particular reason.
1078
+ def unary_magic_impl(self):
1079
+ self = promote(self)
1080
+ if is_constant(self):
1081
+ return (method_to_operator(method))(get_constant(self))
1082
+ return wrap_node(getattr(self.node, method_attr)())
1083
+
1084
+ def binary_magic_impl(self, other):
1085
+ self = promote(self)
1086
+ other = promote(other)
1087
+ if is_constant(self):
1088
+ return (method_to_operator(method))(get_constant(self), other)
1089
+ if is_constant(other):
1090
+ other = get_constant(other)
1091
+ other_node = to_node(self.node, other)
1092
+ if other_node is NotImplemented:
1093
+ return NotImplemented
1094
+ ret = wrap_node(getattr(self.node, method_attr)(other_node))
1095
+ return get_constant(ret) if is_constant(ret) else ret
1096
+
1097
+ def rbinary_magic_impl(self, other):
1098
+ self = promote(self)
1099
+ other = promote(other)
1100
+ if is_constant(self):
1101
+ return (method_to_operator(method))(get_constant(self), other)
1102
+ if is_constant(other):
1103
+ other = get_constant(other)
1104
+ other_node = to_node(self.node, other)
1105
+ if other_node is NotImplemented:
1106
+ return NotImplemented
1107
+ ret = wrap_node(getattr(other_node, method_attr)(self.node))
1108
+ return get_constant(ret) if is_constant(ret) else ret
1109
+
1110
+ if method in unary_magic_methods:
1111
+ setattr(user_type, f"__{method}__", unary_magic_impl)
1112
+ elif method == "sym_ite":
1113
+
1114
+ def sym_ite_magic_impl(pred, then_val, else_val):
1115
+ pred_node = pred.node
1116
+ then_node = to_node(pred_node, then_val)
1117
+ else_node = to_node(pred_node, else_val)
1118
+ if then_node is NotImplemented or else_node is NotImplemented:
1119
+ return NotImplemented
1120
+ assert (
1121
+ isinstance(then_node, SymNode)
1122
+ and isinstance(else_node, SymNode)
1123
+ and then_node.pytype == else_node.pytype
1124
+ )
1125
+ ret = wrap_node(getattr(pred.node, method_attr)(then_node, else_node))
1126
+ return get_constant(ret) if ret.node.is_constant() else ret
1127
+
1128
+ setattr(user_type, f"__{method}__", sym_ite_magic_impl)
1129
+ else:
1130
+ setattr(user_type, f"__{method}__", binary_magic_impl)
1131
+ if method in reflectable_magic_methods:
1132
+ setattr(user_type, f"__r{method}__", rbinary_magic_impl)
1133
+
1134
+
1135
+ for method, func in magic_methods.items(): # type: ignore[assignment]
1136
+ if method in only_bool_magic_methods:
1137
+ _make_user_magic(method, SymBool)
1138
+ continue
1139
+ if method in also_bool_magic_methods or method in bool_becomes_int_magic_methods:
1140
+ _make_user_magic(method, SymBool)
1141
+ _make_user_magic(method, SymInt)
1142
+ _make_user_magic(method, SymFloat)
1143
+
1144
+ del method
1145
+ del func
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/fx/experimental/unification/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # mypy: disable-error-code=attr-defined
2
+ from .core import unify, reify # noqa: F403
3
+ from .more import unifiable # noqa: F403
4
+ from .variable import var, isvar, vars, variables, Var # noqa: F403