Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/_print_helpers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/assumptions_generated.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/containers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/core.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/coreerrors.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/decorators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/function.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/logic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/mul.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/multidimensional.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/parameters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/power.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/relational.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/sympify.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/trace.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/traversal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/benchmarks/bench_assumptions.py +12 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__init__.py +23 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/acceleration.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/approximants.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/aseries.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/formal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/fourier.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/gruntz.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/kauers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/limits.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/limitseq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/order.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/residues.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/sequences.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/series_class.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/acceleration.py +101 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/approximants.py +103 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/aseries.py +10 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_limit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_order.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/bench_limit.py +9 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/bench_order.py +10 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/formal.py +1869 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/fourier.py +808 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/gruntz.py +738 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/kauers.py +51 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/limits.py +385 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/limitseq.py +257 -0
- env-llmeval/lib/python3.10/site-packages/sympy/series/order.py +517 -0
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/_print_helpers.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/assumptions_generated.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/containers.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/core.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/coreerrors.cpython-310.pyc
ADDED
Binary file (663 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/decorators.cpython-310.pyc
ADDED
Binary file (7.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/function.cpython-310.pyc
ADDED
Binary file (101 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/logic.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/mul.cpython-310.pyc
ADDED
Binary file (54.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/multidimensional.cpython-310.pyc
ADDED
Binary file (3.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/parameters.cpython-310.pyc
ADDED
Binary file (4.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/power.cpython-310.pyc
ADDED
Binary file (50.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/relational.cpython-310.pyc
ADDED
Binary file (44.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/sympify.cpython-310.pyc
ADDED
Binary file (16.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/trace.cpython-310.pyc
ADDED
Binary file (505 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/__pycache__/traversal.cpython-310.pyc
ADDED
Binary file (9.21 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/benchmarks/bench_assumptions.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Symbol, Integer
|
2 |
+
|
3 |
+
x = Symbol('x')
|
4 |
+
i3 = Integer(3)
|
5 |
+
|
6 |
+
|
7 |
+
def timeit_x_is_integer():
|
8 |
+
x.is_integer
|
9 |
+
|
10 |
+
|
11 |
+
def timeit_Integer_is_irrational():
|
12 |
+
i3.is_irrational
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module that handles series: find a limit, order the series etc.
|
2 |
+
"""
|
3 |
+
from .order import Order
|
4 |
+
from .limits import limit, Limit
|
5 |
+
from .gruntz import gruntz
|
6 |
+
from .series import series
|
7 |
+
from .approximants import approximants
|
8 |
+
from .residues import residue
|
9 |
+
from .sequences import SeqPer, SeqFormula, sequence, SeqAdd, SeqMul
|
10 |
+
from .fourier import fourier_series
|
11 |
+
from .formal import fps
|
12 |
+
from .limitseq import difference_delta, limit_seq
|
13 |
+
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
EmptySequence = S.EmptySequence
|
16 |
+
|
17 |
+
O = Order
|
18 |
+
|
19 |
+
__all__ = ['Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants',
|
20 |
+
'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence',
|
21 |
+
'SeqAdd', 'SeqMul', 'fourier_series', 'fps', 'difference_delta',
|
22 |
+
'limit_seq'
|
23 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (937 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/acceleration.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/approximants.cpython-310.pyc
ADDED
Binary file (3.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/aseries.cpython-310.pyc
ADDED
Binary file (485 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/formal.cpython-310.pyc
ADDED
Binary file (51.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/fourier.cpython-310.pyc
ADDED
Binary file (24.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/gruntz.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/kauers.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/limits.cpython-310.pyc
ADDED
Binary file (9.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/limitseq.cpython-310.pyc
ADDED
Binary file (7.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/order.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/residues.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/sequences.cpython-310.pyc
ADDED
Binary file (35.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/series.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/__pycache__/series_class.cpython-310.pyc
ADDED
Binary file (3.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/acceleration.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Convergence acceleration / extrapolation methods for series and
|
3 |
+
sequences.
|
4 |
+
|
5 |
+
References:
|
6 |
+
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
|
7 |
+
Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
|
8 |
+
Springer 1999. (Shanks transformation: pp. 368-375, Richardson
|
9 |
+
extrapolation: pp. 375-377.)
|
10 |
+
"""
|
11 |
+
|
12 |
+
from sympy.core.numbers import Integer
|
13 |
+
from sympy.core.singleton import S
|
14 |
+
from sympy.functions.combinatorial.factorials import factorial
|
15 |
+
|
16 |
+
|
17 |
+
def richardson(A, k, n, N):
|
18 |
+
"""
|
19 |
+
Calculate an approximation for lim k->oo A(k) using Richardson
|
20 |
+
extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
|
21 |
+
Choosing N ~= 2*n often gives good results.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
========
|
25 |
+
|
26 |
+
A simple example is to calculate exp(1) using the limit definition.
|
27 |
+
This limit converges slowly; n = 100 only produces two accurate
|
28 |
+
digits:
|
29 |
+
|
30 |
+
>>> from sympy.abc import n
|
31 |
+
>>> e = (1 + 1/n)**n
|
32 |
+
>>> print(round(e.subs(n, 100).evalf(), 10))
|
33 |
+
2.7048138294
|
34 |
+
|
35 |
+
Richardson extrapolation with 11 appropriately chosen terms gives
|
36 |
+
a value that is accurate to the indicated precision:
|
37 |
+
|
38 |
+
>>> from sympy import E
|
39 |
+
>>> from sympy.series.acceleration import richardson
|
40 |
+
>>> print(round(richardson(e, n, 10, 20).evalf(), 10))
|
41 |
+
2.7182818285
|
42 |
+
>>> print(round(E.evalf(), 10))
|
43 |
+
2.7182818285
|
44 |
+
|
45 |
+
Another useful application is to speed up convergence of series.
|
46 |
+
Computing 100 terms of the zeta(2) series 1/k**2 yields only
|
47 |
+
two accurate digits:
|
48 |
+
|
49 |
+
>>> from sympy.abc import k, n
|
50 |
+
>>> from sympy import Sum
|
51 |
+
>>> A = Sum(k**-2, (k, 1, n))
|
52 |
+
>>> print(round(A.subs(n, 100).evalf(), 10))
|
53 |
+
1.6349839002
|
54 |
+
|
55 |
+
Richardson extrapolation performs much better:
|
56 |
+
|
57 |
+
>>> from sympy import pi
|
58 |
+
>>> print(round(richardson(A, n, 10, 20).evalf(), 10))
|
59 |
+
1.6449340668
|
60 |
+
>>> print(round(((pi**2)/6).evalf(), 10)) # Exact value
|
61 |
+
1.6449340668
|
62 |
+
|
63 |
+
"""
|
64 |
+
s = S.Zero
|
65 |
+
for j in range(0, N + 1):
|
66 |
+
s += (A.subs(k, Integer(n + j)).doit() * (n + j)**N *
|
67 |
+
S.NegativeOne**(j + N) / (factorial(j) * factorial(N - j)))
|
68 |
+
return s
|
69 |
+
|
70 |
+
|
71 |
+
def shanks(A, k, n, m=1):
|
72 |
+
"""
|
73 |
+
Calculate an approximation for lim k->oo A(k) using the n-term Shanks
|
74 |
+
transformation S(A)(n). With m > 1, calculate the m-fold recursive
|
75 |
+
Shanks transformation S(S(...S(A)...))(n).
|
76 |
+
|
77 |
+
The Shanks transformation is useful for summing Taylor series that
|
78 |
+
converge slowly near a pole or singularity, e.g. for log(2):
|
79 |
+
|
80 |
+
>>> from sympy.abc import k, n
|
81 |
+
>>> from sympy import Sum, Integer
|
82 |
+
>>> from sympy.series.acceleration import shanks
|
83 |
+
>>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
|
84 |
+
>>> print(round(A.subs(n, 100).doit().evalf(), 10))
|
85 |
+
0.6881721793
|
86 |
+
>>> print(round(shanks(A, n, 25).evalf(), 10))
|
87 |
+
0.6931396564
|
88 |
+
>>> print(round(shanks(A, n, 25, 5).evalf(), 10))
|
89 |
+
0.6931471806
|
90 |
+
|
91 |
+
The correct value is 0.6931471805599453094172321215.
|
92 |
+
"""
|
93 |
+
table = [A.subs(k, Integer(j)).doit() for j in range(n + m + 2)]
|
94 |
+
table2 = table[:]
|
95 |
+
|
96 |
+
for i in range(1, m + 1):
|
97 |
+
for j in range(i, n + m + 1):
|
98 |
+
x, y, z = table[j - 1], table[j], table[j + 1]
|
99 |
+
table2[j] = (z*x - y**2) / (z + x - 2*y)
|
100 |
+
table = table2[:]
|
101 |
+
return table[n]
|
env-llmeval/lib/python3.10/site-packages/sympy/series/approximants.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.polys.polytools import lcm
|
4 |
+
from sympy.utilities import public
|
5 |
+
|
6 |
+
@public
|
7 |
+
def approximants(l, X=Symbol('x'), simplify=False):
|
8 |
+
"""
|
9 |
+
Return a generator for consecutive Pade approximants for a series.
|
10 |
+
It can also be used for computing the rational generating function of a
|
11 |
+
series when possible, since the last approximant returned by the generator
|
12 |
+
will be the generating function (if any).
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
The input list can contain more complex expressions than integer or rational
|
18 |
+
numbers; symbols may also be involved in the computation. An example below
|
19 |
+
show how to compute the generating function of the whole Pascal triangle.
|
20 |
+
|
21 |
+
The generator can be asked to apply the sympy.simplify function on each
|
22 |
+
generated term, which will make the computation slower; however it may be
|
23 |
+
useful when symbols are involved in the expressions.
|
24 |
+
|
25 |
+
Examples
|
26 |
+
========
|
27 |
+
|
28 |
+
>>> from sympy.series import approximants
|
29 |
+
>>> from sympy import lucas, fibonacci, symbols, binomial
|
30 |
+
>>> g = [lucas(k) for k in range(16)]
|
31 |
+
>>> [e for e in approximants(g)]
|
32 |
+
[2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]
|
33 |
+
|
34 |
+
>>> h = [fibonacci(k) for k in range(16)]
|
35 |
+
>>> [e for e in approximants(h)]
|
36 |
+
[x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]
|
37 |
+
|
38 |
+
>>> x, t = symbols("x,t")
|
39 |
+
>>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
|
40 |
+
>>> y = approximants(p, t)
|
41 |
+
>>> for k in range(3): print(next(y))
|
42 |
+
1
|
43 |
+
(x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
|
44 |
+
nan
|
45 |
+
|
46 |
+
>>> y = approximants(p, t, simplify=True)
|
47 |
+
>>> for k in range(3): print(next(y))
|
48 |
+
1
|
49 |
+
-1/(t*(x + 1) - 1)
|
50 |
+
nan
|
51 |
+
|
52 |
+
See Also
|
53 |
+
========
|
54 |
+
|
55 |
+
sympy.concrete.guess.guess_generating_function_rational
|
56 |
+
mpmath.pade
|
57 |
+
"""
|
58 |
+
from sympy.simplify import simplify as simp
|
59 |
+
from sympy.simplify.radsimp import denom
|
60 |
+
p1, q1 = [S.One], [S.Zero]
|
61 |
+
p2, q2 = [S.Zero], [S.One]
|
62 |
+
while len(l):
|
63 |
+
b = 0
|
64 |
+
while l[b]==0:
|
65 |
+
b += 1
|
66 |
+
if b == len(l):
|
67 |
+
return
|
68 |
+
m = [S.One/l[b]]
|
69 |
+
for k in range(b+1, len(l)):
|
70 |
+
s = 0
|
71 |
+
for j in range(b, k):
|
72 |
+
s -= l[j+1] * m[b-j-1]
|
73 |
+
m.append(s/l[b])
|
74 |
+
l = m
|
75 |
+
a, l[0] = l[0], 0
|
76 |
+
p = [0] * max(len(p2), b+len(p1))
|
77 |
+
q = [0] * max(len(q2), b+len(q1))
|
78 |
+
for k in range(len(p2)):
|
79 |
+
p[k] = a*p2[k]
|
80 |
+
for k in range(b, b+len(p1)):
|
81 |
+
p[k] += p1[k-b]
|
82 |
+
for k in range(len(q2)):
|
83 |
+
q[k] = a*q2[k]
|
84 |
+
for k in range(b, b+len(q1)):
|
85 |
+
q[k] += q1[k-b]
|
86 |
+
while p[-1]==0: p.pop()
|
87 |
+
while q[-1]==0: q.pop()
|
88 |
+
p1, p2 = p2, p
|
89 |
+
q1, q2 = q2, q
|
90 |
+
|
91 |
+
# yield result
|
92 |
+
c = 1
|
93 |
+
for x in p:
|
94 |
+
c = lcm(c, denom(x))
|
95 |
+
for x in q:
|
96 |
+
c = lcm(c, denom(x))
|
97 |
+
out = ( sum(c*e*X**k for k, e in enumerate(p))
|
98 |
+
/ sum(c*e*X**k for k, e in enumerate(q)) )
|
99 |
+
if simplify:
|
100 |
+
yield(simp(out))
|
101 |
+
else:
|
102 |
+
yield out
|
103 |
+
return
|
env-llmeval/lib/python3.10/site-packages/sympy/series/aseries.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.sympify import sympify
|
2 |
+
|
3 |
+
|
4 |
+
def aseries(expr, x=None, n=6, bound=0, hir=False):
|
5 |
+
"""
|
6 |
+
See the docstring of Expr.aseries() for complete details of this wrapper.
|
7 |
+
|
8 |
+
"""
|
9 |
+
expr = sympify(expr)
|
10 |
+
return expr.aseries(x, n, bound, hir)
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_limit.cpython-310.pyc
ADDED
Binary file (494 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_order.cpython-310.pyc
ADDED
Binary file (650 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/bench_limit.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import oo
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.series.limits import limit
|
4 |
+
|
5 |
+
x = Symbol('x')
|
6 |
+
|
7 |
+
|
8 |
+
def timeit_limit_1x():
|
9 |
+
limit(1/x, x, oo)
|
env-llmeval/lib/python3.10/site-packages/sympy/series/benchmarks/bench_order.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.series.order import O
|
4 |
+
|
5 |
+
x = Symbol('x')
|
6 |
+
l = [x**i for i in range(1000)]
|
7 |
+
l.append(O(x**1001))
|
8 |
+
|
9 |
+
def timeit_order_1x():
|
10 |
+
Add(*l)
|
env-llmeval/lib/python3.10/site-packages/sympy/series/formal.py
ADDED
@@ -0,0 +1,1869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Formal Power Series"""
|
2 |
+
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
from sympy.core.numbers import (nan, oo, zoo)
|
6 |
+
from sympy.core.add import Add
|
7 |
+
from sympy.core.expr import Expr
|
8 |
+
from sympy.core.function import Derivative, Function, expand
|
9 |
+
from sympy.core.mul import Mul
|
10 |
+
from sympy.core.numbers import Rational
|
11 |
+
from sympy.core.relational import Eq
|
12 |
+
from sympy.sets.sets import Interval
|
13 |
+
from sympy.core.singleton import S
|
14 |
+
from sympy.core.symbol import Wild, Dummy, symbols, Symbol
|
15 |
+
from sympy.core.sympify import sympify
|
16 |
+
from sympy.discrete.convolutions import convolution
|
17 |
+
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
|
18 |
+
from sympy.functions.combinatorial.numbers import bell
|
19 |
+
from sympy.functions.elementary.integers import floor, frac, ceiling
|
20 |
+
from sympy.functions.elementary.miscellaneous import Min, Max
|
21 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
22 |
+
from sympy.series.limits import Limit
|
23 |
+
from sympy.series.order import Order
|
24 |
+
from sympy.series.sequences import sequence
|
25 |
+
from sympy.series.series_class import SeriesBase
|
26 |
+
from sympy.utilities.iterables import iterable
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def rational_algorithm(f, x, k, order=4, full=False):
|
31 |
+
"""
|
32 |
+
Rational algorithm for computing
|
33 |
+
formula of coefficients of Formal Power Series
|
34 |
+
of a function.
|
35 |
+
|
36 |
+
Explanation
|
37 |
+
===========
|
38 |
+
|
39 |
+
Applicable when f(x) or some derivative of f(x)
|
40 |
+
is a rational function in x.
|
41 |
+
|
42 |
+
:func:`rational_algorithm` uses :func:`~.apart` function for partial fraction
|
43 |
+
decomposition. :func:`~.apart` by default uses 'undetermined coefficients
|
44 |
+
method'. By setting ``full=True``, 'Bronstein's algorithm' can be used
|
45 |
+
instead.
|
46 |
+
|
47 |
+
Looks for derivative of a function up to 4'th order (by default).
|
48 |
+
This can be overridden using order option.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
==========
|
52 |
+
|
53 |
+
x : Symbol
|
54 |
+
order : int, optional
|
55 |
+
Order of the derivative of ``f``, Default is 4.
|
56 |
+
full : bool
|
57 |
+
|
58 |
+
Returns
|
59 |
+
=======
|
60 |
+
|
61 |
+
formula : Expr
|
62 |
+
ind : Expr
|
63 |
+
Independent terms.
|
64 |
+
order : int
|
65 |
+
full : bool
|
66 |
+
|
67 |
+
Examples
|
68 |
+
========
|
69 |
+
|
70 |
+
>>> from sympy import log, atan
|
71 |
+
>>> from sympy.series.formal import rational_algorithm as ra
|
72 |
+
>>> from sympy.abc import x, k
|
73 |
+
|
74 |
+
>>> ra(1 / (1 - x), x, k)
|
75 |
+
(1, 0, 0)
|
76 |
+
>>> ra(log(1 + x), x, k)
|
77 |
+
(-1/((-1)**k*k), 0, 1)
|
78 |
+
|
79 |
+
>>> ra(atan(x), x, k, full=True)
|
80 |
+
((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)
|
81 |
+
|
82 |
+
Notes
|
83 |
+
=====
|
84 |
+
|
85 |
+
By setting ``full=True``, range of admissible functions to be solved using
|
86 |
+
``rational_algorithm`` can be increased. This option should be used
|
87 |
+
carefully as it can significantly slow down the computation as ``doit`` is
|
88 |
+
performed on the :class:`~.RootSum` object returned by the :func:`~.apart`
|
89 |
+
function. Use ``full=False`` whenever possible.
|
90 |
+
|
91 |
+
See Also
|
92 |
+
========
|
93 |
+
|
94 |
+
sympy.polys.partfrac.apart
|
95 |
+
|
96 |
+
References
|
97 |
+
==========
|
98 |
+
|
99 |
+
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
|
100 |
+
.. [2] Power Series in Computer Algebra - Wolfram Koepf
|
101 |
+
|
102 |
+
"""
|
103 |
+
from sympy.polys import RootSum, apart
|
104 |
+
from sympy.integrals import integrate
|
105 |
+
|
106 |
+
diff = f
|
107 |
+
ds = [] # list of diff
|
108 |
+
|
109 |
+
for i in range(order + 1):
|
110 |
+
if i:
|
111 |
+
diff = diff.diff(x)
|
112 |
+
|
113 |
+
if diff.is_rational_function(x):
|
114 |
+
coeff, sep = S.Zero, S.Zero
|
115 |
+
|
116 |
+
terms = apart(diff, x, full=full)
|
117 |
+
if terms.has(RootSum):
|
118 |
+
terms = terms.doit()
|
119 |
+
|
120 |
+
for t in Add.make_args(terms):
|
121 |
+
num, den = t.as_numer_denom()
|
122 |
+
if not den.has(x):
|
123 |
+
sep += t
|
124 |
+
else:
|
125 |
+
if isinstance(den, Mul):
|
126 |
+
# m*(n*x - a)**j -> (n*x - a)**j
|
127 |
+
ind = den.as_independent(x)
|
128 |
+
den = ind[1]
|
129 |
+
num /= ind[0]
|
130 |
+
|
131 |
+
# (n*x - a)**j -> (x - b)
|
132 |
+
den, j = den.as_base_exp()
|
133 |
+
a, xterm = den.as_coeff_add(x)
|
134 |
+
|
135 |
+
# term -> m/x**n
|
136 |
+
if not a:
|
137 |
+
sep += t
|
138 |
+
continue
|
139 |
+
|
140 |
+
xc = xterm[0].coeff(x)
|
141 |
+
a /= -xc
|
142 |
+
num /= xc**j
|
143 |
+
|
144 |
+
ak = ((-1)**j * num *
|
145 |
+
binomial(j + k - 1, k).rewrite(factorial) /
|
146 |
+
a**(j + k))
|
147 |
+
coeff += ak
|
148 |
+
|
149 |
+
# Hacky, better way?
|
150 |
+
if coeff.is_zero:
|
151 |
+
return None
|
152 |
+
if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or
|
153 |
+
coeff.has(nan)):
|
154 |
+
return None
|
155 |
+
|
156 |
+
for j in range(i):
|
157 |
+
coeff = (coeff / (k + j + 1))
|
158 |
+
sep = integrate(sep, x)
|
159 |
+
sep += (ds.pop() - sep).limit(x, 0) # constant of integration
|
160 |
+
return (coeff.subs(k, k - i), sep, i)
|
161 |
+
|
162 |
+
else:
|
163 |
+
ds.append(diff)
|
164 |
+
|
165 |
+
return None
|
166 |
+
|
167 |
+
|
168 |
+
def rational_independent(terms, x):
|
169 |
+
"""
|
170 |
+
Returns a list of all the rationally independent terms.
|
171 |
+
|
172 |
+
Examples
|
173 |
+
========
|
174 |
+
|
175 |
+
>>> from sympy import sin, cos
|
176 |
+
>>> from sympy.series.formal import rational_independent
|
177 |
+
>>> from sympy.abc import x
|
178 |
+
|
179 |
+
>>> rational_independent([cos(x), sin(x)], x)
|
180 |
+
[cos(x), sin(x)]
|
181 |
+
>>> rational_independent([x**2, sin(x), x*sin(x), x**3], x)
|
182 |
+
[x**3 + x**2, x*sin(x) + sin(x)]
|
183 |
+
"""
|
184 |
+
if not terms:
|
185 |
+
return []
|
186 |
+
|
187 |
+
ind = terms[0:1]
|
188 |
+
|
189 |
+
for t in terms[1:]:
|
190 |
+
n = t.as_independent(x)[1]
|
191 |
+
for i, term in enumerate(ind):
|
192 |
+
d = term.as_independent(x)[1]
|
193 |
+
q = (n / d).cancel()
|
194 |
+
if q.is_rational_function(x):
|
195 |
+
ind[i] += t
|
196 |
+
break
|
197 |
+
else:
|
198 |
+
ind.append(t)
|
199 |
+
return ind
|
200 |
+
|
201 |
+
|
202 |
+
def simpleDE(f, x, g, order=4):
|
203 |
+
r"""
|
204 |
+
Generates simple DE.
|
205 |
+
|
206 |
+
Explanation
|
207 |
+
===========
|
208 |
+
|
209 |
+
DE is of the form
|
210 |
+
|
211 |
+
.. math::
|
212 |
+
f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0
|
213 |
+
|
214 |
+
where :math:`A_j` should be rational function in x.
|
215 |
+
|
216 |
+
Generates DE's upto order 4 (default). DE's can also have free parameters.
|
217 |
+
|
218 |
+
By increasing order, higher order DE's can be found.
|
219 |
+
|
220 |
+
Yields a tuple of (DE, order).
|
221 |
+
"""
|
222 |
+
from sympy.solvers.solveset import linsolve
|
223 |
+
|
224 |
+
a = symbols('a:%d' % (order))
|
225 |
+
|
226 |
+
def _makeDE(k):
|
227 |
+
eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)])
|
228 |
+
DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)])
|
229 |
+
return eq, DE
|
230 |
+
|
231 |
+
found = False
|
232 |
+
for k in range(1, order + 1):
|
233 |
+
eq, DE = _makeDE(k)
|
234 |
+
eq = eq.expand()
|
235 |
+
terms = eq.as_ordered_terms()
|
236 |
+
ind = rational_independent(terms, x)
|
237 |
+
if found or len(ind) == k:
|
238 |
+
sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s)))
|
239 |
+
if sol:
|
240 |
+
found = True
|
241 |
+
DE = DE.subs(sol)
|
242 |
+
DE = DE.as_numer_denom()[0]
|
243 |
+
DE = DE.factor().as_coeff_mul(Derivative)[1][0]
|
244 |
+
yield DE.collect(Derivative(g(x))), k
|
245 |
+
|
246 |
+
|
247 |
+
def exp_re(DE, r, k):
|
248 |
+
"""Converts a DE with constant coefficients (explike) into a RE.
|
249 |
+
|
250 |
+
Explanation
|
251 |
+
===========
|
252 |
+
|
253 |
+
Performs the substitution:
|
254 |
+
|
255 |
+
.. math::
|
256 |
+
f^j(x) \\to r(k + j)
|
257 |
+
|
258 |
+
Normalises the terms so that lowest order of a term is always r(k).
|
259 |
+
|
260 |
+
Examples
|
261 |
+
========
|
262 |
+
|
263 |
+
>>> from sympy import Function, Derivative
|
264 |
+
>>> from sympy.series.formal import exp_re
|
265 |
+
>>> from sympy.abc import x, k
|
266 |
+
>>> f, r = Function('f'), Function('r')
|
267 |
+
|
268 |
+
>>> exp_re(-f(x) + Derivative(f(x)), r, k)
|
269 |
+
-r(k) + r(k + 1)
|
270 |
+
>>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k)
|
271 |
+
r(k) + r(k + 1)
|
272 |
+
|
273 |
+
See Also
|
274 |
+
========
|
275 |
+
|
276 |
+
sympy.series.formal.hyper_re
|
277 |
+
"""
|
278 |
+
RE = S.Zero
|
279 |
+
|
280 |
+
g = DE.atoms(Function).pop()
|
281 |
+
|
282 |
+
mini = None
|
283 |
+
for t in Add.make_args(DE):
|
284 |
+
coeff, d = t.as_independent(g)
|
285 |
+
if isinstance(d, Derivative):
|
286 |
+
j = d.derivative_count
|
287 |
+
else:
|
288 |
+
j = 0
|
289 |
+
if mini is None or j < mini:
|
290 |
+
mini = j
|
291 |
+
RE += coeff * r(k + j)
|
292 |
+
if mini:
|
293 |
+
RE = RE.subs(k, k - mini)
|
294 |
+
return RE
|
295 |
+
|
296 |
+
|
297 |
+
def hyper_re(DE, r, k):
|
298 |
+
"""
|
299 |
+
Converts a DE into a RE.
|
300 |
+
|
301 |
+
Explanation
|
302 |
+
===========
|
303 |
+
|
304 |
+
Performs the substitution:
|
305 |
+
|
306 |
+
.. math::
|
307 |
+
x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l}
|
308 |
+
|
309 |
+
Normalises the terms so that lowest order of a term is always r(k).
|
310 |
+
|
311 |
+
Examples
|
312 |
+
========
|
313 |
+
|
314 |
+
>>> from sympy import Function, Derivative
|
315 |
+
>>> from sympy.series.formal import hyper_re
|
316 |
+
>>> from sympy.abc import x, k
|
317 |
+
>>> f, r = Function('f'), Function('r')
|
318 |
+
|
319 |
+
>>> hyper_re(-f(x) + Derivative(f(x)), r, k)
|
320 |
+
(k + 1)*r(k + 1) - r(k)
|
321 |
+
>>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k)
|
322 |
+
(k + 2)*(k + 3)*r(k + 3) - r(k)
|
323 |
+
|
324 |
+
See Also
|
325 |
+
========
|
326 |
+
|
327 |
+
sympy.series.formal.exp_re
|
328 |
+
"""
|
329 |
+
RE = S.Zero
|
330 |
+
|
331 |
+
g = DE.atoms(Function).pop()
|
332 |
+
x = g.atoms(Symbol).pop()
|
333 |
+
|
334 |
+
mini = None
|
335 |
+
for t in Add.make_args(DE.expand()):
|
336 |
+
coeff, d = t.as_independent(g)
|
337 |
+
c, v = coeff.as_independent(x)
|
338 |
+
l = v.as_coeff_exponent(x)[1]
|
339 |
+
if isinstance(d, Derivative):
|
340 |
+
j = d.derivative_count
|
341 |
+
else:
|
342 |
+
j = 0
|
343 |
+
RE += c * rf(k + 1 - l, j) * r(k + j - l)
|
344 |
+
if mini is None or j - l < mini:
|
345 |
+
mini = j - l
|
346 |
+
|
347 |
+
RE = RE.subs(k, k - mini)
|
348 |
+
|
349 |
+
m = Wild('m')
|
350 |
+
return RE.collect(r(k + m))
|
351 |
+
|
352 |
+
|
353 |
+
def _transformation_a(f, x, P, Q, k, m, shift):
|
354 |
+
f *= x**(-shift)
|
355 |
+
P = P.subs(k, k + shift)
|
356 |
+
Q = Q.subs(k, k + shift)
|
357 |
+
return f, P, Q, m
|
358 |
+
|
359 |
+
|
360 |
+
def _transformation_c(f, x, P, Q, k, m, scale):
|
361 |
+
f = f.subs(x, x**scale)
|
362 |
+
P = P.subs(k, k / scale)
|
363 |
+
Q = Q.subs(k, k / scale)
|
364 |
+
m *= scale
|
365 |
+
return f, P, Q, m
|
366 |
+
|
367 |
+
|
368 |
+
def _transformation_e(f, x, P, Q, k, m):
|
369 |
+
f = f.diff(x)
|
370 |
+
P = P.subs(k, k + 1) * (k + m + 1)
|
371 |
+
Q = Q.subs(k, k + 1) * (k + 1)
|
372 |
+
return f, P, Q, m
|
373 |
+
|
374 |
+
|
375 |
+
def _apply_shift(sol, shift):
|
376 |
+
return [(res, cond + shift) for res, cond in sol]
|
377 |
+
|
378 |
+
|
379 |
+
def _apply_scale(sol, scale):
|
380 |
+
return [(res, cond / scale) for res, cond in sol]
|
381 |
+
|
382 |
+
|
383 |
+
def _apply_integrate(sol, x, k):
|
384 |
+
return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1)
|
385 |
+
for res, cond in sol]
|
386 |
+
|
387 |
+
|
388 |
+
def _compute_formula(f, x, P, Q, k, m, k_max):
|
389 |
+
"""Computes the formula for f."""
|
390 |
+
from sympy.polys import roots
|
391 |
+
|
392 |
+
sol = []
|
393 |
+
for i in range(k_max + 1, k_max + m + 1):
|
394 |
+
if (i < 0) == True:
|
395 |
+
continue
|
396 |
+
r = f.diff(x, i).limit(x, 0) / factorial(i)
|
397 |
+
if r.is_zero:
|
398 |
+
continue
|
399 |
+
|
400 |
+
kterm = m*k + i
|
401 |
+
res = r
|
402 |
+
|
403 |
+
p = P.subs(k, kterm)
|
404 |
+
q = Q.subs(k, kterm)
|
405 |
+
c1 = p.subs(k, 1/k).leadterm(k)[0]
|
406 |
+
c2 = q.subs(k, 1/k).leadterm(k)[0]
|
407 |
+
res *= (-c1 / c2)**k
|
408 |
+
|
409 |
+
res *= Mul(*[rf(-r, k)**mul for r, mul in roots(p, k).items()])
|
410 |
+
res /= Mul(*[rf(-r, k)**mul for r, mul in roots(q, k).items()])
|
411 |
+
|
412 |
+
sol.append((res, kterm))
|
413 |
+
|
414 |
+
return sol
|
415 |
+
|
416 |
+
|
417 |
+
def _rsolve_hypergeometric(f, x, P, Q, k, m):
|
418 |
+
"""
|
419 |
+
Recursive wrapper to rsolve_hypergeometric.
|
420 |
+
|
421 |
+
Explanation
|
422 |
+
===========
|
423 |
+
|
424 |
+
Returns a Tuple of (formula, series independent terms,
|
425 |
+
maximum power of x in independent terms) if successful
|
426 |
+
otherwise ``None``.
|
427 |
+
|
428 |
+
See :func:`rsolve_hypergeometric` for details.
|
429 |
+
"""
|
430 |
+
from sympy.polys import lcm, roots
|
431 |
+
from sympy.integrals import integrate
|
432 |
+
|
433 |
+
# transformation - c
|
434 |
+
proots, qroots = roots(P, k), roots(Q, k)
|
435 |
+
all_roots = dict(proots)
|
436 |
+
all_roots.update(qroots)
|
437 |
+
scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items()
|
438 |
+
if r.is_rational])
|
439 |
+
f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale)
|
440 |
+
|
441 |
+
# transformation - a
|
442 |
+
qroots = roots(Q, k)
|
443 |
+
if qroots:
|
444 |
+
k_min = Min(*qroots.keys())
|
445 |
+
else:
|
446 |
+
k_min = S.Zero
|
447 |
+
shift = k_min + m
|
448 |
+
f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift)
|
449 |
+
|
450 |
+
l = (x*f).limit(x, 0)
|
451 |
+
if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0
|
452 |
+
return None
|
453 |
+
|
454 |
+
qroots = roots(Q, k)
|
455 |
+
if qroots:
|
456 |
+
k_max = Max(*qroots.keys())
|
457 |
+
else:
|
458 |
+
k_max = S.Zero
|
459 |
+
|
460 |
+
ind, mp = S.Zero, -oo
|
461 |
+
for i in range(k_max + m + 1):
|
462 |
+
r = f.diff(x, i).limit(x, 0) / factorial(i)
|
463 |
+
if r.is_finite is False:
|
464 |
+
old_f = f
|
465 |
+
f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i)
|
466 |
+
f, P, Q, m = _transformation_e(f, x, P, Q, k, m)
|
467 |
+
sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m)
|
468 |
+
sol = _apply_integrate(sol, x, k)
|
469 |
+
sol = _apply_shift(sol, i)
|
470 |
+
ind = integrate(ind, x)
|
471 |
+
ind += (old_f - ind).limit(x, 0) # constant of integration
|
472 |
+
mp += 1
|
473 |
+
return sol, ind, mp
|
474 |
+
elif r:
|
475 |
+
ind += r*x**(i + shift)
|
476 |
+
pow_x = Rational((i + shift), scale)
|
477 |
+
if pow_x > mp:
|
478 |
+
mp = pow_x # maximum power of x
|
479 |
+
ind = ind.subs(x, x**(1/scale))
|
480 |
+
|
481 |
+
sol = _compute_formula(f, x, P, Q, k, m, k_max)
|
482 |
+
sol = _apply_shift(sol, shift)
|
483 |
+
sol = _apply_scale(sol, scale)
|
484 |
+
|
485 |
+
return sol, ind, mp
|
486 |
+
|
487 |
+
|
488 |
+
def rsolve_hypergeometric(f, x, P, Q, k, m):
|
489 |
+
"""
|
490 |
+
Solves RE of hypergeometric type.
|
491 |
+
|
492 |
+
Explanation
|
493 |
+
===========
|
494 |
+
|
495 |
+
Attempts to solve RE of the form
|
496 |
+
|
497 |
+
Q(k)*a(k + m) - P(k)*a(k)
|
498 |
+
|
499 |
+
Transformations that preserve Hypergeometric type:
|
500 |
+
|
501 |
+
a. x**n*f(x): b(k + m) = R(k - n)*b(k)
|
502 |
+
b. f(A*x): b(k + m) = A**m*R(k)*b(k)
|
503 |
+
c. f(x**n): b(k + n*m) = R(k/n)*b(k)
|
504 |
+
d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k)
|
505 |
+
e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k)
|
506 |
+
|
507 |
+
Some of these transformations have been used to solve the RE.
|
508 |
+
|
509 |
+
Returns
|
510 |
+
=======
|
511 |
+
|
512 |
+
formula : Expr
|
513 |
+
ind : Expr
|
514 |
+
Independent terms.
|
515 |
+
order : int
|
516 |
+
|
517 |
+
Examples
|
518 |
+
========
|
519 |
+
|
520 |
+
>>> from sympy import exp, ln, S
|
521 |
+
>>> from sympy.series.formal import rsolve_hypergeometric as rh
|
522 |
+
>>> from sympy.abc import x, k
|
523 |
+
|
524 |
+
>>> rh(exp(x), x, -S.One, (k + 1), k, 1)
|
525 |
+
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
|
526 |
+
|
527 |
+
>>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1)
|
528 |
+
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
|
529 |
+
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
|
530 |
+
|
531 |
+
References
|
532 |
+
==========
|
533 |
+
|
534 |
+
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
|
535 |
+
.. [2] Power Series in Computer Algebra - Wolfram Koepf
|
536 |
+
"""
|
537 |
+
result = _rsolve_hypergeometric(f, x, P, Q, k, m)
|
538 |
+
|
539 |
+
if result is None:
|
540 |
+
return None
|
541 |
+
|
542 |
+
sol_list, ind, mp = result
|
543 |
+
|
544 |
+
sol_dict = defaultdict(lambda: S.Zero)
|
545 |
+
for res, cond in sol_list:
|
546 |
+
j, mk = cond.as_coeff_Add()
|
547 |
+
c = mk.coeff(k)
|
548 |
+
|
549 |
+
if j.is_integer is False:
|
550 |
+
res *= x**frac(j)
|
551 |
+
j = floor(j)
|
552 |
+
|
553 |
+
res = res.subs(k, (k - j) / c)
|
554 |
+
cond = Eq(k % c, j % c)
|
555 |
+
sol_dict[cond] += res # Group together formula for same conditions
|
556 |
+
|
557 |
+
sol = []
|
558 |
+
for cond, res in sol_dict.items():
|
559 |
+
sol.append((res, cond))
|
560 |
+
sol.append((S.Zero, True))
|
561 |
+
sol = Piecewise(*sol)
|
562 |
+
|
563 |
+
if mp is -oo:
|
564 |
+
s = S.Zero
|
565 |
+
elif mp.is_integer is False:
|
566 |
+
s = ceiling(mp)
|
567 |
+
else:
|
568 |
+
s = mp + 1
|
569 |
+
|
570 |
+
# save all the terms of
|
571 |
+
# form 1/x**k in ind
|
572 |
+
if s < 0:
|
573 |
+
ind += sum(sequence(sol * x**k, (k, s, -1)))
|
574 |
+
s = S.Zero
|
575 |
+
|
576 |
+
return (sol, ind, s)
|
577 |
+
|
578 |
+
|
579 |
+
def _solve_hyper_RE(f, x, RE, g, k):
|
580 |
+
"""See docstring of :func:`rsolve_hypergeometric` for details."""
|
581 |
+
terms = Add.make_args(RE)
|
582 |
+
|
583 |
+
if len(terms) == 2:
|
584 |
+
gs = list(RE.atoms(Function))
|
585 |
+
P, Q = map(RE.coeff, gs)
|
586 |
+
m = gs[1].args[0] - gs[0].args[0]
|
587 |
+
if m < 0:
|
588 |
+
P, Q = Q, P
|
589 |
+
m = abs(m)
|
590 |
+
return rsolve_hypergeometric(f, x, P, Q, k, m)
|
591 |
+
|
592 |
+
|
593 |
+
def _solve_explike_DE(f, x, DE, g, k):
|
594 |
+
"""Solves DE with constant coefficients."""
|
595 |
+
from sympy.solvers import rsolve
|
596 |
+
|
597 |
+
for t in Add.make_args(DE):
|
598 |
+
coeff, d = t.as_independent(g)
|
599 |
+
if coeff.free_symbols:
|
600 |
+
return
|
601 |
+
|
602 |
+
RE = exp_re(DE, g, k)
|
603 |
+
|
604 |
+
init = {}
|
605 |
+
for i in range(len(Add.make_args(RE))):
|
606 |
+
if i:
|
607 |
+
f = f.diff(x)
|
608 |
+
init[g(k).subs(k, i)] = f.limit(x, 0)
|
609 |
+
|
610 |
+
sol = rsolve(RE, g(k), init)
|
611 |
+
|
612 |
+
if sol:
|
613 |
+
return (sol / factorial(k), S.Zero, S.Zero)
|
614 |
+
|
615 |
+
|
616 |
+
def _solve_simple(f, x, DE, g, k):
|
617 |
+
"""Converts DE into RE and solves using :func:`rsolve`."""
|
618 |
+
from sympy.solvers import rsolve
|
619 |
+
|
620 |
+
RE = hyper_re(DE, g, k)
|
621 |
+
|
622 |
+
init = {}
|
623 |
+
for i in range(len(Add.make_args(RE))):
|
624 |
+
if i:
|
625 |
+
f = f.diff(x)
|
626 |
+
init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i)
|
627 |
+
|
628 |
+
sol = rsolve(RE, g(k), init)
|
629 |
+
|
630 |
+
if sol:
|
631 |
+
return (sol, S.Zero, S.Zero)
|
632 |
+
|
633 |
+
|
634 |
+
def _transform_explike_DE(DE, g, x, order, syms):
|
635 |
+
"""Converts DE with free parameters into DE with constant coefficients."""
|
636 |
+
from sympy.solvers.solveset import linsolve
|
637 |
+
|
638 |
+
eq = []
|
639 |
+
highest_coeff = DE.coeff(Derivative(g(x), x, order))
|
640 |
+
for i in range(order):
|
641 |
+
coeff = DE.coeff(Derivative(g(x), x, i))
|
642 |
+
coeff = (coeff / highest_coeff).expand().collect(x)
|
643 |
+
for t in Add.make_args(coeff):
|
644 |
+
eq.append(t)
|
645 |
+
temp = []
|
646 |
+
for e in eq:
|
647 |
+
if e.has(x):
|
648 |
+
break
|
649 |
+
elif e.has(Symbol):
|
650 |
+
temp.append(e)
|
651 |
+
else:
|
652 |
+
eq = temp
|
653 |
+
if eq:
|
654 |
+
sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s)))
|
655 |
+
if sol:
|
656 |
+
DE = DE.subs(sol)
|
657 |
+
DE = DE.factor().as_coeff_mul(Derivative)[1][0]
|
658 |
+
DE = DE.collect(Derivative(g(x)))
|
659 |
+
return DE
|
660 |
+
|
661 |
+
|
662 |
+
def _transform_DE_RE(DE, g, k, order, syms):
|
663 |
+
"""Converts DE with free parameters into RE of hypergeometric type."""
|
664 |
+
from sympy.solvers.solveset import linsolve
|
665 |
+
|
666 |
+
RE = hyper_re(DE, g, k)
|
667 |
+
|
668 |
+
eq = []
|
669 |
+
for i in range(1, order):
|
670 |
+
coeff = RE.coeff(g(k + i))
|
671 |
+
eq.append(coeff)
|
672 |
+
sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s)))
|
673 |
+
if sol:
|
674 |
+
m = Wild('m')
|
675 |
+
RE = RE.subs(sol)
|
676 |
+
RE = RE.factor().as_numer_denom()[0].collect(g(k + m))
|
677 |
+
RE = RE.as_coeff_mul(g)[1][0]
|
678 |
+
for i in range(order): # smallest order should be g(k)
|
679 |
+
if RE.coeff(g(k + i)) and i:
|
680 |
+
RE = RE.subs(k, k - i)
|
681 |
+
break
|
682 |
+
return RE
|
683 |
+
|
684 |
+
|
685 |
+
def solve_de(f, x, DE, order, g, k):
|
686 |
+
"""
|
687 |
+
Solves the DE.
|
688 |
+
|
689 |
+
Explanation
|
690 |
+
===========
|
691 |
+
|
692 |
+
Tries to solve DE by either converting into a RE containing two terms or
|
693 |
+
converting into a DE having constant coefficients.
|
694 |
+
|
695 |
+
Returns
|
696 |
+
=======
|
697 |
+
|
698 |
+
formula : Expr
|
699 |
+
ind : Expr
|
700 |
+
Independent terms.
|
701 |
+
order : int
|
702 |
+
|
703 |
+
Examples
|
704 |
+
========
|
705 |
+
|
706 |
+
>>> from sympy import Derivative as D, Function
|
707 |
+
>>> from sympy import exp, ln
|
708 |
+
>>> from sympy.series.formal import solve_de
|
709 |
+
>>> from sympy.abc import x, k
|
710 |
+
>>> f = Function('f')
|
711 |
+
|
712 |
+
>>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k)
|
713 |
+
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
|
714 |
+
|
715 |
+
>>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k)
|
716 |
+
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
|
717 |
+
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
|
718 |
+
"""
|
719 |
+
sol = None
|
720 |
+
syms = DE.free_symbols.difference({g, x})
|
721 |
+
|
722 |
+
if syms:
|
723 |
+
RE = _transform_DE_RE(DE, g, k, order, syms)
|
724 |
+
else:
|
725 |
+
RE = hyper_re(DE, g, k)
|
726 |
+
if not RE.free_symbols.difference({k}):
|
727 |
+
sol = _solve_hyper_RE(f, x, RE, g, k)
|
728 |
+
|
729 |
+
if sol:
|
730 |
+
return sol
|
731 |
+
|
732 |
+
if syms:
|
733 |
+
DE = _transform_explike_DE(DE, g, x, order, syms)
|
734 |
+
if not DE.free_symbols.difference({x}):
|
735 |
+
sol = _solve_explike_DE(f, x, DE, g, k)
|
736 |
+
|
737 |
+
if sol:
|
738 |
+
return sol
|
739 |
+
|
740 |
+
|
741 |
+
def hyper_algorithm(f, x, k, order=4):
|
742 |
+
"""
|
743 |
+
Hypergeometric algorithm for computing Formal Power Series.
|
744 |
+
|
745 |
+
Explanation
|
746 |
+
===========
|
747 |
+
|
748 |
+
Steps:
|
749 |
+
* Generates DE
|
750 |
+
* Convert the DE into RE
|
751 |
+
* Solves the RE
|
752 |
+
|
753 |
+
Examples
|
754 |
+
========
|
755 |
+
|
756 |
+
>>> from sympy import exp, ln
|
757 |
+
>>> from sympy.series.formal import hyper_algorithm
|
758 |
+
|
759 |
+
>>> from sympy.abc import x, k
|
760 |
+
|
761 |
+
>>> hyper_algorithm(exp(x), x, k)
|
762 |
+
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
|
763 |
+
|
764 |
+
>>> hyper_algorithm(ln(1 + x), x, k)
|
765 |
+
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
|
766 |
+
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
|
767 |
+
|
768 |
+
See Also
|
769 |
+
========
|
770 |
+
|
771 |
+
sympy.series.formal.simpleDE
|
772 |
+
sympy.series.formal.solve_de
|
773 |
+
"""
|
774 |
+
g = Function('g')
|
775 |
+
|
776 |
+
des = [] # list of DE's
|
777 |
+
sol = None
|
778 |
+
for DE, i in simpleDE(f, x, g, order):
|
779 |
+
if DE is not None:
|
780 |
+
sol = solve_de(f, x, DE, i, g, k)
|
781 |
+
if sol:
|
782 |
+
return sol
|
783 |
+
if not DE.free_symbols.difference({x}):
|
784 |
+
des.append(DE)
|
785 |
+
|
786 |
+
# If nothing works
|
787 |
+
# Try plain rsolve
|
788 |
+
for DE in des:
|
789 |
+
sol = _solve_simple(f, x, DE, g, k)
|
790 |
+
if sol:
|
791 |
+
return sol
|
792 |
+
|
793 |
+
|
794 |
+
def _compute_fps(f, x, x0, dir, hyper, order, rational, full):
|
795 |
+
"""Recursive wrapper to compute fps.
|
796 |
+
|
797 |
+
See :func:`compute_fps` for details.
|
798 |
+
"""
|
799 |
+
if x0 in [S.Infinity, S.NegativeInfinity]:
|
800 |
+
dir = S.One if x0 is S.Infinity else -S.One
|
801 |
+
temp = f.subs(x, 1/x)
|
802 |
+
result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full)
|
803 |
+
if result is None:
|
804 |
+
return None
|
805 |
+
return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x))
|
806 |
+
elif x0 or dir == -S.One:
|
807 |
+
if dir == -S.One:
|
808 |
+
rep = -x + x0
|
809 |
+
rep2 = -x
|
810 |
+
rep2b = x0
|
811 |
+
else:
|
812 |
+
rep = x + x0
|
813 |
+
rep2 = x
|
814 |
+
rep2b = -x0
|
815 |
+
temp = f.subs(x, rep)
|
816 |
+
result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full)
|
817 |
+
if result is None:
|
818 |
+
return None
|
819 |
+
return (result[0], result[1].subs(x, rep2 + rep2b),
|
820 |
+
result[2].subs(x, rep2 + rep2b))
|
821 |
+
|
822 |
+
if f.is_polynomial(x):
|
823 |
+
k = Dummy('k')
|
824 |
+
ak = sequence(Coeff(f, x, k), (k, 1, oo))
|
825 |
+
xk = sequence(x**k, (k, 0, oo))
|
826 |
+
ind = f.coeff(x, 0)
|
827 |
+
return ak, xk, ind
|
828 |
+
|
829 |
+
# Break instances of Add
|
830 |
+
# this allows application of different
|
831 |
+
# algorithms on different terms increasing the
|
832 |
+
# range of admissible functions.
|
833 |
+
if isinstance(f, Add):
|
834 |
+
result = False
|
835 |
+
ak = sequence(S.Zero, (0, oo))
|
836 |
+
ind, xk = S.Zero, None
|
837 |
+
for t in Add.make_args(f):
|
838 |
+
res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full)
|
839 |
+
if res:
|
840 |
+
if not result:
|
841 |
+
result = True
|
842 |
+
xk = res[1]
|
843 |
+
if res[0].start > ak.start:
|
844 |
+
seq = ak
|
845 |
+
s, f = ak.start, res[0].start
|
846 |
+
else:
|
847 |
+
seq = res[0]
|
848 |
+
s, f = res[0].start, ak.start
|
849 |
+
save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])])
|
850 |
+
ak += res[0]
|
851 |
+
ind += res[2] + save
|
852 |
+
else:
|
853 |
+
ind += t
|
854 |
+
if result:
|
855 |
+
return ak, xk, ind
|
856 |
+
return None
|
857 |
+
|
858 |
+
# The symbolic term - symb, if present, is being separated from the function
|
859 |
+
# Otherwise symb is being set to S.One
|
860 |
+
syms = f.free_symbols.difference({x})
|
861 |
+
(f, symb) = expand(f).as_independent(*syms)
|
862 |
+
|
863 |
+
result = None
|
864 |
+
|
865 |
+
# from here on it's x0=0 and dir=1 handling
|
866 |
+
k = Dummy('k')
|
867 |
+
if rational:
|
868 |
+
result = rational_algorithm(f, x, k, order, full)
|
869 |
+
|
870 |
+
if result is None and hyper:
|
871 |
+
result = hyper_algorithm(f, x, k, order)
|
872 |
+
|
873 |
+
if result is None:
|
874 |
+
return None
|
875 |
+
|
876 |
+
from sympy.simplify.powsimp import powsimp
|
877 |
+
if symb.is_zero:
|
878 |
+
symb = S.One
|
879 |
+
else:
|
880 |
+
symb = powsimp(symb)
|
881 |
+
ak = sequence(result[0], (k, result[2], oo))
|
882 |
+
xk_formula = powsimp(x**k * symb)
|
883 |
+
xk = sequence(xk_formula, (k, 0, oo))
|
884 |
+
ind = powsimp(result[1] * symb)
|
885 |
+
|
886 |
+
return ak, xk, ind
|
887 |
+
|
888 |
+
|
889 |
+
def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True,
|
890 |
+
full=False):
|
891 |
+
"""
|
892 |
+
Computes the formula for Formal Power Series of a function.
|
893 |
+
|
894 |
+
Explanation
|
895 |
+
===========
|
896 |
+
|
897 |
+
Tries to compute the formula by applying the following techniques
|
898 |
+
(in order):
|
899 |
+
|
900 |
+
* rational_algorithm
|
901 |
+
* Hypergeometric algorithm
|
902 |
+
|
903 |
+
Parameters
|
904 |
+
==========
|
905 |
+
|
906 |
+
x : Symbol
|
907 |
+
x0 : number, optional
|
908 |
+
Point to perform series expansion about. Default is 0.
|
909 |
+
dir : {1, -1, '+', '-'}, optional
|
910 |
+
If dir is 1 or '+' the series is calculated from the right and
|
911 |
+
for -1 or '-' the series is calculated from the left. For smooth
|
912 |
+
functions this flag will not alter the results. Default is 1.
|
913 |
+
hyper : {True, False}, optional
|
914 |
+
Set hyper to False to skip the hypergeometric algorithm.
|
915 |
+
By default it is set to False.
|
916 |
+
order : int, optional
|
917 |
+
Order of the derivative of ``f``, Default is 4.
|
918 |
+
rational : {True, False}, optional
|
919 |
+
Set rational to False to skip rational algorithm. By default it is set
|
920 |
+
to True.
|
921 |
+
full : {True, False}, optional
|
922 |
+
Set full to True to increase the range of rational algorithm.
|
923 |
+
See :func:`rational_algorithm` for details. By default it is set to
|
924 |
+
False.
|
925 |
+
|
926 |
+
Returns
|
927 |
+
=======
|
928 |
+
|
929 |
+
ak : sequence
|
930 |
+
Sequence of coefficients.
|
931 |
+
xk : sequence
|
932 |
+
Sequence of powers of x.
|
933 |
+
ind : Expr
|
934 |
+
Independent terms.
|
935 |
+
mul : Pow
|
936 |
+
Common terms.
|
937 |
+
|
938 |
+
See Also
|
939 |
+
========
|
940 |
+
|
941 |
+
sympy.series.formal.rational_algorithm
|
942 |
+
sympy.series.formal.hyper_algorithm
|
943 |
+
"""
|
944 |
+
f = sympify(f)
|
945 |
+
x = sympify(x)
|
946 |
+
|
947 |
+
if not f.has(x):
|
948 |
+
return None
|
949 |
+
|
950 |
+
x0 = sympify(x0)
|
951 |
+
|
952 |
+
if dir == '+':
|
953 |
+
dir = S.One
|
954 |
+
elif dir == '-':
|
955 |
+
dir = -S.One
|
956 |
+
elif dir not in [S.One, -S.One]:
|
957 |
+
raise ValueError("Dir must be '+' or '-'")
|
958 |
+
else:
|
959 |
+
dir = sympify(dir)
|
960 |
+
|
961 |
+
return _compute_fps(f, x, x0, dir, hyper, order, rational, full)
|
962 |
+
|
963 |
+
|
964 |
+
class Coeff(Function):
|
965 |
+
"""
|
966 |
+
Coeff(p, x, n) represents the nth coefficient of the polynomial p in x
|
967 |
+
"""
|
968 |
+
@classmethod
|
969 |
+
def eval(cls, p, x, n):
|
970 |
+
if p.is_polynomial(x) and n.is_integer:
|
971 |
+
return p.coeff(x, n)
|
972 |
+
|
973 |
+
|
974 |
+
class FormalPowerSeries(SeriesBase):
|
975 |
+
"""
|
976 |
+
Represents Formal Power Series of a function.
|
977 |
+
|
978 |
+
Explanation
|
979 |
+
===========
|
980 |
+
|
981 |
+
No computation is performed. This class should only to be used to represent
|
982 |
+
a series. No checks are performed.
|
983 |
+
|
984 |
+
For computing a series use :func:`fps`.
|
985 |
+
|
986 |
+
See Also
|
987 |
+
========
|
988 |
+
|
989 |
+
sympy.series.formal.fps
|
990 |
+
"""
|
991 |
+
def __new__(cls, *args):
|
992 |
+
args = map(sympify, args)
|
993 |
+
return Expr.__new__(cls, *args)
|
994 |
+
|
995 |
+
def __init__(self, *args):
|
996 |
+
ak = args[4][0]
|
997 |
+
k = ak.variables[0]
|
998 |
+
self.ak_seq = sequence(ak.formula, (k, 1, oo))
|
999 |
+
self.fact_seq = sequence(factorial(k), (k, 1, oo))
|
1000 |
+
self.bell_coeff_seq = self.ak_seq * self.fact_seq
|
1001 |
+
self.sign_seq = sequence((-1, 1), (k, 1, oo))
|
1002 |
+
|
1003 |
+
@property
|
1004 |
+
def function(self):
|
1005 |
+
return self.args[0]
|
1006 |
+
|
1007 |
+
@property
|
1008 |
+
def x(self):
|
1009 |
+
return self.args[1]
|
1010 |
+
|
1011 |
+
@property
|
1012 |
+
def x0(self):
|
1013 |
+
return self.args[2]
|
1014 |
+
|
1015 |
+
@property
|
1016 |
+
def dir(self):
|
1017 |
+
return self.args[3]
|
1018 |
+
|
1019 |
+
@property
|
1020 |
+
def ak(self):
|
1021 |
+
return self.args[4][0]
|
1022 |
+
|
1023 |
+
@property
|
1024 |
+
def xk(self):
|
1025 |
+
return self.args[4][1]
|
1026 |
+
|
1027 |
+
@property
|
1028 |
+
def ind(self):
|
1029 |
+
return self.args[4][2]
|
1030 |
+
|
1031 |
+
@property
|
1032 |
+
def interval(self):
|
1033 |
+
return Interval(0, oo)
|
1034 |
+
|
1035 |
+
@property
|
1036 |
+
def start(self):
|
1037 |
+
return self.interval.inf
|
1038 |
+
|
1039 |
+
@property
|
1040 |
+
def stop(self):
|
1041 |
+
return self.interval.sup
|
1042 |
+
|
1043 |
+
@property
|
1044 |
+
def length(self):
|
1045 |
+
return oo
|
1046 |
+
|
1047 |
+
@property
|
1048 |
+
def infinite(self):
|
1049 |
+
"""Returns an infinite representation of the series"""
|
1050 |
+
from sympy.concrete import Sum
|
1051 |
+
ak, xk = self.ak, self.xk
|
1052 |
+
k = ak.variables[0]
|
1053 |
+
inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop))
|
1054 |
+
|
1055 |
+
return self.ind + inf_sum
|
1056 |
+
|
1057 |
+
def _get_pow_x(self, term):
|
1058 |
+
"""Returns the power of x in a term."""
|
1059 |
+
xterm, pow_x = term.as_independent(self.x)[1].as_base_exp()
|
1060 |
+
if not xterm.has(self.x):
|
1061 |
+
return S.Zero
|
1062 |
+
return pow_x
|
1063 |
+
|
1064 |
+
def polynomial(self, n=6):
|
1065 |
+
"""
|
1066 |
+
Truncated series as polynomial.
|
1067 |
+
|
1068 |
+
Explanation
|
1069 |
+
===========
|
1070 |
+
|
1071 |
+
Returns series expansion of ``f`` upto order ``O(x**n)``
|
1072 |
+
as a polynomial(without ``O`` term).
|
1073 |
+
"""
|
1074 |
+
terms = []
|
1075 |
+
sym = self.free_symbols
|
1076 |
+
for i, t in enumerate(self):
|
1077 |
+
xp = self._get_pow_x(t)
|
1078 |
+
if xp.has(*sym):
|
1079 |
+
xp = xp.as_coeff_add(*sym)[0]
|
1080 |
+
if xp >= n:
|
1081 |
+
break
|
1082 |
+
elif xp.is_integer is True and i == n + 1:
|
1083 |
+
break
|
1084 |
+
elif t is not S.Zero:
|
1085 |
+
terms.append(t)
|
1086 |
+
|
1087 |
+
return Add(*terms)
|
1088 |
+
|
1089 |
+
def truncate(self, n=6):
|
1090 |
+
"""
|
1091 |
+
Truncated series.
|
1092 |
+
|
1093 |
+
Explanation
|
1094 |
+
===========
|
1095 |
+
|
1096 |
+
Returns truncated series expansion of f upto
|
1097 |
+
order ``O(x**n)``.
|
1098 |
+
|
1099 |
+
If n is ``None``, returns an infinite iterator.
|
1100 |
+
"""
|
1101 |
+
if n is None:
|
1102 |
+
return iter(self)
|
1103 |
+
|
1104 |
+
x, x0 = self.x, self.x0
|
1105 |
+
pt_xk = self.xk.coeff(n)
|
1106 |
+
if x0 is S.NegativeInfinity:
|
1107 |
+
x0 = S.Infinity
|
1108 |
+
|
1109 |
+
return self.polynomial(n) + Order(pt_xk, (x, x0))
|
1110 |
+
|
1111 |
+
def zero_coeff(self):
|
1112 |
+
return self._eval_term(0)
|
1113 |
+
|
1114 |
+
def _eval_term(self, pt):
|
1115 |
+
try:
|
1116 |
+
pt_xk = self.xk.coeff(pt)
|
1117 |
+
pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients
|
1118 |
+
except IndexError:
|
1119 |
+
term = S.Zero
|
1120 |
+
else:
|
1121 |
+
term = (pt_ak * pt_xk)
|
1122 |
+
|
1123 |
+
if self.ind:
|
1124 |
+
ind = S.Zero
|
1125 |
+
sym = self.free_symbols
|
1126 |
+
for t in Add.make_args(self.ind):
|
1127 |
+
pow_x = self._get_pow_x(t)
|
1128 |
+
if pow_x.has(*sym):
|
1129 |
+
pow_x = pow_x.as_coeff_add(*sym)[0]
|
1130 |
+
if pt == 0 and pow_x < 1:
|
1131 |
+
ind += t
|
1132 |
+
elif pow_x >= pt and pow_x < pt + 1:
|
1133 |
+
ind += t
|
1134 |
+
term += ind
|
1135 |
+
|
1136 |
+
return term.collect(self.x)
|
1137 |
+
|
1138 |
+
def _eval_subs(self, old, new):
|
1139 |
+
x = self.x
|
1140 |
+
if old.has(x):
|
1141 |
+
return self
|
1142 |
+
|
1143 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1144 |
+
for t in self:
|
1145 |
+
if t is not S.Zero:
|
1146 |
+
return t
|
1147 |
+
|
1148 |
+
def _eval_derivative(self, x):
|
1149 |
+
f = self.function.diff(x)
|
1150 |
+
ind = self.ind.diff(x)
|
1151 |
+
|
1152 |
+
pow_xk = self._get_pow_x(self.xk.formula)
|
1153 |
+
ak = self.ak
|
1154 |
+
k = ak.variables[0]
|
1155 |
+
if ak.formula.has(x):
|
1156 |
+
form = []
|
1157 |
+
for e, c in ak.formula.args:
|
1158 |
+
temp = S.Zero
|
1159 |
+
for t in Add.make_args(e):
|
1160 |
+
pow_x = self._get_pow_x(t)
|
1161 |
+
temp += t * (pow_xk + pow_x)
|
1162 |
+
form.append((temp, c))
|
1163 |
+
form = Piecewise(*form)
|
1164 |
+
ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop))
|
1165 |
+
else:
|
1166 |
+
ak = sequence((ak.formula * pow_xk).subs(k, k + 1),
|
1167 |
+
(k, ak.start - 1, ak.stop))
|
1168 |
+
|
1169 |
+
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
|
1170 |
+
|
1171 |
+
def integrate(self, x=None, **kwargs):
|
1172 |
+
"""
|
1173 |
+
Integrate Formal Power Series.
|
1174 |
+
|
1175 |
+
Examples
|
1176 |
+
========
|
1177 |
+
|
1178 |
+
>>> from sympy import fps, sin, integrate
|
1179 |
+
>>> from sympy.abc import x
|
1180 |
+
>>> f = fps(sin(x))
|
1181 |
+
>>> f.integrate(x).truncate()
|
1182 |
+
-1 + x**2/2 - x**4/24 + O(x**6)
|
1183 |
+
>>> integrate(f, (x, 0, 1))
|
1184 |
+
1 - cos(1)
|
1185 |
+
"""
|
1186 |
+
from sympy.integrals import integrate
|
1187 |
+
|
1188 |
+
if x is None:
|
1189 |
+
x = self.x
|
1190 |
+
elif iterable(x):
|
1191 |
+
return integrate(self.function, x)
|
1192 |
+
|
1193 |
+
f = integrate(self.function, x)
|
1194 |
+
ind = integrate(self.ind, x)
|
1195 |
+
ind += (f - ind).limit(x, 0) # constant of integration
|
1196 |
+
|
1197 |
+
pow_xk = self._get_pow_x(self.xk.formula)
|
1198 |
+
ak = self.ak
|
1199 |
+
k = ak.variables[0]
|
1200 |
+
if ak.formula.has(x):
|
1201 |
+
form = []
|
1202 |
+
for e, c in ak.formula.args:
|
1203 |
+
temp = S.Zero
|
1204 |
+
for t in Add.make_args(e):
|
1205 |
+
pow_x = self._get_pow_x(t)
|
1206 |
+
temp += t / (pow_xk + pow_x + 1)
|
1207 |
+
form.append((temp, c))
|
1208 |
+
form = Piecewise(*form)
|
1209 |
+
ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop))
|
1210 |
+
else:
|
1211 |
+
ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1),
|
1212 |
+
(k, ak.start + 1, ak.stop))
|
1213 |
+
|
1214 |
+
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
|
1215 |
+
|
1216 |
+
def product(self, other, x=None, n=6):
|
1217 |
+
"""
|
1218 |
+
Multiplies two Formal Power Series, using discrete convolution and
|
1219 |
+
return the truncated terms upto specified order.
|
1220 |
+
|
1221 |
+
Parameters
|
1222 |
+
==========
|
1223 |
+
|
1224 |
+
n : Number, optional
|
1225 |
+
Specifies the order of the term up to which the polynomial should
|
1226 |
+
be truncated.
|
1227 |
+
|
1228 |
+
Examples
|
1229 |
+
========
|
1230 |
+
|
1231 |
+
>>> from sympy import fps, sin, exp
|
1232 |
+
>>> from sympy.abc import x
|
1233 |
+
>>> f1 = fps(sin(x))
|
1234 |
+
>>> f2 = fps(exp(x))
|
1235 |
+
|
1236 |
+
>>> f1.product(f2, x).truncate(4)
|
1237 |
+
x + x**2 + x**3/3 + O(x**4)
|
1238 |
+
|
1239 |
+
See Also
|
1240 |
+
========
|
1241 |
+
|
1242 |
+
sympy.discrete.convolutions
|
1243 |
+
sympy.series.formal.FormalPowerSeriesProduct
|
1244 |
+
|
1245 |
+
"""
|
1246 |
+
|
1247 |
+
if n is None:
|
1248 |
+
return iter(self)
|
1249 |
+
|
1250 |
+
other = sympify(other)
|
1251 |
+
|
1252 |
+
if not isinstance(other, FormalPowerSeries):
|
1253 |
+
raise ValueError("Both series should be an instance of FormalPowerSeries"
|
1254 |
+
" class.")
|
1255 |
+
|
1256 |
+
if self.dir != other.dir:
|
1257 |
+
raise ValueError("Both series should be calculated from the"
|
1258 |
+
" same direction.")
|
1259 |
+
elif self.x0 != other.x0:
|
1260 |
+
raise ValueError("Both series should be calculated about the"
|
1261 |
+
" same point.")
|
1262 |
+
|
1263 |
+
elif self.x != other.x:
|
1264 |
+
raise ValueError("Both series should have the same symbol.")
|
1265 |
+
|
1266 |
+
return FormalPowerSeriesProduct(self, other)
|
1267 |
+
|
1268 |
+
def coeff_bell(self, n):
|
1269 |
+
r"""
|
1270 |
+
self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind.
|
1271 |
+
Note that ``n`` should be a integer.
|
1272 |
+
|
1273 |
+
The second kind of Bell polynomials (are sometimes called "partial" Bell
|
1274 |
+
polynomials or incomplete Bell polynomials) are defined as
|
1275 |
+
|
1276 |
+
.. math::
|
1277 |
+
B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
|
1278 |
+
\sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
|
1279 |
+
\frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
|
1280 |
+
\left(\frac{x_1}{1!} \right)^{j_1}
|
1281 |
+
\left(\frac{x_2}{2!} \right)^{j_2} \dotsb
|
1282 |
+
\left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
|
1283 |
+
|
1284 |
+
* ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
|
1285 |
+
`B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
|
1286 |
+
|
1287 |
+
See Also
|
1288 |
+
========
|
1289 |
+
|
1290 |
+
sympy.functions.combinatorial.numbers.bell
|
1291 |
+
|
1292 |
+
"""
|
1293 |
+
|
1294 |
+
inner_coeffs = [bell(n, j, tuple(self.bell_coeff_seq[:n-j+1])) for j in range(1, n+1)]
|
1295 |
+
|
1296 |
+
k = Dummy('k')
|
1297 |
+
return sequence(tuple(inner_coeffs), (k, 1, oo))
|
1298 |
+
|
1299 |
+
def compose(self, other, x=None, n=6):
|
1300 |
+
r"""
|
1301 |
+
Returns the truncated terms of the formal power series of the composed function,
|
1302 |
+
up to specified ``n``.
|
1303 |
+
|
1304 |
+
Explanation
|
1305 |
+
===========
|
1306 |
+
|
1307 |
+
If ``f`` and ``g`` are two formal power series of two different functions,
|
1308 |
+
then the coefficient sequence ``ak`` of the composed formal power series `fp`
|
1309 |
+
will be as follows.
|
1310 |
+
|
1311 |
+
.. math::
|
1312 |
+
\sum\limits_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})
|
1313 |
+
|
1314 |
+
Parameters
|
1315 |
+
==========
|
1316 |
+
|
1317 |
+
n : Number, optional
|
1318 |
+
Specifies the order of the term up to which the polynomial should
|
1319 |
+
be truncated.
|
1320 |
+
|
1321 |
+
Examples
|
1322 |
+
========
|
1323 |
+
|
1324 |
+
>>> from sympy import fps, sin, exp
|
1325 |
+
>>> from sympy.abc import x
|
1326 |
+
>>> f1 = fps(exp(x))
|
1327 |
+
>>> f2 = fps(sin(x))
|
1328 |
+
|
1329 |
+
>>> f1.compose(f2, x).truncate()
|
1330 |
+
1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
|
1331 |
+
|
1332 |
+
>>> f1.compose(f2, x).truncate(8)
|
1333 |
+
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
|
1334 |
+
|
1335 |
+
See Also
|
1336 |
+
========
|
1337 |
+
|
1338 |
+
sympy.functions.combinatorial.numbers.bell
|
1339 |
+
sympy.series.formal.FormalPowerSeriesCompose
|
1340 |
+
|
1341 |
+
References
|
1342 |
+
==========
|
1343 |
+
|
1344 |
+
.. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974.
|
1345 |
+
|
1346 |
+
"""
|
1347 |
+
|
1348 |
+
if n is None:
|
1349 |
+
return iter(self)
|
1350 |
+
|
1351 |
+
other = sympify(other)
|
1352 |
+
|
1353 |
+
if not isinstance(other, FormalPowerSeries):
|
1354 |
+
raise ValueError("Both series should be an instance of FormalPowerSeries"
|
1355 |
+
" class.")
|
1356 |
+
|
1357 |
+
if self.dir != other.dir:
|
1358 |
+
raise ValueError("Both series should be calculated from the"
|
1359 |
+
" same direction.")
|
1360 |
+
elif self.x0 != other.x0:
|
1361 |
+
raise ValueError("Both series should be calculated about the"
|
1362 |
+
" same point.")
|
1363 |
+
|
1364 |
+
elif self.x != other.x:
|
1365 |
+
raise ValueError("Both series should have the same symbol.")
|
1366 |
+
|
1367 |
+
if other._eval_term(0).as_coeff_mul(other.x)[0] is not S.Zero:
|
1368 |
+
raise ValueError("The formal power series of the inner function should not have any "
|
1369 |
+
"constant coefficient term.")
|
1370 |
+
|
1371 |
+
return FormalPowerSeriesCompose(self, other)
|
1372 |
+
|
1373 |
+
def inverse(self, x=None, n=6):
|
1374 |
+
r"""
|
1375 |
+
Returns the truncated terms of the inverse of the formal power series,
|
1376 |
+
up to specified ``n``.
|
1377 |
+
|
1378 |
+
Explanation
|
1379 |
+
===========
|
1380 |
+
|
1381 |
+
If ``f`` and ``g`` are two formal power series of two different functions,
|
1382 |
+
then the coefficient sequence ``ak`` of the composed formal power series ``fp``
|
1383 |
+
will be as follows.
|
1384 |
+
|
1385 |
+
.. math::
|
1386 |
+
\sum\limits_{k=0}^{n} (-1)^{k} x_0^{-k-1} B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})
|
1387 |
+
|
1388 |
+
Parameters
|
1389 |
+
==========
|
1390 |
+
|
1391 |
+
n : Number, optional
|
1392 |
+
Specifies the order of the term up to which the polynomial should
|
1393 |
+
be truncated.
|
1394 |
+
|
1395 |
+
Examples
|
1396 |
+
========
|
1397 |
+
|
1398 |
+
>>> from sympy import fps, exp, cos
|
1399 |
+
>>> from sympy.abc import x
|
1400 |
+
>>> f1 = fps(exp(x))
|
1401 |
+
>>> f2 = fps(cos(x))
|
1402 |
+
|
1403 |
+
>>> f1.inverse(x).truncate()
|
1404 |
+
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
|
1405 |
+
|
1406 |
+
>>> f2.inverse(x).truncate(8)
|
1407 |
+
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
|
1408 |
+
|
1409 |
+
See Also
|
1410 |
+
========
|
1411 |
+
|
1412 |
+
sympy.functions.combinatorial.numbers.bell
|
1413 |
+
sympy.series.formal.FormalPowerSeriesInverse
|
1414 |
+
|
1415 |
+
References
|
1416 |
+
==========
|
1417 |
+
|
1418 |
+
.. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974.
|
1419 |
+
|
1420 |
+
"""
|
1421 |
+
|
1422 |
+
if n is None:
|
1423 |
+
return iter(self)
|
1424 |
+
|
1425 |
+
if self._eval_term(0).is_zero:
|
1426 |
+
raise ValueError("Constant coefficient should exist for an inverse of a formal"
|
1427 |
+
" power series to exist.")
|
1428 |
+
|
1429 |
+
return FormalPowerSeriesInverse(self)
|
1430 |
+
|
1431 |
+
def __add__(self, other):
|
1432 |
+
other = sympify(other)
|
1433 |
+
|
1434 |
+
if isinstance(other, FormalPowerSeries):
|
1435 |
+
if self.dir != other.dir:
|
1436 |
+
raise ValueError("Both series should be calculated from the"
|
1437 |
+
" same direction.")
|
1438 |
+
elif self.x0 != other.x0:
|
1439 |
+
raise ValueError("Both series should be calculated about the"
|
1440 |
+
" same point.")
|
1441 |
+
|
1442 |
+
x, y = self.x, other.x
|
1443 |
+
f = self.function + other.function.subs(y, x)
|
1444 |
+
|
1445 |
+
if self.x not in f.free_symbols:
|
1446 |
+
return f
|
1447 |
+
|
1448 |
+
ak = self.ak + other.ak
|
1449 |
+
if self.ak.start > other.ak.start:
|
1450 |
+
seq = other.ak
|
1451 |
+
s, e = other.ak.start, self.ak.start
|
1452 |
+
else:
|
1453 |
+
seq = self.ak
|
1454 |
+
s, e = self.ak.start, other.ak.start
|
1455 |
+
save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])])
|
1456 |
+
ind = self.ind + other.ind + save
|
1457 |
+
|
1458 |
+
return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind))
|
1459 |
+
|
1460 |
+
elif not other.has(self.x):
|
1461 |
+
f = self.function + other
|
1462 |
+
ind = self.ind + other
|
1463 |
+
|
1464 |
+
return self.func(f, self.x, self.x0, self.dir,
|
1465 |
+
(self.ak, self.xk, ind))
|
1466 |
+
|
1467 |
+
return Add(self, other)
|
1468 |
+
|
1469 |
+
def __radd__(self, other):
|
1470 |
+
return self.__add__(other)
|
1471 |
+
|
1472 |
+
def __neg__(self):
|
1473 |
+
return self.func(-self.function, self.x, self.x0, self.dir,
|
1474 |
+
(-self.ak, self.xk, -self.ind))
|
1475 |
+
|
1476 |
+
def __sub__(self, other):
|
1477 |
+
return self.__add__(-other)
|
1478 |
+
|
1479 |
+
def __rsub__(self, other):
|
1480 |
+
return (-self).__add__(other)
|
1481 |
+
|
1482 |
+
def __mul__(self, other):
|
1483 |
+
other = sympify(other)
|
1484 |
+
|
1485 |
+
if other.has(self.x):
|
1486 |
+
return Mul(self, other)
|
1487 |
+
|
1488 |
+
f = self.function * other
|
1489 |
+
ak = self.ak.coeff_mul(other)
|
1490 |
+
ind = self.ind * other
|
1491 |
+
|
1492 |
+
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
|
1493 |
+
|
1494 |
+
def __rmul__(self, other):
|
1495 |
+
return self.__mul__(other)
|
1496 |
+
|
1497 |
+
|
1498 |
+
class FiniteFormalPowerSeries(FormalPowerSeries):
|
1499 |
+
"""Base Class for Product, Compose and Inverse classes"""
|
1500 |
+
|
1501 |
+
def __init__(self, *args):
|
1502 |
+
pass
|
1503 |
+
|
1504 |
+
@property
|
1505 |
+
def ffps(self):
|
1506 |
+
return self.args[0]
|
1507 |
+
|
1508 |
+
@property
|
1509 |
+
def gfps(self):
|
1510 |
+
return self.args[1]
|
1511 |
+
|
1512 |
+
@property
|
1513 |
+
def f(self):
|
1514 |
+
return self.ffps.function
|
1515 |
+
|
1516 |
+
@property
|
1517 |
+
def g(self):
|
1518 |
+
return self.gfps.function
|
1519 |
+
|
1520 |
+
@property
|
1521 |
+
def infinite(self):
|
1522 |
+
raise NotImplementedError("No infinite version for an object of"
|
1523 |
+
" FiniteFormalPowerSeries class.")
|
1524 |
+
|
1525 |
+
def _eval_terms(self, n):
|
1526 |
+
raise NotImplementedError("(%s)._eval_terms()" % self)
|
1527 |
+
|
1528 |
+
def _eval_term(self, pt):
|
1529 |
+
raise NotImplementedError("By the current logic, one can get terms"
|
1530 |
+
"upto a certain order, instead of getting term by term.")
|
1531 |
+
|
1532 |
+
def polynomial(self, n):
|
1533 |
+
return self._eval_terms(n)
|
1534 |
+
|
1535 |
+
def truncate(self, n=6):
|
1536 |
+
ffps = self.ffps
|
1537 |
+
pt_xk = ffps.xk.coeff(n)
|
1538 |
+
x, x0 = ffps.x, ffps.x0
|
1539 |
+
|
1540 |
+
return self.polynomial(n) + Order(pt_xk, (x, x0))
|
1541 |
+
|
1542 |
+
def _eval_derivative(self, x):
|
1543 |
+
raise NotImplementedError
|
1544 |
+
|
1545 |
+
def integrate(self, x):
|
1546 |
+
raise NotImplementedError
|
1547 |
+
|
1548 |
+
|
1549 |
+
class FormalPowerSeriesProduct(FiniteFormalPowerSeries):
|
1550 |
+
"""Represents the product of two formal power series of two functions.
|
1551 |
+
|
1552 |
+
Explanation
|
1553 |
+
===========
|
1554 |
+
|
1555 |
+
No computation is performed. Terms are calculated using a term by term logic,
|
1556 |
+
instead of a point by point logic.
|
1557 |
+
|
1558 |
+
There are two differences between a :obj:`FormalPowerSeries` object and a
|
1559 |
+
:obj:`FormalPowerSeriesProduct` object. The first argument contains the two
|
1560 |
+
functions involved in the product. Also, the coefficient sequence contains
|
1561 |
+
both the coefficient sequence of the formal power series of the involved functions.
|
1562 |
+
|
1563 |
+
See Also
|
1564 |
+
========
|
1565 |
+
|
1566 |
+
sympy.series.formal.FormalPowerSeries
|
1567 |
+
sympy.series.formal.FiniteFormalPowerSeries
|
1568 |
+
|
1569 |
+
"""
|
1570 |
+
|
1571 |
+
def __init__(self, *args):
|
1572 |
+
ffps, gfps = self.ffps, self.gfps
|
1573 |
+
|
1574 |
+
k = ffps.ak.variables[0]
|
1575 |
+
self.coeff1 = sequence(ffps.ak.formula, (k, 0, oo))
|
1576 |
+
|
1577 |
+
k = gfps.ak.variables[0]
|
1578 |
+
self.coeff2 = sequence(gfps.ak.formula, (k, 0, oo))
|
1579 |
+
|
1580 |
+
@property
|
1581 |
+
def function(self):
|
1582 |
+
"""Function of the product of two formal power series."""
|
1583 |
+
return self.f * self.g
|
1584 |
+
|
1585 |
+
def _eval_terms(self, n):
|
1586 |
+
"""
|
1587 |
+
Returns the first ``n`` terms of the product formal power series.
|
1588 |
+
Term by term logic is implemented here.
|
1589 |
+
|
1590 |
+
Examples
|
1591 |
+
========
|
1592 |
+
|
1593 |
+
>>> from sympy import fps, sin, exp
|
1594 |
+
>>> from sympy.abc import x
|
1595 |
+
>>> f1 = fps(sin(x))
|
1596 |
+
>>> f2 = fps(exp(x))
|
1597 |
+
>>> fprod = f1.product(f2, x)
|
1598 |
+
|
1599 |
+
>>> fprod._eval_terms(4)
|
1600 |
+
x**3/3 + x**2 + x
|
1601 |
+
|
1602 |
+
See Also
|
1603 |
+
========
|
1604 |
+
|
1605 |
+
sympy.series.formal.FormalPowerSeries.product
|
1606 |
+
|
1607 |
+
"""
|
1608 |
+
coeff1, coeff2 = self.coeff1, self.coeff2
|
1609 |
+
|
1610 |
+
aks = convolution(coeff1[:n], coeff2[:n])
|
1611 |
+
|
1612 |
+
terms = []
|
1613 |
+
for i in range(0, n):
|
1614 |
+
terms.append(aks[i] * self.ffps.xk.coeff(i))
|
1615 |
+
|
1616 |
+
return Add(*terms)
|
1617 |
+
|
1618 |
+
|
1619 |
+
class FormalPowerSeriesCompose(FiniteFormalPowerSeries):
|
1620 |
+
"""
|
1621 |
+
Represents the composed formal power series of two functions.
|
1622 |
+
|
1623 |
+
Explanation
|
1624 |
+
===========
|
1625 |
+
|
1626 |
+
No computation is performed. Terms are calculated using a term by term logic,
|
1627 |
+
instead of a point by point logic.
|
1628 |
+
|
1629 |
+
There are two differences between a :obj:`FormalPowerSeries` object and a
|
1630 |
+
:obj:`FormalPowerSeriesCompose` object. The first argument contains the outer
|
1631 |
+
function and the inner function involved in the omposition. Also, the
|
1632 |
+
coefficient sequence contains the generic sequence which is to be multiplied
|
1633 |
+
by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to
|
1634 |
+
get the final terms.
|
1635 |
+
|
1636 |
+
See Also
|
1637 |
+
========
|
1638 |
+
|
1639 |
+
sympy.series.formal.FormalPowerSeries
|
1640 |
+
sympy.series.formal.FiniteFormalPowerSeries
|
1641 |
+
|
1642 |
+
"""
|
1643 |
+
|
1644 |
+
@property
|
1645 |
+
def function(self):
|
1646 |
+
"""Function for the composed formal power series."""
|
1647 |
+
f, g, x = self.f, self.g, self.ffps.x
|
1648 |
+
return f.subs(x, g)
|
1649 |
+
|
1650 |
+
def _eval_terms(self, n):
|
1651 |
+
"""
|
1652 |
+
Returns the first `n` terms of the composed formal power series.
|
1653 |
+
Term by term logic is implemented here.
|
1654 |
+
|
1655 |
+
Explanation
|
1656 |
+
===========
|
1657 |
+
|
1658 |
+
The coefficient sequence of the :obj:`FormalPowerSeriesCompose` object is the generic sequence.
|
1659 |
+
It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get
|
1660 |
+
the final terms for the polynomial.
|
1661 |
+
|
1662 |
+
Examples
|
1663 |
+
========
|
1664 |
+
|
1665 |
+
>>> from sympy import fps, sin, exp
|
1666 |
+
>>> from sympy.abc import x
|
1667 |
+
>>> f1 = fps(exp(x))
|
1668 |
+
>>> f2 = fps(sin(x))
|
1669 |
+
>>> fcomp = f1.compose(f2, x)
|
1670 |
+
|
1671 |
+
>>> fcomp._eval_terms(6)
|
1672 |
+
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
1673 |
+
|
1674 |
+
>>> fcomp._eval_terms(8)
|
1675 |
+
x**7/90 - x**6/240 - x**5/15 - x**4/8 + x**2/2 + x + 1
|
1676 |
+
|
1677 |
+
See Also
|
1678 |
+
========
|
1679 |
+
|
1680 |
+
sympy.series.formal.FormalPowerSeries.compose
|
1681 |
+
sympy.series.formal.FormalPowerSeries.coeff_bell
|
1682 |
+
|
1683 |
+
"""
|
1684 |
+
|
1685 |
+
ffps, gfps = self.ffps, self.gfps
|
1686 |
+
terms = [ffps.zero_coeff()]
|
1687 |
+
|
1688 |
+
for i in range(1, n):
|
1689 |
+
bell_seq = gfps.coeff_bell(i)
|
1690 |
+
seq = (ffps.bell_coeff_seq * bell_seq)
|
1691 |
+
terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i))
|
1692 |
+
|
1693 |
+
return Add(*terms)
|
1694 |
+
|
1695 |
+
|
1696 |
+
class FormalPowerSeriesInverse(FiniteFormalPowerSeries):
|
1697 |
+
"""
|
1698 |
+
Represents the Inverse of a formal power series.
|
1699 |
+
|
1700 |
+
Explanation
|
1701 |
+
===========
|
1702 |
+
|
1703 |
+
No computation is performed. Terms are calculated using a term by term logic,
|
1704 |
+
instead of a point by point logic.
|
1705 |
+
|
1706 |
+
There is a single difference between a :obj:`FormalPowerSeries` object and a
|
1707 |
+
:obj:`FormalPowerSeriesInverse` object. The coefficient sequence contains the
|
1708 |
+
generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence.
|
1709 |
+
The finite terms will then be added up to get the final terms.
|
1710 |
+
|
1711 |
+
See Also
|
1712 |
+
========
|
1713 |
+
|
1714 |
+
sympy.series.formal.FormalPowerSeries
|
1715 |
+
sympy.series.formal.FiniteFormalPowerSeries
|
1716 |
+
|
1717 |
+
"""
|
1718 |
+
def __init__(self, *args):
|
1719 |
+
ffps = self.ffps
|
1720 |
+
k = ffps.xk.variables[0]
|
1721 |
+
|
1722 |
+
inv = ffps.zero_coeff()
|
1723 |
+
inv_seq = sequence(inv ** (-(k + 1)), (k, 1, oo))
|
1724 |
+
self.aux_seq = ffps.sign_seq * ffps.fact_seq * inv_seq
|
1725 |
+
|
1726 |
+
@property
|
1727 |
+
def function(self):
|
1728 |
+
"""Function for the inverse of a formal power series."""
|
1729 |
+
f = self.f
|
1730 |
+
return 1 / f
|
1731 |
+
|
1732 |
+
@property
|
1733 |
+
def g(self):
|
1734 |
+
raise ValueError("Only one function is considered while performing"
|
1735 |
+
"inverse of a formal power series.")
|
1736 |
+
|
1737 |
+
@property
|
1738 |
+
def gfps(self):
|
1739 |
+
raise ValueError("Only one function is considered while performing"
|
1740 |
+
"inverse of a formal power series.")
|
1741 |
+
|
1742 |
+
def _eval_terms(self, n):
|
1743 |
+
"""
|
1744 |
+
Returns the first ``n`` terms of the composed formal power series.
|
1745 |
+
Term by term logic is implemented here.
|
1746 |
+
|
1747 |
+
Explanation
|
1748 |
+
===========
|
1749 |
+
|
1750 |
+
The coefficient sequence of the `FormalPowerSeriesInverse` object is the generic sequence.
|
1751 |
+
It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get
|
1752 |
+
the final terms for the polynomial.
|
1753 |
+
|
1754 |
+
Examples
|
1755 |
+
========
|
1756 |
+
|
1757 |
+
>>> from sympy import fps, exp, cos
|
1758 |
+
>>> from sympy.abc import x
|
1759 |
+
>>> f1 = fps(exp(x))
|
1760 |
+
>>> f2 = fps(cos(x))
|
1761 |
+
>>> finv1, finv2 = f1.inverse(), f2.inverse()
|
1762 |
+
|
1763 |
+
>>> finv1._eval_terms(6)
|
1764 |
+
-x**5/120 + x**4/24 - x**3/6 + x**2/2 - x + 1
|
1765 |
+
|
1766 |
+
>>> finv2._eval_terms(8)
|
1767 |
+
61*x**6/720 + 5*x**4/24 + x**2/2 + 1
|
1768 |
+
|
1769 |
+
See Also
|
1770 |
+
========
|
1771 |
+
|
1772 |
+
sympy.series.formal.FormalPowerSeries.inverse
|
1773 |
+
sympy.series.formal.FormalPowerSeries.coeff_bell
|
1774 |
+
|
1775 |
+
"""
|
1776 |
+
ffps = self.ffps
|
1777 |
+
terms = [ffps.zero_coeff()]
|
1778 |
+
|
1779 |
+
for i in range(1, n):
|
1780 |
+
bell_seq = ffps.coeff_bell(i)
|
1781 |
+
seq = (self.aux_seq * bell_seq)
|
1782 |
+
terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i))
|
1783 |
+
|
1784 |
+
return Add(*terms)
|
1785 |
+
|
1786 |
+
|
1787 |
+
def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False):
|
1788 |
+
"""
|
1789 |
+
Generates Formal Power Series of ``f``.
|
1790 |
+
|
1791 |
+
Explanation
|
1792 |
+
===========
|
1793 |
+
|
1794 |
+
Returns the formal series expansion of ``f`` around ``x = x0``
|
1795 |
+
with respect to ``x`` in the form of a ``FormalPowerSeries`` object.
|
1796 |
+
|
1797 |
+
Formal Power Series is represented using an explicit formula
|
1798 |
+
computed using different algorithms.
|
1799 |
+
|
1800 |
+
See :func:`compute_fps` for the more details regarding the computation
|
1801 |
+
of formula.
|
1802 |
+
|
1803 |
+
Parameters
|
1804 |
+
==========
|
1805 |
+
|
1806 |
+
x : Symbol, optional
|
1807 |
+
If x is None and ``f`` is univariate, the univariate symbols will be
|
1808 |
+
supplied, otherwise an error will be raised.
|
1809 |
+
x0 : number, optional
|
1810 |
+
Point to perform series expansion about. Default is 0.
|
1811 |
+
dir : {1, -1, '+', '-'}, optional
|
1812 |
+
If dir is 1 or '+' the series is calculated from the right and
|
1813 |
+
for -1 or '-' the series is calculated from the left. For smooth
|
1814 |
+
functions this flag will not alter the results. Default is 1.
|
1815 |
+
hyper : {True, False}, optional
|
1816 |
+
Set hyper to False to skip the hypergeometric algorithm.
|
1817 |
+
By default it is set to False.
|
1818 |
+
order : int, optional
|
1819 |
+
Order of the derivative of ``f``, Default is 4.
|
1820 |
+
rational : {True, False}, optional
|
1821 |
+
Set rational to False to skip rational algorithm. By default it is set
|
1822 |
+
to True.
|
1823 |
+
full : {True, False}, optional
|
1824 |
+
Set full to True to increase the range of rational algorithm.
|
1825 |
+
See :func:`rational_algorithm` for details. By default it is set to
|
1826 |
+
False.
|
1827 |
+
|
1828 |
+
Examples
|
1829 |
+
========
|
1830 |
+
|
1831 |
+
>>> from sympy import fps, ln, atan, sin
|
1832 |
+
>>> from sympy.abc import x, n
|
1833 |
+
|
1834 |
+
Rational Functions
|
1835 |
+
|
1836 |
+
>>> fps(ln(1 + x)).truncate()
|
1837 |
+
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
|
1838 |
+
|
1839 |
+
>>> fps(atan(x), full=True).truncate()
|
1840 |
+
x - x**3/3 + x**5/5 + O(x**6)
|
1841 |
+
|
1842 |
+
Symbolic Functions
|
1843 |
+
|
1844 |
+
>>> fps(x**n*sin(x**2), x).truncate(8)
|
1845 |
+
-x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8))
|
1846 |
+
|
1847 |
+
See Also
|
1848 |
+
========
|
1849 |
+
|
1850 |
+
sympy.series.formal.FormalPowerSeries
|
1851 |
+
sympy.series.formal.compute_fps
|
1852 |
+
"""
|
1853 |
+
f = sympify(f)
|
1854 |
+
|
1855 |
+
if x is None:
|
1856 |
+
free = f.free_symbols
|
1857 |
+
if len(free) == 1:
|
1858 |
+
x = free.pop()
|
1859 |
+
elif not free:
|
1860 |
+
return f
|
1861 |
+
else:
|
1862 |
+
raise NotImplementedError("multivariate formal power series")
|
1863 |
+
|
1864 |
+
result = compute_fps(f, x, x0, dir, hyper, order, rational, full)
|
1865 |
+
|
1866 |
+
if result is None:
|
1867 |
+
return f
|
1868 |
+
|
1869 |
+
return FormalPowerSeries(f, x, x0, dir, result)
|
env-llmeval/lib/python3.10/site-packages/sympy/series/fourier.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Fourier Series"""
|
2 |
+
|
3 |
+
from sympy.core.numbers import (oo, pi)
|
4 |
+
from sympy.core.symbol import Wild
|
5 |
+
from sympy.core.expr import Expr
|
6 |
+
from sympy.core.add import Add
|
7 |
+
from sympy.core.containers import Tuple
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import Dummy, Symbol
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy.functions.elementary.trigonometric import sin, cos, sinc
|
12 |
+
from sympy.series.series_class import SeriesBase
|
13 |
+
from sympy.series.sequences import SeqFormula
|
14 |
+
from sympy.sets.sets import Interval
|
15 |
+
from sympy.utilities.iterables import is_sequence
|
16 |
+
|
17 |
+
|
18 |
+
def fourier_cos_seq(func, limits, n):
|
19 |
+
"""Returns the cos sequence in a Fourier series"""
|
20 |
+
from sympy.integrals import integrate
|
21 |
+
x, L = limits[0], limits[2] - limits[1]
|
22 |
+
cos_term = cos(2*n*pi*x / L)
|
23 |
+
formula = 2 * cos_term * integrate(func * cos_term, limits) / L
|
24 |
+
a0 = formula.subs(n, S.Zero) / 2
|
25 |
+
return a0, SeqFormula(2 * cos_term * integrate(func * cos_term, limits)
|
26 |
+
/ L, (n, 1, oo))
|
27 |
+
|
28 |
+
|
29 |
+
def fourier_sin_seq(func, limits, n):
|
30 |
+
"""Returns the sin sequence in a Fourier series"""
|
31 |
+
from sympy.integrals import integrate
|
32 |
+
x, L = limits[0], limits[2] - limits[1]
|
33 |
+
sin_term = sin(2*n*pi*x / L)
|
34 |
+
return SeqFormula(2 * sin_term * integrate(func * sin_term, limits)
|
35 |
+
/ L, (n, 1, oo))
|
36 |
+
|
37 |
+
|
38 |
+
def _process_limits(func, limits):
|
39 |
+
"""
|
40 |
+
Limits should be of the form (x, start, stop).
|
41 |
+
x should be a symbol. Both start and stop should be bounded.
|
42 |
+
|
43 |
+
Explanation
|
44 |
+
===========
|
45 |
+
|
46 |
+
* If x is not given, x is determined from func.
|
47 |
+
* If limits is None. Limit of the form (x, -pi, pi) is returned.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
>>> from sympy.series.fourier import _process_limits as pari
|
53 |
+
>>> from sympy.abc import x
|
54 |
+
>>> pari(x**2, (x, -2, 2))
|
55 |
+
(x, -2, 2)
|
56 |
+
>>> pari(x**2, (-2, 2))
|
57 |
+
(x, -2, 2)
|
58 |
+
>>> pari(x**2, None)
|
59 |
+
(x, -pi, pi)
|
60 |
+
"""
|
61 |
+
def _find_x(func):
|
62 |
+
free = func.free_symbols
|
63 |
+
if len(free) == 1:
|
64 |
+
return free.pop()
|
65 |
+
elif not free:
|
66 |
+
return Dummy('k')
|
67 |
+
else:
|
68 |
+
raise ValueError(
|
69 |
+
" specify dummy variables for %s. If the function contains"
|
70 |
+
" more than one free symbol, a dummy variable should be"
|
71 |
+
" supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi))"
|
72 |
+
% func)
|
73 |
+
|
74 |
+
x, start, stop = None, None, None
|
75 |
+
if limits is None:
|
76 |
+
x, start, stop = _find_x(func), -pi, pi
|
77 |
+
if is_sequence(limits, Tuple):
|
78 |
+
if len(limits) == 3:
|
79 |
+
x, start, stop = limits
|
80 |
+
elif len(limits) == 2:
|
81 |
+
x = _find_x(func)
|
82 |
+
start, stop = limits
|
83 |
+
|
84 |
+
if not isinstance(x, Symbol) or start is None or stop is None:
|
85 |
+
raise ValueError('Invalid limits given: %s' % str(limits))
|
86 |
+
|
87 |
+
unbounded = [S.NegativeInfinity, S.Infinity]
|
88 |
+
if start in unbounded or stop in unbounded:
|
89 |
+
raise ValueError("Both the start and end value should be bounded")
|
90 |
+
|
91 |
+
return sympify((x, start, stop))
|
92 |
+
|
93 |
+
|
94 |
+
def finite_check(f, x, L):
|
95 |
+
|
96 |
+
def check_fx(exprs, x):
|
97 |
+
return x not in exprs.free_symbols
|
98 |
+
|
99 |
+
def check_sincos(_expr, x, L):
|
100 |
+
if isinstance(_expr, (sin, cos)):
|
101 |
+
sincos_args = _expr.args[0]
|
102 |
+
|
103 |
+
if sincos_args.match(a*(pi/L)*x + b) is not None:
|
104 |
+
return True
|
105 |
+
else:
|
106 |
+
return False
|
107 |
+
|
108 |
+
from sympy.simplify.fu import TR2, TR1, sincos_to_sum
|
109 |
+
_expr = sincos_to_sum(TR2(TR1(f)))
|
110 |
+
add_coeff = _expr.as_coeff_add()
|
111 |
+
|
112 |
+
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k != S.Zero, ])
|
113 |
+
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
|
114 |
+
|
115 |
+
for s in add_coeff[1]:
|
116 |
+
mul_coeffs = s.as_coeff_mul()[1]
|
117 |
+
for t in mul_coeffs:
|
118 |
+
if not (check_fx(t, x) or check_sincos(t, x, L)):
|
119 |
+
return False, f
|
120 |
+
|
121 |
+
return True, _expr
|
122 |
+
|
123 |
+
|
124 |
+
class FourierSeries(SeriesBase):
|
125 |
+
r"""Represents Fourier sine/cosine series.
|
126 |
+
|
127 |
+
Explanation
|
128 |
+
===========
|
129 |
+
|
130 |
+
This class only represents a fourier series.
|
131 |
+
No computation is performed.
|
132 |
+
|
133 |
+
For how to compute Fourier series, see the :func:`fourier_series`
|
134 |
+
docstring.
|
135 |
+
|
136 |
+
See Also
|
137 |
+
========
|
138 |
+
|
139 |
+
sympy.series.fourier.fourier_series
|
140 |
+
"""
|
141 |
+
def __new__(cls, *args):
|
142 |
+
args = map(sympify, args)
|
143 |
+
return Expr.__new__(cls, *args)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def function(self):
|
147 |
+
return self.args[0]
|
148 |
+
|
149 |
+
@property
|
150 |
+
def x(self):
|
151 |
+
return self.args[1][0]
|
152 |
+
|
153 |
+
@property
|
154 |
+
def period(self):
|
155 |
+
return (self.args[1][1], self.args[1][2])
|
156 |
+
|
157 |
+
@property
|
158 |
+
def a0(self):
|
159 |
+
return self.args[2][0]
|
160 |
+
|
161 |
+
@property
|
162 |
+
def an(self):
|
163 |
+
return self.args[2][1]
|
164 |
+
|
165 |
+
@property
|
166 |
+
def bn(self):
|
167 |
+
return self.args[2][2]
|
168 |
+
|
169 |
+
@property
|
170 |
+
def interval(self):
|
171 |
+
return Interval(0, oo)
|
172 |
+
|
173 |
+
@property
|
174 |
+
def start(self):
|
175 |
+
return self.interval.inf
|
176 |
+
|
177 |
+
@property
|
178 |
+
def stop(self):
|
179 |
+
return self.interval.sup
|
180 |
+
|
181 |
+
@property
|
182 |
+
def length(self):
|
183 |
+
return oo
|
184 |
+
|
185 |
+
@property
|
186 |
+
def L(self):
|
187 |
+
return abs(self.period[1] - self.period[0]) / 2
|
188 |
+
|
189 |
+
def _eval_subs(self, old, new):
|
190 |
+
x = self.x
|
191 |
+
if old.has(x):
|
192 |
+
return self
|
193 |
+
|
194 |
+
def truncate(self, n=3):
|
195 |
+
"""
|
196 |
+
Return the first n nonzero terms of the series.
|
197 |
+
|
198 |
+
If ``n`` is None return an iterator.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
==========
|
202 |
+
|
203 |
+
n : int or None
|
204 |
+
Amount of non-zero terms in approximation or None.
|
205 |
+
|
206 |
+
Returns
|
207 |
+
=======
|
208 |
+
|
209 |
+
Expr or iterator :
|
210 |
+
Approximation of function expanded into Fourier series.
|
211 |
+
|
212 |
+
Examples
|
213 |
+
========
|
214 |
+
|
215 |
+
>>> from sympy import fourier_series, pi
|
216 |
+
>>> from sympy.abc import x
|
217 |
+
>>> s = fourier_series(x, (x, -pi, pi))
|
218 |
+
>>> s.truncate(4)
|
219 |
+
2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2
|
220 |
+
|
221 |
+
See Also
|
222 |
+
========
|
223 |
+
|
224 |
+
sympy.series.fourier.FourierSeries.sigma_approximation
|
225 |
+
"""
|
226 |
+
if n is None:
|
227 |
+
return iter(self)
|
228 |
+
|
229 |
+
terms = []
|
230 |
+
for t in self:
|
231 |
+
if len(terms) == n:
|
232 |
+
break
|
233 |
+
if t is not S.Zero:
|
234 |
+
terms.append(t)
|
235 |
+
|
236 |
+
return Add(*terms)
|
237 |
+
|
238 |
+
def sigma_approximation(self, n=3):
|
239 |
+
r"""
|
240 |
+
Return :math:`\sigma`-approximation of Fourier series with respect
|
241 |
+
to order n.
|
242 |
+
|
243 |
+
Explanation
|
244 |
+
===========
|
245 |
+
|
246 |
+
Sigma approximation adjusts a Fourier summation to eliminate the Gibbs
|
247 |
+
phenomenon which would otherwise occur at discontinuities.
|
248 |
+
A sigma-approximated summation for a Fourier series of a T-periodical
|
249 |
+
function can be written as
|
250 |
+
|
251 |
+
.. math::
|
252 |
+
s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1}
|
253 |
+
\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot
|
254 |
+
\left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr)
|
255 |
+
+ b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right],
|
256 |
+
|
257 |
+
where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier
|
258 |
+
series coefficients and
|
259 |
+
:math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos
|
260 |
+
:math:`\sigma` factor (expressed in terms of normalized
|
261 |
+
:math:`\operatorname{sinc}` function).
|
262 |
+
|
263 |
+
Parameters
|
264 |
+
==========
|
265 |
+
|
266 |
+
n : int
|
267 |
+
Highest order of the terms taken into account in approximation.
|
268 |
+
|
269 |
+
Returns
|
270 |
+
=======
|
271 |
+
|
272 |
+
Expr :
|
273 |
+
Sigma approximation of function expanded into Fourier series.
|
274 |
+
|
275 |
+
Examples
|
276 |
+
========
|
277 |
+
|
278 |
+
>>> from sympy import fourier_series, pi
|
279 |
+
>>> from sympy.abc import x
|
280 |
+
>>> s = fourier_series(x, (x, -pi, pi))
|
281 |
+
>>> s.sigma_approximation(4)
|
282 |
+
2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3
|
283 |
+
|
284 |
+
See Also
|
285 |
+
========
|
286 |
+
|
287 |
+
sympy.series.fourier.FourierSeries.truncate
|
288 |
+
|
289 |
+
Notes
|
290 |
+
=====
|
291 |
+
|
292 |
+
The behaviour of
|
293 |
+
:meth:`~sympy.series.fourier.FourierSeries.sigma_approximation`
|
294 |
+
is different from :meth:`~sympy.series.fourier.FourierSeries.truncate`
|
295 |
+
- it takes all nonzero terms of degree smaller than n, rather than
|
296 |
+
first n nonzero ones.
|
297 |
+
|
298 |
+
References
|
299 |
+
==========
|
300 |
+
|
301 |
+
.. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon
|
302 |
+
.. [2] https://en.wikipedia.org/wiki/Sigma_approximation
|
303 |
+
"""
|
304 |
+
terms = [sinc(pi * i / n) * t for i, t in enumerate(self[:n])
|
305 |
+
if t is not S.Zero]
|
306 |
+
return Add(*terms)
|
307 |
+
|
308 |
+
def shift(self, s):
|
309 |
+
"""
|
310 |
+
Shift the function by a term independent of x.
|
311 |
+
|
312 |
+
Explanation
|
313 |
+
===========
|
314 |
+
|
315 |
+
f(x) -> f(x) + s
|
316 |
+
|
317 |
+
This is fast, if Fourier series of f(x) is already
|
318 |
+
computed.
|
319 |
+
|
320 |
+
Examples
|
321 |
+
========
|
322 |
+
|
323 |
+
>>> from sympy import fourier_series, pi
|
324 |
+
>>> from sympy.abc import x
|
325 |
+
>>> s = fourier_series(x**2, (x, -pi, pi))
|
326 |
+
>>> s.shift(1).truncate()
|
327 |
+
-4*cos(x) + cos(2*x) + 1 + pi**2/3
|
328 |
+
"""
|
329 |
+
s, x = sympify(s), self.x
|
330 |
+
|
331 |
+
if x in s.free_symbols:
|
332 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
333 |
+
|
334 |
+
a0 = self.a0 + s
|
335 |
+
sfunc = self.function + s
|
336 |
+
|
337 |
+
return self.func(sfunc, self.args[1], (a0, self.an, self.bn))
|
338 |
+
|
339 |
+
def shiftx(self, s):
|
340 |
+
"""
|
341 |
+
Shift x by a term independent of x.
|
342 |
+
|
343 |
+
Explanation
|
344 |
+
===========
|
345 |
+
|
346 |
+
f(x) -> f(x + s)
|
347 |
+
|
348 |
+
This is fast, if Fourier series of f(x) is already
|
349 |
+
computed.
|
350 |
+
|
351 |
+
Examples
|
352 |
+
========
|
353 |
+
|
354 |
+
>>> from sympy import fourier_series, pi
|
355 |
+
>>> from sympy.abc import x
|
356 |
+
>>> s = fourier_series(x**2, (x, -pi, pi))
|
357 |
+
>>> s.shiftx(1).truncate()
|
358 |
+
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
|
359 |
+
"""
|
360 |
+
s, x = sympify(s), self.x
|
361 |
+
|
362 |
+
if x in s.free_symbols:
|
363 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
364 |
+
|
365 |
+
an = self.an.subs(x, x + s)
|
366 |
+
bn = self.bn.subs(x, x + s)
|
367 |
+
sfunc = self.function.subs(x, x + s)
|
368 |
+
|
369 |
+
return self.func(sfunc, self.args[1], (self.a0, an, bn))
|
370 |
+
|
371 |
+
def scale(self, s):
|
372 |
+
"""
|
373 |
+
Scale the function by a term independent of x.
|
374 |
+
|
375 |
+
Explanation
|
376 |
+
===========
|
377 |
+
|
378 |
+
f(x) -> s * f(x)
|
379 |
+
|
380 |
+
This is fast, if Fourier series of f(x) is already
|
381 |
+
computed.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
========
|
385 |
+
|
386 |
+
>>> from sympy import fourier_series, pi
|
387 |
+
>>> from sympy.abc import x
|
388 |
+
>>> s = fourier_series(x**2, (x, -pi, pi))
|
389 |
+
>>> s.scale(2).truncate()
|
390 |
+
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
|
391 |
+
"""
|
392 |
+
s, x = sympify(s), self.x
|
393 |
+
|
394 |
+
if x in s.free_symbols:
|
395 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
396 |
+
|
397 |
+
an = self.an.coeff_mul(s)
|
398 |
+
bn = self.bn.coeff_mul(s)
|
399 |
+
a0 = self.a0 * s
|
400 |
+
sfunc = self.args[0] * s
|
401 |
+
|
402 |
+
return self.func(sfunc, self.args[1], (a0, an, bn))
|
403 |
+
|
404 |
+
def scalex(self, s):
|
405 |
+
"""
|
406 |
+
Scale x by a term independent of x.
|
407 |
+
|
408 |
+
Explanation
|
409 |
+
===========
|
410 |
+
|
411 |
+
f(x) -> f(s*x)
|
412 |
+
|
413 |
+
This is fast, if Fourier series of f(x) is already
|
414 |
+
computed.
|
415 |
+
|
416 |
+
Examples
|
417 |
+
========
|
418 |
+
|
419 |
+
>>> from sympy import fourier_series, pi
|
420 |
+
>>> from sympy.abc import x
|
421 |
+
>>> s = fourier_series(x**2, (x, -pi, pi))
|
422 |
+
>>> s.scalex(2).truncate()
|
423 |
+
-4*cos(2*x) + cos(4*x) + pi**2/3
|
424 |
+
"""
|
425 |
+
s, x = sympify(s), self.x
|
426 |
+
|
427 |
+
if x in s.free_symbols:
|
428 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
429 |
+
|
430 |
+
an = self.an.subs(x, x * s)
|
431 |
+
bn = self.bn.subs(x, x * s)
|
432 |
+
sfunc = self.function.subs(x, x * s)
|
433 |
+
|
434 |
+
return self.func(sfunc, self.args[1], (self.a0, an, bn))
|
435 |
+
|
436 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
437 |
+
for t in self:
|
438 |
+
if t is not S.Zero:
|
439 |
+
return t
|
440 |
+
|
441 |
+
def _eval_term(self, pt):
|
442 |
+
if pt == 0:
|
443 |
+
return self.a0
|
444 |
+
return self.an.coeff(pt) + self.bn.coeff(pt)
|
445 |
+
|
446 |
+
def __neg__(self):
|
447 |
+
return self.scale(-1)
|
448 |
+
|
449 |
+
def __add__(self, other):
|
450 |
+
if isinstance(other, FourierSeries):
|
451 |
+
if self.period != other.period:
|
452 |
+
raise ValueError("Both the series should have same periods")
|
453 |
+
|
454 |
+
x, y = self.x, other.x
|
455 |
+
function = self.function + other.function.subs(y, x)
|
456 |
+
|
457 |
+
if self.x not in function.free_symbols:
|
458 |
+
return function
|
459 |
+
|
460 |
+
an = self.an + other.an
|
461 |
+
bn = self.bn + other.bn
|
462 |
+
a0 = self.a0 + other.a0
|
463 |
+
|
464 |
+
return self.func(function, self.args[1], (a0, an, bn))
|
465 |
+
|
466 |
+
return Add(self, other)
|
467 |
+
|
468 |
+
def __sub__(self, other):
|
469 |
+
return self.__add__(-other)
|
470 |
+
|
471 |
+
|
472 |
+
class FiniteFourierSeries(FourierSeries):
|
473 |
+
r"""Represents Finite Fourier sine/cosine series.
|
474 |
+
|
475 |
+
For how to compute Fourier series, see the :func:`fourier_series`
|
476 |
+
docstring.
|
477 |
+
|
478 |
+
Parameters
|
479 |
+
==========
|
480 |
+
|
481 |
+
f : Expr
|
482 |
+
Expression for finding fourier_series
|
483 |
+
|
484 |
+
limits : ( x, start, stop)
|
485 |
+
x is the independent variable for the expression f
|
486 |
+
(start, stop) is the period of the fourier series
|
487 |
+
|
488 |
+
exprs: (a0, an, bn) or Expr
|
489 |
+
a0 is the constant term a0 of the fourier series
|
490 |
+
an is a dictionary of coefficients of cos terms
|
491 |
+
an[k] = coefficient of cos(pi*(k/L)*x)
|
492 |
+
bn is a dictionary of coefficients of sin terms
|
493 |
+
bn[k] = coefficient of sin(pi*(k/L)*x)
|
494 |
+
|
495 |
+
or exprs can be an expression to be converted to fourier form
|
496 |
+
|
497 |
+
Methods
|
498 |
+
=======
|
499 |
+
|
500 |
+
This class is an extension of FourierSeries class.
|
501 |
+
Please refer to sympy.series.fourier.FourierSeries for
|
502 |
+
further information.
|
503 |
+
|
504 |
+
See Also
|
505 |
+
========
|
506 |
+
|
507 |
+
sympy.series.fourier.FourierSeries
|
508 |
+
sympy.series.fourier.fourier_series
|
509 |
+
"""
|
510 |
+
|
511 |
+
def __new__(cls, f, limits, exprs):
|
512 |
+
f = sympify(f)
|
513 |
+
limits = sympify(limits)
|
514 |
+
exprs = sympify(exprs)
|
515 |
+
|
516 |
+
if not (isinstance(exprs, Tuple) and len(exprs) == 3): # exprs is not of form (a0, an, bn)
|
517 |
+
# Converts the expression to fourier form
|
518 |
+
c, e = exprs.as_coeff_add()
|
519 |
+
from sympy.simplify.fu import TR10
|
520 |
+
rexpr = c + Add(*[TR10(i) for i in e])
|
521 |
+
a0, exp_ls = rexpr.expand(trig=False, power_base=False, power_exp=False, log=False).as_coeff_add()
|
522 |
+
|
523 |
+
x = limits[0]
|
524 |
+
L = abs(limits[2] - limits[1]) / 2
|
525 |
+
|
526 |
+
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k is not S.Zero, ])
|
527 |
+
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
|
528 |
+
|
529 |
+
an = {}
|
530 |
+
bn = {}
|
531 |
+
|
532 |
+
# separates the coefficients of sin and cos terms in dictionaries an, and bn
|
533 |
+
for p in exp_ls:
|
534 |
+
t = p.match(b * cos(a * (pi / L) * x))
|
535 |
+
q = p.match(b * sin(a * (pi / L) * x))
|
536 |
+
if t:
|
537 |
+
an[t[a]] = t[b] + an.get(t[a], S.Zero)
|
538 |
+
elif q:
|
539 |
+
bn[q[a]] = q[b] + bn.get(q[a], S.Zero)
|
540 |
+
else:
|
541 |
+
a0 += p
|
542 |
+
|
543 |
+
exprs = Tuple(a0, an, bn)
|
544 |
+
|
545 |
+
return Expr.__new__(cls, f, limits, exprs)
|
546 |
+
|
547 |
+
@property
|
548 |
+
def interval(self):
|
549 |
+
_length = 1 if self.a0 else 0
|
550 |
+
_length += max(set(self.an.keys()).union(set(self.bn.keys()))) + 1
|
551 |
+
return Interval(0, _length)
|
552 |
+
|
553 |
+
@property
|
554 |
+
def length(self):
|
555 |
+
return self.stop - self.start
|
556 |
+
|
557 |
+
def shiftx(self, s):
|
558 |
+
s, x = sympify(s), self.x
|
559 |
+
|
560 |
+
if x in s.free_symbols:
|
561 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
562 |
+
|
563 |
+
_expr = self.truncate().subs(x, x + s)
|
564 |
+
sfunc = self.function.subs(x, x + s)
|
565 |
+
|
566 |
+
return self.func(sfunc, self.args[1], _expr)
|
567 |
+
|
568 |
+
def scale(self, s):
|
569 |
+
s, x = sympify(s), self.x
|
570 |
+
|
571 |
+
if x in s.free_symbols:
|
572 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
573 |
+
|
574 |
+
_expr = self.truncate() * s
|
575 |
+
sfunc = self.function * s
|
576 |
+
|
577 |
+
return self.func(sfunc, self.args[1], _expr)
|
578 |
+
|
579 |
+
def scalex(self, s):
|
580 |
+
s, x = sympify(s), self.x
|
581 |
+
|
582 |
+
if x in s.free_symbols:
|
583 |
+
raise ValueError("'%s' should be independent of %s" % (s, x))
|
584 |
+
|
585 |
+
_expr = self.truncate().subs(x, x * s)
|
586 |
+
sfunc = self.function.subs(x, x * s)
|
587 |
+
|
588 |
+
return self.func(sfunc, self.args[1], _expr)
|
589 |
+
|
590 |
+
def _eval_term(self, pt):
|
591 |
+
if pt == 0:
|
592 |
+
return self.a0
|
593 |
+
|
594 |
+
_term = self.an.get(pt, S.Zero) * cos(pt * (pi / self.L) * self.x) \
|
595 |
+
+ self.bn.get(pt, S.Zero) * sin(pt * (pi / self.L) * self.x)
|
596 |
+
return _term
|
597 |
+
|
598 |
+
def __add__(self, other):
|
599 |
+
if isinstance(other, FourierSeries):
|
600 |
+
return other.__add__(fourier_series(self.function, self.args[1],\
|
601 |
+
finite=False))
|
602 |
+
elif isinstance(other, FiniteFourierSeries):
|
603 |
+
if self.period != other.period:
|
604 |
+
raise ValueError("Both the series should have same periods")
|
605 |
+
|
606 |
+
x, y = self.x, other.x
|
607 |
+
function = self.function + other.function.subs(y, x)
|
608 |
+
|
609 |
+
if self.x not in function.free_symbols:
|
610 |
+
return function
|
611 |
+
|
612 |
+
return fourier_series(function, limits=self.args[1])
|
613 |
+
|
614 |
+
|
615 |
+
def fourier_series(f, limits=None, finite=True):
|
616 |
+
r"""Computes the Fourier trigonometric series expansion.
|
617 |
+
|
618 |
+
Explanation
|
619 |
+
===========
|
620 |
+
|
621 |
+
Fourier trigonometric series of $f(x)$ over the interval $(a, b)$
|
622 |
+
is defined as:
|
623 |
+
|
624 |
+
.. math::
|
625 |
+
\frac{a_0}{2} + \sum_{n=1}^{\infty}
|
626 |
+
(a_n \cos(\frac{2n \pi x}{L}) + b_n \sin(\frac{2n \pi x}{L}))
|
627 |
+
|
628 |
+
where the coefficients are:
|
629 |
+
|
630 |
+
.. math::
|
631 |
+
L = b - a
|
632 |
+
|
633 |
+
.. math::
|
634 |
+
a_0 = \frac{2}{L} \int_{a}^{b}{f(x) dx}
|
635 |
+
|
636 |
+
.. math::
|
637 |
+
a_n = \frac{2}{L} \int_{a}^{b}{f(x) \cos(\frac{2n \pi x}{L}) dx}
|
638 |
+
|
639 |
+
.. math::
|
640 |
+
b_n = \frac{2}{L} \int_{a}^{b}{f(x) \sin(\frac{2n \pi x}{L}) dx}
|
641 |
+
|
642 |
+
The condition whether the function $f(x)$ given should be periodic
|
643 |
+
or not is more than necessary, because it is sufficient to consider
|
644 |
+
the series to be converging to $f(x)$ only in the given interval,
|
645 |
+
not throughout the whole real line.
|
646 |
+
|
647 |
+
This also brings a lot of ease for the computation because
|
648 |
+
you do not have to make $f(x)$ artificially periodic by
|
649 |
+
wrapping it with piecewise, modulo operations,
|
650 |
+
but you can shape the function to look like the desired periodic
|
651 |
+
function only in the interval $(a, b)$, and the computed series will
|
652 |
+
automatically become the series of the periodic version of $f(x)$.
|
653 |
+
|
654 |
+
This property is illustrated in the examples section below.
|
655 |
+
|
656 |
+
Parameters
|
657 |
+
==========
|
658 |
+
|
659 |
+
limits : (sym, start, end), optional
|
660 |
+
*sym* denotes the symbol the series is computed with respect to.
|
661 |
+
|
662 |
+
*start* and *end* denotes the start and the end of the interval
|
663 |
+
where the fourier series converges to the given function.
|
664 |
+
|
665 |
+
Default range is specified as $-\pi$ and $\pi$.
|
666 |
+
|
667 |
+
Returns
|
668 |
+
=======
|
669 |
+
|
670 |
+
FourierSeries
|
671 |
+
A symbolic object representing the Fourier trigonometric series.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
========
|
675 |
+
|
676 |
+
Computing the Fourier series of $f(x) = x^2$:
|
677 |
+
|
678 |
+
>>> from sympy import fourier_series, pi
|
679 |
+
>>> from sympy.abc import x
|
680 |
+
>>> f = x**2
|
681 |
+
>>> s = fourier_series(f, (x, -pi, pi))
|
682 |
+
>>> s1 = s.truncate(n=3)
|
683 |
+
>>> s1
|
684 |
+
-4*cos(x) + cos(2*x) + pi**2/3
|
685 |
+
|
686 |
+
Shifting of the Fourier series:
|
687 |
+
|
688 |
+
>>> s.shift(1).truncate()
|
689 |
+
-4*cos(x) + cos(2*x) + 1 + pi**2/3
|
690 |
+
>>> s.shiftx(1).truncate()
|
691 |
+
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
|
692 |
+
|
693 |
+
Scaling of the Fourier series:
|
694 |
+
|
695 |
+
>>> s.scale(2).truncate()
|
696 |
+
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
|
697 |
+
>>> s.scalex(2).truncate()
|
698 |
+
-4*cos(2*x) + cos(4*x) + pi**2/3
|
699 |
+
|
700 |
+
Computing the Fourier series of $f(x) = x$:
|
701 |
+
|
702 |
+
This illustrates how truncating to the higher order gives better
|
703 |
+
convergence.
|
704 |
+
|
705 |
+
.. plot::
|
706 |
+
:context: reset
|
707 |
+
:format: doctest
|
708 |
+
:include-source: True
|
709 |
+
|
710 |
+
>>> from sympy import fourier_series, pi, plot
|
711 |
+
>>> from sympy.abc import x
|
712 |
+
>>> f = x
|
713 |
+
>>> s = fourier_series(f, (x, -pi, pi))
|
714 |
+
>>> s1 = s.truncate(n = 3)
|
715 |
+
>>> s2 = s.truncate(n = 5)
|
716 |
+
>>> s3 = s.truncate(n = 7)
|
717 |
+
>>> p = plot(f, s1, s2, s3, (x, -pi, pi), show=False, legend=True)
|
718 |
+
|
719 |
+
>>> p[0].line_color = (0, 0, 0)
|
720 |
+
>>> p[0].label = 'x'
|
721 |
+
>>> p[1].line_color = (0.7, 0.7, 0.7)
|
722 |
+
>>> p[1].label = 'n=3'
|
723 |
+
>>> p[2].line_color = (0.5, 0.5, 0.5)
|
724 |
+
>>> p[2].label = 'n=5'
|
725 |
+
>>> p[3].line_color = (0.3, 0.3, 0.3)
|
726 |
+
>>> p[3].label = 'n=7'
|
727 |
+
|
728 |
+
>>> p.show()
|
729 |
+
|
730 |
+
This illustrates how the series converges to different sawtooth
|
731 |
+
waves if the different ranges are specified.
|
732 |
+
|
733 |
+
.. plot::
|
734 |
+
:context: close-figs
|
735 |
+
:format: doctest
|
736 |
+
:include-source: True
|
737 |
+
|
738 |
+
>>> s1 = fourier_series(x, (x, -1, 1)).truncate(10)
|
739 |
+
>>> s2 = fourier_series(x, (x, -pi, pi)).truncate(10)
|
740 |
+
>>> s3 = fourier_series(x, (x, 0, 1)).truncate(10)
|
741 |
+
>>> p = plot(x, s1, s2, s3, (x, -5, 5), show=False, legend=True)
|
742 |
+
|
743 |
+
>>> p[0].line_color = (0, 0, 0)
|
744 |
+
>>> p[0].label = 'x'
|
745 |
+
>>> p[1].line_color = (0.7, 0.7, 0.7)
|
746 |
+
>>> p[1].label = '[-1, 1]'
|
747 |
+
>>> p[2].line_color = (0.5, 0.5, 0.5)
|
748 |
+
>>> p[2].label = '[-pi, pi]'
|
749 |
+
>>> p[3].line_color = (0.3, 0.3, 0.3)
|
750 |
+
>>> p[3].label = '[0, 1]'
|
751 |
+
|
752 |
+
>>> p.show()
|
753 |
+
|
754 |
+
Notes
|
755 |
+
=====
|
756 |
+
|
757 |
+
Computing Fourier series can be slow
|
758 |
+
due to the integration required in computing
|
759 |
+
an, bn.
|
760 |
+
|
761 |
+
It is faster to compute Fourier series of a function
|
762 |
+
by using shifting and scaling on an already
|
763 |
+
computed Fourier series rather than computing
|
764 |
+
again.
|
765 |
+
|
766 |
+
e.g. If the Fourier series of ``x**2`` is known
|
767 |
+
the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``.
|
768 |
+
|
769 |
+
See Also
|
770 |
+
========
|
771 |
+
|
772 |
+
sympy.series.fourier.FourierSeries
|
773 |
+
|
774 |
+
References
|
775 |
+
==========
|
776 |
+
|
777 |
+
.. [1] https://mathworld.wolfram.com/FourierSeries.html
|
778 |
+
"""
|
779 |
+
f = sympify(f)
|
780 |
+
|
781 |
+
limits = _process_limits(f, limits)
|
782 |
+
x = limits[0]
|
783 |
+
|
784 |
+
if x not in f.free_symbols:
|
785 |
+
return f
|
786 |
+
|
787 |
+
if finite:
|
788 |
+
L = abs(limits[2] - limits[1]) / 2
|
789 |
+
is_finite, res_f = finite_check(f, x, L)
|
790 |
+
if is_finite:
|
791 |
+
return FiniteFourierSeries(f, limits, res_f)
|
792 |
+
|
793 |
+
n = Dummy('n')
|
794 |
+
center = (limits[1] + limits[2]) / 2
|
795 |
+
if center.is_zero:
|
796 |
+
neg_f = f.subs(x, -x)
|
797 |
+
if f == neg_f:
|
798 |
+
a0, an = fourier_cos_seq(f, limits, n)
|
799 |
+
bn = SeqFormula(0, (1, oo))
|
800 |
+
return FourierSeries(f, limits, (a0, an, bn))
|
801 |
+
elif f == -neg_f:
|
802 |
+
a0 = S.Zero
|
803 |
+
an = SeqFormula(0, (1, oo))
|
804 |
+
bn = fourier_sin_seq(f, limits, n)
|
805 |
+
return FourierSeries(f, limits, (a0, an, bn))
|
806 |
+
a0, an = fourier_cos_seq(f, limits, n)
|
807 |
+
bn = fourier_sin_seq(f, limits, n)
|
808 |
+
return FourierSeries(f, limits, (a0, an, bn))
|
env-llmeval/lib/python3.10/site-packages/sympy/series/gruntz.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Limits
|
3 |
+
======
|
4 |
+
|
5 |
+
Implemented according to the PhD thesis
|
6 |
+
https://www.cybertester.com/data/gruntz.pdf, which contains very thorough
|
7 |
+
descriptions of the algorithm including many examples. We summarize here
|
8 |
+
the gist of it.
|
9 |
+
|
10 |
+
All functions are sorted according to how rapidly varying they are at
|
11 |
+
infinity using the following rules. Any two functions f and g can be
|
12 |
+
compared using the properties of L:
|
13 |
+
|
14 |
+
L=lim log|f(x)| / log|g(x)| (for x -> oo)
|
15 |
+
|
16 |
+
We define >, < ~ according to::
|
17 |
+
|
18 |
+
1. f > g .... L=+-oo
|
19 |
+
|
20 |
+
we say that:
|
21 |
+
- f is greater than any power of g
|
22 |
+
- f is more rapidly varying than g
|
23 |
+
- f goes to infinity/zero faster than g
|
24 |
+
|
25 |
+
2. f < g .... L=0
|
26 |
+
|
27 |
+
we say that:
|
28 |
+
- f is lower than any power of g
|
29 |
+
|
30 |
+
3. f ~ g .... L!=0, +-oo
|
31 |
+
|
32 |
+
we say that:
|
33 |
+
- both f and g are bounded from above and below by suitable integral
|
34 |
+
powers of the other
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
::
|
39 |
+
2 < x < exp(x) < exp(x**2) < exp(exp(x))
|
40 |
+
2 ~ 3 ~ -5
|
41 |
+
x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x
|
42 |
+
exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x))
|
43 |
+
f ~ 1/f
|
44 |
+
|
45 |
+
So we can divide all the functions into comparability classes (x and x^2
|
46 |
+
belong to one class, exp(x) and exp(-x) belong to some other class). In
|
47 |
+
principle, we could compare any two functions, but in our algorithm, we
|
48 |
+
do not compare anything below the class 2~3~-5 (for example log(x) is
|
49 |
+
below this), so we set 2~3~-5 as the lowest comparability class.
|
50 |
+
|
51 |
+
Given the function f, we find the list of most rapidly varying (mrv set)
|
52 |
+
subexpressions of it. This list belongs to the same comparability class.
|
53 |
+
Let's say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an
|
54 |
+
element "w" (either from the list or a new one) from the same
|
55 |
+
comparability class which goes to zero at infinity. In our example we
|
56 |
+
set w=exp(-x) (but we could also set w=exp(-2x) or w=exp(-3x) ...). We
|
57 |
+
rewrite the mrv set using w, in our case {1/w, 1/w^2}, and substitute it
|
58 |
+
into f. Then we expand f into a series in w::
|
59 |
+
|
60 |
+
f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0
|
61 |
+
|
62 |
+
but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero,
|
63 |
+
because w goes to zero faster than the ci and ei. So::
|
64 |
+
|
65 |
+
for e0>0, lim f = 0
|
66 |
+
for e0<0, lim f = +-oo (the sign depends on the sign of c0)
|
67 |
+
for e0=0, lim f = lim c0
|
68 |
+
|
69 |
+
We need to recursively compute limits at several places of the algorithm, but
|
70 |
+
as is shown in the PhD thesis, it always finishes.
|
71 |
+
|
72 |
+
Important functions from the implementation:
|
73 |
+
|
74 |
+
compare(a, b, x) compares "a" and "b" by computing the limit L.
|
75 |
+
mrv(e, x) returns list of most rapidly varying (mrv) subexpressions of "e"
|
76 |
+
rewrite(e, Omega, x, wsym) rewrites "e" in terms of w
|
77 |
+
leadterm(f, x) returns the lowest power term in the series of f
|
78 |
+
mrv_leadterm(e, x) returns the lead term (c0, e0) for e
|
79 |
+
limitinf(e, x) computes lim e (for x->oo)
|
80 |
+
limit(e, z, z0) computes any limit by converting it to the case x->oo
|
81 |
+
|
82 |
+
All the functions are really simple and straightforward except
|
83 |
+
rewrite(), which is the most difficult/complex part of the algorithm.
|
84 |
+
When the algorithm fails, the bugs are usually in the series expansion
|
85 |
+
(i.e. in SymPy) or in rewrite.
|
86 |
+
|
87 |
+
This code is almost exact rewrite of the Maple code inside the Gruntz
|
88 |
+
thesis.
|
89 |
+
|
90 |
+
Debugging
|
91 |
+
---------
|
92 |
+
|
93 |
+
Because the gruntz algorithm is highly recursive, it's difficult to
|
94 |
+
figure out what went wrong inside a debugger. Instead, turn on nice
|
95 |
+
debug prints by defining the environment variable SYMPY_DEBUG. For
|
96 |
+
example:
|
97 |
+
|
98 |
+
[user@localhost]: SYMPY_DEBUG=True ./bin/isympy
|
99 |
+
|
100 |
+
In [1]: limit(sin(x)/x, x, 0)
|
101 |
+
limitinf(_x*sin(1/_x), _x) = 1
|
102 |
+
+-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0)
|
103 |
+
| +-mrv(_x*sin(1/_x), _x) = set([_x])
|
104 |
+
| | +-mrv(_x, _x) = set([_x])
|
105 |
+
| | +-mrv(sin(1/_x), _x) = set([_x])
|
106 |
+
| | +-mrv(1/_x, _x) = set([_x])
|
107 |
+
| | +-mrv(_x, _x) = set([_x])
|
108 |
+
| +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0)
|
109 |
+
| +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x)
|
110 |
+
| +-sign(_x, _x) = 1
|
111 |
+
| +-mrv_leadterm(1, _x) = (1, 0)
|
112 |
+
+-sign(0, _x) = 0
|
113 |
+
+-limitinf(1, _x) = 1
|
114 |
+
|
115 |
+
And check manually which line is wrong. Then go to the source code and
|
116 |
+
debug this function to figure out the exact problem.
|
117 |
+
|
118 |
+
"""
|
119 |
+
from functools import reduce
|
120 |
+
|
121 |
+
from sympy.core import Basic, S, Mul, PoleError, expand_mul
|
122 |
+
from sympy.core.cache import cacheit
|
123 |
+
from sympy.core.numbers import ilcm, I, oo
|
124 |
+
from sympy.core.symbol import Dummy, Wild
|
125 |
+
from sympy.core.traversal import bottom_up
|
126 |
+
|
127 |
+
from sympy.functions import log, exp, sign as _sign
|
128 |
+
from sympy.series.order import Order
|
129 |
+
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
130 |
+
from sympy.utilities.misc import debug_decorator as debug
|
131 |
+
from sympy.utilities.timeutils import timethis
|
132 |
+
|
133 |
+
timeit = timethis('gruntz')
|
134 |
+
|
135 |
+
|
136 |
+
def compare(a, b, x):
|
137 |
+
"""Returns "<" if a<b, "=" for a == b, ">" for a>b"""
|
138 |
+
# log(exp(...)) must always be simplified here for termination
|
139 |
+
la, lb = log(a), log(b)
|
140 |
+
if isinstance(a, Basic) and (isinstance(a, exp) or (a.is_Pow and a.base == S.Exp1)):
|
141 |
+
la = a.exp
|
142 |
+
if isinstance(b, Basic) and (isinstance(b, exp) or (b.is_Pow and b.base == S.Exp1)):
|
143 |
+
lb = b.exp
|
144 |
+
|
145 |
+
c = limitinf(la/lb, x)
|
146 |
+
if c == 0:
|
147 |
+
return "<"
|
148 |
+
elif c.is_infinite:
|
149 |
+
return ">"
|
150 |
+
else:
|
151 |
+
return "="
|
152 |
+
|
153 |
+
|
154 |
+
class SubsSet(dict):
|
155 |
+
"""
|
156 |
+
Stores (expr, dummy) pairs, and how to rewrite expr-s.
|
157 |
+
|
158 |
+
Explanation
|
159 |
+
===========
|
160 |
+
|
161 |
+
The gruntz algorithm needs to rewrite certain expressions in term of a new
|
162 |
+
variable w. We cannot use subs, because it is just too smart for us. For
|
163 |
+
example::
|
164 |
+
|
165 |
+
> Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))]
|
166 |
+
> O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w]
|
167 |
+
> e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p))
|
168 |
+
> e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1])
|
169 |
+
-1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p))
|
170 |
+
|
171 |
+
is really not what we want!
|
172 |
+
|
173 |
+
So we do it the hard way and keep track of all the things we potentially
|
174 |
+
want to substitute by dummy variables. Consider the expression::
|
175 |
+
|
176 |
+
exp(x - exp(-x)) + exp(x) + x.
|
177 |
+
|
178 |
+
The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}.
|
179 |
+
We introduce corresponding dummy variables d1, d2, d3 and rewrite::
|
180 |
+
|
181 |
+
d3 + d1 + x.
|
182 |
+
|
183 |
+
This class first of all keeps track of the mapping expr->variable, i.e.
|
184 |
+
will at this stage be a dictionary::
|
185 |
+
|
186 |
+
{exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}.
|
187 |
+
|
188 |
+
[It turns out to be more convenient this way round.]
|
189 |
+
But sometimes expressions in the mrv set have other expressions from the
|
190 |
+
mrv set as subexpressions, and we need to keep track of that as well. In
|
191 |
+
this case, d3 is really exp(x - d2), so rewrites at this stage is::
|
192 |
+
|
193 |
+
{d3: exp(x-d2)}.
|
194 |
+
|
195 |
+
The function rewrite uses all this information to correctly rewrite our
|
196 |
+
expression in terms of w. In this case w can be chosen to be exp(-x),
|
197 |
+
i.e. d2. The correct rewriting then is::
|
198 |
+
|
199 |
+
exp(-w)/w + 1/w + x.
|
200 |
+
"""
|
201 |
+
def __init__(self):
|
202 |
+
self.rewrites = {}
|
203 |
+
|
204 |
+
def __repr__(self):
|
205 |
+
return super().__repr__() + ', ' + self.rewrites.__repr__()
|
206 |
+
|
207 |
+
def __getitem__(self, key):
|
208 |
+
if key not in self:
|
209 |
+
self[key] = Dummy()
|
210 |
+
return dict.__getitem__(self, key)
|
211 |
+
|
212 |
+
def do_subs(self, e):
|
213 |
+
"""Substitute the variables with expressions"""
|
214 |
+
for expr, var in self.items():
|
215 |
+
e = e.xreplace({var: expr})
|
216 |
+
return e
|
217 |
+
|
218 |
+
def meets(self, s2):
|
219 |
+
"""Tell whether or not self and s2 have non-empty intersection"""
|
220 |
+
return set(self.keys()).intersection(list(s2.keys())) != set()
|
221 |
+
|
222 |
+
def union(self, s2, exps=None):
|
223 |
+
"""Compute the union of self and s2, adjusting exps"""
|
224 |
+
res = self.copy()
|
225 |
+
tr = {}
|
226 |
+
for expr, var in s2.items():
|
227 |
+
if expr in self:
|
228 |
+
if exps:
|
229 |
+
exps = exps.xreplace({var: res[expr]})
|
230 |
+
tr[var] = res[expr]
|
231 |
+
else:
|
232 |
+
res[expr] = var
|
233 |
+
for var, rewr in s2.rewrites.items():
|
234 |
+
res.rewrites[var] = rewr.xreplace(tr)
|
235 |
+
return res, exps
|
236 |
+
|
237 |
+
def copy(self):
|
238 |
+
"""Create a shallow copy of SubsSet"""
|
239 |
+
r = SubsSet()
|
240 |
+
r.rewrites = self.rewrites.copy()
|
241 |
+
for expr, var in self.items():
|
242 |
+
r[expr] = var
|
243 |
+
return r
|
244 |
+
|
245 |
+
|
246 |
+
@debug
|
247 |
+
def mrv(e, x):
|
248 |
+
"""Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e',
|
249 |
+
and e rewritten in terms of these"""
|
250 |
+
from sympy.simplify.powsimp import powsimp
|
251 |
+
e = powsimp(e, deep=True, combine='exp')
|
252 |
+
if not isinstance(e, Basic):
|
253 |
+
raise TypeError("e should be an instance of Basic")
|
254 |
+
if not e.has(x):
|
255 |
+
return SubsSet(), e
|
256 |
+
elif e == x:
|
257 |
+
s = SubsSet()
|
258 |
+
return s, s[x]
|
259 |
+
elif e.is_Mul or e.is_Add:
|
260 |
+
i, d = e.as_independent(x) # throw away x-independent terms
|
261 |
+
if d.func != e.func:
|
262 |
+
s, expr = mrv(d, x)
|
263 |
+
return s, e.func(i, expr)
|
264 |
+
a, b = d.as_two_terms()
|
265 |
+
s1, e1 = mrv(a, x)
|
266 |
+
s2, e2 = mrv(b, x)
|
267 |
+
return mrv_max1(s1, s2, e.func(i, e1, e2), x)
|
268 |
+
elif e.is_Pow and e.base != S.Exp1:
|
269 |
+
e1 = S.One
|
270 |
+
while e.is_Pow:
|
271 |
+
b1 = e.base
|
272 |
+
e1 *= e.exp
|
273 |
+
e = b1
|
274 |
+
if b1 == 1:
|
275 |
+
return SubsSet(), b1
|
276 |
+
if e1.has(x):
|
277 |
+
base_lim = limitinf(b1, x)
|
278 |
+
if base_lim is S.One:
|
279 |
+
return mrv(exp(e1 * (b1 - 1)), x)
|
280 |
+
return mrv(exp(e1 * log(b1)), x)
|
281 |
+
else:
|
282 |
+
s, expr = mrv(b1, x)
|
283 |
+
return s, expr**e1
|
284 |
+
elif isinstance(e, log):
|
285 |
+
s, expr = mrv(e.args[0], x)
|
286 |
+
return s, log(expr)
|
287 |
+
elif isinstance(e, exp) or (e.is_Pow and e.base == S.Exp1):
|
288 |
+
# We know from the theory of this algorithm that exp(log(...)) may always
|
289 |
+
# be simplified here, and doing so is vital for termination.
|
290 |
+
if isinstance(e.exp, log):
|
291 |
+
return mrv(e.exp.args[0], x)
|
292 |
+
# if a product has an infinite factor the result will be
|
293 |
+
# infinite if there is no zero, otherwise NaN; here, we
|
294 |
+
# consider the result infinite if any factor is infinite
|
295 |
+
li = limitinf(e.exp, x)
|
296 |
+
if any(_.is_infinite for _ in Mul.make_args(li)):
|
297 |
+
s1 = SubsSet()
|
298 |
+
e1 = s1[e]
|
299 |
+
s2, e2 = mrv(e.exp, x)
|
300 |
+
su = s1.union(s2)[0]
|
301 |
+
su.rewrites[e1] = exp(e2)
|
302 |
+
return mrv_max3(s1, e1, s2, exp(e2), su, e1, x)
|
303 |
+
else:
|
304 |
+
s, expr = mrv(e.exp, x)
|
305 |
+
return s, exp(expr)
|
306 |
+
elif e.is_Function:
|
307 |
+
l = [mrv(a, x) for a in e.args]
|
308 |
+
l2 = [s for (s, _) in l if s != SubsSet()]
|
309 |
+
if len(l2) != 1:
|
310 |
+
# e.g. something like BesselJ(x, x)
|
311 |
+
raise NotImplementedError("MRV set computation for functions in"
|
312 |
+
" several variables not implemented.")
|
313 |
+
s, ss = l2[0], SubsSet()
|
314 |
+
args = [ss.do_subs(x[1]) for x in l]
|
315 |
+
return s, e.func(*args)
|
316 |
+
elif e.is_Derivative:
|
317 |
+
raise NotImplementedError("MRV set computation for derivatives"
|
318 |
+
" not implemented yet.")
|
319 |
+
raise NotImplementedError(
|
320 |
+
"Don't know how to calculate the mrv of '%s'" % e)
|
321 |
+
|
322 |
+
|
323 |
+
def mrv_max3(f, expsf, g, expsg, union, expsboth, x):
|
324 |
+
"""
|
325 |
+
Computes the maximum of two sets of expressions f and g, which
|
326 |
+
are in the same comparability class, i.e. max() compares (two elements of)
|
327 |
+
f and g and returns either (f, expsf) [if f is larger], (g, expsg)
|
328 |
+
[if g is larger] or (union, expsboth) [if f, g are of the same class].
|
329 |
+
"""
|
330 |
+
if not isinstance(f, SubsSet):
|
331 |
+
raise TypeError("f should be an instance of SubsSet")
|
332 |
+
if not isinstance(g, SubsSet):
|
333 |
+
raise TypeError("g should be an instance of SubsSet")
|
334 |
+
if f == SubsSet():
|
335 |
+
return g, expsg
|
336 |
+
elif g == SubsSet():
|
337 |
+
return f, expsf
|
338 |
+
elif f.meets(g):
|
339 |
+
return union, expsboth
|
340 |
+
|
341 |
+
c = compare(list(f.keys())[0], list(g.keys())[0], x)
|
342 |
+
if c == ">":
|
343 |
+
return f, expsf
|
344 |
+
elif c == "<":
|
345 |
+
return g, expsg
|
346 |
+
else:
|
347 |
+
if c != "=":
|
348 |
+
raise ValueError("c should be =")
|
349 |
+
return union, expsboth
|
350 |
+
|
351 |
+
|
352 |
+
def mrv_max1(f, g, exps, x):
|
353 |
+
"""Computes the maximum of two sets of expressions f and g, which
|
354 |
+
are in the same comparability class, i.e. mrv_max1() compares (two elements of)
|
355 |
+
f and g and returns the set, which is in the higher comparability class
|
356 |
+
of the union of both, if they have the same order of variation.
|
357 |
+
Also returns exps, with the appropriate substitutions made.
|
358 |
+
"""
|
359 |
+
u, b = f.union(g, exps)
|
360 |
+
return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps),
|
361 |
+
u, b, x)
|
362 |
+
|
363 |
+
|
364 |
+
@debug
|
365 |
+
@cacheit
|
366 |
+
@timeit
|
367 |
+
def sign(e, x):
|
368 |
+
"""
|
369 |
+
Returns a sign of an expression e(x) for x->oo.
|
370 |
+
|
371 |
+
::
|
372 |
+
|
373 |
+
e > 0 for x sufficiently large ... 1
|
374 |
+
e == 0 for x sufficiently large ... 0
|
375 |
+
e < 0 for x sufficiently large ... -1
|
376 |
+
|
377 |
+
The result of this function is currently undefined if e changes sign
|
378 |
+
arbitrarily often for arbitrarily large x (e.g. sin(x)).
|
379 |
+
|
380 |
+
Note that this returns zero only if e is *constantly* zero
|
381 |
+
for x sufficiently large. [If e is constant, of course, this is just
|
382 |
+
the same thing as the sign of e.]
|
383 |
+
"""
|
384 |
+
if not isinstance(e, Basic):
|
385 |
+
raise TypeError("e should be an instance of Basic")
|
386 |
+
|
387 |
+
if e.is_positive:
|
388 |
+
return 1
|
389 |
+
elif e.is_negative:
|
390 |
+
return -1
|
391 |
+
elif e.is_zero:
|
392 |
+
return 0
|
393 |
+
|
394 |
+
elif not e.has(x):
|
395 |
+
from sympy.simplify import logcombine
|
396 |
+
e = logcombine(e)
|
397 |
+
return _sign(e)
|
398 |
+
elif e == x:
|
399 |
+
return 1
|
400 |
+
elif e.is_Mul:
|
401 |
+
a, b = e.as_two_terms()
|
402 |
+
sa = sign(a, x)
|
403 |
+
if not sa:
|
404 |
+
return 0
|
405 |
+
return sa * sign(b, x)
|
406 |
+
elif isinstance(e, exp):
|
407 |
+
return 1
|
408 |
+
elif e.is_Pow:
|
409 |
+
if e.base == S.Exp1:
|
410 |
+
return 1
|
411 |
+
s = sign(e.base, x)
|
412 |
+
if s == 1:
|
413 |
+
return 1
|
414 |
+
if e.exp.is_Integer:
|
415 |
+
return s**e.exp
|
416 |
+
elif isinstance(e, log):
|
417 |
+
return sign(e.args[0] - 1, x)
|
418 |
+
|
419 |
+
# if all else fails, do it the hard way
|
420 |
+
c0, e0 = mrv_leadterm(e, x)
|
421 |
+
return sign(c0, x)
|
422 |
+
|
423 |
+
|
424 |
+
@debug
|
425 |
+
@timeit
|
426 |
+
@cacheit
|
427 |
+
def limitinf(e, x):
|
428 |
+
"""Limit e(x) for x-> oo."""
|
429 |
+
# rewrite e in terms of tractable functions only
|
430 |
+
|
431 |
+
old = e
|
432 |
+
if not e.has(x):
|
433 |
+
return e # e is a constant
|
434 |
+
from sympy.simplify.powsimp import powdenest
|
435 |
+
from sympy.calculus.util import AccumBounds
|
436 |
+
if e.has(Order):
|
437 |
+
e = e.expand().removeO()
|
438 |
+
if not x.is_positive or x.is_integer:
|
439 |
+
# We make sure that x.is_positive is True and x.is_integer is None
|
440 |
+
# so we get all the correct mathematical behavior from the expression.
|
441 |
+
# We need a fresh variable.
|
442 |
+
p = Dummy('p', positive=True)
|
443 |
+
e = e.subs(x, p)
|
444 |
+
x = p
|
445 |
+
e = e.rewrite('tractable', deep=True, limitvar=x)
|
446 |
+
e = powdenest(e)
|
447 |
+
if isinstance(e, AccumBounds):
|
448 |
+
if mrv_leadterm(e.min, x) != mrv_leadterm(e.max, x):
|
449 |
+
raise NotImplementedError
|
450 |
+
c0, e0 = mrv_leadterm(e.min, x)
|
451 |
+
else:
|
452 |
+
c0, e0 = mrv_leadterm(e, x)
|
453 |
+
sig = sign(e0, x)
|
454 |
+
if sig == 1:
|
455 |
+
return S.Zero # e0>0: lim f = 0
|
456 |
+
elif sig == -1: # e0<0: lim f = +-oo (the sign depends on the sign of c0)
|
457 |
+
if c0.match(I*Wild("a", exclude=[I])):
|
458 |
+
return c0*oo
|
459 |
+
s = sign(c0, x)
|
460 |
+
# the leading term shouldn't be 0:
|
461 |
+
if s == 0:
|
462 |
+
raise ValueError("Leading term should not be 0")
|
463 |
+
return s*oo
|
464 |
+
elif sig == 0:
|
465 |
+
if c0 == old:
|
466 |
+
c0 = c0.cancel()
|
467 |
+
return limitinf(c0, x) # e0=0: lim f = lim c0
|
468 |
+
else:
|
469 |
+
raise ValueError("{} could not be evaluated".format(sig))
|
470 |
+
|
471 |
+
|
472 |
+
def moveup2(s, x):
|
473 |
+
r = SubsSet()
|
474 |
+
for expr, var in s.items():
|
475 |
+
r[expr.xreplace({x: exp(x)})] = var
|
476 |
+
for var, expr in s.rewrites.items():
|
477 |
+
r.rewrites[var] = s.rewrites[var].xreplace({x: exp(x)})
|
478 |
+
return r
|
479 |
+
|
480 |
+
|
481 |
+
def moveup(l, x):
|
482 |
+
return [e.xreplace({x: exp(x)}) for e in l]
|
483 |
+
|
484 |
+
|
485 |
+
@debug
|
486 |
+
@timeit
|
487 |
+
def calculate_series(e, x, logx=None):
|
488 |
+
""" Calculates at least one term of the series of ``e`` in ``x``.
|
489 |
+
|
490 |
+
This is a place that fails most often, so it is in its own function.
|
491 |
+
"""
|
492 |
+
|
493 |
+
SymPyDeprecationWarning(
|
494 |
+
feature="calculate_series",
|
495 |
+
useinstead="series() with suitable n, or as_leading_term",
|
496 |
+
issue=21838,
|
497 |
+
deprecated_since_version="1.12"
|
498 |
+
).warn()
|
499 |
+
|
500 |
+
from sympy.simplify.powsimp import powdenest
|
501 |
+
|
502 |
+
for t in e.lseries(x, logx=logx):
|
503 |
+
# bottom_up function is required for a specific case - when e is
|
504 |
+
# -exp(p/(p + 1)) + exp(-p**2/(p + 1) + p)
|
505 |
+
t = bottom_up(t, lambda w:
|
506 |
+
getattr(w, 'normal', lambda: w)())
|
507 |
+
# And the expression
|
508 |
+
# `(-sin(1/x) + sin((x + exp(x))*exp(-x)/x))*exp(x)`
|
509 |
+
# from the first test of test_gruntz_eval_special needs to
|
510 |
+
# be expanded. But other forms need to be have at least
|
511 |
+
# factor_terms applied. `factor` accomplishes both and is
|
512 |
+
# faster than using `factor_terms` for the gruntz suite. It
|
513 |
+
# does not appear that use of `cancel` is necessary.
|
514 |
+
# t = cancel(t, expand=False)
|
515 |
+
t = t.factor()
|
516 |
+
|
517 |
+
if t.has(exp) and t.has(log):
|
518 |
+
t = powdenest(t)
|
519 |
+
|
520 |
+
if not t.is_zero:
|
521 |
+
break
|
522 |
+
|
523 |
+
return t
|
524 |
+
|
525 |
+
|
526 |
+
@debug
|
527 |
+
@timeit
|
528 |
+
@cacheit
|
529 |
+
def mrv_leadterm(e, x):
|
530 |
+
"""Returns (c0, e0) for e."""
|
531 |
+
Omega = SubsSet()
|
532 |
+
if not e.has(x):
|
533 |
+
return (e, S.Zero)
|
534 |
+
if Omega == SubsSet():
|
535 |
+
Omega, exps = mrv(e, x)
|
536 |
+
if not Omega:
|
537 |
+
# e really does not depend on x after simplification
|
538 |
+
return exps, S.Zero
|
539 |
+
if x in Omega:
|
540 |
+
# move the whole omega up (exponentiate each term):
|
541 |
+
Omega_up = moveup2(Omega, x)
|
542 |
+
exps_up = moveup([exps], x)[0]
|
543 |
+
# NOTE: there is no need to move this down!
|
544 |
+
Omega = Omega_up
|
545 |
+
exps = exps_up
|
546 |
+
#
|
547 |
+
# The positive dummy, w, is used here so log(w*2) etc. will expand;
|
548 |
+
# a unique dummy is needed in this algorithm
|
549 |
+
#
|
550 |
+
# For limits of complex functions, the algorithm would have to be
|
551 |
+
# improved, or just find limits of Re and Im components separately.
|
552 |
+
#
|
553 |
+
w = Dummy("w", positive=True)
|
554 |
+
f, logw = rewrite(exps, Omega, x, w)
|
555 |
+
try:
|
556 |
+
lt = f.leadterm(w, logx=logw)
|
557 |
+
except (NotImplementedError, PoleError, ValueError):
|
558 |
+
n0 = 1
|
559 |
+
_series = Order(1)
|
560 |
+
incr = S.One
|
561 |
+
while _series.is_Order:
|
562 |
+
_series = f._eval_nseries(w, n=n0+incr, logx=logw)
|
563 |
+
incr *= 2
|
564 |
+
series = _series.expand().removeO()
|
565 |
+
try:
|
566 |
+
lt = series.leadterm(w, logx=logw)
|
567 |
+
except (NotImplementedError, PoleError, ValueError):
|
568 |
+
lt = f.as_coeff_exponent(w)
|
569 |
+
if lt[0].has(w):
|
570 |
+
base = f.as_base_exp()[0].as_coeff_exponent(w)
|
571 |
+
ex = f.as_base_exp()[1]
|
572 |
+
lt = (base[0]**ex, base[1]*ex)
|
573 |
+
return (lt[0].subs(log(w), logw), lt[1])
|
574 |
+
|
575 |
+
|
576 |
+
def build_expression_tree(Omega, rewrites):
|
577 |
+
r""" Helper function for rewrite.
|
578 |
+
|
579 |
+
We need to sort Omega (mrv set) so that we replace an expression before
|
580 |
+
we replace any expression in terms of which it has to be rewritten::
|
581 |
+
|
582 |
+
e1 ---> e2 ---> e3
|
583 |
+
\
|
584 |
+
-> e4
|
585 |
+
|
586 |
+
Here we can do e1, e2, e3, e4 or e1, e2, e4, e3.
|
587 |
+
To do this we assemble the nodes into a tree, and sort them by height.
|
588 |
+
|
589 |
+
This function builds the tree, rewrites then sorts the nodes.
|
590 |
+
"""
|
591 |
+
class Node:
|
592 |
+
def __init__(self):
|
593 |
+
self.before = []
|
594 |
+
self.expr = None
|
595 |
+
self.var = None
|
596 |
+
def ht(self):
|
597 |
+
return reduce(lambda x, y: x + y,
|
598 |
+
[x.ht() for x in self.before], 1)
|
599 |
+
nodes = {}
|
600 |
+
for expr, v in Omega:
|
601 |
+
n = Node()
|
602 |
+
n.var = v
|
603 |
+
n.expr = expr
|
604 |
+
nodes[v] = n
|
605 |
+
for _, v in Omega:
|
606 |
+
if v in rewrites:
|
607 |
+
n = nodes[v]
|
608 |
+
r = rewrites[v]
|
609 |
+
for _, v2 in Omega:
|
610 |
+
if r.has(v2):
|
611 |
+
n.before.append(nodes[v2])
|
612 |
+
|
613 |
+
return nodes
|
614 |
+
|
615 |
+
|
616 |
+
@debug
|
617 |
+
@timeit
|
618 |
+
def rewrite(e, Omega, x, wsym):
|
619 |
+
"""e(x) ... the function
|
620 |
+
Omega ... the mrv set
|
621 |
+
wsym ... the symbol which is going to be used for w
|
622 |
+
|
623 |
+
Returns the rewritten e in terms of w and log(w). See test_rewrite1()
|
624 |
+
for examples and correct results.
|
625 |
+
"""
|
626 |
+
|
627 |
+
from sympy import AccumBounds
|
628 |
+
if not isinstance(Omega, SubsSet):
|
629 |
+
raise TypeError("Omega should be an instance of SubsSet")
|
630 |
+
if len(Omega) == 0:
|
631 |
+
raise ValueError("Length cannot be 0")
|
632 |
+
# all items in Omega must be exponentials
|
633 |
+
for t in Omega.keys():
|
634 |
+
if not isinstance(t, exp):
|
635 |
+
raise ValueError("Value should be exp")
|
636 |
+
rewrites = Omega.rewrites
|
637 |
+
Omega = list(Omega.items())
|
638 |
+
|
639 |
+
nodes = build_expression_tree(Omega, rewrites)
|
640 |
+
Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True)
|
641 |
+
|
642 |
+
# make sure we know the sign of each exp() term; after the loop,
|
643 |
+
# g is going to be the "w" - the simplest one in the mrv set
|
644 |
+
for g, _ in Omega:
|
645 |
+
sig = sign(g.exp, x)
|
646 |
+
if sig != 1 and sig != -1 and not sig.has(AccumBounds):
|
647 |
+
raise NotImplementedError('Result depends on the sign of %s' % sig)
|
648 |
+
if sig == 1:
|
649 |
+
wsym = 1/wsym # if g goes to oo, substitute 1/w
|
650 |
+
# O2 is a list, which results by rewriting each item in Omega using "w"
|
651 |
+
O2 = []
|
652 |
+
denominators = []
|
653 |
+
for f, var in Omega:
|
654 |
+
c = limitinf(f.exp/g.exp, x)
|
655 |
+
if c.is_Rational:
|
656 |
+
denominators.append(c.q)
|
657 |
+
arg = f.exp
|
658 |
+
if var in rewrites:
|
659 |
+
if not isinstance(rewrites[var], exp):
|
660 |
+
raise ValueError("Value should be exp")
|
661 |
+
arg = rewrites[var].args[0]
|
662 |
+
O2.append((var, exp((arg - c*g.exp).expand())*wsym**c))
|
663 |
+
|
664 |
+
# Remember that Omega contains subexpressions of "e". So now we find
|
665 |
+
# them in "e" and substitute them for our rewriting, stored in O2
|
666 |
+
|
667 |
+
# the following powsimp is necessary to automatically combine exponentials,
|
668 |
+
# so that the .xreplace() below succeeds:
|
669 |
+
# TODO this should not be necessary
|
670 |
+
from sympy.simplify.powsimp import powsimp
|
671 |
+
f = powsimp(e, deep=True, combine='exp')
|
672 |
+
for a, b in O2:
|
673 |
+
f = f.xreplace({a: b})
|
674 |
+
|
675 |
+
for _, var in Omega:
|
676 |
+
assert not f.has(var)
|
677 |
+
|
678 |
+
# finally compute the logarithm of w (logw).
|
679 |
+
logw = g.exp
|
680 |
+
if sig == 1:
|
681 |
+
logw = -logw # log(w)->log(1/w)=-log(w)
|
682 |
+
|
683 |
+
# Some parts of SymPy have difficulty computing series expansions with
|
684 |
+
# non-integral exponents. The following heuristic improves the situation:
|
685 |
+
exponent = reduce(ilcm, denominators, 1)
|
686 |
+
f = f.subs({wsym: wsym**exponent})
|
687 |
+
logw /= exponent
|
688 |
+
|
689 |
+
# bottom_up function is required for a specific case - when f is
|
690 |
+
# -exp(p/(p + 1)) + exp(-p**2/(p + 1) + p). No current simplification
|
691 |
+
# methods reduce this to 0 while not expanding polynomials.
|
692 |
+
f = bottom_up(f, lambda w: getattr(w, 'normal', lambda: w)())
|
693 |
+
f = expand_mul(f)
|
694 |
+
|
695 |
+
return f, logw
|
696 |
+
|
697 |
+
|
698 |
+
def gruntz(e, z, z0, dir="+"):
|
699 |
+
"""
|
700 |
+
Compute the limit of e(z) at the point z0 using the Gruntz algorithm.
|
701 |
+
|
702 |
+
Explanation
|
703 |
+
===========
|
704 |
+
|
705 |
+
``z0`` can be any expression, including oo and -oo.
|
706 |
+
|
707 |
+
For ``dir="+"`` (default) it calculates the limit from the right
|
708 |
+
(z->z0+) and for ``dir="-"`` the limit from the left (z->z0-). For infinite z0
|
709 |
+
(oo or -oo), the dir argument does not matter.
|
710 |
+
|
711 |
+
This algorithm is fully described in the module docstring in the gruntz.py
|
712 |
+
file. It relies heavily on the series expansion. Most frequently, gruntz()
|
713 |
+
is only used if the faster limit() function (which uses heuristics) fails.
|
714 |
+
"""
|
715 |
+
if not z.is_symbol:
|
716 |
+
raise NotImplementedError("Second argument must be a Symbol")
|
717 |
+
|
718 |
+
# convert all limits to the limit z->oo; sign of z is handled in limitinf
|
719 |
+
r = None
|
720 |
+
if z0 in (oo, I*oo):
|
721 |
+
e0 = e
|
722 |
+
elif z0 in (-oo, -I*oo):
|
723 |
+
e0 = e.subs(z, -z)
|
724 |
+
else:
|
725 |
+
if str(dir) == "-":
|
726 |
+
e0 = e.subs(z, z0 - 1/z)
|
727 |
+
elif str(dir) == "+":
|
728 |
+
e0 = e.subs(z, z0 + 1/z)
|
729 |
+
else:
|
730 |
+
raise NotImplementedError("dir must be '+' or '-'")
|
731 |
+
|
732 |
+
r = limitinf(e0, z)
|
733 |
+
|
734 |
+
# This is a bit of a heuristic for nice results... we always rewrite
|
735 |
+
# tractable functions in terms of familiar intractable ones.
|
736 |
+
# It might be nicer to rewrite the exactly to what they were initially,
|
737 |
+
# but that would take some work to implement.
|
738 |
+
return r.rewrite('intractable', deep=True)
|
env-llmeval/lib/python3.10/site-packages/sympy/series/kauers.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def finite_diff(expression, variable, increment=1):
|
2 |
+
"""
|
3 |
+
Takes as input a polynomial expression and the variable used to construct
|
4 |
+
it and returns the difference between function's value when the input is
|
5 |
+
incremented to 1 and the original function value. If you want an increment
|
6 |
+
other than one supply it as a third argument.
|
7 |
+
|
8 |
+
Examples
|
9 |
+
========
|
10 |
+
|
11 |
+
>>> from sympy.abc import x, y, z
|
12 |
+
>>> from sympy.series.kauers import finite_diff
|
13 |
+
>>> finite_diff(x**2, x)
|
14 |
+
2*x + 1
|
15 |
+
>>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y)
|
16 |
+
3*y**2 + 7*y + 6
|
17 |
+
>>> finite_diff(x**2 + 3*x + 8, x, 2)
|
18 |
+
4*x + 10
|
19 |
+
>>> finite_diff(z**3 + 8*z, z, 3)
|
20 |
+
9*z**2 + 27*z + 51
|
21 |
+
"""
|
22 |
+
expression = expression.expand()
|
23 |
+
expression2 = expression.subs(variable, variable + increment)
|
24 |
+
expression2 = expression2.expand()
|
25 |
+
return expression2 - expression
|
26 |
+
|
27 |
+
def finite_diff_kauers(sum):
|
28 |
+
"""
|
29 |
+
Takes as input a Sum instance and returns the difference between the sum
|
30 |
+
with the upper index incremented by 1 and the original sum. For example,
|
31 |
+
if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n).
|
32 |
+
|
33 |
+
Examples
|
34 |
+
========
|
35 |
+
|
36 |
+
>>> from sympy.series.kauers import finite_diff_kauers
|
37 |
+
>>> from sympy import Sum
|
38 |
+
>>> from sympy.abc import x, y, m, n, k
|
39 |
+
>>> finite_diff_kauers(Sum(k, (k, 1, n)))
|
40 |
+
n + 1
|
41 |
+
>>> finite_diff_kauers(Sum(1/k, (k, 1, n)))
|
42 |
+
1/(n + 1)
|
43 |
+
>>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m)))
|
44 |
+
(m + 1)**2*(n + 1)
|
45 |
+
>>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n)))
|
46 |
+
(m + 1)*(n + 1)
|
47 |
+
"""
|
48 |
+
function = sum.function
|
49 |
+
for l in sum.limits:
|
50 |
+
function = function.subs(l[0], l[- 1] + 1)
|
51 |
+
return function
|
env-llmeval/lib/python3.10/site-packages/sympy/series/limits.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
2 |
+
from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul
|
3 |
+
from sympy.core.exprtools import factor_terms
|
4 |
+
from sympy.core.numbers import Float, _illegal
|
5 |
+
from sympy.functions.combinatorial.factorials import factorial
|
6 |
+
from sympy.functions.elementary.complexes import (Abs, sign, arg, re)
|
7 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
8 |
+
from sympy.functions.special.gamma_functions import gamma
|
9 |
+
from sympy.polys import PolynomialError, factor
|
10 |
+
from sympy.series.order import Order
|
11 |
+
from .gruntz import gruntz
|
12 |
+
|
13 |
+
def limit(e, z, z0, dir="+"):
|
14 |
+
"""Computes the limit of ``e(z)`` at the point ``z0``.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
==========
|
18 |
+
|
19 |
+
e : expression, the limit of which is to be taken
|
20 |
+
|
21 |
+
z : symbol representing the variable in the limit.
|
22 |
+
Other symbols are treated as constants. Multivariate limits
|
23 |
+
are not supported.
|
24 |
+
|
25 |
+
z0 : the value toward which ``z`` tends. Can be any expression,
|
26 |
+
including ``oo`` and ``-oo``.
|
27 |
+
|
28 |
+
dir : string, optional (default: "+")
|
29 |
+
The limit is bi-directional if ``dir="+-"``, from the right
|
30 |
+
(z->z0+) if ``dir="+"``, and from the left (z->z0-) if
|
31 |
+
``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir``
|
32 |
+
argument is determined from the direction of the infinity
|
33 |
+
(i.e., ``dir="-"`` for ``oo``).
|
34 |
+
|
35 |
+
Examples
|
36 |
+
========
|
37 |
+
|
38 |
+
>>> from sympy import limit, sin, oo
|
39 |
+
>>> from sympy.abc import x
|
40 |
+
>>> limit(sin(x)/x, x, 0)
|
41 |
+
1
|
42 |
+
>>> limit(1/x, x, 0) # default dir='+'
|
43 |
+
oo
|
44 |
+
>>> limit(1/x, x, 0, dir="-")
|
45 |
+
-oo
|
46 |
+
>>> limit(1/x, x, 0, dir='+-')
|
47 |
+
zoo
|
48 |
+
>>> limit(1/x, x, oo)
|
49 |
+
0
|
50 |
+
|
51 |
+
Notes
|
52 |
+
=====
|
53 |
+
|
54 |
+
First we try some heuristics for easy and frequent cases like "x", "1/x",
|
55 |
+
"x**2" and similar, so that it's fast. For all other cases, we use the
|
56 |
+
Gruntz algorithm (see the gruntz() function).
|
57 |
+
|
58 |
+
See Also
|
59 |
+
========
|
60 |
+
|
61 |
+
limit_seq : returns the limit of a sequence.
|
62 |
+
"""
|
63 |
+
|
64 |
+
return Limit(e, z, z0, dir).doit(deep=False)
|
65 |
+
|
66 |
+
|
67 |
+
def heuristics(e, z, z0, dir):
|
68 |
+
"""Computes the limit of an expression term-wise.
|
69 |
+
Parameters are the same as for the ``limit`` function.
|
70 |
+
Works with the arguments of expression ``e`` one by one, computing
|
71 |
+
the limit of each and then combining the results. This approach
|
72 |
+
works only for simple limits, but it is fast.
|
73 |
+
"""
|
74 |
+
|
75 |
+
rv = None
|
76 |
+
if z0 is S.Infinity:
|
77 |
+
rv = limit(e.subs(z, 1/z), z, S.Zero, "+")
|
78 |
+
if isinstance(rv, Limit):
|
79 |
+
return
|
80 |
+
elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function:
|
81 |
+
r = []
|
82 |
+
from sympy.simplify.simplify import together
|
83 |
+
for a in e.args:
|
84 |
+
l = limit(a, z, z0, dir)
|
85 |
+
if l.has(S.Infinity) and l.is_finite is None:
|
86 |
+
if isinstance(e, Add):
|
87 |
+
m = factor_terms(e)
|
88 |
+
if not isinstance(m, Mul): # try together
|
89 |
+
m = together(m)
|
90 |
+
if not isinstance(m, Mul): # try factor if the previous methods failed
|
91 |
+
m = factor(e)
|
92 |
+
if isinstance(m, Mul):
|
93 |
+
return heuristics(m, z, z0, dir)
|
94 |
+
return
|
95 |
+
return
|
96 |
+
elif isinstance(l, Limit):
|
97 |
+
return
|
98 |
+
elif l is S.NaN:
|
99 |
+
return
|
100 |
+
else:
|
101 |
+
r.append(l)
|
102 |
+
if r:
|
103 |
+
rv = e.func(*r)
|
104 |
+
if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r):
|
105 |
+
r2 = []
|
106 |
+
e2 = []
|
107 |
+
for ii, rval in enumerate(r):
|
108 |
+
if isinstance(rval, AccumBounds):
|
109 |
+
r2.append(rval)
|
110 |
+
else:
|
111 |
+
e2.append(e.args[ii])
|
112 |
+
|
113 |
+
if len(e2) > 0:
|
114 |
+
e3 = Mul(*e2).simplify()
|
115 |
+
l = limit(e3, z, z0, dir)
|
116 |
+
rv = l * Mul(*r2)
|
117 |
+
|
118 |
+
if rv is S.NaN:
|
119 |
+
try:
|
120 |
+
from sympy.simplify.ratsimp import ratsimp
|
121 |
+
rat_e = ratsimp(e)
|
122 |
+
except PolynomialError:
|
123 |
+
return
|
124 |
+
if rat_e is S.NaN or rat_e == e:
|
125 |
+
return
|
126 |
+
return limit(rat_e, z, z0, dir)
|
127 |
+
return rv
|
128 |
+
|
129 |
+
|
130 |
+
class Limit(Expr):
|
131 |
+
"""Represents an unevaluated limit.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy import Limit, sin
|
137 |
+
>>> from sympy.abc import x
|
138 |
+
>>> Limit(sin(x)/x, x, 0)
|
139 |
+
Limit(sin(x)/x, x, 0, dir='+')
|
140 |
+
>>> Limit(1/x, x, 0, dir="-")
|
141 |
+
Limit(1/x, x, 0, dir='-')
|
142 |
+
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __new__(cls, e, z, z0, dir="+"):
|
146 |
+
e = sympify(e)
|
147 |
+
z = sympify(z)
|
148 |
+
z0 = sympify(z0)
|
149 |
+
|
150 |
+
if z0 in (S.Infinity, S.ImaginaryUnit*S.Infinity):
|
151 |
+
dir = "-"
|
152 |
+
elif z0 in (S.NegativeInfinity, S.ImaginaryUnit*S.NegativeInfinity):
|
153 |
+
dir = "+"
|
154 |
+
|
155 |
+
if(z0.has(z)):
|
156 |
+
raise NotImplementedError("Limits approaching a variable point are"
|
157 |
+
" not supported (%s -> %s)" % (z, z0))
|
158 |
+
if isinstance(dir, str):
|
159 |
+
dir = Symbol(dir)
|
160 |
+
elif not isinstance(dir, Symbol):
|
161 |
+
raise TypeError("direction must be of type basestring or "
|
162 |
+
"Symbol, not %s" % type(dir))
|
163 |
+
if str(dir) not in ('+', '-', '+-'):
|
164 |
+
raise ValueError("direction must be one of '+', '-' "
|
165 |
+
"or '+-', not %s" % dir)
|
166 |
+
|
167 |
+
obj = Expr.__new__(cls)
|
168 |
+
obj._args = (e, z, z0, dir)
|
169 |
+
return obj
|
170 |
+
|
171 |
+
|
172 |
+
@property
|
173 |
+
def free_symbols(self):
|
174 |
+
e = self.args[0]
|
175 |
+
isyms = e.free_symbols
|
176 |
+
isyms.difference_update(self.args[1].free_symbols)
|
177 |
+
isyms.update(self.args[2].free_symbols)
|
178 |
+
return isyms
|
179 |
+
|
180 |
+
|
181 |
+
def pow_heuristics(self, e):
|
182 |
+
_, z, z0, _ = self.args
|
183 |
+
b1, e1 = e.base, e.exp
|
184 |
+
if not b1.has(z):
|
185 |
+
res = limit(e1*log(b1), z, z0)
|
186 |
+
return exp(res)
|
187 |
+
|
188 |
+
ex_lim = limit(e1, z, z0)
|
189 |
+
base_lim = limit(b1, z, z0)
|
190 |
+
|
191 |
+
if base_lim is S.One:
|
192 |
+
if ex_lim in (S.Infinity, S.NegativeInfinity):
|
193 |
+
res = limit(e1*(b1 - 1), z, z0)
|
194 |
+
return exp(res)
|
195 |
+
if base_lim is S.NegativeInfinity and ex_lim is S.Infinity:
|
196 |
+
return S.ComplexInfinity
|
197 |
+
|
198 |
+
|
199 |
+
def doit(self, **hints):
|
200 |
+
"""Evaluates the limit.
|
201 |
+
|
202 |
+
Parameters
|
203 |
+
==========
|
204 |
+
|
205 |
+
deep : bool, optional (default: True)
|
206 |
+
Invoke the ``doit`` method of the expressions involved before
|
207 |
+
taking the limit.
|
208 |
+
|
209 |
+
hints : optional keyword arguments
|
210 |
+
To be passed to ``doit`` methods; only used if deep is True.
|
211 |
+
"""
|
212 |
+
|
213 |
+
e, z, z0, dir = self.args
|
214 |
+
|
215 |
+
if str(dir) == '+-':
|
216 |
+
r = limit(e, z, z0, dir='+')
|
217 |
+
l = limit(e, z, z0, dir='-')
|
218 |
+
if isinstance(r, Limit) and isinstance(l, Limit):
|
219 |
+
if r.args[0] == l.args[0]:
|
220 |
+
return self
|
221 |
+
if r == l:
|
222 |
+
return l
|
223 |
+
if r.is_infinite and l.is_infinite:
|
224 |
+
return S.ComplexInfinity
|
225 |
+
raise ValueError("The limit does not exist since "
|
226 |
+
"left hand limit = %s and right hand limit = %s"
|
227 |
+
% (l, r))
|
228 |
+
|
229 |
+
if z0 is S.ComplexInfinity:
|
230 |
+
raise NotImplementedError("Limits at complex "
|
231 |
+
"infinity are not implemented")
|
232 |
+
|
233 |
+
if z0.is_infinite:
|
234 |
+
cdir = sign(z0)
|
235 |
+
cdir = cdir/abs(cdir)
|
236 |
+
e = e.subs(z, cdir*z)
|
237 |
+
dir = "-"
|
238 |
+
z0 = S.Infinity
|
239 |
+
|
240 |
+
if hints.get('deep', True):
|
241 |
+
e = e.doit(**hints)
|
242 |
+
z = z.doit(**hints)
|
243 |
+
z0 = z0.doit(**hints)
|
244 |
+
|
245 |
+
if e == z:
|
246 |
+
return z0
|
247 |
+
|
248 |
+
if not e.has(z):
|
249 |
+
return e
|
250 |
+
|
251 |
+
if z0 is S.NaN:
|
252 |
+
return S.NaN
|
253 |
+
|
254 |
+
if e.has(*_illegal):
|
255 |
+
return self
|
256 |
+
|
257 |
+
if e.is_Order:
|
258 |
+
return Order(limit(e.expr, z, z0), *e.args[1:])
|
259 |
+
|
260 |
+
cdir = 0
|
261 |
+
if str(dir) == "+":
|
262 |
+
cdir = 1
|
263 |
+
elif str(dir) == "-":
|
264 |
+
cdir = -1
|
265 |
+
|
266 |
+
def set_signs(expr):
|
267 |
+
if not expr.args:
|
268 |
+
return expr
|
269 |
+
newargs = tuple(set_signs(arg) for arg in expr.args)
|
270 |
+
if newargs != expr.args:
|
271 |
+
expr = expr.func(*newargs)
|
272 |
+
abs_flag = isinstance(expr, Abs)
|
273 |
+
arg_flag = isinstance(expr, arg)
|
274 |
+
sign_flag = isinstance(expr, sign)
|
275 |
+
if abs_flag or sign_flag or arg_flag:
|
276 |
+
sig = limit(expr.args[0], z, z0, dir)
|
277 |
+
if sig.is_zero:
|
278 |
+
sig = limit(1/expr.args[0], z, z0, dir)
|
279 |
+
if sig.is_extended_real:
|
280 |
+
if (sig < 0) == True:
|
281 |
+
return (-expr.args[0] if abs_flag else
|
282 |
+
S.NegativeOne if sign_flag else S.Pi)
|
283 |
+
elif (sig > 0) == True:
|
284 |
+
return (expr.args[0] if abs_flag else
|
285 |
+
S.One if sign_flag else S.Zero)
|
286 |
+
return expr
|
287 |
+
|
288 |
+
if e.has(Float):
|
289 |
+
# Convert floats like 0.5 to exact SymPy numbers like S.Half, to
|
290 |
+
# prevent rounding errors which can lead to unexpected execution
|
291 |
+
# of conditional blocks that work on comparisons
|
292 |
+
# Also see comments in https://github.com/sympy/sympy/issues/19453
|
293 |
+
from sympy.simplify.simplify import nsimplify
|
294 |
+
e = nsimplify(e)
|
295 |
+
e = set_signs(e)
|
296 |
+
|
297 |
+
|
298 |
+
if e.is_meromorphic(z, z0):
|
299 |
+
if z0 is S.Infinity:
|
300 |
+
newe = e.subs(z, 1/z)
|
301 |
+
# cdir changes sign as oo- should become 0+
|
302 |
+
cdir = -cdir
|
303 |
+
else:
|
304 |
+
newe = e.subs(z, z + z0)
|
305 |
+
try:
|
306 |
+
coeff, ex = newe.leadterm(z, cdir=cdir)
|
307 |
+
except ValueError:
|
308 |
+
pass
|
309 |
+
else:
|
310 |
+
if ex > 0:
|
311 |
+
return S.Zero
|
312 |
+
elif ex == 0:
|
313 |
+
return coeff
|
314 |
+
if cdir == 1 or not(int(ex) & 1):
|
315 |
+
return S.Infinity*sign(coeff)
|
316 |
+
elif cdir == -1:
|
317 |
+
return S.NegativeInfinity*sign(coeff)
|
318 |
+
else:
|
319 |
+
return S.ComplexInfinity
|
320 |
+
|
321 |
+
if z0 is S.Infinity:
|
322 |
+
if e.is_Mul:
|
323 |
+
e = factor_terms(e)
|
324 |
+
newe = e.subs(z, 1/z)
|
325 |
+
# cdir changes sign as oo- should become 0+
|
326 |
+
cdir = -cdir
|
327 |
+
else:
|
328 |
+
newe = e.subs(z, z + z0)
|
329 |
+
try:
|
330 |
+
coeff, ex = newe.leadterm(z, cdir=cdir)
|
331 |
+
except (ValueError, NotImplementedError, PoleError):
|
332 |
+
# The NotImplementedError catching is for custom functions
|
333 |
+
from sympy.simplify.powsimp import powsimp
|
334 |
+
e = powsimp(e)
|
335 |
+
if e.is_Pow:
|
336 |
+
r = self.pow_heuristics(e)
|
337 |
+
if r is not None:
|
338 |
+
return r
|
339 |
+
try:
|
340 |
+
coeff = newe.as_leading_term(z, cdir=cdir)
|
341 |
+
if coeff != newe and coeff.has(exp):
|
342 |
+
return gruntz(coeff, z, 0, "-" if re(cdir).is_negative else "+")
|
343 |
+
except (ValueError, NotImplementedError, PoleError):
|
344 |
+
pass
|
345 |
+
else:
|
346 |
+
if isinstance(coeff, AccumBounds) and ex == S.Zero:
|
347 |
+
return coeff
|
348 |
+
if coeff.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN):
|
349 |
+
return self
|
350 |
+
if not coeff.has(z):
|
351 |
+
if ex.is_positive:
|
352 |
+
return S.Zero
|
353 |
+
elif ex == 0:
|
354 |
+
return coeff
|
355 |
+
elif ex.is_negative:
|
356 |
+
if cdir == 1:
|
357 |
+
return S.Infinity*sign(coeff)
|
358 |
+
elif cdir == -1:
|
359 |
+
return S.NegativeInfinity*sign(coeff)*S.NegativeOne**(S.One + ex)
|
360 |
+
else:
|
361 |
+
return S.ComplexInfinity
|
362 |
+
else:
|
363 |
+
raise NotImplementedError("Not sure of sign of %s" % ex)
|
364 |
+
|
365 |
+
# gruntz fails on factorials but works with the gamma function
|
366 |
+
# If no factorial term is present, e should remain unchanged.
|
367 |
+
# factorial is defined to be zero for negative inputs (which
|
368 |
+
# differs from gamma) so only rewrite for positive z0.
|
369 |
+
if z0.is_extended_positive:
|
370 |
+
e = e.rewrite(factorial, gamma)
|
371 |
+
|
372 |
+
l = None
|
373 |
+
|
374 |
+
try:
|
375 |
+
r = gruntz(e, z, z0, dir)
|
376 |
+
if r is S.NaN or l is S.NaN:
|
377 |
+
raise PoleError()
|
378 |
+
except (PoleError, ValueError):
|
379 |
+
if l is not None:
|
380 |
+
raise
|
381 |
+
r = heuristics(e, z, z0, dir)
|
382 |
+
if r is None:
|
383 |
+
return self
|
384 |
+
|
385 |
+
return r
|
env-llmeval/lib/python3.10/site-packages/sympy/series/limitseq.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Limits of sequences"""
|
2 |
+
|
3 |
+
from sympy.calculus.accumulationbounds import AccumulationBounds
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.function import PoleError
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import Dummy
|
9 |
+
from sympy.core.sympify import sympify
|
10 |
+
from sympy.functions.combinatorial.numbers import fibonacci
|
11 |
+
from sympy.functions.combinatorial.factorials import factorial, subfactorial
|
12 |
+
from sympy.functions.special.gamma_functions import gamma
|
13 |
+
from sympy.functions.elementary.complexes import Abs
|
14 |
+
from sympy.functions.elementary.miscellaneous import Max, Min
|
15 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
16 |
+
from sympy.series.limits import Limit
|
17 |
+
|
18 |
+
|
19 |
+
def difference_delta(expr, n=None, step=1):
|
20 |
+
"""Difference Operator.
|
21 |
+
|
22 |
+
Explanation
|
23 |
+
===========
|
24 |
+
|
25 |
+
Discrete analog of differential operator. Given a sequence x[n],
|
26 |
+
returns the sequence x[n + step] - x[n].
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import difference_delta as dd
|
32 |
+
>>> from sympy.abc import n
|
33 |
+
>>> dd(n*(n + 1), n)
|
34 |
+
2*n + 2
|
35 |
+
>>> dd(n*(n + 1), n, 2)
|
36 |
+
4*n + 6
|
37 |
+
|
38 |
+
References
|
39 |
+
==========
|
40 |
+
|
41 |
+
.. [1] https://reference.wolfram.com/language/ref/DifferenceDelta.html
|
42 |
+
"""
|
43 |
+
expr = sympify(expr)
|
44 |
+
|
45 |
+
if n is None:
|
46 |
+
f = expr.free_symbols
|
47 |
+
if len(f) == 1:
|
48 |
+
n = f.pop()
|
49 |
+
elif len(f) == 0:
|
50 |
+
return S.Zero
|
51 |
+
else:
|
52 |
+
raise ValueError("Since there is more than one variable in the"
|
53 |
+
" expression, a variable must be supplied to"
|
54 |
+
" take the difference of %s" % expr)
|
55 |
+
step = sympify(step)
|
56 |
+
if step.is_number is False or step.is_finite is False:
|
57 |
+
raise ValueError("Step should be a finite number.")
|
58 |
+
|
59 |
+
if hasattr(expr, '_eval_difference_delta'):
|
60 |
+
result = expr._eval_difference_delta(n, step)
|
61 |
+
if result:
|
62 |
+
return result
|
63 |
+
|
64 |
+
return expr.subs(n, n + step) - expr
|
65 |
+
|
66 |
+
|
67 |
+
def dominant(expr, n):
|
68 |
+
"""Finds the dominant term in a sum, that is a term that dominates
|
69 |
+
every other term.
|
70 |
+
|
71 |
+
Explanation
|
72 |
+
===========
|
73 |
+
|
74 |
+
If limit(a/b, n, oo) is oo then a dominates b.
|
75 |
+
If limit(a/b, n, oo) is 0 then b dominates a.
|
76 |
+
Otherwise, a and b are comparable.
|
77 |
+
|
78 |
+
If there is no unique dominant term, then returns ``None``.
|
79 |
+
|
80 |
+
Examples
|
81 |
+
========
|
82 |
+
|
83 |
+
>>> from sympy import Sum
|
84 |
+
>>> from sympy.series.limitseq import dominant
|
85 |
+
>>> from sympy.abc import n, k
|
86 |
+
>>> dominant(5*n**3 + 4*n**2 + n + 1, n)
|
87 |
+
5*n**3
|
88 |
+
>>> dominant(2**n + Sum(k, (k, 0, n)), n)
|
89 |
+
2**n
|
90 |
+
|
91 |
+
See Also
|
92 |
+
========
|
93 |
+
|
94 |
+
sympy.series.limitseq.dominant
|
95 |
+
"""
|
96 |
+
terms = Add.make_args(expr.expand(func=True))
|
97 |
+
term0 = terms[-1]
|
98 |
+
comp = [term0] # comparable terms
|
99 |
+
for t in terms[:-1]:
|
100 |
+
r = term0/t
|
101 |
+
e = r.gammasimp()
|
102 |
+
if e == r:
|
103 |
+
e = r.factor()
|
104 |
+
l = limit_seq(e, n)
|
105 |
+
if l is None:
|
106 |
+
return None
|
107 |
+
elif l.is_zero:
|
108 |
+
term0 = t
|
109 |
+
comp = [term0]
|
110 |
+
elif l not in [S.Infinity, S.NegativeInfinity]:
|
111 |
+
comp.append(t)
|
112 |
+
if len(comp) > 1:
|
113 |
+
return None
|
114 |
+
return term0
|
115 |
+
|
116 |
+
|
117 |
+
def _limit_inf(expr, n):
|
118 |
+
try:
|
119 |
+
return Limit(expr, n, S.Infinity).doit(deep=False)
|
120 |
+
except (NotImplementedError, PoleError):
|
121 |
+
return None
|
122 |
+
|
123 |
+
|
124 |
+
def _limit_seq(expr, n, trials):
|
125 |
+
from sympy.concrete.summations import Sum
|
126 |
+
|
127 |
+
for i in range(trials):
|
128 |
+
if not expr.has(Sum):
|
129 |
+
result = _limit_inf(expr, n)
|
130 |
+
if result is not None:
|
131 |
+
return result
|
132 |
+
|
133 |
+
num, den = expr.as_numer_denom()
|
134 |
+
if not den.has(n) or not num.has(n):
|
135 |
+
result = _limit_inf(expr.doit(), n)
|
136 |
+
if result is not None:
|
137 |
+
return result
|
138 |
+
return None
|
139 |
+
|
140 |
+
num, den = (difference_delta(t.expand(), n) for t in [num, den])
|
141 |
+
expr = (num / den).gammasimp()
|
142 |
+
|
143 |
+
if not expr.has(Sum):
|
144 |
+
result = _limit_inf(expr, n)
|
145 |
+
if result is not None:
|
146 |
+
return result
|
147 |
+
|
148 |
+
num, den = expr.as_numer_denom()
|
149 |
+
|
150 |
+
num = dominant(num, n)
|
151 |
+
if num is None:
|
152 |
+
return None
|
153 |
+
|
154 |
+
den = dominant(den, n)
|
155 |
+
if den is None:
|
156 |
+
return None
|
157 |
+
|
158 |
+
expr = (num / den).gammasimp()
|
159 |
+
|
160 |
+
|
161 |
+
def limit_seq(expr, n=None, trials=5):
|
162 |
+
"""Finds the limit of a sequence as index ``n`` tends to infinity.
|
163 |
+
|
164 |
+
Parameters
|
165 |
+
==========
|
166 |
+
|
167 |
+
expr : Expr
|
168 |
+
SymPy expression for the ``n-th`` term of the sequence
|
169 |
+
n : Symbol, optional
|
170 |
+
The index of the sequence, an integer that tends to positive
|
171 |
+
infinity. If None, inferred from the expression unless it has
|
172 |
+
multiple symbols.
|
173 |
+
trials: int, optional
|
174 |
+
The algorithm is highly recursive. ``trials`` is a safeguard from
|
175 |
+
infinite recursion in case the limit is not easily computed by the
|
176 |
+
algorithm. Try increasing ``trials`` if the algorithm returns ``None``.
|
177 |
+
|
178 |
+
Admissible Terms
|
179 |
+
================
|
180 |
+
|
181 |
+
The algorithm is designed for sequences built from rational functions,
|
182 |
+
indefinite sums, and indefinite products over an indeterminate n. Terms of
|
183 |
+
alternating sign are also allowed, but more complex oscillatory behavior is
|
184 |
+
not supported.
|
185 |
+
|
186 |
+
Examples
|
187 |
+
========
|
188 |
+
|
189 |
+
>>> from sympy import limit_seq, Sum, binomial
|
190 |
+
>>> from sympy.abc import n, k, m
|
191 |
+
>>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n)
|
192 |
+
5/3
|
193 |
+
>>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n)
|
194 |
+
3/4
|
195 |
+
>>> limit_seq(Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n), n)
|
196 |
+
4
|
197 |
+
|
198 |
+
See Also
|
199 |
+
========
|
200 |
+
|
201 |
+
sympy.series.limitseq.dominant
|
202 |
+
|
203 |
+
References
|
204 |
+
==========
|
205 |
+
|
206 |
+
.. [1] Computing Limits of Sequences - Manuel Kauers
|
207 |
+
"""
|
208 |
+
|
209 |
+
from sympy.concrete.summations import Sum
|
210 |
+
if n is None:
|
211 |
+
free = expr.free_symbols
|
212 |
+
if len(free) == 1:
|
213 |
+
n = free.pop()
|
214 |
+
elif not free:
|
215 |
+
return expr
|
216 |
+
else:
|
217 |
+
raise ValueError("Expression has more than one variable. "
|
218 |
+
"Please specify a variable.")
|
219 |
+
elif n not in expr.free_symbols:
|
220 |
+
return expr
|
221 |
+
|
222 |
+
expr = expr.rewrite(fibonacci, S.GoldenRatio)
|
223 |
+
expr = expr.rewrite(factorial, subfactorial, gamma)
|
224 |
+
n_ = Dummy("n", integer=True, positive=True)
|
225 |
+
n1 = Dummy("n", odd=True, positive=True)
|
226 |
+
n2 = Dummy("n", even=True, positive=True)
|
227 |
+
|
228 |
+
# If there is a negative term raised to a power involving n, or a
|
229 |
+
# trigonometric function, then consider even and odd n separately.
|
230 |
+
powers = (p.as_base_exp() for p in expr.atoms(Pow))
|
231 |
+
if (any(b.is_negative and e.has(n) for b, e in powers) or
|
232 |
+
expr.has(cos, sin)):
|
233 |
+
L1 = _limit_seq(expr.xreplace({n: n1}), n1, trials)
|
234 |
+
if L1 is not None:
|
235 |
+
L2 = _limit_seq(expr.xreplace({n: n2}), n2, trials)
|
236 |
+
if L1 != L2:
|
237 |
+
if L1.is_comparable and L2.is_comparable:
|
238 |
+
return AccumulationBounds(Min(L1, L2), Max(L1, L2))
|
239 |
+
else:
|
240 |
+
return None
|
241 |
+
else:
|
242 |
+
L1 = _limit_seq(expr.xreplace({n: n_}), n_, trials)
|
243 |
+
if L1 is not None:
|
244 |
+
return L1
|
245 |
+
else:
|
246 |
+
if expr.is_Add:
|
247 |
+
limits = [limit_seq(term, n, trials) for term in expr.args]
|
248 |
+
if any(result is None for result in limits):
|
249 |
+
return None
|
250 |
+
else:
|
251 |
+
return Add(*limits)
|
252 |
+
# Maybe the absolute value is easier to deal with (though not if
|
253 |
+
# it has a Sum). If it tends to 0, the limit is 0.
|
254 |
+
elif not expr.has(Sum):
|
255 |
+
lim = _limit_seq(Abs(expr.xreplace({n: n_})), n_, trials)
|
256 |
+
if lim is not None and lim.is_zero:
|
257 |
+
return S.Zero
|
env-llmeval/lib/python3.10/site-packages/sympy/series/order.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, sympify, Expr, Dummy, Add, Mul
|
2 |
+
from sympy.core.cache import cacheit
|
3 |
+
from sympy.core.containers import Tuple
|
4 |
+
from sympy.core.function import Function, PoleError, expand_power_base, expand_log
|
5 |
+
from sympy.core.sorting import default_sort_key
|
6 |
+
from sympy.functions.elementary.exponential import exp, log
|
7 |
+
from sympy.sets.sets import Complement
|
8 |
+
from sympy.utilities.iterables import uniq, is_sequence
|
9 |
+
|
10 |
+
|
11 |
+
class Order(Expr):
|
12 |
+
r""" Represents the limiting behavior of some function.
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
The order of a function characterizes the function based on the limiting
|
18 |
+
behavior of the function as it goes to some limit. Only taking the limit
|
19 |
+
point to be a number is currently supported. This is expressed in
|
20 |
+
big O notation [1]_.
|
21 |
+
|
22 |
+
The formal definition for the order of a function `g(x)` about a point `a`
|
23 |
+
is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if there
|
24 |
+
exists a `\delta > 0` and an `M > 0` such that `|g(x)| \leq M|f(x)|` for
|
25 |
+
`|x-a| < \delta`. This is equivalent to `\limsup_{x \rightarrow a}
|
26 |
+
|g(x)/f(x)| < \infty`.
|
27 |
+
|
28 |
+
Let's illustrate it on the following example by taking the expansion of
|
29 |
+
`\sin(x)` about 0:
|
30 |
+
|
31 |
+
.. math ::
|
32 |
+
\sin(x) = x - x^3/3! + O(x^5)
|
33 |
+
|
34 |
+
where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition
|
35 |
+
of `O`, there is a `\delta > 0` and an `M` such that:
|
36 |
+
|
37 |
+
.. math ::
|
38 |
+
|x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta
|
39 |
+
|
40 |
+
or by the alternate definition:
|
41 |
+
|
42 |
+
.. math ::
|
43 |
+
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty
|
44 |
+
|
45 |
+
which surely is true, because
|
46 |
+
|
47 |
+
.. math ::
|
48 |
+
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5!
|
49 |
+
|
50 |
+
|
51 |
+
As it is usually used, the order of a function can be intuitively thought
|
52 |
+
of representing all terms of powers greater than the one specified. For
|
53 |
+
example, `O(x^3)` corresponds to any terms proportional to `x^3,
|
54 |
+
x^4,\ldots` and any higher power. For a polynomial, this leaves terms
|
55 |
+
proportional to `x^2`, `x` and constants.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy import O, oo, cos, pi
|
61 |
+
>>> from sympy.abc import x, y
|
62 |
+
|
63 |
+
>>> O(x + x**2)
|
64 |
+
O(x)
|
65 |
+
>>> O(x + x**2, (x, 0))
|
66 |
+
O(x)
|
67 |
+
>>> O(x + x**2, (x, oo))
|
68 |
+
O(x**2, (x, oo))
|
69 |
+
|
70 |
+
>>> O(1 + x*y)
|
71 |
+
O(1, x, y)
|
72 |
+
>>> O(1 + x*y, (x, 0), (y, 0))
|
73 |
+
O(1, x, y)
|
74 |
+
>>> O(1 + x*y, (x, oo), (y, oo))
|
75 |
+
O(x*y, (x, oo), (y, oo))
|
76 |
+
|
77 |
+
>>> O(1) in O(1, x)
|
78 |
+
True
|
79 |
+
>>> O(1, x) in O(1)
|
80 |
+
False
|
81 |
+
>>> O(x) in O(1, x)
|
82 |
+
True
|
83 |
+
>>> O(x**2) in O(x)
|
84 |
+
True
|
85 |
+
|
86 |
+
>>> O(x)*x
|
87 |
+
O(x**2)
|
88 |
+
>>> O(x) - O(x)
|
89 |
+
O(x)
|
90 |
+
>>> O(cos(x))
|
91 |
+
O(1)
|
92 |
+
>>> O(cos(x), (x, pi/2))
|
93 |
+
O(x - pi/2, (x, pi/2))
|
94 |
+
|
95 |
+
References
|
96 |
+
==========
|
97 |
+
|
98 |
+
.. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_
|
99 |
+
|
100 |
+
Notes
|
101 |
+
=====
|
102 |
+
|
103 |
+
In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading
|
104 |
+
term. ``O(f(x), x)`` is automatically transformed to
|
105 |
+
``O(f(x).as_leading_term(x),x)``.
|
106 |
+
|
107 |
+
``O(expr*f(x), x)`` is ``O(f(x), x)``
|
108 |
+
|
109 |
+
``O(expr, x)`` is ``O(1)``
|
110 |
+
|
111 |
+
``O(0, x)`` is 0.
|
112 |
+
|
113 |
+
Multivariate O is also supported:
|
114 |
+
|
115 |
+
``O(f(x, y), x, y)`` is transformed to
|
116 |
+
``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)``
|
117 |
+
|
118 |
+
In the multivariate case, it is assumed the limits w.r.t. the various
|
119 |
+
symbols commute.
|
120 |
+
|
121 |
+
If no symbols are passed then all symbols in the expression are used
|
122 |
+
and the limit point is assumed to be zero.
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
is_Order = True
|
127 |
+
|
128 |
+
__slots__ = ()
|
129 |
+
|
130 |
+
@cacheit
|
131 |
+
def __new__(cls, expr, *args, **kwargs):
|
132 |
+
expr = sympify(expr)
|
133 |
+
|
134 |
+
if not args:
|
135 |
+
if expr.is_Order:
|
136 |
+
variables = expr.variables
|
137 |
+
point = expr.point
|
138 |
+
else:
|
139 |
+
variables = list(expr.free_symbols)
|
140 |
+
point = [S.Zero]*len(variables)
|
141 |
+
else:
|
142 |
+
args = list(args if is_sequence(args) else [args])
|
143 |
+
variables, point = [], []
|
144 |
+
if is_sequence(args[0]):
|
145 |
+
for a in args:
|
146 |
+
v, p = list(map(sympify, a))
|
147 |
+
variables.append(v)
|
148 |
+
point.append(p)
|
149 |
+
else:
|
150 |
+
variables = list(map(sympify, args))
|
151 |
+
point = [S.Zero]*len(variables)
|
152 |
+
|
153 |
+
if not all(v.is_symbol for v in variables):
|
154 |
+
raise TypeError('Variables are not symbols, got %s' % variables)
|
155 |
+
|
156 |
+
if len(list(uniq(variables))) != len(variables):
|
157 |
+
raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)
|
158 |
+
|
159 |
+
if expr.is_Order:
|
160 |
+
expr_vp = dict(expr.args[1:])
|
161 |
+
new_vp = dict(expr_vp)
|
162 |
+
vp = dict(zip(variables, point))
|
163 |
+
for v, p in vp.items():
|
164 |
+
if v in new_vp.keys():
|
165 |
+
if p != new_vp[v]:
|
166 |
+
raise NotImplementedError(
|
167 |
+
"Mixing Order at different points is not supported.")
|
168 |
+
else:
|
169 |
+
new_vp[v] = p
|
170 |
+
if set(expr_vp.keys()) == set(new_vp.keys()):
|
171 |
+
return expr
|
172 |
+
else:
|
173 |
+
variables = list(new_vp.keys())
|
174 |
+
point = [new_vp[v] for v in variables]
|
175 |
+
|
176 |
+
if expr is S.NaN:
|
177 |
+
return S.NaN
|
178 |
+
|
179 |
+
if any(x in p.free_symbols for x in variables for p in point):
|
180 |
+
raise ValueError('Got %s as a point.' % point)
|
181 |
+
|
182 |
+
if variables:
|
183 |
+
if any(p != point[0] for p in point):
|
184 |
+
raise NotImplementedError(
|
185 |
+
"Multivariable orders at different points are not supported.")
|
186 |
+
if point[0] in (S.Infinity, S.Infinity*S.ImaginaryUnit):
|
187 |
+
s = {k: 1/Dummy() for k in variables}
|
188 |
+
rs = {1/v: 1/k for k, v in s.items()}
|
189 |
+
ps = [S.Zero for p in point]
|
190 |
+
elif point[0] in (S.NegativeInfinity, S.NegativeInfinity*S.ImaginaryUnit):
|
191 |
+
s = {k: -1/Dummy() for k in variables}
|
192 |
+
rs = {-1/v: -1/k for k, v in s.items()}
|
193 |
+
ps = [S.Zero for p in point]
|
194 |
+
elif point[0] is not S.Zero:
|
195 |
+
s = {k: Dummy() + point[0] for k in variables}
|
196 |
+
rs = {(v - point[0]).together(): k - point[0] for k, v in s.items()}
|
197 |
+
ps = [S.Zero for p in point]
|
198 |
+
else:
|
199 |
+
s = ()
|
200 |
+
rs = ()
|
201 |
+
ps = list(point)
|
202 |
+
|
203 |
+
expr = expr.subs(s)
|
204 |
+
|
205 |
+
if expr.is_Add:
|
206 |
+
expr = expr.factor()
|
207 |
+
|
208 |
+
if s:
|
209 |
+
args = tuple([r[0] for r in rs.items()])
|
210 |
+
else:
|
211 |
+
args = tuple(variables)
|
212 |
+
|
213 |
+
if len(variables) > 1:
|
214 |
+
# XXX: better way? We need this expand() to
|
215 |
+
# workaround e.g: expr = x*(x + y).
|
216 |
+
# (x*(x + y)).as_leading_term(x, y) currently returns
|
217 |
+
# x*y (wrong order term!). That's why we want to deal with
|
218 |
+
# expand()'ed expr (handled in "if expr.is_Add" branch below).
|
219 |
+
expr = expr.expand()
|
220 |
+
|
221 |
+
old_expr = None
|
222 |
+
while old_expr != expr:
|
223 |
+
old_expr = expr
|
224 |
+
if expr.is_Add:
|
225 |
+
lst = expr.extract_leading_order(args)
|
226 |
+
expr = Add(*[f.expr for (e, f) in lst])
|
227 |
+
|
228 |
+
elif expr:
|
229 |
+
try:
|
230 |
+
expr = expr.as_leading_term(*args)
|
231 |
+
except PoleError:
|
232 |
+
if isinstance(expr, Function) or\
|
233 |
+
all(isinstance(arg, Function) for arg in expr.args):
|
234 |
+
# It is not possible to simplify an expression
|
235 |
+
# containing only functions (which raise error on
|
236 |
+
# call to leading term) further
|
237 |
+
pass
|
238 |
+
else:
|
239 |
+
orders = []
|
240 |
+
pts = tuple(zip(args, ps))
|
241 |
+
for arg in expr.args:
|
242 |
+
try:
|
243 |
+
lt = arg.as_leading_term(*args)
|
244 |
+
except PoleError:
|
245 |
+
lt = arg
|
246 |
+
if lt not in args:
|
247 |
+
order = Order(lt)
|
248 |
+
else:
|
249 |
+
order = Order(lt, *pts)
|
250 |
+
orders.append(order)
|
251 |
+
if expr.is_Add:
|
252 |
+
new_expr = Order(Add(*orders), *pts)
|
253 |
+
if new_expr.is_Add:
|
254 |
+
new_expr = Order(Add(*[a.expr for a in new_expr.args]), *pts)
|
255 |
+
expr = new_expr.expr
|
256 |
+
elif expr.is_Mul:
|
257 |
+
expr = Mul(*[a.expr for a in orders])
|
258 |
+
elif expr.is_Pow:
|
259 |
+
e = expr.exp
|
260 |
+
b = expr.base
|
261 |
+
expr = exp(e * log(b))
|
262 |
+
|
263 |
+
# It would probably be better to handle this somewhere
|
264 |
+
# else. This is needed for a testcase in which there is a
|
265 |
+
# symbol with the assumptions zero=True.
|
266 |
+
if expr.is_zero:
|
267 |
+
expr = S.Zero
|
268 |
+
else:
|
269 |
+
expr = expr.as_independent(*args, as_Add=False)[1]
|
270 |
+
|
271 |
+
expr = expand_power_base(expr)
|
272 |
+
expr = expand_log(expr)
|
273 |
+
|
274 |
+
if len(args) == 1:
|
275 |
+
# The definition of O(f(x)) symbol explicitly stated that
|
276 |
+
# the argument of f(x) is irrelevant. That's why we can
|
277 |
+
# combine some power exponents (only "on top" of the
|
278 |
+
# expression tree for f(x)), e.g.:
|
279 |
+
# x**p * (-x)**q -> x**(p+q) for real p, q.
|
280 |
+
x = args[0]
|
281 |
+
margs = list(Mul.make_args(
|
282 |
+
expr.as_independent(x, as_Add=False)[1]))
|
283 |
+
|
284 |
+
for i, t in enumerate(margs):
|
285 |
+
if t.is_Pow:
|
286 |
+
b, q = t.args
|
287 |
+
if b in (x, -x) and q.is_real and not q.has(x):
|
288 |
+
margs[i] = x**q
|
289 |
+
elif b.is_Pow and not b.exp.has(x):
|
290 |
+
b, r = b.args
|
291 |
+
if b in (x, -x) and r.is_real:
|
292 |
+
margs[i] = x**(r*q)
|
293 |
+
elif b.is_Mul and b.args[0] is S.NegativeOne:
|
294 |
+
b = -b
|
295 |
+
if b.is_Pow and not b.exp.has(x):
|
296 |
+
b, r = b.args
|
297 |
+
if b in (x, -x) and r.is_real:
|
298 |
+
margs[i] = x**(r*q)
|
299 |
+
|
300 |
+
expr = Mul(*margs)
|
301 |
+
|
302 |
+
expr = expr.subs(rs)
|
303 |
+
|
304 |
+
if expr.is_Order:
|
305 |
+
expr = expr.expr
|
306 |
+
|
307 |
+
if not expr.has(*variables) and not expr.is_zero:
|
308 |
+
expr = S.One
|
309 |
+
|
310 |
+
# create Order instance:
|
311 |
+
vp = dict(zip(variables, point))
|
312 |
+
variables.sort(key=default_sort_key)
|
313 |
+
point = [vp[v] for v in variables]
|
314 |
+
args = (expr,) + Tuple(*zip(variables, point))
|
315 |
+
obj = Expr.__new__(cls, *args)
|
316 |
+
return obj
|
317 |
+
|
318 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
319 |
+
return self
|
320 |
+
|
321 |
+
@property
|
322 |
+
def expr(self):
|
323 |
+
return self.args[0]
|
324 |
+
|
325 |
+
@property
|
326 |
+
def variables(self):
|
327 |
+
if self.args[1:]:
|
328 |
+
return tuple(x[0] for x in self.args[1:])
|
329 |
+
else:
|
330 |
+
return ()
|
331 |
+
|
332 |
+
@property
|
333 |
+
def point(self):
|
334 |
+
if self.args[1:]:
|
335 |
+
return tuple(x[1] for x in self.args[1:])
|
336 |
+
else:
|
337 |
+
return ()
|
338 |
+
|
339 |
+
@property
|
340 |
+
def free_symbols(self):
|
341 |
+
return self.expr.free_symbols | set(self.variables)
|
342 |
+
|
343 |
+
def _eval_power(b, e):
|
344 |
+
if e.is_Number and e.is_nonnegative:
|
345 |
+
return b.func(b.expr ** e, *b.args[1:])
|
346 |
+
if e == O(1):
|
347 |
+
return b
|
348 |
+
return
|
349 |
+
|
350 |
+
def as_expr_variables(self, order_symbols):
|
351 |
+
if order_symbols is None:
|
352 |
+
order_symbols = self.args[1:]
|
353 |
+
else:
|
354 |
+
if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and
|
355 |
+
not all(p == self.point[0] for p in self.point)): # pragma: no cover
|
356 |
+
raise NotImplementedError('Order at points other than 0 '
|
357 |
+
'or oo not supported, got %s as a point.' % self.point)
|
358 |
+
if order_symbols and order_symbols[0][1] != self.point[0]:
|
359 |
+
raise NotImplementedError(
|
360 |
+
"Multiplying Order at different points is not supported.")
|
361 |
+
order_symbols = dict(order_symbols)
|
362 |
+
for s, p in dict(self.args[1:]).items():
|
363 |
+
if s not in order_symbols.keys():
|
364 |
+
order_symbols[s] = p
|
365 |
+
order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
|
366 |
+
return self.expr, tuple(order_symbols)
|
367 |
+
|
368 |
+
def removeO(self):
|
369 |
+
return S.Zero
|
370 |
+
|
371 |
+
def getO(self):
|
372 |
+
return self
|
373 |
+
|
374 |
+
@cacheit
|
375 |
+
def contains(self, expr):
|
376 |
+
r"""
|
377 |
+
Return True if expr belongs to Order(self.expr, \*self.variables).
|
378 |
+
Return False if self belongs to expr.
|
379 |
+
Return None if the inclusion relation cannot be determined
|
380 |
+
(e.g. when self and expr have different symbols).
|
381 |
+
"""
|
382 |
+
expr = sympify(expr)
|
383 |
+
if expr.is_zero:
|
384 |
+
return True
|
385 |
+
if expr is S.NaN:
|
386 |
+
return False
|
387 |
+
point = self.point[0] if self.point else S.Zero
|
388 |
+
if expr.is_Order:
|
389 |
+
if (any(p != point for p in expr.point) or
|
390 |
+
any(p != point for p in self.point)):
|
391 |
+
return None
|
392 |
+
if expr.expr == self.expr:
|
393 |
+
# O(1) + O(1), O(1) + O(1, x), etc.
|
394 |
+
return all(x in self.args[1:] for x in expr.args[1:])
|
395 |
+
if expr.expr.is_Add:
|
396 |
+
return all(self.contains(x) for x in expr.expr.args)
|
397 |
+
if self.expr.is_Add and point.is_zero:
|
398 |
+
return any(self.func(x, *self.args[1:]).contains(expr)
|
399 |
+
for x in self.expr.args)
|
400 |
+
if self.variables and expr.variables:
|
401 |
+
common_symbols = tuple(
|
402 |
+
[s for s in self.variables if s in expr.variables])
|
403 |
+
elif self.variables:
|
404 |
+
common_symbols = self.variables
|
405 |
+
else:
|
406 |
+
common_symbols = expr.variables
|
407 |
+
if not common_symbols:
|
408 |
+
return None
|
409 |
+
if (self.expr.is_Pow and len(self.variables) == 1
|
410 |
+
and self.variables == expr.variables):
|
411 |
+
symbol = self.variables[0]
|
412 |
+
other = expr.expr.as_independent(symbol, as_Add=False)[1]
|
413 |
+
if (other.is_Pow and other.base == symbol and
|
414 |
+
self.expr.base == symbol):
|
415 |
+
if point.is_zero:
|
416 |
+
rv = (self.expr.exp - other.exp).is_nonpositive
|
417 |
+
if point.is_infinite:
|
418 |
+
rv = (self.expr.exp - other.exp).is_nonnegative
|
419 |
+
if rv is not None:
|
420 |
+
return rv
|
421 |
+
|
422 |
+
from sympy.simplify.powsimp import powsimp
|
423 |
+
r = None
|
424 |
+
ratio = self.expr/expr.expr
|
425 |
+
ratio = powsimp(ratio, deep=True, combine='exp')
|
426 |
+
for s in common_symbols:
|
427 |
+
from sympy.series.limits import Limit
|
428 |
+
l = Limit(ratio, s, point).doit(heuristics=False)
|
429 |
+
if not isinstance(l, Limit):
|
430 |
+
l = l != 0
|
431 |
+
else:
|
432 |
+
l = None
|
433 |
+
if r is None:
|
434 |
+
r = l
|
435 |
+
else:
|
436 |
+
if r != l:
|
437 |
+
return
|
438 |
+
return r
|
439 |
+
|
440 |
+
if self.expr.is_Pow and len(self.variables) == 1:
|
441 |
+
symbol = self.variables[0]
|
442 |
+
other = expr.as_independent(symbol, as_Add=False)[1]
|
443 |
+
if (other.is_Pow and other.base == symbol and
|
444 |
+
self.expr.base == symbol):
|
445 |
+
if point.is_zero:
|
446 |
+
rv = (self.expr.exp - other.exp).is_nonpositive
|
447 |
+
if point.is_infinite:
|
448 |
+
rv = (self.expr.exp - other.exp).is_nonnegative
|
449 |
+
if rv is not None:
|
450 |
+
return rv
|
451 |
+
|
452 |
+
obj = self.func(expr, *self.args[1:])
|
453 |
+
return self.contains(obj)
|
454 |
+
|
455 |
+
def __contains__(self, other):
|
456 |
+
result = self.contains(other)
|
457 |
+
if result is None:
|
458 |
+
raise TypeError('contains did not evaluate to a bool')
|
459 |
+
return result
|
460 |
+
|
461 |
+
def _eval_subs(self, old, new):
|
462 |
+
if old in self.variables:
|
463 |
+
newexpr = self.expr.subs(old, new)
|
464 |
+
i = self.variables.index(old)
|
465 |
+
newvars = list(self.variables)
|
466 |
+
newpt = list(self.point)
|
467 |
+
if new.is_symbol:
|
468 |
+
newvars[i] = new
|
469 |
+
else:
|
470 |
+
syms = new.free_symbols
|
471 |
+
if len(syms) == 1 or old in syms:
|
472 |
+
if old in syms:
|
473 |
+
var = self.variables[i]
|
474 |
+
else:
|
475 |
+
var = syms.pop()
|
476 |
+
# First, try to substitute self.point in the "new"
|
477 |
+
# expr to see if this is a fixed point.
|
478 |
+
# E.g. O(y).subs(y, sin(x))
|
479 |
+
point = new.subs(var, self.point[i])
|
480 |
+
if point != self.point[i]:
|
481 |
+
from sympy.solvers.solveset import solveset
|
482 |
+
d = Dummy()
|
483 |
+
sol = solveset(old - new.subs(var, d), d)
|
484 |
+
if isinstance(sol, Complement):
|
485 |
+
e1 = sol.args[0]
|
486 |
+
e2 = sol.args[1]
|
487 |
+
sol = set(e1) - set(e2)
|
488 |
+
res = [dict(zip((d, ), sol))]
|
489 |
+
point = d.subs(res[0]).limit(old, self.point[i])
|
490 |
+
newvars[i] = var
|
491 |
+
newpt[i] = point
|
492 |
+
elif old not in syms:
|
493 |
+
del newvars[i], newpt[i]
|
494 |
+
if not syms and new == self.point[i]:
|
495 |
+
newvars.extend(syms)
|
496 |
+
newpt.extend([S.Zero]*len(syms))
|
497 |
+
else:
|
498 |
+
return
|
499 |
+
return Order(newexpr, *zip(newvars, newpt))
|
500 |
+
|
501 |
+
def _eval_conjugate(self):
|
502 |
+
expr = self.expr._eval_conjugate()
|
503 |
+
if expr is not None:
|
504 |
+
return self.func(expr, *self.args[1:])
|
505 |
+
|
506 |
+
def _eval_derivative(self, x):
|
507 |
+
return self.func(self.expr.diff(x), *self.args[1:]) or self
|
508 |
+
|
509 |
+
def _eval_transpose(self):
|
510 |
+
expr = self.expr._eval_transpose()
|
511 |
+
if expr is not None:
|
512 |
+
return self.func(expr, *self.args[1:])
|
513 |
+
|
514 |
+
def __neg__(self):
|
515 |
+
return self
|
516 |
+
|
517 |
+
O = Order
|