applied-ai-018 commited on
Commit
6e3e29d
·
verified ·
1 Parent(s): 73a76f1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py +5 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py +0 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py +0 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py +782 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py +108 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py +735 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__init__.py +0 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_body.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_functions.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_jointsmethod.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane2.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane3.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane4.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_linearize.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_method.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_rigidbody.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_body.py +319 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_functions.py +292 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane.py +532 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane2.py +462 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane3.py +293 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_lagrange.py +247 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_linearize.py +334 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_particle.py +63 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_rigidbody.py +161 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/boson.py +259 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/cartesian.py +341 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/cg.py +754 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py +488 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py +239 -0
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ __all__ = ['Beam',
2
+ 'Truss']
3
+
4
+ from .beam import Beam
5
+ from .truss import Truss
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (307 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc ADDED
Binary file (120 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc ADDED
Binary file (22.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (212 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import expand
2
+ from sympy.core.numbers import (Rational, pi)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import (Symbol, symbols)
5
+ from sympy.sets.sets import Interval
6
+ from sympy.simplify.simplify import simplify
7
+ from sympy.physics.continuum_mechanics.beam import Beam
8
+ from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log
9
+ from sympy.testing.pytest import raises
10
+ from sympy.physics.units import meter, newton, kilo, giga, milli
11
+ from sympy.physics.continuum_mechanics.beam import Beam3D
12
+ from sympy.geometry import Circle, Polygon, Point2D, Triangle
13
+ from sympy.core.sympify import sympify
14
+
15
+ x = Symbol('x')
16
+ y = Symbol('y')
17
+ R1, R2 = symbols('R1, R2')
18
+
19
+
20
+ def test_Beam():
21
+ E = Symbol('E')
22
+ E_1 = Symbol('E_1')
23
+ I = Symbol('I')
24
+ I_1 = Symbol('I_1')
25
+ A = Symbol('A')
26
+
27
+ b = Beam(1, E, I)
28
+ assert b.length == 1
29
+ assert b.elastic_modulus == E
30
+ assert b.second_moment == I
31
+ assert b.variable == x
32
+
33
+ # Test the length setter
34
+ b.length = 4
35
+ assert b.length == 4
36
+
37
+ # Test the E setter
38
+ b.elastic_modulus = E_1
39
+ assert b.elastic_modulus == E_1
40
+
41
+ # Test the I setter
42
+ b.second_moment = I_1
43
+ assert b.second_moment is I_1
44
+
45
+ # Test the variable setter
46
+ b.variable = y
47
+ assert b.variable is y
48
+
49
+ # Test for all boundary conditions.
50
+ b.bc_deflection = [(0, 2)]
51
+ b.bc_slope = [(0, 1)]
52
+ assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
53
+
54
+ # Test for slope boundary condition method
55
+ b.bc_slope.extend([(4, 3), (5, 0)])
56
+ s_bcs = b.bc_slope
57
+ assert s_bcs == [(0, 1), (4, 3), (5, 0)]
58
+
59
+ # Test for deflection boundary condition method
60
+ b.bc_deflection.extend([(4, 3), (5, 0)])
61
+ d_bcs = b.bc_deflection
62
+ assert d_bcs == [(0, 2), (4, 3), (5, 0)]
63
+
64
+ # Test for updated boundary conditions
65
+ bcs_new = b.boundary_conditions
66
+ assert bcs_new == {
67
+ 'deflection': [(0, 2), (4, 3), (5, 0)],
68
+ 'slope': [(0, 1), (4, 3), (5, 0)]}
69
+
70
+ b1 = Beam(30, E, I)
71
+ b1.apply_load(-8, 0, -1)
72
+ b1.apply_load(R1, 10, -1)
73
+ b1.apply_load(R2, 30, -1)
74
+ b1.apply_load(120, 30, -2)
75
+ b1.bc_deflection = [(10, 0), (30, 0)]
76
+ b1.solve_for_reaction_loads(R1, R2)
77
+
78
+ # Test for finding reaction forces
79
+ p = b1.reaction_loads
80
+ q = {R1: 6, R2: 2}
81
+ assert p == q
82
+
83
+ # Test for load distribution function.
84
+ p = b1.load
85
+ q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \
86
+ + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
87
+ assert p == q
88
+
89
+ # Test for shear force distribution function
90
+ p = b1.shear_force()
91
+ q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
92
+ - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
93
+ assert p == q
94
+
95
+ # Test for shear stress distribution function
96
+ p = b1.shear_stress()
97
+ q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
98
+ - 120*SingularityFunction(x, 30, -1) \
99
+ - 2*SingularityFunction(x, 30, 0))/A
100
+ assert p==q
101
+
102
+ # Test for bending moment distribution function
103
+ p = b1.bending_moment()
104
+ q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \
105
+ - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
106
+ assert p == q
107
+
108
+ # Test for slope distribution function
109
+ p = b1.slope()
110
+ q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \
111
+ + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \
112
+ + Rational(4000, 3)
113
+ assert p == q/(E*I)
114
+
115
+ # Test for deflection distribution function
116
+ p = b1.deflection()
117
+ q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \
118
+ + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \
119
+ + SingularityFunction(x, 30, 3)/3 - 12000
120
+ assert p == q/(E*I)
121
+
122
+ # Test using symbols
123
+ l = Symbol('l')
124
+ w0 = Symbol('w0')
125
+ w2 = Symbol('w2')
126
+ a1 = Symbol('a1')
127
+ c = Symbol('c')
128
+ c1 = Symbol('c1')
129
+ d = Symbol('d')
130
+ e = Symbol('e')
131
+ f = Symbol('f')
132
+
133
+ b2 = Beam(l, E, I)
134
+
135
+ b2.apply_load(w0, a1, 1)
136
+ b2.apply_load(w2, c1, -1)
137
+
138
+ b2.bc_deflection = [(c, d)]
139
+ b2.bc_slope = [(e, f)]
140
+
141
+ # Test for load distribution function.
142
+ p = b2.load
143
+ q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
144
+ assert p == q
145
+
146
+ # Test for shear force distribution function
147
+ p = b2.shear_force()
148
+ q = -w0*SingularityFunction(x, a1, 2)/2 \
149
+ - w2*SingularityFunction(x, c1, 0)
150
+ assert p == q
151
+
152
+ # Test for shear stress distribution function
153
+ p = b2.shear_stress()
154
+ q = (-w0*SingularityFunction(x, a1, 2)/2 \
155
+ - w2*SingularityFunction(x, c1, 0))/A
156
+ assert p == q
157
+
158
+ # Test for bending moment distribution function
159
+ p = b2.bending_moment()
160
+ q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1)
161
+ assert p == q
162
+
163
+ # Test for slope distribution function
164
+ p = b2.slope()
165
+ q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
166
+ assert expand(p) == expand(q)
167
+
168
+ # Test for deflection distribution function
169
+ p = b2.deflection()
170
+ q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \
171
+ - w2*SingularityFunction(e, c1, 2)/2)/(E*I) \
172
+ + (w0*SingularityFunction(x, a1, 5)/120 \
173
+ + w2*SingularityFunction(x, c1, 3)/6)/(E*I) \
174
+ + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \
175
+ + c*w2*SingularityFunction(e, c1, 2)/2 \
176
+ - w0*SingularityFunction(c, a1, 5)/120 \
177
+ - w2*SingularityFunction(c, c1, 3)/6)/(E*I)
178
+ assert simplify(p - q) == 0
179
+
180
+ b3 = Beam(9, E, I, 2)
181
+ b3.apply_load(value=-2, start=2, order=2, end=3)
182
+ b3.bc_slope.append((0, 2))
183
+ C3 = symbols('C3')
184
+ C4 = symbols('C4')
185
+
186
+ p = b3.load
187
+ q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \
188
+ + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
189
+ assert p == q
190
+
191
+ p = b3.shear_force()
192
+ q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \
193
+ - 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3
194
+ assert p == q
195
+
196
+ p = b3.shear_stress()
197
+ q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \
198
+ - 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3
199
+ assert p == q
200
+
201
+ p = b3.slope()
202
+ q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \
203
+ - SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I)
204
+ assert p == q
205
+
206
+ p = b3.deflection()
207
+ q = 2*x - (SingularityFunction(x, 2, 6)/180 \
208
+ - SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \
209
+ - SingularityFunction(x, 3, 6)/180)/(E*I)
210
+ assert p == q + C4
211
+
212
+ b4 = Beam(4, E, I, 3)
213
+ b4.apply_load(-3, 0, 0, end=3)
214
+
215
+ p = b4.load
216
+ q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
217
+ assert p == q
218
+
219
+ p = b4.shear_force()
220
+ q = 3*SingularityFunction(x, 0, 1) \
221
+ - 3*SingularityFunction(x, 3, 1)
222
+ assert p == q
223
+
224
+ p = b4.shear_stress()
225
+ q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1)
226
+ assert p == q
227
+
228
+ p = b4.slope()
229
+ q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
230
+ assert p == q/(E*I) + C3
231
+
232
+ p = b4.deflection()
233
+ q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
234
+ assert p == q/(E*I) + C3*x + C4
235
+
236
+ # can't use end with point loads
237
+ raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
238
+ with raises(TypeError):
239
+ b4.variable = 1
240
+
241
+
242
+ def test_insufficient_bconditions():
243
+ # Test cases when required number of boundary conditions
244
+ # are not provided to solve the integration constants.
245
+ L = symbols('L', positive=True)
246
+ E, I, P, a3, a4 = symbols('E I P a3 a4')
247
+
248
+ b = Beam(L, E, I, base_char='a')
249
+ b.apply_load(R2, L, -1)
250
+ b.apply_load(R1, 0, -1)
251
+ b.apply_load(-P, L/2, -1)
252
+ b.solve_for_reaction_loads(R1, R2)
253
+
254
+ p = b.slope()
255
+ q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
256
+ assert p == q/(E*I) + a3
257
+
258
+ p = b.deflection()
259
+ q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
260
+ assert p == q/(E*I) + a3*x + a4
261
+
262
+ b.bc_deflection = [(0, 0)]
263
+ p = b.deflection()
264
+ q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
265
+ assert p == q/(E*I)
266
+
267
+ b.bc_deflection = [(0, 0), (L, 0)]
268
+ p = b.deflection()
269
+ q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
270
+ assert p == q/(E*I)
271
+
272
+
273
+ def test_statically_indeterminate():
274
+ E = Symbol('E')
275
+ I = Symbol('I')
276
+ M1, M2 = symbols('M1, M2')
277
+ F = Symbol('F')
278
+ l = Symbol('l', positive=True)
279
+
280
+ b5 = Beam(l, E, I)
281
+ b5.bc_deflection = [(0, 0),(l, 0)]
282
+ b5.bc_slope = [(0, 0),(l, 0)]
283
+
284
+ b5.apply_load(R1, 0, -1)
285
+ b5.apply_load(M1, 0, -2)
286
+ b5.apply_load(R2, l, -1)
287
+ b5.apply_load(M2, l, -2)
288
+ b5.apply_load(-F, l/2, -1)
289
+
290
+ b5.solve_for_reaction_loads(R1, R2, M1, M2)
291
+ p = b5.reaction_loads
292
+ q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8}
293
+ assert p == q
294
+
295
+
296
+ def test_beam_units():
297
+ E = Symbol('E')
298
+ I = Symbol('I')
299
+ R1, R2 = symbols('R1, R2')
300
+
301
+ kN = kilo*newton
302
+ gN = giga*newton
303
+
304
+ b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4)
305
+ b.apply_load(5*kN, 2*meter, -1)
306
+ b.apply_load(R1, 0*meter, -1)
307
+ b.apply_load(R2, 8*meter, -1)
308
+ b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter)
309
+ b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
310
+ b.solve_for_reaction_loads(R1, R2)
311
+ assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}
312
+
313
+ b = Beam(3*meter, E*newton/meter**2, I*meter**4)
314
+ b.apply_load(8*kN, 1*meter, -1)
315
+ b.apply_load(R1, 0*meter, -1)
316
+ b.apply_load(R2, 3*meter, -1)
317
+ b.apply_load(12*kN*meter, 2*meter, -2)
318
+ b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
319
+ b.solve_for_reaction_loads(R1, R2)
320
+ assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)}
321
+ assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
322
+
323
+
324
+ def test_variable_moment():
325
+ E = Symbol('E')
326
+ I = Symbol('I')
327
+
328
+ b = Beam(4, E, 2*(4 - x))
329
+ b.apply_load(20, 4, -1)
330
+ R, M = symbols('R, M')
331
+ b.apply_load(R, 0, -1)
332
+ b.apply_load(M, 0, -2)
333
+ b.bc_deflection = [(0, 0)]
334
+ b.bc_slope = [(0, 0)]
335
+ b.solve_for_reaction_loads(R, M)
336
+ assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
337
+ - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
338
+ assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
339
+ - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
340
+ + 40*SingularityFunction(x, 4, 1))/E).expand()
341
+
342
+ b = Beam(4, E - x, I)
343
+ b.apply_load(20, 4, -1)
344
+ R, M = symbols('R, M')
345
+ b.apply_load(R, 0, -1)
346
+ b.apply_load(M, 0, -2)
347
+ b.bc_deflection = [(0, 0)]
348
+ b.bc_slope = [(0, 0)]
349
+ b.solve_for_reaction_loads(R, M)
350
+ assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
351
+ + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
352
+ + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
353
+ + x - 4)*SingularityFunction(x, 4, 0))/I).expand()
354
+
355
+
356
+ def test_composite_beam():
357
+ E = Symbol('E')
358
+ I = Symbol('I')
359
+ b1 = Beam(2, E, 1.5*I)
360
+ b2 = Beam(2, E, I)
361
+ b = b1.join(b2, "fixed")
362
+ b.apply_load(-20, 0, -1)
363
+ b.apply_load(80, 0, -2)
364
+ b.apply_load(20, 4, -1)
365
+ b.bc_slope = [(0, 0)]
366
+ b.bc_deflection = [(0, 0)]
367
+ assert b.length == 4
368
+ assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4))
369
+ assert b.slope().subs(x, 4) == 120.0/(E*I)
370
+ assert b.slope().subs(x, 2) == 80.0/(E*I)
371
+ assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I)
372
+
373
+ l = symbols('l', positive=True)
374
+ R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
375
+ b1 = Beam(2*l, E, I)
376
+ b2 = Beam(2*l, E, I)
377
+ b = b1.join(b2,"hinge")
378
+ b.apply_load(M1, 0, -2)
379
+ b.apply_load(R1, 0, -1)
380
+ b.apply_load(R2, l, -1)
381
+ b.apply_load(R3, 4*l, -1)
382
+ b.apply_load(P, 3*l, -1)
383
+ b.bc_slope = [(0, 0)]
384
+ b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
385
+ b.solve_for_reaction_loads(M1, R1, R2, R3)
386
+ assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)}
387
+ assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I)
388
+ assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I)
389
+ assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I)
390
+
391
+ # When beams having same second moment are joined.
392
+ b1 = Beam(2, 500, 10)
393
+ b2 = Beam(2, 500, 10)
394
+ b = b1.join(b2, "fixed")
395
+ b.apply_load(M1, 0, -2)
396
+ b.apply_load(R1, 0, -1)
397
+ b.apply_load(R2, 1, -1)
398
+ b.apply_load(R3, 4, -1)
399
+ b.apply_load(10, 3, -1)
400
+ b.bc_slope = [(0, 0)]
401
+ b.bc_deflection = [(0, 0), (1, 0), (4, 0)]
402
+ b.solve_for_reaction_loads(M1, R1, R2, R3)
403
+ assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\
404
+ - 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\
405
+ - 37*SingularityFunction(x, 4, 2)/67500
406
+ assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\
407
+ - 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\
408
+ - 37*SingularityFunction(x, 4, 3)/202500
409
+
410
+
411
+ def test_point_cflexure():
412
+ E = Symbol('E')
413
+ I = Symbol('I')
414
+ b = Beam(10, E, I)
415
+ b.apply_load(-4, 0, -1)
416
+ b.apply_load(-46, 6, -1)
417
+ b.apply_load(10, 2, -1)
418
+ b.apply_load(20, 4, -1)
419
+ b.apply_load(3, 6, 0)
420
+ assert b.point_cflexure() == [Rational(10, 3)]
421
+
422
+
423
+ def test_remove_load():
424
+ E = Symbol('E')
425
+ I = Symbol('I')
426
+ b = Beam(4, E, I)
427
+
428
+ try:
429
+ b.remove_load(2, 1, -1)
430
+ # As no load is applied on beam, ValueError should be returned.
431
+ except ValueError:
432
+ assert True
433
+ else:
434
+ assert False
435
+
436
+ b.apply_load(-3, 0, -2)
437
+ b.apply_load(4, 2, -1)
438
+ b.apply_load(-2, 2, 2, end = 3)
439
+ b.remove_load(-2, 2, 2, end = 3)
440
+ assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
441
+ assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)]
442
+
443
+ try:
444
+ b.remove_load(1, 2, -1)
445
+ # As load of this magnitude was never applied at
446
+ # this position, method should return a ValueError.
447
+ except ValueError:
448
+ assert True
449
+ else:
450
+ assert False
451
+
452
+ b.remove_load(-3, 0, -2)
453
+ b.remove_load(4, 2, -1)
454
+ assert b.load == 0
455
+ assert b.applied_loads == []
456
+
457
+
458
+ def test_apply_support():
459
+ E = Symbol('E')
460
+ I = Symbol('I')
461
+
462
+ b = Beam(4, E, I)
463
+ b.apply_support(0, "cantilever")
464
+ b.apply_load(20, 4, -1)
465
+ M_0, R_0 = symbols('M_0, R_0')
466
+ b.solve_for_reaction_loads(R_0, M_0)
467
+ assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
468
+ + 10*SingularityFunction(x, 4, 2))/(E*I))
469
+ assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
470
+ + 10*SingularityFunction(x, 4, 3)/3)/(E*I))
471
+
472
+ b = Beam(30, E, I)
473
+ b.apply_support(10, "pin")
474
+ b.apply_support(30, "roller")
475
+ b.apply_load(-8, 0, -1)
476
+ b.apply_load(120, 30, -2)
477
+ R_10, R_30 = symbols('R_10, R_30')
478
+ b.solve_for_reaction_loads(R_10, R_30)
479
+ assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
480
+ + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I)
481
+ assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
482
+ + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
483
+
484
+ P = Symbol('P', positive=True)
485
+ L = Symbol('L', positive=True)
486
+ b = Beam(L, E, I)
487
+ b.apply_support(0, type='fixed')
488
+ b.apply_support(L, type='fixed')
489
+ b.apply_load(-P, L/2, -1)
490
+ R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
491
+ b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
492
+ assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
493
+
494
+
495
+ def test_max_shear_force():
496
+ E = Symbol('E')
497
+ I = Symbol('I')
498
+
499
+ b = Beam(3, E, I)
500
+ R, M = symbols('R, M')
501
+ b.apply_load(R, 0, -1)
502
+ b.apply_load(M, 0, -2)
503
+ b.apply_load(2, 3, -1)
504
+ b.apply_load(4, 2, -1)
505
+ b.apply_load(2, 2, 0, end=3)
506
+ b.solve_for_reaction_loads(R, M)
507
+ assert b.max_shear_force() == (Interval(0, 2), 8)
508
+
509
+ l = symbols('l', positive=True)
510
+ P = Symbol('P')
511
+ b = Beam(l, E, I)
512
+ R1, R2 = symbols('R1, R2')
513
+ b.apply_load(R1, 0, -1)
514
+ b.apply_load(R2, l, -1)
515
+ b.apply_load(P, 0, 0, end=l)
516
+ b.solve_for_reaction_loads(R1, R2)
517
+ assert b.max_shear_force() == (0, l*Abs(P)/2)
518
+
519
+
520
+ def test_max_bmoment():
521
+ E = Symbol('E')
522
+ I = Symbol('I')
523
+ l, P = symbols('l, P', positive=True)
524
+
525
+ b = Beam(l, E, I)
526
+ R1, R2 = symbols('R1, R2')
527
+ b.apply_load(R1, 0, -1)
528
+ b.apply_load(R2, l, -1)
529
+ b.apply_load(P, l/2, -1)
530
+ b.solve_for_reaction_loads(R1, R2)
531
+ b.reaction_loads
532
+ assert b.max_bmoment() == (l/2, P*l/4)
533
+
534
+ b = Beam(l, E, I)
535
+ R1, R2 = symbols('R1, R2')
536
+ b.apply_load(R1, 0, -1)
537
+ b.apply_load(R2, l, -1)
538
+ b.apply_load(P, 0, 0, end=l)
539
+ b.solve_for_reaction_loads(R1, R2)
540
+ assert b.max_bmoment() == (l/2, P*l**2/8)
541
+
542
+
543
+ def test_max_deflection():
544
+ E, I, l, F = symbols('E, I, l, F', positive=True)
545
+ b = Beam(l, E, I)
546
+ b.bc_deflection = [(0, 0),(l, 0)]
547
+ b.bc_slope = [(0, 0),(l, 0)]
548
+ b.apply_load(F/2, 0, -1)
549
+ b.apply_load(-F*l/8, 0, -2)
550
+ b.apply_load(F/2, l, -1)
551
+ b.apply_load(F*l/8, l, -2)
552
+ b.apply_load(-F, l/2, -1)
553
+ assert b.max_deflection() == (l/2, F*l**3/(192*E*I))
554
+
555
+
556
+ def test_Beam3D():
557
+ l, E, G, I, A = symbols('l, E, G, I, A')
558
+ R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
559
+
560
+ b = Beam3D(l, E, G, I, A)
561
+ m, q = symbols('m, q')
562
+ b.apply_load(q, 0, 0, dir="y")
563
+ b.apply_moment_load(m, 0, 0, dir="z")
564
+ b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
565
+ b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
566
+ b.solve_slope_deflection()
567
+
568
+ assert b.polar_moment() == 2*I
569
+ assert b.shear_force() == [0, -q*x, 0]
570
+ assert b.shear_stress() == [0, -q*x/A, 0]
571
+ assert b.axial_stress() == 0
572
+ assert b.bending_moment() == [0, 0, -m*x + q*x**2/2]
573
+ expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) +
574
+ 12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) +
575
+ 12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 +
576
+ 3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 +
577
+ A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I))
578
+ dx, dy, dz = b.deflection()
579
+ assert dx == dz == 0
580
+ assert simplify(dy - expected_deflection) == 0
581
+
582
+ b2 = Beam3D(30, E, G, I, A, x)
583
+ b2.apply_load(50, start=0, order=0, dir="y")
584
+ b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
585
+ b2.apply_load(R1, start=0, order=-1, dir="y")
586
+ b2.apply_load(R2, start=30, order=-1, dir="y")
587
+ b2.solve_for_reaction_loads(R1, R2)
588
+ assert b2.reaction_loads == {R1: -750, R2: -750}
589
+
590
+ b2.solve_slope_deflection()
591
+ assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)]
592
+ expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \
593
+ 25*x**2/(A*G) + 750*x/(A*G)
594
+ dx, dy, dz = b2.deflection()
595
+ assert dx == dz == 0
596
+ assert dy == expected_deflection
597
+
598
+ # Test for solve_for_reaction_loads
599
+ b3 = Beam3D(30, E, G, I, A, x)
600
+ b3.apply_load(8, start=0, order=0, dir="y")
601
+ b3.apply_load(9*x, start=0, order=0, dir="z")
602
+ b3.apply_load(R1, start=0, order=-1, dir="y")
603
+ b3.apply_load(R2, start=30, order=-1, dir="y")
604
+ b3.apply_load(R3, start=0, order=-1, dir="z")
605
+ b3.apply_load(R4, start=30, order=-1, dir="z")
606
+ b3.solve_for_reaction_loads(R1, R2, R3, R4)
607
+ assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700}
608
+
609
+
610
+ def test_polar_moment_Beam3D():
611
+ l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2')
612
+ I = [I1, I2]
613
+
614
+ b = Beam3D(l, E, G, I, A)
615
+ assert b.polar_moment() == I1 + I2
616
+
617
+
618
+ def test_parabolic_loads():
619
+
620
+ E, I, L = symbols('E, I, L', positive=True, real=True)
621
+ R, M, P = symbols('R, M, P', real=True)
622
+
623
+ # cantilever beam fixed at x=0 and parabolic distributed loading across
624
+ # length of beam
625
+ beam = Beam(L, E, I)
626
+
627
+ beam.bc_deflection.append((0, 0))
628
+ beam.bc_slope.append((0, 0))
629
+ beam.apply_load(R, 0, -1)
630
+ beam.apply_load(M, 0, -2)
631
+
632
+ # parabolic load
633
+ beam.apply_load(1, 0, 2)
634
+
635
+ beam.solve_for_reaction_loads(R, M)
636
+
637
+ assert beam.reaction_loads[R] == -L**3/3
638
+
639
+ # cantilever beam fixed at x=0 and parabolic distributed loading across
640
+ # first half of beam
641
+ beam = Beam(2*L, E, I)
642
+
643
+ beam.bc_deflection.append((0, 0))
644
+ beam.bc_slope.append((0, 0))
645
+ beam.apply_load(R, 0, -1)
646
+ beam.apply_load(M, 0, -2)
647
+
648
+ # parabolic load from x=0 to x=L
649
+ beam.apply_load(1, 0, 2, end=L)
650
+
651
+ beam.solve_for_reaction_loads(R, M)
652
+
653
+ # result should be the same as the prior example
654
+ assert beam.reaction_loads[R] == -L**3/3
655
+
656
+ # check constant load
657
+ beam = Beam(2*L, E, I)
658
+ beam.apply_load(P, 0, 0, end=L)
659
+ loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
660
+ assert loading.xreplace({x: 5}) == 40
661
+ assert loading.xreplace({x: 15}) == 0
662
+
663
+ # check ramp load
664
+ beam = Beam(2*L, E, I)
665
+ beam.apply_load(P, 0, 1, end=L)
666
+ assert beam.load == (P*SingularityFunction(x, 0, 1) -
667
+ P*SingularityFunction(x, L, 1) -
668
+ P*L*SingularityFunction(x, L, 0))
669
+
670
+ # check higher order load: x**8 load from x=0 to x=L
671
+ beam = Beam(2*L, E, I)
672
+ beam.apply_load(P, 0, 8, end=L)
673
+ loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
674
+ assert loading.xreplace({x: 5}) == 40*5**8
675
+ assert loading.xreplace({x: 15}) == 0
676
+
677
+
678
+ def test_cross_section():
679
+ I = Symbol('I')
680
+ l = Symbol('l')
681
+ E = Symbol('E')
682
+ C3, C4 = symbols('C3, C4')
683
+ a, c, g, h, r, n = symbols('a, c, g, h, r, n')
684
+
685
+ # test for second_moment and cross_section setter
686
+ b0 = Beam(l, E, I)
687
+ assert b0.second_moment == I
688
+ assert b0.cross_section == None
689
+ b0.cross_section = Circle((0, 0), 5)
690
+ assert b0.second_moment == pi*Rational(625, 4)
691
+ assert b0.cross_section == Circle((0, 0), 5)
692
+ b0.second_moment = 2*n - 6
693
+ assert b0.second_moment == 2*n-6
694
+ assert b0.cross_section == None
695
+ with raises(ValueError):
696
+ b0.second_moment = Circle((0, 0), 5)
697
+
698
+ # beam with a circular cross-section
699
+ b1 = Beam(50, E, Circle((0, 0), r))
700
+ assert b1.cross_section == Circle((0, 0), r)
701
+ assert b1.second_moment == pi*r*Abs(r)**3/4
702
+
703
+ b1.apply_load(-10, 0, -1)
704
+ b1.apply_load(R1, 5, -1)
705
+ b1.apply_load(R2, 50, -1)
706
+ b1.apply_load(90, 45, -2)
707
+ b1.solve_for_reaction_loads(R1, R2)
708
+ assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9)
709
+ + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9)
710
+ assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9
711
+ - 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9)
712
+ q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9)
713
+ + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3)
714
+ assert b1.slope() == C3 + 4*q
715
+ q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2)
716
+ + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3)
717
+ assert b1.deflection() == C3*x + C4 + 4*q
718
+
719
+ # beam with a recatangular cross-section
720
+ b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c)))
721
+ assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c))
722
+ assert b2.second_moment == a*c**3/12
723
+ # beam with a triangular cross-section
724
+ b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h)))
725
+ assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h))
726
+ assert b3.second_moment == g*h**3/36
727
+
728
+ # composite beam
729
+ b = b2.join(b3, "fixed")
730
+ b.apply_load(-30, 0, -1)
731
+ b.apply_load(65, 0, -2)
732
+ b.apply_load(40, 0, -1)
733
+ b.bc_slope = [(0, 0)]
734
+ b.bc_deflection = [(0, 0)]
735
+
736
+ assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35))
737
+ assert b.cross_section == None
738
+ assert b.length == 35
739
+ assert b.slope().subs(x, 7) == 8400/(E*a*c**3)
740
+ assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3)
741
+ assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3)
742
+
743
+ def test_max_shear_force_Beam3D():
744
+ x = symbols('x')
745
+ b = Beam3D(20, 40, 21, 100, 25)
746
+ b.apply_load(15, start=0, order=0, dir="z")
747
+ b.apply_load(12*x, start=0, order=0, dir="y")
748
+ b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
749
+ assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)]
750
+
751
+ def test_max_bending_moment_Beam3D():
752
+ x = symbols('x')
753
+ b = Beam3D(20, 40, 21, 100, 25)
754
+ b.apply_load(15, start=0, order=0, dir="z")
755
+ b.apply_load(12*x, start=0, order=0, dir="y")
756
+ b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
757
+ assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)]
758
+
759
+ def test_max_deflection_Beam3D():
760
+ x = symbols('x')
761
+ b = Beam3D(20, 40, 21, 100, 25)
762
+ b.apply_load(15, start=0, order=0, dir="z")
763
+ b.apply_load(12*x, start=0, order=0, dir="y")
764
+ b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
765
+ b.solve_slope_deflection()
766
+ c = sympify("495/14")
767
+ p = sympify("-10 + 10*sqrt(10793)/43")
768
+ q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560")
769
+ assert b.max_deflection() == [(0, 0), (10, c), (p, q)]
770
+
771
+ def test_torsion_Beam3D():
772
+ x = symbols('x')
773
+ b = Beam3D(20, 40, 21, 100, 25)
774
+ b.apply_moment_load(15, 5, -2, dir='x')
775
+ b.apply_moment_load(25, 10, -2, dir='x')
776
+ b.apply_moment_load(-5, 20, -2, dir='x')
777
+ b.solve_for_torsion()
778
+ assert b.angular_deflection().subs(x, 3) == sympify("1/40")
779
+ assert b.angular_deflection().subs(x, 9) == sympify("17/280")
780
+ assert b.angular_deflection().subs(x, 12) == sympify("53/840")
781
+ assert b.angular_deflection().subs(x, 17) == sympify("2/35")
782
+ assert b.angular_deflection().subs(x, 20) == sympify("3/56")
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import Symbol, symbols
2
+ from sympy.physics.continuum_mechanics.truss import Truss
3
+ from sympy import sqrt
4
+
5
+
6
+ def test_truss():
7
+ A = Symbol('A')
8
+ B = Symbol('B')
9
+ C = Symbol('C')
10
+ AB, BC, AC = symbols('AB, BC, AC')
11
+ P = Symbol('P')
12
+
13
+ t = Truss()
14
+ assert t.nodes == []
15
+ assert t.node_labels == []
16
+ assert t.node_positions == []
17
+ assert t.members == {}
18
+ assert t.loads == {}
19
+ assert t.supports == {}
20
+ assert t.reaction_loads == {}
21
+ assert t.internal_forces == {}
22
+
23
+ # testing the add_node method
24
+ t.add_node(A, 0, 0)
25
+ t.add_node(B, 2, 2)
26
+ t.add_node(C, 3, 0)
27
+ assert t.nodes == [(A, 0, 0), (B, 2, 2), (C, 3, 0)]
28
+ assert t.node_labels == [A, B, C]
29
+ assert t.node_positions == [(0, 0), (2, 2), (3, 0)]
30
+ assert t.loads == {}
31
+ assert t.supports == {}
32
+ assert t.reaction_loads == {}
33
+
34
+ # testing the remove_node method
35
+ t.remove_node(C)
36
+ assert t.nodes == [(A, 0, 0), (B, 2, 2)]
37
+ assert t.node_labels == [A, B]
38
+ assert t.node_positions == [(0, 0), (2, 2)]
39
+ assert t.loads == {}
40
+ assert t.supports == {}
41
+
42
+ t.add_node(C, 3, 0)
43
+
44
+ # testing the add_member method
45
+ t.add_member(AB, A, B)
46
+ t.add_member(BC, B, C)
47
+ t.add_member(AC, A, C)
48
+ assert t.members == {AB: [A, B], BC: [B, C], AC: [A, C]}
49
+ assert t.internal_forces == {AB: 0, BC: 0, AC: 0}
50
+
51
+ # testing the remove_member method
52
+ t.remove_member(BC)
53
+ assert t.members == {AB: [A, B], AC: [A, C]}
54
+ assert t.internal_forces == {AB: 0, AC: 0}
55
+
56
+ t.add_member(BC, B, C)
57
+
58
+ D, CD = symbols('D, CD')
59
+
60
+ # testing the change_label methods
61
+ t.change_node_label(B, D)
62
+ assert t.nodes == [(A, 0, 0), (D, 2, 2), (C, 3, 0)]
63
+ assert t.node_labels == [A, D, C]
64
+ assert t.loads == {}
65
+ assert t.supports == {}
66
+ assert t.members == {AB: [A, D], BC: [D, C], AC: [A, C]}
67
+
68
+ t.change_member_label(BC, CD)
69
+ assert t.members == {AB: [A, D], CD: [D, C], AC: [A, C]}
70
+ assert t.internal_forces == {AB: 0, CD: 0, AC: 0}
71
+
72
+
73
+ # testing the apply_load method
74
+ t.apply_load(A, P, 90)
75
+ t.apply_load(A, P/4, 90)
76
+ t.apply_load(A, 2*P,45)
77
+ t.apply_load(D, P/2, 90)
78
+ assert t.loads == {A: [[P, 90], [P/4, 90], [2*P, 45]], D: [[P/2, 90]]}
79
+ assert t.loads[A] == [[P, 90], [P/4, 90], [2*P, 45]]
80
+
81
+ # testing the remove_load method
82
+ t.remove_load(A, P/4, 90)
83
+ assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90]]}
84
+ assert t.loads[A] == [[P, 90], [2*P, 45]]
85
+
86
+ # testing the apply_support method
87
+ t.apply_support(A, "pinned")
88
+ t.apply_support(D, "roller")
89
+ assert t.supports == {A: 'pinned', D: 'roller'}
90
+ assert t.reaction_loads == {}
91
+ assert t.loads == {A: [[P, 90], [2*P, 45], [Symbol('R_A_x'), 0], [Symbol('R_A_y'), 90]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
92
+
93
+ # testing the remove_support method
94
+ t.remove_support(A)
95
+ assert t.supports == {D: 'roller'}
96
+ assert t.reaction_loads == {}
97
+ assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
98
+
99
+ t.apply_support(A, "pinned")
100
+
101
+ # testing the solve method
102
+ t.solve()
103
+ assert t.reaction_loads['R_A_x'] == -sqrt(2)*P
104
+ assert t.reaction_loads['R_A_y'] == -sqrt(2)*P - P
105
+ assert t.reaction_loads['R_D_y'] == -P/2
106
+ assert t.internal_forces[AB]/P == 0
107
+ assert t.internal_forces[CD] == 0
108
+ assert t.internal_forces[AC] == 0
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module can be used to solve problems related
3
+ to 2D Trusses.
4
+ """
5
+
6
+ from cmath import inf
7
+ from sympy.core.add import Add
8
+ from sympy.core.mul import Mul
9
+ from sympy.core.symbol import Symbol
10
+ from sympy.core.sympify import sympify
11
+ from sympy import Matrix, pi
12
+ from sympy.functions.elementary.miscellaneous import sqrt
13
+ from sympy.matrices.dense import zeros
14
+ from sympy import sin, cos
15
+
16
+
17
+
18
+ class Truss:
19
+ """
20
+ A Truss is an assembly of members such as beams,
21
+ connected by nodes, that create a rigid structure.
22
+ In engineering, a truss is a structure that
23
+ consists of two-force members only.
24
+
25
+ Trusses are extremely important in engineering applications
26
+ and can be seen in numerous real-world applications like bridges.
27
+
28
+ Examples
29
+ ========
30
+
31
+ There is a Truss consisting of four nodes and five
32
+ members connecting the nodes. A force P acts
33
+ downward on the node D and there also exist pinned
34
+ and roller joints on the nodes A and B respectively.
35
+
36
+ .. image:: truss_example.png
37
+
38
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
39
+ >>> t = Truss()
40
+ >>> t.add_node("node_1", 0, 0)
41
+ >>> t.add_node("node_2", 6, 0)
42
+ >>> t.add_node("node_3", 2, 2)
43
+ >>> t.add_node("node_4", 2, 0)
44
+ >>> t.add_member("member_1", "node_1", "node_4")
45
+ >>> t.add_member("member_2", "node_2", "node_4")
46
+ >>> t.add_member("member_3", "node_1", "node_3")
47
+ >>> t.add_member("member_4", "node_2", "node_3")
48
+ >>> t.add_member("member_5", "node_3", "node_4")
49
+ >>> t.apply_load("node_4", magnitude=10, direction=270)
50
+ >>> t.apply_support("node_1", type="fixed")
51
+ >>> t.apply_support("node_2", type="roller")
52
+ """
53
+
54
+ def __init__(self):
55
+ """
56
+ Initializes the class
57
+ """
58
+ self._nodes = []
59
+ self._members = {}
60
+ self._loads = {}
61
+ self._supports = {}
62
+ self._node_labels = []
63
+ self._node_positions = []
64
+ self._node_position_x = []
65
+ self._node_position_y = []
66
+ self._nodes_occupied = {}
67
+ self._reaction_loads = {}
68
+ self._internal_forces = {}
69
+ self._node_coordinates = {}
70
+
71
+ @property
72
+ def nodes(self):
73
+ """
74
+ Returns the nodes of the truss along with their positions.
75
+ """
76
+ return self._nodes
77
+
78
+ @property
79
+ def node_labels(self):
80
+ """
81
+ Returns the node labels of the truss.
82
+ """
83
+ return self._node_labels
84
+
85
+ @property
86
+ def node_positions(self):
87
+ """
88
+ Returns the positions of the nodes of the truss.
89
+ """
90
+ return self._node_positions
91
+
92
+ @property
93
+ def members(self):
94
+ """
95
+ Returns the members of the truss along with the start and end points.
96
+ """
97
+ return self._members
98
+
99
+ @property
100
+ def member_labels(self):
101
+ """
102
+ Returns the members of the truss along with the start and end points.
103
+ """
104
+ return self._member_labels
105
+
106
+ @property
107
+ def supports(self):
108
+ """
109
+ Returns the nodes with provided supports along with the kind of support provided i.e.
110
+ pinned or roller.
111
+ """
112
+ return self._supports
113
+
114
+ @property
115
+ def loads(self):
116
+ """
117
+ Returns the loads acting on the truss.
118
+ """
119
+ return self._loads
120
+
121
+ @property
122
+ def reaction_loads(self):
123
+ """
124
+ Returns the reaction forces for all supports which are all initialized to 0.
125
+ """
126
+ return self._reaction_loads
127
+
128
+ @property
129
+ def internal_forces(self):
130
+ """
131
+ Returns the internal forces for all members which are all initialized to 0.
132
+ """
133
+ return self._internal_forces
134
+
135
+ def add_node(self, label, x, y):
136
+ """
137
+ This method adds a node to the truss along with its name/label and its location.
138
+
139
+ Parameters
140
+ ==========
141
+ label: String or a Symbol
142
+ The label for a node. It is the only way to identify a particular node.
143
+
144
+ x: Sympifyable
145
+ The x-coordinate of the position of the node.
146
+
147
+ y: Sympifyable
148
+ The y-coordinate of the position of the node.
149
+
150
+ Examples
151
+ ========
152
+
153
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
154
+ >>> t = Truss()
155
+ >>> t.add_node('A', 0, 0)
156
+ >>> t.nodes
157
+ [('A', 0, 0)]
158
+ >>> t.add_node('B', 3, 0)
159
+ >>> t.nodes
160
+ [('A', 0, 0), ('B', 3, 0)]
161
+ """
162
+ x = sympify(x)
163
+ y = sympify(y)
164
+
165
+ if label in self._node_labels:
166
+ raise ValueError("Node needs to have a unique label")
167
+
168
+ elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
169
+ raise ValueError("A node already exists at the given position")
170
+
171
+ else :
172
+ self._nodes.append((label, x, y))
173
+ self._node_labels.append(label)
174
+ self._node_positions.append((x, y))
175
+ self._node_position_x.append(x)
176
+ self._node_position_y.append(y)
177
+ self._node_coordinates[label] = [x, y]
178
+
179
+ def remove_node(self, label):
180
+ """
181
+ This method removes a node from the truss.
182
+
183
+ Parameters
184
+ ==========
185
+ label: String or Symbol
186
+ The label of the node to be removed.
187
+
188
+ Examples
189
+ ========
190
+
191
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
192
+ >>> t = Truss()
193
+ >>> t.add_node('A', 0, 0)
194
+ >>> t.nodes
195
+ [('A', 0, 0)]
196
+ >>> t.add_node('B', 3, 0)
197
+ >>> t.nodes
198
+ [('A', 0, 0), ('B', 3, 0)]
199
+ >>> t.remove_node('A')
200
+ >>> t.nodes
201
+ [('B', 3, 0)]
202
+ """
203
+ for i in range(len(self.nodes)):
204
+ if self._node_labels[i] == label:
205
+ x = self._node_position_x[i]
206
+ y = self._node_position_y[i]
207
+
208
+ if label not in self._node_labels:
209
+ raise ValueError("No such node exists in the truss")
210
+
211
+ else:
212
+ members_duplicate = self._members.copy()
213
+ for member in members_duplicate:
214
+ if label == self._members[member][0] or label == self._members[member][1]:
215
+ raise ValueError("The node given has members already attached to it")
216
+ self._nodes.remove((label, x, y))
217
+ self._node_labels.remove(label)
218
+ self._node_positions.remove((x, y))
219
+ self._node_position_x.remove(x)
220
+ self._node_position_y.remove(y)
221
+ if label in list(self._loads):
222
+ self._loads.pop(label)
223
+ if label in list(self._supports):
224
+ self._supports.pop(label)
225
+ self._node_coordinates.pop(label)
226
+
227
+ def add_member(self, label, start, end):
228
+ """
229
+ This method adds a member between any two nodes in the given truss.
230
+
231
+ Parameters
232
+ ==========
233
+ label: String or Symbol
234
+ The label for a member. It is the only way to identify a particular member.
235
+
236
+ start: String or Symbol
237
+ The label of the starting point/node of the member.
238
+
239
+ end: String or Symbol
240
+ The label of the ending point/node of the member.
241
+
242
+ Examples
243
+ ========
244
+
245
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
246
+ >>> t = Truss()
247
+ >>> t.add_node('A', 0, 0)
248
+ >>> t.add_node('B', 3, 0)
249
+ >>> t.add_node('C', 2, 2)
250
+ >>> t.add_member('AB', 'A', 'B')
251
+ >>> t.members
252
+ {'AB': ['A', 'B']}
253
+ """
254
+
255
+ if start not in self._node_labels or end not in self._node_labels or start==end:
256
+ raise ValueError("The start and end points of the member must be unique nodes")
257
+
258
+ elif label in list(self._members):
259
+ raise ValueError("A member with the same label already exists for the truss")
260
+
261
+ elif self._nodes_occupied.get((start, end)):
262
+ raise ValueError("A member already exists between the two nodes")
263
+
264
+ else:
265
+ self._members[label] = [start, end]
266
+ self._nodes_occupied[start, end] = True
267
+ self._nodes_occupied[end, start] = True
268
+ self._internal_forces[label] = 0
269
+
270
+ def remove_member(self, label):
271
+ """
272
+ This method removes a member from the given truss.
273
+
274
+ Parameters
275
+ ==========
276
+ label: String or Symbol
277
+ The label for the member to be removed.
278
+
279
+ Examples
280
+ ========
281
+
282
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
283
+ >>> t = Truss()
284
+ >>> t.add_node('A', 0, 0)
285
+ >>> t.add_node('B', 3, 0)
286
+ >>> t.add_node('C', 2, 2)
287
+ >>> t.add_member('AB', 'A', 'B')
288
+ >>> t.add_member('AC', 'A', 'C')
289
+ >>> t.add_member('BC', 'B', 'C')
290
+ >>> t.members
291
+ {'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
292
+ >>> t.remove_member('AC')
293
+ >>> t.members
294
+ {'AB': ['A', 'B'], 'BC': ['B', 'C']}
295
+ """
296
+ if label not in list(self._members):
297
+ raise ValueError("No such member exists in the Truss")
298
+
299
+ else:
300
+ self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
301
+ self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
302
+ self._members.pop(label)
303
+ self._internal_forces.pop(label)
304
+
305
+ def change_node_label(self, label, new_label):
306
+ """
307
+ This method changes the label of a node.
308
+
309
+ Parameters
310
+ ==========
311
+ label: String or Symbol
312
+ The label of the node for which the label has
313
+ to be changed.
314
+
315
+ new_label: String or Symbol
316
+ The new label of the node.
317
+
318
+ Examples
319
+ ========
320
+
321
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
322
+ >>> t = Truss()
323
+ >>> t.add_node('A', 0, 0)
324
+ >>> t.add_node('B', 3, 0)
325
+ >>> t.nodes
326
+ [('A', 0, 0), ('B', 3, 0)]
327
+ >>> t.change_node_label('A', 'C')
328
+ >>> t.nodes
329
+ [('C', 0, 0), ('B', 3, 0)]
330
+ """
331
+ if label not in self._node_labels:
332
+ raise ValueError("No such node exists for the Truss")
333
+ elif new_label in self._node_labels:
334
+ raise ValueError("A node with the given label already exists")
335
+ else:
336
+ for node in self._nodes:
337
+ if node[0] == label:
338
+ self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
339
+ self._node_labels[self._node_labels.index(node[0])] = new_label
340
+ self._node_coordinates[new_label] = self._node_coordinates[label]
341
+ self._node_coordinates.pop(label)
342
+ if node[0] in list(self._supports):
343
+ self._supports[new_label] = self._supports[node[0]]
344
+ self._supports.pop(node[0])
345
+ if new_label in list(self._supports):
346
+ if self._supports[new_label] == 'pinned':
347
+ if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
348
+ self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
349
+ self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
350
+ self._reaction_loads.pop('R_'+str(label)+'_x')
351
+ self._reaction_loads.pop('R_'+str(label)+'_y')
352
+ self._loads[new_label] = self._loads[label]
353
+ for load in self._loads[new_label]:
354
+ if load[1] == 90:
355
+ load[0] -= Symbol('R_'+str(label)+'_y')
356
+ if load[0] == 0:
357
+ self._loads[label].remove(load)
358
+ break
359
+ for load in self._loads[new_label]:
360
+ if load[1] == 0:
361
+ load[0] -= Symbol('R_'+str(label)+'_x')
362
+ if load[0] == 0:
363
+ self._loads[label].remove(load)
364
+ break
365
+ self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
366
+ self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
367
+ self._loads.pop(label)
368
+ elif self._supports[new_label] == 'roller':
369
+ self._loads[new_label] = self._loads[label]
370
+ for load in self._loads[label]:
371
+ if load[1] == 90:
372
+ load[0] -= Symbol('R_'+str(label)+'_y')
373
+ if load[0] == 0:
374
+ self._loads[label].remove(load)
375
+ break
376
+ self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
377
+ self._loads.pop(label)
378
+ else:
379
+ if label in list(self._loads):
380
+ self._loads[new_label] = self._loads[label]
381
+ self._loads.pop(label)
382
+ for member in list(self._members):
383
+ if self._members[member][0] == node[0]:
384
+ self._members[member][0] = new_label
385
+ self._nodes_occupied[(new_label, self._members[member][1])] = True
386
+ self._nodes_occupied[(self._members[member][1], new_label)] = True
387
+ self._nodes_occupied.pop((label, self._members[member][1]))
388
+ self._nodes_occupied.pop((self._members[member][1], label))
389
+ elif self._members[member][1] == node[0]:
390
+ self._members[member][1] = new_label
391
+ self._nodes_occupied[(self._members[member][0], new_label)] = True
392
+ self._nodes_occupied[(new_label, self._members[member][0])] = True
393
+ self._nodes_occupied.pop((self._members[member][0], label))
394
+ self._nodes_occupied.pop((label, self._members[member][0]))
395
+
396
+ def change_member_label(self, label, new_label):
397
+ """
398
+ This method changes the label of a member.
399
+
400
+ Parameters
401
+ ==========
402
+ label: String or Symbol
403
+ The label of the member for which the label has
404
+ to be changed.
405
+
406
+ new_label: String or Symbol
407
+ The new label of the member.
408
+
409
+ Examples
410
+ ========
411
+
412
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
413
+ >>> t = Truss()
414
+ >>> t.add_node('A', 0, 0)
415
+ >>> t.add_node('B', 3, 0)
416
+ >>> t.nodes
417
+ [('A', 0, 0), ('B', 3, 0)]
418
+ >>> t.change_node_label('A', 'C')
419
+ >>> t.nodes
420
+ [('C', 0, 0), ('B', 3, 0)]
421
+ >>> t.add_member('BC', 'B', 'C')
422
+ >>> t.members
423
+ {'BC': ['B', 'C']}
424
+ >>> t.change_member_label('BC', 'BC_new')
425
+ >>> t.members
426
+ {'BC_new': ['B', 'C']}
427
+ """
428
+ if label not in list(self._members):
429
+ raise ValueError("No such member exists for the Truss")
430
+
431
+ else:
432
+ members_duplicate = list(self._members).copy()
433
+ for member in members_duplicate:
434
+ if member == label:
435
+ self._members[new_label] = [self._members[member][0], self._members[member][1]]
436
+ self._members.pop(label)
437
+ self._internal_forces[new_label] = self._internal_forces[label]
438
+ self._internal_forces.pop(label)
439
+
440
+ def apply_load(self, location, magnitude, direction):
441
+ """
442
+ This method applies an external load at a particular node
443
+
444
+ Parameters
445
+ ==========
446
+ location: String or Symbol
447
+ Label of the Node at which load is applied.
448
+
449
+ magnitude: Sympifyable
450
+ Magnitude of the load applied. It must always be positive and any changes in
451
+ the direction of the load are not reflected here.
452
+
453
+ direction: Sympifyable
454
+ The angle, in degrees, that the load vector makes with the horizontal
455
+ in the counter-clockwise direction. It takes the values 0 to 360,
456
+ inclusive.
457
+
458
+ Examples
459
+ ========
460
+
461
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
462
+ >>> from sympy import symbols
463
+ >>> t = Truss()
464
+ >>> t.add_node('A', 0, 0)
465
+ >>> t.add_node('B', 3, 0)
466
+ >>> P = symbols('P')
467
+ >>> t.apply_load('A', P, 90)
468
+ >>> t.apply_load('A', P/2, 45)
469
+ >>> t.apply_load('A', P/4, 90)
470
+ >>> t.loads
471
+ {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
472
+ """
473
+ magnitude = sympify(magnitude)
474
+ direction = sympify(direction)
475
+
476
+ if location not in self.node_labels:
477
+ raise ValueError("Load must be applied at a known node")
478
+
479
+ else:
480
+ if location in list(self._loads):
481
+ self._loads[location].append([magnitude, direction])
482
+ else:
483
+ self._loads[location] = [[magnitude, direction]]
484
+
485
+ def remove_load(self, location, magnitude, direction):
486
+ """
487
+ This method removes an already
488
+ present external load at a particular node
489
+
490
+ Parameters
491
+ ==========
492
+ location: String or Symbol
493
+ Label of the Node at which load is applied and is to be removed.
494
+
495
+ magnitude: Sympifyable
496
+ Magnitude of the load applied.
497
+
498
+ direction: Sympifyable
499
+ The angle, in degrees, that the load vector makes with the horizontal
500
+ in the counter-clockwise direction. It takes the values 0 to 360,
501
+ inclusive.
502
+
503
+ Examples
504
+ ========
505
+
506
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
507
+ >>> from sympy import symbols
508
+ >>> t = Truss()
509
+ >>> t.add_node('A', 0, 0)
510
+ >>> t.add_node('B', 3, 0)
511
+ >>> P = symbols('P')
512
+ >>> t.apply_load('A', P, 90)
513
+ >>> t.apply_load('A', P/2, 45)
514
+ >>> t.apply_load('A', P/4, 90)
515
+ >>> t.loads
516
+ {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
517
+ >>> t.remove_load('A', P/4, 90)
518
+ >>> t.loads
519
+ {'A': [[P, 90], [P/2, 45]]}
520
+ """
521
+ magnitude = sympify(magnitude)
522
+ direction = sympify(direction)
523
+
524
+ if location not in self.node_labels:
525
+ raise ValueError("Load must be removed from a known node")
526
+
527
+ else:
528
+ if [magnitude, direction] not in self._loads[location]:
529
+ raise ValueError("No load of this magnitude and direction has been applied at this node")
530
+ else:
531
+ self._loads[location].remove([magnitude, direction])
532
+ if self._loads[location] == []:
533
+ self._loads.pop(location)
534
+
535
+ def apply_support(self, location, type):
536
+ """
537
+ This method adds a pinned or roller support at a particular node
538
+
539
+ Parameters
540
+ ==========
541
+
542
+ location: String or Symbol
543
+ Label of the Node at which support is added.
544
+
545
+ type: String
546
+ Type of the support being provided at the node.
547
+
548
+ Examples
549
+ ========
550
+
551
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
552
+ >>> t = Truss()
553
+ >>> t.add_node('A', 0, 0)
554
+ >>> t.add_node('B', 3, 0)
555
+ >>> t.apply_support('A', 'pinned')
556
+ >>> t.supports
557
+ {'A': 'pinned'}
558
+ """
559
+ if location not in self._node_labels:
560
+ raise ValueError("Support must be added on a known node")
561
+
562
+ else:
563
+ if location not in list(self._supports):
564
+ if type == 'pinned':
565
+ self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
566
+ self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
567
+ elif type == 'roller':
568
+ self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
569
+ elif self._supports[location] == 'pinned':
570
+ if type == 'roller':
571
+ self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
572
+ elif self._supports[location] == 'roller':
573
+ if type == 'pinned':
574
+ self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
575
+ self._supports[location] = type
576
+
577
+ def remove_support(self, location):
578
+ """
579
+ This method removes support from a particular node
580
+
581
+ Parameters
582
+ ==========
583
+
584
+ location: String or Symbol
585
+ Label of the Node at which support is to be removed.
586
+
587
+ Examples
588
+ ========
589
+
590
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
591
+ >>> t = Truss()
592
+ >>> t.add_node('A', 0, 0)
593
+ >>> t.add_node('B', 3, 0)
594
+ >>> t.apply_support('A', 'pinned')
595
+ >>> t.supports
596
+ {'A': 'pinned'}
597
+ >>> t.remove_support('A')
598
+ >>> t.supports
599
+ {}
600
+ """
601
+ if location not in self._node_labels:
602
+ raise ValueError("No such node exists in the Truss")
603
+
604
+ elif location not in list(self._supports):
605
+ raise ValueError("No support has been added to the given node")
606
+
607
+ else:
608
+ if self._supports[location] == 'pinned':
609
+ self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
610
+ self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
611
+ elif self._supports[location] == 'roller':
612
+ self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
613
+ self._supports.pop(location)
614
+
615
+ def solve(self):
616
+ """
617
+ This method solves for all reaction forces of all supports and all internal forces
618
+ of all the members in the truss, provided the Truss is solvable.
619
+
620
+ A Truss is solvable if the following condition is met,
621
+
622
+ 2n >= r + m
623
+
624
+ Where n is the number of nodes, r is the number of reaction forces, where each pinned
625
+ support has 2 reaction forces and each roller has 1, and m is the number of members.
626
+
627
+ The given condition is derived from the fact that a system of equations is solvable
628
+ only when the number of variables is lesser than or equal to the number of equations.
629
+ Equilibrium Equations in x and y directions give two equations per node giving 2n number
630
+ equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
631
+ The number of variables is simply the sum of the number of reaction forces and member
632
+ forces.
633
+
634
+ .. note::
635
+ The sign convention for the internal forces present in a member revolves around whether each
636
+ force is compressive or tensile. While forming equations for each node, internal force due
637
+ to a member on the node is assumed to be away from the node i.e. each force is assumed to
638
+ be compressive by default. Hence, a positive value for an internal force implies the
639
+ presence of compressive force in the member and a negative value implies a tensile force.
640
+
641
+ Examples
642
+ ========
643
+
644
+ >>> from sympy.physics.continuum_mechanics.truss import Truss
645
+ >>> t = Truss()
646
+ >>> t.add_node("node_1", 0, 0)
647
+ >>> t.add_node("node_2", 6, 0)
648
+ >>> t.add_node("node_3", 2, 2)
649
+ >>> t.add_node("node_4", 2, 0)
650
+ >>> t.add_member("member_1", "node_1", "node_4")
651
+ >>> t.add_member("member_2", "node_2", "node_4")
652
+ >>> t.add_member("member_3", "node_1", "node_3")
653
+ >>> t.add_member("member_4", "node_2", "node_3")
654
+ >>> t.add_member("member_5", "node_3", "node_4")
655
+ >>> t.apply_load("node_4", magnitude=10, direction=270)
656
+ >>> t.apply_support("node_1", type="pinned")
657
+ >>> t.apply_support("node_2", type="roller")
658
+ >>> t.solve()
659
+ >>> t.reaction_loads
660
+ {'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
661
+ >>> t.internal_forces
662
+ {'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
663
+ """
664
+ count_reaction_loads = 0
665
+ for node in self._nodes:
666
+ if node[0] in list(self._supports):
667
+ if self._supports[node[0]]=='pinned':
668
+ count_reaction_loads += 2
669
+ elif self._supports[node[0]]=='roller':
670
+ count_reaction_loads += 1
671
+ if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
672
+ raise ValueError("The given truss cannot be solved")
673
+ coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
674
+ load_matrix = zeros(2*len(self.nodes), 1)
675
+ load_matrix_row = 0
676
+ for node in self._nodes:
677
+ if node[0] in list(self._loads):
678
+ for load in self._loads[node[0]]:
679
+ if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
680
+ load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
681
+ load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
682
+ load_matrix_row += 2
683
+ cols = 0
684
+ row = 0
685
+ for node in self._nodes:
686
+ if node[0] in list(self._supports):
687
+ if self._supports[node[0]]=='pinned':
688
+ coefficients_matrix[row][cols] += 1
689
+ coefficients_matrix[row+1][cols+1] += 1
690
+ cols += 2
691
+ elif self._supports[node[0]]=='roller':
692
+ coefficients_matrix[row+1][cols] += 1
693
+ cols += 1
694
+ row += 2
695
+ for member in list(self._members):
696
+ start = self._members[member][0]
697
+ end = self._members[member][1]
698
+ length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
699
+ start_index = self._node_labels.index(start)
700
+ end_index = self._node_labels.index(end)
701
+ horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
702
+ vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
703
+ horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
704
+ vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
705
+ coefficients_matrix[start_index*2][cols] += horizontal_component_start
706
+ coefficients_matrix[start_index*2+1][cols] += vertical_component_start
707
+ coefficients_matrix[end_index*2][cols] += horizontal_component_end
708
+ coefficients_matrix[end_index*2+1][cols] += vertical_component_end
709
+ cols += 1
710
+ forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
711
+ self._reaction_loads = {}
712
+ i = 0
713
+ min_load = inf
714
+ for node in self._nodes:
715
+ if node[0] in list(self._loads):
716
+ for load in self._loads[node[0]]:
717
+ if type(load[0]) not in [Symbol, Mul, Add]:
718
+ min_load = min(min_load, load[0])
719
+ for j in range(len(forces_matrix)):
720
+ if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
721
+ if abs(forces_matrix[j]/min_load) <1E-10:
722
+ forces_matrix[j] = 0
723
+ for node in self._nodes:
724
+ if node[0] in list(self._supports):
725
+ if self._supports[node[0]]=='pinned':
726
+ self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
727
+ self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
728
+ i += 2
729
+ elif self._supports[node[0]]=='roller':
730
+ self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
731
+ i += 1
732
+ for member in list(self._members):
733
+ self._internal_forces[member] = forces_matrix[i]
734
+ i += 1
735
+ return
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc ADDED
Binary file (18.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc ADDED
Binary file (23.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc ADDED
Binary file (79.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc ADDED
Binary file (8.78 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc ADDED
Binary file (25.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc ADDED
Binary file (1.59 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc ADDED
Binary file (5.59 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc ADDED
Binary file (8.46 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc ADDED
Binary file (11.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (202 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_body.cpython-310.pyc ADDED
Binary file (9.44 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_functions.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_jointsmethod.cpython-310.pyc ADDED
Binary file (8.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane.cpython-310.pyc ADDED
Binary file (12.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane2.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane3.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane4.cpython-310.pyc ADDED
Binary file (2.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange.cpython-310.pyc ADDED
Binary file (6.15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_linearize.cpython-310.pyc ADDED
Binary file (9.15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_method.cpython-310.pyc ADDED
Binary file (568 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_rigidbody.cpython-310.pyc ADDED
Binary file (5.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_body.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.backend import (Symbol, symbols, sin, cos, Matrix, zeros,
2
+ _simplify_matrix)
3
+ from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols, Dyadic
4
+ from sympy.physics.mechanics import inertia, Body
5
+ from sympy.testing.pytest import raises
6
+
7
+
8
+ def test_default():
9
+ body = Body('body')
10
+ assert body.name == 'body'
11
+ assert body.loads == []
12
+ point = Point('body_masscenter')
13
+ point.set_vel(body.frame, 0)
14
+ com = body.masscenter
15
+ frame = body.frame
16
+ assert com.vel(frame) == point.vel(frame)
17
+ assert body.mass == Symbol('body_mass')
18
+ ixx, iyy, izz = symbols('body_ixx body_iyy body_izz')
19
+ ixy, iyz, izx = symbols('body_ixy body_iyz body_izx')
20
+ assert body.inertia == (inertia(body.frame, ixx, iyy, izz, ixy, iyz, izx),
21
+ body.masscenter)
22
+
23
+
24
+ def test_custom_rigid_body():
25
+ # Body with RigidBody.
26
+ rigidbody_masscenter = Point('rigidbody_masscenter')
27
+ rigidbody_mass = Symbol('rigidbody_mass')
28
+ rigidbody_frame = ReferenceFrame('rigidbody_frame')
29
+ body_inertia = inertia(rigidbody_frame, 1, 0, 0)
30
+ rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
31
+ rigidbody_frame, body_inertia)
32
+ com = rigid_body.masscenter
33
+ frame = rigid_body.frame
34
+ rigidbody_masscenter.set_vel(rigidbody_frame, 0)
35
+ assert com.vel(frame) == rigidbody_masscenter.vel(frame)
36
+ assert com.pos_from(com) == rigidbody_masscenter.pos_from(com)
37
+
38
+ assert rigid_body.mass == rigidbody_mass
39
+ assert rigid_body.inertia == (body_inertia, rigidbody_masscenter)
40
+
41
+ assert rigid_body.is_rigidbody
42
+
43
+ assert hasattr(rigid_body, 'masscenter')
44
+ assert hasattr(rigid_body, 'mass')
45
+ assert hasattr(rigid_body, 'frame')
46
+ assert hasattr(rigid_body, 'inertia')
47
+
48
+
49
+ def test_particle_body():
50
+ # Body with Particle
51
+ particle_masscenter = Point('particle_masscenter')
52
+ particle_mass = Symbol('particle_mass')
53
+ particle_frame = ReferenceFrame('particle_frame')
54
+ particle_body = Body('particle_body', particle_masscenter, particle_mass,
55
+ particle_frame)
56
+ com = particle_body.masscenter
57
+ frame = particle_body.frame
58
+ particle_masscenter.set_vel(particle_frame, 0)
59
+ assert com.vel(frame) == particle_masscenter.vel(frame)
60
+ assert com.pos_from(com) == particle_masscenter.pos_from(com)
61
+
62
+ assert particle_body.mass == particle_mass
63
+ assert not hasattr(particle_body, "_inertia")
64
+ assert hasattr(particle_body, 'frame')
65
+ assert hasattr(particle_body, 'masscenter')
66
+ assert hasattr(particle_body, 'mass')
67
+ assert particle_body.inertia == (Dyadic(0), particle_body.masscenter)
68
+ assert particle_body.central_inertia == Dyadic(0)
69
+ assert not particle_body.is_rigidbody
70
+
71
+ particle_body.central_inertia = inertia(particle_frame, 1, 1, 1)
72
+ assert particle_body.central_inertia == inertia(particle_frame, 1, 1, 1)
73
+ assert particle_body.is_rigidbody
74
+
75
+ particle_body = Body('particle_body', mass=particle_mass)
76
+ assert not particle_body.is_rigidbody
77
+ point = particle_body.masscenter.locatenew('point', particle_body.x)
78
+ point_inertia = particle_mass * inertia(particle_body.frame, 0, 1, 1)
79
+ particle_body.inertia = (point_inertia, point)
80
+ assert particle_body.inertia == (point_inertia, point)
81
+ assert particle_body.central_inertia == Dyadic(0)
82
+ assert particle_body.is_rigidbody
83
+
84
+
85
+ def test_particle_body_add_force():
86
+ # Body with Particle
87
+ particle_masscenter = Point('particle_masscenter')
88
+ particle_mass = Symbol('particle_mass')
89
+ particle_frame = ReferenceFrame('particle_frame')
90
+ particle_body = Body('particle_body', particle_masscenter, particle_mass,
91
+ particle_frame)
92
+
93
+ a = Symbol('a')
94
+ force_vector = a * particle_body.frame.x
95
+ particle_body.apply_force(force_vector, particle_body.masscenter)
96
+ assert len(particle_body.loads) == 1
97
+ point = particle_body.masscenter.locatenew(
98
+ particle_body._name + '_point0', 0)
99
+ point.set_vel(particle_body.frame, 0)
100
+ force_point = particle_body.loads[0][0]
101
+
102
+ frame = particle_body.frame
103
+ assert force_point.vel(frame) == point.vel(frame)
104
+ assert force_point.pos_from(force_point) == point.pos_from(force_point)
105
+
106
+ assert particle_body.loads[0][1] == force_vector
107
+
108
+
109
+ def test_body_add_force():
110
+ # Body with RigidBody.
111
+ rigidbody_masscenter = Point('rigidbody_masscenter')
112
+ rigidbody_mass = Symbol('rigidbody_mass')
113
+ rigidbody_frame = ReferenceFrame('rigidbody_frame')
114
+ body_inertia = inertia(rigidbody_frame, 1, 0, 0)
115
+ rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
116
+ rigidbody_frame, body_inertia)
117
+
118
+ l = Symbol('l')
119
+ Fa = Symbol('Fa')
120
+ point = rigid_body.masscenter.locatenew(
121
+ 'rigidbody_body_point0',
122
+ l * rigid_body.frame.x)
123
+ point.set_vel(rigid_body.frame, 0)
124
+ force_vector = Fa * rigid_body.frame.z
125
+ # apply_force with point
126
+ rigid_body.apply_force(force_vector, point)
127
+ assert len(rigid_body.loads) == 1
128
+ force_point = rigid_body.loads[0][0]
129
+ frame = rigid_body.frame
130
+ assert force_point.vel(frame) == point.vel(frame)
131
+ assert force_point.pos_from(force_point) == point.pos_from(force_point)
132
+ assert rigid_body.loads[0][1] == force_vector
133
+ # apply_force without point
134
+ rigid_body.apply_force(force_vector)
135
+ assert len(rigid_body.loads) == 2
136
+ assert rigid_body.loads[1][1] == force_vector
137
+ # passing something else than point
138
+ raises(TypeError, lambda: rigid_body.apply_force(force_vector, 0))
139
+ raises(TypeError, lambda: rigid_body.apply_force(0))
140
+
141
+ def test_body_add_torque():
142
+ body = Body('body')
143
+ torque_vector = body.frame.x
144
+ body.apply_torque(torque_vector)
145
+
146
+ assert len(body.loads) == 1
147
+ assert body.loads[0] == (body.frame, torque_vector)
148
+ raises(TypeError, lambda: body.apply_torque(0))
149
+
150
+ def test_body_masscenter_vel():
151
+ A = Body('A')
152
+ N = ReferenceFrame('N')
153
+ B = Body('B', frame=N)
154
+ A.masscenter.set_vel(N, N.z)
155
+ assert A.masscenter_vel(B) == N.z
156
+ assert A.masscenter_vel(N) == N.z
157
+
158
+ def test_body_ang_vel():
159
+ A = Body('A')
160
+ N = ReferenceFrame('N')
161
+ B = Body('B', frame=N)
162
+ A.frame.set_ang_vel(N, N.y)
163
+ assert A.ang_vel_in(B) == N.y
164
+ assert B.ang_vel_in(A) == -N.y
165
+ assert A.ang_vel_in(N) == N.y
166
+
167
+ def test_body_dcm():
168
+ A = Body('A')
169
+ B = Body('B')
170
+ A.frame.orient_axis(B.frame, B.frame.z, 10)
171
+ assert A.dcm(B) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
172
+ assert A.dcm(B.frame) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
173
+
174
+ def test_body_axis():
175
+ N = ReferenceFrame('N')
176
+ B = Body('B', frame=N)
177
+ assert B.x == N.x
178
+ assert B.y == N.y
179
+ assert B.z == N.z
180
+
181
+ def test_apply_force_multiple_one_point():
182
+ a, b = symbols('a b')
183
+ P = Point('P')
184
+ B = Body('B')
185
+ f1 = a*B.x
186
+ f2 = b*B.y
187
+ B.apply_force(f1, P)
188
+ assert B.loads == [(P, f1)]
189
+ B.apply_force(f2, P)
190
+ assert B.loads == [(P, f1+f2)]
191
+
192
+ def test_apply_force():
193
+ f, g = symbols('f g')
194
+ q, x, v1, v2 = dynamicsymbols('q x v1 v2')
195
+ P1 = Point('P1')
196
+ P2 = Point('P2')
197
+ B1 = Body('B1')
198
+ B2 = Body('B2')
199
+ N = ReferenceFrame('N')
200
+
201
+ P1.set_vel(B1.frame, v1*B1.x)
202
+ P2.set_vel(B2.frame, v2*B2.x)
203
+ force = f*q*N.z # time varying force
204
+
205
+ B1.apply_force(force, P1, B2, P2) #applying equal and opposite force on moving points
206
+ assert B1.loads == [(P1, force)]
207
+ assert B2.loads == [(P2, -force)]
208
+
209
+ g1 = B1.mass*g*N.y
210
+ g2 = B2.mass*g*N.y
211
+
212
+ B1.apply_force(g1) #applying gravity on B1 masscenter
213
+ B2.apply_force(g2) #applying gravity on B2 masscenter
214
+
215
+ assert B1.loads == [(P1,force), (B1.masscenter, g1)]
216
+ assert B2.loads == [(P2, -force), (B2.masscenter, g2)]
217
+
218
+ force2 = x*N.x
219
+
220
+ B1.apply_force(force2, reaction_body=B2) #Applying time varying force on masscenter
221
+
222
+ assert B1.loads == [(P1, force), (B1.masscenter, force2+g1)]
223
+ assert B2.loads == [(P2, -force), (B2.masscenter, -force2+g2)]
224
+
225
+ def test_apply_torque():
226
+ t = symbols('t')
227
+ q = dynamicsymbols('q')
228
+ B1 = Body('B1')
229
+ B2 = Body('B2')
230
+ N = ReferenceFrame('N')
231
+ torque = t*q*N.x
232
+
233
+ B1.apply_torque(torque, B2) #Applying equal and opposite torque
234
+ assert B1.loads == [(B1.frame, torque)]
235
+ assert B2.loads == [(B2.frame, -torque)]
236
+
237
+ torque2 = t*N.y
238
+ B1.apply_torque(torque2)
239
+ assert B1.loads == [(B1.frame, torque+torque2)]
240
+
241
+ def test_clear_load():
242
+ a = symbols('a')
243
+ P = Point('P')
244
+ B = Body('B')
245
+ force = a*B.z
246
+ B.apply_force(force, P)
247
+ assert B.loads == [(P, force)]
248
+ B.clear_loads()
249
+ assert B.loads == []
250
+
251
+ def test_remove_load():
252
+ P1 = Point('P1')
253
+ P2 = Point('P2')
254
+ B = Body('B')
255
+ f1 = B.x
256
+ f2 = B.y
257
+ B.apply_force(f1, P1)
258
+ B.apply_force(f2, P2)
259
+ assert B.loads == [(P1, f1), (P2, f2)]
260
+ B.remove_load(P2)
261
+ assert B.loads == [(P1, f1)]
262
+ B.apply_torque(f1.cross(f2))
263
+ assert B.loads == [(P1, f1), (B.frame, f1.cross(f2))]
264
+ B.remove_load()
265
+ assert B.loads == [(P1, f1)]
266
+
267
+ def test_apply_loads_on_multi_degree_freedom_holonomic_system():
268
+ """Example based on: https://pydy.readthedocs.io/en/latest/examples/multidof-holonomic.html"""
269
+ W = Body('W') #Wall
270
+ B = Body('B') #Block
271
+ P = Body('P') #Pendulum
272
+ b = Body('b') #bob
273
+ q1, q2 = dynamicsymbols('q1 q2') #generalized coordinates
274
+ k, c, g, kT = symbols('k c g kT') #constants
275
+ F, T = dynamicsymbols('F T') #Specified forces
276
+
277
+ #Applying forces
278
+ B.apply_force(F*W.x)
279
+ W.apply_force(k*q1*W.x, reaction_body=B) #Spring force
280
+ W.apply_force(c*q1.diff()*W.x, reaction_body=B) #dampner
281
+ P.apply_force(P.mass*g*W.y)
282
+ b.apply_force(b.mass*g*W.y)
283
+
284
+ #Applying torques
285
+ P.apply_torque(kT*q2*W.z, reaction_body=b)
286
+ P.apply_torque(T*W.z)
287
+
288
+ assert B.loads == [(B.masscenter, (F - k*q1 - c*q1.diff())*W.x)]
289
+ assert P.loads == [(P.masscenter, P.mass*g*W.y), (P.frame, (T + kT*q2)*W.z)]
290
+ assert b.loads == [(b.masscenter, b.mass*g*W.y), (b.frame, -kT*q2*W.z)]
291
+ assert W.loads == [(W.masscenter, (c*q1.diff() + k*q1)*W.x)]
292
+
293
+
294
+ def test_parallel_axis():
295
+ N = ReferenceFrame('N')
296
+ m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
297
+ Io = inertia(N, Ix, Iy, Iz)
298
+ # Test RigidBody
299
+ o = Point('o')
300
+ p = o.locatenew('p', a * N.x + b * N.y)
301
+ R = Body('R', masscenter=o, frame=N, mass=m, central_inertia=Io)
302
+ Ip = R.parallel_axis(p)
303
+ Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
304
+ Iz + m * (a**2 + b**2), ixy=-m * a * b)
305
+ assert Ip == Ip_expected
306
+ # Reference frame from which the parallel axis is viewed should not matter
307
+ A = ReferenceFrame('A')
308
+ A.orient_axis(N, N.z, 1)
309
+ assert _simplify_matrix(
310
+ (R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)
311
+ # Test Particle
312
+ o = Point('o')
313
+ p = o.locatenew('p', a * N.x + b * N.y)
314
+ P = Body('P', masscenter=o, mass=m, frame=N)
315
+ Ip = P.parallel_axis(p, N)
316
+ Ip_expected = inertia(N, m * b ** 2, m * a ** 2, m * (a ** 2 + b ** 2),
317
+ ixy=-m * a * b)
318
+ assert not P.is_rigidbody
319
+ assert Ip == Ip_expected
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_functions.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S, Function
2
+ from sympy.physics.mechanics import (Particle, Point, ReferenceFrame,
3
+ RigidBody)
4
+ from sympy.physics.mechanics import (angular_momentum, dynamicsymbols,
5
+ inertia, inertia_of_point_mass,
6
+ kinetic_energy, linear_momentum,
7
+ outer, potential_energy, msubs,
8
+ find_dynamicsymbols, Lagrangian)
9
+
10
+ from sympy.physics.mechanics.functions import (gravity, center_of_mass,
11
+ _validate_coordinates)
12
+ from sympy.testing.pytest import raises
13
+
14
+
15
+ q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
16
+ N = ReferenceFrame('N')
17
+ A = N.orientnew('A', 'Axis', [q1, N.z])
18
+ B = A.orientnew('B', 'Axis', [q2, A.x])
19
+ C = B.orientnew('C', 'Axis', [q3, B.y])
20
+
21
+
22
+ def test_inertia():
23
+ N = ReferenceFrame('N')
24
+ ixx, iyy, izz = symbols('ixx iyy izz')
25
+ ixy, iyz, izx = symbols('ixy iyz izx')
26
+ assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy *
27
+ (N.y | N.y) + izz * (N.z | N.z))
28
+ assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x)
29
+ raises(TypeError, lambda: inertia(0, 0, 0, 0))
30
+ assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) +
31
+ ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy *
32
+ (N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z |
33
+ N.y) + izz * (N.z | N.z))
34
+
35
+
36
+ def test_inertia_of_point_mass():
37
+ r, s, t, m = symbols('r s t m')
38
+ N = ReferenceFrame('N')
39
+
40
+ px = r * N.x
41
+ I = inertia_of_point_mass(m, px, N)
42
+ assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z)
43
+
44
+ py = s * N.y
45
+ I = inertia_of_point_mass(m, py, N)
46
+ assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z)
47
+
48
+ pz = t * N.z
49
+ I = inertia_of_point_mass(m, pz, N)
50
+ assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y)
51
+
52
+ p = px + py + pz
53
+ I = inertia_of_point_mass(m, p, N)
54
+ assert I == (m * (s**2 + t**2) * (N.x | N.x) -
55
+ m * r * s * (N.x | N.y) -
56
+ m * r * t * (N.x | N.z) -
57
+ m * r * s * (N.y | N.x) +
58
+ m * (r**2 + t**2) * (N.y | N.y) -
59
+ m * s * t * (N.y | N.z) -
60
+ m * r * t * (N.z | N.x) -
61
+ m * s * t * (N.z | N.y) +
62
+ m * (r**2 + s**2) * (N.z | N.z))
63
+
64
+
65
+ def test_linear_momentum():
66
+ N = ReferenceFrame('N')
67
+ Ac = Point('Ac')
68
+ Ac.set_vel(N, 25 * N.y)
69
+ I = outer(N.x, N.x)
70
+ A = RigidBody('A', Ac, N, 20, (I, Ac))
71
+ P = Point('P')
72
+ Pa = Particle('Pa', P, 1)
73
+ Pa.point.set_vel(N, 10 * N.x)
74
+ raises(TypeError, lambda: linear_momentum(A, A, Pa))
75
+ raises(TypeError, lambda: linear_momentum(N, N, Pa))
76
+ assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
77
+
78
+
79
+ def test_angular_momentum_and_linear_momentum():
80
+ """A rod with length 2l, centroidal inertia I, and mass M along with a
81
+ particle of mass m fixed to the end of the rod rotate with an angular rate
82
+ of omega about point O which is fixed to the non-particle end of the rod.
83
+ The rod's reference frame is A and the inertial frame is N."""
84
+ m, M, l, I = symbols('m, M, l, I')
85
+ omega = dynamicsymbols('omega')
86
+ N = ReferenceFrame('N')
87
+ a = ReferenceFrame('a')
88
+ O = Point('O')
89
+ Ac = O.locatenew('Ac', l * N.x)
90
+ P = Ac.locatenew('P', l * N.x)
91
+ O.set_vel(N, 0 * N.x)
92
+ a.set_ang_vel(N, omega * N.z)
93
+ Ac.v2pt_theory(O, N, a)
94
+ P.v2pt_theory(O, N, a)
95
+ Pa = Particle('Pa', P, m)
96
+ A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
97
+ expected = 2 * m * omega * l * N.y + M * l * omega * N.y
98
+ assert linear_momentum(N, A, Pa) == expected
99
+ raises(TypeError, lambda: angular_momentum(N, N, A, Pa))
100
+ raises(TypeError, lambda: angular_momentum(O, O, A, Pa))
101
+ raises(TypeError, lambda: angular_momentum(O, N, O, Pa))
102
+ expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
103
+ assert angular_momentum(O, N, A, Pa) == expected
104
+
105
+
106
+ def test_kinetic_energy():
107
+ m, M, l1 = symbols('m M l1')
108
+ omega = dynamicsymbols('omega')
109
+ N = ReferenceFrame('N')
110
+ O = Point('O')
111
+ O.set_vel(N, 0 * N.x)
112
+ Ac = O.locatenew('Ac', l1 * N.x)
113
+ P = Ac.locatenew('P', l1 * N.x)
114
+ a = ReferenceFrame('a')
115
+ a.set_ang_vel(N, omega * N.z)
116
+ Ac.v2pt_theory(O, N, a)
117
+ P.v2pt_theory(O, N, a)
118
+ Pa = Particle('Pa', P, m)
119
+ I = outer(N.z, N.z)
120
+ A = RigidBody('A', Ac, a, M, (I, Ac))
121
+ raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
122
+ raises(TypeError, lambda: kinetic_energy(N, N, A))
123
+ assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
124
+ + 2*l1**2*m*omega**2 + omega**2/2)).expand()
125
+
126
+
127
+ def test_potential_energy():
128
+ m, M, l1, g, h, H = symbols('m M l1 g h H')
129
+ omega = dynamicsymbols('omega')
130
+ N = ReferenceFrame('N')
131
+ O = Point('O')
132
+ O.set_vel(N, 0 * N.x)
133
+ Ac = O.locatenew('Ac', l1 * N.x)
134
+ P = Ac.locatenew('P', l1 * N.x)
135
+ a = ReferenceFrame('a')
136
+ a.set_ang_vel(N, omega * N.z)
137
+ Ac.v2pt_theory(O, N, a)
138
+ P.v2pt_theory(O, N, a)
139
+ Pa = Particle('Pa', P, m)
140
+ I = outer(N.z, N.z)
141
+ A = RigidBody('A', Ac, a, M, (I, Ac))
142
+ Pa.potential_energy = m * g * h
143
+ A.potential_energy = M * g * H
144
+ assert potential_energy(A, Pa) == m * g * h + M * g * H
145
+
146
+
147
+ def test_Lagrangian():
148
+ M, m, g, h = symbols('M m g h')
149
+ N = ReferenceFrame('N')
150
+ O = Point('O')
151
+ O.set_vel(N, 0 * N.x)
152
+ P = O.locatenew('P', 1 * N.x)
153
+ P.set_vel(N, 10 * N.x)
154
+ Pa = Particle('Pa', P, 1)
155
+ Ac = O.locatenew('Ac', 2 * N.y)
156
+ Ac.set_vel(N, 5 * N.y)
157
+ a = ReferenceFrame('a')
158
+ a.set_ang_vel(N, 10 * N.z)
159
+ I = outer(N.z, N.z)
160
+ A = RigidBody('A', Ac, a, 20, (I, Ac))
161
+ Pa.potential_energy = m * g * h
162
+ A.potential_energy = M * g * h
163
+ raises(TypeError, lambda: Lagrangian(A, A, Pa))
164
+ raises(TypeError, lambda: Lagrangian(N, N, Pa))
165
+
166
+
167
+ def test_msubs():
168
+ a, b = symbols('a, b')
169
+ x, y, z = dynamicsymbols('x, y, z')
170
+ # Test simple substitution
171
+ expr = Matrix([[a*x + b, x*y.diff() + y],
172
+ [x.diff().diff(), z + sin(z.diff())]])
173
+ sol = Matrix([[a + b, y],
174
+ [x.diff().diff(), 1]])
175
+ sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0}
176
+ assert msubs(expr, sd) == sol
177
+ # Test smart substitution
178
+ expr = cos(x + y)*tan(x + y) + b*x.diff()
179
+ sd = {x: 0, y: pi/2, x.diff(): 1}
180
+ assert msubs(expr, sd, smart=True) == b + 1
181
+ N = ReferenceFrame('N')
182
+ v = x*N.x + y*N.y
183
+ d = x*(N.x|N.x) + y*(N.y|N.y)
184
+ v_sol = 1*N.y
185
+ d_sol = 1*(N.y|N.y)
186
+ sd = {x: 0, y: 1}
187
+ assert msubs(v, sd) == v_sol
188
+ assert msubs(d, sd) == d_sol
189
+
190
+
191
+ def test_find_dynamicsymbols():
192
+ a, b = symbols('a, b')
193
+ x, y, z = dynamicsymbols('x, y, z')
194
+ expr = Matrix([[a*x + b, x*y.diff() + y],
195
+ [x.diff().diff(), z + sin(z.diff())]])
196
+ # Test finding all dynamicsymbols
197
+ sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()}
198
+ assert find_dynamicsymbols(expr) == sol
199
+ # Test finding all but those in sym_list
200
+ exclude_list = [x, y, z]
201
+ sol = {y.diff(), x.diff().diff(), z.diff()}
202
+ assert find_dynamicsymbols(expr, exclude=exclude_list) == sol
203
+ # Test finding all dynamicsymbols in a vector with a given reference frame
204
+ d, e, f = dynamicsymbols('d, e, f')
205
+ A = ReferenceFrame('A')
206
+ v = d * A.x + e * A.y + f * A.z
207
+ sol = {d, e, f}
208
+ assert find_dynamicsymbols(v, reference_frame=A) == sol
209
+ # Test if a ValueError is raised on supplying only a vector as input
210
+ raises(ValueError, lambda: find_dynamicsymbols(v))
211
+
212
+
213
+ def test_gravity():
214
+ N = ReferenceFrame('N')
215
+ m, M, g = symbols('m M g')
216
+ F1, F2 = dynamicsymbols('F1 F2')
217
+ po = Point('po')
218
+ pa = Particle('pa', po, m)
219
+ A = ReferenceFrame('A')
220
+ P = Point('P')
221
+ I = outer(A.x, A.x)
222
+ B = RigidBody('B', P, A, M, (I, P))
223
+ forceList = [(po, F1), (P, F2)]
224
+ forceList.extend(gravity(g*N.y, pa, B))
225
+ l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)]
226
+
227
+ for i in range(len(l)):
228
+ for j in range(len(l[i])):
229
+ assert forceList[i][j] == l[i][j]
230
+
231
+ # This function tests the center_of_mass() function
232
+ # that was added in PR #14758 to compute the center of
233
+ # mass of a system of bodies.
234
+ def test_center_of_mass():
235
+ a = ReferenceFrame('a')
236
+ m = symbols('m', real=True)
237
+ p1 = Particle('p1', Point('p1_pt'), S.One)
238
+ p2 = Particle('p2', Point('p2_pt'), S(2))
239
+ p3 = Particle('p3', Point('p3_pt'), S(3))
240
+ p4 = Particle('p4', Point('p4_pt'), m)
241
+ b_f = ReferenceFrame('b_f')
242
+ b_cm = Point('b_cm')
243
+ mb = symbols('mb')
244
+ b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
245
+ p2.point.set_pos(p1.point, a.x)
246
+ p3.point.set_pos(p1.point, a.x + a.y)
247
+ p4.point.set_pos(p1.point, a.y)
248
+ b.masscenter.set_pos(p1.point, a.y + a.z)
249
+ point_o=Point('o')
250
+ point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
251
+ expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
252
+ assert point_o.pos_from(p1.point)-expr == 0
253
+
254
+
255
+ def test_validate_coordinates():
256
+ q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4 u1:4')
257
+ s1, s2, s3 = symbols('s1:4')
258
+ # Test normal
259
+ _validate_coordinates([q1, q2, q3], [u1, u2, u3])
260
+ # Test not equal number of coordinates and speeds
261
+ _validate_coordinates([q1, q2])
262
+ _validate_coordinates([q1, q2], [u1])
263
+ _validate_coordinates(speeds=[u1, u2])
264
+ # Test duplicate
265
+ _validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False)
266
+ raises(ValueError, lambda: _validate_coordinates(
267
+ [q1, q2, q2], [u1, u2, u3]))
268
+ _validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False)
269
+ raises(ValueError, lambda: _validate_coordinates(
270
+ [q1, q2, q3], [u1, u2, u2], check_duplicates=True))
271
+ raises(ValueError, lambda: _validate_coordinates(
272
+ [q1, q2, q3], [q1, u2, u3], check_duplicates=True))
273
+ # Test is_dynamicsymbols
274
+ _validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False)
275
+ raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3]))
276
+ _validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False)
277
+ raises(ValueError, lambda: _validate_coordinates(
278
+ [s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True))
279
+ _validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False)
280
+ raises(ValueError, lambda: _validate_coordinates(
281
+ [s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True))
282
+ # Test normal function
283
+ t = dynamicsymbols._t
284
+ a = symbols('a')
285
+ f1, f2 = symbols('f1:3', cls=Function)
286
+ _validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False)
287
+ raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)]))
288
+ raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)]))
289
+ dynamicsymbols._t = a
290
+ _validate_coordinates([f1(a), f2(a)])
291
+ raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)]))
292
+ dynamicsymbols._t = t
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane.py ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy import solve
2
+ from sympy.core.backend import (cos, expand, Matrix, sin, symbols, tan, sqrt, S,
3
+ zeros, eye)
4
+ from sympy.simplify.simplify import simplify
5
+ from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
6
+ RigidBody, KanesMethod, inertia, Particle,
7
+ dot)
8
+ from sympy.testing.pytest import raises
9
+ from sympy.core.backend import USE_SYMENGINE
10
+
11
+
12
+ def test_invalid_coordinates():
13
+ # Simple pendulum, but use symbols instead of dynamicsymbols
14
+ l, m, g = symbols('l m g')
15
+ q, u = symbols('q u') # Generalized coordinate
16
+ kd = [q.diff(dynamicsymbols._t) - u]
17
+ N, O = ReferenceFrame('N'), Point('O')
18
+ O.set_vel(N, 0)
19
+ P = Particle('P', Point('P'), m)
20
+ P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y))
21
+ F = (P.point, -m * g * N.y)
22
+ raises(ValueError, lambda: KanesMethod(N, [q], [u], kd, bodies=[P],
23
+ forcelist=[F]))
24
+
25
+
26
+ def test_one_dof():
27
+ # This is for a 1 dof spring-mass-damper case.
28
+ # It is described in more detail in the KanesMethod docstring.
29
+ q, u = dynamicsymbols('q u')
30
+ qd, ud = dynamicsymbols('q u', 1)
31
+ m, c, k = symbols('m c k')
32
+ N = ReferenceFrame('N')
33
+ P = Point('P')
34
+ P.set_vel(N, u * N.x)
35
+
36
+ kd = [qd - u]
37
+ FL = [(P, (-k * q - c * u) * N.x)]
38
+ pa = Particle('pa', P, m)
39
+ BL = [pa]
40
+
41
+ KM = KanesMethod(N, [q], [u], kd)
42
+ KM.kanes_equations(BL, FL)
43
+
44
+ assert KM.bodies == BL
45
+ assert KM.loads == FL
46
+
47
+ MM = KM.mass_matrix
48
+ forcing = KM.forcing
49
+ rhs = MM.inv() * forcing
50
+ assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
51
+
52
+ assert simplify(KM.rhs() -
53
+ KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
54
+
55
+ assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
56
+
57
+
58
+ def test_two_dof():
59
+ # This is for a 2 d.o.f., 2 particle spring-mass-damper.
60
+ # The first coordinate is the displacement of the first particle, and the
61
+ # second is the relative displacement between the first and second
62
+ # particles. Speeds are defined as the time derivatives of the particles.
63
+ q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
64
+ q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
65
+ m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
66
+ N = ReferenceFrame('N')
67
+ P1 = Point('P1')
68
+ P2 = Point('P2')
69
+ P1.set_vel(N, u1 * N.x)
70
+ P2.set_vel(N, (u1 + u2) * N.x)
71
+ # Note we multiply the kinematic equation by an arbitrary factor
72
+ # to test the implicit vs explicit kinematics attribute
73
+ kd = [q1d/2 - u1/2, 2*q2d - 2*u2]
74
+
75
+ # Now we create the list of forces, then assign properties to each
76
+ # particle, then create a list of all particles.
77
+ FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
78
+ q2 - c2 * u2) * N.x)]
79
+ pa1 = Particle('pa1', P1, m)
80
+ pa2 = Particle('pa2', P2, m)
81
+ BL = [pa1, pa2]
82
+
83
+ # Finally we create the KanesMethod object, specify the inertial frame,
84
+ # pass relevant information, and form Fr & Fr*. Then we calculate the mass
85
+ # matrix and forcing terms, and finally solve for the udots.
86
+ KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
87
+ KM.kanes_equations(BL, FL)
88
+ MM = KM.mass_matrix
89
+ forcing = KM.forcing
90
+ rhs = MM.inv() * forcing
91
+ assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
92
+ assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
93
+ c2 * u2) / m)
94
+
95
+ # Check that the explicit form is the default and kinematic mass matrix is identity
96
+ assert KM.explicit_kinematics
97
+ assert KM.mass_matrix_kin == eye(2)
98
+
99
+ # Check that for the implicit form the mass matrix is not identity
100
+ KM.explicit_kinematics = False
101
+ assert KM.mass_matrix_kin == Matrix([[S(1)/2, 0], [0, 2]])
102
+
103
+ # Check that whether using implicit or explicit kinematics the RHS
104
+ # equations are consistent with the matrix form
105
+ for explicit_kinematics in [False, True]:
106
+ KM.explicit_kinematics = explicit_kinematics
107
+ assert simplify(KM.rhs() -
108
+ KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
109
+
110
+ # Make sure an error is raised if nonlinear kinematic differential
111
+ # equations are supplied.
112
+ kd = [q1d - u1**2, sin(q2d) - cos(u2)]
113
+ raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2],
114
+ u_ind=[u1, u2], kd_eqs=kd))
115
+
116
+ def test_pend():
117
+ q, u = dynamicsymbols('q u')
118
+ qd, ud = dynamicsymbols('q u', 1)
119
+ m, l, g = symbols('m l g')
120
+ N = ReferenceFrame('N')
121
+ P = Point('P')
122
+ P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
123
+ kd = [qd - u]
124
+
125
+ FL = [(P, m * g * N.x)]
126
+ pa = Particle('pa', P, m)
127
+ BL = [pa]
128
+
129
+ KM = KanesMethod(N, [q], [u], kd)
130
+ KM.kanes_equations(BL, FL)
131
+ MM = KM.mass_matrix
132
+ forcing = KM.forcing
133
+ rhs = MM.inv() * forcing
134
+ rhs.simplify()
135
+ assert expand(rhs[0]) == expand(-g / l * sin(q))
136
+ assert simplify(KM.rhs() -
137
+ KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
138
+
139
+
140
+ def test_rolling_disc():
141
+ # Rolling Disc Example
142
+ # Here the rolling disc is formed from the contact point up, removing the
143
+ # need to introduce generalized speeds. Only 3 configuration and three
144
+ # speed variables are need to describe this system, along with the disc's
145
+ # mass and radius, and the local gravity (note that mass will drop out).
146
+ q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
147
+ q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
148
+ r, m, g = symbols('r m g')
149
+
150
+ # The kinematics are formed by a series of simple rotations. Each simple
151
+ # rotation creates a new frame, and the next rotation is defined by the new
152
+ # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
153
+ # Z, X, Y series of rotations. Angular velocity for this is defined using
154
+ # the second frame's basis (the lean frame).
155
+ N = ReferenceFrame('N')
156
+ Y = N.orientnew('Y', 'Axis', [q1, N.z])
157
+ L = Y.orientnew('L', 'Axis', [q2, Y.x])
158
+ R = L.orientnew('R', 'Axis', [q3, L.y])
159
+ w_R_N_qd = R.ang_vel_in(N)
160
+ R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
161
+
162
+ # This is the translational kinematics. We create a point with no velocity
163
+ # in N; this is the contact point between the disc and ground. Next we form
164
+ # the position vector from the contact point to the disc's center of mass.
165
+ # Finally we form the velocity and acceleration of the disc.
166
+ C = Point('C')
167
+ C.set_vel(N, 0)
168
+ Dmc = C.locatenew('Dmc', r * L.z)
169
+ Dmc.v2pt_theory(C, N, R)
170
+
171
+ # This is a simple way to form the inertia dyadic.
172
+ I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
173
+
174
+ # Kinematic differential equations; how the generalized coordinate time
175
+ # derivatives relate to generalized speeds.
176
+ kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
177
+
178
+ # Creation of the force list; it is the gravitational force at the mass
179
+ # center of the disc. Then we create the disc by assigning a Point to the
180
+ # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
181
+ # and inertia. Then we form the body list.
182
+ ForceList = [(Dmc, - m * g * Y.z)]
183
+ BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
184
+ BodyList = [BodyD]
185
+
186
+ # Finally we form the equations of motion, using the same steps we did
187
+ # before. Specify inertial frame, supply generalized speeds, supply
188
+ # kinematic differential equation dictionary, compute Fr from the force
189
+ # list and Fr* from the body list, compute the mass matrix and forcing
190
+ # terms, then solve for the u dots (time derivatives of the generalized
191
+ # speeds).
192
+ KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
193
+ KM.kanes_equations(BodyList, ForceList)
194
+ MM = KM.mass_matrix
195
+ forcing = KM.forcing
196
+ rhs = MM.inv() * forcing
197
+ kdd = KM.kindiffdict()
198
+ rhs = rhs.subs(kdd)
199
+ rhs.simplify()
200
+ assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
201
+ 4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
202
+ assert simplify(KM.rhs() -
203
+ KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)
204
+
205
+ # This code tests our output vs. benchmark values. When r=g=m=1, the
206
+ # critical speed (where all eigenvalues of the linearized equations are 0)
207
+ # is 1 / sqrt(3) for the upright case.
208
+ A = KM.linearize(A_and_B=True)[0]
209
+ A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
210
+ import sympy
211
+ assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6}
212
+
213
+
214
+ def test_aux():
215
+ # Same as above, except we have 2 auxiliary speeds for the ground contact
216
+ # point, which is known to be zero. In one case, we go through then
217
+ # substitute the aux. speeds in at the end (they are zero, as well as their
218
+ # derivative), in the other case, we use the built-in auxiliary speed part
219
+ # of KanesMethod. The equations from each should be the same.
220
+ q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
221
+ q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
222
+ u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
223
+ u4d, u5d = dynamicsymbols('u4, u5', 1)
224
+ r, m, g = symbols('r m g')
225
+
226
+ N = ReferenceFrame('N')
227
+ Y = N.orientnew('Y', 'Axis', [q1, N.z])
228
+ L = Y.orientnew('L', 'Axis', [q2, Y.x])
229
+ R = L.orientnew('R', 'Axis', [q3, L.y])
230
+ w_R_N_qd = R.ang_vel_in(N)
231
+ R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
232
+
233
+ C = Point('C')
234
+ C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
235
+ Dmc = C.locatenew('Dmc', r * L.z)
236
+ Dmc.v2pt_theory(C, N, R)
237
+ Dmc.a2pt_theory(C, N, R)
238
+
239
+ I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
240
+
241
+ kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
242
+
243
+ ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
244
+ BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
245
+ BodyList = [BodyD]
246
+
247
+ KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
248
+ kd_eqs=kd)
249
+ (fr, frstar) = KM.kanes_equations(BodyList, ForceList)
250
+ fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
251
+ frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
252
+
253
+ KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
254
+ u_auxiliary=[u4, u5])
255
+ (fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList)
256
+ fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
257
+ frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
258
+
259
+ frstar.simplify()
260
+ frstar2.simplify()
261
+
262
+ assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
263
+ assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
264
+
265
+
266
+ def test_parallel_axis():
267
+ # This is for a 2 dof inverted pendulum on a cart.
268
+ # This tests the parallel axis code in KanesMethod. The inertia of the
269
+ # pendulum is defined about the hinge, not about the center of mass.
270
+
271
+ # Defining the constants and knowns of the system
272
+ gravity = symbols('g')
273
+ k, ls = symbols('k ls')
274
+ a, mA, mC = symbols('a mA mC')
275
+ F = dynamicsymbols('F')
276
+ Ix, Iy, Iz = symbols('Ix Iy Iz')
277
+
278
+ # Declaring the Generalized coordinates and speeds
279
+ q1, q2 = dynamicsymbols('q1 q2')
280
+ q1d, q2d = dynamicsymbols('q1 q2', 1)
281
+ u1, u2 = dynamicsymbols('u1 u2')
282
+ u1d, u2d = dynamicsymbols('u1 u2', 1)
283
+
284
+ # Creating reference frames
285
+ N = ReferenceFrame('N')
286
+ A = ReferenceFrame('A')
287
+
288
+ A.orient(N, 'Axis', [-q2, N.z])
289
+ A.set_ang_vel(N, -u2 * N.z)
290
+
291
+ # Origin of Newtonian reference frame
292
+ O = Point('O')
293
+
294
+ # Creating and Locating the positions of the cart, C, and the
295
+ # center of mass of the pendulum, A
296
+ C = O.locatenew('C', q1 * N.x)
297
+ Ao = C.locatenew('Ao', a * A.y)
298
+
299
+ # Defining velocities of the points
300
+ O.set_vel(N, 0)
301
+ C.set_vel(N, u1 * N.x)
302
+ Ao.v2pt_theory(C, N, A)
303
+ Cart = Particle('Cart', C, mC)
304
+ Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
305
+
306
+ # kinematical differential equations
307
+
308
+ kindiffs = [q1d - u1, q2d - u2]
309
+
310
+ bodyList = [Cart, Pendulum]
311
+
312
+ forceList = [(Ao, -N.y * gravity * mA),
313
+ (C, -N.y * gravity * mC),
314
+ (C, -N.x * k * (q1 - ls)),
315
+ (C, N.x * F)]
316
+
317
+ km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
318
+ (fr, frstar) = km.kanes_equations(bodyList, forceList)
319
+ mm = km.mass_matrix_full
320
+ assert mm[3, 3] == Iz
321
+
322
+ def test_input_format():
323
+ # 1 dof problem from test_one_dof
324
+ q, u = dynamicsymbols('q u')
325
+ qd, ud = dynamicsymbols('q u', 1)
326
+ m, c, k = symbols('m c k')
327
+ N = ReferenceFrame('N')
328
+ P = Point('P')
329
+ P.set_vel(N, u * N.x)
330
+
331
+ kd = [qd - u]
332
+ FL = [(P, (-k * q - c * u) * N.x)]
333
+ pa = Particle('pa', P, m)
334
+ BL = [pa]
335
+
336
+ KM = KanesMethod(N, [q], [u], kd)
337
+ # test for input format kane.kanes_equations((body1, body2, particle1))
338
+ assert KM.kanes_equations(BL)[0] == Matrix([0])
339
+ # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2))
340
+ assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0])
341
+ # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None)
342
+ assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0])
343
+ # test for input format kane.kanes_equations(bodies=(body1, body 2))
344
+ assert KM.kanes_equations(BL)[0] == Matrix([0])
345
+ # test for input format kane.kanes_equations(bodies=(body1, body2), loads=[])
346
+ assert KM.kanes_equations(BL, [])[0] == Matrix([0])
347
+ # test for error raised when a wrong force list (in this case a string) is provided
348
+ raises(ValueError, lambda: KM._form_fr('bad input'))
349
+
350
+ # 1 dof problem from test_one_dof with FL & BL in instance
351
+ KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL)
352
+ assert KM.kanes_equations()[0] == Matrix([-c*u - k*q])
353
+
354
+ # 2 dof problem from test_two_dof
355
+ q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
356
+ q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
357
+ m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
358
+ N = ReferenceFrame('N')
359
+ P1 = Point('P1')
360
+ P2 = Point('P2')
361
+ P1.set_vel(N, u1 * N.x)
362
+ P2.set_vel(N, (u1 + u2) * N.x)
363
+ kd = [q1d - u1, q2d - u2]
364
+
365
+ FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
366
+ q2 - c2 * u2) * N.x))
367
+ pa1 = Particle('pa1', P1, m)
368
+ pa2 = Particle('pa2', P2, m)
369
+ BL = (pa1, pa2)
370
+
371
+ KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
372
+ # test for input format
373
+ # kane.kanes_equations((body1, body2), (load1, load2))
374
+ KM.kanes_equations(BL, FL)
375
+ MM = KM.mass_matrix
376
+ forcing = KM.forcing
377
+ rhs = MM.inv() * forcing
378
+ assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
379
+ assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
380
+ c2 * u2) / m)
381
+
382
+
383
+ def test_implicit_kinematics():
384
+ # Test that implicit kinematics can handle complicated
385
+ # equations that explicit form struggles with
386
+ # See https://github.com/sympy/sympy/issues/22626
387
+
388
+ # Inertial frame
389
+ NED = ReferenceFrame('NED')
390
+ NED_o = Point('NED_o')
391
+ NED_o.set_vel(NED, 0)
392
+
393
+ # body frame
394
+ q_att = dynamicsymbols('lambda_0:4', real=True)
395
+ B = NED.orientnew('B', 'Quaternion', q_att)
396
+
397
+ # Generalized coordinates
398
+ q_pos = dynamicsymbols('B_x:z')
399
+ B_cm = NED_o.locatenew('B_cm', q_pos[0]*B.x + q_pos[1]*B.y + q_pos[2]*B.z)
400
+
401
+ q_ind = q_att[1:] + q_pos
402
+ q_dep = [q_att[0]]
403
+
404
+ kinematic_eqs = []
405
+
406
+ # Generalized velocities
407
+ B_ang_vel = B.ang_vel_in(NED)
408
+ P, Q, R = dynamicsymbols('P Q R')
409
+ B.set_ang_vel(NED, P*B.x + Q*B.y + R*B.z)
410
+
411
+ B_ang_vel_kd = (B.ang_vel_in(NED) - B_ang_vel).simplify()
412
+
413
+ # Equating the two gives us the kinematic equation
414
+ kinematic_eqs += [
415
+ B_ang_vel_kd & B.x,
416
+ B_ang_vel_kd & B.y,
417
+ B_ang_vel_kd & B.z
418
+ ]
419
+
420
+ B_cm_vel = B_cm.vel(NED)
421
+ U, V, W = dynamicsymbols('U V W')
422
+ B_cm.set_vel(NED, U*B.x + V*B.y + W*B.z)
423
+
424
+ # Compute the velocity of the point using the two methods
425
+ B_ref_vel_kd = (B_cm.vel(NED) - B_cm_vel)
426
+
427
+ # taking dot product with unit vectors to get kinematic equations
428
+ # relating body coordinates and velocities
429
+
430
+ # Note, there is a choice to dot with NED.xyz here. That makes
431
+ # the implicit form have some bigger terms but is still fine, the
432
+ # explicit form still struggles though
433
+ kinematic_eqs += [
434
+ B_ref_vel_kd & B.x,
435
+ B_ref_vel_kd & B.y,
436
+ B_ref_vel_kd & B.z,
437
+ ]
438
+
439
+ u_ind = [U, V, W, P, Q, R]
440
+
441
+ # constraints
442
+ q_att_vec = Matrix(q_att)
443
+ config_cons = [(q_att_vec.T*q_att_vec)[0] - 1] #unit norm
444
+ kinematic_eqs = kinematic_eqs + [(q_att_vec.T * q_att_vec.diff())[0]]
445
+
446
+ try:
447
+ KM = KanesMethod(NED, q_ind, u_ind,
448
+ q_dependent= q_dep,
449
+ kd_eqs = kinematic_eqs,
450
+ configuration_constraints = config_cons,
451
+ velocity_constraints= [],
452
+ u_dependent= [], #no dependent speeds
453
+ u_auxiliary = [], # No auxiliary speeds
454
+ explicit_kinematics = False # implicit kinematics
455
+ )
456
+ except Exception as e:
457
+ # symengine struggles with these kinematic equations
458
+ if USE_SYMENGINE and 'Matrix is rank deficient' in str(e):
459
+ return
460
+ else:
461
+ raise e
462
+
463
+ # mass and inertia dyadic relative to CM
464
+ M_B = symbols('M_B')
465
+ J_B = inertia(B, *[S(f'J_B_{ax}')*(1 if ax[0] == ax[1] else -1)
466
+ for ax in ['xx', 'yy', 'zz', 'xy', 'yz', 'xz']])
467
+ J_B = J_B.subs({S('J_B_xy'): 0, S('J_B_yz'): 0})
468
+ RB = RigidBody('RB', B_cm, B, M_B, (J_B, B_cm))
469
+
470
+ rigid_bodies = [RB]
471
+ # Forces
472
+ force_list = [
473
+ #gravity pointing down
474
+ (RB.masscenter, RB.mass*S('g')*NED.z),
475
+ #generic forces and torques in body frame(inputs)
476
+ (RB.frame, dynamicsymbols('T_z')*B.z),
477
+ (RB.masscenter, dynamicsymbols('F_z')*B.z)
478
+ ]
479
+
480
+ KM.kanes_equations(rigid_bodies, force_list)
481
+
482
+ # Expecting implicit form to be less than 5% of the flops
483
+ n_ops_implicit = sum(
484
+ [x.count_ops() for x in KM.forcing_full] +
485
+ [x.count_ops() for x in KM.mass_matrix_full]
486
+ )
487
+ # Save implicit kinematic matrices to use later
488
+ mass_matrix_kin_implicit = KM.mass_matrix_kin
489
+ forcing_kin_implicit = KM.forcing_kin
490
+
491
+ KM.explicit_kinematics = True
492
+ n_ops_explicit = sum(
493
+ [x.count_ops() for x in KM.forcing_full] +
494
+ [x.count_ops() for x in KM.mass_matrix_full]
495
+ )
496
+ forcing_kin_explicit = KM.forcing_kin
497
+
498
+ assert n_ops_implicit / n_ops_explicit < .05
499
+
500
+ # Ideally we would check that implicit and explicit equations give the same result as done in test_one_dof
501
+ # But the whole raison-d'etre of the implicit equations is to deal with problems such
502
+ # as this one where the explicit form is too complicated to handle, especially the angular part
503
+ # (i.e. tests would be too slow)
504
+ # Instead, we check that the kinematic equations are correct using more fundamental tests:
505
+ #
506
+ # (1) that we recover the kinematic equations we have provided
507
+ assert (mass_matrix_kin_implicit * KM.q.diff() - forcing_kin_implicit) == Matrix(kinematic_eqs)
508
+
509
+ # (2) that rate of quaternions matches what 'textbook' solutions give
510
+ # Note that we just use the explicit kinematics for the linear velocities
511
+ # as they are not as complicated as the angular ones
512
+ qdot_candidate = forcing_kin_explicit
513
+
514
+ quat_dot_textbook = Matrix([
515
+ [0, -P, -Q, -R],
516
+ [P, 0, R, -Q],
517
+ [Q, -R, 0, P],
518
+ [R, Q, -P, 0],
519
+ ]) * q_att_vec / 2
520
+
521
+ # Again, if we don't use this "textbook" solution
522
+ # sympy will struggle to deal with the terms related to quaternion rates
523
+ # due to the number of operations involved
524
+ qdot_candidate[-1] = quat_dot_textbook[0] # lambda_0, note the [-1] as sympy's Kane puts the dependent coordinate last
525
+ qdot_candidate[0] = quat_dot_textbook[1] # lambda_1
526
+ qdot_candidate[1] = quat_dot_textbook[2] # lambda_2
527
+ qdot_candidate[2] = quat_dot_textbook[3] # lambda_3
528
+
529
+ # sub the config constraint in the candidate solution and compare to the implicit rhs
530
+ lambda_0_sol = solve(config_cons[0], q_att_vec[0])[1]
531
+ lhs_candidate = simplify(mass_matrix_kin_implicit * qdot_candidate).subs({q_att_vec[0]: lambda_0_sol})
532
+ assert lhs_candidate == forcing_kin_implicit
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane2.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.backend import cos, Matrix, sin, zeros, tan, pi, symbols
2
+ from sympy.simplify.simplify import simplify
3
+ from sympy.simplify.trigsimp import trigsimp
4
+ from sympy.solvers.solvers import solve
5
+ from sympy.physics.mechanics import (cross, dot, dynamicsymbols,
6
+ find_dynamicsymbols, KanesMethod, inertia,
7
+ inertia_of_point_mass, Point,
8
+ ReferenceFrame, RigidBody)
9
+
10
+
11
+ def test_aux_dep():
12
+ # This test is about rolling disc dynamics, comparing the results found
13
+ # with KanesMethod to those found when deriving the equations "manually"
14
+ # with SymPy.
15
+ # The terms Fr, Fr*, and Fr*_steady are all compared between the two
16
+ # methods. Here, Fr*_steady refers to the generalized inertia forces for an
17
+ # equilibrium configuration.
18
+ # Note: comparing to the test of test_rolling_disc() in test_kane.py, this
19
+ # test also tests auxiliary speeds and configuration and motion constraints
20
+ #, seen in the generalized dependent coordinates q[3], and depend speeds
21
+ # u[3], u[4] and u[5].
22
+
23
+
24
+ # First, manual derivation of Fr, Fr_star, Fr_star_steady.
25
+
26
+ # Symbols for time and constant parameters.
27
+ # Symbols for contact forces: Fx, Fy, Fz.
28
+ t, r, m, g, I, J = symbols('t r m g I J')
29
+ Fx, Fy, Fz = symbols('Fx Fy Fz')
30
+
31
+ # Configuration variables and their time derivatives:
32
+ # q[0] -- yaw
33
+ # q[1] -- lean
34
+ # q[2] -- spin
35
+ # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in
36
+ # A.z direction
37
+ # Generalized speeds and their time derivatives:
38
+ # u[0] -- disc angular velocity component, disc fixed x direction
39
+ # u[1] -- disc angular velocity component, disc fixed y direction
40
+ # u[2] -- disc angular velocity component, disc fixed z direction
41
+ # u[3] -- disc velocity component, A.x direction
42
+ # u[4] -- disc velocity component, A.y direction
43
+ # u[5] -- disc velocity component, A.z direction
44
+ # Auxiliary generalized speeds:
45
+ # ua[0] -- contact point auxiliary generalized speed, A.x direction
46
+ # ua[1] -- contact point auxiliary generalized speed, A.y direction
47
+ # ua[2] -- contact point auxiliary generalized speed, A.z direction
48
+ q = dynamicsymbols('q:4')
49
+ qd = [qi.diff(t) for qi in q]
50
+ u = dynamicsymbols('u:6')
51
+ ud = [ui.diff(t) for ui in u]
52
+ ud_zero = dict(zip(ud, [0.]*len(ud)))
53
+ ua = dynamicsymbols('ua:3')
54
+ ua_zero = dict(zip(ua, [0.]*len(ua))) # noqa:F841
55
+
56
+ # Reference frames:
57
+ # Yaw intermediate frame: A.
58
+ # Lean intermediate frame: B.
59
+ # Disc fixed frame: C.
60
+ N = ReferenceFrame('N')
61
+ A = N.orientnew('A', 'Axis', [q[0], N.z])
62
+ B = A.orientnew('B', 'Axis', [q[1], A.x])
63
+ C = B.orientnew('C', 'Axis', [q[2], B.y])
64
+
65
+ # Angular velocity and angular acceleration of disc fixed frame
66
+ # u[0], u[1] and u[2] are generalized independent speeds.
67
+ C.set_ang_vel(N, u[0]*B.x + u[1]*B.y + u[2]*B.z)
68
+ C.set_ang_acc(N, C.ang_vel_in(N).diff(t, B)
69
+ + cross(B.ang_vel_in(N), C.ang_vel_in(N)))
70
+
71
+ # Velocity and acceleration of points:
72
+ # Disc-ground contact point: P.
73
+ # Center of disc: O, defined from point P with depend coordinate: q[3]
74
+ # u[3], u[4] and u[5] are generalized dependent speeds.
75
+ P = Point('P')
76
+ P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z)
77
+ O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y)
78
+ O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z)
79
+ O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N)))
80
+
81
+ # Kinematic differential equations:
82
+ # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates
83
+ # directions of B, for qd0, qd1 and qd2.
84
+ # the other is v_o_n_qd = O.vel(N) in A.z direction for qd3.
85
+ # Then, solve for dq/dt's in terms of u's: qd_kd.
86
+ w_c_n_qd = qd[0]*A.z + qd[1]*B.x + qd[2]*B.y
87
+ v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P))
88
+ kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
89
+ [dot(v_o_n_qd - O.vel(N), A.z)])
90
+ qd_kd = solve(kindiffs, qd) # noqa:F841
91
+
92
+ # Values of generalized speeds during a steady turn for later substitution
93
+ # into the Fr_star_steady.
94
+ steady_conditions = solve(kindiffs.subs({qd[1] : 0, qd[3] : 0}), u)
95
+ steady_conditions.update({qd[1] : 0, qd[3] : 0})
96
+
97
+ # Partial angular velocities and velocities.
98
+ partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua]
99
+ partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua]
100
+ partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua]
101
+
102
+ # Configuration constraint: f_c, the projection of radius r in A.z direction
103
+ # is q[3].
104
+ # Velocity constraints: f_v, for u3, u4 and u5.
105
+ # Acceleration constraints: f_a.
106
+ f_c = Matrix([dot(-r*B.z, A.z) - q[3]])
107
+ f_v = Matrix([dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N),
108
+ O.pos_from(P))), ai).expand() for ai in A])
109
+ v_o_n = cross(C.ang_vel_in(N), O.pos_from(P))
110
+ a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n)
111
+ f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A]) # noqa:F841
112
+
113
+ # Solve for constraint equations in the form of
114
+ # u_dependent = A_rs * [u_i; u_aux].
115
+ # First, obtain constraint coefficient matrix: M_v * [u; ua] = 0;
116
+ # Second, taking u[0], u[1], u[2] as independent,
117
+ # taking u[3], u[4], u[5] as dependent,
118
+ # rearranging the matrix of M_v to be A_rs for u_dependent.
119
+ # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict.
120
+ M_v = zeros(3, 9)
121
+ for i in range(3):
122
+ for j, ui in enumerate(u + ua):
123
+ M_v[i, j] = f_v[i].diff(ui)
124
+
125
+ M_v_i = M_v[:, :3]
126
+ M_v_d = M_v[:, 3:6]
127
+ M_v_aux = M_v[:, 6:]
128
+ M_v_i_aux = M_v_i.row_join(M_v_aux)
129
+ A_rs = - M_v_d.inv() * M_v_i_aux
130
+
131
+ u_dep = A_rs[:, :3] * Matrix(u[:3])
132
+ u_dep_dict = dict(zip(u[3:], u_dep))
133
+
134
+ # Active forces: F_O acting on point O; F_P acting on point P.
135
+ # Generalized active forces (unconstrained): Fr_u = F_point * pv_point.
136
+ F_O = m*g*A.z
137
+ F_P = Fx * A.x + Fy * A.y + Fz * A.z
138
+ Fr_u = Matrix([dot(F_O, pv_o) + dot(F_P, pv_p) for pv_o, pv_p in
139
+ zip(partial_v_O, partial_v_P)])
140
+
141
+ # Inertia force: R_star_O.
142
+ # Inertia of disc: I_C_O, where J is a inertia component about principal axis.
143
+ # Inertia torque: T_star_C.
144
+ # Generalized inertia forces (unconstrained): Fr_star_u.
145
+ R_star_O = -m*O.acc(N)
146
+ I_C_O = inertia(B, I, J, I)
147
+ T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \
148
+ + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N))))
149
+ Fr_star_u = Matrix([dot(R_star_O, pv) + dot(T_star_C, pav) for pv, pav in
150
+ zip(partial_v_O, partial_w_C)])
151
+
152
+ # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c.
153
+ # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady.
154
+ Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :]
155
+ Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\
156
+ + A_rs.T * Fr_star_u[3:6, :]
157
+ Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\
158
+ .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand()
159
+
160
+
161
+ # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady.
162
+
163
+ # Rigid Bodies: disc, with inertia I_C_O.
164
+ iner_tuple = (I_C_O, O)
165
+ disc = RigidBody('disc', O, C, m, iner_tuple)
166
+ bodyList = [disc]
167
+
168
+ # Generalized forces: Gravity: F_o; Auxiliary forces: F_p.
169
+ F_o = (O, F_O)
170
+ F_p = (P, F_P)
171
+ forceList = [F_o, F_p]
172
+
173
+ # KanesMethod.
174
+ kane = KanesMethod(
175
+ N, q_ind= q[:3], u_ind= u[:3], kd_eqs=kindiffs,
176
+ q_dependent=q[3:], configuration_constraints = f_c,
177
+ u_dependent=u[3:], velocity_constraints= f_v,
178
+ u_auxiliary=ua
179
+ )
180
+
181
+ # fr, frstar, frstar_steady and kdd(kinematic differential equations).
182
+ (fr, frstar)= kane.kanes_equations(bodyList, forceList)
183
+ frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\
184
+ .subs({q[3]: -r*cos(q[1])}).expand()
185
+ kdd = kane.kindiffdict()
186
+
187
+ assert Matrix(Fr_c).expand() == fr.expand()
188
+ assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand()
189
+ assert (simplify(Matrix(Fr_star_steady).expand()) ==
190
+ simplify(frstar_steady.expand()))
191
+
192
+ syms_in_forcing = find_dynamicsymbols(kane.forcing)
193
+ for qdi in qd:
194
+ assert qdi not in syms_in_forcing
195
+
196
+
197
+ def test_non_central_inertia():
198
+ # This tests that the calculation of Fr* does not depend the point
199
+ # about which the inertia of a rigid body is defined. This test solves
200
+ # exercises 8.12, 8.17 from Kane 1985.
201
+
202
+ # Declare symbols
203
+ q1, q2, q3 = dynamicsymbols('q1:4')
204
+ q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
205
+ u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
206
+ u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
207
+ a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
208
+ Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
209
+ IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
210
+
211
+ # Reference Frames
212
+ F = ReferenceFrame('F')
213
+ P = F.orientnew('P', 'axis', [-theta, F.y])
214
+ A = P.orientnew('A', 'axis', [q1, P.x])
215
+ A.set_ang_vel(F, u1*A.x + u3*A.z)
216
+ # define frames for wheels
217
+ B = A.orientnew('B', 'axis', [q2, A.z])
218
+ C = A.orientnew('C', 'axis', [q3, A.z])
219
+ B.set_ang_vel(A, u4 * A.z)
220
+ C.set_ang_vel(A, u5 * A.z)
221
+
222
+ # define points D, S*, Q on frame A and their velocities
223
+ pD = Point('D')
224
+ pD.set_vel(A, 0)
225
+ # u3 will not change v_D_F since wheels are still assumed to roll without slip.
226
+ pD.set_vel(F, u2 * A.y)
227
+
228
+ pS_star = pD.locatenew('S*', e*A.y)
229
+ pQ = pD.locatenew('Q', f*A.y - R*A.x)
230
+ for p in [pS_star, pQ]:
231
+ p.v2pt_theory(pD, F, A)
232
+
233
+ # masscenters of bodies A, B, C
234
+ pA_star = pD.locatenew('A*', a*A.y)
235
+ pB_star = pD.locatenew('B*', b*A.z)
236
+ pC_star = pD.locatenew('C*', -b*A.z)
237
+ for p in [pA_star, pB_star, pC_star]:
238
+ p.v2pt_theory(pD, F, A)
239
+
240
+ # points of B, C touching the plane P
241
+ pB_hat = pB_star.locatenew('B^', -R*A.x)
242
+ pC_hat = pC_star.locatenew('C^', -R*A.x)
243
+ pB_hat.v2pt_theory(pB_star, F, B)
244
+ pC_hat.v2pt_theory(pC_star, F, C)
245
+
246
+ # the velocities of B^, C^ are zero since B, C are assumed to roll without slip
247
+ kde = [q1d - u1, q2d - u4, q3d - u5]
248
+ vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
249
+
250
+ # inertias of bodies A, B, C
251
+ # IA22, IA23, IA33 are not specified in the problem statement, but are
252
+ # necessary to define an inertia object. Although the values of
253
+ # IA22, IA23, IA33 are not known in terms of the variables given in the
254
+ # problem statement, they do not appear in the general inertia terms.
255
+ inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
256
+ inertia_B = inertia(B, K, K, J)
257
+ inertia_C = inertia(C, K, K, J)
258
+
259
+ # define the rigid bodies A, B, C
260
+ rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
261
+ rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
262
+ rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
263
+
264
+ km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde,
265
+ u_dependent=[u4, u5], velocity_constraints=vc,
266
+ u_auxiliary=[u3])
267
+
268
+ forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
269
+ bodies = [rbA, rbB, rbC]
270
+ fr, fr_star = km.kanes_equations(bodies, forces)
271
+ vc_map = solve(vc, [u4, u5])
272
+
273
+ # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
274
+ fr_star_expected = Matrix([
275
+ -(IA + 2*J*b**2/R**2 + 2*K +
276
+ mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
277
+ -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
278
+ 0])
279
+ t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand()
280
+ assert ((fr_star_expected - t).expand() == zeros(3, 1))
281
+
282
+ # define inertias of rigid bodies A, B, C about point D
283
+ # I_S/O = I_S/S* + I_S*/O
284
+ bodies2 = []
285
+ for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
286
+ I = I_star + inertia_of_point_mass(rb.mass,
287
+ rb.masscenter.pos_from(pD),
288
+ rb.frame)
289
+ bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
290
+ (I, pD)))
291
+ fr2, fr_star2 = km.kanes_equations(bodies2, forces)
292
+
293
+ t = trigsimp(fr_star2.subs(vc_map).subs({u3: 0})).doit()
294
+ assert (fr_star_expected - t).expand() == zeros(3, 1)
295
+
296
+ def test_sub_qdot():
297
+ # This test solves exercises 8.12, 8.17 from Kane 1985 and defines
298
+ # some velocities in terms of q, qdot.
299
+
300
+ ## --- Declare symbols ---
301
+ q1, q2, q3 = dynamicsymbols('q1:4')
302
+ q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
303
+ u1, u2, u3 = dynamicsymbols('u1:4')
304
+ u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
305
+ a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
306
+ IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
307
+ Q1, Q2, Q3 = symbols('Q1 Q2 Q3')
308
+
309
+ # --- Reference Frames ---
310
+ F = ReferenceFrame('F')
311
+ P = F.orientnew('P', 'axis', [-theta, F.y])
312
+ A = P.orientnew('A', 'axis', [q1, P.x])
313
+ A.set_ang_vel(F, u1*A.x + u3*A.z)
314
+ # define frames for wheels
315
+ B = A.orientnew('B', 'axis', [q2, A.z])
316
+ C = A.orientnew('C', 'axis', [q3, A.z])
317
+
318
+ ## --- define points D, S*, Q on frame A and their velocities ---
319
+ pD = Point('D')
320
+ pD.set_vel(A, 0)
321
+ # u3 will not change v_D_F since wheels are still assumed to roll w/o slip
322
+ pD.set_vel(F, u2 * A.y)
323
+
324
+ pS_star = pD.locatenew('S*', e*A.y)
325
+ pQ = pD.locatenew('Q', f*A.y - R*A.x)
326
+ # masscenters of bodies A, B, C
327
+ pA_star = pD.locatenew('A*', a*A.y)
328
+ pB_star = pD.locatenew('B*', b*A.z)
329
+ pC_star = pD.locatenew('C*', -b*A.z)
330
+ for p in [pS_star, pQ, pA_star, pB_star, pC_star]:
331
+ p.v2pt_theory(pD, F, A)
332
+
333
+ # points of B, C touching the plane P
334
+ pB_hat = pB_star.locatenew('B^', -R*A.x)
335
+ pC_hat = pC_star.locatenew('C^', -R*A.x)
336
+ pB_hat.v2pt_theory(pB_star, F, B)
337
+ pC_hat.v2pt_theory(pC_star, F, C)
338
+
339
+ # --- relate qdot, u ---
340
+ # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip
341
+ kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
342
+ kde += [u1 - q1d]
343
+ kde_map = solve(kde, [q1d, q2d, q3d])
344
+ for k, v in list(kde_map.items()):
345
+ kde_map[k.diff(t)] = v.diff(t)
346
+
347
+ # inertias of bodies A, B, C
348
+ # IA22, IA23, IA33 are not specified in the problem statement, but are
349
+ # necessary to define an inertia object. Although the values of
350
+ # IA22, IA23, IA33 are not known in terms of the variables given in the
351
+ # problem statement, they do not appear in the general inertia terms.
352
+ inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
353
+ inertia_B = inertia(B, K, K, J)
354
+ inertia_C = inertia(C, K, K, J)
355
+
356
+ # define the rigid bodies A, B, C
357
+ rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
358
+ rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
359
+ rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
360
+
361
+ ## --- use kanes method ---
362
+ km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3])
363
+
364
+ forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
365
+ bodies = [rbA, rbB, rbC]
366
+
367
+ # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2)
368
+ # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2
369
+ fr_expected = Matrix([
370
+ f*Q3 + M*g*e*sin(theta)*cos(q1),
371
+ Q2 + M*g*sin(theta)*sin(q1),
372
+ e*M*g*cos(theta) - Q1*f - Q2*R])
373
+ #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))])
374
+ fr_star_expected = Matrix([
375
+ -(IA + 2*J*b**2/R**2 + 2*K +
376
+ mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
377
+ -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
378
+ 0])
379
+
380
+ fr, fr_star = km.kanes_equations(bodies, forces)
381
+ assert (fr.expand() == fr_expected.expand())
382
+ assert ((fr_star_expected - trigsimp(fr_star)).expand() == zeros(3, 1))
383
+
384
+ def test_sub_qdot2():
385
+ # This test solves exercises 8.3 from Kane 1985 and defines
386
+ # all velocities in terms of q, qdot. We check that the generalized active
387
+ # forces are correctly computed if u terms are only defined in the
388
+ # kinematic differential equations.
389
+ #
390
+ # This functionality was added in PR 8948. Without qdot/u substitution, the
391
+ # KanesMethod constructor will fail during the constraint initialization as
392
+ # the B matrix will be poorly formed and inversion of the dependent part
393
+ # will fail.
394
+
395
+ g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t')
396
+ q = dynamicsymbols('q:5')
397
+ qd = dynamicsymbols('q:5', level=1)
398
+ u = dynamicsymbols('u:5')
399
+
400
+ ## Define inertial, intermediate, and rigid body reference frames
401
+ A = ReferenceFrame('A')
402
+ B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z])
403
+ B = B_prime.orientnew('B', 'Axis', [pi/2 - q[1], B_prime.x])
404
+ C = B.orientnew('C', 'Axis', [q[2], B.z])
405
+
406
+ ## Define points of interest and their velocities
407
+ pO = Point('O')
408
+ pO.set_vel(A, 0)
409
+
410
+ # R is the point in plane H that comes into contact with disk C.
411
+ pR = pO.locatenew('R', q[3]*A.x + q[4]*A.y)
412
+ pR.set_vel(A, pR.pos_from(pO).diff(t, A))
413
+ pR.set_vel(B, 0)
414
+
415
+ # C^ is the point in disk C that comes into contact with plane H.
416
+ pC_hat = pR.locatenew('C^', 0)
417
+ pC_hat.set_vel(C, 0)
418
+
419
+ # C* is the point at the center of disk C.
420
+ pCs = pC_hat.locatenew('C*', R*B.y)
421
+ pCs.set_vel(C, 0)
422
+ pCs.set_vel(B, 0)
423
+
424
+ # calculate velocites of points C* and C^ in frame A
425
+ pCs.v2pt_theory(pR, A, B) # points C* and R are fixed in frame B
426
+ pC_hat.v2pt_theory(pCs, A, C) # points C* and C^ are fixed in frame C
427
+
428
+ ## Define forces on each point of the system
429
+ R_C_hat = Px*A.x + Py*A.y + Pz*A.z
430
+ R_Cs = -m*g*A.z
431
+ forces = [(pC_hat, R_C_hat), (pCs, R_Cs)]
432
+
433
+ ## Define kinematic differential equations
434
+ # let ui = omega_C_A & bi (i = 1, 2, 3)
435
+ # u4 = qd4, u5 = qd5
436
+ u_expr = [C.ang_vel_in(A) & uv for uv in B]
437
+ u_expr += qd[3:]
438
+ kde = [ui - e for ui, e in zip(u, u_expr)]
439
+ km1 = KanesMethod(A, q, u, kde)
440
+ fr1, _ = km1.kanes_equations([], forces)
441
+
442
+ ## Calculate generalized active forces if we impose the condition that the
443
+ # disk C is rolling without slipping
444
+ u_indep = u[:3]
445
+ u_dep = list(set(u) - set(u_indep))
446
+ vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]]
447
+ km2 = KanesMethod(A, q, u_indep, kde,
448
+ u_dependent=u_dep, velocity_constraints=vc)
449
+ fr2, _ = km2.kanes_equations([], forces)
450
+
451
+ fr1_expected = Matrix([
452
+ -R*g*m*sin(q[1]),
453
+ -R*(Px*cos(q[0]) + Py*sin(q[0]))*tan(q[1]),
454
+ R*(Px*cos(q[0]) + Py*sin(q[0])),
455
+ Px,
456
+ Py])
457
+ fr2_expected = Matrix([
458
+ -R*g*m*sin(q[1]),
459
+ 0,
460
+ 0])
461
+ assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand()))
462
+ assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_kane3.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.evalf import evalf
2
+ from sympy.core.numbers import pi
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import acos, sin, cos
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.physics.mechanics import (ReferenceFrame, dynamicsymbols,
8
+ KanesMethod, inertia, msubs, Point, RigidBody, dot)
9
+ from sympy.testing.pytest import slow, ON_CI, skip
10
+
11
+
12
+ @slow
13
+ def test_bicycle():
14
+ if ON_CI:
15
+ skip("Too slow for CI.")
16
+ # Code to get equations of motion for a bicycle modeled as in:
17
+ # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized
18
+ # dynamics equations for the balance and steer of a bicycle: a benchmark
19
+ # and review. Proceedings of The Royal Society (2007) 463, 1955-1982
20
+ # doi: 10.1098/rspa.2007.1857
21
+
22
+ # Note that this code has been crudely ported from Autolev, which is the
23
+ # reason for some of the unusual naming conventions. It was purposefully as
24
+ # similar as possible in order to aide debugging.
25
+
26
+ # Declare Coordinates & Speeds
27
+ # Simple definitions for qdots - qd = u
28
+ # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame
29
+ # ang. rate (spinning motion), frame ang. rate (pitching motion), steering
30
+ # frame ang. rate, and front wheel ang. rate (spinning motion).
31
+ # Wheel positions are ignorable coordinates, so they are not introduced.
32
+ q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5')
33
+ q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
34
+ u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6')
35
+ u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1)
36
+
37
+ # Declare System's Parameters
38
+ WFrad, WRrad, htangle, forkoffset = symbols('WFrad WRrad htangle forkoffset')
39
+ forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1')
40
+ forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 Iwr11')
41
+ Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
42
+ Iframe22, Iframe33, Iframe31, Ifork11 = symbols('Iframe22 Iframe33 Iframe31 Ifork11')
43
+ Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
44
+ mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')
45
+
46
+ # Set up reference frames for the system
47
+ # N - inertial
48
+ # Y - yaw
49
+ # R - roll
50
+ # WR - rear wheel, rotation angle is ignorable coordinate so not oriented
51
+ # Frame - bicycle frame
52
+ # TempFrame - statically rotated frame for easier reference inertia definition
53
+ # Fork - bicycle fork
54
+ # TempFork - statically rotated frame for easier reference inertia definition
55
+ # WF - front wheel, again posses a ignorable coordinate
56
+ N = ReferenceFrame('N')
57
+ Y = N.orientnew('Y', 'Axis', [q1, N.z])
58
+ R = Y.orientnew('R', 'Axis', [q2, Y.x])
59
+ Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
60
+ WR = ReferenceFrame('WR')
61
+ TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
62
+ Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
63
+ TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
64
+ WF = ReferenceFrame('WF')
65
+
66
+ # Kinematics of the Bicycle First block of code is forming the positions of
67
+ # the relevant points
68
+ # rear wheel contact -> rear wheel mass center -> frame mass center +
69
+ # frame/fork connection -> fork mass center + front wheel mass center ->
70
+ # front wheel contact point
71
+ WR_cont = Point('WR_cont')
72
+ WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
73
+ Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
74
+ Frame_mc = WR_mc.locatenew('Frame_mc', - framecg1 * Frame.x
75
+ + framecg3 * Frame.z)
76
+ Fork_mc = Steer.locatenew('Fork_mc', - forkcg1 * Fork.x
77
+ + forkcg3 * Fork.z)
78
+ WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z)
79
+ WF_cont = WF_mc.locatenew('WF_cont', WFrad * (dot(Fork.y, Y.z) * Fork.y -
80
+ Y.z).normalize())
81
+
82
+ # Set the angular velocity of each frame.
83
+ # Angular accelerations end up being calculated automatically by
84
+ # differentiating the angular velocities when first needed.
85
+ # u1 is yaw rate
86
+ # u2 is roll rate
87
+ # u3 is rear wheel rate
88
+ # u4 is frame pitch rate
89
+ # u5 is fork steer rate
90
+ # u6 is front wheel rate
91
+ Y.set_ang_vel(N, u1 * Y.z)
92
+ R.set_ang_vel(Y, u2 * R.x)
93
+ WR.set_ang_vel(Frame, u3 * Frame.y)
94
+ Frame.set_ang_vel(R, u4 * Frame.y)
95
+ Fork.set_ang_vel(Frame, u5 * Fork.x)
96
+ WF.set_ang_vel(Fork, u6 * Fork.y)
97
+
98
+ # Form the velocities of the previously defined points, using the 2 - point
99
+ # theorem (written out by hand here). Accelerations again are calculated
100
+ # automatically when first needed.
101
+ WR_cont.set_vel(N, 0)
102
+ WR_mc.v2pt_theory(WR_cont, N, WR)
103
+ Steer.v2pt_theory(WR_mc, N, Frame)
104
+ Frame_mc.v2pt_theory(WR_mc, N, Frame)
105
+ Fork_mc.v2pt_theory(Steer, N, Fork)
106
+ WF_mc.v2pt_theory(Steer, N, Fork)
107
+ WF_cont.v2pt_theory(WF_mc, N, WF)
108
+
109
+ # Sets the inertias of each body. Uses the inertia frame to construct the
110
+ # inertia dyadics. Wheel inertias are only defined by principle moments of
111
+ # inertia, and are in fact constant in the frame and fork reference frames;
112
+ # it is for this reason that the orientations of the wheels does not need
113
+ # to be defined. The frame and fork inertias are defined in the 'Temp'
114
+ # frames which are fixed to the appropriate body frames; this is to allow
115
+ # easier input of the reference values of the benchmark paper. Note that
116
+ # due to slightly different orientations, the products of inertia need to
117
+ # have their signs flipped; this is done later when entering the numerical
118
+ # value.
119
+
120
+ Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, Iframe31), Frame_mc)
121
+ Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Ifork31), Fork_mc)
122
+ WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
123
+ WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc)
124
+
125
+ # Declaration of the RigidBody containers. ::
126
+
127
+ BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
128
+ BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
129
+ BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
130
+ BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)
131
+
132
+ # The kinematic differential equations; they are defined quite simply. Each
133
+ # entry in this list is equal to zero.
134
+ kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5]
135
+
136
+ # The nonholonomic constraints are the velocity of the front wheel contact
137
+ # point dotted into the X, Y, and Z directions; the yaw frame is used as it
138
+ # is "closer" to the front wheel (1 less DCM connecting them). These
139
+ # constraints force the velocity of the front wheel contact point to be 0
140
+ # in the inertial frame; the X and Y direction constraints enforce a
141
+ # "no-slip" condition, and the Z direction constraint forces the front
142
+ # wheel contact point to not move away from the ground frame, essentially
143
+ # replicating the holonomic constraint which does not allow the frame pitch
144
+ # to change in an invalid fashion.
145
+
146
+ conlist_speed = [WF_cont.vel(N) & Y.x, WF_cont.vel(N) & Y.y, WF_cont.vel(N) & Y.z]
147
+
148
+ # The holonomic constraint is that the position from the rear wheel contact
149
+ # point to the front wheel contact point when dotted into the
150
+ # normal-to-ground plane direction must be zero; effectively that the front
151
+ # and rear wheel contact points are always touching the ground plane. This
152
+ # is actually not part of the dynamic equations, but instead is necessary
153
+ # for the lineraization process.
154
+
155
+ conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z]
156
+
157
+ # The force list; each body has the appropriate gravitational force applied
158
+ # at its mass center.
159
+ FL = [(Frame_mc, -mframe * g * Y.z),
160
+ (Fork_mc, -mfork * g * Y.z),
161
+ (WF_mc, -mwf * g * Y.z),
162
+ (WR_mc, -mwr * g * Y.z)]
163
+ BL = [BodyFrame, BodyFork, BodyWR, BodyWF]
164
+
165
+
166
+ # The N frame is the inertial frame, coordinates are supplied in the order
167
+ # of independent, dependent coordinates, as are the speeds. The kinematic
168
+ # differential equation are also entered here. Here the dependent speeds
169
+ # are specified, in the same order they were provided in earlier, along
170
+ # with the non-holonomic constraints. The dependent coordinate is also
171
+ # provided, with the holonomic constraint. Again, this is only provided
172
+ # for the linearization process.
173
+
174
+ KM = KanesMethod(N, q_ind=[q1, q2, q5],
175
+ q_dependent=[q4], configuration_constraints=conlist_coord,
176
+ u_ind=[u2, u3, u5],
177
+ u_dependent=[u1, u4, u6], velocity_constraints=conlist_speed,
178
+ kd_eqs=kd)
179
+ (fr, frstar) = KM.kanes_equations(BL, FL)
180
+
181
+ # This is the start of entering in the numerical values from the benchmark
182
+ # paper to validate the eigen values of the linearized equations from this
183
+ # model to the reference eigen values. Look at the aforementioned paper for
184
+ # more information. Some of these are intermediate values, used to
185
+ # transform values from the paper into the coordinate systems used in this
186
+ # model.
187
+ PaperRadRear = 0.3
188
+ PaperRadFront = 0.35
189
+ HTA = evalf.N(pi / 2 - pi / 10)
190
+ TrailPaper = 0.08
191
+ rake = evalf.N(-(TrailPaper*sin(HTA)-(PaperRadFront*cos(HTA))))
192
+ PaperWb = 1.02
193
+ PaperFrameCgX = 0.3
194
+ PaperFrameCgZ = 0.9
195
+ PaperForkCgX = 0.9
196
+ PaperForkCgZ = 0.7
197
+ FrameLength = evalf.N(PaperWb*sin(HTA)-(rake-(PaperRadFront-PaperRadRear)*cos(HTA)))
198
+ FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear-(PaperFrameCgX/sin(HTA))*cos(HTA))*sin(HTA))
199
+ FrameCGPar = evalf.N(PaperFrameCgX / sin(HTA) + (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA))
200
+ tempa = evalf.N(PaperForkCgZ - PaperRadFront)
201
+ tempb = evalf.N(PaperWb-PaperForkCgX)
202
+ tempc = evalf.N(sqrt(tempa**2+tempb**2))
203
+ PaperForkL = evalf.N(PaperWb*cos(HTA)-(PaperRadFront-PaperRadRear)*sin(HTA))
204
+ ForkCGNorm = evalf.N(rake+(tempc * sin(pi/2-HTA-acos(tempa/tempc))))
205
+ ForkCGPar = evalf.N(tempc * cos((pi/2-HTA)-acos(tempa/tempc))-PaperForkL)
206
+
207
+ # Here is the final assembly of the numerical values. The symbol 'v' is the
208
+ # forward speed of the bicycle (a concept which only makes sense in the
209
+ # upright, static equilibrium case?). These are in a dictionary which will
210
+ # later be substituted in. Again the sign on the *product* of inertia
211
+ # values is flipped here, due to different orientations of coordinate
212
+ # systems.
213
+ v = symbols('v')
214
+ val_dict = {WFrad: PaperRadFront,
215
+ WRrad: PaperRadRear,
216
+ htangle: HTA,
217
+ forkoffset: rake,
218
+ forklength: PaperForkL,
219
+ framelength: FrameLength,
220
+ forkcg1: ForkCGPar,
221
+ forkcg3: ForkCGNorm,
222
+ framecg1: FrameCGNorm,
223
+ framecg3: FrameCGPar,
224
+ Iwr11: 0.0603,
225
+ Iwr22: 0.12,
226
+ Iwf11: 0.1405,
227
+ Iwf22: 0.28,
228
+ Ifork11: 0.05892,
229
+ Ifork22: 0.06,
230
+ Ifork33: 0.00708,
231
+ Ifork31: 0.00756,
232
+ Iframe11: 9.2,
233
+ Iframe22: 11,
234
+ Iframe33: 2.8,
235
+ Iframe31: -2.4,
236
+ mfork: 4,
237
+ mframe: 85,
238
+ mwf: 3,
239
+ mwr: 2,
240
+ g: 9.81,
241
+ q1: 0,
242
+ q2: 0,
243
+ q4: 0,
244
+ q5: 0,
245
+ u1: 0,
246
+ u2: 0,
247
+ u3: v / PaperRadRear,
248
+ u4: 0,
249
+ u5: 0,
250
+ u6: v / PaperRadFront}
251
+
252
+ # Linearizes the forcing vector; the equations are set up as MM udot =
253
+ # forcing, where MM is the mass matrix, udot is the vector representing the
254
+ # time derivatives of the generalized speeds, and forcing is a vector which
255
+ # contains both external forcing terms and internal forcing terms, such as
256
+ # centripital or coriolis forces. This actually returns a matrix with as
257
+ # many rows as *total* coordinates and speeds, but only as many columns as
258
+ # independent coordinates and speeds.
259
+
260
+ forcing_lin = KM.linearize()[0]
261
+
262
+ # As mentioned above, the size of the linearized forcing terms is expanded
263
+ # to include both q's and u's, so the mass matrix must have this done as
264
+ # well. This will likely be changed to be part of the linearized process,
265
+ # for future reference.
266
+ MM_full = KM.mass_matrix_full
267
+
268
+ MM_full_s = msubs(MM_full, val_dict)
269
+ forcing_lin_s = msubs(forcing_lin, KM.kindiffdict(), val_dict)
270
+
271
+ MM_full_s = MM_full_s.evalf()
272
+ forcing_lin_s = forcing_lin_s.evalf()
273
+
274
+ # Finally, we construct an "A" matrix for the form xdot = A x (x being the
275
+ # state vector, although in this case, the sizes are a little off). The
276
+ # following line extracts only the minimum entries required for eigenvalue
277
+ # analysis, which correspond to rows and columns for lean, steer, lean
278
+ # rate, and steer rate.
279
+ Amat = MM_full_s.inv() * forcing_lin_s
280
+ A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5])
281
+
282
+ # Precomputed for comparison
283
+ Res = Matrix([[ 0, 0, 1.0, 0],
284
+ [ 0, 0, 0, 1.0],
285
+ [9.48977444677355, -0.891197738059089*v**2 - 0.571523173729245, -0.105522449805691*v, -0.330515398992311*v],
286
+ [11.7194768719633, -1.97171508499972*v**2 + 30.9087533932407, 3.67680523332152*v, -3.08486552743311*v]])
287
+
288
+
289
+ # Actual eigenvalue comparison
290
+ eps = 1.e-12
291
+ for i in range(6):
292
+ error = Res.subs(v, i) - A.subs(v, i)
293
+ assert all(abs(x) < eps for x in error)
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_lagrange.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
2
+ RigidBody, LagrangesMethod, Particle,
3
+ inertia, Lagrangian)
4
+ from sympy.core.function import (Derivative, Function)
5
+ from sympy.core.numbers import pi
6
+ from sympy.core.symbol import symbols
7
+ from sympy.functions.elementary.trigonometric import (cos, sin, tan)
8
+ from sympy.matrices.dense import Matrix
9
+ from sympy.simplify.simplify import simplify
10
+ from sympy.testing.pytest import raises
11
+
12
+
13
+ def test_invalid_coordinates():
14
+ # Simple pendulum, but use symbol instead of dynamicsymbol
15
+ l, m, g = symbols('l m g')
16
+ q = symbols('q') # Generalized coordinate
17
+ N, O = ReferenceFrame('N'), Point('O')
18
+ O.set_vel(N, 0)
19
+ P = Particle('P', Point('P'), m)
20
+ P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y))
21
+ P.potential_energy = m * g * P.point.pos_from(O).dot(N.y)
22
+ L = Lagrangian(N, P)
23
+ raises(ValueError, lambda: LagrangesMethod(L, [q], bodies=P))
24
+
25
+
26
+ def test_disc_on_an_incline_plane():
27
+ # Disc rolling on an inclined plane
28
+ # First the generalized coordinates are created. The mass center of the
29
+ # disc is located from top vertex of the inclined plane by the generalized
30
+ # coordinate 'y'. The orientation of the disc is defined by the angle
31
+ # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
32
+ # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
33
+ # gravitational constant.
34
+ y, theta = dynamicsymbols('y theta')
35
+ yd, thetad = dynamicsymbols('y theta', 1)
36
+ m, g, R, l, alpha = symbols('m g R l alpha')
37
+
38
+ # Next, we create the inertial reference frame 'N'. A reference frame 'A'
39
+ # is attached to the inclined plane. Finally a frame is created which is attached to the disk.
40
+ N = ReferenceFrame('N')
41
+ A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z])
42
+ B = A.orientnew('B', 'Axis', [-theta, A.z])
43
+
44
+ # Creating the disc 'D'; we create the point that represents the mass
45
+ # center of the disc and set its velocity. The inertia dyadic of the disc
46
+ # is created. Finally, we create the disc.
47
+ Do = Point('Do')
48
+ Do.set_vel(N, yd * A.x)
49
+ I = m * R**2/2 * B.z | B.z
50
+ D = RigidBody('D', Do, B, m, (I, Do))
51
+
52
+ # To construct the Lagrangian, 'L', of the disc, we determine its kinetic
53
+ # and potential energies, T and U, respectively. L is defined as the
54
+ # difference between T and U.
55
+ D.potential_energy = m * g * (l - y) * sin(alpha)
56
+ L = Lagrangian(N, D)
57
+
58
+ # We then create the list of generalized coordinates and constraint
59
+ # equations. The constraint arises due to the disc rolling without slip on
60
+ # on the inclined path. We then invoke the 'LagrangesMethod' class and
61
+ # supply it the necessary arguments and generate the equations of motion.
62
+ # The'rhs' method solves for the q_double_dots (i.e. the second derivative
63
+ # with respect to time of the generalized coordinates and the lagrange
64
+ # multipliers.
65
+ q = [y, theta]
66
+ hol_coneqs = [y - R * theta]
67
+ m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs)
68
+ m.form_lagranges_equations()
69
+ rhs = m.rhs()
70
+ rhs.simplify()
71
+ assert rhs[2] == 2*g*sin(alpha)/3
72
+
73
+
74
+ def test_simp_pen():
75
+ # This tests that the equations generated by LagrangesMethod are identical
76
+ # to those obtained by hand calculations. The system under consideration is
77
+ # the simple pendulum.
78
+ # We begin by creating the generalized coordinates as per the requirements
79
+ # of LagrangesMethod. Also we created the associate symbols
80
+ # that characterize the system: 'm' is the mass of the bob, l is the length
81
+ # of the massless rigid rod connecting the bob to a point O fixed in the
82
+ # inertial frame.
83
+ q, u = dynamicsymbols('q u')
84
+ qd, ud = dynamicsymbols('q u ', 1)
85
+ l, m, g = symbols('l m g')
86
+
87
+ # We then create the inertial frame and a frame attached to the massless
88
+ # string following which we define the inertial angular velocity of the
89
+ # string.
90
+ N = ReferenceFrame('N')
91
+ A = N.orientnew('A', 'Axis', [q, N.z])
92
+ A.set_ang_vel(N, qd * N.z)
93
+
94
+ # Next, we create the point O and fix it in the inertial frame. We then
95
+ # locate the point P to which the bob is attached. Its corresponding
96
+ # velocity is then determined by the 'two point formula'.
97
+ O = Point('O')
98
+ O.set_vel(N, 0)
99
+ P = O.locatenew('P', l * A.x)
100
+ P.v2pt_theory(O, N, A)
101
+
102
+ # The 'Particle' which represents the bob is then created and its
103
+ # Lagrangian generated.
104
+ Pa = Particle('Pa', P, m)
105
+ Pa.potential_energy = - m * g * l * cos(q)
106
+ L = Lagrangian(N, Pa)
107
+
108
+ # The 'LagrangesMethod' class is invoked to obtain equations of motion.
109
+ lm = LagrangesMethod(L, [q])
110
+ lm.form_lagranges_equations()
111
+ RHS = lm.rhs()
112
+ assert RHS[1] == -g*sin(q)/l
113
+
114
+
115
+ def test_nonminimal_pendulum():
116
+ q1, q2 = dynamicsymbols('q1:3')
117
+ q1d, q2d = dynamicsymbols('q1:3', level=1)
118
+ L, m, t = symbols('L, m, t')
119
+ g = 9.8
120
+ # Compose World Frame
121
+ N = ReferenceFrame('N')
122
+ pN = Point('N*')
123
+ pN.set_vel(N, 0)
124
+ # Create point P, the pendulum mass
125
+ P = pN.locatenew('P1', q1*N.x + q2*N.y)
126
+ P.set_vel(N, P.pos_from(pN).dt(N))
127
+ pP = Particle('pP', P, m)
128
+ # Constraint Equations
129
+ f_c = Matrix([q1**2 + q2**2 - L**2])
130
+ # Calculate the lagrangian, and form the equations of motion
131
+ Lag = Lagrangian(N, pP)
132
+ LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
133
+ forcelist=[(P, m*g*N.x)], frame=N)
134
+ LM.form_lagranges_equations()
135
+ # Check solution
136
+ lam1 = LM.lam_vec[0, 0]
137
+ eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
138
+ [m*Derivative(q2, t, t) + 2*lam1*q2]])
139
+ assert LM.eom == eom_sol
140
+ # Check multiplier solution
141
+ lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
142
+ assert simplify(LM.solve_multipliers(sol_type='Matrix')) == simplify(lam_sol)
143
+
144
+
145
+ def test_dub_pen():
146
+
147
+ # The system considered is the double pendulum. Like in the
148
+ # test of the simple pendulum above, we begin by creating the generalized
149
+ # coordinates and the simple generalized speeds and accelerations which
150
+ # will be used later. Following this we create frames and points necessary
151
+ # for the kinematics. The procedure isn't explicitly explained as this is
152
+ # similar to the simple pendulum. Also this is documented on the pydy.org
153
+ # website.
154
+ q1, q2 = dynamicsymbols('q1 q2')
155
+ q1d, q2d = dynamicsymbols('q1 q2', 1)
156
+ q1dd, q2dd = dynamicsymbols('q1 q2', 2)
157
+ u1, u2 = dynamicsymbols('u1 u2')
158
+ u1d, u2d = dynamicsymbols('u1 u2', 1)
159
+ l, m, g = symbols('l m g')
160
+
161
+ N = ReferenceFrame('N')
162
+ A = N.orientnew('A', 'Axis', [q1, N.z])
163
+ B = N.orientnew('B', 'Axis', [q2, N.z])
164
+
165
+ A.set_ang_vel(N, q1d * A.z)
166
+ B.set_ang_vel(N, q2d * A.z)
167
+
168
+ O = Point('O')
169
+ P = O.locatenew('P', l * A.x)
170
+ R = P.locatenew('R', l * B.x)
171
+
172
+ O.set_vel(N, 0)
173
+ P.v2pt_theory(O, N, A)
174
+ R.v2pt_theory(P, N, B)
175
+
176
+ ParP = Particle('ParP', P, m)
177
+ ParR = Particle('ParR', R, m)
178
+
179
+ ParP.potential_energy = - m * g * l * cos(q1)
180
+ ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
181
+ L = Lagrangian(N, ParP, ParR)
182
+ lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
183
+ lm.form_lagranges_equations()
184
+
185
+ assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
186
+ + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
187
+ + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
188
+ assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
189
+ - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
190
+ + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
191
+ assert lm.bodies == [ParP, ParR]
192
+
193
+
194
+ def test_rolling_disc():
195
+ # Rolling Disc Example
196
+ # Here the rolling disc is formed from the contact point up, removing the
197
+ # need to introduce generalized speeds. Only 3 configuration and 3
198
+ # speed variables are need to describe this system, along with the
199
+ # disc's mass and radius, and the local gravity.
200
+ q1, q2, q3 = dynamicsymbols('q1 q2 q3')
201
+ q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
202
+ r, m, g = symbols('r m g')
203
+
204
+ # The kinematics are formed by a series of simple rotations. Each simple
205
+ # rotation creates a new frame, and the next rotation is defined by the new
206
+ # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
207
+ # Z, X, Y series of rotations. Angular velocity for this is defined using
208
+ # the second frame's basis (the lean frame).
209
+ N = ReferenceFrame('N')
210
+ Y = N.orientnew('Y', 'Axis', [q1, N.z])
211
+ L = Y.orientnew('L', 'Axis', [q2, Y.x])
212
+ R = L.orientnew('R', 'Axis', [q3, L.y])
213
+
214
+ # This is the translational kinematics. We create a point with no velocity
215
+ # in N; this is the contact point between the disc and ground. Next we form
216
+ # the position vector from the contact point to the disc's center of mass.
217
+ # Finally we form the velocity and acceleration of the disc.
218
+ C = Point('C')
219
+ C.set_vel(N, 0)
220
+ Dmc = C.locatenew('Dmc', r * L.z)
221
+ Dmc.v2pt_theory(C, N, R)
222
+
223
+ # Forming the inertia dyadic.
224
+ I = inertia(L, m/4 * r**2, m/2 * r**2, m/4 * r**2)
225
+ BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
226
+
227
+ # Finally we form the equations of motion, using the same steps we did
228
+ # before. Supply the Lagrangian, the generalized speeds.
229
+ BodyD.potential_energy = - m * g * r * cos(q2)
230
+ Lag = Lagrangian(N, BodyD)
231
+ q = [q1, q2, q3]
232
+ q1 = Function('q1')
233
+ q2 = Function('q2')
234
+ q3 = Function('q3')
235
+ l = LagrangesMethod(Lag, q)
236
+ l.form_lagranges_equations()
237
+ RHS = l.rhs()
238
+ RHS.simplify()
239
+ t = symbols('t')
240
+
241
+ assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
242
+ assert RHS[4].simplify() == (
243
+ (-8*g*sin(q2(t)) + r*(5*sin(2*q2(t))*Derivative(q1(t), t) +
244
+ 12*cos(q2(t))*Derivative(q3(t), t))*Derivative(q1(t), t))/(10*r))
245
+ assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
246
+ )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
247
+ )*Derivative(q2(t), t)
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_linearize.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.backend import (symbols, Matrix, cos, sin, atan, sqrt,
2
+ Rational, _simplify_matrix)
3
+ from sympy.core.sympify import sympify
4
+ from sympy.simplify.simplify import simplify
5
+ from sympy.solvers.solvers import solve
6
+ from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\
7
+ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\
8
+ LagrangesMethod
9
+ from sympy.testing.pytest import slow
10
+
11
+
12
+ @slow
13
+ def test_linearize_rolling_disc_kane():
14
+ # Symbols for time and constant parameters
15
+ t, r, m, g, v = symbols('t r m g v')
16
+
17
+ # Configuration variables and their time derivatives
18
+ q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
19
+ q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]
20
+
21
+ # Generalized speeds and their time derivatives
22
+ u = dynamicsymbols('u:6')
23
+ u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
24
+ u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]
25
+
26
+ # Reference frames
27
+ N = ReferenceFrame('N') # Inertial frame
28
+ NO = Point('NO') # Inertial origin
29
+ A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame
30
+ B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame
31
+ C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame
32
+ CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center
33
+
34
+ # Disc angular velocity in N expressed using time derivatives of coordinates
35
+ w_c_n_qd = C.ang_vel_in(N)
36
+ w_b_n_qd = B.ang_vel_in(N)
37
+
38
+ # Inertial angular velocity and angular acceleration of disc fixed frame
39
+ C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z)
40
+
41
+ # Disc center velocity in N expressed using time derivatives of coordinates
42
+ v_co_n_qd = CO.pos_from(NO).dt(N)
43
+
44
+ # Disc center velocity in N expressed using generalized speeds
45
+ CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z)
46
+
47
+ # Disc Ground Contact Point
48
+ P = CO.locatenew('P', r*B.z)
49
+ P.v2pt_theory(CO, N, C)
50
+
51
+ # Configuration constraint
52
+ f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])
53
+
54
+ # Velocity level constraints
55
+ f_v = Matrix([dot(P.vel(N), uv) for uv in C])
56
+
57
+ # Kinematic differential equations
58
+ kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
59
+ [dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
60
+ qdots = solve(kindiffs, qd)
61
+
62
+ # Set angular velocity of remaining frames
63
+ B.set_ang_vel(N, w_b_n_qd.subs(qdots))
64
+ C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))
65
+
66
+ # Active forces
67
+ F_CO = m*g*A.z
68
+
69
+ # Create inertia dyadic of disc C about point CO
70
+ I = (m * r**2) / 4
71
+ J = (m * r**2) / 2
72
+ I_C_CO = inertia(C, I, J, I)
73
+
74
+ Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
75
+ BL = [Disc]
76
+ FL = [(CO, F_CO)]
77
+ KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs,
78
+ q_dependent=[q6], configuration_constraints=f_c,
79
+ u_dependent=[u4, u5, u6], velocity_constraints=f_v)
80
+ (fr, fr_star) = KM.kanes_equations(BL, FL)
81
+
82
+ # Test generalized form equations
83
+ linearizer = KM.to_linearizer()
84
+ assert linearizer.f_c == f_c
85
+ assert linearizer.f_v == f_v
86
+ assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict())
87
+ sol = solve(linearizer.f_0 + linearizer.f_1, qd)
88
+ for qi in qdots.keys():
89
+ assert sol[qi] == qdots[qi]
90
+ assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0])
91
+
92
+ # Perform the linearization
93
+ # Precomputed operating point
94
+ q_op = {q6: -r*cos(q2)}
95
+ u_op = {u1: 0,
96
+ u2: sin(q2)*q1d + q3d,
97
+ u3: cos(q2)*q1d,
98
+ u4: -r*(sin(q2)*q1d + q3d)*cos(q3),
99
+ u5: 0,
100
+ u6: -r*(sin(q2)*q1d + q3d)*sin(q3)}
101
+ qd_op = {q2d: 0,
102
+ q4d: -r*(sin(q2)*q1d + q3d)*cos(q1),
103
+ q5d: -r*(sin(q2)*q1d + q3d)*sin(q1),
104
+ q6d: 0}
105
+ ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5,
106
+ u2d: 0,
107
+ u3d: 0,
108
+ u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2),
109
+ u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5),
110
+ u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)}
111
+
112
+ A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True)
113
+
114
+ upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}
115
+
116
+ # Precomputed solution
117
+ A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1],
118
+ [0, 0, 0, 0, 0, 1, 0, 0],
119
+ [0, 0, 0, 0, 0, 0, 1, 0],
120
+ [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
121
+ [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0],
122
+ [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5],
123
+ [0, 0, 0, 0, 0, 0, 0, 0],
124
+ [0, 0, 0, 0, 0, -2*q3d, 0, 0]])
125
+ B_sol = Matrix([])
126
+
127
+ # Check that linearization is correct
128
+ assert A.subs(upright_nominal) == A_sol
129
+ assert B.subs(upright_nominal) == B_sol
130
+
131
+ # Check eigenvalues at critical speed are all zero:
132
+ assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8}
133
+
134
+ def test_linearize_pendulum_kane_minimal():
135
+ q1 = dynamicsymbols('q1') # angle of pendulum
136
+ u1 = dynamicsymbols('u1') # Angular velocity
137
+ q1d = dynamicsymbols('q1', 1) # Angular velocity
138
+ L, m, t = symbols('L, m, t')
139
+ g = 9.8
140
+
141
+ # Compose world frame
142
+ N = ReferenceFrame('N')
143
+ pN = Point('N*')
144
+ pN.set_vel(N, 0)
145
+
146
+ # A.x is along the pendulum
147
+ A = N.orientnew('A', 'axis', [q1, N.z])
148
+ A.set_ang_vel(N, u1*N.z)
149
+
150
+ # Locate point P relative to the origin N*
151
+ P = pN.locatenew('P', L*A.x)
152
+ P.v2pt_theory(pN, N, A)
153
+ pP = Particle('pP', P, m)
154
+
155
+ # Create Kinematic Differential Equations
156
+ kde = Matrix([q1d - u1])
157
+
158
+ # Input the force resultant at P
159
+ R = m*g*N.x
160
+
161
+ # Solve for eom with kanes method
162
+ KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde)
163
+ (fr, frstar) = KM.kanes_equations([pP], [(P, R)])
164
+
165
+ # Linearize
166
+ A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True)
167
+
168
+ assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
169
+ assert B == Matrix([])
170
+
171
+ def test_linearize_pendulum_kane_nonminimal():
172
+ # Create generalized coordinates and speeds for this non-minimal realization
173
+ # q1, q2 = N.x and N.y coordinates of pendulum
174
+ # u1, u2 = N.x and N.y velocities of pendulum
175
+ q1, q2 = dynamicsymbols('q1:3')
176
+ q1d, q2d = dynamicsymbols('q1:3', level=1)
177
+ u1, u2 = dynamicsymbols('u1:3')
178
+ u1d, u2d = dynamicsymbols('u1:3', level=1)
179
+ L, m, t = symbols('L, m, t')
180
+ g = 9.8
181
+
182
+ # Compose world frame
183
+ N = ReferenceFrame('N')
184
+ pN = Point('N*')
185
+ pN.set_vel(N, 0)
186
+
187
+ # A.x is along the pendulum
188
+ theta1 = atan(q2/q1)
189
+ A = N.orientnew('A', 'axis', [theta1, N.z])
190
+
191
+ # Locate the pendulum mass
192
+ P = pN.locatenew('P1', q1*N.x + q2*N.y)
193
+ pP = Particle('pP', P, m)
194
+
195
+ # Calculate the kinematic differential equations
196
+ kde = Matrix([q1d - u1,
197
+ q2d - u2])
198
+ dq_dict = solve(kde, [q1d, q2d])
199
+
200
+ # Set velocity of point P
201
+ P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict))
202
+
203
+ # Configuration constraint is length of pendulum
204
+ f_c = Matrix([P.pos_from(pN).magnitude() - L])
205
+
206
+ # Velocity constraint is that the velocity in the A.x direction is
207
+ # always zero (the pendulum is never getting longer).
208
+ f_v = Matrix([P.vel(N).express(A).dot(A.x)])
209
+ f_v.simplify()
210
+
211
+ # Acceleration constraints is the time derivative of the velocity constraint
212
+ f_a = f_v.diff(t)
213
+ f_a.simplify()
214
+
215
+ # Input the force resultant at P
216
+ R = m*g*N.x
217
+
218
+ # Derive the equations of motion using the KanesMethod class.
219
+ KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1],
220
+ u_dependent=[u1], configuration_constraints=f_c,
221
+ velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde)
222
+ (fr, frstar) = KM.kanes_equations([pP], [(P, R)])
223
+
224
+ # Set the operating point to be straight down, and non-moving
225
+ q_op = {q1: L, q2: 0}
226
+ u_op = {u1: 0, u2: 0}
227
+ ud_op = {u1d: 0, u2d: 0}
228
+
229
+ A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True,
230
+ simplify=True)
231
+
232
+ assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]])
233
+ assert B == Matrix([])
234
+
235
+ def test_linearize_pendulum_lagrange_minimal():
236
+ q1 = dynamicsymbols('q1') # angle of pendulum
237
+ q1d = dynamicsymbols('q1', 1) # Angular velocity
238
+ L, m, t = symbols('L, m, t')
239
+ g = 9.8
240
+
241
+ # Compose world frame
242
+ N = ReferenceFrame('N')
243
+ pN = Point('N*')
244
+ pN.set_vel(N, 0)
245
+
246
+ # A.x is along the pendulum
247
+ A = N.orientnew('A', 'axis', [q1, N.z])
248
+ A.set_ang_vel(N, q1d*N.z)
249
+
250
+ # Locate point P relative to the origin N*
251
+ P = pN.locatenew('P', L*A.x)
252
+ P.v2pt_theory(pN, N, A)
253
+ pP = Particle('pP', P, m)
254
+
255
+ # Solve for eom with Lagranges method
256
+ Lag = Lagrangian(N, pP)
257
+ LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
258
+ LM.form_lagranges_equations()
259
+
260
+ # Linearize
261
+ A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)
262
+
263
+ assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
264
+ assert B == Matrix([])
265
+
266
+ def test_linearize_pendulum_lagrange_nonminimal():
267
+ q1, q2 = dynamicsymbols('q1:3')
268
+ q1d, q2d = dynamicsymbols('q1:3', level=1)
269
+ L, m, t = symbols('L, m, t')
270
+ g = 9.8
271
+ # Compose World Frame
272
+ N = ReferenceFrame('N')
273
+ pN = Point('N*')
274
+ pN.set_vel(N, 0)
275
+ # A.x is along the pendulum
276
+ theta1 = atan(q2/q1)
277
+ A = N.orientnew('A', 'axis', [theta1, N.z])
278
+ # Create point P, the pendulum mass
279
+ P = pN.locatenew('P1', q1*N.x + q2*N.y)
280
+ P.set_vel(N, P.pos_from(pN).dt(N))
281
+ pP = Particle('pP', P, m)
282
+ # Constraint Equations
283
+ f_c = Matrix([q1**2 + q2**2 - L**2])
284
+ # Calculate the lagrangian, and form the equations of motion
285
+ Lag = Lagrangian(N, pP)
286
+ LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
287
+ LM.form_lagranges_equations()
288
+ # Compose operating point
289
+ op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
290
+ # Solve for multiplier operating point
291
+ lam_op = LM.solve_multipliers(op_point=op_point)
292
+ op_point.update(lam_op)
293
+ # Perform the Linearization
294
+ A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
295
+ op_point=op_point, A_and_B=True)
296
+ assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8/L, 0]])
297
+ assert B == Matrix([])
298
+
299
+ def test_linearize_rolling_disc_lagrange():
300
+ q1, q2, q3 = q = dynamicsymbols('q1 q2 q3')
301
+ q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1)
302
+ r, m, g = symbols('r m g')
303
+
304
+ N = ReferenceFrame('N')
305
+ Y = N.orientnew('Y', 'Axis', [q1, N.z])
306
+ L = Y.orientnew('L', 'Axis', [q2, Y.x])
307
+ R = L.orientnew('R', 'Axis', [q3, L.y])
308
+
309
+ C = Point('C')
310
+ C.set_vel(N, 0)
311
+ Dmc = C.locatenew('Dmc', r * L.z)
312
+ Dmc.v2pt_theory(C, N, R)
313
+
314
+ I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
315
+ BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
316
+ BodyD.potential_energy = - m * g * r * cos(q2)
317
+
318
+ Lag = Lagrangian(N, BodyD)
319
+ l = LagrangesMethod(Lag, q)
320
+ l.form_lagranges_equations()
321
+
322
+ # Linearize about steady-state upright rolling
323
+ op_point = {q1: 0, q2: 0, q3: 0,
324
+ q1d: 0, q2d: 0,
325
+ q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0}
326
+ A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0]
327
+ sol = Matrix([[0, 0, 0, 1, 0, 0],
328
+ [0, 0, 0, 0, 1, 0],
329
+ [0, 0, 0, 0, 0, 1],
330
+ [0, 0, 0, 0, -6*q3d, 0],
331
+ [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0],
332
+ [0, 0, 0, 0, 0, 0]])
333
+
334
+ assert A == sol
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_particle.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import symbols
2
+ from sympy.physics.mechanics import Point, Particle, ReferenceFrame, inertia
3
+
4
+ from sympy.testing.pytest import raises, warns_deprecated_sympy
5
+
6
+
7
+ def test_particle():
8
+ m, m2, v1, v2, v3, r, g, h = symbols('m m2 v1 v2 v3 r g h')
9
+ P = Point('P')
10
+ P2 = Point('P2')
11
+ p = Particle('pa', P, m)
12
+ assert p.__str__() == 'pa'
13
+ assert p.mass == m
14
+ assert p.point == P
15
+ # Test the mass setter
16
+ p.mass = m2
17
+ assert p.mass == m2
18
+ # Test the point setter
19
+ p.point = P2
20
+ assert p.point == P2
21
+ # Test the linear momentum function
22
+ N = ReferenceFrame('N')
23
+ O = Point('O')
24
+ P2.set_pos(O, r * N.y)
25
+ P2.set_vel(N, v1 * N.x)
26
+ raises(TypeError, lambda: Particle(P, P, m))
27
+ raises(TypeError, lambda: Particle('pa', m, m))
28
+ assert p.linear_momentum(N) == m2 * v1 * N.x
29
+ assert p.angular_momentum(O, N) == -m2 * r *v1 * N.z
30
+ P2.set_vel(N, v2 * N.y)
31
+ assert p.linear_momentum(N) == m2 * v2 * N.y
32
+ assert p.angular_momentum(O, N) == 0
33
+ P2.set_vel(N, v3 * N.z)
34
+ assert p.linear_momentum(N) == m2 * v3 * N.z
35
+ assert p.angular_momentum(O, N) == m2 * r * v3 * N.x
36
+ P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
37
+ assert p.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
38
+ assert p.angular_momentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)
39
+ p.potential_energy = m * g * h
40
+ assert p.potential_energy == m * g * h
41
+ # TODO make the result not be system-dependent
42
+ assert p.kinetic_energy(
43
+ N) in [m2*(v1**2 + v2**2 + v3**2)/2,
44
+ m2 * v1**2 / 2 + m2 * v2**2 / 2 + m2 * v3**2 / 2]
45
+
46
+
47
+ def test_parallel_axis():
48
+ N = ReferenceFrame('N')
49
+ m, a, b = symbols('m, a, b')
50
+ o = Point('o')
51
+ p = o.locatenew('p', a * N.x + b * N.y)
52
+ P = Particle('P', o, m)
53
+ Ip = P.parallel_axis(p, N)
54
+ Ip_expected = inertia(N, m * b**2, m * a**2, m * (a**2 + b**2),
55
+ ixy=-m * a * b)
56
+ assert Ip == Ip_expected
57
+
58
+ def test_deprecated_set_potential_energy():
59
+ m, g, h = symbols('m g h')
60
+ P = Point('P')
61
+ p = Particle('pa', P, m)
62
+ with warns_deprecated_sympy():
63
+ p.set_potential_energy(m*g*h)
llmeval-env/lib/python3.10/site-packages/sympy/physics/mechanics/tests/test_rigidbody.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import symbols
2
+ from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody
3
+ from sympy.physics.mechanics import dynamicsymbols, outer, inertia
4
+ from sympy.physics.mechanics import inertia_of_point_mass
5
+ from sympy.core.backend import expand, zeros, _simplify_matrix
6
+
7
+ from sympy.testing.pytest import raises, warns_deprecated_sympy
8
+
9
+
10
+ def test_rigidbody():
11
+ m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega')
12
+ A = ReferenceFrame('A')
13
+ A2 = ReferenceFrame('A2')
14
+ P = Point('P')
15
+ P2 = Point('P2')
16
+ I = Dyadic(0)
17
+ I2 = Dyadic(0)
18
+ B = RigidBody('B', P, A, m, (I, P))
19
+ assert B.mass == m
20
+ assert B.frame == A
21
+ assert B.masscenter == P
22
+ assert B.inertia == (I, B.masscenter)
23
+
24
+ B.mass = m2
25
+ B.frame = A2
26
+ B.masscenter = P2
27
+ B.inertia = (I2, B.masscenter)
28
+ raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P)))
29
+ raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P)))
30
+ raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P)))
31
+ raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I)))
32
+ assert B.__str__() == 'B'
33
+ assert B.mass == m2
34
+ assert B.frame == A2
35
+ assert B.masscenter == P2
36
+ assert B.inertia == (I2, B.masscenter)
37
+ assert B.masscenter == P2
38
+ assert B.inertia == (I2, B.masscenter)
39
+
40
+ # Testing linear momentum function assuming A2 is the inertial frame
41
+ N = ReferenceFrame('N')
42
+ P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
43
+ assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
44
+
45
+
46
+ def test_rigidbody2():
47
+ M, v, r, omega, g, h = dynamicsymbols('M v r omega g h')
48
+ N = ReferenceFrame('N')
49
+ b = ReferenceFrame('b')
50
+ b.set_ang_vel(N, omega * b.x)
51
+ P = Point('P')
52
+ I = outer(b.x, b.x)
53
+ Inertia_tuple = (I, P)
54
+ B = RigidBody('B', P, b, M, Inertia_tuple)
55
+ P.set_vel(N, v * b.x)
56
+ assert B.angular_momentum(P, N) == omega * b.x
57
+ O = Point('O')
58
+ O.set_vel(N, v * b.x)
59
+ P.set_pos(O, r * b.y)
60
+ assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z
61
+ B.potential_energy = M * g * h
62
+ assert B.potential_energy == M * g * h
63
+ assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2
64
+
65
+ def test_rigidbody3():
66
+ q1, q2, q3, q4 = dynamicsymbols('q1:5')
67
+ p1, p2, p3 = symbols('p1:4')
68
+ m = symbols('m')
69
+
70
+ A = ReferenceFrame('A')
71
+ B = A.orientnew('B', 'axis', [q1, A.x])
72
+ O = Point('O')
73
+ O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
74
+ P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
75
+ P.v2pt_theory(O, A, B)
76
+ I = outer(B.x, B.x)
77
+
78
+ rb1 = RigidBody('rb1', P, B, m, (I, P))
79
+ # I_S/O = I_S/S* + I_S*/O
80
+ rb2 = RigidBody('rb2', P, B, m,
81
+ (I + inertia_of_point_mass(m, P.pos_from(O), B), O))
82
+
83
+ assert rb1.central_inertia == rb2.central_inertia
84
+ assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
85
+
86
+
87
+ def test_pendulum_angular_momentum():
88
+ """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
89
+ center of mass G (OG = a) which turn around (O,z). The angle between the
90
+ reference frame R and the rod is q. The inertia of the body is I =
91
+ (G,0,ma^2/3,ma^2/3). """
92
+
93
+ m, a = symbols('m, a')
94
+ q = dynamicsymbols('q')
95
+
96
+ R = ReferenceFrame('R')
97
+ R1 = R.orientnew('R1', 'Axis', [q, R.z])
98
+ R1.set_ang_vel(R, q.diff() * R.z)
99
+
100
+ I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)
101
+
102
+ O = Point('O')
103
+
104
+ A = O.locatenew('A', 2*a * R1.x)
105
+ G = O.locatenew('G', a * R1.x)
106
+
107
+ S = RigidBody('S', G, R1, m, (I, G))
108
+
109
+ O.set_vel(R, 0)
110
+ A.v2pt_theory(O, R, R1)
111
+ G.v2pt_theory(O, R, R1)
112
+
113
+ assert (4 * m * a**2 / 3 * q.diff() * R.z -
114
+ S.angular_momentum(O, R).express(R)) == 0
115
+
116
+
117
+ def test_rigidbody_inertia():
118
+ N = ReferenceFrame('N')
119
+ m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
120
+ Io = inertia(N, Ix, Iy, Iz)
121
+ o = Point('o')
122
+ p = o.locatenew('p', a * N.x + b * N.y)
123
+ R = RigidBody('R', o, N, m, (Io, p))
124
+ I_check = inertia(N, Ix - b ** 2 * m, Iy - a ** 2 * m,
125
+ Iz - m * (a ** 2 + b ** 2), m * a * b)
126
+ assert R.inertia == (Io, p)
127
+ assert R.central_inertia == I_check
128
+ R.central_inertia = Io
129
+ assert R.inertia == (Io, o)
130
+ assert R.central_inertia == Io
131
+ R.inertia = (Io, p)
132
+ assert R.inertia == (Io, p)
133
+ assert R.central_inertia == I_check
134
+
135
+
136
+ def test_parallel_axis():
137
+ N = ReferenceFrame('N')
138
+ m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
139
+ Io = inertia(N, Ix, Iy, Iz)
140
+ o = Point('o')
141
+ p = o.locatenew('p', a * N.x + b * N.y)
142
+ R = RigidBody('R', o, N, m, (Io, o))
143
+ Ip = R.parallel_axis(p)
144
+ Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
145
+ Iz + m * (a**2 + b**2), ixy=-m * a * b)
146
+ assert Ip == Ip_expected
147
+ # Reference frame from which the parallel axis is viewed should not matter
148
+ A = ReferenceFrame('A')
149
+ A.orient_axis(N, N.z, 1)
150
+ assert _simplify_matrix(
151
+ (R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)
152
+
153
+
154
+ def test_deprecated_set_potential_energy():
155
+ m, g, h = symbols('m g h')
156
+ A = ReferenceFrame('A')
157
+ P = Point('P')
158
+ I = Dyadic(0)
159
+ B = RigidBody('B', P, A, m, (I, P))
160
+ with warns_deprecated_sympy():
161
+ B.set_potential_energy(m*g*h)
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/boson.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bosonic quantum operators."""
2
+
3
+ from sympy.core.mul import Mul
4
+ from sympy.core.numbers import Integer
5
+ from sympy.core.singleton import S
6
+ from sympy.functions.elementary.complexes import conjugate
7
+ from sympy.functions.elementary.exponential import exp
8
+ from sympy.functions.elementary.miscellaneous import sqrt
9
+ from sympy.physics.quantum import Operator
10
+ from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator
11
+ from sympy.functions.special.tensor_functions import KroneckerDelta
12
+
13
+
14
+ __all__ = [
15
+ 'BosonOp',
16
+ 'BosonFockKet',
17
+ 'BosonFockBra',
18
+ 'BosonCoherentKet',
19
+ 'BosonCoherentBra'
20
+ ]
21
+
22
+
23
+ class BosonOp(Operator):
24
+ """A bosonic operator that satisfies [a, Dagger(a)] == 1.
25
+
26
+ Parameters
27
+ ==========
28
+
29
+ name : str
30
+ A string that labels the bosonic mode.
31
+
32
+ annihilation : bool
33
+ A bool that indicates if the bosonic operator is an annihilation (True,
34
+ default value) or creation operator (False)
35
+
36
+ Examples
37
+ ========
38
+
39
+ >>> from sympy.physics.quantum import Dagger, Commutator
40
+ >>> from sympy.physics.quantum.boson import BosonOp
41
+ >>> a = BosonOp("a")
42
+ >>> Commutator(a, Dagger(a)).doit()
43
+ 1
44
+ """
45
+
46
+ @property
47
+ def name(self):
48
+ return self.args[0]
49
+
50
+ @property
51
+ def is_annihilation(self):
52
+ return bool(self.args[1])
53
+
54
+ @classmethod
55
+ def default_args(self):
56
+ return ("a", True)
57
+
58
+ def __new__(cls, *args, **hints):
59
+ if not len(args) in [1, 2]:
60
+ raise ValueError('1 or 2 parameters expected, got %s' % args)
61
+
62
+ if len(args) == 1:
63
+ args = (args[0], S.One)
64
+
65
+ if len(args) == 2:
66
+ args = (args[0], Integer(args[1]))
67
+
68
+ return Operator.__new__(cls, *args)
69
+
70
+ def _eval_commutator_BosonOp(self, other, **hints):
71
+ if self.name == other.name:
72
+ # [a^\dagger, a] = -1
73
+ if not self.is_annihilation and other.is_annihilation:
74
+ return S.NegativeOne
75
+
76
+ elif 'independent' in hints and hints['independent']:
77
+ # [a, b] = 0
78
+ return S.Zero
79
+
80
+ return None
81
+
82
+ def _eval_commutator_FermionOp(self, other, **hints):
83
+ return S.Zero
84
+
85
+ def _eval_anticommutator_BosonOp(self, other, **hints):
86
+ if 'independent' in hints and hints['independent']:
87
+ # {a, b} = 2 * a * b, because [a, b] = 0
88
+ return 2 * self * other
89
+
90
+ return None
91
+
92
+ def _eval_adjoint(self):
93
+ return BosonOp(str(self.name), not self.is_annihilation)
94
+
95
+ def __mul__(self, other):
96
+
97
+ if other == IdentityOperator(2):
98
+ return self
99
+
100
+ if isinstance(other, Mul):
101
+ args1 = tuple(arg for arg in other.args if arg.is_commutative)
102
+ args2 = tuple(arg for arg in other.args if not arg.is_commutative)
103
+ x = self
104
+ for y in args2:
105
+ x = x * y
106
+ return Mul(*args1) * x
107
+
108
+ return Mul(self, other)
109
+
110
+ def _print_contents_latex(self, printer, *args):
111
+ if self.is_annihilation:
112
+ return r'{%s}' % str(self.name)
113
+ else:
114
+ return r'{{%s}^\dagger}' % str(self.name)
115
+
116
+ def _print_contents(self, printer, *args):
117
+ if self.is_annihilation:
118
+ return r'%s' % str(self.name)
119
+ else:
120
+ return r'Dagger(%s)' % str(self.name)
121
+
122
+ def _print_contents_pretty(self, printer, *args):
123
+ from sympy.printing.pretty.stringpict import prettyForm
124
+ pform = printer._print(self.args[0], *args)
125
+ if self.is_annihilation:
126
+ return pform
127
+ else:
128
+ return pform**prettyForm('\N{DAGGER}')
129
+
130
+
131
+ class BosonFockKet(Ket):
132
+ """Fock state ket for a bosonic mode.
133
+
134
+ Parameters
135
+ ==========
136
+
137
+ n : Number
138
+ The Fock state number.
139
+
140
+ """
141
+
142
+ def __new__(cls, n):
143
+ return Ket.__new__(cls, n)
144
+
145
+ @property
146
+ def n(self):
147
+ return self.label[0]
148
+
149
+ @classmethod
150
+ def dual_class(self):
151
+ return BosonFockBra
152
+
153
+ @classmethod
154
+ def _eval_hilbert_space(cls, label):
155
+ return FockSpace()
156
+
157
+ def _eval_innerproduct_BosonFockBra(self, bra, **hints):
158
+ return KroneckerDelta(self.n, bra.n)
159
+
160
+ def _apply_from_right_to_BosonOp(self, op, **options):
161
+ if op.is_annihilation:
162
+ return sqrt(self.n) * BosonFockKet(self.n - 1)
163
+ else:
164
+ return sqrt(self.n + 1) * BosonFockKet(self.n + 1)
165
+
166
+
167
+ class BosonFockBra(Bra):
168
+ """Fock state bra for a bosonic mode.
169
+
170
+ Parameters
171
+ ==========
172
+
173
+ n : Number
174
+ The Fock state number.
175
+
176
+ """
177
+
178
+ def __new__(cls, n):
179
+ return Bra.__new__(cls, n)
180
+
181
+ @property
182
+ def n(self):
183
+ return self.label[0]
184
+
185
+ @classmethod
186
+ def dual_class(self):
187
+ return BosonFockKet
188
+
189
+ @classmethod
190
+ def _eval_hilbert_space(cls, label):
191
+ return FockSpace()
192
+
193
+
194
+ class BosonCoherentKet(Ket):
195
+ """Coherent state ket for a bosonic mode.
196
+
197
+ Parameters
198
+ ==========
199
+
200
+ alpha : Number, Symbol
201
+ The complex amplitude of the coherent state.
202
+
203
+ """
204
+
205
+ def __new__(cls, alpha):
206
+ return Ket.__new__(cls, alpha)
207
+
208
+ @property
209
+ def alpha(self):
210
+ return self.label[0]
211
+
212
+ @classmethod
213
+ def dual_class(self):
214
+ return BosonCoherentBra
215
+
216
+ @classmethod
217
+ def _eval_hilbert_space(cls, label):
218
+ return HilbertSpace()
219
+
220
+ def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
221
+ if self.alpha == bra.alpha:
222
+ return S.One
223
+ else:
224
+ return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2)
225
+
226
+ def _apply_from_right_to_BosonOp(self, op, **options):
227
+ if op.is_annihilation:
228
+ return self.alpha * self
229
+ else:
230
+ return None
231
+
232
+
233
+ class BosonCoherentBra(Bra):
234
+ """Coherent state bra for a bosonic mode.
235
+
236
+ Parameters
237
+ ==========
238
+
239
+ alpha : Number, Symbol
240
+ The complex amplitude of the coherent state.
241
+
242
+ """
243
+
244
+ def __new__(cls, alpha):
245
+ return Bra.__new__(cls, alpha)
246
+
247
+ @property
248
+ def alpha(self):
249
+ return self.label[0]
250
+
251
+ @classmethod
252
+ def dual_class(self):
253
+ return BosonCoherentKet
254
+
255
+ def _apply_operator_BosonOp(self, op, **options):
256
+ if not op.is_annihilation:
257
+ return self.alpha * self
258
+ else:
259
+ return None
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/cartesian.py ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Operators and states for 1D cartesian position and momentum.
2
+
3
+ TODO:
4
+
5
+ * Add 3D classes to mappings in operatorset.py
6
+
7
+ """
8
+
9
+ from sympy.core.numbers import (I, pi)
10
+ from sympy.core.singleton import S
11
+ from sympy.functions.elementary.exponential import exp
12
+ from sympy.functions.elementary.miscellaneous import sqrt
13
+ from sympy.functions.special.delta_functions import DiracDelta
14
+ from sympy.sets.sets import Interval
15
+
16
+ from sympy.physics.quantum.constants import hbar
17
+ from sympy.physics.quantum.hilbert import L2
18
+ from sympy.physics.quantum.operator import DifferentialOperator, HermitianOperator
19
+ from sympy.physics.quantum.state import Ket, Bra, State
20
+
21
+ __all__ = [
22
+ 'XOp',
23
+ 'YOp',
24
+ 'ZOp',
25
+ 'PxOp',
26
+ 'X',
27
+ 'Y',
28
+ 'Z',
29
+ 'Px',
30
+ 'XKet',
31
+ 'XBra',
32
+ 'PxKet',
33
+ 'PxBra',
34
+ 'PositionState3D',
35
+ 'PositionKet3D',
36
+ 'PositionBra3D'
37
+ ]
38
+
39
+ #-------------------------------------------------------------------------
40
+ # Position operators
41
+ #-------------------------------------------------------------------------
42
+
43
+
44
+ class XOp(HermitianOperator):
45
+ """1D cartesian position operator."""
46
+
47
+ @classmethod
48
+ def default_args(self):
49
+ return ("X",)
50
+
51
+ @classmethod
52
+ def _eval_hilbert_space(self, args):
53
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
54
+
55
+ def _eval_commutator_PxOp(self, other):
56
+ return I*hbar
57
+
58
+ def _apply_operator_XKet(self, ket, **options):
59
+ return ket.position*ket
60
+
61
+ def _apply_operator_PositionKet3D(self, ket, **options):
62
+ return ket.position_x*ket
63
+
64
+ def _represent_PxKet(self, basis, *, index=1, **options):
65
+ states = basis._enumerate_state(2, start_index=index)
66
+ coord1 = states[0].momentum
67
+ coord2 = states[1].momentum
68
+ d = DifferentialOperator(coord1)
69
+ delta = DiracDelta(coord1 - coord2)
70
+
71
+ return I*hbar*(d*delta)
72
+
73
+
74
+ class YOp(HermitianOperator):
75
+ """ Y cartesian coordinate operator (for 2D or 3D systems) """
76
+
77
+ @classmethod
78
+ def default_args(self):
79
+ return ("Y",)
80
+
81
+ @classmethod
82
+ def _eval_hilbert_space(self, args):
83
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
84
+
85
+ def _apply_operator_PositionKet3D(self, ket, **options):
86
+ return ket.position_y*ket
87
+
88
+
89
+ class ZOp(HermitianOperator):
90
+ """ Z cartesian coordinate operator (for 3D systems) """
91
+
92
+ @classmethod
93
+ def default_args(self):
94
+ return ("Z",)
95
+
96
+ @classmethod
97
+ def _eval_hilbert_space(self, args):
98
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
99
+
100
+ def _apply_operator_PositionKet3D(self, ket, **options):
101
+ return ket.position_z*ket
102
+
103
+ #-------------------------------------------------------------------------
104
+ # Momentum operators
105
+ #-------------------------------------------------------------------------
106
+
107
+
108
+ class PxOp(HermitianOperator):
109
+ """1D cartesian momentum operator."""
110
+
111
+ @classmethod
112
+ def default_args(self):
113
+ return ("Px",)
114
+
115
+ @classmethod
116
+ def _eval_hilbert_space(self, args):
117
+ return L2(Interval(S.NegativeInfinity, S.Infinity))
118
+
119
+ def _apply_operator_PxKet(self, ket, **options):
120
+ return ket.momentum*ket
121
+
122
+ def _represent_XKet(self, basis, *, index=1, **options):
123
+ states = basis._enumerate_state(2, start_index=index)
124
+ coord1 = states[0].position
125
+ coord2 = states[1].position
126
+ d = DifferentialOperator(coord1)
127
+ delta = DiracDelta(coord1 - coord2)
128
+
129
+ return -I*hbar*(d*delta)
130
+
131
+ X = XOp('X')
132
+ Y = YOp('Y')
133
+ Z = ZOp('Z')
134
+ Px = PxOp('Px')
135
+
136
+ #-------------------------------------------------------------------------
137
+ # Position eigenstates
138
+ #-------------------------------------------------------------------------
139
+
140
+
141
+ class XKet(Ket):
142
+ """1D cartesian position eigenket."""
143
+
144
+ @classmethod
145
+ def _operators_to_state(self, op, **options):
146
+ return self.__new__(self, *_lowercase_labels(op), **options)
147
+
148
+ def _state_to_operators(self, op_class, **options):
149
+ return op_class.__new__(op_class,
150
+ *_uppercase_labels(self), **options)
151
+
152
+ @classmethod
153
+ def default_args(self):
154
+ return ("x",)
155
+
156
+ @classmethod
157
+ def dual_class(self):
158
+ return XBra
159
+
160
+ @property
161
+ def position(self):
162
+ """The position of the state."""
163
+ return self.label[0]
164
+
165
+ def _enumerate_state(self, num_states, **options):
166
+ return _enumerate_continuous_1D(self, num_states, **options)
167
+
168
+ def _eval_innerproduct_XBra(self, bra, **hints):
169
+ return DiracDelta(self.position - bra.position)
170
+
171
+ def _eval_innerproduct_PxBra(self, bra, **hints):
172
+ return exp(-I*self.position*bra.momentum/hbar)/sqrt(2*pi*hbar)
173
+
174
+
175
+ class XBra(Bra):
176
+ """1D cartesian position eigenbra."""
177
+
178
+ @classmethod
179
+ def default_args(self):
180
+ return ("x",)
181
+
182
+ @classmethod
183
+ def dual_class(self):
184
+ return XKet
185
+
186
+ @property
187
+ def position(self):
188
+ """The position of the state."""
189
+ return self.label[0]
190
+
191
+
192
+ class PositionState3D(State):
193
+ """ Base class for 3D cartesian position eigenstates """
194
+
195
+ @classmethod
196
+ def _operators_to_state(self, op, **options):
197
+ return self.__new__(self, *_lowercase_labels(op), **options)
198
+
199
+ def _state_to_operators(self, op_class, **options):
200
+ return op_class.__new__(op_class,
201
+ *_uppercase_labels(self), **options)
202
+
203
+ @classmethod
204
+ def default_args(self):
205
+ return ("x", "y", "z")
206
+
207
+ @property
208
+ def position_x(self):
209
+ """ The x coordinate of the state """
210
+ return self.label[0]
211
+
212
+ @property
213
+ def position_y(self):
214
+ """ The y coordinate of the state """
215
+ return self.label[1]
216
+
217
+ @property
218
+ def position_z(self):
219
+ """ The z coordinate of the state """
220
+ return self.label[2]
221
+
222
+
223
+ class PositionKet3D(Ket, PositionState3D):
224
+ """ 3D cartesian position eigenket """
225
+
226
+ def _eval_innerproduct_PositionBra3D(self, bra, **options):
227
+ x_diff = self.position_x - bra.position_x
228
+ y_diff = self.position_y - bra.position_y
229
+ z_diff = self.position_z - bra.position_z
230
+
231
+ return DiracDelta(x_diff)*DiracDelta(y_diff)*DiracDelta(z_diff)
232
+
233
+ @classmethod
234
+ def dual_class(self):
235
+ return PositionBra3D
236
+
237
+
238
+ # XXX: The type:ignore here is because mypy gives Definition of
239
+ # "_state_to_operators" in base class "PositionState3D" is incompatible with
240
+ # definition in base class "BraBase"
241
+ class PositionBra3D(Bra, PositionState3D): # type: ignore
242
+ """ 3D cartesian position eigenbra """
243
+
244
+ @classmethod
245
+ def dual_class(self):
246
+ return PositionKet3D
247
+
248
+ #-------------------------------------------------------------------------
249
+ # Momentum eigenstates
250
+ #-------------------------------------------------------------------------
251
+
252
+
253
+ class PxKet(Ket):
254
+ """1D cartesian momentum eigenket."""
255
+
256
+ @classmethod
257
+ def _operators_to_state(self, op, **options):
258
+ return self.__new__(self, *_lowercase_labels(op), **options)
259
+
260
+ def _state_to_operators(self, op_class, **options):
261
+ return op_class.__new__(op_class,
262
+ *_uppercase_labels(self), **options)
263
+
264
+ @classmethod
265
+ def default_args(self):
266
+ return ("px",)
267
+
268
+ @classmethod
269
+ def dual_class(self):
270
+ return PxBra
271
+
272
+ @property
273
+ def momentum(self):
274
+ """The momentum of the state."""
275
+ return self.label[0]
276
+
277
+ def _enumerate_state(self, *args, **options):
278
+ return _enumerate_continuous_1D(self, *args, **options)
279
+
280
+ def _eval_innerproduct_XBra(self, bra, **hints):
281
+ return exp(I*self.momentum*bra.position/hbar)/sqrt(2*pi*hbar)
282
+
283
+ def _eval_innerproduct_PxBra(self, bra, **hints):
284
+ return DiracDelta(self.momentum - bra.momentum)
285
+
286
+
287
+ class PxBra(Bra):
288
+ """1D cartesian momentum eigenbra."""
289
+
290
+ @classmethod
291
+ def default_args(self):
292
+ return ("px",)
293
+
294
+ @classmethod
295
+ def dual_class(self):
296
+ return PxKet
297
+
298
+ @property
299
+ def momentum(self):
300
+ """The momentum of the state."""
301
+ return self.label[0]
302
+
303
+ #-------------------------------------------------------------------------
304
+ # Global helper functions
305
+ #-------------------------------------------------------------------------
306
+
307
+
308
+ def _enumerate_continuous_1D(*args, **options):
309
+ state = args[0]
310
+ num_states = args[1]
311
+ state_class = state.__class__
312
+ index_list = options.pop('index_list', [])
313
+
314
+ if len(index_list) == 0:
315
+ start_index = options.pop('start_index', 1)
316
+ index_list = list(range(start_index, start_index + num_states))
317
+
318
+ enum_states = [0 for i in range(len(index_list))]
319
+
320
+ for i, ind in enumerate(index_list):
321
+ label = state.args[0]
322
+ enum_states[i] = state_class(str(label) + "_" + str(ind), **options)
323
+
324
+ return enum_states
325
+
326
+
327
+ def _lowercase_labels(ops):
328
+ if not isinstance(ops, set):
329
+ ops = [ops]
330
+
331
+ return [str(arg.label[0]).lower() for arg in ops]
332
+
333
+
334
+ def _uppercase_labels(ops):
335
+ if not isinstance(ops, set):
336
+ ops = [ops]
337
+
338
+ new_args = [str(arg.label[0])[0].upper() +
339
+ str(arg.label[0])[1:] for arg in ops]
340
+
341
+ return new_args
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/cg.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #TODO:
2
+ # -Implement Clebsch-Gordan symmetries
3
+ # -Improve simplification method
4
+ # -Implement new simplifications
5
+ """Clebsch-Gordon Coefficients."""
6
+
7
+ from sympy.concrete.summations import Sum
8
+ from sympy.core.add import Add
9
+ from sympy.core.expr import Expr
10
+ from sympy.core.function import expand
11
+ from sympy.core.mul import Mul
12
+ from sympy.core.power import Pow
13
+ from sympy.core.relational import Eq
14
+ from sympy.core.singleton import S
15
+ from sympy.core.symbol import (Wild, symbols)
16
+ from sympy.core.sympify import sympify
17
+ from sympy.functions.elementary.miscellaneous import sqrt
18
+ from sympy.functions.elementary.piecewise import Piecewise
19
+ from sympy.printing.pretty.stringpict import prettyForm, stringPict
20
+
21
+ from sympy.functions.special.tensor_functions import KroneckerDelta
22
+ from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
23
+ from sympy.printing.precedence import PRECEDENCE
24
+
25
+ __all__ = [
26
+ 'CG',
27
+ 'Wigner3j',
28
+ 'Wigner6j',
29
+ 'Wigner9j',
30
+ 'cg_simp'
31
+ ]
32
+
33
+ #-----------------------------------------------------------------------------
34
+ # CG Coefficients
35
+ #-----------------------------------------------------------------------------
36
+
37
+
38
+ class Wigner3j(Expr):
39
+ """Class for the Wigner-3j symbols.
40
+
41
+ Explanation
42
+ ===========
43
+
44
+ Wigner 3j-symbols are coefficients determined by the coupling of
45
+ two angular momenta. When created, they are expressed as symbolic
46
+ quantities that, for numerical parameters, can be evaluated using the
47
+ ``.doit()`` method [1]_.
48
+
49
+ Parameters
50
+ ==========
51
+
52
+ j1, m1, j2, m2, j3, m3 : Number, Symbol
53
+ Terms determining the angular momentum of coupled angular momentum
54
+ systems.
55
+
56
+ Examples
57
+ ========
58
+
59
+ Declare a Wigner-3j coefficient and calculate its value
60
+
61
+ >>> from sympy.physics.quantum.cg import Wigner3j
62
+ >>> w3j = Wigner3j(6,0,4,0,2,0)
63
+ >>> w3j
64
+ Wigner3j(6, 0, 4, 0, 2, 0)
65
+ >>> w3j.doit()
66
+ sqrt(715)/143
67
+
68
+ See Also
69
+ ========
70
+
71
+ CG: Clebsch-Gordan coefficients
72
+
73
+ References
74
+ ==========
75
+
76
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
77
+ """
78
+
79
+ is_commutative = True
80
+
81
+ def __new__(cls, j1, m1, j2, m2, j3, m3):
82
+ args = map(sympify, (j1, m1, j2, m2, j3, m3))
83
+ return Expr.__new__(cls, *args)
84
+
85
+ @property
86
+ def j1(self):
87
+ return self.args[0]
88
+
89
+ @property
90
+ def m1(self):
91
+ return self.args[1]
92
+
93
+ @property
94
+ def j2(self):
95
+ return self.args[2]
96
+
97
+ @property
98
+ def m2(self):
99
+ return self.args[3]
100
+
101
+ @property
102
+ def j3(self):
103
+ return self.args[4]
104
+
105
+ @property
106
+ def m3(self):
107
+ return self.args[5]
108
+
109
+ @property
110
+ def is_symbolic(self):
111
+ return not all(arg.is_number for arg in self.args)
112
+
113
+ # This is modified from the _print_Matrix method
114
+ def _pretty(self, printer, *args):
115
+ m = ((printer._print(self.j1), printer._print(self.m1)),
116
+ (printer._print(self.j2), printer._print(self.m2)),
117
+ (printer._print(self.j3), printer._print(self.m3)))
118
+ hsep = 2
119
+ vsep = 1
120
+ maxw = [-1]*3
121
+ for j in range(3):
122
+ maxw[j] = max([ m[j][i].width() for i in range(2) ])
123
+ D = None
124
+ for i in range(2):
125
+ D_row = None
126
+ for j in range(3):
127
+ s = m[j][i]
128
+ wdelta = maxw[j] - s.width()
129
+ wleft = wdelta //2
130
+ wright = wdelta - wleft
131
+
132
+ s = prettyForm(*s.right(' '*wright))
133
+ s = prettyForm(*s.left(' '*wleft))
134
+
135
+ if D_row is None:
136
+ D_row = s
137
+ continue
138
+ D_row = prettyForm(*D_row.right(' '*hsep))
139
+ D_row = prettyForm(*D_row.right(s))
140
+ if D is None:
141
+ D = D_row
142
+ continue
143
+ for _ in range(vsep):
144
+ D = prettyForm(*D.below(' '))
145
+ D = prettyForm(*D.below(D_row))
146
+ D = prettyForm(*D.parens())
147
+ return D
148
+
149
+ def _latex(self, printer, *args):
150
+ label = map(printer._print, (self.j1, self.j2, self.j3,
151
+ self.m1, self.m2, self.m3))
152
+ return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
153
+ tuple(label)
154
+
155
+ def doit(self, **hints):
156
+ if self.is_symbolic:
157
+ raise ValueError("Coefficients must be numerical")
158
+ return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
159
+
160
+
161
+ class CG(Wigner3j):
162
+ r"""Class for Clebsch-Gordan coefficient.
163
+
164
+ Explanation
165
+ ===========
166
+
167
+ Clebsch-Gordan coefficients describe the angular momentum coupling between
168
+ two systems. The coefficients give the expansion of a coupled total angular
169
+ momentum state and an uncoupled tensor product state. The Clebsch-Gordan
170
+ coefficients are defined as [1]_:
171
+
172
+ .. math ::
173
+ C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
174
+
175
+ Parameters
176
+ ==========
177
+
178
+ j1, m1, j2, m2 : Number, Symbol
179
+ Angular momenta of states 1 and 2.
180
+
181
+ j3, m3: Number, Symbol
182
+ Total angular momentum of the coupled system.
183
+
184
+ Examples
185
+ ========
186
+
187
+ Define a Clebsch-Gordan coefficient and evaluate its value
188
+
189
+ >>> from sympy.physics.quantum.cg import CG
190
+ >>> from sympy import S
191
+ >>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
192
+ >>> cg
193
+ CG(3/2, 3/2, 1/2, -1/2, 1, 1)
194
+ >>> cg.doit()
195
+ sqrt(3)/2
196
+ >>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
197
+ sqrt(2)/2
198
+
199
+
200
+ Compare [2]_.
201
+
202
+ See Also
203
+ ========
204
+
205
+ Wigner3j: Wigner-3j symbols
206
+
207
+ References
208
+ ==========
209
+
210
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
211
+ .. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
212
+ <https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
213
+ in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
214
+ 2020, 083C01 (2020).
215
+ """
216
+ precedence = PRECEDENCE["Pow"] - 1
217
+
218
+ def doit(self, **hints):
219
+ if self.is_symbolic:
220
+ raise ValueError("Coefficients must be numerical")
221
+ return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
222
+
223
+ def _pretty(self, printer, *args):
224
+ bot = printer._print_seq(
225
+ (self.j1, self.m1, self.j2, self.m2), delimiter=',')
226
+ top = printer._print_seq((self.j3, self.m3), delimiter=',')
227
+
228
+ pad = max(top.width(), bot.width())
229
+ bot = prettyForm(*bot.left(' '))
230
+ top = prettyForm(*top.left(' '))
231
+
232
+ if not pad == bot.width():
233
+ bot = prettyForm(*bot.right(' '*(pad - bot.width())))
234
+ if not pad == top.width():
235
+ top = prettyForm(*top.right(' '*(pad - top.width())))
236
+ s = stringPict('C' + ' '*pad)
237
+ s = prettyForm(*s.below(bot))
238
+ s = prettyForm(*s.above(top))
239
+ return s
240
+
241
+ def _latex(self, printer, *args):
242
+ label = map(printer._print, (self.j3, self.m3, self.j1,
243
+ self.m1, self.j2, self.m2))
244
+ return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
245
+
246
+
247
+ class Wigner6j(Expr):
248
+ """Class for the Wigner-6j symbols
249
+
250
+ See Also
251
+ ========
252
+
253
+ Wigner3j: Wigner-3j symbols
254
+
255
+ """
256
+ def __new__(cls, j1, j2, j12, j3, j, j23):
257
+ args = map(sympify, (j1, j2, j12, j3, j, j23))
258
+ return Expr.__new__(cls, *args)
259
+
260
+ @property
261
+ def j1(self):
262
+ return self.args[0]
263
+
264
+ @property
265
+ def j2(self):
266
+ return self.args[1]
267
+
268
+ @property
269
+ def j12(self):
270
+ return self.args[2]
271
+
272
+ @property
273
+ def j3(self):
274
+ return self.args[3]
275
+
276
+ @property
277
+ def j(self):
278
+ return self.args[4]
279
+
280
+ @property
281
+ def j23(self):
282
+ return self.args[5]
283
+
284
+ @property
285
+ def is_symbolic(self):
286
+ return not all(arg.is_number for arg in self.args)
287
+
288
+ # This is modified from the _print_Matrix method
289
+ def _pretty(self, printer, *args):
290
+ m = ((printer._print(self.j1), printer._print(self.j3)),
291
+ (printer._print(self.j2), printer._print(self.j)),
292
+ (printer._print(self.j12), printer._print(self.j23)))
293
+ hsep = 2
294
+ vsep = 1
295
+ maxw = [-1]*3
296
+ for j in range(3):
297
+ maxw[j] = max([ m[j][i].width() for i in range(2) ])
298
+ D = None
299
+ for i in range(2):
300
+ D_row = None
301
+ for j in range(3):
302
+ s = m[j][i]
303
+ wdelta = maxw[j] - s.width()
304
+ wleft = wdelta //2
305
+ wright = wdelta - wleft
306
+
307
+ s = prettyForm(*s.right(' '*wright))
308
+ s = prettyForm(*s.left(' '*wleft))
309
+
310
+ if D_row is None:
311
+ D_row = s
312
+ continue
313
+ D_row = prettyForm(*D_row.right(' '*hsep))
314
+ D_row = prettyForm(*D_row.right(s))
315
+ if D is None:
316
+ D = D_row
317
+ continue
318
+ for _ in range(vsep):
319
+ D = prettyForm(*D.below(' '))
320
+ D = prettyForm(*D.below(D_row))
321
+ D = prettyForm(*D.parens(left='{', right='}'))
322
+ return D
323
+
324
+ def _latex(self, printer, *args):
325
+ label = map(printer._print, (self.j1, self.j2, self.j12,
326
+ self.j3, self.j, self.j23))
327
+ return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
328
+ tuple(label)
329
+
330
+ def doit(self, **hints):
331
+ if self.is_symbolic:
332
+ raise ValueError("Coefficients must be numerical")
333
+ return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
334
+
335
+
336
+ class Wigner9j(Expr):
337
+ """Class for the Wigner-9j symbols
338
+
339
+ See Also
340
+ ========
341
+
342
+ Wigner3j: Wigner-3j symbols
343
+
344
+ """
345
+ def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
346
+ args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
347
+ return Expr.__new__(cls, *args)
348
+
349
+ @property
350
+ def j1(self):
351
+ return self.args[0]
352
+
353
+ @property
354
+ def j2(self):
355
+ return self.args[1]
356
+
357
+ @property
358
+ def j12(self):
359
+ return self.args[2]
360
+
361
+ @property
362
+ def j3(self):
363
+ return self.args[3]
364
+
365
+ @property
366
+ def j4(self):
367
+ return self.args[4]
368
+
369
+ @property
370
+ def j34(self):
371
+ return self.args[5]
372
+
373
+ @property
374
+ def j13(self):
375
+ return self.args[6]
376
+
377
+ @property
378
+ def j24(self):
379
+ return self.args[7]
380
+
381
+ @property
382
+ def j(self):
383
+ return self.args[8]
384
+
385
+ @property
386
+ def is_symbolic(self):
387
+ return not all(arg.is_number for arg in self.args)
388
+
389
+ # This is modified from the _print_Matrix method
390
+ def _pretty(self, printer, *args):
391
+ m = (
392
+ (printer._print(
393
+ self.j1), printer._print(self.j3), printer._print(self.j13)),
394
+ (printer._print(
395
+ self.j2), printer._print(self.j4), printer._print(self.j24)),
396
+ (printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
397
+ hsep = 2
398
+ vsep = 1
399
+ maxw = [-1]*3
400
+ for j in range(3):
401
+ maxw[j] = max([ m[j][i].width() for i in range(3) ])
402
+ D = None
403
+ for i in range(3):
404
+ D_row = None
405
+ for j in range(3):
406
+ s = m[j][i]
407
+ wdelta = maxw[j] - s.width()
408
+ wleft = wdelta //2
409
+ wright = wdelta - wleft
410
+
411
+ s = prettyForm(*s.right(' '*wright))
412
+ s = prettyForm(*s.left(' '*wleft))
413
+
414
+ if D_row is None:
415
+ D_row = s
416
+ continue
417
+ D_row = prettyForm(*D_row.right(' '*hsep))
418
+ D_row = prettyForm(*D_row.right(s))
419
+ if D is None:
420
+ D = D_row
421
+ continue
422
+ for _ in range(vsep):
423
+ D = prettyForm(*D.below(' '))
424
+ D = prettyForm(*D.below(D_row))
425
+ D = prettyForm(*D.parens(left='{', right='}'))
426
+ return D
427
+
428
+ def _latex(self, printer, *args):
429
+ label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
430
+ self.j4, self.j34, self.j13, self.j24, self.j))
431
+ return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
432
+ tuple(label)
433
+
434
+ def doit(self, **hints):
435
+ if self.is_symbolic:
436
+ raise ValueError("Coefficients must be numerical")
437
+ return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
438
+
439
+
440
+ def cg_simp(e):
441
+ """Simplify and combine CG coefficients.
442
+
443
+ Explanation
444
+ ===========
445
+
446
+ This function uses various symmetry and properties of sums and
447
+ products of Clebsch-Gordan coefficients to simplify statements
448
+ involving these terms [1]_.
449
+
450
+ Examples
451
+ ========
452
+
453
+ Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
454
+ 2*a+1
455
+
456
+ >>> from sympy.physics.quantum.cg import CG, cg_simp
457
+ >>> a = CG(1,1,0,0,1,1)
458
+ >>> b = CG(1,0,0,0,1,0)
459
+ >>> c = CG(1,-1,0,0,1,-1)
460
+ >>> cg_simp(a+b+c)
461
+ 3
462
+
463
+ See Also
464
+ ========
465
+
466
+ CG: Clebsh-Gordan coefficients
467
+
468
+ References
469
+ ==========
470
+
471
+ .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
472
+ """
473
+ if isinstance(e, Add):
474
+ return _cg_simp_add(e)
475
+ elif isinstance(e, Sum):
476
+ return _cg_simp_sum(e)
477
+ elif isinstance(e, Mul):
478
+ return Mul(*[cg_simp(arg) for arg in e.args])
479
+ elif isinstance(e, Pow):
480
+ return Pow(cg_simp(e.base), e.exp)
481
+ else:
482
+ return e
483
+
484
+
485
+ def _cg_simp_add(e):
486
+ #TODO: Improve simplification method
487
+ """Takes a sum of terms involving Clebsch-Gordan coefficients and
488
+ simplifies the terms.
489
+
490
+ Explanation
491
+ ===========
492
+
493
+ First, we create two lists, cg_part, which is all the terms involving CG
494
+ coefficients, and other_part, which is all other terms. The cg_part list
495
+ is then passed to the simplification methods, which return the new cg_part
496
+ and any additional terms that are added to other_part
497
+ """
498
+ cg_part = []
499
+ other_part = []
500
+
501
+ e = expand(e)
502
+ for arg in e.args:
503
+ if arg.has(CG):
504
+ if isinstance(arg, Sum):
505
+ other_part.append(_cg_simp_sum(arg))
506
+ elif isinstance(arg, Mul):
507
+ terms = 1
508
+ for term in arg.args:
509
+ if isinstance(term, Sum):
510
+ terms *= _cg_simp_sum(term)
511
+ else:
512
+ terms *= term
513
+ if terms.has(CG):
514
+ cg_part.append(terms)
515
+ else:
516
+ other_part.append(terms)
517
+ else:
518
+ cg_part.append(arg)
519
+ else:
520
+ other_part.append(arg)
521
+
522
+ cg_part, other = _check_varsh_871_1(cg_part)
523
+ other_part.append(other)
524
+ cg_part, other = _check_varsh_871_2(cg_part)
525
+ other_part.append(other)
526
+ cg_part, other = _check_varsh_872_9(cg_part)
527
+ other_part.append(other)
528
+ return Add(*cg_part) + Add(*other_part)
529
+
530
+
531
+ def _check_varsh_871_1(term_list):
532
+ # Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
533
+ a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
534
+ expr = lt*CG(a, alpha, b, 0, a, alpha)
535
+ simp = (2*a + 1)*KroneckerDelta(b, 0)
536
+ sign = lt/abs(lt)
537
+ build_expr = 2*a + 1
538
+ index_expr = a + alpha
539
+ return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
540
+
541
+
542
+ def _check_varsh_871_2(term_list):
543
+ # Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
544
+ a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
545
+ expr = lt*CG(a, alpha, a, -alpha, c, 0)
546
+ simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
547
+ sign = (-1)**(a - alpha)*lt/abs(lt)
548
+ build_expr = 2*a + 1
549
+ index_expr = a + alpha
550
+ return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
551
+
552
+
553
+ def _check_varsh_872_9(term_list):
554
+ # Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
555
+ a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
556
+ 'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
557
+ # Case alpha==alphap, beta==betap
558
+
559
+ # For numerical alpha,beta
560
+ expr = lt*CG(a, alpha, b, beta, c, gamma)**2
561
+ simp = S.One
562
+ sign = lt/abs(lt)
563
+ x = abs(a - b)
564
+ y = abs(alpha + beta)
565
+ build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
566
+ index_expr = a + b - c
567
+ term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
568
+
569
+ # For symbolic alpha,beta
570
+ x = abs(a - b)
571
+ y = a + b
572
+ build_expr = (y + 1 - x)*(x + y + 1)
573
+ index_expr = (c - x)*(x + c) + c + gamma
574
+ term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
575
+
576
+ # Case alpha!=alphap or beta!=betap
577
+ # Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
578
+ # For numerical alpha,alphap,beta,betap
579
+ expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
580
+ simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
581
+ sign = S.One
582
+ x = abs(a - b)
583
+ y = abs(alpha + beta)
584
+ build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
585
+ index_expr = a + b - c
586
+ term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
587
+
588
+ # For symbolic alpha,alphap,beta,betap
589
+ x = abs(a - b)
590
+ y = a + b
591
+ build_expr = (y + 1 - x)*(x + y + 1)
592
+ index_expr = (c - x)*(x + c) + c + gamma
593
+ term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
594
+
595
+ return term_list, other1 + other2 + other4
596
+
597
+
598
+ def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
599
+ """ Checks for simplifications that can be made, returning a tuple of the
600
+ simplified list of terms and any terms generated by simplification.
601
+
602
+ Parameters
603
+ ==========
604
+
605
+ expr: expression
606
+ The expression with Wild terms that will be matched to the terms in
607
+ the sum
608
+
609
+ simp: expression
610
+ The expression with Wild terms that is substituted in place of the CG
611
+ terms in the case of simplification
612
+
613
+ sign: expression
614
+ The expression with Wild terms denoting the sign that is on expr that
615
+ must match
616
+
617
+ lt: expression
618
+ The expression with Wild terms that gives the leading term of the
619
+ matched expr
620
+
621
+ term_list: list
622
+ A list of all of the terms is the sum to be simplified
623
+
624
+ variables: list
625
+ A list of all the variables that appears in expr
626
+
627
+ dep_variables: list
628
+ A list of the variables that must match for all the terms in the sum,
629
+ i.e. the dependent variables
630
+
631
+ build_index_expr: expression
632
+ Expression with Wild terms giving the number of elements in cg_index
633
+
634
+ index_expr: expression
635
+ Expression with Wild terms giving the index terms have when storing
636
+ them to cg_index
637
+
638
+ """
639
+ other_part = 0
640
+ i = 0
641
+ while i < len(term_list):
642
+ sub_1 = _check_cg(term_list[i], expr, len(variables))
643
+ if sub_1 is None:
644
+ i += 1
645
+ continue
646
+ if not build_index_expr.subs(sub_1).is_number:
647
+ i += 1
648
+ continue
649
+ sub_dep = [(x, sub_1[x]) for x in dep_variables]
650
+ cg_index = [None]*build_index_expr.subs(sub_1)
651
+ for j in range(i, len(term_list)):
652
+ sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
653
+ if sub_2 is None:
654
+ continue
655
+ if not index_expr.subs(sub_dep).subs(sub_2).is_number:
656
+ continue
657
+ cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
658
+ if not any(i is None for i in cg_index):
659
+ min_lt = min(*[ abs(term[2]) for term in cg_index ])
660
+ indices = [ term[0] for term in cg_index]
661
+ indices.sort()
662
+ indices.reverse()
663
+ [ term_list.pop(j) for j in indices ]
664
+ for term in cg_index:
665
+ if abs(term[2]) > min_lt:
666
+ term_list.append( (term[2] - min_lt*term[3])*term[1] )
667
+ other_part += min_lt*(sign*simp).subs(sub_1)
668
+ else:
669
+ i += 1
670
+ return term_list, other_part
671
+
672
+
673
+ def _check_cg(cg_term, expr, length, sign=None):
674
+ """Checks whether a term matches the given expression"""
675
+ # TODO: Check for symmetries
676
+ matches = cg_term.match(expr)
677
+ if matches is None:
678
+ return
679
+ if sign is not None:
680
+ if not isinstance(sign, tuple):
681
+ raise TypeError('sign must be a tuple')
682
+ if not sign[0] == (sign[1]).subs(matches):
683
+ return
684
+ if len(matches) == length:
685
+ return matches
686
+
687
+
688
+ def _cg_simp_sum(e):
689
+ e = _check_varsh_sum_871_1(e)
690
+ e = _check_varsh_sum_871_2(e)
691
+ e = _check_varsh_sum_872_4(e)
692
+ return e
693
+
694
+
695
+ def _check_varsh_sum_871_1(e):
696
+ a = Wild('a')
697
+ alpha = symbols('alpha')
698
+ b = Wild('b')
699
+ match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
700
+ if match is not None and len(match) == 2:
701
+ return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
702
+ return e
703
+
704
+
705
+ def _check_varsh_sum_871_2(e):
706
+ a = Wild('a')
707
+ alpha = symbols('alpha')
708
+ c = Wild('c')
709
+ match = e.match(
710
+ Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
711
+ if match is not None and len(match) == 2:
712
+ return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
713
+ return e
714
+
715
+
716
+ def _check_varsh_sum_872_4(e):
717
+ alpha = symbols('alpha')
718
+ beta = symbols('beta')
719
+ a = Wild('a')
720
+ b = Wild('b')
721
+ c = Wild('c')
722
+ cp = Wild('cp')
723
+ gamma = Wild('gamma')
724
+ gammap = Wild('gammap')
725
+ cg1 = CG(a, alpha, b, beta, c, gamma)
726
+ cg2 = CG(a, alpha, b, beta, cp, gammap)
727
+ match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
728
+ if match1 is not None and len(match1) == 6:
729
+ return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
730
+ match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
731
+ if match2 is not None and len(match2) == 4:
732
+ return S.One
733
+ return e
734
+
735
+
736
+ def _cg_list(term):
737
+ if isinstance(term, CG):
738
+ return (term,), 1, 1
739
+ cg = []
740
+ coeff = 1
741
+ if not isinstance(term, (Mul, Pow)):
742
+ raise NotImplementedError('term must be CG, Add, Mul or Pow')
743
+ if isinstance(term, Pow) and term.exp.is_number:
744
+ if term.exp.is_number:
745
+ [ cg.append(term.base) for _ in range(term.exp) ]
746
+ else:
747
+ return (term,), 1, 1
748
+ if isinstance(term, Mul):
749
+ for arg in term.args:
750
+ if isinstance(arg, CG):
751
+ cg.append(arg)
752
+ else:
753
+ coeff *= arg
754
+ return cg, coeff, coeff/abs(coeff)
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Primitive circuit operations on quantum circuits."""
2
+
3
+ from functools import reduce
4
+
5
+ from sympy.core.sorting import default_sort_key
6
+ from sympy.core.containers import Tuple
7
+ from sympy.core.mul import Mul
8
+ from sympy.core.symbol import Symbol
9
+ from sympy.core.sympify import sympify
10
+ from sympy.utilities import numbered_symbols
11
+ from sympy.physics.quantum.gate import Gate
12
+
13
+ __all__ = [
14
+ 'kmp_table',
15
+ 'find_subcircuit',
16
+ 'replace_subcircuit',
17
+ 'convert_to_symbolic_indices',
18
+ 'convert_to_real_indices',
19
+ 'random_reduce',
20
+ 'random_insert'
21
+ ]
22
+
23
+
24
+ def kmp_table(word):
25
+ """Build the 'partial match' table of the Knuth-Morris-Pratt algorithm.
26
+
27
+ Note: This is applicable to strings or
28
+ quantum circuits represented as tuples.
29
+ """
30
+
31
+ # Current position in subcircuit
32
+ pos = 2
33
+ # Beginning position of candidate substring that
34
+ # may reappear later in word
35
+ cnd = 0
36
+ # The 'partial match' table that helps one determine
37
+ # the next location to start substring search
38
+ table = []
39
+ table.append(-1)
40
+ table.append(0)
41
+
42
+ while pos < len(word):
43
+ if word[pos - 1] == word[cnd]:
44
+ cnd = cnd + 1
45
+ table.append(cnd)
46
+ pos = pos + 1
47
+ elif cnd > 0:
48
+ cnd = table[cnd]
49
+ else:
50
+ table.append(0)
51
+ pos = pos + 1
52
+
53
+ return table
54
+
55
+
56
+ def find_subcircuit(circuit, subcircuit, start=0, end=0):
57
+ """Finds the subcircuit in circuit, if it exists.
58
+
59
+ Explanation
60
+ ===========
61
+
62
+ If the subcircuit exists, the index of the start of
63
+ the subcircuit in circuit is returned; otherwise,
64
+ -1 is returned. The algorithm that is implemented
65
+ is the Knuth-Morris-Pratt algorithm.
66
+
67
+ Parameters
68
+ ==========
69
+
70
+ circuit : tuple, Gate or Mul
71
+ A tuple of Gates or Mul representing a quantum circuit
72
+ subcircuit : tuple, Gate or Mul
73
+ A tuple of Gates or Mul to find in circuit
74
+ start : int
75
+ The location to start looking for subcircuit.
76
+ If start is the same or past end, -1 is returned.
77
+ end : int
78
+ The last place to look for a subcircuit. If end
79
+ is less than 1 (one), then the length of circuit
80
+ is taken to be end.
81
+
82
+ Examples
83
+ ========
84
+
85
+ Find the first instance of a subcircuit:
86
+
87
+ >>> from sympy.physics.quantum.circuitutils import find_subcircuit
88
+ >>> from sympy.physics.quantum.gate import X, Y, Z, H
89
+ >>> circuit = X(0)*Z(0)*Y(0)*H(0)
90
+ >>> subcircuit = Z(0)*Y(0)
91
+ >>> find_subcircuit(circuit, subcircuit)
92
+ 1
93
+
94
+ Find the first instance starting at a specific position:
95
+
96
+ >>> find_subcircuit(circuit, subcircuit, start=1)
97
+ 1
98
+
99
+ >>> find_subcircuit(circuit, subcircuit, start=2)
100
+ -1
101
+
102
+ >>> circuit = circuit*subcircuit
103
+ >>> find_subcircuit(circuit, subcircuit, start=2)
104
+ 4
105
+
106
+ Find the subcircuit within some interval:
107
+
108
+ >>> find_subcircuit(circuit, subcircuit, start=2, end=2)
109
+ -1
110
+ """
111
+
112
+ if isinstance(circuit, Mul):
113
+ circuit = circuit.args
114
+
115
+ if isinstance(subcircuit, Mul):
116
+ subcircuit = subcircuit.args
117
+
118
+ if len(subcircuit) == 0 or len(subcircuit) > len(circuit):
119
+ return -1
120
+
121
+ if end < 1:
122
+ end = len(circuit)
123
+
124
+ # Location in circuit
125
+ pos = start
126
+ # Location in the subcircuit
127
+ index = 0
128
+ # 'Partial match' table
129
+ table = kmp_table(subcircuit)
130
+
131
+ while (pos + index) < end:
132
+ if subcircuit[index] == circuit[pos + index]:
133
+ index = index + 1
134
+ else:
135
+ pos = pos + index - table[index]
136
+ index = table[index] if table[index] > -1 else 0
137
+
138
+ if index == len(subcircuit):
139
+ return pos
140
+
141
+ return -1
142
+
143
+
144
+ def replace_subcircuit(circuit, subcircuit, replace=None, pos=0):
145
+ """Replaces a subcircuit with another subcircuit in circuit,
146
+ if it exists.
147
+
148
+ Explanation
149
+ ===========
150
+
151
+ If multiple instances of subcircuit exists, the first instance is
152
+ replaced. The position to being searching from (if different from
153
+ 0) may be optionally given. If subcircuit cannot be found, circuit
154
+ is returned.
155
+
156
+ Parameters
157
+ ==========
158
+
159
+ circuit : tuple, Gate or Mul
160
+ A quantum circuit.
161
+ subcircuit : tuple, Gate or Mul
162
+ The circuit to be replaced.
163
+ replace : tuple, Gate or Mul
164
+ The replacement circuit.
165
+ pos : int
166
+ The location to start search and replace
167
+ subcircuit, if it exists. This may be used
168
+ if it is known beforehand that multiple
169
+ instances exist, and it is desirable to
170
+ replace a specific instance. If a negative number
171
+ is given, pos will be defaulted to 0.
172
+
173
+ Examples
174
+ ========
175
+
176
+ Find and remove the subcircuit:
177
+
178
+ >>> from sympy.physics.quantum.circuitutils import replace_subcircuit
179
+ >>> from sympy.physics.quantum.gate import X, Y, Z, H
180
+ >>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0)
181
+ >>> subcircuit = Z(0)*Y(0)
182
+ >>> replace_subcircuit(circuit, subcircuit)
183
+ (X(0), H(0), X(0), H(0), Y(0))
184
+
185
+ Remove the subcircuit given a starting search point:
186
+
187
+ >>> replace_subcircuit(circuit, subcircuit, pos=1)
188
+ (X(0), H(0), X(0), H(0), Y(0))
189
+
190
+ >>> replace_subcircuit(circuit, subcircuit, pos=2)
191
+ (X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0))
192
+
193
+ Replace the subcircuit:
194
+
195
+ >>> replacement = H(0)*Z(0)
196
+ >>> replace_subcircuit(circuit, subcircuit, replace=replacement)
197
+ (X(0), H(0), Z(0), H(0), X(0), H(0), Y(0))
198
+ """
199
+
200
+ if pos < 0:
201
+ pos = 0
202
+
203
+ if isinstance(circuit, Mul):
204
+ circuit = circuit.args
205
+
206
+ if isinstance(subcircuit, Mul):
207
+ subcircuit = subcircuit.args
208
+
209
+ if isinstance(replace, Mul):
210
+ replace = replace.args
211
+ elif replace is None:
212
+ replace = ()
213
+
214
+ # Look for the subcircuit starting at pos
215
+ loc = find_subcircuit(circuit, subcircuit, start=pos)
216
+
217
+ # If subcircuit was found
218
+ if loc > -1:
219
+ # Get the gates to the left of subcircuit
220
+ left = circuit[0:loc]
221
+ # Get the gates to the right of subcircuit
222
+ right = circuit[loc + len(subcircuit):len(circuit)]
223
+ # Recombine the left and right side gates into a circuit
224
+ circuit = left + replace + right
225
+
226
+ return circuit
227
+
228
+
229
+ def _sympify_qubit_map(mapping):
230
+ new_map = {}
231
+ for key in mapping:
232
+ new_map[key] = sympify(mapping[key])
233
+ return new_map
234
+
235
+
236
+ def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None):
237
+ """Returns the circuit with symbolic indices and the
238
+ dictionary mapping symbolic indices to real indices.
239
+
240
+ The mapping is 1 to 1 and onto (bijective).
241
+
242
+ Parameters
243
+ ==========
244
+
245
+ seq : tuple, Gate/Integer/tuple or Mul
246
+ A tuple of Gate, Integer, or tuple objects, or a Mul
247
+ start : Symbol
248
+ An optional starting symbolic index
249
+ gen : object
250
+ An optional numbered symbol generator
251
+ qubit_map : dict
252
+ An existing mapping of symbolic indices to real indices
253
+
254
+ All symbolic indices have the format 'i#', where # is
255
+ some number >= 0.
256
+ """
257
+
258
+ if isinstance(seq, Mul):
259
+ seq = seq.args
260
+
261
+ # A numbered symbol generator
262
+ index_gen = numbered_symbols(prefix='i', start=-1)
263
+ cur_ndx = next(index_gen)
264
+
265
+ # keys are symbolic indices; values are real indices
266
+ ndx_map = {}
267
+
268
+ def create_inverse_map(symb_to_real_map):
269
+ rev_items = lambda item: (item[1], item[0])
270
+ return dict(map(rev_items, symb_to_real_map.items()))
271
+
272
+ if start is not None:
273
+ if not isinstance(start, Symbol):
274
+ msg = 'Expected Symbol for starting index, got %r.' % start
275
+ raise TypeError(msg)
276
+ cur_ndx = start
277
+
278
+ if gen is not None:
279
+ if not isinstance(gen, numbered_symbols().__class__):
280
+ msg = 'Expected a generator, got %r.' % gen
281
+ raise TypeError(msg)
282
+ index_gen = gen
283
+
284
+ if qubit_map is not None:
285
+ if not isinstance(qubit_map, dict):
286
+ msg = ('Expected dict for existing map, got ' +
287
+ '%r.' % qubit_map)
288
+ raise TypeError(msg)
289
+ ndx_map = qubit_map
290
+
291
+ ndx_map = _sympify_qubit_map(ndx_map)
292
+ # keys are real indices; keys are symbolic indices
293
+ inv_map = create_inverse_map(ndx_map)
294
+
295
+ sym_seq = ()
296
+ for item in seq:
297
+ # Nested items, so recurse
298
+ if isinstance(item, Gate):
299
+ result = convert_to_symbolic_indices(item.args,
300
+ qubit_map=ndx_map,
301
+ start=cur_ndx,
302
+ gen=index_gen)
303
+ sym_item, new_map, cur_ndx, index_gen = result
304
+ ndx_map.update(new_map)
305
+ inv_map = create_inverse_map(ndx_map)
306
+
307
+ elif isinstance(item, (tuple, Tuple)):
308
+ result = convert_to_symbolic_indices(item,
309
+ qubit_map=ndx_map,
310
+ start=cur_ndx,
311
+ gen=index_gen)
312
+ sym_item, new_map, cur_ndx, index_gen = result
313
+ ndx_map.update(new_map)
314
+ inv_map = create_inverse_map(ndx_map)
315
+
316
+ elif item in inv_map:
317
+ sym_item = inv_map[item]
318
+
319
+ else:
320
+ cur_ndx = next(gen)
321
+ ndx_map[cur_ndx] = item
322
+ inv_map[item] = cur_ndx
323
+ sym_item = cur_ndx
324
+
325
+ if isinstance(item, Gate):
326
+ sym_item = item.__class__(*sym_item)
327
+
328
+ sym_seq = sym_seq + (sym_item,)
329
+
330
+ return sym_seq, ndx_map, cur_ndx, index_gen
331
+
332
+
333
+ def convert_to_real_indices(seq, qubit_map):
334
+ """Returns the circuit with real indices.
335
+
336
+ Parameters
337
+ ==========
338
+
339
+ seq : tuple, Gate/Integer/tuple or Mul
340
+ A tuple of Gate, Integer, or tuple objects or a Mul
341
+ qubit_map : dict
342
+ A dictionary mapping symbolic indices to real indices.
343
+
344
+ Examples
345
+ ========
346
+
347
+ Change the symbolic indices to real integers:
348
+
349
+ >>> from sympy import symbols
350
+ >>> from sympy.physics.quantum.circuitutils import convert_to_real_indices
351
+ >>> from sympy.physics.quantum.gate import X, Y, H
352
+ >>> i0, i1 = symbols('i:2')
353
+ >>> index_map = {i0 : 0, i1 : 1}
354
+ >>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map)
355
+ (X(0), Y(1), H(0), X(1))
356
+ """
357
+
358
+ if isinstance(seq, Mul):
359
+ seq = seq.args
360
+
361
+ if not isinstance(qubit_map, dict):
362
+ msg = 'Expected dict for qubit_map, got %r.' % qubit_map
363
+ raise TypeError(msg)
364
+
365
+ qubit_map = _sympify_qubit_map(qubit_map)
366
+ real_seq = ()
367
+ for item in seq:
368
+ # Nested items, so recurse
369
+ if isinstance(item, Gate):
370
+ real_item = convert_to_real_indices(item.args, qubit_map)
371
+
372
+ elif isinstance(item, (tuple, Tuple)):
373
+ real_item = convert_to_real_indices(item, qubit_map)
374
+
375
+ else:
376
+ real_item = qubit_map[item]
377
+
378
+ if isinstance(item, Gate):
379
+ real_item = item.__class__(*real_item)
380
+
381
+ real_seq = real_seq + (real_item,)
382
+
383
+ return real_seq
384
+
385
+
386
+ def random_reduce(circuit, gate_ids, seed=None):
387
+ """Shorten the length of a quantum circuit.
388
+
389
+ Explanation
390
+ ===========
391
+
392
+ random_reduce looks for circuit identities in circuit, randomly chooses
393
+ one to remove, and returns a shorter yet equivalent circuit. If no
394
+ identities are found, the same circuit is returned.
395
+
396
+ Parameters
397
+ ==========
398
+
399
+ circuit : Gate tuple of Mul
400
+ A tuple of Gates representing a quantum circuit
401
+ gate_ids : list, GateIdentity
402
+ List of gate identities to find in circuit
403
+ seed : int or list
404
+ seed used for _randrange; to override the random selection, provide a
405
+ list of integers: the elements of gate_ids will be tested in the order
406
+ given by the list
407
+
408
+ """
409
+ from sympy.core.random import _randrange
410
+
411
+ if not gate_ids:
412
+ return circuit
413
+
414
+ if isinstance(circuit, Mul):
415
+ circuit = circuit.args
416
+
417
+ ids = flatten_ids(gate_ids)
418
+
419
+ # Create the random integer generator with the seed
420
+ randrange = _randrange(seed)
421
+
422
+ # Look for an identity in the circuit
423
+ while ids:
424
+ i = randrange(len(ids))
425
+ id = ids.pop(i)
426
+ if find_subcircuit(circuit, id) != -1:
427
+ break
428
+ else:
429
+ # no identity was found
430
+ return circuit
431
+
432
+ # return circuit with the identity removed
433
+ return replace_subcircuit(circuit, id)
434
+
435
+
436
+ def random_insert(circuit, choices, seed=None):
437
+ """Insert a circuit into another quantum circuit.
438
+
439
+ Explanation
440
+ ===========
441
+
442
+ random_insert randomly chooses a location in the circuit to insert
443
+ a randomly selected circuit from amongst the given choices.
444
+
445
+ Parameters
446
+ ==========
447
+
448
+ circuit : Gate tuple or Mul
449
+ A tuple or Mul of Gates representing a quantum circuit
450
+ choices : list
451
+ Set of circuit choices
452
+ seed : int or list
453
+ seed used for _randrange; to override the random selections, give
454
+ a list two integers, [i, j] where i is the circuit location where
455
+ choice[j] will be inserted.
456
+
457
+ Notes
458
+ =====
459
+
460
+ Indices for insertion should be [0, n] if n is the length of the
461
+ circuit.
462
+ """
463
+ from sympy.core.random import _randrange
464
+
465
+ if not choices:
466
+ return circuit
467
+
468
+ if isinstance(circuit, Mul):
469
+ circuit = circuit.args
470
+
471
+ # get the location in the circuit and the element to insert from choices
472
+ randrange = _randrange(seed)
473
+ loc = randrange(len(circuit) + 1)
474
+ choice = choices[randrange(len(choices))]
475
+
476
+ circuit = list(circuit)
477
+ circuit[loc: loc] = choice
478
+ return tuple(circuit)
479
+
480
+ # Flatten the GateIdentity objects (with gate rules) into one single list
481
+
482
+
483
+ def flatten_ids(ids):
484
+ collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids,
485
+ key=default_sort_key)
486
+ ids = reduce(collapse, ids, [])
487
+ ids.sort(key=default_sort_key)
488
+ return ids
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The commutator: [A,B] = A*B - B*A."""
2
+
3
+ from sympy.core.add import Add
4
+ from sympy.core.expr import Expr
5
+ from sympy.core.mul import Mul
6
+ from sympy.core.power import Pow
7
+ from sympy.core.singleton import S
8
+ from sympy.printing.pretty.stringpict import prettyForm
9
+
10
+ from sympy.physics.quantum.dagger import Dagger
11
+ from sympy.physics.quantum.operator import Operator
12
+
13
+
14
+ __all__ = [
15
+ 'Commutator'
16
+ ]
17
+
18
+ #-----------------------------------------------------------------------------
19
+ # Commutator
20
+ #-----------------------------------------------------------------------------
21
+
22
+
23
+ class Commutator(Expr):
24
+ """The standard commutator, in an unevaluated state.
25
+
26
+ Explanation
27
+ ===========
28
+
29
+ Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This
30
+ class returns the commutator in an unevaluated form. To evaluate the
31
+ commutator, use the ``.doit()`` method.
32
+
33
+ Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The
34
+ arguments of the commutator are put into canonical order using ``__cmp__``.
35
+ If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``.
36
+
37
+ Parameters
38
+ ==========
39
+
40
+ A : Expr
41
+ The first argument of the commutator [A,B].
42
+ B : Expr
43
+ The second argument of the commutator [A,B].
44
+
45
+ Examples
46
+ ========
47
+
48
+ >>> from sympy.physics.quantum import Commutator, Dagger, Operator
49
+ >>> from sympy.abc import x, y
50
+ >>> A = Operator('A')
51
+ >>> B = Operator('B')
52
+ >>> C = Operator('C')
53
+
54
+ Create a commutator and use ``.doit()`` to evaluate it:
55
+
56
+ >>> comm = Commutator(A, B)
57
+ >>> comm
58
+ [A,B]
59
+ >>> comm.doit()
60
+ A*B - B*A
61
+
62
+ The commutator orders it arguments in canonical order:
63
+
64
+ >>> comm = Commutator(B, A); comm
65
+ -[A,B]
66
+
67
+ Commutative constants are factored out:
68
+
69
+ >>> Commutator(3*x*A, x*y*B)
70
+ 3*x**2*y*[A,B]
71
+
72
+ Using ``.expand(commutator=True)``, the standard commutator expansion rules
73
+ can be applied:
74
+
75
+ >>> Commutator(A+B, C).expand(commutator=True)
76
+ [A,C] + [B,C]
77
+ >>> Commutator(A, B+C).expand(commutator=True)
78
+ [A,B] + [A,C]
79
+ >>> Commutator(A*B, C).expand(commutator=True)
80
+ [A,C]*B + A*[B,C]
81
+ >>> Commutator(A, B*C).expand(commutator=True)
82
+ [A,B]*C + B*[A,C]
83
+
84
+ Adjoint operations applied to the commutator are properly applied to the
85
+ arguments:
86
+
87
+ >>> Dagger(Commutator(A, B))
88
+ -[Dagger(A),Dagger(B)]
89
+
90
+ References
91
+ ==========
92
+
93
+ .. [1] https://en.wikipedia.org/wiki/Commutator
94
+ """
95
+ is_commutative = False
96
+
97
+ def __new__(cls, A, B):
98
+ r = cls.eval(A, B)
99
+ if r is not None:
100
+ return r
101
+ obj = Expr.__new__(cls, A, B)
102
+ return obj
103
+
104
+ @classmethod
105
+ def eval(cls, a, b):
106
+ if not (a and b):
107
+ return S.Zero
108
+ if a == b:
109
+ return S.Zero
110
+ if a.is_commutative or b.is_commutative:
111
+ return S.Zero
112
+
113
+ # [xA,yB] -> xy*[A,B]
114
+ ca, nca = a.args_cnc()
115
+ cb, ncb = b.args_cnc()
116
+ c_part = ca + cb
117
+ if c_part:
118
+ return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
119
+
120
+ # Canonical ordering of arguments
121
+ # The Commutator [A, B] is in canonical form if A < B.
122
+ if a.compare(b) == 1:
123
+ return S.NegativeOne*cls(b, a)
124
+
125
+ def _expand_pow(self, A, B, sign):
126
+ exp = A.exp
127
+ if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1:
128
+ # nothing to do
129
+ return self
130
+ base = A.base
131
+ if exp.is_negative:
132
+ base = A.base**-1
133
+ exp = -exp
134
+ comm = Commutator(base, B).expand(commutator=True)
135
+
136
+ result = base**(exp - 1) * comm
137
+ for i in range(1, exp):
138
+ result += base**(exp - 1 - i) * comm * base**i
139
+ return sign*result.expand()
140
+
141
+ def _eval_expand_commutator(self, **hints):
142
+ A = self.args[0]
143
+ B = self.args[1]
144
+
145
+ if isinstance(A, Add):
146
+ # [A + B, C] -> [A, C] + [B, C]
147
+ sargs = []
148
+ for term in A.args:
149
+ comm = Commutator(term, B)
150
+ if isinstance(comm, Commutator):
151
+ comm = comm._eval_expand_commutator()
152
+ sargs.append(comm)
153
+ return Add(*sargs)
154
+ elif isinstance(B, Add):
155
+ # [A, B + C] -> [A, B] + [A, C]
156
+ sargs = []
157
+ for term in B.args:
158
+ comm = Commutator(A, term)
159
+ if isinstance(comm, Commutator):
160
+ comm = comm._eval_expand_commutator()
161
+ sargs.append(comm)
162
+ return Add(*sargs)
163
+ elif isinstance(A, Mul):
164
+ # [A*B, C] -> A*[B, C] + [A, C]*B
165
+ a = A.args[0]
166
+ b = Mul(*A.args[1:])
167
+ c = B
168
+ comm1 = Commutator(b, c)
169
+ comm2 = Commutator(a, c)
170
+ if isinstance(comm1, Commutator):
171
+ comm1 = comm1._eval_expand_commutator()
172
+ if isinstance(comm2, Commutator):
173
+ comm2 = comm2._eval_expand_commutator()
174
+ first = Mul(a, comm1)
175
+ second = Mul(comm2, b)
176
+ return Add(first, second)
177
+ elif isinstance(B, Mul):
178
+ # [A, B*C] -> [A, B]*C + B*[A, C]
179
+ a = A
180
+ b = B.args[0]
181
+ c = Mul(*B.args[1:])
182
+ comm1 = Commutator(a, b)
183
+ comm2 = Commutator(a, c)
184
+ if isinstance(comm1, Commutator):
185
+ comm1 = comm1._eval_expand_commutator()
186
+ if isinstance(comm2, Commutator):
187
+ comm2 = comm2._eval_expand_commutator()
188
+ first = Mul(comm1, c)
189
+ second = Mul(b, comm2)
190
+ return Add(first, second)
191
+ elif isinstance(A, Pow):
192
+ # [A**n, C] -> A**(n - 1)*[A, C] + A**(n - 2)*[A, C]*A + ... + [A, C]*A**(n-1)
193
+ return self._expand_pow(A, B, 1)
194
+ elif isinstance(B, Pow):
195
+ # [A, C**n] -> C**(n - 1)*[C, A] + C**(n - 2)*[C, A]*C + ... + [C, A]*C**(n-1)
196
+ return self._expand_pow(B, A, -1)
197
+
198
+ # No changes, so return self
199
+ return self
200
+
201
+ def doit(self, **hints):
202
+ """ Evaluate commutator """
203
+ A = self.args[0]
204
+ B = self.args[1]
205
+ if isinstance(A, Operator) and isinstance(B, Operator):
206
+ try:
207
+ comm = A._eval_commutator(B, **hints)
208
+ except NotImplementedError:
209
+ try:
210
+ comm = -1*B._eval_commutator(A, **hints)
211
+ except NotImplementedError:
212
+ comm = None
213
+ if comm is not None:
214
+ return comm.doit(**hints)
215
+ return (A*B - B*A).doit(**hints)
216
+
217
+ def _eval_adjoint(self):
218
+ return Commutator(Dagger(self.args[1]), Dagger(self.args[0]))
219
+
220
+ def _sympyrepr(self, printer, *args):
221
+ return "%s(%s,%s)" % (
222
+ self.__class__.__name__, printer._print(
223
+ self.args[0]), printer._print(self.args[1])
224
+ )
225
+
226
+ def _sympystr(self, printer, *args):
227
+ return "[%s,%s]" % (
228
+ printer._print(self.args[0]), printer._print(self.args[1]))
229
+
230
+ def _pretty(self, printer, *args):
231
+ pform = printer._print(self.args[0], *args)
232
+ pform = prettyForm(*pform.right(prettyForm(',')))
233
+ pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
234
+ pform = prettyForm(*pform.parens(left='[', right=']'))
235
+ return pform
236
+
237
+ def _latex(self, printer, *args):
238
+ return "\\left[%s,%s\\right]" % tuple([
239
+ printer._print(arg, *args) for arg in self.args])