applied-ai-018 commited on
Commit
6efc50c
·
verified ·
1 Parent(s): cce9f94

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_adv_infer.so.8 +3 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/pring.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/sho.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__init__.py +15 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/control_plots.py +961 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/lti.py +0 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py +0 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py +300 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py +1245 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py +0 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py +427 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__init__.py +38 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/__init__.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/gaussopt.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/medium.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/polarization.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/utils.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/waves.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py +923 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/medium.py +253 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/polarization.py +732 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py +0 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_utils.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_waves.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py +102 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py +48 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py +57 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py +202 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py +82 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/utils.py +698 -0
.gitattributes CHANGED
@@ -186,3 +186,4 @@ env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1500 filt
186
  env-llmeval/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
187
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1500 filter=lfs diff=lfs merge=lfs -text
188
  llmeval-env/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
186
  env-llmeval/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
187
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1500 filter=lfs diff=lfs merge=lfs -text
188
  llmeval-env/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
189
+ llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_adv_infer.so.8 filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_adv_infer.so.8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c02f961775d3aca2676369156435d964b5615719f8b44b49cd73edc21217f3
3
+ size 125141304
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (427 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/hydrogen.cpython-310.pyc ADDED
Binary file (7.37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/matrices.cpython-310.pyc ADDED
Binary file (3.64 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/paulialgebra.cpython-310.pyc ADDED
Binary file (6.15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/pring.cpython-310.pyc ADDED
Binary file (2.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/qho_1d.cpython-310.pyc ADDED
Binary file (2.43 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/secondquant.cpython-310.pyc ADDED
Binary file (83.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/sho.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/__pycache__/wigner.cpython-310.pyc ADDED
Binary file (37.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel,
2
+ Feedback, MIMOFeedback, TransferFunctionMatrix, bilinear, backward_diff)
3
+ from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
4
+ step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data,
5
+ ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot,
6
+ bode_phase_plot, bode_plot)
7
+
8
+ __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel',
9
+ 'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix','bilinear',
10
+ 'backward_diff', 'pole_zero_numerical_data',
11
+ 'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot',
12
+ 'impulse_response_numerical_data', 'impulse_response_plot',
13
+ 'ramp_response_numerical_data', 'ramp_response_plot',
14
+ 'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
15
+ 'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.02 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc ADDED
Binary file (30 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc ADDED
Binary file (118 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/control_plots.py ADDED
@@ -0,0 +1,961 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import I, pi
2
+ from sympy.functions.elementary.exponential import (exp, log)
3
+ from sympy.polys.partfrac import apart
4
+ from sympy.core.symbol import Dummy
5
+ from sympy.external import import_module
6
+ from sympy.functions import arg, Abs
7
+ from sympy.integrals.laplace import _fast_inverse_laplace
8
+ from sympy.physics.control.lti import SISOLinearTimeInvariant
9
+ from sympy.plotting.plot import LineOver1DRangeSeries
10
+ from sympy.polys.polytools import Poly
11
+ from sympy.printing.latex import latex
12
+
13
+ __all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
14
+ 'step_response_numerical_data', 'step_response_plot',
15
+ 'impulse_response_numerical_data', 'impulse_response_plot',
16
+ 'ramp_response_numerical_data', 'ramp_response_plot',
17
+ 'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
18
+ 'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
19
+
20
+ matplotlib = import_module(
21
+ 'matplotlib', import_kwargs={'fromlist': ['pyplot']},
22
+ catch=(RuntimeError,))
23
+
24
+ numpy = import_module('numpy')
25
+
26
+ if matplotlib:
27
+ plt = matplotlib.pyplot
28
+
29
+ if numpy:
30
+ np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.
31
+
32
+
33
+ def _check_system(system):
34
+ """Function to check whether the dynamical system passed for plots is
35
+ compatible or not."""
36
+ if not isinstance(system, SISOLinearTimeInvariant):
37
+ raise NotImplementedError("Only SISO LTI systems are currently supported.")
38
+ sys = system.to_expr()
39
+ len_free_symbols = len(sys.free_symbols)
40
+ if len_free_symbols > 1:
41
+ raise ValueError("Extra degree of freedom found. Make sure"
42
+ " that there are no free symbols in the dynamical system other"
43
+ " than the variable of Laplace transform.")
44
+ if sys.has(exp):
45
+ # Should test that exp is not part of a constant, in which case
46
+ # no exception is required, compare exp(s) with s*exp(1)
47
+ raise NotImplementedError("Time delay terms are not supported.")
48
+
49
+
50
+ def pole_zero_numerical_data(system):
51
+ """
52
+ Returns the numerical data of poles and zeros of the system.
53
+ It is internally used by ``pole_zero_plot`` to get the data
54
+ for plotting poles and zeros. Users can use this data to further
55
+ analyse the dynamics of the system or plot using a different
56
+ backend/plotting-module.
57
+
58
+ Parameters
59
+ ==========
60
+
61
+ system : SISOLinearTimeInvariant
62
+ The system for which the pole-zero data is to be computed.
63
+
64
+ Returns
65
+ =======
66
+
67
+ tuple : (zeros, poles)
68
+ zeros = Zeros of the system. NumPy array of complex numbers.
69
+ poles = Poles of the system. NumPy array of complex numbers.
70
+
71
+ Raises
72
+ ======
73
+
74
+ NotImplementedError
75
+ When a SISO LTI system is not passed.
76
+
77
+ When time delay terms are present in the system.
78
+
79
+ ValueError
80
+ When more than one free symbol is present in the system.
81
+ The only variable in the transfer function should be
82
+ the variable of the Laplace transform.
83
+
84
+ Examples
85
+ ========
86
+
87
+ >>> from sympy.abc import s
88
+ >>> from sympy.physics.control.lti import TransferFunction
89
+ >>> from sympy.physics.control.control_plots import pole_zero_numerical_data
90
+ >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
91
+ >>> pole_zero_numerical_data(tf1) # doctest: +SKIP
92
+ ([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ])
93
+
94
+ See Also
95
+ ========
96
+
97
+ pole_zero_plot
98
+
99
+ """
100
+ _check_system(system)
101
+ system = system.doit() # Get the equivalent TransferFunction object.
102
+
103
+ num_poly = Poly(system.num, system.var).all_coeffs()
104
+ den_poly = Poly(system.den, system.var).all_coeffs()
105
+
106
+ num_poly = np.array(num_poly, dtype=np.complex128)
107
+ den_poly = np.array(den_poly, dtype=np.complex128)
108
+
109
+ zeros = np.roots(num_poly)
110
+ poles = np.roots(den_poly)
111
+
112
+ return zeros, poles
113
+
114
+
115
+ def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
116
+ zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
117
+ show=True, **kwargs):
118
+ r"""
119
+ Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.
120
+
121
+ A Pole-Zero plot is a graphical representation of a system's poles and
122
+ zeros. It is plotted on a complex plane, with circular markers representing
123
+ the system's zeros and 'x' shaped markers representing the system's poles.
124
+
125
+ Parameters
126
+ ==========
127
+
128
+ system : SISOLinearTimeInvariant type systems
129
+ The system for which the pole-zero plot is to be computed.
130
+ pole_color : str, tuple, optional
131
+ The color of the pole points on the plot. Default color
132
+ is blue. The color can be provided as a matplotlib color string,
133
+ or a 3-tuple of floats each in the 0-1 range.
134
+ pole_markersize : Number, optional
135
+ The size of the markers used to mark the poles in the plot.
136
+ Default pole markersize is 10.
137
+ zero_color : str, tuple, optional
138
+ The color of the zero points on the plot. Default color
139
+ is orange. The color can be provided as a matplotlib color string,
140
+ or a 3-tuple of floats each in the 0-1 range.
141
+ zero_markersize : Number, optional
142
+ The size of the markers used to mark the zeros in the plot.
143
+ Default zero markersize is 7.
144
+ grid : boolean, optional
145
+ If ``True``, the plot will have a grid. Defaults to True.
146
+ show_axes : boolean, optional
147
+ If ``True``, the coordinate axes will be shown. Defaults to False.
148
+ show : boolean, optional
149
+ If ``True``, the plot will be displayed otherwise
150
+ the equivalent matplotlib ``plot`` object will be returned.
151
+ Defaults to True.
152
+
153
+ Examples
154
+ ========
155
+
156
+ .. plot::
157
+ :context: close-figs
158
+ :format: doctest
159
+ :include-source: True
160
+
161
+ >>> from sympy.abc import s
162
+ >>> from sympy.physics.control.lti import TransferFunction
163
+ >>> from sympy.physics.control.control_plots import pole_zero_plot
164
+ >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
165
+ >>> pole_zero_plot(tf1) # doctest: +SKIP
166
+
167
+ See Also
168
+ ========
169
+
170
+ pole_zero_numerical_data
171
+
172
+ References
173
+ ==========
174
+
175
+ .. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
176
+
177
+ """
178
+ zeros, poles = pole_zero_numerical_data(system)
179
+
180
+ zero_real = np.real(zeros)
181
+ zero_imag = np.imag(zeros)
182
+
183
+ pole_real = np.real(poles)
184
+ pole_imag = np.imag(poles)
185
+
186
+ plt.plot(pole_real, pole_imag, 'x', mfc='none',
187
+ markersize=pole_markersize, color=pole_color)
188
+ plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
189
+ color=zero_color)
190
+ plt.xlabel('Real Axis')
191
+ plt.ylabel('Imaginary Axis')
192
+ plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)
193
+
194
+ if grid:
195
+ plt.grid()
196
+ if show_axes:
197
+ plt.axhline(0, color='black')
198
+ plt.axvline(0, color='black')
199
+ if show:
200
+ plt.show()
201
+ return
202
+
203
+ return plt
204
+
205
+
206
+ def step_response_numerical_data(system, prec=8, lower_limit=0,
207
+ upper_limit=10, **kwargs):
208
+ """
209
+ Returns the numerical values of the points in the step response plot
210
+ of a SISO continuous-time system. By default, adaptive sampling
211
+ is used. If the user wants to instead get an uniformly
212
+ sampled response, then ``adaptive`` kwarg should be passed ``False``
213
+ and ``nb_of_points`` must be passed as additional kwargs.
214
+ Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
215
+ for more details.
216
+
217
+ Parameters
218
+ ==========
219
+
220
+ system : SISOLinearTimeInvariant
221
+ The system for which the unit step response data is to be computed.
222
+ prec : int, optional
223
+ The decimal point precision for the point coordinate values.
224
+ Defaults to 8.
225
+ lower_limit : Number, optional
226
+ The lower limit of the plot range. Defaults to 0.
227
+ upper_limit : Number, optional
228
+ The upper limit of the plot range. Defaults to 10.
229
+ kwargs :
230
+ Additional keyword arguments are passed to the underlying
231
+ :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
232
+
233
+ Returns
234
+ =======
235
+
236
+ tuple : (x, y)
237
+ x = Time-axis values of the points in the step response. NumPy array.
238
+ y = Amplitude-axis values of the points in the step response. NumPy array.
239
+
240
+ Raises
241
+ ======
242
+
243
+ NotImplementedError
244
+ When a SISO LTI system is not passed.
245
+
246
+ When time delay terms are present in the system.
247
+
248
+ ValueError
249
+ When more than one free symbol is present in the system.
250
+ The only variable in the transfer function should be
251
+ the variable of the Laplace transform.
252
+
253
+ When ``lower_limit`` parameter is less than 0.
254
+
255
+ Examples
256
+ ========
257
+
258
+ >>> from sympy.abc import s
259
+ >>> from sympy.physics.control.lti import TransferFunction
260
+ >>> from sympy.physics.control.control_plots import step_response_numerical_data
261
+ >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
262
+ >>> step_response_numerical_data(tf1) # doctest: +SKIP
263
+ ([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
264
+ [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
265
+
266
+ See Also
267
+ ========
268
+
269
+ step_response_plot
270
+
271
+ """
272
+ if lower_limit < 0:
273
+ raise ValueError("Lower limit of time must be greater "
274
+ "than or equal to zero.")
275
+ _check_system(system)
276
+ _x = Dummy("x")
277
+ expr = system.to_expr()/(system.var)
278
+ expr = apart(expr, system.var, full=True)
279
+ _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
280
+ return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
281
+ **kwargs).get_points()
282
+
283
+
284
+ def step_response_plot(system, color='b', prec=8, lower_limit=0,
285
+ upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
286
+ r"""
287
+ Returns the unit step response of a continuous-time system. It is
288
+ the response of the system when the input signal is a step function.
289
+
290
+ Parameters
291
+ ==========
292
+
293
+ system : SISOLinearTimeInvariant type
294
+ The LTI SISO system for which the Step Response is to be computed.
295
+ color : str, tuple, optional
296
+ The color of the line. Default is Blue.
297
+ show : boolean, optional
298
+ If ``True``, the plot will be displayed otherwise
299
+ the equivalent matplotlib ``plot`` object will be returned.
300
+ Defaults to True.
301
+ lower_limit : Number, optional
302
+ The lower limit of the plot range. Defaults to 0.
303
+ upper_limit : Number, optional
304
+ The upper limit of the plot range. Defaults to 10.
305
+ prec : int, optional
306
+ The decimal point precision for the point coordinate values.
307
+ Defaults to 8.
308
+ show_axes : boolean, optional
309
+ If ``True``, the coordinate axes will be shown. Defaults to False.
310
+ grid : boolean, optional
311
+ If ``True``, the plot will have a grid. Defaults to True.
312
+
313
+ Examples
314
+ ========
315
+
316
+ .. plot::
317
+ :context: close-figs
318
+ :format: doctest
319
+ :include-source: True
320
+
321
+ >>> from sympy.abc import s
322
+ >>> from sympy.physics.control.lti import TransferFunction
323
+ >>> from sympy.physics.control.control_plots import step_response_plot
324
+ >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
325
+ >>> step_response_plot(tf1) # doctest: +SKIP
326
+
327
+ See Also
328
+ ========
329
+
330
+ impulse_response_plot, ramp_response_plot
331
+
332
+ References
333
+ ==========
334
+
335
+ .. [1] https://www.mathworks.com/help/control/ref/lti.step.html
336
+
337
+ """
338
+ x, y = step_response_numerical_data(system, prec=prec,
339
+ lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
340
+ plt.plot(x, y, color=color)
341
+ plt.xlabel('Time (s)')
342
+ plt.ylabel('Amplitude')
343
+ plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)
344
+
345
+ if grid:
346
+ plt.grid()
347
+ if show_axes:
348
+ plt.axhline(0, color='black')
349
+ plt.axvline(0, color='black')
350
+ if show:
351
+ plt.show()
352
+ return
353
+
354
+ return plt
355
+
356
+
357
+ def impulse_response_numerical_data(system, prec=8, lower_limit=0,
358
+ upper_limit=10, **kwargs):
359
+ """
360
+ Returns the numerical values of the points in the impulse response plot
361
+ of a SISO continuous-time system. By default, adaptive sampling
362
+ is used. If the user wants to instead get an uniformly
363
+ sampled response, then ``adaptive`` kwarg should be passed ``False``
364
+ and ``nb_of_points`` must be passed as additional kwargs.
365
+ Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
366
+ for more details.
367
+
368
+ Parameters
369
+ ==========
370
+
371
+ system : SISOLinearTimeInvariant
372
+ The system for which the impulse response data is to be computed.
373
+ prec : int, optional
374
+ The decimal point precision for the point coordinate values.
375
+ Defaults to 8.
376
+ lower_limit : Number, optional
377
+ The lower limit of the plot range. Defaults to 0.
378
+ upper_limit : Number, optional
379
+ The upper limit of the plot range. Defaults to 10.
380
+ kwargs :
381
+ Additional keyword arguments are passed to the underlying
382
+ :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
383
+
384
+ Returns
385
+ =======
386
+
387
+ tuple : (x, y)
388
+ x = Time-axis values of the points in the impulse response. NumPy array.
389
+ y = Amplitude-axis values of the points in the impulse response. NumPy array.
390
+
391
+ Raises
392
+ ======
393
+
394
+ NotImplementedError
395
+ When a SISO LTI system is not passed.
396
+
397
+ When time delay terms are present in the system.
398
+
399
+ ValueError
400
+ When more than one free symbol is present in the system.
401
+ The only variable in the transfer function should be
402
+ the variable of the Laplace transform.
403
+
404
+ When ``lower_limit`` parameter is less than 0.
405
+
406
+ Examples
407
+ ========
408
+
409
+ >>> from sympy.abc import s
410
+ >>> from sympy.physics.control.lti import TransferFunction
411
+ >>> from sympy.physics.control.control_plots import impulse_response_numerical_data
412
+ >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
413
+ >>> impulse_response_numerical_data(tf1) # doctest: +SKIP
414
+ ([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
415
+ [0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])
416
+
417
+ See Also
418
+ ========
419
+
420
+ impulse_response_plot
421
+
422
+ """
423
+ if lower_limit < 0:
424
+ raise ValueError("Lower limit of time must be greater "
425
+ "than or equal to zero.")
426
+ _check_system(system)
427
+ _x = Dummy("x")
428
+ expr = system.to_expr()
429
+ expr = apart(expr, system.var, full=True)
430
+ _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
431
+ return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
432
+ **kwargs).get_points()
433
+
434
+
435
+ def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
436
+ upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
437
+ r"""
438
+ Returns the unit impulse response (Input is the Dirac-Delta Function) of a
439
+ continuous-time system.
440
+
441
+ Parameters
442
+ ==========
443
+
444
+ system : SISOLinearTimeInvariant type
445
+ The LTI SISO system for which the Impulse Response is to be computed.
446
+ color : str, tuple, optional
447
+ The color of the line. Default is Blue.
448
+ show : boolean, optional
449
+ If ``True``, the plot will be displayed otherwise
450
+ the equivalent matplotlib ``plot`` object will be returned.
451
+ Defaults to True.
452
+ lower_limit : Number, optional
453
+ The lower limit of the plot range. Defaults to 0.
454
+ upper_limit : Number, optional
455
+ The upper limit of the plot range. Defaults to 10.
456
+ prec : int, optional
457
+ The decimal point precision for the point coordinate values.
458
+ Defaults to 8.
459
+ show_axes : boolean, optional
460
+ If ``True``, the coordinate axes will be shown. Defaults to False.
461
+ grid : boolean, optional
462
+ If ``True``, the plot will have a grid. Defaults to True.
463
+
464
+ Examples
465
+ ========
466
+
467
+ .. plot::
468
+ :context: close-figs
469
+ :format: doctest
470
+ :include-source: True
471
+
472
+ >>> from sympy.abc import s
473
+ >>> from sympy.physics.control.lti import TransferFunction
474
+ >>> from sympy.physics.control.control_plots import impulse_response_plot
475
+ >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
476
+ >>> impulse_response_plot(tf1) # doctest: +SKIP
477
+
478
+ See Also
479
+ ========
480
+
481
+ step_response_plot, ramp_response_plot
482
+
483
+ References
484
+ ==========
485
+
486
+ .. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html
487
+
488
+ """
489
+ x, y = impulse_response_numerical_data(system, prec=prec,
490
+ lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
491
+ plt.plot(x, y, color=color)
492
+ plt.xlabel('Time (s)')
493
+ plt.ylabel('Amplitude')
494
+ plt.title(f'Impulse Response of ${latex(system)}$', pad=20)
495
+
496
+ if grid:
497
+ plt.grid()
498
+ if show_axes:
499
+ plt.axhline(0, color='black')
500
+ plt.axvline(0, color='black')
501
+ if show:
502
+ plt.show()
503
+ return
504
+
505
+ return plt
506
+
507
+
508
+ def ramp_response_numerical_data(system, slope=1, prec=8,
509
+ lower_limit=0, upper_limit=10, **kwargs):
510
+ """
511
+ Returns the numerical values of the points in the ramp response plot
512
+ of a SISO continuous-time system. By default, adaptive sampling
513
+ is used. If the user wants to instead get an uniformly
514
+ sampled response, then ``adaptive`` kwarg should be passed ``False``
515
+ and ``nb_of_points`` must be passed as additional kwargs.
516
+ Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
517
+ for more details.
518
+
519
+ Parameters
520
+ ==========
521
+
522
+ system : SISOLinearTimeInvariant
523
+ The system for which the ramp response data is to be computed.
524
+ slope : Number, optional
525
+ The slope of the input ramp function. Defaults to 1.
526
+ prec : int, optional
527
+ The decimal point precision for the point coordinate values.
528
+ Defaults to 8.
529
+ lower_limit : Number, optional
530
+ The lower limit of the plot range. Defaults to 0.
531
+ upper_limit : Number, optional
532
+ The upper limit of the plot range. Defaults to 10.
533
+ kwargs :
534
+ Additional keyword arguments are passed to the underlying
535
+ :class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
536
+
537
+ Returns
538
+ =======
539
+
540
+ tuple : (x, y)
541
+ x = Time-axis values of the points in the ramp response plot. NumPy array.
542
+ y = Amplitude-axis values of the points in the ramp response plot. NumPy array.
543
+
544
+ Raises
545
+ ======
546
+
547
+ NotImplementedError
548
+ When a SISO LTI system is not passed.
549
+
550
+ When time delay terms are present in the system.
551
+
552
+ ValueError
553
+ When more than one free symbol is present in the system.
554
+ The only variable in the transfer function should be
555
+ the variable of the Laplace transform.
556
+
557
+ When ``lower_limit`` parameter is less than 0.
558
+
559
+ When ``slope`` is negative.
560
+
561
+ Examples
562
+ ========
563
+
564
+ >>> from sympy.abc import s
565
+ >>> from sympy.physics.control.lti import TransferFunction
566
+ >>> from sympy.physics.control.control_plots import ramp_response_numerical_data
567
+ >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
568
+ >>> ramp_response_numerical_data(tf1) # doctest: +SKIP
569
+ (([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
570
+ [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))
571
+
572
+ See Also
573
+ ========
574
+
575
+ ramp_response_plot
576
+
577
+ """
578
+ if slope < 0:
579
+ raise ValueError("Slope must be greater than or equal"
580
+ " to zero.")
581
+ if lower_limit < 0:
582
+ raise ValueError("Lower limit of time must be greater "
583
+ "than or equal to zero.")
584
+ _check_system(system)
585
+ _x = Dummy("x")
586
+ expr = (slope*system.to_expr())/((system.var)**2)
587
+ expr = apart(expr, system.var, full=True)
588
+ _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
589
+ return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
590
+ **kwargs).get_points()
591
+
592
+
593
+ def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
594
+ upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
595
+ r"""
596
+ Returns the ramp response of a continuous-time system.
597
+
598
+ Ramp function is defined as the straight line
599
+ passing through origin ($f(x) = mx$). The slope of
600
+ the ramp function can be varied by the user and
601
+ the default value is 1.
602
+
603
+ Parameters
604
+ ==========
605
+
606
+ system : SISOLinearTimeInvariant type
607
+ The LTI SISO system for which the Ramp Response is to be computed.
608
+ slope : Number, optional
609
+ The slope of the input ramp function. Defaults to 1.
610
+ color : str, tuple, optional
611
+ The color of the line. Default is Blue.
612
+ show : boolean, optional
613
+ If ``True``, the plot will be displayed otherwise
614
+ the equivalent matplotlib ``plot`` object will be returned.
615
+ Defaults to True.
616
+ lower_limit : Number, optional
617
+ The lower limit of the plot range. Defaults to 0.
618
+ upper_limit : Number, optional
619
+ The upper limit of the plot range. Defaults to 10.
620
+ prec : int, optional
621
+ The decimal point precision for the point coordinate values.
622
+ Defaults to 8.
623
+ show_axes : boolean, optional
624
+ If ``True``, the coordinate axes will be shown. Defaults to False.
625
+ grid : boolean, optional
626
+ If ``True``, the plot will have a grid. Defaults to True.
627
+
628
+ Examples
629
+ ========
630
+
631
+ .. plot::
632
+ :context: close-figs
633
+ :format: doctest
634
+ :include-source: True
635
+
636
+ >>> from sympy.abc import s
637
+ >>> from sympy.physics.control.lti import TransferFunction
638
+ >>> from sympy.physics.control.control_plots import ramp_response_plot
639
+ >>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
640
+ >>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP
641
+
642
+ See Also
643
+ ========
644
+
645
+ step_response_plot, ramp_response_plot
646
+
647
+ References
648
+ ==========
649
+
650
+ .. [1] https://en.wikipedia.org/wiki/Ramp_function
651
+
652
+ """
653
+ x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
654
+ lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
655
+ plt.plot(x, y, color=color)
656
+ plt.xlabel('Time (s)')
657
+ plt.ylabel('Amplitude')
658
+ plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)
659
+
660
+ if grid:
661
+ plt.grid()
662
+ if show_axes:
663
+ plt.axhline(0, color='black')
664
+ plt.axvline(0, color='black')
665
+ if show:
666
+ plt.show()
667
+ return
668
+
669
+ return plt
670
+
671
+
672
+ def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs):
673
+ """
674
+ Returns the numerical data of the Bode magnitude plot of the system.
675
+ It is internally used by ``bode_magnitude_plot`` to get the data
676
+ for plotting Bode magnitude plot. Users can use this data to further
677
+ analyse the dynamics of the system or plot using a different
678
+ backend/plotting-module.
679
+
680
+ Parameters
681
+ ==========
682
+
683
+ system : SISOLinearTimeInvariant
684
+ The system for which the data is to be computed.
685
+ initial_exp : Number, optional
686
+ The initial exponent of 10 of the semilog plot. Defaults to -5.
687
+ final_exp : Number, optional
688
+ The final exponent of 10 of the semilog plot. Defaults to 5.
689
+ freq_unit : string, optional
690
+ User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
691
+
692
+ Returns
693
+ =======
694
+
695
+ tuple : (x, y)
696
+ x = x-axis values of the Bode magnitude plot.
697
+ y = y-axis values of the Bode magnitude plot.
698
+
699
+ Raises
700
+ ======
701
+
702
+ NotImplementedError
703
+ When a SISO LTI system is not passed.
704
+
705
+ When time delay terms are present in the system.
706
+
707
+ ValueError
708
+ When more than one free symbol is present in the system.
709
+ The only variable in the transfer function should be
710
+ the variable of the Laplace transform.
711
+
712
+ When incorrect frequency units are given as input.
713
+
714
+ Examples
715
+ ========
716
+
717
+ >>> from sympy.abc import s
718
+ >>> from sympy.physics.control.lti import TransferFunction
719
+ >>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
720
+ >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
721
+ >>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP
722
+ ([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
723
+ [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])
724
+
725
+ See Also
726
+ ========
727
+
728
+ bode_magnitude_plot, bode_phase_numerical_data
729
+
730
+ """
731
+ _check_system(system)
732
+ expr = system.to_expr()
733
+ freq_units = ('rad/sec', 'Hz')
734
+ if freq_unit not in freq_units:
735
+ raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
736
+
737
+ _w = Dummy("w", real=True)
738
+ if freq_unit == 'Hz':
739
+ repl = I*_w*2*pi
740
+ else:
741
+ repl = I*_w
742
+ w_expr = expr.subs({system.var: repl})
743
+
744
+ mag = 20*log(Abs(w_expr), 10)
745
+
746
+ x, y = LineOver1DRangeSeries(mag,
747
+ (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
748
+
749
+ return x, y
750
+
751
+
752
+ def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
753
+ color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs):
754
+ r"""
755
+ Returns the Bode magnitude plot of a continuous-time system.
756
+
757
+ See ``bode_plot`` for all the parameters.
758
+ """
759
+ x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
760
+ final_exp=final_exp, freq_unit=freq_unit)
761
+ plt.plot(x, y, color=color, **kwargs)
762
+ plt.xscale('log')
763
+
764
+
765
+ plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
766
+ plt.ylabel('Magnitude (dB)')
767
+ plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)
768
+
769
+ if grid:
770
+ plt.grid(True)
771
+ if show_axes:
772
+ plt.axhline(0, color='black')
773
+ plt.axvline(0, color='black')
774
+ if show:
775
+ plt.show()
776
+ return
777
+
778
+ return plt
779
+
780
+
781
+ def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', **kwargs):
782
+ """
783
+ Returns the numerical data of the Bode phase plot of the system.
784
+ It is internally used by ``bode_phase_plot`` to get the data
785
+ for plotting Bode phase plot. Users can use this data to further
786
+ analyse the dynamics of the system or plot using a different
787
+ backend/plotting-module.
788
+
789
+ Parameters
790
+ ==========
791
+
792
+ system : SISOLinearTimeInvariant
793
+ The system for which the Bode phase plot data is to be computed.
794
+ initial_exp : Number, optional
795
+ The initial exponent of 10 of the semilog plot. Defaults to -5.
796
+ final_exp : Number, optional
797
+ The final exponent of 10 of the semilog plot. Defaults to 5.
798
+ freq_unit : string, optional
799
+ User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units.
800
+ phase_unit : string, optional
801
+ User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
802
+
803
+ Returns
804
+ =======
805
+
806
+ tuple : (x, y)
807
+ x = x-axis values of the Bode phase plot.
808
+ y = y-axis values of the Bode phase plot.
809
+
810
+ Raises
811
+ ======
812
+
813
+ NotImplementedError
814
+ When a SISO LTI system is not passed.
815
+
816
+ When time delay terms are present in the system.
817
+
818
+ ValueError
819
+ When more than one free symbol is present in the system.
820
+ The only variable in the transfer function should be
821
+ the variable of the Laplace transform.
822
+
823
+ When incorrect frequency or phase units are given as input.
824
+
825
+ Examples
826
+ ========
827
+
828
+ >>> from sympy.abc import s
829
+ >>> from sympy.physics.control.lti import TransferFunction
830
+ >>> from sympy.physics.control.control_plots import bode_phase_numerical_data
831
+ >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
832
+ >>> bode_phase_numerical_data(tf1) # doctest: +SKIP
833
+ ([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
834
+ [-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])
835
+
836
+ See Also
837
+ ========
838
+
839
+ bode_magnitude_plot, bode_phase_numerical_data
840
+
841
+ """
842
+ _check_system(system)
843
+ expr = system.to_expr()
844
+ freq_units = ('rad/sec', 'Hz')
845
+ phase_units = ('rad', 'deg')
846
+ if freq_unit not in freq_units:
847
+ raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
848
+ if phase_unit not in phase_units:
849
+ raise ValueError('Only "rad" and "deg" are accepted phase units.')
850
+
851
+ _w = Dummy("w", real=True)
852
+ if freq_unit == 'Hz':
853
+ repl = I*_w*2*pi
854
+ else:
855
+ repl = I*_w
856
+ w_expr = expr.subs({system.var: repl})
857
+
858
+ if phase_unit == 'deg':
859
+ phase = arg(w_expr)*180/pi
860
+ else:
861
+ phase = arg(w_expr)
862
+
863
+ x, y = LineOver1DRangeSeries(phase,
864
+ (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
865
+
866
+ return x, y
867
+
868
+
869
+ def bode_phase_plot(system, initial_exp=-5, final_exp=5,
870
+ color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
871
+ r"""
872
+ Returns the Bode phase plot of a continuous-time system.
873
+
874
+ See ``bode_plot`` for all the parameters.
875
+ """
876
+ x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
877
+ final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit)
878
+ plt.plot(x, y, color=color, **kwargs)
879
+ plt.xscale('log')
880
+
881
+ plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
882
+ plt.ylabel('Phase (%s)' % phase_unit)
883
+ plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)
884
+
885
+ if grid:
886
+ plt.grid(True)
887
+ if show_axes:
888
+ plt.axhline(0, color='black')
889
+ plt.axvline(0, color='black')
890
+ if show:
891
+ plt.show()
892
+ return
893
+
894
+ return plt
895
+
896
+
897
+ def bode_plot(system, initial_exp=-5, final_exp=5,
898
+ grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
899
+ r"""
900
+ Returns the Bode phase and magnitude plots of a continuous-time system.
901
+
902
+ Parameters
903
+ ==========
904
+
905
+ system : SISOLinearTimeInvariant type
906
+ The LTI SISO system for which the Bode Plot is to be computed.
907
+ initial_exp : Number, optional
908
+ The initial exponent of 10 of the semilog plot. Defaults to -5.
909
+ final_exp : Number, optional
910
+ The final exponent of 10 of the semilog plot. Defaults to 5.
911
+ show : boolean, optional
912
+ If ``True``, the plot will be displayed otherwise
913
+ the equivalent matplotlib ``plot`` object will be returned.
914
+ Defaults to True.
915
+ prec : int, optional
916
+ The decimal point precision for the point coordinate values.
917
+ Defaults to 8.
918
+ grid : boolean, optional
919
+ If ``True``, the plot will have a grid. Defaults to True.
920
+ show_axes : boolean, optional
921
+ If ``True``, the coordinate axes will be shown. Defaults to False.
922
+ freq_unit : string, optional
923
+ User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
924
+ phase_unit : string, optional
925
+ User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
926
+
927
+ Examples
928
+ ========
929
+
930
+ .. plot::
931
+ :context: close-figs
932
+ :format: doctest
933
+ :include-source: True
934
+
935
+ >>> from sympy.abc import s
936
+ >>> from sympy.physics.control.lti import TransferFunction
937
+ >>> from sympy.physics.control.control_plots import bode_plot
938
+ >>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
939
+ >>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP
940
+
941
+ See Also
942
+ ========
943
+
944
+ bode_magnitude_plot, bode_phase_plot
945
+
946
+ """
947
+ plt.subplot(211)
948
+ mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
949
+ show=False, grid=grid, show_axes=show_axes,
950
+ freq_unit=freq_unit, **kwargs)
951
+ mag.title(f'Bode Plot of ${latex(system)}$', pad=20)
952
+ mag.xlabel(None)
953
+ plt.subplot(212)
954
+ bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
955
+ show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, **kwargs).title(None)
956
+
957
+ if show:
958
+ plt.show()
959
+ return
960
+
961
+ return plt
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/lti.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc ADDED
Binary file (11.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc ADDED
Binary file (53.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import isclose
2
+ from sympy.core.numbers import I
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.functions.elementary.complexes import (Abs, arg)
5
+ from sympy.functions.elementary.exponential import log
6
+ from sympy.abc import s, p, a
7
+ from sympy.external import import_module
8
+ from sympy.physics.control.control_plots import \
9
+ (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
10
+ step_response_plot, impulse_response_numerical_data,
11
+ impulse_response_plot, ramp_response_numerical_data,
12
+ ramp_response_plot, bode_magnitude_numerical_data,
13
+ bode_phase_numerical_data, bode_plot)
14
+ from sympy.physics.control.lti import (TransferFunction,
15
+ Series, Parallel, TransferFunctionMatrix)
16
+ from sympy.testing.pytest import raises, skip
17
+
18
+ matplotlib = import_module(
19
+ 'matplotlib', import_kwargs={'fromlist': ['pyplot']},
20
+ catch=(RuntimeError,))
21
+
22
+ numpy = import_module('numpy')
23
+
24
+ tf1 = TransferFunction(1, p**2 + 0.5*p + 2, p)
25
+ tf2 = TransferFunction(p, 6*p**2 + 3*p + 1, p)
26
+ tf3 = TransferFunction(p, p**3 - 1, p)
27
+ tf4 = TransferFunction(10, p**3, p)
28
+ tf5 = TransferFunction(5, s**2 + 2*s + 10, s)
29
+ tf6 = TransferFunction(1, 1, s)
30
+ tf7 = TransferFunction(4*s*3 + 9*s**2 + 0.1*s + 11, 8*s**6 + 9*s**4 + 11, s)
31
+ tf8 = TransferFunction(5, s**2 + (2+I)*s + 10, s)
32
+
33
+ ser1 = Series(tf4, TransferFunction(1, p - 5, p))
34
+ ser2 = Series(tf3, TransferFunction(p, p + 2, p))
35
+
36
+ par1 = Parallel(tf1, tf2)
37
+ par2 = Parallel(tf1, tf2, tf3)
38
+
39
+
40
+ def _to_tuple(a, b):
41
+ return tuple(a), tuple(b)
42
+
43
+ def _trim_tuple(a, b):
44
+ a, b = _to_tuple(a, b)
45
+ return tuple(a[0: 2] + a[len(a)//2 : len(a)//2 + 1] + a[-2:]), \
46
+ tuple(b[0: 2] + b[len(b)//2 : len(b)//2 + 1] + b[-2:])
47
+
48
+ def y_coordinate_equality(plot_data_func, evalf_func, system):
49
+ """Checks whether the y-coordinate value of the plotted
50
+ data point is equal to the value of the function at a
51
+ particular x."""
52
+ x, y = plot_data_func(system)
53
+ x, y = _trim_tuple(x, y)
54
+ y_exp = tuple(evalf_func(system, x_i) for x_i in x)
55
+ return all(Abs(y_exp_i - y_i) < 1e-8 for y_exp_i, y_i in zip(y_exp, y))
56
+
57
+
58
+ def test_errors():
59
+ if not matplotlib:
60
+ skip("Matplotlib not the default backend")
61
+
62
+ # Invalid `system` check
63
+ tfm = TransferFunctionMatrix([[tf6, tf5], [tf5, tf6]])
64
+ expr = 1/(s**2 - 1)
65
+ raises(NotImplementedError, lambda: pole_zero_plot(tfm))
66
+ raises(NotImplementedError, lambda: pole_zero_numerical_data(expr))
67
+ raises(NotImplementedError, lambda: impulse_response_plot(expr))
68
+ raises(NotImplementedError, lambda: impulse_response_numerical_data(tfm))
69
+ raises(NotImplementedError, lambda: step_response_plot(tfm))
70
+ raises(NotImplementedError, lambda: step_response_numerical_data(expr))
71
+ raises(NotImplementedError, lambda: ramp_response_plot(expr))
72
+ raises(NotImplementedError, lambda: ramp_response_numerical_data(tfm))
73
+ raises(NotImplementedError, lambda: bode_plot(tfm))
74
+
75
+ # More than 1 variables
76
+ tf_a = TransferFunction(a, s + 1, s)
77
+ raises(ValueError, lambda: pole_zero_plot(tf_a))
78
+ raises(ValueError, lambda: pole_zero_numerical_data(tf_a))
79
+ raises(ValueError, lambda: impulse_response_plot(tf_a))
80
+ raises(ValueError, lambda: impulse_response_numerical_data(tf_a))
81
+ raises(ValueError, lambda: step_response_plot(tf_a))
82
+ raises(ValueError, lambda: step_response_numerical_data(tf_a))
83
+ raises(ValueError, lambda: ramp_response_plot(tf_a))
84
+ raises(ValueError, lambda: ramp_response_numerical_data(tf_a))
85
+ raises(ValueError, lambda: bode_plot(tf_a))
86
+
87
+ # lower_limit > 0 for response plots
88
+ raises(ValueError, lambda: impulse_response_plot(tf1, lower_limit=-1))
89
+ raises(ValueError, lambda: step_response_plot(tf1, lower_limit=-0.1))
90
+ raises(ValueError, lambda: ramp_response_plot(tf1, lower_limit=-4/3))
91
+
92
+ # slope in ramp_response_plot() is negative
93
+ raises(ValueError, lambda: ramp_response_plot(tf1, slope=-0.1))
94
+
95
+ # incorrect frequency or phase unit
96
+ raises(ValueError, lambda: bode_plot(tf1,freq_unit = 'hz'))
97
+ raises(ValueError, lambda: bode_plot(tf1,phase_unit = 'degree'))
98
+
99
+
100
+ def test_pole_zero():
101
+ if not numpy:
102
+ skip("NumPy is required for this test")
103
+
104
+ def pz_tester(sys, expected_value):
105
+ z, p = pole_zero_numerical_data(sys)
106
+ z_check = numpy.allclose(z, expected_value[0])
107
+ p_check = numpy.allclose(p, expected_value[1])
108
+ return p_check and z_check
109
+
110
+ exp1 = [[], [-0.24999999999999994+1.3919410907075054j, -0.24999999999999994-1.3919410907075054j]]
111
+ exp2 = [[0.0], [-0.25+0.3227486121839514j, -0.25-0.3227486121839514j]]
112
+ exp3 = [[0.0], [-0.5000000000000004+0.8660254037844395j,
113
+ -0.5000000000000004-0.8660254037844395j, 0.9999999999999998+0j]]
114
+ exp4 = [[], [5.0, 0.0, 0.0, 0.0]]
115
+ exp5 = [[-5.645751311064592, -0.5000000000000008, -0.3542486889354093],
116
+ [-0.24999999999999986+1.3919410907075052j,
117
+ -0.24999999999999986-1.3919410907075052j, -0.2499999999999998+0.32274861218395134j,
118
+ -0.2499999999999998-0.32274861218395134j]]
119
+ exp6 = [[], [-1.1641600331447917-3.545808351896439j,
120
+ -0.8358399668552097+2.5458083518964383j]]
121
+
122
+ assert pz_tester(tf1, exp1)
123
+ assert pz_tester(tf2, exp2)
124
+ assert pz_tester(tf3, exp3)
125
+ assert pz_tester(ser1, exp4)
126
+ assert pz_tester(par1, exp5)
127
+ assert pz_tester(tf8, exp6)
128
+
129
+
130
+ def test_bode():
131
+ if not numpy:
132
+ skip("NumPy is required for this test")
133
+
134
+ def bode_phase_evalf(system, point):
135
+ expr = system.to_expr()
136
+ _w = Dummy("w", real=True)
137
+ w_expr = expr.subs({system.var: I*_w})
138
+ return arg(w_expr).subs({_w: point}).evalf()
139
+
140
+ def bode_mag_evalf(system, point):
141
+ expr = system.to_expr()
142
+ _w = Dummy("w", real=True)
143
+ w_expr = expr.subs({system.var: I*_w})
144
+ return 20*log(Abs(w_expr), 10).subs({_w: point}).evalf()
145
+
146
+ def test_bode_data(sys):
147
+ return y_coordinate_equality(bode_magnitude_numerical_data, bode_mag_evalf, sys) \
148
+ and y_coordinate_equality(bode_phase_numerical_data, bode_phase_evalf, sys)
149
+
150
+ assert test_bode_data(tf1)
151
+ assert test_bode_data(tf2)
152
+ assert test_bode_data(tf3)
153
+ assert test_bode_data(tf4)
154
+ assert test_bode_data(tf5)
155
+
156
+
157
+ def check_point_accuracy(a, b):
158
+ return all(isclose(a_i, b_i, rel_tol=10e-12) for \
159
+ a_i, b_i in zip(a, b))
160
+
161
+
162
+ def test_impulse_response():
163
+ if not numpy:
164
+ skip("NumPy is required for this test")
165
+
166
+ def impulse_res_tester(sys, expected_value):
167
+ x, y = _to_tuple(*impulse_response_numerical_data(sys,
168
+ adaptive=False, nb_of_points=10))
169
+ x_check = check_point_accuracy(x, expected_value[0])
170
+ y_check = check_point_accuracy(y, expected_value[1])
171
+ return x_check and y_check
172
+
173
+ exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
174
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
175
+ (0.0, 0.544019738507865, 0.01993849743234938, -0.31140243360893216, -0.022852779906491996, 0.1778306498155759,
176
+ 0.01962941084328499, -0.1013115194573652, -0.014975541213105696, 0.0575789724730714))
177
+ exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
178
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.1666666675, 0.08389223412935855,
179
+ 0.02338051973475047, -0.014966807776379383, -0.034645954223054234, -0.040560075735512804,
180
+ -0.037658628907103885, -0.030149507719590022, -0.021162090730736834, -0.012721292737437523))
181
+ exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
182
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (4.369893391586999e-09, 1.1750333000630964,
183
+ 3.2922404058312473, 9.432290008148343, 28.37098083007151, 86.18577464367974, 261.90356653762115,
184
+ 795.6538758627842, 2416.9920942096983, 7342.159505206647))
185
+ exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
186
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 6.17283950617284, 24.69135802469136,
187
+ 55.555555555555564, 98.76543209876544, 154.320987654321, 222.22222222222226, 302.46913580246917,
188
+ 395.0617283950618, 500.0))
189
+ exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
190
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, -0.10455606138085417,
191
+ 0.06757671513476461, -0.03234567568833768, 0.013582514927757873, -0.005273419510705473,
192
+ 0.0019364083003354075, -0.000680070134067832, 0.00022969845960406913, -7.476094359583917e-05))
193
+ exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
194
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
195
+ (-6.016699583000218e-09, 0.35039802056107394, 3.3728423827689884, 12.119846079276684,
196
+ 25.86101014293389, 29.352480635282088, -30.49475907497664, -273.8717189554019, -863.2381702029659,
197
+ -1747.0262164682233))
198
+ exp7 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335,
199
+ 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779,
200
+ 8.88888888888889, 10.0), (0.0, 18.934638095560974, 5346.93244680907, 1384609.8718249386,
201
+ 358161126.65801865, 92645770015.70108, 23964739753087.42, 6198974342083139.0, 1.603492601616059e+18,
202
+ 4.147764422869658e+20))
203
+
204
+ assert impulse_res_tester(tf1, exp1)
205
+ assert impulse_res_tester(tf2, exp2)
206
+ assert impulse_res_tester(tf3, exp3)
207
+ assert impulse_res_tester(tf4, exp4)
208
+ assert impulse_res_tester(tf5, exp5)
209
+ assert impulse_res_tester(tf7, exp6)
210
+ assert impulse_res_tester(ser1, exp7)
211
+
212
+
213
+ def test_step_response():
214
+ if not numpy:
215
+ skip("NumPy is required for this test")
216
+
217
+ def step_res_tester(sys, expected_value):
218
+ x, y = _to_tuple(*step_response_numerical_data(sys,
219
+ adaptive=False, nb_of_points=10))
220
+ x_check = check_point_accuracy(x, expected_value[0])
221
+ y_check = check_point_accuracy(y, expected_value[1])
222
+ return x_check and y_check
223
+
224
+ exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
225
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
226
+ (-1.9193285738516863e-08, 0.42283495488246126, 0.7840485977945262, 0.5546841805655717,
227
+ 0.33903033806932087, 0.4627251747410237, 0.5909907598988051, 0.5247213989553071,
228
+ 0.4486997874319281, 0.4839358435839171))
229
+ exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
230
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
231
+ (0.0, 0.13728409095645816, 0.19474559355325086, 0.1974909129243011, 0.16841657696573073,
232
+ 0.12559777736159378, 0.08153828016664713, 0.04360471317348958, 0.015072994568868221,
233
+ -0.003636420058445484))
234
+ exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
235
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
236
+ (0.0, 0.6314542141914303, 2.9356520038101035, 9.37731009663807, 28.452300356688376,
237
+ 86.25721933273988, 261.9236645044672, 795.6435410577224, 2416.9786984578764, 7342.154119725917))
238
+ exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
239
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
240
+ (0.0, 2.286236899862826, 18.28989519890261, 61.72839629629631, 146.31916159122088, 285.7796124828532,
241
+ 493.8271703703705, 784.1792566529494, 1170.553292729767, 1666.6667))
242
+ exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
243
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
244
+ (-3.999999997894577e-09, 0.6720357068882895, 0.4429938256137113, 0.5182010838004518,
245
+ 0.4944139147159695, 0.5016379853883338, 0.4995466896527733, 0.5001154784851325,
246
+ 0.49997448824584123, 0.5000039745919259))
247
+ exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
248
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
249
+ (-1.5433688493882158e-09, 0.3428705539937336, 1.1253619102202777, 3.1849962651016517,
250
+ 9.47532757182671, 28.727231099148135, 87.29426924860557, 265.2138681048606, 805.6636260007757,
251
+ 2447.387582370878))
252
+
253
+ assert step_res_tester(tf1, exp1)
254
+ assert step_res_tester(tf2, exp2)
255
+ assert step_res_tester(tf3, exp3)
256
+ assert step_res_tester(tf4, exp4)
257
+ assert step_res_tester(tf5, exp5)
258
+ assert step_res_tester(ser2, exp6)
259
+
260
+
261
+ def test_ramp_response():
262
+ if not numpy:
263
+ skip("NumPy is required for this test")
264
+
265
+ def ramp_res_tester(sys, num_points, expected_value, slope=1):
266
+ x, y = _to_tuple(*ramp_response_numerical_data(sys,
267
+ slope=slope, adaptive=False, nb_of_points=num_points))
268
+ x_check = check_point_accuracy(x, expected_value[0])
269
+ y_check = check_point_accuracy(y, expected_value[1])
270
+ return x_check and y_check
271
+
272
+ exp1 = ((0.0, 2.0, 4.0, 6.0, 8.0, 10.0), (0.0, 0.7324667795033895, 1.9909720978650398,
273
+ 2.7956587704217783, 3.9224897567931514, 4.85022655284895))
274
+ exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
275
+ 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
276
+ (2.4360213402019326e-08, 0.10175320182493253, 0.33057612497658406, 0.5967937263298935,
277
+ 0.8431511866718248, 1.0398805391471613, 1.1776043125035738, 1.2600994825747305, 1.2981042689274653,
278
+ 1.304684417610106))
279
+ exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
280
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.9329040468771836e-08,
281
+ 0.34686634635794555, 2.9998828170537903, 12.33303690737476, 40.993913948137795, 127.84145222317912,
282
+ 391.41713691996, 1192.0006858708389, 3623.9808672503405, 11011.728034546572))
283
+ exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
284
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.9051973784484078, 30.483158055174524,
285
+ 154.32098765432104, 487.7305288827924, 1190.7483615302544, 2469.1358024691367, 4574.3789056546275,
286
+ 7803.688462124678, 12500.0))
287
+ exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
288
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 3.8844361856975635, 9.141792069209865,
289
+ 14.096349157657231, 19.09783068994694, 24.10179770390321, 29.09907319114121, 34.10040420185154,
290
+ 39.09983919254265, 44.10006013058409))
291
+ exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
292
+ 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.1111111111111112, 2.2222222222222223,
293
+ 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0))
294
+
295
+ assert ramp_res_tester(tf1, 6, exp1)
296
+ assert ramp_res_tester(tf2, 10, exp2, 1.2)
297
+ assert ramp_res_tester(tf3, 10, exp3, 1.5)
298
+ assert ramp_res_tester(tf4, 10, exp4, 3)
299
+ assert ramp_res_tester(tf5, 10, exp5, 9)
300
+ assert ramp_res_tester(tf6, 10, exp6)
llmeval-env/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py ADDED
@@ -0,0 +1,1245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.function import Function
3
+ from sympy.core.mul import Mul
4
+ from sympy.core.numbers import (I, Rational, oo)
5
+ from sympy.core.power import Pow
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import symbols
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.functions.elementary.miscellaneous import sqrt
10
+ from sympy.matrices.dense import eye
11
+ from sympy.polys.polytools import factor
12
+ from sympy.polys.rootoftools import CRootOf
13
+ from sympy.simplify.simplify import simplify
14
+ from sympy.core.containers import Tuple
15
+ from sympy.matrices import ImmutableMatrix, Matrix
16
+ from sympy.physics.control import (TransferFunction, Series, Parallel,
17
+ Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback,
18
+ bilinear, backward_diff)
19
+ from sympy.testing.pytest import raises
20
+
21
+ a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn, T = symbols('a, x, b, s, g, d, p, k,\
22
+ a0:3, b0:3, tau, zeta, wn, T')
23
+ TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
24
+ TF2 = TransferFunction(k, 1, s)
25
+ TF3 = TransferFunction(a2*p - s, a2*s + p, s)
26
+
27
+
28
+ def test_TransferFunction_construction():
29
+ tf = TransferFunction(s + 1, s**2 + s + 1, s)
30
+ assert tf.num == (s + 1)
31
+ assert tf.den == (s**2 + s + 1)
32
+ assert tf.args == (s + 1, s**2 + s + 1, s)
33
+
34
+ tf1 = TransferFunction(s + 4, s - 5, s)
35
+ assert tf1.num == (s + 4)
36
+ assert tf1.den == (s - 5)
37
+ assert tf1.args == (s + 4, s - 5, s)
38
+
39
+ # using different polynomial variables.
40
+ tf2 = TransferFunction(p + 3, p**2 - 9, p)
41
+ assert tf2.num == (p + 3)
42
+ assert tf2.den == (p**2 - 9)
43
+ assert tf2.args == (p + 3, p**2 - 9, p)
44
+
45
+ tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
46
+ assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
47
+
48
+ # no pole-zero cancellation on its own.
49
+ tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
50
+ assert tf4.den == (s - 1)*(s + 5)
51
+ assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
52
+
53
+ tf4_ = TransferFunction(p + 2, p + 2, p)
54
+ assert tf4_.args == (p + 2, p + 2, p)
55
+
56
+ tf5 = TransferFunction(s - 1, 4 - p, s)
57
+ assert tf5.args == (s - 1, 4 - p, s)
58
+
59
+ tf5_ = TransferFunction(s - 1, s - 1, s)
60
+ assert tf5_.args == (s - 1, s - 1, s)
61
+
62
+ tf6 = TransferFunction(5, 6, s)
63
+ assert tf6.num == 5
64
+ assert tf6.den == 6
65
+ assert tf6.args == (5, 6, s)
66
+
67
+ tf6_ = TransferFunction(1/2, 4, s)
68
+ assert tf6_.num == 0.5
69
+ assert tf6_.den == 4
70
+ assert tf6_.args == (0.500000000000000, 4, s)
71
+
72
+ tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
73
+ tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
74
+ assert not tf7 == tf8
75
+
76
+ tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
77
+ tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
78
+ assert tf7_ == tf8_
79
+ assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
80
+
81
+ tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
82
+ assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
83
+
84
+ tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
85
+ tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
86
+ assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
87
+ assert tf10_ == tf10
88
+
89
+ tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
90
+ assert tf11.num == (a0 + a1*s)
91
+ assert tf11.den == (b0 + b1*s + b2*s**2)
92
+ assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
93
+
94
+ # when just the numerator is 0, leave the denominator alone.
95
+ tf12 = TransferFunction(0, p**2 - p + 1, p)
96
+ assert tf12.args == (0, p**2 - p + 1, p)
97
+
98
+ tf13 = TransferFunction(0, 1, s)
99
+ assert tf13.args == (0, 1, s)
100
+
101
+ # float exponents
102
+ tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
103
+ assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
104
+
105
+ tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
106
+ assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
107
+
108
+ omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
109
+ tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
110
+ assert tf18.num == k_i/s + k_o*s + k_p
111
+ assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
112
+
113
+ # ValueError when denominator is zero.
114
+ raises(ValueError, lambda: TransferFunction(4, 0, s))
115
+ raises(ValueError, lambda: TransferFunction(s, 0, s))
116
+ raises(ValueError, lambda: TransferFunction(0, 0, s))
117
+
118
+ raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
119
+
120
+ raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
121
+ raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
122
+ raises(TypeError, lambda: TransferFunction(3, 4, 8))
123
+
124
+
125
+ def test_TransferFunction_functions():
126
+ # classmethod from_rational_expression
127
+ expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
128
+ expr_2 = s/0
129
+ expr_3 = (p*s**2 + 5*s)/(s + 1)**3
130
+ expr_4 = 6
131
+ expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
132
+ expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
133
+ tf = TransferFunction(s + 1, s**2 + 2, s)
134
+ delay = exp(-s/tau)
135
+ expr_7 = delay*tf.to_expr()
136
+ H1 = TransferFunction.from_rational_expression(expr_7, s)
137
+ H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
138
+ expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
139
+
140
+ assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
141
+ raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
142
+ raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
143
+ assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
144
+ assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
145
+ raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
146
+ assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
147
+ assert TransferFunction.from_rational_expression(expr_5, s) == \
148
+ TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
149
+ assert TransferFunction.from_rational_expression(expr_6, s) == \
150
+ TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
151
+ assert H1 == H2
152
+ assert TransferFunction.from_rational_expression(expr_8, s) == \
153
+ TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
154
+
155
+ # explicitly cancel poles and zeros.
156
+ tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
157
+ a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
158
+ assert tf0.simplify() == simplify(tf0) == a
159
+
160
+ tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
161
+ b = TransferFunction(p + 3, p + 5, p)
162
+ assert tf1.simplify() == simplify(tf1) == b
163
+
164
+ # expand the numerator and the denominator.
165
+ G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
166
+ G2 = TransferFunction(1, -3, p)
167
+ c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
168
+ d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
169
+ e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
170
+ f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
171
+ g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
172
+ G3 = TransferFunction(c, d, s)
173
+ G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
174
+
175
+ assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
176
+ assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
177
+ assert G2.expand() == G2
178
+ assert G3.expand() == TransferFunction(e, f, s)
179
+ assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
180
+
181
+ # purely symbolic polynomials.
182
+ p1 = a1*s + a0
183
+ p2 = b2*s**2 + b1*s + b0
184
+ SP1 = TransferFunction(p1, p2, s)
185
+ expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
186
+ expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
187
+ assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
188
+ assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
189
+ assert expect1_.evalf() == expect1
190
+
191
+ c1, d0, d1, d2 = symbols('c1, d0:3')
192
+ p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
193
+ SP2 = TransferFunction(p3, p4, p)
194
+ expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
195
+ expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
196
+ assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
197
+ assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
198
+ assert expect2_.evalf() == expect2
199
+
200
+ SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
201
+ expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
202
+ expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
203
+ assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
204
+ assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
205
+ assert expect3_.evalf() == expect3
206
+
207
+ SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
208
+ expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
209
+ expect4_ = TransferFunction(7*p**3 + s, p - s, p)
210
+ assert SP4.subs({a0: -1, a1: -7}) == expect4_
211
+ assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
212
+ assert expect4_.evalf() == expect4
213
+
214
+ # Low-frequency (or DC) gain.
215
+ assert tf0.dc_gain() == 1
216
+ assert tf1.dc_gain() == Rational(3, 5)
217
+ assert SP2.dc_gain() == 0
218
+ assert expect4.dc_gain() == -1
219
+ assert expect2_.dc_gain() == 0
220
+ assert TransferFunction(1, s, s).dc_gain() == oo
221
+
222
+ # Poles of a transfer function.
223
+ tf_ = TransferFunction(x**3 - k, k, x)
224
+ _tf = TransferFunction(k, x**4 - k, x)
225
+ TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
226
+ _TF = TransferFunction(x**10 + x + x**2, x**2, x)
227
+ assert G1.poles() == [I, I, -I, -I]
228
+ assert G2.poles() == []
229
+ assert tf1.poles() == [-5, 1]
230
+ assert expect4_.poles() == [s]
231
+ assert SP4.poles() == [-a0*s]
232
+ assert expect3.poles() == [-0.25*p]
233
+ assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
234
+ assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
235
+ assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
236
+ assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
237
+ CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
238
+ CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
239
+ raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
240
+
241
+ # Stability of a transfer function.
242
+ q, r = symbols('q, r', negative=True)
243
+ t = symbols('t', positive=True)
244
+ TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
245
+ stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
246
+ stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
247
+
248
+ assert G1.is_stable() is False
249
+ assert G2.is_stable() is True
250
+ assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
251
+ assert expect2.is_stable() is False
252
+ assert expect1.is_stable() is True
253
+ assert stable_tf.is_stable() is True
254
+ assert stable_tf_.is_stable() is True
255
+ assert TF_.is_stable() is False
256
+ assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
257
+ assert SP4.is_stable() is None
258
+
259
+ # Zeros of a transfer function.
260
+ assert G1.zeros() == [1, 1]
261
+ assert G2.zeros() == []
262
+ assert tf1.zeros() == [-3, 1]
263
+ assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
264
+ sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
265
+ assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
266
+ -(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
267
+ assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
268
+ 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
269
+ assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
270
+ -k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
271
+ assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
272
+ CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
273
+ CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
274
+ raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
275
+
276
+ # negation of TF.
277
+ tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
278
+ tf3 = TransferFunction(-3*p + 3, 1 - p, p)
279
+ assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
280
+ assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
281
+
282
+ # taking power of a TF.
283
+ tf4 = TransferFunction(p + 4, p - 3, p)
284
+ tf5 = TransferFunction(s**2 + 1, 1 - s, s)
285
+ expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
286
+ expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
287
+ assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
288
+ assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
289
+ assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
290
+ assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
291
+ assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
292
+
293
+ raises(ValueError, lambda: tf4**(s**2 + s - 1))
294
+ raises(ValueError, lambda: tf5**s)
295
+ raises(ValueError, lambda: tf4**tf5)
296
+
297
+ # SymPy's own functions.
298
+ tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
299
+ tf6 = TransferFunction(s + p, p**2 - 5, s)
300
+ assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
301
+ assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
302
+ # subs & xreplace
303
+ assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
304
+ assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
305
+ assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
306
+ raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
307
+ assert tf3.subs(p, exp(2)) == tf3
308
+
309
+ tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
310
+ assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
311
+ assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
312
+
313
+ # Conversion to Expr with to_expr()
314
+ tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
315
+ tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
316
+ tf10 = TransferFunction(0, 1, s)
317
+ tf11 = TransferFunction(1, 1, s)
318
+ assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
319
+ assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
320
+ assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
321
+ assert tf11.to_expr() == Pow(1, -1, evaluate=False)
322
+
323
+ def test_TransferFunction_addition_and_subtraction():
324
+ tf1 = TransferFunction(s + 6, s - 5, s)
325
+ tf2 = TransferFunction(s + 3, s + 1, s)
326
+ tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
327
+ tf4 = TransferFunction(p, 2 - p, p)
328
+
329
+ # addition
330
+ assert tf1 + tf2 == Parallel(tf1, tf2)
331
+ assert tf3 + tf1 == Parallel(tf3, tf1)
332
+ assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
333
+ assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
334
+
335
+ c = symbols("c", commutative=False)
336
+ raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
337
+ raises(ValueError, lambda: tf2 + c)
338
+ raises(ValueError, lambda: tf3 + tf4)
339
+ raises(ValueError, lambda: tf1 + (s - 1))
340
+ raises(ValueError, lambda: tf1 + 8)
341
+ raises(ValueError, lambda: (1 - p**3) + tf1)
342
+
343
+ # subtraction
344
+ assert tf1 - tf2 == Parallel(tf1, -tf2)
345
+ assert tf3 - tf2 == Parallel(tf3, -tf2)
346
+ assert -tf1 - tf3 == Parallel(-tf1, -tf3)
347
+ assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
348
+
349
+ raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
350
+ raises(ValueError, lambda: tf3 - tf4)
351
+ raises(ValueError, lambda: tf1 - (s - 1))
352
+ raises(ValueError, lambda: tf1 - 8)
353
+ raises(ValueError, lambda: (s + 5) - tf2)
354
+ raises(ValueError, lambda: (1 + p**4) - tf1)
355
+
356
+
357
+ def test_TransferFunction_multiplication_and_division():
358
+ G1 = TransferFunction(s + 3, -s**3 + 9, s)
359
+ G2 = TransferFunction(s + 1, s - 5, s)
360
+ G3 = TransferFunction(p, p**4 - 6, p)
361
+ G4 = TransferFunction(p + 4, p - 5, p)
362
+ G5 = TransferFunction(s + 6, s - 5, s)
363
+ G6 = TransferFunction(s + 3, s + 1, s)
364
+ G7 = TransferFunction(1, 1, s)
365
+
366
+ # multiplication
367
+ assert G1*G2 == Series(G1, G2)
368
+ assert -G1*G5 == Series(-G1, G5)
369
+ assert -G2*G5*-G6 == Series(-G2, G5, -G6)
370
+ assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
371
+ assert G3*G4 == Series(G3, G4)
372
+ assert (G1*G2)*-(G5*G6) == \
373
+ Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
374
+ assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
375
+
376
+ c = symbols("c", commutative=False)
377
+ raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
378
+ raises(ValueError, lambda: G1 * c)
379
+ raises(ValueError, lambda: G3 * G5)
380
+ raises(ValueError, lambda: G5 * (s - 1))
381
+ raises(ValueError, lambda: 9 * G5)
382
+
383
+ raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
384
+ raises(ValueError, lambda: G6 / 0)
385
+ raises(ValueError, lambda: G3 / G5)
386
+ raises(ValueError, lambda: G5 / 2)
387
+ raises(ValueError, lambda: G5 / s**2)
388
+ raises(ValueError, lambda: (s - 4*s**2) / G2)
389
+ raises(ValueError, lambda: 0 / G4)
390
+ raises(ValueError, lambda: G5 / G6)
391
+ raises(ValueError, lambda: -G3 /G4)
392
+ raises(ValueError, lambda: G7 / (1 + G6))
393
+ raises(ValueError, lambda: G7 / (G5 * G6))
394
+ raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
395
+
396
+
397
+ def test_TransferFunction_is_proper():
398
+ omega_o, zeta, tau = symbols('omega_o, zeta, tau')
399
+ G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
400
+ G2 = TransferFunction(tau - s**3, tau + p**4, tau)
401
+ G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
402
+ G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
403
+ assert G1.is_proper
404
+ assert G2.is_proper
405
+ assert G3.is_proper
406
+ assert not G4.is_proper
407
+
408
+
409
+ def test_TransferFunction_is_strictly_proper():
410
+ omega_o, zeta, tau = symbols('omega_o, zeta, tau')
411
+ tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
412
+ tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
413
+ tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
414
+ tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
415
+ assert not tf1.is_strictly_proper
416
+ assert not tf2.is_strictly_proper
417
+ assert tf3.is_strictly_proper
418
+ assert not tf4.is_strictly_proper
419
+
420
+
421
+ def test_TransferFunction_is_biproper():
422
+ tau, omega_o, zeta = symbols('tau, omega_o, zeta')
423
+ tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
424
+ tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
425
+ tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
426
+ tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
427
+ assert tf1.is_biproper
428
+ assert tf2.is_biproper
429
+ assert not tf3.is_biproper
430
+ assert not tf4.is_biproper
431
+
432
+
433
+ def test_Series_construction():
434
+ tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
435
+ tf2 = TransferFunction(a2*p - s, a2*s + p, s)
436
+ tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
437
+ tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
438
+ inp = Function('X_d')(s)
439
+ out = Function('X')(s)
440
+
441
+ s0 = Series(tf, tf2)
442
+ assert s0.args == (tf, tf2)
443
+ assert s0.var == s
444
+
445
+ s1 = Series(Parallel(tf, -tf2), tf2)
446
+ assert s1.args == (Parallel(tf, -tf2), tf2)
447
+ assert s1.var == s
448
+
449
+ tf3_ = TransferFunction(inp, 1, s)
450
+ tf4_ = TransferFunction(-out, 1, s)
451
+ s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
452
+ assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
453
+
454
+ s3 = Series(tf, tf2, tf4)
455
+ assert s3.args == (tf, tf2, tf4)
456
+
457
+ s4 = Series(tf3_, tf4_)
458
+ assert s4.args == (tf3_, tf4_)
459
+ assert s4.var == s
460
+
461
+ s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
462
+ assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
463
+
464
+ s7 = Series(tf, tf2)
465
+ assert s0 == s7
466
+ assert not s0 == s2
467
+
468
+ raises(ValueError, lambda: Series(tf, tf3))
469
+ raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
470
+ raises(ValueError, lambda: Series(-tf3, tf2))
471
+ raises(TypeError, lambda: Series(2, tf, tf4))
472
+ raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
473
+ raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
474
+
475
+
476
+ def test_MIMOSeries_construction():
477
+ tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
478
+ tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
479
+ tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
480
+
481
+ tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
482
+ tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
483
+ tfm_3 = TransferFunctionMatrix([[-tf_3]])
484
+ tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
485
+ tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
486
+
487
+ s8 = MIMOSeries(tfm_2, tfm_1)
488
+ assert s8.args == (tfm_2, tfm_1)
489
+ assert s8.var == s
490
+ assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
491
+
492
+ s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
493
+ assert s9.args == (tfm_3, tfm_2, tfm_1)
494
+ assert s9.var == s
495
+ assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
496
+
497
+ s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
498
+ assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
499
+ assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
500
+
501
+ # arg cannot be empty tuple.
502
+ raises(ValueError, lambda: MIMOSeries())
503
+
504
+ # arg cannot contain SISO as well as MIMO systems.
505
+ raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
506
+
507
+ # for all the adjacent transfer function matrices:
508
+ # no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
509
+ raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
510
+
511
+ # all the TFMs must use the same complex variable.
512
+ raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
513
+
514
+ # Number or expression not allowed in the arguments.
515
+ raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
516
+ raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
517
+ raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
518
+
519
+
520
+ def test_Series_functions():
521
+ tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
522
+ tf2 = TransferFunction(k, 1, s)
523
+ tf3 = TransferFunction(a2*p - s, a2*s + p, s)
524
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
525
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
526
+
527
+ assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
528
+ == Series(tf1, Series(tf2, tf3))
529
+ assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
530
+ assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
531
+ assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
532
+ assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
533
+ assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
534
+ assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
535
+ assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
536
+ assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
537
+ assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
538
+ assert -tf1*tf2 == Series(-tf1, tf2)
539
+ assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
540
+ raises(ValueError, lambda: tf1*tf2*tf4)
541
+ raises(ValueError, lambda: tf1*(tf2 - tf4))
542
+ raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
543
+
544
+ # evaluate=True -> doit()
545
+ assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
546
+ TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
547
+ assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
548
+ TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
549
+ assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
550
+ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
551
+ assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
552
+
553
+ assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
554
+ TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
555
+ assert Series(-tf1, -tf2, -tf3).doit() == \
556
+ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
557
+ assert -Series(tf1, tf2, tf3).doit() == \
558
+ TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
559
+ assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
560
+ TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
561
+
562
+ assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
563
+ assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
564
+ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
565
+
566
+ S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
567
+ assert S1.is_proper
568
+ assert not S1.is_strictly_proper
569
+ assert S1.is_biproper
570
+
571
+ S2 = Series(tf1, tf2, tf3)
572
+ assert S2.is_proper
573
+ assert S2.is_strictly_proper
574
+ assert not S2.is_biproper
575
+
576
+ S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
577
+ assert S3.is_proper
578
+ assert S3.is_strictly_proper
579
+ assert not S3.is_biproper
580
+
581
+
582
+ def test_MIMOSeries_functions():
583
+ tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
584
+ tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
585
+ tfm3 = TransferFunctionMatrix([[-TF1]])
586
+ tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
587
+ tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
588
+ tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
589
+ tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
590
+
591
+ assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
592
+ assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
593
+ assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
594
+ assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
595
+ assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
596
+
597
+ raises(ValueError, lambda: tfm1*tfm2 + TF1)
598
+ raises(TypeError, lambda: tfm1*tfm2 + a0)
599
+ raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
600
+ raises(TypeError, lambda: tfm4*-tfm6 - 8)
601
+ raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
602
+
603
+ # Shape criteria.
604
+
605
+ raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
606
+ raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
607
+ raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
608
+
609
+ assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
610
+ assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
611
+
612
+ # Multiplication of a Series object with a SISO TF not allowed.
613
+
614
+ raises(ValueError, lambda: tfm4*tfm5*TF1)
615
+ raises(TypeError, lambda: tfm4*tfm5*a1)
616
+ raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
617
+ raises(TypeError, lambda: tfm5*tfm4*9)
618
+ raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
619
+
620
+ # Transfer function matrix in the arguments.
621
+ assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
622
+ == TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
623
+ (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
624
+ (TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
625
+ (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
626
+
627
+ # doit() should not cancel poles and zeros.
628
+ mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
629
+ mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
630
+ tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
631
+ assert (MIMOSeries(tm_2, tm_1).doit()
632
+ == TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
633
+ assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
634
+
635
+ # calling doit() will expand the internal Series and Parallel objects.
636
+ assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
637
+ == MIMOSeries(-tfm3, -tfm2, tfm1).doit()
638
+ == TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
639
+ (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
640
+ (TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
641
+ (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
642
+ assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
643
+ == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
644
+ == TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
645
+ k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
646
+ TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
647
+
648
+
649
+ def test_Parallel_construction():
650
+ tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
651
+ tf2 = TransferFunction(a2*p - s, a2*s + p, s)
652
+ tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
653
+ tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
654
+ inp = Function('X_d')(s)
655
+ out = Function('X')(s)
656
+
657
+ p0 = Parallel(tf, tf2)
658
+ assert p0.args == (tf, tf2)
659
+ assert p0.var == s
660
+
661
+ p1 = Parallel(Series(tf, -tf2), tf2)
662
+ assert p1.args == (Series(tf, -tf2), tf2)
663
+ assert p1.var == s
664
+
665
+ tf3_ = TransferFunction(inp, 1, s)
666
+ tf4_ = TransferFunction(-out, 1, s)
667
+ p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
668
+ assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
669
+
670
+ p3 = Parallel(tf, tf2, tf4)
671
+ assert p3.args == (tf, tf2, tf4)
672
+
673
+ p4 = Parallel(tf3_, tf4_)
674
+ assert p4.args == (tf3_, tf4_)
675
+ assert p4.var == s
676
+
677
+ p5 = Parallel(tf, tf2)
678
+ assert p0 == p5
679
+ assert not p0 == p1
680
+
681
+ p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
682
+ assert p6.args == (tf2, tf4, Series(tf2, -tf4))
683
+
684
+ p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
685
+ assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
686
+
687
+ raises(ValueError, lambda: Parallel(tf, tf3))
688
+ raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
689
+ raises(ValueError, lambda: Parallel(-tf3, tf4))
690
+ raises(TypeError, lambda: Parallel(2, tf, tf4))
691
+ raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
692
+ raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
693
+
694
+
695
+ def test_MIMOParallel_construction():
696
+ tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
697
+ tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
698
+ tfm3 = TransferFunctionMatrix([[TF1]])
699
+ tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
700
+ tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
701
+ tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
702
+ tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
703
+
704
+ p8 = MIMOParallel(tfm1, tfm2)
705
+ assert p8.args == (tfm1, tfm2)
706
+ assert p8.var == s
707
+ assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
708
+
709
+ p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
710
+ assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
711
+ assert p9.var == s
712
+ assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
713
+
714
+ p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
715
+ assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
716
+ assert p10.var == s
717
+ assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
718
+
719
+ p11 = MIMOParallel(tfm2, tfm1, tfm4)
720
+ assert p11.args == (tfm2, tfm1, tfm4)
721
+ assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
722
+
723
+ p12 = MIMOParallel(tfm6, tfm5)
724
+ assert p12.args == (tfm6, tfm5)
725
+ assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
726
+
727
+ p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
728
+ assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
729
+ assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
730
+
731
+ # arg cannot be empty tuple.
732
+ raises(TypeError, lambda: MIMOParallel(()))
733
+
734
+ # arg cannot contain SISO as well as MIMO systems.
735
+ raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
736
+
737
+ # all TFMs must have same shapes.
738
+ raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
739
+
740
+ # all TFMs must be using the same complex variable.
741
+ raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
742
+
743
+ # Number or expression not allowed in the arguments.
744
+ raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
745
+ raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
746
+
747
+
748
+ def test_Parallel_functions():
749
+ tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
750
+ tf2 = TransferFunction(k, 1, s)
751
+ tf3 = TransferFunction(a2*p - s, a2*s + p, s)
752
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
753
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
754
+
755
+ assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
756
+ assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
757
+ assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
758
+ assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
759
+ assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
760
+ assert -tf1 - tf2 == Parallel(-tf1, -tf2)
761
+ assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
762
+ assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
763
+ assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
764
+ assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
765
+ assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
766
+ assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
767
+ assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
768
+ raises(ValueError, lambda: tf1 + tf2 + tf4)
769
+ raises(ValueError, lambda: tf1 - tf2*tf4)
770
+ raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
771
+
772
+ # evaluate=True -> doit()
773
+ assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
774
+ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
775
+ assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
776
+ Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
777
+ (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
778
+ 2*s*wn*zeta + wn**2)**2, s)
779
+ assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
780
+ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
781
+ , (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
782
+ assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
783
+
784
+ assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
785
+ TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
786
+ assert Parallel(-tf1, -tf2, -tf3).doit() == \
787
+ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
788
+ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
789
+ assert -Parallel(tf1, tf2, tf3).doit() == \
790
+ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
791
+ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
792
+ assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
793
+ TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
794
+ + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
795
+
796
+ assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
797
+ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
798
+ assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
799
+ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
800
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
801
+
802
+ assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
803
+
804
+ P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
805
+ assert P1.is_proper
806
+ assert not P1.is_strictly_proper
807
+ assert P1.is_biproper
808
+
809
+ P2 = Parallel(tf1, -tf2, -tf3)
810
+ assert P2.is_proper
811
+ assert not P2.is_strictly_proper
812
+ assert P2.is_biproper
813
+
814
+ P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
815
+ assert P3.is_proper
816
+ assert not P3.is_strictly_proper
817
+ assert P3.is_biproper
818
+
819
+
820
+ def test_MIMOParallel_functions():
821
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
822
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
823
+
824
+ tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
825
+ tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
826
+ tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
827
+ tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
828
+ tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
829
+ tfm6 = TransferFunctionMatrix([[-TF2]])
830
+ tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
831
+
832
+ assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
833
+ assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
834
+ assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
835
+ assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
836
+ assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
837
+ assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
838
+ raises(ValueError, lambda: tfm1 + tfm2 + TF2)
839
+ raises(TypeError, lambda: tfm1 - tfm2 - a1)
840
+ raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
841
+ raises(TypeError, lambda: -tfm3 - tfm2 - 9)
842
+ raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
843
+ # All TFMs must use the same complex var. tfm7 uses 'p'.
844
+ raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
845
+ raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
846
+ # (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
847
+ raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
848
+ raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
849
+
850
+ assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
851
+ assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
852
+ assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
853
+ raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
854
+ raises(TypeError, lambda: (tfm2 - tfm3)*a2)
855
+ raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
856
+ raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
857
+ raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
858
+
859
+ # (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
860
+ raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
861
+ # (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
862
+ raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
863
+
864
+ # TFM in the arguments.
865
+ assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
866
+ == MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
867
+ == TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
868
+ (TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
869
+ (s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
870
+
871
+
872
+ def test_Feedback_construction():
873
+ tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
874
+ tf2 = TransferFunction(k, 1, s)
875
+ tf3 = TransferFunction(a2*p - s, a2*s + p, s)
876
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
877
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
878
+ tf6 = TransferFunction(s - p, p + s, p)
879
+
880
+ f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
881
+ assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
882
+ assert f1.sys1 == TransferFunction(1, 1, s)
883
+ assert f1.sys2 == Series(tf1, tf2, tf3)
884
+ assert f1.var == s
885
+
886
+ f2 = Feedback(tf1, tf2*tf3)
887
+ assert f2.args == (tf1, Series(tf2, tf3), -1)
888
+ assert f2.sys1 == tf1
889
+ assert f2.sys2 == Series(tf2, tf3)
890
+ assert f2.var == s
891
+
892
+ f3 = Feedback(tf1*tf2, tf5)
893
+ assert f3.args == (Series(tf1, tf2), tf5, -1)
894
+ assert f3.sys1 == Series(tf1, tf2)
895
+
896
+ f4 = Feedback(tf4, tf6)
897
+ assert f4.args == (tf4, tf6, -1)
898
+ assert f4.sys1 == tf4
899
+ assert f4.var == p
900
+
901
+ f5 = Feedback(tf5, TransferFunction(1, 1, s))
902
+ assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
903
+ assert f5.var == s
904
+ assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
905
+
906
+ f6 = Feedback(TransferFunction(1, 1, p), tf4)
907
+ assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
908
+ assert f6.var == p
909
+
910
+ f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
911
+ assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
912
+ assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
913
+
914
+ # denominator can't be a Parallel instance
915
+ raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
916
+ raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
917
+ raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
918
+ raises(TypeError, lambda: Feedback(1, 1))
919
+ # raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
920
+ raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
921
+ raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
922
+ raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
923
+ raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
924
+
925
+
926
+ def test_Feedback_functions():
927
+ tf = TransferFunction(1, 1, s)
928
+ tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
929
+ tf2 = TransferFunction(k, 1, s)
930
+ tf3 = TransferFunction(a2*p - s, a2*s + p, s)
931
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
932
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
933
+ tf6 = TransferFunction(s - p, p + s, p)
934
+
935
+ assert tf / (tf + tf1) == Feedback(tf, tf1)
936
+ assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
937
+ assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
938
+ assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
939
+ assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
940
+ assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
941
+ assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
942
+ assert tf5 / (tf + tf5) == Feedback(tf5, tf)
943
+
944
+ raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
945
+ raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
946
+ raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
947
+
948
+ assert Feedback(tf, tf1*tf2*tf3).doit() == \
949
+ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
950
+ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
951
+ assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
952
+ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
953
+ assert Feedback(tf1, tf2*tf3).doit() == \
954
+ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
955
+ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
956
+ assert Feedback(tf1, tf2*tf3).sensitivity == \
957
+ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
958
+ assert Feedback(tf1*tf2, tf5).doit() == \
959
+ TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
960
+ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
961
+ assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
962
+ 1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
963
+ assert Feedback(tf4, tf6).doit() == \
964
+ TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
965
+ assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
966
+ TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
967
+ assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
968
+
969
+ assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
970
+ TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
971
+ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
972
+ assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
973
+ TransferFunction(p, a0*p + p + p**a1 - s, p)
974
+
975
+
976
+ def test_MIMOFeedback_construction():
977
+ tf1 = TransferFunction(1, s, s)
978
+ tf2 = TransferFunction(s, s**3 - 1, s)
979
+ tf3 = TransferFunction(s, s + 1, s)
980
+ tf4 = TransferFunction(s, s**2 + 1, s)
981
+
982
+ tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
983
+ tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
984
+ tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
985
+
986
+ f1 = MIMOFeedback(tfm_1, tfm_2)
987
+ assert f1.args == (tfm_1, tfm_2, -1)
988
+ assert f1.sys1 == tfm_1
989
+ assert f1.sys2 == tfm_2
990
+ assert f1.var == s
991
+ assert f1.sign == -1
992
+ assert -(-f1) == f1
993
+
994
+ f2 = MIMOFeedback(tfm_2, tfm_1, 1)
995
+ assert f2.args == (tfm_2, tfm_1, 1)
996
+ assert f2.sys1 == tfm_2
997
+ assert f2.sys2 == tfm_1
998
+ assert f2.var == s
999
+ assert f2.sign == 1
1000
+
1001
+ f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
1002
+ assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
1003
+ assert f3.sys1 == tfm_1
1004
+ assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
1005
+ assert f3.var == s
1006
+ assert f3.sign == -1
1007
+
1008
+ mat = Matrix([[1, 1/s], [0, 1]])
1009
+ sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
1010
+ f4 = MIMOFeedback(sys1, controller)
1011
+ assert f4.args == (sys1, controller, -1)
1012
+ assert f4.sys1 == f4.sys2 == sys1
1013
+
1014
+
1015
+ def test_MIMOFeedback_errors():
1016
+ tf1 = TransferFunction(1, s, s)
1017
+ tf2 = TransferFunction(s, s**3 - 1, s)
1018
+ tf3 = TransferFunction(s, s - 1, s)
1019
+ tf4 = TransferFunction(s, s**2 + 1, s)
1020
+ tf5 = TransferFunction(1, 1, s)
1021
+ tf6 = TransferFunction(-1, s - 1, s)
1022
+
1023
+ tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
1024
+ tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
1025
+ tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
1026
+ tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
1027
+ tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
1028
+ # tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
1029
+ tfm_6 = TransferFunctionMatrix([[-tf3]])
1030
+ tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
1031
+
1032
+ # Unsupported Types
1033
+ raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
1034
+ raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
1035
+ # Shape Errors
1036
+ raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
1037
+ raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
1038
+ # sign not 1/-1
1039
+ raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
1040
+ # Non-Invertible Systems
1041
+ raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
1042
+ raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
1043
+ raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
1044
+ # Variable not same in both the systems
1045
+ tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
1046
+ raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
1047
+
1048
+
1049
+ def test_MIMOFeedback_functions():
1050
+ tf1 = TransferFunction(1, s, s)
1051
+ tf2 = TransferFunction(s, s - 1, s)
1052
+ tf3 = TransferFunction(1, 1, s)
1053
+ tf4 = TransferFunction(-1, s - 1, s)
1054
+
1055
+ tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
1056
+ tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
1057
+ tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
1058
+ tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
1059
+
1060
+ # sensitivity, doit(), rewrite()
1061
+ F_1 = MIMOFeedback(tfm_2, tfm_3)
1062
+ F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
1063
+
1064
+ assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]])
1065
+ assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
1066
+ (2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
1067
+
1068
+ assert F_1.doit() == \
1069
+ TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
1070
+ TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
1071
+ TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
1072
+ assert F_2.doit(cancel=False, expand=True) == \
1073
+ TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
1074
+ TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
1075
+ assert F_2.doit(cancel=False) == \
1076
+ TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
1077
+ (-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
1078
+ (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
1079
+ assert F_2.doit() == \
1080
+ TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
1081
+ TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
1082
+ assert F_2.doit(expand=True) == \
1083
+ TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
1084
+ (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
1085
+
1086
+ assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
1087
+
1088
+
1089
+ def test_TransferFunctionMatrix_construction():
1090
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
1091
+ tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
1092
+
1093
+ tfm3_ = TransferFunctionMatrix([[-TF3]])
1094
+ assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
1095
+ assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
1096
+ assert tfm3_.var == s
1097
+
1098
+ tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
1099
+ assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
1100
+ assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
1101
+ assert tfm5.var == s
1102
+
1103
+ tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
1104
+ assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
1105
+ assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
1106
+ assert tfm7.var == s
1107
+
1108
+ # all transfer functions will use the same complex variable. tf4 uses 'p'.
1109
+ raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
1110
+ raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
1111
+
1112
+ # length of all the lists in the TFM should be equal.
1113
+ raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
1114
+ raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
1115
+
1116
+ # lists should only support transfer functions in them.
1117
+ raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
1118
+ raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
1119
+
1120
+ # `arg` should strictly be nested list of TransferFunction
1121
+ raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
1122
+ raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
1123
+
1124
+ def test_TransferFunctionMatrix_functions():
1125
+ tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
1126
+
1127
+ # Classmethod (from_matrix)
1128
+
1129
+ mat_1 = ImmutableMatrix([
1130
+ [s*(s + 1)*(s - 3)/(s**4 + 1), 2],
1131
+ [p, p*(s + 1)/(s*(s**1 + 1))]
1132
+ ])
1133
+ mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
1134
+ mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
1135
+ assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
1136
+ TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
1137
+ [TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
1138
+ assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
1139
+ TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
1140
+ assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
1141
+ TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
1142
+ [TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
1143
+
1144
+ # Negating a TFM
1145
+
1146
+ tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
1147
+ assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
1148
+
1149
+ tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
1150
+ assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
1151
+
1152
+ # subs()
1153
+
1154
+ H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
1155
+ H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
1156
+ assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
1157
+ assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
1158
+ assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
1159
+ assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
1160
+ assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
1161
+ assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
1162
+ assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
1163
+
1164
+ # transpose()
1165
+
1166
+ assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
1167
+ assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
1168
+ assert H_1.transpose().transpose() == H_1
1169
+ assert H_2.transpose().transpose() == H_2
1170
+
1171
+ # elem_poles()
1172
+
1173
+ assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
1174
+ [[], [0]]]
1175
+ assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
1176
+ assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
1177
+ [[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
1178
+
1179
+ # elem_zeros()
1180
+
1181
+ assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
1182
+ assert H_2.elem_zeros() == [[[0], [0]]]
1183
+ assert tfm2.elem_zeros() == [[[], [], [a2*p]],
1184
+ [[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
1185
+
1186
+ # doit()
1187
+
1188
+ H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
1189
+ H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
1190
+
1191
+ assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
1192
+ assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
1193
+
1194
+ # _flat()
1195
+
1196
+ assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
1197
+ assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
1198
+ assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
1199
+ assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
1200
+
1201
+ # evalf()
1202
+
1203
+ assert H_1.evalf() == \
1204
+ TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
1205
+ assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
1206
+ TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
1207
+ TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
1208
+
1209
+ # simplify()
1210
+
1211
+ H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
1212
+ TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
1213
+
1214
+ assert H_5.simplify() == simplify(H_5) == \
1215
+ TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
1216
+
1217
+ # expand()
1218
+
1219
+ assert (H_1.expand()
1220
+ == TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
1221
+ (TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
1222
+ assert H_5.expand() == \
1223
+ TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
1224
+
1225
+ def test_TransferFunction_bilinear():
1226
+ # simple transfer function, e.g. ohms law
1227
+ tf = TransferFunction(1, a*s+b, s)
1228
+ numZ, denZ = bilinear(tf, T)
1229
+ # discretized transfer function with coefs from tf.bilinear()
1230
+ tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
1231
+ # corresponding tf with manually calculated coefs
1232
+ tf_test_manual = TransferFunction(s*T+T, s*(T*b+2*a)+T*b-2*a, s)
1233
+
1234
+ assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
1235
+
1236
+ def test_TransferFunction_backward_diff():
1237
+ # simple transfer function, e.g. ohms law
1238
+ tf = TransferFunction(1, a*s+b, s)
1239
+ numZ, denZ = backward_diff(tf, T)
1240
+ # discretized transfer function with coefs from tf.bilinear()
1241
+ tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
1242
+ # corresponding tf with manually calculated coefs
1243
+ tf_test_manual = TransferFunction(s*T, s*(T*b+a)-a, s)
1244
+
1245
+ assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (196 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/hep/tests/test_gamma_matrices.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.dense import eye, Matrix
2
+ from sympy.tensor.tensor import tensor_indices, TensorHead, tensor_heads, \
3
+ TensExpr, canon_bp
4
+ from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex, \
5
+ kahane_simplify, gamma_trace, _simplify_single_line, simplify_gamma_expression
6
+ from sympy import Symbol
7
+
8
+
9
+ def _is_tensor_eq(arg1, arg2):
10
+ arg1 = canon_bp(arg1)
11
+ arg2 = canon_bp(arg2)
12
+ if isinstance(arg1, TensExpr):
13
+ return arg1.equals(arg2)
14
+ elif isinstance(arg2, TensExpr):
15
+ return arg2.equals(arg1)
16
+ return arg1 == arg2
17
+
18
+ def execute_gamma_simplify_tests_for_function(tfunc, D):
19
+ """
20
+ Perform tests to check if sfunc is able to simplify gamma matrix expressions.
21
+
22
+ Parameters
23
+ ==========
24
+
25
+ `sfunc` a function to simplify a `TIDS`, shall return the simplified `TIDS`.
26
+ `D` the number of dimension (in most cases `D=4`).
27
+
28
+ """
29
+
30
+ mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
31
+ a1, a2, a3, a4, a5, a6 = tensor_indices("a1:7", LorentzIndex)
32
+ mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52 = tensor_indices("mu11, mu12, mu21, mu31, mu32, mu41, mu51, mu52", LorentzIndex)
33
+ mu61, mu71, mu72 = tensor_indices("mu61, mu71, mu72", LorentzIndex)
34
+ m0, m1, m2, m3, m4, m5, m6 = tensor_indices("m0:7", LorentzIndex)
35
+
36
+ def g(xx, yy):
37
+ return (G(xx)*G(yy) + G(yy)*G(xx))/2
38
+
39
+ # Some examples taken from Kahane's paper, 4 dim only:
40
+ if D == 4:
41
+ t = (G(a1)*G(mu11)*G(a2)*G(mu21)*G(-a1)*G(mu31)*G(-a2))
42
+ assert _is_tensor_eq(tfunc(t), -4*G(mu11)*G(mu31)*G(mu21) - 4*G(mu31)*G(mu11)*G(mu21))
43
+
44
+ t = (G(a1)*G(mu11)*G(mu12)*\
45
+ G(a2)*G(mu21)*\
46
+ G(a3)*G(mu31)*G(mu32)*\
47
+ G(a4)*G(mu41)*\
48
+ G(-a2)*G(mu51)*G(mu52)*\
49
+ G(-a1)*G(mu61)*\
50
+ G(-a3)*G(mu71)*G(mu72)*\
51
+ G(-a4))
52
+ assert _is_tensor_eq(tfunc(t), \
53
+ 16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu31)*G(mu32)*G(mu72)*G(mu71)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu11)*G(mu52)*G(mu51)*G(mu12)*G(mu61)*G(mu21)*G(mu41) + 16*G(mu71)*G(mu72)*G(mu32)*G(mu31)*G(mu12)*G(mu51)*G(mu52)*G(mu11)*G(mu61)*G(mu21)*G(mu41))
54
+
55
+ # Fully Lorentz-contracted expressions, these return scalars:
56
+
57
+ def add_delta(ne):
58
+ return ne * eye(4) # DiracSpinorIndex.delta(DiracSpinorIndex.auto_left, -DiracSpinorIndex.auto_right)
59
+
60
+ t = (G(mu)*G(-mu))
61
+ ts = add_delta(D)
62
+ assert _is_tensor_eq(tfunc(t), ts)
63
+
64
+ t = (G(mu)*G(nu)*G(-mu)*G(-nu))
65
+ ts = add_delta(2*D - D**2) # -8
66
+ assert _is_tensor_eq(tfunc(t), ts)
67
+
68
+ t = (G(mu)*G(nu)*G(-nu)*G(-mu))
69
+ ts = add_delta(D**2) # 16
70
+ assert _is_tensor_eq(tfunc(t), ts)
71
+
72
+ t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
73
+ ts = add_delta(4*D - 4*D**2 + D**3) # 16
74
+ assert _is_tensor_eq(tfunc(t), ts)
75
+
76
+ t = (G(mu)*G(nu)*G(rho)*G(-rho)*G(-nu)*G(-mu))
77
+ ts = add_delta(D**3) # 64
78
+ assert _is_tensor_eq(tfunc(t), ts)
79
+
80
+ t = (G(a1)*G(a2)*G(a3)*G(a4)*G(-a3)*G(-a1)*G(-a2)*G(-a4))
81
+ ts = add_delta(-8*D + 16*D**2 - 8*D**3 + D**4) # -32
82
+ assert _is_tensor_eq(tfunc(t), ts)
83
+
84
+ t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
85
+ ts = add_delta(-16*D + 24*D**2 - 8*D**3 + D**4) # 64
86
+ assert _is_tensor_eq(tfunc(t), ts)
87
+
88
+ t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
89
+ ts = add_delta(8*D - 12*D**2 + 6*D**3 - D**4) # -32
90
+ assert _is_tensor_eq(tfunc(t), ts)
91
+
92
+ t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a2)*G(-a1)*G(-a5)*G(-a4))
93
+ ts = add_delta(64*D - 112*D**2 + 60*D**3 - 12*D**4 + D**5) # 256
94
+ assert _is_tensor_eq(tfunc(t), ts)
95
+
96
+ t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(-a3)*G(-a1)*G(-a2)*G(-a4)*G(-a5))
97
+ ts = add_delta(64*D - 120*D**2 + 72*D**3 - 16*D**4 + D**5) # -128
98
+ assert _is_tensor_eq(tfunc(t), ts)
99
+
100
+ t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a3)*G(-a2)*G(-a1)*G(-a6)*G(-a5)*G(-a4))
101
+ ts = add_delta(416*D - 816*D**2 + 528*D**3 - 144*D**4 + 18*D**5 - D**6) # -128
102
+ assert _is_tensor_eq(tfunc(t), ts)
103
+
104
+ t = (G(a1)*G(a2)*G(a3)*G(a4)*G(a5)*G(a6)*G(-a2)*G(-a3)*G(-a1)*G(-a6)*G(-a4)*G(-a5))
105
+ ts = add_delta(416*D - 848*D**2 + 584*D**3 - 172*D**4 + 22*D**5 - D**6) # -128
106
+ assert _is_tensor_eq(tfunc(t), ts)
107
+
108
+ # Expressions with free indices:
109
+
110
+ t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
111
+ assert _is_tensor_eq(tfunc(t), (-2*G(sigma)*G(rho)*G(nu) + (4-D)*G(nu)*G(rho)*G(sigma)))
112
+
113
+ t = (G(mu)*G(nu)*G(-mu))
114
+ assert _is_tensor_eq(tfunc(t), (2-D)*G(nu))
115
+
116
+ t = (G(mu)*G(nu)*G(rho)*G(-mu))
117
+ assert _is_tensor_eq(tfunc(t), 2*G(nu)*G(rho) + 2*G(rho)*G(nu) - (4-D)*G(nu)*G(rho))
118
+
119
+ t = 2*G(m2)*G(m0)*G(m1)*G(-m0)*G(-m1)
120
+ st = tfunc(t)
121
+ assert _is_tensor_eq(st, (D*(-2*D + 4))*G(m2))
122
+
123
+ t = G(m2)*G(m0)*G(m1)*G(-m0)*G(-m2)
124
+ st = tfunc(t)
125
+ assert _is_tensor_eq(st, ((-D + 2)**2)*G(m1))
126
+
127
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)
128
+ st = tfunc(t)
129
+ assert _is_tensor_eq(st, (D - 4)*G(m0)*G(m2)*G(m3) + 4*G(m0)*g(m2, m3))
130
+
131
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(-m1)*G(-m0)
132
+ st = tfunc(t)
133
+ assert _is_tensor_eq(st, ((D - 4)**2)*G(m2)*G(m3) + (8*D - 16)*g(m2, m3))
134
+
135
+ t = G(m2)*G(m0)*G(m1)*G(-m2)*G(-m0)
136
+ st = tfunc(t)
137
+ assert _is_tensor_eq(st, ((-D + 2)*(D - 4) + 4)*G(m1))
138
+
139
+ t = G(m3)*G(m1)*G(m0)*G(m2)*G(-m3)*G(-m0)*G(-m2)
140
+ st = tfunc(t)
141
+ assert _is_tensor_eq(st, (-4*D + (-D + 2)**2*(D - 4) + 8)*G(m1))
142
+
143
+ t = 2*G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)
144
+ st = tfunc(t)
145
+ assert _is_tensor_eq(st, ((-2*D + 8)*G(m1)*G(m2)*G(m3) - 4*G(m3)*G(m2)*G(m1)))
146
+
147
+ t = G(m5)*G(m0)*G(m1)*G(m4)*G(m2)*G(-m4)*G(m3)*G(-m0)
148
+ st = tfunc(t)
149
+ assert _is_tensor_eq(st, (((-D + 2)*(-D + 4))*G(m5)*G(m1)*G(m2)*G(m3) + (2*D - 4)*G(m5)*G(m3)*G(m2)*G(m1)))
150
+
151
+ t = -G(m0)*G(m1)*G(m2)*G(m3)*G(-m0)*G(m4)
152
+ st = tfunc(t)
153
+ assert _is_tensor_eq(st, ((D - 4)*G(m1)*G(m2)*G(m3)*G(m4) + 2*G(m3)*G(m2)*G(m1)*G(m4)))
154
+
155
+ t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
156
+ st = tfunc(t)
157
+
158
+ result1 = ((-D + 4)**2 + 4)*G(m1)*G(m2)*G(m3)*G(m4) +\
159
+ (4*D - 16)*G(m3)*G(m2)*G(m1)*G(m4) + (4*D - 16)*G(m4)*G(m1)*G(m2)*G(m3)\
160
+ + 4*G(m2)*G(m1)*G(m4)*G(m3) + 4*G(m3)*G(m4)*G(m1)*G(m2) +\
161
+ 4*G(m4)*G(m3)*G(m2)*G(m1)
162
+
163
+ # Kahane's algorithm yields this result, which is equivalent to `result1`
164
+ # in four dimensions, but is not automatically recognized as equal:
165
+ result2 = 8*G(m1)*G(m2)*G(m3)*G(m4) + 8*G(m4)*G(m3)*G(m2)*G(m1)
166
+
167
+ if D == 4:
168
+ assert _is_tensor_eq(st, (result1)) or _is_tensor_eq(st, (result2))
169
+ else:
170
+ assert _is_tensor_eq(st, (result1))
171
+
172
+ # and a few very simple cases, with no contracted indices:
173
+
174
+ t = G(m0)
175
+ st = tfunc(t)
176
+ assert _is_tensor_eq(st, t)
177
+
178
+ t = -7*G(m0)
179
+ st = tfunc(t)
180
+ assert _is_tensor_eq(st, t)
181
+
182
+ t = 224*G(m0)*G(m1)*G(-m2)*G(m3)
183
+ st = tfunc(t)
184
+ assert _is_tensor_eq(st, t)
185
+
186
+
187
+ def test_kahane_algorithm():
188
+ # Wrap this function to convert to and from TIDS:
189
+
190
+ def tfunc(e):
191
+ return _simplify_single_line(e)
192
+
193
+ execute_gamma_simplify_tests_for_function(tfunc, D=4)
194
+
195
+
196
+ def test_kahane_simplify1():
197
+ i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15 = tensor_indices('i0:16', LorentzIndex)
198
+ mu, nu, rho, sigma = tensor_indices("mu, nu, rho, sigma", LorentzIndex)
199
+ D = 4
200
+ t = G(i0)*G(i1)
201
+ r = kahane_simplify(t)
202
+ assert r.equals(t)
203
+
204
+ t = G(i0)*G(i1)*G(-i0)
205
+ r = kahane_simplify(t)
206
+ assert r.equals(-2*G(i1))
207
+ t = G(i0)*G(i1)*G(-i0)
208
+ r = kahane_simplify(t)
209
+ assert r.equals(-2*G(i1))
210
+
211
+ t = G(i0)*G(i1)
212
+ r = kahane_simplify(t)
213
+ assert r.equals(t)
214
+ t = G(i0)*G(i1)
215
+ r = kahane_simplify(t)
216
+ assert r.equals(t)
217
+ t = G(i0)*G(-i0)
218
+ r = kahane_simplify(t)
219
+ assert r.equals(4*eye(4))
220
+ t = G(i0)*G(-i0)
221
+ r = kahane_simplify(t)
222
+ assert r.equals(4*eye(4))
223
+ t = G(i0)*G(-i0)
224
+ r = kahane_simplify(t)
225
+ assert r.equals(4*eye(4))
226
+ t = G(i0)*G(i1)*G(-i0)
227
+ r = kahane_simplify(t)
228
+ assert r.equals(-2*G(i1))
229
+ t = G(i0)*G(i1)*G(-i0)*G(-i1)
230
+ r = kahane_simplify(t)
231
+ assert r.equals((2*D - D**2)*eye(4))
232
+ t = G(i0)*G(i1)*G(-i0)*G(-i1)
233
+ r = kahane_simplify(t)
234
+ assert r.equals((2*D - D**2)*eye(4))
235
+ t = G(i0)*G(-i0)*G(i1)*G(-i1)
236
+ r = kahane_simplify(t)
237
+ assert r.equals(16*eye(4))
238
+ t = (G(mu)*G(nu)*G(-nu)*G(-mu))
239
+ r = kahane_simplify(t)
240
+ assert r.equals(D**2*eye(4))
241
+ t = (G(mu)*G(nu)*G(-nu)*G(-mu))
242
+ r = kahane_simplify(t)
243
+ assert r.equals(D**2*eye(4))
244
+ t = (G(mu)*G(nu)*G(-nu)*G(-mu))
245
+ r = kahane_simplify(t)
246
+ assert r.equals(D**2*eye(4))
247
+ t = (G(mu)*G(nu)*G(-rho)*G(-nu)*G(-mu)*G(rho))
248
+ r = kahane_simplify(t)
249
+ assert r.equals((4*D - 4*D**2 + D**3)*eye(4))
250
+ t = (G(-mu)*G(-nu)*G(-rho)*G(-sigma)*G(nu)*G(mu)*G(sigma)*G(rho))
251
+ r = kahane_simplify(t)
252
+ assert r.equals((-16*D + 24*D**2 - 8*D**3 + D**4)*eye(4))
253
+ t = (G(-mu)*G(nu)*G(-rho)*G(sigma)*G(rho)*G(-nu)*G(mu)*G(-sigma))
254
+ r = kahane_simplify(t)
255
+ assert r.equals((8*D - 12*D**2 + 6*D**3 - D**4)*eye(4))
256
+
257
+ # Expressions with free indices:
258
+ t = (G(mu)*G(nu)*G(rho)*G(sigma)*G(-mu))
259
+ r = kahane_simplify(t)
260
+ assert r.equals(-2*G(sigma)*G(rho)*G(nu))
261
+ t = (G(mu)*G(-mu)*G(rho)*G(sigma))
262
+ r = kahane_simplify(t)
263
+ assert r.equals(4*G(rho)*G(sigma))
264
+ t = (G(rho)*G(sigma)*G(mu)*G(-mu))
265
+ r = kahane_simplify(t)
266
+ assert r.equals(4*G(rho)*G(sigma))
267
+
268
+ def test_gamma_matrix_class():
269
+ i, j, k = tensor_indices('i,j,k', LorentzIndex)
270
+
271
+ # define another type of TensorHead to see if exprs are correctly handled:
272
+ A = TensorHead('A', [LorentzIndex])
273
+
274
+ t = A(k)*G(i)*G(-i)
275
+ ts = simplify_gamma_expression(t)
276
+ assert _is_tensor_eq(ts, Matrix([
277
+ [4, 0, 0, 0],
278
+ [0, 4, 0, 0],
279
+ [0, 0, 4, 0],
280
+ [0, 0, 0, 4]])*A(k))
281
+
282
+ t = G(i)*A(k)*G(j)
283
+ ts = simplify_gamma_expression(t)
284
+ assert _is_tensor_eq(ts, A(k)*G(i)*G(j))
285
+
286
+ execute_gamma_simplify_tests_for_function(simplify_gamma_expression, D=4)
287
+
288
+
289
+ def test_gamma_matrix_trace():
290
+ g = LorentzIndex.metric
291
+
292
+ m0, m1, m2, m3, m4, m5, m6 = tensor_indices('m0:7', LorentzIndex)
293
+ n0, n1, n2, n3, n4, n5 = tensor_indices('n0:6', LorentzIndex)
294
+
295
+ # working in D=4 dimensions
296
+ D = 4
297
+
298
+ # traces of odd number of gamma matrices are zero:
299
+ t = G(m0)
300
+ t1 = gamma_trace(t)
301
+ assert t1.equals(0)
302
+
303
+ t = G(m0)*G(m1)*G(m2)
304
+ t1 = gamma_trace(t)
305
+ assert t1.equals(0)
306
+
307
+ t = G(m0)*G(m1)*G(-m0)
308
+ t1 = gamma_trace(t)
309
+ assert t1.equals(0)
310
+
311
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)
312
+ t1 = gamma_trace(t)
313
+ assert t1.equals(0)
314
+
315
+ # traces without internal contractions:
316
+ t = G(m0)*G(m1)
317
+ t1 = gamma_trace(t)
318
+ assert _is_tensor_eq(t1, 4*g(m0, m1))
319
+
320
+ t = G(m0)*G(m1)*G(m2)*G(m3)
321
+ t1 = gamma_trace(t)
322
+ t2 = -4*g(m0, m2)*g(m1, m3) + 4*g(m0, m1)*g(m2, m3) + 4*g(m0, m3)*g(m1, m2)
323
+ assert _is_tensor_eq(t1, t2)
324
+
325
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)
326
+ t1 = gamma_trace(t)
327
+ t2 = t1*g(-m0, -m5)
328
+ t2 = t2.contract_metric(g)
329
+ assert _is_tensor_eq(t2, D*gamma_trace(G(m1)*G(m2)*G(m3)*G(m4)))
330
+
331
+ # traces of expressions with internal contractions:
332
+ t = G(m0)*G(-m0)
333
+ t1 = gamma_trace(t)
334
+ assert t1.equals(4*D)
335
+
336
+ t = G(m0)*G(m1)*G(-m0)*G(-m1)
337
+ t1 = gamma_trace(t)
338
+ assert t1.equals(8*D - 4*D**2)
339
+
340
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)
341
+ t1 = gamma_trace(t)
342
+ t2 = (-4*D)*g(m1, m3)*g(m2, m4) + (4*D)*g(m1, m2)*g(m3, m4) + \
343
+ (4*D)*g(m1, m4)*g(m2, m3)
344
+ assert _is_tensor_eq(t1, t2)
345
+
346
+ t = G(-m5)*G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(-m0)*G(m5)
347
+ t1 = gamma_trace(t)
348
+ t2 = (32*D + 4*(-D + 4)**2 - 64)*(g(m1, m2)*g(m3, m4) - \
349
+ g(m1, m3)*g(m2, m4) + g(m1, m4)*g(m2, m3))
350
+ assert _is_tensor_eq(t1, t2)
351
+
352
+ t = G(m0)*G(m1)*G(-m0)*G(m3)
353
+ t1 = gamma_trace(t)
354
+ assert t1.equals((-4*D + 8)*g(m1, m3))
355
+
356
+ # p, q = S1('p,q')
357
+ # ps = p(m0)*G(-m0)
358
+ # qs = q(m0)*G(-m0)
359
+ # t = ps*qs*ps*qs
360
+ # t1 = gamma_trace(t)
361
+ # assert t1 == 8*p(m0)*q(-m0)*p(m1)*q(-m1) - 4*p(m0)*p(-m0)*q(m1)*q(-m1)
362
+
363
+ t = G(m0)*G(m1)*G(m2)*G(m3)*G(m4)*G(m5)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)*G(-m5)
364
+ t1 = gamma_trace(t)
365
+ assert t1.equals(-4*D**6 + 120*D**5 - 1040*D**4 + 3360*D**3 - 4480*D**2 + 2048*D)
366
+
367
+ t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(-n2)*G(-n1)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
368
+ t1 = gamma_trace(t)
369
+ tresu = -7168*D + 16768*D**2 - 14400*D**3 + 5920*D**4 - 1232*D**5 + 120*D**6 - 4*D**7
370
+ assert t1.equals(tresu)
371
+
372
+ # checked with Mathematica
373
+ # In[1]:= <<Tracer.m
374
+ # In[2]:= Spur[l];
375
+ # In[3]:= GammaTrace[l, {m0},{m1},{n1},{m2},{n2},{m3},{m4},{n3},{n4},{m0},{m1},{m2},{m3},{m4}]
376
+ t = G(m0)*G(m1)*G(n1)*G(m2)*G(n2)*G(m3)*G(m4)*G(n3)*G(n4)*G(-m0)*G(-m1)*G(-m2)*G(-m3)*G(-m4)
377
+ t1 = gamma_trace(t)
378
+ # t1 = t1.expand_coeff()
379
+ c1 = -4*D**5 + 120*D**4 - 1200*D**3 + 5280*D**2 - 10560*D + 7808
380
+ c2 = -4*D**5 + 88*D**4 - 560*D**3 + 1440*D**2 - 1600*D + 640
381
+ assert _is_tensor_eq(t1, c1*g(n1, n4)*g(n2, n3) + c2*g(n1, n2)*g(n3, n4) + \
382
+ (-c1)*g(n1, n3)*g(n2, n4))
383
+
384
+ p, q = tensor_heads('p,q', [LorentzIndex])
385
+ ps = p(m0)*G(-m0)
386
+ qs = q(m0)*G(-m0)
387
+ p2 = p(m0)*p(-m0)
388
+ q2 = q(m0)*q(-m0)
389
+ pq = p(m0)*q(-m0)
390
+ t = ps*qs*ps*qs
391
+ r = gamma_trace(t)
392
+ assert _is_tensor_eq(r, 8*pq*pq - 4*p2*q2)
393
+ t = ps*qs*ps*qs*ps*qs
394
+ r = gamma_trace(t)
395
+ assert _is_tensor_eq(r, -12*p2*pq*q2 + 16*pq*pq*pq)
396
+ t = ps*qs*ps*qs*ps*qs*ps*qs
397
+ r = gamma_trace(t)
398
+ assert _is_tensor_eq(r, -32*pq*pq*p2*q2 + 32*pq*pq*pq*pq + 4*p2*p2*q2*q2)
399
+
400
+ t = 4*p(m1)*p(m0)*p(-m0)*q(-m1)*q(m2)*q(-m2)
401
+ assert _is_tensor_eq(gamma_trace(t), t)
402
+ t = ps*ps*ps*ps*ps*ps*ps*ps
403
+ r = gamma_trace(t)
404
+ assert r.equals(4*p2*p2*p2*p2)
405
+
406
+
407
+ def test_bug_13636():
408
+ """Test issue 13636 regarding handling traces of sums of products
409
+ of GammaMatrix mixed with other factors."""
410
+ pi, ki, pf = tensor_heads("pi, ki, pf", [LorentzIndex])
411
+ i0, i1, i2, i3, i4 = tensor_indices("i0:5", LorentzIndex)
412
+ x = Symbol("x")
413
+ pis = pi(i2) * G(-i2)
414
+ kis = ki(i3) * G(-i3)
415
+ pfs = pf(i4) * G(-i4)
416
+
417
+ a = pfs * G(i0) * kis * G(i1) * pis * G(-i1) * kis * G(-i0)
418
+ b = pfs * G(i0) * kis * G(i1) * pis * x * G(-i0) * pi(-i1)
419
+ ta = gamma_trace(a)
420
+ tb = gamma_trace(b)
421
+ t_a_plus_b = gamma_trace(a + b)
422
+ assert ta == 4 * (
423
+ -4 * ki(i0) * ki(-i0) * pf(i1) * pi(-i1)
424
+ + 8 * ki(i0) * ki(i1) * pf(-i0) * pi(-i1)
425
+ )
426
+ assert tb == -8 * x * ki(i0) * pf(-i0) * pi(i1) * pi(-i1)
427
+ assert t_a_plus_b == ta + tb
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__init__.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ 'TWave',
3
+
4
+ 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction',
5
+ 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter',
6
+ 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab',
7
+ 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj',
8
+ 'conjugate_gauss_beams',
9
+
10
+ 'Medium',
11
+
12
+ 'refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle',
13
+ 'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula',
14
+ 'hyperfocal_distance', 'transverse_magnification',
15
+
16
+ 'jones_vector', 'stokes_vector', 'jones_2_stokes', 'linear_polarizer',
17
+ 'phase_retarder', 'half_wave_retarder', 'quarter_wave_retarder',
18
+ 'transmissive_filter', 'reflective_filter', 'mueller_matrix',
19
+ 'polarizing_beam_splitter',
20
+ ]
21
+ from .waves import TWave
22
+
23
+ from .gaussopt import (RayTransferMatrix, FreeSpace, FlatRefraction,
24
+ CurvedRefraction, FlatMirror, CurvedMirror, ThinLens, GeometricRay,
25
+ BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab,
26
+ geometric_conj_af, geometric_conj_bf, gaussian_conj,
27
+ conjugate_gauss_beams)
28
+
29
+ from .medium import Medium
30
+
31
+ from .utils import (refraction_angle, deviation, fresnel_coefficients,
32
+ brewster_angle, critical_angle, lens_makers_formula, mirror_formula,
33
+ lens_formula, hyperfocal_distance, transverse_magnification)
34
+
35
+ from .polarization import (jones_vector, stokes_vector, jones_2_stokes,
36
+ linear_polarizer, phase_retarder, half_wave_retarder,
37
+ quarter_wave_retarder, transmissive_filter, reflective_filter,
38
+ mueller_matrix, polarizing_beam_splitter)
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.52 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/gaussopt.cpython-310.pyc ADDED
Binary file (21.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/medium.cpython-310.pyc ADDED
Binary file (7.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/polarization.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/utils.cpython-310.pyc ADDED
Binary file (17.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/waves.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py ADDED
@@ -0,0 +1,923 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Gaussian optics.
3
+
4
+ The module implements:
5
+
6
+ - Ray transfer matrices for geometrical and gaussian optics.
7
+
8
+ See RayTransferMatrix, GeometricRay and BeamParameter
9
+
10
+ - Conjugation relations for geometrical and gaussian optics.
11
+
12
+ See geometric_conj*, gauss_conj and conjugate_gauss_beams
13
+
14
+ The conventions for the distances are as follows:
15
+
16
+ focal distance
17
+ positive for convergent lenses
18
+ object distance
19
+ positive for real objects
20
+ image distance
21
+ positive for real images
22
+ """
23
+
24
+ __all__ = [
25
+ 'RayTransferMatrix',
26
+ 'FreeSpace',
27
+ 'FlatRefraction',
28
+ 'CurvedRefraction',
29
+ 'FlatMirror',
30
+ 'CurvedMirror',
31
+ 'ThinLens',
32
+ 'GeometricRay',
33
+ 'BeamParameter',
34
+ 'waist2rayleigh',
35
+ 'rayleigh2waist',
36
+ 'geometric_conj_ab',
37
+ 'geometric_conj_af',
38
+ 'geometric_conj_bf',
39
+ 'gaussian_conj',
40
+ 'conjugate_gauss_beams',
41
+ ]
42
+
43
+
44
+ from sympy.core.expr import Expr
45
+ from sympy.core.numbers import (I, pi)
46
+ from sympy.core.sympify import sympify
47
+ from sympy.functions.elementary.complexes import (im, re)
48
+ from sympy.functions.elementary.miscellaneous import sqrt
49
+ from sympy.functions.elementary.trigonometric import atan2
50
+ from sympy.matrices.dense import Matrix, MutableDenseMatrix
51
+ from sympy.polys.rationaltools import together
52
+ from sympy.utilities.misc import filldedent
53
+
54
+ ###
55
+ # A, B, C, D matrices
56
+ ###
57
+
58
+
59
+ class RayTransferMatrix(MutableDenseMatrix):
60
+ """
61
+ Base class for a Ray Transfer Matrix.
62
+
63
+ It should be used if there is not already a more specific subclass mentioned
64
+ in See Also.
65
+
66
+ Parameters
67
+ ==========
68
+
69
+ parameters :
70
+ A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))
71
+
72
+ Examples
73
+ ========
74
+
75
+ >>> from sympy.physics.optics import RayTransferMatrix, ThinLens
76
+ >>> from sympy import Symbol, Matrix
77
+
78
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
79
+ >>> mat
80
+ Matrix([
81
+ [1, 2],
82
+ [3, 4]])
83
+
84
+ >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
85
+ Matrix([
86
+ [1, 2],
87
+ [3, 4]])
88
+
89
+ >>> mat.A
90
+ 1
91
+
92
+ >>> f = Symbol('f')
93
+ >>> lens = ThinLens(f)
94
+ >>> lens
95
+ Matrix([
96
+ [ 1, 0],
97
+ [-1/f, 1]])
98
+
99
+ >>> lens.C
100
+ -1/f
101
+
102
+ See Also
103
+ ========
104
+
105
+ GeometricRay, BeamParameter,
106
+ FreeSpace, FlatRefraction, CurvedRefraction,
107
+ FlatMirror, CurvedMirror, ThinLens
108
+
109
+ References
110
+ ==========
111
+
112
+ .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis
113
+ """
114
+
115
+ def __new__(cls, *args):
116
+
117
+ if len(args) == 4:
118
+ temp = ((args[0], args[1]), (args[2], args[3]))
119
+ elif len(args) == 1 \
120
+ and isinstance(args[0], Matrix) \
121
+ and args[0].shape == (2, 2):
122
+ temp = args[0]
123
+ else:
124
+ raise ValueError(filldedent('''
125
+ Expecting 2x2 Matrix or the 4 elements of
126
+ the Matrix but got %s''' % str(args)))
127
+ return Matrix.__new__(cls, temp)
128
+
129
+ def __mul__(self, other):
130
+ if isinstance(other, RayTransferMatrix):
131
+ return RayTransferMatrix(Matrix.__mul__(self, other))
132
+ elif isinstance(other, GeometricRay):
133
+ return GeometricRay(Matrix.__mul__(self, other))
134
+ elif isinstance(other, BeamParameter):
135
+ temp = self*Matrix(((other.q,), (1,)))
136
+ q = (temp[0]/temp[1]).expand(complex=True)
137
+ return BeamParameter(other.wavelen,
138
+ together(re(q)),
139
+ z_r=together(im(q)))
140
+ else:
141
+ return Matrix.__mul__(self, other)
142
+
143
+ @property
144
+ def A(self):
145
+ """
146
+ The A parameter of the Matrix.
147
+
148
+ Examples
149
+ ========
150
+
151
+ >>> from sympy.physics.optics import RayTransferMatrix
152
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
153
+ >>> mat.A
154
+ 1
155
+ """
156
+ return self[0, 0]
157
+
158
+ @property
159
+ def B(self):
160
+ """
161
+ The B parameter of the Matrix.
162
+
163
+ Examples
164
+ ========
165
+
166
+ >>> from sympy.physics.optics import RayTransferMatrix
167
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
168
+ >>> mat.B
169
+ 2
170
+ """
171
+ return self[0, 1]
172
+
173
+ @property
174
+ def C(self):
175
+ """
176
+ The C parameter of the Matrix.
177
+
178
+ Examples
179
+ ========
180
+
181
+ >>> from sympy.physics.optics import RayTransferMatrix
182
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
183
+ >>> mat.C
184
+ 3
185
+ """
186
+ return self[1, 0]
187
+
188
+ @property
189
+ def D(self):
190
+ """
191
+ The D parameter of the Matrix.
192
+
193
+ Examples
194
+ ========
195
+
196
+ >>> from sympy.physics.optics import RayTransferMatrix
197
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
198
+ >>> mat.D
199
+ 4
200
+ """
201
+ return self[1, 1]
202
+
203
+
204
+ class FreeSpace(RayTransferMatrix):
205
+ """
206
+ Ray Transfer Matrix for free space.
207
+
208
+ Parameters
209
+ ==========
210
+
211
+ distance
212
+
213
+ See Also
214
+ ========
215
+
216
+ RayTransferMatrix
217
+
218
+ Examples
219
+ ========
220
+
221
+ >>> from sympy.physics.optics import FreeSpace
222
+ >>> from sympy import symbols
223
+ >>> d = symbols('d')
224
+ >>> FreeSpace(d)
225
+ Matrix([
226
+ [1, d],
227
+ [0, 1]])
228
+ """
229
+ def __new__(cls, d):
230
+ return RayTransferMatrix.__new__(cls, 1, d, 0, 1)
231
+
232
+
233
+ class FlatRefraction(RayTransferMatrix):
234
+ """
235
+ Ray Transfer Matrix for refraction.
236
+
237
+ Parameters
238
+ ==========
239
+
240
+ n1 :
241
+ Refractive index of one medium.
242
+ n2 :
243
+ Refractive index of other medium.
244
+
245
+ See Also
246
+ ========
247
+
248
+ RayTransferMatrix
249
+
250
+ Examples
251
+ ========
252
+
253
+ >>> from sympy.physics.optics import FlatRefraction
254
+ >>> from sympy import symbols
255
+ >>> n1, n2 = symbols('n1 n2')
256
+ >>> FlatRefraction(n1, n2)
257
+ Matrix([
258
+ [1, 0],
259
+ [0, n1/n2]])
260
+ """
261
+ def __new__(cls, n1, n2):
262
+ n1, n2 = map(sympify, (n1, n2))
263
+ return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2)
264
+
265
+
266
+ class CurvedRefraction(RayTransferMatrix):
267
+ """
268
+ Ray Transfer Matrix for refraction on curved interface.
269
+
270
+ Parameters
271
+ ==========
272
+
273
+ R :
274
+ Radius of curvature (positive for concave).
275
+ n1 :
276
+ Refractive index of one medium.
277
+ n2 :
278
+ Refractive index of other medium.
279
+
280
+ See Also
281
+ ========
282
+
283
+ RayTransferMatrix
284
+
285
+ Examples
286
+ ========
287
+
288
+ >>> from sympy.physics.optics import CurvedRefraction
289
+ >>> from sympy import symbols
290
+ >>> R, n1, n2 = symbols('R n1 n2')
291
+ >>> CurvedRefraction(R, n1, n2)
292
+ Matrix([
293
+ [ 1, 0],
294
+ [(n1 - n2)/(R*n2), n1/n2]])
295
+ """
296
+ def __new__(cls, R, n1, n2):
297
+ R, n1, n2 = map(sympify, (R, n1, n2))
298
+ return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2)
299
+
300
+
301
+ class FlatMirror(RayTransferMatrix):
302
+ """
303
+ Ray Transfer Matrix for reflection.
304
+
305
+ See Also
306
+ ========
307
+
308
+ RayTransferMatrix
309
+
310
+ Examples
311
+ ========
312
+
313
+ >>> from sympy.physics.optics import FlatMirror
314
+ >>> FlatMirror()
315
+ Matrix([
316
+ [1, 0],
317
+ [0, 1]])
318
+ """
319
+ def __new__(cls):
320
+ return RayTransferMatrix.__new__(cls, 1, 0, 0, 1)
321
+
322
+
323
+ class CurvedMirror(RayTransferMatrix):
324
+ """
325
+ Ray Transfer Matrix for reflection from curved surface.
326
+
327
+ Parameters
328
+ ==========
329
+
330
+ R : radius of curvature (positive for concave)
331
+
332
+ See Also
333
+ ========
334
+
335
+ RayTransferMatrix
336
+
337
+ Examples
338
+ ========
339
+
340
+ >>> from sympy.physics.optics import CurvedMirror
341
+ >>> from sympy import symbols
342
+ >>> R = symbols('R')
343
+ >>> CurvedMirror(R)
344
+ Matrix([
345
+ [ 1, 0],
346
+ [-2/R, 1]])
347
+ """
348
+ def __new__(cls, R):
349
+ R = sympify(R)
350
+ return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1)
351
+
352
+
353
+ class ThinLens(RayTransferMatrix):
354
+ """
355
+ Ray Transfer Matrix for a thin lens.
356
+
357
+ Parameters
358
+ ==========
359
+
360
+ f :
361
+ The focal distance.
362
+
363
+ See Also
364
+ ========
365
+
366
+ RayTransferMatrix
367
+
368
+ Examples
369
+ ========
370
+
371
+ >>> from sympy.physics.optics import ThinLens
372
+ >>> from sympy import symbols
373
+ >>> f = symbols('f')
374
+ >>> ThinLens(f)
375
+ Matrix([
376
+ [ 1, 0],
377
+ [-1/f, 1]])
378
+ """
379
+ def __new__(cls, f):
380
+ f = sympify(f)
381
+ return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1)
382
+
383
+
384
+ ###
385
+ # Representation for geometric ray
386
+ ###
387
+
388
+ class GeometricRay(MutableDenseMatrix):
389
+ """
390
+ Representation for a geometric ray in the Ray Transfer Matrix formalism.
391
+
392
+ Parameters
393
+ ==========
394
+
395
+ h : height, and
396
+ angle : angle, or
397
+ matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))
398
+
399
+ Examples
400
+ ========
401
+
402
+ >>> from sympy.physics.optics import GeometricRay, FreeSpace
403
+ >>> from sympy import symbols, Matrix
404
+ >>> d, h, angle = symbols('d, h, angle')
405
+
406
+ >>> GeometricRay(h, angle)
407
+ Matrix([
408
+ [ h],
409
+ [angle]])
410
+
411
+ >>> FreeSpace(d)*GeometricRay(h, angle)
412
+ Matrix([
413
+ [angle*d + h],
414
+ [ angle]])
415
+
416
+ >>> GeometricRay( Matrix( ((h,), (angle,)) ) )
417
+ Matrix([
418
+ [ h],
419
+ [angle]])
420
+
421
+ See Also
422
+ ========
423
+
424
+ RayTransferMatrix
425
+
426
+ """
427
+
428
+ def __new__(cls, *args):
429
+ if len(args) == 1 and isinstance(args[0], Matrix) \
430
+ and args[0].shape == (2, 1):
431
+ temp = args[0]
432
+ elif len(args) == 2:
433
+ temp = ((args[0],), (args[1],))
434
+ else:
435
+ raise ValueError(filldedent('''
436
+ Expecting 2x1 Matrix or the 2 elements of
437
+ the Matrix but got %s''' % str(args)))
438
+ return Matrix.__new__(cls, temp)
439
+
440
+ @property
441
+ def height(self):
442
+ """
443
+ The distance from the optical axis.
444
+
445
+ Examples
446
+ ========
447
+
448
+ >>> from sympy.physics.optics import GeometricRay
449
+ >>> from sympy import symbols
450
+ >>> h, angle = symbols('h, angle')
451
+ >>> gRay = GeometricRay(h, angle)
452
+ >>> gRay.height
453
+ h
454
+ """
455
+ return self[0]
456
+
457
+ @property
458
+ def angle(self):
459
+ """
460
+ The angle with the optical axis.
461
+
462
+ Examples
463
+ ========
464
+
465
+ >>> from sympy.physics.optics import GeometricRay
466
+ >>> from sympy import symbols
467
+ >>> h, angle = symbols('h, angle')
468
+ >>> gRay = GeometricRay(h, angle)
469
+ >>> gRay.angle
470
+ angle
471
+ """
472
+ return self[1]
473
+
474
+
475
+ ###
476
+ # Representation for gauss beam
477
+ ###
478
+
479
+ class BeamParameter(Expr):
480
+ """
481
+ Representation for a gaussian ray in the Ray Transfer Matrix formalism.
482
+
483
+ Parameters
484
+ ==========
485
+
486
+ wavelen : the wavelength,
487
+ z : the distance to waist, and
488
+ w : the waist, or
489
+ z_r : the rayleigh range.
490
+ n : the refractive index of medium.
491
+
492
+ Examples
493
+ ========
494
+
495
+ >>> from sympy.physics.optics import BeamParameter
496
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
497
+ >>> p.q
498
+ 1 + 1.88679245283019*I*pi
499
+
500
+ >>> p.q.n()
501
+ 1.0 + 5.92753330865999*I
502
+ >>> p.w_0.n()
503
+ 0.00100000000000000
504
+ >>> p.z_r.n()
505
+ 5.92753330865999
506
+
507
+ >>> from sympy.physics.optics import FreeSpace
508
+ >>> fs = FreeSpace(10)
509
+ >>> p1 = fs*p
510
+ >>> p.w.n()
511
+ 0.00101413072159615
512
+ >>> p1.w.n()
513
+ 0.00210803120913829
514
+
515
+ See Also
516
+ ========
517
+
518
+ RayTransferMatrix
519
+
520
+ References
521
+ ==========
522
+
523
+ .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter
524
+ .. [2] https://en.wikipedia.org/wiki/Gaussian_beam
525
+ """
526
+ #TODO A class Complex may be implemented. The BeamParameter may
527
+ # subclass it. See:
528
+ # https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion
529
+
530
+ def __new__(cls, wavelen, z, z_r=None, w=None, n=1):
531
+ wavelen = sympify(wavelen)
532
+ z = sympify(z)
533
+ n = sympify(n)
534
+
535
+ if z_r is not None and w is None:
536
+ z_r = sympify(z_r)
537
+ elif w is not None and z_r is None:
538
+ z_r = waist2rayleigh(sympify(w), wavelen, n)
539
+ elif z_r is None and w is None:
540
+ raise ValueError('Must specify one of w and z_r.')
541
+
542
+ return Expr.__new__(cls, wavelen, z, z_r, n)
543
+
544
+ @property
545
+ def wavelen(self):
546
+ return self.args[0]
547
+
548
+ @property
549
+ def z(self):
550
+ return self.args[1]
551
+
552
+ @property
553
+ def z_r(self):
554
+ return self.args[2]
555
+
556
+ @property
557
+ def n(self):
558
+ return self.args[3]
559
+
560
+ @property
561
+ def q(self):
562
+ """
563
+ The complex parameter representing the beam.
564
+
565
+ Examples
566
+ ========
567
+
568
+ >>> from sympy.physics.optics import BeamParameter
569
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
570
+ >>> p.q
571
+ 1 + 1.88679245283019*I*pi
572
+ """
573
+ return self.z + I*self.z_r
574
+
575
+ @property
576
+ def radius(self):
577
+ """
578
+ The radius of curvature of the phase front.
579
+
580
+ Examples
581
+ ========
582
+
583
+ >>> from sympy.physics.optics import BeamParameter
584
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
585
+ >>> p.radius
586
+ 1 + 3.55998576005696*pi**2
587
+ """
588
+ return self.z*(1 + (self.z_r/self.z)**2)
589
+
590
+ @property
591
+ def w(self):
592
+ """
593
+ The radius of the beam w(z), at any position z along the beam.
594
+ The beam radius at `1/e^2` intensity (axial value).
595
+
596
+ See Also
597
+ ========
598
+
599
+ w_0 :
600
+ The minimal radius of beam.
601
+
602
+ Examples
603
+ ========
604
+
605
+ >>> from sympy.physics.optics import BeamParameter
606
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
607
+ >>> p.w
608
+ 0.001*sqrt(0.2809/pi**2 + 1)
609
+ """
610
+ return self.w_0*sqrt(1 + (self.z/self.z_r)**2)
611
+
612
+ @property
613
+ def w_0(self):
614
+ """
615
+ The minimal radius of beam at `1/e^2` intensity (peak value).
616
+
617
+ See Also
618
+ ========
619
+
620
+ w : the beam radius at `1/e^2` intensity (axial value).
621
+
622
+ Examples
623
+ ========
624
+
625
+ >>> from sympy.physics.optics import BeamParameter
626
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
627
+ >>> p.w_0
628
+ 0.00100000000000000
629
+ """
630
+ return sqrt(self.z_r/(pi*self.n)*self.wavelen)
631
+
632
+ @property
633
+ def divergence(self):
634
+ """
635
+ Half of the total angular spread.
636
+
637
+ Examples
638
+ ========
639
+
640
+ >>> from sympy.physics.optics import BeamParameter
641
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
642
+ >>> p.divergence
643
+ 0.00053/pi
644
+ """
645
+ return self.wavelen/pi/self.w_0
646
+
647
+ @property
648
+ def gouy(self):
649
+ """
650
+ The Gouy phase.
651
+
652
+ Examples
653
+ ========
654
+
655
+ >>> from sympy.physics.optics import BeamParameter
656
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
657
+ >>> p.gouy
658
+ atan(0.53/pi)
659
+ """
660
+ return atan2(self.z, self.z_r)
661
+
662
+ @property
663
+ def waist_approximation_limit(self):
664
+ """
665
+ The minimal waist for which the gauss beam approximation is valid.
666
+
667
+ Explanation
668
+ ===========
669
+
670
+ The gauss beam is a solution to the paraxial equation. For curvatures
671
+ that are too great it is not a valid approximation.
672
+
673
+ Examples
674
+ ========
675
+
676
+ >>> from sympy.physics.optics import BeamParameter
677
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
678
+ >>> p.waist_approximation_limit
679
+ 1.06e-6/pi
680
+ """
681
+ return 2*self.wavelen/pi
682
+
683
+
684
+ ###
685
+ # Utilities
686
+ ###
687
+
688
+ def waist2rayleigh(w, wavelen, n=1):
689
+ """
690
+ Calculate the rayleigh range from the waist of a gaussian beam.
691
+
692
+ See Also
693
+ ========
694
+
695
+ rayleigh2waist, BeamParameter
696
+
697
+ Examples
698
+ ========
699
+
700
+ >>> from sympy.physics.optics import waist2rayleigh
701
+ >>> from sympy import symbols
702
+ >>> w, wavelen = symbols('w wavelen')
703
+ >>> waist2rayleigh(w, wavelen)
704
+ pi*w**2/wavelen
705
+ """
706
+ w, wavelen = map(sympify, (w, wavelen))
707
+ return w**2*n*pi/wavelen
708
+
709
+
710
+ def rayleigh2waist(z_r, wavelen):
711
+ """Calculate the waist from the rayleigh range of a gaussian beam.
712
+
713
+ See Also
714
+ ========
715
+
716
+ waist2rayleigh, BeamParameter
717
+
718
+ Examples
719
+ ========
720
+
721
+ >>> from sympy.physics.optics import rayleigh2waist
722
+ >>> from sympy import symbols
723
+ >>> z_r, wavelen = symbols('z_r wavelen')
724
+ >>> rayleigh2waist(z_r, wavelen)
725
+ sqrt(wavelen*z_r)/sqrt(pi)
726
+ """
727
+ z_r, wavelen = map(sympify, (z_r, wavelen))
728
+ return sqrt(z_r/pi*wavelen)
729
+
730
+
731
+ def geometric_conj_ab(a, b):
732
+ """
733
+ Conjugation relation for geometrical beams under paraxial conditions.
734
+
735
+ Explanation
736
+ ===========
737
+
738
+ Takes the distances to the optical element and returns the needed
739
+ focal distance.
740
+
741
+ See Also
742
+ ========
743
+
744
+ geometric_conj_af, geometric_conj_bf
745
+
746
+ Examples
747
+ ========
748
+
749
+ >>> from sympy.physics.optics import geometric_conj_ab
750
+ >>> from sympy import symbols
751
+ >>> a, b = symbols('a b')
752
+ >>> geometric_conj_ab(a, b)
753
+ a*b/(a + b)
754
+ """
755
+ a, b = map(sympify, (a, b))
756
+ if a.is_infinite or b.is_infinite:
757
+ return a if b.is_infinite else b
758
+ else:
759
+ return a*b/(a + b)
760
+
761
+
762
+ def geometric_conj_af(a, f):
763
+ """
764
+ Conjugation relation for geometrical beams under paraxial conditions.
765
+
766
+ Explanation
767
+ ===========
768
+
769
+ Takes the object distance (for geometric_conj_af) or the image distance
770
+ (for geometric_conj_bf) to the optical element and the focal distance.
771
+ Then it returns the other distance needed for conjugation.
772
+
773
+ See Also
774
+ ========
775
+
776
+ geometric_conj_ab
777
+
778
+ Examples
779
+ ========
780
+
781
+ >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
782
+ >>> from sympy import symbols
783
+ >>> a, b, f = symbols('a b f')
784
+ >>> geometric_conj_af(a, f)
785
+ a*f/(a - f)
786
+ >>> geometric_conj_bf(b, f)
787
+ b*f/(b - f)
788
+ """
789
+ a, f = map(sympify, (a, f))
790
+ return -geometric_conj_ab(a, -f)
791
+
792
+ geometric_conj_bf = geometric_conj_af
793
+
794
+
795
+ def gaussian_conj(s_in, z_r_in, f):
796
+ """
797
+ Conjugation relation for gaussian beams.
798
+
799
+ Parameters
800
+ ==========
801
+
802
+ s_in :
803
+ The distance to optical element from the waist.
804
+ z_r_in :
805
+ The rayleigh range of the incident beam.
806
+ f :
807
+ The focal length of the optical element.
808
+
809
+ Returns
810
+ =======
811
+
812
+ a tuple containing (s_out, z_r_out, m)
813
+ s_out :
814
+ The distance between the new waist and the optical element.
815
+ z_r_out :
816
+ The rayleigh range of the emergent beam.
817
+ m :
818
+ The ration between the new and the old waists.
819
+
820
+ Examples
821
+ ========
822
+
823
+ >>> from sympy.physics.optics import gaussian_conj
824
+ >>> from sympy import symbols
825
+ >>> s_in, z_r_in, f = symbols('s_in z_r_in f')
826
+
827
+ >>> gaussian_conj(s_in, z_r_in, f)[0]
828
+ 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
829
+
830
+ >>> gaussian_conj(s_in, z_r_in, f)[1]
831
+ z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
832
+
833
+ >>> gaussian_conj(s_in, z_r_in, f)[2]
834
+ 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
835
+ """
836
+ s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f))
837
+ s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f )
838
+ m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2)
839
+ z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2)
840
+ return (s_out, z_r_out, m)
841
+
842
+
843
+ def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs):
844
+ """
845
+ Find the optical setup conjugating the object/image waists.
846
+
847
+ Parameters
848
+ ==========
849
+
850
+ wavelen :
851
+ The wavelength of the beam.
852
+ waist_in and waist_out :
853
+ The waists to be conjugated.
854
+ f :
855
+ The focal distance of the element used in the conjugation.
856
+
857
+ Returns
858
+ =======
859
+
860
+ a tuple containing (s_in, s_out, f)
861
+ s_in :
862
+ The distance before the optical element.
863
+ s_out :
864
+ The distance after the optical element.
865
+ f :
866
+ The focal distance of the optical element.
867
+
868
+ Examples
869
+ ========
870
+
871
+ >>> from sympy.physics.optics import conjugate_gauss_beams
872
+ >>> from sympy import symbols, factor
873
+ >>> l, w_i, w_o, f = symbols('l w_i w_o f')
874
+
875
+ >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
876
+ f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))
877
+
878
+ >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
879
+ f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
880
+ pi**2*w_i**4/(f**2*l**2)))/w_i**2
881
+
882
+ >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
883
+ f
884
+ """
885
+ #TODO add the other possible arguments
886
+ wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out))
887
+ m = waist_out / waist_in
888
+ z = waist2rayleigh(waist_in, wavelen)
889
+ if len(kwargs) != 1:
890
+ raise ValueError("The function expects only one named argument")
891
+ elif 'dist' in kwargs:
892
+ raise NotImplementedError(filldedent('''
893
+ Currently only focal length is supported as a parameter'''))
894
+ elif 'f' in kwargs:
895
+ f = sympify(kwargs['f'])
896
+ s_in = f * (1 - sqrt(1/m**2 - z**2/f**2))
897
+ s_out = gaussian_conj(s_in, z, f)[0]
898
+ elif 's_in' in kwargs:
899
+ raise NotImplementedError(filldedent('''
900
+ Currently only focal length is supported as a parameter'''))
901
+ else:
902
+ raise ValueError(filldedent('''
903
+ The functions expects the focal length as a named argument'''))
904
+ return (s_in, s_out, f)
905
+
906
+ #TODO
907
+ #def plot_beam():
908
+ # """Plot the beam radius as it propagates in space."""
909
+ # pass
910
+
911
+ #TODO
912
+ #def plot_beam_conjugation():
913
+ # """
914
+ # Plot the intersection of two beams.
915
+ #
916
+ # Represents the conjugation relation.
917
+ #
918
+ # See Also
919
+ # ========
920
+ #
921
+ # conjugate_gauss_beams
922
+ # """
923
+ # pass
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/medium.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ **Contains**
3
+
4
+ * Medium
5
+ """
6
+ from sympy.physics.units import second, meter, kilogram, ampere
7
+
8
+ __all__ = ['Medium']
9
+
10
+ from sympy.core.basic import Basic
11
+ from sympy.core.symbol import Str
12
+ from sympy.core.sympify import _sympify
13
+ from sympy.functions.elementary.miscellaneous import sqrt
14
+ from sympy.physics.units import speed_of_light, u0, e0
15
+
16
+
17
+ c = speed_of_light.convert_to(meter/second)
18
+ _e0mksa = e0.convert_to(ampere**2*second**4/(kilogram*meter**3))
19
+ _u0mksa = u0.convert_to(meter*kilogram/(ampere**2*second**2))
20
+
21
+
22
+ class Medium(Basic):
23
+
24
+ """
25
+ This class represents an optical medium. The prime reason to implement this is
26
+ to facilitate refraction, Fermat's principle, etc.
27
+
28
+ Explanation
29
+ ===========
30
+
31
+ An optical medium is a material through which electromagnetic waves propagate.
32
+ The permittivity and permeability of the medium define how electromagnetic
33
+ waves propagate in it.
34
+
35
+
36
+ Parameters
37
+ ==========
38
+
39
+ name: string
40
+ The display name of the Medium.
41
+
42
+ permittivity: Sympifyable
43
+ Electric permittivity of the space.
44
+
45
+ permeability: Sympifyable
46
+ Magnetic permeability of the space.
47
+
48
+ n: Sympifyable
49
+ Index of refraction of the medium.
50
+
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy.abc import epsilon, mu
56
+ >>> from sympy.physics.optics import Medium
57
+ >>> m1 = Medium('m1')
58
+ >>> m2 = Medium('m2', epsilon, mu)
59
+ >>> m1.intrinsic_impedance
60
+ 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
61
+ >>> m2.refractive_index
62
+ 299792458*meter*sqrt(epsilon*mu)/second
63
+
64
+
65
+ References
66
+ ==========
67
+
68
+ .. [1] https://en.wikipedia.org/wiki/Optical_medium
69
+
70
+ """
71
+
72
+ def __new__(cls, name, permittivity=None, permeability=None, n=None):
73
+ if not isinstance(name, Str):
74
+ name = Str(name)
75
+
76
+ permittivity = _sympify(permittivity) if permittivity is not None else permittivity
77
+ permeability = _sympify(permeability) if permeability is not None else permeability
78
+ n = _sympify(n) if n is not None else n
79
+
80
+ if n is not None:
81
+ if permittivity is not None and permeability is None:
82
+ permeability = n**2/(c**2*permittivity)
83
+ return MediumPP(name, permittivity, permeability)
84
+ elif permeability is not None and permittivity is None:
85
+ permittivity = n**2/(c**2*permeability)
86
+ return MediumPP(name, permittivity, permeability)
87
+ elif permittivity is not None and permittivity is not None:
88
+ raise ValueError("Specifying all of permittivity, permeability, and n is not allowed")
89
+ else:
90
+ return MediumN(name, n)
91
+ elif permittivity is not None and permeability is not None:
92
+ return MediumPP(name, permittivity, permeability)
93
+ elif permittivity is None and permeability is None:
94
+ return MediumPP(name, _e0mksa, _u0mksa)
95
+ else:
96
+ raise ValueError("Arguments are underspecified. Either specify n or any two of permittivity, "
97
+ "permeability, and n")
98
+
99
+ @property
100
+ def name(self):
101
+ return self.args[0]
102
+
103
+ @property
104
+ def speed(self):
105
+ """
106
+ Returns speed of the electromagnetic wave travelling in the medium.
107
+
108
+ Examples
109
+ ========
110
+
111
+ >>> from sympy.physics.optics import Medium
112
+ >>> m = Medium('m')
113
+ >>> m.speed
114
+ 299792458*meter/second
115
+ >>> m2 = Medium('m2', n=1)
116
+ >>> m.speed == m2.speed
117
+ True
118
+
119
+ """
120
+ return c / self.n
121
+
122
+ @property
123
+ def refractive_index(self):
124
+ """
125
+ Returns refractive index of the medium.
126
+
127
+ Examples
128
+ ========
129
+
130
+ >>> from sympy.physics.optics import Medium
131
+ >>> m = Medium('m')
132
+ >>> m.refractive_index
133
+ 1
134
+
135
+ """
136
+ return (c/self.speed)
137
+
138
+
139
+ class MediumN(Medium):
140
+
141
+ """
142
+ Represents an optical medium for which only the refractive index is known.
143
+ Useful for simple ray optics.
144
+
145
+ This class should never be instantiated directly.
146
+ Instead it should be instantiated indirectly by instantiating Medium with
147
+ only n specified.
148
+
149
+ Examples
150
+ ========
151
+ >>> from sympy.physics.optics import Medium
152
+ >>> m = Medium('m', n=2)
153
+ >>> m
154
+ MediumN(Str('m'), 2)
155
+ """
156
+
157
+ def __new__(cls, name, n):
158
+ obj = super(Medium, cls).__new__(cls, name, n)
159
+ return obj
160
+
161
+ @property
162
+ def n(self):
163
+ return self.args[1]
164
+
165
+
166
+ class MediumPP(Medium):
167
+ """
168
+ Represents an optical medium for which the permittivity and permeability are known.
169
+
170
+ This class should never be instantiated directly. Instead it should be
171
+ instantiated indirectly by instantiating Medium with any two of
172
+ permittivity, permeability, and n specified, or by not specifying any
173
+ of permittivity, permeability, or n, in which case default values for
174
+ permittivity and permeability will be used.
175
+
176
+ Examples
177
+ ========
178
+ >>> from sympy.physics.optics import Medium
179
+ >>> from sympy.abc import epsilon, mu
180
+ >>> m1 = Medium('m1', permittivity=epsilon, permeability=mu)
181
+ >>> m1
182
+ MediumPP(Str('m1'), epsilon, mu)
183
+ >>> m2 = Medium('m2')
184
+ >>> m2
185
+ MediumPP(Str('m2'), 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3), pi*kilogram*meter/(2500000*ampere**2*second**2))
186
+ """
187
+
188
+
189
+ def __new__(cls, name, permittivity, permeability):
190
+ obj = super(Medium, cls).__new__(cls, name, permittivity, permeability)
191
+ return obj
192
+
193
+ @property
194
+ def intrinsic_impedance(self):
195
+ """
196
+ Returns intrinsic impedance of the medium.
197
+
198
+ Explanation
199
+ ===========
200
+
201
+ The intrinsic impedance of a medium is the ratio of the
202
+ transverse components of the electric and magnetic fields
203
+ of the electromagnetic wave travelling in the medium.
204
+ In a region with no electrical conductivity it simplifies
205
+ to the square root of ratio of magnetic permeability to
206
+ electric permittivity.
207
+
208
+ Examples
209
+ ========
210
+
211
+ >>> from sympy.physics.optics import Medium
212
+ >>> m = Medium('m')
213
+ >>> m.intrinsic_impedance
214
+ 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
215
+
216
+ """
217
+ return sqrt(self.permeability / self.permittivity)
218
+
219
+ @property
220
+ def permittivity(self):
221
+ """
222
+ Returns electric permittivity of the medium.
223
+
224
+ Examples
225
+ ========
226
+
227
+ >>> from sympy.physics.optics import Medium
228
+ >>> m = Medium('m')
229
+ >>> m.permittivity
230
+ 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3)
231
+
232
+ """
233
+ return self.args[1]
234
+
235
+ @property
236
+ def permeability(self):
237
+ """
238
+ Returns magnetic permeability of the medium.
239
+
240
+ Examples
241
+ ========
242
+
243
+ >>> from sympy.physics.optics import Medium
244
+ >>> m = Medium('m')
245
+ >>> m.permeability
246
+ pi*kilogram*meter/(2500000*ampere**2*second**2)
247
+
248
+ """
249
+ return self.args[2]
250
+
251
+ @property
252
+ def n(self):
253
+ return c*sqrt(self.permittivity*self.permeability)
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/polarization.py ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ The module implements routines to model the polarization of optical fields
5
+ and can be used to calculate the effects of polarization optical elements on
6
+ the fields.
7
+
8
+ - Jones vectors.
9
+
10
+ - Stokes vectors.
11
+
12
+ - Jones matrices.
13
+
14
+ - Mueller matrices.
15
+
16
+ Examples
17
+ ========
18
+
19
+ We calculate a generic Jones vector:
20
+
21
+ >>> from sympy import symbols, pprint, zeros, simplify
22
+ >>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
23
+ ... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes)
24
+
25
+ >>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True)
26
+ >>> x0 = jones_vector(psi, chi)
27
+ >>> pprint(x0, use_unicode=True)
28
+ ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
29
+ ⎢ ⎥
30
+ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
31
+
32
+ And the more general Stokes vector:
33
+
34
+ >>> s0 = stokes_vector(psi, chi, p, I0)
35
+ >>> pprint(s0, use_unicode=True)
36
+ ⎡ I₀ ⎤
37
+ ⎢ ⎥
38
+ ⎢I₀⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
39
+ ⎢ ⎥
40
+ ⎢I₀⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
41
+ ⎢ ⎥
42
+ ⎣ I₀⋅p⋅sin(2⋅χ) ⎦
43
+
44
+ We calculate how the Jones vector is modified by a half-wave plate:
45
+
46
+ >>> alpha = symbols("alpha", real=True)
47
+ >>> HWP = half_wave_retarder(alpha)
48
+ >>> x1 = simplify(HWP*x0)
49
+
50
+ We calculate the very common operation of passing a beam through a half-wave
51
+ plate and then through a polarizing beam-splitter. We do this by putting this
52
+ Jones vector as the first entry of a two-Jones-vector state that is transformed
53
+ by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the
54
+ transmitted and reflected Jones vectors:
55
+
56
+ >>> PBS = polarizing_beam_splitter()
57
+ >>> X1 = zeros(4, 1)
58
+ >>> X1[:2, :] = x1
59
+ >>> X2 = PBS*X1
60
+ >>> transmitted_port = X2[:2, :]
61
+ >>> reflected_port = X2[2:, :]
62
+
63
+ This allows us to calculate how the power in both ports depends on the initial
64
+ polarization:
65
+
66
+ >>> transmitted_power = jones_2_stokes(transmitted_port)[0]
67
+ >>> reflected_power = jones_2_stokes(reflected_port)[0]
68
+ >>> print(transmitted_power)
69
+ cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2
70
+
71
+
72
+ >>> print(reflected_power)
73
+ sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2
74
+
75
+ Please see the description of the individual functions for further
76
+ details and examples.
77
+
78
+ References
79
+ ==========
80
+
81
+ .. [1] https://en.wikipedia.org/wiki/Jones_calculus
82
+ .. [2] https://en.wikipedia.org/wiki/Mueller_calculus
83
+ .. [3] https://en.wikipedia.org/wiki/Stokes_parameters
84
+
85
+ """
86
+
87
+ from sympy.core.numbers import (I, pi)
88
+ from sympy.functions.elementary.complexes import (Abs, im, re)
89
+ from sympy.functions.elementary.exponential import exp
90
+ from sympy.functions.elementary.miscellaneous import sqrt
91
+ from sympy.functions.elementary.trigonometric import (cos, sin)
92
+ from sympy.matrices.dense import Matrix
93
+ from sympy.simplify.simplify import simplify
94
+ from sympy.physics.quantum import TensorProduct
95
+
96
+
97
+ def jones_vector(psi, chi):
98
+ """A Jones vector corresponding to a polarization ellipse with `psi` tilt,
99
+ and `chi` circularity.
100
+
101
+ Parameters
102
+ ==========
103
+
104
+ psi : numeric type or SymPy Symbol
105
+ The tilt of the polarization relative to the `x` axis.
106
+
107
+ chi : numeric type or SymPy Symbol
108
+ The angle adjacent to the mayor axis of the polarization ellipse.
109
+
110
+
111
+ Returns
112
+ =======
113
+
114
+ Matrix :
115
+ A Jones vector.
116
+
117
+ Examples
118
+ ========
119
+
120
+ The axes on the Poincaré sphere.
121
+
122
+ >>> from sympy import pprint, symbols, pi
123
+ >>> from sympy.physics.optics.polarization import jones_vector
124
+ >>> psi, chi = symbols("psi, chi", real=True)
125
+
126
+ A general Jones vector.
127
+
128
+ >>> pprint(jones_vector(psi, chi), use_unicode=True)
129
+ ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
130
+ ⎢ ⎥
131
+ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
132
+
133
+ Horizontal polarization.
134
+
135
+ >>> pprint(jones_vector(0, 0), use_unicode=True)
136
+ ⎡1⎤
137
+ ⎢ ⎥
138
+ ⎣0⎦
139
+
140
+ Vertical polarization.
141
+
142
+ >>> pprint(jones_vector(pi/2, 0), use_unicode=True)
143
+ ⎡0⎤
144
+ ⎢ ⎥
145
+ ⎣1⎦
146
+
147
+ Diagonal polarization.
148
+
149
+ >>> pprint(jones_vector(pi/4, 0), use_unicode=True)
150
+ ⎡√2⎤
151
+ ⎢──⎥
152
+ ⎢2 ⎥
153
+ ⎢ ⎥
154
+ ⎢√2⎥
155
+ ⎢──⎥
156
+ ⎣2 ⎦
157
+
158
+ Anti-diagonal polarization.
159
+
160
+ >>> pprint(jones_vector(-pi/4, 0), use_unicode=True)
161
+ ⎡ √2 ⎤
162
+ ⎢ ── ⎥
163
+ ⎢ 2 ⎥
164
+ ⎢ ⎥
165
+ ⎢-√2 ⎥
166
+ ⎢────⎥
167
+ ⎣ 2 ⎦
168
+
169
+ Right-hand circular polarization.
170
+
171
+ >>> pprint(jones_vector(0, pi/4), use_unicode=True)
172
+ ⎡ √2 ⎤
173
+ ⎢ ── ⎥
174
+ ⎢ 2 ⎥
175
+ ⎢ ⎥
176
+ ⎢√2⋅ⅈ⎥
177
+ ⎢────⎥
178
+ ⎣ 2 ⎦
179
+
180
+ Left-hand circular polarization.
181
+
182
+ >>> pprint(jones_vector(0, -pi/4), use_unicode=True)
183
+ ⎡ √2 ⎤
184
+ ⎢ ── ⎥
185
+ ⎢ 2 ⎥
186
+ ⎢ ⎥
187
+ ⎢-√2⋅ⅈ ⎥
188
+ ⎢──────⎥
189
+ ⎣ 2 ⎦
190
+
191
+ """
192
+ return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi),
193
+ I*sin(chi)*cos(psi) + sin(psi)*cos(chi)])
194
+
195
+
196
+ def stokes_vector(psi, chi, p=1, I=1):
197
+ """A Stokes vector corresponding to a polarization ellipse with ``psi``
198
+ tilt, and ``chi`` circularity.
199
+
200
+ Parameters
201
+ ==========
202
+
203
+ psi : numeric type or SymPy Symbol
204
+ The tilt of the polarization relative to the ``x`` axis.
205
+ chi : numeric type or SymPy Symbol
206
+ The angle adjacent to the mayor axis of the polarization ellipse.
207
+ p : numeric type or SymPy Symbol
208
+ The degree of polarization.
209
+ I : numeric type or SymPy Symbol
210
+ The intensity of the field.
211
+
212
+
213
+ Returns
214
+ =======
215
+
216
+ Matrix :
217
+ A Stokes vector.
218
+
219
+ Examples
220
+ ========
221
+
222
+ The axes on the Poincaré sphere.
223
+
224
+ >>> from sympy import pprint, symbols, pi
225
+ >>> from sympy.physics.optics.polarization import stokes_vector
226
+ >>> psi, chi, p, I = symbols("psi, chi, p, I", real=True)
227
+ >>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True)
228
+ ⎡ I ⎤
229
+ ⎢ ⎥
230
+ ⎢I⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
231
+ ⎢ ⎥
232
+ ⎢I⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
233
+ ⎢ ⎥
234
+ ⎣ I⋅p⋅sin(2⋅χ) ⎦
235
+
236
+
237
+ Horizontal polarization
238
+
239
+ >>> pprint(stokes_vector(0, 0), use_unicode=True)
240
+ ⎡1⎤
241
+ ⎢ ⎥
242
+ ⎢1⎥
243
+ ⎢ ⎥
244
+ ⎢0⎥
245
+ ⎢ ⎥
246
+ ⎣0⎦
247
+
248
+ Vertical polarization
249
+
250
+ >>> pprint(stokes_vector(pi/2, 0), use_unicode=True)
251
+ ⎡1 ⎤
252
+ ⎢ ⎥
253
+ ⎢-1⎥
254
+ ⎢ ⎥
255
+ ⎢0 ⎥
256
+ ⎢ ⎥
257
+ ⎣0 ⎦
258
+
259
+ Diagonal polarization
260
+
261
+ >>> pprint(stokes_vector(pi/4, 0), use_unicode=True)
262
+ ⎡1⎤
263
+ ⎢ ⎥
264
+ ⎢0⎥
265
+ ⎢ ⎥
266
+ ⎢1⎥
267
+ ⎢ ⎥
268
+ ⎣0⎦
269
+
270
+ Anti-diagonal polarization
271
+
272
+ >>> pprint(stokes_vector(-pi/4, 0), use_unicode=True)
273
+ ⎡1 ⎤
274
+ ⎢ ⎥
275
+ ⎢0 ⎥
276
+ ⎢ ⎥
277
+ ⎢-1⎥
278
+ ⎢ ⎥
279
+ ⎣0 ⎦
280
+
281
+ Right-hand circular polarization
282
+
283
+ >>> pprint(stokes_vector(0, pi/4), use_unicode=True)
284
+ ⎡1⎤
285
+ ⎢ ⎥
286
+ ⎢0⎥
287
+ ⎢ ⎥
288
+ ⎢0⎥
289
+ ⎢ ⎥
290
+ ⎣1⎦
291
+
292
+ Left-hand circular polarization
293
+
294
+ >>> pprint(stokes_vector(0, -pi/4), use_unicode=True)
295
+ ⎡1 ⎤
296
+ ⎢ ⎥
297
+ ⎢0 ⎥
298
+ ⎢ ⎥
299
+ ⎢0 ⎥
300
+ ⎢ ⎥
301
+ ⎣-1⎦
302
+
303
+ Unpolarized light
304
+
305
+ >>> pprint(stokes_vector(0, 0, 0), use_unicode=True)
306
+ ⎡1⎤
307
+ ⎢ ⎥
308
+ ⎢0⎥
309
+ ⎢ ⎥
310
+ ⎢0⎥
311
+ ⎢ ⎥
312
+ ⎣0⎦
313
+
314
+ """
315
+ S0 = I
316
+ S1 = I*p*cos(2*psi)*cos(2*chi)
317
+ S2 = I*p*sin(2*psi)*cos(2*chi)
318
+ S3 = I*p*sin(2*chi)
319
+ return Matrix([S0, S1, S2, S3])
320
+
321
+
322
+ def jones_2_stokes(e):
323
+ """Return the Stokes vector for a Jones vector ``e``.
324
+
325
+ Parameters
326
+ ==========
327
+
328
+ e : SymPy Matrix
329
+ A Jones vector.
330
+
331
+ Returns
332
+ =======
333
+
334
+ SymPy Matrix
335
+ A Jones vector.
336
+
337
+ Examples
338
+ ========
339
+
340
+ The axes on the Poincaré sphere.
341
+
342
+ >>> from sympy import pprint, pi
343
+ >>> from sympy.physics.optics.polarization import jones_vector
344
+ >>> from sympy.physics.optics.polarization import jones_2_stokes
345
+ >>> H = jones_vector(0, 0)
346
+ >>> V = jones_vector(pi/2, 0)
347
+ >>> D = jones_vector(pi/4, 0)
348
+ >>> A = jones_vector(-pi/4, 0)
349
+ >>> R = jones_vector(0, pi/4)
350
+ >>> L = jones_vector(0, -pi/4)
351
+ >>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]],
352
+ ... use_unicode=True)
353
+ ⎡⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤⎤
354
+ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
355
+ ⎢⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢0 ⎥⎥
356
+ ⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥⎥
357
+ ⎢⎢0⎥ ⎢0 ⎥ ⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥⎥
358
+ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
359
+ ⎣⎣0⎦ ⎣0 ⎦ ⎣0⎦ ⎣0 ⎦ ⎣1⎦ ⎣-1⎦⎦
360
+
361
+ """
362
+ ex, ey = e
363
+ return Matrix([Abs(ex)**2 + Abs(ey)**2,
364
+ Abs(ex)**2 - Abs(ey)**2,
365
+ 2*re(ex*ey.conjugate()),
366
+ -2*im(ex*ey.conjugate())])
367
+
368
+
369
+ def linear_polarizer(theta=0):
370
+ """A linear polarizer Jones matrix with transmission axis at
371
+ an angle ``theta``.
372
+
373
+ Parameters
374
+ ==========
375
+
376
+ theta : numeric type or SymPy Symbol
377
+ The angle of the transmission axis relative to the horizontal plane.
378
+
379
+ Returns
380
+ =======
381
+
382
+ SymPy Matrix
383
+ A Jones matrix representing the polarizer.
384
+
385
+ Examples
386
+ ========
387
+
388
+ A generic polarizer.
389
+
390
+ >>> from sympy import pprint, symbols
391
+ >>> from sympy.physics.optics.polarization import linear_polarizer
392
+ >>> theta = symbols("theta", real=True)
393
+ >>> J = linear_polarizer(theta)
394
+ >>> pprint(J, use_unicode=True)
395
+ ⎡ 2 ⎤
396
+ ⎢ cos (θ) sin(θ)⋅cos(θ)⎥
397
+ ⎢ ⎥
398
+ ⎢ 2 ⎥
399
+ ⎣sin(θ)⋅cos(θ) sin (θ) ⎦
400
+
401
+
402
+ """
403
+ M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)],
404
+ [sin(theta)*cos(theta), sin(theta)**2]])
405
+ return M
406
+
407
+
408
+ def phase_retarder(theta=0, delta=0):
409
+ """A phase retarder Jones matrix with retardance ``delta`` at angle ``theta``.
410
+
411
+ Parameters
412
+ ==========
413
+
414
+ theta : numeric type or SymPy Symbol
415
+ The angle of the fast axis relative to the horizontal plane.
416
+ delta : numeric type or SymPy Symbol
417
+ The phase difference between the fast and slow axes of the
418
+ transmitted light.
419
+
420
+ Returns
421
+ =======
422
+
423
+ SymPy Matrix :
424
+ A Jones matrix representing the retarder.
425
+
426
+ Examples
427
+ ========
428
+
429
+ A generic retarder.
430
+
431
+ >>> from sympy import pprint, symbols
432
+ >>> from sympy.physics.optics.polarization import phase_retarder
433
+ >>> theta, delta = symbols("theta, delta", real=True)
434
+ >>> R = phase_retarder(theta, delta)
435
+ >>> pprint(R, use_unicode=True)
436
+ ⎡ -ⅈ⋅δ -ⅈ⋅δ ⎤
437
+ ⎢ ───── ───── ⎥
438
+ ⎢⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎛ ⅈ⋅δ⎞ 2 ⎥
439
+ ⎢⎝ℯ ⋅sin (θ) + cos (θ)⎠⋅ℯ ⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
440
+ ⎢ ⎥
441
+ ⎢ -ⅈ⋅δ -ⅈ⋅δ ⎥
442
+ ⎢ ───── ─────⎥
443
+ ⎢⎛ ⅈ⋅δ⎞ 2 ⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎥
444
+ ⎣⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝ℯ ⋅cos (θ) + sin (θ)⎠⋅ℯ ⎦
445
+
446
+ """
447
+ R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2,
448
+ (1-exp(I*delta))*cos(theta)*sin(theta)],
449
+ [(1-exp(I*delta))*cos(theta)*sin(theta),
450
+ sin(theta)**2 + exp(I*delta)*cos(theta)**2]])
451
+ return R*exp(-I*delta/2)
452
+
453
+
454
+ def half_wave_retarder(theta):
455
+ """A half-wave retarder Jones matrix at angle ``theta``.
456
+
457
+ Parameters
458
+ ==========
459
+
460
+ theta : numeric type or SymPy Symbol
461
+ The angle of the fast axis relative to the horizontal plane.
462
+
463
+ Returns
464
+ =======
465
+
466
+ SymPy Matrix
467
+ A Jones matrix representing the retarder.
468
+
469
+ Examples
470
+ ========
471
+
472
+ A generic half-wave plate.
473
+
474
+ >>> from sympy import pprint, symbols
475
+ >>> from sympy.physics.optics.polarization import half_wave_retarder
476
+ >>> theta= symbols("theta", real=True)
477
+ >>> HWP = half_wave_retarder(theta)
478
+ >>> pprint(HWP, use_unicode=True)
479
+ ⎡ ⎛ 2 2 ⎞ ⎤
480
+ ⎢-ⅈ⋅⎝- sin (θ) + cos (θ)⎠ -2⋅ⅈ⋅sin(θ)⋅cos(θ) ⎥
481
+ ⎢ ⎥
482
+ ⎢ ⎛ 2 2 ⎞⎥
483
+ ⎣ -2⋅ⅈ⋅sin(θ)⋅cos(θ) -ⅈ⋅⎝sin (θ) - cos (θ)⎠⎦
484
+
485
+ """
486
+ return phase_retarder(theta, pi)
487
+
488
+
489
+ def quarter_wave_retarder(theta):
490
+ """A quarter-wave retarder Jones matrix at angle ``theta``.
491
+
492
+ Parameters
493
+ ==========
494
+
495
+ theta : numeric type or SymPy Symbol
496
+ The angle of the fast axis relative to the horizontal plane.
497
+
498
+ Returns
499
+ =======
500
+
501
+ SymPy Matrix
502
+ A Jones matrix representing the retarder.
503
+
504
+ Examples
505
+ ========
506
+
507
+ A generic quarter-wave plate.
508
+
509
+ >>> from sympy import pprint, symbols
510
+ >>> from sympy.physics.optics.polarization import quarter_wave_retarder
511
+ >>> theta= symbols("theta", real=True)
512
+ >>> QWP = quarter_wave_retarder(theta)
513
+ >>> pprint(QWP, use_unicode=True)
514
+ ⎡ -ⅈ⋅π -ⅈ⋅π ⎤
515
+ ⎢ ───── ───── ⎥
516
+ ⎢⎛ 2 2 ⎞ 4 4 ⎥
517
+ ⎢⎝ⅈ⋅sin (θ) + cos (θ)⎠⋅ℯ (1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
518
+ ⎢ ⎥
519
+ ⎢ -ⅈ⋅π -ⅈ⋅π ⎥
520
+ ⎢ ───── ─────⎥
521
+ ⎢ 4 ⎛ 2 2 ⎞ 4 ⎥
522
+ ⎣(1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝sin (θ) + ⅈ⋅cos (θ)⎠⋅ℯ ⎦
523
+
524
+ """
525
+ return phase_retarder(theta, pi/2)
526
+
527
+
528
+ def transmissive_filter(T):
529
+ """An attenuator Jones matrix with transmittance ``T``.
530
+
531
+ Parameters
532
+ ==========
533
+
534
+ T : numeric type or SymPy Symbol
535
+ The transmittance of the attenuator.
536
+
537
+ Returns
538
+ =======
539
+
540
+ SymPy Matrix
541
+ A Jones matrix representing the filter.
542
+
543
+ Examples
544
+ ========
545
+
546
+ A generic filter.
547
+
548
+ >>> from sympy import pprint, symbols
549
+ >>> from sympy.physics.optics.polarization import transmissive_filter
550
+ >>> T = symbols("T", real=True)
551
+ >>> NDF = transmissive_filter(T)
552
+ >>> pprint(NDF, use_unicode=True)
553
+ ⎡√T 0 ⎤
554
+ ⎢ ⎥
555
+ ⎣0 √T⎦
556
+
557
+ """
558
+ return Matrix([[sqrt(T), 0], [0, sqrt(T)]])
559
+
560
+
561
+ def reflective_filter(R):
562
+ """A reflective filter Jones matrix with reflectance ``R``.
563
+
564
+ Parameters
565
+ ==========
566
+
567
+ R : numeric type or SymPy Symbol
568
+ The reflectance of the filter.
569
+
570
+ Returns
571
+ =======
572
+
573
+ SymPy Matrix
574
+ A Jones matrix representing the filter.
575
+
576
+ Examples
577
+ ========
578
+
579
+ A generic filter.
580
+
581
+ >>> from sympy import pprint, symbols
582
+ >>> from sympy.physics.optics.polarization import reflective_filter
583
+ >>> R = symbols("R", real=True)
584
+ >>> pprint(reflective_filter(R), use_unicode=True)
585
+ ⎡√R 0 ⎤
586
+ ⎢ ⎥
587
+ ⎣0 -√R⎦
588
+
589
+ """
590
+ return Matrix([[sqrt(R), 0], [0, -sqrt(R)]])
591
+
592
+
593
+ def mueller_matrix(J):
594
+ """The Mueller matrix corresponding to Jones matrix `J`.
595
+
596
+ Parameters
597
+ ==========
598
+
599
+ J : SymPy Matrix
600
+ A Jones matrix.
601
+
602
+ Returns
603
+ =======
604
+
605
+ SymPy Matrix
606
+ The corresponding Mueller matrix.
607
+
608
+ Examples
609
+ ========
610
+
611
+ Generic optical components.
612
+
613
+ >>> from sympy import pprint, symbols
614
+ >>> from sympy.physics.optics.polarization import (mueller_matrix,
615
+ ... linear_polarizer, half_wave_retarder, quarter_wave_retarder)
616
+ >>> theta = symbols("theta", real=True)
617
+
618
+ A linear_polarizer
619
+
620
+ >>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True)
621
+ ⎡ cos(2⋅θ) sin(2⋅θ) ⎤
622
+ ⎢ 1/2 ──────── ──────── 0⎥
623
+ ⎢ 2 2 ⎥
624
+ ⎢ ⎥
625
+ ⎢cos(2⋅θ) cos(4⋅θ) 1 sin(4⋅θ) ⎥
626
+ ⎢──────── ──────── + ─ ──────── 0⎥
627
+ ⎢ 2 4 4 4 ⎥
628
+ ⎢ ⎥
629
+ ⎢sin(2⋅θ) sin(4⋅θ) 1 cos(4⋅θ) ⎥
630
+ ⎢──────── ──────── ─ - ──────── 0⎥
631
+ ⎢ 2 4 4 4 ⎥
632
+ ⎢ ⎥
633
+ ⎣ 0 0 0 0⎦
634
+
635
+ A half-wave plate
636
+
637
+ >>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True)
638
+ ⎡1 0 0 0 ⎤
639
+ ⎢ ⎥
640
+ ⎢ 4 2 ⎥
641
+ ⎢0 8⋅sin (θ) - 8⋅sin (θ) + 1 sin(4⋅θ) 0 ⎥
642
+ ⎢ ⎥
643
+ ⎢ 4 2 ⎥
644
+ ⎢0 sin(4⋅θ) - 8⋅sin (θ) + 8⋅sin (θ) - 1 0 ⎥
645
+ ⎢ ⎥
646
+ ⎣0 0 0 -1⎦
647
+
648
+ A quarter-wave plate
649
+
650
+ >>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True)
651
+ ⎡1 0 0 0 ⎤
652
+ ⎢ ⎥
653
+ ⎢ cos(4⋅θ) 1 sin(4⋅θ) ⎥
654
+ ⎢0 ──────── + ─ ──────── -sin(2⋅θ)⎥
655
+ ⎢ 2 2 2 ⎥
656
+ ⎢ ⎥
657
+ ⎢ sin(4⋅θ) 1 cos(4⋅θ) ⎥
658
+ ⎢0 ──────── ─ - ──────── cos(2⋅θ) ⎥
659
+ ⎢ 2 2 2 ⎥
660
+ ⎢ ⎥
661
+ ⎣0 sin(2⋅θ) -cos(2⋅θ) 0 ⎦
662
+
663
+ """
664
+ A = Matrix([[1, 0, 0, 1],
665
+ [1, 0, 0, -1],
666
+ [0, 1, 1, 0],
667
+ [0, -I, I, 0]])
668
+
669
+ return simplify(A*TensorProduct(J, J.conjugate())*A.inv())
670
+
671
+
672
+ def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0):
673
+ r"""A polarizing beam splitter Jones matrix at angle `theta`.
674
+
675
+ Parameters
676
+ ==========
677
+
678
+ J : SymPy Matrix
679
+ A Jones matrix.
680
+ Tp : numeric type or SymPy Symbol
681
+ The transmissivity of the P-polarized component.
682
+ Rs : numeric type or SymPy Symbol
683
+ The reflectivity of the S-polarized component.
684
+ Ts : numeric type or SymPy Symbol
685
+ The transmissivity of the S-polarized component.
686
+ Rp : numeric type or SymPy Symbol
687
+ The reflectivity of the P-polarized component.
688
+ phia : numeric type or SymPy Symbol
689
+ The phase difference between transmitted and reflected component for
690
+ output mode a.
691
+ phib : numeric type or SymPy Symbol
692
+ The phase difference between transmitted and reflected component for
693
+ output mode b.
694
+
695
+
696
+ Returns
697
+ =======
698
+
699
+ SymPy Matrix
700
+ A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector
701
+ whose first two entries are the Jones vector on one of the PBS ports,
702
+ and the last two entries the Jones vector on the other port.
703
+
704
+ Examples
705
+ ========
706
+
707
+ Generic polarizing beam-splitter.
708
+
709
+ >>> from sympy import pprint, symbols
710
+ >>> from sympy.physics.optics.polarization import polarizing_beam_splitter
711
+ >>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True)
712
+ >>> phia, phib = symbols("phi_a, phi_b", real=True)
713
+ >>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib)
714
+ >>> pprint(PBS, use_unicode=False)
715
+ [ ____ ____ ]
716
+ [ \/ Tp 0 I*\/ Rp 0 ]
717
+ [ ]
718
+ [ ____ ____ I*phi_a]
719
+ [ 0 \/ Ts 0 -I*\/ Rs *e ]
720
+ [ ]
721
+ [ ____ ____ ]
722
+ [I*\/ Rp 0 \/ Tp 0 ]
723
+ [ ]
724
+ [ ____ I*phi_b ____ ]
725
+ [ 0 -I*\/ Rs *e 0 \/ Ts ]
726
+
727
+ """
728
+ PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0],
729
+ [0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)],
730
+ [I*sqrt(Rp), 0, sqrt(Tp), 0],
731
+ [0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]])
732
+ return PBS
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc ADDED
Binary file (4.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc ADDED
Binary file (2.18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc ADDED
Binary file (2.22 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_utils.cpython-310.pyc ADDED
Binary file (8.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_waves.cpython-310.pyc ADDED
Binary file (3.55 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.evalf import N
2
+ from sympy.core.numbers import (Float, I, oo, pi)
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import atan2
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.polys.polytools import factor
8
+
9
+ from sympy.physics.optics import (BeamParameter, CurvedMirror,
10
+ CurvedRefraction, FlatMirror, FlatRefraction, FreeSpace, GeometricRay,
11
+ RayTransferMatrix, ThinLens, conjugate_gauss_beams,
12
+ gaussian_conj, geometric_conj_ab, geometric_conj_af, geometric_conj_bf,
13
+ rayleigh2waist, waist2rayleigh)
14
+
15
+
16
+ def streq(a, b):
17
+ return str(a) == str(b)
18
+
19
+
20
+ def test_gauss_opt():
21
+ mat = RayTransferMatrix(1, 2, 3, 4)
22
+ assert mat == Matrix([[1, 2], [3, 4]])
23
+ assert mat == RayTransferMatrix( Matrix([[1, 2], [3, 4]]) )
24
+ assert [mat.A, mat.B, mat.C, mat.D] == [1, 2, 3, 4]
25
+
26
+ d, f, h, n1, n2, R = symbols('d f h n1 n2 R')
27
+ lens = ThinLens(f)
28
+ assert lens == Matrix([[ 1, 0], [-1/f, 1]])
29
+ assert lens.C == -1/f
30
+ assert FreeSpace(d) == Matrix([[ 1, d], [0, 1]])
31
+ assert FlatRefraction(n1, n2) == Matrix([[1, 0], [0, n1/n2]])
32
+ assert CurvedRefraction(
33
+ R, n1, n2) == Matrix([[1, 0], [(n1 - n2)/(R*n2), n1/n2]])
34
+ assert FlatMirror() == Matrix([[1, 0], [0, 1]])
35
+ assert CurvedMirror(R) == Matrix([[ 1, 0], [-2/R, 1]])
36
+ assert ThinLens(f) == Matrix([[ 1, 0], [-1/f, 1]])
37
+
38
+ mul = CurvedMirror(R)*FreeSpace(d)
39
+ mul_mat = Matrix([[ 1, 0], [-2/R, 1]])*Matrix([[ 1, d], [0, 1]])
40
+ assert mul.A == mul_mat[0, 0]
41
+ assert mul.B == mul_mat[0, 1]
42
+ assert mul.C == mul_mat[1, 0]
43
+ assert mul.D == mul_mat[1, 1]
44
+
45
+ angle = symbols('angle')
46
+ assert GeometricRay(h, angle) == Matrix([[ h], [angle]])
47
+ assert FreeSpace(
48
+ d)*GeometricRay(h, angle) == Matrix([[angle*d + h], [angle]])
49
+ assert GeometricRay( Matrix( ((h,), (angle,)) ) ) == Matrix([[h], [angle]])
50
+ assert (FreeSpace(d)*GeometricRay(h, angle)).height == angle*d + h
51
+ assert (FreeSpace(d)*GeometricRay(h, angle)).angle == angle
52
+
53
+ p = BeamParameter(530e-9, 1, w=1e-3)
54
+ assert streq(p.q, 1 + 1.88679245283019*I*pi)
55
+ assert streq(N(p.q), 1.0 + 5.92753330865999*I)
56
+ assert streq(N(p.w_0), Float(0.00100000000000000))
57
+ assert streq(N(p.z_r), Float(5.92753330865999))
58
+ fs = FreeSpace(10)
59
+ p1 = fs*p
60
+ assert streq(N(p.w), Float(0.00101413072159615))
61
+ assert streq(N(p1.w), Float(0.00210803120913829))
62
+
63
+ w, wavelen = symbols('w wavelen')
64
+ assert waist2rayleigh(w, wavelen) == pi*w**2/wavelen
65
+ z_r, wavelen = symbols('z_r wavelen')
66
+ assert rayleigh2waist(z_r, wavelen) == sqrt(wavelen*z_r)/sqrt(pi)
67
+
68
+ a, b, f = symbols('a b f')
69
+ assert geometric_conj_ab(a, b) == a*b/(a + b)
70
+ assert geometric_conj_af(a, f) == a*f/(a - f)
71
+ assert geometric_conj_bf(b, f) == b*f/(b - f)
72
+ assert geometric_conj_ab(oo, b) == b
73
+ assert geometric_conj_ab(a, oo) == a
74
+
75
+ s_in, z_r_in, f = symbols('s_in z_r_in f')
76
+ assert gaussian_conj(
77
+ s_in, z_r_in, f)[0] == 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
78
+ assert gaussian_conj(
79
+ s_in, z_r_in, f)[1] == z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
80
+ assert gaussian_conj(
81
+ s_in, z_r_in, f)[2] == 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
82
+
83
+ l, w_i, w_o, f = symbols('l w_i w_o f')
84
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[0] == f*(
85
+ -sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)) + 1)
86
+ assert factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) == f*w_o**2*(
87
+ w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2
88
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[2] == f
89
+
90
+ z, l, w_0 = symbols('z l w_0', positive=True)
91
+ p = BeamParameter(l, z, w=w_0)
92
+ assert p.radius == z*(pi**2*w_0**4/(l**2*z**2) + 1)
93
+ assert p.w == w_0*sqrt(l**2*z**2/(pi**2*w_0**4) + 1)
94
+ assert p.w_0 == w_0
95
+ assert p.divergence == l/(pi*w_0)
96
+ assert p.gouy == atan2(z, pi*w_0**2/l)
97
+ assert p.waist_approximation_limit == 2*l/pi
98
+
99
+ p = BeamParameter(530e-9, 1, w=1e-3, n=2)
100
+ assert streq(p.q, 1 + 3.77358490566038*I*pi)
101
+ assert streq(N(p.z_r), Float(11.8550666173200))
102
+ assert streq(N(p.w_0), Float(0.00100000000000000))
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.functions.elementary.miscellaneous import sqrt
2
+ from sympy.physics.optics import Medium
3
+ from sympy.abc import epsilon, mu, n
4
+ from sympy.physics.units import speed_of_light, u0, e0, m, kg, s, A
5
+
6
+ from sympy.testing.pytest import raises
7
+
8
+ c = speed_of_light.convert_to(m/s)
9
+ e0 = e0.convert_to(A**2*s**4/(kg*m**3))
10
+ u0 = u0.convert_to(m*kg/(A**2*s**2))
11
+
12
+
13
+ def test_medium():
14
+ m1 = Medium('m1')
15
+ assert m1.intrinsic_impedance == sqrt(u0/e0)
16
+ assert m1.speed == 1/sqrt(e0*u0)
17
+ assert m1.refractive_index == c*sqrt(e0*u0)
18
+ assert m1.permittivity == e0
19
+ assert m1.permeability == u0
20
+ m2 = Medium('m2', epsilon, mu)
21
+ assert m2.intrinsic_impedance == sqrt(mu/epsilon)
22
+ assert m2.speed == 1/sqrt(epsilon*mu)
23
+ assert m2.refractive_index == c*sqrt(epsilon*mu)
24
+ assert m2.permittivity == epsilon
25
+ assert m2.permeability == mu
26
+ # Increasing electric permittivity and magnetic permeability
27
+ # by small amount from its value in vacuum.
28
+ m3 = Medium('m3', 9.0*10**(-12)*s**4*A**2/(m**3*kg), 1.45*10**(-6)*kg*m/(A**2*s**2))
29
+ assert m3.refractive_index > m1.refractive_index
30
+ assert m3 != m1
31
+ # Decreasing electric permittivity and magnetic permeability
32
+ # by small amount from its value in vacuum.
33
+ m4 = Medium('m4', 7.0*10**(-12)*s**4*A**2/(m**3*kg), 1.15*10**(-6)*kg*m/(A**2*s**2))
34
+ assert m4.refractive_index < m1.refractive_index
35
+ m5 = Medium('m5', permittivity=710*10**(-12)*s**4*A**2/(m**3*kg), n=1.33)
36
+ assert abs(m5.intrinsic_impedance - 6.24845417765552*kg*m**2/(A**2*s**3)) \
37
+ < 1e-12*kg*m**2/(A**2*s**3)
38
+ assert abs(m5.speed - 225407863.157895*m/s) < 1e-6*m/s
39
+ assert abs(m5.refractive_index - 1.33000000000000) < 1e-12
40
+ assert abs(m5.permittivity - 7.1e-10*A**2*s**4/(kg*m**3)) \
41
+ < 1e-20*A**2*s**4/(kg*m**3)
42
+ assert abs(m5.permeability - 2.77206575232851e-8*kg*m/(A**2*s**2)) \
43
+ < 1e-20*kg*m/(A**2*s**2)
44
+ m6 = Medium('m6', None, mu, n)
45
+ assert m6.permittivity == n**2/(c**2*mu)
46
+ # test for equality of refractive indices
47
+ assert Medium('m7').refractive_index == Medium('m8', e0, u0).refractive_index
48
+ raises(ValueError, lambda:Medium('m9', e0, u0, 2))
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
2
+ jones_2_stokes, linear_polarizer, phase_retarder, half_wave_retarder,
3
+ quarter_wave_retarder, transmissive_filter, reflective_filter,
4
+ mueller_matrix, polarizing_beam_splitter)
5
+ from sympy.core.numbers import (I, pi)
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import symbols
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.matrices.dense import Matrix
10
+
11
+
12
+ def test_polarization():
13
+ assert jones_vector(0, 0) == Matrix([1, 0])
14
+ assert jones_vector(pi/2, 0) == Matrix([0, 1])
15
+ #################################################################
16
+ assert stokes_vector(0, 0) == Matrix([1, 1, 0, 0])
17
+ assert stokes_vector(pi/2, 0) == Matrix([1, -1, 0, 0])
18
+ #################################################################
19
+ H = jones_vector(0, 0)
20
+ V = jones_vector(pi/2, 0)
21
+ D = jones_vector(pi/4, 0)
22
+ A = jones_vector(-pi/4, 0)
23
+ R = jones_vector(0, pi/4)
24
+ L = jones_vector(0, -pi/4)
25
+
26
+ res = [Matrix([1, 1, 0, 0]),
27
+ Matrix([1, -1, 0, 0]),
28
+ Matrix([1, 0, 1, 0]),
29
+ Matrix([1, 0, -1, 0]),
30
+ Matrix([1, 0, 0, 1]),
31
+ Matrix([1, 0, 0, -1])]
32
+
33
+ assert [jones_2_stokes(e) for e in [H, V, D, A, R, L]] == res
34
+ #################################################################
35
+ assert linear_polarizer(0) == Matrix([[1, 0], [0, 0]])
36
+ #################################################################
37
+ delta = symbols("delta", real=True)
38
+ res = Matrix([[exp(-I*delta/2), 0], [0, exp(I*delta/2)]])
39
+ assert phase_retarder(0, delta) == res
40
+ #################################################################
41
+ assert half_wave_retarder(0) == Matrix([[-I, 0], [0, I]])
42
+ #################################################################
43
+ res = Matrix([[exp(-I*pi/4), 0], [0, I*exp(-I*pi/4)]])
44
+ assert quarter_wave_retarder(0) == res
45
+ #################################################################
46
+ assert transmissive_filter(1) == Matrix([[1, 0], [0, 1]])
47
+ #################################################################
48
+ assert reflective_filter(1) == Matrix([[1, 0], [0, -1]])
49
+
50
+ res = Matrix([[S(1)/2, S(1)/2, 0, 0],
51
+ [S(1)/2, S(1)/2, 0, 0],
52
+ [0, 0, 0, 0],
53
+ [0, 0, 0, 0]])
54
+ assert mueller_matrix(linear_polarizer(0)) == res
55
+ #################################################################
56
+ res = Matrix([[1, 0, 0, 0], [0, 0, 0, -I], [0, 0, 1, 0], [0, -I, 0, 0]])
57
+ assert polarizing_beam_splitter() == res
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import comp, Rational
2
+ from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
3
+ deviation, brewster_angle, critical_angle, lens_makers_formula,
4
+ mirror_formula, lens_formula, hyperfocal_distance,
5
+ transverse_magnification)
6
+ from sympy.physics.optics.medium import Medium
7
+ from sympy.physics.units import e0
8
+
9
+ from sympy.core.numbers import oo
10
+ from sympy.core.symbol import symbols
11
+ from sympy.functions.elementary.miscellaneous import sqrt
12
+ from sympy.matrices.dense import Matrix
13
+ from sympy.geometry.point import Point3D
14
+ from sympy.geometry.line import Ray3D
15
+ from sympy.geometry.plane import Plane
16
+
17
+ from sympy.testing.pytest import raises
18
+
19
+
20
+ ae = lambda a, b, n: comp(a, b, 10**-n)
21
+
22
+
23
+ def test_refraction_angle():
24
+ n1, n2 = symbols('n1, n2')
25
+ m1 = Medium('m1')
26
+ m2 = Medium('m2')
27
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
28
+ i = Matrix([1, 1, 1])
29
+ n = Matrix([0, 0, 1])
30
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
31
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
32
+ assert refraction_angle(r1, 1, 1, n) == Matrix([
33
+ [ 1],
34
+ [ 1],
35
+ [-1]])
36
+ assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
37
+ [ 1],
38
+ [ 1],
39
+ [-1]])
40
+ assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
41
+ [ 1],
42
+ [ 1],
43
+ [-1]])
44
+ assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
45
+ [ 1],
46
+ [ 1],
47
+ [-1]])
48
+ assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
49
+ [ 1],
50
+ [ 1],
51
+ [-1]])
52
+ assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
53
+ [ 1],
54
+ [ 1],
55
+ [-1]])
56
+ assert refraction_angle(i, 1, 1, plane=P) == Matrix([
57
+ [ 1],
58
+ [ 1],
59
+ [-1]])
60
+ assert refraction_angle(r1, 1, 1, plane=P) == \
61
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
62
+ assert refraction_angle(r1, m1, 1.33, plane=P) == \
63
+ Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
64
+ assert refraction_angle(r1, 1, m2, plane=P) == \
65
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
66
+ assert refraction_angle(r1, n1, n2, plane=P) == \
67
+ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
68
+ assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
69
+ assert refraction_angle(r1, 1, 1, normal_ray) == \
70
+ Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
71
+ assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
72
+ assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
73
+ raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
74
+ raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
75
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
76
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
77
+
78
+
79
+ def test_fresnel_coefficients():
80
+ assert all(ae(i, j, 5) for i, j in zip(
81
+ fresnel_coefficients(0.5, 1, 1.33),
82
+ [0.11163, -0.17138, 0.83581, 0.82862]))
83
+ assert all(ae(i, j, 5) for i, j in zip(
84
+ fresnel_coefficients(0.5, 1.33, 1),
85
+ [-0.07726, 0.20482, 1.22724, 1.20482]))
86
+ m1 = Medium('m1')
87
+ m2 = Medium('m2', n=2)
88
+ assert all(ae(i, j, 5) for i, j in zip(
89
+ fresnel_coefficients(0.3, m1, m2),
90
+ [0.31784, -0.34865, 0.65892, 0.65135]))
91
+ ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
92
+ got = fresnel_coefficients(0.6, m2, m1)
93
+ for i, j in zip(got, ans):
94
+ for a, b in zip(i.as_real_imag(), j):
95
+ assert ae(a, b, 5)
96
+
97
+
98
+ def test_deviation():
99
+ n1, n2 = symbols('n1, n2')
100
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
101
+ n = Matrix([0, 0, 1])
102
+ i = Matrix([-1, -1, -1])
103
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
104
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
105
+ assert deviation(r1, 1, 1, normal=n) == 0
106
+ assert deviation(r1, 1, 1, plane=P) == 0
107
+ assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
108
+ assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
109
+ assert deviation(r1, 1.33, 1, plane=P) is None # TIR
110
+ assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
111
+ assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
112
+ assert ae(deviation(0.5, 1, 2), -0.25793, 5)
113
+ assert ae(deviation(0.5, 2, 1), 0.78293, 5)
114
+
115
+
116
+ def test_brewster_angle():
117
+ m1 = Medium('m1', n=1)
118
+ m2 = Medium('m2', n=1.33)
119
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
120
+ m1 = Medium('m1', permittivity=e0, n=1)
121
+ m2 = Medium('m2', permittivity=e0, n=1.33)
122
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
123
+ assert ae(brewster_angle(1, 1.33), 0.93, 2)
124
+
125
+
126
+ def test_critical_angle():
127
+ m1 = Medium('m1', n=1)
128
+ m2 = Medium('m2', n=1.33)
129
+ assert ae(critical_angle(m2, m1), 0.85, 2)
130
+
131
+
132
+ def test_lens_makers_formula():
133
+ n1, n2 = symbols('n1, n2')
134
+ m1 = Medium('m1', permittivity=e0, n=1)
135
+ m2 = Medium('m2', permittivity=e0, n=1.33)
136
+ assert lens_makers_formula(n1, n2, 10, -10) == 5.0*n2/(n1 - n2)
137
+ assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
138
+ assert ae(lens_makers_formula(1.33, 1, 10, -10), 15.15, 2)
139
+
140
+
141
+ def test_mirror_formula():
142
+ u, v, f = symbols('u, v, f')
143
+ assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
144
+ assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
145
+ assert mirror_formula(u=u, v=v) == u*v/(u + v)
146
+ assert mirror_formula(u=oo, v=v) == v
147
+ assert mirror_formula(u=oo, v=oo) is oo
148
+ assert mirror_formula(focal_length=oo, u=u) == -u
149
+ assert mirror_formula(u=u, v=oo) == u
150
+ assert mirror_formula(focal_length=oo, v=oo) is oo
151
+ assert mirror_formula(focal_length=f, v=oo) == f
152
+ assert mirror_formula(focal_length=oo, v=v) == -v
153
+ assert mirror_formula(focal_length=oo, u=oo) is oo
154
+ assert mirror_formula(focal_length=f, u=oo) == f
155
+ assert mirror_formula(focal_length=oo, u=u) == -u
156
+ raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))
157
+
158
+
159
+ def test_lens_formula():
160
+ u, v, f = symbols('u, v, f')
161
+ assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
162
+ assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
163
+ assert lens_formula(u=u, v=v) == u*v/(u - v)
164
+ assert lens_formula(u=oo, v=v) == v
165
+ assert lens_formula(u=oo, v=oo) is oo
166
+ assert lens_formula(focal_length=oo, u=u) == u
167
+ assert lens_formula(u=u, v=oo) == -u
168
+ assert lens_formula(focal_length=oo, v=oo) is -oo
169
+ assert lens_formula(focal_length=oo, v=v) == v
170
+ assert lens_formula(focal_length=f, v=oo) == -f
171
+ assert lens_formula(focal_length=oo, u=oo) is oo
172
+ assert lens_formula(focal_length=oo, u=u) == u
173
+ assert lens_formula(focal_length=f, u=oo) == f
174
+ raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))
175
+
176
+
177
+ def test_hyperfocal_distance():
178
+ f, N, c = symbols('f, N, c')
179
+ assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
180
+ assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2)
181
+
182
+
183
+ def test_transverse_magnification():
184
+ si, so = symbols('si, so')
185
+ assert transverse_magnification(si, so) == -si/so
186
+ assert transverse_magnification(30, 15) == -2
187
+
188
+
189
+ def test_lens_makers_formula_thick_lens():
190
+ n1, n2 = symbols('n1, n2')
191
+ m1 = Medium('m1', permittivity=e0, n=1)
192
+ m2 = Medium('m2', permittivity=e0, n=1.33)
193
+ assert ae(lens_makers_formula(m1, m2, 10, -10, d=1), -19.82, 2)
194
+ assert lens_makers_formula(n1, n2, 1, -1, d=0.1) == n2/((2.0 - (0.1*n1 - 0.1*n2)/n1)*(n1 - n2))
195
+
196
+
197
+ def test_lens_makers_formula_plano_lens():
198
+ n1, n2 = symbols('n1, n2')
199
+ m1 = Medium('m1', permittivity=e0, n=1)
200
+ m2 = Medium('m2', permittivity=e0, n=1.33)
201
+ assert ae(lens_makers_formula(m1, m2, 10, oo), -40.30, 2)
202
+ assert lens_makers_formula(n1, n2, 10, oo) == 10.0*n2/(n1 - n2)
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative, Function)
2
+ from sympy.core.numbers import (I, pi)
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
6
+ from sympy.simplify.simplify import simplify
7
+ from sympy.abc import epsilon, mu
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.physics.units import speed_of_light, m, s
10
+ from sympy.physics.optics import TWave
11
+
12
+ from sympy.testing.pytest import raises
13
+
14
+ c = speed_of_light.convert_to(m/s)
15
+
16
+ def test_twave():
17
+ A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
18
+ n = Symbol('n') # Refractive index
19
+ t = Symbol('t') # Time
20
+ x = Symbol('x') # Spatial variable
21
+ E = Function('E')
22
+ w1 = TWave(A1, f, phi1)
23
+ w2 = TWave(A2, f, phi2)
24
+ assert w1.amplitude == A1
25
+ assert w1.frequency == f
26
+ assert w1.phase == phi1
27
+ assert w1.wavelength == c/(f*n)
28
+ assert w1.time_period == 1/f
29
+ assert w1.angular_velocity == 2*pi*f
30
+ assert w1.wavenumber == 2*pi*f*n/c
31
+ assert w1.speed == c/n
32
+
33
+ w3 = w1 + w2
34
+ assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
35
+ assert w3.frequency == f
36
+ assert w3.phase == atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
37
+ assert w3.wavelength == c/(f*n)
38
+ assert w3.time_period == 1/f
39
+ assert w3.angular_velocity == 2*pi*f
40
+ assert w3.wavenumber == 2*pi*f*n/c
41
+ assert w3.speed == c/n
42
+ assert simplify(w3.rewrite(sin) - w2.rewrite(sin) - w1.rewrite(sin)) == 0
43
+ assert w3.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
44
+ assert w3.rewrite(cos) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
45
+ + A2**2)*cos(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + atan2(A1*sin(phi1)
46
+ + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)))
47
+ assert w3.rewrite(exp) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
48
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1)
49
+ + A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
50
+
51
+ w4 = TWave(A1, None, 0, 1/f)
52
+ assert w4.frequency == f
53
+
54
+ w5 = w1 - w2
55
+ assert w5.amplitude == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2) + A2**2)
56
+ assert w5.frequency == f
57
+ assert w5.phase == atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1) - A2*cos(phi2))
58
+ assert w5.wavelength == c/(f*n)
59
+ assert w5.time_period == 1/f
60
+ assert w5.angular_velocity == 2*pi*f
61
+ assert w5.wavenumber == 2*pi*f*n/c
62
+ assert w5.speed == c/n
63
+ assert simplify(w5.rewrite(sin) - w1.rewrite(sin) + w2.rewrite(sin)) == 0
64
+ assert w5.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
65
+ assert w5.rewrite(cos) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
66
+ + A2**2)*cos(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
67
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m))
68
+ assert w5.rewrite(exp) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
69
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
70
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
71
+
72
+ w6 = 2*w1
73
+ assert w6.amplitude == 2*A1
74
+ assert w6.frequency == f
75
+ assert w6.phase == phi1
76
+ w7 = -w6
77
+ assert w7.amplitude == -2*A1
78
+ assert w7.frequency == f
79
+ assert w7.phase == phi1
80
+
81
+ raises(ValueError, lambda:TWave(A1))
82
+ raises(ValueError, lambda:TWave(A1, f, phi1, t))
llmeval-env/lib/python3.10/site-packages/sympy/physics/optics/utils.py ADDED
@@ -0,0 +1,698 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ **Contains**
3
+
4
+ * refraction_angle
5
+ * fresnel_coefficients
6
+ * deviation
7
+ * brewster_angle
8
+ * critical_angle
9
+ * lens_makers_formula
10
+ * mirror_formula
11
+ * lens_formula
12
+ * hyperfocal_distance
13
+ * transverse_magnification
14
+ """
15
+
16
+ __all__ = ['refraction_angle',
17
+ 'deviation',
18
+ 'fresnel_coefficients',
19
+ 'brewster_angle',
20
+ 'critical_angle',
21
+ 'lens_makers_formula',
22
+ 'mirror_formula',
23
+ 'lens_formula',
24
+ 'hyperfocal_distance',
25
+ 'transverse_magnification'
26
+ ]
27
+
28
+ from sympy.core.numbers import (Float, I, oo, pi, zoo)
29
+ from sympy.core.singleton import S
30
+ from sympy.core.symbol import Symbol
31
+ from sympy.core.sympify import sympify
32
+ from sympy.functions.elementary.miscellaneous import sqrt
33
+ from sympy.functions.elementary.trigonometric import (acos, asin, atan2, cos, sin, tan)
34
+ from sympy.matrices.dense import Matrix
35
+ from sympy.polys.polytools import cancel
36
+ from sympy.series.limits import Limit
37
+ from sympy.geometry.line import Ray3D
38
+ from sympy.geometry.util import intersection
39
+ from sympy.geometry.plane import Plane
40
+ from sympy.utilities.iterables import is_sequence
41
+ from .medium import Medium
42
+
43
+
44
+ def refractive_index_of_medium(medium):
45
+ """
46
+ Helper function that returns refractive index, given a medium
47
+ """
48
+ if isinstance(medium, Medium):
49
+ n = medium.refractive_index
50
+ else:
51
+ n = sympify(medium)
52
+ return n
53
+
54
+
55
+ def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
56
+ """
57
+ This function calculates transmitted vector after refraction at planar
58
+ surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
59
+ If ``incident`` is a number then treated as angle of incidence (in radians)
60
+ in which case refraction angle is returned.
61
+
62
+ If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
63
+ of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
64
+ plane of separation is not provided and normal is an instance of `Ray3D`,
65
+ ``normal`` will be assumed to be intersecting incident ray at the plane of
66
+ separation. This will not be the case when `normal` is a `Matrix` or
67
+ any other sequence.
68
+ If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
69
+ and ``normal`` is not `Ray3D`, output will be a `Matrix`.
70
+
71
+ Parameters
72
+ ==========
73
+
74
+ incident : Matrix, Ray3D, sequence or a number
75
+ Incident vector or angle of incidence
76
+ medium1 : sympy.physics.optics.medium.Medium or sympifiable
77
+ Medium 1 or its refractive index
78
+ medium2 : sympy.physics.optics.medium.Medium or sympifiable
79
+ Medium 2 or its refractive index
80
+ normal : Matrix, Ray3D, or sequence
81
+ Normal vector
82
+ plane : Plane
83
+ Plane of separation of the two media.
84
+
85
+ Returns
86
+ =======
87
+
88
+ Returns an angle of refraction or a refracted ray depending on inputs.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy.physics.optics import refraction_angle
94
+ >>> from sympy.geometry import Point3D, Ray3D, Plane
95
+ >>> from sympy.matrices import Matrix
96
+ >>> from sympy import symbols, pi
97
+ >>> n = Matrix([0, 0, 1])
98
+ >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
99
+ >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
100
+ >>> refraction_angle(r1, 1, 1, n)
101
+ Matrix([
102
+ [ 1],
103
+ [ 1],
104
+ [-1]])
105
+ >>> refraction_angle(r1, 1, 1, plane=P)
106
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
107
+
108
+ With different index of refraction of the two media
109
+
110
+ >>> n1, n2 = symbols('n1, n2')
111
+ >>> refraction_angle(r1, n1, n2, n)
112
+ Matrix([
113
+ [ n1/n2],
114
+ [ n1/n2],
115
+ [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
116
+ >>> refraction_angle(r1, n1, n2, plane=P)
117
+ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
118
+ >>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
119
+ 0.41152
120
+ """
121
+
122
+ n1 = refractive_index_of_medium(medium1)
123
+ n2 = refractive_index_of_medium(medium2)
124
+
125
+ # check if an incidence angle was supplied instead of a ray
126
+ try:
127
+ angle_of_incidence = float(incident)
128
+ except TypeError:
129
+ angle_of_incidence = None
130
+
131
+ try:
132
+ critical_angle_ = critical_angle(medium1, medium2)
133
+ except (ValueError, TypeError):
134
+ critical_angle_ = None
135
+
136
+ if angle_of_incidence is not None:
137
+ if normal is not None or plane is not None:
138
+ raise ValueError('Normal/plane not allowed if incident is an angle')
139
+
140
+ if not 0.0 <= angle_of_incidence < pi*0.5:
141
+ raise ValueError('Angle of incidence not in range [0:pi/2)')
142
+
143
+ if critical_angle_ and angle_of_incidence > critical_angle_:
144
+ raise ValueError('Ray undergoes total internal reflection')
145
+ return asin(n1*sin(angle_of_incidence)/n2)
146
+
147
+ # Treat the incident as ray below
148
+ # A flag to check whether to return Ray3D or not
149
+ return_ray = False
150
+
151
+ if plane is not None and normal is not None:
152
+ raise ValueError("Either plane or normal is acceptable.")
153
+
154
+ if not isinstance(incident, Matrix):
155
+ if is_sequence(incident):
156
+ _incident = Matrix(incident)
157
+ elif isinstance(incident, Ray3D):
158
+ _incident = Matrix(incident.direction_ratio)
159
+ else:
160
+ raise TypeError(
161
+ "incident should be a Matrix, Ray3D, or sequence")
162
+ else:
163
+ _incident = incident
164
+
165
+ # If plane is provided, get direction ratios of the normal
166
+ # to the plane from the plane else go with `normal` param.
167
+ if plane is not None:
168
+ if not isinstance(plane, Plane):
169
+ raise TypeError("plane should be an instance of geometry.plane.Plane")
170
+ # If we have the plane, we can get the intersection
171
+ # point of incident ray and the plane and thus return
172
+ # an instance of Ray3D.
173
+ if isinstance(incident, Ray3D):
174
+ return_ray = True
175
+ intersection_pt = plane.intersection(incident)[0]
176
+ _normal = Matrix(plane.normal_vector)
177
+ else:
178
+ if not isinstance(normal, Matrix):
179
+ if is_sequence(normal):
180
+ _normal = Matrix(normal)
181
+ elif isinstance(normal, Ray3D):
182
+ _normal = Matrix(normal.direction_ratio)
183
+ if isinstance(incident, Ray3D):
184
+ intersection_pt = intersection(incident, normal)
185
+ if len(intersection_pt) == 0:
186
+ raise ValueError(
187
+ "Normal isn't concurrent with the incident ray.")
188
+ else:
189
+ return_ray = True
190
+ intersection_pt = intersection_pt[0]
191
+ else:
192
+ raise TypeError(
193
+ "Normal should be a Matrix, Ray3D, or sequence")
194
+ else:
195
+ _normal = normal
196
+
197
+ eta = n1/n2 # Relative index of refraction
198
+ # Calculating magnitude of the vectors
199
+ mag_incident = sqrt(sum([i**2 for i in _incident]))
200
+ mag_normal = sqrt(sum([i**2 for i in _normal]))
201
+ # Converting vectors to unit vectors by dividing
202
+ # them with their magnitudes
203
+ _incident /= mag_incident
204
+ _normal /= mag_normal
205
+ c1 = -_incident.dot(_normal) # cos(angle_of_incidence)
206
+ cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2
207
+ if cs2.is_negative: # This is the case of total internal reflection(TIR).
208
+ return S.Zero
209
+ drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
210
+ # Multiplying unit vector by its magnitude
211
+ drs = drs*mag_incident
212
+ if not return_ray:
213
+ return drs
214
+ else:
215
+ return Ray3D(intersection_pt, direction_ratio=drs)
216
+
217
+
218
+ def fresnel_coefficients(angle_of_incidence, medium1, medium2):
219
+ """
220
+ This function uses Fresnel equations to calculate reflection and
221
+ transmission coefficients. Those are obtained for both polarisations
222
+ when the electric field vector is in the plane of incidence (labelled 'p')
223
+ and when the electric field vector is perpendicular to the plane of
224
+ incidence (labelled 's'). There are four real coefficients unless the
225
+ incident ray reflects in total internal in which case there are two complex
226
+ ones. Angle of incidence is the angle between the incident ray and the
227
+ surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any
228
+ sympifiable object.
229
+
230
+ Parameters
231
+ ==========
232
+
233
+ angle_of_incidence : sympifiable
234
+
235
+ medium1 : Medium or sympifiable
236
+ Medium 1 or its refractive index
237
+
238
+ medium2 : Medium or sympifiable
239
+ Medium 2 or its refractive index
240
+
241
+ Returns
242
+ =======
243
+
244
+ Returns a list with four real Fresnel coefficients:
245
+ [reflection p (TM), reflection s (TE),
246
+ transmission p (TM), transmission s (TE)]
247
+ If the ray is undergoes total internal reflection then returns a
248
+ list of two complex Fresnel coefficients:
249
+ [reflection p (TM), reflection s (TE)]
250
+
251
+ Examples
252
+ ========
253
+
254
+ >>> from sympy.physics.optics import fresnel_coefficients
255
+ >>> fresnel_coefficients(0.3, 1, 2)
256
+ [0.317843553417859, -0.348645229818821,
257
+ 0.658921776708929, 0.651354770181179]
258
+ >>> fresnel_coefficients(0.6, 2, 1)
259
+ [-0.235625382192159 - 0.971843958291041*I,
260
+ 0.816477005968898 - 0.577377951366403*I]
261
+
262
+ References
263
+ ==========
264
+
265
+ .. [1] https://en.wikipedia.org/wiki/Fresnel_equations
266
+ """
267
+ if not 0 <= 2*angle_of_incidence < pi:
268
+ raise ValueError('Angle of incidence not in range [0:pi/2)')
269
+
270
+ n1 = refractive_index_of_medium(medium1)
271
+ n2 = refractive_index_of_medium(medium2)
272
+
273
+ angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2)
274
+ try:
275
+ angle_of_total_internal_reflection_onset = critical_angle(n1, n2)
276
+ except ValueError:
277
+ angle_of_total_internal_reflection_onset = None
278
+
279
+ if angle_of_total_internal_reflection_onset is None or\
280
+ angle_of_total_internal_reflection_onset > angle_of_incidence:
281
+ R_s = -sin(angle_of_incidence - angle_of_refraction)\
282
+ /sin(angle_of_incidence + angle_of_refraction)
283
+ R_p = tan(angle_of_incidence - angle_of_refraction)\
284
+ /tan(angle_of_incidence + angle_of_refraction)
285
+ T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
286
+ /sin(angle_of_incidence + angle_of_refraction)
287
+ T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
288
+ /(sin(angle_of_incidence + angle_of_refraction)\
289
+ *cos(angle_of_incidence - angle_of_refraction))
290
+ return [R_p, R_s, T_p, T_s]
291
+ else:
292
+ n = n2/n1
293
+ R_s = cancel((cos(angle_of_incidence)-\
294
+ I*sqrt(sin(angle_of_incidence)**2 - n**2))\
295
+ /(cos(angle_of_incidence)+\
296
+ I*sqrt(sin(angle_of_incidence)**2 - n**2)))
297
+ R_p = cancel((n**2*cos(angle_of_incidence)-\
298
+ I*sqrt(sin(angle_of_incidence)**2 - n**2))\
299
+ /(n**2*cos(angle_of_incidence)+\
300
+ I*sqrt(sin(angle_of_incidence)**2 - n**2)))
301
+ return [R_p, R_s]
302
+
303
+
304
+ def deviation(incident, medium1, medium2, normal=None, plane=None):
305
+ """
306
+ This function calculates the angle of deviation of a ray
307
+ due to refraction at planar surface.
308
+
309
+ Parameters
310
+ ==========
311
+
312
+ incident : Matrix, Ray3D, sequence or float
313
+ Incident vector or angle of incidence
314
+ medium1 : sympy.physics.optics.medium.Medium or sympifiable
315
+ Medium 1 or its refractive index
316
+ medium2 : sympy.physics.optics.medium.Medium or sympifiable
317
+ Medium 2 or its refractive index
318
+ normal : Matrix, Ray3D, or sequence
319
+ Normal vector
320
+ plane : Plane
321
+ Plane of separation of the two media.
322
+
323
+ Returns angular deviation between incident and refracted rays
324
+
325
+ Examples
326
+ ========
327
+
328
+ >>> from sympy.physics.optics import deviation
329
+ >>> from sympy.geometry import Point3D, Ray3D, Plane
330
+ >>> from sympy.matrices import Matrix
331
+ >>> from sympy import symbols
332
+ >>> n1, n2 = symbols('n1, n2')
333
+ >>> n = Matrix([0, 0, 1])
334
+ >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
335
+ >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
336
+ >>> deviation(r1, 1, 1, n)
337
+ 0
338
+ >>> deviation(r1, n1, n2, plane=P)
339
+ -acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)
340
+ >>> round(deviation(0.1, 1.2, 1.5), 5)
341
+ -0.02005
342
+ """
343
+ refracted = refraction_angle(incident,
344
+ medium1,
345
+ medium2,
346
+ normal=normal,
347
+ plane=plane)
348
+ try:
349
+ angle_of_incidence = Float(incident)
350
+ except TypeError:
351
+ angle_of_incidence = None
352
+
353
+ if angle_of_incidence is not None:
354
+ return float(refracted) - angle_of_incidence
355
+
356
+ if refracted != 0:
357
+ if isinstance(refracted, Ray3D):
358
+ refracted = Matrix(refracted.direction_ratio)
359
+
360
+ if not isinstance(incident, Matrix):
361
+ if is_sequence(incident):
362
+ _incident = Matrix(incident)
363
+ elif isinstance(incident, Ray3D):
364
+ _incident = Matrix(incident.direction_ratio)
365
+ else:
366
+ raise TypeError(
367
+ "incident should be a Matrix, Ray3D, or sequence")
368
+ else:
369
+ _incident = incident
370
+
371
+ if plane is None:
372
+ if not isinstance(normal, Matrix):
373
+ if is_sequence(normal):
374
+ _normal = Matrix(normal)
375
+ elif isinstance(normal, Ray3D):
376
+ _normal = Matrix(normal.direction_ratio)
377
+ else:
378
+ raise TypeError(
379
+ "normal should be a Matrix, Ray3D, or sequence")
380
+ else:
381
+ _normal = normal
382
+ else:
383
+ _normal = Matrix(plane.normal_vector)
384
+
385
+ mag_incident = sqrt(sum([i**2 for i in _incident]))
386
+ mag_normal = sqrt(sum([i**2 for i in _normal]))
387
+ mag_refracted = sqrt(sum([i**2 for i in refracted]))
388
+ _incident /= mag_incident
389
+ _normal /= mag_normal
390
+ refracted /= mag_refracted
391
+ i = acos(_incident.dot(_normal))
392
+ r = acos(refracted.dot(_normal))
393
+ return i - r
394
+
395
+
396
+ def brewster_angle(medium1, medium2):
397
+ """
398
+ This function calculates the Brewster's angle of incidence to Medium 2 from
399
+ Medium 1 in radians.
400
+
401
+ Parameters
402
+ ==========
403
+
404
+ medium 1 : Medium or sympifiable
405
+ Refractive index of Medium 1
406
+ medium 2 : Medium or sympifiable
407
+ Refractive index of Medium 1
408
+
409
+ Examples
410
+ ========
411
+
412
+ >>> from sympy.physics.optics import brewster_angle
413
+ >>> brewster_angle(1, 1.33)
414
+ 0.926093295503462
415
+
416
+ """
417
+
418
+ n1 = refractive_index_of_medium(medium1)
419
+ n2 = refractive_index_of_medium(medium2)
420
+
421
+ return atan2(n2, n1)
422
+
423
+ def critical_angle(medium1, medium2):
424
+ """
425
+ This function calculates the critical angle of incidence (marking the onset
426
+ of total internal) to Medium 2 from Medium 1 in radians.
427
+
428
+ Parameters
429
+ ==========
430
+
431
+ medium 1 : Medium or sympifiable
432
+ Refractive index of Medium 1.
433
+ medium 2 : Medium or sympifiable
434
+ Refractive index of Medium 1.
435
+
436
+ Examples
437
+ ========
438
+
439
+ >>> from sympy.physics.optics import critical_angle
440
+ >>> critical_angle(1.33, 1)
441
+ 0.850908514477849
442
+
443
+ """
444
+
445
+ n1 = refractive_index_of_medium(medium1)
446
+ n2 = refractive_index_of_medium(medium2)
447
+
448
+ if n2 > n1:
449
+ raise ValueError('Total internal reflection impossible for n1 < n2')
450
+ else:
451
+ return asin(n2/n1)
452
+
453
+
454
+
455
+ def lens_makers_formula(n_lens, n_surr, r1, r2, d=0):
456
+ """
457
+ This function calculates focal length of a lens.
458
+ It follows cartesian sign convention.
459
+
460
+ Parameters
461
+ ==========
462
+
463
+ n_lens : Medium or sympifiable
464
+ Index of refraction of lens.
465
+ n_surr : Medium or sympifiable
466
+ Index of reflection of surrounding.
467
+ r1 : sympifiable
468
+ Radius of curvature of first surface.
469
+ r2 : sympifiable
470
+ Radius of curvature of second surface.
471
+ d : sympifiable, optional
472
+ Thickness of lens, default value is 0.
473
+
474
+ Examples
475
+ ========
476
+
477
+ >>> from sympy.physics.optics import lens_makers_formula
478
+ >>> from sympy import S
479
+ >>> lens_makers_formula(1.33, 1, 10, -10)
480
+ 15.1515151515151
481
+ >>> lens_makers_formula(1.2, 1, 10, S.Infinity)
482
+ 50.0000000000000
483
+ >>> lens_makers_formula(1.33, 1, 10, -10, d=1)
484
+ 15.3418463277618
485
+
486
+ """
487
+
488
+ if isinstance(n_lens, Medium):
489
+ n_lens = n_lens.refractive_index
490
+ else:
491
+ n_lens = sympify(n_lens)
492
+ if isinstance(n_surr, Medium):
493
+ n_surr = n_surr.refractive_index
494
+ else:
495
+ n_surr = sympify(n_surr)
496
+ d = sympify(d)
497
+
498
+ focal_length = 1/((n_lens - n_surr) / n_surr*(1/r1 - 1/r2 + (((n_lens - n_surr) * d) / (n_lens * r1 * r2))))
499
+
500
+ if focal_length == zoo:
501
+ return S.Infinity
502
+ return focal_length
503
+
504
+
505
+ def mirror_formula(focal_length=None, u=None, v=None):
506
+ """
507
+ This function provides one of the three parameters
508
+ when two of them are supplied.
509
+ This is valid only for paraxial rays.
510
+
511
+ Parameters
512
+ ==========
513
+
514
+ focal_length : sympifiable
515
+ Focal length of the mirror.
516
+ u : sympifiable
517
+ Distance of object from the pole on
518
+ the principal axis.
519
+ v : sympifiable
520
+ Distance of the image from the pole
521
+ on the principal axis.
522
+
523
+ Examples
524
+ ========
525
+
526
+ >>> from sympy.physics.optics import mirror_formula
527
+ >>> from sympy.abc import f, u, v
528
+ >>> mirror_formula(focal_length=f, u=u)
529
+ f*u/(-f + u)
530
+ >>> mirror_formula(focal_length=f, v=v)
531
+ f*v/(-f + v)
532
+ >>> mirror_formula(u=u, v=v)
533
+ u*v/(u + v)
534
+
535
+ """
536
+ if focal_length and u and v:
537
+ raise ValueError("Please provide only two parameters")
538
+
539
+ focal_length = sympify(focal_length)
540
+ u = sympify(u)
541
+ v = sympify(v)
542
+ if u is oo:
543
+ _u = Symbol('u')
544
+ if v is oo:
545
+ _v = Symbol('v')
546
+ if focal_length is oo:
547
+ _f = Symbol('f')
548
+ if focal_length is None:
549
+ if u is oo and v is oo:
550
+ return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit()
551
+ if u is oo:
552
+ return Limit(v*_u/(v + _u), _u, oo).doit()
553
+ if v is oo:
554
+ return Limit(_v*u/(_v + u), _v, oo).doit()
555
+ return v*u/(v + u)
556
+ if u is None:
557
+ if v is oo and focal_length is oo:
558
+ return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit()
559
+ if v is oo:
560
+ return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit()
561
+ if focal_length is oo:
562
+ return Limit(v*_f/(v - _f), _f, oo).doit()
563
+ return v*focal_length/(v - focal_length)
564
+ if v is None:
565
+ if u is oo and focal_length is oo:
566
+ return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit()
567
+ if u is oo:
568
+ return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit()
569
+ if focal_length is oo:
570
+ return Limit(u*_f/(u - _f), _f, oo).doit()
571
+ return u*focal_length/(u - focal_length)
572
+
573
+
574
+ def lens_formula(focal_length=None, u=None, v=None):
575
+ """
576
+ This function provides one of the three parameters
577
+ when two of them are supplied.
578
+ This is valid only for paraxial rays.
579
+
580
+ Parameters
581
+ ==========
582
+
583
+ focal_length : sympifiable
584
+ Focal length of the mirror.
585
+ u : sympifiable
586
+ Distance of object from the optical center on
587
+ the principal axis.
588
+ v : sympifiable
589
+ Distance of the image from the optical center
590
+ on the principal axis.
591
+
592
+ Examples
593
+ ========
594
+
595
+ >>> from sympy.physics.optics import lens_formula
596
+ >>> from sympy.abc import f, u, v
597
+ >>> lens_formula(focal_length=f, u=u)
598
+ f*u/(f + u)
599
+ >>> lens_formula(focal_length=f, v=v)
600
+ f*v/(f - v)
601
+ >>> lens_formula(u=u, v=v)
602
+ u*v/(u - v)
603
+
604
+ """
605
+ if focal_length and u and v:
606
+ raise ValueError("Please provide only two parameters")
607
+
608
+ focal_length = sympify(focal_length)
609
+ u = sympify(u)
610
+ v = sympify(v)
611
+ if u is oo:
612
+ _u = Symbol('u')
613
+ if v is oo:
614
+ _v = Symbol('v')
615
+ if focal_length is oo:
616
+ _f = Symbol('f')
617
+ if focal_length is None:
618
+ if u is oo and v is oo:
619
+ return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit()
620
+ if u is oo:
621
+ return Limit(v*_u/(_u - v), _u, oo).doit()
622
+ if v is oo:
623
+ return Limit(_v*u/(u - _v), _v, oo).doit()
624
+ return v*u/(u - v)
625
+ if u is None:
626
+ if v is oo and focal_length is oo:
627
+ return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit()
628
+ if v is oo:
629
+ return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit()
630
+ if focal_length is oo:
631
+ return Limit(v*_f/(_f - v), _f, oo).doit()
632
+ return v*focal_length/(focal_length - v)
633
+ if v is None:
634
+ if u is oo and focal_length is oo:
635
+ return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit()
636
+ if u is oo:
637
+ return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit()
638
+ if focal_length is oo:
639
+ return Limit(u*_f/(u + _f), _f, oo).doit()
640
+ return u*focal_length/(u + focal_length)
641
+
642
+ def hyperfocal_distance(f, N, c):
643
+ """
644
+
645
+ Parameters
646
+ ==========
647
+
648
+ f: sympifiable
649
+ Focal length of a given lens.
650
+
651
+ N: sympifiable
652
+ F-number of a given lens.
653
+
654
+ c: sympifiable
655
+ Circle of Confusion (CoC) of a given image format.
656
+
657
+ Example
658
+ =======
659
+
660
+ >>> from sympy.physics.optics import hyperfocal_distance
661
+ >>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
662
+ 9.47
663
+ """
664
+
665
+ f = sympify(f)
666
+ N = sympify(N)
667
+ c = sympify(c)
668
+
669
+ return (1/(N * c))*(f**2)
670
+
671
+ def transverse_magnification(si, so):
672
+ """
673
+
674
+ Calculates the transverse magnification, which is the ratio of the
675
+ image size to the object size.
676
+
677
+ Parameters
678
+ ==========
679
+
680
+ so: sympifiable
681
+ Lens-object distance.
682
+
683
+ si: sympifiable
684
+ Lens-image distance.
685
+
686
+ Example
687
+ =======
688
+
689
+ >>> from sympy.physics.optics import transverse_magnification
690
+ >>> transverse_magnification(30, 15)
691
+ -2
692
+
693
+ """
694
+
695
+ si = sympify(si)
696
+ so = sympify(so)
697
+
698
+ return (-(si/so))