Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fft/_basic.py +1630 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fft/_fftlog.py +223 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fft/_fftlog_backend.py +197 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fft/_helper.py +313 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/__init__.py +67 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/__pycache__/_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/__pycache__/doccer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/_common.py +344 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/ascent.dat +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/common.py +20 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/doccer.py +45 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/ecg.dat +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_doccer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/test_common.py +26 -0
- llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/test_config.py +44 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so +3 -0
- llmeval-env/lib/python3.10/site-packages/scipy/sparse/tests/data/csc_py2.npz +3 -0
- llmeval-env/lib/python3.10/site-packages/scipy/sparse/tests/data/csc_py3.npz +3 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_geometric_slerp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_kdtree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/kdtree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/qhull.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/qhull_src/COPYING.txt +38 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__plotutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__procrustes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_distance.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_hausdorff.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_kdtree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_qhull.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_slerp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_spherical_voronoi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt +10 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X2.txt +20 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
.gitattributes
CHANGED
@@ -60,3 +60,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
60 |
llmeval-env/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
61 |
llmeval-env/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
62 |
llmeval-env/bin/python filter=lfs diff=lfs merge=lfs -text
|
|
|
|
60 |
llmeval-env/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
61 |
llmeval-env/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
62 |
llmeval-env/bin/python filter=lfs diff=lfs merge=lfs -text
|
63 |
+
llmeval-env/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
llmeval-env/lib/python3.10/site-packages/scipy/fft/_basic.py
ADDED
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from scipy._lib.uarray import generate_multimethod, Dispatchable
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def _x_replacer(args, kwargs, dispatchables):
|
6 |
+
"""
|
7 |
+
uarray argument replacer to replace the transform input array (``x``)
|
8 |
+
"""
|
9 |
+
if len(args) > 0:
|
10 |
+
return (dispatchables[0],) + args[1:], kwargs
|
11 |
+
kw = kwargs.copy()
|
12 |
+
kw['x'] = dispatchables[0]
|
13 |
+
return args, kw
|
14 |
+
|
15 |
+
|
16 |
+
def _dispatch(func):
|
17 |
+
"""
|
18 |
+
Function annotation that creates a uarray multimethod from the function
|
19 |
+
"""
|
20 |
+
return generate_multimethod(func, _x_replacer, domain="numpy.scipy.fft")
|
21 |
+
|
22 |
+
|
23 |
+
@_dispatch
|
24 |
+
def fft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
25 |
+
plan=None):
|
26 |
+
"""
|
27 |
+
Compute the 1-D discrete Fourier Transform.
|
28 |
+
|
29 |
+
This function computes the 1-D *n*-point discrete Fourier
|
30 |
+
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
|
31 |
+
algorithm [1]_.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
x : array_like
|
36 |
+
Input array, can be complex.
|
37 |
+
n : int, optional
|
38 |
+
Length of the transformed axis of the output.
|
39 |
+
If `n` is smaller than the length of the input, the input is cropped.
|
40 |
+
If it is larger, the input is padded with zeros. If `n` is not given,
|
41 |
+
the length of the input along the axis specified by `axis` is used.
|
42 |
+
axis : int, optional
|
43 |
+
Axis over which to compute the FFT. If not given, the last axis is
|
44 |
+
used.
|
45 |
+
norm : {"backward", "ortho", "forward"}, optional
|
46 |
+
Normalization mode. Default is "backward", meaning no normalization on
|
47 |
+
the forward transforms and scaling by ``1/n`` on the `ifft`.
|
48 |
+
"forward" instead applies the ``1/n`` factor on the forward transform.
|
49 |
+
For ``norm="ortho"``, both directions are scaled by ``1/sqrt(n)``.
|
50 |
+
|
51 |
+
.. versionadded:: 1.6.0
|
52 |
+
``norm={"forward", "backward"}`` options were added
|
53 |
+
|
54 |
+
overwrite_x : bool, optional
|
55 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
56 |
+
See the notes below for more details.
|
57 |
+
workers : int, optional
|
58 |
+
Maximum number of workers to use for parallel computation. If negative,
|
59 |
+
the value wraps around from ``os.cpu_count()``. See below for more
|
60 |
+
details.
|
61 |
+
plan : object, optional
|
62 |
+
This argument is reserved for passing in a precomputed plan provided
|
63 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
64 |
+
|
65 |
+
.. versionadded:: 1.5.0
|
66 |
+
|
67 |
+
Returns
|
68 |
+
-------
|
69 |
+
out : complex ndarray
|
70 |
+
The truncated or zero-padded input, transformed along the axis
|
71 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
72 |
+
|
73 |
+
Raises
|
74 |
+
------
|
75 |
+
IndexError
|
76 |
+
if `axes` is larger than the last axis of `x`.
|
77 |
+
|
78 |
+
See Also
|
79 |
+
--------
|
80 |
+
ifft : The inverse of `fft`.
|
81 |
+
fft2 : The 2-D FFT.
|
82 |
+
fftn : The N-D FFT.
|
83 |
+
rfftn : The N-D FFT of real input.
|
84 |
+
fftfreq : Frequency bins for given FFT parameters.
|
85 |
+
next_fast_len : Size to pad input to for most efficient transforms
|
86 |
+
|
87 |
+
Notes
|
88 |
+
-----
|
89 |
+
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform
|
90 |
+
(DFT) can be calculated efficiently, by using symmetries in the calculated
|
91 |
+
terms. The symmetry is highest when `n` is a power of 2, and the transform
|
92 |
+
is therefore most efficient for these sizes. For poorly factorizable sizes,
|
93 |
+
`scipy.fft` uses Bluestein's algorithm [2]_ and so is never worse than
|
94 |
+
O(`n` log `n`). Further performance improvements may be seen by zero-padding
|
95 |
+
the input using `next_fast_len`.
|
96 |
+
|
97 |
+
If ``x`` is a 1d array, then the `fft` is equivalent to ::
|
98 |
+
|
99 |
+
y[k] = np.sum(x * np.exp(-2j * np.pi * k * np.arange(n)/n))
|
100 |
+
|
101 |
+
The frequency term ``f=k/n`` is found at ``y[k]``. At ``y[n/2]`` we reach
|
102 |
+
the Nyquist frequency and wrap around to the negative-frequency terms. So,
|
103 |
+
for an 8-point transform, the frequencies of the result are
|
104 |
+
[0, 1, 2, 3, -4, -3, -2, -1]. To rearrange the fft output so that the
|
105 |
+
zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1, 2, 3],
|
106 |
+
use `fftshift`.
|
107 |
+
|
108 |
+
Transforms can be done in single, double, or extended precision (long
|
109 |
+
double) floating point. Half precision inputs will be converted to single
|
110 |
+
precision and non-floating-point inputs will be converted to double
|
111 |
+
precision.
|
112 |
+
|
113 |
+
If the data type of ``x`` is real, a "real FFT" algorithm is automatically
|
114 |
+
used, which roughly halves the computation time. To increase efficiency
|
115 |
+
a little further, use `rfft`, which does the same calculation, but only
|
116 |
+
outputs half of the symmetrical spectrum. If the data are both real and
|
117 |
+
symmetrical, the `dct` can again double the efficiency, by generating
|
118 |
+
half of the spectrum from half of the signal.
|
119 |
+
|
120 |
+
When ``overwrite_x=True`` is specified, the memory referenced by ``x`` may
|
121 |
+
be used by the implementation in any way. This may include reusing the
|
122 |
+
memory for the result, but this is in no way guaranteed. You should not
|
123 |
+
rely on the contents of ``x`` after the transform as this may change in
|
124 |
+
future without warning.
|
125 |
+
|
126 |
+
The ``workers`` argument specifies the maximum number of parallel jobs to
|
127 |
+
split the FFT computation into. This will execute independent 1-D
|
128 |
+
FFTs within ``x``. So, ``x`` must be at least 2-D and the
|
129 |
+
non-transformed axes must be large enough to split into chunks. If ``x`` is
|
130 |
+
too small, fewer jobs may be used than requested.
|
131 |
+
|
132 |
+
References
|
133 |
+
----------
|
134 |
+
.. [1] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
|
135 |
+
machine calculation of complex Fourier series," *Math. Comput.*
|
136 |
+
19: 297-301.
|
137 |
+
.. [2] Bluestein, L., 1970, "A linear filtering approach to the
|
138 |
+
computation of discrete Fourier transform". *IEEE Transactions on
|
139 |
+
Audio and Electroacoustics.* 18 (4): 451-455.
|
140 |
+
|
141 |
+
Examples
|
142 |
+
--------
|
143 |
+
>>> import scipy.fft
|
144 |
+
>>> import numpy as np
|
145 |
+
>>> scipy.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
|
146 |
+
array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
|
147 |
+
2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
|
148 |
+
-1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
|
149 |
+
1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
|
150 |
+
|
151 |
+
In this example, real input has an FFT which is Hermitian, i.e., symmetric
|
152 |
+
in the real part and anti-symmetric in the imaginary part:
|
153 |
+
|
154 |
+
>>> from scipy.fft import fft, fftfreq, fftshift
|
155 |
+
>>> import matplotlib.pyplot as plt
|
156 |
+
>>> t = np.arange(256)
|
157 |
+
>>> sp = fftshift(fft(np.sin(t)))
|
158 |
+
>>> freq = fftshift(fftfreq(t.shape[-1]))
|
159 |
+
>>> plt.plot(freq, sp.real, freq, sp.imag)
|
160 |
+
[<matplotlib.lines.Line2D object at 0x...>,
|
161 |
+
<matplotlib.lines.Line2D object at 0x...>]
|
162 |
+
>>> plt.show()
|
163 |
+
|
164 |
+
"""
|
165 |
+
return (Dispatchable(x, np.ndarray),)
|
166 |
+
|
167 |
+
|
168 |
+
@_dispatch
|
169 |
+
def ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
170 |
+
plan=None):
|
171 |
+
"""
|
172 |
+
Compute the 1-D inverse discrete Fourier Transform.
|
173 |
+
|
174 |
+
This function computes the inverse of the 1-D *n*-point
|
175 |
+
discrete Fourier transform computed by `fft`. In other words,
|
176 |
+
``ifft(fft(x)) == x`` to within numerical accuracy.
|
177 |
+
|
178 |
+
The input should be ordered in the same way as is returned by `fft`,
|
179 |
+
i.e.,
|
180 |
+
|
181 |
+
* ``x[0]`` should contain the zero frequency term,
|
182 |
+
* ``x[1:n//2]`` should contain the positive-frequency terms,
|
183 |
+
* ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
|
184 |
+
increasing order starting from the most negative frequency.
|
185 |
+
|
186 |
+
For an even number of input points, ``x[n//2]`` represents the sum of
|
187 |
+
the values at the positive and negative Nyquist frequencies, as the two
|
188 |
+
are aliased together. See `fft` for details.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
x : array_like
|
193 |
+
Input array, can be complex.
|
194 |
+
n : int, optional
|
195 |
+
Length of the transformed axis of the output.
|
196 |
+
If `n` is smaller than the length of the input, the input is cropped.
|
197 |
+
If it is larger, the input is padded with zeros. If `n` is not given,
|
198 |
+
the length of the input along the axis specified by `axis` is used.
|
199 |
+
See notes about padding issues.
|
200 |
+
axis : int, optional
|
201 |
+
Axis over which to compute the inverse DFT. If not given, the last
|
202 |
+
axis is used.
|
203 |
+
norm : {"backward", "ortho", "forward"}, optional
|
204 |
+
Normalization mode (see `fft`). Default is "backward".
|
205 |
+
overwrite_x : bool, optional
|
206 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
207 |
+
See :func:`fft` for more details.
|
208 |
+
workers : int, optional
|
209 |
+
Maximum number of workers to use for parallel computation. If negative,
|
210 |
+
the value wraps around from ``os.cpu_count()``.
|
211 |
+
See :func:`~scipy.fft.fft` for more details.
|
212 |
+
plan : object, optional
|
213 |
+
This argument is reserved for passing in a precomputed plan provided
|
214 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
215 |
+
|
216 |
+
.. versionadded:: 1.5.0
|
217 |
+
|
218 |
+
Returns
|
219 |
+
-------
|
220 |
+
out : complex ndarray
|
221 |
+
The truncated or zero-padded input, transformed along the axis
|
222 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
223 |
+
|
224 |
+
Raises
|
225 |
+
------
|
226 |
+
IndexError
|
227 |
+
If `axes` is larger than the last axis of `x`.
|
228 |
+
|
229 |
+
See Also
|
230 |
+
--------
|
231 |
+
fft : The 1-D (forward) FFT, of which `ifft` is the inverse.
|
232 |
+
ifft2 : The 2-D inverse FFT.
|
233 |
+
ifftn : The N-D inverse FFT.
|
234 |
+
|
235 |
+
Notes
|
236 |
+
-----
|
237 |
+
If the input parameter `n` is larger than the size of the input, the input
|
238 |
+
is padded by appending zeros at the end. Even though this is the common
|
239 |
+
approach, it might lead to surprising results. If a different padding is
|
240 |
+
desired, it must be performed before calling `ifft`.
|
241 |
+
|
242 |
+
If ``x`` is a 1-D array, then the `ifft` is equivalent to ::
|
243 |
+
|
244 |
+
y[k] = np.sum(x * np.exp(2j * np.pi * k * np.arange(n)/n)) / len(x)
|
245 |
+
|
246 |
+
As with `fft`, `ifft` has support for all floating point types and is
|
247 |
+
optimized for real input.
|
248 |
+
|
249 |
+
Examples
|
250 |
+
--------
|
251 |
+
>>> import scipy.fft
|
252 |
+
>>> import numpy as np
|
253 |
+
>>> scipy.fft.ifft([0, 4, 0, 0])
|
254 |
+
array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
|
255 |
+
|
256 |
+
Create and plot a band-limited signal with random phases:
|
257 |
+
|
258 |
+
>>> import matplotlib.pyplot as plt
|
259 |
+
>>> rng = np.random.default_rng()
|
260 |
+
>>> t = np.arange(400)
|
261 |
+
>>> n = np.zeros((400,), dtype=complex)
|
262 |
+
>>> n[40:60] = np.exp(1j*rng.uniform(0, 2*np.pi, (20,)))
|
263 |
+
>>> s = scipy.fft.ifft(n)
|
264 |
+
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
|
265 |
+
[<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>]
|
266 |
+
>>> plt.legend(('real', 'imaginary'))
|
267 |
+
<matplotlib.legend.Legend object at ...>
|
268 |
+
>>> plt.show()
|
269 |
+
|
270 |
+
"""
|
271 |
+
return (Dispatchable(x, np.ndarray),)
|
272 |
+
|
273 |
+
|
274 |
+
@_dispatch
|
275 |
+
def rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
276 |
+
plan=None):
|
277 |
+
"""
|
278 |
+
Compute the 1-D discrete Fourier Transform for real input.
|
279 |
+
|
280 |
+
This function computes the 1-D *n*-point discrete Fourier
|
281 |
+
Transform (DFT) of a real-valued array by means of an efficient algorithm
|
282 |
+
called the Fast Fourier Transform (FFT).
|
283 |
+
|
284 |
+
Parameters
|
285 |
+
----------
|
286 |
+
x : array_like
|
287 |
+
Input array
|
288 |
+
n : int, optional
|
289 |
+
Number of points along transformation axis in the input to use.
|
290 |
+
If `n` is smaller than the length of the input, the input is cropped.
|
291 |
+
If it is larger, the input is padded with zeros. If `n` is not given,
|
292 |
+
the length of the input along the axis specified by `axis` is used.
|
293 |
+
axis : int, optional
|
294 |
+
Axis over which to compute the FFT. If not given, the last axis is
|
295 |
+
used.
|
296 |
+
norm : {"backward", "ortho", "forward"}, optional
|
297 |
+
Normalization mode (see `fft`). Default is "backward".
|
298 |
+
overwrite_x : bool, optional
|
299 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
300 |
+
See :func:`fft` for more details.
|
301 |
+
workers : int, optional
|
302 |
+
Maximum number of workers to use for parallel computation. If negative,
|
303 |
+
the value wraps around from ``os.cpu_count()``.
|
304 |
+
See :func:`~scipy.fft.fft` for more details.
|
305 |
+
plan : object, optional
|
306 |
+
This argument is reserved for passing in a precomputed plan provided
|
307 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
308 |
+
|
309 |
+
.. versionadded:: 1.5.0
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
out : complex ndarray
|
314 |
+
The truncated or zero-padded input, transformed along the axis
|
315 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
316 |
+
If `n` is even, the length of the transformed axis is ``(n/2)+1``.
|
317 |
+
If `n` is odd, the length is ``(n+1)/2``.
|
318 |
+
|
319 |
+
Raises
|
320 |
+
------
|
321 |
+
IndexError
|
322 |
+
If `axis` is larger than the last axis of `a`.
|
323 |
+
|
324 |
+
See Also
|
325 |
+
--------
|
326 |
+
irfft : The inverse of `rfft`.
|
327 |
+
fft : The 1-D FFT of general (complex) input.
|
328 |
+
fftn : The N-D FFT.
|
329 |
+
rfft2 : The 2-D FFT of real input.
|
330 |
+
rfftn : The N-D FFT of real input.
|
331 |
+
|
332 |
+
Notes
|
333 |
+
-----
|
334 |
+
When the DFT is computed for purely real input, the output is
|
335 |
+
Hermitian-symmetric, i.e., the negative frequency terms are just the complex
|
336 |
+
conjugates of the corresponding positive-frequency terms, and the
|
337 |
+
negative-frequency terms are therefore redundant. This function does not
|
338 |
+
compute the negative frequency terms, and the length of the transformed
|
339 |
+
axis of the output is therefore ``n//2 + 1``.
|
340 |
+
|
341 |
+
When ``X = rfft(x)`` and fs is the sampling frequency, ``X[0]`` contains
|
342 |
+
the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
|
343 |
+
|
344 |
+
If `n` is even, ``A[-1]`` contains the term representing both positive
|
345 |
+
and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
|
346 |
+
real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
|
347 |
+
the largest positive frequency (fs/2*(n-1)/n), and is complex in the
|
348 |
+
general case.
|
349 |
+
|
350 |
+
If the input `a` contains an imaginary part, it is silently discarded.
|
351 |
+
|
352 |
+
Examples
|
353 |
+
--------
|
354 |
+
>>> import scipy.fft
|
355 |
+
>>> scipy.fft.fft([0, 1, 0, 0])
|
356 |
+
array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
|
357 |
+
>>> scipy.fft.rfft([0, 1, 0, 0])
|
358 |
+
array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
|
359 |
+
|
360 |
+
Notice how the final element of the `fft` output is the complex conjugate
|
361 |
+
of the second element, for real input. For `rfft`, this symmetry is
|
362 |
+
exploited to compute only the non-negative frequency terms.
|
363 |
+
|
364 |
+
"""
|
365 |
+
return (Dispatchable(x, np.ndarray),)
|
366 |
+
|
367 |
+
|
368 |
+
@_dispatch
|
369 |
+
def irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
370 |
+
plan=None):
|
371 |
+
"""
|
372 |
+
Computes the inverse of `rfft`.
|
373 |
+
|
374 |
+
This function computes the inverse of the 1-D *n*-point
|
375 |
+
discrete Fourier Transform of real input computed by `rfft`.
|
376 |
+
In other words, ``irfft(rfft(x), len(x)) == x`` to within numerical
|
377 |
+
accuracy. (See Notes below for why ``len(a)`` is necessary here.)
|
378 |
+
|
379 |
+
The input is expected to be in the form returned by `rfft`, i.e., the
|
380 |
+
real zero-frequency term followed by the complex positive frequency terms
|
381 |
+
in order of increasing frequency. Since the discrete Fourier Transform of
|
382 |
+
real input is Hermitian-symmetric, the negative frequency terms are taken
|
383 |
+
to be the complex conjugates of the corresponding positive frequency terms.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
x : array_like
|
388 |
+
The input array.
|
389 |
+
n : int, optional
|
390 |
+
Length of the transformed axis of the output.
|
391 |
+
For `n` output points, ``n//2+1`` input points are necessary. If the
|
392 |
+
input is longer than this, it is cropped. If it is shorter than this,
|
393 |
+
it is padded with zeros. If `n` is not given, it is taken to be
|
394 |
+
``2*(m-1)``, where ``m`` is the length of the input along the axis
|
395 |
+
specified by `axis`.
|
396 |
+
axis : int, optional
|
397 |
+
Axis over which to compute the inverse FFT. If not given, the last
|
398 |
+
axis is used.
|
399 |
+
norm : {"backward", "ortho", "forward"}, optional
|
400 |
+
Normalization mode (see `fft`). Default is "backward".
|
401 |
+
overwrite_x : bool, optional
|
402 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
403 |
+
See :func:`fft` for more details.
|
404 |
+
workers : int, optional
|
405 |
+
Maximum number of workers to use for parallel computation. If negative,
|
406 |
+
the value wraps around from ``os.cpu_count()``.
|
407 |
+
See :func:`~scipy.fft.fft` for more details.
|
408 |
+
plan : object, optional
|
409 |
+
This argument is reserved for passing in a precomputed plan provided
|
410 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
411 |
+
|
412 |
+
.. versionadded:: 1.5.0
|
413 |
+
|
414 |
+
Returns
|
415 |
+
-------
|
416 |
+
out : ndarray
|
417 |
+
The truncated or zero-padded input, transformed along the axis
|
418 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
419 |
+
The length of the transformed axis is `n`, or, if `n` is not given,
|
420 |
+
``2*(m-1)`` where ``m`` is the length of the transformed axis of the
|
421 |
+
input. To get an odd number of output points, `n` must be specified.
|
422 |
+
|
423 |
+
Raises
|
424 |
+
------
|
425 |
+
IndexError
|
426 |
+
If `axis` is larger than the last axis of `x`.
|
427 |
+
|
428 |
+
See Also
|
429 |
+
--------
|
430 |
+
rfft : The 1-D FFT of real input, of which `irfft` is inverse.
|
431 |
+
fft : The 1-D FFT.
|
432 |
+
irfft2 : The inverse of the 2-D FFT of real input.
|
433 |
+
irfftn : The inverse of the N-D FFT of real input.
|
434 |
+
|
435 |
+
Notes
|
436 |
+
-----
|
437 |
+
Returns the real valued `n`-point inverse discrete Fourier transform
|
438 |
+
of `x`, where `x` contains the non-negative frequency terms of a
|
439 |
+
Hermitian-symmetric sequence. `n` is the length of the result, not the
|
440 |
+
input.
|
441 |
+
|
442 |
+
If you specify an `n` such that `a` must be zero-padded or truncated, the
|
443 |
+
extra/removed values will be added/removed at high frequencies. One can
|
444 |
+
thus resample a series to `m` points via Fourier interpolation by:
|
445 |
+
``a_resamp = irfft(rfft(a), m)``.
|
446 |
+
|
447 |
+
The default value of `n` assumes an even output length. By the Hermitian
|
448 |
+
symmetry, the last imaginary component must be 0 and so is ignored. To
|
449 |
+
avoid losing information, the correct length of the real input *must* be
|
450 |
+
given.
|
451 |
+
|
452 |
+
Examples
|
453 |
+
--------
|
454 |
+
>>> import scipy.fft
|
455 |
+
>>> scipy.fft.ifft([1, -1j, -1, 1j])
|
456 |
+
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
|
457 |
+
>>> scipy.fft.irfft([1, -1j, -1])
|
458 |
+
array([0., 1., 0., 0.])
|
459 |
+
|
460 |
+
Notice how the last term in the input to the ordinary `ifft` is the
|
461 |
+
complex conjugate of the second term, and the output has zero imaginary
|
462 |
+
part everywhere. When calling `irfft`, the negative frequencies are not
|
463 |
+
specified, and the output array is purely real.
|
464 |
+
|
465 |
+
"""
|
466 |
+
return (Dispatchable(x, np.ndarray),)
|
467 |
+
|
468 |
+
|
469 |
+
@_dispatch
|
470 |
+
def hfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
471 |
+
plan=None):
|
472 |
+
"""
|
473 |
+
Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
|
474 |
+
spectrum.
|
475 |
+
|
476 |
+
Parameters
|
477 |
+
----------
|
478 |
+
x : array_like
|
479 |
+
The input array.
|
480 |
+
n : int, optional
|
481 |
+
Length of the transformed axis of the output. For `n` output
|
482 |
+
points, ``n//2 + 1`` input points are necessary. If the input is
|
483 |
+
longer than this, it is cropped. If it is shorter than this, it is
|
484 |
+
padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)``,
|
485 |
+
where ``m`` is the length of the input along the axis specified by
|
486 |
+
`axis`.
|
487 |
+
axis : int, optional
|
488 |
+
Axis over which to compute the FFT. If not given, the last
|
489 |
+
axis is used.
|
490 |
+
norm : {"backward", "ortho", "forward"}, optional
|
491 |
+
Normalization mode (see `fft`). Default is "backward".
|
492 |
+
overwrite_x : bool, optional
|
493 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
494 |
+
See `fft` for more details.
|
495 |
+
workers : int, optional
|
496 |
+
Maximum number of workers to use for parallel computation. If negative,
|
497 |
+
the value wraps around from ``os.cpu_count()``.
|
498 |
+
See :func:`~scipy.fft.fft` for more details.
|
499 |
+
plan : object, optional
|
500 |
+
This argument is reserved for passing in a precomputed plan provided
|
501 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
502 |
+
|
503 |
+
.. versionadded:: 1.5.0
|
504 |
+
|
505 |
+
Returns
|
506 |
+
-------
|
507 |
+
out : ndarray
|
508 |
+
The truncated or zero-padded input, transformed along the axis
|
509 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
510 |
+
The length of the transformed axis is `n`, or, if `n` is not given,
|
511 |
+
``2*m - 2``, where ``m`` is the length of the transformed axis of
|
512 |
+
the input. To get an odd number of output points, `n` must be
|
513 |
+
specified, for instance, as ``2*m - 1`` in the typical case,
|
514 |
+
|
515 |
+
Raises
|
516 |
+
------
|
517 |
+
IndexError
|
518 |
+
If `axis` is larger than the last axis of `a`.
|
519 |
+
|
520 |
+
See Also
|
521 |
+
--------
|
522 |
+
rfft : Compute the 1-D FFT for real input.
|
523 |
+
ihfft : The inverse of `hfft`.
|
524 |
+
hfftn : Compute the N-D FFT of a Hermitian signal.
|
525 |
+
|
526 |
+
Notes
|
527 |
+
-----
|
528 |
+
`hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
|
529 |
+
opposite case: here the signal has Hermitian symmetry in the time
|
530 |
+
domain and is real in the frequency domain. So, here, it's `hfft`, for
|
531 |
+
which you must supply the length of the result if it is to be odd.
|
532 |
+
* even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
|
533 |
+
* odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
|
534 |
+
|
535 |
+
Examples
|
536 |
+
--------
|
537 |
+
>>> from scipy.fft import fft, hfft
|
538 |
+
>>> import numpy as np
|
539 |
+
>>> a = 2 * np.pi * np.arange(10) / 10
|
540 |
+
>>> signal = np.cos(a) + 3j * np.sin(3 * a)
|
541 |
+
>>> fft(signal).round(10)
|
542 |
+
array([ -0.+0.j, 5.+0.j, -0.+0.j, 15.-0.j, 0.+0.j, 0.+0.j,
|
543 |
+
-0.+0.j, -15.-0.j, 0.+0.j, 5.+0.j])
|
544 |
+
>>> hfft(signal[:6]).round(10) # Input first half of signal
|
545 |
+
array([ 0., 5., 0., 15., -0., 0., 0., -15., -0., 5.])
|
546 |
+
>>> hfft(signal, 10) # Input entire signal and truncate
|
547 |
+
array([ 0., 5., 0., 15., -0., 0., 0., -15., -0., 5.])
|
548 |
+
"""
|
549 |
+
return (Dispatchable(x, np.ndarray),)
|
550 |
+
|
551 |
+
|
552 |
+
@_dispatch
|
553 |
+
def ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
|
554 |
+
plan=None):
|
555 |
+
"""
|
556 |
+
Compute the inverse FFT of a signal that has Hermitian symmetry.
|
557 |
+
|
558 |
+
Parameters
|
559 |
+
----------
|
560 |
+
x : array_like
|
561 |
+
Input array.
|
562 |
+
n : int, optional
|
563 |
+
Length of the inverse FFT, the number of points along
|
564 |
+
transformation axis in the input to use. If `n` is smaller than
|
565 |
+
the length of the input, the input is cropped. If it is larger,
|
566 |
+
the input is padded with zeros. If `n` is not given, the length of
|
567 |
+
the input along the axis specified by `axis` is used.
|
568 |
+
axis : int, optional
|
569 |
+
Axis over which to compute the inverse FFT. If not given, the last
|
570 |
+
axis is used.
|
571 |
+
norm : {"backward", "ortho", "forward"}, optional
|
572 |
+
Normalization mode (see `fft`). Default is "backward".
|
573 |
+
overwrite_x : bool, optional
|
574 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
575 |
+
See `fft` for more details.
|
576 |
+
workers : int, optional
|
577 |
+
Maximum number of workers to use for parallel computation. If negative,
|
578 |
+
the value wraps around from ``os.cpu_count()``.
|
579 |
+
See :func:`~scipy.fft.fft` for more details.
|
580 |
+
plan : object, optional
|
581 |
+
This argument is reserved for passing in a precomputed plan provided
|
582 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
583 |
+
|
584 |
+
.. versionadded:: 1.5.0
|
585 |
+
|
586 |
+
Returns
|
587 |
+
-------
|
588 |
+
out : complex ndarray
|
589 |
+
The truncated or zero-padded input, transformed along the axis
|
590 |
+
indicated by `axis`, or the last one if `axis` is not specified.
|
591 |
+
The length of the transformed axis is ``n//2 + 1``.
|
592 |
+
|
593 |
+
See Also
|
594 |
+
--------
|
595 |
+
hfft, irfft
|
596 |
+
|
597 |
+
Notes
|
598 |
+
-----
|
599 |
+
`hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
|
600 |
+
opposite case: here, the signal has Hermitian symmetry in the time
|
601 |
+
domain and is real in the frequency domain. So, here, it's `hfft`, for
|
602 |
+
which you must supply the length of the result if it is to be odd:
|
603 |
+
* even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
|
604 |
+
* odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
|
605 |
+
|
606 |
+
Examples
|
607 |
+
--------
|
608 |
+
>>> from scipy.fft import ifft, ihfft
|
609 |
+
>>> import numpy as np
|
610 |
+
>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
|
611 |
+
>>> ifft(spectrum)
|
612 |
+
array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
|
613 |
+
>>> ihfft(spectrum)
|
614 |
+
array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
|
615 |
+
"""
|
616 |
+
return (Dispatchable(x, np.ndarray),)
|
617 |
+
|
618 |
+
|
619 |
+
@_dispatch
|
620 |
+
def fftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
621 |
+
plan=None):
|
622 |
+
"""
|
623 |
+
Compute the N-D discrete Fourier Transform.
|
624 |
+
|
625 |
+
This function computes the N-D discrete Fourier Transform over
|
626 |
+
any number of axes in an M-D array by means of the Fast Fourier
|
627 |
+
Transform (FFT).
|
628 |
+
|
629 |
+
Parameters
|
630 |
+
----------
|
631 |
+
x : array_like
|
632 |
+
Input array, can be complex.
|
633 |
+
s : sequence of ints, optional
|
634 |
+
Shape (length of each transformed axis) of the output
|
635 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
|
636 |
+
This corresponds to ``n`` for ``fft(x, n)``.
|
637 |
+
Along any axis, if the given shape is smaller than that of the input,
|
638 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
639 |
+
if `s` is not given, the shape of the input along the axes specified
|
640 |
+
by `axes` is used.
|
641 |
+
axes : sequence of ints, optional
|
642 |
+
Axes over which to compute the FFT. If not given, the last ``len(s)``
|
643 |
+
axes are used, or all axes if `s` is also not specified.
|
644 |
+
norm : {"backward", "ortho", "forward"}, optional
|
645 |
+
Normalization mode (see `fft`). Default is "backward".
|
646 |
+
overwrite_x : bool, optional
|
647 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
648 |
+
See :func:`fft` for more details.
|
649 |
+
workers : int, optional
|
650 |
+
Maximum number of workers to use for parallel computation. If negative,
|
651 |
+
the value wraps around from ``os.cpu_count()``.
|
652 |
+
See :func:`~scipy.fft.fft` for more details.
|
653 |
+
plan : object, optional
|
654 |
+
This argument is reserved for passing in a precomputed plan provided
|
655 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
656 |
+
|
657 |
+
.. versionadded:: 1.5.0
|
658 |
+
|
659 |
+
Returns
|
660 |
+
-------
|
661 |
+
out : complex ndarray
|
662 |
+
The truncated or zero-padded input, transformed along the axes
|
663 |
+
indicated by `axes`, or by a combination of `s` and `x`,
|
664 |
+
as explained in the parameters section above.
|
665 |
+
|
666 |
+
Raises
|
667 |
+
------
|
668 |
+
ValueError
|
669 |
+
If `s` and `axes` have different length.
|
670 |
+
IndexError
|
671 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
672 |
+
|
673 |
+
See Also
|
674 |
+
--------
|
675 |
+
ifftn : The inverse of `fftn`, the inverse N-D FFT.
|
676 |
+
fft : The 1-D FFT, with definitions and conventions used.
|
677 |
+
rfftn : The N-D FFT of real input.
|
678 |
+
fft2 : The 2-D FFT.
|
679 |
+
fftshift : Shifts zero-frequency terms to centre of array.
|
680 |
+
|
681 |
+
Notes
|
682 |
+
-----
|
683 |
+
The output, analogously to `fft`, contains the term for zero frequency in
|
684 |
+
the low-order corner of all axes, the positive frequency terms in the
|
685 |
+
first half of all axes, the term for the Nyquist frequency in the middle
|
686 |
+
of all axes and the negative frequency terms in the second half of all
|
687 |
+
axes, in order of decreasingly negative frequency.
|
688 |
+
|
689 |
+
Examples
|
690 |
+
--------
|
691 |
+
>>> import scipy.fft
|
692 |
+
>>> import numpy as np
|
693 |
+
>>> x = np.mgrid[:3, :3, :3][0]
|
694 |
+
>>> scipy.fft.fftn(x, axes=(1, 2))
|
695 |
+
array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
|
696 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j],
|
697 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j]],
|
698 |
+
[[ 9.+0.j, 0.+0.j, 0.+0.j],
|
699 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j],
|
700 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j]],
|
701 |
+
[[18.+0.j, 0.+0.j, 0.+0.j],
|
702 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j],
|
703 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j]]])
|
704 |
+
>>> scipy.fft.fftn(x, (2, 2), axes=(0, 1))
|
705 |
+
array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
|
706 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j]],
|
707 |
+
[[-2.+0.j, -2.+0.j, -2.+0.j],
|
708 |
+
[ 0.+0.j, 0.+0.j, 0.+0.j]]])
|
709 |
+
|
710 |
+
>>> import matplotlib.pyplot as plt
|
711 |
+
>>> rng = np.random.default_rng()
|
712 |
+
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
|
713 |
+
... 2 * np.pi * np.arange(200) / 34)
|
714 |
+
>>> S = np.sin(X) + np.cos(Y) + rng.uniform(0, 1, X.shape)
|
715 |
+
>>> FS = scipy.fft.fftn(S)
|
716 |
+
>>> plt.imshow(np.log(np.abs(scipy.fft.fftshift(FS))**2))
|
717 |
+
<matplotlib.image.AxesImage object at 0x...>
|
718 |
+
>>> plt.show()
|
719 |
+
|
720 |
+
"""
|
721 |
+
return (Dispatchable(x, np.ndarray),)
|
722 |
+
|
723 |
+
|
724 |
+
@_dispatch
|
725 |
+
def ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
726 |
+
plan=None):
|
727 |
+
"""
|
728 |
+
Compute the N-D inverse discrete Fourier Transform.
|
729 |
+
|
730 |
+
This function computes the inverse of the N-D discrete
|
731 |
+
Fourier Transform over any number of axes in an M-D array by
|
732 |
+
means of the Fast Fourier Transform (FFT). In other words,
|
733 |
+
``ifftn(fftn(x)) == x`` to within numerical accuracy.
|
734 |
+
|
735 |
+
The input, analogously to `ifft`, should be ordered in the same way as is
|
736 |
+
returned by `fftn`, i.e., it should have the term for zero frequency
|
737 |
+
in all axes in the low-order corner, the positive frequency terms in the
|
738 |
+
first half of all axes, the term for the Nyquist frequency in the middle
|
739 |
+
of all axes and the negative frequency terms in the second half of all
|
740 |
+
axes, in order of decreasingly negative frequency.
|
741 |
+
|
742 |
+
Parameters
|
743 |
+
----------
|
744 |
+
x : array_like
|
745 |
+
Input array, can be complex.
|
746 |
+
s : sequence of ints, optional
|
747 |
+
Shape (length of each transformed axis) of the output
|
748 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
|
749 |
+
This corresponds to ``n`` for ``ifft(x, n)``.
|
750 |
+
Along any axis, if the given shape is smaller than that of the input,
|
751 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
752 |
+
if `s` is not given, the shape of the input along the axes specified
|
753 |
+
by `axes` is used. See notes for issue on `ifft` zero padding.
|
754 |
+
axes : sequence of ints, optional
|
755 |
+
Axes over which to compute the IFFT. If not given, the last ``len(s)``
|
756 |
+
axes are used, or all axes if `s` is also not specified.
|
757 |
+
norm : {"backward", "ortho", "forward"}, optional
|
758 |
+
Normalization mode (see `fft`). Default is "backward".
|
759 |
+
overwrite_x : bool, optional
|
760 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
761 |
+
See :func:`fft` for more details.
|
762 |
+
workers : int, optional
|
763 |
+
Maximum number of workers to use for parallel computation. If negative,
|
764 |
+
the value wraps around from ``os.cpu_count()``.
|
765 |
+
See :func:`~scipy.fft.fft` for more details.
|
766 |
+
plan : object, optional
|
767 |
+
This argument is reserved for passing in a precomputed plan provided
|
768 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
769 |
+
|
770 |
+
.. versionadded:: 1.5.0
|
771 |
+
|
772 |
+
Returns
|
773 |
+
-------
|
774 |
+
out : complex ndarray
|
775 |
+
The truncated or zero-padded input, transformed along the axes
|
776 |
+
indicated by `axes`, or by a combination of `s` or `x`,
|
777 |
+
as explained in the parameters section above.
|
778 |
+
|
779 |
+
Raises
|
780 |
+
------
|
781 |
+
ValueError
|
782 |
+
If `s` and `axes` have different length.
|
783 |
+
IndexError
|
784 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
785 |
+
|
786 |
+
See Also
|
787 |
+
--------
|
788 |
+
fftn : The forward N-D FFT, of which `ifftn` is the inverse.
|
789 |
+
ifft : The 1-D inverse FFT.
|
790 |
+
ifft2 : The 2-D inverse FFT.
|
791 |
+
ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
|
792 |
+
of array.
|
793 |
+
|
794 |
+
Notes
|
795 |
+
-----
|
796 |
+
Zero-padding, analogously with `ifft`, is performed by appending zeros to
|
797 |
+
the input along the specified dimension. Although this is the common
|
798 |
+
approach, it might lead to surprising results. If another form of zero
|
799 |
+
padding is desired, it must be performed before `ifftn` is called.
|
800 |
+
|
801 |
+
Examples
|
802 |
+
--------
|
803 |
+
>>> import scipy.fft
|
804 |
+
>>> import numpy as np
|
805 |
+
>>> x = np.eye(4)
|
806 |
+
>>> scipy.fft.ifftn(scipy.fft.fftn(x, axes=(0,)), axes=(1,))
|
807 |
+
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
|
808 |
+
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
|
809 |
+
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
|
810 |
+
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
|
811 |
+
|
812 |
+
|
813 |
+
Create and plot an image with band-limited frequency content:
|
814 |
+
|
815 |
+
>>> import matplotlib.pyplot as plt
|
816 |
+
>>> rng = np.random.default_rng()
|
817 |
+
>>> n = np.zeros((200,200), dtype=complex)
|
818 |
+
>>> n[60:80, 20:40] = np.exp(1j*rng.uniform(0, 2*np.pi, (20, 20)))
|
819 |
+
>>> im = scipy.fft.ifftn(n).real
|
820 |
+
>>> plt.imshow(im)
|
821 |
+
<matplotlib.image.AxesImage object at 0x...>
|
822 |
+
>>> plt.show()
|
823 |
+
|
824 |
+
"""
|
825 |
+
return (Dispatchable(x, np.ndarray),)
|
826 |
+
|
827 |
+
|
828 |
+
@_dispatch
|
829 |
+
def fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
830 |
+
plan=None):
|
831 |
+
"""
|
832 |
+
Compute the 2-D discrete Fourier Transform
|
833 |
+
|
834 |
+
This function computes the N-D discrete Fourier Transform
|
835 |
+
over any axes in an M-D array by means of the
|
836 |
+
Fast Fourier Transform (FFT). By default, the transform is computed over
|
837 |
+
the last two axes of the input array, i.e., a 2-dimensional FFT.
|
838 |
+
|
839 |
+
Parameters
|
840 |
+
----------
|
841 |
+
x : array_like
|
842 |
+
Input array, can be complex
|
843 |
+
s : sequence of ints, optional
|
844 |
+
Shape (length of each transformed axis) of the output
|
845 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
|
846 |
+
This corresponds to ``n`` for ``fft(x, n)``.
|
847 |
+
Along each axis, if the given shape is smaller than that of the input,
|
848 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
849 |
+
if `s` is not given, the shape of the input along the axes specified
|
850 |
+
by `axes` is used.
|
851 |
+
axes : sequence of ints, optional
|
852 |
+
Axes over which to compute the FFT. If not given, the last two axes are
|
853 |
+
used.
|
854 |
+
norm : {"backward", "ortho", "forward"}, optional
|
855 |
+
Normalization mode (see `fft`). Default is "backward".
|
856 |
+
overwrite_x : bool, optional
|
857 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
858 |
+
See :func:`fft` for more details.
|
859 |
+
workers : int, optional
|
860 |
+
Maximum number of workers to use for parallel computation. If negative,
|
861 |
+
the value wraps around from ``os.cpu_count()``.
|
862 |
+
See :func:`~scipy.fft.fft` for more details.
|
863 |
+
plan : object, optional
|
864 |
+
This argument is reserved for passing in a precomputed plan provided
|
865 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
866 |
+
|
867 |
+
.. versionadded:: 1.5.0
|
868 |
+
|
869 |
+
Returns
|
870 |
+
-------
|
871 |
+
out : complex ndarray
|
872 |
+
The truncated or zero-padded input, transformed along the axes
|
873 |
+
indicated by `axes`, or the last two axes if `axes` is not given.
|
874 |
+
|
875 |
+
Raises
|
876 |
+
------
|
877 |
+
ValueError
|
878 |
+
If `s` and `axes` have different length, or `axes` not given and
|
879 |
+
``len(s) != 2``.
|
880 |
+
IndexError
|
881 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
882 |
+
|
883 |
+
See Also
|
884 |
+
--------
|
885 |
+
ifft2 : The inverse 2-D FFT.
|
886 |
+
fft : The 1-D FFT.
|
887 |
+
fftn : The N-D FFT.
|
888 |
+
fftshift : Shifts zero-frequency terms to the center of the array.
|
889 |
+
For 2-D input, swaps first and third quadrants, and second
|
890 |
+
and fourth quadrants.
|
891 |
+
|
892 |
+
Notes
|
893 |
+
-----
|
894 |
+
`fft2` is just `fftn` with a different default for `axes`.
|
895 |
+
|
896 |
+
The output, analogously to `fft`, contains the term for zero frequency in
|
897 |
+
the low-order corner of the transformed axes, the positive frequency terms
|
898 |
+
in the first half of these axes, the term for the Nyquist frequency in the
|
899 |
+
middle of the axes and the negative frequency terms in the second half of
|
900 |
+
the axes, in order of decreasingly negative frequency.
|
901 |
+
|
902 |
+
See `fftn` for details and a plotting example, and `fft` for
|
903 |
+
definitions and conventions used.
|
904 |
+
|
905 |
+
|
906 |
+
Examples
|
907 |
+
--------
|
908 |
+
>>> import scipy.fft
|
909 |
+
>>> import numpy as np
|
910 |
+
>>> x = np.mgrid[:5, :5][0]
|
911 |
+
>>> scipy.fft.fft2(x)
|
912 |
+
array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary
|
913 |
+
0. +0.j , 0. +0.j ],
|
914 |
+
[-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
|
915 |
+
0. +0.j , 0. +0.j ],
|
916 |
+
[-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,
|
917 |
+
0. +0.j , 0. +0.j ],
|
918 |
+
[-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,
|
919 |
+
0. +0.j , 0. +0.j ],
|
920 |
+
[-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
|
921 |
+
0. +0.j , 0. +0.j ]])
|
922 |
+
|
923 |
+
"""
|
924 |
+
return (Dispatchable(x, np.ndarray),)
|
925 |
+
|
926 |
+
|
927 |
+
@_dispatch
|
928 |
+
def ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
929 |
+
plan=None):
|
930 |
+
"""
|
931 |
+
Compute the 2-D inverse discrete Fourier Transform.
|
932 |
+
|
933 |
+
This function computes the inverse of the 2-D discrete Fourier
|
934 |
+
Transform over any number of axes in an M-D array by means of
|
935 |
+
the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
|
936 |
+
to within numerical accuracy. By default, the inverse transform is
|
937 |
+
computed over the last two axes of the input array.
|
938 |
+
|
939 |
+
The input, analogously to `ifft`, should be ordered in the same way as is
|
940 |
+
returned by `fft2`, i.e., it should have the term for zero frequency
|
941 |
+
in the low-order corner of the two axes, the positive frequency terms in
|
942 |
+
the first half of these axes, the term for the Nyquist frequency in the
|
943 |
+
middle of the axes and the negative frequency terms in the second half of
|
944 |
+
both axes, in order of decreasingly negative frequency.
|
945 |
+
|
946 |
+
Parameters
|
947 |
+
----------
|
948 |
+
x : array_like
|
949 |
+
Input array, can be complex.
|
950 |
+
s : sequence of ints, optional
|
951 |
+
Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
|
952 |
+
``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``.
|
953 |
+
Along each axis, if the given shape is smaller than that of the input,
|
954 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
955 |
+
if `s` is not given, the shape of the input along the axes specified
|
956 |
+
by `axes` is used. See notes for issue on `ifft` zero padding.
|
957 |
+
axes : sequence of ints, optional
|
958 |
+
Axes over which to compute the FFT. If not given, the last two
|
959 |
+
axes are used.
|
960 |
+
norm : {"backward", "ortho", "forward"}, optional
|
961 |
+
Normalization mode (see `fft`). Default is "backward".
|
962 |
+
overwrite_x : bool, optional
|
963 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
964 |
+
See :func:`fft` for more details.
|
965 |
+
workers : int, optional
|
966 |
+
Maximum number of workers to use for parallel computation. If negative,
|
967 |
+
the value wraps around from ``os.cpu_count()``.
|
968 |
+
See :func:`~scipy.fft.fft` for more details.
|
969 |
+
plan : object, optional
|
970 |
+
This argument is reserved for passing in a precomputed plan provided
|
971 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
972 |
+
|
973 |
+
.. versionadded:: 1.5.0
|
974 |
+
|
975 |
+
Returns
|
976 |
+
-------
|
977 |
+
out : complex ndarray
|
978 |
+
The truncated or zero-padded input, transformed along the axes
|
979 |
+
indicated by `axes`, or the last two axes if `axes` is not given.
|
980 |
+
|
981 |
+
Raises
|
982 |
+
------
|
983 |
+
ValueError
|
984 |
+
If `s` and `axes` have different length, or `axes` not given and
|
985 |
+
``len(s) != 2``.
|
986 |
+
IndexError
|
987 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
988 |
+
|
989 |
+
See Also
|
990 |
+
--------
|
991 |
+
fft2 : The forward 2-D FFT, of which `ifft2` is the inverse.
|
992 |
+
ifftn : The inverse of the N-D FFT.
|
993 |
+
fft : The 1-D FFT.
|
994 |
+
ifft : The 1-D inverse FFT.
|
995 |
+
|
996 |
+
Notes
|
997 |
+
-----
|
998 |
+
`ifft2` is just `ifftn` with a different default for `axes`.
|
999 |
+
|
1000 |
+
See `ifftn` for details and a plotting example, and `fft` for
|
1001 |
+
definition and conventions used.
|
1002 |
+
|
1003 |
+
Zero-padding, analogously with `ifft`, is performed by appending zeros to
|
1004 |
+
the input along the specified dimension. Although this is the common
|
1005 |
+
approach, it might lead to surprising results. If another form of zero
|
1006 |
+
padding is desired, it must be performed before `ifft2` is called.
|
1007 |
+
|
1008 |
+
Examples
|
1009 |
+
--------
|
1010 |
+
>>> import scipy.fft
|
1011 |
+
>>> import numpy as np
|
1012 |
+
>>> x = 4 * np.eye(4)
|
1013 |
+
>>> scipy.fft.ifft2(x)
|
1014 |
+
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
|
1015 |
+
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
|
1016 |
+
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
|
1017 |
+
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
|
1018 |
+
|
1019 |
+
"""
|
1020 |
+
return (Dispatchable(x, np.ndarray),)
|
1021 |
+
|
1022 |
+
|
1023 |
+
@_dispatch
|
1024 |
+
def rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
1025 |
+
plan=None):
|
1026 |
+
"""
|
1027 |
+
Compute the N-D discrete Fourier Transform for real input.
|
1028 |
+
|
1029 |
+
This function computes the N-D discrete Fourier Transform over
|
1030 |
+
any number of axes in an M-D real array by means of the Fast
|
1031 |
+
Fourier Transform (FFT). By default, all axes are transformed, with the
|
1032 |
+
real transform performed over the last axis, while the remaining
|
1033 |
+
transforms are complex.
|
1034 |
+
|
1035 |
+
Parameters
|
1036 |
+
----------
|
1037 |
+
x : array_like
|
1038 |
+
Input array, taken to be real.
|
1039 |
+
s : sequence of ints, optional
|
1040 |
+
Shape (length along each transformed axis) to use from the input.
|
1041 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
|
1042 |
+
The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
|
1043 |
+
for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
|
1044 |
+
Along any axis, if the given shape is smaller than that of the input,
|
1045 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
1046 |
+
if `s` is not given, the shape of the input along the axes specified
|
1047 |
+
by `axes` is used.
|
1048 |
+
axes : sequence of ints, optional
|
1049 |
+
Axes over which to compute the FFT. If not given, the last ``len(s)``
|
1050 |
+
axes are used, or all axes if `s` is also not specified.
|
1051 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1052 |
+
Normalization mode (see `fft`). Default is "backward".
|
1053 |
+
overwrite_x : bool, optional
|
1054 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1055 |
+
See :func:`fft` for more details.
|
1056 |
+
workers : int, optional
|
1057 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1058 |
+
the value wraps around from ``os.cpu_count()``.
|
1059 |
+
See :func:`~scipy.fft.fft` for more details.
|
1060 |
+
plan : object, optional
|
1061 |
+
This argument is reserved for passing in a precomputed plan provided
|
1062 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1063 |
+
|
1064 |
+
.. versionadded:: 1.5.0
|
1065 |
+
|
1066 |
+
Returns
|
1067 |
+
-------
|
1068 |
+
out : complex ndarray
|
1069 |
+
The truncated or zero-padded input, transformed along the axes
|
1070 |
+
indicated by `axes`, or by a combination of `s` and `x`,
|
1071 |
+
as explained in the parameters section above.
|
1072 |
+
The length of the last axis transformed will be ``s[-1]//2+1``,
|
1073 |
+
while the remaining transformed axes will have lengths according to
|
1074 |
+
`s`, or unchanged from the input.
|
1075 |
+
|
1076 |
+
Raises
|
1077 |
+
------
|
1078 |
+
ValueError
|
1079 |
+
If `s` and `axes` have different length.
|
1080 |
+
IndexError
|
1081 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
1082 |
+
|
1083 |
+
See Also
|
1084 |
+
--------
|
1085 |
+
irfftn : The inverse of `rfftn`, i.e., the inverse of the N-D FFT
|
1086 |
+
of real input.
|
1087 |
+
fft : The 1-D FFT, with definitions and conventions used.
|
1088 |
+
rfft : The 1-D FFT of real input.
|
1089 |
+
fftn : The N-D FFT.
|
1090 |
+
rfft2 : The 2-D FFT of real input.
|
1091 |
+
|
1092 |
+
Notes
|
1093 |
+
-----
|
1094 |
+
The transform for real input is performed over the last transformation
|
1095 |
+
axis, as by `rfft`, then the transform over the remaining axes is
|
1096 |
+
performed as by `fftn`. The order of the output is as for `rfft` for the
|
1097 |
+
final transformation axis, and as for `fftn` for the remaining
|
1098 |
+
transformation axes.
|
1099 |
+
|
1100 |
+
See `fft` for details, definitions and conventions used.
|
1101 |
+
|
1102 |
+
Examples
|
1103 |
+
--------
|
1104 |
+
>>> import scipy.fft
|
1105 |
+
>>> import numpy as np
|
1106 |
+
>>> x = np.ones((2, 2, 2))
|
1107 |
+
>>> scipy.fft.rfftn(x)
|
1108 |
+
array([[[8.+0.j, 0.+0.j], # may vary
|
1109 |
+
[0.+0.j, 0.+0.j]],
|
1110 |
+
[[0.+0.j, 0.+0.j],
|
1111 |
+
[0.+0.j, 0.+0.j]]])
|
1112 |
+
|
1113 |
+
>>> scipy.fft.rfftn(x, axes=(2, 0))
|
1114 |
+
array([[[4.+0.j, 0.+0.j], # may vary
|
1115 |
+
[4.+0.j, 0.+0.j]],
|
1116 |
+
[[0.+0.j, 0.+0.j],
|
1117 |
+
[0.+0.j, 0.+0.j]]])
|
1118 |
+
|
1119 |
+
"""
|
1120 |
+
return (Dispatchable(x, np.ndarray),)
|
1121 |
+
|
1122 |
+
|
1123 |
+
@_dispatch
|
1124 |
+
def rfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
1125 |
+
plan=None):
|
1126 |
+
"""
|
1127 |
+
Compute the 2-D FFT of a real array.
|
1128 |
+
|
1129 |
+
Parameters
|
1130 |
+
----------
|
1131 |
+
x : array
|
1132 |
+
Input array, taken to be real.
|
1133 |
+
s : sequence of ints, optional
|
1134 |
+
Shape of the FFT.
|
1135 |
+
axes : sequence of ints, optional
|
1136 |
+
Axes over which to compute the FFT.
|
1137 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1138 |
+
Normalization mode (see `fft`). Default is "backward".
|
1139 |
+
overwrite_x : bool, optional
|
1140 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1141 |
+
See :func:`fft` for more details.
|
1142 |
+
workers : int, optional
|
1143 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1144 |
+
the value wraps around from ``os.cpu_count()``.
|
1145 |
+
See :func:`~scipy.fft.fft` for more details.
|
1146 |
+
plan : object, optional
|
1147 |
+
This argument is reserved for passing in a precomputed plan provided
|
1148 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1149 |
+
|
1150 |
+
.. versionadded:: 1.5.0
|
1151 |
+
|
1152 |
+
Returns
|
1153 |
+
-------
|
1154 |
+
out : ndarray
|
1155 |
+
The result of the real 2-D FFT.
|
1156 |
+
|
1157 |
+
See Also
|
1158 |
+
--------
|
1159 |
+
irfft2 : The inverse of the 2-D FFT of real input.
|
1160 |
+
rfft : The 1-D FFT of real input.
|
1161 |
+
rfftn : Compute the N-D discrete Fourier Transform for real
|
1162 |
+
input.
|
1163 |
+
|
1164 |
+
Notes
|
1165 |
+
-----
|
1166 |
+
This is really just `rfftn` with different default behavior.
|
1167 |
+
For more details see `rfftn`.
|
1168 |
+
|
1169 |
+
"""
|
1170 |
+
return (Dispatchable(x, np.ndarray),)
|
1171 |
+
|
1172 |
+
|
1173 |
+
@_dispatch
|
1174 |
+
def irfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
1175 |
+
plan=None):
|
1176 |
+
"""
|
1177 |
+
Computes the inverse of `rfftn`
|
1178 |
+
|
1179 |
+
This function computes the inverse of the N-D discrete
|
1180 |
+
Fourier Transform for real input over any number of axes in an
|
1181 |
+
M-D array by means of the Fast Fourier Transform (FFT). In
|
1182 |
+
other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
|
1183 |
+
accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
|
1184 |
+
and for the same reason.)
|
1185 |
+
|
1186 |
+
The input should be ordered in the same way as is returned by `rfftn`,
|
1187 |
+
i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
|
1188 |
+
along all the other axes.
|
1189 |
+
|
1190 |
+
Parameters
|
1191 |
+
----------
|
1192 |
+
x : array_like
|
1193 |
+
Input array.
|
1194 |
+
s : sequence of ints, optional
|
1195 |
+
Shape (length of each transformed axis) of the output
|
1196 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
|
1197 |
+
number of input points used along this axis, except for the last axis,
|
1198 |
+
where ``s[-1]//2+1`` points of the input are used.
|
1199 |
+
Along any axis, if the shape indicated by `s` is smaller than that of
|
1200 |
+
the input, the input is cropped. If it is larger, the input is padded
|
1201 |
+
with zeros. If `s` is not given, the shape of the input along the axes
|
1202 |
+
specified by axes is used. Except for the last axis which is taken to be
|
1203 |
+
``2*(m-1)``, where ``m`` is the length of the input along that axis.
|
1204 |
+
axes : sequence of ints, optional
|
1205 |
+
Axes over which to compute the inverse FFT. If not given, the last
|
1206 |
+
`len(s)` axes are used, or all axes if `s` is also not specified.
|
1207 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1208 |
+
Normalization mode (see `fft`). Default is "backward".
|
1209 |
+
overwrite_x : bool, optional
|
1210 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1211 |
+
See :func:`fft` for more details.
|
1212 |
+
workers : int, optional
|
1213 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1214 |
+
the value wraps around from ``os.cpu_count()``.
|
1215 |
+
See :func:`~scipy.fft.fft` for more details.
|
1216 |
+
plan : object, optional
|
1217 |
+
This argument is reserved for passing in a precomputed plan provided
|
1218 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1219 |
+
|
1220 |
+
.. versionadded:: 1.5.0
|
1221 |
+
|
1222 |
+
Returns
|
1223 |
+
-------
|
1224 |
+
out : ndarray
|
1225 |
+
The truncated or zero-padded input, transformed along the axes
|
1226 |
+
indicated by `axes`, or by a combination of `s` or `x`,
|
1227 |
+
as explained in the parameters section above.
|
1228 |
+
The length of each transformed axis is as given by the corresponding
|
1229 |
+
element of `s`, or the length of the input in every axis except for the
|
1230 |
+
last one if `s` is not given. In the final transformed axis the length
|
1231 |
+
of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the
|
1232 |
+
length of the final transformed axis of the input. To get an odd
|
1233 |
+
number of output points in the final axis, `s` must be specified.
|
1234 |
+
|
1235 |
+
Raises
|
1236 |
+
------
|
1237 |
+
ValueError
|
1238 |
+
If `s` and `axes` have different length.
|
1239 |
+
IndexError
|
1240 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
1241 |
+
|
1242 |
+
See Also
|
1243 |
+
--------
|
1244 |
+
rfftn : The forward N-D FFT of real input,
|
1245 |
+
of which `ifftn` is the inverse.
|
1246 |
+
fft : The 1-D FFT, with definitions and conventions used.
|
1247 |
+
irfft : The inverse of the 1-D FFT of real input.
|
1248 |
+
irfft2 : The inverse of the 2-D FFT of real input.
|
1249 |
+
|
1250 |
+
Notes
|
1251 |
+
-----
|
1252 |
+
See `fft` for definitions and conventions used.
|
1253 |
+
|
1254 |
+
See `rfft` for definitions and conventions used for real input.
|
1255 |
+
|
1256 |
+
The default value of `s` assumes an even output length in the final
|
1257 |
+
transformation axis. When performing the final complex to real
|
1258 |
+
transformation, the Hermitian symmetry requires that the last imaginary
|
1259 |
+
component along that axis must be 0 and so it is ignored. To avoid losing
|
1260 |
+
information, the correct length of the real input *must* be given.
|
1261 |
+
|
1262 |
+
Examples
|
1263 |
+
--------
|
1264 |
+
>>> import scipy.fft
|
1265 |
+
>>> import numpy as np
|
1266 |
+
>>> x = np.zeros((3, 2, 2))
|
1267 |
+
>>> x[0, 0, 0] = 3 * 2 * 2
|
1268 |
+
>>> scipy.fft.irfftn(x)
|
1269 |
+
array([[[1., 1.],
|
1270 |
+
[1., 1.]],
|
1271 |
+
[[1., 1.],
|
1272 |
+
[1., 1.]],
|
1273 |
+
[[1., 1.],
|
1274 |
+
[1., 1.]]])
|
1275 |
+
|
1276 |
+
"""
|
1277 |
+
return (Dispatchable(x, np.ndarray),)
|
1278 |
+
|
1279 |
+
|
1280 |
+
@_dispatch
|
1281 |
+
def irfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
1282 |
+
plan=None):
|
1283 |
+
"""
|
1284 |
+
Computes the inverse of `rfft2`
|
1285 |
+
|
1286 |
+
Parameters
|
1287 |
+
----------
|
1288 |
+
x : array_like
|
1289 |
+
The input array
|
1290 |
+
s : sequence of ints, optional
|
1291 |
+
Shape of the real output to the inverse FFT.
|
1292 |
+
axes : sequence of ints, optional
|
1293 |
+
The axes over which to compute the inverse fft.
|
1294 |
+
Default is the last two axes.
|
1295 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1296 |
+
Normalization mode (see `fft`). Default is "backward".
|
1297 |
+
overwrite_x : bool, optional
|
1298 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1299 |
+
See :func:`fft` for more details.
|
1300 |
+
workers : int, optional
|
1301 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1302 |
+
the value wraps around from ``os.cpu_count()``.
|
1303 |
+
See :func:`~scipy.fft.fft` for more details.
|
1304 |
+
plan : object, optional
|
1305 |
+
This argument is reserved for passing in a precomputed plan provided
|
1306 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1307 |
+
|
1308 |
+
.. versionadded:: 1.5.0
|
1309 |
+
|
1310 |
+
Returns
|
1311 |
+
-------
|
1312 |
+
out : ndarray
|
1313 |
+
The result of the inverse real 2-D FFT.
|
1314 |
+
|
1315 |
+
See Also
|
1316 |
+
--------
|
1317 |
+
rfft2 : The 2-D FFT of real input.
|
1318 |
+
irfft : The inverse of the 1-D FFT of real input.
|
1319 |
+
irfftn : The inverse of the N-D FFT of real input.
|
1320 |
+
|
1321 |
+
Notes
|
1322 |
+
-----
|
1323 |
+
This is really `irfftn` with different defaults.
|
1324 |
+
For more details see `irfftn`.
|
1325 |
+
|
1326 |
+
"""
|
1327 |
+
return (Dispatchable(x, np.ndarray),)
|
1328 |
+
|
1329 |
+
|
1330 |
+
@_dispatch
|
1331 |
+
def hfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
1332 |
+
plan=None):
|
1333 |
+
"""
|
1334 |
+
Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
|
1335 |
+
signal with a real spectrum.
|
1336 |
+
|
1337 |
+
This function computes the N-D discrete Fourier Transform for a
|
1338 |
+
Hermitian symmetric complex input over any number of axes in an
|
1339 |
+
M-D array by means of the Fast Fourier Transform (FFT). In other
|
1340 |
+
words, ``ihfftn(hfftn(x, s)) == x`` to within numerical accuracy. (``s``
|
1341 |
+
here is ``x.shape`` with ``s[-1] = x.shape[-1] * 2 - 1``, this is necessary
|
1342 |
+
for the same reason ``x.shape`` would be necessary for `irfft`.)
|
1343 |
+
|
1344 |
+
Parameters
|
1345 |
+
----------
|
1346 |
+
x : array_like
|
1347 |
+
Input array.
|
1348 |
+
s : sequence of ints, optional
|
1349 |
+
Shape (length of each transformed axis) of the output
|
1350 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
|
1351 |
+
number of input points used along this axis, except for the last axis,
|
1352 |
+
where ``s[-1]//2+1`` points of the input are used.
|
1353 |
+
Along any axis, if the shape indicated by `s` is smaller than that of
|
1354 |
+
the input, the input is cropped. If it is larger, the input is padded
|
1355 |
+
with zeros. If `s` is not given, the shape of the input along the axes
|
1356 |
+
specified by axes is used. Except for the last axis which is taken to be
|
1357 |
+
``2*(m-1)`` where ``m`` is the length of the input along that axis.
|
1358 |
+
axes : sequence of ints, optional
|
1359 |
+
Axes over which to compute the inverse FFT. If not given, the last
|
1360 |
+
`len(s)` axes are used, or all axes if `s` is also not specified.
|
1361 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1362 |
+
Normalization mode (see `fft`). Default is "backward".
|
1363 |
+
overwrite_x : bool, optional
|
1364 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1365 |
+
See :func:`fft` for more details.
|
1366 |
+
workers : int, optional
|
1367 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1368 |
+
the value wraps around from ``os.cpu_count()``.
|
1369 |
+
See :func:`~scipy.fft.fft` for more details.
|
1370 |
+
plan : object, optional
|
1371 |
+
This argument is reserved for passing in a precomputed plan provided
|
1372 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1373 |
+
|
1374 |
+
.. versionadded:: 1.5.0
|
1375 |
+
|
1376 |
+
Returns
|
1377 |
+
-------
|
1378 |
+
out : ndarray
|
1379 |
+
The truncated or zero-padded input, transformed along the axes
|
1380 |
+
indicated by `axes`, or by a combination of `s` or `x`,
|
1381 |
+
as explained in the parameters section above.
|
1382 |
+
The length of each transformed axis is as given by the corresponding
|
1383 |
+
element of `s`, or the length of the input in every axis except for the
|
1384 |
+
last one if `s` is not given. In the final transformed axis the length
|
1385 |
+
of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
|
1386 |
+
length of the final transformed axis of the input. To get an odd
|
1387 |
+
number of output points in the final axis, `s` must be specified.
|
1388 |
+
|
1389 |
+
Raises
|
1390 |
+
------
|
1391 |
+
ValueError
|
1392 |
+
If `s` and `axes` have different length.
|
1393 |
+
IndexError
|
1394 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
1395 |
+
|
1396 |
+
See Also
|
1397 |
+
--------
|
1398 |
+
ihfftn : The inverse N-D FFT with real spectrum. Inverse of `hfftn`.
|
1399 |
+
fft : The 1-D FFT, with definitions and conventions used.
|
1400 |
+
rfft : Forward FFT of real input.
|
1401 |
+
|
1402 |
+
Notes
|
1403 |
+
-----
|
1404 |
+
For a 1-D signal ``x`` to have a real spectrum, it must satisfy
|
1405 |
+
the Hermitian property::
|
1406 |
+
|
1407 |
+
x[i] == np.conj(x[-i]) for all i
|
1408 |
+
|
1409 |
+
This generalizes into higher dimensions by reflecting over each axis in
|
1410 |
+
turn::
|
1411 |
+
|
1412 |
+
x[i, j, k, ...] == np.conj(x[-i, -j, -k, ...]) for all i, j, k, ...
|
1413 |
+
|
1414 |
+
This should not be confused with a Hermitian matrix, for which the
|
1415 |
+
transpose is its own conjugate::
|
1416 |
+
|
1417 |
+
x[i, j] == np.conj(x[j, i]) for all i, j
|
1418 |
+
|
1419 |
+
|
1420 |
+
The default value of `s` assumes an even output length in the final
|
1421 |
+
transformation axis. When performing the final complex to real
|
1422 |
+
transformation, the Hermitian symmetry requires that the last imaginary
|
1423 |
+
component along that axis must be 0 and so it is ignored. To avoid losing
|
1424 |
+
information, the correct length of the real input *must* be given.
|
1425 |
+
|
1426 |
+
Examples
|
1427 |
+
--------
|
1428 |
+
>>> import scipy.fft
|
1429 |
+
>>> import numpy as np
|
1430 |
+
>>> x = np.ones((3, 2, 2))
|
1431 |
+
>>> scipy.fft.hfftn(x)
|
1432 |
+
array([[[12., 0.],
|
1433 |
+
[ 0., 0.]],
|
1434 |
+
[[ 0., 0.],
|
1435 |
+
[ 0., 0.]],
|
1436 |
+
[[ 0., 0.],
|
1437 |
+
[ 0., 0.]]])
|
1438 |
+
|
1439 |
+
"""
|
1440 |
+
return (Dispatchable(x, np.ndarray),)
|
1441 |
+
|
1442 |
+
|
1443 |
+
@_dispatch
|
1444 |
+
def hfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
1445 |
+
plan=None):
|
1446 |
+
"""
|
1447 |
+
Compute the 2-D FFT of a Hermitian complex array.
|
1448 |
+
|
1449 |
+
Parameters
|
1450 |
+
----------
|
1451 |
+
x : array
|
1452 |
+
Input array, taken to be Hermitian complex.
|
1453 |
+
s : sequence of ints, optional
|
1454 |
+
Shape of the real output.
|
1455 |
+
axes : sequence of ints, optional
|
1456 |
+
Axes over which to compute the FFT.
|
1457 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1458 |
+
Normalization mode (see `fft`). Default is "backward".
|
1459 |
+
overwrite_x : bool, optional
|
1460 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1461 |
+
See `fft` for more details.
|
1462 |
+
workers : int, optional
|
1463 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1464 |
+
the value wraps around from ``os.cpu_count()``.
|
1465 |
+
See :func:`~scipy.fft.fft` for more details.
|
1466 |
+
plan : object, optional
|
1467 |
+
This argument is reserved for passing in a precomputed plan provided
|
1468 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1469 |
+
|
1470 |
+
.. versionadded:: 1.5.0
|
1471 |
+
|
1472 |
+
Returns
|
1473 |
+
-------
|
1474 |
+
out : ndarray
|
1475 |
+
The real result of the 2-D Hermitian complex real FFT.
|
1476 |
+
|
1477 |
+
See Also
|
1478 |
+
--------
|
1479 |
+
hfftn : Compute the N-D discrete Fourier Transform for Hermitian
|
1480 |
+
complex input.
|
1481 |
+
|
1482 |
+
Notes
|
1483 |
+
-----
|
1484 |
+
This is really just `hfftn` with different default behavior.
|
1485 |
+
For more details see `hfftn`.
|
1486 |
+
|
1487 |
+
"""
|
1488 |
+
return (Dispatchable(x, np.ndarray),)
|
1489 |
+
|
1490 |
+
|
1491 |
+
@_dispatch
|
1492 |
+
def ihfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
|
1493 |
+
plan=None):
|
1494 |
+
"""
|
1495 |
+
Compute the N-D inverse discrete Fourier Transform for a real
|
1496 |
+
spectrum.
|
1497 |
+
|
1498 |
+
This function computes the N-D inverse discrete Fourier Transform
|
1499 |
+
over any number of axes in an M-D real array by means of the Fast
|
1500 |
+
Fourier Transform (FFT). By default, all axes are transformed, with the
|
1501 |
+
real transform performed over the last axis, while the remaining transforms
|
1502 |
+
are complex.
|
1503 |
+
|
1504 |
+
Parameters
|
1505 |
+
----------
|
1506 |
+
x : array_like
|
1507 |
+
Input array, taken to be real.
|
1508 |
+
s : sequence of ints, optional
|
1509 |
+
Shape (length along each transformed axis) to use from the input.
|
1510 |
+
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
|
1511 |
+
Along any axis, if the given shape is smaller than that of the input,
|
1512 |
+
the input is cropped. If it is larger, the input is padded with zeros.
|
1513 |
+
if `s` is not given, the shape of the input along the axes specified
|
1514 |
+
by `axes` is used.
|
1515 |
+
axes : sequence of ints, optional
|
1516 |
+
Axes over which to compute the FFT. If not given, the last ``len(s)``
|
1517 |
+
axes are used, or all axes if `s` is also not specified.
|
1518 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1519 |
+
Normalization mode (see `fft`). Default is "backward".
|
1520 |
+
overwrite_x : bool, optional
|
1521 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1522 |
+
See :func:`fft` for more details.
|
1523 |
+
workers : int, optional
|
1524 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1525 |
+
the value wraps around from ``os.cpu_count()``.
|
1526 |
+
See :func:`~scipy.fft.fft` for more details.
|
1527 |
+
plan : object, optional
|
1528 |
+
This argument is reserved for passing in a precomputed plan provided
|
1529 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1530 |
+
|
1531 |
+
.. versionadded:: 1.5.0
|
1532 |
+
|
1533 |
+
Returns
|
1534 |
+
-------
|
1535 |
+
out : complex ndarray
|
1536 |
+
The truncated or zero-padded input, transformed along the axes
|
1537 |
+
indicated by `axes`, or by a combination of `s` and `x`,
|
1538 |
+
as explained in the parameters section above.
|
1539 |
+
The length of the last axis transformed will be ``s[-1]//2+1``,
|
1540 |
+
while the remaining transformed axes will have lengths according to
|
1541 |
+
`s`, or unchanged from the input.
|
1542 |
+
|
1543 |
+
Raises
|
1544 |
+
------
|
1545 |
+
ValueError
|
1546 |
+
If `s` and `axes` have different length.
|
1547 |
+
IndexError
|
1548 |
+
If an element of `axes` is larger than the number of axes of `x`.
|
1549 |
+
|
1550 |
+
See Also
|
1551 |
+
--------
|
1552 |
+
hfftn : The forward N-D FFT of Hermitian input.
|
1553 |
+
hfft : The 1-D FFT of Hermitian input.
|
1554 |
+
fft : The 1-D FFT, with definitions and conventions used.
|
1555 |
+
fftn : The N-D FFT.
|
1556 |
+
hfft2 : The 2-D FFT of Hermitian input.
|
1557 |
+
|
1558 |
+
Notes
|
1559 |
+
-----
|
1560 |
+
The transform for real input is performed over the last transformation
|
1561 |
+
axis, as by `ihfft`, then the transform over the remaining axes is
|
1562 |
+
performed as by `ifftn`. The order of the output is the positive part of
|
1563 |
+
the Hermitian output signal, in the same format as `rfft`.
|
1564 |
+
|
1565 |
+
Examples
|
1566 |
+
--------
|
1567 |
+
>>> import scipy.fft
|
1568 |
+
>>> import numpy as np
|
1569 |
+
>>> x = np.ones((2, 2, 2))
|
1570 |
+
>>> scipy.fft.ihfftn(x)
|
1571 |
+
array([[[1.+0.j, 0.+0.j], # may vary
|
1572 |
+
[0.+0.j, 0.+0.j]],
|
1573 |
+
[[0.+0.j, 0.+0.j],
|
1574 |
+
[0.+0.j, 0.+0.j]]])
|
1575 |
+
>>> scipy.fft.ihfftn(x, axes=(2, 0))
|
1576 |
+
array([[[1.+0.j, 0.+0.j], # may vary
|
1577 |
+
[1.+0.j, 0.+0.j]],
|
1578 |
+
[[0.+0.j, 0.+0.j],
|
1579 |
+
[0.+0.j, 0.+0.j]]])
|
1580 |
+
|
1581 |
+
"""
|
1582 |
+
return (Dispatchable(x, np.ndarray),)
|
1583 |
+
|
1584 |
+
|
1585 |
+
@_dispatch
|
1586 |
+
def ihfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
|
1587 |
+
plan=None):
|
1588 |
+
"""
|
1589 |
+
Compute the 2-D inverse FFT of a real spectrum.
|
1590 |
+
|
1591 |
+
Parameters
|
1592 |
+
----------
|
1593 |
+
x : array_like
|
1594 |
+
The input array
|
1595 |
+
s : sequence of ints, optional
|
1596 |
+
Shape of the real input to the inverse FFT.
|
1597 |
+
axes : sequence of ints, optional
|
1598 |
+
The axes over which to compute the inverse fft.
|
1599 |
+
Default is the last two axes.
|
1600 |
+
norm : {"backward", "ortho", "forward"}, optional
|
1601 |
+
Normalization mode (see `fft`). Default is "backward".
|
1602 |
+
overwrite_x : bool, optional
|
1603 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
1604 |
+
See :func:`fft` for more details.
|
1605 |
+
workers : int, optional
|
1606 |
+
Maximum number of workers to use for parallel computation. If negative,
|
1607 |
+
the value wraps around from ``os.cpu_count()``.
|
1608 |
+
See :func:`~scipy.fft.fft` for more details.
|
1609 |
+
plan : object, optional
|
1610 |
+
This argument is reserved for passing in a precomputed plan provided
|
1611 |
+
by downstream FFT vendors. It is currently not used in SciPy.
|
1612 |
+
|
1613 |
+
.. versionadded:: 1.5.0
|
1614 |
+
|
1615 |
+
Returns
|
1616 |
+
-------
|
1617 |
+
out : ndarray
|
1618 |
+
The result of the inverse real 2-D FFT.
|
1619 |
+
|
1620 |
+
See Also
|
1621 |
+
--------
|
1622 |
+
ihfftn : Compute the inverse of the N-D FFT of Hermitian input.
|
1623 |
+
|
1624 |
+
Notes
|
1625 |
+
-----
|
1626 |
+
This is really `ihfftn` with different defaults.
|
1627 |
+
For more details see `ihfftn`.
|
1628 |
+
|
1629 |
+
"""
|
1630 |
+
return (Dispatchable(x, np.ndarray),)
|
llmeval-env/lib/python3.10/site-packages/scipy/fft/_fftlog.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Fast Hankel transforms using the FFTLog algorithm.
|
2 |
+
|
3 |
+
The implementation closely follows the Fortran code of Hamilton (2000).
|
4 |
+
|
5 |
+
added: 14/11/2020 Nicolas Tessore <[email protected]>
|
6 |
+
"""
|
7 |
+
|
8 |
+
from ._basic import _dispatch
|
9 |
+
from scipy._lib.uarray import Dispatchable
|
10 |
+
from ._fftlog_backend import fhtoffset
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
__all__ = ['fht', 'ifht', 'fhtoffset']
|
14 |
+
|
15 |
+
|
16 |
+
@_dispatch
|
17 |
+
def fht(a, dln, mu, offset=0.0, bias=0.0):
|
18 |
+
r'''Compute the fast Hankel transform.
|
19 |
+
|
20 |
+
Computes the discrete Hankel transform of a logarithmically spaced periodic
|
21 |
+
sequence using the FFTLog algorithm [1]_, [2]_.
|
22 |
+
|
23 |
+
Parameters
|
24 |
+
----------
|
25 |
+
a : array_like (..., n)
|
26 |
+
Real periodic input array, uniformly logarithmically spaced. For
|
27 |
+
multidimensional input, the transform is performed over the last axis.
|
28 |
+
dln : float
|
29 |
+
Uniform logarithmic spacing of the input array.
|
30 |
+
mu : float
|
31 |
+
Order of the Hankel transform, any positive or negative real number.
|
32 |
+
offset : float, optional
|
33 |
+
Offset of the uniform logarithmic spacing of the output array.
|
34 |
+
bias : float, optional
|
35 |
+
Exponent of power law bias, any positive or negative real number.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
A : array_like (..., n)
|
40 |
+
The transformed output array, which is real, periodic, uniformly
|
41 |
+
logarithmically spaced, and of the same shape as the input array.
|
42 |
+
|
43 |
+
See Also
|
44 |
+
--------
|
45 |
+
ifht : The inverse of `fht`.
|
46 |
+
fhtoffset : Return an optimal offset for `fht`.
|
47 |
+
|
48 |
+
Notes
|
49 |
+
-----
|
50 |
+
This function computes a discrete version of the Hankel transform
|
51 |
+
|
52 |
+
.. math::
|
53 |
+
|
54 |
+
A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,
|
55 |
+
|
56 |
+
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
|
57 |
+
:math:`\mu` may be any real number, positive or negative. Note that the
|
58 |
+
numerical Hankel transform uses an integrand of :math:`k \, dr`, while the
|
59 |
+
mathematical Hankel transform is commonly defined using :math:`r \, dr`.
|
60 |
+
|
61 |
+
The input array `a` is a periodic sequence of length :math:`n`, uniformly
|
62 |
+
logarithmically spaced with spacing `dln`,
|
63 |
+
|
64 |
+
.. math::
|
65 |
+
|
66 |
+
a_j = a(r_j) \;, \quad
|
67 |
+
r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]
|
68 |
+
|
69 |
+
centred about the point :math:`r_c`. Note that the central index
|
70 |
+
:math:`j_c = (n-1)/2` is half-integral if :math:`n` is even, so that
|
71 |
+
:math:`r_c` falls between two input elements. Similarly, the output
|
72 |
+
array `A` is a periodic sequence of length :math:`n`, also uniformly
|
73 |
+
logarithmically spaced with spacing `dln`
|
74 |
+
|
75 |
+
.. math::
|
76 |
+
|
77 |
+
A_j = A(k_j) \;, \quad
|
78 |
+
k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]
|
79 |
+
|
80 |
+
centred about the point :math:`k_c`.
|
81 |
+
|
82 |
+
The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
|
83 |
+
be chosen arbitrarily, but it would be usual to choose the product
|
84 |
+
:math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity. This can be
|
85 |
+
changed using the `offset` parameter, which controls the logarithmic offset
|
86 |
+
:math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
|
87 |
+
Choosing an optimal value for `offset` may reduce ringing of the discrete
|
88 |
+
Hankel transform.
|
89 |
+
|
90 |
+
If the `bias` parameter is nonzero, this function computes a discrete
|
91 |
+
version of the biased Hankel transform
|
92 |
+
|
93 |
+
.. math::
|
94 |
+
|
95 |
+
A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr
|
96 |
+
|
97 |
+
where :math:`q` is the value of `bias`, and a power law bias
|
98 |
+
:math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
|
99 |
+
Biasing the transform can help approximate the continuous transform of
|
100 |
+
:math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
|
101 |
+
close to a periodic sequence, in which case the resulting :math:`A(k)` will
|
102 |
+
be close to the continuous transform.
|
103 |
+
|
104 |
+
References
|
105 |
+
----------
|
106 |
+
.. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
|
107 |
+
.. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
|
112 |
+
This example is the adapted version of ``fftlogtest.f`` which is provided
|
113 |
+
in [2]_. It evaluates the integral
|
114 |
+
|
115 |
+
.. math::
|
116 |
+
|
117 |
+
\int^\infty_0 r^{\mu+1} \exp(-r^2/2) J_\mu(k, r) k dr
|
118 |
+
= k^{\mu+1} \exp(-k^2/2) .
|
119 |
+
|
120 |
+
>>> import numpy as np
|
121 |
+
>>> from scipy import fft
|
122 |
+
>>> import matplotlib.pyplot as plt
|
123 |
+
|
124 |
+
Parameters for the transform.
|
125 |
+
|
126 |
+
>>> mu = 0.0 # Order mu of Bessel function
|
127 |
+
>>> r = np.logspace(-7, 1, 128) # Input evaluation points
|
128 |
+
>>> dln = np.log(r[1]/r[0]) # Step size
|
129 |
+
>>> offset = fft.fhtoffset(dln, initial=-6*np.log(10), mu=mu)
|
130 |
+
>>> k = np.exp(offset)/r[::-1] # Output evaluation points
|
131 |
+
|
132 |
+
Define the analytical function.
|
133 |
+
|
134 |
+
>>> def f(x, mu):
|
135 |
+
... """Analytical function: x^(mu+1) exp(-x^2/2)."""
|
136 |
+
... return x**(mu + 1)*np.exp(-x**2/2)
|
137 |
+
|
138 |
+
Evaluate the function at ``r`` and compute the corresponding values at
|
139 |
+
``k`` using FFTLog.
|
140 |
+
|
141 |
+
>>> a_r = f(r, mu)
|
142 |
+
>>> fht = fft.fht(a_r, dln, mu=mu, offset=offset)
|
143 |
+
|
144 |
+
For this example we can actually compute the analytical response (which in
|
145 |
+
this case is the same as the input function) for comparison and compute the
|
146 |
+
relative error.
|
147 |
+
|
148 |
+
>>> a_k = f(k, mu)
|
149 |
+
>>> rel_err = abs((fht-a_k)/a_k)
|
150 |
+
|
151 |
+
Plot the result.
|
152 |
+
|
153 |
+
>>> figargs = {'sharex': True, 'sharey': True, 'constrained_layout': True}
|
154 |
+
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), **figargs)
|
155 |
+
>>> ax1.set_title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
|
156 |
+
>>> ax1.loglog(r, a_r, 'k', lw=2)
|
157 |
+
>>> ax1.set_xlabel('r')
|
158 |
+
>>> ax2.set_title(r'$k^{\mu+1} \exp(-k^2/2)$')
|
159 |
+
>>> ax2.loglog(k, a_k, 'k', lw=2, label='Analytical')
|
160 |
+
>>> ax2.loglog(k, fht, 'C3--', lw=2, label='FFTLog')
|
161 |
+
>>> ax2.set_xlabel('k')
|
162 |
+
>>> ax2.legend(loc=3, framealpha=1)
|
163 |
+
>>> ax2.set_ylim([1e-10, 1e1])
|
164 |
+
>>> ax2b = ax2.twinx()
|
165 |
+
>>> ax2b.loglog(k, rel_err, 'C0', label='Rel. Error (-)')
|
166 |
+
>>> ax2b.set_ylabel('Rel. Error (-)', color='C0')
|
167 |
+
>>> ax2b.tick_params(axis='y', labelcolor='C0')
|
168 |
+
>>> ax2b.legend(loc=4, framealpha=1)
|
169 |
+
>>> ax2b.set_ylim([1e-9, 1e-3])
|
170 |
+
>>> plt.show()
|
171 |
+
|
172 |
+
'''
|
173 |
+
return (Dispatchable(a, np.ndarray),)
|
174 |
+
|
175 |
+
|
176 |
+
@_dispatch
|
177 |
+
def ifht(A, dln, mu, offset=0.0, bias=0.0):
|
178 |
+
r"""Compute the inverse fast Hankel transform.
|
179 |
+
|
180 |
+
Computes the discrete inverse Hankel transform of a logarithmically spaced
|
181 |
+
periodic sequence. This is the inverse operation to `fht`.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
A : array_like (..., n)
|
186 |
+
Real periodic input array, uniformly logarithmically spaced. For
|
187 |
+
multidimensional input, the transform is performed over the last axis.
|
188 |
+
dln : float
|
189 |
+
Uniform logarithmic spacing of the input array.
|
190 |
+
mu : float
|
191 |
+
Order of the Hankel transform, any positive or negative real number.
|
192 |
+
offset : float, optional
|
193 |
+
Offset of the uniform logarithmic spacing of the output array.
|
194 |
+
bias : float, optional
|
195 |
+
Exponent of power law bias, any positive or negative real number.
|
196 |
+
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
a : array_like (..., n)
|
200 |
+
The transformed output array, which is real, periodic, uniformly
|
201 |
+
logarithmically spaced, and of the same shape as the input array.
|
202 |
+
|
203 |
+
See Also
|
204 |
+
--------
|
205 |
+
fht : Definition of the fast Hankel transform.
|
206 |
+
fhtoffset : Return an optimal offset for `ifht`.
|
207 |
+
|
208 |
+
Notes
|
209 |
+
-----
|
210 |
+
This function computes a discrete version of the Hankel transform
|
211 |
+
|
212 |
+
.. math::
|
213 |
+
|
214 |
+
a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,
|
215 |
+
|
216 |
+
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
|
217 |
+
:math:`\mu` may be any real number, positive or negative. Note that the
|
218 |
+
numerical inverse Hankel transform uses an integrand of :math:`r \, dk`, while the
|
219 |
+
mathematical inverse Hankel transform is commonly defined using :math:`k \, dk`.
|
220 |
+
|
221 |
+
See `fht` for further details.
|
222 |
+
"""
|
223 |
+
return (Dispatchable(A, np.ndarray),)
|
llmeval-env/lib/python3.10/site-packages/scipy/fft/_fftlog_backend.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from warnings import warn
|
3 |
+
from ._basic import rfft, irfft
|
4 |
+
from ..special import loggamma, poch
|
5 |
+
|
6 |
+
from scipy._lib._array_api import array_namespace, copy
|
7 |
+
|
8 |
+
__all__ = ['fht', 'ifht', 'fhtoffset']
|
9 |
+
|
10 |
+
# constants
|
11 |
+
LN_2 = np.log(2)
|
12 |
+
|
13 |
+
|
14 |
+
def fht(a, dln, mu, offset=0.0, bias=0.0):
|
15 |
+
xp = array_namespace(a)
|
16 |
+
|
17 |
+
# size of transform
|
18 |
+
n = a.shape[-1]
|
19 |
+
|
20 |
+
# bias input array
|
21 |
+
if bias != 0:
|
22 |
+
# a_q(r) = a(r) (r/r_c)^{-q}
|
23 |
+
j_c = (n-1)/2
|
24 |
+
j = xp.arange(n, dtype=xp.float64)
|
25 |
+
a = a * xp.exp(-bias*(j - j_c)*dln)
|
26 |
+
|
27 |
+
# compute FHT coefficients
|
28 |
+
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias))
|
29 |
+
|
30 |
+
# transform
|
31 |
+
A = _fhtq(a, u, xp=xp)
|
32 |
+
|
33 |
+
# bias output array
|
34 |
+
if bias != 0:
|
35 |
+
# A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q}
|
36 |
+
A *= xp.exp(-bias*((j - j_c)*dln + offset))
|
37 |
+
|
38 |
+
return A
|
39 |
+
|
40 |
+
|
41 |
+
def ifht(A, dln, mu, offset=0.0, bias=0.0):
|
42 |
+
xp = array_namespace(A)
|
43 |
+
|
44 |
+
# size of transform
|
45 |
+
n = A.shape[-1]
|
46 |
+
|
47 |
+
# bias input array
|
48 |
+
if bias != 0:
|
49 |
+
# A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q}
|
50 |
+
j_c = (n-1)/2
|
51 |
+
j = xp.arange(n, dtype=xp.float64)
|
52 |
+
A = A * xp.exp(bias*((j - j_c)*dln + offset))
|
53 |
+
|
54 |
+
# compute FHT coefficients
|
55 |
+
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True))
|
56 |
+
|
57 |
+
# transform
|
58 |
+
a = _fhtq(A, u, inverse=True, xp=xp)
|
59 |
+
|
60 |
+
# bias output array
|
61 |
+
if bias != 0:
|
62 |
+
# a(r) = a_q(r) (r/r_c)^{q}
|
63 |
+
a /= xp.exp(-bias*(j - j_c)*dln)
|
64 |
+
|
65 |
+
return a
|
66 |
+
|
67 |
+
|
68 |
+
def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False):
|
69 |
+
"""Compute the coefficient array for a fast Hankel transform."""
|
70 |
+
lnkr, q = offset, bias
|
71 |
+
|
72 |
+
# Hankel transform coefficients
|
73 |
+
# u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr))
|
74 |
+
# with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2)
|
75 |
+
xp = (mu+1+q)/2
|
76 |
+
xm = (mu+1-q)/2
|
77 |
+
y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1)
|
78 |
+
u = np.empty(n//2+1, dtype=complex)
|
79 |
+
v = np.empty(n//2+1, dtype=complex)
|
80 |
+
u.imag[:] = y
|
81 |
+
u.real[:] = xm
|
82 |
+
loggamma(u, out=v)
|
83 |
+
u.real[:] = xp
|
84 |
+
loggamma(u, out=u)
|
85 |
+
y *= 2*(LN_2 - lnkr)
|
86 |
+
u.real -= v.real
|
87 |
+
u.real += LN_2*q
|
88 |
+
u.imag += v.imag
|
89 |
+
u.imag += y
|
90 |
+
np.exp(u, out=u)
|
91 |
+
|
92 |
+
# fix last coefficient to be real
|
93 |
+
u.imag[-1] = 0
|
94 |
+
|
95 |
+
# deal with special cases
|
96 |
+
if not np.isfinite(u[0]):
|
97 |
+
# write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm)
|
98 |
+
# poch() handles special cases for negative integers correctly
|
99 |
+
u[0] = 2**q * poch(xm, xp-xm)
|
100 |
+
# the coefficient may be inf or 0, meaning the transform or the
|
101 |
+
# inverse transform, respectively, is singular
|
102 |
+
|
103 |
+
# check for singular transform or singular inverse transform
|
104 |
+
if np.isinf(u[0]) and not inverse:
|
105 |
+
warn('singular transform; consider changing the bias', stacklevel=3)
|
106 |
+
# fix coefficient to obtain (potentially correct) transform anyway
|
107 |
+
u = copy(u)
|
108 |
+
u[0] = 0
|
109 |
+
elif u[0] == 0 and inverse:
|
110 |
+
warn('singular inverse transform; consider changing the bias', stacklevel=3)
|
111 |
+
# fix coefficient to obtain (potentially correct) inverse anyway
|
112 |
+
u = copy(u)
|
113 |
+
u[0] = np.inf
|
114 |
+
|
115 |
+
return u
|
116 |
+
|
117 |
+
|
118 |
+
def fhtoffset(dln, mu, initial=0.0, bias=0.0):
|
119 |
+
"""Return optimal offset for a fast Hankel transform.
|
120 |
+
|
121 |
+
Returns an offset close to `initial` that fulfils the low-ringing
|
122 |
+
condition of [1]_ for the fast Hankel transform `fht` with logarithmic
|
123 |
+
spacing `dln`, order `mu` and bias `bias`.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
----------
|
127 |
+
dln : float
|
128 |
+
Uniform logarithmic spacing of the transform.
|
129 |
+
mu : float
|
130 |
+
Order of the Hankel transform, any positive or negative real number.
|
131 |
+
initial : float, optional
|
132 |
+
Initial value for the offset. Returns the closest value that fulfils
|
133 |
+
the low-ringing condition.
|
134 |
+
bias : float, optional
|
135 |
+
Exponent of power law bias, any positive or negative real number.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
offset : float
|
140 |
+
Optimal offset of the uniform logarithmic spacing of the transform that
|
141 |
+
fulfils a low-ringing condition.
|
142 |
+
|
143 |
+
Examples
|
144 |
+
--------
|
145 |
+
>>> from scipy.fft import fhtoffset
|
146 |
+
>>> dln = 0.1
|
147 |
+
>>> mu = 2.0
|
148 |
+
>>> initial = 0.5
|
149 |
+
>>> bias = 0.0
|
150 |
+
>>> offset = fhtoffset(dln, mu, initial, bias)
|
151 |
+
>>> offset
|
152 |
+
0.5454581477676637
|
153 |
+
|
154 |
+
See Also
|
155 |
+
--------
|
156 |
+
fht : Definition of the fast Hankel transform.
|
157 |
+
|
158 |
+
References
|
159 |
+
----------
|
160 |
+
.. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
|
161 |
+
|
162 |
+
"""
|
163 |
+
|
164 |
+
lnkr, q = initial, bias
|
165 |
+
|
166 |
+
xp = (mu+1+q)/2
|
167 |
+
xm = (mu+1-q)/2
|
168 |
+
y = np.pi/(2*dln)
|
169 |
+
zp = loggamma(xp + 1j*y)
|
170 |
+
zm = loggamma(xm + 1j*y)
|
171 |
+
arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi
|
172 |
+
return lnkr + (arg - np.round(arg))*dln
|
173 |
+
|
174 |
+
|
175 |
+
def _fhtq(a, u, inverse=False, *, xp=None):
|
176 |
+
"""Compute the biased fast Hankel transform.
|
177 |
+
|
178 |
+
This is the basic FFTLog routine.
|
179 |
+
"""
|
180 |
+
if xp is None:
|
181 |
+
xp = np
|
182 |
+
|
183 |
+
# size of transform
|
184 |
+
n = a.shape[-1]
|
185 |
+
|
186 |
+
# biased fast Hankel transform via real FFT
|
187 |
+
A = rfft(a, axis=-1)
|
188 |
+
if not inverse:
|
189 |
+
# forward transform
|
190 |
+
A *= u
|
191 |
+
else:
|
192 |
+
# backward transform
|
193 |
+
A /= xp.conj(u)
|
194 |
+
A = irfft(A, n, axis=-1)
|
195 |
+
A = xp.flip(A, axis=-1)
|
196 |
+
|
197 |
+
return A
|
llmeval-env/lib/python3.10/site-packages/scipy/fft/_helper.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import update_wrapper, lru_cache
|
2 |
+
import inspect
|
3 |
+
|
4 |
+
from ._pocketfft import helper as _helper
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy._lib._array_api import array_namespace
|
8 |
+
|
9 |
+
|
10 |
+
def next_fast_len(target, real=False):
|
11 |
+
"""Find the next fast size of input data to ``fft``, for zero-padding, etc.
|
12 |
+
|
13 |
+
SciPy's FFT algorithms gain their speed by a recursive divide and conquer
|
14 |
+
strategy. This relies on efficient functions for small prime factors of the
|
15 |
+
input length. Thus, the transforms are fastest when using composites of the
|
16 |
+
prime factors handled by the fft implementation. If there are efficient
|
17 |
+
functions for all radices <= `n`, then the result will be a number `x`
|
18 |
+
>= ``target`` with only prime factors < `n`. (Also known as `n`-smooth
|
19 |
+
numbers)
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
target : int
|
24 |
+
Length to start searching from. Must be a positive integer.
|
25 |
+
real : bool, optional
|
26 |
+
True if the FFT involves real input or output (e.g., `rfft` or `hfft`
|
27 |
+
but not `fft`). Defaults to False.
|
28 |
+
|
29 |
+
Returns
|
30 |
+
-------
|
31 |
+
out : int
|
32 |
+
The smallest fast length greater than or equal to ``target``.
|
33 |
+
|
34 |
+
Notes
|
35 |
+
-----
|
36 |
+
The result of this function may change in future as performance
|
37 |
+
considerations change, for example, if new prime factors are added.
|
38 |
+
|
39 |
+
Calling `fft` or `ifft` with real input data performs an ``'R2C'``
|
40 |
+
transform internally.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
--------
|
44 |
+
On a particular machine, an FFT of prime length takes 11.4 ms:
|
45 |
+
|
46 |
+
>>> from scipy import fft
|
47 |
+
>>> import numpy as np
|
48 |
+
>>> rng = np.random.default_rng()
|
49 |
+
>>> min_len = 93059 # prime length is worst case for speed
|
50 |
+
>>> a = rng.standard_normal(min_len)
|
51 |
+
>>> b = fft.fft(a)
|
52 |
+
|
53 |
+
Zero-padding to the next regular length reduces computation time to
|
54 |
+
1.6 ms, a speedup of 7.3 times:
|
55 |
+
|
56 |
+
>>> fft.next_fast_len(min_len, real=True)
|
57 |
+
93312
|
58 |
+
>>> b = fft.fft(a, 93312)
|
59 |
+
|
60 |
+
Rounding up to the next power of 2 is not optimal, taking 3.0 ms to
|
61 |
+
compute; 1.9 times longer than the size given by ``next_fast_len``:
|
62 |
+
|
63 |
+
>>> b = fft.fft(a, 131072)
|
64 |
+
|
65 |
+
"""
|
66 |
+
pass
|
67 |
+
|
68 |
+
|
69 |
+
# Directly wrap the c-function good_size but take the docstring etc., from the
|
70 |
+
# next_fast_len function above
|
71 |
+
_sig = inspect.signature(next_fast_len)
|
72 |
+
next_fast_len = update_wrapper(lru_cache(_helper.good_size), next_fast_len)
|
73 |
+
next_fast_len.__wrapped__ = _helper.good_size
|
74 |
+
next_fast_len.__signature__ = _sig
|
75 |
+
|
76 |
+
|
77 |
+
def _init_nd_shape_and_axes(x, shape, axes):
|
78 |
+
"""Handle shape and axes arguments for N-D transforms.
|
79 |
+
|
80 |
+
Returns the shape and axes in a standard form, taking into account negative
|
81 |
+
values and checking for various potential errors.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
x : array_like
|
86 |
+
The input array.
|
87 |
+
shape : int or array_like of ints or None
|
88 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
89 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
90 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
91 |
+
If `shape` is -1, the size of the corresponding dimension of `x` is
|
92 |
+
used.
|
93 |
+
axes : int or array_like of ints or None
|
94 |
+
Axes along which the calculation is computed.
|
95 |
+
The default is over all axes.
|
96 |
+
Negative indices are automatically converted to their positive
|
97 |
+
counterparts.
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
shape : tuple
|
102 |
+
The shape of the result as a tuple of integers.
|
103 |
+
axes : list
|
104 |
+
Axes along which the calculation is computed, as a list of integers.
|
105 |
+
|
106 |
+
"""
|
107 |
+
x = np.asarray(x)
|
108 |
+
return _helper._init_nd_shape_and_axes(x, shape, axes)
|
109 |
+
|
110 |
+
|
111 |
+
def fftfreq(n, d=1.0, *, xp=None, device=None):
|
112 |
+
"""Return the Discrete Fourier Transform sample frequencies.
|
113 |
+
|
114 |
+
The returned float array `f` contains the frequency bin centers in cycles
|
115 |
+
per unit of the sample spacing (with zero at the start). For instance, if
|
116 |
+
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
117 |
+
|
118 |
+
Given a window length `n` and a sample spacing `d`::
|
119 |
+
|
120 |
+
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
121 |
+
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
122 |
+
|
123 |
+
Parameters
|
124 |
+
----------
|
125 |
+
n : int
|
126 |
+
Window length.
|
127 |
+
d : scalar, optional
|
128 |
+
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
129 |
+
xp : array_namespace, optional
|
130 |
+
The namespace for the return array. Default is None, where NumPy is used.
|
131 |
+
device : device, optional
|
132 |
+
The device for the return array.
|
133 |
+
Only valid when `xp.fft.fftfreq` implements the device parameter.
|
134 |
+
|
135 |
+
Returns
|
136 |
+
-------
|
137 |
+
f : ndarray
|
138 |
+
Array of length `n` containing the sample frequencies.
|
139 |
+
|
140 |
+
Examples
|
141 |
+
--------
|
142 |
+
>>> import numpy as np
|
143 |
+
>>> import scipy.fft
|
144 |
+
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
145 |
+
>>> fourier = scipy.fft.fft(signal)
|
146 |
+
>>> n = signal.size
|
147 |
+
>>> timestep = 0.1
|
148 |
+
>>> freq = scipy.fft.fftfreq(n, d=timestep)
|
149 |
+
>>> freq
|
150 |
+
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
|
151 |
+
|
152 |
+
"""
|
153 |
+
xp = np if xp is None else xp
|
154 |
+
# numpy does not yet support the `device` keyword
|
155 |
+
# `xp.__name__ != 'numpy'` should be removed when numpy is compatible
|
156 |
+
if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
|
157 |
+
return xp.fft.fftfreq(n, d=d, device=device)
|
158 |
+
if device is not None:
|
159 |
+
raise ValueError('device parameter is not supported for input array type')
|
160 |
+
return np.fft.fftfreq(n, d=d)
|
161 |
+
|
162 |
+
|
163 |
+
def rfftfreq(n, d=1.0, *, xp=None, device=None):
|
164 |
+
"""Return the Discrete Fourier Transform sample frequencies
|
165 |
+
(for usage with rfft, irfft).
|
166 |
+
|
167 |
+
The returned float array `f` contains the frequency bin centers in cycles
|
168 |
+
per unit of the sample spacing (with zero at the start). For instance, if
|
169 |
+
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
170 |
+
|
171 |
+
Given a window length `n` and a sample spacing `d`::
|
172 |
+
|
173 |
+
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
174 |
+
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
175 |
+
|
176 |
+
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
177 |
+
the Nyquist frequency component is considered to be positive.
|
178 |
+
|
179 |
+
Parameters
|
180 |
+
----------
|
181 |
+
n : int
|
182 |
+
Window length.
|
183 |
+
d : scalar, optional
|
184 |
+
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
185 |
+
xp : array_namespace, optional
|
186 |
+
The namespace for the return array. Default is None, where NumPy is used.
|
187 |
+
device : device, optional
|
188 |
+
The device for the return array.
|
189 |
+
Only valid when `xp.fft.rfftfreq` implements the device parameter.
|
190 |
+
|
191 |
+
Returns
|
192 |
+
-------
|
193 |
+
f : ndarray
|
194 |
+
Array of length ``n//2 + 1`` containing the sample frequencies.
|
195 |
+
|
196 |
+
Examples
|
197 |
+
--------
|
198 |
+
>>> import numpy as np
|
199 |
+
>>> import scipy.fft
|
200 |
+
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
201 |
+
>>> fourier = scipy.fft.rfft(signal)
|
202 |
+
>>> n = signal.size
|
203 |
+
>>> sample_rate = 100
|
204 |
+
>>> freq = scipy.fft.fftfreq(n, d=1./sample_rate)
|
205 |
+
>>> freq
|
206 |
+
array([ 0., 10., 20., ..., -30., -20., -10.])
|
207 |
+
>>> freq = scipy.fft.rfftfreq(n, d=1./sample_rate)
|
208 |
+
>>> freq
|
209 |
+
array([ 0., 10., 20., 30., 40., 50.])
|
210 |
+
|
211 |
+
"""
|
212 |
+
xp = np if xp is None else xp
|
213 |
+
# numpy does not yet support the `device` keyword
|
214 |
+
# `xp.__name__ != 'numpy'` should be removed when numpy is compatible
|
215 |
+
if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
|
216 |
+
return xp.fft.rfftfreq(n, d=d, device=device)
|
217 |
+
if device is not None:
|
218 |
+
raise ValueError('device parameter is not supported for input array type')
|
219 |
+
return np.fft.rfftfreq(n, d=d)
|
220 |
+
|
221 |
+
|
222 |
+
def fftshift(x, axes=None):
|
223 |
+
"""Shift the zero-frequency component to the center of the spectrum.
|
224 |
+
|
225 |
+
This function swaps half-spaces for all axes listed (defaults to all).
|
226 |
+
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
227 |
+
|
228 |
+
Parameters
|
229 |
+
----------
|
230 |
+
x : array_like
|
231 |
+
Input array.
|
232 |
+
axes : int or shape tuple, optional
|
233 |
+
Axes over which to shift. Default is None, which shifts all axes.
|
234 |
+
|
235 |
+
Returns
|
236 |
+
-------
|
237 |
+
y : ndarray
|
238 |
+
The shifted array.
|
239 |
+
|
240 |
+
See Also
|
241 |
+
--------
|
242 |
+
ifftshift : The inverse of `fftshift`.
|
243 |
+
|
244 |
+
Examples
|
245 |
+
--------
|
246 |
+
>>> import numpy as np
|
247 |
+
>>> freqs = np.fft.fftfreq(10, 0.1)
|
248 |
+
>>> freqs
|
249 |
+
array([ 0., 1., 2., ..., -3., -2., -1.])
|
250 |
+
>>> np.fft.fftshift(freqs)
|
251 |
+
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
252 |
+
|
253 |
+
Shift the zero-frequency component only along the second axis:
|
254 |
+
|
255 |
+
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
256 |
+
>>> freqs
|
257 |
+
array([[ 0., 1., 2.],
|
258 |
+
[ 3., 4., -4.],
|
259 |
+
[-3., -2., -1.]])
|
260 |
+
>>> np.fft.fftshift(freqs, axes=(1,))
|
261 |
+
array([[ 2., 0., 1.],
|
262 |
+
[-4., 3., 4.],
|
263 |
+
[-1., -3., -2.]])
|
264 |
+
|
265 |
+
"""
|
266 |
+
xp = array_namespace(x)
|
267 |
+
if hasattr(xp, 'fft'):
|
268 |
+
return xp.fft.fftshift(x, axes=axes)
|
269 |
+
x = np.asarray(x)
|
270 |
+
y = np.fft.fftshift(x, axes=axes)
|
271 |
+
return xp.asarray(y)
|
272 |
+
|
273 |
+
|
274 |
+
def ifftshift(x, axes=None):
|
275 |
+
"""The inverse of `fftshift`. Although identical for even-length `x`, the
|
276 |
+
functions differ by one sample for odd-length `x`.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
x : array_like
|
281 |
+
Input array.
|
282 |
+
axes : int or shape tuple, optional
|
283 |
+
Axes over which to calculate. Defaults to None, which shifts all axes.
|
284 |
+
|
285 |
+
Returns
|
286 |
+
-------
|
287 |
+
y : ndarray
|
288 |
+
The shifted array.
|
289 |
+
|
290 |
+
See Also
|
291 |
+
--------
|
292 |
+
fftshift : Shift zero-frequency component to the center of the spectrum.
|
293 |
+
|
294 |
+
Examples
|
295 |
+
--------
|
296 |
+
>>> import numpy as np
|
297 |
+
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
298 |
+
>>> freqs
|
299 |
+
array([[ 0., 1., 2.],
|
300 |
+
[ 3., 4., -4.],
|
301 |
+
[-3., -2., -1.]])
|
302 |
+
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
303 |
+
array([[ 0., 1., 2.],
|
304 |
+
[ 3., 4., -4.],
|
305 |
+
[-3., -2., -1.]])
|
306 |
+
|
307 |
+
"""
|
308 |
+
xp = array_namespace(x)
|
309 |
+
if hasattr(xp, 'fft'):
|
310 |
+
return xp.fft.ifftshift(x, axes=axes)
|
311 |
+
x = np.asarray(x)
|
312 |
+
y = np.fft.ifftshift(x, axes=axes)
|
313 |
+
return xp.asarray(y)
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/__init__.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
==========================================
|
3 |
+
Miscellaneous routines (:mod:`scipy.misc`)
|
4 |
+
==========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.misc
|
7 |
+
|
8 |
+
.. deprecated:: 1.10.0
|
9 |
+
|
10 |
+
This module is deprecated and will be completely
|
11 |
+
removed in SciPy v2.0.0.
|
12 |
+
|
13 |
+
Various utilities that don't have another home.
|
14 |
+
|
15 |
+
.. autosummary::
|
16 |
+
:toctree: generated/
|
17 |
+
|
18 |
+
ascent - Get example image for processing
|
19 |
+
central_diff_weights - Weights for an n-point central mth derivative
|
20 |
+
derivative - Find the nth derivative of a function at a point
|
21 |
+
face - Get example image for processing
|
22 |
+
electrocardiogram - Load an example of a 1-D signal
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
from ._common import *
|
28 |
+
from . import _common
|
29 |
+
import warnings
|
30 |
+
|
31 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
32 |
+
from . import common, doccer
|
33 |
+
|
34 |
+
__all__ = _common.__all__
|
35 |
+
|
36 |
+
dataset_methods = ['ascent', 'face', 'electrocardiogram']
|
37 |
+
|
38 |
+
|
39 |
+
def __dir__():
|
40 |
+
return __all__
|
41 |
+
|
42 |
+
|
43 |
+
def __getattr__(name):
|
44 |
+
if name not in __all__:
|
45 |
+
raise AttributeError(
|
46 |
+
"scipy.misc is deprecated and has no attribute "
|
47 |
+
f"{name}.")
|
48 |
+
|
49 |
+
if name in dataset_methods:
|
50 |
+
msg = ("The module `scipy.misc` is deprecated and will be "
|
51 |
+
"completely removed in SciPy v2.0.0. "
|
52 |
+
f"All dataset methods including {name}, must be imported "
|
53 |
+
"directly from the new `scipy.datasets` module.")
|
54 |
+
else:
|
55 |
+
msg = (f"The method `{name}` from the `scipy.misc` namespace is"
|
56 |
+
" deprecated, and will be removed in SciPy v1.12.0.")
|
57 |
+
|
58 |
+
warnings.warn(msg, category=DeprecationWarning, stacklevel=2)
|
59 |
+
|
60 |
+
return getattr(name)
|
61 |
+
|
62 |
+
|
63 |
+
del _common
|
64 |
+
|
65 |
+
from scipy._lib._testutils import PytestTester
|
66 |
+
test = PytestTester(__name__)
|
67 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/__pycache__/doccer.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/_common.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions which are common and require SciPy Base and Level 1 SciPy
|
3 |
+
(special, linalg)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from scipy._lib.deprecation import _deprecated
|
7 |
+
from scipy._lib._finite_differences import _central_diff_weights, _derivative
|
8 |
+
from numpy import array, frombuffer, load
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = ['central_diff_weights', 'derivative', 'ascent', 'face',
|
12 |
+
'electrocardiogram']
|
13 |
+
|
14 |
+
|
15 |
+
@_deprecated(msg="scipy.misc.central_diff_weights is deprecated in "
|
16 |
+
"SciPy v1.10.0; and will be completely removed in "
|
17 |
+
"SciPy v1.12.0. You may consider using "
|
18 |
+
"findiff: https://github.com/maroba/findiff or "
|
19 |
+
"numdifftools: https://github.com/pbrod/numdifftools")
|
20 |
+
def central_diff_weights(Np, ndiv=1):
|
21 |
+
"""
|
22 |
+
Return weights for an Np-point central derivative.
|
23 |
+
|
24 |
+
Assumes equally-spaced function points.
|
25 |
+
|
26 |
+
If weights are in the vector w, then
|
27 |
+
derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)
|
28 |
+
|
29 |
+
.. deprecated:: 1.10.0
|
30 |
+
`central_diff_weights` has been deprecated from
|
31 |
+
`scipy.misc.central_diff_weights` in SciPy 1.10.0 and
|
32 |
+
it will be completely removed in SciPy 1.12.0.
|
33 |
+
You may consider using
|
34 |
+
findiff: https://github.com/maroba/findiff or
|
35 |
+
numdifftools: https://github.com/pbrod/numdifftools
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
Np : int
|
40 |
+
Number of points for the central derivative.
|
41 |
+
ndiv : int, optional
|
42 |
+
Number of divisions. Default is 1.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
-------
|
46 |
+
w : ndarray
|
47 |
+
Weights for an Np-point central derivative. Its size is `Np`.
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
Can be inaccurate for a large number of points.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
We can calculate a derivative value of a function.
|
56 |
+
|
57 |
+
>>> from scipy.misc import central_diff_weights
|
58 |
+
>>> def f(x):
|
59 |
+
... return 2 * x**2 + 3
|
60 |
+
>>> x = 3.0 # derivative point
|
61 |
+
>>> h = 0.1 # differential step
|
62 |
+
>>> Np = 3 # point number for central derivative
|
63 |
+
>>> weights = central_diff_weights(Np) # weights for first derivative
|
64 |
+
>>> vals = [f(x + (i - Np/2) * h) for i in range(Np)]
|
65 |
+
>>> sum(w * v for (w, v) in zip(weights, vals))/h
|
66 |
+
11.79999999999998
|
67 |
+
|
68 |
+
This value is close to the analytical solution:
|
69 |
+
f'(x) = 4x, so f'(3) = 12
|
70 |
+
|
71 |
+
References
|
72 |
+
----------
|
73 |
+
.. [1] https://en.wikipedia.org/wiki/Finite_difference
|
74 |
+
|
75 |
+
"""
|
76 |
+
return _central_diff_weights(Np, ndiv)
|
77 |
+
|
78 |
+
|
79 |
+
@_deprecated(msg="scipy.misc.derivative is deprecated in "
|
80 |
+
"SciPy v1.10.0; and will be completely removed in "
|
81 |
+
"SciPy v1.12.0. You may consider using "
|
82 |
+
"findiff: https://github.com/maroba/findiff or "
|
83 |
+
"numdifftools: https://github.com/pbrod/numdifftools")
|
84 |
+
def derivative(func, x0, dx=1.0, n=1, args=(), order=3):
|
85 |
+
"""
|
86 |
+
Find the nth derivative of a function at a point.
|
87 |
+
|
88 |
+
Given a function, use a central difference formula with spacing `dx` to
|
89 |
+
compute the nth derivative at `x0`.
|
90 |
+
|
91 |
+
.. deprecated:: 1.10.0
|
92 |
+
`derivative` has been deprecated from `scipy.misc.derivative`
|
93 |
+
in SciPy 1.10.0 and it will be completely removed in SciPy 1.12.0.
|
94 |
+
You may consider using
|
95 |
+
findiff: https://github.com/maroba/findiff or
|
96 |
+
numdifftools: https://github.com/pbrod/numdifftools
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
func : function
|
101 |
+
Input function.
|
102 |
+
x0 : float
|
103 |
+
The point at which the nth derivative is found.
|
104 |
+
dx : float, optional
|
105 |
+
Spacing.
|
106 |
+
n : int, optional
|
107 |
+
Order of the derivative. Default is 1.
|
108 |
+
args : tuple, optional
|
109 |
+
Arguments
|
110 |
+
order : int, optional
|
111 |
+
Number of points to use, must be odd.
|
112 |
+
|
113 |
+
Notes
|
114 |
+
-----
|
115 |
+
Decreasing the step size too small can result in round-off error.
|
116 |
+
|
117 |
+
Examples
|
118 |
+
--------
|
119 |
+
>>> from scipy.misc import derivative
|
120 |
+
>>> def f(x):
|
121 |
+
... return x**3 + x**2
|
122 |
+
>>> derivative(f, 1.0, dx=1e-6)
|
123 |
+
4.9999999999217337
|
124 |
+
|
125 |
+
"""
|
126 |
+
return _derivative(func, x0, dx, n, args, order)
|
127 |
+
|
128 |
+
|
129 |
+
@_deprecated(msg="scipy.misc.ascent has been deprecated in SciPy v1.10.0;"
|
130 |
+
" and will be completely removed in SciPy v1.12.0. "
|
131 |
+
"Dataset methods have moved into the scipy.datasets "
|
132 |
+
"module. Use scipy.datasets.ascent instead.")
|
133 |
+
def ascent():
|
134 |
+
"""
|
135 |
+
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos
|
136 |
+
|
137 |
+
The image is derived from accent-to-the-top.jpg at
|
138 |
+
http://www.public-domain-image.com/people-public-domain-images-pictures/
|
139 |
+
|
140 |
+
.. deprecated:: 1.10.0
|
141 |
+
`ascent` has been deprecated from `scipy.misc.ascent`
|
142 |
+
in SciPy 1.10.0 and it will be completely removed in SciPy 1.12.0.
|
143 |
+
Dataset methods have moved into the `scipy.datasets` module.
|
144 |
+
Use `scipy.datasets.ascent` instead.
|
145 |
+
|
146 |
+
Parameters
|
147 |
+
----------
|
148 |
+
None
|
149 |
+
|
150 |
+
Returns
|
151 |
+
-------
|
152 |
+
ascent : ndarray
|
153 |
+
convenient image to use for testing and demonstration
|
154 |
+
|
155 |
+
Examples
|
156 |
+
--------
|
157 |
+
>>> import scipy.misc
|
158 |
+
>>> ascent = scipy.misc.ascent()
|
159 |
+
>>> ascent.shape
|
160 |
+
(512, 512)
|
161 |
+
>>> ascent.max()
|
162 |
+
255
|
163 |
+
|
164 |
+
>>> import matplotlib.pyplot as plt
|
165 |
+
>>> plt.gray()
|
166 |
+
>>> plt.imshow(ascent)
|
167 |
+
>>> plt.show()
|
168 |
+
|
169 |
+
"""
|
170 |
+
import pickle
|
171 |
+
import os
|
172 |
+
fname = os.path.join(os.path.dirname(__file__),'ascent.dat')
|
173 |
+
with open(fname, 'rb') as f:
|
174 |
+
ascent = array(pickle.load(f))
|
175 |
+
return ascent
|
176 |
+
|
177 |
+
|
178 |
+
@_deprecated(msg="scipy.misc.face has been deprecated in SciPy v1.10.0; "
|
179 |
+
"and will be completely removed in SciPy v1.12.0. "
|
180 |
+
"Dataset methods have moved into the scipy.datasets "
|
181 |
+
"module. Use scipy.datasets.face instead.")
|
182 |
+
def face(gray=False):
|
183 |
+
"""
|
184 |
+
Get a 1024 x 768, color image of a raccoon face.
|
185 |
+
|
186 |
+
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com
|
187 |
+
|
188 |
+
.. deprecated:: 1.10.0
|
189 |
+
`face` has been deprecated from `scipy.misc.face`
|
190 |
+
in SciPy 1.10.0 and it will be completely removed in SciPy 1.12.0.
|
191 |
+
Dataset methods have moved into the `scipy.datasets` module.
|
192 |
+
Use `scipy.datasets.face` instead.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
gray : bool, optional
|
197 |
+
If True return 8-bit grey-scale image, otherwise return a color image
|
198 |
+
|
199 |
+
Returns
|
200 |
+
-------
|
201 |
+
face : ndarray
|
202 |
+
image of a raccoon face
|
203 |
+
|
204 |
+
Examples
|
205 |
+
--------
|
206 |
+
>>> import scipy.misc
|
207 |
+
>>> face = scipy.misc.face()
|
208 |
+
>>> face.shape
|
209 |
+
(768, 1024, 3)
|
210 |
+
>>> face.max()
|
211 |
+
255
|
212 |
+
>>> face.dtype
|
213 |
+
dtype('uint8')
|
214 |
+
|
215 |
+
>>> import matplotlib.pyplot as plt
|
216 |
+
>>> plt.gray()
|
217 |
+
>>> plt.imshow(face)
|
218 |
+
>>> plt.show()
|
219 |
+
|
220 |
+
"""
|
221 |
+
import bz2
|
222 |
+
import os
|
223 |
+
with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f:
|
224 |
+
rawdata = f.read()
|
225 |
+
data = bz2.decompress(rawdata)
|
226 |
+
face = frombuffer(data, dtype='uint8')
|
227 |
+
face.shape = (768, 1024, 3)
|
228 |
+
if gray is True:
|
229 |
+
face = (0.21 * face[:,:,0]
|
230 |
+
+ 0.71 * face[:,:,1]
|
231 |
+
+ 0.07 * face[:,:,2]).astype('uint8')
|
232 |
+
return face
|
233 |
+
|
234 |
+
|
235 |
+
@_deprecated(msg="scipy.misc.electrocardiogram has been "
|
236 |
+
"deprecated in SciPy v1.10.0; and will "
|
237 |
+
"be completely removed in SciPy v1.12.0. "
|
238 |
+
"Dataset methods have moved into the scipy.datasets "
|
239 |
+
"module. Use scipy.datasets.electrocardiogram instead.")
|
240 |
+
def electrocardiogram():
|
241 |
+
"""
|
242 |
+
Load an electrocardiogram as an example for a 1-D signal.
|
243 |
+
|
244 |
+
The returned signal is a 5 minute long electrocardiogram (ECG), a medical
|
245 |
+
recording of the heart's electrical activity, sampled at 360 Hz.
|
246 |
+
|
247 |
+
.. deprecated:: 1.10.0
|
248 |
+
`electrocardiogram` has been deprecated from
|
249 |
+
`scipy.misc.electrocardiogram` in SciPy 1.10.0 and it will be
|
250 |
+
completely removed in SciPy 1.12.0.
|
251 |
+
Dataset methods have moved into the `scipy.datasets` module.
|
252 |
+
Use `scipy.datasets.electrocardiogram` instead.
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
ecg : ndarray
|
257 |
+
The electrocardiogram in millivolt (mV) sampled at 360 Hz.
|
258 |
+
|
259 |
+
Notes
|
260 |
+
-----
|
261 |
+
The provided signal is an excerpt (19:35 to 24:35) from the `record 208`_
|
262 |
+
(lead MLII) provided by the MIT-BIH Arrhythmia Database [1]_ on
|
263 |
+
PhysioNet [2]_. The excerpt includes noise induced artifacts, typical
|
264 |
+
heartbeats as well as pathological changes.
|
265 |
+
|
266 |
+
.. _record 208: https://physionet.org/physiobank/database/html/mitdbdir/records.htm#208
|
267 |
+
|
268 |
+
.. versionadded:: 1.1.0
|
269 |
+
|
270 |
+
References
|
271 |
+
----------
|
272 |
+
.. [1] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database.
|
273 |
+
IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001).
|
274 |
+
(PMID: 11446209); :doi:`10.13026/C2F305`
|
275 |
+
.. [2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh,
|
276 |
+
Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank,
|
277 |
+
PhysioToolkit, and PhysioNet: Components of a New Research Resource
|
278 |
+
for Complex Physiologic Signals. Circulation 101(23):e215-e220;
|
279 |
+
:doi:`10.1161/01.CIR.101.23.e215`
|
280 |
+
|
281 |
+
Examples
|
282 |
+
--------
|
283 |
+
>>> from scipy.misc import electrocardiogram
|
284 |
+
>>> ecg = electrocardiogram()
|
285 |
+
>>> ecg
|
286 |
+
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385])
|
287 |
+
>>> ecg.shape, ecg.mean(), ecg.std()
|
288 |
+
((108000,), -0.16510875, 0.5992473991177294)
|
289 |
+
|
290 |
+
As stated the signal features several areas with a different morphology.
|
291 |
+
E.g., the first few seconds show the electrical activity of a heart in
|
292 |
+
normal sinus rhythm as seen below.
|
293 |
+
|
294 |
+
>>> import numpy as np
|
295 |
+
>>> import matplotlib.pyplot as plt
|
296 |
+
>>> fs = 360
|
297 |
+
>>> time = np.arange(ecg.size) / fs
|
298 |
+
>>> plt.plot(time, ecg)
|
299 |
+
>>> plt.xlabel("time in s")
|
300 |
+
>>> plt.ylabel("ECG in mV")
|
301 |
+
>>> plt.xlim(9, 10.2)
|
302 |
+
>>> plt.ylim(-1, 1.5)
|
303 |
+
>>> plt.show()
|
304 |
+
|
305 |
+
After second 16, however, the first premature ventricular contractions, also
|
306 |
+
called extrasystoles, appear. These have a different morphology compared to
|
307 |
+
typical heartbeats. The difference can easily be observed in the following
|
308 |
+
plot.
|
309 |
+
|
310 |
+
>>> plt.plot(time, ecg)
|
311 |
+
>>> plt.xlabel("time in s")
|
312 |
+
>>> plt.ylabel("ECG in mV")
|
313 |
+
>>> plt.xlim(46.5, 50)
|
314 |
+
>>> plt.ylim(-2, 1.5)
|
315 |
+
>>> plt.show()
|
316 |
+
|
317 |
+
At several points large artifacts disturb the recording, e.g.:
|
318 |
+
|
319 |
+
>>> plt.plot(time, ecg)
|
320 |
+
>>> plt.xlabel("time in s")
|
321 |
+
>>> plt.ylabel("ECG in mV")
|
322 |
+
>>> plt.xlim(207, 215)
|
323 |
+
>>> plt.ylim(-2, 3.5)
|
324 |
+
>>> plt.show()
|
325 |
+
|
326 |
+
Finally, examining the power spectrum reveals that most of the biosignal is
|
327 |
+
made up of lower frequencies. At 60 Hz the noise induced by the mains
|
328 |
+
electricity can be clearly observed.
|
329 |
+
|
330 |
+
>>> from scipy.signal import welch
|
331 |
+
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
|
332 |
+
>>> plt.semilogy(f, Pxx)
|
333 |
+
>>> plt.xlabel("Frequency in Hz")
|
334 |
+
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
|
335 |
+
>>> plt.xlim(f[[0, -1]])
|
336 |
+
>>> plt.show()
|
337 |
+
"""
|
338 |
+
import os
|
339 |
+
file_path = os.path.join(os.path.dirname(__file__), "ecg.dat")
|
340 |
+
with load(file_path) as file:
|
341 |
+
ecg = file["ecg"].astype(int) # np.uint16 -> int
|
342 |
+
# Convert raw output of ADC to mV: (ecg - adc_zero) / adc_gain
|
343 |
+
ecg = (ecg - 1024) / 200.0
|
344 |
+
return ecg
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/ascent.dat
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/common.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.datasets` namespace for importing the dataset functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'central_diff_weights', 'derivative', 'ascent', 'face',
|
9 |
+
'electrocardiogram', 'array', 'load'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
def __dir__():
|
14 |
+
return __all__
|
15 |
+
|
16 |
+
|
17 |
+
def __getattr__(name):
|
18 |
+
return _sub_module_deprecation(sub_package="misc", module="common",
|
19 |
+
private_modules=["_common"], all=__all__,
|
20 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/doccer.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
|
3 |
+
from importlib import import_module
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
__all__ = [ # noqa: F822
|
7 |
+
'docformat', 'inherit_docstring_from', 'indentcount_lines',
|
8 |
+
'filldoc', 'unindent_dict', 'unindent_string', 'extend_notes_in_docstring',
|
9 |
+
'replace_notes_in_docstring'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
def __dir__():
|
14 |
+
return __all__
|
15 |
+
|
16 |
+
|
17 |
+
def __getattr__(name):
|
18 |
+
if name not in __all__:
|
19 |
+
raise AttributeError(
|
20 |
+
f"`scipy.misc.doccer` has no attribute `{name}`; furthermore, "
|
21 |
+
f"`scipy.misc.doccer` is deprecated and will be removed in SciPy 2.0.0."
|
22 |
+
)
|
23 |
+
|
24 |
+
attr = getattr(import_module("scipy._lib.doccer"), name, None)
|
25 |
+
|
26 |
+
if attr is not None:
|
27 |
+
message = (
|
28 |
+
f"Please import `{name}` from the `scipy._lib.doccer` namespace; "
|
29 |
+
f"the `scipy.misc.doccer` namespace is deprecated and "
|
30 |
+
f"will be removed in SciPy 2.0.0."
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
message = (
|
34 |
+
f"`scipy.misc.doccer.{name}` is deprecated along with "
|
35 |
+
f"the `scipy.misc.doccer` namespace. "
|
36 |
+
f"`scipy.misc.doccer.{name}` will be removed in SciPy 1.13.0, and "
|
37 |
+
f"the `scipy.misc.doccer` namespace will be removed in SciPy 2.0.0."
|
38 |
+
)
|
39 |
+
|
40 |
+
warnings.warn(message, category=DeprecationWarning, stacklevel=2)
|
41 |
+
|
42 |
+
try:
|
43 |
+
return getattr(import_module("scipy._lib.doccer"), name)
|
44 |
+
except AttributeError as e:
|
45 |
+
raise e
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/ecg.dat
ADDED
Binary file (119 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (1.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_config.cpython-310.pyc
ADDED
Binary file (2.09 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/__pycache__/test_doccer.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/test_common.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.testing import assert_equal, assert_almost_equal, suppress_warnings
|
2 |
+
|
3 |
+
from scipy.misc import face, ascent, electrocardiogram
|
4 |
+
|
5 |
+
|
6 |
+
def test_face():
|
7 |
+
with suppress_warnings() as sup:
|
8 |
+
sup.filter(category=DeprecationWarning)
|
9 |
+
assert_equal(face().shape, (768, 1024, 3))
|
10 |
+
|
11 |
+
|
12 |
+
def test_ascent():
|
13 |
+
with suppress_warnings() as sup:
|
14 |
+
sup.filter(category=DeprecationWarning)
|
15 |
+
assert_equal(ascent().shape, (512, 512))
|
16 |
+
|
17 |
+
|
18 |
+
def test_electrocardiogram():
|
19 |
+
with suppress_warnings() as sup:
|
20 |
+
sup.filter(category=DeprecationWarning)
|
21 |
+
# Test shape, dtype and stats of signal
|
22 |
+
ecg = electrocardiogram()
|
23 |
+
assert ecg.dtype == float
|
24 |
+
assert_equal(ecg.shape, (108000,))
|
25 |
+
assert_almost_equal(ecg.mean(), -0.16510875)
|
26 |
+
assert_almost_equal(ecg.std(), 0.5992473991177294)
|
llmeval-env/lib/python3.10/site-packages/scipy/misc/tests/test_config.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Check the SciPy config is valid.
|
3 |
+
"""
|
4 |
+
import scipy
|
5 |
+
import pytest
|
6 |
+
from unittest.mock import patch
|
7 |
+
|
8 |
+
pytestmark = pytest.mark.skipif(
|
9 |
+
not hasattr(scipy.__config__, "_built_with_meson"),
|
10 |
+
reason="Requires Meson builds",
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
class TestSciPyConfigs:
|
15 |
+
REQUIRED_CONFIG_KEYS = [
|
16 |
+
"Compilers",
|
17 |
+
"Machine Information",
|
18 |
+
"Python Information",
|
19 |
+
]
|
20 |
+
|
21 |
+
@patch("scipy.__config__._check_pyyaml")
|
22 |
+
def test_pyyaml_not_found(self, mock_yaml_importer):
|
23 |
+
mock_yaml_importer.side_effect = ModuleNotFoundError()
|
24 |
+
with pytest.warns(UserWarning):
|
25 |
+
scipy.show_config()
|
26 |
+
|
27 |
+
def test_dict_mode(self):
|
28 |
+
config = scipy.show_config(mode="dicts")
|
29 |
+
|
30 |
+
assert isinstance(config, dict)
|
31 |
+
assert all([key in config for key in self.REQUIRED_CONFIG_KEYS]), (
|
32 |
+
"Required key missing,"
|
33 |
+
" see index of `False` with `REQUIRED_CONFIG_KEYS`"
|
34 |
+
)
|
35 |
+
|
36 |
+
def test_invalid_mode(self):
|
37 |
+
with pytest.raises(AttributeError):
|
38 |
+
scipy.show_config(mode="foo")
|
39 |
+
|
40 |
+
def test_warn_to_add_tests(self):
|
41 |
+
assert len(scipy.__config__.DisplayModes) == 2, (
|
42 |
+
"New mode detected,"
|
43 |
+
" please add UT if applicable and increment this count"
|
44 |
+
)
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ef6387fd6b0c1b0457883a70156943caf83138aa1b55ec81185f26db324bfee
|
3 |
+
size 4045920
|
llmeval-env/lib/python3.10/site-packages/scipy/sparse/tests/data/csc_py2.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bac27f1a3eb1fdd102dae39b7dd61ce83e82f096388e344e14285071984d01fa
|
3 |
+
size 846
|
llmeval-env/lib/python3.10/site-packages/scipy/sparse/tests/data/csc_py3.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b1b84315c7077417e720512d086a5a6217c2875b818d27704ae9b7237c69dfe
|
3 |
+
size 851
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_geometric_slerp.cpython-310.pyc
ADDED
Binary file (7.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_kdtree.cpython-310.pyc
ADDED
Binary file (34.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc
ADDED
Binary file (6.68 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc
ADDED
Binary file (4.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc
ADDED
Binary file (684 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc
ADDED
Binary file (80.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/kdtree.cpython-310.pyc
ADDED
Binary file (699 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/__pycache__/qhull.cpython-310.pyc
ADDED
Binary file (671 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/qhull_src/COPYING.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Qhull, Copyright (c) 1993-2019
|
2 |
+
|
3 |
+
C.B. Barber
|
4 |
+
Arlington, MA
|
5 |
+
|
6 |
+
and
|
7 |
+
|
8 |
+
The National Science and Technology Research Center for
|
9 |
+
Computation and Visualization of Geometric Structures
|
10 |
+
(The Geometry Center)
|
11 |
+
University of Minnesota
|
12 |
+
|
13 |
+
email: [email protected]
|
14 |
+
|
15 |
+
This software includes Qhull from C.B. Barber and The Geometry Center.
|
16 |
+
Qhull is copyrighted as noted above. Qhull is free software and may
|
17 |
+
be obtained via http from www.qhull.org. It may be freely copied, modified,
|
18 |
+
and redistributed under the following conditions:
|
19 |
+
|
20 |
+
1. All copyright notices must remain intact in all files.
|
21 |
+
|
22 |
+
2. A copy of this text file must be distributed along with any copies
|
23 |
+
of Qhull that you redistribute; this includes copies that you have
|
24 |
+
modified, or copies of programs or other software products that
|
25 |
+
include Qhull.
|
26 |
+
|
27 |
+
3. If you modify Qhull, you must include a notice giving the
|
28 |
+
name of the person performing the modification, the date of
|
29 |
+
modification, and the reason for such modification.
|
30 |
+
|
31 |
+
4. When distributing modified versions of Qhull, or other software
|
32 |
+
products that include Qhull, you must provide notice that the original
|
33 |
+
source code may be obtained as noted above.
|
34 |
+
|
35 |
+
5. There is no warranty or other guarantee of fitness for Qhull, it is
|
36 |
+
provided solely "as is". Bug reports or fixes may be sent to
|
37 |
+
[email protected]; the authors may or may not act on them as
|
38 |
+
they desire.
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__plotutils.cpython-310.pyc
ADDED
Binary file (2.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test__procrustes.cpython-310.pyc
ADDED
Binary file (3.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_distance.cpython-310.pyc
ADDED
Binary file (70.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_hausdorff.cpython-310.pyc
ADDED
Binary file (5.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_kdtree.cpython-310.pyc
ADDED
Binary file (50 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_qhull.cpython-310.pyc
ADDED
Binary file (32.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_slerp.cpython-310.pyc
ADDED
Binary file (9.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/test_spherical_voronoi.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1.147593763490969421e-01 8.926156143344999849e-01 1.437758624645746330e-02 1.803435962879929022e-02 5.533046214065578949e-01 5.554315640747428118e-01 4.497546637814608950e-02 4.438089247948049376e-01 7.984582810220538507e-01 2.752880789161644692e-01 1.344667112315823809e-01 9.230479561452992199e-01 6.040471462941819913e-01 3.797251652770228247e-01 4.316042735592399149e-01 5.312356915348823705e-01 4.348143005129563310e-01 3.111531488508799681e-01 9.531194313908697424e-04 8.212995023500069269e-02 6.689953269869852726e-01 9.914864535288493430e-01 8.037556036341153565e-01
|
2 |
+
9.608925123801395074e-01 2.974451233678974127e-01 9.001110330654185088e-01 5.824163330415995654e-01 7.308574928293812834e-01 2.276154562412870952e-01 7.306791076039623745e-01 8.677244866905511333e-01 9.160806456176984192e-01 6.157216959991280714e-01 5.149053524695440531e-01 3.056427344890983999e-01 9.790557366933895223e-01 4.484995861076724877e-01 4.776550391081165747e-01 7.210436977670631187e-01 9.136399501661039979e-01 4.260275733550000776e-02 5.943900041968954717e-01 3.864571606342745991e-01 9.442027665110838131e-01 4.779949058608601309e-02 6.107551944250865228e-01
|
3 |
+
3.297286578103622023e-01 5.980207401936733502e-01 3.673301293561567205e-01 2.585830520887681949e-01 4.660558746104259686e-01 6.083795956610364986e-01 4.535206368070313632e-01 6.873989778785424276e-01 5.130152688495458468e-01 7.665877846542720198e-01 3.444402973525138023e-01 3.583658123644906102e-02 7.924818220986856732e-01 8.746685720522412444e-01 3.010105569182431884e-01 6.012239357385538163e-01 6.233737362204671006e-01 4.830438698668915176e-01 2.317286885842551047e-02 7.585989958123050547e-01 7.108257632278830451e-01 1.551024884178199281e-01 2.665485998155288083e-01
|
4 |
+
2.456278068903017253e-02 4.148739837711815648e-01 1.986372227934196655e-01 6.920408530298168825e-01 1.003067576685774398e-01 7.421560456480125190e-01 1.808453980608998313e-01 4.251297882537475870e-01 6.773002683522370004e-01 4.084108792570182445e-01 7.462888013191590897e-01 8.069930220529277776e-01 9.211110587681808903e-01 4.141491046181076108e-01 7.486318689260342829e-01 9.515405507589296263e-01 4.634288892577109742e-03 8.027593488166355762e-01 3.010346805217798405e-01 8.663248877242523127e-01 2.479968181181605447e-01 5.619851096054278017e-01 3.903886764590250857e-01
|
5 |
+
7.122019976035700584e-01 6.188878051047785878e-01 7.290897087051201320e-01 6.334802157757637442e-01 5.523084734954342156e-01 5.614937129563645213e-01 2.496741051791574462e-01 5.972227939599233926e-01 1.786590597761109622e-01 2.609525984850900038e-01 7.210438943286010538e-01 2.211429064605652250e-01 9.140497572472672250e-02 1.430242193668443962e-01 7.856446942916397447e-01 4.635256358156553125e-01 5.278744289813760426e-01 3.702808015407184072e-01 5.527073830480792038e-01 6.370732917599846168e-01 9.953487928925482953e-01 3.021789770611936765e-01 3.354901923998221402e-02
|
6 |
+
6.509638560895427695e-01 8.387598220902757751e-01 7.761375971745763103e-01 1.481627639227802717e-01 3.529474982902305324e-01 4.883093646287851586e-01 9.652923033658690199e-01 9.500680513565308294e-01 3.061885005078281985e-01 7.271902818906019750e-01 2.358962978196710303e-03 7.359889703223099211e-01 8.988893768074724955e-01 4.135279653937307121e-02 8.516441856688283796e-01 4.889597623270667270e-01 5.575909822114655245e-01 9.010853652261575641e-01 2.912844516556202246e-01 9.088759383368658629e-01 8.104351227460024898e-01 8.080695436776826890e-01 1.430530913253185155e-01
|
7 |
+
8.048001196608134400e-01 3.066089444418462762e-02 9.021887554292090661e-01 6.154331491807940591e-02 1.378912575206647784e-02 5.775720193142440673e-01 1.219298963069791464e-01 1.883270243412101808e-01 5.569262398688379356e-02 8.964817777510125651e-02 7.977092785346929782e-01 4.878149375226197293e-01 4.511973131518809410e-02 1.858690046801604323e-01 6.947686471083162063e-01 5.884058794291086025e-01 8.638884676612634816e-01 3.855470871341656336e-01 3.495049047300468059e-01 2.767740932353948136e-01 4.731087031714035218e-01 6.679001673437914288e-01 7.502944200696660682e-01
|
8 |
+
6.527328264244687261e-01 8.289483383553154505e-01 9.179741348282299818e-01 1.065639864466713105e-01 6.253616929058514184e-01 5.927750325266062381e-01 3.039157425463192563e-01 2.452766763359194302e-01 6.514027700704632107e-01 5.529218485487964463e-01 4.941158239308394151e-01 6.605306467722642516e-01 2.273688037050677346e-01 4.282616592244774534e-01 2.956128257930247250e-01 1.154803628237965896e-01 9.228220410235263849e-01 6.663525307676617659e-01 1.908852615936970087e-01 9.921383408926374159e-01 4.988716450388516188e-01 1.014900352736023414e-01 3.363930180244284474e-01
|
9 |
+
2.914369076275757919e-01 5.196673601143533272e-01 7.420144907858341465e-01 1.768984185504740569e-01 5.296766993228564369e-01 5.922023566159900776e-01 5.965161262020234334e-01 3.810272333046110793e-01 8.368797246118340194e-01 7.896422363801189892e-01 9.655797561098209414e-01 4.430034032346981121e-01 2.780869795706976122e-01 3.047310845416009162e-01 8.051138863500326703e-01 6.731468634690835895e-01 4.743383036815584930e-01 9.530709614322225853e-01 7.753587619850917934e-01 2.801137109357491051e-01 6.182543660889736614e-01 5.005218857766725593e-01 9.071447804755052857e-01
|
10 |
+
2.075071644012620453e-01 4.834950086973934802e-01 3.037011473860764532e-01 6.476084284887700937e-01 8.107195771564194020e-01 7.869075869075803364e-01 6.851234019375299633e-01 3.544187468104398331e-02 4.847673235908021017e-01 5.690262846164507726e-01 1.663354142616256803e-01 9.692796809752548537e-01 4.133441725866372485e-01 6.729167604487583665e-01 3.998813427407297283e-01 8.272617414104491695e-01 2.129248316324727774e-01 6.517004761357130249e-01 7.363013506605019520e-01 4.072375306356985636e-01 4.463336683526665238e-01 5.485059309728204102e-01 1.981745754527846071e-01
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X2.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
7.680465556300619667e-02 4.675022344069014180e-01 8.955498989131543963e-01 3.816236071436276411e-01 1.109030077070989329e-01 2.318928815459808668e-02 7.477394240984251983e-01 1.202289789304434864e-01 8.007290497575981769e-01 6.795195698871731027e-01 6.568225762396605605e-01 2.231475263228478445e-01 7.064624077661341151e-02 1.081656666815267176e-02 1.592069359090128033e-01 1.363392203645097389e-01 9.277020735447568667e-01 8.103136564528209407e-01 5.229467676276455812e-02 7.708020259874025504e-01 6.527954747473352359e-02 5.516397414886525796e-01 3.653371861367954443e-01
|
2 |
+
8.144399106025798085e-01 7.731852525462976633e-01 6.909477620673205589e-01 9.696063817000286633e-01 4.297887511677249694e-01 6.989600553425188156e-01 7.310201335033380543e-01 3.135256147868910048e-01 5.715578037275241829e-01 3.935000744675094531e-01 2.057715781268398825e-01 5.892508589665171881e-01 8.512951599236765476e-01 9.569808799061578775e-01 6.164885878024699561e-01 4.714185430004367294e-01 6.128831737628155363e-01 6.641799309623502845e-01 6.001985185338730711e-01 4.231922889723856995e-01 7.605249308075449077e-01 1.064530958018087281e-01 6.306470691957204444e-01
|
3 |
+
4.265470127256254518e-01 5.933766716280767239e-01 3.698589270536845053e-02 2.173799740537294412e-01 3.032679325475639009e-01 4.271831790058847611e-01 1.828944535901013690e-01 4.772333422710156592e-01 2.564773455194128138e-01 7.120329875362141347e-01 8.952243430110462530e-01 1.808777012183288013e-01 3.612151871458374464e-01 3.960999167923041631e-01 1.821669970670747318e-02 8.835474857189200559e-01 1.353104648821573663e-01 3.457291739160937016e-01 1.126467375304566199e-01 4.107293162402323450e-01 4.051719311053743056e-01 4.007382985250427243e-01 1.286905671428811848e-01
|
4 |
+
2.910657003883979632e-01 9.616259180685315933e-03 2.033032441536681834e-01 1.096599110293863255e-01 4.191101704605176836e-01 5.462131536027151624e-01 8.393047907010142694e-01 9.046805198676335369e-01 7.009863472176891541e-01 2.508215985039629059e-01 6.754410796667598138e-01 6.740895474032024826e-01 1.358993708621679675e-01 8.219861775211464439e-01 6.322220445623235596e-01 2.766813559002430090e-01 6.575983861590951607e-01 9.515869708336625044e-01 8.654526462353933081e-01 3.450245117834797037e-01 5.649032890631299209e-01 4.717687914789682191e-01 3.296483580510030098e-01
|
5 |
+
9.172477457635394016e-01 3.057396583041891436e-01 7.335332344225760082e-01 8.370236206345178509e-01 3.765464253115927695e-01 5.089680319287778199e-01 1.202325719268168003e-01 9.717771065272349240e-01 5.907820104019682050e-01 9.809211614977710880e-01 9.064285003671219698e-01 8.848841466121748489e-01 2.043407730734815297e-01 9.157600394927275511e-01 4.532260315147775831e-01 4.241077335005828397e-01 1.751730149568804240e-01 4.090412146081819911e-01 3.632197861847064058e-02 5.832539334970230360e-01 4.041848151536805434e-01 3.603643989086504629e-01 1.838411383882069261e-01
|
6 |
+
2.508806403290032572e-01 4.381403985282813496e-01 4.694787405018008286e-02 6.353900562024634713e-01 1.200813444244532846e-01 6.072397042913001419e-01 9.937255904754030977e-01 4.916670237677555066e-01 3.473845913923001572e-01 3.526875922864345370e-01 5.448595548197197047e-01 2.245096010156972799e-01 9.003258279804994269e-01 3.534560469735994470e-01 2.989266066346342177e-01 4.621024982808636938e-01 9.626538866576676012e-01 9.791401720716153001e-01 7.138514287330390840e-01 9.832862333928654719e-01 3.233999591031431198e-01 5.406467224926423398e-01 9.581890295057201579e-01
|
7 |
+
5.210583601680578436e-01 4.598159993059653949e-01 2.111497132057748027e-01 5.949977700916546652e-01 6.342618461422359077e-01 9.888228769705599275e-01 6.096770711536318998e-01 7.548431368960863974e-01 7.490858664860100546e-01 3.186213496546415058e-01 7.895687083231245351e-01 4.178326793268141159e-01 8.095818334534051752e-01 7.886271673523481684e-01 4.038905626506847923e-01 3.652649247094948981e-01 8.267205959224892542e-01 6.433617243328785262e-01 3.117681563249452559e-01 9.675995575054980868e-01 3.675673836358472890e-01 5.863757289184046151e-01 9.099029857959717305e-02
|
8 |
+
4.024573981231733821e-01 3.578997554002771864e-01 3.519299868071553705e-01 7.417747693762357653e-01 2.963713903285800644e-01 9.602967989298948348e-01 3.811392331739601458e-01 5.493237898295448840e-01 6.835113342793640578e-01 2.304506220807415184e-01 3.727299857731285471e-01 5.450263991912108752e-01 6.951521210987908761e-01 6.474582745861203747e-01 6.316089475403589004e-01 5.672043967425510758e-02 9.034937506977609445e-01 2.332567550780038079e-01 1.096955741449157085e-02 8.870663813493575578e-01 4.384385452180562526e-01 7.100898998169548060e-01 3.245358176196319056e-01
|
9 |
+
9.162009194452818139e-01 5.572224742426723498e-02 3.445910686865658601e-01 9.683564008127462097e-01 9.375063149031520604e-01 9.128188852869822956e-02 9.613605414326487075e-01 5.298598697556915482e-01 6.724799695520149445e-01 1.269103938571825019e-02 1.008406153387807480e-01 8.951105272379104028e-01 1.585460318853607609e-01 6.739986455059543413e-01 5.345419321702655768e-01 6.248843899572337213e-01 3.050288488994817859e-01 1.423645553465189284e-01 1.802121190541096096e-01 9.474646822694763326e-01 2.345716438587298613e-01 9.688281784764296578e-01 1.845165243240991515e-01
|
10 |
+
2.548297646910531178e-01 2.580877375379494465e-01 1.355482532666937301e-01 6.478812986505504412e-01 9.971695982152032345e-01 2.606721082477282403e-01 5.483439686378906996e-01 4.409612606704470528e-01 4.396442074915688503e-01 7.414262832597111608e-01 7.308840725375539416e-01 8.072095530497225280e-02 6.829509968656330976e-01 5.700030854230387911e-01 3.801845336730320657e-01 2.481059916867158766e-01 3.977295094395927322e-03 5.749480512407895150e-01 4.112033136603401307e-01 8.676159710377848722e-01 9.062646588480167686e-01 3.326691167317923359e-01 8.498307982774666591e-01
|
11 |
+
4.464338109330643345e-01 8.546516760817471914e-01 7.384800352329814466e-01 3.692485164984804502e-02 2.915662689505471583e-02 9.010049994217171898e-01 8.622900253010918892e-01 9.786230638032608065e-01 6.546824077297251909e-01 6.342297560006789903e-01 2.230339826582647955e-01 7.658846744185553446e-01 4.603043831539479491e-01 2.017100469861691225e-01 4.891590639893540482e-01 1.937140918314912419e-01 8.161582138652878626e-01 5.597293607114051106e-02 8.423261093326828153e-02 5.105392204475533990e-02 8.234193902673621057e-01 1.784268309975372002e-01 9.118997881986501408e-02
|
12 |
+
8.588746913421980711e-01 1.479641118621310980e-02 1.375875301146138874e-01 7.533888774725254756e-01 5.782592791549248101e-01 9.128573037619659436e-01 1.831275762880391067e-01 3.471382864827737835e-01 4.859524740929310749e-02 8.955146541561730400e-01 4.787220791101074457e-01 4.222803577759057791e-01 8.469923964908064873e-01 6.300290047587608910e-02 1.020873237837905956e-01 3.585612487182909813e-02 6.320107119904569970e-01 5.891245970008752719e-01 1.104698053665007507e-01 4.233226558073774903e-01 4.432217054386708988e-01 2.864765416628194394e-01 2.489777211814803159e-02
|
13 |
+
5.343810659756068615e-01 4.829076396403546578e-01 8.364480888953172988e-01 8.931374995414760321e-01 6.034161442354715188e-01 3.578336000768178593e-03 4.100579775972763574e-01 3.968667908067096128e-01 5.897163653686778861e-01 3.003241263928478899e-01 2.520935203143799264e-01 3.112129371563532310e-02 9.052865295974613646e-01 1.172285124002711010e-01 4.840001666149388315e-01 3.424620676348436588e-01 5.526057133826853818e-01 6.346139530261846184e-01 5.747945930485597321e-01 1.389915612177697879e-01 2.413801217666421417e-01 7.829900796662081497e-01 7.213528084845653998e-01
|
14 |
+
9.384509283406079483e-01 6.303019601671526750e-01 1.787921522728125323e-01 1.556003868047917127e-02 5.662397078816850948e-01 3.437473614806091371e-01 8.615844972800188462e-01 7.624380237306396246e-01 1.096468347898514883e-01 1.276566836610887323e-01 8.479188493443535757e-01 3.634713454428405432e-01 7.478112314318967613e-01 9.856395696968375253e-01 6.250293654177319080e-02 1.919327272501809567e-01 1.415594476031050153e-01 7.224057351041784925e-01 8.452145259310355208e-01 5.434318833772002755e-01 5.177620959731277228e-02 3.358977598185840518e-01 2.542654881527960375e-01
|
15 |
+
4.800909104006243489e-01 3.651345393613150137e-01 3.657093052788148446e-01 8.579662326651369408e-01 5.787694361240260932e-01 6.491966196891312268e-01 3.252508517294879775e-01 8.639694334693422961e-01 3.028097078756678551e-01 6.295814666338699350e-01 7.305627351548695803e-01 6.975931849120264872e-03 8.321205159004851915e-01 2.681809305821257761e-01 3.628869474597150591e-01 9.598981434716586936e-01 5.947913523332928332e-01 7.794864238003402779e-01 2.819511239444029149e-01 5.134200958476284882e-01 7.284684743064278045e-01 3.099571109539331903e-01 1.502222882866774967e-01
|
16 |
+
2.463382654375219083e-01 4.465700737264240994e-01 7.180855317941433613e-01 5.056099420785193921e-01 6.182117344332578313e-01 2.370453793561340117e-01 9.831748018047525850e-01 6.397098184531551102e-01 8.260469782208745837e-02 7.474671691560941245e-01 9.963429983418570224e-02 5.450078811081275898e-01 5.370188678062637333e-02 2.774024442708808991e-01 2.082643088545442778e-01 2.704155352788065736e-01 7.225035580445194894e-01 4.866791976239246420e-01 1.357043111201584606e-01 7.911335827987711067e-01 7.278977102006007893e-01 6.880892094410231419e-01 1.029231496520791600e-01
|
17 |
+
6.901796117735281566e-01 1.558248977395644275e-01 4.241818789360329855e-01 5.055658246392458199e-01 1.756288758075611467e-01 4.215083703818177652e-01 7.809231602323289945e-01 1.170053878686481141e-01 6.497026323614403243e-01 5.733120641440232479e-01 4.407703406152092551e-01 5.608677124532297498e-01 7.471045703286000039e-01 3.334604336022076732e-01 8.927208811415126011e-01 9.794565286182396191e-01 9.621542824973521313e-01 3.945825239405253981e-01 8.338963875792834157e-01 9.310552325082104286e-01 7.688283033784242271e-01 3.798823731047119567e-01 1.459993613028365278e-02
|
18 |
+
7.848623555505630511e-01 2.681039365355797344e-03 7.833208051794043891e-01 8.184381915171493604e-01 4.682581645582317709e-01 2.391069309436419932e-01 1.765377537168698607e-01 9.863494676539893424e-01 4.378412300863872009e-01 7.494505491149090481e-01 1.942180356195394308e-01 9.981402467222395547e-01 7.992190944052800505e-01 1.350875702852057936e-01 4.950149186748543650e-01 7.243422481248201761e-01 3.544596746353472216e-01 8.320192561472177228e-01 9.776840296475269865e-01 7.733852731914863110e-01 2.305732998099923048e-01 9.746878189802981041e-01 7.747723331200035979e-01
|
19 |
+
6.521099013127149568e-01 5.452399443648201505e-01 8.146707517183656710e-01 3.827256063695345656e-01 7.954832091744263867e-01 7.834427643148527132e-01 9.661317930643520402e-02 9.215673965718058636e-01 4.914305728788055383e-01 4.105628408027649501e-01 9.844647830893304974e-02 3.974831165301851987e-01 3.857608898053827007e-01 5.520210781401946321e-01 3.445787541654143915e-03 4.552922057017416702e-01 7.456544561760444223e-01 4.753985092154335845e-01 2.821385239833401615e-01 7.560136035104459973e-01 8.453142510471420845e-01 6.679627143276523071e-01 6.910882868284401459e-01
|
20 |
+
8.526493480446283302e-01 1.183917973068240315e-01 6.163988861865119517e-01 5.751899460059114455e-01 1.638797964925038375e-01 8.214597298784013235e-01 5.424670654187370156e-01 1.806631819658732763e-01 9.268107278221827672e-01 4.127397378597359445e-01 7.529877485901653733e-01 1.714251090083847018e-01 2.601487784245806179e-01 2.028326156742237263e-01 5.299879450122358948e-01 7.587877062981395193e-01 4.070738595375062996e-01 3.546903049793261875e-01 8.695365138547607176e-01 1.447085661525142619e-01 3.193366245820845606e-01 8.797841086211429795e-01 2.666562188639977071e-01
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
2 |
+
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
3 |
+
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
4 |
+
0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
5 |
+
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
6 |
+
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
7 |
+
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
8 |
+
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
|
9 |
+
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
|
10 |
+
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
11 |
+
0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
12 |
+
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
13 |
+
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
|
14 |
+
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
|
15 |
+
0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
16 |
+
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
|
17 |
+
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
|
18 |
+
0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
19 |
+
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
20 |
+
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
8.9084734e-01 9.3573853e-01 9.3507398e-01 9.6040691e-01 9.2918157e-01 9.6617342e-01 9.0430930e-01 9.5753424e-01 8.7106898e-01 9.2169905e-01 9.7401159e-01 8.9013416e-01 9.3956689e-01 9.0041896e-01 9.2588355e-01 9.3849417e-01 8.9713468e-01 9.1481804e-01 9.7500539e-01 9.0012586e-01 9.0962559e-01 8.5860091e-01 8.6981095e-01 8.9995771e-01 8.8070172e-01 9.1456657e-01 8.6711474e-01 9.2593917e-01 8.7560376e-01 8.5193121e-01 9.0898542e-01 8.7765302e-01 8.6555584e-01 8.6093485e-01 9.0447028e-01 8.7614405e-01 9.4803522e-01 8.4998062e-01 7.8398996e-01 8.9538612e-01 8.3902291e-01 9.9039470e-01 9.5480519e-01 8.9152195e-01 9.1623329e-01 7.9094921e-01 9.1777100e-01 9.8972335e-01 9.0429093e-01 8.7646362e-01 9.2136649e-01 9.7178177e-01 8.9610979e-01 9.4710327e-01 9.3612450e-01 9.0241499e-01 7.7992538e-01 8.7262126e-01 9.3325183e-01 8.5796531e-01 9.4267977e-01 6.7224167e-01 7.9568368e-01 8.6411267e-01 9.3311642e-01 9.0160114e-01 9.0698887e-01 8.5833256e-01 9.6902830e-01 9.5072298e-01 8.6808495e-01 9.7879599e-01 8.8060729e-01 8.2818573e-01 8.4366706e-01 8.4506700e-01 9.4532981e-01 9.1792306e-01 7.8917825e-01 9.8337805e-01 8.1751613e-01 9.3037855e-01 9.1618832e-01 8.6568874e-01 8.9751397e-01 8.7923710e-01 8.6814329e-01 9.0330164e-01 8.2426213e-01 9.4644643e-01 8.8431293e-01 8.8497426e-01 9.0633818e-01 9.5537161e-01 8.2167575e-01 8.7771053e-01 9.0681167e-01 8.7626143e-01 8.7463464e-01 9.8033940e-01 9.2920881e-01 9.5108549e-01 9.1287466e-01 8.0052218e-01 9.2409517e-01 8.8252650e-01 8.7873923e-01 9.2989402e-01 9.1985043e-01 9.6172646e-01 8.8223856e-01 9.4477822e-01 8.8310948e-01 9.4461306e-01 9.1875210e-01 9.1233363e-01 9.2124013e-01 9.5460897e-01 8.4640982e-01 9.0882657e-01 9.8169468e-01 9.7828355e-01 8.4150533e-01 8.6888923e-01 9.7138825e-01 8.7988144e-01 9.6720910e-01 8.9450147e-01 9.5331584e-01 8.8871809e-01 8.9736685e-01 8.6258146e-01 9.1331565e-01 9.0968870e-01 9.4833654e-01 9.0536967e-01 9.5099871e-01 8.0251958e-01 9.2526150e-01 9.8971957e-01 9.0340947e-01 9.4955892e-01 9.6838162e-01 8.7534901e-01 9.1178797e-01 9.2649154e-01 9.5260993e-01 9.3178143e-01 9.4943000e-01 8.7816171e-01 9.6506542e-01 8.3422958e-01 9.3443585e-01 9.3220084e-01 8.5706573e-01 8.4666325e-01 9.0474744e-01 9.1080644e-01 9.2406899e-01 8.7901768e-01 9.3265263e-01 9.5992829e-01 9.5696271e-01 9.1932272e-01 8.0937044e-01 9.0904917e-01 8.9516756e-01 9.4797906e-01 8.4159421e-01 9.6773901e-01 9.7099825e-01 9.6941820e-01 9.8174088e-01 9.7569951e-01 9.3655362e-01 8.4130333e-01 9.5994549e-01 8.4235414e-01 9.1429418e-01 9.3418117e-01 8.4600977e-01 8.8166496e-01 8.7594776e-01 8.8571112e-01 9.6308174e-01 9.5315927e-01 8.6997519e-01 8.9383032e-01 9.4686804e-01 9.4399596e-01
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.2420590e+01 3.3246607e+01 3.0526910e+01 3.5166573e+01 3.1868301e+01 3.6025002e+01 3.2513623e+01 3.6557796e+01 3.3752212e+01 3.4422130e+01 3.2526018e+01 3.2581161e+01 3.3743555e+01 3.6960777e+01 3.4225270e+01 3.2965308e+01 3.4591031e+01 3.4204203e+01 3.4678123e+01 3.5728720e+01 3.0830047e+01 3.1550681e+01 3.3304790e+01 3.2676753e+01 3.2742330e+01 3.1684556e+01 3.2830915e+01 3.2956614e+01 2.7365639e+01 3.3207307e+01 3.3420925e+01 3.4357941e+01 2.8280126e+01 3.4523458e+01 3.2705274e+01 3.2455891e+01 3.1636060e+01 3.1594957e+01 3.1805202e+01 3.3886574e+01 3.3438829e+01 3.3330030e+01 3.4168514e+01 3.0637353e+01 4.2149167e+01 3.6340559e+01 2.9315308e+01 3.5778314e+01 3.7693050e+01 3.2598714e+01 3.2990836e+01 3.4967659e+01 3.9748920e+01 3.6745043e+01 2.7117550e+01 3.6014760e+01 2.9367558e+01 3.3845350e+01 3.5477339e+01 3.1513372e+01 3.2517953e+01 2.4755097e+01 3.0229897e+01 3.4799343e+01 3.3371710e+01 2.9600910e+01 3.3275088e+01 3.3567110e+01 3.4527016e+01 3.4942320e+01 3.2359383e+01 3.2607100e+01 3.1467914e+01 2.9032039e+01 3.3122878e+01 2.8496709e+01 2.9908448e+01 2.9962886e+01 3.0345299e+01 3.1737613e+01 2.8551485e+01 3.2610551e+01 3.3082660e+01 3.3719298e+01 3.6434018e+01 3.6589278e+01 3.3889586e+01 3.8036774e+01 3.1483497e+01 3.4196794e+01 3.5154035e+01 3.5488608e+01 3.6143183e+01 3.3473491e+01 3.4686446e+01 2.8687495e+01 3.5725742e+01 3.0188298e+01 3.3084534e+01 3.3538519e+01 3.6226849e+01 2.9052099e+01 3.6032733e+01 3.0811503e+01 3.2616190e+01 3.3888566e+01 3.3074570e+01 2.9683515e+01 3.0600771e+01 3.4345247e+01 3.6983843e+01 3.3692824e+01 3.3762461e+01 3.4024582e+01 3.3698854e+01 3.1238613e+01 3.4978833e+01 3.4991078e+01 3.4577741e+01 3.3749227e+01 3.4982272e+01 3.0487868e+01 3.2317632e+01 3.1125588e+01 3.4413791e+01 3.1881871e+01 3.1373821e+01 3.0416864e+01 3.2066187e+01 3.1128313e+01 3.0240249e+01 3.0125198e+01 3.1343454e+01 3.5479092e+01 3.4450767e+01 3.2953507e+01 3.4456795e+01 3.0136375e+01 3.3462150e+01 2.9894274e+01 3.1367432e+01 3.2839320e+01 3.1440398e+01 2.9400374e+01 3.1106338e+01 3.1242624e+01 3.5537892e+01 3.3056459e+01 2.8610281e+01 3.4296217e+01 3.5819772e+01 3.2503922e+01 3.0963029e+01 3.4762112e+01 3.4796284e+01 2.9645345e+01 3.4468088e+01 2.6975590e+01 3.3738555e+01 2.8825009e+01 3.2663999e+01 3.2547878e+01 3.2308091e+01 3.2489966e+01 3.0868597e+01 3.2974220e+01 3.0866111e+01 3.8197342e+01 3.0609568e+01 3.5478978e+01 2.9249184e+01 3.6185622e+01 3.1948258e+01 3.2649719e+01 3.3305650e+01 3.4643955e+01 3.6566241e+01 3.4968484e+01 3.2632218e+01 3.6741383e+01 3.5700008e+01 3.1962468e+01 3.1410623e+01 3.0412061e+01 3.3749077e+01 3.5649661e+01 3.7649263e+01 3.2832574e+01 3.1783914e+01 2.8264292e+01
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.5695885e-01 2.6882042e-01 2.3470353e-01 2.9299329e-01 2.2742702e-01 3.1253572e-01 2.4986352e-01 3.0770122e-01 2.5191977e-01 2.7931567e-01 2.8133743e-01 2.6316239e-01 2.6067201e-01 3.2982339e-01 2.8993002e-01 2.5506356e-01 2.8728051e-01 2.4952121e-01 2.8613379e-01 2.6894157e-01 2.3606353e-01 2.1670935e-01 2.3470242e-01 2.4294172e-01 2.4376454e-01 2.3228195e-01 2.3554918e-01 2.4851241e-01 2.0917546e-01 2.4971488e-01 2.4264224e-01 2.7405461e-01 1.9086415e-01 2.6346574e-01 2.5908801e-01 2.2138495e-01 2.2910721e-01 2.2169919e-01 2.0660065e-01 2.3207102e-01 2.5554688e-01 2.5153751e-01 2.6073682e-01 2.0919640e-01 3.3984433e-01 2.7503792e-01 2.1709889e-01 2.7068095e-01 3.0307041e-01 2.4529612e-01 2.2987015e-01 2.7736967e-01 3.0310708e-01 3.0544316e-01 1.9205388e-01 2.7098021e-01 2.0722466e-01 2.6387343e-01 2.8998308e-01 2.2633010e-01 2.5177075e-01 1.6347011e-01 2.4036389e-01 2.6485871e-01 2.8491965e-01 2.2273619e-01 2.4511873e-01 2.5930533e-01 2.6589995e-01 2.7797191e-01 2.3357373e-01 2.4279909e-01 2.3544532e-01 1.9447286e-01 2.3993534e-01 2.0856243e-01 2.2125251e-01 2.1988206e-01 2.0590152e-01 2.6441952e-01 2.0052739e-01 2.2978496e-01 2.4483670e-01 2.3879510e-01 2.9398425e-01 2.7541852e-01 2.3777469e-01 2.9151131e-01 2.0672752e-01 2.4584031e-01 2.7475025e-01 2.7064343e-01 2.5603684e-01 2.6165327e-01 2.4233155e-01 1.7892657e-01 2.6111203e-01 1.9965682e-01 2.4201634e-01 2.6281353e-01 3.1928221e-01 1.9731963e-01 2.7752862e-01 2.2633080e-01 2.6783167e-01 2.5447186e-01 2.6424243e-01 2.1960672e-01 2.2984242e-01 2.8788736e-01 2.8681630e-01 2.6949787e-01 2.3993685e-01 2.4440073e-01 2.5010397e-01 2.3230769e-01 2.9879682e-01 2.4200592e-01 2.6957748e-01 2.6073240e-01 2.6355347e-01 2.3403674e-01 2.2411413e-01 2.2956729e-01 2.8105976e-01 2.2913304e-01 2.4898608e-01 2.3304000e-01 2.2692988e-01 2.3728251e-01 2.2552243e-01 2.0364084e-01 2.3359511e-01 2.6619167e-01 2.6666588e-01 2.3666880e-01 2.7239113e-01 2.0146697e-01 2.3045559e-01 2.1695523e-01 2.1387991e-01 2.2366404e-01 2.2809635e-01 2.0901297e-01 2.2441100e-01 2.3418882e-01 2.8552218e-01 2.4609015e-01 2.0282492e-01 2.5940295e-01 2.7407006e-01 2.3344890e-01 2.1179142e-01 2.7047821e-01 2.9832768e-01 2.0859082e-01 2.8881331e-01 1.8384598e-01 2.5286491e-01 2.2012615e-01 2.3615775e-01 2.6845565e-01 2.3356355e-01 2.7164193e-01 2.4179380e-01 2.5247973e-01 2.5637548e-01 3.2126483e-01 2.3100774e-01 2.8832546e-01 2.0043257e-01 2.7918333e-01 2.4884522e-01 2.2904723e-01 2.3738940e-01 2.9461278e-01 2.9782005e-01 3.0332073e-01 2.5175971e-01 3.1203784e-01 2.6611535e-01 2.3713507e-01 2.2203585e-01 2.3602325e-01 2.5093670e-01 2.6860434e-01 3.0137874e-01 2.3759606e-01 2.6840346e-01 1.9200556e-01
|