Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_aline.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_bllip.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_brill.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_cfd_mutation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_cfg2chomsky.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_chunk.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_classify.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_collocations.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_concordance.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corenlp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corpora.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corpus_views.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_data.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_disagreement.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_distance.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_downloader.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_freqdist.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_hmm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_json2csv_corpus.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_json_serialization.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_metrics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_naivebayes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_nombank.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_pl196x.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_pos_tag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_ribes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_rte_classify.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_seekable_unicode_stream_reader.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_senna.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_stem.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tgrep.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tokenize.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_twitter_auth.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_wordnet.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_aline.py +48 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_brill.py +34 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_cfd_mutation.py +39 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_cfg2chomsky.py +49 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_chunk.py +85 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_classify.py +49 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_concordance.py +98 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corenlp.py +1436 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corpora.py +274 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_data.py +15 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_disagreement.py +144 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_distance.py +129 -0
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_aline.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_bllip.cpython-310.pyc
ADDED
Binary file (1.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_brill.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_cfd_mutation.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_cfg2chomsky.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_chunk.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_classify.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_collocations.cpython-310.pyc
ADDED
Binary file (2.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_concordance.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corenlp.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corpora.cpython-310.pyc
ADDED
Binary file (7.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_corpus_views.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_data.cpython-310.pyc
ADDED
Binary file (773 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_disagreement.cpython-310.pyc
ADDED
Binary file (2.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_distance.cpython-310.pyc
ADDED
Binary file (2.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_downloader.cpython-310.pyc
ADDED
Binary file (931 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_freqdist.cpython-310.pyc
ADDED
Binary file (465 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_hmm.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_json2csv_corpus.cpython-310.pyc
ADDED
Binary file (5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_json_serialization.cpython-310.pyc
ADDED
Binary file (3.43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_metrics.cpython-310.pyc
ADDED
Binary file (1.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_naivebayes.cpython-310.pyc
ADDED
Binary file (935 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_nombank.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_pl196x.cpython-310.pyc
ADDED
Binary file (820 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_pos_tag.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_ribes.cpython-310.pyc
ADDED
Binary file (2.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_rte_classify.cpython-310.pyc
ADDED
Binary file (3.18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_seekable_unicode_stream_reader.cpython-310.pyc
ADDED
Binary file (2.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_senna.cpython-310.pyc
ADDED
Binary file (3.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_stem.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tag.cpython-310.pyc
ADDED
Binary file (747 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tgrep.cpython-310.pyc
ADDED
Binary file (20.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_tokenize.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_twitter_auth.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/__pycache__/test_wordnet.cpython-310.pyc
ADDED
Binary file (7.41 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_aline.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test Aline algorithm for aligning phonetic sequences
|
3 |
+
"""
|
4 |
+
from nltk.metrics import aline
|
5 |
+
|
6 |
+
|
7 |
+
def test_aline():
|
8 |
+
result = aline.align("θin", "tenwis")
|
9 |
+
expected = [[("θ", "t"), ("i", "e"), ("n", "n")]]
|
10 |
+
|
11 |
+
assert result == expected
|
12 |
+
|
13 |
+
result = aline.align("jo", "ʒə")
|
14 |
+
expected = [[("j", "ʒ"), ("o", "ə")]]
|
15 |
+
|
16 |
+
assert result == expected
|
17 |
+
|
18 |
+
result = aline.align("pematesiweni", "pematesewen")
|
19 |
+
expected = [
|
20 |
+
[
|
21 |
+
("p", "p"),
|
22 |
+
("e", "e"),
|
23 |
+
("m", "m"),
|
24 |
+
("a", "a"),
|
25 |
+
("t", "t"),
|
26 |
+
("e", "e"),
|
27 |
+
("s", "s"),
|
28 |
+
("i", "e"),
|
29 |
+
("w", "w"),
|
30 |
+
("e", "e"),
|
31 |
+
("n", "n"),
|
32 |
+
]
|
33 |
+
]
|
34 |
+
|
35 |
+
assert result == expected
|
36 |
+
|
37 |
+
result = aline.align("tuwθ", "dentis")
|
38 |
+
expected = [[("t", "t"), ("u", "i"), ("w", "-"), ("θ", "s")]]
|
39 |
+
|
40 |
+
assert result == expected
|
41 |
+
|
42 |
+
|
43 |
+
def test_aline_delta():
|
44 |
+
"""
|
45 |
+
Test aline for computing the difference between two segments
|
46 |
+
"""
|
47 |
+
assert aline.delta("p", "q") == 20.0
|
48 |
+
assert aline.delta("a", "A") == 0.0
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_brill.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for Brill tagger.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import unittest
|
6 |
+
|
7 |
+
from nltk.corpus import treebank
|
8 |
+
from nltk.tag import UnigramTagger, brill, brill_trainer
|
9 |
+
from nltk.tbl import demo
|
10 |
+
|
11 |
+
|
12 |
+
class TestBrill(unittest.TestCase):
|
13 |
+
def test_pos_template(self):
|
14 |
+
train_sents = treebank.tagged_sents()[:1000]
|
15 |
+
tagger = UnigramTagger(train_sents)
|
16 |
+
trainer = brill_trainer.BrillTaggerTrainer(
|
17 |
+
tagger, [brill.Template(brill.Pos([-1]))]
|
18 |
+
)
|
19 |
+
brill_tagger = trainer.train(train_sents)
|
20 |
+
# Example from https://github.com/nltk/nltk/issues/769
|
21 |
+
result = brill_tagger.tag("This is a foo bar sentence".split())
|
22 |
+
expected = [
|
23 |
+
("This", "DT"),
|
24 |
+
("is", "VBZ"),
|
25 |
+
("a", "DT"),
|
26 |
+
("foo", None),
|
27 |
+
("bar", "NN"),
|
28 |
+
("sentence", None),
|
29 |
+
]
|
30 |
+
self.assertEqual(result, expected)
|
31 |
+
|
32 |
+
@unittest.skip("Should be tested in __main__ of nltk.tbl.demo")
|
33 |
+
def test_brill_demo(self):
|
34 |
+
demo()
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_cfd_mutation.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from nltk import ConditionalFreqDist, tokenize
|
6 |
+
|
7 |
+
|
8 |
+
class TestEmptyCondFreq(unittest.TestCase):
|
9 |
+
def test_tabulate(self):
|
10 |
+
empty = ConditionalFreqDist()
|
11 |
+
self.assertEqual(empty.conditions(), [])
|
12 |
+
with pytest.raises(ValueError):
|
13 |
+
empty.tabulate(conditions="BUG") # nonexistent keys shouldn't be added
|
14 |
+
self.assertEqual(empty.conditions(), [])
|
15 |
+
|
16 |
+
def test_plot(self):
|
17 |
+
empty = ConditionalFreqDist()
|
18 |
+
self.assertEqual(empty.conditions(), [])
|
19 |
+
empty.plot(conditions=["BUG"]) # nonexistent keys shouldn't be added
|
20 |
+
self.assertEqual(empty.conditions(), [])
|
21 |
+
|
22 |
+
def test_increment(self):
|
23 |
+
# make sure that we can still mutate cfd normally
|
24 |
+
text = "cow cat mouse cat tiger"
|
25 |
+
cfd = ConditionalFreqDist()
|
26 |
+
|
27 |
+
# create cfd with word length as condition
|
28 |
+
for word in tokenize.word_tokenize(text):
|
29 |
+
condition = len(word)
|
30 |
+
cfd[condition][word] += 1
|
31 |
+
|
32 |
+
self.assertEqual(cfd.conditions(), [3, 5])
|
33 |
+
|
34 |
+
# incrementing previously unseen key is still possible
|
35 |
+
cfd[2]["hi"] += 1
|
36 |
+
self.assertCountEqual(cfd.conditions(), [3, 5, 2]) # new condition added
|
37 |
+
self.assertEqual(
|
38 |
+
cfd[2]["hi"], 1
|
39 |
+
) # key's frequency incremented from 0 (unseen) to 1
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_cfg2chomsky.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import nltk
|
4 |
+
from nltk.grammar import CFG
|
5 |
+
|
6 |
+
|
7 |
+
class ChomskyNormalFormForCFGTest(unittest.TestCase):
|
8 |
+
def test_simple(self):
|
9 |
+
grammar = CFG.fromstring(
|
10 |
+
"""
|
11 |
+
S -> NP VP
|
12 |
+
PP -> P NP
|
13 |
+
NP -> Det N | NP PP P
|
14 |
+
VP -> V NP | VP PP
|
15 |
+
VP -> Det
|
16 |
+
Det -> 'a' | 'the'
|
17 |
+
N -> 'dog' | 'cat'
|
18 |
+
V -> 'chased' | 'sat'
|
19 |
+
P -> 'on' | 'in'
|
20 |
+
"""
|
21 |
+
)
|
22 |
+
self.assertFalse(grammar.is_flexible_chomsky_normal_form())
|
23 |
+
self.assertFalse(grammar.is_chomsky_normal_form())
|
24 |
+
grammar = grammar.chomsky_normal_form(flexible=True)
|
25 |
+
self.assertTrue(grammar.is_flexible_chomsky_normal_form())
|
26 |
+
self.assertFalse(grammar.is_chomsky_normal_form())
|
27 |
+
|
28 |
+
grammar2 = CFG.fromstring(
|
29 |
+
"""
|
30 |
+
S -> NP VP
|
31 |
+
NP -> VP N P
|
32 |
+
VP -> P
|
33 |
+
N -> 'dog' | 'cat'
|
34 |
+
P -> 'on' | 'in'
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
self.assertFalse(grammar2.is_flexible_chomsky_normal_form())
|
38 |
+
self.assertFalse(grammar2.is_chomsky_normal_form())
|
39 |
+
grammar2 = grammar2.chomsky_normal_form()
|
40 |
+
self.assertTrue(grammar2.is_flexible_chomsky_normal_form())
|
41 |
+
self.assertTrue(grammar2.is_chomsky_normal_form())
|
42 |
+
|
43 |
+
def test_complex(self):
|
44 |
+
grammar = nltk.data.load("grammars/large_grammars/atis.cfg")
|
45 |
+
self.assertFalse(grammar.is_flexible_chomsky_normal_form())
|
46 |
+
self.assertFalse(grammar.is_chomsky_normal_form())
|
47 |
+
grammar = grammar.chomsky_normal_form(flexible=True)
|
48 |
+
self.assertTrue(grammar.is_flexible_chomsky_normal_form())
|
49 |
+
self.assertFalse(grammar.is_chomsky_normal_form())
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_chunk.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from nltk import RegexpParser
|
4 |
+
|
5 |
+
|
6 |
+
class TestChunkRule(unittest.TestCase):
|
7 |
+
def test_tag_pattern2re_pattern_quantifier(self):
|
8 |
+
"""Test for bug https://github.com/nltk/nltk/issues/1597
|
9 |
+
|
10 |
+
Ensures that curly bracket quantifiers can be used inside a chunk rule.
|
11 |
+
This type of quantifier has been used for the supplementary example
|
12 |
+
in https://www.nltk.org/book/ch07.html#exploring-text-corpora.
|
13 |
+
"""
|
14 |
+
sent = [
|
15 |
+
("The", "AT"),
|
16 |
+
("September-October", "NP"),
|
17 |
+
("term", "NN"),
|
18 |
+
("jury", "NN"),
|
19 |
+
("had", "HVD"),
|
20 |
+
("been", "BEN"),
|
21 |
+
("charged", "VBN"),
|
22 |
+
("by", "IN"),
|
23 |
+
("Fulton", "NP-TL"),
|
24 |
+
("Superior", "JJ-TL"),
|
25 |
+
("Court", "NN-TL"),
|
26 |
+
("Judge", "NN-TL"),
|
27 |
+
("Durwood", "NP"),
|
28 |
+
("Pye", "NP"),
|
29 |
+
("to", "TO"),
|
30 |
+
("investigate", "VB"),
|
31 |
+
("reports", "NNS"),
|
32 |
+
("of", "IN"),
|
33 |
+
("possible", "JJ"),
|
34 |
+
("``", "``"),
|
35 |
+
("irregularities", "NNS"),
|
36 |
+
("''", "''"),
|
37 |
+
("in", "IN"),
|
38 |
+
("the", "AT"),
|
39 |
+
("hard-fought", "JJ"),
|
40 |
+
("primary", "NN"),
|
41 |
+
("which", "WDT"),
|
42 |
+
("was", "BEDZ"),
|
43 |
+
("won", "VBN"),
|
44 |
+
("by", "IN"),
|
45 |
+
("Mayor-nominate", "NN-TL"),
|
46 |
+
("Ivan", "NP"),
|
47 |
+
("Allen", "NP"),
|
48 |
+
("Jr.", "NP"),
|
49 |
+
(".", "."),
|
50 |
+
] # source: brown corpus
|
51 |
+
cp = RegexpParser("CHUNK: {<N.*>{4,}}")
|
52 |
+
tree = cp.parse(sent)
|
53 |
+
assert (
|
54 |
+
tree.pformat()
|
55 |
+
== """(S
|
56 |
+
The/AT
|
57 |
+
September-October/NP
|
58 |
+
term/NN
|
59 |
+
jury/NN
|
60 |
+
had/HVD
|
61 |
+
been/BEN
|
62 |
+
charged/VBN
|
63 |
+
by/IN
|
64 |
+
Fulton/NP-TL
|
65 |
+
Superior/JJ-TL
|
66 |
+
(CHUNK Court/NN-TL Judge/NN-TL Durwood/NP Pye/NP)
|
67 |
+
to/TO
|
68 |
+
investigate/VB
|
69 |
+
reports/NNS
|
70 |
+
of/IN
|
71 |
+
possible/JJ
|
72 |
+
``/``
|
73 |
+
irregularities/NNS
|
74 |
+
''/''
|
75 |
+
in/IN
|
76 |
+
the/AT
|
77 |
+
hard-fought/JJ
|
78 |
+
primary/NN
|
79 |
+
which/WDT
|
80 |
+
was/BEDZ
|
81 |
+
won/VBN
|
82 |
+
by/IN
|
83 |
+
(CHUNK Mayor-nominate/NN-TL Ivan/NP Allen/NP Jr./NP)
|
84 |
+
./.)"""
|
85 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_classify.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for nltk.classify. See also: nltk/test/classify.doctest
|
3 |
+
"""
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from nltk import classify
|
7 |
+
|
8 |
+
TRAIN = [
|
9 |
+
(dict(a=1, b=1, c=1), "y"),
|
10 |
+
(dict(a=1, b=1, c=1), "x"),
|
11 |
+
(dict(a=1, b=1, c=0), "y"),
|
12 |
+
(dict(a=0, b=1, c=1), "x"),
|
13 |
+
(dict(a=0, b=1, c=1), "y"),
|
14 |
+
(dict(a=0, b=0, c=1), "y"),
|
15 |
+
(dict(a=0, b=1, c=0), "x"),
|
16 |
+
(dict(a=0, b=0, c=0), "x"),
|
17 |
+
(dict(a=0, b=1, c=1), "y"),
|
18 |
+
]
|
19 |
+
|
20 |
+
TEST = [
|
21 |
+
(dict(a=1, b=0, c=1)), # unseen
|
22 |
+
(dict(a=1, b=0, c=0)), # unseen
|
23 |
+
(dict(a=0, b=1, c=1)), # seen 3 times, labels=y,y,x
|
24 |
+
(dict(a=0, b=1, c=0)), # seen 1 time, label=x
|
25 |
+
]
|
26 |
+
|
27 |
+
RESULTS = [(0.16, 0.84), (0.46, 0.54), (0.41, 0.59), (0.76, 0.24)]
|
28 |
+
|
29 |
+
|
30 |
+
def assert_classifier_correct(algorithm):
|
31 |
+
try:
|
32 |
+
classifier = classify.MaxentClassifier.train(
|
33 |
+
TRAIN, algorithm, trace=0, max_iter=1000
|
34 |
+
)
|
35 |
+
except (LookupError, AttributeError) as e:
|
36 |
+
pytest.skip(str(e))
|
37 |
+
|
38 |
+
for (px, py), featureset in zip(RESULTS, TEST):
|
39 |
+
pdist = classifier.prob_classify(featureset)
|
40 |
+
assert abs(pdist.prob("x") - px) < 1e-2, (pdist.prob("x"), px)
|
41 |
+
assert abs(pdist.prob("y") - py) < 1e-2, (pdist.prob("y"), py)
|
42 |
+
|
43 |
+
|
44 |
+
def test_megam():
|
45 |
+
assert_classifier_correct("MEGAM")
|
46 |
+
|
47 |
+
|
48 |
+
def test_tadm():
|
49 |
+
assert_classifier_correct("TADM")
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_concordance.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import sys
|
3 |
+
import unittest
|
4 |
+
from io import StringIO
|
5 |
+
|
6 |
+
from nltk.corpus import gutenberg
|
7 |
+
from nltk.text import Text
|
8 |
+
|
9 |
+
|
10 |
+
@contextlib.contextmanager
|
11 |
+
def stdout_redirect(where):
|
12 |
+
sys.stdout = where
|
13 |
+
try:
|
14 |
+
yield where
|
15 |
+
finally:
|
16 |
+
sys.stdout = sys.__stdout__
|
17 |
+
|
18 |
+
|
19 |
+
class TestConcordance(unittest.TestCase):
|
20 |
+
"""Text constructed using: https://www.nltk.org/book/ch01.html"""
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def setUpClass(cls):
|
24 |
+
cls.corpus = gutenberg.words("melville-moby_dick.txt")
|
25 |
+
|
26 |
+
@classmethod
|
27 |
+
def tearDownClass(cls):
|
28 |
+
pass
|
29 |
+
|
30 |
+
def setUp(self):
|
31 |
+
self.text = Text(TestConcordance.corpus)
|
32 |
+
self.query = "monstrous"
|
33 |
+
self.maxDiff = None
|
34 |
+
self.list_out = [
|
35 |
+
"ong the former , one was of a most monstrous size . ... This came towards us , ",
|
36 |
+
'ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r',
|
37 |
+
"ll over with a heathenish array of monstrous clubs and spears . Some were thick",
|
38 |
+
"d as you gazed , and wondered what monstrous cannibal and savage could ever hav",
|
39 |
+
"that has survived the flood ; most monstrous and most mountainous ! That Himmal",
|
40 |
+
"they might scout at Moby Dick as a monstrous fable , or still worse and more de",
|
41 |
+
"th of Radney .'\" CHAPTER 55 Of the Monstrous Pictures of Whales . I shall ere l",
|
42 |
+
"ing Scenes . In connexion with the monstrous pictures of whales , I am strongly",
|
43 |
+
"ere to enter upon those still more monstrous stories of them which are to be fo",
|
44 |
+
"ght have been rummaged out of this monstrous cabinet there is no telling . But ",
|
45 |
+
"of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u",
|
46 |
+
]
|
47 |
+
|
48 |
+
def tearDown(self):
|
49 |
+
pass
|
50 |
+
|
51 |
+
def test_concordance_list(self):
|
52 |
+
concordance_out = self.text.concordance_list(self.query)
|
53 |
+
self.assertEqual(self.list_out, [c.line for c in concordance_out])
|
54 |
+
|
55 |
+
def test_concordance_width(self):
|
56 |
+
list_out = [
|
57 |
+
"monstrous",
|
58 |
+
"monstrous",
|
59 |
+
"monstrous",
|
60 |
+
"monstrous",
|
61 |
+
"monstrous",
|
62 |
+
"monstrous",
|
63 |
+
"Monstrous",
|
64 |
+
"monstrous",
|
65 |
+
"monstrous",
|
66 |
+
"monstrous",
|
67 |
+
"monstrous",
|
68 |
+
]
|
69 |
+
|
70 |
+
concordance_out = self.text.concordance_list(self.query, width=0)
|
71 |
+
self.assertEqual(list_out, [c.query for c in concordance_out])
|
72 |
+
|
73 |
+
def test_concordance_lines(self):
|
74 |
+
concordance_out = self.text.concordance_list(self.query, lines=3)
|
75 |
+
self.assertEqual(self.list_out[:3], [c.line for c in concordance_out])
|
76 |
+
|
77 |
+
def test_concordance_print(self):
|
78 |
+
print_out = """Displaying 11 of 11 matches:
|
79 |
+
ong the former , one was of a most monstrous size . ... This came towards us ,
|
80 |
+
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
|
81 |
+
ll over with a heathenish array of monstrous clubs and spears . Some were thick
|
82 |
+
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
|
83 |
+
that has survived the flood ; most monstrous and most mountainous ! That Himmal
|
84 |
+
they might scout at Moby Dick as a monstrous fable , or still worse and more de
|
85 |
+
th of Radney .'" CHAPTER 55 Of the Monstrous Pictures of Whales . I shall ere l
|
86 |
+
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
|
87 |
+
ere to enter upon those still more monstrous stories of them which are to be fo
|
88 |
+
ght have been rummaged out of this monstrous cabinet there is no telling . But
|
89 |
+
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
|
90 |
+
"""
|
91 |
+
|
92 |
+
with stdout_redirect(StringIO()) as stdout:
|
93 |
+
self.text.concordance(self.query)
|
94 |
+
|
95 |
+
def strip_space(raw_str):
|
96 |
+
return raw_str.replace(" ", "")
|
97 |
+
|
98 |
+
self.assertEqual(strip_space(print_out), strip_space(stdout.getvalue()))
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corenlp.py
ADDED
@@ -0,0 +1,1436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Mock test for Stanford CoreNLP wrappers.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from unittest import TestCase
|
6 |
+
from unittest.mock import MagicMock
|
7 |
+
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from nltk.parse import corenlp
|
11 |
+
from nltk.tree import Tree
|
12 |
+
|
13 |
+
|
14 |
+
def setup_module(module):
|
15 |
+
global server
|
16 |
+
|
17 |
+
try:
|
18 |
+
server = corenlp.CoreNLPServer(port=9000)
|
19 |
+
except LookupError:
|
20 |
+
pytest.skip("Could not instantiate CoreNLPServer.")
|
21 |
+
|
22 |
+
try:
|
23 |
+
server.start()
|
24 |
+
except corenlp.CoreNLPServerError as e:
|
25 |
+
pytest.skip(
|
26 |
+
"Skipping CoreNLP tests because the server could not be started. "
|
27 |
+
"Make sure that the 9000 port is free. "
|
28 |
+
"{}".format(e.strerror)
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def teardown_module(module):
|
33 |
+
server.stop()
|
34 |
+
|
35 |
+
|
36 |
+
class TestTokenizerAPI(TestCase):
|
37 |
+
def test_tokenize(self):
|
38 |
+
corenlp_tokenizer = corenlp.CoreNLPParser()
|
39 |
+
|
40 |
+
api_return_value = {
|
41 |
+
"sentences": [
|
42 |
+
{
|
43 |
+
"index": 0,
|
44 |
+
"tokens": [
|
45 |
+
{
|
46 |
+
"after": " ",
|
47 |
+
"before": "",
|
48 |
+
"characterOffsetBegin": 0,
|
49 |
+
"characterOffsetEnd": 4,
|
50 |
+
"index": 1,
|
51 |
+
"originalText": "Good",
|
52 |
+
"word": "Good",
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"after": " ",
|
56 |
+
"before": " ",
|
57 |
+
"characterOffsetBegin": 5,
|
58 |
+
"characterOffsetEnd": 12,
|
59 |
+
"index": 2,
|
60 |
+
"originalText": "muffins",
|
61 |
+
"word": "muffins",
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"after": " ",
|
65 |
+
"before": " ",
|
66 |
+
"characterOffsetBegin": 13,
|
67 |
+
"characterOffsetEnd": 17,
|
68 |
+
"index": 3,
|
69 |
+
"originalText": "cost",
|
70 |
+
"word": "cost",
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"after": "",
|
74 |
+
"before": " ",
|
75 |
+
"characterOffsetBegin": 18,
|
76 |
+
"characterOffsetEnd": 19,
|
77 |
+
"index": 4,
|
78 |
+
"originalText": "$",
|
79 |
+
"word": "$",
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"after": "\n",
|
83 |
+
"before": "",
|
84 |
+
"characterOffsetBegin": 19,
|
85 |
+
"characterOffsetEnd": 23,
|
86 |
+
"index": 5,
|
87 |
+
"originalText": "3.88",
|
88 |
+
"word": "3.88",
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"after": " ",
|
92 |
+
"before": "\n",
|
93 |
+
"characterOffsetBegin": 24,
|
94 |
+
"characterOffsetEnd": 26,
|
95 |
+
"index": 6,
|
96 |
+
"originalText": "in",
|
97 |
+
"word": "in",
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"after": " ",
|
101 |
+
"before": " ",
|
102 |
+
"characterOffsetBegin": 27,
|
103 |
+
"characterOffsetEnd": 30,
|
104 |
+
"index": 7,
|
105 |
+
"originalText": "New",
|
106 |
+
"word": "New",
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"after": "",
|
110 |
+
"before": " ",
|
111 |
+
"characterOffsetBegin": 31,
|
112 |
+
"characterOffsetEnd": 35,
|
113 |
+
"index": 8,
|
114 |
+
"originalText": "York",
|
115 |
+
"word": "York",
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"after": " ",
|
119 |
+
"before": "",
|
120 |
+
"characterOffsetBegin": 35,
|
121 |
+
"characterOffsetEnd": 36,
|
122 |
+
"index": 9,
|
123 |
+
"originalText": ".",
|
124 |
+
"word": ".",
|
125 |
+
},
|
126 |
+
],
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"index": 1,
|
130 |
+
"tokens": [
|
131 |
+
{
|
132 |
+
"after": " ",
|
133 |
+
"before": " ",
|
134 |
+
"characterOffsetBegin": 38,
|
135 |
+
"characterOffsetEnd": 44,
|
136 |
+
"index": 1,
|
137 |
+
"originalText": "Please",
|
138 |
+
"word": "Please",
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"after": " ",
|
142 |
+
"before": " ",
|
143 |
+
"characterOffsetBegin": 45,
|
144 |
+
"characterOffsetEnd": 48,
|
145 |
+
"index": 2,
|
146 |
+
"originalText": "buy",
|
147 |
+
"word": "buy",
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"after": "\n",
|
151 |
+
"before": " ",
|
152 |
+
"characterOffsetBegin": 49,
|
153 |
+
"characterOffsetEnd": 51,
|
154 |
+
"index": 3,
|
155 |
+
"originalText": "me",
|
156 |
+
"word": "me",
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"after": " ",
|
160 |
+
"before": "\n",
|
161 |
+
"characterOffsetBegin": 52,
|
162 |
+
"characterOffsetEnd": 55,
|
163 |
+
"index": 4,
|
164 |
+
"originalText": "two",
|
165 |
+
"word": "two",
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"after": " ",
|
169 |
+
"before": " ",
|
170 |
+
"characterOffsetBegin": 56,
|
171 |
+
"characterOffsetEnd": 58,
|
172 |
+
"index": 5,
|
173 |
+
"originalText": "of",
|
174 |
+
"word": "of",
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"after": "",
|
178 |
+
"before": " ",
|
179 |
+
"characterOffsetBegin": 59,
|
180 |
+
"characterOffsetEnd": 63,
|
181 |
+
"index": 6,
|
182 |
+
"originalText": "them",
|
183 |
+
"word": "them",
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"after": "\n",
|
187 |
+
"before": "",
|
188 |
+
"characterOffsetBegin": 63,
|
189 |
+
"characterOffsetEnd": 64,
|
190 |
+
"index": 7,
|
191 |
+
"originalText": ".",
|
192 |
+
"word": ".",
|
193 |
+
},
|
194 |
+
],
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"index": 2,
|
198 |
+
"tokens": [
|
199 |
+
{
|
200 |
+
"after": "",
|
201 |
+
"before": "\n",
|
202 |
+
"characterOffsetBegin": 65,
|
203 |
+
"characterOffsetEnd": 71,
|
204 |
+
"index": 1,
|
205 |
+
"originalText": "Thanks",
|
206 |
+
"word": "Thanks",
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"after": "",
|
210 |
+
"before": "",
|
211 |
+
"characterOffsetBegin": 71,
|
212 |
+
"characterOffsetEnd": 72,
|
213 |
+
"index": 2,
|
214 |
+
"originalText": ".",
|
215 |
+
"word": ".",
|
216 |
+
},
|
217 |
+
],
|
218 |
+
},
|
219 |
+
]
|
220 |
+
}
|
221 |
+
corenlp_tokenizer.api_call = MagicMock(return_value=api_return_value)
|
222 |
+
|
223 |
+
input_string = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks."
|
224 |
+
|
225 |
+
expected_output = [
|
226 |
+
"Good",
|
227 |
+
"muffins",
|
228 |
+
"cost",
|
229 |
+
"$",
|
230 |
+
"3.88",
|
231 |
+
"in",
|
232 |
+
"New",
|
233 |
+
"York",
|
234 |
+
".",
|
235 |
+
"Please",
|
236 |
+
"buy",
|
237 |
+
"me",
|
238 |
+
"two",
|
239 |
+
"of",
|
240 |
+
"them",
|
241 |
+
".",
|
242 |
+
"Thanks",
|
243 |
+
".",
|
244 |
+
]
|
245 |
+
|
246 |
+
tokenized_output = list(corenlp_tokenizer.tokenize(input_string))
|
247 |
+
|
248 |
+
corenlp_tokenizer.api_call.assert_called_once_with(
|
249 |
+
"Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.",
|
250 |
+
properties={"annotators": "tokenize,ssplit"},
|
251 |
+
)
|
252 |
+
self.assertEqual(expected_output, tokenized_output)
|
253 |
+
|
254 |
+
|
255 |
+
class TestTaggerAPI(TestCase):
|
256 |
+
def test_pos_tagger(self):
|
257 |
+
corenlp_tagger = corenlp.CoreNLPParser(tagtype="pos")
|
258 |
+
|
259 |
+
api_return_value = {
|
260 |
+
"sentences": [
|
261 |
+
{
|
262 |
+
"basicDependencies": [
|
263 |
+
{
|
264 |
+
"dep": "ROOT",
|
265 |
+
"dependent": 1,
|
266 |
+
"dependentGloss": "What",
|
267 |
+
"governor": 0,
|
268 |
+
"governorGloss": "ROOT",
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"dep": "cop",
|
272 |
+
"dependent": 2,
|
273 |
+
"dependentGloss": "is",
|
274 |
+
"governor": 1,
|
275 |
+
"governorGloss": "What",
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"dep": "det",
|
279 |
+
"dependent": 3,
|
280 |
+
"dependentGloss": "the",
|
281 |
+
"governor": 4,
|
282 |
+
"governorGloss": "airspeed",
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"dep": "nsubj",
|
286 |
+
"dependent": 4,
|
287 |
+
"dependentGloss": "airspeed",
|
288 |
+
"governor": 1,
|
289 |
+
"governorGloss": "What",
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"dep": "case",
|
293 |
+
"dependent": 5,
|
294 |
+
"dependentGloss": "of",
|
295 |
+
"governor": 8,
|
296 |
+
"governorGloss": "swallow",
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"dep": "det",
|
300 |
+
"dependent": 6,
|
301 |
+
"dependentGloss": "an",
|
302 |
+
"governor": 8,
|
303 |
+
"governorGloss": "swallow",
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"dep": "compound",
|
307 |
+
"dependent": 7,
|
308 |
+
"dependentGloss": "unladen",
|
309 |
+
"governor": 8,
|
310 |
+
"governorGloss": "swallow",
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"dep": "nmod",
|
314 |
+
"dependent": 8,
|
315 |
+
"dependentGloss": "swallow",
|
316 |
+
"governor": 4,
|
317 |
+
"governorGloss": "airspeed",
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"dep": "punct",
|
321 |
+
"dependent": 9,
|
322 |
+
"dependentGloss": "?",
|
323 |
+
"governor": 1,
|
324 |
+
"governorGloss": "What",
|
325 |
+
},
|
326 |
+
],
|
327 |
+
"enhancedDependencies": [
|
328 |
+
{
|
329 |
+
"dep": "ROOT",
|
330 |
+
"dependent": 1,
|
331 |
+
"dependentGloss": "What",
|
332 |
+
"governor": 0,
|
333 |
+
"governorGloss": "ROOT",
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"dep": "cop",
|
337 |
+
"dependent": 2,
|
338 |
+
"dependentGloss": "is",
|
339 |
+
"governor": 1,
|
340 |
+
"governorGloss": "What",
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"dep": "det",
|
344 |
+
"dependent": 3,
|
345 |
+
"dependentGloss": "the",
|
346 |
+
"governor": 4,
|
347 |
+
"governorGloss": "airspeed",
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"dep": "nsubj",
|
351 |
+
"dependent": 4,
|
352 |
+
"dependentGloss": "airspeed",
|
353 |
+
"governor": 1,
|
354 |
+
"governorGloss": "What",
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"dep": "case",
|
358 |
+
"dependent": 5,
|
359 |
+
"dependentGloss": "of",
|
360 |
+
"governor": 8,
|
361 |
+
"governorGloss": "swallow",
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"dep": "det",
|
365 |
+
"dependent": 6,
|
366 |
+
"dependentGloss": "an",
|
367 |
+
"governor": 8,
|
368 |
+
"governorGloss": "swallow",
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"dep": "compound",
|
372 |
+
"dependent": 7,
|
373 |
+
"dependentGloss": "unladen",
|
374 |
+
"governor": 8,
|
375 |
+
"governorGloss": "swallow",
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"dep": "nmod:of",
|
379 |
+
"dependent": 8,
|
380 |
+
"dependentGloss": "swallow",
|
381 |
+
"governor": 4,
|
382 |
+
"governorGloss": "airspeed",
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"dep": "punct",
|
386 |
+
"dependent": 9,
|
387 |
+
"dependentGloss": "?",
|
388 |
+
"governor": 1,
|
389 |
+
"governorGloss": "What",
|
390 |
+
},
|
391 |
+
],
|
392 |
+
"enhancedPlusPlusDependencies": [
|
393 |
+
{
|
394 |
+
"dep": "ROOT",
|
395 |
+
"dependent": 1,
|
396 |
+
"dependentGloss": "What",
|
397 |
+
"governor": 0,
|
398 |
+
"governorGloss": "ROOT",
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"dep": "cop",
|
402 |
+
"dependent": 2,
|
403 |
+
"dependentGloss": "is",
|
404 |
+
"governor": 1,
|
405 |
+
"governorGloss": "What",
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"dep": "det",
|
409 |
+
"dependent": 3,
|
410 |
+
"dependentGloss": "the",
|
411 |
+
"governor": 4,
|
412 |
+
"governorGloss": "airspeed",
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"dep": "nsubj",
|
416 |
+
"dependent": 4,
|
417 |
+
"dependentGloss": "airspeed",
|
418 |
+
"governor": 1,
|
419 |
+
"governorGloss": "What",
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"dep": "case",
|
423 |
+
"dependent": 5,
|
424 |
+
"dependentGloss": "of",
|
425 |
+
"governor": 8,
|
426 |
+
"governorGloss": "swallow",
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"dep": "det",
|
430 |
+
"dependent": 6,
|
431 |
+
"dependentGloss": "an",
|
432 |
+
"governor": 8,
|
433 |
+
"governorGloss": "swallow",
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"dep": "compound",
|
437 |
+
"dependent": 7,
|
438 |
+
"dependentGloss": "unladen",
|
439 |
+
"governor": 8,
|
440 |
+
"governorGloss": "swallow",
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"dep": "nmod:of",
|
444 |
+
"dependent": 8,
|
445 |
+
"dependentGloss": "swallow",
|
446 |
+
"governor": 4,
|
447 |
+
"governorGloss": "airspeed",
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"dep": "punct",
|
451 |
+
"dependent": 9,
|
452 |
+
"dependentGloss": "?",
|
453 |
+
"governor": 1,
|
454 |
+
"governorGloss": "What",
|
455 |
+
},
|
456 |
+
],
|
457 |
+
"index": 0,
|
458 |
+
"parse": "(ROOT\n (SBARQ\n (WHNP (WP What))\n (SQ (VBZ is)\n (NP\n (NP (DT the) (NN airspeed))\n (PP (IN of)\n (NP (DT an) (NN unladen) (NN swallow)))))\n (. ?)))",
|
459 |
+
"tokens": [
|
460 |
+
{
|
461 |
+
"after": " ",
|
462 |
+
"before": "",
|
463 |
+
"characterOffsetBegin": 0,
|
464 |
+
"characterOffsetEnd": 4,
|
465 |
+
"index": 1,
|
466 |
+
"lemma": "what",
|
467 |
+
"originalText": "What",
|
468 |
+
"pos": "WP",
|
469 |
+
"word": "What",
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"after": " ",
|
473 |
+
"before": " ",
|
474 |
+
"characterOffsetBegin": 5,
|
475 |
+
"characterOffsetEnd": 7,
|
476 |
+
"index": 2,
|
477 |
+
"lemma": "be",
|
478 |
+
"originalText": "is",
|
479 |
+
"pos": "VBZ",
|
480 |
+
"word": "is",
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"after": " ",
|
484 |
+
"before": " ",
|
485 |
+
"characterOffsetBegin": 8,
|
486 |
+
"characterOffsetEnd": 11,
|
487 |
+
"index": 3,
|
488 |
+
"lemma": "the",
|
489 |
+
"originalText": "the",
|
490 |
+
"pos": "DT",
|
491 |
+
"word": "the",
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"after": " ",
|
495 |
+
"before": " ",
|
496 |
+
"characterOffsetBegin": 12,
|
497 |
+
"characterOffsetEnd": 20,
|
498 |
+
"index": 4,
|
499 |
+
"lemma": "airspeed",
|
500 |
+
"originalText": "airspeed",
|
501 |
+
"pos": "NN",
|
502 |
+
"word": "airspeed",
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"after": " ",
|
506 |
+
"before": " ",
|
507 |
+
"characterOffsetBegin": 21,
|
508 |
+
"characterOffsetEnd": 23,
|
509 |
+
"index": 5,
|
510 |
+
"lemma": "of",
|
511 |
+
"originalText": "of",
|
512 |
+
"pos": "IN",
|
513 |
+
"word": "of",
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"after": " ",
|
517 |
+
"before": " ",
|
518 |
+
"characterOffsetBegin": 24,
|
519 |
+
"characterOffsetEnd": 26,
|
520 |
+
"index": 6,
|
521 |
+
"lemma": "a",
|
522 |
+
"originalText": "an",
|
523 |
+
"pos": "DT",
|
524 |
+
"word": "an",
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"after": " ",
|
528 |
+
"before": " ",
|
529 |
+
"characterOffsetBegin": 27,
|
530 |
+
"characterOffsetEnd": 34,
|
531 |
+
"index": 7,
|
532 |
+
"lemma": "unladen",
|
533 |
+
"originalText": "unladen",
|
534 |
+
"pos": "JJ",
|
535 |
+
"word": "unladen",
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"after": " ",
|
539 |
+
"before": " ",
|
540 |
+
"characterOffsetBegin": 35,
|
541 |
+
"characterOffsetEnd": 42,
|
542 |
+
"index": 8,
|
543 |
+
"lemma": "swallow",
|
544 |
+
"originalText": "swallow",
|
545 |
+
"pos": "VB",
|
546 |
+
"word": "swallow",
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"after": "",
|
550 |
+
"before": " ",
|
551 |
+
"characterOffsetBegin": 43,
|
552 |
+
"characterOffsetEnd": 44,
|
553 |
+
"index": 9,
|
554 |
+
"lemma": "?",
|
555 |
+
"originalText": "?",
|
556 |
+
"pos": ".",
|
557 |
+
"word": "?",
|
558 |
+
},
|
559 |
+
],
|
560 |
+
}
|
561 |
+
]
|
562 |
+
}
|
563 |
+
corenlp_tagger.api_call = MagicMock(return_value=api_return_value)
|
564 |
+
|
565 |
+
input_tokens = "What is the airspeed of an unladen swallow ?".split()
|
566 |
+
expected_output = [
|
567 |
+
("What", "WP"),
|
568 |
+
("is", "VBZ"),
|
569 |
+
("the", "DT"),
|
570 |
+
("airspeed", "NN"),
|
571 |
+
("of", "IN"),
|
572 |
+
("an", "DT"),
|
573 |
+
("unladen", "JJ"),
|
574 |
+
("swallow", "VB"),
|
575 |
+
("?", "."),
|
576 |
+
]
|
577 |
+
tagged_output = corenlp_tagger.tag(input_tokens)
|
578 |
+
|
579 |
+
corenlp_tagger.api_call.assert_called_once_with(
|
580 |
+
"What is the airspeed of an unladen swallow ?",
|
581 |
+
properties={
|
582 |
+
"ssplit.isOneSentence": "true",
|
583 |
+
"annotators": "tokenize,ssplit,pos",
|
584 |
+
},
|
585 |
+
)
|
586 |
+
self.assertEqual(expected_output, tagged_output)
|
587 |
+
|
588 |
+
def test_ner_tagger(self):
|
589 |
+
corenlp_tagger = corenlp.CoreNLPParser(tagtype="ner")
|
590 |
+
|
591 |
+
api_return_value = {
|
592 |
+
"sentences": [
|
593 |
+
{
|
594 |
+
"index": 0,
|
595 |
+
"tokens": [
|
596 |
+
{
|
597 |
+
"after": " ",
|
598 |
+
"before": "",
|
599 |
+
"characterOffsetBegin": 0,
|
600 |
+
"characterOffsetEnd": 4,
|
601 |
+
"index": 1,
|
602 |
+
"lemma": "Rami",
|
603 |
+
"ner": "PERSON",
|
604 |
+
"originalText": "Rami",
|
605 |
+
"pos": "NNP",
|
606 |
+
"word": "Rami",
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"after": " ",
|
610 |
+
"before": " ",
|
611 |
+
"characterOffsetBegin": 5,
|
612 |
+
"characterOffsetEnd": 8,
|
613 |
+
"index": 2,
|
614 |
+
"lemma": "Eid",
|
615 |
+
"ner": "PERSON",
|
616 |
+
"originalText": "Eid",
|
617 |
+
"pos": "NNP",
|
618 |
+
"word": "Eid",
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"after": " ",
|
622 |
+
"before": " ",
|
623 |
+
"characterOffsetBegin": 9,
|
624 |
+
"characterOffsetEnd": 11,
|
625 |
+
"index": 3,
|
626 |
+
"lemma": "be",
|
627 |
+
"ner": "O",
|
628 |
+
"originalText": "is",
|
629 |
+
"pos": "VBZ",
|
630 |
+
"word": "is",
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"after": " ",
|
634 |
+
"before": " ",
|
635 |
+
"characterOffsetBegin": 12,
|
636 |
+
"characterOffsetEnd": 20,
|
637 |
+
"index": 4,
|
638 |
+
"lemma": "study",
|
639 |
+
"ner": "O",
|
640 |
+
"originalText": "studying",
|
641 |
+
"pos": "VBG",
|
642 |
+
"word": "studying",
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"after": " ",
|
646 |
+
"before": " ",
|
647 |
+
"characterOffsetBegin": 21,
|
648 |
+
"characterOffsetEnd": 23,
|
649 |
+
"index": 5,
|
650 |
+
"lemma": "at",
|
651 |
+
"ner": "O",
|
652 |
+
"originalText": "at",
|
653 |
+
"pos": "IN",
|
654 |
+
"word": "at",
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"after": " ",
|
658 |
+
"before": " ",
|
659 |
+
"characterOffsetBegin": 24,
|
660 |
+
"characterOffsetEnd": 29,
|
661 |
+
"index": 6,
|
662 |
+
"lemma": "Stony",
|
663 |
+
"ner": "ORGANIZATION",
|
664 |
+
"originalText": "Stony",
|
665 |
+
"pos": "NNP",
|
666 |
+
"word": "Stony",
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"after": " ",
|
670 |
+
"before": " ",
|
671 |
+
"characterOffsetBegin": 30,
|
672 |
+
"characterOffsetEnd": 35,
|
673 |
+
"index": 7,
|
674 |
+
"lemma": "Brook",
|
675 |
+
"ner": "ORGANIZATION",
|
676 |
+
"originalText": "Brook",
|
677 |
+
"pos": "NNP",
|
678 |
+
"word": "Brook",
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"after": " ",
|
682 |
+
"before": " ",
|
683 |
+
"characterOffsetBegin": 36,
|
684 |
+
"characterOffsetEnd": 46,
|
685 |
+
"index": 8,
|
686 |
+
"lemma": "University",
|
687 |
+
"ner": "ORGANIZATION",
|
688 |
+
"originalText": "University",
|
689 |
+
"pos": "NNP",
|
690 |
+
"word": "University",
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"after": " ",
|
694 |
+
"before": " ",
|
695 |
+
"characterOffsetBegin": 47,
|
696 |
+
"characterOffsetEnd": 49,
|
697 |
+
"index": 9,
|
698 |
+
"lemma": "in",
|
699 |
+
"ner": "O",
|
700 |
+
"originalText": "in",
|
701 |
+
"pos": "IN",
|
702 |
+
"word": "in",
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"after": "",
|
706 |
+
"before": " ",
|
707 |
+
"characterOffsetBegin": 50,
|
708 |
+
"characterOffsetEnd": 52,
|
709 |
+
"index": 10,
|
710 |
+
"lemma": "NY",
|
711 |
+
"ner": "O",
|
712 |
+
"originalText": "NY",
|
713 |
+
"pos": "NNP",
|
714 |
+
"word": "NY",
|
715 |
+
},
|
716 |
+
],
|
717 |
+
}
|
718 |
+
]
|
719 |
+
}
|
720 |
+
|
721 |
+
corenlp_tagger.api_call = MagicMock(return_value=api_return_value)
|
722 |
+
|
723 |
+
input_tokens = "Rami Eid is studying at Stony Brook University in NY".split()
|
724 |
+
expected_output = [
|
725 |
+
("Rami", "PERSON"),
|
726 |
+
("Eid", "PERSON"),
|
727 |
+
("is", "O"),
|
728 |
+
("studying", "O"),
|
729 |
+
("at", "O"),
|
730 |
+
("Stony", "ORGANIZATION"),
|
731 |
+
("Brook", "ORGANIZATION"),
|
732 |
+
("University", "ORGANIZATION"),
|
733 |
+
("in", "O"),
|
734 |
+
("NY", "O"),
|
735 |
+
]
|
736 |
+
tagged_output = corenlp_tagger.tag(input_tokens)
|
737 |
+
|
738 |
+
corenlp_tagger.api_call.assert_called_once_with(
|
739 |
+
"Rami Eid is studying at Stony Brook University in NY",
|
740 |
+
properties={
|
741 |
+
"ssplit.isOneSentence": "true",
|
742 |
+
"annotators": "tokenize,ssplit,ner",
|
743 |
+
},
|
744 |
+
)
|
745 |
+
self.assertEqual(expected_output, tagged_output)
|
746 |
+
|
747 |
+
def test_unexpected_tagtype(self):
|
748 |
+
with self.assertRaises(ValueError):
|
749 |
+
corenlp_tagger = corenlp.CoreNLPParser(tagtype="test")
|
750 |
+
|
751 |
+
|
752 |
+
class TestParserAPI(TestCase):
|
753 |
+
def test_parse(self):
|
754 |
+
corenlp_parser = corenlp.CoreNLPParser()
|
755 |
+
|
756 |
+
api_return_value = {
|
757 |
+
"sentences": [
|
758 |
+
{
|
759 |
+
"basicDependencies": [
|
760 |
+
{
|
761 |
+
"dep": "ROOT",
|
762 |
+
"dependent": 4,
|
763 |
+
"dependentGloss": "fox",
|
764 |
+
"governor": 0,
|
765 |
+
"governorGloss": "ROOT",
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"dep": "det",
|
769 |
+
"dependent": 1,
|
770 |
+
"dependentGloss": "The",
|
771 |
+
"governor": 4,
|
772 |
+
"governorGloss": "fox",
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"dep": "amod",
|
776 |
+
"dependent": 2,
|
777 |
+
"dependentGloss": "quick",
|
778 |
+
"governor": 4,
|
779 |
+
"governorGloss": "fox",
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"dep": "amod",
|
783 |
+
"dependent": 3,
|
784 |
+
"dependentGloss": "brown",
|
785 |
+
"governor": 4,
|
786 |
+
"governorGloss": "fox",
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"dep": "dep",
|
790 |
+
"dependent": 5,
|
791 |
+
"dependentGloss": "jumps",
|
792 |
+
"governor": 4,
|
793 |
+
"governorGloss": "fox",
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"dep": "case",
|
797 |
+
"dependent": 6,
|
798 |
+
"dependentGloss": "over",
|
799 |
+
"governor": 9,
|
800 |
+
"governorGloss": "dog",
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"dep": "det",
|
804 |
+
"dependent": 7,
|
805 |
+
"dependentGloss": "the",
|
806 |
+
"governor": 9,
|
807 |
+
"governorGloss": "dog",
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"dep": "amod",
|
811 |
+
"dependent": 8,
|
812 |
+
"dependentGloss": "lazy",
|
813 |
+
"governor": 9,
|
814 |
+
"governorGloss": "dog",
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"dep": "nmod",
|
818 |
+
"dependent": 9,
|
819 |
+
"dependentGloss": "dog",
|
820 |
+
"governor": 5,
|
821 |
+
"governorGloss": "jumps",
|
822 |
+
},
|
823 |
+
],
|
824 |
+
"enhancedDependencies": [
|
825 |
+
{
|
826 |
+
"dep": "ROOT",
|
827 |
+
"dependent": 4,
|
828 |
+
"dependentGloss": "fox",
|
829 |
+
"governor": 0,
|
830 |
+
"governorGloss": "ROOT",
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"dep": "det",
|
834 |
+
"dependent": 1,
|
835 |
+
"dependentGloss": "The",
|
836 |
+
"governor": 4,
|
837 |
+
"governorGloss": "fox",
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"dep": "amod",
|
841 |
+
"dependent": 2,
|
842 |
+
"dependentGloss": "quick",
|
843 |
+
"governor": 4,
|
844 |
+
"governorGloss": "fox",
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"dep": "amod",
|
848 |
+
"dependent": 3,
|
849 |
+
"dependentGloss": "brown",
|
850 |
+
"governor": 4,
|
851 |
+
"governorGloss": "fox",
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"dep": "dep",
|
855 |
+
"dependent": 5,
|
856 |
+
"dependentGloss": "jumps",
|
857 |
+
"governor": 4,
|
858 |
+
"governorGloss": "fox",
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"dep": "case",
|
862 |
+
"dependent": 6,
|
863 |
+
"dependentGloss": "over",
|
864 |
+
"governor": 9,
|
865 |
+
"governorGloss": "dog",
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"dep": "det",
|
869 |
+
"dependent": 7,
|
870 |
+
"dependentGloss": "the",
|
871 |
+
"governor": 9,
|
872 |
+
"governorGloss": "dog",
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"dep": "amod",
|
876 |
+
"dependent": 8,
|
877 |
+
"dependentGloss": "lazy",
|
878 |
+
"governor": 9,
|
879 |
+
"governorGloss": "dog",
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"dep": "nmod:over",
|
883 |
+
"dependent": 9,
|
884 |
+
"dependentGloss": "dog",
|
885 |
+
"governor": 5,
|
886 |
+
"governorGloss": "jumps",
|
887 |
+
},
|
888 |
+
],
|
889 |
+
"enhancedPlusPlusDependencies": [
|
890 |
+
{
|
891 |
+
"dep": "ROOT",
|
892 |
+
"dependent": 4,
|
893 |
+
"dependentGloss": "fox",
|
894 |
+
"governor": 0,
|
895 |
+
"governorGloss": "ROOT",
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"dep": "det",
|
899 |
+
"dependent": 1,
|
900 |
+
"dependentGloss": "The",
|
901 |
+
"governor": 4,
|
902 |
+
"governorGloss": "fox",
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"dep": "amod",
|
906 |
+
"dependent": 2,
|
907 |
+
"dependentGloss": "quick",
|
908 |
+
"governor": 4,
|
909 |
+
"governorGloss": "fox",
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"dep": "amod",
|
913 |
+
"dependent": 3,
|
914 |
+
"dependentGloss": "brown",
|
915 |
+
"governor": 4,
|
916 |
+
"governorGloss": "fox",
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"dep": "dep",
|
920 |
+
"dependent": 5,
|
921 |
+
"dependentGloss": "jumps",
|
922 |
+
"governor": 4,
|
923 |
+
"governorGloss": "fox",
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"dep": "case",
|
927 |
+
"dependent": 6,
|
928 |
+
"dependentGloss": "over",
|
929 |
+
"governor": 9,
|
930 |
+
"governorGloss": "dog",
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"dep": "det",
|
934 |
+
"dependent": 7,
|
935 |
+
"dependentGloss": "the",
|
936 |
+
"governor": 9,
|
937 |
+
"governorGloss": "dog",
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"dep": "amod",
|
941 |
+
"dependent": 8,
|
942 |
+
"dependentGloss": "lazy",
|
943 |
+
"governor": 9,
|
944 |
+
"governorGloss": "dog",
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"dep": "nmod:over",
|
948 |
+
"dependent": 9,
|
949 |
+
"dependentGloss": "dog",
|
950 |
+
"governor": 5,
|
951 |
+
"governorGloss": "jumps",
|
952 |
+
},
|
953 |
+
],
|
954 |
+
"index": 0,
|
955 |
+
"parse": "(ROOT\n (NP\n (NP (DT The) (JJ quick) (JJ brown) (NN fox))\n (NP\n (NP (NNS jumps))\n (PP (IN over)\n (NP (DT the) (JJ lazy) (NN dog))))))",
|
956 |
+
"tokens": [
|
957 |
+
{
|
958 |
+
"after": " ",
|
959 |
+
"before": "",
|
960 |
+
"characterOffsetBegin": 0,
|
961 |
+
"characterOffsetEnd": 3,
|
962 |
+
"index": 1,
|
963 |
+
"lemma": "the",
|
964 |
+
"originalText": "The",
|
965 |
+
"pos": "DT",
|
966 |
+
"word": "The",
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"after": " ",
|
970 |
+
"before": " ",
|
971 |
+
"characterOffsetBegin": 4,
|
972 |
+
"characterOffsetEnd": 9,
|
973 |
+
"index": 2,
|
974 |
+
"lemma": "quick",
|
975 |
+
"originalText": "quick",
|
976 |
+
"pos": "JJ",
|
977 |
+
"word": "quick",
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"after": " ",
|
981 |
+
"before": " ",
|
982 |
+
"characterOffsetBegin": 10,
|
983 |
+
"characterOffsetEnd": 15,
|
984 |
+
"index": 3,
|
985 |
+
"lemma": "brown",
|
986 |
+
"originalText": "brown",
|
987 |
+
"pos": "JJ",
|
988 |
+
"word": "brown",
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"after": " ",
|
992 |
+
"before": " ",
|
993 |
+
"characterOffsetBegin": 16,
|
994 |
+
"characterOffsetEnd": 19,
|
995 |
+
"index": 4,
|
996 |
+
"lemma": "fox",
|
997 |
+
"originalText": "fox",
|
998 |
+
"pos": "NN",
|
999 |
+
"word": "fox",
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"after": " ",
|
1003 |
+
"before": " ",
|
1004 |
+
"characterOffsetBegin": 20,
|
1005 |
+
"characterOffsetEnd": 25,
|
1006 |
+
"index": 5,
|
1007 |
+
"lemma": "jump",
|
1008 |
+
"originalText": "jumps",
|
1009 |
+
"pos": "VBZ",
|
1010 |
+
"word": "jumps",
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"after": " ",
|
1014 |
+
"before": " ",
|
1015 |
+
"characterOffsetBegin": 26,
|
1016 |
+
"characterOffsetEnd": 30,
|
1017 |
+
"index": 6,
|
1018 |
+
"lemma": "over",
|
1019 |
+
"originalText": "over",
|
1020 |
+
"pos": "IN",
|
1021 |
+
"word": "over",
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"after": " ",
|
1025 |
+
"before": " ",
|
1026 |
+
"characterOffsetBegin": 31,
|
1027 |
+
"characterOffsetEnd": 34,
|
1028 |
+
"index": 7,
|
1029 |
+
"lemma": "the",
|
1030 |
+
"originalText": "the",
|
1031 |
+
"pos": "DT",
|
1032 |
+
"word": "the",
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"after": " ",
|
1036 |
+
"before": " ",
|
1037 |
+
"characterOffsetBegin": 35,
|
1038 |
+
"characterOffsetEnd": 39,
|
1039 |
+
"index": 8,
|
1040 |
+
"lemma": "lazy",
|
1041 |
+
"originalText": "lazy",
|
1042 |
+
"pos": "JJ",
|
1043 |
+
"word": "lazy",
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"after": "",
|
1047 |
+
"before": " ",
|
1048 |
+
"characterOffsetBegin": 40,
|
1049 |
+
"characterOffsetEnd": 43,
|
1050 |
+
"index": 9,
|
1051 |
+
"lemma": "dog",
|
1052 |
+
"originalText": "dog",
|
1053 |
+
"pos": "NN",
|
1054 |
+
"word": "dog",
|
1055 |
+
},
|
1056 |
+
],
|
1057 |
+
}
|
1058 |
+
]
|
1059 |
+
}
|
1060 |
+
|
1061 |
+
corenlp_parser.api_call = MagicMock(return_value=api_return_value)
|
1062 |
+
|
1063 |
+
input_string = "The quick brown fox jumps over the lazy dog".split()
|
1064 |
+
expected_output = Tree(
|
1065 |
+
"ROOT",
|
1066 |
+
[
|
1067 |
+
Tree(
|
1068 |
+
"NP",
|
1069 |
+
[
|
1070 |
+
Tree(
|
1071 |
+
"NP",
|
1072 |
+
[
|
1073 |
+
Tree("DT", ["The"]),
|
1074 |
+
Tree("JJ", ["quick"]),
|
1075 |
+
Tree("JJ", ["brown"]),
|
1076 |
+
Tree("NN", ["fox"]),
|
1077 |
+
],
|
1078 |
+
),
|
1079 |
+
Tree(
|
1080 |
+
"NP",
|
1081 |
+
[
|
1082 |
+
Tree("NP", [Tree("NNS", ["jumps"])]),
|
1083 |
+
Tree(
|
1084 |
+
"PP",
|
1085 |
+
[
|
1086 |
+
Tree("IN", ["over"]),
|
1087 |
+
Tree(
|
1088 |
+
"NP",
|
1089 |
+
[
|
1090 |
+
Tree("DT", ["the"]),
|
1091 |
+
Tree("JJ", ["lazy"]),
|
1092 |
+
Tree("NN", ["dog"]),
|
1093 |
+
],
|
1094 |
+
),
|
1095 |
+
],
|
1096 |
+
),
|
1097 |
+
],
|
1098 |
+
),
|
1099 |
+
],
|
1100 |
+
)
|
1101 |
+
],
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
parsed_data = next(corenlp_parser.parse(input_string))
|
1105 |
+
|
1106 |
+
corenlp_parser.api_call.assert_called_once_with(
|
1107 |
+
"The quick brown fox jumps over the lazy dog",
|
1108 |
+
properties={"ssplit.eolonly": "true"},
|
1109 |
+
)
|
1110 |
+
self.assertEqual(expected_output, parsed_data)
|
1111 |
+
|
1112 |
+
def test_dependency_parser(self):
|
1113 |
+
corenlp_parser = corenlp.CoreNLPDependencyParser()
|
1114 |
+
|
1115 |
+
api_return_value = {
|
1116 |
+
"sentences": [
|
1117 |
+
{
|
1118 |
+
"basicDependencies": [
|
1119 |
+
{
|
1120 |
+
"dep": "ROOT",
|
1121 |
+
"dependent": 5,
|
1122 |
+
"dependentGloss": "jumps",
|
1123 |
+
"governor": 0,
|
1124 |
+
"governorGloss": "ROOT",
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"dep": "det",
|
1128 |
+
"dependent": 1,
|
1129 |
+
"dependentGloss": "The",
|
1130 |
+
"governor": 4,
|
1131 |
+
"governorGloss": "fox",
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"dep": "amod",
|
1135 |
+
"dependent": 2,
|
1136 |
+
"dependentGloss": "quick",
|
1137 |
+
"governor": 4,
|
1138 |
+
"governorGloss": "fox",
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"dep": "amod",
|
1142 |
+
"dependent": 3,
|
1143 |
+
"dependentGloss": "brown",
|
1144 |
+
"governor": 4,
|
1145 |
+
"governorGloss": "fox",
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"dep": "nsubj",
|
1149 |
+
"dependent": 4,
|
1150 |
+
"dependentGloss": "fox",
|
1151 |
+
"governor": 5,
|
1152 |
+
"governorGloss": "jumps",
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"dep": "case",
|
1156 |
+
"dependent": 6,
|
1157 |
+
"dependentGloss": "over",
|
1158 |
+
"governor": 9,
|
1159 |
+
"governorGloss": "dog",
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"dep": "det",
|
1163 |
+
"dependent": 7,
|
1164 |
+
"dependentGloss": "the",
|
1165 |
+
"governor": 9,
|
1166 |
+
"governorGloss": "dog",
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"dep": "amod",
|
1170 |
+
"dependent": 8,
|
1171 |
+
"dependentGloss": "lazy",
|
1172 |
+
"governor": 9,
|
1173 |
+
"governorGloss": "dog",
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"dep": "nmod",
|
1177 |
+
"dependent": 9,
|
1178 |
+
"dependentGloss": "dog",
|
1179 |
+
"governor": 5,
|
1180 |
+
"governorGloss": "jumps",
|
1181 |
+
},
|
1182 |
+
],
|
1183 |
+
"enhancedDependencies": [
|
1184 |
+
{
|
1185 |
+
"dep": "ROOT",
|
1186 |
+
"dependent": 5,
|
1187 |
+
"dependentGloss": "jumps",
|
1188 |
+
"governor": 0,
|
1189 |
+
"governorGloss": "ROOT",
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"dep": "det",
|
1193 |
+
"dependent": 1,
|
1194 |
+
"dependentGloss": "The",
|
1195 |
+
"governor": 4,
|
1196 |
+
"governorGloss": "fox",
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"dep": "amod",
|
1200 |
+
"dependent": 2,
|
1201 |
+
"dependentGloss": "quick",
|
1202 |
+
"governor": 4,
|
1203 |
+
"governorGloss": "fox",
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"dep": "amod",
|
1207 |
+
"dependent": 3,
|
1208 |
+
"dependentGloss": "brown",
|
1209 |
+
"governor": 4,
|
1210 |
+
"governorGloss": "fox",
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"dep": "nsubj",
|
1214 |
+
"dependent": 4,
|
1215 |
+
"dependentGloss": "fox",
|
1216 |
+
"governor": 5,
|
1217 |
+
"governorGloss": "jumps",
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"dep": "case",
|
1221 |
+
"dependent": 6,
|
1222 |
+
"dependentGloss": "over",
|
1223 |
+
"governor": 9,
|
1224 |
+
"governorGloss": "dog",
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"dep": "det",
|
1228 |
+
"dependent": 7,
|
1229 |
+
"dependentGloss": "the",
|
1230 |
+
"governor": 9,
|
1231 |
+
"governorGloss": "dog",
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"dep": "amod",
|
1235 |
+
"dependent": 8,
|
1236 |
+
"dependentGloss": "lazy",
|
1237 |
+
"governor": 9,
|
1238 |
+
"governorGloss": "dog",
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"dep": "nmod:over",
|
1242 |
+
"dependent": 9,
|
1243 |
+
"dependentGloss": "dog",
|
1244 |
+
"governor": 5,
|
1245 |
+
"governorGloss": "jumps",
|
1246 |
+
},
|
1247 |
+
],
|
1248 |
+
"enhancedPlusPlusDependencies": [
|
1249 |
+
{
|
1250 |
+
"dep": "ROOT",
|
1251 |
+
"dependent": 5,
|
1252 |
+
"dependentGloss": "jumps",
|
1253 |
+
"governor": 0,
|
1254 |
+
"governorGloss": "ROOT",
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"dep": "det",
|
1258 |
+
"dependent": 1,
|
1259 |
+
"dependentGloss": "The",
|
1260 |
+
"governor": 4,
|
1261 |
+
"governorGloss": "fox",
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"dep": "amod",
|
1265 |
+
"dependent": 2,
|
1266 |
+
"dependentGloss": "quick",
|
1267 |
+
"governor": 4,
|
1268 |
+
"governorGloss": "fox",
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"dep": "amod",
|
1272 |
+
"dependent": 3,
|
1273 |
+
"dependentGloss": "brown",
|
1274 |
+
"governor": 4,
|
1275 |
+
"governorGloss": "fox",
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"dep": "nsubj",
|
1279 |
+
"dependent": 4,
|
1280 |
+
"dependentGloss": "fox",
|
1281 |
+
"governor": 5,
|
1282 |
+
"governorGloss": "jumps",
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"dep": "case",
|
1286 |
+
"dependent": 6,
|
1287 |
+
"dependentGloss": "over",
|
1288 |
+
"governor": 9,
|
1289 |
+
"governorGloss": "dog",
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"dep": "det",
|
1293 |
+
"dependent": 7,
|
1294 |
+
"dependentGloss": "the",
|
1295 |
+
"governor": 9,
|
1296 |
+
"governorGloss": "dog",
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"dep": "amod",
|
1300 |
+
"dependent": 8,
|
1301 |
+
"dependentGloss": "lazy",
|
1302 |
+
"governor": 9,
|
1303 |
+
"governorGloss": "dog",
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"dep": "nmod:over",
|
1307 |
+
"dependent": 9,
|
1308 |
+
"dependentGloss": "dog",
|
1309 |
+
"governor": 5,
|
1310 |
+
"governorGloss": "jumps",
|
1311 |
+
},
|
1312 |
+
],
|
1313 |
+
"index": 0,
|
1314 |
+
"tokens": [
|
1315 |
+
{
|
1316 |
+
"after": " ",
|
1317 |
+
"before": "",
|
1318 |
+
"characterOffsetBegin": 0,
|
1319 |
+
"characterOffsetEnd": 3,
|
1320 |
+
"index": 1,
|
1321 |
+
"lemma": "the",
|
1322 |
+
"originalText": "The",
|
1323 |
+
"pos": "DT",
|
1324 |
+
"word": "The",
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"after": " ",
|
1328 |
+
"before": " ",
|
1329 |
+
"characterOffsetBegin": 4,
|
1330 |
+
"characterOffsetEnd": 9,
|
1331 |
+
"index": 2,
|
1332 |
+
"lemma": "quick",
|
1333 |
+
"originalText": "quick",
|
1334 |
+
"pos": "JJ",
|
1335 |
+
"word": "quick",
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"after": " ",
|
1339 |
+
"before": " ",
|
1340 |
+
"characterOffsetBegin": 10,
|
1341 |
+
"characterOffsetEnd": 15,
|
1342 |
+
"index": 3,
|
1343 |
+
"lemma": "brown",
|
1344 |
+
"originalText": "brown",
|
1345 |
+
"pos": "JJ",
|
1346 |
+
"word": "brown",
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"after": " ",
|
1350 |
+
"before": " ",
|
1351 |
+
"characterOffsetBegin": 16,
|
1352 |
+
"characterOffsetEnd": 19,
|
1353 |
+
"index": 4,
|
1354 |
+
"lemma": "fox",
|
1355 |
+
"originalText": "fox",
|
1356 |
+
"pos": "NN",
|
1357 |
+
"word": "fox",
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"after": " ",
|
1361 |
+
"before": " ",
|
1362 |
+
"characterOffsetBegin": 20,
|
1363 |
+
"characterOffsetEnd": 25,
|
1364 |
+
"index": 5,
|
1365 |
+
"lemma": "jump",
|
1366 |
+
"originalText": "jumps",
|
1367 |
+
"pos": "VBZ",
|
1368 |
+
"word": "jumps",
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"after": " ",
|
1372 |
+
"before": " ",
|
1373 |
+
"characterOffsetBegin": 26,
|
1374 |
+
"characterOffsetEnd": 30,
|
1375 |
+
"index": 6,
|
1376 |
+
"lemma": "over",
|
1377 |
+
"originalText": "over",
|
1378 |
+
"pos": "IN",
|
1379 |
+
"word": "over",
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"after": " ",
|
1383 |
+
"before": " ",
|
1384 |
+
"characterOffsetBegin": 31,
|
1385 |
+
"characterOffsetEnd": 34,
|
1386 |
+
"index": 7,
|
1387 |
+
"lemma": "the",
|
1388 |
+
"originalText": "the",
|
1389 |
+
"pos": "DT",
|
1390 |
+
"word": "the",
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"after": " ",
|
1394 |
+
"before": " ",
|
1395 |
+
"characterOffsetBegin": 35,
|
1396 |
+
"characterOffsetEnd": 39,
|
1397 |
+
"index": 8,
|
1398 |
+
"lemma": "lazy",
|
1399 |
+
"originalText": "lazy",
|
1400 |
+
"pos": "JJ",
|
1401 |
+
"word": "lazy",
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"after": "",
|
1405 |
+
"before": " ",
|
1406 |
+
"characterOffsetBegin": 40,
|
1407 |
+
"characterOffsetEnd": 43,
|
1408 |
+
"index": 9,
|
1409 |
+
"lemma": "dog",
|
1410 |
+
"originalText": "dog",
|
1411 |
+
"pos": "NN",
|
1412 |
+
"word": "dog",
|
1413 |
+
},
|
1414 |
+
],
|
1415 |
+
}
|
1416 |
+
]
|
1417 |
+
}
|
1418 |
+
|
1419 |
+
corenlp_parser.api_call = MagicMock(return_value=api_return_value)
|
1420 |
+
|
1421 |
+
input_string = "The quick brown fox jumps over the lazy dog".split()
|
1422 |
+
expected_output = Tree(
|
1423 |
+
"jumps",
|
1424 |
+
[
|
1425 |
+
Tree("fox", ["The", "quick", "brown"]),
|
1426 |
+
Tree("dog", ["over", "the", "lazy"]),
|
1427 |
+
],
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
parsed_data = next(corenlp_parser.parse(input_string))
|
1431 |
+
|
1432 |
+
corenlp_parser.api_call.assert_called_once_with(
|
1433 |
+
"The quick brown fox jumps over the lazy dog",
|
1434 |
+
properties={"ssplit.eolonly": "true"},
|
1435 |
+
)
|
1436 |
+
self.assertEqual(expected_output, parsed_data.tree())
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corpora.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from nltk.corpus import ( # mwa_ppdb
|
6 |
+
cess_cat,
|
7 |
+
cess_esp,
|
8 |
+
conll2007,
|
9 |
+
floresta,
|
10 |
+
indian,
|
11 |
+
ptb,
|
12 |
+
sinica_treebank,
|
13 |
+
udhr,
|
14 |
+
)
|
15 |
+
from nltk.tree import Tree
|
16 |
+
|
17 |
+
|
18 |
+
class TestUdhr(unittest.TestCase):
|
19 |
+
def test_words(self):
|
20 |
+
for name in udhr.fileids():
|
21 |
+
words = list(udhr.words(name))
|
22 |
+
self.assertTrue(words)
|
23 |
+
|
24 |
+
def test_raw_unicode(self):
|
25 |
+
for name in udhr.fileids():
|
26 |
+
txt = udhr.raw(name)
|
27 |
+
assert not isinstance(txt, bytes), name
|
28 |
+
|
29 |
+
def test_polish_encoding(self):
|
30 |
+
text_pl = udhr.raw("Polish-Latin2")[:164]
|
31 |
+
text_ppl = udhr.raw("Polish_Polski-Latin2")[:164]
|
32 |
+
expected = """POWSZECHNA DEKLARACJA PRAW CZŁOWIEKA
|
33 |
+
[Preamble]
|
34 |
+
Trzecia Sesja Ogólnego Zgromadzenia ONZ, obradująca w Paryżu, \
|
35 |
+
uchwaliła 10 grudnia 1948 roku jednomyślnie Powszechną"""
|
36 |
+
assert text_pl == expected, "Polish-Latin2"
|
37 |
+
assert text_ppl == expected, "Polish_Polski-Latin2"
|
38 |
+
|
39 |
+
|
40 |
+
class TestIndian(unittest.TestCase):
|
41 |
+
def test_words(self):
|
42 |
+
words = indian.words()[:3]
|
43 |
+
self.assertEqual(words, ["মহিষের", "সন্তান", ":"])
|
44 |
+
|
45 |
+
def test_tagged_words(self):
|
46 |
+
tagged_words = indian.tagged_words()[:3]
|
47 |
+
self.assertEqual(
|
48 |
+
tagged_words, [("মহিষের", "NN"), ("সন্তান", "NN"), (":", "SYM")]
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
class TestCess(unittest.TestCase):
|
53 |
+
def test_catalan(self):
|
54 |
+
words = cess_cat.words()[:15]
|
55 |
+
txt = "El Tribunal_Suprem -Fpa- TS -Fpt- ha confirmat la condemna a quatre anys d' inhabilitació especial"
|
56 |
+
self.assertEqual(words, txt.split())
|
57 |
+
self.assertEqual(cess_cat.tagged_sents()[0][34][0], "càrrecs")
|
58 |
+
|
59 |
+
def test_esp(self):
|
60 |
+
words = cess_esp.words()[:15]
|
61 |
+
txt = "El grupo estatal Electricité_de_France -Fpa- EDF -Fpt- anunció hoy , jueves , la compra del"
|
62 |
+
self.assertEqual(words, txt.split())
|
63 |
+
self.assertEqual(cess_esp.words()[115], "años")
|
64 |
+
|
65 |
+
|
66 |
+
class TestFloresta(unittest.TestCase):
|
67 |
+
def test_words(self):
|
68 |
+
words = floresta.words()[:10]
|
69 |
+
txt = "Um revivalismo refrescante O 7_e_Meio é um ex-libris de a"
|
70 |
+
self.assertEqual(words, txt.split())
|
71 |
+
|
72 |
+
|
73 |
+
class TestSinicaTreebank(unittest.TestCase):
|
74 |
+
def test_sents(self):
|
75 |
+
first_3_sents = sinica_treebank.sents()[:3]
|
76 |
+
self.assertEqual(
|
77 |
+
first_3_sents, [["一"], ["友情"], ["嘉珍", "和", "我", "住在", "同一條", "巷子"]]
|
78 |
+
)
|
79 |
+
|
80 |
+
def test_parsed_sents(self):
|
81 |
+
parsed_sents = sinica_treebank.parsed_sents()[25]
|
82 |
+
self.assertEqual(
|
83 |
+
parsed_sents,
|
84 |
+
Tree(
|
85 |
+
"S",
|
86 |
+
[
|
87 |
+
Tree("NP", [Tree("Nba", ["嘉珍"])]),
|
88 |
+
Tree("V‧地", [Tree("VA11", ["不停"]), Tree("DE", ["的"])]),
|
89 |
+
Tree("VA4", ["哭泣"]),
|
90 |
+
],
|
91 |
+
),
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
class TestCoNLL2007(unittest.TestCase):
|
96 |
+
# Reading the CoNLL 2007 Dependency Treebanks
|
97 |
+
|
98 |
+
def test_sents(self):
|
99 |
+
sents = conll2007.sents("esp.train")[0]
|
100 |
+
self.assertEqual(
|
101 |
+
sents[:6], ["El", "aumento", "del", "índice", "de", "desempleo"]
|
102 |
+
)
|
103 |
+
|
104 |
+
def test_parsed_sents(self):
|
105 |
+
|
106 |
+
parsed_sents = conll2007.parsed_sents("esp.train")[0]
|
107 |
+
|
108 |
+
self.assertEqual(
|
109 |
+
parsed_sents.tree(),
|
110 |
+
Tree(
|
111 |
+
"fortaleció",
|
112 |
+
[
|
113 |
+
Tree(
|
114 |
+
"aumento",
|
115 |
+
[
|
116 |
+
"El",
|
117 |
+
Tree(
|
118 |
+
"del",
|
119 |
+
[
|
120 |
+
Tree(
|
121 |
+
"índice",
|
122 |
+
[
|
123 |
+
Tree(
|
124 |
+
"de",
|
125 |
+
[Tree("desempleo", ["estadounidense"])],
|
126 |
+
)
|
127 |
+
],
|
128 |
+
)
|
129 |
+
],
|
130 |
+
),
|
131 |
+
],
|
132 |
+
),
|
133 |
+
"hoy",
|
134 |
+
"considerablemente",
|
135 |
+
Tree(
|
136 |
+
"al",
|
137 |
+
[
|
138 |
+
Tree(
|
139 |
+
"euro",
|
140 |
+
[
|
141 |
+
Tree(
|
142 |
+
"cotizaba",
|
143 |
+
[
|
144 |
+
",",
|
145 |
+
"que",
|
146 |
+
Tree("a", [Tree("15.35", ["las", "GMT"])]),
|
147 |
+
"se",
|
148 |
+
Tree(
|
149 |
+
"en",
|
150 |
+
[
|
151 |
+
Tree(
|
152 |
+
"mercado",
|
153 |
+
[
|
154 |
+
"el",
|
155 |
+
Tree("de", ["divisas"]),
|
156 |
+
Tree("de", ["Fráncfort"]),
|
157 |
+
],
|
158 |
+
)
|
159 |
+
],
|
160 |
+
),
|
161 |
+
Tree("a", ["0,9452_dólares"]),
|
162 |
+
Tree(
|
163 |
+
"frente_a",
|
164 |
+
[
|
165 |
+
",",
|
166 |
+
Tree(
|
167 |
+
"0,9349_dólares",
|
168 |
+
[
|
169 |
+
"los",
|
170 |
+
Tree(
|
171 |
+
"de",
|
172 |
+
[
|
173 |
+
Tree(
|
174 |
+
"mañana",
|
175 |
+
["esta"],
|
176 |
+
)
|
177 |
+
],
|
178 |
+
),
|
179 |
+
],
|
180 |
+
),
|
181 |
+
],
|
182 |
+
),
|
183 |
+
],
|
184 |
+
)
|
185 |
+
],
|
186 |
+
)
|
187 |
+
],
|
188 |
+
),
|
189 |
+
".",
|
190 |
+
],
|
191 |
+
),
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
@pytest.mark.skipif(
|
196 |
+
not ptb.fileids(),
|
197 |
+
reason="A full installation of the Penn Treebank is not available",
|
198 |
+
)
|
199 |
+
class TestPTB(unittest.TestCase):
|
200 |
+
def test_fileids(self):
|
201 |
+
self.assertEqual(
|
202 |
+
ptb.fileids()[:4],
|
203 |
+
[
|
204 |
+
"BROWN/CF/CF01.MRG",
|
205 |
+
"BROWN/CF/CF02.MRG",
|
206 |
+
"BROWN/CF/CF03.MRG",
|
207 |
+
"BROWN/CF/CF04.MRG",
|
208 |
+
],
|
209 |
+
)
|
210 |
+
|
211 |
+
def test_words(self):
|
212 |
+
self.assertEqual(
|
213 |
+
ptb.words("WSJ/00/WSJ_0003.MRG")[:7],
|
214 |
+
["A", "form", "of", "asbestos", "once", "used", "*"],
|
215 |
+
)
|
216 |
+
|
217 |
+
def test_tagged_words(self):
|
218 |
+
self.assertEqual(
|
219 |
+
ptb.tagged_words("WSJ/00/WSJ_0003.MRG")[:3],
|
220 |
+
[("A", "DT"), ("form", "NN"), ("of", "IN")],
|
221 |
+
)
|
222 |
+
|
223 |
+
def test_categories(self):
|
224 |
+
self.assertEqual(
|
225 |
+
ptb.categories(),
|
226 |
+
[
|
227 |
+
"adventure",
|
228 |
+
"belles_lettres",
|
229 |
+
"fiction",
|
230 |
+
"humor",
|
231 |
+
"lore",
|
232 |
+
"mystery",
|
233 |
+
"news",
|
234 |
+
"romance",
|
235 |
+
"science_fiction",
|
236 |
+
],
|
237 |
+
)
|
238 |
+
|
239 |
+
def test_news_fileids(self):
|
240 |
+
self.assertEqual(
|
241 |
+
ptb.fileids("news")[:3],
|
242 |
+
["WSJ/00/WSJ_0001.MRG", "WSJ/00/WSJ_0002.MRG", "WSJ/00/WSJ_0003.MRG"],
|
243 |
+
)
|
244 |
+
|
245 |
+
def test_category_words(self):
|
246 |
+
self.assertEqual(
|
247 |
+
ptb.words(categories=["humor", "fiction"])[:6],
|
248 |
+
["Thirty-three", "Scotty", "did", "not", "go", "back"],
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
@pytest.mark.skip("Skipping test for mwa_ppdb.")
|
253 |
+
class TestMWAPPDB(unittest.TestCase):
|
254 |
+
def test_fileids(self):
|
255 |
+
self.assertEqual(
|
256 |
+
mwa_ppdb.fileids(), ["ppdb-1.0-xxxl-lexical.extended.synonyms.uniquepairs"]
|
257 |
+
)
|
258 |
+
|
259 |
+
def test_entries(self):
|
260 |
+
self.assertEqual(
|
261 |
+
mwa_ppdb.entries()[:10],
|
262 |
+
[
|
263 |
+
("10/17/01", "17/10/2001"),
|
264 |
+
("102,70", "102.70"),
|
265 |
+
("13,53", "13.53"),
|
266 |
+
("3.2.5.3.2.1", "3.2.5.3.2.1."),
|
267 |
+
("53,76", "53.76"),
|
268 |
+
("6.9.5", "6.9.5."),
|
269 |
+
("7.7.6.3", "7.7.6.3."),
|
270 |
+
("76,20", "76.20"),
|
271 |
+
("79,85", "79.85"),
|
272 |
+
("93,65", "93.65"),
|
273 |
+
],
|
274 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_data.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import nltk.data
|
4 |
+
|
5 |
+
|
6 |
+
def test_find_raises_exception():
|
7 |
+
with pytest.raises(LookupError):
|
8 |
+
nltk.data.find("no_such_resource/foo")
|
9 |
+
|
10 |
+
|
11 |
+
def test_find_raises_exception_with_full_resource_name():
|
12 |
+
no_such_thing = "no_such_thing/bar"
|
13 |
+
with pytest.raises(LookupError) as exc:
|
14 |
+
nltk.data.find(no_such_thing)
|
15 |
+
assert no_such_thing in str(exc)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_disagreement.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from nltk.metrics.agreement import AnnotationTask
|
4 |
+
|
5 |
+
|
6 |
+
class TestDisagreement(unittest.TestCase):
|
7 |
+
|
8 |
+
"""
|
9 |
+
Class containing unit tests for nltk.metrics.agreement.Disagreement.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def test_easy(self):
|
13 |
+
"""
|
14 |
+
Simple test, based on
|
15 |
+
https://github.com/foolswood/krippendorffs_alpha/raw/master/krippendorff.pdf.
|
16 |
+
"""
|
17 |
+
data = [
|
18 |
+
("coder1", "dress1", "YES"),
|
19 |
+
("coder2", "dress1", "NO"),
|
20 |
+
("coder3", "dress1", "NO"),
|
21 |
+
("coder1", "dress2", "YES"),
|
22 |
+
("coder2", "dress2", "NO"),
|
23 |
+
("coder3", "dress3", "NO"),
|
24 |
+
]
|
25 |
+
annotation_task = AnnotationTask(data)
|
26 |
+
self.assertAlmostEqual(annotation_task.alpha(), -0.3333333)
|
27 |
+
|
28 |
+
def test_easy2(self):
|
29 |
+
"""
|
30 |
+
Same simple test with 1 rating removed.
|
31 |
+
Removal of that rating should not matter: K-Apha ignores items with
|
32 |
+
only 1 rating.
|
33 |
+
"""
|
34 |
+
data = [
|
35 |
+
("coder1", "dress1", "YES"),
|
36 |
+
("coder2", "dress1", "NO"),
|
37 |
+
("coder3", "dress1", "NO"),
|
38 |
+
("coder1", "dress2", "YES"),
|
39 |
+
("coder2", "dress2", "NO"),
|
40 |
+
]
|
41 |
+
annotation_task = AnnotationTask(data)
|
42 |
+
self.assertAlmostEqual(annotation_task.alpha(), -0.3333333)
|
43 |
+
|
44 |
+
def test_advanced(self):
|
45 |
+
"""
|
46 |
+
More advanced test, based on
|
47 |
+
http://www.agreestat.com/research_papers/onkrippendorffalpha.pdf
|
48 |
+
"""
|
49 |
+
data = [
|
50 |
+
("A", "1", "1"),
|
51 |
+
("B", "1", "1"),
|
52 |
+
("D", "1", "1"),
|
53 |
+
("A", "2", "2"),
|
54 |
+
("B", "2", "2"),
|
55 |
+
("C", "2", "3"),
|
56 |
+
("D", "2", "2"),
|
57 |
+
("A", "3", "3"),
|
58 |
+
("B", "3", "3"),
|
59 |
+
("C", "3", "3"),
|
60 |
+
("D", "3", "3"),
|
61 |
+
("A", "4", "3"),
|
62 |
+
("B", "4", "3"),
|
63 |
+
("C", "4", "3"),
|
64 |
+
("D", "4", "3"),
|
65 |
+
("A", "5", "2"),
|
66 |
+
("B", "5", "2"),
|
67 |
+
("C", "5", "2"),
|
68 |
+
("D", "5", "2"),
|
69 |
+
("A", "6", "1"),
|
70 |
+
("B", "6", "2"),
|
71 |
+
("C", "6", "3"),
|
72 |
+
("D", "6", "4"),
|
73 |
+
("A", "7", "4"),
|
74 |
+
("B", "7", "4"),
|
75 |
+
("C", "7", "4"),
|
76 |
+
("D", "7", "4"),
|
77 |
+
("A", "8", "1"),
|
78 |
+
("B", "8", "1"),
|
79 |
+
("C", "8", "2"),
|
80 |
+
("D", "8", "1"),
|
81 |
+
("A", "9", "2"),
|
82 |
+
("B", "9", "2"),
|
83 |
+
("C", "9", "2"),
|
84 |
+
("D", "9", "2"),
|
85 |
+
("B", "10", "5"),
|
86 |
+
("C", "10", "5"),
|
87 |
+
("D", "10", "5"),
|
88 |
+
("C", "11", "1"),
|
89 |
+
("D", "11", "1"),
|
90 |
+
("C", "12", "3"),
|
91 |
+
]
|
92 |
+
annotation_task = AnnotationTask(data)
|
93 |
+
self.assertAlmostEqual(annotation_task.alpha(), 0.743421052632)
|
94 |
+
|
95 |
+
def test_advanced2(self):
|
96 |
+
"""
|
97 |
+
Same more advanced example, but with 1 rating removed.
|
98 |
+
Again, removal of that 1 rating should not matter.
|
99 |
+
"""
|
100 |
+
data = [
|
101 |
+
("A", "1", "1"),
|
102 |
+
("B", "1", "1"),
|
103 |
+
("D", "1", "1"),
|
104 |
+
("A", "2", "2"),
|
105 |
+
("B", "2", "2"),
|
106 |
+
("C", "2", "3"),
|
107 |
+
("D", "2", "2"),
|
108 |
+
("A", "3", "3"),
|
109 |
+
("B", "3", "3"),
|
110 |
+
("C", "3", "3"),
|
111 |
+
("D", "3", "3"),
|
112 |
+
("A", "4", "3"),
|
113 |
+
("B", "4", "3"),
|
114 |
+
("C", "4", "3"),
|
115 |
+
("D", "4", "3"),
|
116 |
+
("A", "5", "2"),
|
117 |
+
("B", "5", "2"),
|
118 |
+
("C", "5", "2"),
|
119 |
+
("D", "5", "2"),
|
120 |
+
("A", "6", "1"),
|
121 |
+
("B", "6", "2"),
|
122 |
+
("C", "6", "3"),
|
123 |
+
("D", "6", "4"),
|
124 |
+
("A", "7", "4"),
|
125 |
+
("B", "7", "4"),
|
126 |
+
("C", "7", "4"),
|
127 |
+
("D", "7", "4"),
|
128 |
+
("A", "8", "1"),
|
129 |
+
("B", "8", "1"),
|
130 |
+
("C", "8", "2"),
|
131 |
+
("D", "8", "1"),
|
132 |
+
("A", "9", "2"),
|
133 |
+
("B", "9", "2"),
|
134 |
+
("C", "9", "2"),
|
135 |
+
("D", "9", "2"),
|
136 |
+
("B", "10", "5"),
|
137 |
+
("C", "10", "5"),
|
138 |
+
("D", "10", "5"),
|
139 |
+
("C", "11", "1"),
|
140 |
+
("D", "11", "1"),
|
141 |
+
("C", "12", "3"),
|
142 |
+
]
|
143 |
+
annotation_task = AnnotationTask(data)
|
144 |
+
self.assertAlmostEqual(annotation_task.alpha(), 0.743421052632)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_distance.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from nltk.metrics.distance import edit_distance
|
6 |
+
|
7 |
+
|
8 |
+
class TestEditDistance:
|
9 |
+
@pytest.mark.parametrize(
|
10 |
+
"left,right,substitution_cost,expecteds",
|
11 |
+
[
|
12 |
+
# Allowing transpositions reduces the number of edits required.
|
13 |
+
# with transpositions:
|
14 |
+
# e.g. "abc" -T-> "cba" -D-> "ca": 2 steps
|
15 |
+
#
|
16 |
+
# without transpositions:
|
17 |
+
# e.g. "abc" -D-> "ab" -D-> "a" -I-> "ca": 3 steps
|
18 |
+
("abc", "ca", 1, (2, 3)),
|
19 |
+
("abc", "ca", 5, (2, 3)), # Doesn't *require* substitutions
|
20 |
+
# Note, a substition_cost of higher than 2 doesn't make much
|
21 |
+
# sense, as a deletion + insertion is identical, and always
|
22 |
+
# costs 2.
|
23 |
+
#
|
24 |
+
#
|
25 |
+
# Transpositions don't always reduce the number of edits required:
|
26 |
+
# with or without transpositions:
|
27 |
+
# e.g. "wants" -D-> "wats" -D-> "was" -I-> "wasp": 3 steps
|
28 |
+
("wants", "wasp", 1, (3, 3)),
|
29 |
+
("wants", "wasp", 5, (3, 3)), # Doesn't *require* substitutions
|
30 |
+
#
|
31 |
+
#
|
32 |
+
# Ought to have the same results with and without transpositions
|
33 |
+
# with or without transpositions:
|
34 |
+
# e.g. "rain" -S-> "sain" -S-> "shin" -I-> "shine": 3 steps
|
35 |
+
# (but cost 5 if substitution_cost=2)
|
36 |
+
("rain", "shine", 1, (3, 3)),
|
37 |
+
("rain", "shine", 2, (5, 5)), # Does *require* substitutions
|
38 |
+
#
|
39 |
+
#
|
40 |
+
# Several potentially interesting typos
|
41 |
+
# with transpositions:
|
42 |
+
# e.g. "acbdef" -T-> "abcdef": 1 step
|
43 |
+
#
|
44 |
+
# without transpositions:
|
45 |
+
# e.g. "acbdef" -D-> "abdef" -I-> "abcdef": 2 steps
|
46 |
+
("acbdef", "abcdef", 1, (1, 2)),
|
47 |
+
("acbdef", "abcdef", 2, (1, 2)), # Doesn't *require* substitutions
|
48 |
+
#
|
49 |
+
#
|
50 |
+
# with transpositions:
|
51 |
+
# e.g. "lnaguaeg" -T-> "languaeg" -T-> "language": 2 steps
|
52 |
+
#
|
53 |
+
# without transpositions:
|
54 |
+
# e.g. "lnaguaeg" -D-> "laguaeg" -I-> "languaeg" -D-> "languag" -I-> "language": 4 steps
|
55 |
+
("lnaguaeg", "language", 1, (2, 4)),
|
56 |
+
("lnaguaeg", "language", 2, (2, 4)), # Doesn't *require* substitutions
|
57 |
+
#
|
58 |
+
#
|
59 |
+
# with transpositions:
|
60 |
+
# e.g. "lnaugage" -T-> "lanugage" -T-> "language": 2 steps
|
61 |
+
#
|
62 |
+
# without transpositions:
|
63 |
+
# e.g. "lnaugage" -S-> "lnangage" -D-> "langage" -I-> "language": 3 steps
|
64 |
+
# (but one substitution, so a cost of 4 if substition_cost = 2)
|
65 |
+
("lnaugage", "language", 1, (2, 3)),
|
66 |
+
("lnaugage", "language", 2, (2, 4)),
|
67 |
+
# Does *require* substitutions if no transpositions
|
68 |
+
#
|
69 |
+
#
|
70 |
+
# with transpositions:
|
71 |
+
# e.g. "lngauage" -T-> "lnaguage" -T-> "language": 2 steps
|
72 |
+
# without transpositions:
|
73 |
+
# e.g. "lngauage" -I-> "lanaguage" -D-> "language": 2 steps
|
74 |
+
("lngauage", "language", 1, (2, 2)),
|
75 |
+
("lngauage", "language", 2, (2, 2)), # Doesn't *require* substitutions
|
76 |
+
#
|
77 |
+
#
|
78 |
+
# with or without transpositions:
|
79 |
+
# e.g. "wants" -S-> "sants" -S-> "swnts" -S-> "swits" -S-> "swims" -D-> "swim": 5 steps
|
80 |
+
#
|
81 |
+
# with substitution_cost=2 and transpositions:
|
82 |
+
# e.g. "wants" -T-> "santw" -D-> "sntw" -D-> "stw" -D-> "sw"
|
83 |
+
# -I-> "swi" -I-> "swim": 6 steps
|
84 |
+
#
|
85 |
+
# with substitution_cost=2 and no transpositions:
|
86 |
+
# e.g. "wants" -I-> "swants" -D-> "swant" -D-> "swan" -D-> "swa" -D-> "sw"
|
87 |
+
# -I-> "swi" -I-> "swim": 7 steps
|
88 |
+
("wants", "swim", 1, (5, 5)),
|
89 |
+
("wants", "swim", 2, (6, 7)),
|
90 |
+
#
|
91 |
+
#
|
92 |
+
# with or without transpositions:
|
93 |
+
# e.g. "kitten" -S-> "sitten" -s-> "sittin" -I-> "sitting": 3 steps
|
94 |
+
# (but cost 5 if substitution_cost=2)
|
95 |
+
("kitten", "sitting", 1, (3, 3)),
|
96 |
+
("kitten", "sitting", 2, (5, 5)),
|
97 |
+
#
|
98 |
+
# duplicated letter
|
99 |
+
# e.g. "duplicated" -D-> "duplicated"
|
100 |
+
("duplicated", "duuplicated", 1, (1, 1)),
|
101 |
+
("duplicated", "duuplicated", 2, (1, 1)),
|
102 |
+
("very duplicated", "very duuplicateed", 2, (2, 2)),
|
103 |
+
],
|
104 |
+
)
|
105 |
+
def test_with_transpositions(
|
106 |
+
self, left: str, right: str, substitution_cost: int, expecteds: Tuple[int, int]
|
107 |
+
):
|
108 |
+
"""
|
109 |
+
Test `edit_distance` between two strings, given some `substitution_cost`,
|
110 |
+
and whether transpositions are allowed.
|
111 |
+
|
112 |
+
:param str left: First input string to `edit_distance`.
|
113 |
+
:param str right: Second input string to `edit_distance`.
|
114 |
+
:param int substitution_cost: The cost of a substitution action in `edit_distance`.
|
115 |
+
:param Tuple[int, int] expecteds: A tuple of expected outputs, such that `expecteds[0]` is
|
116 |
+
the expected output with `transpositions=True`, and `expecteds[1]` is
|
117 |
+
the expected output with `transpositions=False`.
|
118 |
+
"""
|
119 |
+
# Test the input strings in both orderings
|
120 |
+
for s1, s2 in ((left, right), (right, left)):
|
121 |
+
# zip with [True, False] to get the transpositions value
|
122 |
+
for expected, transpositions in zip(expecteds, [True, False]):
|
123 |
+
predicted = edit_distance(
|
124 |
+
s1,
|
125 |
+
s2,
|
126 |
+
substitution_cost=substitution_cost,
|
127 |
+
transpositions=transpositions,
|
128 |
+
)
|
129 |
+
assert predicted == expected
|