diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/curve.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/curve.py
new file mode 100644
index 0000000000000000000000000000000000000000..c074f22cad79b1261ad44be4ccface972cdd3b82
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/curve.py
@@ -0,0 +1,424 @@
+"""Curves in 2-dimensional Euclidean space.
+
+Contains
+========
+Curve
+
+"""
+
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.core import diff
+from sympy.core.containers import Tuple
+from sympy.core.symbol import _symbol
+from sympy.geometry.entity import GeometryEntity, GeometrySet
+from sympy.geometry.point import Point
+from sympy.integrals import integrate
+from sympy.matrices import Matrix, rot_axis3
+from sympy.utilities.iterables import is_sequence
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+
+class Curve(GeometrySet):
+ """A curve in space.
+
+ A curve is defined by parametric functions for the coordinates, a
+ parameter and the lower and upper bounds for the parameter value.
+
+ Parameters
+ ==========
+
+ function : list of functions
+ limits : 3-tuple
+ Function parameter and lower and upper bounds.
+
+ Attributes
+ ==========
+
+ functions
+ parameter
+ limits
+
+ Raises
+ ======
+
+ ValueError
+ When `functions` are specified incorrectly.
+ When `limits` are specified incorrectly.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve, sin, cos, interpolate
+ >>> from sympy.abc import t, a
+ >>> C = Curve((sin(t), cos(t)), (t, 0, 2))
+ >>> C.functions
+ (sin(t), cos(t))
+ >>> C.limits
+ (t, 0, 2)
+ >>> C.parameter
+ t
+ >>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C
+ Curve((t, t**2), (t, 0, 1))
+ >>> C.subs(t, 4)
+ Point2D(4, 16)
+ >>> C.arbitrary_point(a)
+ Point2D(a, a**2)
+
+ See Also
+ ========
+
+ sympy.core.function.Function
+ sympy.polys.polyfuncs.interpolate
+
+ """
+
+ def __new__(cls, function, limits):
+ if not is_sequence(function) or len(function) != 2:
+ raise ValueError("Function argument should be (x(t), y(t)) "
+ "but got %s" % str(function))
+ if not is_sequence(limits) or len(limits) != 3:
+ raise ValueError("Limit argument should be (t, tmin, tmax) "
+ "but got %s" % str(limits))
+
+ return GeometryEntity.__new__(cls, Tuple(*function), Tuple(*limits))
+
+ def __call__(self, f):
+ return self.subs(self.parameter, f)
+
+ def _eval_subs(self, old, new):
+ if old == self.parameter:
+ return Point(*[f.subs(old, new) for f in self.functions])
+
+ def _eval_evalf(self, prec=15, **options):
+ f, (t, a, b) = self.args
+ dps = prec_to_dps(prec)
+ f = tuple([i.evalf(n=dps, **options) for i in f])
+ a, b = [i.evalf(n=dps, **options) for i in (a, b)]
+ return self.func(f, (t, a, b))
+
+ def arbitrary_point(self, parameter='t'):
+ """A parameterized point on the curve.
+
+ Parameters
+ ==========
+
+ parameter : str or Symbol, optional
+ Default value is 't'.
+ The Curve's parameter is selected with None or self.parameter
+ otherwise the provided symbol is used.
+
+ Returns
+ =======
+
+ Point :
+ Returns a point in parametric form.
+
+ Raises
+ ======
+
+ ValueError
+ When `parameter` already appears in the functions.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve, Symbol
+ >>> from sympy.abc import s
+ >>> C = Curve([2*s, s**2], (s, 0, 2))
+ >>> C.arbitrary_point()
+ Point2D(2*t, t**2)
+ >>> C.arbitrary_point(C.parameter)
+ Point2D(2*s, s**2)
+ >>> C.arbitrary_point(None)
+ Point2D(2*s, s**2)
+ >>> C.arbitrary_point(Symbol('a'))
+ Point2D(2*a, a**2)
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ """
+ if parameter is None:
+ return Point(*self.functions)
+
+ tnew = _symbol(parameter, self.parameter, real=True)
+ t = self.parameter
+ if (tnew.name != t.name and
+ tnew.name in (f.name for f in self.free_symbols)):
+ raise ValueError('Symbol %s already appears in object '
+ 'and cannot be used as a parameter.' % tnew.name)
+ return Point(*[w.subs(t, tnew) for w in self.functions])
+
+ @property
+ def free_symbols(self):
+ """Return a set of symbols other than the bound symbols used to
+ parametrically define the Curve.
+
+ Returns
+ =======
+
+ set :
+ Set of all non-parameterized symbols.
+
+ Examples
+ ========
+
+ >>> from sympy.abc import t, a
+ >>> from sympy import Curve
+ >>> Curve((t, t**2), (t, 0, 2)).free_symbols
+ set()
+ >>> Curve((t, t**2), (t, a, 2)).free_symbols
+ {a}
+
+ """
+ free = set()
+ for a in self.functions + self.limits[1:]:
+ free |= a.free_symbols
+ free = free.difference({self.parameter})
+ return free
+
+ @property
+ def ambient_dimension(self):
+ """The dimension of the curve.
+
+ Returns
+ =======
+
+ int :
+ the dimension of curve.
+
+ Examples
+ ========
+
+ >>> from sympy.abc import t
+ >>> from sympy import Curve
+ >>> C = Curve((t, t**2), (t, 0, 2))
+ >>> C.ambient_dimension
+ 2
+
+ """
+
+ return len(self.args[0])
+
+ @property
+ def functions(self):
+ """The functions specifying the curve.
+
+ Returns
+ =======
+
+ functions :
+ list of parameterized coordinate functions.
+
+ Examples
+ ========
+
+ >>> from sympy.abc import t
+ >>> from sympy import Curve
+ >>> C = Curve((t, t**2), (t, 0, 2))
+ >>> C.functions
+ (t, t**2)
+
+ See Also
+ ========
+
+ parameter
+
+ """
+ return self.args[0]
+
+ @property
+ def limits(self):
+ """The limits for the curve.
+
+ Returns
+ =======
+
+ limits : tuple
+ Contains parameter and lower and upper limits.
+
+ Examples
+ ========
+
+ >>> from sympy.abc import t
+ >>> from sympy import Curve
+ >>> C = Curve([t, t**3], (t, -2, 2))
+ >>> C.limits
+ (t, -2, 2)
+
+ See Also
+ ========
+
+ plot_interval
+
+ """
+ return self.args[1]
+
+ @property
+ def parameter(self):
+ """The curve function variable.
+
+ Returns
+ =======
+
+ Symbol :
+ returns a bound symbol.
+
+ Examples
+ ========
+
+ >>> from sympy.abc import t
+ >>> from sympy import Curve
+ >>> C = Curve([t, t**2], (t, 0, 2))
+ >>> C.parameter
+ t
+
+ See Also
+ ========
+
+ functions
+
+ """
+ return self.args[1][0]
+
+ @property
+ def length(self):
+ """The curve length.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve
+ >>> from sympy.abc import t
+ >>> Curve((t, t), (t, 0, 1)).length
+ sqrt(2)
+
+ """
+ integrand = sqrt(sum(diff(func, self.limits[0])**2 for func in self.functions))
+ return integrate(integrand, self.limits)
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of the curve.
+
+ Parameters
+ ==========
+
+ parameter : str or Symbol, optional
+ Default value is 't';
+ otherwise the provided symbol is used.
+
+ Returns
+ =======
+
+ List :
+ the plot interval as below:
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Curve, sin
+ >>> from sympy.abc import x, s
+ >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
+ [t, 1, 2]
+ >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
+ [s, 1, 2]
+
+ See Also
+ ========
+
+ limits : Returns limits of the parameter interval
+
+ """
+ t = _symbol(parameter, self.parameter, real=True)
+ return [t] + list(self.limits[1:])
+
+ def rotate(self, angle=0, pt=None):
+ """This function is used to rotate a curve along given point ``pt`` at given angle(in radian).
+
+ Parameters
+ ==========
+
+ angle :
+ the angle at which the curve will be rotated(in radian) in counterclockwise direction.
+ default value of angle is 0.
+
+ pt : Point
+ the point along which the curve will be rotated.
+ If no point given, the curve will be rotated around origin.
+
+ Returns
+ =======
+
+ Curve :
+ returns a curve rotated at given angle along given point.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve, pi
+ >>> from sympy.abc import x
+ >>> Curve((x, x), (x, 0, 1)).rotate(pi/2)
+ Curve((-x, x), (x, 0, 1))
+
+ """
+ if pt:
+ pt = -Point(pt, dim=2)
+ else:
+ pt = Point(0,0)
+ rv = self.translate(*pt.args)
+ f = list(rv.functions)
+ f.append(0)
+ f = Matrix(1, 3, f)
+ f *= rot_axis3(angle)
+ rv = self.func(f[0, :2].tolist()[0], self.limits)
+ pt = -pt
+ return rv.translate(*pt.args)
+
+ def scale(self, x=1, y=1, pt=None):
+ """Override GeometryEntity.scale since Curve is not made up of Points.
+
+ Returns
+ =======
+
+ Curve :
+ returns scaled curve.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve
+ >>> from sympy.abc import x
+ >>> Curve((x, x), (x, 0, 1)).scale(2)
+ Curve((2*x, x), (x, 0, 1))
+
+ """
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ fx, fy = self.functions
+ return self.func((fx*x, fy*y), self.limits)
+
+ def translate(self, x=0, y=0):
+ """Translate the Curve by (x, y).
+
+ Returns
+ =======
+
+ Curve :
+ returns a translated curve.
+
+ Examples
+ ========
+
+ >>> from sympy import Curve
+ >>> from sympy.abc import x
+ >>> Curve((x, x), (x, 0, 1)).translate(1, 2)
+ Curve((x + 1, x + 2), (x, 0, 1))
+
+ """
+ fx, fy = self.functions
+ return self.func((fx + x, fy + y), self.limits)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/line.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/line.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c60a14998c091640f513e061ea971c47533280d
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/line.py
@@ -0,0 +1,2803 @@
+"""Line-like geometrical entities.
+
+Contains
+========
+LinearEntity
+Line
+Ray
+Segment
+LinearEntity2D
+Line2D
+Ray2D
+Segment2D
+LinearEntity3D
+Line3D
+Ray3D
+Segment3D
+
+"""
+
+from sympy.core.containers import Tuple
+from sympy.core.evalf import N
+from sympy.core.expr import Expr
+from sympy.core.numbers import Rational, oo, Float
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.sorting import ordered
+from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
+from sympy.core.sympify import sympify
+from sympy.functions.elementary.piecewise import Piecewise
+from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
+from .entity import GeometryEntity, GeometrySet
+from .exceptions import GeometryError
+from .point import Point, Point3D
+from .util import find, intersection
+from sympy.logic.boolalg import And
+from sympy.matrices import Matrix
+from sympy.sets.sets import Intersection
+from sympy.simplify.simplify import simplify
+from sympy.solvers.solvers import solve
+from sympy.solvers.solveset import linear_coeffs
+from sympy.utilities.misc import Undecidable, filldedent
+
+
+import random
+
+
+t, u = [Dummy('line_dummy') for i in range(2)]
+
+
+class LinearEntity(GeometrySet):
+ """A base class for all linear entities (Line, Ray and Segment)
+ in n-dimensional Euclidean space.
+
+ Attributes
+ ==========
+
+ ambient_dimension
+ direction
+ length
+ p1
+ p2
+ points
+
+ Notes
+ =====
+
+ This is an abstract class and is not meant to be instantiated.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity
+
+ """
+ def __new__(cls, p1, p2=None, **kwargs):
+ p1, p2 = Point._normalize_dimension(p1, p2)
+ if p1 == p2:
+ # sometimes we return a single point if we are not given two unique
+ # points. This is done in the specific subclass
+ raise ValueError(
+ "%s.__new__ requires two unique Points." % cls.__name__)
+ if len(p1) != len(p2):
+ raise ValueError(
+ "%s.__new__ requires two Points of equal dimension." % cls.__name__)
+
+ return GeometryEntity.__new__(cls, p1, p2, **kwargs)
+
+ def __contains__(self, other):
+ """Return a definitive answer or else raise an error if it cannot
+ be determined that other is on the boundaries of self."""
+ result = self.contains(other)
+
+ if result is not None:
+ return result
+ else:
+ raise Undecidable(
+ "Cannot decide whether '%s' contains '%s'" % (self, other))
+
+ def _span_test(self, other):
+ """Test whether the point `other` lies in the positive span of `self`.
+ A point x is 'in front' of a point y if x.dot(y) >= 0. Return
+ -1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
+ and 1 if `other` is in front of `self.p1`."""
+ if self.p1 == other:
+ return 0
+
+ rel_pos = other - self.p1
+ d = self.direction
+ if d.dot(rel_pos) > 0:
+ return 1
+ return -1
+
+ @property
+ def ambient_dimension(self):
+ """A property method that returns the dimension of LinearEntity
+ object.
+
+ Parameters
+ ==========
+
+ p1 : LinearEntity
+
+ Returns
+ =======
+
+ dimension : integer
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
+ >>> l1 = Line(p1, p2)
+ >>> l1.ambient_dimension
+ 2
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
+ >>> l1 = Line(p1, p2)
+ >>> l1.ambient_dimension
+ 3
+
+ """
+ return len(self.p1)
+
+ def angle_between(l1, l2):
+ """Return the non-reflex angle formed by rays emanating from
+ the origin with directions the same as the direction vectors
+ of the linear entities.
+
+ Parameters
+ ==========
+
+ l1 : LinearEntity
+ l2 : LinearEntity
+
+ Returns
+ =======
+
+ angle : angle in radians
+
+ Notes
+ =====
+
+ From the dot product of vectors v1 and v2 it is known that:
+
+ ``dot(v1, v2) = |v1|*|v2|*cos(A)``
+
+ where A is the angle formed between the two vectors. We can
+ get the directional vectors of the two lines and readily
+ find the angle between the two using the above formula.
+
+ See Also
+ ========
+
+ is_perpendicular, Ray2D.closing_angle
+
+ Examples
+ ========
+
+ >>> from sympy import Line
+ >>> e = Line((0, 0), (1, 0))
+ >>> ne = Line((0, 0), (1, 1))
+ >>> sw = Line((1, 1), (0, 0))
+ >>> ne.angle_between(e)
+ pi/4
+ >>> sw.angle_between(e)
+ 3*pi/4
+
+ To obtain the non-obtuse angle at the intersection of lines, use
+ the ``smallest_angle_between`` method:
+
+ >>> sw.smallest_angle_between(e)
+ pi/4
+
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
+ >>> l1.angle_between(l2)
+ acos(-sqrt(2)/3)
+ >>> l1.smallest_angle_between(l2)
+ acos(sqrt(2)/3)
+ """
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
+ raise TypeError('Must pass only LinearEntity objects')
+
+ v1, v2 = l1.direction, l2.direction
+ return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
+
+ def smallest_angle_between(l1, l2):
+ """Return the smallest angle formed at the intersection of the
+ lines containing the linear entities.
+
+ Parameters
+ ==========
+
+ l1 : LinearEntity
+ l2 : LinearEntity
+
+ Returns
+ =======
+
+ angle : angle in radians
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
+ >>> l1, l2 = Line(p1, p2), Line(p1, p3)
+ >>> l1.smallest_angle_between(l2)
+ pi/4
+
+ See Also
+ ========
+
+ angle_between, is_perpendicular, Ray2D.closing_angle
+ """
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
+ raise TypeError('Must pass only LinearEntity objects')
+
+ v1, v2 = l1.direction, l2.direction
+ return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
+
+ def arbitrary_point(self, parameter='t'):
+ """A parameterized point on the Line.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ The name of the parameter which will be used for the parametric
+ point. The default value is 't'. When this parameter is 0, the
+ first point used to define the line will be returned, and when
+ it is 1 the second point will be returned.
+
+ Returns
+ =======
+
+ point : Point
+
+ Raises
+ ======
+
+ ValueError
+ When ``parameter`` already appears in the Line's definition.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(1, 0), Point(5, 3)
+ >>> l1 = Line(p1, p2)
+ >>> l1.arbitrary_point()
+ Point2D(4*t + 1, 3*t)
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
+ >>> l1 = Line3D(p1, p2)
+ >>> l1.arbitrary_point()
+ Point3D(4*t + 1, 3*t, t)
+
+ """
+ t = _symbol(parameter, real=True)
+ if t.name in (f.name for f in self.free_symbols):
+ raise ValueError(filldedent('''
+ Symbol %s already appears in object
+ and cannot be used as a parameter.
+ ''' % t.name))
+ # multiply on the right so the variable gets
+ # combined with the coordinates of the point
+ return self.p1 + (self.p2 - self.p1)*t
+
+ @staticmethod
+ def are_concurrent(*lines):
+ """Is a sequence of linear entities concurrent?
+
+ Two or more linear entities are concurrent if they all
+ intersect at a single point.
+
+ Parameters
+ ==========
+
+ lines
+ A sequence of linear entities.
+
+ Returns
+ =======
+
+ True : if the set of linear entities intersect in one point
+ False : otherwise.
+
+ See Also
+ ========
+
+ sympy.geometry.util.intersection
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
+ >>> p3, p4 = Point(-2, -2), Point(0, 2)
+ >>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
+ >>> Line.are_concurrent(l1, l2, l3)
+ True
+ >>> l4 = Line(p2, p3)
+ >>> Line.are_concurrent(l2, l3, l4)
+ False
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
+ >>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
+ >>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
+ >>> Line3D.are_concurrent(l1, l2, l3)
+ True
+ >>> l4 = Line3D(p2, p3)
+ >>> Line3D.are_concurrent(l2, l3, l4)
+ False
+
+ """
+ common_points = Intersection(*lines)
+ if common_points.is_FiniteSet and len(common_points) == 1:
+ return True
+ return False
+
+ def contains(self, other):
+ """Subclasses should implement this method and should return
+ True if other is on the boundaries of self;
+ False if not on the boundaries of self;
+ None if a determination cannot be made."""
+ raise NotImplementedError()
+
+ @property
+ def direction(self):
+ """The direction vector of the LinearEntity.
+
+ Returns
+ =======
+
+ p : a Point; the ray from the origin to this point is the
+ direction of `self`
+
+ Examples
+ ========
+
+ >>> from sympy import Line
+ >>> a, b = (1, 1), (1, 3)
+ >>> Line(a, b).direction
+ Point2D(0, 2)
+ >>> Line(b, a).direction
+ Point2D(0, -2)
+
+ This can be reported so the distance from the origin is 1:
+
+ >>> Line(b, a).direction.unit
+ Point2D(0, -1)
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.unit
+
+ """
+ return self.p2 - self.p1
+
+ def intersection(self, other):
+ """The intersection with another geometrical entity.
+
+ Parameters
+ ==========
+
+ o : Point or LinearEntity
+
+ Returns
+ =======
+
+ intersection : list of geometrical entities
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line, Segment
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
+ >>> l1 = Line(p1, p2)
+ >>> l1.intersection(p3)
+ [Point2D(7, 7)]
+ >>> p4, p5 = Point(5, 0), Point(0, 3)
+ >>> l2 = Line(p4, p5)
+ >>> l1.intersection(l2)
+ [Point2D(15/8, 15/8)]
+ >>> p6, p7 = Point(0, 5), Point(2, 6)
+ >>> s1 = Segment(p6, p7)
+ >>> l1.intersection(s1)
+ []
+ >>> from sympy import Point3D, Line3D, Segment3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
+ >>> l1 = Line3D(p1, p2)
+ >>> l1.intersection(p3)
+ [Point3D(7, 7, 7)]
+ >>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
+ >>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
+ >>> l1.intersection(l2)
+ [Point3D(1, 1, -3)]
+ >>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
+ >>> s1 = Segment3D(p6, p7)
+ >>> l1.intersection(s1)
+ []
+
+ """
+ def intersect_parallel_rays(ray1, ray2):
+ if ray1.direction.dot(ray2.direction) > 0:
+ # rays point in the same direction
+ # so return the one that is "in front"
+ return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
+ else:
+ # rays point in opposite directions
+ st = ray1._span_test(ray2.p1)
+ if st < 0:
+ return []
+ elif st == 0:
+ return [ray2.p1]
+ return [Segment(ray1.p1, ray2.p1)]
+
+ def intersect_parallel_ray_and_segment(ray, seg):
+ st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
+ if st1 < 0 and st2 < 0:
+ return []
+ elif st1 >= 0 and st2 >= 0:
+ return [seg]
+ elif st1 >= 0: # st2 < 0:
+ return [Segment(ray.p1, seg.p1)]
+ else: # st1 < 0 and st2 >= 0:
+ return [Segment(ray.p1, seg.p2)]
+
+ def intersect_parallel_segments(seg1, seg2):
+ if seg1.contains(seg2):
+ return [seg2]
+ if seg2.contains(seg1):
+ return [seg1]
+
+ # direct the segments so they're oriented the same way
+ if seg1.direction.dot(seg2.direction) < 0:
+ seg2 = Segment(seg2.p2, seg2.p1)
+ # order the segments so seg1 is "behind" seg2
+ if seg1._span_test(seg2.p1) < 0:
+ seg1, seg2 = seg2, seg1
+ if seg2._span_test(seg1.p2) < 0:
+ return []
+ return [Segment(seg2.p1, seg1.p2)]
+
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if other.is_Point:
+ if self.contains(other):
+ return [other]
+ else:
+ return []
+ elif isinstance(other, LinearEntity):
+ # break into cases based on whether
+ # the lines are parallel, non-parallel intersecting, or skew
+ pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
+ rank = Point.affine_rank(*pts)
+
+ if rank == 1:
+ # we're collinear
+ if isinstance(self, Line):
+ return [other]
+ if isinstance(other, Line):
+ return [self]
+
+ if isinstance(self, Ray) and isinstance(other, Ray):
+ return intersect_parallel_rays(self, other)
+ if isinstance(self, Ray) and isinstance(other, Segment):
+ return intersect_parallel_ray_and_segment(self, other)
+ if isinstance(self, Segment) and isinstance(other, Ray):
+ return intersect_parallel_ray_and_segment(other, self)
+ if isinstance(self, Segment) and isinstance(other, Segment):
+ return intersect_parallel_segments(self, other)
+ elif rank == 2:
+ # we're in the same plane
+ l1 = Line(*pts[:2])
+ l2 = Line(*pts[2:])
+
+ # check to see if we're parallel. If we are, we can't
+ # be intersecting, since the collinear case was already
+ # handled
+ if l1.direction.is_scalar_multiple(l2.direction):
+ return []
+
+ # find the intersection as if everything were lines
+ # by solving the equation t*d + p1 == s*d' + p1'
+ m = Matrix([l1.direction, -l2.direction]).transpose()
+ v = Matrix([l2.p1 - l1.p1]).transpose()
+
+ # we cannot use m.solve(v) because that only works for square matrices
+ m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
+ # rank == 2 ensures we have 2 pivots, but let's check anyway
+ if len(pivots) != 2:
+ raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
+ coeff = m_rref[0, 2]
+ line_intersection = l1.direction*coeff + self.p1
+
+ # if both are lines, skip a containment check
+ if isinstance(self, Line) and isinstance(other, Line):
+ return [line_intersection]
+
+ if ((isinstance(self, Line) or
+ self.contains(line_intersection)) and
+ other.contains(line_intersection)):
+ return [line_intersection]
+ if not self.atoms(Float) and not other.atoms(Float):
+ # if it can fail when there are no Floats then
+ # maybe the following parametric check should be
+ # done
+ return []
+ # floats may fail exact containment so check that the
+ # arbitrary points, when equal, both give a
+ # non-negative parameter when the arbitrary point
+ # coordinates are equated
+ tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
+ t, u, dict=True)[0]
+ def ok(p, l):
+ if isinstance(l, Line):
+ # p > -oo
+ return True
+ if isinstance(l, Ray):
+ # p >= 0
+ return p.is_nonnegative
+ if isinstance(l, Segment):
+ # 0 <= p <= 1
+ return p.is_nonnegative and (1 - p).is_nonnegative
+ raise ValueError("unexpected line type")
+ if ok(tu[t], self) and ok(tu[u], other):
+ return [line_intersection]
+ return []
+ else:
+ # we're skew
+ return []
+
+ return other.intersection(self)
+
+ def is_parallel(l1, l2):
+ """Are two linear entities parallel?
+
+ Parameters
+ ==========
+
+ l1 : LinearEntity
+ l2 : LinearEntity
+
+ Returns
+ =======
+
+ True : if l1 and l2 are parallel,
+ False : otherwise.
+
+ See Also
+ ========
+
+ coefficients
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
+ >>> p3, p4 = Point(3, 4), Point(6, 7)
+ >>> l1, l2 = Line(p1, p2), Line(p3, p4)
+ >>> Line.is_parallel(l1, l2)
+ True
+ >>> p5 = Point(6, 6)
+ >>> l3 = Line(p3, p5)
+ >>> Line.is_parallel(l1, l3)
+ False
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
+ >>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
+ >>> Line3D.is_parallel(l1, l2)
+ True
+ >>> p5 = Point3D(6, 6, 6)
+ >>> l3 = Line3D(p3, p5)
+ >>> Line3D.is_parallel(l1, l3)
+ False
+
+ """
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
+ raise TypeError('Must pass only LinearEntity objects')
+
+ return l1.direction.is_scalar_multiple(l2.direction)
+
+ def is_perpendicular(l1, l2):
+ """Are two linear entities perpendicular?
+
+ Parameters
+ ==========
+
+ l1 : LinearEntity
+ l2 : LinearEntity
+
+ Returns
+ =======
+
+ True : if l1 and l2 are perpendicular,
+ False : otherwise.
+
+ See Also
+ ========
+
+ coefficients
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
+ >>> l1, l2 = Line(p1, p2), Line(p1, p3)
+ >>> l1.is_perpendicular(l2)
+ True
+ >>> p4 = Point(5, 3)
+ >>> l3 = Line(p1, p4)
+ >>> l1.is_perpendicular(l3)
+ False
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
+ >>> l1.is_perpendicular(l2)
+ False
+ >>> p4 = Point3D(5, 3, 7)
+ >>> l3 = Line3D(p1, p4)
+ >>> l1.is_perpendicular(l3)
+ False
+
+ """
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
+ raise TypeError('Must pass only LinearEntity objects')
+
+ return S.Zero.equals(l1.direction.dot(l2.direction))
+
+ def is_similar(self, other):
+ """
+ Return True if self and other are contained in the same line.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
+ >>> l1 = Line(p1, p2)
+ >>> l2 = Line(p1, p3)
+ >>> l1.is_similar(l2)
+ True
+ """
+ l = Line(self.p1, self.p2)
+ return l.contains(other)
+
+ @property
+ def length(self):
+ """
+ The length of the line.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
+ >>> l1 = Line(p1, p2)
+ >>> l1.length
+ oo
+ """
+ return S.Infinity
+
+ @property
+ def p1(self):
+ """The first defining point of a linear entity.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> l = Line(p1, p2)
+ >>> l.p1
+ Point2D(0, 0)
+
+ """
+ return self.args[0]
+
+ @property
+ def p2(self):
+ """The second defining point of a linear entity.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> l = Line(p1, p2)
+ >>> l.p2
+ Point2D(5, 3)
+
+ """
+ return self.args[1]
+
+ def parallel_line(self, p):
+ """Create a new Line parallel to this linear entity which passes
+ through the point `p`.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ line : Line
+
+ See Also
+ ========
+
+ is_parallel
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
+ >>> l1 = Line(p1, p2)
+ >>> l2 = l1.parallel_line(p3)
+ >>> p3 in l2
+ True
+ >>> l1.is_parallel(l2)
+ True
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
+ >>> l1 = Line3D(p1, p2)
+ >>> l2 = l1.parallel_line(p3)
+ >>> p3 in l2
+ True
+ >>> l1.is_parallel(l2)
+ True
+
+ """
+ p = Point(p, dim=self.ambient_dimension)
+ return Line(p, p + self.direction)
+
+ def perpendicular_line(self, p):
+ """Create a new Line perpendicular to this linear entity which passes
+ through the point `p`.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ line : Line
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
+ >>> L = Line3D(p1, p2)
+ >>> P = L.perpendicular_line(p3); P
+ Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
+ >>> L.is_perpendicular(P)
+ True
+
+ In 3D the, the first point used to define the line is the point
+ through which the perpendicular was required to pass; the
+ second point is (arbitrarily) contained in the given line:
+
+ >>> P.p2 in L
+ True
+ """
+ p = Point(p, dim=self.ambient_dimension)
+ if p in self:
+ p = p + self.direction.orthogonal_direction
+ return Line(p, self.projection(p))
+
+ def perpendicular_segment(self, p):
+ """Create a perpendicular line segment from `p` to this line.
+
+ The endpoints of the segment are ``p`` and the closest point in
+ the line containing self. (If self is not a line, the point might
+ not be in self.)
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ segment : Segment
+
+ Notes
+ =====
+
+ Returns `p` itself if `p` is on this linear entity.
+
+ See Also
+ ========
+
+ perpendicular_line
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
+ >>> l1 = Line(p1, p2)
+ >>> s1 = l1.perpendicular_segment(p3)
+ >>> l1.is_perpendicular(s1)
+ True
+ >>> p3 in s1
+ True
+ >>> l1.perpendicular_segment(Point(4, 0))
+ Segment2D(Point2D(4, 0), Point2D(2, 2))
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
+ >>> l1 = Line3D(p1, p2)
+ >>> s1 = l1.perpendicular_segment(p3)
+ >>> l1.is_perpendicular(s1)
+ True
+ >>> p3 in s1
+ True
+ >>> l1.perpendicular_segment(Point3D(4, 0, 0))
+ Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
+
+ """
+ p = Point(p, dim=self.ambient_dimension)
+ if p in self:
+ return p
+ l = self.perpendicular_line(p)
+ # The intersection should be unique, so unpack the singleton
+ p2, = Intersection(Line(self.p1, self.p2), l)
+
+ return Segment(p, p2)
+
+ @property
+ def points(self):
+ """The two points used to define this linear entity.
+
+ Returns
+ =======
+
+ points : tuple of Points
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(5, 11)
+ >>> l1 = Line(p1, p2)
+ >>> l1.points
+ (Point2D(0, 0), Point2D(5, 11))
+
+ """
+ return (self.p1, self.p2)
+
+ def projection(self, other):
+ """Project a point, line, ray, or segment onto this linear entity.
+
+ Parameters
+ ==========
+
+ other : Point or LinearEntity (Line, Ray, Segment)
+
+ Returns
+ =======
+
+ projection : Point or LinearEntity (Line, Ray, Segment)
+ The return type matches the type of the parameter ``other``.
+
+ Raises
+ ======
+
+ GeometryError
+ When method is unable to perform projection.
+
+ Notes
+ =====
+
+ A projection involves taking the two points that define
+ the linear entity and projecting those points onto a
+ Line and then reforming the linear entity using these
+ projections.
+ A point P is projected onto a line L by finding the point
+ on L that is closest to P. This point is the intersection
+ of L and the line perpendicular to L that passes through P.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, perpendicular_line
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line, Segment, Rational
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
+ >>> l1 = Line(p1, p2)
+ >>> l1.projection(p3)
+ Point2D(1/4, 1/4)
+ >>> p4, p5 = Point(10, 0), Point(12, 1)
+ >>> s1 = Segment(p4, p5)
+ >>> l1.projection(s1)
+ Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
+ >>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
+ >>> l1 = Line(p1, p2)
+ >>> l1.projection(p3)
+ Point3D(2/3, 2/3, 5/3)
+ >>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
+ >>> s1 = Segment(p4, p5)
+ >>> l1.projection(s1)
+ Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+
+ def proj_point(p):
+ return Point.project(p - self.p1, self.direction) + self.p1
+
+ if isinstance(other, Point):
+ return proj_point(other)
+ elif isinstance(other, LinearEntity):
+ p1, p2 = proj_point(other.p1), proj_point(other.p2)
+ # test to see if we're degenerate
+ if p1 == p2:
+ return p1
+ projected = other.__class__(p1, p2)
+ projected = Intersection(self, projected)
+ if projected.is_empty:
+ return projected
+ # if we happen to have intersected in only a point, return that
+ if projected.is_FiniteSet and len(projected) == 1:
+ # projected is a set of size 1, so unpack it in `a`
+ a, = projected
+ return a
+ # order args so projection is in the same direction as self
+ if self.direction.dot(projected.direction) < 0:
+ p1, p2 = projected.args
+ projected = projected.func(p2, p1)
+ return projected
+
+ raise GeometryError(
+ "Do not know how to project %s onto %s" % (other, self))
+
+ def random_point(self, seed=None):
+ """A random point on a LinearEntity.
+
+ Returns
+ =======
+
+ point : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line, Ray, Segment
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> line = Line(p1, p2)
+ >>> r = line.random_point(seed=42) # seed value is optional
+ >>> r.n(3)
+ Point2D(-0.72, -0.432)
+ >>> r in line
+ True
+ >>> Ray(p1, p2).random_point(seed=42).n(3)
+ Point2D(0.72, 0.432)
+ >>> Segment(p1, p2).random_point(seed=42).n(3)
+ Point2D(3.2, 1.92)
+
+ """
+ if seed is not None:
+ rng = random.Random(seed)
+ else:
+ rng = random
+ pt = self.arbitrary_point(t)
+ if isinstance(self, Ray):
+ v = abs(rng.gauss(0, 1))
+ elif isinstance(self, Segment):
+ v = rng.random()
+ elif isinstance(self, Line):
+ v = rng.gauss(0, 1)
+ else:
+ raise NotImplementedError('unhandled line type')
+ return pt.subs(t, Rational(v))
+
+ def bisectors(self, other):
+ """Returns the perpendicular lines which pass through the intersections
+ of self and other that are in the same plane.
+
+ Parameters
+ ==========
+
+ line : Line3D
+
+ Returns
+ =======
+
+ list: two Line instances
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D
+ >>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
+ >>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
+ >>> r1.bisectors(r2)
+ [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
+
+ """
+ if not isinstance(other, LinearEntity):
+ raise GeometryError("Expecting LinearEntity, not %s" % other)
+
+ l1, l2 = self, other
+
+ # make sure dimensions match or else a warning will rise from
+ # intersection calculation
+ if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
+ if isinstance(l1, Line2D):
+ l1, l2 = l2, l1
+ _, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
+ _, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
+ l2 = Line(p1, p2)
+
+ point = intersection(l1, l2)
+
+ # Three cases: Lines may intersect in a point, may be equal or may not intersect.
+ if not point:
+ raise GeometryError("The lines do not intersect")
+ else:
+ pt = point[0]
+ if isinstance(pt, Line):
+ # Intersection is a line because both lines are coincident
+ return [self]
+
+
+ d1 = l1.direction.unit
+ d2 = l2.direction.unit
+
+ bis1 = Line(pt, pt + d1 + d2)
+ bis2 = Line(pt, pt + d1 - d2)
+
+ return [bis1, bis2]
+
+
+class Line(LinearEntity):
+ """An infinite line in space.
+
+ A 2D line is declared with two distinct points, point and slope, or
+ an equation. A 3D line may be defined with a point and a direction ratio.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ p2 : Point
+ slope : SymPy expression
+ direction_ratio : list
+ equation : equation of a line
+
+ Notes
+ =====
+
+ `Line` will automatically subclass to `Line2D` or `Line3D` based
+ on the dimension of `p1`. The `slope` argument is only relevant
+ for `Line2D` and the `direction_ratio` argument is only relevant
+ for `Line3D`.
+
+ The order of the points will define the direction of the line
+ which is used when calculating the angle between lines.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+ sympy.geometry.line.Line2D
+ sympy.geometry.line.Line3D
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Segment, Point, Eq
+ >>> from sympy.abc import x, y, a, b
+
+ >>> L = Line(Point(2,3), Point(3,5))
+ >>> L
+ Line2D(Point2D(2, 3), Point2D(3, 5))
+ >>> L.points
+ (Point2D(2, 3), Point2D(3, 5))
+ >>> L.equation()
+ -2*x + y + 1
+ >>> L.coefficients
+ (-2, 1, 1)
+
+ Instantiate with keyword ``slope``:
+
+ >>> Line(Point(0, 0), slope=0)
+ Line2D(Point2D(0, 0), Point2D(1, 0))
+
+ Instantiate with another linear object
+
+ >>> s = Segment((0, 0), (0, 1))
+ >>> Line(s).equation()
+ x
+
+ The line corresponding to an equation in the for `ax + by + c = 0`,
+ can be entered:
+
+ >>> Line(3*x + y + 18)
+ Line2D(Point2D(0, -18), Point2D(1, -21))
+
+ If `x` or `y` has a different name, then they can be specified, too,
+ as a string (to match the name) or symbol:
+
+ >>> Line(Eq(3*a + b, -18), x='a', y=b)
+ Line2D(Point2D(0, -18), Point2D(1, -21))
+ """
+ def __new__(cls, *args, **kwargs):
+ if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
+ missing = uniquely_named_symbol('?', args)
+ if not kwargs:
+ x = 'x'
+ y = 'y'
+ else:
+ x = kwargs.pop('x', missing)
+ y = kwargs.pop('y', missing)
+ if kwargs:
+ raise ValueError('expecting only x and y as keywords')
+
+ equation = args[0]
+ if isinstance(equation, Eq):
+ equation = equation.lhs - equation.rhs
+
+ def find_or_missing(x):
+ try:
+ return find(x, equation)
+ except ValueError:
+ return missing
+ x = find_or_missing(x)
+ y = find_or_missing(y)
+
+ a, b, c = linear_coeffs(equation, x, y)
+
+ if b:
+ return Line((0, -c/b), slope=-a/b)
+ if a:
+ return Line((-c/a, 0), slope=oo)
+
+ raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))
+
+ else:
+ if len(args) > 0:
+ p1 = args[0]
+ if len(args) > 1:
+ p2 = args[1]
+ else:
+ p2 = None
+
+ if isinstance(p1, LinearEntity):
+ if p2:
+ raise ValueError('If p1 is a LinearEntity, p2 must be None.')
+ dim = len(p1.p1)
+ else:
+ p1 = Point(p1)
+ dim = len(p1)
+ if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
+ p2 = Point(p2)
+
+ if dim == 2:
+ return Line2D(p1, p2, **kwargs)
+ elif dim == 3:
+ return Line3D(p1, p2, **kwargs)
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
+
+ def contains(self, other):
+ """
+ Return True if `other` is on this Line, or False otherwise.
+
+ Examples
+ ========
+
+ >>> from sympy import Line,Point
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
+ >>> l = Line(p1, p2)
+ >>> l.contains(p1)
+ True
+ >>> l.contains((0, 1))
+ True
+ >>> l.contains((0, 0))
+ False
+ >>> a = (0, 0, 0)
+ >>> b = (1, 1, 1)
+ >>> c = (2, 2, 2)
+ >>> l1 = Line(a, b)
+ >>> l2 = Line(b, a)
+ >>> l1 == l2
+ False
+ >>> l1 in l2
+ True
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if isinstance(other, Point):
+ return Point.is_collinear(other, self.p1, self.p2)
+ if isinstance(other, LinearEntity):
+ return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
+ return False
+
+ def distance(self, other):
+ """
+ Finds the shortest distance between a line and a point.
+
+ Raises
+ ======
+
+ NotImplementedError is raised if `other` is not a Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
+ >>> s = Line(p1, p2)
+ >>> s.distance(Point(-1, 1))
+ sqrt(2)
+ >>> s.distance((-1, 2))
+ 3*sqrt(2)/2
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
+ >>> s = Line(p1, p2)
+ >>> s.distance(Point(-1, 1, 1))
+ 2*sqrt(6)/3
+ >>> s.distance((-1, 1, 1))
+ 2*sqrt(6)/3
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if self.contains(other):
+ return S.Zero
+ return self.perpendicular_segment(other).length
+
+ def equals(self, other):
+ """Returns True if self and other are the same mathematical entities"""
+ if not isinstance(other, Line):
+ return False
+ return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of line. Gives
+ values that will produce a line that is +/- 5 units long (where a
+ unit is the distance between the two points that define the line).
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ plot_interval : list (plot interval)
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> l1 = Line(p1, p2)
+ >>> l1.plot_interval()
+ [t, -5, 5]
+
+ """
+ t = _symbol(parameter, real=True)
+ return [t, -5, 5]
+
+
+class Ray(LinearEntity):
+ """A Ray is a semi-line in the space with a source point and a direction.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ The source of the Ray
+ p2 : Point or radian value
+ This point determines the direction in which the Ray propagates.
+ If given as an angle it is interpreted in radians with the positive
+ direction being ccw.
+
+ Attributes
+ ==========
+
+ source
+
+ See Also
+ ========
+
+ sympy.geometry.line.Ray2D
+ sympy.geometry.line.Ray3D
+ sympy.geometry.point.Point
+ sympy.geometry.line.Line
+
+ Notes
+ =====
+
+ `Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
+ dimension of `p1`.
+
+ Examples
+ ========
+
+ >>> from sympy import Ray, Point, pi
+ >>> r = Ray(Point(2, 3), Point(3, 5))
+ >>> r
+ Ray2D(Point2D(2, 3), Point2D(3, 5))
+ >>> r.points
+ (Point2D(2, 3), Point2D(3, 5))
+ >>> r.source
+ Point2D(2, 3)
+ >>> r.xdirection
+ oo
+ >>> r.ydirection
+ oo
+ >>> r.slope
+ 2
+ >>> Ray(Point(0, 0), angle=pi/4).slope
+ 1
+
+ """
+ def __new__(cls, p1, p2=None, **kwargs):
+ p1 = Point(p1)
+ if p2 is not None:
+ p1, p2 = Point._normalize_dimension(p1, Point(p2))
+ dim = len(p1)
+
+ if dim == 2:
+ return Ray2D(p1, p2, **kwargs)
+ elif dim == 3:
+ return Ray3D(p1, p2, **kwargs)
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG path element for the LinearEntity.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+ verts = (N(self.p1), N(self.p2))
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
+
+ return (
+ ''
+ ).format(2.*scale_factor, path, fill_color)
+
+ def contains(self, other):
+ """
+ Is other GeometryEntity contained in this Ray?
+
+ Examples
+ ========
+
+ >>> from sympy import Ray,Point,Segment
+ >>> p1, p2 = Point(0, 0), Point(4, 4)
+ >>> r = Ray(p1, p2)
+ >>> r.contains(p1)
+ True
+ >>> r.contains((1, 1))
+ True
+ >>> r.contains((1, 3))
+ False
+ >>> s = Segment((1, 1), (2, 2))
+ >>> r.contains(s)
+ True
+ >>> s = Segment((1, 2), (2, 5))
+ >>> r.contains(s)
+ False
+ >>> r1 = Ray((2, 2), (3, 3))
+ >>> r.contains(r1)
+ True
+ >>> r1 = Ray((2, 2), (3, 5))
+ >>> r.contains(r1)
+ False
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if isinstance(other, Point):
+ if Point.is_collinear(self.p1, self.p2, other):
+ # if we're in the direction of the ray, our
+ # direction vector dot the ray's direction vector
+ # should be non-negative
+ return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
+ return False
+ elif isinstance(other, Ray):
+ if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
+ return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
+ return False
+ elif isinstance(other, Segment):
+ return other.p1 in self and other.p2 in self
+
+ # No other known entity can be contained in a Ray
+ return False
+
+ def distance(self, other):
+ """
+ Finds the shortest distance between the ray and a point.
+
+ Raises
+ ======
+
+ NotImplementedError is raised if `other` is not a Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ray
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
+ >>> s = Ray(p1, p2)
+ >>> s.distance(Point(-1, -1))
+ sqrt(2)
+ >>> s.distance((-1, 2))
+ 3*sqrt(2)/2
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
+ >>> s = Ray(p1, p2)
+ >>> s
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
+ >>> s.distance(Point(-1, -1, 2))
+ 4*sqrt(3)/3
+ >>> s.distance((-1, -1, 2))
+ 4*sqrt(3)/3
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if self.contains(other):
+ return S.Zero
+
+ proj = Line(self.p1, self.p2).projection(other)
+ if self.contains(proj):
+ return abs(other - proj)
+ else:
+ return abs(other - self.source)
+
+ def equals(self, other):
+ """Returns True if self and other are the same mathematical entities"""
+ if not isinstance(other, Ray):
+ return False
+ return self.source == other.source and other.p2 in self
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of the Ray. Gives
+ values that will produce a ray that is 10 units long (where a unit is
+ the distance between the two points that define the ray).
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ plot_interval : list
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Ray, pi
+ >>> r = Ray((0, 0), angle=pi/4)
+ >>> r.plot_interval()
+ [t, 0, 10]
+
+ """
+ t = _symbol(parameter, real=True)
+ return [t, 0, 10]
+
+ @property
+ def source(self):
+ """The point from which the ray emanates.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ray
+ >>> p1, p2 = Point(0, 0), Point(4, 1)
+ >>> r1 = Ray(p1, p2)
+ >>> r1.source
+ Point2D(0, 0)
+ >>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
+ >>> r1 = Ray(p2, p1)
+ >>> r1.source
+ Point3D(4, 1, 5)
+
+ """
+ return self.p1
+
+
+class Segment(LinearEntity):
+ """A line segment in space.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ p2 : Point
+
+ Attributes
+ ==========
+
+ length : number or SymPy expression
+ midpoint : Point
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment2D
+ sympy.geometry.line.Segment3D
+ sympy.geometry.point.Point
+ sympy.geometry.line.Line
+
+ Notes
+ =====
+
+ If 2D or 3D points are used to define `Segment`, it will
+ be automatically subclassed to `Segment2D` or `Segment3D`.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
+ Segment2D(Point2D(1, 0), Point2D(1, 1))
+ >>> s = Segment(Point(4, 3), Point(1, 1))
+ >>> s.points
+ (Point2D(4, 3), Point2D(1, 1))
+ >>> s.slope
+ 2/3
+ >>> s.length
+ sqrt(13)
+ >>> s.midpoint
+ Point2D(5/2, 2)
+ >>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
+ Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
+ >>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
+ Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
+ >>> s.points
+ (Point3D(4, 3, 9), Point3D(1, 1, 7))
+ >>> s.length
+ sqrt(17)
+ >>> s.midpoint
+ Point3D(5/2, 2, 8)
+
+ """
+ def __new__(cls, p1, p2, **kwargs):
+ p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
+ dim = len(p1)
+
+ if dim == 2:
+ return Segment2D(p1, p2, **kwargs)
+ elif dim == 3:
+ return Segment3D(p1, p2, **kwargs)
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
+
+ def contains(self, other):
+ """
+ Is the other GeometryEntity contained within this Segment?
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
+ >>> s = Segment(p1, p2)
+ >>> s2 = Segment(p2, p1)
+ >>> s.contains(s2)
+ True
+ >>> from sympy import Point3D, Segment3D
+ >>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
+ >>> s = Segment3D(p1, p2)
+ >>> s2 = Segment3D(p2, p1)
+ >>> s.contains(s2)
+ True
+ >>> s.contains((p1 + p2)/2)
+ True
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if isinstance(other, Point):
+ if Point.is_collinear(other, self.p1, self.p2):
+ if isinstance(self, Segment2D):
+ # if it is collinear and is in the bounding box of the
+ # segment then it must be on the segment
+ vert = (1/self.slope).equals(0)
+ if vert is False:
+ isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
+ if isin in (True, False):
+ return isin
+ if vert is True:
+ isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
+ if isin in (True, False):
+ return isin
+ # use the triangle inequality
+ d1, d2 = other - self.p1, other - self.p2
+ d = self.p2 - self.p1
+ # without the call to simplify, SymPy cannot tell that an expression
+ # like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
+ # determined, raise an Undecidable error
+ try:
+ # the triangle inequality says that |d1|+|d2| >= |d| and is strict
+ # only if other lies in the line segment
+ return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
+ except TypeError:
+ raise Undecidable("Cannot determine if {} is in {}".format(other, self))
+ if isinstance(other, Segment):
+ return other.p1 in self and other.p2 in self
+
+ return False
+
+ def equals(self, other):
+ """Returns True if self and other are the same mathematical entities"""
+ return isinstance(other, self.func) and list(
+ ordered(self.args)) == list(ordered(other.args))
+
+ def distance(self, other):
+ """
+ Finds the shortest distance between a line segment and a point.
+
+ Raises
+ ======
+
+ NotImplementedError is raised if `other` is not a Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
+ >>> s = Segment(p1, p2)
+ >>> s.distance(Point(10, 15))
+ sqrt(170)
+ >>> s.distance((0, 12))
+ sqrt(73)
+ >>> from sympy import Point3D, Segment3D
+ >>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
+ >>> s = Segment3D(p1, p2)
+ >>> s.distance(Point3D(10, 15, 12))
+ sqrt(341)
+ >>> s.distance((10, 15, 12))
+ sqrt(341)
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if isinstance(other, Point):
+ vp1 = other - self.p1
+ vp2 = other - self.p2
+
+ dot_prod_sign_1 = self.direction.dot(vp1) >= 0
+ dot_prod_sign_2 = self.direction.dot(vp2) <= 0
+ if dot_prod_sign_1 and dot_prod_sign_2:
+ return Line(self.p1, self.p2).distance(other)
+ if dot_prod_sign_1 and not dot_prod_sign_2:
+ return abs(vp2)
+ if not dot_prod_sign_1 and dot_prod_sign_2:
+ return abs(vp1)
+ raise NotImplementedError()
+
+ @property
+ def length(self):
+ """The length of the line segment.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.distance
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2 = Point(0, 0), Point(4, 3)
+ >>> s1 = Segment(p1, p2)
+ >>> s1.length
+ 5
+ >>> from sympy import Point3D, Segment3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
+ >>> s1 = Segment3D(p1, p2)
+ >>> s1.length
+ sqrt(34)
+
+ """
+ return Point.distance(self.p1, self.p2)
+
+ @property
+ def midpoint(self):
+ """The midpoint of the line segment.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.midpoint
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2 = Point(0, 0), Point(4, 3)
+ >>> s1 = Segment(p1, p2)
+ >>> s1.midpoint
+ Point2D(2, 3/2)
+ >>> from sympy import Point3D, Segment3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
+ >>> s1 = Segment3D(p1, p2)
+ >>> s1.midpoint
+ Point3D(2, 3/2, 3/2)
+
+ """
+ return Point.midpoint(self.p1, self.p2)
+
+ def perpendicular_bisector(self, p=None):
+ """The perpendicular bisector of this segment.
+
+ If no point is specified or the point specified is not on the
+ bisector then the bisector is returned as a Line. Otherwise a
+ Segment is returned that joins the point specified and the
+ intersection of the bisector and the segment.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ bisector : Line or Segment
+
+ See Also
+ ========
+
+ LinearEntity.perpendicular_segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
+ >>> s1 = Segment(p1, p2)
+ >>> s1.perpendicular_bisector()
+ Line2D(Point2D(3, 3), Point2D(-3, 9))
+
+ >>> s1.perpendicular_bisector(p3)
+ Segment2D(Point2D(5, 1), Point2D(3, 3))
+
+ """
+ l = self.perpendicular_line(self.midpoint)
+ if p is not None:
+ p2 = Point(p, dim=self.ambient_dimension)
+ if p2 in l:
+ return Segment(p2, self.midpoint)
+ return l
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of the Segment gives
+ values that will produce the full segment in a plot.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ plot_interval : list
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> s1 = Segment(p1, p2)
+ >>> s1.plot_interval()
+ [t, 0, 1]
+
+ """
+ t = _symbol(parameter, real=True)
+ return [t, 0, 1]
+
+
+class LinearEntity2D(LinearEntity):
+ """A base class for all linear entities (line, ray and segment)
+ in a 2-dimensional Euclidean space.
+
+ Attributes
+ ==========
+
+ p1
+ p2
+ coefficients
+ slope
+ points
+
+ Notes
+ =====
+
+ This is an abstract class and is not meant to be instantiated.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity
+
+ """
+ @property
+ def bounds(self):
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
+ rectangle for the geometric figure.
+
+ """
+ verts = self.points
+ xs = [p.x for p in verts]
+ ys = [p.y for p in verts]
+ return (min(xs), min(ys), max(xs), max(ys))
+
+ def perpendicular_line(self, p):
+ """Create a new Line perpendicular to this linear entity which passes
+ through the point `p`.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ line : Line
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
+ >>> L = Line(p1, p2)
+ >>> P = L.perpendicular_line(p3); P
+ Line2D(Point2D(-2, 2), Point2D(-5, 4))
+ >>> L.is_perpendicular(P)
+ True
+
+ In 2D, the first point of the perpendicular line is the
+ point through which was required to pass; the second
+ point is arbitrarily chosen. To get a line that explicitly
+ uses a point in the line, create a line from the perpendicular
+ segment from the line to the point:
+
+ >>> Line(L.perpendicular_segment(p3))
+ Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
+ """
+ p = Point(p, dim=self.ambient_dimension)
+ # any two lines in R^2 intersect, so blindly making
+ # a line through p in an orthogonal direction will work
+ # and is faster than finding the projection point as in 3D
+ return Line(p, p + self.direction.orthogonal_direction)
+
+ @property
+ def slope(self):
+ """The slope of this linear entity, or infinity if vertical.
+
+ Returns
+ =======
+
+ slope : number or SymPy expression
+
+ See Also
+ ========
+
+ coefficients
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
+ >>> l1 = Line(p1, p2)
+ >>> l1.slope
+ 5/3
+
+ >>> p3 = Point(0, 4)
+ >>> l2 = Line(p1, p3)
+ >>> l2.slope
+ oo
+
+ """
+ d1, d2 = (self.p1 - self.p2).args
+ if d1 == 0:
+ return S.Infinity
+ return simplify(d2/d1)
+
+
+class Line2D(LinearEntity2D, Line):
+ """An infinite line in space 2D.
+
+ A line is declared with two distinct points or a point and slope
+ as defined using keyword `slope`.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ pt : Point
+ slope : SymPy expression
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Segment, Point
+ >>> L = Line(Point(2,3), Point(3,5))
+ >>> L
+ Line2D(Point2D(2, 3), Point2D(3, 5))
+ >>> L.points
+ (Point2D(2, 3), Point2D(3, 5))
+ >>> L.equation()
+ -2*x + y + 1
+ >>> L.coefficients
+ (-2, 1, 1)
+
+ Instantiate with keyword ``slope``:
+
+ >>> Line(Point(0, 0), slope=0)
+ Line2D(Point2D(0, 0), Point2D(1, 0))
+
+ Instantiate with another linear object
+
+ >>> s = Segment((0, 0), (0, 1))
+ >>> Line(s).equation()
+ x
+ """
+ def __new__(cls, p1, pt=None, slope=None, **kwargs):
+ if isinstance(p1, LinearEntity):
+ if pt is not None:
+ raise ValueError('When p1 is a LinearEntity, pt should be None')
+ p1, pt = Point._normalize_dimension(*p1.args, dim=2)
+ else:
+ p1 = Point(p1, dim=2)
+ if pt is not None and slope is None:
+ try:
+ p2 = Point(pt, dim=2)
+ except (NotImplementedError, TypeError, ValueError):
+ raise ValueError(filldedent('''
+ The 2nd argument was not a valid Point.
+ If it was a slope, enter it with keyword "slope".
+ '''))
+ elif slope is not None and pt is None:
+ slope = sympify(slope)
+ if slope.is_finite is False:
+ # when infinite slope, don't change x
+ dx = 0
+ dy = 1
+ else:
+ # go over 1 up slope
+ dx = 1
+ dy = slope
+ # XXX avoiding simplification by adding to coords directly
+ p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
+ else:
+ raise ValueError('A 2nd Point or keyword "slope" must be used.')
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG path element for the LinearEntity.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+ verts = (N(self.p1), N(self.p2))
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
+
+ return (
+ ''
+ ).format(2.*scale_factor, path, fill_color)
+
+ @property
+ def coefficients(self):
+ """The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line2D.equation
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> from sympy.abc import x, y
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
+ >>> l = Line(p1, p2)
+ >>> l.coefficients
+ (-3, 5, 0)
+
+ >>> p3 = Point(x, y)
+ >>> l2 = Line(p1, p3)
+ >>> l2.coefficients
+ (-y, x, 0)
+
+ """
+ p1, p2 = self.points
+ if p1.x == p2.x:
+ return (S.One, S.Zero, -p1.x)
+ elif p1.y == p2.y:
+ return (S.Zero, S.One, -p1.y)
+ return tuple([simplify(i) for i in
+ (self.p1.y - self.p2.y,
+ self.p2.x - self.p1.x,
+ self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
+
+ def equation(self, x='x', y='y'):
+ """The equation of the line: ax + by + c.
+
+ Parameters
+ ==========
+
+ x : str, optional
+ The name to use for the x-axis, default value is 'x'.
+ y : str, optional
+ The name to use for the y-axis, default value is 'y'.
+
+ Returns
+ =======
+
+ equation : SymPy expression
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line2D.coefficients
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(1, 0), Point(5, 3)
+ >>> l1 = Line(p1, p2)
+ >>> l1.equation()
+ -3*x + 4*y + 3
+
+ """
+ x = _symbol(x, real=True)
+ y = _symbol(y, real=True)
+ p1, p2 = self.points
+ if p1.x == p2.x:
+ return x - p1.x
+ elif p1.y == p2.y:
+ return y - p1.y
+
+ a, b, c = self.coefficients
+ return a*x + b*y + c
+
+
+class Ray2D(LinearEntity2D, Ray):
+ """
+ A Ray is a semi-line in the space with a source point and a direction.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ The source of the Ray
+ p2 : Point or radian value
+ This point determines the direction in which the Ray propagates.
+ If given as an angle it is interpreted in radians with the positive
+ direction being ccw.
+
+ Attributes
+ ==========
+
+ source
+ xdirection
+ ydirection
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, Line
+
+ Examples
+ ========
+
+ >>> from sympy import Point, pi, Ray
+ >>> r = Ray(Point(2, 3), Point(3, 5))
+ >>> r
+ Ray2D(Point2D(2, 3), Point2D(3, 5))
+ >>> r.points
+ (Point2D(2, 3), Point2D(3, 5))
+ >>> r.source
+ Point2D(2, 3)
+ >>> r.xdirection
+ oo
+ >>> r.ydirection
+ oo
+ >>> r.slope
+ 2
+ >>> Ray(Point(0, 0), angle=pi/4).slope
+ 1
+
+ """
+ def __new__(cls, p1, pt=None, angle=None, **kwargs):
+ p1 = Point(p1, dim=2)
+ if pt is not None and angle is None:
+ try:
+ p2 = Point(pt, dim=2)
+ except (NotImplementedError, TypeError, ValueError):
+ raise ValueError(filldedent('''
+ The 2nd argument was not a valid Point; if
+ it was meant to be an angle it should be
+ given with keyword "angle".'''))
+ if p1 == p2:
+ raise ValueError('A Ray requires two distinct points.')
+ elif angle is not None and pt is None:
+ # we need to know if the angle is an odd multiple of pi/2
+ angle = sympify(angle)
+ c = _pi_coeff(angle)
+ p2 = None
+ if c is not None:
+ if c.is_Rational:
+ if c.q == 2:
+ if c.p == 1:
+ p2 = p1 + Point(0, 1)
+ elif c.p == 3:
+ p2 = p1 + Point(0, -1)
+ elif c.q == 1:
+ if c.p == 0:
+ p2 = p1 + Point(1, 0)
+ elif c.p == 1:
+ p2 = p1 + Point(-1, 0)
+ if p2 is None:
+ c *= S.Pi
+ else:
+ c = angle % (2*S.Pi)
+ if not p2:
+ m = 2*c/S.Pi
+ left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
+ x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
+ y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
+ p2 = p1 + Point(x, y)
+ else:
+ raise ValueError('A 2nd point or keyword "angle" must be used.')
+
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
+
+ @property
+ def xdirection(self):
+ """The x direction of the ray.
+
+ Positive infinity if the ray points in the positive x direction,
+ negative infinity if the ray points in the negative x direction,
+ or 0 if the ray is vertical.
+
+ See Also
+ ========
+
+ ydirection
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ray
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
+ >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
+ >>> r1.xdirection
+ oo
+ >>> r2.xdirection
+ 0
+
+ """
+ if self.p1.x < self.p2.x:
+ return S.Infinity
+ elif self.p1.x == self.p2.x:
+ return S.Zero
+ else:
+ return S.NegativeInfinity
+
+ @property
+ def ydirection(self):
+ """The y direction of the ray.
+
+ Positive infinity if the ray points in the positive y direction,
+ negative infinity if the ray points in the negative y direction,
+ or 0 if the ray is horizontal.
+
+ See Also
+ ========
+
+ xdirection
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ray
+ >>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
+ >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
+ >>> r1.ydirection
+ -oo
+ >>> r2.ydirection
+ 0
+
+ """
+ if self.p1.y < self.p2.y:
+ return S.Infinity
+ elif self.p1.y == self.p2.y:
+ return S.Zero
+ else:
+ return S.NegativeInfinity
+
+ def closing_angle(r1, r2):
+ """Return the angle by which r2 must be rotated so it faces the same
+ direction as r1.
+
+ Parameters
+ ==========
+
+ r1 : Ray2D
+ r2 : Ray2D
+
+ Returns
+ =======
+
+ angle : angle in radians (ccw angle is positive)
+
+ See Also
+ ========
+
+ LinearEntity.angle_between
+
+ Examples
+ ========
+
+ >>> from sympy import Ray, pi
+ >>> r1 = Ray((0, 0), (1, 0))
+ >>> r2 = r1.rotate(-pi/2)
+ >>> angle = r1.closing_angle(r2); angle
+ pi/2
+ >>> r2.rotate(angle).direction.unit == r1.direction.unit
+ True
+ >>> r2.closing_angle(r1)
+ -pi/2
+ """
+ if not all(isinstance(r, Ray2D) for r in (r1, r2)):
+ # although the direction property is defined for
+ # all linear entities, only the Ray is truly a
+ # directed object
+ raise TypeError('Both arguments must be Ray2D objects.')
+
+ a1 = atan2(*list(reversed(r1.direction.args)))
+ a2 = atan2(*list(reversed(r2.direction.args)))
+ if a1*a2 < 0:
+ a1 = 2*S.Pi + a1 if a1 < 0 else a1
+ a2 = 2*S.Pi + a2 if a2 < 0 else a2
+ return a1 - a2
+
+
+class Segment2D(LinearEntity2D, Segment):
+ """A line segment in 2D space.
+
+ Parameters
+ ==========
+
+ p1 : Point
+ p2 : Point
+
+ Attributes
+ ==========
+
+ length : number or SymPy expression
+ midpoint : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, Line
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment
+ >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
+ Segment2D(Point2D(1, 0), Point2D(1, 1))
+ >>> s = Segment(Point(4, 3), Point(1, 1)); s
+ Segment2D(Point2D(4, 3), Point2D(1, 1))
+ >>> s.points
+ (Point2D(4, 3), Point2D(1, 1))
+ >>> s.slope
+ 2/3
+ >>> s.length
+ sqrt(13)
+ >>> s.midpoint
+ Point2D(5/2, 2)
+
+ """
+ def __new__(cls, p1, p2, **kwargs):
+ p1 = Point(p1, dim=2)
+ p2 = Point(p2, dim=2)
+
+ if p1 == p2:
+ return p1
+
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG path element for the LinearEntity.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+ verts = (N(self.p1), N(self.p2))
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
+ return (
+ ''
+ ).format(2.*scale_factor, path, fill_color)
+
+
+class LinearEntity3D(LinearEntity):
+ """An base class for all linear entities (line, ray and segment)
+ in a 3-dimensional Euclidean space.
+
+ Attributes
+ ==========
+
+ p1
+ p2
+ direction_ratio
+ direction_cosine
+ points
+
+ Notes
+ =====
+
+ This is a base class and is not meant to be instantiated.
+ """
+ def __new__(cls, p1, p2, **kwargs):
+ p1 = Point3D(p1, dim=3)
+ p2 = Point3D(p2, dim=3)
+ if p1 == p2:
+ # if it makes sense to return a Point, handle in subclass
+ raise ValueError(
+ "%s.__new__ requires two unique Points." % cls.__name__)
+
+ return GeometryEntity.__new__(cls, p1, p2, **kwargs)
+
+ ambient_dimension = 3
+
+ @property
+ def direction_ratio(self):
+ """The direction ratio of a given line in 3D.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line3D.equation
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
+ >>> l = Line3D(p1, p2)
+ >>> l.direction_ratio
+ [5, 3, 1]
+ """
+ p1, p2 = self.points
+ return p1.direction_ratio(p2)
+
+ @property
+ def direction_cosine(self):
+ """The normalized direction ratio of a given line in 3D.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line3D.equation
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
+ >>> l = Line3D(p1, p2)
+ >>> l.direction_cosine
+ [sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
+ >>> sum(i**2 for i in _)
+ 1
+ """
+ p1, p2 = self.points
+ return p1.direction_cosine(p2)
+
+
+class Line3D(LinearEntity3D, Line):
+ """An infinite 3D line in space.
+
+ A line is declared with two distinct points or a point and direction_ratio
+ as defined using keyword `direction_ratio`.
+
+ Parameters
+ ==========
+
+ p1 : Point3D
+ pt : Point3D
+ direction_ratio : list
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point3D
+ sympy.geometry.line.Line
+ sympy.geometry.line.Line2D
+
+ Examples
+ ========
+
+ >>> from sympy import Line3D, Point3D
+ >>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
+ >>> L
+ Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
+ >>> L.points
+ (Point3D(2, 3, 4), Point3D(3, 5, 1))
+ """
+ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
+ if isinstance(p1, LinearEntity3D):
+ if pt is not None:
+ raise ValueError('if p1 is a LinearEntity, pt must be None.')
+ p1, pt = p1.args
+ else:
+ p1 = Point(p1, dim=3)
+ if pt is not None and len(direction_ratio) == 0:
+ pt = Point(pt, dim=3)
+ elif len(direction_ratio) == 3 and pt is None:
+ pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
+ p1.z + direction_ratio[2])
+ else:
+ raise ValueError('A 2nd Point or keyword "direction_ratio" must '
+ 'be used.')
+
+ return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
+
+ def equation(self, x='x', y='y', z='z'):
+ """Return the equations that define the line in 3D.
+
+ Parameters
+ ==========
+
+ x : str, optional
+ The name to use for the x-axis, default value is 'x'.
+ y : str, optional
+ The name to use for the y-axis, default value is 'y'.
+ z : str, optional
+ The name to use for the z-axis, default value is 'z'.
+
+ Returns
+ =======
+
+ equation : Tuple of simultaneous equations
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D, solve
+ >>> from sympy.abc import x, y, z
+ >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
+ >>> l1 = Line3D(p1, p2)
+ >>> eq = l1.equation(x, y, z); eq
+ (-3*x + 4*y + 3, z)
+ >>> solve(eq.subs(z, 0), (x, y, z))
+ {x: 4*y/3 + 1}
+ """
+ x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
+ p1, p2 = self.points
+ d1, d2, d3 = p1.direction_ratio(p2)
+ x1, y1, z1 = p1
+ eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
+ # eliminate k from equations by solving first eq with k for k
+ for i, e in enumerate(eqs):
+ if e.has(k):
+ kk = solve(eqs[i], k)[0]
+ eqs.pop(i)
+ break
+ return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
+
+
+class Ray3D(LinearEntity3D, Ray):
+ """
+ A Ray is a semi-line in the space with a source point and a direction.
+
+ Parameters
+ ==========
+
+ p1 : Point3D
+ The source of the Ray
+ p2 : Point or a direction vector
+ direction_ratio: Determines the direction in which the Ray propagates.
+
+
+ Attributes
+ ==========
+
+ source
+ xdirection
+ ydirection
+ zdirection
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point3D, Line3D
+
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Ray3D
+ >>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
+ >>> r
+ Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
+ >>> r.points
+ (Point3D(2, 3, 4), Point3D(3, 5, 0))
+ >>> r.source
+ Point3D(2, 3, 4)
+ >>> r.xdirection
+ oo
+ >>> r.ydirection
+ oo
+ >>> r.direction_ratio
+ [1, 2, -4]
+
+ """
+ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
+ if isinstance(p1, LinearEntity3D):
+ if pt is not None:
+ raise ValueError('If p1 is a LinearEntity, pt must be None')
+ p1, pt = p1.args
+ else:
+ p1 = Point(p1, dim=3)
+ if pt is not None and len(direction_ratio) == 0:
+ pt = Point(pt, dim=3)
+ elif len(direction_ratio) == 3 and pt is None:
+ pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
+ p1.z + direction_ratio[2])
+ else:
+ raise ValueError(filldedent('''
+ A 2nd Point or keyword "direction_ratio" must be used.
+ '''))
+
+ return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
+
+ @property
+ def xdirection(self):
+ """The x direction of the ray.
+
+ Positive infinity if the ray points in the positive x direction,
+ negative infinity if the ray points in the negative x direction,
+ or 0 if the ray is vertical.
+
+ See Also
+ ========
+
+ ydirection
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Ray3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
+ >>> r1.xdirection
+ oo
+ >>> r2.xdirection
+ 0
+
+ """
+ if self.p1.x < self.p2.x:
+ return S.Infinity
+ elif self.p1.x == self.p2.x:
+ return S.Zero
+ else:
+ return S.NegativeInfinity
+
+ @property
+ def ydirection(self):
+ """The y direction of the ray.
+
+ Positive infinity if the ray points in the positive y direction,
+ negative infinity if the ray points in the negative y direction,
+ or 0 if the ray is horizontal.
+
+ See Also
+ ========
+
+ xdirection
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Ray3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
+ >>> r1.ydirection
+ -oo
+ >>> r2.ydirection
+ 0
+
+ """
+ if self.p1.y < self.p2.y:
+ return S.Infinity
+ elif self.p1.y == self.p2.y:
+ return S.Zero
+ else:
+ return S.NegativeInfinity
+
+ @property
+ def zdirection(self):
+ """The z direction of the ray.
+
+ Positive infinity if the ray points in the positive z direction,
+ negative infinity if the ray points in the negative z direction,
+ or 0 if the ray is horizontal.
+
+ See Also
+ ========
+
+ xdirection
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Ray3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
+ >>> r1.ydirection
+ -oo
+ >>> r2.ydirection
+ 0
+ >>> r2.zdirection
+ 0
+
+ """
+ if self.p1.z < self.p2.z:
+ return S.Infinity
+ elif self.p1.z == self.p2.z:
+ return S.Zero
+ else:
+ return S.NegativeInfinity
+
+
+class Segment3D(LinearEntity3D, Segment):
+ """A line segment in a 3D space.
+
+ Parameters
+ ==========
+
+ p1 : Point3D
+ p2 : Point3D
+
+ Attributes
+ ==========
+
+ length : number or SymPy expression
+ midpoint : Point3D
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point3D, Line3D
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Segment3D
+ >>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
+ Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
+ >>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
+ Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
+ >>> s.points
+ (Point3D(4, 3, 9), Point3D(1, 1, 7))
+ >>> s.length
+ sqrt(17)
+ >>> s.midpoint
+ Point3D(5/2, 2, 8)
+
+ """
+ def __new__(cls, p1, p2, **kwargs):
+ p1 = Point(p1, dim=3)
+ p2 = Point(p2, dim=3)
+
+ if p1 == p2:
+ return p1
+
+ return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/parabola.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/parabola.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b5a3c03fbc9f7b3e2e76538f38d1063539130ae
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/parabola.py
@@ -0,0 +1,422 @@
+"""Parabolic geometrical entity.
+
+Contains
+* Parabola
+
+"""
+
+from sympy.core import S
+from sympy.core.sorting import ordered
+from sympy.core.symbol import _symbol, symbols
+from sympy.geometry.entity import GeometryEntity, GeometrySet
+from sympy.geometry.point import Point, Point2D
+from sympy.geometry.line import Line, Line2D, Ray2D, Segment2D, LinearEntity3D
+from sympy.geometry.ellipse import Ellipse
+from sympy.functions import sign
+from sympy.simplify import simplify
+from sympy.solvers.solvers import solve
+
+
+class Parabola(GeometrySet):
+ """A parabolic GeometryEntity.
+
+ A parabola is declared with a point, that is called 'focus', and
+ a line, that is called 'directrix'.
+ Only vertical or horizontal parabolas are currently supported.
+
+ Parameters
+ ==========
+
+ focus : Point
+ Default value is Point(0, 0)
+ directrix : Line
+
+ Attributes
+ ==========
+
+ focus
+ directrix
+ axis of symmetry
+ focal length
+ p parameter
+ vertex
+ eccentricity
+
+ Raises
+ ======
+ ValueError
+ When `focus` is not a two dimensional point.
+ When `focus` is a point of directrix.
+ NotImplementedError
+ When `directrix` is neither horizontal nor vertical.
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7,8)))
+ >>> p1.focus
+ Point2D(0, 0)
+ >>> p1.directrix
+ Line2D(Point2D(5, 8), Point2D(7, 8))
+
+ """
+
+ def __new__(cls, focus=None, directrix=None, **kwargs):
+
+ if focus:
+ focus = Point(focus, dim=2)
+ else:
+ focus = Point(0, 0)
+
+ directrix = Line(directrix)
+
+ if directrix.contains(focus):
+ raise ValueError('The focus must not be a point of directrix')
+
+ return GeometryEntity.__new__(cls, focus, directrix, **kwargs)
+
+ @property
+ def ambient_dimension(self):
+ """Returns the ambient dimension of parabola.
+
+ Returns
+ =======
+
+ ambient_dimension : integer
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> f1 = Point(0, 0)
+ >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
+ >>> p1.ambient_dimension
+ 2
+
+ """
+ return 2
+
+ @property
+ def axis_of_symmetry(self):
+ """Return the axis of symmetry of the parabola: a line
+ perpendicular to the directrix passing through the focus.
+
+ Returns
+ =======
+
+ axis_of_symmetry : Line
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.axis_of_symmetry
+ Line2D(Point2D(0, 0), Point2D(0, 1))
+
+ """
+ return self.directrix.perpendicular_line(self.focus)
+
+ @property
+ def directrix(self):
+ """The directrix of the parabola.
+
+ Returns
+ =======
+
+ directrix : Line
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> l1 = Line(Point(5, 8), Point(7, 8))
+ >>> p1 = Parabola(Point(0, 0), l1)
+ >>> p1.directrix
+ Line2D(Point2D(5, 8), Point2D(7, 8))
+
+ """
+ return self.args[1]
+
+ @property
+ def eccentricity(self):
+ """The eccentricity of the parabola.
+
+ Returns
+ =======
+
+ eccentricity : number
+
+ A parabola may also be characterized as a conic section with an
+ eccentricity of 1. As a consequence of this, all parabolas are
+ similar, meaning that while they can be different sizes,
+ they are all the same shape.
+
+ See Also
+ ========
+
+ https://en.wikipedia.org/wiki/Parabola
+
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.eccentricity
+ 1
+
+ Notes
+ -----
+ The eccentricity for every Parabola is 1 by definition.
+
+ """
+ return S.One
+
+ def equation(self, x='x', y='y'):
+ """The equation of the parabola.
+
+ Parameters
+ ==========
+ x : str, optional
+ Label for the x-axis. Default value is 'x'.
+ y : str, optional
+ Label for the y-axis. Default value is 'y'.
+
+ Returns
+ =======
+ equation : SymPy expression
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.equation()
+ -x**2 - 16*y + 64
+ >>> p1.equation('f')
+ -f**2 - 16*y + 64
+ >>> p1.equation(y='z')
+ -x**2 - 16*z + 64
+
+ """
+ x = _symbol(x, real=True)
+ y = _symbol(y, real=True)
+
+ m = self.directrix.slope
+ if m is S.Infinity:
+ t1 = 4 * (self.p_parameter) * (x - self.vertex.x)
+ t2 = (y - self.vertex.y)**2
+ elif m == 0:
+ t1 = 4 * (self.p_parameter) * (y - self.vertex.y)
+ t2 = (x - self.vertex.x)**2
+ else:
+ a, b = self.focus
+ c, d = self.directrix.coefficients[:2]
+ t1 = (x - a)**2 + (y - b)**2
+ t2 = self.directrix.equation(x, y)**2/(c**2 + d**2)
+ return t1 - t2
+
+ @property
+ def focal_length(self):
+ """The focal length of the parabola.
+
+ Returns
+ =======
+
+ focal_lenght : number or symbolic expression
+
+ Notes
+ =====
+
+ The distance between the vertex and the focus
+ (or the vertex and directrix), measured along the axis
+ of symmetry, is the "focal length".
+
+ See Also
+ ========
+
+ https://en.wikipedia.org/wiki/Parabola
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.focal_length
+ 4
+
+ """
+ distance = self.directrix.distance(self.focus)
+ focal_length = distance/2
+
+ return focal_length
+
+ @property
+ def focus(self):
+ """The focus of the parabola.
+
+ Returns
+ =======
+
+ focus : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> f1 = Point(0, 0)
+ >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
+ >>> p1.focus
+ Point2D(0, 0)
+
+ """
+ return self.args[0]
+
+ def intersection(self, o):
+ """The intersection of the parabola and another geometrical entity `o`.
+
+ Parameters
+ ==========
+
+ o : GeometryEntity, LinearEntity
+
+ Returns
+ =======
+
+ intersection : list of GeometryEntity objects
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Ellipse, Line, Segment
+ >>> p1 = Point(0,0)
+ >>> l1 = Line(Point(1, -2), Point(-1,-2))
+ >>> parabola1 = Parabola(p1, l1)
+ >>> parabola1.intersection(Ellipse(Point(0, 0), 2, 5))
+ [Point2D(-2, 0), Point2D(2, 0)]
+ >>> parabola1.intersection(Line(Point(-7, 3), Point(12, 3)))
+ [Point2D(-4, 3), Point2D(4, 3)]
+ >>> parabola1.intersection(Segment((-12, -65), (14, -68)))
+ []
+
+ """
+ x, y = symbols('x y', real=True)
+ parabola_eq = self.equation()
+ if isinstance(o, Parabola):
+ if o in self:
+ return [o]
+ else:
+ return list(ordered([Point(i) for i in solve(
+ [parabola_eq, o.equation()], [x, y], set=True)[1]]))
+ elif isinstance(o, Point2D):
+ if simplify(parabola_eq.subs([(x, o._args[0]), (y, o._args[1])])) == 0:
+ return [o]
+ else:
+ return []
+ elif isinstance(o, (Segment2D, Ray2D)):
+ result = solve([parabola_eq,
+ Line2D(o.points[0], o.points[1]).equation()],
+ [x, y], set=True)[1]
+ return list(ordered([Point2D(i) for i in result if i in o]))
+ elif isinstance(o, (Line2D, Ellipse)):
+ return list(ordered([Point2D(i) for i in solve(
+ [parabola_eq, o.equation()], [x, y], set=True)[1]]))
+ elif isinstance(o, LinearEntity3D):
+ raise TypeError('Entity must be two dimensional, not three dimensional')
+ else:
+ raise TypeError('Wrong type of argument were put')
+
+ @property
+ def p_parameter(self):
+ """P is a parameter of parabola.
+
+ Returns
+ =======
+
+ p : number or symbolic expression
+
+ Notes
+ =====
+
+ The absolute value of p is the focal length. The sign on p tells
+ which way the parabola faces. Vertical parabolas that open up
+ and horizontal that open right, give a positive value for p.
+ Vertical parabolas that open down and horizontal that open left,
+ give a negative value for p.
+
+
+ See Also
+ ========
+
+ https://www.sparknotes.com/math/precalc/conicsections/section2/
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.p_parameter
+ -4
+
+ """
+ m = self.directrix.slope
+ if m is S.Infinity:
+ x = self.directrix.coefficients[2]
+ p = sign(self.focus.args[0] + x)
+ elif m == 0:
+ y = self.directrix.coefficients[2]
+ p = sign(self.focus.args[1] + y)
+ else:
+ d = self.directrix.projection(self.focus)
+ p = sign(self.focus.x - d.x)
+ return p * self.focal_length
+
+ @property
+ def vertex(self):
+ """The vertex of the parabola.
+
+ Returns
+ =======
+
+ vertex : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Parabola, Point, Line
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
+ >>> p1.vertex
+ Point2D(0, 4)
+
+ """
+ focus = self.focus
+ m = self.directrix.slope
+ if m is S.Infinity:
+ vertex = Point(focus.args[0] - self.p_parameter, focus.args[1])
+ elif m == 0:
+ vertex = Point(focus.args[0], focus.args[1] - self.p_parameter)
+ else:
+ vertex = self.axis_of_symmetry.intersection(self)[0]
+ return vertex
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/plane.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/plane.py
new file mode 100644
index 0000000000000000000000000000000000000000..aecb320068815e5425574c7a6cf5c01659fa2b10
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/plane.py
@@ -0,0 +1,884 @@
+"""Geometrical Planes.
+
+Contains
+========
+Plane
+
+"""
+
+from sympy.core import Dummy, Rational, S, Symbol
+from sympy.core.symbol import _symbol
+from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt
+from .entity import GeometryEntity
+from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D,
+ Ray3D, Segment3D)
+from .point import Point, Point3D
+from sympy.matrices import Matrix
+from sympy.polys.polytools import cancel
+from sympy.solvers import solve, linsolve
+from sympy.utilities.iterables import uniq, is_sequence
+from sympy.utilities.misc import filldedent, func_name, Undecidable
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+import random
+
+
+x, y, z, t = [Dummy('plane_dummy') for i in range(4)]
+
+
+class Plane(GeometryEntity):
+ """
+ A plane is a flat, two-dimensional surface. A plane is the two-dimensional
+ analogue of a point (zero-dimensions), a line (one-dimension) and a solid
+ (three-dimensions). A plane can generally be constructed by two types of
+ inputs. They are three non-collinear points and a point and the plane's
+ normal vector.
+
+ Attributes
+ ==========
+
+ p1
+ normal_vector
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
+ Plane(Point3D(1, 1, 1), (-1, 2, -1))
+ >>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
+ Plane(Point3D(1, 1, 1), (-1, 2, -1))
+ >>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7))
+ Plane(Point3D(1, 1, 1), (1, 4, 7))
+
+ """
+ def __new__(cls, p1, a=None, b=None, **kwargs):
+ p1 = Point3D(p1, dim=3)
+ if a and b:
+ p2 = Point(a, dim=3)
+ p3 = Point(b, dim=3)
+ if Point3D.are_collinear(p1, p2, p3):
+ raise ValueError('Enter three non-collinear points')
+ a = p1.direction_ratio(p2)
+ b = p1.direction_ratio(p3)
+ normal_vector = tuple(Matrix(a).cross(Matrix(b)))
+ else:
+ a = kwargs.pop('normal_vector', a)
+ evaluate = kwargs.get('evaluate', True)
+ if is_sequence(a) and len(a) == 3:
+ normal_vector = Point3D(a).args if evaluate else a
+ else:
+ raise ValueError(filldedent('''
+ Either provide 3 3D points or a point with a
+ normal vector expressed as a sequence of length 3'''))
+ if all(coord.is_zero for coord in normal_vector):
+ raise ValueError('Normal vector cannot be zero vector')
+ return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs)
+
+ def __contains__(self, o):
+ k = self.equation(x, y, z)
+ if isinstance(o, (LinearEntity, LinearEntity3D)):
+ d = Point3D(o.arbitrary_point(t))
+ e = k.subs([(x, d.x), (y, d.y), (z, d.z)])
+ return e.equals(0)
+ try:
+ o = Point(o, dim=3, strict=True)
+ d = k.xreplace(dict(zip((x, y, z), o.args)))
+ return d.equals(0)
+ except TypeError:
+ return False
+
+ def _eval_evalf(self, prec=15, **options):
+ pt, tup = self.args
+ dps = prec_to_dps(prec)
+ pt = pt.evalf(n=dps, **options)
+ tup = tuple([i.evalf(n=dps, **options) for i in tup])
+ return self.func(pt, normal_vector=tup, evaluate=False)
+
+ def angle_between(self, o):
+ """Angle between the plane and other geometric entity.
+
+ Parameters
+ ==========
+
+ LinearEntity3D, Plane.
+
+ Returns
+ =======
+
+ angle : angle in radians
+
+ Notes
+ =====
+
+ This method accepts only 3D entities as it's parameter, but if you want
+ to calculate the angle between a 2D entity and a plane you should
+ first convert to a 3D entity by projecting onto a desired plane and
+ then proceed to calculate the angle.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D, Plane
+ >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
+ >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
+ >>> a.angle_between(b)
+ -asin(sqrt(21)/6)
+
+ """
+ if isinstance(o, LinearEntity3D):
+ a = Matrix(self.normal_vector)
+ b = Matrix(o.direction_ratio)
+ c = a.dot(b)
+ d = sqrt(sum([i**2 for i in self.normal_vector]))
+ e = sqrt(sum([i**2 for i in o.direction_ratio]))
+ return asin(c/(d*e))
+ if isinstance(o, Plane):
+ a = Matrix(self.normal_vector)
+ b = Matrix(o.normal_vector)
+ c = a.dot(b)
+ d = sqrt(sum([i**2 for i in self.normal_vector]))
+ e = sqrt(sum([i**2 for i in o.normal_vector]))
+ return acos(c/(d*e))
+
+
+ def arbitrary_point(self, u=None, v=None):
+ """ Returns an arbitrary point on the Plane. If given two
+ parameters, the point ranges over the entire plane. If given 1
+ or no parameters, returns a point with one parameter which,
+ when varying from 0 to 2*pi, moves the point in a circle of
+ radius 1 about p1 of the Plane.
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Ray
+ >>> from sympy.abc import u, v, t, r
+ >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
+ >>> p.arbitrary_point(u, v)
+ Point3D(1, u + 1, v + 1)
+ >>> p.arbitrary_point(t)
+ Point3D(1, cos(t) + 1, sin(t) + 1)
+
+ While arbitrary values of u and v can move the point anywhere in
+ the plane, the single-parameter point can be used to construct a
+ ray whose arbitrary point can be located at angle t and radius
+ r from p.p1:
+
+ >>> Ray(p.p1, _).arbitrary_point(r)
+ Point3D(1, r*cos(t) + 1, r*sin(t) + 1)
+
+ Returns
+ =======
+
+ Point3D
+
+ """
+ circle = v is None
+ if circle:
+ u = _symbol(u or 't', real=True)
+ else:
+ u = _symbol(u or 'u', real=True)
+ v = _symbol(v or 'v', real=True)
+ x, y, z = self.normal_vector
+ a, b, c = self.p1.args
+ # x1, y1, z1 is a nonzero vector parallel to the plane
+ if x.is_zero and y.is_zero:
+ x1, y1, z1 = S.One, S.Zero, S.Zero
+ else:
+ x1, y1, z1 = -y, x, S.Zero
+ # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
+ x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
+ if circle:
+ x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
+ x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
+ p = Point3D(a + x1*cos(u) + x2*sin(u), \
+ b + y1*cos(u) + y2*sin(u), \
+ c + z1*cos(u) + z2*sin(u))
+ else:
+ p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
+ return p
+
+
+ @staticmethod
+ def are_concurrent(*planes):
+ """Is a sequence of Planes concurrent?
+
+ Two or more Planes are concurrent if their intersections
+ are a common line.
+
+ Parameters
+ ==========
+
+ planes: list
+
+ Returns
+ =======
+
+ Boolean
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
+ >>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
+ >>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
+ >>> Plane.are_concurrent(a, b)
+ True
+ >>> Plane.are_concurrent(a, b, c)
+ False
+
+ """
+ planes = list(uniq(planes))
+ for i in planes:
+ if not isinstance(i, Plane):
+ raise ValueError('All objects should be Planes but got %s' % i.func)
+ if len(planes) < 2:
+ return False
+ planes = list(planes)
+ first = planes.pop(0)
+ sol = first.intersection(planes[0])
+ if sol == []:
+ return False
+ else:
+ line = sol[0]
+ for i in planes[1:]:
+ l = first.intersection(i)
+ if not l or l[0] not in line:
+ return False
+ return True
+
+
+ def distance(self, o):
+ """Distance between the plane and another geometric entity.
+
+ Parameters
+ ==========
+
+ Point3D, LinearEntity3D, Plane.
+
+ Returns
+ =======
+
+ distance
+
+ Notes
+ =====
+
+ This method accepts only 3D entities as it's parameter, but if you want
+ to calculate the distance between a 2D entity and a plane you should
+ first convert to a 3D entity by projecting onto a desired plane and
+ then proceed to calculate the distance.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D, Plane
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
+ >>> b = Point3D(1, 2, 3)
+ >>> a.distance(b)
+ sqrt(3)
+ >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
+ >>> a.distance(c)
+ 0
+
+ """
+ if self.intersection(o) != []:
+ return S.Zero
+
+ if isinstance(o, (Segment3D, Ray3D)):
+ a, b = o.p1, o.p2
+ pi, = self.intersection(Line3D(a, b))
+ if pi in o:
+ return self.distance(pi)
+ elif a in Segment3D(pi, b):
+ return self.distance(a)
+ else:
+ assert isinstance(o, Segment3D) is True
+ return self.distance(b)
+
+ # following code handles `Point3D`, `LinearEntity3D`, `Plane`
+ a = o if isinstance(o, Point3D) else o.p1
+ n = Point3D(self.normal_vector).unit
+ d = (a - self.p1).dot(n)
+ return abs(d)
+
+
+ def equals(self, o):
+ """
+ Returns True if self and o are the same mathematical entities.
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
+ >>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
+ >>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
+ >>> a.equals(a)
+ True
+ >>> a.equals(b)
+ True
+ >>> a.equals(c)
+ False
+ """
+ if isinstance(o, Plane):
+ a = self.equation()
+ b = o.equation()
+ return cancel(a/b).is_constant()
+ else:
+ return False
+
+
+ def equation(self, x=None, y=None, z=None):
+ """The equation of the Plane.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Plane
+ >>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
+ >>> a.equation()
+ -23*x + 11*y - 2*z + 16
+ >>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
+ >>> a.equation()
+ 6*x + 6*y + 6*z - 42
+
+ """
+ x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')]
+ a = Point3D(x, y, z)
+ b = self.p1.direction_ratio(a)
+ c = self.normal_vector
+ return (sum(i*j for i, j in zip(b, c)))
+
+
+ def intersection(self, o):
+ """ The intersection with other geometrical entity.
+
+ Parameters
+ ==========
+
+ Point, Point3D, LinearEntity, LinearEntity3D, Plane
+
+ Returns
+ =======
+
+ List
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D, Plane
+ >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
+ >>> b = Point3D(1, 2, 3)
+ >>> a.intersection(b)
+ [Point3D(1, 2, 3)]
+ >>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
+ >>> a.intersection(c)
+ [Point3D(2, 2, 2)]
+ >>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
+ >>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3))
+ >>> d.intersection(e)
+ [Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))]
+
+ """
+ if not isinstance(o, GeometryEntity):
+ o = Point(o, dim=3)
+ if isinstance(o, Point):
+ if o in self:
+ return [o]
+ else:
+ return []
+ if isinstance(o, (LinearEntity, LinearEntity3D)):
+ # recast to 3D
+ p1, p2 = o.p1, o.p2
+ if isinstance(o, Segment):
+ o = Segment3D(p1, p2)
+ elif isinstance(o, Ray):
+ o = Ray3D(p1, p2)
+ elif isinstance(o, Line):
+ o = Line3D(p1, p2)
+ else:
+ raise ValueError('unhandled linear entity: %s' % o.func)
+ if o in self:
+ return [o]
+ else:
+ a = Point3D(o.arbitrary_point(t))
+ p1, n = self.p1, Point3D(self.normal_vector)
+
+ # TODO: Replace solve with solveset, when this line is tested
+ c = solve((a - p1).dot(n), t)
+ if not c:
+ return []
+ else:
+ c = [i for i in c if i.is_real is not False]
+ if len(c) > 1:
+ c = [i for i in c if i.is_real]
+ if len(c) != 1:
+ raise Undecidable("not sure which point is real")
+ p = a.subs(t, c[0])
+ if p not in o:
+ return [] # e.g. a segment might not intersect a plane
+ return [p]
+ if isinstance(o, Plane):
+ if self.equals(o):
+ return [self]
+ if self.is_parallel(o):
+ return []
+ else:
+ x, y, z = map(Dummy, 'xyz')
+ a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector])
+ c = list(a.cross(b))
+ d = self.equation(x, y, z)
+ e = o.equation(x, y, z)
+ result = list(linsolve([d, e], x, y, z))[0]
+ for i in (x, y, z): result = result.subs(i, 0)
+ return [Line3D(Point3D(result), direction_ratio=c)]
+
+
+ def is_coplanar(self, o):
+ """ Returns True if `o` is coplanar with self, else False.
+
+ Examples
+ ========
+
+ >>> from sympy import Plane
+ >>> o = (0, 0, 0)
+ >>> p = Plane(o, (1, 1, 1))
+ >>> p2 = Plane(o, (2, 2, 2))
+ >>> p == p2
+ False
+ >>> p.is_coplanar(p2)
+ True
+ """
+ if isinstance(o, Plane):
+ return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z)
+ if isinstance(o, Point3D):
+ return o in self
+ elif isinstance(o, LinearEntity3D):
+ return all(i in self for i in self)
+ elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now
+ return all(i == 0 for i in self.normal_vector[:2])
+
+
+ def is_parallel(self, l):
+ """Is the given geometric entity parallel to the plane?
+
+ Parameters
+ ==========
+
+ LinearEntity3D or Plane
+
+ Returns
+ =======
+
+ Boolean
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
+ >>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
+ >>> a.is_parallel(b)
+ True
+
+ """
+ if isinstance(l, LinearEntity3D):
+ a = l.direction_ratio
+ b = self.normal_vector
+ c = sum([i*j for i, j in zip(a, b)])
+ if c == 0:
+ return True
+ else:
+ return False
+ elif isinstance(l, Plane):
+ a = Matrix(l.normal_vector)
+ b = Matrix(self.normal_vector)
+ if a.cross(b).is_zero_matrix:
+ return True
+ else:
+ return False
+
+
+ def is_perpendicular(self, l):
+ """Is the given geometric entity perpendicualar to the given plane?
+
+ Parameters
+ ==========
+
+ LinearEntity3D or Plane
+
+ Returns
+ =======
+
+ Boolean
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
+ >>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
+ >>> a.is_perpendicular(b)
+ True
+
+ """
+ if isinstance(l, LinearEntity3D):
+ a = Matrix(l.direction_ratio)
+ b = Matrix(self.normal_vector)
+ if a.cross(b).is_zero_matrix:
+ return True
+ else:
+ return False
+ elif isinstance(l, Plane):
+ a = Matrix(l.normal_vector)
+ b = Matrix(self.normal_vector)
+ if a.dot(b) == 0:
+ return True
+ else:
+ return False
+ else:
+ return False
+
+ @property
+ def normal_vector(self):
+ """Normal vector of the given plane.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Plane
+ >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
+ >>> a.normal_vector
+ (-1, 2, -1)
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
+ >>> a.normal_vector
+ (1, 4, 7)
+
+ """
+ return self.args[1]
+
+ @property
+ def p1(self):
+ """The only defining point of the plane. Others can be obtained from the
+ arbitrary_point method.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point3D
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Plane
+ >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
+ >>> a.p1
+ Point3D(1, 1, 1)
+
+ """
+ return self.args[0]
+
+ def parallel_plane(self, pt):
+ """
+ Plane parallel to the given plane and passing through the point pt.
+
+ Parameters
+ ==========
+
+ pt: Point3D
+
+ Returns
+ =======
+
+ Plane
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
+ >>> a.parallel_plane(Point3D(2, 3, 5))
+ Plane(Point3D(2, 3, 5), (2, 4, 6))
+
+ """
+ a = self.normal_vector
+ return Plane(pt, normal_vector=a)
+
+ def perpendicular_line(self, pt):
+ """A line perpendicular to the given plane.
+
+ Parameters
+ ==========
+
+ pt: Point3D
+
+ Returns
+ =======
+
+ Line3D
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
+ >>> a.perpendicular_line(Point3D(9, 8, 7))
+ Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
+
+ """
+ a = self.normal_vector
+ return Line3D(pt, direction_ratio=a)
+
+ def perpendicular_plane(self, *pts):
+ """
+ Return a perpendicular passing through the given points. If the
+ direction ratio between the points is the same as the Plane's normal
+ vector then, to select from the infinite number of possible planes,
+ a third point will be chosen on the z-axis (or the y-axis
+ if the normal vector is already parallel to the z-axis). If less than
+ two points are given they will be supplied as follows: if no point is
+ given then pt1 will be self.p1; if a second point is not given it will
+ be a point through pt1 on a line parallel to the z-axis (if the normal
+ is not already the z-axis, otherwise on the line parallel to the
+ y-axis).
+
+ Parameters
+ ==========
+
+ pts: 0, 1 or 2 Point3D
+
+ Returns
+ =======
+
+ Plane
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
+ >>> Z = (0, 0, 1)
+ >>> p = Plane(a, normal_vector=Z)
+ >>> p.perpendicular_plane(a, b)
+ Plane(Point3D(0, 0, 0), (1, 0, 0))
+ """
+ if len(pts) > 2:
+ raise ValueError('No more than 2 pts should be provided.')
+
+ pts = list(pts)
+ if len(pts) == 0:
+ pts.append(self.p1)
+ if len(pts) == 1:
+ x, y, z = self.normal_vector
+ if x == y == 0:
+ dir = (0, 1, 0)
+ else:
+ dir = (0, 0, 1)
+ pts.append(pts[0] + Point3D(*dir))
+
+ p1, p2 = [Point(i, dim=3) for i in pts]
+ l = Line3D(p1, p2)
+ n = Line3D(p1, direction_ratio=self.normal_vector)
+ if l in n: # XXX should an error be raised instead?
+ # there are infinitely many perpendicular planes;
+ x, y, z = self.normal_vector
+ if x == y == 0:
+ # the z axis is the normal so pick a pt on the y-axis
+ p3 = Point3D(0, 1, 0) # case 1
+ else:
+ # else pick a pt on the z axis
+ p3 = Point3D(0, 0, 1) # case 2
+ # in case that point is already given, move it a bit
+ if p3 in l:
+ p3 *= 2 # case 3
+ else:
+ p3 = p1 + Point3D(*self.normal_vector) # case 4
+ return Plane(p1, p2, p3)
+
+ def projection_line(self, line):
+ """Project the given line onto the plane through the normal plane
+ containing the line.
+
+ Parameters
+ ==========
+
+ LinearEntity or LinearEntity3D
+
+ Returns
+ =======
+
+ Point3D, Line3D, Ray3D or Segment3D
+
+ Notes
+ =====
+
+ For the interaction between 2D and 3D lines(segments, rays), you should
+ convert the line to 3D by using this method. For example for finding the
+ intersection between a 2D and a 3D line, convert the 2D line to a 3D line
+ by projecting it on a required plane and then proceed to find the
+ intersection between those lines.
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Line, Line3D, Point3D
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
+ >>> b = Line(Point3D(1, 1), Point3D(2, 2))
+ >>> a.projection_line(b)
+ Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
+ >>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
+ >>> a.projection_line(c)
+ Point3D(1, 1, 1)
+
+ """
+ if not isinstance(line, (LinearEntity, LinearEntity3D)):
+ raise NotImplementedError('Enter a linear entity only')
+ a, b = self.projection(line.p1), self.projection(line.p2)
+ if a == b:
+ # projection does not imply intersection so for
+ # this case (line parallel to plane's normal) we
+ # return the projection point
+ return a
+ if isinstance(line, (Line, Line3D)):
+ return Line3D(a, b)
+ if isinstance(line, (Ray, Ray3D)):
+ return Ray3D(a, b)
+ if isinstance(line, (Segment, Segment3D)):
+ return Segment3D(a, b)
+
+ def projection(self, pt):
+ """Project the given point onto the plane along the plane normal.
+
+ Parameters
+ ==========
+
+ Point or Point3D
+
+ Returns
+ =======
+
+ Point3D
+
+ Examples
+ ========
+
+ >>> from sympy import Plane, Point3D
+ >>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
+
+ The projection is along the normal vector direction, not the z
+ axis, so (1, 1) does not project to (1, 1, 2) on the plane A:
+
+ >>> b = Point3D(1, 1)
+ >>> A.projection(b)
+ Point3D(5/3, 5/3, 2/3)
+ >>> _ in A
+ True
+
+ But the point (1, 1, 2) projects to (1, 1) on the XY-plane:
+
+ >>> XY = Plane((0, 0, 0), (0, 0, 1))
+ >>> XY.projection((1, 1, 2))
+ Point3D(1, 1, 0)
+ """
+ rv = Point(pt, dim=3)
+ if rv in self:
+ return rv
+ return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0]
+
+ def random_point(self, seed=None):
+ """ Returns a random point on the Plane.
+
+ Returns
+ =======
+
+ Point3D
+
+ Examples
+ ========
+
+ >>> from sympy import Plane
+ >>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
+ >>> r = p.random_point(seed=42) # seed value is optional
+ >>> r.n(3)
+ Point3D(2.29, 0, -1.35)
+
+ The random point can be moved to lie on the circle of radius
+ 1 centered on p1:
+
+ >>> c = p.p1 + (r - p.p1).unit
+ >>> c.distance(p.p1).equals(1)
+ True
+ """
+ if seed is not None:
+ rng = random.Random(seed)
+ else:
+ rng = random
+ params = {
+ x: 2*Rational(rng.gauss(0, 1)) - 1,
+ y: 2*Rational(rng.gauss(0, 1)) - 1}
+ return self.arbitrary_point(x, y).subs(params)
+
+ def parameter_value(self, other, u, v=None):
+ """Return the parameter(s) corresponding to the given point.
+
+ Examples
+ ========
+
+ >>> from sympy import pi, Plane
+ >>> from sympy.abc import t, u, v
+ >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
+
+ By default, the parameter value returned defines a point
+ that is a distance of 1 from the Plane's p1 value and
+ in line with the given point:
+
+ >>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
+ >>> on_circle.distance(p.p1)
+ 1
+ >>> p.parameter_value(on_circle, t)
+ {t: pi/4}
+
+ Moving the point twice as far from p1 does not change
+ the parameter value:
+
+ >>> off_circle = p.p1 + (on_circle - p.p1)*2
+ >>> off_circle.distance(p.p1)
+ 2
+ >>> p.parameter_value(off_circle, t)
+ {t: pi/4}
+
+ If the 2-value parameter is desired, supply the two
+ parameter symbols and a replacement dictionary will
+ be returned:
+
+ >>> p.parameter_value(on_circle, u, v)
+ {u: sqrt(10)/10, v: sqrt(10)/30}
+ >>> p.parameter_value(off_circle, u, v)
+ {u: sqrt(10)/5, v: sqrt(10)/15}
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if not isinstance(other, Point):
+ raise ValueError("other must be a point")
+ if other == self.p1:
+ return other
+ if isinstance(u, Symbol) and v is None:
+ delta = self.arbitrary_point(u) - self.p1
+ eq = delta - (other - self.p1).unit
+ sol = solve(eq, u, dict=True)
+ elif isinstance(u, Symbol) and isinstance(v, Symbol):
+ pt = self.arbitrary_point(u, v)
+ sol = solve(pt - other, (u, v), dict=True)
+ else:
+ raise ValueError('expecting 1 or 2 symbols')
+ if not sol:
+ raise ValueError("Given point is not on %s" % func_name(self))
+ return sol[0] # {t: tval} or {u: uval, v: vval}
+
+ @property
+ def ambient_dimension(self):
+ return self.p1.ambient_dimension
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/point.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/point.py
new file mode 100644
index 0000000000000000000000000000000000000000..81ca7ce61a08d139d2a0d13e545ce008ba9c4298
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/point.py
@@ -0,0 +1,1378 @@
+"""Geometrical Points.
+
+Contains
+========
+Point
+Point2D
+Point3D
+
+When methods of Point require 1 or more points as arguments, they
+can be passed as a sequence of coordinates or Points:
+
+>>> from sympy import Point
+>>> Point(1, 1).is_collinear((2, 2), (3, 4))
+False
+>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
+False
+
+"""
+
+import warnings
+
+from sympy.core import S, sympify, Expr
+from sympy.core.add import Add
+from sympy.core.containers import Tuple
+from sympy.core.numbers import Float
+from sympy.core.parameters import global_parameters
+from sympy.simplify import nsimplify, simplify
+from sympy.geometry.exceptions import GeometryError
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.complexes import im
+from sympy.functions.elementary.trigonometric import cos, sin
+from sympy.matrices import Matrix
+from sympy.matrices.expressions import Transpose
+from sympy.utilities.iterables import uniq, is_sequence
+from sympy.utilities.misc import filldedent, func_name, Undecidable
+
+from .entity import GeometryEntity
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+
+class Point(GeometryEntity):
+ """A point in a n-dimensional Euclidean space.
+
+ Parameters
+ ==========
+
+ coords : sequence of n-coordinate values. In the special
+ case where n=2 or 3, a Point2D or Point3D will be created
+ as appropriate.
+ evaluate : if `True` (default), all floats are turn into
+ exact types.
+ dim : number of coordinates the point should have. If coordinates
+ are unspecified, they are padded with zeros.
+ on_morph : indicates what should happen when the number of
+ coordinates of a point need to be changed by adding or
+ removing zeros. Possible values are `'warn'`, `'error'`, or
+ `ignore` (default). No warning or error is given when `*args`
+ is empty and `dim` is given. An error is always raised when
+ trying to remove nonzero coordinates.
+
+
+ Attributes
+ ==========
+
+ length
+ origin: A `Point` representing the origin of the
+ appropriately-dimensioned space.
+
+ Raises
+ ======
+
+ TypeError : When instantiating with anything but a Point or sequence
+ ValueError : when instantiating with a sequence with length < 2 or
+ when trying to reduce dimensions if keyword `on_morph='error'` is
+ set.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment : Connects two Points
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> from sympy.abc import x
+ >>> Point(1, 2, 3)
+ Point3D(1, 2, 3)
+ >>> Point([1, 2])
+ Point2D(1, 2)
+ >>> Point(0, x)
+ Point2D(0, x)
+ >>> Point(dim=4)
+ Point(0, 0, 0, 0)
+
+ Floats are automatically converted to Rational unless the
+ evaluate flag is False:
+
+ >>> Point(0.5, 0.25)
+ Point2D(1/2, 1/4)
+ >>> Point(0.5, 0.25, evaluate=False)
+ Point2D(0.5, 0.25)
+
+ """
+
+ is_Point = True
+
+ def __new__(cls, *args, **kwargs):
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
+ on_morph = kwargs.get('on_morph', 'ignore')
+
+ # unpack into coords
+ coords = args[0] if len(args) == 1 else args
+
+ # check args and handle quickly handle Point instances
+ if isinstance(coords, Point):
+ # even if we're mutating the dimension of a point, we
+ # don't reevaluate its coordinates
+ evaluate = False
+ if len(coords) == kwargs.get('dim', len(coords)):
+ return coords
+
+ if not is_sequence(coords):
+ raise TypeError(filldedent('''
+ Expecting sequence of coordinates, not `{}`'''
+ .format(func_name(coords))))
+ # A point where only `dim` is specified is initialized
+ # to zeros.
+ if len(coords) == 0 and kwargs.get('dim', None):
+ coords = (S.Zero,)*kwargs.get('dim')
+
+ coords = Tuple(*coords)
+ dim = kwargs.get('dim', len(coords))
+
+ if len(coords) < 2:
+ raise ValueError(filldedent('''
+ Point requires 2 or more coordinates or
+ keyword `dim` > 1.'''))
+ if len(coords) != dim:
+ message = ("Dimension of {} needs to be changed "
+ "from {} to {}.").format(coords, len(coords), dim)
+ if on_morph == 'ignore':
+ pass
+ elif on_morph == "error":
+ raise ValueError(message)
+ elif on_morph == 'warn':
+ warnings.warn(message, stacklevel=2)
+ else:
+ raise ValueError(filldedent('''
+ on_morph value should be 'error',
+ 'warn' or 'ignore'.'''))
+ if any(coords[dim:]):
+ raise ValueError('Nonzero coordinates cannot be removed.')
+ if any(a.is_number and im(a).is_zero is False for a in coords):
+ raise ValueError('Imaginary coordinates are not permitted.')
+ if not all(isinstance(a, Expr) for a in coords):
+ raise TypeError('Coordinates must be valid SymPy expressions.')
+
+ # pad with zeros appropriately
+ coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
+
+ # Turn any Floats into rationals and simplify
+ # any expressions before we instantiate
+ if evaluate:
+ coords = coords.xreplace({
+ f: simplify(nsimplify(f, rational=True))
+ for f in coords.atoms(Float)})
+
+ # return 2D or 3D instances
+ if len(coords) == 2:
+ kwargs['_nocheck'] = True
+ return Point2D(*coords, **kwargs)
+ elif len(coords) == 3:
+ kwargs['_nocheck'] = True
+ return Point3D(*coords, **kwargs)
+
+ # the general Point
+ return GeometryEntity.__new__(cls, *coords)
+
+ def __abs__(self):
+ """Returns the distance between this point and the origin."""
+ origin = Point([0]*len(self))
+ return Point.distance(origin, self)
+
+ def __add__(self, other):
+ """Add other to self by incrementing self's coordinates by
+ those of other.
+
+ Notes
+ =====
+
+ >>> from sympy import Point
+
+ When sequences of coordinates are passed to Point methods, they
+ are converted to a Point internally. This __add__ method does
+ not do that so if floating point values are used, a floating
+ point result (in terms of SymPy Floats) will be returned.
+
+ >>> Point(1, 2) + (.1, .2)
+ Point2D(1.1, 2.2)
+
+ If this is not desired, the `translate` method can be used or
+ another Point can be added:
+
+ >>> Point(1, 2).translate(.1, .2)
+ Point2D(11/10, 11/5)
+ >>> Point(1, 2) + Point(.1, .2)
+ Point2D(11/10, 11/5)
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.translate
+
+ """
+ try:
+ s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
+ except TypeError:
+ raise GeometryError("Don't know how to add {} and a Point object".format(other))
+
+ coords = [simplify(a + b) for a, b in zip(s, o)]
+ return Point(coords, evaluate=False)
+
+ def __contains__(self, item):
+ return item in self.args
+
+ def __truediv__(self, divisor):
+ """Divide point's coordinates by a factor."""
+ divisor = sympify(divisor)
+ coords = [simplify(x/divisor) for x in self.args]
+ return Point(coords, evaluate=False)
+
+ def __eq__(self, other):
+ if not isinstance(other, Point) or len(self.args) != len(other.args):
+ return False
+ return self.args == other.args
+
+ def __getitem__(self, key):
+ return self.args[key]
+
+ def __hash__(self):
+ return hash(self.args)
+
+ def __iter__(self):
+ return self.args.__iter__()
+
+ def __len__(self):
+ return len(self.args)
+
+ def __mul__(self, factor):
+ """Multiply point's coordinates by a factor.
+
+ Notes
+ =====
+
+ >>> from sympy import Point
+
+ When multiplying a Point by a floating point number,
+ the coordinates of the Point will be changed to Floats:
+
+ >>> Point(1, 2)*0.1
+ Point2D(0.1, 0.2)
+
+ If this is not desired, the `scale` method can be used or
+ else only multiply or divide by integers:
+
+ >>> Point(1, 2).scale(1.1, 1.1)
+ Point2D(11/10, 11/5)
+ >>> Point(1, 2)*11/10
+ Point2D(11/10, 11/5)
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.scale
+ """
+ factor = sympify(factor)
+ coords = [simplify(x*factor) for x in self.args]
+ return Point(coords, evaluate=False)
+
+ def __rmul__(self, factor):
+ """Multiply a factor by point's coordinates."""
+ return self.__mul__(factor)
+
+ def __neg__(self):
+ """Negate the point."""
+ coords = [-x for x in self.args]
+ return Point(coords, evaluate=False)
+
+ def __sub__(self, other):
+ """Subtract two points, or subtract a factor from this point's
+ coordinates."""
+ return self + [-x for x in other]
+
+ @classmethod
+ def _normalize_dimension(cls, *points, **kwargs):
+ """Ensure that points have the same dimension.
+ By default `on_morph='warn'` is passed to the
+ `Point` constructor."""
+ # if we have a built-in ambient dimension, use it
+ dim = getattr(cls, '_ambient_dimension', None)
+ # override if we specified it
+ dim = kwargs.get('dim', dim)
+ # if no dim was given, use the highest dimensional point
+ if dim is None:
+ dim = max(i.ambient_dimension for i in points)
+ if all(i.ambient_dimension == dim for i in points):
+ return list(points)
+ kwargs['dim'] = dim
+ kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
+ return [Point(i, **kwargs) for i in points]
+
+ @staticmethod
+ def affine_rank(*args):
+ """The affine rank of a set of points is the dimension
+ of the smallest affine space containing all the points.
+ For example, if the points lie on a line (and are not all
+ the same) their affine rank is 1. If the points lie on a plane
+ but not a line, their affine rank is 2. By convention, the empty
+ set has affine rank -1."""
+
+ if len(args) == 0:
+ return -1
+ # make sure we're genuinely points
+ # and translate every point to the origin
+ points = Point._normalize_dimension(*[Point(i) for i in args])
+ origin = points[0]
+ points = [i - origin for i in points[1:]]
+
+ m = Matrix([i.args for i in points])
+ # XXX fragile -- what is a better way?
+ return m.rank(iszerofunc = lambda x:
+ abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
+
+ @property
+ def ambient_dimension(self):
+ """Number of components this point has."""
+ return getattr(self, '_ambient_dimension', len(self))
+
+ @classmethod
+ def are_coplanar(cls, *points):
+ """Return True if there exists a plane in which all the points
+ lie. A trivial True value is returned if `len(points) < 3` or
+ all Points are 2-dimensional.
+
+ Parameters
+ ==========
+
+ A set of points
+
+ Raises
+ ======
+
+ ValueError : if less than 3 unique points are given
+
+ Returns
+ =======
+
+ boolean
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p1 = Point3D(1, 2, 2)
+ >>> p2 = Point3D(2, 7, 2)
+ >>> p3 = Point3D(0, 0, 2)
+ >>> p4 = Point3D(1, 1, 2)
+ >>> Point3D.are_coplanar(p1, p2, p3, p4)
+ True
+ >>> p5 = Point3D(0, 1, 3)
+ >>> Point3D.are_coplanar(p1, p2, p3, p5)
+ False
+
+ """
+ if len(points) <= 1:
+ return True
+
+ points = cls._normalize_dimension(*[Point(i) for i in points])
+ # quick exit if we are in 2D
+ if points[0].ambient_dimension == 2:
+ return True
+ points = list(uniq(points))
+ return Point.affine_rank(*points) <= 2
+
+ def distance(self, other):
+ """The Euclidean distance between self and another GeometricEntity.
+
+ Returns
+ =======
+
+ distance : number or symbolic expression.
+
+ Raises
+ ======
+
+ TypeError : if other is not recognized as a GeometricEntity or is a
+ GeometricEntity for which distance is not defined.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.length
+ sympy.geometry.point.Point.taxicab_distance
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Line
+ >>> p1, p2 = Point(1, 1), Point(4, 5)
+ >>> l = Line((3, 1), (2, 2))
+ >>> p1.distance(p2)
+ 5
+ >>> p1.distance(l)
+ sqrt(2)
+
+ The computed distance may be symbolic, too:
+
+ >>> from sympy.abc import x, y
+ >>> p3 = Point(x, y)
+ >>> p3.distance((0, 0))
+ sqrt(x**2 + y**2)
+
+ """
+ if not isinstance(other, GeometryEntity):
+ try:
+ other = Point(other, dim=self.ambient_dimension)
+ except TypeError:
+ raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
+ if isinstance(other, Point):
+ s, p = Point._normalize_dimension(self, Point(other))
+ return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
+ distance = getattr(other, 'distance', None)
+ if distance is None:
+ raise TypeError("distance between Point and %s is not defined" % type(other))
+ return distance(self)
+
+ def dot(self, p):
+ """Return dot product of self with another Point."""
+ if not is_sequence(p):
+ p = Point(p) # raise the error via Point
+ return Add(*(a*b for a, b in zip(self, p)))
+
+ def equals(self, other):
+ """Returns whether the coordinates of self and other agree."""
+ # a point is equal to another point if all its components are equal
+ if not isinstance(other, Point) or len(self) != len(other):
+ return False
+ return all(a.equals(b) for a, b in zip(self, other))
+
+ def _eval_evalf(self, prec=15, **options):
+ """Evaluate the coordinates of the point.
+
+ This method will, where possible, create and return a new Point
+ where the coordinates are evaluated as floating point numbers to
+ the precision indicated (default=15).
+
+ Parameters
+ ==========
+
+ prec : int
+
+ Returns
+ =======
+
+ point : Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Rational
+ >>> p1 = Point(Rational(1, 2), Rational(3, 2))
+ >>> p1
+ Point2D(1/2, 3/2)
+ >>> p1.evalf()
+ Point2D(0.5, 1.5)
+
+ """
+ dps = prec_to_dps(prec)
+ coords = [x.evalf(n=dps, **options) for x in self.args]
+ return Point(*coords, evaluate=False)
+
+ def intersection(self, other):
+ """The intersection between this point and another GeometryEntity.
+
+ Parameters
+ ==========
+
+ other : GeometryEntity or sequence of coordinates
+
+ Returns
+ =======
+
+ intersection : list of Points
+
+ Notes
+ =====
+
+ The return value will either be an empty list if there is no
+ intersection, otherwise it will contain this point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
+ >>> p1.intersection(p2)
+ []
+ >>> p1.intersection(p3)
+ [Point2D(0, 0)]
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other)
+ if isinstance(other, Point):
+ if self == other:
+ return [self]
+ p1, p2 = Point._normalize_dimension(self, other)
+ if p1 == self and p1 == p2:
+ return [self]
+ return []
+ return other.intersection(self)
+
+ def is_collinear(self, *args):
+ """Returns `True` if there exists a line
+ that contains `self` and `points`. Returns `False` otherwise.
+ A trivially True value is returned if no points are given.
+
+ Parameters
+ ==========
+
+ args : sequence of Points
+
+ Returns
+ =======
+
+ is_collinear : boolean
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> from sympy.abc import x
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
+ >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
+ >>> Point.is_collinear(p1, p2, p3, p4)
+ True
+ >>> Point.is_collinear(p1, p2, p3, p5)
+ False
+
+ """
+ points = (self,) + args
+ points = Point._normalize_dimension(*[Point(i) for i in points])
+ points = list(uniq(points))
+ return Point.affine_rank(*points) <= 1
+
+ def is_concyclic(self, *args):
+ """Do `self` and the given sequence of points lie in a circle?
+
+ Returns True if the set of points are concyclic and
+ False otherwise. A trivial value of True is returned
+ if there are fewer than 2 other points.
+
+ Parameters
+ ==========
+
+ args : sequence of Points
+
+ Returns
+ =======
+
+ is_concyclic : boolean
+
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+
+ Define 4 points that are on the unit circle:
+
+ >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
+
+ >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
+ True
+
+ Define a point not on that circle:
+
+ >>> p = Point(1, 1)
+
+ >>> p.is_concyclic(p1, p2, p3)
+ False
+
+ """
+ points = (self,) + args
+ points = Point._normalize_dimension(*[Point(i) for i in points])
+ points = list(uniq(points))
+ if not Point.affine_rank(*points) <= 2:
+ return False
+ origin = points[0]
+ points = [p - origin for p in points]
+ # points are concyclic if they are coplanar and
+ # there is a point c so that ||p_i-c|| == ||p_j-c|| for all
+ # i and j. Rearranging this equation gives us the following
+ # condition: the matrix `mat` must not a pivot in the last
+ # column.
+ mat = Matrix([list(i) + [i.dot(i)] for i in points])
+ rref, pivots = mat.rref()
+ if len(origin) not in pivots:
+ return True
+ return False
+
+ @property
+ def is_nonzero(self):
+ """True if any coordinate is nonzero, False if every coordinate is zero,
+ and None if it cannot be determined."""
+ is_zero = self.is_zero
+ if is_zero is None:
+ return None
+ return not is_zero
+
+ def is_scalar_multiple(self, p):
+ """Returns whether each coordinate of `self` is a scalar
+ multiple of the corresponding coordinate in point p.
+ """
+ s, o = Point._normalize_dimension(self, Point(p))
+ # 2d points happen a lot, so optimize this function call
+ if s.ambient_dimension == 2:
+ (x1, y1), (x2, y2) = s.args, o.args
+ rv = (x1*y2 - x2*y1).equals(0)
+ if rv is None:
+ raise Undecidable(filldedent(
+ '''Cannot determine if %s is a scalar multiple of
+ %s''' % (s, o)))
+
+ # if the vectors p1 and p2 are linearly dependent, then they must
+ # be scalar multiples of each other
+ m = Matrix([s.args, o.args])
+ return m.rank() < 2
+
+ @property
+ def is_zero(self):
+ """True if every coordinate is zero, False if any coordinate is not zero,
+ and None if it cannot be determined."""
+ nonzero = [x.is_nonzero for x in self.args]
+ if any(nonzero):
+ return False
+ if any(x is None for x in nonzero):
+ return None
+ return True
+
+ @property
+ def length(self):
+ """
+ Treating a Point as a Line, this returns 0 for the length of a Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> p = Point(0, 1)
+ >>> p.length
+ 0
+ """
+ return S.Zero
+
+ def midpoint(self, p):
+ """The midpoint between self and point p.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ midpoint : Point
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.midpoint
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> p1, p2 = Point(1, 1), Point(13, 5)
+ >>> p1.midpoint(p2)
+ Point2D(7, 3)
+
+ """
+ s, p = Point._normalize_dimension(self, Point(p))
+ return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
+
+ @property
+ def origin(self):
+ """A point of all zeros of the same ambient dimension
+ as the current point"""
+ return Point([0]*len(self), evaluate=False)
+
+ @property
+ def orthogonal_direction(self):
+ """Returns a non-zero point that is orthogonal to the
+ line containing `self` and the origin.
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Point
+ >>> a = Point(1, 2, 3)
+ >>> a.orthogonal_direction
+ Point3D(-2, 1, 0)
+ >>> b = _
+ >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
+ True
+ """
+ dim = self.ambient_dimension
+ # if a coordinate is zero, we can put a 1 there and zeros elsewhere
+ if self[0].is_zero:
+ return Point([1] + (dim - 1)*[0])
+ if self[1].is_zero:
+ return Point([0,1] + (dim - 2)*[0])
+ # if the first two coordinates aren't zero, we can create a non-zero
+ # orthogonal vector by swapping them, negating one, and padding with zeros
+ return Point([-self[1], self[0]] + (dim - 2)*[0])
+
+ @staticmethod
+ def project(a, b):
+ """Project the point `a` onto the line between the origin
+ and point `b` along the normal direction.
+
+ Parameters
+ ==========
+
+ a : Point
+ b : Point
+
+ Returns
+ =======
+
+ p : Point
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.projection
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Point
+ >>> a = Point(1, 2)
+ >>> b = Point(2, 5)
+ >>> z = a.origin
+ >>> p = Point.project(a, b)
+ >>> Line(p, a).is_perpendicular(Line(p, b))
+ True
+ >>> Point.is_collinear(z, p, b)
+ True
+ """
+ a, b = Point._normalize_dimension(Point(a), Point(b))
+ if b.is_zero:
+ raise ValueError("Cannot project to the zero vector.")
+ return b*(a.dot(b) / b.dot(b))
+
+ def taxicab_distance(self, p):
+ """The Taxicab Distance from self to point p.
+
+ Returns the sum of the horizontal and vertical distances to point p.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ taxicab_distance : The sum of the horizontal
+ and vertical distances to point p.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.distance
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> p1, p2 = Point(1, 1), Point(4, 5)
+ >>> p1.taxicab_distance(p2)
+ 7
+
+ """
+ s, p = Point._normalize_dimension(self, Point(p))
+ return Add(*(abs(a - b) for a, b in zip(s, p)))
+
+ def canberra_distance(self, p):
+ """The Canberra Distance from self to point p.
+
+ Returns the weighted sum of horizontal and vertical distances to
+ point p.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ canberra_distance : The weighted sum of horizontal and vertical
+ distances to point p. The weight used is the sum of absolute values
+ of the coordinates.
+
+ Examples
+ ========
+
+ >>> from sympy import Point
+ >>> p1, p2 = Point(1, 1), Point(3, 3)
+ >>> p1.canberra_distance(p2)
+ 1
+ >>> p1, p2 = Point(0, 0), Point(3, 3)
+ >>> p1.canberra_distance(p2)
+ 2
+
+ Raises
+ ======
+
+ ValueError when both vectors are zero.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.distance
+
+ """
+
+ s, p = Point._normalize_dimension(self, Point(p))
+ if self.is_zero and p.is_zero:
+ raise ValueError("Cannot project to the zero vector.")
+ return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
+
+ @property
+ def unit(self):
+ """Return the Point that is in the same direction as `self`
+ and a distance of 1 from the origin"""
+ return self / abs(self)
+
+
+class Point2D(Point):
+ """A point in a 2-dimensional Euclidean space.
+
+ Parameters
+ ==========
+
+ coords
+ A sequence of 2 coordinate values.
+
+ Attributes
+ ==========
+
+ x
+ y
+ length
+
+ Raises
+ ======
+
+ TypeError
+ When trying to add or subtract points with different dimensions.
+ When trying to create a point with more than two dimensions.
+ When `intersection` is called with object other than a Point.
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment : Connects two Points
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> from sympy.abc import x
+ >>> Point2D(1, 2)
+ Point2D(1, 2)
+ >>> Point2D([1, 2])
+ Point2D(1, 2)
+ >>> Point2D(0, x)
+ Point2D(0, x)
+
+ Floats are automatically converted to Rational unless the
+ evaluate flag is False:
+
+ >>> Point2D(0.5, 0.25)
+ Point2D(1/2, 1/4)
+ >>> Point2D(0.5, 0.25, evaluate=False)
+ Point2D(0.5, 0.25)
+
+ """
+
+ _ambient_dimension = 2
+
+ def __new__(cls, *args, _nocheck=False, **kwargs):
+ if not _nocheck:
+ kwargs['dim'] = 2
+ args = Point(*args, **kwargs)
+ return GeometryEntity.__new__(cls, *args)
+
+ def __contains__(self, item):
+ return item == self
+
+ @property
+ def bounds(self):
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
+ rectangle for the geometric figure.
+
+ """
+
+ return (self.x, self.y, self.x, self.y)
+
+ def rotate(self, angle, pt=None):
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
+
+ See Also
+ ========
+
+ translate, scale
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D, pi
+ >>> t = Point2D(1, 0)
+ >>> t.rotate(pi/2)
+ Point2D(0, 1)
+ >>> t.rotate(pi/2, (2, 0))
+ Point2D(2, -1)
+
+ """
+ c = cos(angle)
+ s = sin(angle)
+
+ rv = self
+ if pt is not None:
+ pt = Point(pt, dim=2)
+ rv -= pt
+ x, y = rv.args
+ rv = Point(c*x - s*y, s*x + c*y)
+ if pt is not None:
+ rv += pt
+ return rv
+
+ def scale(self, x=1, y=1, pt=None):
+ """Scale the coordinates of the Point by multiplying by
+ ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
+ and then adding ``pt`` back again (i.e. ``pt`` is the point of
+ reference for the scaling).
+
+ See Also
+ ========
+
+ rotate, translate
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> t = Point2D(1, 1)
+ >>> t.scale(2)
+ Point2D(2, 1)
+ >>> t.scale(2, 2)
+ Point2D(2, 2)
+
+ """
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ return Point(self.x*x, self.y*y)
+
+ def transform(self, matrix):
+ """Return the point after applying the transformation described
+ by the 3x3 Matrix, ``matrix``.
+
+ See Also
+ ========
+ sympy.geometry.point.Point2D.rotate
+ sympy.geometry.point.Point2D.scale
+ sympy.geometry.point.Point2D.translate
+ """
+ if not (matrix.is_Matrix and matrix.shape == (3, 3)):
+ raise ValueError("matrix must be a 3x3 matrix")
+ x, y = self.args
+ return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
+
+ def translate(self, x=0, y=0):
+ """Shift the Point by adding x and y to the coordinates of the Point.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point2D.rotate, scale
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> t = Point2D(0, 1)
+ >>> t.translate(2)
+ Point2D(2, 1)
+ >>> t.translate(2, 2)
+ Point2D(2, 3)
+ >>> t + Point2D(2, 2)
+ Point2D(2, 3)
+
+ """
+ return Point(self.x + x, self.y + y)
+
+ @property
+ def coordinates(self):
+ """
+ Returns the two coordinates of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> p = Point2D(0, 1)
+ >>> p.coordinates
+ (0, 1)
+ """
+ return self.args
+
+ @property
+ def x(self):
+ """
+ Returns the X coordinate of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> p = Point2D(0, 1)
+ >>> p.x
+ 0
+ """
+ return self.args[0]
+
+ @property
+ def y(self):
+ """
+ Returns the Y coordinate of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point2D
+ >>> p = Point2D(0, 1)
+ >>> p.y
+ 1
+ """
+ return self.args[1]
+
+class Point3D(Point):
+ """A point in a 3-dimensional Euclidean space.
+
+ Parameters
+ ==========
+
+ coords
+ A sequence of 3 coordinate values.
+
+ Attributes
+ ==========
+
+ x
+ y
+ z
+ length
+
+ Raises
+ ======
+
+ TypeError
+ When trying to add or subtract points with different dimensions.
+ When `intersection` is called with object other than a Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> from sympy.abc import x
+ >>> Point3D(1, 2, 3)
+ Point3D(1, 2, 3)
+ >>> Point3D([1, 2, 3])
+ Point3D(1, 2, 3)
+ >>> Point3D(0, x, 3)
+ Point3D(0, x, 3)
+
+ Floats are automatically converted to Rational unless the
+ evaluate flag is False:
+
+ >>> Point3D(0.5, 0.25, 2)
+ Point3D(1/2, 1/4, 2)
+ >>> Point3D(0.5, 0.25, 3, evaluate=False)
+ Point3D(0.5, 0.25, 3)
+
+ """
+
+ _ambient_dimension = 3
+
+ def __new__(cls, *args, _nocheck=False, **kwargs):
+ if not _nocheck:
+ kwargs['dim'] = 3
+ args = Point(*args, **kwargs)
+ return GeometryEntity.__new__(cls, *args)
+
+ def __contains__(self, item):
+ return item == self
+
+ @staticmethod
+ def are_collinear(*points):
+ """Is a sequence of points collinear?
+
+ Test whether or not a set of points are collinear. Returns True if
+ the set of points are collinear, or False otherwise.
+
+ Parameters
+ ==========
+
+ points : sequence of Point
+
+ Returns
+ =======
+
+ are_collinear : boolean
+
+ See Also
+ ========
+
+ sympy.geometry.line.Line3D
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> from sympy.abc import x
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
+ >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
+ >>> Point3D.are_collinear(p1, p2, p3, p4)
+ True
+ >>> Point3D.are_collinear(p1, p2, p3, p5)
+ False
+ """
+ return Point.is_collinear(*points)
+
+ def direction_cosine(self, point):
+ """
+ Gives the direction cosine between 2 points
+
+ Parameters
+ ==========
+
+ p : Point3D
+
+ Returns
+ =======
+
+ list
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p1 = Point3D(1, 2, 3)
+ >>> p1.direction_cosine(Point3D(2, 3, 5))
+ [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
+ """
+ a = self.direction_ratio(point)
+ b = sqrt(Add(*(i**2 for i in a)))
+ return [(point.x - self.x) / b,(point.y - self.y) / b,
+ (point.z - self.z) / b]
+
+ def direction_ratio(self, point):
+ """
+ Gives the direction ratio between 2 points
+
+ Parameters
+ ==========
+
+ p : Point3D
+
+ Returns
+ =======
+
+ list
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p1 = Point3D(1, 2, 3)
+ >>> p1.direction_ratio(Point3D(2, 3, 5))
+ [1, 1, 2]
+ """
+ return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
+
+ def intersection(self, other):
+ """The intersection between this point and another GeometryEntity.
+
+ Parameters
+ ==========
+
+ other : GeometryEntity or sequence of coordinates
+
+ Returns
+ =======
+
+ intersection : list of Points
+
+ Notes
+ =====
+
+ The return value will either be an empty list if there is no
+ intersection, otherwise it will contain this point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
+ >>> p1.intersection(p2)
+ []
+ >>> p1.intersection(p3)
+ [Point3D(0, 0, 0)]
+
+ """
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=3)
+ if isinstance(other, Point3D):
+ if self == other:
+ return [self]
+ return []
+ return other.intersection(self)
+
+ def scale(self, x=1, y=1, z=1, pt=None):
+ """Scale the coordinates of the Point by multiplying by
+ ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
+ and then adding ``pt`` back again (i.e. ``pt`` is the point of
+ reference for the scaling).
+
+ See Also
+ ========
+
+ translate
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> t = Point3D(1, 1, 1)
+ >>> t.scale(2)
+ Point3D(2, 1, 1)
+ >>> t.scale(2, 2)
+ Point3D(2, 2, 1)
+
+ """
+ if pt:
+ pt = Point3D(pt)
+ return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
+ return Point3D(self.x*x, self.y*y, self.z*z)
+
+ def transform(self, matrix):
+ """Return the point after applying the transformation described
+ by the 4x4 Matrix, ``matrix``.
+
+ See Also
+ ========
+ sympy.geometry.point.Point3D.scale
+ sympy.geometry.point.Point3D.translate
+ """
+ if not (matrix.is_Matrix and matrix.shape == (4, 4)):
+ raise ValueError("matrix must be a 4x4 matrix")
+ x, y, z = self.args
+ m = Transpose(matrix)
+ return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
+
+ def translate(self, x=0, y=0, z=0):
+ """Shift the Point by adding x and y to the coordinates of the Point.
+
+ See Also
+ ========
+
+ scale
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> t = Point3D(0, 1, 1)
+ >>> t.translate(2)
+ Point3D(2, 1, 1)
+ >>> t.translate(2, 2)
+ Point3D(2, 3, 1)
+ >>> t + Point3D(2, 2, 2)
+ Point3D(2, 3, 3)
+
+ """
+ return Point3D(self.x + x, self.y + y, self.z + z)
+
+ @property
+ def coordinates(self):
+ """
+ Returns the three coordinates of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p = Point3D(0, 1, 2)
+ >>> p.coordinates
+ (0, 1, 2)
+ """
+ return self.args
+
+ @property
+ def x(self):
+ """
+ Returns the X coordinate of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p = Point3D(0, 1, 3)
+ >>> p.x
+ 0
+ """
+ return self.args[0]
+
+ @property
+ def y(self):
+ """
+ Returns the Y coordinate of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p = Point3D(0, 1, 2)
+ >>> p.y
+ 1
+ """
+ return self.args[1]
+
+ @property
+ def z(self):
+ """
+ Returns the Z coordinate of the Point.
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D
+ >>> p = Point3D(0, 1, 1)
+ >>> p.z
+ 1
+ """
+ return self.args[2]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..cbabc649152a3c353a37225d342064634fbb5805
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py
@@ -0,0 +1,12 @@
+"""ASCII-ART 2D pretty-printer"""
+
+from .pretty import (pretty, pretty_print, pprint, pprint_use_unicode,
+ pprint_try_use_unicode, pager_print)
+
+# if unicode output is available -- let's use it
+pprint_try_use_unicode()
+
+__all__ = [
+ 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
+ 'pprint_try_use_unicode', 'pager_print',
+]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a65db216ab9574ff176d84e573c90b6bec002d83
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..edd5084c529d7f0c4b22aa6f0cd9f186127b0af8
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..13965552a948ce0cdb14516db01195e3f58a26ae
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..58ecafe8274b69ffccc5999433c92ec12cf989c0
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py
new file mode 100644
index 0000000000000000000000000000000000000000..e934712b88111bf60489c319db4ba71f9aae702f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py
@@ -0,0 +1,2939 @@
+import itertools
+
+from sympy.core import S
+from sympy.core.add import Add
+from sympy.core.containers import Tuple
+from sympy.core.function import Function
+from sympy.core.mul import Mul
+from sympy.core.numbers import Number, Rational
+from sympy.core.power import Pow
+from sympy.core.sorting import default_sort_key
+from sympy.core.symbol import Symbol
+from sympy.core.sympify import SympifyError
+from sympy.printing.conventions import requires_partial
+from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
+from sympy.printing.printer import Printer, print_function
+from sympy.printing.str import sstr
+from sympy.utilities.iterables import has_variety
+from sympy.utilities.exceptions import sympy_deprecation_warning
+
+from sympy.printing.pretty.stringpict import prettyForm, stringPict
+from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \
+ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
+ pretty_try_use_unicode, annotated
+
+# rename for usage from outside
+pprint_use_unicode = pretty_use_unicode
+pprint_try_use_unicode = pretty_try_use_unicode
+
+
+class PrettyPrinter(Printer):
+ """Printer, which converts an expression into 2D ASCII-art figure."""
+ printmethod = "_pretty"
+
+ _default_settings = {
+ "order": None,
+ "full_prec": "auto",
+ "use_unicode": None,
+ "wrap_line": True,
+ "num_columns": None,
+ "use_unicode_sqrt_char": True,
+ "root_notation": True,
+ "mat_symbol_style": "plain",
+ "imaginary_unit": "i",
+ "perm_cyclic": True
+ }
+
+ def __init__(self, settings=None):
+ Printer.__init__(self, settings)
+
+ if not isinstance(self._settings['imaginary_unit'], str):
+ raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
+ elif self._settings['imaginary_unit'] not in ("i", "j"):
+ raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
+
+ def emptyPrinter(self, expr):
+ return prettyForm(str(expr))
+
+ @property
+ def _use_unicode(self):
+ if self._settings['use_unicode']:
+ return True
+ else:
+ return pretty_use_unicode()
+
+ def doprint(self, expr):
+ return self._print(expr).render(**self._settings)
+
+ # empty op so _print(stringPict) returns the same
+ def _print_stringPict(self, e):
+ return e
+
+ def _print_basestring(self, e):
+ return prettyForm(e)
+
+ def _print_atan2(self, e):
+ pform = prettyForm(*self._print_seq(e.args).parens())
+ pform = prettyForm(*pform.left('atan2'))
+ return pform
+
+ def _print_Symbol(self, e, bold_name=False):
+ symb = pretty_symbol(e.name, bold_name)
+ return prettyForm(symb)
+ _print_RandomSymbol = _print_Symbol
+ def _print_MatrixSymbol(self, e):
+ return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
+
+ def _print_Float(self, e):
+ # we will use StrPrinter's Float printer, but we need to handle the
+ # full_prec ourselves, according to the self._print_level
+ full_prec = self._settings["full_prec"]
+ if full_prec == "auto":
+ full_prec = self._print_level == 1
+ return prettyForm(sstr(e, full_prec=full_prec))
+
+ def _print_Cross(self, e):
+ vec1 = e._expr1
+ vec2 = e._expr2
+ pform = self._print(vec2)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
+ pform = prettyForm(*pform.left(')'))
+ pform = prettyForm(*pform.left(self._print(vec1)))
+ pform = prettyForm(*pform.left('('))
+ return pform
+
+ def _print_Curl(self, e):
+ vec = e._expr
+ pform = self._print(vec)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
+ pform = prettyForm(*pform.left(self._print(U('NABLA'))))
+ return pform
+
+ def _print_Divergence(self, e):
+ vec = e._expr
+ pform = self._print(vec)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
+ pform = prettyForm(*pform.left(self._print(U('NABLA'))))
+ return pform
+
+ def _print_Dot(self, e):
+ vec1 = e._expr1
+ vec2 = e._expr2
+ pform = self._print(vec2)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
+ pform = prettyForm(*pform.left(')'))
+ pform = prettyForm(*pform.left(self._print(vec1)))
+ pform = prettyForm(*pform.left('('))
+ return pform
+
+ def _print_Gradient(self, e):
+ func = e._expr
+ pform = self._print(func)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('NABLA'))))
+ return pform
+
+ def _print_Laplacian(self, e):
+ func = e._expr
+ pform = self._print(func)
+ pform = prettyForm(*pform.left('('))
+ pform = prettyForm(*pform.right(')'))
+ pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
+ return pform
+
+ def _print_Atom(self, e):
+ try:
+ # print atoms like Exp1 or Pi
+ return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
+ except KeyError:
+ return self.emptyPrinter(e)
+
+ # Infinity inherits from Number, so we have to override _print_XXX order
+ _print_Infinity = _print_Atom
+ _print_NegativeInfinity = _print_Atom
+ _print_EmptySet = _print_Atom
+ _print_Naturals = _print_Atom
+ _print_Naturals0 = _print_Atom
+ _print_Integers = _print_Atom
+ _print_Rationals = _print_Atom
+ _print_Complexes = _print_Atom
+
+ _print_EmptySequence = _print_Atom
+
+ def _print_Reals(self, e):
+ if self._use_unicode:
+ return self._print_Atom(e)
+ else:
+ inf_list = ['-oo', 'oo']
+ return self._print_seq(inf_list, '(', ')')
+
+ def _print_subfactorial(self, e):
+ x = e.args[0]
+ pform = self._print(x)
+ # Add parentheses if needed
+ if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left('!'))
+ return pform
+
+ def _print_factorial(self, e):
+ x = e.args[0]
+ pform = self._print(x)
+ # Add parentheses if needed
+ if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.right('!'))
+ return pform
+
+ def _print_factorial2(self, e):
+ x = e.args[0]
+ pform = self._print(x)
+ # Add parentheses if needed
+ if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.right('!!'))
+ return pform
+
+ def _print_binomial(self, e):
+ n, k = e.args
+
+ n_pform = self._print(n)
+ k_pform = self._print(k)
+
+ bar = ' '*max(n_pform.width(), k_pform.width())
+
+ pform = prettyForm(*k_pform.above(bar))
+ pform = prettyForm(*pform.above(n_pform))
+ pform = prettyForm(*pform.parens('(', ')'))
+
+ pform.baseline = (pform.baseline + 1)//2
+
+ return pform
+
+ def _print_Relational(self, e):
+ op = prettyForm(' ' + xsym(e.rel_op) + ' ')
+
+ l = self._print(e.lhs)
+ r = self._print(e.rhs)
+ pform = prettyForm(*stringPict.next(l, op, r), binding=prettyForm.OPEN)
+ return pform
+
+ def _print_Not(self, e):
+ from sympy.logic.boolalg import (Equivalent, Implies)
+ if self._use_unicode:
+ arg = e.args[0]
+ pform = self._print(arg)
+ if isinstance(arg, Equivalent):
+ return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
+ if isinstance(arg, Implies):
+ return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}")
+
+ if arg.is_Boolean and not arg.is_Not:
+ pform = prettyForm(*pform.parens())
+
+ return prettyForm(*pform.left("\N{NOT SIGN}"))
+ else:
+ return self._print_Function(e)
+
+ def __print_Boolean(self, e, char, sort=True):
+ args = e.args
+ if sort:
+ args = sorted(e.args, key=default_sort_key)
+ arg = args[0]
+ pform = self._print(arg)
+
+ if arg.is_Boolean and not arg.is_Not:
+ pform = prettyForm(*pform.parens())
+
+ for arg in args[1:]:
+ pform_arg = self._print(arg)
+
+ if arg.is_Boolean and not arg.is_Not:
+ pform_arg = prettyForm(*pform_arg.parens())
+
+ pform = prettyForm(*pform.right(' %s ' % char))
+ pform = prettyForm(*pform.right(pform_arg))
+
+ return pform
+
+ def _print_And(self, e):
+ if self._use_unicode:
+ return self.__print_Boolean(e, "\N{LOGICAL AND}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_Or(self, e):
+ if self._use_unicode:
+ return self.__print_Boolean(e, "\N{LOGICAL OR}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_Xor(self, e):
+ if self._use_unicode:
+ return self.__print_Boolean(e, "\N{XOR}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_Nand(self, e):
+ if self._use_unicode:
+ return self.__print_Boolean(e, "\N{NAND}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_Nor(self, e):
+ if self._use_unicode:
+ return self.__print_Boolean(e, "\N{NOR}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_Implies(self, e, altchar=None):
+ if self._use_unicode:
+ return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False)
+ else:
+ return self._print_Function(e)
+
+ def _print_Equivalent(self, e, altchar=None):
+ if self._use_unicode:
+ return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}")
+ else:
+ return self._print_Function(e, sort=True)
+
+ def _print_conjugate(self, e):
+ pform = self._print(e.args[0])
+ return prettyForm( *pform.above( hobj('_', pform.width())) )
+
+ def _print_Abs(self, e):
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens('|', '|'))
+ return pform
+
+ def _print_floor(self, e):
+ if self._use_unicode:
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
+ return pform
+ else:
+ return self._print_Function(e)
+
+ def _print_ceiling(self, e):
+ if self._use_unicode:
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens('lceil', 'rceil'))
+ return pform
+ else:
+ return self._print_Function(e)
+
+ def _print_Derivative(self, deriv):
+ if requires_partial(deriv.expr) and self._use_unicode:
+ deriv_symbol = U('PARTIAL DIFFERENTIAL')
+ else:
+ deriv_symbol = r'd'
+ x = None
+ count_total_deriv = 0
+
+ for sym, num in reversed(deriv.variable_count):
+ s = self._print(sym)
+ ds = prettyForm(*s.left(deriv_symbol))
+ count_total_deriv += num
+
+ if (not num.is_Integer) or (num > 1):
+ ds = ds**prettyForm(str(num))
+
+ if x is None:
+ x = ds
+ else:
+ x = prettyForm(*x.right(' '))
+ x = prettyForm(*x.right(ds))
+
+ f = prettyForm(
+ binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
+
+ pform = prettyForm(deriv_symbol)
+
+ if (count_total_deriv > 1) != False:
+ pform = pform**prettyForm(str(count_total_deriv))
+
+ pform = prettyForm(*pform.below(stringPict.LINE, x))
+ pform.baseline = pform.baseline + 1
+ pform = prettyForm(*stringPict.next(pform, f))
+ pform.binding = prettyForm.MUL
+
+ return pform
+
+ def _print_Cycle(self, dc):
+ from sympy.combinatorics.permutations import Permutation, Cycle
+ # for Empty Cycle
+ if dc == Cycle():
+ cyc = stringPict('')
+ return prettyForm(*cyc.parens())
+
+ dc_list = Permutation(dc.list()).cyclic_form
+ # for Identity Cycle
+ if dc_list == []:
+ cyc = self._print(dc.size - 1)
+ return prettyForm(*cyc.parens())
+
+ cyc = stringPict('')
+ for i in dc_list:
+ l = self._print(str(tuple(i)).replace(',', ''))
+ cyc = prettyForm(*cyc.right(l))
+ return cyc
+
+ def _print_Permutation(self, expr):
+ from sympy.combinatorics.permutations import Permutation, Cycle
+
+ perm_cyclic = Permutation.print_cyclic
+ if perm_cyclic is not None:
+ sympy_deprecation_warning(
+ f"""
+ Setting Permutation.print_cyclic is deprecated. Instead use
+ init_printing(perm_cyclic={perm_cyclic}).
+ """,
+ deprecated_since_version="1.6",
+ active_deprecations_target="deprecated-permutation-print_cyclic",
+ stacklevel=7,
+ )
+ else:
+ perm_cyclic = self._settings.get("perm_cyclic", True)
+
+ if perm_cyclic:
+ return self._print_Cycle(Cycle(expr))
+
+ lower = expr.array_form
+ upper = list(range(len(lower)))
+
+ result = stringPict('')
+ first = True
+ for u, l in zip(upper, lower):
+ s1 = self._print(u)
+ s2 = self._print(l)
+ col = prettyForm(*s1.below(s2))
+ if first:
+ first = False
+ else:
+ col = prettyForm(*col.left(" "))
+ result = prettyForm(*result.right(col))
+ return prettyForm(*result.parens())
+
+
+ def _print_Integral(self, integral):
+ f = integral.function
+
+ # Add parentheses if arg involves addition of terms and
+ # create a pretty form for the argument
+ prettyF = self._print(f)
+ # XXX generalize parens
+ if f.is_Add:
+ prettyF = prettyForm(*prettyF.parens())
+
+ # dx dy dz ...
+ arg = prettyF
+ for x in integral.limits:
+ prettyArg = self._print(x[0])
+ # XXX qparens (parens if needs-parens)
+ if prettyArg.width() > 1:
+ prettyArg = prettyForm(*prettyArg.parens())
+
+ arg = prettyForm(*arg.right(' d', prettyArg))
+
+ # \int \int \int ...
+ firstterm = True
+ s = None
+ for lim in integral.limits:
+ # Create bar based on the height of the argument
+ h = arg.height()
+ H = h + 2
+
+ # XXX hack!
+ ascii_mode = not self._use_unicode
+ if ascii_mode:
+ H += 2
+
+ vint = vobj('int', H)
+
+ # Construct the pretty form with the integral sign and the argument
+ pform = prettyForm(vint)
+ pform.baseline = arg.baseline + (
+ H - h)//2 # covering the whole argument
+
+ if len(lim) > 1:
+ # Create pretty forms for endpoints, if definite integral.
+ # Do not print empty endpoints.
+ if len(lim) == 2:
+ prettyA = prettyForm("")
+ prettyB = self._print(lim[1])
+ if len(lim) == 3:
+ prettyA = self._print(lim[1])
+ prettyB = self._print(lim[2])
+
+ if ascii_mode: # XXX hack
+ # Add spacing so that endpoint can more easily be
+ # identified with the correct integral sign
+ spc = max(1, 3 - prettyB.width())
+ prettyB = prettyForm(*prettyB.left(' ' * spc))
+
+ spc = max(1, 4 - prettyA.width())
+ prettyA = prettyForm(*prettyA.right(' ' * spc))
+
+ pform = prettyForm(*pform.above(prettyB))
+ pform = prettyForm(*pform.below(prettyA))
+
+ if not ascii_mode: # XXX hack
+ pform = prettyForm(*pform.right(' '))
+
+ if firstterm:
+ s = pform # first term
+ firstterm = False
+ else:
+ s = prettyForm(*s.left(pform))
+
+ pform = prettyForm(*arg.left(s))
+ pform.binding = prettyForm.MUL
+ return pform
+
+ def _print_Product(self, expr):
+ func = expr.term
+ pretty_func = self._print(func)
+
+ horizontal_chr = xobj('_', 1)
+ corner_chr = xobj('_', 1)
+ vertical_chr = xobj('|', 1)
+
+ if self._use_unicode:
+ # use unicode corners
+ horizontal_chr = xobj('-', 1)
+ corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
+
+ func_height = pretty_func.height()
+
+ first = True
+ max_upper = 0
+ sign_height = 0
+
+ for lim in expr.limits:
+ pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
+
+ width = (func_height + 2) * 5 // 3 - 2
+ sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
+ for _ in range(func_height + 1):
+ sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
+
+ pretty_sign = stringPict('')
+ pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
+
+
+ max_upper = max(max_upper, pretty_upper.height())
+
+ if first:
+ sign_height = pretty_sign.height()
+
+ pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
+ pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
+
+ if first:
+ pretty_func.baseline = 0
+ first = False
+
+ height = pretty_sign.height()
+ padding = stringPict('')
+ padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
+ pretty_sign = prettyForm(*pretty_sign.right(padding))
+
+ pretty_func = prettyForm(*pretty_sign.right(pretty_func))
+
+ pretty_func.baseline = max_upper + sign_height//2
+ pretty_func.binding = prettyForm.MUL
+ return pretty_func
+
+ def __print_SumProduct_Limits(self, lim):
+ def print_start(lhs, rhs):
+ op = prettyForm(' ' + xsym("==") + ' ')
+ l = self._print(lhs)
+ r = self._print(rhs)
+ pform = prettyForm(*stringPict.next(l, op, r))
+ return pform
+
+ prettyUpper = self._print(lim[2])
+ prettyLower = print_start(lim[0], lim[1])
+ return prettyLower, prettyUpper
+
+ def _print_Sum(self, expr):
+ ascii_mode = not self._use_unicode
+
+ def asum(hrequired, lower, upper, use_ascii):
+ def adjust(s, wid=None, how='<^>'):
+ if not wid or len(s) > wid:
+ return s
+ need = wid - len(s)
+ if how in ('<^>', "<") or how not in list('<^>'):
+ return s + ' '*need
+ half = need//2
+ lead = ' '*half
+ if how == ">":
+ return " "*need + s
+ return lead + s + ' '*(need - len(lead))
+
+ h = max(hrequired, 2)
+ d = h//2
+ w = d + 1
+ more = hrequired % 2
+
+ lines = []
+ if use_ascii:
+ lines.append("_"*(w) + ' ')
+ lines.append(r"\%s`" % (' '*(w - 1)))
+ for i in range(1, d):
+ lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
+ if more:
+ lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
+ for i in reversed(range(1, d)):
+ lines.append('%s/%s' % (' '*i, ' '*(w - i)))
+ lines.append("/" + "_"*(w - 1) + ',')
+ return d, h + more, lines, more
+ else:
+ w = w + more
+ d = d + more
+ vsum = vobj('sum', 4)
+ lines.append("_"*(w))
+ for i in range(0, d):
+ lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
+ for i in reversed(range(0, d)):
+ lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
+ lines.append(vsum[8]*(w))
+ return d, h + 2*more, lines, more
+
+ f = expr.function
+
+ prettyF = self._print(f)
+
+ if f.is_Add: # add parens
+ prettyF = prettyForm(*prettyF.parens())
+
+ H = prettyF.height() + 2
+
+ # \sum \sum \sum ...
+ first = True
+ max_upper = 0
+ sign_height = 0
+
+ for lim in expr.limits:
+ prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
+
+ max_upper = max(max_upper, prettyUpper.height())
+
+ # Create sum sign based on the height of the argument
+ d, h, slines, adjustment = asum(
+ H, prettyLower.width(), prettyUpper.width(), ascii_mode)
+ prettySign = stringPict('')
+ prettySign = prettyForm(*prettySign.stack(*slines))
+
+ if first:
+ sign_height = prettySign.height()
+
+ prettySign = prettyForm(*prettySign.above(prettyUpper))
+ prettySign = prettyForm(*prettySign.below(prettyLower))
+
+ if first:
+ # change F baseline so it centers on the sign
+ prettyF.baseline -= d - (prettyF.height()//2 -
+ prettyF.baseline)
+ first = False
+
+ # put padding to the right
+ pad = stringPict('')
+ pad = prettyForm(*pad.stack(*[' ']*h))
+ prettySign = prettyForm(*prettySign.right(pad))
+ # put the present prettyF to the right
+ prettyF = prettyForm(*prettySign.right(prettyF))
+
+ # adjust baseline of ascii mode sigma with an odd height so that it is
+ # exactly through the center
+ ascii_adjustment = ascii_mode if not adjustment else 0
+ prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
+
+ prettyF.binding = prettyForm.MUL
+ return prettyF
+
+ def _print_Limit(self, l):
+ e, z, z0, dir = l.args
+
+ E = self._print(e)
+ if precedence(e) <= PRECEDENCE["Mul"]:
+ E = prettyForm(*E.parens('(', ')'))
+ Lim = prettyForm('lim')
+
+ LimArg = self._print(z)
+ if self._use_unicode:
+ LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
+ else:
+ LimArg = prettyForm(*LimArg.right('->'))
+ LimArg = prettyForm(*LimArg.right(self._print(z0)))
+
+ if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
+ dir = ""
+ else:
+ if self._use_unicode:
+ dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}'
+
+ LimArg = prettyForm(*LimArg.right(self._print(dir)))
+
+ Lim = prettyForm(*Lim.below(LimArg))
+ Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
+
+ return Lim
+
+ def _print_matrix_contents(self, e):
+ """
+ This method factors out what is essentially grid printing.
+ """
+ M = e # matrix
+ Ms = {} # i,j -> pretty(M[i,j])
+ for i in range(M.rows):
+ for j in range(M.cols):
+ Ms[i, j] = self._print(M[i, j])
+
+ # h- and v- spacers
+ hsep = 2
+ vsep = 1
+
+ # max width for columns
+ maxw = [-1] * M.cols
+
+ for j in range(M.cols):
+ maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
+
+ # drawing result
+ D = None
+
+ for i in range(M.rows):
+
+ D_row = None
+ for j in range(M.cols):
+ s = Ms[i, j]
+
+ # reshape s to maxw
+ # XXX this should be generalized, and go to stringPict.reshape ?
+ assert s.width() <= maxw[j]
+
+ # hcenter it, +0.5 to the right 2
+ # ( it's better to align formula starts for say 0 and r )
+ # XXX this is not good in all cases -- maybe introduce vbaseline?
+ wdelta = maxw[j] - s.width()
+ wleft = wdelta // 2
+ wright = wdelta - wleft
+
+ s = prettyForm(*s.right(' '*wright))
+ s = prettyForm(*s.left(' '*wleft))
+
+ # we don't need vcenter cells -- this is automatically done in
+ # a pretty way because when their baselines are taking into
+ # account in .right()
+
+ if D_row is None:
+ D_row = s # first box in a row
+ continue
+
+ D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
+ D_row = prettyForm(*D_row.right(s))
+
+ if D is None:
+ D = D_row # first row in a picture
+ continue
+
+ # v-spacer
+ for _ in range(vsep):
+ D = prettyForm(*D.below(' '))
+
+ D = prettyForm(*D.below(D_row))
+
+ if D is None:
+ D = prettyForm('') # Empty Matrix
+
+ return D
+
+ def _print_MatrixBase(self, e, lparens='[', rparens=']'):
+ D = self._print_matrix_contents(e)
+ D.baseline = D.height()//2
+ D = prettyForm(*D.parens(lparens, rparens))
+ return D
+
+ def _print_Determinant(self, e):
+ mat = e.arg
+ if mat.is_MatrixExpr:
+ from sympy.matrices.expressions.blockmatrix import BlockMatrix
+ if isinstance(mat, BlockMatrix):
+ return self._print_MatrixBase(mat.blocks, lparens='|', rparens='|')
+ D = self._print(mat)
+ D.baseline = D.height()//2
+ return prettyForm(*D.parens('|', '|'))
+ else:
+ return self._print_MatrixBase(mat, lparens='|', rparens='|')
+
+ def _print_TensorProduct(self, expr):
+ # This should somehow share the code with _print_WedgeProduct:
+ if self._use_unicode:
+ circled_times = "\u2297"
+ else:
+ circled_times = ".*"
+ return self._print_seq(expr.args, None, None, circled_times,
+ parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
+
+ def _print_WedgeProduct(self, expr):
+ # This should somehow share the code with _print_TensorProduct:
+ if self._use_unicode:
+ wedge_symbol = "\u2227"
+ else:
+ wedge_symbol = '/\\'
+ return self._print_seq(expr.args, None, None, wedge_symbol,
+ parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
+
+ def _print_Trace(self, e):
+ D = self._print(e.arg)
+ D = prettyForm(*D.parens('(',')'))
+ D.baseline = D.height()//2
+ D = prettyForm(*D.left('\n'*(0) + 'tr'))
+ return D
+
+
+ def _print_MatrixElement(self, expr):
+ from sympy.matrices import MatrixSymbol
+ if (isinstance(expr.parent, MatrixSymbol)
+ and expr.i.is_number and expr.j.is_number):
+ return self._print(
+ Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
+ else:
+ prettyFunc = self._print(expr.parent)
+ prettyFunc = prettyForm(*prettyFunc.parens())
+ prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
+ ).parens(left='[', right=']')[0]
+ pform = prettyForm(binding=prettyForm.FUNC,
+ *stringPict.next(prettyFunc, prettyIndices))
+
+ # store pform parts so it can be reassembled e.g. when powered
+ pform.prettyFunc = prettyFunc
+ pform.prettyArgs = prettyIndices
+
+ return pform
+
+
+ def _print_MatrixSlice(self, m):
+ # XXX works only for applied functions
+ from sympy.matrices import MatrixSymbol
+ prettyFunc = self._print(m.parent)
+ if not isinstance(m.parent, MatrixSymbol):
+ prettyFunc = prettyForm(*prettyFunc.parens())
+ def ppslice(x, dim):
+ x = list(x)
+ if x[2] == 1:
+ del x[2]
+ if x[0] == 0:
+ x[0] = ''
+ if x[1] == dim:
+ x[1] = ''
+ return prettyForm(*self._print_seq(x, delimiter=':'))
+ prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows),
+ ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0]
+
+ pform = prettyForm(
+ binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
+
+ # store pform parts so it can be reassembled e.g. when powered
+ pform.prettyFunc = prettyFunc
+ pform.prettyArgs = prettyArgs
+
+ return pform
+
+ def _print_Transpose(self, expr):
+ mat = expr.arg
+ pform = self._print(mat)
+ from sympy.matrices import MatrixSymbol, BlockMatrix
+ if (not isinstance(mat, MatrixSymbol) and
+ not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
+ pform = prettyForm(*pform.parens())
+ pform = pform**(prettyForm('T'))
+ return pform
+
+ def _print_Adjoint(self, expr):
+ mat = expr.arg
+ pform = self._print(mat)
+ if self._use_unicode:
+ dag = prettyForm('\N{DAGGER}')
+ else:
+ dag = prettyForm('+')
+ from sympy.matrices import MatrixSymbol, BlockMatrix
+ if (not isinstance(mat, MatrixSymbol) and
+ not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
+ pform = prettyForm(*pform.parens())
+ pform = pform**dag
+ return pform
+
+ def _print_BlockMatrix(self, B):
+ if B.blocks.shape == (1, 1):
+ return self._print(B.blocks[0, 0])
+ return self._print(B.blocks)
+
+ def _print_MatAdd(self, expr):
+ s = None
+ for item in expr.args:
+ pform = self._print(item)
+ if s is None:
+ s = pform # First element
+ else:
+ coeff = item.as_coeff_mmul()[0]
+ if S(coeff).could_extract_minus_sign():
+ s = prettyForm(*stringPict.next(s, ' '))
+ pform = self._print(item)
+ else:
+ s = prettyForm(*stringPict.next(s, ' + '))
+ s = prettyForm(*stringPict.next(s, pform))
+
+ return s
+
+ def _print_MatMul(self, expr):
+ args = list(expr.args)
+ from sympy.matrices.expressions.hadamard import HadamardProduct
+ from sympy.matrices.expressions.kronecker import KroneckerProduct
+ from sympy.matrices.expressions.matadd import MatAdd
+ for i, a in enumerate(args):
+ if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
+ and len(expr.args) > 1):
+ args[i] = prettyForm(*self._print(a).parens())
+ else:
+ args[i] = self._print(a)
+
+ return prettyForm.__mul__(*args)
+
+ def _print_Identity(self, expr):
+ if self._use_unicode:
+ return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
+ else:
+ return prettyForm('I')
+
+ def _print_ZeroMatrix(self, expr):
+ if self._use_unicode:
+ return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
+ else:
+ return prettyForm('0')
+
+ def _print_OneMatrix(self, expr):
+ if self._use_unicode:
+ return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
+ else:
+ return prettyForm('1')
+
+ def _print_DotProduct(self, expr):
+ args = list(expr.args)
+
+ for i, a in enumerate(args):
+ args[i] = self._print(a)
+ return prettyForm.__mul__(*args)
+
+ def _print_MatPow(self, expr):
+ pform = self._print(expr.base)
+ from sympy.matrices import MatrixSymbol
+ if not isinstance(expr.base, MatrixSymbol) and expr.base.is_MatrixExpr:
+ pform = prettyForm(*pform.parens())
+ pform = pform**(self._print(expr.exp))
+ return pform
+
+ def _print_HadamardProduct(self, expr):
+ from sympy.matrices.expressions.hadamard import HadamardProduct
+ from sympy.matrices.expressions.matadd import MatAdd
+ from sympy.matrices.expressions.matmul import MatMul
+ if self._use_unicode:
+ delim = pretty_atom('Ring')
+ else:
+ delim = '.*'
+ return self._print_seq(expr.args, None, None, delim,
+ parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
+
+ def _print_HadamardPower(self, expr):
+ # from sympy import MatAdd, MatMul
+ if self._use_unicode:
+ circ = pretty_atom('Ring')
+ else:
+ circ = self._print('.')
+ pretty_base = self._print(expr.base)
+ pretty_exp = self._print(expr.exp)
+ if precedence(expr.exp) < PRECEDENCE["Mul"]:
+ pretty_exp = prettyForm(*pretty_exp.parens())
+ pretty_circ_exp = prettyForm(
+ binding=prettyForm.LINE,
+ *stringPict.next(circ, pretty_exp)
+ )
+ return pretty_base**pretty_circ_exp
+
+ def _print_KroneckerProduct(self, expr):
+ from sympy.matrices.expressions.matadd import MatAdd
+ from sympy.matrices.expressions.matmul import MatMul
+ if self._use_unicode:
+ delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} '
+ else:
+ delim = ' x '
+ return self._print_seq(expr.args, None, None, delim,
+ parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
+
+ def _print_FunctionMatrix(self, X):
+ D = self._print(X.lamda.expr)
+ D = prettyForm(*D.parens('[', ']'))
+ return D
+
+ def _print_TransferFunction(self, expr):
+ if not expr.num == 1:
+ num, den = expr.num, expr.den
+ res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
+ return self._print_Mul(res)
+ else:
+ return self._print(1)/self._print(expr.den)
+
+ def _print_Series(self, expr):
+ args = list(expr.args)
+ for i, a in enumerate(expr.args):
+ args[i] = prettyForm(*self._print(a).parens())
+ return prettyForm.__mul__(*args)
+
+ def _print_MIMOSeries(self, expr):
+ from sympy.physics.control.lti import MIMOParallel
+ args = list(expr.args)
+ pretty_args = []
+ for i, a in enumerate(reversed(args)):
+ if (isinstance(a, MIMOParallel) and len(expr.args) > 1):
+ expression = self._print(a)
+ expression.baseline = expression.height()//2
+ pretty_args.append(prettyForm(*expression.parens()))
+ else:
+ expression = self._print(a)
+ expression.baseline = expression.height()//2
+ pretty_args.append(expression)
+ return prettyForm.__mul__(*pretty_args)
+
+ def _print_Parallel(self, expr):
+ s = None
+ for item in expr.args:
+ pform = self._print(item)
+ if s is None:
+ s = pform # First element
+ else:
+ s = prettyForm(*stringPict.next(s))
+ s.baseline = s.height()//2
+ s = prettyForm(*stringPict.next(s, ' + '))
+ s = prettyForm(*stringPict.next(s, pform))
+ return s
+
+ def _print_MIMOParallel(self, expr):
+ from sympy.physics.control.lti import TransferFunctionMatrix
+ s = None
+ for item in expr.args:
+ pform = self._print(item)
+ if s is None:
+ s = pform # First element
+ else:
+ s = prettyForm(*stringPict.next(s))
+ s.baseline = s.height()//2
+ s = prettyForm(*stringPict.next(s, ' + '))
+ if isinstance(item, TransferFunctionMatrix):
+ s.baseline = s.height() - 1
+ s = prettyForm(*stringPict.next(s, pform))
+ # s.baseline = s.height()//2
+ return s
+
+ def _print_Feedback(self, expr):
+ from sympy.physics.control import TransferFunction, Series
+
+ num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
+ num_arg_list = list(num.args) if isinstance(num, Series) else [num]
+ den_arg_list = list(expr.sys2.args) if \
+ isinstance(expr.sys2, Series) else [expr.sys2]
+
+ if isinstance(num, Series) and isinstance(expr.sys2, Series):
+ den = Series(*num_arg_list, *den_arg_list)
+ elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
+ if expr.sys2 == tf:
+ den = Series(*num_arg_list)
+ else:
+ den = Series(*num_arg_list, expr.sys2)
+ elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
+ if num == tf:
+ den = Series(*den_arg_list)
+ else:
+ den = Series(num, *den_arg_list)
+ else:
+ if num == tf:
+ den = Series(*den_arg_list)
+ elif expr.sys2 == tf:
+ den = Series(*num_arg_list)
+ else:
+ den = Series(*num_arg_list, *den_arg_list)
+
+ denom = prettyForm(*stringPict.next(self._print(tf)))
+ denom.baseline = denom.height()//2
+ denom = prettyForm(*stringPict.next(denom, ' + ')) if expr.sign == -1 \
+ else prettyForm(*stringPict.next(denom, ' - '))
+ denom = prettyForm(*stringPict.next(denom, self._print(den)))
+
+ return self._print(num)/denom
+
+ def _print_MIMOFeedback(self, expr):
+ from sympy.physics.control import MIMOSeries, TransferFunctionMatrix
+
+ inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
+ plant = self._print(expr.sys1)
+ _feedback = prettyForm(*stringPict.next(inv_mat))
+ _feedback = prettyForm(*stringPict.right("I + ", _feedback)) if expr.sign == -1 \
+ else prettyForm(*stringPict.right("I - ", _feedback))
+ _feedback = prettyForm(*stringPict.parens(_feedback))
+ _feedback.baseline = 0
+ _feedback = prettyForm(*stringPict.right(_feedback, '-1 '))
+ _feedback.baseline = _feedback.height()//2
+ _feedback = prettyForm.__mul__(_feedback, prettyForm(" "))
+ if isinstance(expr.sys1, TransferFunctionMatrix):
+ _feedback.baseline = _feedback.height() - 1
+ _feedback = prettyForm(*stringPict.next(_feedback, plant))
+ return _feedback
+
+ def _print_TransferFunctionMatrix(self, expr):
+ mat = self._print(expr._expr_mat)
+ mat.baseline = mat.height() - 1
+ subscript = greek_unicode['tau'] if self._use_unicode else r'{t}'
+ mat = prettyForm(*mat.right(subscript))
+ return mat
+
+ def _print_BasisDependent(self, expr):
+ from sympy.vector import Vector
+
+ if not self._use_unicode:
+ raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
+
+ if expr == expr.zero:
+ return prettyForm(expr.zero._pretty_form)
+ o1 = []
+ vectstrs = []
+ if isinstance(expr, Vector):
+ items = expr.separate().items()
+ else:
+ items = [(0, expr)]
+ for system, vect in items:
+ inneritems = list(vect.components.items())
+ inneritems.sort(key = lambda x: x[0].__str__())
+ for k, v in inneritems:
+ #if the coef of the basis vector is 1
+ #we skip the 1
+ if v == 1:
+ o1.append("" +
+ k._pretty_form)
+ #Same for -1
+ elif v == -1:
+ o1.append("(-1) " +
+ k._pretty_form)
+ #For a general expr
+ else:
+ #We always wrap the measure numbers in
+ #parentheses
+ arg_str = self._print(
+ v).parens()[0]
+
+ o1.append(arg_str + ' ' + k._pretty_form)
+ vectstrs.append(k._pretty_form)
+
+ #outstr = u("").join(o1)
+ if o1[0].startswith(" + "):
+ o1[0] = o1[0][3:]
+ elif o1[0].startswith(" "):
+ o1[0] = o1[0][1:]
+ #Fixing the newlines
+ lengths = []
+ strs = ['']
+ flag = []
+ for i, partstr in enumerate(o1):
+ flag.append(0)
+ # XXX: What is this hack?
+ if '\n' in partstr:
+ tempstr = partstr
+ tempstr = tempstr.replace(vectstrs[i], '')
+ if '\N{RIGHT PARENTHESIS EXTENSION}' in tempstr: # If scalar is a fraction
+ for paren in range(len(tempstr)):
+ flag[i] = 1
+ if tempstr[paren] == '\N{RIGHT PARENTHESIS EXTENSION}' and tempstr[paren + 1] == '\n':
+ # We want to place the vector string after all the right parentheses, because
+ # otherwise, the vector will be in the middle of the string
+ tempstr = tempstr[:paren] + '\N{RIGHT PARENTHESIS EXTENSION}'\
+ + ' ' + vectstrs[i] + tempstr[paren + 1:]
+ break
+ elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
+ # We want to place the vector string after all the right parentheses, because
+ # otherwise, the vector will be in the middle of the string. For this reason,
+ # we insert the vector string at the rightmost index.
+ index = tempstr.rfind('\N{RIGHT PARENTHESIS LOWER HOOK}')
+ if index != -1: # then this character was found in this string
+ flag[i] = 1
+ tempstr = tempstr[:index] + '\N{RIGHT PARENTHESIS LOWER HOOK}'\
+ + ' ' + vectstrs[i] + tempstr[index + 1:]
+ o1[i] = tempstr
+
+ o1 = [x.split('\n') for x in o1]
+ n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
+
+ if 1 in flag: # If there was a fractional scalar
+ for i, parts in enumerate(o1):
+ if len(parts) == 1: # If part has no newline
+ parts.insert(0, ' ' * (len(parts[0])))
+ flag[i] = 1
+
+ for i, parts in enumerate(o1):
+ lengths.append(len(parts[flag[i]]))
+ for j in range(n_newlines):
+ if j+1 <= len(parts):
+ if j >= len(strs):
+ strs.append(' ' * (sum(lengths[:-1]) +
+ 3*(len(lengths)-1)))
+ if j == flag[i]:
+ strs[flag[i]] += parts[flag[i]] + ' + '
+ else:
+ strs[j] += parts[j] + ' '*(lengths[-1] -
+ len(parts[j])+
+ 3)
+ else:
+ if j >= len(strs):
+ strs.append(' ' * (sum(lengths[:-1]) +
+ 3*(len(lengths)-1)))
+ strs[j] += ' '*(lengths[-1]+3)
+
+ return prettyForm('\n'.join([s[:-3] for s in strs]))
+
+ def _print_NDimArray(self, expr):
+ from sympy.matrices.immutable import ImmutableMatrix
+
+ if expr.rank() == 0:
+ return self._print(expr[()])
+
+ level_str = [[]] + [[] for i in range(expr.rank())]
+ shape_ranges = [list(range(i)) for i in expr.shape]
+ # leave eventual matrix elements unflattened
+ mat = lambda x: ImmutableMatrix(x, evaluate=False)
+ for outer_i in itertools.product(*shape_ranges):
+ level_str[-1].append(expr[outer_i])
+ even = True
+ for back_outer_i in range(expr.rank()-1, -1, -1):
+ if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
+ break
+ if even:
+ level_str[back_outer_i].append(level_str[back_outer_i+1])
+ else:
+ level_str[back_outer_i].append(mat(
+ level_str[back_outer_i+1]))
+ if len(level_str[back_outer_i + 1]) == 1:
+ level_str[back_outer_i][-1] = mat(
+ [[level_str[back_outer_i][-1]]])
+ even = not even
+ level_str[back_outer_i+1] = []
+
+ out_expr = level_str[0][0]
+ if expr.rank() % 2 == 1:
+ out_expr = mat([out_expr])
+
+ return self._print(out_expr)
+
+ def _printer_tensor_indices(self, name, indices, index_map={}):
+ center = stringPict(name)
+ top = stringPict(" "*center.width())
+ bot = stringPict(" "*center.width())
+
+ last_valence = None
+ prev_map = None
+
+ for i, index in enumerate(indices):
+ indpic = self._print(index.args[0])
+ if ((index in index_map) or prev_map) and last_valence == index.is_up:
+ if index.is_up:
+ top = prettyForm(*stringPict.next(top, ","))
+ else:
+ bot = prettyForm(*stringPict.next(bot, ","))
+ if index in index_map:
+ indpic = prettyForm(*stringPict.next(indpic, "="))
+ indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
+ prev_map = True
+ else:
+ prev_map = False
+ if index.is_up:
+ top = stringPict(*top.right(indpic))
+ center = stringPict(*center.right(" "*indpic.width()))
+ bot = stringPict(*bot.right(" "*indpic.width()))
+ else:
+ bot = stringPict(*bot.right(indpic))
+ center = stringPict(*center.right(" "*indpic.width()))
+ top = stringPict(*top.right(" "*indpic.width()))
+ last_valence = index.is_up
+
+ pict = prettyForm(*center.above(top))
+ pict = prettyForm(*pict.below(bot))
+ return pict
+
+ def _print_Tensor(self, expr):
+ name = expr.args[0].name
+ indices = expr.get_indices()
+ return self._printer_tensor_indices(name, indices)
+
+ def _print_TensorElement(self, expr):
+ name = expr.expr.args[0].name
+ indices = expr.expr.get_indices()
+ index_map = expr.index_map
+ return self._printer_tensor_indices(name, indices, index_map)
+
+ def _print_TensMul(self, expr):
+ sign, args = expr._get_args_for_traditional_printer()
+ args = [
+ prettyForm(*self._print(i).parens()) if
+ precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
+ for i in args
+ ]
+ pform = prettyForm.__mul__(*args)
+ if sign:
+ return prettyForm(*pform.left(sign))
+ else:
+ return pform
+
+ def _print_TensAdd(self, expr):
+ args = [
+ prettyForm(*self._print(i).parens()) if
+ precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
+ for i in expr.args
+ ]
+ return prettyForm.__add__(*args)
+
+ def _print_TensorIndex(self, expr):
+ sym = expr.args[0]
+ if not expr.is_up:
+ sym = -sym
+ return self._print(sym)
+
+ def _print_PartialDerivative(self, deriv):
+ if self._use_unicode:
+ deriv_symbol = U('PARTIAL DIFFERENTIAL')
+ else:
+ deriv_symbol = r'd'
+ x = None
+
+ for variable in reversed(deriv.variables):
+ s = self._print(variable)
+ ds = prettyForm(*s.left(deriv_symbol))
+
+ if x is None:
+ x = ds
+ else:
+ x = prettyForm(*x.right(' '))
+ x = prettyForm(*x.right(ds))
+
+ f = prettyForm(
+ binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
+
+ pform = prettyForm(deriv_symbol)
+
+ if len(deriv.variables) > 1:
+ pform = pform**self._print(len(deriv.variables))
+
+ pform = prettyForm(*pform.below(stringPict.LINE, x))
+ pform.baseline = pform.baseline + 1
+ pform = prettyForm(*stringPict.next(pform, f))
+ pform.binding = prettyForm.MUL
+
+ return pform
+
+ def _print_Piecewise(self, pexpr):
+
+ P = {}
+ for n, ec in enumerate(pexpr.args):
+ P[n, 0] = self._print(ec.expr)
+ if ec.cond == True:
+ P[n, 1] = prettyForm('otherwise')
+ else:
+ P[n, 1] = prettyForm(
+ *prettyForm('for ').right(self._print(ec.cond)))
+ hsep = 2
+ vsep = 1
+ len_args = len(pexpr.args)
+
+ # max widths
+ maxw = [max([P[i, j].width() for i in range(len_args)])
+ for j in range(2)]
+
+ # FIXME: Refactor this code and matrix into some tabular environment.
+ # drawing result
+ D = None
+
+ for i in range(len_args):
+ D_row = None
+ for j in range(2):
+ p = P[i, j]
+ assert p.width() <= maxw[j]
+
+ wdelta = maxw[j] - p.width()
+ wleft = wdelta // 2
+ wright = wdelta - wleft
+
+ p = prettyForm(*p.right(' '*wright))
+ p = prettyForm(*p.left(' '*wleft))
+
+ if D_row is None:
+ D_row = p
+ continue
+
+ D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
+ D_row = prettyForm(*D_row.right(p))
+ if D is None:
+ D = D_row # first row in a picture
+ continue
+
+ # v-spacer
+ for _ in range(vsep):
+ D = prettyForm(*D.below(' '))
+
+ D = prettyForm(*D.below(D_row))
+
+ D = prettyForm(*D.parens('{', ''))
+ D.baseline = D.height()//2
+ D.binding = prettyForm.OPEN
+ return D
+
+ def _print_ITE(self, ite):
+ from sympy.functions.elementary.piecewise import Piecewise
+ return self._print(ite.rewrite(Piecewise))
+
+ def _hprint_vec(self, v):
+ D = None
+
+ for a in v:
+ p = a
+ if D is None:
+ D = p
+ else:
+ D = prettyForm(*D.right(', '))
+ D = prettyForm(*D.right(p))
+ if D is None:
+ D = stringPict(' ')
+
+ return D
+
+ def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False):
+ if ifascii_nougly and not self._use_unicode:
+ return self._print_seq((p1, '|', p2), left=left, right=right,
+ delimiter=delimiter, ifascii_nougly=True)
+ tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter)
+ sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
+ return self._print_seq((p1, sep, p2), left=left, right=right,
+ delimiter=delimiter)
+
+ def _print_hyper(self, e):
+ # FIXME refactor Matrix, Piecewise, and this into a tabular environment
+ ap = [self._print(a) for a in e.ap]
+ bq = [self._print(b) for b in e.bq]
+
+ P = self._print(e.argument)
+ P.baseline = P.height()//2
+
+ # Drawing result - first create the ap, bq vectors
+ D = None
+ for v in [ap, bq]:
+ D_row = self._hprint_vec(v)
+ if D is None:
+ D = D_row # first row in a picture
+ else:
+ D = prettyForm(*D.below(' '))
+ D = prettyForm(*D.below(D_row))
+
+ # make sure that the argument `z' is centred vertically
+ D.baseline = D.height()//2
+
+ # insert horizontal separator
+ P = prettyForm(*P.left(' '))
+ D = prettyForm(*D.right(' '))
+
+ # insert separating `|`
+ D = self._hprint_vseparator(D, P)
+
+ # add parens
+ D = prettyForm(*D.parens('(', ')'))
+
+ # create the F symbol
+ above = D.height()//2 - 1
+ below = D.height() - above - 1
+
+ sz, t, b, add, img = annotated('F')
+ F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
+ baseline=above + sz)
+ add = (sz + 1)//2
+
+ F = prettyForm(*F.left(self._print(len(e.ap))))
+ F = prettyForm(*F.right(self._print(len(e.bq))))
+ F.baseline = above + add
+
+ D = prettyForm(*F.right(' ', D))
+
+ return D
+
+ def _print_meijerg(self, e):
+ # FIXME refactor Matrix, Piecewise, and this into a tabular environment
+
+ v = {}
+ v[(0, 0)] = [self._print(a) for a in e.an]
+ v[(0, 1)] = [self._print(a) for a in e.aother]
+ v[(1, 0)] = [self._print(b) for b in e.bm]
+ v[(1, 1)] = [self._print(b) for b in e.bother]
+
+ P = self._print(e.argument)
+ P.baseline = P.height()//2
+
+ vp = {}
+ for idx in v:
+ vp[idx] = self._hprint_vec(v[idx])
+
+ for i in range(2):
+ maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
+ for j in range(2):
+ s = vp[(j, i)]
+ left = (maxw - s.width()) // 2
+ right = maxw - left - s.width()
+ s = prettyForm(*s.left(' ' * left))
+ s = prettyForm(*s.right(' ' * right))
+ vp[(j, i)] = s
+
+ D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
+ D1 = prettyForm(*D1.below(' '))
+ D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
+ D = prettyForm(*D1.below(D2))
+
+ # make sure that the argument `z' is centred vertically
+ D.baseline = D.height()//2
+
+ # insert horizontal separator
+ P = prettyForm(*P.left(' '))
+ D = prettyForm(*D.right(' '))
+
+ # insert separating `|`
+ D = self._hprint_vseparator(D, P)
+
+ # add parens
+ D = prettyForm(*D.parens('(', ')'))
+
+ # create the G symbol
+ above = D.height()//2 - 1
+ below = D.height() - above - 1
+
+ sz, t, b, add, img = annotated('G')
+ F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
+ baseline=above + sz)
+
+ pp = self._print(len(e.ap))
+ pq = self._print(len(e.bq))
+ pm = self._print(len(e.bm))
+ pn = self._print(len(e.an))
+
+ def adjust(p1, p2):
+ diff = p1.width() - p2.width()
+ if diff == 0:
+ return p1, p2
+ elif diff > 0:
+ return p1, prettyForm(*p2.left(' '*diff))
+ else:
+ return prettyForm(*p1.left(' '*-diff)), p2
+ pp, pm = adjust(pp, pm)
+ pq, pn = adjust(pq, pn)
+ pu = prettyForm(*pm.right(', ', pn))
+ pl = prettyForm(*pp.right(', ', pq))
+
+ ht = F.baseline - above - 2
+ if ht > 0:
+ pu = prettyForm(*pu.below('\n'*ht))
+ p = prettyForm(*pu.below(pl))
+
+ F.baseline = above
+ F = prettyForm(*F.right(p))
+
+ F.baseline = above + add
+
+ D = prettyForm(*F.right(' ', D))
+
+ return D
+
+ def _print_ExpBase(self, e):
+ # TODO should exp_polar be printed differently?
+ # what about exp_polar(0), exp_polar(1)?
+ base = prettyForm(pretty_atom('Exp1', 'e'))
+ return base ** self._print(e.args[0])
+
+ def _print_Exp1(self, e):
+ return prettyForm(pretty_atom('Exp1', 'e'))
+
+ def _print_Function(self, e, sort=False, func_name=None, left='(',
+ right=')'):
+ # optional argument func_name for supplying custom names
+ # XXX works only for applied functions
+ return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name, left=left, right=right)
+
+ def _print_mathieuc(self, e):
+ return self._print_Function(e, func_name='C')
+
+ def _print_mathieus(self, e):
+ return self._print_Function(e, func_name='S')
+
+ def _print_mathieucprime(self, e):
+ return self._print_Function(e, func_name="C'")
+
+ def _print_mathieusprime(self, e):
+ return self._print_Function(e, func_name="S'")
+
+ def _helper_print_function(self, func, args, sort=False, func_name=None,
+ delimiter=', ', elementwise=False, left='(',
+ right=')'):
+ if sort:
+ args = sorted(args, key=default_sort_key)
+
+ if not func_name and hasattr(func, "__name__"):
+ func_name = func.__name__
+
+ if func_name:
+ prettyFunc = self._print(Symbol(func_name))
+ else:
+ prettyFunc = prettyForm(*self._print(func).parens())
+
+ if elementwise:
+ if self._use_unicode:
+ circ = pretty_atom('Modifier Letter Low Ring')
+ else:
+ circ = '.'
+ circ = self._print(circ)
+ prettyFunc = prettyForm(
+ binding=prettyForm.LINE,
+ *stringPict.next(prettyFunc, circ)
+ )
+
+ prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens(
+ left=left, right=right))
+
+ pform = prettyForm(
+ binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
+
+ # store pform parts so it can be reassembled e.g. when powered
+ pform.prettyFunc = prettyFunc
+ pform.prettyArgs = prettyArgs
+
+ return pform
+
+ def _print_ElementwiseApplyFunction(self, e):
+ func = e.function
+ arg = e.expr
+ args = [arg]
+ return self._helper_print_function(func, args, delimiter="", elementwise=True)
+
+ @property
+ def _special_function_classes(self):
+ from sympy.functions.special.tensor_functions import KroneckerDelta
+ from sympy.functions.special.gamma_functions import gamma, lowergamma
+ from sympy.functions.special.zeta_functions import lerchphi
+ from sympy.functions.special.beta_functions import beta
+ from sympy.functions.special.delta_functions import DiracDelta
+ from sympy.functions.special.error_functions import Chi
+ return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
+ gamma: [greek_unicode['Gamma'], 'Gamma'],
+ lerchphi: [greek_unicode['Phi'], 'lerchphi'],
+ lowergamma: [greek_unicode['gamma'], 'gamma'],
+ beta: [greek_unicode['Beta'], 'B'],
+ DiracDelta: [greek_unicode['delta'], 'delta'],
+ Chi: ['Chi', 'Chi']}
+
+ def _print_FunctionClass(self, expr):
+ for cls in self._special_function_classes:
+ if issubclass(expr, cls) and expr.__name__ == cls.__name__:
+ if self._use_unicode:
+ return prettyForm(self._special_function_classes[cls][0])
+ else:
+ return prettyForm(self._special_function_classes[cls][1])
+ func_name = expr.__name__
+ return prettyForm(pretty_symbol(func_name))
+
+ def _print_GeometryEntity(self, expr):
+ # GeometryEntity is based on Tuple but should not print like a Tuple
+ return self.emptyPrinter(expr)
+
+ def _print_lerchphi(self, e):
+ func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_dirichlet_eta(self, e):
+ func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_Heaviside(self, e):
+ func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
+ if e.args[1] is S.Half:
+ pform = prettyForm(*self._print(e.args[0]).parens())
+ pform = prettyForm(*pform.left(func_name))
+ return pform
+ else:
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_fresnels(self, e):
+ return self._print_Function(e, func_name="S")
+
+ def _print_fresnelc(self, e):
+ return self._print_Function(e, func_name="C")
+
+ def _print_airyai(self, e):
+ return self._print_Function(e, func_name="Ai")
+
+ def _print_airybi(self, e):
+ return self._print_Function(e, func_name="Bi")
+
+ def _print_airyaiprime(self, e):
+ return self._print_Function(e, func_name="Ai'")
+
+ def _print_airybiprime(self, e):
+ return self._print_Function(e, func_name="Bi'")
+
+ def _print_LambertW(self, e):
+ return self._print_Function(e, func_name="W")
+
+ def _print_Covariance(self, e):
+ return self._print_Function(e, func_name="Cov")
+
+ def _print_Variance(self, e):
+ return self._print_Function(e, func_name="Var")
+
+ def _print_Probability(self, e):
+ return self._print_Function(e, func_name="P")
+
+ def _print_Expectation(self, e):
+ return self._print_Function(e, func_name="E", left='[', right=']')
+
+ def _print_Lambda(self, e):
+ expr = e.expr
+ sig = e.signature
+ if self._use_unicode:
+ arrow = " \N{RIGHTWARDS ARROW FROM BAR} "
+ else:
+ arrow = " -> "
+ if len(sig) == 1 and sig[0].is_symbol:
+ sig = sig[0]
+ var_form = self._print(sig)
+
+ return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
+
+ def _print_Order(self, expr):
+ pform = self._print(expr.expr)
+ if (expr.point and any(p != S.Zero for p in expr.point)) or \
+ len(expr.variables) > 1:
+ pform = prettyForm(*pform.right("; "))
+ if len(expr.variables) > 1:
+ pform = prettyForm(*pform.right(self._print(expr.variables)))
+ elif len(expr.variables):
+ pform = prettyForm(*pform.right(self._print(expr.variables[0])))
+ if self._use_unicode:
+ pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} "))
+ else:
+ pform = prettyForm(*pform.right(" -> "))
+ if len(expr.point) > 1:
+ pform = prettyForm(*pform.right(self._print(expr.point)))
+ else:
+ pform = prettyForm(*pform.right(self._print(expr.point[0])))
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left("O"))
+ return pform
+
+ def _print_SingularityFunction(self, e):
+ if self._use_unicode:
+ shift = self._print(e.args[0]-e.args[1])
+ n = self._print(e.args[2])
+ base = prettyForm("<")
+ base = prettyForm(*base.right(shift))
+ base = prettyForm(*base.right(">"))
+ pform = base**n
+ return pform
+ else:
+ n = self._print(e.args[2])
+ shift = self._print(e.args[0]-e.args[1])
+ base = self._print_seq(shift, "<", ">", ' ')
+ return base**n
+
+ def _print_beta(self, e):
+ func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_betainc(self, e):
+ func_name = "B'"
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_betainc_regularized(self, e):
+ func_name = 'I'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_gamma(self, e):
+ func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_uppergamma(self, e):
+ func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_lowergamma(self, e):
+ func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
+ return self._print_Function(e, func_name=func_name)
+
+ def _print_DiracDelta(self, e):
+ if self._use_unicode:
+ if len(e.args) == 2:
+ a = prettyForm(greek_unicode['delta'])
+ b = self._print(e.args[1])
+ b = prettyForm(*b.parens())
+ c = self._print(e.args[0])
+ c = prettyForm(*c.parens())
+ pform = a**b
+ pform = prettyForm(*pform.right(' '))
+ pform = prettyForm(*pform.right(c))
+ return pform
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left(greek_unicode['delta']))
+ return pform
+ else:
+ return self._print_Function(e)
+
+ def _print_expint(self, e):
+ if e.args[0].is_Integer and self._use_unicode:
+ return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
+ return self._print_Function(e)
+
+ def _print_Chi(self, e):
+ # This needs a special case since otherwise it comes out as greek
+ # letter chi...
+ prettyFunc = prettyForm("Chi")
+ prettyArgs = prettyForm(*self._print_seq(e.args).parens())
+
+ pform = prettyForm(
+ binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
+
+ # store pform parts so it can be reassembled e.g. when powered
+ pform.prettyFunc = prettyFunc
+ pform.prettyArgs = prettyArgs
+
+ return pform
+
+ def _print_elliptic_e(self, e):
+ pforma0 = self._print(e.args[0])
+ if len(e.args) == 1:
+ pform = pforma0
+ else:
+ pforma1 = self._print(e.args[1])
+ pform = self._hprint_vseparator(pforma0, pforma1)
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left('E'))
+ return pform
+
+ def _print_elliptic_k(self, e):
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left('K'))
+ return pform
+
+ def _print_elliptic_f(self, e):
+ pforma0 = self._print(e.args[0])
+ pforma1 = self._print(e.args[1])
+ pform = self._hprint_vseparator(pforma0, pforma1)
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left('F'))
+ return pform
+
+ def _print_elliptic_pi(self, e):
+ name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
+ pforma0 = self._print(e.args[0])
+ pforma1 = self._print(e.args[1])
+ if len(e.args) == 2:
+ pform = self._hprint_vseparator(pforma0, pforma1)
+ else:
+ pforma2 = self._print(e.args[2])
+ pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False)
+ pforma = prettyForm(*pforma.left('; '))
+ pform = prettyForm(*pforma.left(pforma0))
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left(name))
+ return pform
+
+ def _print_GoldenRatio(self, expr):
+ if self._use_unicode:
+ return prettyForm(pretty_symbol('phi'))
+ return self._print(Symbol("GoldenRatio"))
+
+ def _print_EulerGamma(self, expr):
+ if self._use_unicode:
+ return prettyForm(pretty_symbol('gamma'))
+ return self._print(Symbol("EulerGamma"))
+
+ def _print_Catalan(self, expr):
+ return self._print(Symbol("G"))
+
+ def _print_Mod(self, expr):
+ pform = self._print(expr.args[0])
+ if pform.binding > prettyForm.MUL:
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.right(' mod '))
+ pform = prettyForm(*pform.right(self._print(expr.args[1])))
+ pform.binding = prettyForm.OPEN
+ return pform
+
+ def _print_Add(self, expr, order=None):
+ terms = self._as_ordered_terms(expr, order=order)
+ pforms, indices = [], []
+
+ def pretty_negative(pform, index):
+ """Prepend a minus sign to a pretty form. """
+ #TODO: Move this code to prettyForm
+ if index == 0:
+ if pform.height() > 1:
+ pform_neg = '- '
+ else:
+ pform_neg = '-'
+ else:
+ pform_neg = ' - '
+
+ if (pform.binding > prettyForm.NEG
+ or pform.binding == prettyForm.ADD):
+ p = stringPict(*pform.parens())
+ else:
+ p = pform
+ p = stringPict.next(pform_neg, p)
+ # Lower the binding to NEG, even if it was higher. Otherwise, it
+ # will print as a + ( - (b)), instead of a - (b).
+ return prettyForm(binding=prettyForm.NEG, *p)
+
+ for i, term in enumerate(terms):
+ if term.is_Mul and term.could_extract_minus_sign():
+ coeff, other = term.as_coeff_mul(rational=False)
+ if coeff == -1:
+ negterm = Mul(*other, evaluate=False)
+ else:
+ negterm = Mul(-coeff, *other, evaluate=False)
+ pform = self._print(negterm)
+ pforms.append(pretty_negative(pform, i))
+ elif term.is_Rational and term.q > 1:
+ pforms.append(None)
+ indices.append(i)
+ elif term.is_Number and term < 0:
+ pform = self._print(-term)
+ pforms.append(pretty_negative(pform, i))
+ elif term.is_Relational:
+ pforms.append(prettyForm(*self._print(term).parens()))
+ else:
+ pforms.append(self._print(term))
+
+ if indices:
+ large = True
+
+ for pform in pforms:
+ if pform is not None and pform.height() > 1:
+ break
+ else:
+ large = False
+
+ for i in indices:
+ term, negative = terms[i], False
+
+ if term < 0:
+ term, negative = -term, True
+
+ if large:
+ pform = prettyForm(str(term.p))/prettyForm(str(term.q))
+ else:
+ pform = self._print(term)
+
+ if negative:
+ pform = pretty_negative(pform, i)
+
+ pforms[i] = pform
+
+ return prettyForm.__add__(*pforms)
+
+ def _print_Mul(self, product):
+ from sympy.physics.units import Quantity
+
+ # Check for unevaluated Mul. In this case we need to make sure the
+ # identities are visible, multiple Rational factors are not combined
+ # etc so we display in a straight-forward form that fully preserves all
+ # args and their order.
+ args = product.args
+ if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
+ strargs = list(map(self._print, args))
+ # XXX: This is a hack to work around the fact that
+ # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it
+ # would be better to fix this in prettyForm.__mul__ instead.
+ negone = strargs[0] == '-1'
+ if negone:
+ strargs[0] = prettyForm('1', 0, 0)
+ obj = prettyForm.__mul__(*strargs)
+ if negone:
+ obj = prettyForm('-' + obj.s, obj.baseline, obj.binding)
+ return obj
+
+ a = [] # items in the numerator
+ b = [] # items that are in the denominator (if any)
+
+ if self.order not in ('old', 'none'):
+ args = product.as_ordered_factors()
+ else:
+ args = list(product.args)
+
+ # If quantities are present append them at the back
+ args = sorted(args, key=lambda x: isinstance(x, Quantity) or
+ (isinstance(x, Pow) and isinstance(x.base, Quantity)))
+
+ # Gather terms for numerator/denominator
+ for item in args:
+ if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
+ if item.exp != -1:
+ b.append(Pow(item.base, -item.exp, evaluate=False))
+ else:
+ b.append(Pow(item.base, -item.exp))
+ elif item.is_Rational and item is not S.Infinity:
+ if item.p != 1:
+ a.append( Rational(item.p) )
+ if item.q != 1:
+ b.append( Rational(item.q) )
+ else:
+ a.append(item)
+
+ # Convert to pretty forms. Parentheses are added by `__mul__`.
+ a = [self._print(ai) for ai in a]
+ b = [self._print(bi) for bi in b]
+
+ # Construct a pretty form
+ if len(b) == 0:
+ return prettyForm.__mul__(*a)
+ else:
+ if len(a) == 0:
+ a.append( self._print(S.One) )
+ return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
+
+ # A helper function for _print_Pow to print x**(1/n)
+ def _print_nth_root(self, base, root):
+ bpretty = self._print(base)
+
+ # In very simple cases, use a single-char root sign
+ if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
+ and root == 2 and bpretty.height() == 1
+ and (bpretty.width() == 1
+ or (base.is_Integer and base.is_nonnegative))):
+ return prettyForm(*bpretty.left('\N{SQUARE ROOT}'))
+
+ # Construct root sign, start with the \/ shape
+ _zZ = xobj('/', 1)
+ rootsign = xobj('\\', 1) + _zZ
+ # Constructing the number to put on root
+ rpretty = self._print(root)
+ # roots look bad if they are not a single line
+ if rpretty.height() != 1:
+ return self._print(base)**self._print(1/root)
+ # If power is half, no number should appear on top of root sign
+ exp = '' if root == 2 else str(rpretty).ljust(2)
+ if len(exp) > 2:
+ rootsign = ' '*(len(exp) - 2) + rootsign
+ # Stack the exponent
+ rootsign = stringPict(exp + '\n' + rootsign)
+ rootsign.baseline = 0
+ # Diagonal: length is one less than height of base
+ linelength = bpretty.height() - 1
+ diagonal = stringPict('\n'.join(
+ ' '*(linelength - i - 1) + _zZ + ' '*i
+ for i in range(linelength)
+ ))
+ # Put baseline just below lowest line: next to exp
+ diagonal.baseline = linelength - 1
+ # Make the root symbol
+ rootsign = prettyForm(*rootsign.right(diagonal))
+ # Det the baseline to match contents to fix the height
+ # but if the height of bpretty is one, the rootsign must be one higher
+ rootsign.baseline = max(1, bpretty.baseline)
+ #build result
+ s = prettyForm(hobj('_', 2 + bpretty.width()))
+ s = prettyForm(*bpretty.above(s))
+ s = prettyForm(*s.left(rootsign))
+ return s
+
+ def _print_Pow(self, power):
+ from sympy.simplify.simplify import fraction
+ b, e = power.as_base_exp()
+ if power.is_commutative:
+ if e is S.NegativeOne:
+ return prettyForm("1")/self._print(b)
+ n, d = fraction(e)
+ if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \
+ and self._settings['root_notation']:
+ return self._print_nth_root(b, d)
+ if e.is_Rational and e < 0:
+ return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
+
+ if b.is_Relational:
+ return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
+
+ return self._print(b)**self._print(e)
+
+ def _print_UnevaluatedExpr(self, expr):
+ return self._print(expr.args[0])
+
+ def __print_numer_denom(self, p, q):
+ if q == 1:
+ if p < 0:
+ return prettyForm(str(p), binding=prettyForm.NEG)
+ else:
+ return prettyForm(str(p))
+ elif abs(p) >= 10 and abs(q) >= 10:
+ # If more than one digit in numer and denom, print larger fraction
+ if p < 0:
+ return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
+ # Old printing method:
+ #pform = prettyForm(str(-p))/prettyForm(str(q))
+ #return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
+ else:
+ return prettyForm(str(p))/prettyForm(str(q))
+ else:
+ return None
+
+ def _print_Rational(self, expr):
+ result = self.__print_numer_denom(expr.p, expr.q)
+
+ if result is not None:
+ return result
+ else:
+ return self.emptyPrinter(expr)
+
+ def _print_Fraction(self, expr):
+ result = self.__print_numer_denom(expr.numerator, expr.denominator)
+
+ if result is not None:
+ return result
+ else:
+ return self.emptyPrinter(expr)
+
+ def _print_ProductSet(self, p):
+ if len(p.sets) >= 1 and not has_variety(p.sets):
+ return self._print(p.sets[0]) ** self._print(len(p.sets))
+ else:
+ prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
+ return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
+ parenthesize=lambda set: set.is_Union or
+ set.is_Intersection or set.is_ProductSet)
+
+ def _print_FiniteSet(self, s):
+ items = sorted(s.args, key=default_sort_key)
+ return self._print_seq(items, '{', '}', ', ' )
+
+ def _print_Range(self, s):
+
+ if self._use_unicode:
+ dots = "\N{HORIZONTAL ELLIPSIS}"
+ else:
+ dots = '...'
+
+ if s.start.is_infinite and s.stop.is_infinite:
+ if s.step.is_positive:
+ printset = dots, -1, 0, 1, dots
+ else:
+ printset = dots, 1, 0, -1, dots
+ elif s.start.is_infinite:
+ printset = dots, s[-1] - s.step, s[-1]
+ elif s.stop.is_infinite:
+ it = iter(s)
+ printset = next(it), next(it), dots
+ elif len(s) > 4:
+ it = iter(s)
+ printset = next(it), next(it), dots, s[-1]
+ else:
+ printset = tuple(s)
+
+ return self._print_seq(printset, '{', '}', ', ' )
+
+ def _print_Interval(self, i):
+ if i.start == i.end:
+ return self._print_seq(i.args[:1], '{', '}')
+
+ else:
+ if i.left_open:
+ left = '('
+ else:
+ left = '['
+
+ if i.right_open:
+ right = ')'
+ else:
+ right = ']'
+
+ return self._print_seq(i.args[:2], left, right)
+
+ def _print_AccumulationBounds(self, i):
+ left = '<'
+ right = '>'
+
+ return self._print_seq(i.args[:2], left, right)
+
+ def _print_Intersection(self, u):
+
+ delimiter = ' %s ' % pretty_atom('Intersection', 'n')
+
+ return self._print_seq(u.args, None, None, delimiter,
+ parenthesize=lambda set: set.is_ProductSet or
+ set.is_Union or set.is_Complement)
+
+ def _print_Union(self, u):
+
+ union_delimiter = ' %s ' % pretty_atom('Union', 'U')
+
+ return self._print_seq(u.args, None, None, union_delimiter,
+ parenthesize=lambda set: set.is_ProductSet or
+ set.is_Intersection or set.is_Complement)
+
+ def _print_SymmetricDifference(self, u):
+ if not self._use_unicode:
+ raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
+
+ sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
+
+ return self._print_seq(u.args, None, None, sym_delimeter)
+
+ def _print_Complement(self, u):
+
+ delimiter = r' \ '
+
+ return self._print_seq(u.args, None, None, delimiter,
+ parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
+ or set.is_Union)
+
+ def _print_ImageSet(self, ts):
+ if self._use_unicode:
+ inn = "\N{SMALL ELEMENT OF}"
+ else:
+ inn = 'in'
+ fun = ts.lamda
+ sets = ts.base_sets
+ signature = fun.signature
+ expr = self._print(fun.expr)
+
+ # TODO: the stuff to the left of the | and the stuff to the right of
+ # the | should have independent baselines, that way something like
+ # ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part
+ # centered on the right instead of aligned with the fraction bar on
+ # the left. The same also applies to ConditionSet and ComplexRegion
+ if len(signature) == 1:
+ S = self._print_seq((signature[0], inn, sets[0]),
+ delimiter=' ')
+ return self._hprint_vseparator(expr, S,
+ left='{', right='}',
+ ifascii_nougly=True, delimiter=' ')
+ else:
+ pargs = tuple(j for var, setv in zip(signature, sets) for j in
+ (var, ' ', inn, ' ', setv, ", "))
+ S = self._print_seq(pargs[:-1], delimiter='')
+ return self._hprint_vseparator(expr, S,
+ left='{', right='}',
+ ifascii_nougly=True, delimiter=' ')
+
+ def _print_ConditionSet(self, ts):
+ if self._use_unicode:
+ inn = "\N{SMALL ELEMENT OF}"
+ # using _and because and is a keyword and it is bad practice to
+ # overwrite them
+ _and = "\N{LOGICAL AND}"
+ else:
+ inn = 'in'
+ _and = 'and'
+
+ variables = self._print_seq(Tuple(ts.sym))
+ as_expr = getattr(ts.condition, 'as_expr', None)
+ if as_expr is not None:
+ cond = self._print(ts.condition.as_expr())
+ else:
+ cond = self._print(ts.condition)
+ if self._use_unicode:
+ cond = self._print(cond)
+ cond = prettyForm(*cond.parens())
+
+ if ts.base_set is S.UniversalSet:
+ return self._hprint_vseparator(variables, cond, left="{",
+ right="}", ifascii_nougly=True,
+ delimiter=' ')
+
+ base = self._print(ts.base_set)
+ C = self._print_seq((variables, inn, base, _and, cond),
+ delimiter=' ')
+ return self._hprint_vseparator(variables, C, left="{", right="}",
+ ifascii_nougly=True, delimiter=' ')
+
+ def _print_ComplexRegion(self, ts):
+ if self._use_unicode:
+ inn = "\N{SMALL ELEMENT OF}"
+ else:
+ inn = 'in'
+ variables = self._print_seq(ts.variables)
+ expr = self._print(ts.expr)
+ prodsets = self._print(ts.sets)
+
+ C = self._print_seq((variables, inn, prodsets),
+ delimiter=' ')
+ return self._hprint_vseparator(expr, C, left="{", right="}",
+ ifascii_nougly=True, delimiter=' ')
+
+ def _print_Contains(self, e):
+ var, set = e.args
+ if self._use_unicode:
+ el = " \N{ELEMENT OF} "
+ return prettyForm(*stringPict.next(self._print(var),
+ el, self._print(set)), binding=8)
+ else:
+ return prettyForm(sstr(e))
+
+ def _print_FourierSeries(self, s):
+ if s.an.formula is S.Zero and s.bn.formula is S.Zero:
+ return self._print(s.a0)
+ if self._use_unicode:
+ dots = "\N{HORIZONTAL ELLIPSIS}"
+ else:
+ dots = '...'
+ return self._print_Add(s.truncate()) + self._print(dots)
+
+ def _print_FormalPowerSeries(self, s):
+ return self._print_Add(s.infinite)
+
+ def _print_SetExpr(self, se):
+ pretty_set = prettyForm(*self._print(se.set).parens())
+ pretty_name = self._print(Symbol("SetExpr"))
+ return prettyForm(*pretty_name.right(pretty_set))
+
+ def _print_SeqFormula(self, s):
+ if self._use_unicode:
+ dots = "\N{HORIZONTAL ELLIPSIS}"
+ else:
+ dots = '...'
+
+ if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
+ raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
+
+ if s.start is S.NegativeInfinity:
+ stop = s.stop
+ printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
+ s.coeff(stop - 1), s.coeff(stop))
+ elif s.stop is S.Infinity or s.length > 4:
+ printset = s[:4]
+ printset.append(dots)
+ printset = tuple(printset)
+ else:
+ printset = tuple(s)
+ return self._print_list(printset)
+
+ _print_SeqPer = _print_SeqFormula
+ _print_SeqAdd = _print_SeqFormula
+ _print_SeqMul = _print_SeqFormula
+
+ def _print_seq(self, seq, left=None, right=None, delimiter=', ',
+ parenthesize=lambda x: False, ifascii_nougly=True):
+ try:
+ pforms = []
+ for item in seq:
+ pform = self._print(item)
+ if parenthesize(item):
+ pform = prettyForm(*pform.parens())
+ if pforms:
+ pforms.append(delimiter)
+ pforms.append(pform)
+
+ if not pforms:
+ s = stringPict('')
+ else:
+ s = prettyForm(*stringPict.next(*pforms))
+
+ # XXX: Under the tests from #15686 the above raises:
+ # AttributeError: 'Fake' object has no attribute 'baseline'
+ # This is caught below but that is not the right way to
+ # fix it.
+
+ except AttributeError:
+ s = None
+ for item in seq:
+ pform = self.doprint(item)
+ if parenthesize(item):
+ pform = prettyForm(*pform.parens())
+ if s is None:
+ # first element
+ s = pform
+ else :
+ s = prettyForm(*stringPict.next(s, delimiter))
+ s = prettyForm(*stringPict.next(s, pform))
+
+ if s is None:
+ s = stringPict('')
+
+ s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly))
+ return s
+
+ def join(self, delimiter, args):
+ pform = None
+
+ for arg in args:
+ if pform is None:
+ pform = arg
+ else:
+ pform = prettyForm(*pform.right(delimiter))
+ pform = prettyForm(*pform.right(arg))
+
+ if pform is None:
+ return prettyForm("")
+ else:
+ return pform
+
+ def _print_list(self, l):
+ return self._print_seq(l, '[', ']')
+
+ def _print_tuple(self, t):
+ if len(t) == 1:
+ ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
+ return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
+ else:
+ return self._print_seq(t, '(', ')')
+
+ def _print_Tuple(self, expr):
+ return self._print_tuple(expr)
+
+ def _print_dict(self, d):
+ keys = sorted(d.keys(), key=default_sort_key)
+ items = []
+
+ for k in keys:
+ K = self._print(k)
+ V = self._print(d[k])
+ s = prettyForm(*stringPict.next(K, ': ', V))
+
+ items.append(s)
+
+ return self._print_seq(items, '{', '}')
+
+ def _print_Dict(self, d):
+ return self._print_dict(d)
+
+ def _print_set(self, s):
+ if not s:
+ return prettyForm('set()')
+ items = sorted(s, key=default_sort_key)
+ pretty = self._print_seq(items)
+ pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
+ return pretty
+
+ def _print_frozenset(self, s):
+ if not s:
+ return prettyForm('frozenset()')
+ items = sorted(s, key=default_sort_key)
+ pretty = self._print_seq(items)
+ pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
+ pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
+ pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
+ return pretty
+
+ def _print_UniversalSet(self, s):
+ if self._use_unicode:
+ return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
+ else:
+ return prettyForm('UniversalSet')
+
+ def _print_PolyRing(self, ring):
+ return prettyForm(sstr(ring))
+
+ def _print_FracField(self, field):
+ return prettyForm(sstr(field))
+
+ def _print_FreeGroupElement(self, elm):
+ return prettyForm(str(elm))
+
+ def _print_PolyElement(self, poly):
+ return prettyForm(sstr(poly))
+
+ def _print_FracElement(self, frac):
+ return prettyForm(sstr(frac))
+
+ def _print_AlgebraicNumber(self, expr):
+ if expr.is_aliased:
+ return self._print(expr.as_poly().as_expr())
+ else:
+ return self._print(expr.as_expr())
+
+ def _print_ComplexRootOf(self, expr):
+ args = [self._print_Add(expr.expr, order='lex'), expr.index]
+ pform = prettyForm(*self._print_seq(args).parens())
+ pform = prettyForm(*pform.left('CRootOf'))
+ return pform
+
+ def _print_RootSum(self, expr):
+ args = [self._print_Add(expr.expr, order='lex')]
+
+ if expr.fun is not S.IdentityFunction:
+ args.append(self._print(expr.fun))
+
+ pform = prettyForm(*self._print_seq(args).parens())
+ pform = prettyForm(*pform.left('RootSum'))
+
+ return pform
+
+ def _print_FiniteField(self, expr):
+ if self._use_unicode:
+ form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d'
+ else:
+ form = 'GF(%d)'
+
+ return prettyForm(pretty_symbol(form % expr.mod))
+
+ def _print_IntegerRing(self, expr):
+ if self._use_unicode:
+ return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}')
+ else:
+ return prettyForm('ZZ')
+
+ def _print_RationalField(self, expr):
+ if self._use_unicode:
+ return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}')
+ else:
+ return prettyForm('QQ')
+
+ def _print_RealField(self, domain):
+ if self._use_unicode:
+ prefix = '\N{DOUBLE-STRUCK CAPITAL R}'
+ else:
+ prefix = 'RR'
+
+ if domain.has_default_precision:
+ return prettyForm(prefix)
+ else:
+ return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
+
+ def _print_ComplexField(self, domain):
+ if self._use_unicode:
+ prefix = '\N{DOUBLE-STRUCK CAPITAL C}'
+ else:
+ prefix = 'CC'
+
+ if domain.has_default_precision:
+ return prettyForm(prefix)
+ else:
+ return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
+
+ def _print_PolynomialRing(self, expr):
+ args = list(expr.symbols)
+
+ if not expr.order.is_default:
+ order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
+ args.append(order)
+
+ pform = self._print_seq(args, '[', ']')
+ pform = prettyForm(*pform.left(self._print(expr.domain)))
+
+ return pform
+
+ def _print_FractionField(self, expr):
+ args = list(expr.symbols)
+
+ if not expr.order.is_default:
+ order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
+ args.append(order)
+
+ pform = self._print_seq(args, '(', ')')
+ pform = prettyForm(*pform.left(self._print(expr.domain)))
+
+ return pform
+
+ def _print_PolynomialRingBase(self, expr):
+ g = expr.symbols
+ if str(expr.order) != str(expr.default_order):
+ g = g + ("order=" + str(expr.order),)
+ pform = self._print_seq(g, '[', ']')
+ pform = prettyForm(*pform.left(self._print(expr.domain)))
+
+ return pform
+
+ def _print_GroebnerBasis(self, basis):
+ exprs = [ self._print_Add(arg, order=basis.order)
+ for arg in basis.exprs ]
+ exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
+
+ gens = [ self._print(gen) for gen in basis.gens ]
+
+ domain = prettyForm(
+ *prettyForm("domain=").right(self._print(basis.domain)))
+ order = prettyForm(
+ *prettyForm("order=").right(self._print(basis.order)))
+
+ pform = self.join(", ", [exprs] + gens + [domain, order])
+
+ pform = prettyForm(*pform.parens())
+ pform = prettyForm(*pform.left(basis.__class__.__name__))
+
+ return pform
+
+ def _print_Subs(self, e):
+ pform = self._print(e.expr)
+ pform = prettyForm(*pform.parens())
+
+ h = pform.height() if pform.height() > 1 else 2
+ rvert = stringPict(vobj('|', h), baseline=pform.baseline)
+ pform = prettyForm(*pform.right(rvert))
+
+ b = pform.baseline
+ pform.baseline = pform.height() - 1
+ pform = prettyForm(*pform.right(self._print_seq([
+ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
+ delimiter='') for v in zip(e.variables, e.point) ])))
+
+ pform.baseline = b
+ return pform
+
+ def _print_number_function(self, e, name):
+ # Print name_arg[0] for one argument or name_arg[0](arg[1])
+ # for more than one argument
+ pform = prettyForm(name)
+ arg = self._print(e.args[0])
+ pform_arg = prettyForm(" "*arg.width())
+ pform_arg = prettyForm(*pform_arg.below(arg))
+ pform = prettyForm(*pform.right(pform_arg))
+ if len(e.args) == 1:
+ return pform
+ m, x = e.args
+ # TODO: copy-pasted from _print_Function: can we do better?
+ prettyFunc = pform
+ prettyArgs = prettyForm(*self._print_seq([x]).parens())
+ pform = prettyForm(
+ binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
+ pform.prettyFunc = prettyFunc
+ pform.prettyArgs = prettyArgs
+ return pform
+
+ def _print_euler(self, e):
+ return self._print_number_function(e, "E")
+
+ def _print_catalan(self, e):
+ return self._print_number_function(e, "C")
+
+ def _print_bernoulli(self, e):
+ return self._print_number_function(e, "B")
+
+ _print_bell = _print_bernoulli
+
+ def _print_lucas(self, e):
+ return self._print_number_function(e, "L")
+
+ def _print_fibonacci(self, e):
+ return self._print_number_function(e, "F")
+
+ def _print_tribonacci(self, e):
+ return self._print_number_function(e, "T")
+
+ def _print_stieltjes(self, e):
+ if self._use_unicode:
+ return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}')
+ else:
+ return self._print_number_function(e, "stieltjes")
+
+ def _print_KroneckerDelta(self, e):
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.right(prettyForm(',')))
+ pform = prettyForm(*pform.right(self._print(e.args[1])))
+ if self._use_unicode:
+ a = stringPict(pretty_symbol('delta'))
+ else:
+ a = stringPict('d')
+ b = pform
+ top = stringPict(*b.left(' '*a.width()))
+ bot = stringPict(*a.right(' '*b.width()))
+ return prettyForm(binding=prettyForm.POW, *bot.below(top))
+
+ def _print_RandomDomain(self, d):
+ if hasattr(d, 'as_boolean'):
+ pform = self._print('Domain: ')
+ pform = prettyForm(*pform.right(self._print(d.as_boolean())))
+ return pform
+ elif hasattr(d, 'set'):
+ pform = self._print('Domain: ')
+ pform = prettyForm(*pform.right(self._print(d.symbols)))
+ pform = prettyForm(*pform.right(self._print(' in ')))
+ pform = prettyForm(*pform.right(self._print(d.set)))
+ return pform
+ elif hasattr(d, 'symbols'):
+ pform = self._print('Domain on ')
+ pform = prettyForm(*pform.right(self._print(d.symbols)))
+ return pform
+ else:
+ return self._print(None)
+
+ def _print_DMP(self, p):
+ try:
+ if p.ring is not None:
+ # TODO incorporate order
+ return self._print(p.ring.to_sympy(p))
+ except SympifyError:
+ pass
+ return self._print(repr(p))
+
+ def _print_DMF(self, p):
+ return self._print_DMP(p)
+
+ def _print_Object(self, object):
+ return self._print(pretty_symbol(object.name))
+
+ def _print_Morphism(self, morphism):
+ arrow = xsym("-->")
+
+ domain = self._print(morphism.domain)
+ codomain = self._print(morphism.codomain)
+ tail = domain.right(arrow, codomain)[0]
+
+ return prettyForm(tail)
+
+ def _print_NamedMorphism(self, morphism):
+ pretty_name = self._print(pretty_symbol(morphism.name))
+ pretty_morphism = self._print_Morphism(morphism)
+ return prettyForm(pretty_name.right(":", pretty_morphism)[0])
+
+ def _print_IdentityMorphism(self, morphism):
+ from sympy.categories import NamedMorphism
+ return self._print_NamedMorphism(
+ NamedMorphism(morphism.domain, morphism.codomain, "id"))
+
+ def _print_CompositeMorphism(self, morphism):
+
+ circle = xsym(".")
+
+ # All components of the morphism have names and it is thus
+ # possible to build the name of the composite.
+ component_names_list = [pretty_symbol(component.name) for
+ component in morphism.components]
+ component_names_list.reverse()
+ component_names = circle.join(component_names_list) + ":"
+
+ pretty_name = self._print(component_names)
+ pretty_morphism = self._print_Morphism(morphism)
+ return prettyForm(pretty_name.right(pretty_morphism)[0])
+
+ def _print_Category(self, category):
+ return self._print(pretty_symbol(category.name))
+
+ def _print_Diagram(self, diagram):
+ if not diagram.premises:
+ # This is an empty diagram.
+ return self._print(S.EmptySet)
+
+ pretty_result = self._print(diagram.premises)
+ if diagram.conclusions:
+ results_arrow = " %s " % xsym("==>")
+
+ pretty_conclusions = self._print(diagram.conclusions)[0]
+ pretty_result = pretty_result.right(
+ results_arrow, pretty_conclusions)
+
+ return prettyForm(pretty_result[0])
+
+ def _print_DiagramGrid(self, grid):
+ from sympy.matrices import Matrix
+ matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
+ for j in range(grid.width)]
+ for i in range(grid.height)])
+ return self._print_matrix_contents(matrix)
+
+ def _print_FreeModuleElement(self, m):
+ # Print as row vector for convenience, for now.
+ return self._print_seq(m, '[', ']')
+
+ def _print_SubModule(self, M):
+ return self._print_seq(M.gens, '<', '>')
+
+ def _print_FreeModule(self, M):
+ return self._print(M.ring)**self._print(M.rank)
+
+ def _print_ModuleImplementedIdeal(self, M):
+ return self._print_seq([x for [x] in M._module.gens], '<', '>')
+
+ def _print_QuotientRing(self, R):
+ return self._print(R.ring) / self._print(R.base_ideal)
+
+ def _print_QuotientRingElement(self, R):
+ return self._print(R.data) + self._print(R.ring.base_ideal)
+
+ def _print_QuotientModuleElement(self, m):
+ return self._print(m.data) + self._print(m.module.killed_module)
+
+ def _print_QuotientModule(self, M):
+ return self._print(M.base) / self._print(M.killed_module)
+
+ def _print_MatrixHomomorphism(self, h):
+ matrix = self._print(h._sympy_matrix())
+ matrix.baseline = matrix.height() // 2
+ pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
+ ' %s> ' % hobj('-', 2), self._print(h.codomain)))
+ return pform
+
+ def _print_Manifold(self, manifold):
+ return self._print(manifold.name)
+
+ def _print_Patch(self, patch):
+ return self._print(patch.name)
+
+ def _print_CoordSystem(self, coords):
+ return self._print(coords.name)
+
+ def _print_BaseScalarField(self, field):
+ string = field._coord_sys.symbols[field._index].name
+ return self._print(pretty_symbol(string))
+
+ def _print_BaseVectorField(self, field):
+ s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name
+ return self._print(pretty_symbol(s))
+
+ def _print_Differential(self, diff):
+ if self._use_unicode:
+ d = '\N{DOUBLE-STRUCK ITALIC SMALL D}'
+ else:
+ d = 'd'
+ field = diff._form_field
+ if hasattr(field, '_coord_sys'):
+ string = field._coord_sys.symbols[field._index].name
+ return self._print(d + ' ' + pretty_symbol(string))
+ else:
+ pform = self._print(field)
+ pform = prettyForm(*pform.parens())
+ return prettyForm(*pform.left(d))
+
+ def _print_Tr(self, p):
+ #TODO: Handle indices
+ pform = self._print(p.args[0])
+ pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
+ pform = prettyForm(*pform.right(')'))
+ return pform
+
+ def _print_primenu(self, e):
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens())
+ if self._use_unicode:
+ pform = prettyForm(*pform.left(greek_unicode['nu']))
+ else:
+ pform = prettyForm(*pform.left('nu'))
+ return pform
+
+ def _print_primeomega(self, e):
+ pform = self._print(e.args[0])
+ pform = prettyForm(*pform.parens())
+ if self._use_unicode:
+ pform = prettyForm(*pform.left(greek_unicode['Omega']))
+ else:
+ pform = prettyForm(*pform.left('Omega'))
+ return pform
+
+ def _print_Quantity(self, e):
+ if e.name.name == 'degree':
+ pform = self._print("\N{DEGREE SIGN}")
+ return pform
+ else:
+ return self.emptyPrinter(e)
+
+ def _print_AssignmentBase(self, e):
+
+ op = prettyForm(' ' + xsym(e.op) + ' ')
+
+ l = self._print(e.lhs)
+ r = self._print(e.rhs)
+ pform = prettyForm(*stringPict.next(l, op, r))
+ return pform
+
+ def _print_Str(self, s):
+ return self._print(s.name)
+
+
+@print_function(PrettyPrinter)
+def pretty(expr, **settings):
+ """Returns a string containing the prettified form of expr.
+
+ For information on keyword arguments see pretty_print function.
+
+ """
+ pp = PrettyPrinter(settings)
+
+ # XXX: this is an ugly hack, but at least it works
+ use_unicode = pp._settings['use_unicode']
+ uflag = pretty_use_unicode(use_unicode)
+
+ try:
+ return pp.doprint(expr)
+ finally:
+ pretty_use_unicode(uflag)
+
+
+def pretty_print(expr, **kwargs):
+ """Prints expr in pretty form.
+
+ pprint is just a shortcut for this function.
+
+ Parameters
+ ==========
+
+ expr : expression
+ The expression to print.
+
+ wrap_line : bool, optional (default=True)
+ Line wrapping enabled/disabled.
+
+ num_columns : int or None, optional (default=None)
+ Number of columns before line breaking (default to None which reads
+ the terminal width), useful when using SymPy without terminal.
+
+ use_unicode : bool or None, optional (default=None)
+ Use unicode characters, such as the Greek letter pi instead of
+ the string pi.
+
+ full_prec : bool or string, optional (default="auto")
+ Use full precision.
+
+ order : bool or string, optional (default=None)
+ Set to 'none' for long expressions if slow; default is None.
+
+ use_unicode_sqrt_char : bool, optional (default=True)
+ Use compact single-character square root symbol (when unambiguous).
+
+ root_notation : bool, optional (default=True)
+ Set to 'False' for printing exponents of the form 1/n in fractional form.
+ By default exponent is printed in root form.
+
+ mat_symbol_style : string, optional (default="plain")
+ Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
+ By default the standard face is used.
+
+ imaginary_unit : string, optional (default="i")
+ Letter to use for imaginary unit when use_unicode is True.
+ Can be "i" (default) or "j".
+ """
+ print(pretty(expr, **kwargs))
+
+pprint = pretty_print
+
+
+def pager_print(expr, **settings):
+ """Prints expr using the pager, in pretty form.
+
+ This invokes a pager command using pydoc. Lines are not wrapped
+ automatically. This routine is meant to be used with a pager that allows
+ sideways scrolling, like ``less -S``.
+
+ Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
+ pass ``num_columns=None`` to auto-detect the width of the terminal.
+
+ """
+ from pydoc import pager
+ from locale import getpreferredencoding
+ if 'num_columns' not in settings:
+ settings['num_columns'] = 500000 # disable line wrap
+ pager(pretty(expr, **settings).encode(getpreferredencoding()))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5b832ea5c94c4c38f134f5f9d4b62364da089bc
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py
@@ -0,0 +1,643 @@
+"""Symbolic primitives + unicode/ASCII abstraction for pretty.py"""
+
+import sys
+import warnings
+from string import ascii_lowercase, ascii_uppercase
+import unicodedata
+
+unicode_warnings = ''
+
+def U(name):
+ """
+ Get a unicode character by name or, None if not found.
+
+ This exists because older versions of Python use older unicode databases.
+ """
+ try:
+ return unicodedata.lookup(name)
+ except KeyError:
+ global unicode_warnings
+ unicode_warnings += 'No \'%s\' in unicodedata\n' % name
+ return None
+
+from sympy.printing.conventions import split_super_sub
+from sympy.core.alphabets import greeks
+from sympy.utilities.exceptions import sympy_deprecation_warning
+
+# prefix conventions when constructing tables
+# L - LATIN i
+# G - GREEK beta
+# D - DIGIT 0
+# S - SYMBOL +
+
+
+__all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol',
+ 'annotated']
+
+
+_use_unicode = False
+
+
+def pretty_use_unicode(flag=None):
+ """Set whether pretty-printer should use unicode by default"""
+ global _use_unicode
+ global unicode_warnings
+ if flag is None:
+ return _use_unicode
+
+ if flag and unicode_warnings:
+ # print warnings (if any) on first unicode usage
+ warnings.warn(unicode_warnings)
+ unicode_warnings = ''
+
+ use_unicode_prev = _use_unicode
+ _use_unicode = flag
+ return use_unicode_prev
+
+
+def pretty_try_use_unicode():
+ """See if unicode output is available and leverage it if possible"""
+
+ encoding = getattr(sys.stdout, 'encoding', None)
+
+ # this happens when e.g. stdout is redirected through a pipe, or is
+ # e.g. a cStringIO.StringO
+ if encoding is None:
+ return # sys.stdout has no encoding
+
+ symbols = []
+
+ # see if we can represent greek alphabet
+ symbols += greek_unicode.values()
+
+ # and atoms
+ symbols += atoms_table.values()
+
+ for s in symbols:
+ if s is None:
+ return # common symbols not present!
+
+ try:
+ s.encode(encoding)
+ except UnicodeEncodeError:
+ return
+
+ # all the characters were present and encodable
+ pretty_use_unicode(True)
+
+
+def xstr(*args):
+ sympy_deprecation_warning(
+ """
+ The sympy.printing.pretty.pretty_symbology.xstr() function is
+ deprecated. Use str() instead.
+ """,
+ deprecated_since_version="1.7",
+ active_deprecations_target="deprecated-pretty-printing-functions"
+ )
+ return str(*args)
+
+# GREEK
+g = lambda l: U('GREEK SMALL LETTER %s' % l.upper())
+G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper())
+
+greek_letters = list(greeks) # make a copy
+# deal with Unicode's funny spelling of lambda
+greek_letters[greek_letters.index('lambda')] = 'lamda'
+
+# {} greek letter -> (g,G)
+greek_unicode = {L: g(L) for L in greek_letters}
+greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters)
+
+# aliases
+greek_unicode['lambda'] = greek_unicode['lamda']
+greek_unicode['Lambda'] = greek_unicode['Lamda']
+greek_unicode['varsigma'] = '\N{GREEK SMALL LETTER FINAL SIGMA}'
+
+# BOLD
+b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
+B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
+
+bold_unicode = {l: b(l) for l in ascii_lowercase}
+bold_unicode.update((L, B(L)) for L in ascii_uppercase)
+
+# GREEK BOLD
+gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
+GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
+
+greek_bold_letters = list(greeks) # make a copy, not strictly required here
+# deal with Unicode's funny spelling of lambda
+greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda'
+
+# {} greek letter -> (g,G)
+greek_bold_unicode = {L: g(L) for L in greek_bold_letters}
+greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters)
+greek_bold_unicode['lambda'] = greek_unicode['lamda']
+greek_bold_unicode['Lambda'] = greek_unicode['Lamda']
+greek_bold_unicode['varsigma'] = '\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}'
+
+digit_2txt = {
+ '0': 'ZERO',
+ '1': 'ONE',
+ '2': 'TWO',
+ '3': 'THREE',
+ '4': 'FOUR',
+ '5': 'FIVE',
+ '6': 'SIX',
+ '7': 'SEVEN',
+ '8': 'EIGHT',
+ '9': 'NINE',
+}
+
+symb_2txt = {
+ '+': 'PLUS SIGN',
+ '-': 'MINUS',
+ '=': 'EQUALS SIGN',
+ '(': 'LEFT PARENTHESIS',
+ ')': 'RIGHT PARENTHESIS',
+ '[': 'LEFT SQUARE BRACKET',
+ ']': 'RIGHT SQUARE BRACKET',
+ '{': 'LEFT CURLY BRACKET',
+ '}': 'RIGHT CURLY BRACKET',
+
+ # non-std
+ '{}': 'CURLY BRACKET',
+ 'sum': 'SUMMATION',
+ 'int': 'INTEGRAL',
+}
+
+# SUBSCRIPT & SUPERSCRIPT
+LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper())
+GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper())
+DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit])
+SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb])
+
+LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper())
+DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit])
+SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb])
+
+sub = {} # symb -> subscript symbol
+sup = {} # symb -> superscript symbol
+
+# latin subscripts
+for l in 'aeioruvxhklmnpst':
+ sub[l] = LSUB(l)
+
+for l in 'in':
+ sup[l] = LSUP(l)
+
+for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']:
+ sub[gl] = GSUB(gl)
+
+for d in [str(i) for i in range(10)]:
+ sub[d] = DSUB(d)
+ sup[d] = DSUP(d)
+
+for s in '+-=()':
+ sub[s] = SSUB(s)
+ sup[s] = SSUP(s)
+
+# Variable modifiers
+# TODO: Make brackets adjust to height of contents
+modifier_dict = {
+ # Accents
+ 'mathring': lambda s: center_accent(s, '\N{COMBINING RING ABOVE}'),
+ 'ddddot': lambda s: center_accent(s, '\N{COMBINING FOUR DOTS ABOVE}'),
+ 'dddot': lambda s: center_accent(s, '\N{COMBINING THREE DOTS ABOVE}'),
+ 'ddot': lambda s: center_accent(s, '\N{COMBINING DIAERESIS}'),
+ 'dot': lambda s: center_accent(s, '\N{COMBINING DOT ABOVE}'),
+ 'check': lambda s: center_accent(s, '\N{COMBINING CARON}'),
+ 'breve': lambda s: center_accent(s, '\N{COMBINING BREVE}'),
+ 'acute': lambda s: center_accent(s, '\N{COMBINING ACUTE ACCENT}'),
+ 'grave': lambda s: center_accent(s, '\N{COMBINING GRAVE ACCENT}'),
+ 'tilde': lambda s: center_accent(s, '\N{COMBINING TILDE}'),
+ 'hat': lambda s: center_accent(s, '\N{COMBINING CIRCUMFLEX ACCENT}'),
+ 'bar': lambda s: center_accent(s, '\N{COMBINING OVERLINE}'),
+ 'vec': lambda s: center_accent(s, '\N{COMBINING RIGHT ARROW ABOVE}'),
+ 'prime': lambda s: s+'\N{PRIME}',
+ 'prm': lambda s: s+'\N{PRIME}',
+ # # Faces -- these are here for some compatibility with latex printing
+ # 'bold': lambda s: s,
+ # 'bm': lambda s: s,
+ # 'cal': lambda s: s,
+ # 'scr': lambda s: s,
+ # 'frak': lambda s: s,
+ # Brackets
+ 'norm': lambda s: '\N{DOUBLE VERTICAL LINE}'+s+'\N{DOUBLE VERTICAL LINE}',
+ 'avg': lambda s: '\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+'\N{MATHEMATICAL RIGHT ANGLE BRACKET}',
+ 'abs': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
+ 'mag': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
+}
+
+# VERTICAL OBJECTS
+HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb])
+CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb])
+MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb])
+EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb])
+HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb])
+CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb])
+TOP = lambda symb: U('%s TOP' % symb_2txt[symb])
+BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb])
+
+# {} '(' -> (extension, start, end, middle) 1-character
+_xobj_unicode = {
+
+ # vertical symbols
+ # (( ext, top, bot, mid ), c1)
+ '(': (( EXT('('), HUP('('), HLO('(') ), '('),
+ ')': (( EXT(')'), HUP(')'), HLO(')') ), ')'),
+ '[': (( EXT('['), CUP('['), CLO('[') ), '['),
+ ']': (( EXT(']'), CUP(']'), CLO(']') ), ']'),
+ '{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'),
+ '}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'),
+ '|': U('BOX DRAWINGS LIGHT VERTICAL'),
+
+ '<': ((U('BOX DRAWINGS LIGHT VERTICAL'),
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'),
+
+ '>': ((U('BOX DRAWINGS LIGHT VERTICAL'),
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'),
+
+ 'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')),
+ 'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')),
+ 'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')),
+ 'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')),
+
+ 'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')),
+ 'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')),
+
+ # horizontal objects
+ #'-': '-',
+ '-': U('BOX DRAWINGS LIGHT HORIZONTAL'),
+ '_': U('LOW LINE'),
+ # We used to use this, but LOW LINE looks better for roots, as it's a
+ # little lower (i.e., it lines up with the / perfectly. But perhaps this
+ # one would still be wanted for some cases?
+ # '_': U('HORIZONTAL SCAN LINE-9'),
+
+ # diagonal objects '\' & '/' ?
+ '/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
+ '\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
+}
+
+_xobj_ascii = {
+ # vertical symbols
+ # (( ext, top, bot, mid ), c1)
+ '(': (( '|', '/', '\\' ), '('),
+ ')': (( '|', '\\', '/' ), ')'),
+
+# XXX this looks ugly
+# '[': (( '|', '-', '-' ), '['),
+# ']': (( '|', '-', '-' ), ']'),
+# XXX not so ugly :(
+ '[': (( '[', '[', '[' ), '['),
+ ']': (( ']', ']', ']' ), ']'),
+
+ '{': (( '|', '/', '\\', '<' ), '{'),
+ '}': (( '|', '\\', '/', '>' ), '}'),
+ '|': '|',
+
+ '<': (( '|', '/', '\\' ), '<'),
+ '>': (( '|', '\\', '/' ), '>'),
+
+ 'int': ( ' | ', ' /', '/ ' ),
+
+ # horizontal objects
+ '-': '-',
+ '_': '_',
+
+ # diagonal objects '\' & '/' ?
+ '/': '/',
+ '\\': '\\',
+}
+
+
+def xobj(symb, length):
+ """Construct spatial object of given length.
+
+ return: [] of equal-length strings
+ """
+
+ if length <= 0:
+ raise ValueError("Length should be greater than 0")
+
+ # TODO robustify when no unicodedat available
+ if _use_unicode:
+ _xobj = _xobj_unicode
+ else:
+ _xobj = _xobj_ascii
+
+ vinfo = _xobj[symb]
+
+ c1 = top = bot = mid = None
+
+ if not isinstance(vinfo, tuple): # 1 entry
+ ext = vinfo
+ else:
+ if isinstance(vinfo[0], tuple): # (vlong), c1
+ vlong = vinfo[0]
+ c1 = vinfo[1]
+ else: # (vlong), c1
+ vlong = vinfo
+
+ ext = vlong[0]
+
+ try:
+ top = vlong[1]
+ bot = vlong[2]
+ mid = vlong[3]
+ except IndexError:
+ pass
+
+ if c1 is None:
+ c1 = ext
+ if top is None:
+ top = ext
+ if bot is None:
+ bot = ext
+ if mid is not None:
+ if (length % 2) == 0:
+ # even height, but we have to print it somehow anyway...
+ # XXX is it ok?
+ length += 1
+
+ else:
+ mid = ext
+
+ if length == 1:
+ return c1
+
+ res = []
+ next = (length - 2)//2
+ nmid = (length - 2) - next*2
+
+ res += [top]
+ res += [ext]*next
+ res += [mid]*nmid
+ res += [ext]*next
+ res += [bot]
+
+ return res
+
+
+def vobj(symb, height):
+ """Construct vertical object of a given height
+
+ see: xobj
+ """
+ return '\n'.join( xobj(symb, height) )
+
+
+def hobj(symb, width):
+ """Construct horizontal object of a given width
+
+ see: xobj
+ """
+ return ''.join( xobj(symb, width) )
+
+# RADICAL
+# n -> symbol
+root = {
+ 2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM')
+ 3: U('CUBE ROOT'),
+ 4: U('FOURTH ROOT'),
+}
+
+
+# RATIONAL
+VF = lambda txt: U('VULGAR FRACTION %s' % txt)
+
+# (p,q) -> symbol
+frac = {
+ (1, 2): VF('ONE HALF'),
+ (1, 3): VF('ONE THIRD'),
+ (2, 3): VF('TWO THIRDS'),
+ (1, 4): VF('ONE QUARTER'),
+ (3, 4): VF('THREE QUARTERS'),
+ (1, 5): VF('ONE FIFTH'),
+ (2, 5): VF('TWO FIFTHS'),
+ (3, 5): VF('THREE FIFTHS'),
+ (4, 5): VF('FOUR FIFTHS'),
+ (1, 6): VF('ONE SIXTH'),
+ (5, 6): VF('FIVE SIXTHS'),
+ (1, 8): VF('ONE EIGHTH'),
+ (3, 8): VF('THREE EIGHTHS'),
+ (5, 8): VF('FIVE EIGHTHS'),
+ (7, 8): VF('SEVEN EIGHTHS'),
+}
+
+
+# atom symbols
+_xsym = {
+ '==': ('=', '='),
+ '<': ('<', '<'),
+ '>': ('>', '>'),
+ '<=': ('<=', U('LESS-THAN OR EQUAL TO')),
+ '>=': ('>=', U('GREATER-THAN OR EQUAL TO')),
+ '!=': ('!=', U('NOT EQUAL TO')),
+ ':=': (':=', ':='),
+ '+=': ('+=', '+='),
+ '-=': ('-=', '-='),
+ '*=': ('*=', '*='),
+ '/=': ('/=', '/='),
+ '%=': ('%=', '%='),
+ '*': ('*', U('DOT OPERATOR')),
+ '-->': ('-->', U('EM DASH') + U('EM DASH') +
+ U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH')
+ and U('BLACK RIGHT-POINTING TRIANGLE') else None),
+ '==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') +
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') +
+ U('BLACK RIGHT-POINTING TRIANGLE') if
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') and
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') and
+ U('BLACK RIGHT-POINTING TRIANGLE') else None),
+ '.': ('*', U('RING OPERATOR')),
+}
+
+
+def xsym(sym):
+ """get symbology for a 'character'"""
+ op = _xsym[sym]
+
+ if _use_unicode:
+ return op[1]
+ else:
+ return op[0]
+
+
+# SYMBOLS
+
+atoms_table = {
+ # class how-to-display
+ 'Exp1': U('SCRIPT SMALL E'),
+ 'Pi': U('GREEK SMALL LETTER PI'),
+ 'Infinity': U('INFINITY'),
+ 'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here
+ #'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'),
+ #'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'),
+ 'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'),
+ 'EmptySet': U('EMPTY SET'),
+ 'Naturals': U('DOUBLE-STRUCK CAPITAL N'),
+ 'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and
+ (U('DOUBLE-STRUCK CAPITAL N') +
+ U('SUBSCRIPT ZERO'))),
+ 'Integers': U('DOUBLE-STRUCK CAPITAL Z'),
+ 'Rationals': U('DOUBLE-STRUCK CAPITAL Q'),
+ 'Reals': U('DOUBLE-STRUCK CAPITAL R'),
+ 'Complexes': U('DOUBLE-STRUCK CAPITAL C'),
+ 'Union': U('UNION'),
+ 'SymmetricDifference': U('INCREMENT'),
+ 'Intersection': U('INTERSECTION'),
+ 'Ring': U('RING OPERATOR'),
+ 'Modifier Letter Low Ring':U('Modifier Letter Low Ring'),
+ 'EmptySequence': 'EmptySequence',
+}
+
+
+def pretty_atom(atom_name, default=None, printer=None):
+ """return pretty representation of an atom"""
+ if _use_unicode:
+ if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j':
+ return U('DOUBLE-STRUCK ITALIC SMALL J')
+ else:
+ return atoms_table[atom_name]
+ else:
+ if default is not None:
+ return default
+
+ raise KeyError('only unicode') # send it default printer
+
+
+def pretty_symbol(symb_name, bold_name=False):
+ """return pretty representation of a symbol"""
+ # let's split symb_name into symbol + index
+ # UC: beta1
+ # UC: f_beta
+
+ if not _use_unicode:
+ return symb_name
+
+ name, sups, subs = split_super_sub(symb_name)
+
+ def translate(s, bold_name) :
+ if bold_name:
+ gG = greek_bold_unicode.get(s)
+ else:
+ gG = greek_unicode.get(s)
+ if gG is not None:
+ return gG
+ for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) :
+ if s.lower().endswith(key) and len(s)>len(key):
+ return modifier_dict[key](translate(s[:-len(key)], bold_name))
+ if bold_name:
+ return ''.join([bold_unicode[c] for c in s])
+ return s
+
+ name = translate(name, bold_name)
+
+ # Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are
+ # not used at all.
+ def pretty_list(l, mapping):
+ result = []
+ for s in l:
+ pretty = mapping.get(s)
+ if pretty is None:
+ try: # match by separate characters
+ pretty = ''.join([mapping[c] for c in s])
+ except (TypeError, KeyError):
+ return None
+ result.append(pretty)
+ return result
+
+ pretty_sups = pretty_list(sups, sup)
+ if pretty_sups is not None:
+ pretty_subs = pretty_list(subs, sub)
+ else:
+ pretty_subs = None
+
+ # glue the results into one string
+ if pretty_subs is None: # nice formatting of sups/subs did not work
+ if subs:
+ name += '_'+'_'.join([translate(s, bold_name) for s in subs])
+ if sups:
+ name += '__'+'__'.join([translate(s, bold_name) for s in sups])
+ return name
+ else:
+ sups_result = ' '.join(pretty_sups)
+ subs_result = ' '.join(pretty_subs)
+
+ return ''.join([name, sups_result, subs_result])
+
+
+def annotated(letter):
+ """
+ Return a stylised drawing of the letter ``letter``, together with
+ information on how to put annotations (super- and subscripts to the
+ left and to the right) on it.
+
+ See pretty.py functions _print_meijerg, _print_hyper on how to use this
+ information.
+ """
+ ucode_pics = {
+ 'F': (2, 0, 2, 0, '\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
+ '\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
+ '\N{BOX DRAWINGS LIGHT UP}'),
+ 'G': (3, 0, 3, 1, '\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n'
+ '\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n'
+ '\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}')
+ }
+ ascii_pics = {
+ 'F': (3, 0, 3, 0, ' _\n|_\n|\n'),
+ 'G': (3, 0, 3, 1, ' __\n/__\n\\_|')
+ }
+
+ if _use_unicode:
+ return ucode_pics[letter]
+ else:
+ return ascii_pics[letter]
+
+_remove_combining = dict.fromkeys(list(range(ord('\N{COMBINING GRAVE ACCENT}'), ord('\N{COMBINING LATIN SMALL LETTER X}')))
+ + list(range(ord('\N{COMBINING LEFT HARPOON ABOVE}'), ord('\N{COMBINING ASTERISK ABOVE}'))))
+
+def is_combining(sym):
+ """Check whether symbol is a unicode modifier. """
+
+ return ord(sym) in _remove_combining
+
+
+def center_accent(string, accent):
+ """
+ Returns a string with accent inserted on the middle character. Useful to
+ put combining accents on symbol names, including multi-character names.
+
+ Parameters
+ ==========
+
+ string : string
+ The string to place the accent in.
+ accent : string
+ The combining accent to insert
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Combining_character
+ .. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
+
+ """
+
+ # Accent is placed on the previous character, although it may not always look
+ # like that depending on console
+ midpoint = len(string) // 2 + 1
+ firstpart = string[:midpoint]
+ secondpart = string[midpoint:]
+ return firstpart + accent + secondpart
+
+
+def line_width(line):
+ """Unicode combining symbols (modifiers) are not ever displayed as
+ separate symbols and thus should not be counted
+ """
+ return len(line.translate(_remove_combining))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5dfa0681a441b5db00e6ea27d1641ed03ee9f18
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py
@@ -0,0 +1,538 @@
+"""Prettyprinter by Jurjen Bos.
+(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay).
+All objects have a method that create a "stringPict",
+that can be used in the str method for pretty printing.
+
+Updates by Jason Gedge (email at cs mun ca)
+ - terminal_string() method
+ - minor fixes and changes (mostly to prettyForm)
+
+TODO:
+ - Allow left/center/right alignment options for above/below and
+ top/center/bottom alignment options for left/right
+"""
+
+from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, line_width
+from sympy.utilities.exceptions import sympy_deprecation_warning
+
+class stringPict:
+ """An ASCII picture.
+ The pictures are represented as a list of equal length strings.
+ """
+ #special value for stringPict.below
+ LINE = 'line'
+
+ def __init__(self, s, baseline=0):
+ """Initialize from string.
+ Multiline strings are centered.
+ """
+ self.s = s
+ #picture is a string that just can be printed
+ self.picture = stringPict.equalLengths(s.splitlines())
+ #baseline is the line number of the "base line"
+ self.baseline = baseline
+ self.binding = None
+
+ @staticmethod
+ def equalLengths(lines):
+ # empty lines
+ if not lines:
+ return ['']
+
+ width = max(line_width(line) for line in lines)
+ return [line.center(width) for line in lines]
+
+ def height(self):
+ """The height of the picture in characters."""
+ return len(self.picture)
+
+ def width(self):
+ """The width of the picture in characters."""
+ return line_width(self.picture[0])
+
+ @staticmethod
+ def next(*args):
+ """Put a string of stringPicts next to each other.
+ Returns string, baseline arguments for stringPict.
+ """
+ #convert everything to stringPicts
+ objects = []
+ for arg in args:
+ if isinstance(arg, str):
+ arg = stringPict(arg)
+ objects.append(arg)
+
+ #make a list of pictures, with equal height and baseline
+ newBaseline = max(obj.baseline for obj in objects)
+ newHeightBelowBaseline = max(
+ obj.height() - obj.baseline
+ for obj in objects)
+ newHeight = newBaseline + newHeightBelowBaseline
+
+ pictures = []
+ for obj in objects:
+ oneEmptyLine = [' '*obj.width()]
+ basePadding = newBaseline - obj.baseline
+ totalPadding = newHeight - obj.height()
+ pictures.append(
+ oneEmptyLine * basePadding +
+ obj.picture +
+ oneEmptyLine * (totalPadding - basePadding))
+
+ result = [''.join(lines) for lines in zip(*pictures)]
+ return '\n'.join(result), newBaseline
+
+ def right(self, *args):
+ r"""Put pictures next to this one.
+ Returns string, baseline arguments for stringPict.
+ (Multiline) strings are allowed, and are given a baseline of 0.
+
+ Examples
+ ========
+
+ >>> from sympy.printing.pretty.stringpict import stringPict
+ >>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
+ 1
+ 10 + -
+ 2
+
+ """
+ return stringPict.next(self, *args)
+
+ def left(self, *args):
+ """Put pictures (left to right) at left.
+ Returns string, baseline arguments for stringPict.
+ """
+ return stringPict.next(*(args + (self,)))
+
+ @staticmethod
+ def stack(*args):
+ """Put pictures on top of each other,
+ from top to bottom.
+ Returns string, baseline arguments for stringPict.
+ The baseline is the baseline of the second picture.
+ Everything is centered.
+ Baseline is the baseline of the second picture.
+ Strings are allowed.
+ The special value stringPict.LINE is a row of '-' extended to the width.
+ """
+ #convert everything to stringPicts; keep LINE
+ objects = []
+ for arg in args:
+ if arg is not stringPict.LINE and isinstance(arg, str):
+ arg = stringPict(arg)
+ objects.append(arg)
+
+ #compute new width
+ newWidth = max(
+ obj.width()
+ for obj in objects
+ if obj is not stringPict.LINE)
+
+ lineObj = stringPict(hobj('-', newWidth))
+
+ #replace LINE with proper lines
+ for i, obj in enumerate(objects):
+ if obj is stringPict.LINE:
+ objects[i] = lineObj
+
+ #stack the pictures, and center the result
+ newPicture = []
+ for obj in objects:
+ newPicture.extend(obj.picture)
+ newPicture = [line.center(newWidth) for line in newPicture]
+ newBaseline = objects[0].height() + objects[1].baseline
+ return '\n'.join(newPicture), newBaseline
+
+ def below(self, *args):
+ """Put pictures under this picture.
+ Returns string, baseline arguments for stringPict.
+ Baseline is baseline of top picture
+
+ Examples
+ ========
+
+ >>> from sympy.printing.pretty.stringpict import stringPict
+ >>> print(stringPict("x+3").below(
+ ... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE
+ x+3
+ ---
+ 3
+
+ """
+ s, baseline = stringPict.stack(self, *args)
+ return s, self.baseline
+
+ def above(self, *args):
+ """Put pictures above this picture.
+ Returns string, baseline arguments for stringPict.
+ Baseline is baseline of bottom picture.
+ """
+ string, baseline = stringPict.stack(*(args + (self,)))
+ baseline = len(string.splitlines()) - self.height() + self.baseline
+ return string, baseline
+
+ def parens(self, left='(', right=')', ifascii_nougly=False):
+ """Put parentheses around self.
+ Returns string, baseline arguments for stringPict.
+
+ left or right can be None or empty string which means 'no paren from
+ that side'
+ """
+ h = self.height()
+ b = self.baseline
+
+ # XXX this is a hack -- ascii parens are ugly!
+ if ifascii_nougly and not pretty_use_unicode():
+ h = 1
+ b = 0
+
+ res = self
+
+ if left:
+ lparen = stringPict(vobj(left, h), baseline=b)
+ res = stringPict(*lparen.right(self))
+ if right:
+ rparen = stringPict(vobj(right, h), baseline=b)
+ res = stringPict(*res.right(rparen))
+
+ return ('\n'.join(res.picture), res.baseline)
+
+ def leftslash(self):
+ """Precede object by a slash of the proper size.
+ """
+ # XXX not used anywhere ?
+ height = max(
+ self.baseline,
+ self.height() - 1 - self.baseline)*2 + 1
+ slash = '\n'.join(
+ ' '*(height - i - 1) + xobj('/', 1) + ' '*i
+ for i in range(height)
+ )
+ return self.left(stringPict(slash, height//2))
+
+ def root(self, n=None):
+ """Produce a nice root symbol.
+ Produces ugly results for big n inserts.
+ """
+ # XXX not used anywhere
+ # XXX duplicate of root drawing in pretty.py
+ #put line over expression
+ result = self.above('_'*self.width())
+ #construct right half of root symbol
+ height = self.height()
+ slash = '\n'.join(
+ ' ' * (height - i - 1) + '/' + ' ' * i
+ for i in range(height)
+ )
+ slash = stringPict(slash, height - 1)
+ #left half of root symbol
+ if height > 2:
+ downline = stringPict('\\ \n \\', 1)
+ else:
+ downline = stringPict('\\')
+ #put n on top, as low as possible
+ if n is not None and n.width() > downline.width():
+ downline = downline.left(' '*(n.width() - downline.width()))
+ downline = downline.above(n)
+ #build root symbol
+ root = downline.right(slash)
+ #glue it on at the proper height
+ #normally, the root symbel is as high as self
+ #which is one less than result
+ #this moves the root symbol one down
+ #if the root became higher, the baseline has to grow too
+ root.baseline = result.baseline - result.height() + root.height()
+ return result.left(root)
+
+ def render(self, * args, **kwargs):
+ """Return the string form of self.
+
+ Unless the argument line_break is set to False, it will
+ break the expression in a form that can be printed
+ on the terminal without being broken up.
+ """
+ if kwargs["wrap_line"] is False:
+ return "\n".join(self.picture)
+
+ if kwargs["num_columns"] is not None:
+ # Read the argument num_columns if it is not None
+ ncols = kwargs["num_columns"]
+ else:
+ # Attempt to get a terminal width
+ ncols = self.terminal_width()
+
+ ncols -= 2
+ if ncols <= 0:
+ ncols = 78
+
+ # If smaller than the terminal width, no need to correct
+ if self.width() <= ncols:
+ return type(self.picture[0])(self)
+
+ # for one-line pictures we don't need v-spacers. on the other hand, for
+ # multiline-pictures, we need v-spacers between blocks, compare:
+ #
+ # 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323
+ # 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795
+ # | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b |
+ # 3 4 4 | | *d*f |
+ # 4*y*x + x + y | + b*c*f + b*d*e + b | |
+ # | | |
+ # | *d*f
+
+ i = 0
+ svals = []
+ do_vspacers = (self.height() > 1)
+ while i < self.width():
+ svals.extend([ sval[i:i + ncols] for sval in self.picture ])
+ if do_vspacers:
+ svals.append("") # a vertical spacer
+ i += ncols
+
+ if svals[-1] == '':
+ del svals[-1] # Get rid of the last spacer
+
+ return "\n".join(svals)
+
+ def terminal_width(self):
+ """Return the terminal width if possible, otherwise return 0.
+ """
+ ncols = 0
+ try:
+ import curses
+ import io
+ try:
+ curses.setupterm()
+ ncols = curses.tigetnum('cols')
+ except AttributeError:
+ # windows curses doesn't implement setupterm or tigetnum
+ # code below from
+ # https://code.activestate.com/recipes/440694/
+ from ctypes import windll, create_string_buffer
+ # stdin handle is -10
+ # stdout handle is -11
+ # stderr handle is -12
+ h = windll.kernel32.GetStdHandle(-12)
+ csbi = create_string_buffer(22)
+ res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
+ if res:
+ import struct
+ (bufx, bufy, curx, cury, wattr,
+ left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw)
+ ncols = right - left + 1
+ except curses.error:
+ pass
+ except io.UnsupportedOperation:
+ pass
+ except (ImportError, TypeError):
+ pass
+ return ncols
+
+ def __eq__(self, o):
+ if isinstance(o, str):
+ return '\n'.join(self.picture) == o
+ elif isinstance(o, stringPict):
+ return o.picture == self.picture
+ return False
+
+ def __hash__(self):
+ return super().__hash__()
+
+ def __str__(self):
+ return '\n'.join(self.picture)
+
+ def __repr__(self):
+ return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline)
+
+ def __getitem__(self, index):
+ return self.picture[index]
+
+ def __len__(self):
+ return len(self.s)
+
+
+class prettyForm(stringPict):
+ """
+ Extension of the stringPict class that knows about basic math applications,
+ optimizing double minus signs.
+
+ "Binding" is interpreted as follows::
+
+ ATOM this is an atom: never needs to be parenthesized
+ FUNC this is a function application: parenthesize if added (?)
+ DIV this is a division: make wider division if divided
+ POW this is a power: only parenthesize if exponent
+ MUL this is a multiplication: parenthesize if powered
+ ADD this is an addition: parenthesize if multiplied or powered
+ NEG this is a negative number: optimize if added, parenthesize if
+ multiplied or powered
+ OPEN this is an open object: parenthesize if added, multiplied, or
+ powered (example: Piecewise)
+ """
+ ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8)
+
+ def __init__(self, s, baseline=0, binding=0, unicode=None):
+ """Initialize from stringPict and binding power."""
+ stringPict.__init__(self, s, baseline)
+ self.binding = binding
+ if unicode is not None:
+ sympy_deprecation_warning(
+ """
+ The unicode argument to prettyForm is deprecated. Only the s
+ argument (the first positional argument) should be passed.
+ """,
+ deprecated_since_version="1.7",
+ active_deprecations_target="deprecated-pretty-printing-functions")
+ self._unicode = unicode or s
+
+ @property
+ def unicode(self):
+ sympy_deprecation_warning(
+ """
+ The prettyForm.unicode attribute is deprecated. Use the
+ prettyForm.s attribute instead.
+ """,
+ deprecated_since_version="1.7",
+ active_deprecations_target="deprecated-pretty-printing-functions")
+ return self._unicode
+
+ # Note: code to handle subtraction is in _print_Add
+
+ def __add__(self, *others):
+ """Make a pretty addition.
+ Addition of negative numbers is simplified.
+ """
+ arg = self
+ if arg.binding > prettyForm.NEG:
+ arg = stringPict(*arg.parens())
+ result = [arg]
+ for arg in others:
+ #add parentheses for weak binders
+ if arg.binding > prettyForm.NEG:
+ arg = stringPict(*arg.parens())
+ #use existing minus sign if available
+ if arg.binding != prettyForm.NEG:
+ result.append(' + ')
+ result.append(arg)
+ return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result))
+
+ def __truediv__(self, den, slashed=False):
+ """Make a pretty division; stacked or slashed.
+ """
+ if slashed:
+ raise NotImplementedError("Can't do slashed fraction yet")
+ num = self
+ if num.binding == prettyForm.DIV:
+ num = stringPict(*num.parens())
+ if den.binding == prettyForm.DIV:
+ den = stringPict(*den.parens())
+
+ if num.binding==prettyForm.NEG:
+ num = num.right(" ")[0]
+
+ return prettyForm(binding=prettyForm.DIV, *stringPict.stack(
+ num,
+ stringPict.LINE,
+ den))
+
+ def __mul__(self, *others):
+ """Make a pretty multiplication.
+ Parentheses are needed around +, - and neg.
+ """
+ quantity = {
+ 'degree': "\N{DEGREE SIGN}"
+ }
+
+ if len(others) == 0:
+ return self # We aren't actually multiplying... So nothing to do here.
+
+ # add parens on args that need them
+ arg = self
+ if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG:
+ arg = stringPict(*arg.parens())
+ result = [arg]
+ for arg in others:
+ if arg.picture[0] not in quantity.values():
+ result.append(xsym('*'))
+ #add parentheses for weak binders
+ if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG:
+ arg = stringPict(*arg.parens())
+ result.append(arg)
+
+ len_res = len(result)
+ for i in range(len_res):
+ if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'):
+ # substitute -1 by -, like in -1*x -> -x
+ result.pop(i)
+ result.pop(i)
+ result.insert(i, '-')
+ if result[0][0] == '-':
+ # if there is a - sign in front of all
+ # This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative
+ bin = prettyForm.NEG
+ if result[0] == '-':
+ right = result[1]
+ if right.picture[right.baseline][0] == '-':
+ result[0] = '- '
+ else:
+ bin = prettyForm.MUL
+ return prettyForm(binding=bin, *stringPict.next(*result))
+
+ def __repr__(self):
+ return "prettyForm(%r,%d,%d)" % (
+ '\n'.join(self.picture),
+ self.baseline,
+ self.binding)
+
+ def __pow__(self, b):
+ """Make a pretty power.
+ """
+ a = self
+ use_inline_func_form = False
+ if b.binding == prettyForm.POW:
+ b = stringPict(*b.parens())
+ if a.binding > prettyForm.FUNC:
+ a = stringPict(*a.parens())
+ elif a.binding == prettyForm.FUNC:
+ # heuristic for when to use inline power
+ if b.height() > 1:
+ a = stringPict(*a.parens())
+ else:
+ use_inline_func_form = True
+
+ if use_inline_func_form:
+ # 2
+ # sin + + (x)
+ b.baseline = a.prettyFunc.baseline + b.height()
+ func = stringPict(*a.prettyFunc.right(b))
+ return prettyForm(*func.right(a.prettyArgs))
+ else:
+ # 2 <-- top
+ # (x+y) <-- bot
+ top = stringPict(*b.left(' '*a.width()))
+ bot = stringPict(*a.right(' '*b.width()))
+
+ return prettyForm(binding=prettyForm.POW, *bot.above(top))
+
+ simpleFunctions = ["sin", "cos", "tan"]
+
+ @staticmethod
+ def apply(function, *args):
+ """Functions of one or more variables.
+ """
+ if function in prettyForm.simpleFunctions:
+ #simple function: use only space if possible
+ assert len(
+ args) == 1, "Simple function %s must have 1 argument" % function
+ arg = args[0].__pretty__()
+ if arg.binding <= prettyForm.DIV:
+ #optimization: no parentheses necessary
+ return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' '))
+ argumentList = []
+ for arg in args:
+ argumentList.append(',')
+ argumentList.append(arg.__pretty__())
+ argumentList = stringPict(*stringPict.next(*argumentList[1:]))
+ argumentList = stringPict(*argumentList.parens())
+ return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py
new file mode 100644
index 0000000000000000000000000000000000000000..7806e7aac00630f1a62d09358f1bb3ef74668340
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py
@@ -0,0 +1,7825 @@
+# -*- coding: utf-8 -*-
+from sympy.concrete.products import Product
+from sympy.concrete.summations import Sum
+from sympy.core.add import Add
+from sympy.core.basic import Basic
+from sympy.core.containers import (Dict, Tuple)
+from sympy.core.function import (Derivative, Function, Lambda, Subs)
+from sympy.core.mul import Mul
+from sympy.core import (EulerGamma, GoldenRatio, Catalan)
+from sympy.core.numbers import (I, Rational, oo, pi)
+from sympy.core.power import Pow
+from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.complexes import conjugate
+from sympy.functions.elementary.exponential import LambertW
+from sympy.functions.special.bessel import (airyai, airyaiprime, airybi, airybiprime)
+from sympy.functions.special.delta_functions import Heaviside
+from sympy.functions.special.error_functions import (fresnelc, fresnels)
+from sympy.functions.special.singularity_functions import SingularityFunction
+from sympy.functions.special.zeta_functions import dirichlet_eta
+from sympy.geometry.line import (Ray, Segment)
+from sympy.integrals.integrals import Integral
+from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand, Nor, Not, Or, Xor)
+from sympy.matrices.dense import (Matrix, diag)
+from sympy.matrices.expressions.slice import MatrixSlice
+from sympy.matrices.expressions.trace import Trace
+from sympy.polys.domains.finitefield import FF
+from sympy.polys.domains.integerring import ZZ
+from sympy.polys.domains.rationalfield import QQ
+from sympy.polys.domains.realfield import RR
+from sympy.polys.orderings import (grlex, ilex)
+from sympy.polys.polytools import groebner
+from sympy.polys.rootoftools import (RootSum, rootof)
+from sympy.series.formal import fps
+from sympy.series.fourier import fourier_series
+from sympy.series.limits import Limit
+from sympy.series.order import O
+from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer)
+from sympy.sets.contains import Contains
+from sympy.sets.fancysets import Range
+from sympy.sets.sets import (Complement, FiniteSet, Intersection, Interval, Union)
+from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
+ SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
+from sympy.core.expr import UnevaluatedExpr
+from sympy.physics.quantum.trace import Tr
+
+from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
+ Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
+ euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
+ meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
+ elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
+ bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
+ mathieusprime, mathieucprime)
+
+from sympy.matrices import (Adjoint, Inverse, MatrixSymbol, Transpose,
+ KroneckerProduct, BlockMatrix, OneMatrix, ZeroMatrix)
+from sympy.matrices.expressions import hadamard_power
+
+from sympy.physics import mechanics
+from sympy.physics.control.lti import (TransferFunction, Feedback, TransferFunctionMatrix,
+ Series, Parallel, MIMOSeries, MIMOParallel, MIMOFeedback)
+from sympy.physics.units import joule, degree
+from sympy.printing.pretty import pprint, pretty as xpretty
+from sympy.printing.pretty.pretty_symbology import center_accent, is_combining
+from sympy.sets.conditionset import ConditionSet
+
+from sympy.sets import ImageSet, ProductSet
+from sympy.sets.setexpr import SetExpr
+from sympy.stats.crv_types import Normal
+from sympy.stats.symbolic_probability import (Covariance, Expectation,
+ Probability, Variance)
+from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
+ MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
+from sympy.tensor.functions import TensorProduct
+from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead,
+ TensorElement, tensor_heads)
+
+from sympy.testing.pytest import raises, _both_exp_pow, warns_deprecated_sympy
+
+from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
+
+
+
+import sympy as sym
+class lowergamma(sym.lowergamma):
+ pass # testing notation inheritance by a subclass with same name
+
+a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p')
+f = Function("f")
+th = Symbol('theta')
+ph = Symbol('phi')
+
+"""
+Expressions whose pretty-printing is tested here:
+(A '#' to the right of an expression indicates that its various acceptable
+orderings are accounted for by the tests.)
+
+
+BASIC EXPRESSIONS:
+
+oo
+(x**2)
+1/x
+y*x**-2
+x**Rational(-5,2)
+(-2)**x
+Pow(3, 1, evaluate=False)
+(x**2 + x + 1) #
+1-x #
+1-2*x #
+x/y
+-x/y
+(x+2)/y #
+(1+x)*y #3
+-5*x/(x+10) # correct placement of negative sign
+1 - Rational(3,2)*(x+1)
+-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
+
+
+ORDERING:
+
+x**2 + x + 1
+1 - x
+1 - 2*x
+2*x**4 + y**2 - x**2 + y**3
+
+
+RELATIONAL:
+
+Eq(x, y)
+Lt(x, y)
+Gt(x, y)
+Le(x, y)
+Ge(x, y)
+Ne(x/(y+1), y**2) #
+
+
+RATIONAL NUMBERS:
+
+y*x**-2
+y**Rational(3,2) * x**Rational(-5,2)
+sin(x)**3/tan(x)**2
+
+
+FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
+
+(2*x + exp(x)) #
+Abs(x)
+Abs(x/(x**2+1)) #
+Abs(1 / (y - Abs(x)))
+factorial(n)
+factorial(2*n)
+subfactorial(n)
+subfactorial(2*n)
+factorial(factorial(factorial(n)))
+factorial(n+1) #
+conjugate(x)
+conjugate(f(x+1)) #
+f(x)
+f(x, y)
+f(x/(y+1), y) #
+f(x**x**x**x**x**x)
+sin(x)**2
+conjugate(a+b*I)
+conjugate(exp(a+b*I))
+conjugate( f(1 + conjugate(f(x))) ) #
+f(x/(y+1), y) # denom of first arg
+floor(1 / (y - floor(x)))
+ceiling(1 / (y - ceiling(x)))
+
+
+SQRT:
+
+sqrt(2)
+2**Rational(1,3)
+2**Rational(1,1000)
+sqrt(x**2 + 1)
+(1 + sqrt(5))**Rational(1,3)
+2**(1/x)
+sqrt(2+pi)
+(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
+
+
+DERIVATIVES:
+
+Derivative(log(x), x, evaluate=False)
+Derivative(log(x), x, evaluate=False) + x #
+Derivative(log(x) + x**2, x, y, evaluate=False)
+Derivative(2*x*y, y, x, evaluate=False) + x**2 #
+beta(alpha).diff(alpha)
+
+
+INTEGRALS:
+
+Integral(log(x), x)
+Integral(x**2, x)
+Integral((sin(x))**2 / (tan(x))**2)
+Integral(x**(2**x), x)
+Integral(x**2, (x,1,2))
+Integral(x**2, (x,Rational(1,2),10))
+Integral(x**2*y**2, x,y)
+Integral(x**2, (x, None, 1))
+Integral(x**2, (x, 1, None))
+Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
+
+
+MATRICES:
+
+Matrix([[x**2+1, 1], [y, x+y]]) #
+Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
+
+
+PIECEWISE:
+
+Piecewise((x,x<1),(x**2,True))
+
+ITE:
+
+ITE(x, y, z)
+
+SEQUENCES (TUPLES, LISTS, DICTIONARIES):
+
+()
+[]
+{}
+(1/x,)
+[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
+(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
+{x: sin(x)}
+{1/x: 1/y, x: sin(x)**2} #
+[x**2]
+(x**2,)
+{x**2: 1}
+
+
+LIMITS:
+
+Limit(x, x, oo)
+Limit(x**2, x, 0)
+Limit(1/x, x, 0)
+Limit(sin(x)/x, x, 0)
+
+
+UNITS:
+
+joule => kg*m**2/s
+
+
+SUBS:
+
+Subs(f(x), x, ph**2)
+Subs(f(x).diff(x), x, 0)
+Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
+
+
+ORDER:
+
+O(1)
+O(1/x)
+O(x**2 + y**2)
+
+"""
+
+
+def pretty(expr, order=None):
+ """ASCII pretty-printing"""
+ return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
+
+
+def upretty(expr, order=None):
+ """Unicode pretty-printing"""
+ return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
+
+
+def test_pretty_ascii_str():
+ assert pretty( 'xxx' ) == 'xxx'
+ assert pretty( "xxx" ) == 'xxx'
+ assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
+ assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
+ assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
+ assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
+ assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
+ assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
+ assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
+ assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
+
+
+def test_pretty_unicode_str():
+ assert pretty( 'xxx' ) == 'xxx'
+ assert pretty( 'xxx' ) == 'xxx'
+ assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
+ assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
+ assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
+ assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
+ assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
+ assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
+ assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
+ assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
+
+
+def test_upretty_greek():
+ assert upretty( oo ) == '∞'
+ assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁'
+ assert upretty( Symbol('beta') ) == 'β'
+ assert upretty(Symbol('lambda')) == 'λ'
+
+
+def test_upretty_multiindex():
+ assert upretty( Symbol('beta12') ) == 'β₁₂'
+ assert upretty( Symbol('Y00') ) == 'Y₀₀'
+ assert upretty( Symbol('Y_00') ) == 'Y₀₀'
+ assert upretty( Symbol('F^+-') ) == 'F⁺⁻'
+
+
+def test_upretty_sub_super():
+ assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂'
+ assert upretty( Symbol('beta^1^2') ) == 'β¹ ²'
+ assert upretty( Symbol('beta_1^2') ) == 'β²₁'
+ assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀'
+ assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ'
+ assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄'
+ assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂'
+ assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄'
+ assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴'
+
+
+def test_upretty_subs_missing_in_24():
+ assert upretty( Symbol('F_beta') ) == 'Fᵦ'
+ assert upretty( Symbol('F_gamma') ) == 'Fᵧ'
+ assert upretty( Symbol('F_rho') ) == 'Fᵨ'
+ assert upretty( Symbol('F_phi') ) == 'Fᵩ'
+ assert upretty( Symbol('F_chi') ) == 'Fᵪ'
+
+ assert upretty( Symbol('F_a') ) == 'Fₐ'
+ assert upretty( Symbol('F_e') ) == 'Fₑ'
+ assert upretty( Symbol('F_i') ) == 'Fᵢ'
+ assert upretty( Symbol('F_o') ) == 'Fₒ'
+ assert upretty( Symbol('F_u') ) == 'Fᵤ'
+ assert upretty( Symbol('F_r') ) == 'Fᵣ'
+ assert upretty( Symbol('F_v') ) == 'Fᵥ'
+ assert upretty( Symbol('F_x') ) == 'Fₓ'
+
+
+def test_missing_in_2X_issue_9047():
+ assert upretty( Symbol('F_h') ) == 'Fₕ'
+ assert upretty( Symbol('F_k') ) == 'Fₖ'
+ assert upretty( Symbol('F_l') ) == 'Fₗ'
+ assert upretty( Symbol('F_m') ) == 'Fₘ'
+ assert upretty( Symbol('F_n') ) == 'Fₙ'
+ assert upretty( Symbol('F_p') ) == 'Fₚ'
+ assert upretty( Symbol('F_s') ) == 'Fₛ'
+ assert upretty( Symbol('F_t') ) == 'Fₜ'
+
+
+def test_upretty_modifiers():
+ # Accents
+ assert upretty( Symbol('Fmathring') ) == 'F̊'
+ assert upretty( Symbol('Fddddot') ) == 'F⃜'
+ assert upretty( Symbol('Fdddot') ) == 'F⃛'
+ assert upretty( Symbol('Fddot') ) == 'F̈'
+ assert upretty( Symbol('Fdot') ) == 'Ḟ'
+ assert upretty( Symbol('Fcheck') ) == 'F̌'
+ assert upretty( Symbol('Fbreve') ) == 'F̆'
+ assert upretty( Symbol('Facute') ) == 'F́'
+ assert upretty( Symbol('Fgrave') ) == 'F̀'
+ assert upretty( Symbol('Ftilde') ) == 'F̃'
+ assert upretty( Symbol('Fhat') ) == 'F̂'
+ assert upretty( Symbol('Fbar') ) == 'F̅'
+ assert upretty( Symbol('Fvec') ) == 'F⃗'
+ assert upretty( Symbol('Fprime') ) == 'F′'
+ assert upretty( Symbol('Fprm') ) == 'F′'
+ # No faces are actually implemented, but test to make sure the modifiers are stripped
+ assert upretty( Symbol('Fbold') ) == 'Fbold'
+ assert upretty( Symbol('Fbm') ) == 'Fbm'
+ assert upretty( Symbol('Fcal') ) == 'Fcal'
+ assert upretty( Symbol('Fscr') ) == 'Fscr'
+ assert upretty( Symbol('Ffrak') ) == 'Ffrak'
+ # Brackets
+ assert upretty( Symbol('Fnorm') ) == '‖F‖'
+ assert upretty( Symbol('Favg') ) == '⟨F⟩'
+ assert upretty( Symbol('Fabs') ) == '|F|'
+ assert upretty( Symbol('Fmag') ) == '|F|'
+ # Combinations
+ assert upretty( Symbol('xvecdot') ) == 'x⃗̇'
+ assert upretty( Symbol('xDotVec') ) == 'ẋ⃗'
+ assert upretty( Symbol('xHATNorm') ) == '‖x̂‖'
+ assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|'
+ assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′'
+ assert upretty( Symbol('x_dot') ) == 'x_dot'
+ assert upretty( Symbol('x__dot') ) == 'x__dot'
+
+
+def test_pretty_Cycle():
+ from sympy.combinatorics.permutations import Cycle
+ assert pretty(Cycle(1, 2)) == '(1 2)'
+ assert pretty(Cycle(2)) == '(2)'
+ assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
+ assert pretty(Cycle()) == '()'
+
+
+def test_pretty_Permutation():
+ from sympy.combinatorics.permutations import Permutation
+ p1 = Permutation(1, 2)(3, 4)
+ assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)"
+ assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)"
+ assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \
+ '⎛0 1 2 3 4⎞\n'\
+ '⎝0 2 1 4 3⎠'
+ assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \
+ "/0 1 2 3 4\\\n"\
+ "\\0 2 1 4 3/"
+
+ with warns_deprecated_sympy():
+ old_print_cyclic = Permutation.print_cyclic
+ Permutation.print_cyclic = False
+ assert xpretty(p1, use_unicode=True) == \
+ '⎛0 1 2 3 4⎞\n'\
+ '⎝0 2 1 4 3⎠'
+ assert xpretty(p1, use_unicode=False) == \
+ "/0 1 2 3 4\\\n"\
+ "\\0 2 1 4 3/"
+ Permutation.print_cyclic = old_print_cyclic
+
+
+def test_pretty_basic():
+ assert pretty( -Rational(1)/2 ) == '-1/2'
+ assert pretty( -Rational(13)/22 ) == \
+"""\
+-13 \n\
+----\n\
+ 22 \
+"""
+ expr = oo
+ ascii_str = \
+"""\
+oo\
+"""
+ ucode_str = \
+"""\
+∞\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (x**2)
+ ascii_str = \
+"""\
+ 2\n\
+x \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 1/x
+ ascii_str = \
+"""\
+1\n\
+-\n\
+x\
+"""
+ ucode_str = \
+"""\
+1\n\
+─\n\
+x\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ # not the same as 1/x
+ expr = x**-1.0
+ ascii_str = \
+"""\
+ -1.0\n\
+x \
+"""
+ ucode_str = \
+"""\
+ -1.0\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ # see issue #2860
+ expr = Pow(S(2), -1.0, evaluate=False)
+ ascii_str = \
+"""\
+ -1.0\n\
+2 \
+"""
+ ucode_str = \
+"""\
+ -1.0\n\
+2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = y*x**-2
+ ascii_str = \
+"""\
+y \n\
+--\n\
+ 2\n\
+x \
+"""
+ ucode_str = \
+"""\
+y \n\
+──\n\
+ 2\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ #see issue #14033
+ expr = x**Rational(1, 3)
+ ascii_str = \
+"""\
+ 1/3\n\
+x \
+"""
+ ucode_str = \
+"""\
+ 1/3\n\
+x \
+"""
+ assert xpretty(expr, use_unicode=False, wrap_line=False,\
+ root_notation = False) == ascii_str
+ assert xpretty(expr, use_unicode=True, wrap_line=False,\
+ root_notation = False) == ucode_str
+
+ expr = x**Rational(-5, 2)
+ ascii_str = \
+"""\
+ 1 \n\
+----\n\
+ 5/2\n\
+x \
+"""
+ ucode_str = \
+"""\
+ 1 \n\
+────\n\
+ 5/2\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (-2)**x
+ ascii_str = \
+"""\
+ x\n\
+(-2) \
+"""
+ ucode_str = \
+"""\
+ x\n\
+(-2) \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ # See issue 4923
+ expr = Pow(3, 1, evaluate=False)
+ ascii_str = \
+"""\
+ 1\n\
+3 \
+"""
+ ucode_str = \
+"""\
+ 1\n\
+3 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (x**2 + x + 1)
+ ascii_str_1 = \
+"""\
+ 2\n\
+1 + x + x \
+"""
+ ascii_str_2 = \
+"""\
+ 2 \n\
+x + x + 1\
+"""
+ ascii_str_3 = \
+"""\
+ 2 \n\
+x + 1 + x\
+"""
+ ucode_str_1 = \
+"""\
+ 2\n\
+1 + x + x \
+"""
+ ucode_str_2 = \
+"""\
+ 2 \n\
+x + x + 1\
+"""
+ ucode_str_3 = \
+"""\
+ 2 \n\
+x + 1 + x\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
+
+ expr = 1 - x
+ ascii_str_1 = \
+"""\
+1 - x\
+"""
+ ascii_str_2 = \
+"""\
+-x + 1\
+"""
+ ucode_str_1 = \
+"""\
+1 - x\
+"""
+ ucode_str_2 = \
+"""\
+-x + 1\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = 1 - 2*x
+ ascii_str_1 = \
+"""\
+1 - 2*x\
+"""
+ ascii_str_2 = \
+"""\
+-2*x + 1\
+"""
+ ucode_str_1 = \
+"""\
+1 - 2⋅x\
+"""
+ ucode_str_2 = \
+"""\
+-2⋅x + 1\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = x/y
+ ascii_str = \
+"""\
+x\n\
+-\n\
+y\
+"""
+ ucode_str = \
+"""\
+x\n\
+─\n\
+y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = -x/y
+ ascii_str = \
+"""\
+-x \n\
+---\n\
+ y \
+"""
+ ucode_str = \
+"""\
+-x \n\
+───\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (x + 2)/y
+ ascii_str_1 = \
+"""\
+2 + x\n\
+-----\n\
+ y \
+"""
+ ascii_str_2 = \
+"""\
+x + 2\n\
+-----\n\
+ y \
+"""
+ ucode_str_1 = \
+"""\
+2 + x\n\
+─────\n\
+ y \
+"""
+ ucode_str_2 = \
+"""\
+x + 2\n\
+─────\n\
+ y \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = (1 + x)*y
+ ascii_str_1 = \
+"""\
+y*(1 + x)\
+"""
+ ascii_str_2 = \
+"""\
+(1 + x)*y\
+"""
+ ascii_str_3 = \
+"""\
+y*(x + 1)\
+"""
+ ucode_str_1 = \
+"""\
+y⋅(1 + x)\
+"""
+ ucode_str_2 = \
+"""\
+(1 + x)⋅y\
+"""
+ ucode_str_3 = \
+"""\
+y⋅(x + 1)\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
+
+ # Test for correct placement of the negative sign
+ expr = -5*x/(x + 10)
+ ascii_str_1 = \
+"""\
+-5*x \n\
+------\n\
+10 + x\
+"""
+ ascii_str_2 = \
+"""\
+-5*x \n\
+------\n\
+x + 10\
+"""
+ ucode_str_1 = \
+"""\
+-5⋅x \n\
+──────\n\
+10 + x\
+"""
+ ucode_str_2 = \
+"""\
+-5⋅x \n\
+──────\n\
+x + 10\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = -S.Half - 3*x
+ ascii_str = \
+"""\
+-3*x - 1/2\
+"""
+ ucode_str = \
+"""\
+-3⋅x - 1/2\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = S.Half - 3*x
+ ascii_str = \
+"""\
+1/2 - 3*x\
+"""
+ ucode_str = \
+"""\
+1/2 - 3⋅x\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = -S.Half - 3*x/2
+ ascii_str = \
+"""\
+ 3*x 1\n\
+- --- - -\n\
+ 2 2\
+"""
+ ucode_str = \
+"""\
+ 3⋅x 1\n\
+- ─── - ─\n\
+ 2 2\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = S.Half - 3*x/2
+ ascii_str = \
+"""\
+1 3*x\n\
+- - ---\n\
+2 2 \
+"""
+ ucode_str = \
+"""\
+1 3⋅x\n\
+─ - ───\n\
+2 2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_negative_fractions():
+ expr = -x/y
+ ascii_str =\
+"""\
+-x \n\
+---\n\
+ y \
+"""
+ ucode_str =\
+"""\
+-x \n\
+───\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -x*z/y
+ ascii_str =\
+"""\
+-x*z \n\
+-----\n\
+ y \
+"""
+ ucode_str =\
+"""\
+-x⋅z \n\
+─────\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = x**2/y
+ ascii_str =\
+"""\
+ 2\n\
+x \n\
+--\n\
+y \
+"""
+ ucode_str =\
+"""\
+ 2\n\
+x \n\
+──\n\
+y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -x**2/y
+ ascii_str =\
+"""\
+ 2 \n\
+-x \n\
+----\n\
+ y \
+"""
+ ucode_str =\
+"""\
+ 2 \n\
+-x \n\
+────\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -x/(y*z)
+ ascii_str =\
+"""\
+-x \n\
+---\n\
+y*z\
+"""
+ ucode_str =\
+"""\
+-x \n\
+───\n\
+y⋅z\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -a/y**2
+ ascii_str =\
+"""\
+-a \n\
+---\n\
+ 2\n\
+ y \
+"""
+ ucode_str =\
+"""\
+-a \n\
+───\n\
+ 2\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = y**(-a/b)
+ ascii_str =\
+"""\
+ -a \n\
+ ---\n\
+ b \n\
+y \
+"""
+ ucode_str =\
+"""\
+ -a \n\
+ ───\n\
+ b \n\
+y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -1/y**2
+ ascii_str =\
+"""\
+-1 \n\
+---\n\
+ 2\n\
+ y \
+"""
+ ucode_str =\
+"""\
+-1 \n\
+───\n\
+ 2\n\
+ y \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = -10/b**2
+ ascii_str =\
+"""\
+-10 \n\
+----\n\
+ 2 \n\
+ b \
+"""
+ ucode_str =\
+"""\
+-10 \n\
+────\n\
+ 2 \n\
+ b \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+ expr = Rational(-200, 37)
+ ascii_str =\
+"""\
+-200 \n\
+-----\n\
+ 37 \
+"""
+ ucode_str =\
+"""\
+-200 \n\
+─────\n\
+ 37 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+def test_Mul():
+ expr = Mul(0, 1, evaluate=False)
+ assert pretty(expr) == "0*1"
+ assert upretty(expr) == "0⋅1"
+ expr = Mul(1, 0, evaluate=False)
+ assert pretty(expr) == "1*0"
+ assert upretty(expr) == "1⋅0"
+ expr = Mul(1, 1, evaluate=False)
+ assert pretty(expr) == "1*1"
+ assert upretty(expr) == "1⋅1"
+ expr = Mul(1, 1, 1, evaluate=False)
+ assert pretty(expr) == "1*1*1"
+ assert upretty(expr) == "1⋅1⋅1"
+ expr = Mul(1, 2, evaluate=False)
+ assert pretty(expr) == "1*2"
+ assert upretty(expr) == "1⋅2"
+ expr = Add(0, 1, evaluate=False)
+ assert pretty(expr) == "0 + 1"
+ assert upretty(expr) == "0 + 1"
+ expr = Mul(1, 1, 2, evaluate=False)
+ assert pretty(expr) == "1*1*2"
+ assert upretty(expr) == "1⋅1⋅2"
+ expr = Add(0, 0, 1, evaluate=False)
+ assert pretty(expr) == "0 + 0 + 1"
+ assert upretty(expr) == "0 + 0 + 1"
+ expr = Mul(1, -1, evaluate=False)
+ assert pretty(expr) == "1*-1"
+ assert upretty(expr) == "1⋅-1"
+ expr = Mul(1.0, x, evaluate=False)
+ assert pretty(expr) == "1.0*x"
+ assert upretty(expr) == "1.0⋅x"
+ expr = Mul(1, 1, 2, 3, x, evaluate=False)
+ assert pretty(expr) == "1*1*2*3*x"
+ assert upretty(expr) == "1⋅1⋅2⋅3⋅x"
+ expr = Mul(-1, 1, evaluate=False)
+ assert pretty(expr) == "-1*1"
+ assert upretty(expr) == "-1⋅1"
+ expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False)
+ assert pretty(expr) == "4*3*2*1*0*y*x"
+ assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x"
+ expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)
+ assert pretty(expr) == "4*3*2*(z + 1)*0*y*x"
+ assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x"
+ expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False)
+ assert pretty(expr) == "2/3*5/7"
+ assert upretty(expr) == "2/3⋅5/7"
+ expr = Mul(x + y, Rational(1, 2), evaluate=False)
+ assert pretty(expr) == "(x + y)*1/2"
+ assert upretty(expr) == "(x + y)⋅1/2"
+ expr = Mul(Rational(1, 2), x + y, evaluate=False)
+ assert pretty(expr) == "x + y\n-----\n 2 "
+ assert upretty(expr) == "x + y\n─────\n 2 "
+ expr = Mul(S.One, x + y, evaluate=False)
+ assert pretty(expr) == "1*(x + y)"
+ assert upretty(expr) == "1⋅(x + y)"
+ expr = Mul(x - y, S.One, evaluate=False)
+ assert pretty(expr) == "(x - y)*1"
+ assert upretty(expr) == "(x - y)⋅1"
+ expr = Mul(Rational(1, 2), x - y, S.One, x + y, evaluate=False)
+ assert pretty(expr) == "1/2*(x - y)*1*(x + y)"
+ assert upretty(expr) == "1/2⋅(x - y)⋅1⋅(x + y)"
+ expr = Mul(x + y, Rational(3, 4), S.One, y - z, evaluate=False)
+ assert pretty(expr) == "(x + y)*3/4*1*(y - z)"
+ assert upretty(expr) == "(x + y)⋅3/4⋅1⋅(y - z)"
+ expr = Mul(x + y, Rational(1, 1), Rational(3, 4), Rational(5, 6),evaluate=False)
+ assert pretty(expr) == "(x + y)*1*3/4*5/6"
+ assert upretty(expr) == "(x + y)⋅1⋅3/4⋅5/6"
+ expr = Mul(Rational(3, 4), x + y, S.One, y - z, evaluate=False)
+ assert pretty(expr) == "3/4*(x + y)*1*(y - z)"
+ assert upretty(expr) == "3/4⋅(x + y)⋅1⋅(y - z)"
+
+def test_issue_5524():
+ assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
+"""\
+ 2 / ___ \\\n\
+- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
+"""
+
+ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
+"""\
+ 2 \n\
+- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
+"""
+
+def test_pretty_ordering():
+ assert pretty(x**2 + x + 1, order='lex') == \
+"""\
+ 2 \n\
+x + x + 1\
+"""
+ assert pretty(x**2 + x + 1, order='rev-lex') == \
+"""\
+ 2\n\
+1 + x + x \
+"""
+ assert pretty(1 - x, order='lex') == '-x + 1'
+ assert pretty(1 - x, order='rev-lex') == '1 - x'
+
+ assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
+ assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
+
+ f = 2*x**4 + y**2 - x**2 + y**3
+ assert pretty(f, order=None) == \
+"""\
+ 4 2 3 2\n\
+2*x - x + y + y \
+"""
+ assert pretty(f, order='lex') == \
+"""\
+ 4 2 3 2\n\
+2*x - x + y + y \
+"""
+ assert pretty(f, order='rev-lex') == \
+"""\
+ 2 3 2 4\n\
+y + y - x + 2*x \
+"""
+
+ expr = x - x**3/6 + x**5/120 + O(x**6)
+ ascii_str = \
+"""\
+ 3 5 \n\
+ x x / 6\\\n\
+x - -- + --- + O\\x /\n\
+ 6 120 \
+"""
+ ucode_str = \
+"""\
+ 3 5 \n\
+ x x ⎛ 6⎞\n\
+x - ── + ─── + O⎝x ⎠\n\
+ 6 120 \
+"""
+ assert pretty(expr, order=None) == ascii_str
+ assert upretty(expr, order=None) == ucode_str
+
+ assert pretty(expr, order='lex') == ascii_str
+ assert upretty(expr, order='lex') == ucode_str
+
+ assert pretty(expr, order='rev-lex') == ascii_str
+ assert upretty(expr, order='rev-lex') == ucode_str
+
+def test_EulerGamma():
+ assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
+ assert upretty(EulerGamma) == "γ"
+
+def test_GoldenRatio():
+ assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
+ assert upretty(GoldenRatio) == "φ"
+
+
+def test_Catalan():
+ assert pretty(Catalan) == upretty(Catalan) == "G"
+
+
+def test_pretty_relational():
+ expr = Eq(x, y)
+ ascii_str = \
+"""\
+x = y\
+"""
+ ucode_str = \
+"""\
+x = y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Lt(x, y)
+ ascii_str = \
+"""\
+x < y\
+"""
+ ucode_str = \
+"""\
+x < y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Gt(x, y)
+ ascii_str = \
+"""\
+x > y\
+"""
+ ucode_str = \
+"""\
+x > y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Le(x, y)
+ ascii_str = \
+"""\
+x <= y\
+"""
+ ucode_str = \
+"""\
+x ≤ y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Ge(x, y)
+ ascii_str = \
+"""\
+x >= y\
+"""
+ ucode_str = \
+"""\
+x ≥ y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Ne(x/(y + 1), y**2)
+ ascii_str_1 = \
+"""\
+ x 2\n\
+----- != y \n\
+1 + y \
+"""
+ ascii_str_2 = \
+"""\
+ x 2\n\
+----- != y \n\
+y + 1 \
+"""
+ ucode_str_1 = \
+"""\
+ x 2\n\
+───── ≠ y \n\
+1 + y \
+"""
+ ucode_str_2 = \
+"""\
+ x 2\n\
+───── ≠ y \n\
+y + 1 \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+def test_Assignment():
+ expr = Assignment(x, y)
+ ascii_str = \
+"""\
+x := y\
+"""
+ ucode_str = \
+"""\
+x := y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+def test_AugmentedAssignment():
+ expr = AddAugmentedAssignment(x, y)
+ ascii_str = \
+"""\
+x += y\
+"""
+ ucode_str = \
+"""\
+x += y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = SubAugmentedAssignment(x, y)
+ ascii_str = \
+"""\
+x -= y\
+"""
+ ucode_str = \
+"""\
+x -= y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = MulAugmentedAssignment(x, y)
+ ascii_str = \
+"""\
+x *= y\
+"""
+ ucode_str = \
+"""\
+x *= y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = DivAugmentedAssignment(x, y)
+ ascii_str = \
+"""\
+x /= y\
+"""
+ ucode_str = \
+"""\
+x /= y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = ModAugmentedAssignment(x, y)
+ ascii_str = \
+"""\
+x %= y\
+"""
+ ucode_str = \
+"""\
+x %= y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+def test_pretty_rational():
+ expr = y*x**-2
+ ascii_str = \
+"""\
+y \n\
+--\n\
+ 2\n\
+x \
+"""
+ ucode_str = \
+"""\
+y \n\
+──\n\
+ 2\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = y**Rational(3, 2) * x**Rational(-5, 2)
+ ascii_str = \
+"""\
+ 3/2\n\
+y \n\
+----\n\
+ 5/2\n\
+x \
+"""
+ ucode_str = \
+"""\
+ 3/2\n\
+y \n\
+────\n\
+ 5/2\n\
+x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = sin(x)**3/tan(x)**2
+ ascii_str = \
+"""\
+ 3 \n\
+sin (x)\n\
+-------\n\
+ 2 \n\
+tan (x)\
+"""
+ ucode_str = \
+"""\
+ 3 \n\
+sin (x)\n\
+───────\n\
+ 2 \n\
+tan (x)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+@_both_exp_pow
+def test_pretty_functions():
+ """Tests for Abs, conjugate, exp, function braces, and factorial."""
+ expr = (2*x + exp(x))
+ ascii_str_1 = \
+"""\
+ x\n\
+2*x + e \
+"""
+ ascii_str_2 = \
+"""\
+ x \n\
+e + 2*x\
+"""
+ ucode_str_1 = \
+"""\
+ x\n\
+2⋅x + ℯ \
+"""
+ ucode_str_2 = \
+"""\
+ x \n\
+ℯ + 2⋅x\
+"""
+ ucode_str_3 = \
+"""\
+ x \n\
+ℯ + 2⋅x\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
+
+ expr = Abs(x)
+ ascii_str = \
+"""\
+|x|\
+"""
+ ucode_str = \
+"""\
+│x│\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Abs(x/(x**2 + 1))
+ ascii_str_1 = \
+"""\
+| x |\n\
+|------|\n\
+| 2|\n\
+|1 + x |\
+"""
+ ascii_str_2 = \
+"""\
+| x |\n\
+|------|\n\
+| 2 |\n\
+|x + 1|\
+"""
+ ucode_str_1 = \
+"""\
+│ x │\n\
+│──────│\n\
+│ 2│\n\
+│1 + x │\
+"""
+ ucode_str_2 = \
+"""\
+│ x │\n\
+│──────│\n\
+│ 2 │\n\
+│x + 1│\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = Abs(1 / (y - Abs(x)))
+ ascii_str = \
+"""\
+ 1 \n\
+---------\n\
+|y - |x||\
+"""
+ ucode_str = \
+"""\
+ 1 \n\
+─────────\n\
+│y - │x││\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ n = Symbol('n', integer=True)
+ expr = factorial(n)
+ ascii_str = \
+"""\
+n!\
+"""
+ ucode_str = \
+"""\
+n!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial(2*n)
+ ascii_str = \
+"""\
+(2*n)!\
+"""
+ ucode_str = \
+"""\
+(2⋅n)!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial(factorial(factorial(n)))
+ ascii_str = \
+"""\
+((n!)!)!\
+"""
+ ucode_str = \
+"""\
+((n!)!)!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial(n + 1)
+ ascii_str_1 = \
+"""\
+(1 + n)!\
+"""
+ ascii_str_2 = \
+"""\
+(n + 1)!\
+"""
+ ucode_str_1 = \
+"""\
+(1 + n)!\
+"""
+ ucode_str_2 = \
+"""\
+(n + 1)!\
+"""
+
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = subfactorial(n)
+ ascii_str = \
+"""\
+!n\
+"""
+ ucode_str = \
+"""\
+!n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = subfactorial(2*n)
+ ascii_str = \
+"""\
+!(2*n)\
+"""
+ ucode_str = \
+"""\
+!(2⋅n)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ n = Symbol('n', integer=True)
+ expr = factorial2(n)
+ ascii_str = \
+"""\
+n!!\
+"""
+ ucode_str = \
+"""\
+n!!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial2(2*n)
+ ascii_str = \
+"""\
+(2*n)!!\
+"""
+ ucode_str = \
+"""\
+(2⋅n)!!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial2(factorial2(factorial2(n)))
+ ascii_str = \
+"""\
+((n!!)!!)!!\
+"""
+ ucode_str = \
+"""\
+((n!!)!!)!!\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = factorial2(n + 1)
+ ascii_str_1 = \
+"""\
+(1 + n)!!\
+"""
+ ascii_str_2 = \
+"""\
+(n + 1)!!\
+"""
+ ucode_str_1 = \
+"""\
+(1 + n)!!\
+"""
+ ucode_str_2 = \
+"""\
+(n + 1)!!\
+"""
+
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = 2*binomial(n, k)
+ ascii_str = \
+"""\
+ /n\\\n\
+2*| |\n\
+ \\k/\
+"""
+ ucode_str = \
+"""\
+ ⎛n⎞\n\
+2⋅⎜ ⎟\n\
+ ⎝k⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2*binomial(2*n, k)
+ ascii_str = \
+"""\
+ /2*n\\\n\
+2*| |\n\
+ \\ k /\
+"""
+ ucode_str = \
+"""\
+ ⎛2⋅n⎞\n\
+2⋅⎜ ⎟\n\
+ ⎝ k ⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2*binomial(n**2, k)
+ ascii_str = \
+"""\
+ / 2\\\n\
+ |n |\n\
+2*| |\n\
+ \\k /\
+"""
+ ucode_str = \
+"""\
+ ⎛ 2⎞\n\
+ ⎜n ⎟\n\
+2⋅⎜ ⎟\n\
+ ⎝k ⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = catalan(n)
+ ascii_str = \
+"""\
+C \n\
+ n\
+"""
+ ucode_str = \
+"""\
+C \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = catalan(n)
+ ascii_str = \
+"""\
+C \n\
+ n\
+"""
+ ucode_str = \
+"""\
+C \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = bell(n)
+ ascii_str = \
+"""\
+B \n\
+ n\
+"""
+ ucode_str = \
+"""\
+B \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = bernoulli(n)
+ ascii_str = \
+"""\
+B \n\
+ n\
+"""
+ ucode_str = \
+"""\
+B \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = bernoulli(n, x)
+ ascii_str = \
+"""\
+B (x)\n\
+ n \
+"""
+ ucode_str = \
+"""\
+B (x)\n\
+ n \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = fibonacci(n)
+ ascii_str = \
+"""\
+F \n\
+ n\
+"""
+ ucode_str = \
+"""\
+F \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = lucas(n)
+ ascii_str = \
+"""\
+L \n\
+ n\
+"""
+ ucode_str = \
+"""\
+L \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = tribonacci(n)
+ ascii_str = \
+"""\
+T \n\
+ n\
+"""
+ ucode_str = \
+"""\
+T \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = stieltjes(n)
+ ascii_str = \
+"""\
+stieltjes \n\
+ n\
+"""
+ ucode_str = \
+"""\
+γ \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = stieltjes(n, x)
+ ascii_str = \
+"""\
+stieltjes (x)\n\
+ n \
+"""
+ ucode_str = \
+"""\
+γ (x)\n\
+ n \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = mathieuc(x, y, z)
+ ascii_str = 'C(x, y, z)'
+ ucode_str = 'C(x, y, z)'
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = mathieus(x, y, z)
+ ascii_str = 'S(x, y, z)'
+ ucode_str = 'S(x, y, z)'
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = mathieucprime(x, y, z)
+ ascii_str = "C'(x, y, z)"
+ ucode_str = "C'(x, y, z)"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = mathieusprime(x, y, z)
+ ascii_str = "S'(x, y, z)"
+ ucode_str = "S'(x, y, z)"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = conjugate(x)
+ ascii_str = \
+"""\
+_\n\
+x\
+"""
+ ucode_str = \
+"""\
+_\n\
+x\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ f = Function('f')
+ expr = conjugate(f(x + 1))
+ ascii_str_1 = \
+"""\
+________\n\
+f(1 + x)\
+"""
+ ascii_str_2 = \
+"""\
+________\n\
+f(x + 1)\
+"""
+ ucode_str_1 = \
+"""\
+________\n\
+f(1 + x)\
+"""
+ ucode_str_2 = \
+"""\
+________\n\
+f(x + 1)\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = f(x)
+ ascii_str = \
+"""\
+f(x)\
+"""
+ ucode_str = \
+"""\
+f(x)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = f(x, y)
+ ascii_str = \
+"""\
+f(x, y)\
+"""
+ ucode_str = \
+"""\
+f(x, y)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = f(x/(y + 1), y)
+ ascii_str_1 = \
+"""\
+ / x \\\n\
+f|-----, y|\n\
+ \\1 + y /\
+"""
+ ascii_str_2 = \
+"""\
+ / x \\\n\
+f|-----, y|\n\
+ \\y + 1 /\
+"""
+ ucode_str_1 = \
+"""\
+ ⎛ x ⎞\n\
+f⎜─────, y⎟\n\
+ ⎝1 + y ⎠\
+"""
+ ucode_str_2 = \
+"""\
+ ⎛ x ⎞\n\
+f⎜─────, y⎟\n\
+ ⎝y + 1 ⎠\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = f(x**x**x**x**x**x)
+ ascii_str = \
+"""\
+ / / / / / x\\\\\\\\\\
+ | | | | \\x /||||
+ | | | \\x /|||
+ | | \\x /||
+ | \\x /|
+f\\x /\
+"""
+ ucode_str = \
+"""\
+ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
+ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
+ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
+ ⎜ ⎜ ⎝x ⎠⎟⎟
+ ⎜ ⎝x ⎠⎟
+f⎝x ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = sin(x)**2
+ ascii_str = \
+"""\
+ 2 \n\
+sin (x)\
+"""
+ ucode_str = \
+"""\
+ 2 \n\
+sin (x)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = conjugate(a + b*I)
+ ascii_str = \
+"""\
+_ _\n\
+a - I*b\
+"""
+ ucode_str = \
+"""\
+_ _\n\
+a - ⅈ⋅b\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = conjugate(exp(a + b*I))
+ ascii_str = \
+"""\
+ _ _\n\
+ a - I*b\n\
+e \
+"""
+ ucode_str = \
+"""\
+ _ _\n\
+ a - ⅈ⋅b\n\
+ℯ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = conjugate( f(1 + conjugate(f(x))) )
+ ascii_str_1 = \
+"""\
+___________\n\
+ / ____\\\n\
+f\\1 + f(x)/\
+"""
+ ascii_str_2 = \
+"""\
+___________\n\
+ /____ \\\n\
+f\\f(x) + 1/\
+"""
+ ucode_str_1 = \
+"""\
+___________\n\
+ ⎛ ____⎞\n\
+f⎝1 + f(x)⎠\
+"""
+ ucode_str_2 = \
+"""\
+___________\n\
+ ⎛____ ⎞\n\
+f⎝f(x) + 1⎠\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = f(x/(y + 1), y)
+ ascii_str_1 = \
+"""\
+ / x \\\n\
+f|-----, y|\n\
+ \\1 + y /\
+"""
+ ascii_str_2 = \
+"""\
+ / x \\\n\
+f|-----, y|\n\
+ \\y + 1 /\
+"""
+ ucode_str_1 = \
+"""\
+ ⎛ x ⎞\n\
+f⎜─────, y⎟\n\
+ ⎝1 + y ⎠\
+"""
+ ucode_str_2 = \
+"""\
+ ⎛ x ⎞\n\
+f⎜─────, y⎟\n\
+ ⎝y + 1 ⎠\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = floor(1 / (y - floor(x)))
+ ascii_str = \
+"""\
+ / 1 \\\n\
+floor|------------|\n\
+ \\y - floor(x)/\
+"""
+ ucode_str = \
+"""\
+⎢ 1 ⎥\n\
+⎢───────⎥\n\
+⎣y - ⌊x⌋⎦\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = ceiling(1 / (y - ceiling(x)))
+ ascii_str = \
+"""\
+ / 1 \\\n\
+ceiling|--------------|\n\
+ \\y - ceiling(x)/\
+"""
+ ucode_str = \
+"""\
+⎡ 1 ⎤\n\
+⎢───────⎥\n\
+⎢y - ⌈x⌉⎥\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = euler(n)
+ ascii_str = \
+"""\
+E \n\
+ n\
+"""
+ ucode_str = \
+"""\
+E \n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = euler(1/(1 + 1/(1 + 1/n)))
+ ascii_str = \
+"""\
+E \n\
+ 1 \n\
+ ---------\n\
+ 1 \n\
+ 1 + -----\n\
+ 1\n\
+ 1 + -\n\
+ n\
+"""
+
+ ucode_str = \
+"""\
+E \n\
+ 1 \n\
+ ─────────\n\
+ 1 \n\
+ 1 + ─────\n\
+ 1\n\
+ 1 + ─\n\
+ n\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = euler(n, x)
+ ascii_str = \
+"""\
+E (x)\n\
+ n \
+"""
+ ucode_str = \
+"""\
+E (x)\n\
+ n \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = euler(n, x/2)
+ ascii_str = \
+"""\
+ /x\\\n\
+E |-|\n\
+ n\\2/\
+"""
+ ucode_str = \
+"""\
+ ⎛x⎞\n\
+E ⎜─⎟\n\
+ n⎝2⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_sqrt():
+ expr = sqrt(2)
+ ascii_str = \
+"""\
+ ___\n\
+\\/ 2 \
+"""
+ ucode_str = \
+"√2"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2**Rational(1, 3)
+ ascii_str = \
+"""\
+3 ___\n\
+\\/ 2 \
+"""
+ ucode_str = \
+"""\
+3 ___\n\
+╲╱ 2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2**Rational(1, 1000)
+ ascii_str = \
+"""\
+1000___\n\
+ \\/ 2 \
+"""
+ ucode_str = \
+"""\
+1000___\n\
+ ╲╱ 2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = sqrt(x**2 + 1)
+ ascii_str = \
+"""\
+ ________\n\
+ / 2 \n\
+\\/ x + 1 \
+"""
+ ucode_str = \
+"""\
+ ________\n\
+ ╱ 2 \n\
+╲╱ x + 1 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (1 + sqrt(5))**Rational(1, 3)
+ ascii_str = \
+"""\
+ ___________\n\
+3 / ___ \n\
+\\/ 1 + \\/ 5 \
+"""
+ ucode_str = \
+"""\
+3 ________\n\
+╲╱ 1 + √5 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2**(1/x)
+ ascii_str = \
+"""\
+x ___\n\
+\\/ 2 \
+"""
+ ucode_str = \
+"""\
+x ___\n\
+╲╱ 2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = sqrt(2 + pi)
+ ascii_str = \
+"""\
+ ________\n\
+\\/ 2 + pi \
+"""
+ ucode_str = \
+"""\
+ _______\n\
+╲╱ 2 + π \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (2 + (
+ 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
+ ascii_str = \
+"""\
+ ____________ \n\
+ / 2 1000___ \n\
+ / x + 1 \\/ x + 1\n\
+4 / 2 + ------ + -----------\n\
+\\/ x + 2 ________\n\
+ / 2 \n\
+ \\/ x + 3 \
+"""
+ ucode_str = \
+"""\
+ ____________ \n\
+ ╱ 2 1000___ \n\
+ ╱ x + 1 ╲╱ x + 1\n\
+4 ╱ 2 + ────── + ───────────\n\
+╲╱ x + 2 ________\n\
+ ╱ 2 \n\
+ ╲╱ x + 3 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_sqrt_char_knob():
+ # See PR #9234.
+ expr = sqrt(2)
+ ucode_str1 = \
+"""\
+ ___\n\
+╲╱ 2 \
+"""
+ ucode_str2 = \
+"√2"
+ assert xpretty(expr, use_unicode=True,
+ use_unicode_sqrt_char=False) == ucode_str1
+ assert xpretty(expr, use_unicode=True,
+ use_unicode_sqrt_char=True) == ucode_str2
+
+
+def test_pretty_sqrt_longsymbol_no_sqrt_char():
+ # Do not use unicode sqrt char for long symbols (see PR #9234).
+ expr = sqrt(Symbol('C1'))
+ ucode_str = \
+"""\
+ ____\n\
+╲╱ C₁ \
+"""
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_KroneckerDelta():
+ x, y = symbols("x, y")
+ expr = KroneckerDelta(x, y)
+ ascii_str = \
+"""\
+d \n\
+ x,y\
+"""
+ ucode_str = \
+"""\
+δ \n\
+ x,y\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_product():
+ n, m, k, l = symbols('n m k l')
+ f = symbols('f', cls=Function)
+ expr = Product(f((n/3)**2), (n, k**2, l))
+
+ unicode_str = \
+"""\
+ l \n\
+─┬──────┬─ \n\
+ │ │ ⎛ 2⎞\n\
+ │ │ ⎜n ⎟\n\
+ │ │ f⎜──⎟\n\
+ │ │ ⎝9 ⎠\n\
+ │ │ \n\
+ 2 \n\
+ n = k """
+ ascii_str = \
+"""\
+ l \n\
+__________ \n\
+ | | / 2\\\n\
+ | | |n |\n\
+ | | f|--|\n\
+ | | \\9 /\n\
+ | | \n\
+ 2 \n\
+ n = k """
+
+ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
+
+ unicode_str = \
+"""\
+ m l \n\
+─┬──────┬─ ─┬──────┬─ \n\
+ │ │ │ │ ⎛ 2⎞\n\
+ │ │ │ │ ⎜n ⎟\n\
+ │ │ │ │ f⎜──⎟\n\
+ │ │ │ │ ⎝9 ⎠\n\
+ │ │ │ │ \n\
+ l = 1 2 \n\
+ n = k """
+ ascii_str = \
+"""\
+ m l \n\
+__________ __________ \n\
+ | | | | / 2\\\n\
+ | | | | |n |\n\
+ | | | | f|--|\n\
+ | | | | \\9 /\n\
+ | | | | \n\
+ l = 1 2 \n\
+ n = k """
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+
+
+def test_pretty_Lambda():
+ # S.IdentityFunction is a special case
+ expr = Lambda(y, y)
+ assert pretty(expr) == "x -> x"
+ assert upretty(expr) == "x ↦ x"
+
+ expr = Lambda(x, x+1)
+ assert pretty(expr) == "x -> x + 1"
+ assert upretty(expr) == "x ↦ x + 1"
+
+ expr = Lambda(x, x**2)
+ ascii_str = \
+"""\
+ 2\n\
+x -> x \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+x ↦ x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Lambda(x, x**2)**2
+ ascii_str = \
+"""\
+ 2
+/ 2\\ \n\
+\\x -> x / \
+"""
+ ucode_str = \
+"""\
+ 2
+⎛ 2⎞ \n\
+⎝x ↦ x ⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Lambda((x, y), x)
+ ascii_str = "(x, y) -> x"
+ ucode_str = "(x, y) ↦ x"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Lambda((x, y), x**2)
+ ascii_str = \
+"""\
+ 2\n\
+(x, y) -> x \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+(x, y) ↦ x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Lambda(((x, y),), x**2)
+ ascii_str = \
+"""\
+ 2\n\
+((x, y),) -> x \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+((x, y),) ↦ x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_TransferFunction():
+ tf1 = TransferFunction(s - 1, s + 1, s)
+ assert upretty(tf1) == "s - 1\n─────\ns + 1"
+ tf2 = TransferFunction(2*s + 1, 3 - p, s)
+ assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p "
+ tf3 = TransferFunction(p, p + 1, p)
+ assert upretty(tf3) == " p \n─────\np + 1"
+
+
+def test_pretty_Series():
+ tf1 = TransferFunction(x + y, x - 2*y, y)
+ tf2 = TransferFunction(x - y, x + y, y)
+ tf3 = TransferFunction(x**2 + y, y - x, y)
+ tf4 = TransferFunction(2, 3, y)
+
+ tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
+ tfm2 = TransferFunctionMatrix([[tf3], [-tf4]])
+ tfm3 = TransferFunctionMatrix([[tf1, -tf2, -tf3], [tf3, -tf4, tf2]])
+ tfm4 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]])
+ tfm5 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]])
+
+ expected1 = \
+"""\
+ ⎛ 2 ⎞\n\
+⎛ x + y ⎞ ⎜x + y⎟\n\
+⎜───────⎟⋅⎜──────⎟\n\
+⎝x - 2⋅y⎠ ⎝-x + y⎠\
+"""
+ expected2 = \
+"""\
+⎛-x + y⎞ ⎛ -x - y⎞\n\
+⎜──────⎟⋅⎜───────⎟\n\
+⎝x + y ⎠ ⎝x - 2⋅y⎠\
+"""
+ expected3 = \
+"""\
+⎛ 2 ⎞ \n\
+⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\
+⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\
+⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\
+"""
+ expected4 = \
+"""\
+ ⎛ 2 ⎞\n\
+⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\
+⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\
+⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\
+"""
+ expected5 = \
+"""\
+⎡ x + y x - y⎤ ⎡ 2 ⎤ \n\
+⎢─────── ─────⎥ ⎢x + y⎥ \n\
+⎢x - 2⋅y x + y⎥ ⎢──────⎥ \n\
+⎢ ⎥ ⎢-x + y⎥ \n\
+⎢ 2 ⎥ ⋅⎢ ⎥ \n\
+⎢x + y 2 ⎥ ⎢ -2 ⎥ \n\
+⎢────── ─ ⎥ ⎢ ─── ⎥ \n\
+⎣-x + y 3 ⎦τ ⎣ 3 ⎦τ\
+"""
+ expected6 = \
+"""\
+ ⎛⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞\n\
+ ⎜⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟\n\
+⎡ x + y x - y⎤ ⎡ 2 ⎤ ⎜⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟\n\
+⎢─────── ─────⎥ ⎢ x + y -x + y - x - y⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\
+⎢x - 2⋅y x + y⎥ ⎢─────── ────── ────────⎥ ⎜⎢ 2 ⎥ ⎢ 2 ⎥ ⎟\n\
+⎢ ⎥ ⎢x - 2⋅y x + y -x + y ⎥ ⎜⎢x + y -2 ⎥ ⎢ -2 x + y ⎥ ⎟\n\
+⎢ 2 ⎥ ⋅⎢ ⎥ ⋅⎜⎢────── ─── ⎥ + ⎢ ─── ────── ⎥ ⎟\n\
+⎢x + y 2 ⎥ ⎢ 2 ⎥ ⎜⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎟\n\
+⎢────── ─ ⎥ ⎢x + y -2 x - y ⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\
+⎣-x + y 3 ⎦τ ⎢────── ─── ───── ⎥ ⎜⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎟\n\
+ ⎣-x + y 3 x + y ⎦τ ⎜⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎟\n\
+ ⎝⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠\
+"""
+
+ assert upretty(Series(tf1, tf3)) == expected1
+ assert upretty(Series(-tf2, -tf1)) == expected2
+ assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3
+ assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4
+ assert upretty(MIMOSeries(tfm2, tfm1)) == expected5
+ assert upretty(MIMOSeries(MIMOParallel(tfm4, -tfm5), tfm3, tfm1)) == expected6
+
+
+def test_pretty_Parallel():
+ tf1 = TransferFunction(x + y, x - 2*y, y)
+ tf2 = TransferFunction(x - y, x + y, y)
+ tf3 = TransferFunction(x**2 + y, y - x, y)
+ tf4 = TransferFunction(y**2 - x, x**3 + x, y)
+
+ tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]])
+ tfm2 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]])
+ tfm3 = TransferFunctionMatrix([[-tf1, tf2], [-tf3, tf4], [tf2, tf1]])
+ tfm4 = TransferFunctionMatrix([[-tf1, -tf2], [-tf3, -tf4]])
+
+ expected1 = \
+"""\
+ x + y x - y\n\
+─────── + ─────\n\
+x - 2⋅y x + y\
+"""
+ expected2 = \
+"""\
+-x + y -x - y\n\
+────── + ───────\n\
+x + y x - 2⋅y\
+"""
+ expected3 = \
+"""\
+ 2 \n\
+x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\
+────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\
+-x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\
+"""
+ expected4 = \
+"""\
+ ⎛ 2 ⎞\n\
+⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\
+⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\
+⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\
+"""
+ expected5 = \
+"""\
+⎡ x + y -x + y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x - y ⎤ \n\
+⎢─────── ────── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\
+⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x + y ⎥ \n\
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\
+⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ \n\
+⎢x + y x - y ⎥ ⎢x - y x + y ⎥ ⎢x + y x - y ⎥ \n\
+⎢────── ────── ⎥ + ⎢────── ────── ⎥ + ⎢────── ────── ⎥ \n\
+⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎢-x + y 3 ⎥ \n\
+⎢ x + x ⎥ ⎢x + x ⎥ ⎢ x + x ⎥ \n\
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\
+⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎢-x + y -x - y⎥ \n\
+⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎢────── ───────⎥ \n\
+⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣x + y x - 2⋅y⎦τ\
+"""
+ expected6 = \
+"""\
+⎡ x - y x + y ⎤ ⎡-x + y -x - y ⎤ \n\
+⎢ ───── ───────⎥ ⎢────── ─────── ⎥ \n\
+⎢ x + y x - 2⋅y⎥ ⎡ -x - y -x + y⎤ ⎢x + y x - 2⋅y ⎥ \n\
+⎢ ⎥ ⎢─────── ──────⎥ ⎢ ⎥ \n\
+⎢ 2 2 ⎥ ⎢x - 2⋅y x + y ⎥ ⎢ 2 2 ⎥ \n\
+⎢x - y x + y ⎥ ⎢ ⎥ ⎢-x + y - x - y⎥ \n\
+⎢────── ────── ⎥ ⋅⎢ 2 2⎥ + ⎢─────── ────────⎥ \n\
+⎢ 3 -x + y ⎥ ⎢- x - y x - y ⎥ ⎢ 3 -x + y ⎥ \n\
+⎢x + x ⎥ ⎢──────── ──────⎥ ⎢ x + x ⎥ \n\
+⎢ ⎥ ⎢ -x + y 3 ⎥ ⎢ ⎥ \n\
+⎢ -x - y -x + y ⎥ ⎣ x + x⎦τ ⎢ x + y x - y ⎥ \n\
+⎢─────── ────── ⎥ ⎢─────── ───── ⎥ \n\
+⎣x - 2⋅y x + y ⎦τ ⎣x - 2⋅y x + y ⎦τ\
+"""
+
+ assert upretty(Parallel(tf1, tf2)) == expected1
+ assert upretty(Parallel(-tf2, -tf1)) == expected2
+ assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3
+ assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4
+ assert upretty(MIMOParallel(-tfm3, -tfm2, tfm1)) == expected5
+ assert upretty(MIMOParallel(MIMOSeries(tfm4, -tfm2), tfm2)) == expected6
+
+
+def test_pretty_Feedback():
+ tf = TransferFunction(1, 1, y)
+ tf1 = TransferFunction(x + y, x - 2*y, y)
+ tf2 = TransferFunction(x - y, x + y, y)
+ tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y)
+ tf4 = TransferFunction(x - 2*y**3, x + y, x)
+ tf5 = TransferFunction(1 - x, x - y, y)
+ tf6 = TransferFunction(2, 2, x)
+ expected1 = \
+"""\
+ ⎛1⎞ \n\
+ ⎜─⎟ \n\
+ ⎝1⎠ \n\
+─────────────\n\
+1 ⎛ x + y ⎞\n\
+─ + ⎜───────⎟\n\
+1 ⎝x - 2⋅y⎠\
+"""
+ expected2 = \
+"""\
+ ⎛1⎞ \n\
+ ⎜─⎟ \n\
+ ⎝1⎠ \n\
+────────────────────────────────────\n\
+ ⎛ 2 ⎞\n\
+1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\
+─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\
+1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\
+"""
+ expected3 = \
+"""\
+ ⎛ x + y ⎞ \n\
+ ⎜───────⎟ \n\
+ ⎝x - 2⋅y⎠ \n\
+────────────────────────────────────────────\n\
+ ⎛ 2 ⎞ \n\
+1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\
+─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\
+1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\
+"""
+ expected4 = \
+"""\
+ ⎛ x + y ⎞ ⎛x - y⎞ \n\
+ ⎜───────⎟⋅⎜─────⎟ \n\
+ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
+─────────────────────\n\
+1 ⎛ x + y ⎞ ⎛x - y⎞\n\
+─ + ⎜───────⎟⋅⎜─────⎟\n\
+1 ⎝x - 2⋅y⎠ ⎝x + y⎠\
+"""
+ expected5 = \
+"""\
+ ⎛ x + y ⎞ ⎛x - y⎞ \n\
+ ⎜───────⎟⋅⎜─────⎟ \n\
+ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
+─────────────────────────────\n\
+1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\
+─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\
+1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\
+"""
+ expected6 = \
+"""\
+ ⎛ 2 ⎞ \n\
+ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\
+ ⎜────────────⎟⋅⎜─────⎟ \n\
+ ⎝ y + 5 ⎠ ⎝x - y⎠ \n\
+────────────────────────────────────────────\n\
+ ⎛ 2 ⎞ \n\
+1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\
+─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\
+1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\
+"""
+ expected7 = \
+"""\
+ ⎛ 3⎞ \n\
+ ⎜x - 2⋅y ⎟ \n\
+ ⎜────────⎟ \n\
+ ⎝ x + y ⎠ \n\
+──────────────────\n\
+ ⎛ 3⎞ \n\
+1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\
+─ + ⎜────────⎟⋅⎜─⎟\n\
+1 ⎝ x + y ⎠ ⎝2⎠\
+"""
+ expected8 = \
+"""\
+ ⎛1 - x⎞ \n\
+ ⎜─────⎟ \n\
+ ⎝x - y⎠ \n\
+───────────\n\
+1 ⎛1 - x⎞\n\
+─ + ⎜─────⎟\n\
+1 ⎝x - y⎠\
+"""
+ expected9 = \
+"""\
+ ⎛ x + y ⎞ ⎛x - y⎞ \n\
+ ⎜───────⎟⋅⎜─────⎟ \n\
+ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
+─────────────────────────────\n\
+1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\
+─ - ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\
+1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\
+"""
+ expected10 = \
+"""\
+ ⎛1 - x⎞ \n\
+ ⎜─────⎟ \n\
+ ⎝x - y⎠ \n\
+───────────\n\
+1 ⎛1 - x⎞\n\
+─ - ⎜─────⎟\n\
+1 ⎝x - y⎠\
+"""
+ assert upretty(Feedback(tf, tf1)) == expected1
+ assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2
+ assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3
+ assert upretty(Feedback(tf1*tf2, tf)) == expected4
+ assert upretty(Feedback(tf1*tf2, tf5)) == expected5
+ assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6
+ assert upretty(Feedback(tf4, tf6)) == expected7
+ assert upretty(Feedback(tf5, tf)) == expected8
+
+ assert upretty(Feedback(tf1*tf2, tf5, 1)) == expected9
+ assert upretty(Feedback(tf5, tf, 1)) == expected10
+
+
+def test_pretty_MIMOFeedback():
+ tf1 = TransferFunction(x + y, x - 2*y, y)
+ tf2 = TransferFunction(x - y, x + y, y)
+ tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
+ tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
+ tfm_3 = TransferFunctionMatrix([[tf1, tf1], [tf2, tf2]])
+
+ expected1 = \
+"""\
+⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ \n\
+⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟ ⎢─────── ───── ⎥ \n\
+⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ \n\
+⎜I - ⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ \n\
+⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ \n\
+⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎟ ⎢ ───── ───────⎥ \n\
+⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ\
+"""
+ expected2 = \
+"""\
+⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ \n\
+⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───────⎥ ⎟ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ \n\
+⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ \n\
+⎜I + ⎢ ⎥ ⋅⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ ⋅⎢ ⎥ \n\
+⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎢ x - y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ \n\
+⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎢ ───── ───── ⎥ ⎟ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\
+⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣ x + y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ\
+"""
+
+ assert upretty(MIMOFeedback(tfm_1, tfm_2, 1)) == \
+ expected1 # Positive MIMOFeedback
+ assert upretty(MIMOFeedback(tfm_1*tfm_2, tfm_3)) == \
+ expected2 # Negative MIMOFeedback (Default)
+
+
+def test_pretty_TransferFunctionMatrix():
+ tf1 = TransferFunction(x + y, x - 2*y, y)
+ tf2 = TransferFunction(x - y, x + y, y)
+ tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y)
+ tf4 = TransferFunction(y, x**2 + x + 1, y)
+ tf5 = TransferFunction(1 - x, x - y, y)
+ tf6 = TransferFunction(2, 2, y)
+ expected1 = \
+"""\
+⎡ x + y ⎤ \n\
+⎢───────⎥ \n\
+⎢x - 2⋅y⎥ \n\
+⎢ ⎥ \n\
+⎢ x - y ⎥ \n\
+⎢ ───── ⎥ \n\
+⎣ x + y ⎦τ\
+"""
+ expected2 = \
+"""\
+⎡ x + y ⎤ \n\
+⎢ ─────── ⎥ \n\
+⎢ x - 2⋅y ⎥ \n\
+⎢ ⎥ \n\
+⎢ x - y ⎥ \n\
+⎢ ───── ⎥ \n\
+⎢ x + y ⎥ \n\
+⎢ ⎥ \n\
+⎢ 2 ⎥ \n\
+⎢- y + 2⋅y - 1⎥ \n\
+⎢──────────────⎥ \n\
+⎣ y + 5 ⎦τ\
+"""
+ expected3 = \
+"""\
+⎡ x + y x - y ⎤ \n\
+⎢ ─────── ───── ⎥ \n\
+⎢ x - 2⋅y x + y ⎥ \n\
+⎢ ⎥ \n\
+⎢ 2 ⎥ \n\
+⎢y - 2⋅y + 1 y ⎥ \n\
+⎢──────────── ──────────⎥ \n\
+⎢ y + 5 2 ⎥ \n\
+⎢ x + x + 1⎥ \n\
+⎢ ⎥ \n\
+⎢ 1 - x 2 ⎥ \n\
+⎢ ───── ─ ⎥ \n\
+⎣ x - y 2 ⎦τ\
+"""
+ expected4 = \
+"""\
+⎡ x - y x + y y ⎤ \n\
+⎢ ───── ─────── ──────────⎥ \n\
+⎢ x + y x - 2⋅y 2 ⎥ \n\
+⎢ x + x + 1⎥ \n\
+⎢ ⎥ \n\
+⎢ 2 ⎥ \n\
+⎢- y + 2⋅y - 1 x - 1 -2 ⎥ \n\
+⎢────────────── ───── ─── ⎥ \n\
+⎣ y + 5 x - y 2 ⎦τ\
+"""
+ expected5 = \
+"""\
+⎡ x + y x - y x + y y ⎤ \n\
+⎢───────⋅───── ─────── ──────────⎥ \n\
+⎢x - 2⋅y x + y x - 2⋅y 2 ⎥ \n\
+⎢ x + x + 1⎥ \n\
+⎢ ⎥ \n\
+⎢ 1 - x 2 x + y -2 ⎥ \n\
+⎢ ───── + ─ ─────── ─── ⎥ \n\
+⎣ x - y 2 x - 2⋅y 2 ⎦τ\
+"""
+
+ assert upretty(TransferFunctionMatrix([[tf1], [tf2]])) == expected1
+ assert upretty(TransferFunctionMatrix([[tf1], [tf2], [-tf3]])) == expected2
+ assert upretty(TransferFunctionMatrix([[tf1, tf2], [tf3, tf4], [tf5, tf6]])) == expected3
+ assert upretty(TransferFunctionMatrix([[tf2, tf1, tf4], [-tf3, -tf5, -tf6]])) == expected4
+ assert upretty(TransferFunctionMatrix([[Series(tf2, tf1), tf1, tf4], [Parallel(tf6, tf5), tf1, -tf6]])) == \
+ expected5
+
+
+def test_pretty_order():
+ expr = O(1)
+ ascii_str = \
+"""\
+O(1)\
+"""
+ ucode_str = \
+"""\
+O(1)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = O(1/x)
+ ascii_str = \
+"""\
+ /1\\\n\
+O|-|\n\
+ \\x/\
+"""
+ ucode_str = \
+"""\
+ ⎛1⎞\n\
+O⎜─⎟\n\
+ ⎝x⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = O(x**2 + y**2)
+ ascii_str = \
+"""\
+ / 2 2 \\\n\
+O\\x + y ; (x, y) -> (0, 0)/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 2 2 ⎞\n\
+O⎝x + y ; (x, y) → (0, 0)⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = O(1, (x, oo))
+ ascii_str = \
+"""\
+O(1; x -> oo)\
+"""
+ ucode_str = \
+"""\
+O(1; x → ∞)\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = O(1/x, (x, oo))
+ ascii_str = \
+"""\
+ /1 \\\n\
+O|-; x -> oo|\n\
+ \\x /\
+"""
+ ucode_str = \
+"""\
+ ⎛1 ⎞\n\
+O⎜─; x → ∞⎟\n\
+ ⎝x ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = O(x**2 + y**2, (x, oo), (y, oo))
+ ascii_str = \
+"""\
+ / 2 2 \\\n\
+O\\x + y ; (x, y) -> (oo, oo)/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 2 2 ⎞\n\
+O⎝x + y ; (x, y) → (∞, ∞)⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_derivatives():
+ # Simple
+ expr = Derivative(log(x), x, evaluate=False)
+ ascii_str = \
+"""\
+d \n\
+--(log(x))\n\
+dx \
+"""
+ ucode_str = \
+"""\
+d \n\
+──(log(x))\n\
+dx \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Derivative(log(x), x, evaluate=False) + x
+ ascii_str_1 = \
+"""\
+ d \n\
+x + --(log(x))\n\
+ dx \
+"""
+ ascii_str_2 = \
+"""\
+d \n\
+--(log(x)) + x\n\
+dx \
+"""
+ ucode_str_1 = \
+"""\
+ d \n\
+x + ──(log(x))\n\
+ dx \
+"""
+ ucode_str_2 = \
+"""\
+d \n\
+──(log(x)) + x\n\
+dx \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ # basic partial derivatives
+ expr = Derivative(log(x + y) + x, x)
+ ascii_str_1 = \
+"""\
+d \n\
+--(log(x + y) + x)\n\
+dx \
+"""
+ ascii_str_2 = \
+"""\
+d \n\
+--(x + log(x + y))\n\
+dx \
+"""
+ ucode_str_1 = \
+"""\
+∂ \n\
+──(log(x + y) + x)\n\
+∂x \
+"""
+ ucode_str_2 = \
+"""\
+∂ \n\
+──(x + log(x + y))\n\
+∂x \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
+
+ # Multiple symbols
+ expr = Derivative(log(x) + x**2, x, y)
+ ascii_str_1 = \
+"""\
+ 2 \n\
+ d / 2\\\n\
+-----\\log(x) + x /\n\
+dy dx \
+"""
+ ascii_str_2 = \
+"""\
+ 2 \n\
+ d / 2 \\\n\
+-----\\x + log(x)/\n\
+dy dx \
+"""
+ ucode_str_1 = \
+"""\
+ 2 \n\
+ d ⎛ 2⎞\n\
+─────⎝log(x) + x ⎠\n\
+dy dx \
+"""
+ ucode_str_2 = \
+"""\
+ 2 \n\
+ d ⎛ 2 ⎞\n\
+─────⎝x + log(x)⎠\n\
+dy dx \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = Derivative(2*x*y, y, x) + x**2
+ ascii_str_1 = \
+"""\
+ 2 \n\
+ d 2\n\
+-----(2*x*y) + x \n\
+dx dy \
+"""
+ ascii_str_2 = \
+"""\
+ 2 \n\
+ 2 d \n\
+x + -----(2*x*y)\n\
+ dx dy \
+"""
+ ucode_str_1 = \
+"""\
+ 2 \n\
+ ∂ 2\n\
+─────(2⋅x⋅y) + x \n\
+∂x ∂y \
+"""
+ ucode_str_2 = \
+"""\
+ 2 \n\
+ 2 ∂ \n\
+x + ─────(2⋅x⋅y)\n\
+ ∂x ∂y \
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = Derivative(2*x*y, x, x)
+ ascii_str = \
+"""\
+ 2 \n\
+ d \n\
+---(2*x*y)\n\
+ 2 \n\
+dx \
+"""
+ ucode_str = \
+"""\
+ 2 \n\
+ ∂ \n\
+───(2⋅x⋅y)\n\
+ 2 \n\
+∂x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Derivative(2*x*y, x, 17)
+ ascii_str = \
+"""\
+ 17 \n\
+d \n\
+----(2*x*y)\n\
+ 17 \n\
+dx \
+"""
+ ucode_str = \
+"""\
+ 17 \n\
+∂ \n\
+────(2⋅x⋅y)\n\
+ 17 \n\
+∂x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Derivative(2*x*y, x, x, y)
+ ascii_str = \
+"""\
+ 3 \n\
+ d \n\
+------(2*x*y)\n\
+ 2 \n\
+dy dx \
+"""
+ ucode_str = \
+"""\
+ 3 \n\
+ ∂ \n\
+──────(2⋅x⋅y)\n\
+ 2 \n\
+∂y ∂x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ # Greek letters
+ alpha = Symbol('alpha')
+ beta = Function('beta')
+ expr = beta(alpha).diff(alpha)
+ ascii_str = \
+"""\
+ d \n\
+------(beta(alpha))\n\
+dalpha \
+"""
+ ucode_str = \
+"""\
+d \n\
+──(β(α))\n\
+dα \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Derivative(f(x), (x, n))
+
+ ascii_str = \
+"""\
+ n \n\
+ d \n\
+---(f(x))\n\
+ n \n\
+dx \
+"""
+ ucode_str = \
+"""\
+ n \n\
+ d \n\
+───(f(x))\n\
+ n \n\
+dx \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_integrals():
+ expr = Integral(log(x), x)
+ ascii_str = \
+"""\
+ / \n\
+ | \n\
+ | log(x) dx\n\
+ | \n\
+/ \
+"""
+ ucode_str = \
+"""\
+⌠ \n\
+⎮ log(x) dx\n\
+⌡ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(x**2, x)
+ ascii_str = \
+"""\
+ / \n\
+ | \n\
+ | 2 \n\
+ | x dx\n\
+ | \n\
+/ \
+"""
+ ucode_str = \
+"""\
+⌠ \n\
+⎮ 2 \n\
+⎮ x dx\n\
+⌡ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral((sin(x))**2 / (tan(x))**2)
+ ascii_str = \
+"""\
+ / \n\
+ | \n\
+ | 2 \n\
+ | sin (x) \n\
+ | ------- dx\n\
+ | 2 \n\
+ | tan (x) \n\
+ | \n\
+/ \
+"""
+ ucode_str = \
+"""\
+⌠ \n\
+⎮ 2 \n\
+⎮ sin (x) \n\
+⎮ ─────── dx\n\
+⎮ 2 \n\
+⎮ tan (x) \n\
+⌡ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(x**(2**x), x)
+ ascii_str = \
+"""\
+ / \n\
+ | \n\
+ | / x\\ \n\
+ | \\2 / \n\
+ | x dx\n\
+ | \n\
+/ \
+"""
+ ucode_str = \
+"""\
+⌠ \n\
+⎮ ⎛ x⎞ \n\
+⎮ ⎝2 ⎠ \n\
+⎮ x dx\n\
+⌡ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(x**2, (x, 1, 2))
+ ascii_str = \
+"""\
+ 2 \n\
+ / \n\
+ | \n\
+ | 2 \n\
+ | x dx\n\
+ | \n\
+/ \n\
+1 \
+"""
+ ucode_str = \
+"""\
+2 \n\
+⌠ \n\
+⎮ 2 \n\
+⎮ x dx\n\
+⌡ \n\
+1 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(x**2, (x, Rational(1, 2), 10))
+ ascii_str = \
+"""\
+ 10 \n\
+ / \n\
+ | \n\
+ | 2 \n\
+ | x dx\n\
+ | \n\
+/ \n\
+1/2 \
+"""
+ ucode_str = \
+"""\
+ 10 \n\
+ ⌠ \n\
+ ⎮ 2 \n\
+ ⎮ x dx\n\
+ ⌡ \n\
+1/2 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(x**2*y**2, x, y)
+ ascii_str = \
+"""\
+ / / \n\
+ | | \n\
+ | | 2 2 \n\
+ | | x *y dx dy\n\
+ | | \n\
+/ / \
+"""
+ ucode_str = \
+"""\
+⌠ ⌠ \n\
+⎮ ⎮ 2 2 \n\
+⎮ ⎮ x ⋅y dx dy\n\
+⌡ ⌡ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
+ ascii_str = \
+"""\
+ 2*pi pi \n\
+ / / \n\
+ | | \n\
+ | | sin(theta) \n\
+ | | ---------- d(theta) d(phi)\n\
+ | | cos(phi) \n\
+ | | \n\
+ / / \n\
+ 0 0 \
+"""
+ ucode_str = \
+"""\
+2⋅π π \n\
+ ⌠ ⌠ \n\
+ ⎮ ⎮ sin(θ) \n\
+ ⎮ ⎮ ────── dθ dφ\n\
+ ⎮ ⎮ cos(φ) \n\
+ ⌡ ⌡ \n\
+ 0 0 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_matrix():
+ # Empty Matrix
+ expr = Matrix()
+ ascii_str = "[]"
+ unicode_str = "[]"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+ expr = Matrix(2, 0, lambda i, j: 0)
+ ascii_str = "[]"
+ unicode_str = "[]"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+ expr = Matrix(0, 2, lambda i, j: 0)
+ ascii_str = "[]"
+ unicode_str = "[]"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+ expr = Matrix([[x**2 + 1, 1], [y, x + y]])
+ ascii_str_1 = \
+"""\
+[ 2 ]
+[1 + x 1 ]
+[ ]
+[ y x + y]\
+"""
+ ascii_str_2 = \
+"""\
+[ 2 ]
+[x + 1 1 ]
+[ ]
+[ y x + y]\
+"""
+ ucode_str_1 = \
+"""\
+⎡ 2 ⎤
+⎢1 + x 1 ⎥
+⎢ ⎥
+⎣ y x + y⎦\
+"""
+ ucode_str_2 = \
+"""\
+⎡ 2 ⎤
+⎢x + 1 1 ⎥
+⎢ ⎥
+⎣ y x + y⎦\
+"""
+ assert pretty(expr) in [ascii_str_1, ascii_str_2]
+ assert upretty(expr) in [ucode_str_1, ucode_str_2]
+
+ expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
+ ascii_str = \
+"""\
+[x ]
+[- y theta]
+[y ]
+[ ]
+[ I*k*phi ]
+[0 e 1 ]\
+"""
+ ucode_str = \
+"""\
+⎡x ⎤
+⎢─ y θ⎥
+⎢y ⎥
+⎢ ⎥
+⎢ ⅈ⋅k⋅φ ⎥
+⎣0 ℯ 1⎦\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ unicode_str = \
+"""\
+⎡v̇_msc_00 0 0 ⎤
+⎢ ⎥
+⎢ 0 v̇_msc_01 0 ⎥
+⎢ ⎥
+⎣ 0 0 v̇_msc_02⎦\
+"""
+
+ expr = diag(*MatrixSymbol('vdot_msc',1,3))
+ assert upretty(expr) == unicode_str
+
+def test_pretty_ndim_arrays():
+ x, y, z, w = symbols("x y z w")
+
+ for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
+ # Basic: scalar array
+ M = ArrayType(x)
+
+ assert pretty(M) == "x"
+ assert upretty(M) == "x"
+
+ M = ArrayType([[1/x, y], [z, w]])
+ M1 = ArrayType([1/x, y, z])
+
+ M2 = tensorproduct(M1, M)
+ M3 = tensorproduct(M, M)
+
+ ascii_str = \
+"""\
+[1 ]\n\
+[- y]\n\
+[x ]\n\
+[ ]\n\
+[z w]\
+"""
+ ucode_str = \
+"""\
+⎡1 ⎤\n\
+⎢─ y⎥\n\
+⎢x ⎥\n\
+⎢ ⎥\n\
+⎣z w⎦\
+"""
+ assert pretty(M) == ascii_str
+ assert upretty(M) == ucode_str
+
+ ascii_str = \
+"""\
+[1 ]\n\
+[- y z]\n\
+[x ]\
+"""
+ ucode_str = \
+"""\
+⎡1 ⎤\n\
+⎢─ y z⎥\n\
+⎣x ⎦\
+"""
+ assert pretty(M1) == ascii_str
+ assert upretty(M1) == ucode_str
+
+ ascii_str = \
+"""\
+[[1 y] ]\n\
+[[-- -] [z ]]\n\
+[[ 2 x] [ y 2 ] [- y*z]]\n\
+[[x ] [ - y ] [x ]]\n\
+[[ ] [ x ] [ ]]\n\
+[[z w] [ ] [ 2 ]]\n\
+[[- -] [y*z w*y] [z w*z]]\n\
+[[x x] ]\
+"""
+ ucode_str = \
+"""\
+⎡⎡1 y⎤ ⎤\n\
+⎢⎢── ─⎥ ⎡z ⎤⎥\n\
+⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
+⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
+⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
+⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
+⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
+⎣⎣x x⎦ ⎦\
+"""
+ assert pretty(M2) == ascii_str
+ assert upretty(M2) == ucode_str
+
+ ascii_str = \
+"""\
+[ [1 y] ]\n\
+[ [-- -] ]\n\
+[ [ 2 x] [ y 2 ]]\n\
+[ [x ] [ - y ]]\n\
+[ [ ] [ x ]]\n\
+[ [z w] [ ]]\n\
+[ [- -] [y*z w*y]]\n\
+[ [x x] ]\n\
+[ ]\n\
+[[z ] [ w ]]\n\
+[[- y*z] [ - w*y]]\n\
+[[x ] [ x ]]\n\
+[[ ] [ ]]\n\
+[[ 2 ] [ 2 ]]\n\
+[[z w*z] [w*z w ]]\
+"""
+ ucode_str = \
+"""\
+⎡ ⎡1 y⎤ ⎤\n\
+⎢ ⎢── ─⎥ ⎥\n\
+⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
+⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
+⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
+⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
+⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
+⎢ ⎣x x⎦ ⎥\n\
+⎢ ⎥\n\
+⎢⎡z ⎤ ⎡ w ⎤⎥\n\
+⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
+⎢⎢x ⎥ ⎢ x ⎥⎥\n\
+⎢⎢ ⎥ ⎢ ⎥⎥\n\
+⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
+⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
+"""
+ assert pretty(M3) == ascii_str
+ assert upretty(M3) == ucode_str
+
+ Mrow = ArrayType([[x, y, 1 / z]])
+ Mcolumn = ArrayType([[x], [y], [1 / z]])
+ Mcol2 = ArrayType([Mcolumn.tolist()])
+
+ ascii_str = \
+"""\
+[[ 1]]\n\
+[[x y -]]\n\
+[[ z]]\
+"""
+ ucode_str = \
+"""\
+⎡⎡ 1⎤⎤\n\
+⎢⎢x y ─⎥⎥\n\
+⎣⎣ z⎦⎦\
+"""
+ assert pretty(Mrow) == ascii_str
+ assert upretty(Mrow) == ucode_str
+
+ ascii_str = \
+"""\
+[x]\n\
+[ ]\n\
+[y]\n\
+[ ]\n\
+[1]\n\
+[-]\n\
+[z]\
+"""
+ ucode_str = \
+"""\
+⎡x⎤\n\
+⎢ ⎥\n\
+⎢y⎥\n\
+⎢ ⎥\n\
+⎢1⎥\n\
+⎢─⎥\n\
+⎣z⎦\
+"""
+ assert pretty(Mcolumn) == ascii_str
+ assert upretty(Mcolumn) == ucode_str
+
+ ascii_str = \
+"""\
+[[x]]\n\
+[[ ]]\n\
+[[y]]\n\
+[[ ]]\n\
+[[1]]\n\
+[[-]]\n\
+[[z]]\
+"""
+ ucode_str = \
+"""\
+⎡⎡x⎤⎤\n\
+⎢⎢ ⎥⎥\n\
+⎢⎢y⎥⎥\n\
+⎢⎢ ⎥⎥\n\
+⎢⎢1⎥⎥\n\
+⎢⎢─⎥⎥\n\
+⎣⎣z⎦⎦\
+"""
+ assert pretty(Mcol2) == ascii_str
+ assert upretty(Mcol2) == ucode_str
+
+
+def test_tensor_TensorProduct():
+ A = MatrixSymbol("A", 3, 3)
+ B = MatrixSymbol("B", 3, 3)
+ assert upretty(TensorProduct(A, B)) == "A\u2297B"
+ assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
+
+
+def test_diffgeom_print_WedgeProduct():
+ from sympy.diffgeom.rn import R2
+ from sympy.diffgeom import WedgeProduct
+ wp = WedgeProduct(R2.dx, R2.dy)
+ assert upretty(wp) == "ⅆ x∧ⅆ y"
+ assert pretty(wp) == r"d x/\d y"
+
+
+def test_Adjoint():
+ X = MatrixSymbol('X', 2, 2)
+ Y = MatrixSymbol('Y', 2, 2)
+ assert pretty(Adjoint(X)) == " +\nX "
+ assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
+ assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
+ assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
+ assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
+ assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
+ assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
+ assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
+ assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
+ assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
+ assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
+ assert upretty(Adjoint(X)) == " †\nX "
+ assert upretty(Adjoint(X + Y)) == " †\n(X + Y) "
+ assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y "
+ assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) "
+ assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X "
+ assert upretty(Adjoint(X**2)) == \
+ " †\n⎛ 2⎞ \n⎝X ⎠ "
+ assert upretty(Adjoint(X)**2) == \
+ " 2\n⎛ †⎞ \n⎝X ⎠ "
+ assert upretty(Adjoint(Inverse(X))) == \
+ " †\n⎛ -1⎞ \n⎝X ⎠ "
+ assert upretty(Inverse(Adjoint(X))) == \
+ " -1\n⎛ †⎞ \n⎝X ⎠ "
+ assert upretty(Adjoint(Transpose(X))) == \
+ " †\n⎛ T⎞ \n⎝X ⎠ "
+ assert upretty(Transpose(Adjoint(X))) == \
+ " T\n⎛ †⎞ \n⎝X ⎠ "
+ m = Matrix(((1, 2), (3, 4)))
+ assert upretty(Adjoint(m)) == \
+ ' †\n'\
+ '⎡1 2⎤ \n'\
+ '⎢ ⎥ \n'\
+ '⎣3 4⎦ '
+ assert upretty(Adjoint(m+X)) == \
+ ' †\n'\
+ '⎛⎡1 2⎤ ⎞ \n'\
+ '⎜⎢ ⎥ + X⎟ \n'\
+ '⎝⎣3 4⎦ ⎠ '
+ assert upretty(Adjoint(BlockMatrix(((OneMatrix(2, 2), X),
+ (m, ZeroMatrix(2, 2)))))) == \
+ ' †\n'\
+ '⎡ 𝟙 X⎤ \n'\
+ '⎢ ⎥ \n'\
+ '⎢⎡1 2⎤ ⎥ \n'\
+ '⎢⎢ ⎥ 𝟘⎥ \n'\
+ '⎣⎣3 4⎦ ⎦ '
+
+
+def test_Transpose():
+ X = MatrixSymbol('X', 2, 2)
+ Y = MatrixSymbol('Y', 2, 2)
+ assert pretty(Transpose(X)) == " T\nX "
+ assert pretty(Transpose(X + Y)) == " T\n(X + Y) "
+ assert pretty(Transpose(X) + Transpose(Y)) == " T T\nX + Y "
+ assert pretty(Transpose(X*Y)) == " T\n(X*Y) "
+ assert pretty(Transpose(Y)*Transpose(X)) == " T T\nY *X "
+ assert pretty(Transpose(X**2)) == " T\n/ 2\\ \n\\X / "
+ assert pretty(Transpose(X)**2) == " 2\n/ T\\ \n\\X / "
+ assert pretty(Transpose(Inverse(X))) == " T\n/ -1\\ \n\\X / "
+ assert pretty(Inverse(Transpose(X))) == " -1\n/ T\\ \n\\X / "
+ assert upretty(Transpose(X)) == " T\nX "
+ assert upretty(Transpose(X + Y)) == " T\n(X + Y) "
+ assert upretty(Transpose(X) + Transpose(Y)) == " T T\nX + Y "
+ assert upretty(Transpose(X*Y)) == " T\n(X⋅Y) "
+ assert upretty(Transpose(Y)*Transpose(X)) == " T T\nY ⋅X "
+ assert upretty(Transpose(X**2)) == \
+ " T\n⎛ 2⎞ \n⎝X ⎠ "
+ assert upretty(Transpose(X)**2) == \
+ " 2\n⎛ T⎞ \n⎝X ⎠ "
+ assert upretty(Transpose(Inverse(X))) == \
+ " T\n⎛ -1⎞ \n⎝X ⎠ "
+ assert upretty(Inverse(Transpose(X))) == \
+ " -1\n⎛ T⎞ \n⎝X ⎠ "
+ m = Matrix(((1, 2), (3, 4)))
+ assert upretty(Transpose(m)) == \
+ ' T\n'\
+ '⎡1 2⎤ \n'\
+ '⎢ ⎥ \n'\
+ '⎣3 4⎦ '
+ assert upretty(Transpose(m+X)) == \
+ ' T\n'\
+ '⎛⎡1 2⎤ ⎞ \n'\
+ '⎜⎢ ⎥ + X⎟ \n'\
+ '⎝⎣3 4⎦ ⎠ '
+ assert upretty(Transpose(BlockMatrix(((OneMatrix(2, 2), X),
+ (m, ZeroMatrix(2, 2)))))) == \
+ ' T\n'\
+ '⎡ 𝟙 X⎤ \n'\
+ '⎢ ⎥ \n'\
+ '⎢⎡1 2⎤ ⎥ \n'\
+ '⎢⎢ ⎥ 𝟘⎥ \n'\
+ '⎣⎣3 4⎦ ⎦ '
+
+
+def test_pretty_Trace_issue_9044():
+ X = Matrix([[1, 2], [3, 4]])
+ Y = Matrix([[2, 4], [6, 8]])
+ ascii_str_1 = \
+"""\
+ /[1 2]\\
+tr|[ ]|
+ \\[3 4]/\
+"""
+ ucode_str_1 = \
+"""\
+ ⎛⎡1 2⎤⎞
+tr⎜⎢ ⎥⎟
+ ⎝⎣3 4⎦⎠\
+"""
+ ascii_str_2 = \
+"""\
+ /[1 2]\\ /[2 4]\\
+tr|[ ]| + tr|[ ]|
+ \\[3 4]/ \\[6 8]/\
+"""
+ ucode_str_2 = \
+"""\
+ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
+tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
+ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
+"""
+ assert pretty(Trace(X)) == ascii_str_1
+ assert upretty(Trace(X)) == ucode_str_1
+
+ assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
+ assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
+
+
+def test_MatrixSlice():
+ n = Symbol('n', integer=True)
+ x, y, z, w, t, = symbols('x y z w t')
+ X = MatrixSymbol('X', n, n)
+ Y = MatrixSymbol('Y', 10, 10)
+ Z = MatrixSymbol('Z', 10, 10)
+
+ expr = MatrixSlice(X, (None, None, None), (None, None, None))
+ assert pretty(expr) == upretty(expr) == 'X[:, :]'
+ expr = X[x:x + 1, y:y + 1]
+ assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]'
+ expr = X[x:x + 1:2, y:y + 1:2]
+ assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]'
+ expr = X[:x, y:]
+ assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
+ expr = X[:x, y:]
+ assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
+ expr = X[x:, :y]
+ assert pretty(expr) == upretty(expr) == 'X[x:, :y]'
+ expr = X[x:y, z:w]
+ assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]'
+ expr = X[x:y:t, w:t:x]
+ assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]'
+ expr = X[x::y, t::w]
+ assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]'
+ expr = X[:x:y, :t:w]
+ assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]'
+ expr = X[::x, ::y]
+ assert pretty(expr) == upretty(expr) == 'X[::x, ::y]'
+ expr = MatrixSlice(X, (0, None, None), (0, None, None))
+ assert pretty(expr) == upretty(expr) == 'X[:, :]'
+ expr = MatrixSlice(X, (None, n, None), (None, n, None))
+ assert pretty(expr) == upretty(expr) == 'X[:, :]'
+ expr = MatrixSlice(X, (0, n, None), (0, n, None))
+ assert pretty(expr) == upretty(expr) == 'X[:, :]'
+ expr = MatrixSlice(X, (0, n, 2), (0, n, 2))
+ assert pretty(expr) == upretty(expr) == 'X[::2, ::2]'
+ expr = X[1:2:3, 4:5:6]
+ assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]'
+ expr = X[1:3:5, 4:6:8]
+ assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]'
+ expr = X[1:10:2]
+ assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]'
+ expr = Y[:5, 1:9:2]
+ assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]'
+ expr = Y[:5, 1:10:2]
+ assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]'
+ expr = Y[5, :5:2]
+ assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]'
+ expr = X[0:1, 0:1]
+ assert pretty(expr) == upretty(expr) == 'X[:1, :1]'
+ expr = X[0:1:2, 0:1:2]
+ assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]'
+ expr = (Y + Z)[2:, 2:]
+ assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]'
+
+
+def test_MatrixExpressions():
+ n = Symbol('n', integer=True)
+ X = MatrixSymbol('X', n, n)
+
+ assert pretty(X) == upretty(X) == "X"
+
+ # Apply function elementwise (`ElementwiseApplyFunc`):
+
+ expr = (X.T*X).applyfunc(sin)
+
+ ascii_str = """\
+ / T \\\n\
+(d -> sin(d)).\\X *X/\
+"""
+ ucode_str = """\
+ ⎛ T ⎞\n\
+(d ↦ sin(d))˳⎝X ⋅X⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ lamda = Lambda(x, 1/x)
+ expr = (n*X).applyfunc(lamda)
+ ascii_str = """\
+/ 1\\ \n\
+|x -> -|.(n*X)\n\
+\\ x/ \
+"""
+ ucode_str = """\
+⎛ 1⎞ \n\
+⎜x ↦ ─⎟˳(n⋅X)\n\
+⎝ x⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_dotproduct():
+ from sympy.matrices.expressions.dotproduct import DotProduct
+ n = symbols("n", integer=True)
+ A = MatrixSymbol('A', n, 1)
+ B = MatrixSymbol('B', n, 1)
+ C = Matrix(1, 3, [1, 2, 3])
+ D = Matrix(1, 3, [1, 3, 4])
+
+ assert pretty(DotProduct(A, B)) == "A*B"
+ assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]"
+ assert upretty(DotProduct(A, B)) == "A⋅B"
+ assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]"
+
+
+def test_pretty_Determinant():
+ from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix
+ m = Matrix(((1, 2), (3, 4)))
+ assert upretty(Determinant(m)) == '│1 2│\n│ │\n│3 4│'
+ assert upretty(Determinant(Inverse(m))) == \
+ '│ -1│\n'\
+ '│⎡1 2⎤ │\n'\
+ '│⎢ ⎥ │\n'\
+ '│⎣3 4⎦ │'
+ X = MatrixSymbol('X', 2, 2)
+ assert upretty(Determinant(X)) == '│X│'
+ assert upretty(Determinant(X + m)) == \
+ '│⎡1 2⎤ │\n'\
+ '│⎢ ⎥ + X│\n'\
+ '│⎣3 4⎦ │'
+ assert upretty(Determinant(BlockMatrix(((OneMatrix(2, 2), X),
+ (m, ZeroMatrix(2, 2)))))) == \
+ '│ 𝟙 X│\n'\
+ '│ │\n'\
+ '│⎡1 2⎤ │\n'\
+ '│⎢ ⎥ 𝟘│\n'\
+ '│⎣3 4⎦ │'
+
+
+def test_pretty_piecewise():
+ expr = Piecewise((x, x < 1), (x**2, True))
+ ascii_str = \
+"""\
+/x for x < 1\n\
+| \n\
+< 2 \n\
+|x otherwise\n\
+\\ \
+"""
+ ucode_str = \
+"""\
+⎧x for x < 1\n\
+⎪ \n\
+⎨ 2 \n\
+⎪x otherwise\n\
+⎩ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = -Piecewise((x, x < 1), (x**2, True))
+ ascii_str = \
+"""\
+ //x for x < 1\\\n\
+ || |\n\
+-|< 2 |\n\
+ ||x otherwise|\n\
+ \\\\ /\
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x for x < 1⎞\n\
+ ⎜⎪ ⎟\n\
+-⎜⎨ 2 ⎟\n\
+ ⎜⎪x otherwise⎟\n\
+ ⎝⎩ ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
+ (y**2, x > 2), (1, True)) + 1
+ ascii_str = \
+"""\
+ //x \\ \n\
+ ||- for x < 2| \n\
+ ||y | \n\
+ //x for x > 0\\ || | \n\
+x + |< | + |< 2 | + 1\n\
+ \\\\y otherwise/ ||y for x > 2| \n\
+ || | \n\
+ ||1 otherwise| \n\
+ \\\\ / \
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x ⎞ \n\
+ ⎜⎪─ for x < 2⎟ \n\
+ ⎜⎪y ⎟ \n\
+ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
+x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
+ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
+ ⎜⎪ ⎟ \n\
+ ⎜⎪1 otherwise⎟ \n\
+ ⎝⎩ ⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
+ (y**2, x > 2), (1, True)) + 1
+ ascii_str = \
+"""\
+ //x \\ \n\
+ ||- for x < 2| \n\
+ ||y | \n\
+ //x for x > 0\\ || | \n\
+x - |< | + |< 2 | + 1\n\
+ \\\\y otherwise/ ||y for x > 2| \n\
+ || | \n\
+ ||1 otherwise| \n\
+ \\\\ / \
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x ⎞ \n\
+ ⎜⎪─ for x < 2⎟ \n\
+ ⎜⎪y ⎟ \n\
+ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
+x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
+ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
+ ⎜⎪ ⎟ \n\
+ ⎜⎪1 otherwise⎟ \n\
+ ⎝⎩ ⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = x*Piecewise((x, x > 0), (y, True))
+ ascii_str = \
+"""\
+ //x for x > 0\\\n\
+x*|< |\n\
+ \\\\y otherwise/\
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x for x > 0⎞\n\
+x⋅⎜⎨ ⎟\n\
+ ⎝⎩y otherwise⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
+ 2), (1, True))
+ ascii_str = \
+"""\
+ //x \\\n\
+ ||- for x < 2|\n\
+ ||y |\n\
+//x for x > 0\\ || |\n\
+|< |*|< 2 |\n\
+\\\\y otherwise/ ||y for x > 2|\n\
+ || |\n\
+ ||1 otherwise|\n\
+ \\\\ /\
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x ⎞\n\
+ ⎜⎪─ for x < 2⎟\n\
+ ⎜⎪y ⎟\n\
+⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
+⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
+⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
+ ⎜⎪ ⎟\n\
+ ⎜⎪1 otherwise⎟\n\
+ ⎝⎩ ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
+ > 2), (1, True))
+ ascii_str = \
+"""\
+ //x \\\n\
+ ||- for x < 2|\n\
+ ||y |\n\
+ //x for x > 0\\ || |\n\
+-|< |*|< 2 |\n\
+ \\\\y otherwise/ ||y for x > 2|\n\
+ || |\n\
+ ||1 otherwise|\n\
+ \\\\ /\
+"""
+ ucode_str = \
+"""\
+ ⎛⎧x ⎞\n\
+ ⎜⎪─ for x < 2⎟\n\
+ ⎜⎪y ⎟\n\
+ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
+-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
+ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
+ ⎜⎪ ⎟\n\
+ ⎜⎪1 otherwise⎟\n\
+ ⎝⎩ ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
+ ()), ((), (1, 0)), 1/y), True))
+ ascii_str = \
+"""\
+/ 1 \n\
+| 0 for --- < 1\n\
+| |y| \n\
+| \n\
+< 1 for |y| < 1\n\
+| \n\
+| __0, 2 /2, 1 | 1\\ \n\
+|y*/__ | | -| otherwise \n\
+\\ \\_|2, 2 \\ 1, 0 | y/ \
+"""
+ ucode_str = \
+"""\
+⎧ 1 \n\
+⎪ 0 for ─── < 1\n\
+⎪ │y│ \n\
+⎪ \n\
+⎨ 1 for │y│ < 1\n\
+⎪ \n\
+⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
+⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
+⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ # XXX: We have to use evaluate=False here because Piecewise._eval_power
+ # denests the power.
+ expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
+ ascii_str = \
+"""\
+ 2\n\
+//x for x > 0\\ \n\
+|< | \n\
+\\\\y otherwise/ \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+⎛⎧x for x > 0⎞ \n\
+⎜⎨ ⎟ \n\
+⎝⎩y otherwise⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_ITE():
+ expr = ITE(x, y, z)
+ assert pretty(expr) == (
+ '/y for x \n'
+ '< \n'
+ '\\z otherwise'
+ )
+ assert upretty(expr) == """\
+⎧y for x \n\
+⎨ \n\
+⎩z otherwise\
+"""
+
+
+def test_pretty_seq():
+ expr = ()
+ ascii_str = \
+"""\
+()\
+"""
+ ucode_str = \
+"""\
+()\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = []
+ ascii_str = \
+"""\
+[]\
+"""
+ ucode_str = \
+"""\
+[]\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = {}
+ expr_2 = {}
+ ascii_str = \
+"""\
+{}\
+"""
+ ucode_str = \
+"""\
+{}\
+"""
+ assert pretty(expr) == ascii_str
+ assert pretty(expr_2) == ascii_str
+ assert upretty(expr) == ucode_str
+ assert upretty(expr_2) == ucode_str
+
+ expr = (1/x,)
+ ascii_str = \
+"""\
+ 1 \n\
+(-,)\n\
+ x \
+"""
+ ucode_str = \
+"""\
+⎛1 ⎞\n\
+⎜─,⎟\n\
+⎝x ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
+ ascii_str = \
+"""\
+ 2 \n\
+ 2 1 sin (theta) \n\
+[x , -, x, y, -----------]\n\
+ x 2 \n\
+ cos (phi) \
+"""
+ ucode_str = \
+"""\
+⎡ 2 ⎤\n\
+⎢ 2 1 sin (θ)⎥\n\
+⎢x , ─, x, y, ───────⎥\n\
+⎢ x 2 ⎥\n\
+⎣ cos (φ)⎦\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
+ ascii_str = \
+"""\
+ 2 \n\
+ 2 1 sin (theta) \n\
+(x , -, x, y, -----------)\n\
+ x 2 \n\
+ cos (phi) \
+"""
+ ucode_str = \
+"""\
+⎛ 2 ⎞\n\
+⎜ 2 1 sin (θ)⎟\n\
+⎜x , ─, x, y, ───────⎟\n\
+⎜ x 2 ⎟\n\
+⎝ cos (φ)⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
+ ascii_str = \
+"""\
+ 2 \n\
+ 2 1 sin (theta) \n\
+(x , -, x, y, -----------)\n\
+ x 2 \n\
+ cos (phi) \
+"""
+ ucode_str = \
+"""\
+⎛ 2 ⎞\n\
+⎜ 2 1 sin (θ)⎟\n\
+⎜x , ─, x, y, ───────⎟\n\
+⎜ x 2 ⎟\n\
+⎝ cos (φ)⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = {x: sin(x)}
+ expr_2 = Dict({x: sin(x)})
+ ascii_str = \
+"""\
+{x: sin(x)}\
+"""
+ ucode_str = \
+"""\
+{x: sin(x)}\
+"""
+ assert pretty(expr) == ascii_str
+ assert pretty(expr_2) == ascii_str
+ assert upretty(expr) == ucode_str
+ assert upretty(expr_2) == ucode_str
+
+ expr = {1/x: 1/y, x: sin(x)**2}
+ expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
+ ascii_str = \
+"""\
+ 1 1 2 \n\
+{-: -, x: sin (x)}\n\
+ x y \
+"""
+ ucode_str = \
+"""\
+⎧1 1 2 ⎫\n\
+⎨─: ─, x: sin (x)⎬\n\
+⎩x y ⎭\
+"""
+ assert pretty(expr) == ascii_str
+ assert pretty(expr_2) == ascii_str
+ assert upretty(expr) == ucode_str
+ assert upretty(expr_2) == ucode_str
+
+ # There used to be a bug with pretty-printing sequences of even height.
+ expr = [x**2]
+ ascii_str = \
+"""\
+ 2 \n\
+[x ]\
+"""
+ ucode_str = \
+"""\
+⎡ 2⎤\n\
+⎣x ⎦\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (x**2,)
+ ascii_str = \
+"""\
+ 2 \n\
+(x ,)\
+"""
+ ucode_str = \
+"""\
+⎛ 2 ⎞\n\
+⎝x ,⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Tuple(x**2)
+ ascii_str = \
+"""\
+ 2 \n\
+(x ,)\
+"""
+ ucode_str = \
+"""\
+⎛ 2 ⎞\n\
+⎝x ,⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = {x**2: 1}
+ expr_2 = Dict({x**2: 1})
+ ascii_str = \
+"""\
+ 2 \n\
+{x : 1}\
+"""
+ ucode_str = \
+"""\
+⎧ 2 ⎫\n\
+⎨x : 1⎬\n\
+⎩ ⎭\
+"""
+ assert pretty(expr) == ascii_str
+ assert pretty(expr_2) == ascii_str
+ assert upretty(expr) == ucode_str
+ assert upretty(expr_2) == ucode_str
+
+
+def test_any_object_in_sequence():
+ # Cf. issue 5306
+ b1 = Basic()
+ b2 = Basic(Basic())
+
+ expr = [b2, b1]
+ assert pretty(expr) == "[Basic(Basic()), Basic()]"
+ assert upretty(expr) == "[Basic(Basic()), Basic()]"
+
+ expr = {b2, b1}
+ assert pretty(expr) == "{Basic(), Basic(Basic())}"
+ assert upretty(expr) == "{Basic(), Basic(Basic())}"
+
+ expr = {b2: b1, b1: b2}
+ expr2 = Dict({b2: b1, b1: b2})
+ assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
+ assert pretty(
+ expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
+ assert upretty(
+ expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
+ assert upretty(
+ expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
+
+def test_print_builtin_set():
+ assert pretty(set()) == 'set()'
+ assert upretty(set()) == 'set()'
+
+ assert pretty(frozenset()) == 'frozenset()'
+ assert upretty(frozenset()) == 'frozenset()'
+
+ s1 = {1/x, x}
+ s2 = frozenset(s1)
+
+ assert pretty(s1) == \
+"""\
+ 1 \n\
+{-, x}
+ x \
+"""
+ assert upretty(s1) == \
+"""\
+⎧1 ⎫
+⎨─, x⎬
+⎩x ⎭\
+"""
+
+ assert pretty(s2) == \
+"""\
+ 1 \n\
+frozenset({-, x})
+ x \
+"""
+ assert upretty(s2) == \
+"""\
+ ⎛⎧1 ⎫⎞
+frozenset⎜⎨─, x⎬⎟
+ ⎝⎩x ⎭⎠\
+"""
+
+def test_pretty_sets():
+ s = FiniteSet
+ assert pretty(s(*[x*y, x**2])) == \
+"""\
+ 2 \n\
+{x , x*y}\
+"""
+ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
+ assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
+
+ assert pretty({x*y, x**2}) == \
+"""\
+ 2 \n\
+{x , x*y}\
+"""
+ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
+ assert pretty(set(range(1, 13))) == \
+ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
+
+ assert pretty(frozenset([x*y, x**2])) == \
+"""\
+ 2 \n\
+frozenset({x , x*y})\
+"""
+ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
+ assert pretty(frozenset(range(1, 13))) == \
+ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
+
+ assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
+
+ ascii_str = '{0, 1, ..., 29}'
+ ucode_str = '{0, 1, …, 29}'
+ assert pretty(Range(0, 30, 1)) == ascii_str
+ assert upretty(Range(0, 30, 1)) == ucode_str
+
+ ascii_str = '{30, 29, ..., 2}'
+ ucode_str = '{30, 29, …, 2}'
+ assert pretty(Range(30, 1, -1)) == ascii_str
+ assert upretty(Range(30, 1, -1)) == ucode_str
+
+ ascii_str = '{0, 2, ...}'
+ ucode_str = '{0, 2, …}'
+ assert pretty(Range(0, oo, 2)) == ascii_str
+ assert upretty(Range(0, oo, 2)) == ucode_str
+
+ ascii_str = '{..., 2, 0}'
+ ucode_str = '{…, 2, 0}'
+ assert pretty(Range(oo, -2, -2)) == ascii_str
+ assert upretty(Range(oo, -2, -2)) == ucode_str
+
+ ascii_str = '{-2, -3, ...}'
+ ucode_str = '{-2, -3, …}'
+ assert pretty(Range(-2, -oo, -1)) == ascii_str
+ assert upretty(Range(-2, -oo, -1)) == ucode_str
+
+
+def test_pretty_SetExpr():
+ iv = Interval(1, 3)
+ se = SetExpr(iv)
+ ascii_str = "SetExpr([1, 3])"
+ ucode_str = "SetExpr([1, 3])"
+ assert pretty(se) == ascii_str
+ assert upretty(se) == ucode_str
+
+
+def test_pretty_ImageSet():
+ imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
+ ascii_str = '{x + y | x in {1, 2, 3}, y in {3, 4}}'
+ ucode_str = '{x + y │ x ∊ {1, 2, 3}, y ∊ {3, 4}}'
+ assert pretty(imgset) == ascii_str
+ assert upretty(imgset) == ucode_str
+
+ imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
+ ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}'
+ ucode_str = '{x + y │ (x, y) ∊ {1, 2, 3} × {3, 4}}'
+ assert pretty(imgset) == ascii_str
+ assert upretty(imgset) == ucode_str
+
+ imgset = ImageSet(Lambda(x, x**2), S.Naturals)
+ ascii_str = '''\
+ 2 \n\
+{x | x in Naturals}'''
+ ucode_str = '''\
+⎧ 2 │ ⎫\n\
+⎨x │ x ∊ ℕ⎬\n\
+⎩ │ ⎭'''
+ assert pretty(imgset) == ascii_str
+ assert upretty(imgset) == ucode_str
+
+ # TODO: The "x in N" parts below should be centered independently of the
+ # 1/x**2 fraction
+ imgset = ImageSet(Lambda(x, 1/x**2), S.Naturals)
+ ascii_str = '''\
+ 1 \n\
+{-- | x in Naturals}
+ 2 \n\
+ x '''
+ ucode_str = '''\
+⎧1 │ ⎫\n\
+⎪── │ x ∊ ℕ⎪\n\
+⎨ 2 │ ⎬\n\
+⎪x │ ⎪\n\
+⎩ │ ⎭'''
+ assert pretty(imgset) == ascii_str
+ assert upretty(imgset) == ucode_str
+
+ imgset = ImageSet(Lambda((x, y), 1/(x + y)**2), S.Naturals, S.Naturals)
+ ascii_str = '''\
+ 1 \n\
+{-------- | x in Naturals, y in Naturals}
+ 2 \n\
+ (x + y) '''
+ ucode_str = '''\
+⎧ 1 │ ⎫
+⎪──────── │ x ∊ ℕ, y ∊ ℕ⎪
+⎨ 2 │ ⎬
+⎪(x + y) │ ⎪
+⎩ │ ⎭'''
+ assert pretty(imgset) == ascii_str
+ assert upretty(imgset) == ucode_str
+
+def test_pretty_ConditionSet():
+ ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
+ ucode_str = '{x │ x ∊ ℝ ∧ (sin(x) = 0)}'
+ assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
+ assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
+
+ assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
+ assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
+
+ assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet"
+ assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅"
+
+ assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
+ assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
+
+ condset = ConditionSet(x, 1/x**2 > 0)
+ ascii_str = '''\
+ 1 \n\
+{x | -- > 0}
+ 2 \n\
+ x '''
+ ucode_str = '''\
+⎧ │ ⎛1 ⎞⎫
+⎪x │ ⎜── > 0⎟⎪
+⎨ │ ⎜ 2 ⎟⎬
+⎪ │ ⎝x ⎠⎪
+⎩ │ ⎭'''
+ assert pretty(condset) == ascii_str
+ assert upretty(condset) == ucode_str
+
+ condset = ConditionSet(x, 1/x**2 > 0, S.Reals)
+ ascii_str = '''\
+ 1 \n\
+{x | x in (-oo, oo) and -- > 0}
+ 2 \n\
+ x '''
+ ucode_str = '''\
+⎧ │ ⎛1 ⎞⎫
+⎪x │ x ∊ ℝ ∧ ⎜── > 0⎟⎪
+⎨ │ ⎜ 2 ⎟⎬
+⎪ │ ⎝x ⎠⎪
+⎩ │ ⎭'''
+ assert pretty(condset) == ascii_str
+ assert upretty(condset) == ucode_str
+
+def test_pretty_ComplexRegion():
+ from sympy.sets.fancysets import ComplexRegion
+ cregion = ComplexRegion(Interval(3, 5)*Interval(4, 6))
+ ascii_str = '{x + y*I | x, y in [3, 5] x [4, 6]}'
+ ucode_str = '{x + y⋅ⅈ │ x, y ∊ [3, 5] × [4, 6]}'
+ assert pretty(cregion) == ascii_str
+ assert upretty(cregion) == ucode_str
+
+ cregion = ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)
+ ascii_str = '{r*(I*sin(theta) + cos(theta)) | r, theta in [0, 1] x [0, 2*pi)}'
+ ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ [0, 1] × [0, 2⋅π)}'
+ assert pretty(cregion) == ascii_str
+ assert upretty(cregion) == ucode_str
+
+ cregion = ComplexRegion(Interval(3, 1/a**2)*Interval(4, 6))
+ ascii_str = '''\
+ 1 \n\
+{x + y*I | x, y in [3, --] x [4, 6]}
+ 2 \n\
+ a '''
+ ucode_str = '''\
+⎧ │ ⎡ 1 ⎤ ⎫
+⎪x + y⋅ⅈ │ x, y ∊ ⎢3, ──⎥ × [4, 6]⎪
+⎨ │ ⎢ 2⎥ ⎬
+⎪ │ ⎣ a ⎦ ⎪
+⎩ │ ⎭'''
+ assert pretty(cregion) == ascii_str
+ assert upretty(cregion) == ucode_str
+
+ cregion = ComplexRegion(Interval(0, 1/a**2)*Interval(0, 2*pi), polar=True)
+ ascii_str = '''\
+ 1 \n\
+{r*(I*sin(theta) + cos(theta)) | r, theta in [0, --] x [0, 2*pi)}
+ 2 \n\
+ a '''
+ ucode_str = '''\
+⎧ │ ⎡ 1 ⎤ ⎫
+⎪r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ ⎢0, ──⎥ × [0, 2⋅π)⎪
+⎨ │ ⎢ 2⎥ ⎬
+⎪ │ ⎣ a ⎦ ⎪
+⎩ │ ⎭'''
+ assert pretty(cregion) == ascii_str
+ assert upretty(cregion) == ucode_str
+
+def test_pretty_Union_issue_10414():
+ a, b = Interval(2, 3), Interval(4, 7)
+ ucode_str = '[2, 3] ∪ [4, 7]'
+ ascii_str = '[2, 3] U [4, 7]'
+ assert upretty(Union(a, b)) == ucode_str
+ assert pretty(Union(a, b)) == ascii_str
+
+def test_pretty_Intersection_issue_10414():
+ x, y, z, w = symbols('x, y, z, w')
+ a, b = Interval(x, y), Interval(z, w)
+ ucode_str = '[x, y] ∩ [z, w]'
+ ascii_str = '[x, y] n [z, w]'
+ assert upretty(Intersection(a, b)) == ucode_str
+ assert pretty(Intersection(a, b)) == ascii_str
+
+def test_ProductSet_exponent():
+ ucode_str = ' 1\n[0, 1] '
+ assert upretty(Interval(0, 1)**1) == ucode_str
+ ucode_str = ' 2\n[0, 1] '
+ assert upretty(Interval(0, 1)**2) == ucode_str
+
+def test_ProductSet_parenthesis():
+ ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
+
+ a, b = Interval(2, 3), Interval(4, 7)
+ assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
+
+def test_ProductSet_prod_char_issue_10413():
+ ascii_str = '[2, 3] x [4, 7]'
+ ucode_str = '[2, 3] × [4, 7]'
+
+ a, b = Interval(2, 3), Interval(4, 7)
+ assert pretty(a*b) == ascii_str
+ assert upretty(a*b) == ucode_str
+
+def test_pretty_sequences():
+ s1 = SeqFormula(a**2, (0, oo))
+ s2 = SeqPer((1, 2))
+
+ ascii_str = '[0, 1, 4, 9, ...]'
+ ucode_str = '[0, 1, 4, 9, …]'
+
+ assert pretty(s1) == ascii_str
+ assert upretty(s1) == ucode_str
+
+ ascii_str = '[1, 2, 1, 2, ...]'
+ ucode_str = '[1, 2, 1, 2, …]'
+ assert pretty(s2) == ascii_str
+ assert upretty(s2) == ucode_str
+
+ s3 = SeqFormula(a**2, (0, 2))
+ s4 = SeqPer((1, 2), (0, 2))
+
+ ascii_str = '[0, 1, 4]'
+ ucode_str = '[0, 1, 4]'
+
+ assert pretty(s3) == ascii_str
+ assert upretty(s3) == ucode_str
+
+ ascii_str = '[1, 2, 1]'
+ ucode_str = '[1, 2, 1]'
+ assert pretty(s4) == ascii_str
+ assert upretty(s4) == ucode_str
+
+ s5 = SeqFormula(a**2, (-oo, 0))
+ s6 = SeqPer((1, 2), (-oo, 0))
+
+ ascii_str = '[..., 9, 4, 1, 0]'
+ ucode_str = '[…, 9, 4, 1, 0]'
+
+ assert pretty(s5) == ascii_str
+ assert upretty(s5) == ucode_str
+
+ ascii_str = '[..., 2, 1, 2, 1]'
+ ucode_str = '[…, 2, 1, 2, 1]'
+ assert pretty(s6) == ascii_str
+ assert upretty(s6) == ucode_str
+
+ ascii_str = '[1, 3, 5, 11, ...]'
+ ucode_str = '[1, 3, 5, 11, …]'
+
+ assert pretty(SeqAdd(s1, s2)) == ascii_str
+ assert upretty(SeqAdd(s1, s2)) == ucode_str
+
+ ascii_str = '[1, 3, 5]'
+ ucode_str = '[1, 3, 5]'
+
+ assert pretty(SeqAdd(s3, s4)) == ascii_str
+ assert upretty(SeqAdd(s3, s4)) == ucode_str
+
+ ascii_str = '[..., 11, 5, 3, 1]'
+ ucode_str = '[…, 11, 5, 3, 1]'
+
+ assert pretty(SeqAdd(s5, s6)) == ascii_str
+ assert upretty(SeqAdd(s5, s6)) == ucode_str
+
+ ascii_str = '[0, 2, 4, 18, ...]'
+ ucode_str = '[0, 2, 4, 18, …]'
+
+ assert pretty(SeqMul(s1, s2)) == ascii_str
+ assert upretty(SeqMul(s1, s2)) == ucode_str
+
+ ascii_str = '[0, 2, 4]'
+ ucode_str = '[0, 2, 4]'
+
+ assert pretty(SeqMul(s3, s4)) == ascii_str
+ assert upretty(SeqMul(s3, s4)) == ucode_str
+
+ ascii_str = '[..., 18, 4, 2, 0]'
+ ucode_str = '[…, 18, 4, 2, 0]'
+
+ assert pretty(SeqMul(s5, s6)) == ascii_str
+ assert upretty(SeqMul(s5, s6)) == ucode_str
+
+ # Sequences with symbolic limits, issue 12629
+ s7 = SeqFormula(a**2, (a, 0, x))
+ raises(NotImplementedError, lambda: pretty(s7))
+ raises(NotImplementedError, lambda: upretty(s7))
+
+ b = Symbol('b')
+ s8 = SeqFormula(b*a**2, (a, 0, 2))
+ ascii_str = '[0, b, 4*b]'
+ ucode_str = '[0, b, 4⋅b]'
+ assert pretty(s8) == ascii_str
+ assert upretty(s8) == ucode_str
+
+
+def test_pretty_FourierSeries():
+ f = fourier_series(x, (x, -pi, pi))
+
+ ascii_str = \
+"""\
+ 2*sin(3*x) \n\
+2*sin(x) - sin(2*x) + ---------- + ...\n\
+ 3 \
+"""
+
+ ucode_str = \
+"""\
+ 2⋅sin(3⋅x) \n\
+2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
+ 3 \
+"""
+
+ assert pretty(f) == ascii_str
+ assert upretty(f) == ucode_str
+
+
+def test_pretty_FormalPowerSeries():
+ f = fps(log(1 + x))
+
+
+ ascii_str = \
+"""\
+ oo \n\
+____ \n\
+\\ ` \n\
+ \\ -k k \n\
+ \\ -(-1) *x \n\
+ / -----------\n\
+ / k \n\
+/___, \n\
+k = 1 \
+"""
+
+ ucode_str = \
+"""\
+ ∞ \n\
+ ____ \n\
+ ╲ \n\
+ ╲ -k k \n\
+ ╲ -(-1) ⋅x \n\
+ ╱ ───────────\n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾‾ \n\
+k = 1 \
+"""
+
+ assert pretty(f) == ascii_str
+ assert upretty(f) == ucode_str
+
+
+def test_pretty_limits():
+ expr = Limit(x, x, oo)
+ ascii_str = \
+"""\
+ lim x\n\
+x->oo \
+"""
+ ucode_str = \
+"""\
+lim x\n\
+x─→∞ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(x**2, x, 0)
+ ascii_str = \
+"""\
+ 2\n\
+ lim x \n\
+x->0+ \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+ lim x \n\
+x─→0⁺ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(1/x, x, 0)
+ ascii_str = \
+"""\
+ 1\n\
+ lim -\n\
+x->0+x\
+"""
+ ucode_str = \
+"""\
+ 1\n\
+ lim ─\n\
+x─→0⁺x\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(sin(x)/x, x, 0)
+ ascii_str = \
+"""\
+ /sin(x)\\\n\
+ lim |------|\n\
+x->0+\\ x /\
+"""
+ ucode_str = \
+"""\
+ ⎛sin(x)⎞\n\
+ lim ⎜──────⎟\n\
+x─→0⁺⎝ x ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(sin(x)/x, x, 0, "-")
+ ascii_str = \
+"""\
+ /sin(x)\\\n\
+ lim |------|\n\
+x->0-\\ x /\
+"""
+ ucode_str = \
+"""\
+ ⎛sin(x)⎞\n\
+ lim ⎜──────⎟\n\
+x─→0⁻⎝ x ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(x + sin(x), x, 0)
+ ascii_str = \
+"""\
+ lim (x + sin(x))\n\
+x->0+ \
+"""
+ ucode_str = \
+"""\
+ lim (x + sin(x))\n\
+x─→0⁺ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(x, x, 0)**2
+ ascii_str = \
+"""\
+ 2\n\
+/ lim x\\ \n\
+\\x->0+ / \
+"""
+ ucode_str = \
+"""\
+ 2\n\
+⎛ lim x⎞ \n\
+⎝x─→0⁺ ⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(x*Limit(y/2,y,0), x, 0)
+ ascii_str = \
+"""\
+ / /y\\\\\n\
+ lim |x* lim |-||\n\
+x->0+\\ y->0+\\2//\
+"""
+ ucode_str = \
+"""\
+ ⎛ ⎛y⎞⎞\n\
+ lim ⎜x⋅ lim ⎜─⎟⎟\n\
+x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
+ ascii_str = \
+"""\
+ / /y\\\\\n\
+2* lim |x* lim |-||\n\
+ x->0+\\ y->0+\\2//\
+"""
+ ucode_str = \
+"""\
+ ⎛ ⎛y⎞⎞\n\
+2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
+ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Limit(sin(x), x, 0, dir='+-')
+ ascii_str = \
+"""\
+lim sin(x)\n\
+x->0 \
+"""
+ ucode_str = \
+"""\
+lim sin(x)\n\
+x─→0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_ComplexRootOf():
+ expr = rootof(x**5 + 11*x - 2, 0)
+ ascii_str = \
+"""\
+ / 5 \\\n\
+CRootOf\\x + 11*x - 2, 0/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 5 ⎞\n\
+CRootOf⎝x + 11⋅x - 2, 0⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_RootSum():
+ expr = RootSum(x**5 + 11*x - 2, auto=False)
+ ascii_str = \
+"""\
+ / 5 \\\n\
+RootSum\\x + 11*x - 2/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 5 ⎞\n\
+RootSum⎝x + 11⋅x - 2⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
+ ascii_str = \
+"""\
+ / 5 z\\\n\
+RootSum\\x + 11*x - 2, z -> e /\
+"""
+ ucode_str = \
+"""\
+ ⎛ 5 z⎞\n\
+RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_GroebnerBasis():
+ expr = groebner([], x, y)
+
+ ascii_str = \
+"""\
+GroebnerBasis([], x, y, domain=ZZ, order=lex)\
+"""
+ ucode_str = \
+"""\
+GroebnerBasis([], x, y, domain=ℤ, order=lex)\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
+ expr = groebner(F, x, y, order='grlex')
+
+ ascii_str = \
+"""\
+ /[ 2 2 ] \\\n\
+GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
+"""
+ ucode_str = \
+"""\
+ ⎛⎡ 2 2 ⎤ ⎞\n\
+GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = expr.fglm('lex')
+
+ ascii_str = \
+"""\
+ /[ 2 4 3 2 ] \\\n\
+GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
+"""
+ ucode_str = \
+"""\
+ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\
+GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_UniversalSet():
+ assert pretty(S.UniversalSet) == "UniversalSet"
+ assert upretty(S.UniversalSet) == '𝕌'
+
+
+def test_pretty_Boolean():
+ expr = Not(x, evaluate=False)
+
+ assert pretty(expr) == "Not(x)"
+ assert upretty(expr) == "¬x"
+
+ expr = And(x, y)
+
+ assert pretty(expr) == "And(x, y)"
+ assert upretty(expr) == "x ∧ y"
+
+ expr = Or(x, y)
+
+ assert pretty(expr) == "Or(x, y)"
+ assert upretty(expr) == "x ∨ y"
+
+ syms = symbols('a:f')
+ expr = And(*syms)
+
+ assert pretty(expr) == "And(a, b, c, d, e, f)"
+ assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f"
+
+ expr = Or(*syms)
+
+ assert pretty(expr) == "Or(a, b, c, d, e, f)"
+ assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f"
+
+ expr = Xor(x, y, evaluate=False)
+
+ assert pretty(expr) == "Xor(x, y)"
+ assert upretty(expr) == "x ⊻ y"
+
+ expr = Nand(x, y, evaluate=False)
+
+ assert pretty(expr) == "Nand(x, y)"
+ assert upretty(expr) == "x ⊼ y"
+
+ expr = Nor(x, y, evaluate=False)
+
+ assert pretty(expr) == "Nor(x, y)"
+ assert upretty(expr) == "x ⊽ y"
+
+ expr = Implies(x, y, evaluate=False)
+
+ assert pretty(expr) == "Implies(x, y)"
+ assert upretty(expr) == "x → y"
+
+ # don't sort args
+ expr = Implies(y, x, evaluate=False)
+
+ assert pretty(expr) == "Implies(y, x)"
+ assert upretty(expr) == "y → x"
+
+ expr = Equivalent(x, y, evaluate=False)
+
+ assert pretty(expr) == "Equivalent(x, y)"
+ assert upretty(expr) == "x ⇔ y"
+
+ expr = Equivalent(y, x, evaluate=False)
+
+ assert pretty(expr) == "Equivalent(x, y)"
+ assert upretty(expr) == "x ⇔ y"
+
+
+def test_pretty_Domain():
+ expr = FF(23)
+
+ assert pretty(expr) == "GF(23)"
+ assert upretty(expr) == "ℤ₂₃"
+
+ expr = ZZ
+
+ assert pretty(expr) == "ZZ"
+ assert upretty(expr) == "ℤ"
+
+ expr = QQ
+
+ assert pretty(expr) == "QQ"
+ assert upretty(expr) == "ℚ"
+
+ expr = RR
+
+ assert pretty(expr) == "RR"
+ assert upretty(expr) == "ℝ"
+
+ expr = QQ[x]
+
+ assert pretty(expr) == "QQ[x]"
+ assert upretty(expr) == "ℚ[x]"
+
+ expr = QQ[x, y]
+
+ assert pretty(expr) == "QQ[x, y]"
+ assert upretty(expr) == "ℚ[x, y]"
+
+ expr = ZZ.frac_field(x)
+
+ assert pretty(expr) == "ZZ(x)"
+ assert upretty(expr) == "ℤ(x)"
+
+ expr = ZZ.frac_field(x, y)
+
+ assert pretty(expr) == "ZZ(x, y)"
+ assert upretty(expr) == "ℤ(x, y)"
+
+ expr = QQ.poly_ring(x, y, order=grlex)
+
+ assert pretty(expr) == "QQ[x, y, order=grlex]"
+ assert upretty(expr) == "ℚ[x, y, order=grlex]"
+
+ expr = QQ.poly_ring(x, y, order=ilex)
+
+ assert pretty(expr) == "QQ[x, y, order=ilex]"
+ assert upretty(expr) == "ℚ[x, y, order=ilex]"
+
+
+def test_pretty_prec():
+ assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
+ assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
+ assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
+ assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
+ "0.300000000000000*x",
+ "x*0.300000000000000"
+ ]
+ assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
+ "0.3*x",
+ "x*0.3"
+ ]
+ assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
+ "0.3*x",
+ "x*0.3"
+ ]
+
+
+def test_pprint():
+ import sys
+ from io import StringIO
+ fd = StringIO()
+ sso = sys.stdout
+ sys.stdout = fd
+ try:
+ pprint(pi, use_unicode=False, wrap_line=False)
+ finally:
+ sys.stdout = sso
+ assert fd.getvalue() == 'pi\n'
+
+
+def test_pretty_class():
+ """Test that the printer dispatcher correctly handles classes."""
+ class C:
+ pass # C has no .__class__ and this was causing problems
+
+ class D:
+ pass
+
+ assert pretty( C ) == str( C )
+ assert pretty( D ) == str( D )
+
+
+def test_pretty_no_wrap_line():
+ huge_expr = 0
+ for i in range(20):
+ huge_expr += i*sin(i + x)
+ assert xpretty(huge_expr ).find('\n') != -1
+ assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
+
+
+def test_settings():
+ raises(TypeError, lambda: pretty(S(4), method="garbage"))
+
+
+def test_pretty_sum():
+ from sympy.abc import x, a, b, k, m, n
+
+ expr = Sum(k**k, (k, 0, n))
+ ascii_str = \
+"""\
+ n \n\
+ ___ \n\
+ \\ ` \n\
+ \\ k\n\
+ / k \n\
+ /__, \n\
+k = 0 \
+"""
+ ucode_str = \
+"""\
+ n \n\
+ ___ \n\
+ ╲ \n\
+ ╲ k\n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾ \n\
+k = 0 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(k**k, (k, oo, n))
+ ascii_str = \
+"""\
+ n \n\
+ ___ \n\
+ \\ ` \n\
+ \\ k\n\
+ / k \n\
+ /__, \n\
+k = oo \
+"""
+ ucode_str = \
+"""\
+ n \n\
+ ___ \n\
+ ╲ \n\
+ ╲ k\n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾ \n\
+k = ∞ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
+ ascii_str = \
+"""\
+ n \n\
+ n \n\
+______ \n\
+\\ ` \n\
+ \\ oo \n\
+ \\ / \n\
+ \\ | \n\
+ \\ | n \n\
+ ) | x dx\n\
+ / | \n\
+ / / \n\
+ / -oo \n\
+ / k \n\
+/_____, \n\
+ k = 0 \
+"""
+ ucode_str = \
+"""\
+ n \n\
+ n \n\
+______ \n\
+╲ \n\
+ ╲ \n\
+ ╲ ∞ \n\
+ ╲ ⌠ \n\
+ ╲ ⎮ n \n\
+ ╱ ⎮ x dx\n\
+ ╱ ⌡ \n\
+ ╱ -∞ \n\
+ ╱ k \n\
+╱ \n\
+‾‾‾‾‾‾ \n\
+k = 0 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(k**(
+ Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
+ ascii_str = \
+"""\
+ oo \n\
+ / \n\
+ | \n\
+ | x \n\
+ | x dx \n\
+ | \n\
+/ \n\
+-oo \n\
+ ______ \n\
+ \\ ` \n\
+ \\ oo \n\
+ \\ / \n\
+ \\ | \n\
+ \\ | n \n\
+ ) | x dx\n\
+ / | \n\
+ / / \n\
+ / -oo \n\
+ / k \n\
+ /_____, \n\
+ k = 0 \
+"""
+ ucode_str = \
+"""\
+∞ \n\
+⌠ \n\
+⎮ x \n\
+⎮ x dx \n\
+⌡ \n\
+-∞ \n\
+ ______ \n\
+ ╲ \n\
+ ╲ \n\
+ ╲ ∞ \n\
+ ╲ ⌠ \n\
+ ╲ ⎮ n \n\
+ ╱ ⎮ x dx\n\
+ ╱ ⌡ \n\
+ ╱ -∞ \n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾‾‾‾ \n\
+ k = 0 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
+ k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
+ ascii_str = \
+"""\
+ oo \n\
+ / \n\
+ | \n\
+ | x \n\
+ | x dx \n\
+ | \n\
+ / \n\
+ -oo \n\
+ ______ \n\
+ \\ ` \n\
+ \\ oo \n\
+ \\ / \n\
+ \\ | \n\
+ \\ | n \n\
+ ) | x dx\n\
+ / | \n\
+ / / \n\
+ / -oo \n\
+ / k \n\
+ /_____, \n\
+ 2 2 1 x \n\
+k = n + n + x + x + - + - \n\
+ x n \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ⌠ \n\
+ ⎮ x \n\
+ ⎮ x dx \n\
+ ⌡ \n\
+ -∞ \n\
+ ______ \n\
+ ╲ \n\
+ ╲ \n\
+ ╲ ∞ \n\
+ ╲ ⌠ \n\
+ ╲ ⎮ n \n\
+ ╱ ⎮ x dx\n\
+ ╱ ⌡ \n\
+ ╱ -∞ \n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾‾‾‾ \n\
+ 2 2 1 x \n\
+k = n + n + x + x + ─ + ─ \n\
+ x n \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(k**(
+ Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
+ ascii_str = \
+"""\
+ 2 2 1 x \n\
+n + n + x + x + - + - \n\
+ x n \n\
+ ______ \n\
+ \\ ` \n\
+ \\ oo \n\
+ \\ / \n\
+ \\ | \n\
+ \\ | n \n\
+ ) | x dx\n\
+ / | \n\
+ / / \n\
+ / -oo \n\
+ / k \n\
+ /_____, \n\
+ k = 0 \
+"""
+ ucode_str = \
+"""\
+ 2 2 1 x \n\
+n + n + x + x + ─ + ─ \n\
+ x n \n\
+ ______ \n\
+ ╲ \n\
+ ╲ \n\
+ ╲ ∞ \n\
+ ╲ ⌠ \n\
+ ╲ ⎮ n \n\
+ ╱ ⎮ x dx\n\
+ ╱ ⌡ \n\
+ ╱ -∞ \n\
+ ╱ k \n\
+ ╱ \n\
+ ‾‾‾‾‾‾ \n\
+ k = 0 \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(x, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+ __ \n\
+ \\ ` \n\
+ ) x\n\
+ /_, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ___ \n\
+ ╲ \n\
+ ╲ \n\
+ ╱ x\n\
+ ╱ \n\
+ ‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(x**2, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+ ___ \n\
+ \\ ` \n\
+ \\ 2\n\
+ / x \n\
+ /__, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ___ \n\
+ ╲ \n\
+ ╲ 2\n\
+ ╱ x \n\
+ ╱ \n\
+ ‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(x/2, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+ ___ \n\
+ \\ ` \n\
+ \\ x\n\
+ ) -\n\
+ / 2\n\
+ /__, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ____ \n\
+ ╲ \n\
+ ╲ \n\
+ ╲ x\n\
+ ╱ ─\n\
+ ╱ 2\n\
+ ╱ \n\
+ ‾‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(x**3/2, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+____ \n\
+\\ ` \n\
+ \\ 3\n\
+ \\ x \n\
+ / --\n\
+ / 2 \n\
+/___, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ____ \n\
+ ╲ \n\
+ ╲ 3\n\
+ ╲ x \n\
+ ╱ ──\n\
+ ╱ 2 \n\
+ ╱ \n\
+ ‾‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+____ \n\
+\\ ` \n\
+ \\ n\n\
+ \\ / x\\ \n\
+ ) | -| \n\
+ / | 3 2| \n\
+ / \\x *y / \n\
+/___, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+_____ \n\
+╲ \n\
+ ╲ \n\
+ ╲ n\n\
+ ╲ ⎛ x⎞ \n\
+ ╱ ⎜ ─⎟ \n\
+ ╱ ⎜ 3 2⎟ \n\
+ ╱ ⎝x ⋅y ⎠ \n\
+╱ \n\
+‾‾‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(1/x**2, (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+____ \n\
+\\ ` \n\
+ \\ 1 \n\
+ \\ --\n\
+ / 2\n\
+ / x \n\
+/___, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ____ \n\
+ ╲ \n\
+ ╲ 1 \n\
+ ╲ ──\n\
+ ╱ 2\n\
+ ╱ x \n\
+ ╱ \n\
+ ‾‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(1/y**(a/b), (x, 0, oo))
+ ascii_str = \
+"""\
+ oo \n\
+____ \n\
+\\ ` \n\
+ \\ -a \n\
+ \\ ---\n\
+ / b \n\
+ / y \n\
+/___, \n\
+x = 0 \
+"""
+ ucode_str = \
+"""\
+ ∞ \n\
+ ____ \n\
+ ╲ \n\
+ ╲ -a \n\
+ ╲ ───\n\
+ ╱ b \n\
+ ╱ y \n\
+ ╱ \n\
+ ‾‾‾‾ \n\
+x = 0 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
+ ascii_str = \
+"""\
+ 2 oo \n\
+____ ____ \n\
+\\ ` \\ ` \n\
+ \\ \\ -a\n\
+ \\ \\ --\n\
+ / / b \n\
+ / / y \n\
+/___, /___, \n\
+y = 1 x = 0 \
+"""
+ ucode_str = \
+"""\
+ 2 ∞ \n\
+____ ____ \n\
+╲ ╲ \n\
+ ╲ ╲ -a\n\
+ ╲ ╲ ──\n\
+ ╱ ╱ b \n\
+ ╱ ╱ y \n\
+╱ ╱ \n\
+‾‾‾‾ ‾‾‾‾ \n\
+y = 1 x = 0 \
+"""
+ expr = Sum(1/(1 + 1/(
+ 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
+ ascii_str = \
+"""\
+ 1 \n\
+ 1 + - \n\
+ oo n \n\
+ _____ _____ \n\
+ \\ ` \\ ` \n\
+ \\ \\ / 1 \\ \n\
+ \\ \\ |1 + ---------| \n\
+ \\ \\ | 1 | 1 \n\
+ ) ) | 1 + -----| + -----\n\
+ / / | 1| 1\n\
+ / / | 1 + -| 1 + -\n\
+ / / \\ k/ k\n\
+ /____, /____, \n\
+ 1 k = 111 \n\
+k = ----- \n\
+ m + 1 \
+"""
+ ucode_str = \
+"""\
+ 1 \n\
+ 1 + ─ \n\
+ ∞ n \n\
+ ______ ______ \n\
+ ╲ ╲ \n\
+ ╲ ╲ \n\
+ ╲ ╲ ⎛ 1 ⎞ \n\
+ ╲ ╲ ⎜1 + ─────────⎟ \n\
+ ╲ ╲ ⎜ 1 ⎟ 1 \n\
+ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
+ ╱ ╱ ⎜ 1⎟ 1\n\
+ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
+ ╱ ╱ ⎝ k⎠ k\n\
+ ╱ ╱ \n\
+ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
+ 1 k = 111 \n\
+k = ───── \n\
+ m + 1 \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_units():
+ expr = joule
+ ascii_str1 = \
+"""\
+ 2\n\
+kilogram*meter \n\
+---------------\n\
+ 2 \n\
+ second \
+"""
+ unicode_str1 = \
+"""\
+ 2\n\
+kilogram⋅meter \n\
+───────────────\n\
+ 2 \n\
+ second \
+"""
+
+ ascii_str2 = \
+"""\
+ 2\n\
+3*x*y*kilogram*meter \n\
+---------------------\n\
+ 2 \n\
+ second \
+"""
+ unicode_str2 = \
+"""\
+ 2\n\
+3⋅x⋅y⋅kilogram⋅meter \n\
+─────────────────────\n\
+ 2 \n\
+ second \
+"""
+
+ from sympy.physics.units import kg, m, s
+ assert upretty(expr) == "joule"
+ assert pretty(expr) == "joule"
+ assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
+ assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
+ assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
+ assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
+
+def test_pretty_Subs():
+ f = Function('f')
+ expr = Subs(f(x), x, ph**2)
+ ascii_str = \
+"""\
+(f(x))| 2\n\
+ |x=phi \
+"""
+ unicode_str = \
+"""\
+(f(x))│ 2\n\
+ │x=φ \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+
+ expr = Subs(f(x).diff(x), x, 0)
+ ascii_str = \
+"""\
+/d \\| \n\
+|--(f(x))|| \n\
+\\dx /|x=0\
+"""
+ unicode_str = \
+"""\
+⎛d ⎞│ \n\
+⎜──(f(x))⎟│ \n\
+⎝dx ⎠│x=0\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+
+ expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
+ ascii_str = \
+"""\
+/d \\| \n\
+|--(f(x))|| \n\
+|dx || \n\
+|--------|| \n\
+\\ y /|x=0, y=1/2\
+"""
+ unicode_str = \
+"""\
+⎛d ⎞│ \n\
+⎜──(f(x))⎟│ \n\
+⎜dx ⎟│ \n\
+⎜────────⎟│ \n\
+⎝ y ⎠│x=0, y=1/2\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == unicode_str
+
+
+def test_gammas():
+ assert upretty(lowergamma(x, y)) == "γ(x, y)"
+ assert upretty(uppergamma(x, y)) == "Γ(x, y)"
+ assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)'
+ assert xpretty(gamma, use_unicode=True) == 'Γ'
+ assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)'
+ assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ'
+
+
+def test_beta():
+ assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)'
+ assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)'
+ assert xpretty(beta, use_unicode=True) == 'Β'
+ assert xpretty(beta, use_unicode=False) == 'B'
+ mybeta = Function('beta')
+ assert xpretty(mybeta(x), use_unicode=True) == 'β(x)'
+ assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)'
+ assert xpretty(mybeta, use_unicode=True) == 'β'
+
+
+# test that notation passes to subclasses of the same name only
+def test_function_subclass_different_name():
+ class mygamma(gamma):
+ pass
+ assert xpretty(mygamma, use_unicode=True) == r"mygamma"
+ assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
+
+
+def test_SingularityFunction():
+ assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
+"""\
+ n\n\
+<-a + x> \
+""")
+ assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
+"""\
+ n\n\
+ \
+""")
+ assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
+"""\
+ n\n\
+<-a + x> \
+""")
+ assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
+"""\
+ n\n\
+ \
+""")
+
+
+def test_deltas():
+ assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)'
+ assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
+"""\
+ (1) \n\
+δ (x)\
+"""
+ assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
+"""\
+ (1) \n\
+x⋅δ (x)\
+"""
+
+
+def test_hyper():
+ expr = hyper((), (), z)
+ ucode_str = \
+"""\
+ ┌─ ⎛ │ ⎞\n\
+ ├─ ⎜ │ z⎟\n\
+0╵ 0 ⎝ │ ⎠\
+"""
+ ascii_str = \
+"""\
+ _ \n\
+ |_ / | \\\n\
+ | | | z|\n\
+0 0 \\ | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hyper((), (1,), x)
+ ucode_str = \
+"""\
+ ┌─ ⎛ │ ⎞\n\
+ ├─ ⎜ │ x⎟\n\
+0╵ 1 ⎝1 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ _ \n\
+ |_ / | \\\n\
+ | | | x|\n\
+0 1 \\1 | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hyper([2], [1], x)
+ ucode_str = \
+"""\
+ ┌─ ⎛2 │ ⎞\n\
+ ├─ ⎜ │ x⎟\n\
+1╵ 1 ⎝1 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ _ \n\
+ |_ /2 | \\\n\
+ | | | x|\n\
+1 1 \\1 | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
+ ucode_str = \
+"""\
+ ⎛ π │ ⎞\n\
+ ┌─ ⎜ ─, -2⋅k │ ⎟\n\
+ ├─ ⎜ 3 │ x⎟\n\
+2╵ 4 ⎜ │ ⎟\n\
+ ⎝3, 4, 5, -3 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ \n\
+ _ / pi | \\\n\
+ |_ | --, -2*k | |\n\
+ | | 3 | x|\n\
+2 4 | | |\n\
+ \\3, 4, 5, -3 | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
+ ucode_str = \
+"""\
+ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
+ ├─ ⎜ │ x ⎟\n\
+3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ _ \n\
+ |_ /pi, 2/3, -2*k | 2\\\n\
+ | | | x |\n\
+3 4 \\ 3, 4, 5, -3 | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
+ ucode_str = \
+"""\
+ ⎛ │ 1 ⎞\n\
+ ⎜ │ ─────────────⎟\n\
+ ⎜ │ 1 ⎟\n\
+ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
+ ├─ ⎜ │ 1 ⎟\n\
+2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
+ ⎜ │ 1⎟\n\
+ ⎜ │ 1 + ─⎟\n\
+ ⎝ │ x⎠\
+"""
+
+ ascii_str = \
+"""\
+ \n\
+ / | 1 \\\n\
+ | | -------------|\n\
+ _ | | 1 |\n\
+ |_ |1, 2 | 1 + ---------|\n\
+ | | | 1 |\n\
+2 2 |3, 4 | 1 + -----|\n\
+ | | 1|\n\
+ | | 1 + -|\n\
+ \\ | x/\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_meijerg():
+ expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
+ ucode_str = \
+"""\
+╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
+│╶┐ ⎜ │ z⎟\n\
+╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ __2, 3 /pi, pi, x 1 | \\\n\
+/__ | | z|\n\
+\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
+ ucode_str = \
+"""\
+ ⎛ π │ ⎞\n\
+╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
+│╶┐ ⎜ 7 │ z ⎟\n\
+╰─╯5, 0 ⎜ │ ⎟\n\
+ ⎝ │ ⎠\
+"""
+ ascii_str = \
+"""\
+ / pi | \\\n\
+ __0, 2 |1, -- 2, pi, 5 | 2|\n\
+/__ | 7 | z |\n\
+\\_|5, 0 | | |\n\
+ \\ | /\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ucode_str = \
+"""\
+╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
+│╶┐ ⎜ │ z⎟\n\
+╰─╯11, 2 ⎝ 1 1 │ ⎠\
+"""
+ ascii_str = \
+"""\
+ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
+/__ | | z|\n\
+\\_|11, 2 \\ 1 1 | /\
+"""
+
+ expr = meijerg([1]*10, [1], [1], [1], z)
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
+
+ ucode_str = \
+"""\
+ ⎛ │ 1 ⎞\n\
+ ⎜ │ ─────────────⎟\n\
+ ⎜ │ 1 ⎟\n\
+╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
+│╶┐ ⎜ │ 1 ⎟\n\
+╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
+ ⎜ │ 1⎟\n\
+ ⎜ │ 1 + ─⎟\n\
+ ⎝ │ x⎠\
+"""
+
+ ascii_str = \
+"""\
+ / | 1 \\\n\
+ | | -------------|\n\
+ | | 1 |\n\
+ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\
+/__ | | 1 |\n\
+\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
+ | | 1|\n\
+ | | 1 + -|\n\
+ \\ | x/\
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = Integral(expr, x)
+
+ ucode_str = \
+"""\
+⌠ \n\
+⎮ ⎛ │ 1 ⎞ \n\
+⎮ ⎜ │ ─────────────⎟ \n\
+⎮ ⎜ │ 1 ⎟ \n\
+⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
+⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
+⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
+⎮ ⎜ │ 1⎟ \n\
+⎮ ⎜ │ 1 + ─⎟ \n\
+⎮ ⎝ │ x⎠ \n\
+⌡ \
+"""
+
+ ascii_str = \
+"""\
+ / \n\
+ | \n\
+ | / | 1 \\ \n\
+ | | | -------------| \n\
+ | | | 1 | \n\
+ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
+ | /__ | | 1 | dx\n\
+ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
+ | | | 1| \n\
+ | | | 1 + -| \n\
+ | \\ | x/ \n\
+ | \n\
+/ \
+"""
+
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_noncommutative():
+ A, B, C = symbols('A,B,C', commutative=False)
+
+ expr = A*B*C**-1
+ ascii_str = \
+"""\
+ -1\n\
+A*B*C \
+"""
+ ucode_str = \
+"""\
+ -1\n\
+A⋅B⋅C \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = C**-1*A*B
+ ascii_str = \
+"""\
+ -1 \n\
+C *A*B\
+"""
+ ucode_str = \
+"""\
+ -1 \n\
+C ⋅A⋅B\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A*C**-1*B
+ ascii_str = \
+"""\
+ -1 \n\
+A*C *B\
+"""
+ ucode_str = \
+"""\
+ -1 \n\
+A⋅C ⋅B\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A*C**-1*B/x
+ ascii_str = \
+"""\
+ -1 \n\
+A*C *B\n\
+-------\n\
+ x \
+"""
+ ucode_str = \
+"""\
+ -1 \n\
+A⋅C ⋅B\n\
+───────\n\
+ x \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_special_functions():
+ x, y = symbols("x y")
+
+ # atan2
+ expr = atan2(y/sqrt(200), sqrt(x))
+ ascii_str = \
+"""\
+ / ___ \\\n\
+ |\\/ 2 *y ___|\n\
+atan2|-------, \\/ x |\n\
+ \\ 20 /\
+"""
+ ucode_str = \
+"""\
+ ⎛√2⋅y ⎞\n\
+atan2⎜────, √x⎟\n\
+ ⎝ 20 ⎠\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_geometry():
+ e = Segment((0, 1), (0, 2))
+ assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
+ e = Ray((1, 1), angle=4.02*pi)
+ assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
+
+
+def test_expint():
+ expr = Ei(x)
+ string = 'Ei(x)'
+ assert pretty(expr) == string
+ assert upretty(expr) == string
+
+ expr = expint(1, z)
+ ucode_str = "E₁(z)"
+ ascii_str = "expint(1, z)"
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ assert pretty(Shi(x)) == 'Shi(x)'
+ assert pretty(Si(x)) == 'Si(x)'
+ assert pretty(Ci(x)) == 'Ci(x)'
+ assert pretty(Chi(x)) == 'Chi(x)'
+ assert upretty(Shi(x)) == 'Shi(x)'
+ assert upretty(Si(x)) == 'Si(x)'
+ assert upretty(Ci(x)) == 'Ci(x)'
+ assert upretty(Chi(x)) == 'Chi(x)'
+
+
+def test_elliptic_functions():
+ ascii_str = \
+"""\
+ / 1 \\\n\
+K|-----|\n\
+ \\z + 1/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 1 ⎞\n\
+K⎜─────⎟\n\
+ ⎝z + 1⎠\
+"""
+ expr = elliptic_k(1/(z + 1))
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ascii_str = \
+"""\
+ / | 1 \\\n\
+F|1|-----|\n\
+ \\ |z + 1/\
+"""
+ ucode_str = \
+"""\
+ ⎛ │ 1 ⎞\n\
+F⎜1│─────⎟\n\
+ ⎝ │z + 1⎠\
+"""
+ expr = elliptic_f(1, 1/(1 + z))
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ascii_str = \
+"""\
+ / 1 \\\n\
+E|-----|\n\
+ \\z + 1/\
+"""
+ ucode_str = \
+"""\
+ ⎛ 1 ⎞\n\
+E⎜─────⎟\n\
+ ⎝z + 1⎠\
+"""
+ expr = elliptic_e(1/(z + 1))
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ascii_str = \
+"""\
+ / | 1 \\\n\
+E|1|-----|\n\
+ \\ |z + 1/\
+"""
+ ucode_str = \
+"""\
+ ⎛ │ 1 ⎞\n\
+E⎜1│─────⎟\n\
+ ⎝ │z + 1⎠\
+"""
+ expr = elliptic_e(1, 1/(1 + z))
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ascii_str = \
+"""\
+ / |4\\\n\
+Pi|3|-|\n\
+ \\ |x/\
+"""
+ ucode_str = \
+"""\
+ ⎛ │4⎞\n\
+Π⎜3│─⎟\n\
+ ⎝ │x⎠\
+"""
+ expr = elliptic_pi(3, 4/x)
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ ascii_str = \
+"""\
+ / 4| \\\n\
+Pi|3; -|6|\n\
+ \\ x| /\
+"""
+ ucode_str = \
+"""\
+ ⎛ 4│ ⎞\n\
+Π⎜3; ─│6⎟\n\
+ ⎝ x│ ⎠\
+"""
+ expr = elliptic_pi(3, 4/x, 6)
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_RandomDomain():
+ from sympy.stats import Normal, Die, Exponential, pspace, where
+ X = Normal('x1', 0, 1)
+ assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞"
+
+ D = Die('d1', 6)
+ assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6'
+
+ A = Exponential('a', 1)
+ B = Exponential('b', 1)
+ assert upretty(pspace(Tuple(A, B)).domain) == \
+ 'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
+
+
+def test_PrettyPoly():
+ F = QQ.frac_field(x, y)
+ R = QQ.poly_ring(x, y)
+
+ expr = F.convert(x/(x + y))
+ assert pretty(expr) == "x/(x + y)"
+ assert upretty(expr) == "x/(x + y)"
+
+ expr = R.convert(x + y)
+ assert pretty(expr) == "x + y"
+ assert upretty(expr) == "x + y"
+
+
+def test_issue_6285():
+ assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
+ assert pretty(Pow(x, (1/pi))) == \
+ ' 1 \n'\
+ ' --\n'\
+ ' pi\n'\
+ 'x '
+
+
+def test_issue_6359():
+ assert pretty(Integral(x**2, x)**2) == \
+"""\
+ 2
+/ / \\ \n\
+| | | \n\
+| | 2 | \n\
+| | x dx| \n\
+| | | \n\
+\\/ / \
+"""
+ assert upretty(Integral(x**2, x)**2) == \
+"""\
+ 2
+⎛⌠ ⎞ \n\
+⎜⎮ 2 ⎟ \n\
+⎜⎮ x dx⎟ \n\
+⎝⌡ ⎠ \
+"""
+
+ assert pretty(Sum(x**2, (x, 0, 1))**2) == \
+"""\
+ 2
+/ 1 \\ \n\
+| ___ | \n\
+| \\ ` | \n\
+| \\ 2| \n\
+| / x | \n\
+| /__, | \n\
+\\x = 0 / \
+"""
+ assert upretty(Sum(x**2, (x, 0, 1))**2) == \
+"""\
+ 2
+⎛ 1 ⎞ \n\
+⎜ ___ ⎟ \n\
+⎜ ╲ ⎟ \n\
+⎜ ╲ 2⎟ \n\
+⎜ ╱ x ⎟ \n\
+⎜ ╱ ⎟ \n\
+⎜ ‾‾‾ ⎟ \n\
+⎝x = 0 ⎠ \
+"""
+
+ assert pretty(Product(x**2, (x, 1, 2))**2) == \
+"""\
+ 2
+/ 2 \\ \n\
+|______ | \n\
+| | | 2| \n\
+| | | x | \n\
+| | | | \n\
+\\x = 1 / \
+"""
+ assert upretty(Product(x**2, (x, 1, 2))**2) == \
+"""\
+ 2
+⎛ 2 ⎞ \n\
+⎜─┬──┬─ ⎟ \n\
+⎜ │ │ 2⎟ \n\
+⎜ │ │ x ⎟ \n\
+⎜ │ │ ⎟ \n\
+⎝x = 1 ⎠ \
+"""
+
+ f = Function('f')
+ assert pretty(Derivative(f(x), x)**2) == \
+"""\
+ 2
+/d \\ \n\
+|--(f(x))| \n\
+\\dx / \
+"""
+ assert upretty(Derivative(f(x), x)**2) == \
+"""\
+ 2
+⎛d ⎞ \n\
+⎜──(f(x))⎟ \n\
+⎝dx ⎠ \
+"""
+
+def test_issue_6739():
+ ascii_str = \
+"""\
+ 1 \n\
+-----\n\
+ ___\n\
+\\/ x \
+"""
+ ucode_str = \
+"""\
+1 \n\
+──\n\
+√x\
+"""
+ assert pretty(1/sqrt(x)) == ascii_str
+ assert upretty(1/sqrt(x)) == ucode_str
+
+
+def test_complicated_symbol_unchanged():
+ for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
+ assert pretty(Symbol(symb_name)) == symb_name
+
+
+def test_categories():
+ from sympy.categories import (Object, IdentityMorphism,
+ NamedMorphism, Category, Diagram, DiagramGrid)
+
+ A1 = Object("A1")
+ A2 = Object("A2")
+ A3 = Object("A3")
+
+ f1 = NamedMorphism(A1, A2, "f1")
+ f2 = NamedMorphism(A2, A3, "f2")
+ id_A1 = IdentityMorphism(A1)
+
+ K1 = Category("K1")
+
+ assert pretty(A1) == "A1"
+ assert upretty(A1) == "A₁"
+
+ assert pretty(f1) == "f1:A1-->A2"
+ assert upretty(f1) == "f₁:A₁——▶A₂"
+ assert pretty(id_A1) == "id:A1-->A1"
+ assert upretty(id_A1) == "id:A₁——▶A₁"
+
+ assert pretty(f2*f1) == "f2*f1:A1-->A3"
+ assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃"
+
+ assert pretty(K1) == "K1"
+ assert upretty(K1) == "K₁"
+
+ # Test how diagrams are printed.
+ d = Diagram()
+ assert pretty(d) == "EmptySet"
+ assert upretty(d) == "∅"
+
+ d = Diagram({f1: "unique", f2: S.EmptySet})
+ assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
+ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
+ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}"
+
+ assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
+ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}"
+
+ d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
+ assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
+ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
+ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \
+ " ==> {f2*f1:A1-->A3: {unique}}"
+ assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
+ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
+ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}"
+
+ grid = DiagramGrid(d)
+ assert pretty(grid) == "A1 A2\n \nA3 "
+ assert upretty(grid) == "A₁ A₂\n \nA₃ "
+
+
+def test_PrettyModules():
+ R = QQ.old_poly_ring(x, y)
+ F = R.free_module(2)
+ M = F.submodule([x, y], [1, x**2])
+
+ ucode_str = \
+"""\
+ 2\n\
+ℚ[x, y] \
+"""
+ ascii_str = \
+"""\
+ 2\n\
+QQ[x, y] \
+"""
+
+ assert upretty(F) == ucode_str
+ assert pretty(F) == ascii_str
+
+ ucode_str = \
+"""\
+╱ ⎡ 2⎤╲\n\
+╲[x, y], ⎣1, x ⎦╱\
+"""
+ ascii_str = \
+"""\
+ 2 \n\
+<[x, y], [1, x ]>\
+"""
+
+ assert upretty(M) == ucode_str
+ assert pretty(M) == ascii_str
+
+ I = R.ideal(x**2, y)
+
+ ucode_str = \
+"""\
+╱ 2 ╲\n\
+╲x , y╱\
+"""
+
+ ascii_str = \
+"""\
+ 2 \n\
+\
+"""
+
+ assert upretty(I) == ucode_str
+ assert pretty(I) == ascii_str
+
+ Q = F / M
+
+ ucode_str = \
+"""\
+ 2 \n\
+ ℚ[x, y] \n\
+─────────────────\n\
+╱ ⎡ 2⎤╲\n\
+╲[x, y], ⎣1, x ⎦╱\
+"""
+
+ ascii_str = \
+"""\
+ 2 \n\
+ QQ[x, y] \n\
+-----------------\n\
+ 2 \n\
+<[x, y], [1, x ]>\
+"""
+
+ assert upretty(Q) == ucode_str
+ assert pretty(Q) == ascii_str
+
+ ucode_str = \
+"""\
+╱⎡ 3⎤ ╲\n\
+│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
+│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
+╲⎣ 2 ⎦ ╱\
+"""
+
+ ascii_str = \
+"""\
+ 3 \n\
+ x 2 2 \n\
+<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
+ 2 \
+"""
+
+
+def test_QuotientRing():
+ R = QQ.old_poly_ring(x)/[x**2 + 1]
+
+ ucode_str = \
+"""\
+ ℚ[x] \n\
+────────\n\
+╱ 2 ╲\n\
+╲x + 1╱\
+"""
+
+ ascii_str = \
+"""\
+ QQ[x] \n\
+--------\n\
+ 2 \n\
+\
+"""
+
+ assert upretty(R) == ucode_str
+ assert pretty(R) == ascii_str
+
+ ucode_str = \
+"""\
+ ╱ 2 ╲\n\
+1 + ╲x + 1╱\
+"""
+
+ ascii_str = \
+"""\
+ 2 \n\
+1 + \
+"""
+
+ assert upretty(R.one) == ucode_str
+ assert pretty(R.one) == ascii_str
+
+
+def test_Homomorphism():
+ from sympy.polys.agca import homomorphism
+
+ R = QQ.old_poly_ring(x)
+
+ expr = homomorphism(R.free_module(1), R.free_module(1), [0])
+
+ ucode_str = \
+"""\
+ 1 1\n\
+[0] : ℚ[x] ──> ℚ[x] \
+"""
+
+ ascii_str = \
+"""\
+ 1 1\n\
+[0] : QQ[x] --> QQ[x] \
+"""
+
+ assert upretty(expr) == ucode_str
+ assert pretty(expr) == ascii_str
+
+ expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
+
+ ucode_str = \
+"""\
+⎡0 0⎤ 2 2\n\
+⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
+⎣0 0⎦ \
+"""
+
+ ascii_str = \
+"""\
+[0 0] 2 2\n\
+[ ] : QQ[x] --> QQ[x] \n\
+[0 0] \
+"""
+
+ assert upretty(expr) == ucode_str
+ assert pretty(expr) == ascii_str
+
+ expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
+
+ ucode_str = \
+"""\
+ 1\n\
+ 1 ℚ[x] \n\
+[0] : ℚ[x] ──> ─────\n\
+ <[x]>\
+"""
+
+ ascii_str = \
+"""\
+ 1\n\
+ 1 QQ[x] \n\
+[0] : QQ[x] --> ------\n\
+ <[x]> \
+"""
+
+ assert upretty(expr) == ucode_str
+ assert pretty(expr) == ascii_str
+
+
+def test_Tr():
+ A, B = symbols('A B', commutative=False)
+ t = Tr(A*B)
+ assert pretty(t) == r'Tr(A*B)'
+ assert upretty(t) == 'Tr(A⋅B)'
+
+
+def test_pretty_Add():
+ eq = Mul(-2, x - 2, evaluate=False) + 5
+ assert pretty(eq) == '5 - 2*(x - 2)'
+
+
+def test_issue_7179():
+ assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y'
+ assert upretty(Not(Implies(x, y))) == 'x ↛ y'
+
+
+def test_issue_7180():
+ assert upretty(Equivalent(x, y)) == 'x ⇔ y'
+
+
+def test_pretty_Complement():
+ assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
+ assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ'
+ assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
+ assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀'
+
+
+def test_pretty_SymmetricDifference():
+ from sympy.sets.sets import SymmetricDifference
+ assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
+ evaluate = False)) == '[2, 3] ∆ [3, 5]'
+ with raises(NotImplementedError):
+ pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
+
+
+def test_pretty_Contains():
+ assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
+ assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ'
+
+
+def test_issue_8292():
+ from sympy.core import sympify
+ e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
+ ucode_str = \
+"""\
+ 4 4 \n\
+ 2⋅(x - 1) x + x\n\
+- ────────── + ──────\n\
+ 4 x - 1 \n\
+ (x - 1) \
+"""
+ ascii_str = \
+"""\
+ 4 4 \n\
+ 2*(x - 1) x + x\n\
+- ---------- + ------\n\
+ 4 x - 1 \n\
+ (x - 1) \
+"""
+ assert pretty(e) == ascii_str
+ assert upretty(e) == ucode_str
+
+
+def test_issue_4335():
+ y = Function('y')
+ expr = -y(x).diff(x)
+ ucode_str = \
+"""\
+ d \n\
+-──(y(x))\n\
+ dx \
+"""
+ ascii_str = \
+"""\
+ d \n\
+- --(y(x))\n\
+ dx \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_issue_8344():
+ from sympy.core import sympify
+ e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
+ ucode_str = \
+"""\
+ 2 \n\
+2⋅x⋅y \n\
+────── + 1\n\
+ 2 \n\
+ 1 \
+"""
+ assert upretty(e) == ucode_str
+
+
+def test_issue_6324():
+ x = Pow(2, 3, evaluate=False)
+ y = Pow(10, -2, evaluate=False)
+ e = Mul(x, y, evaluate=False)
+ ucode_str = \
+"""\
+ 3\n\
+ 2 \n\
+───\n\
+ 2\n\
+10 \
+"""
+ assert upretty(e) == ucode_str
+
+
+def test_issue_7927():
+ e = sin(x/2)**cos(x/2)
+ ucode_str = \
+"""\
+ ⎛x⎞\n\
+ cos⎜─⎟\n\
+ ⎝2⎠\n\
+⎛ ⎛x⎞⎞ \n\
+⎜sin⎜─⎟⎟ \n\
+⎝ ⎝2⎠⎠ \
+"""
+ assert upretty(e) == ucode_str
+ e = sin(x)**(S(11)/13)
+ ucode_str = \
+"""\
+ 11\n\
+ ──\n\
+ 13\n\
+(sin(x)) \
+"""
+ assert upretty(e) == ucode_str
+
+
+def test_issue_6134():
+ from sympy.abc import lamda, t
+ phi = Function('phi')
+
+ e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
+ ucode_str = \
+"""\
+ 1 1 \n\
+ 2 ⌠ ⌠ \n\
+λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
+ ⌡ ⌡ \n\
+ 0 0 \
+"""
+ assert upretty(e) == ucode_str
+
+
+def test_issue_9877():
+ ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})'
+ a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
+ assert upretty(Union(a, Complement(b, c))) == ucode_str1
+
+ ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])'
+ d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
+ assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
+
+
+def test_issue_13651():
+ expr1 = c + Mul(-1, a + b, evaluate=False)
+ assert pretty(expr1) == 'c - (a + b)'
+ expr2 = c + Mul(-1, a - b + d, evaluate=False)
+ assert pretty(expr2) == 'c - (a - b + d)'
+
+
+def test_pretty_primenu():
+ from sympy.ntheory.factor_ import primenu
+
+ ascii_str1 = "nu(n)"
+ ucode_str1 = "ν(n)"
+
+ n = symbols('n', integer=True)
+ assert pretty(primenu(n)) == ascii_str1
+ assert upretty(primenu(n)) == ucode_str1
+
+
+def test_pretty_primeomega():
+ from sympy.ntheory.factor_ import primeomega
+
+ ascii_str1 = "Omega(n)"
+ ucode_str1 = "Ω(n)"
+
+ n = symbols('n', integer=True)
+ assert pretty(primeomega(n)) == ascii_str1
+ assert upretty(primeomega(n)) == ucode_str1
+
+
+def test_pretty_Mod():
+ from sympy.core import Mod
+
+ ascii_str1 = "x mod 7"
+ ucode_str1 = "x mod 7"
+
+ ascii_str2 = "(x + 1) mod 7"
+ ucode_str2 = "(x + 1) mod 7"
+
+ ascii_str3 = "2*x mod 7"
+ ucode_str3 = "2⋅x mod 7"
+
+ ascii_str4 = "(x mod 7) + 1"
+ ucode_str4 = "(x mod 7) + 1"
+
+ ascii_str5 = "2*(x mod 7)"
+ ucode_str5 = "2⋅(x mod 7)"
+
+ x = symbols('x', integer=True)
+ assert pretty(Mod(x, 7)) == ascii_str1
+ assert upretty(Mod(x, 7)) == ucode_str1
+ assert pretty(Mod(x + 1, 7)) == ascii_str2
+ assert upretty(Mod(x + 1, 7)) == ucode_str2
+ assert pretty(Mod(2 * x, 7)) == ascii_str3
+ assert upretty(Mod(2 * x, 7)) == ucode_str3
+ assert pretty(Mod(x, 7) + 1) == ascii_str4
+ assert upretty(Mod(x, 7) + 1) == ucode_str4
+ assert pretty(2 * Mod(x, 7)) == ascii_str5
+ assert upretty(2 * Mod(x, 7)) == ucode_str5
+
+
+def test_issue_11801():
+ assert pretty(Symbol("")) == ""
+ assert upretty(Symbol("")) == ""
+
+
+def test_pretty_UnevaluatedExpr():
+ x = symbols('x')
+ he = UnevaluatedExpr(1/x)
+
+ ucode_str = \
+"""\
+1\n\
+─\n\
+x\
+"""
+
+ assert upretty(he) == ucode_str
+
+ ucode_str = \
+"""\
+ 2\n\
+⎛1⎞ \n\
+⎜─⎟ \n\
+⎝x⎠ \
+"""
+
+ assert upretty(he**2) == ucode_str
+
+ ucode_str = \
+"""\
+ 1\n\
+1 + ─\n\
+ x\
+"""
+
+ assert upretty(he + 1) == ucode_str
+
+ ucode_str = \
+('''\
+ 1\n\
+x⋅─\n\
+ x\
+''')
+ assert upretty(x*he) == ucode_str
+
+
+def test_issue_10472():
+ M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
+
+ ucode_str = \
+"""\
+⎛⎡0 0⎤ ⎡0⎤⎞
+⎜⎢ ⎥, ⎢ ⎥⎟
+⎝⎣0 0⎦ ⎣0⎦⎠\
+"""
+ assert upretty(M) == ucode_str
+
+
+def test_MatrixElement_printing():
+ # test cases for issue #11821
+ A = MatrixSymbol("A", 1, 3)
+ B = MatrixSymbol("B", 1, 3)
+ C = MatrixSymbol("C", 1, 3)
+
+ ascii_str1 = "A_00"
+ ucode_str1 = "A₀₀"
+ assert pretty(A[0, 0]) == ascii_str1
+ assert upretty(A[0, 0]) == ucode_str1
+
+ ascii_str1 = "3*A_00"
+ ucode_str1 = "3⋅A₀₀"
+ assert pretty(3*A[0, 0]) == ascii_str1
+ assert upretty(3*A[0, 0]) == ucode_str1
+
+ ascii_str1 = "(-B + A)[0, 0]"
+ ucode_str1 = "(-B + A)[0, 0]"
+ F = C[0, 0].subs(C, A - B)
+ assert pretty(F) == ascii_str1
+ assert upretty(F) == ucode_str1
+
+
+def test_issue_12675():
+ x, y, t, j = symbols('x y t j')
+ e = CoordSys3D('e')
+
+ ucode_str = \
+"""\
+⎛ t⎞ \n\
+⎜⎛x⎞ ⎟ j_e\n\
+⎜⎜─⎟ ⎟ \n\
+⎝⎝y⎠ ⎠ \
+"""
+ assert upretty((x/y)**t*e.j) == ucode_str
+ ucode_str = \
+"""\
+⎛1⎞ \n\
+⎜─⎟ j_e\n\
+⎝y⎠ \
+"""
+ assert upretty((1/y)*e.j) == ucode_str
+
+
+def test_MatrixSymbol_printing():
+ # test cases for issue #14237
+ A = MatrixSymbol("A", 3, 3)
+ B = MatrixSymbol("B", 3, 3)
+ C = MatrixSymbol("C", 3, 3)
+ assert pretty(-A*B*C) == "-A*B*C"
+ assert pretty(A - B) == "-B + A"
+ assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
+
+ # issue #14814
+ x = MatrixSymbol('x', n, n)
+ y = MatrixSymbol('y*', n, n)
+ assert pretty(x + y) == "x + y*"
+ ascii_str = \
+"""\
+ 2 \n\
+-2*y* -a*x\
+"""
+ assert pretty(-a*x + -2*y*y) == ascii_str
+
+
+def test_degree_printing():
+ expr1 = 90*degree
+ assert pretty(expr1) == '90°'
+ expr2 = x*degree
+ assert pretty(expr2) == 'x°'
+ expr3 = cos(x*degree + 90*degree)
+ assert pretty(expr3) == 'cos(x° + 90°)'
+
+
+def test_vector_expr_pretty_printing():
+ A = CoordSys3D('A')
+
+ assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)"
+ assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)'
+
+ assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)"
+
+ assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)"
+
+ assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)"
+
+ assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)"
+ assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)"
+ # TODO: add support for ASCII pretty.
+
+
+def test_pretty_print_tensor_expr():
+ L = TensorIndexType("L")
+ i, j, k = tensor_indices("i j k", L)
+ i0 = tensor_indices("i_0", L)
+ A, B, C, D = tensor_heads("A B C D", [L])
+ H = TensorHead("H", [L, L])
+
+ expr = -i
+ ascii_str = \
+"""\
+-i\
+"""
+ ucode_str = \
+"""\
+-i\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(i)
+ ascii_str = \
+"""\
+ i\n\
+A \n\
+ \
+"""
+ ucode_str = \
+"""\
+ i\n\
+A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(i0)
+ ascii_str = \
+"""\
+ i_0\n\
+A \n\
+ \
+"""
+ ucode_str = \
+"""\
+ i₀\n\
+A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(-i)
+ ascii_str = \
+"""\
+ \n\
+A \n\
+ i\
+"""
+ ucode_str = \
+"""\
+ \n\
+A \n\
+ i\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = -3*A(-i)
+ ascii_str = \
+"""\
+ \n\
+-3*A \n\
+ i\
+"""
+ ucode_str = \
+"""\
+ \n\
+-3⋅A \n\
+ i\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = H(i, -j)
+ ascii_str = \
+"""\
+ i \n\
+H \n\
+ j\
+"""
+ ucode_str = \
+"""\
+ i \n\
+H \n\
+ j\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = H(i, -i)
+ ascii_str = \
+"""\
+ L_0 \n\
+H \n\
+ L_0\
+"""
+ ucode_str = \
+"""\
+ L₀ \n\
+H \n\
+ L₀\
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = H(i, -j)*A(j)*B(k)
+ ascii_str = \
+"""\
+ i L_0 k\n\
+H *A *B \n\
+ L_0 \
+"""
+ ucode_str = \
+"""\
+ i L₀ k\n\
+H ⋅A ⋅B \n\
+ L₀ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (1+x)*A(i)
+ ascii_str = \
+"""\
+ i\n\
+(x + 1)*A \n\
+ \
+"""
+ ucode_str = \
+"""\
+ i\n\
+(x + 1)⋅A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(i) + 3*B(i)
+ ascii_str = \
+"""\
+ i i\n\
+3*B + A \n\
+ \
+"""
+ ucode_str = \
+"""\
+ i i\n\
+3⋅B + A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_pretty_print_tensor_partial_deriv():
+ from sympy.tensor.toperators import PartialDerivative
+
+ L = TensorIndexType("L")
+ i, j, k = tensor_indices("i j k", L)
+
+ A, B, C, D = tensor_heads("A B C D", [L])
+
+ H = TensorHead("H", [L, L])
+
+ expr = PartialDerivative(A(i), A(j))
+ ascii_str = \
+"""\
+ d / i\\\n\
+---|A |\n\
+ j\\ /\n\
+dA \n\
+ \
+"""
+ ucode_str = \
+"""\
+ ∂ ⎛ i⎞\n\
+───⎜A ⎟\n\
+ j⎝ ⎠\n\
+∂A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(i)*PartialDerivative(H(k, -i), A(j))
+ ascii_str = \
+"""\
+ L_0 d / k \\\n\
+A *---|H |\n\
+ j\\ L_0/\n\
+ dA \n\
+ \
+"""
+ ucode_str = \
+"""\
+ L₀ ∂ ⎛ k ⎞\n\
+A ⋅───⎜H ⎟\n\
+ j⎝ L₀⎠\n\
+ ∂A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
+ ascii_str = \
+"""\
+ L_0 d / k k \\\n\
+A *---|3*H + B *C |\n\
+ j\\ L_0 L_0/\n\
+ dA \n\
+ \
+"""
+ ucode_str = \
+"""\
+ L₀ ∂ ⎛ k k ⎞\n\
+A ⋅───⎜3⋅H + B ⋅C ⎟\n\
+ j⎝ L₀ L₀⎠\n\
+ ∂A \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (A(i) + B(i))*PartialDerivative(C(j), D(j))
+ ascii_str = \
+"""\
+/ i i\\ d / L_0\\\n\
+|A + B |*-----|C |\n\
+\\ / L_0\\ /\n\
+ dD \n\
+ \
+"""
+ ucode_str = \
+"""\
+⎛ i i⎞ ∂ ⎛ L₀⎞\n\
+⎜A + B ⎟⋅────⎜C ⎟\n\
+⎝ ⎠ L₀⎝ ⎠\n\
+ ∂D \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
+ ascii_str = \
+"""\
+/ L_0 L_0\\ d / \\\n\
+|A + B |*---|C |\n\
+\\ / j\\ L_0/\n\
+ dD \n\
+ \
+"""
+ ucode_str = \
+"""\
+⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
+⎜A + B ⎟⋅───⎜C ⎟\n\
+⎝ ⎠ j⎝ L₀⎠\n\
+ ∂D \n\
+ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
+ ucode_str = """\
+ 2 \n\
+ ∂ ⎛ ⎞\n\
+───────⎜A + B ⎟\n\
+ ⎝ i i⎠\n\
+∂A ∂A \n\
+ n j \
+"""
+ assert upretty(expr) == ucode_str
+
+ expr = PartialDerivative(3*A(-i), A(-j), A(-n))
+ ucode_str = """\
+ 2 \n\
+ ∂ ⎛ ⎞\n\
+───────⎜3⋅A ⎟\n\
+ ⎝ i⎠\n\
+∂A ∂A \n\
+ n j \
+"""
+ assert upretty(expr) == ucode_str
+
+ expr = TensorElement(H(i, j), {i:1})
+ ascii_str = \
+"""\
+ i=1,j\n\
+H \n\
+ \
+"""
+ ucode_str = ascii_str
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = TensorElement(H(i, j), {i: 1, j: 1})
+ ascii_str = \
+"""\
+ i=1,j=1\n\
+H \n\
+ \
+"""
+ ucode_str = ascii_str
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = TensorElement(H(i, j), {j: 1})
+ ascii_str = \
+"""\
+ i,j=1\n\
+H \n\
+ \
+"""
+ ucode_str = ascii_str
+
+ expr = TensorElement(H(-i, j), {-i: 1})
+ ascii_str = \
+"""\
+ j\n\
+H \n\
+ i=1 \
+"""
+ ucode_str = ascii_str
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_issue_15560():
+ a = MatrixSymbol('a', 1, 1)
+ e = pretty(a*(KroneckerProduct(a, a)))
+ result = 'a*(a x a)'
+ assert e == result
+
+
+def test_print_lerchphi():
+ # Part of issue 6013
+ a = Symbol('a')
+ pretty(lerchphi(a, 1, 2))
+ uresult = 'Φ(a, 1, 2)'
+ aresult = 'lerchphi(a, 1, 2)'
+ assert pretty(lerchphi(a, 1, 2)) == aresult
+ assert upretty(lerchphi(a, 1, 2)) == uresult
+
+def test_issue_15583():
+
+ N = mechanics.ReferenceFrame('N')
+ result = '(n_x, n_y, n_z)'
+ e = pretty((N.x, N.y, N.z))
+ assert e == result
+
+
+def test_matrixSymbolBold():
+ # Issue 15871
+ def boldpretty(expr):
+ return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
+
+ from sympy.matrices.expressions.trace import trace
+ A = MatrixSymbol("A", 2, 2)
+ assert boldpretty(trace(A)) == 'tr(𝐀)'
+
+ A = MatrixSymbol("A", 3, 3)
+ B = MatrixSymbol("B", 3, 3)
+ C = MatrixSymbol("C", 3, 3)
+
+ assert boldpretty(-A) == '-𝐀'
+ assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀'
+ assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
+
+ A = MatrixSymbol("Addot", 3, 3)
+ assert boldpretty(A) == '𝐀̈'
+ omega = MatrixSymbol("omega", 3, 3)
+ assert boldpretty(omega) == 'ω'
+ omega = MatrixSymbol("omeganorm", 3, 3)
+ assert boldpretty(omega) == '‖ω‖'
+
+ a = Symbol('alpha')
+ b = Symbol('b')
+ c = MatrixSymbol("c", 3, 1)
+ d = MatrixSymbol("d", 3, 1)
+
+ assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜'
+
+ d = MatrixSymbol("delta", 3, 1)
+ B = MatrixSymbol("Beta", 3, 3)
+
+ assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜'
+
+ A = MatrixSymbol("A_2", 3, 3)
+ assert boldpretty(A) == '𝐀₂'
+
+
+def test_center_accent():
+ assert center_accent('a', '\N{COMBINING TILDE}') == 'ã'
+ assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã'
+ assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa'
+ assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa'
+ assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa'
+ assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg'
+
+
+def test_imaginary_unit():
+ from sympy.printing.pretty import pretty # b/c it was redefined above
+ assert pretty(1 + I, use_unicode=False) == '1 + I'
+ assert pretty(1 + I, use_unicode=True) == '1 + ⅈ'
+ assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
+ assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ'
+
+ raises(TypeError, lambda: pretty(I, imaginary_unit=I))
+ raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
+
+
+def test_str_special_matrices():
+ from sympy.matrices import Identity, ZeroMatrix, OneMatrix
+ assert pretty(Identity(4)) == 'I'
+ assert upretty(Identity(4)) == '𝕀'
+ assert pretty(ZeroMatrix(2, 2)) == '0'
+ assert upretty(ZeroMatrix(2, 2)) == '𝟘'
+ assert pretty(OneMatrix(2, 2)) == '1'
+ assert upretty(OneMatrix(2, 2)) == '𝟙'
+
+
+def test_pretty_misc_functions():
+ assert pretty(LambertW(x)) == 'W(x)'
+ assert upretty(LambertW(x)) == 'W(x)'
+ assert pretty(LambertW(x, y)) == 'W(x, y)'
+ assert upretty(LambertW(x, y)) == 'W(x, y)'
+ assert pretty(airyai(x)) == 'Ai(x)'
+ assert upretty(airyai(x)) == 'Ai(x)'
+ assert pretty(airybi(x)) == 'Bi(x)'
+ assert upretty(airybi(x)) == 'Bi(x)'
+ assert pretty(airyaiprime(x)) == "Ai'(x)"
+ assert upretty(airyaiprime(x)) == "Ai'(x)"
+ assert pretty(airybiprime(x)) == "Bi'(x)"
+ assert upretty(airybiprime(x)) == "Bi'(x)"
+ assert pretty(fresnelc(x)) == 'C(x)'
+ assert upretty(fresnelc(x)) == 'C(x)'
+ assert pretty(fresnels(x)) == 'S(x)'
+ assert upretty(fresnels(x)) == 'S(x)'
+ assert pretty(Heaviside(x)) == 'Heaviside(x)'
+ assert upretty(Heaviside(x)) == 'θ(x)'
+ assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
+ assert upretty(Heaviside(x, y)) == 'θ(x, y)'
+ assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
+ assert upretty(dirichlet_eta(x)) == 'η(x)'
+
+
+def test_hadamard_power():
+ m, n, p = symbols('m, n, p', integer=True)
+ A = MatrixSymbol('A', m, n)
+ B = MatrixSymbol('B', m, n)
+
+ # Testing printer:
+ expr = hadamard_power(A, n)
+ ascii_str = \
+"""\
+ .n\n\
+A \
+"""
+ ucode_str = \
+"""\
+ ∘n\n\
+A \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hadamard_power(A, 1+n)
+ ascii_str = \
+"""\
+ .(n + 1)\n\
+A \
+"""
+ ucode_str = \
+"""\
+ ∘(n + 1)\n\
+A \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+ expr = hadamard_power(A*B.T, 1+n)
+ ascii_str = \
+"""\
+ .(n + 1)\n\
+/ T\\ \n\
+\\A*B / \
+"""
+ ucode_str = \
+"""\
+ ∘(n + 1)\n\
+⎛ T⎞ \n\
+⎝A⋅B ⎠ \
+"""
+ assert pretty(expr) == ascii_str
+ assert upretty(expr) == ucode_str
+
+
+def test_issue_17258():
+ n = Symbol('n', integer=True)
+ assert pretty(Sum(n, (n, -oo, 1))) == \
+ ' 1 \n'\
+ ' __ \n'\
+ ' \\ ` \n'\
+ ' ) n\n'\
+ ' /_, \n'\
+ 'n = -oo '
+
+ assert upretty(Sum(n, (n, -oo, 1))) == \
+"""\
+ 1 \n\
+ ___ \n\
+ ╲ \n\
+ ╲ \n\
+ ╱ n\n\
+ ╱ \n\
+ ‾‾‾ \n\
+n = -∞ \
+"""
+
+def test_is_combining():
+ line = "v̇_m"
+ assert [is_combining(sym) for sym in line] == \
+ [False, True, False, False]
+
+
+def test_issue_17616():
+ assert pretty(pi**(1/exp(1))) == \
+ ' / -1\\\n'\
+ ' \\e /\n'\
+ 'pi '
+
+ assert upretty(pi**(1/exp(1))) == \
+ ' ⎛ -1⎞\n'\
+ ' ⎝ℯ ⎠\n'\
+ 'π '
+
+ assert pretty(pi**(1/pi)) == \
+ ' 1 \n'\
+ ' --\n'\
+ ' pi\n'\
+ 'pi '
+
+ assert upretty(pi**(1/pi)) == \
+ ' 1\n'\
+ ' ─\n'\
+ ' π\n'\
+ 'π '
+
+ assert pretty(pi**(1/EulerGamma)) == \
+ ' 1 \n'\
+ ' ----------\n'\
+ ' EulerGamma\n'\
+ 'pi '
+
+ assert upretty(pi**(1/EulerGamma)) == \
+ ' 1\n'\
+ ' ─\n'\
+ ' γ\n'\
+ 'π '
+
+ z = Symbol("x_17")
+ assert upretty(7**(1/z)) == \
+ 'x₁₇___\n'\
+ ' ╲╱ 7 '
+
+ assert pretty(7**(1/z)) == \
+ 'x_17___\n'\
+ ' \\/ 7 '
+
+
+def test_issue_17857():
+ assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}'
+ assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
+
+
+def test_issue_18272():
+ x = Symbol('x')
+ n = Symbol('n')
+
+ assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \
+ '⎧ │ ⎛ x ⎞⎫\n'\
+ '⎨x │ x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\
+ '⎩ │ ⎭'
+ assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \
+ '⎧ │ ⎧-n n⎫ ⎛n ⎞⎫\n'\
+ '⎨x │ x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\
+ '⎩ │ ⎩ 2 2⎭ ⎝2 ⎠⎭'
+ assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1),
+ (x/2, True)) - 1/2, 0), Interval(0, 3))) == \
+ '⎧ │ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\
+ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪x ⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪2 ⎟ ⎟⎪\n'\
+ '⎨x │ x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\
+ '⎪ │ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪ x ⎟ ⎟⎪\n'\
+ '⎪ │ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\
+ '⎩ │ ⎝⎝⎩ 2 ⎠ ⎠⎭'
+
+def test_Str():
+ from sympy.core.symbol import Str
+ assert pretty(Str('x')) == 'x'
+
+
+def test_symbolic_probability():
+ mu = symbols("mu")
+ sigma = symbols("sigma", positive=True)
+ X = Normal("X", mu, sigma)
+ assert pretty(Expectation(X)) == r'E[X]'
+ assert pretty(Variance(X)) == r'Var(X)'
+ assert pretty(Probability(X > 0)) == r'P(X > 0)'
+ Y = Normal("Y", mu, sigma)
+ assert pretty(Covariance(X, Y)) == 'Cov(X, Y)'
+
+
+def test_issue_21758():
+ from sympy.functions.elementary.piecewise import piecewise_fold
+ from sympy.series.fourier import FourierSeries
+ x = Symbol('x')
+ k, n = symbols('k n')
+ fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(
+ Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)),
+ (0, True))*sin(n*x)/pi, (n, 1, oo))))
+ assert upretty(piecewise_fold(fo)) == \
+ '⎧ 2⋅sin(3⋅x) \n'\
+ '⎪2⋅sin(x) - sin(2⋅x) + ────────── + … for n > -∞ ∧ n < ∞ ∧ n ≠ 0\n'\
+ '⎨ 3 \n'\
+ '⎪ \n'\
+ '⎩ 0 otherwise '
+ assert pretty(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)),
+ SeqFormula(0, (n, 1, oo))))) == '0'
+
+
+def test_diffgeom():
+ from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
+ x,y = symbols('x y', real=True)
+ m = Manifold('M', 2)
+ assert pretty(m) == 'M'
+ p = Patch('P', m)
+ assert pretty(p) == "P"
+ rect = CoordSystem('rect', p, [x, y])
+ assert pretty(rect) == "rect"
+ b = BaseScalarField(rect, 0)
+ assert pretty(b) == "x"
+
+def test_deprecated_prettyForm():
+ with warns_deprecated_sympy():
+ from sympy.printing.pretty.pretty_symbology import xstr
+ assert xstr(1) == '1'
+
+ with warns_deprecated_sympy():
+ from sympy.printing.pretty.stringpict import prettyForm
+ p = prettyForm('s', unicode='s')
+
+ with warns_deprecated_sympy():
+ assert p.unicode == p.s == 's'
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b909c0b5ef03b1e1e76dfbf4288f61860575da7
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__init__.py
@@ -0,0 +1,36 @@
+from .sets import (Set, Interval, Union, FiniteSet, ProductSet,
+ Intersection, imageset, Complement, SymmetricDifference,
+ DisjointUnion)
+
+from .fancysets import ImageSet, Range, ComplexRegion
+from .contains import Contains
+from .conditionset import ConditionSet
+from .ordinals import Ordinal, OmegaPower, ord0
+from .powerset import PowerSet
+from ..core.singleton import S
+from .handlers.comparison import _eval_is_eq # noqa:F401
+Complexes = S.Complexes
+EmptySet = S.EmptySet
+Integers = S.Integers
+Naturals = S.Naturals
+Naturals0 = S.Naturals0
+Rationals = S.Rationals
+Reals = S.Reals
+UniversalSet = S.UniversalSet
+
+__all__ = [
+ 'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
+ 'Intersection', 'imageset', 'Complement', 'SymmetricDifference', 'DisjointUnion',
+
+ 'ImageSet', 'Range', 'ComplexRegion', 'Reals',
+
+ 'Contains',
+
+ 'ConditionSet',
+
+ 'Ordinal', 'OmegaPower', 'ord0',
+
+ 'PowerSet',
+
+ 'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
+]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..29b7691ea7e6b741b98253f6e57188070a800470
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..503ca8c1adea64a12feceb9d579970a7d6c7f5a2
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dbe440ac8730220277a0adebeb1a781d9f8e86b7
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..699ba520b8b4cd8de3ba869b106a326eaa7f6f18
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/conditionset.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/conditionset.py
new file mode 100644
index 0000000000000000000000000000000000000000..97c80f0d05ae5ba9c70cb246f7056e07bc03b349
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/conditionset.py
@@ -0,0 +1,246 @@
+from sympy.core.singleton import S
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple
+from sympy.core.function import Lambda, BadSignatureError
+from sympy.core.logic import fuzzy_bool
+from sympy.core.relational import Eq
+from sympy.core.symbol import Dummy
+from sympy.core.sympify import _sympify
+from sympy.logic.boolalg import And, as_Boolean
+from sympy.utilities.iterables import sift, flatten, has_dups
+from sympy.utilities.exceptions import sympy_deprecation_warning
+from .contains import Contains
+from .sets import Set, Union, FiniteSet, SetKind
+
+
+adummy = Dummy('conditionset')
+
+
+class ConditionSet(Set):
+ r"""
+ Set of elements which satisfies a given condition.
+
+ .. math:: \{x \mid \textrm{condition}(x) = \texttt{True}, x \in S\}
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
+ >>> from sympy.abc import x, y, z
+
+ >>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
+ >>> 2*pi in sin_sols
+ True
+ >>> pi/2 in sin_sols
+ False
+ >>> 3*pi in sin_sols
+ False
+ >>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
+ True
+
+ If the value is not in the base set, the result is false:
+
+ >>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
+ False
+
+ Notes
+ =====
+
+ Symbols with assumptions should be avoided or else the
+ condition may evaluate without consideration of the set:
+
+ >>> n = Symbol('n', negative=True)
+ >>> cond = (n > 0); cond
+ False
+ >>> ConditionSet(n, cond, S.Integers)
+ EmptySet
+
+ Only free symbols can be changed by using `subs`:
+
+ >>> c = ConditionSet(x, x < 1, {x, z})
+ >>> c.subs(x, y)
+ ConditionSet(x, x < 1, {y, z})
+
+ To check if ``pi`` is in ``c`` use:
+
+ >>> pi in c
+ False
+
+ If no base set is specified, the universal set is implied:
+
+ >>> ConditionSet(x, x < 1).base_set
+ UniversalSet
+
+ Only symbols or symbol-like expressions can be used:
+
+ >>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
+ Traceback (most recent call last):
+ ...
+ ValueError: non-symbol dummy not recognized in condition
+
+ When the base set is a ConditionSet, the symbols will be
+ unified if possible with preference for the outermost symbols:
+
+ >>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
+ ConditionSet(x, (x < y) & (x + y < 2), Integers)
+
+ """
+ def __new__(cls, sym, condition, base_set=S.UniversalSet):
+ sym = _sympify(sym)
+ flat = flatten([sym])
+ if has_dups(flat):
+ raise BadSignatureError("Duplicate symbols detected")
+ base_set = _sympify(base_set)
+ if not isinstance(base_set, Set):
+ raise TypeError(
+ 'base set should be a Set object, not %s' % base_set)
+ condition = _sympify(condition)
+
+ if isinstance(condition, FiniteSet):
+ condition_orig = condition
+ temp = (Eq(lhs, 0) for lhs in condition)
+ condition = And(*temp)
+ sympy_deprecation_warning(
+ f"""
+Using a set for the condition in ConditionSet is deprecated. Use a boolean
+instead.
+
+In this case, replace
+
+ {condition_orig}
+
+with
+
+ {condition}
+""",
+ deprecated_since_version='1.5',
+ active_deprecations_target="deprecated-conditionset-set",
+ )
+
+ condition = as_Boolean(condition)
+
+ if condition is S.true:
+ return base_set
+
+ if condition is S.false:
+ return S.EmptySet
+
+ if base_set is S.EmptySet:
+ return S.EmptySet
+
+ # no simple answers, so now check syms
+ for i in flat:
+ if not getattr(i, '_diff_wrt', False):
+ raise ValueError('`%s` is not symbol-like' % i)
+
+ if base_set.contains(sym) is S.false:
+ raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
+
+ know = None
+ if isinstance(base_set, FiniteSet):
+ sifted = sift(
+ base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
+ if sifted[None]:
+ know = FiniteSet(*sifted[True])
+ base_set = FiniteSet(*sifted[None])
+ else:
+ return FiniteSet(*sifted[True])
+
+ if isinstance(base_set, cls):
+ s, c, b = base_set.args
+ def sig(s):
+ return cls(s, Eq(adummy, 0)).as_dummy().sym
+ sa, sb = map(sig, (sym, s))
+ if sa != sb:
+ raise BadSignatureError('sym does not match sym of base set')
+ reps = dict(zip(flatten([sym]), flatten([s])))
+ if s == sym:
+ condition = And(condition, c)
+ base_set = b
+ elif not c.free_symbols & sym.free_symbols:
+ reps = {v: k for k, v in reps.items()}
+ condition = And(condition, c.xreplace(reps))
+ base_set = b
+ elif not condition.free_symbols & s.free_symbols:
+ sym = sym.xreplace(reps)
+ condition = And(condition.xreplace(reps), c)
+ base_set = b
+
+ # flatten ConditionSet(Contains(ConditionSet())) expressions
+ if isinstance(condition, Contains) and (sym == condition.args[0]):
+ if isinstance(condition.args[1], Set):
+ return condition.args[1].intersect(base_set)
+
+ rv = Basic.__new__(cls, sym, condition, base_set)
+ return rv if know is None else Union(know, rv)
+
+ sym = property(lambda self: self.args[0])
+ condition = property(lambda self: self.args[1])
+ base_set = property(lambda self: self.args[2])
+
+ @property
+ def free_symbols(self):
+ cond_syms = self.condition.free_symbols - self.sym.free_symbols
+ return cond_syms | self.base_set.free_symbols
+
+ @property
+ def bound_symbols(self):
+ return flatten([self.sym])
+
+ def _contains(self, other):
+ def ok_sig(a, b):
+ tuples = [isinstance(i, Tuple) for i in (a, b)]
+ c = tuples.count(True)
+ if c == 1:
+ return False
+ if c == 0:
+ return True
+ return len(a) == len(b) and all(
+ ok_sig(i, j) for i, j in zip(a, b))
+ if not ok_sig(self.sym, other):
+ return S.false
+
+ # try doing base_cond first and return
+ # False immediately if it is False
+ base_cond = Contains(other, self.base_set)
+ if base_cond is S.false:
+ return S.false
+
+ # Substitute other into condition. This could raise e.g. for
+ # ConditionSet(x, 1/x >= 0, Reals).contains(0)
+ lamda = Lambda((self.sym,), self.condition)
+ try:
+ lambda_cond = lamda(other)
+ except TypeError:
+ return Contains(other, self, evaluate=False)
+ else:
+ return And(base_cond, lambda_cond)
+
+ def as_relational(self, other):
+ f = Lambda(self.sym, self.condition)
+ if isinstance(self.sym, Tuple):
+ f = f(*other)
+ else:
+ f = f(other)
+ return And(f, self.base_set.contains(other))
+
+ def _eval_subs(self, old, new):
+ sym, cond, base = self.args
+ dsym = sym.subs(old, adummy)
+ insym = dsym.has(adummy)
+ # prioritize changing a symbol in the base
+ newbase = base.subs(old, new)
+ if newbase != base:
+ if not insym:
+ cond = cond.subs(old, new)
+ return self.func(sym, cond, newbase)
+ if insym:
+ pass # no change of bound symbols via subs
+ elif getattr(new, '_diff_wrt', False):
+ cond = cond.subs(old, new)
+ else:
+ pass # let error about the symbol raise from __new__
+ return self.func(sym, cond, base)
+
+ def _kind(self):
+ return SetKind(self.sym.kind)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/contains.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/contains.py
new file mode 100644
index 0000000000000000000000000000000000000000..997a4d8e16853a49f65021bfd4da3d6cbca321b1
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/contains.py
@@ -0,0 +1,48 @@
+from sympy.core import S
+from sympy.core.relational import Eq, Ne
+from sympy.logic.boolalg import BooleanFunction
+from sympy.utilities.misc import func_name
+from .sets import Set
+
+
+class Contains(BooleanFunction):
+ """
+ Asserts that x is an element of the set S.
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol, Integer, S, Contains
+ >>> Contains(Integer(2), S.Integers)
+ True
+ >>> Contains(Integer(-2), S.Naturals)
+ False
+ >>> i = Symbol('i', integer=True)
+ >>> Contains(i, S.Naturals)
+ Contains(i, Naturals)
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
+ """
+ @classmethod
+ def eval(cls, x, s):
+
+ if not isinstance(s, Set):
+ raise TypeError('expecting Set, not %s' % func_name(s))
+
+ ret = s.contains(x)
+ if not isinstance(ret, Contains) and (
+ ret in (S.true, S.false) or isinstance(ret, Set)):
+ return ret
+
+ @property
+ def binary_symbols(self):
+ return set().union(*[i.binary_symbols
+ for i in self.args[1].args
+ if i.is_Boolean or i.is_Symbol or
+ isinstance(i, (Eq, Ne))])
+
+ def as_set(self):
+ return self.args[1]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/fancysets.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/fancysets.py
new file mode 100644
index 0000000000000000000000000000000000000000..c542337943439467e73bd145719878c9279a9ffc
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/fancysets.py
@@ -0,0 +1,1521 @@
+from functools import reduce
+from itertools import product
+
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple
+from sympy.core.expr import Expr
+from sympy.core.function import Lambda
+from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
+from sympy.core.mod import Mod
+from sympy.core.numbers import oo, igcd, Rational
+from sympy.core.relational import Eq, is_eq
+from sympy.core.kind import NumberKind
+from sympy.core.singleton import Singleton, S
+from sympy.core.symbol import Dummy, symbols, Symbol
+from sympy.core.sympify import _sympify, sympify, _sympy_converter
+from sympy.functions.elementary.integers import ceiling, floor
+from sympy.functions.elementary.trigonometric import sin, cos
+from sympy.logic.boolalg import And, Or
+from .sets import Set, Interval, Union, FiniteSet, ProductSet, SetKind
+from sympy.utilities.misc import filldedent
+
+
+class Rationals(Set, metaclass=Singleton):
+ """
+ Represents the rational numbers. This set is also available as
+ the singleton ``S.Rationals``.
+
+ Examples
+ ========
+
+ >>> from sympy import S
+ >>> S.Half in S.Rationals
+ True
+ >>> iterable = iter(S.Rationals)
+ >>> [next(iterable) for i in range(12)]
+ [0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
+ """
+
+ is_iterable = True
+ _inf = S.NegativeInfinity
+ _sup = S.Infinity
+ is_empty = False
+ is_finite_set = False
+
+ def _contains(self, other):
+ if not isinstance(other, Expr):
+ return False
+ return other.is_rational
+
+ def __iter__(self):
+ yield S.Zero
+ yield S.One
+ yield S.NegativeOne
+ d = 2
+ while True:
+ for n in range(d):
+ if igcd(n, d) == 1:
+ yield Rational(n, d)
+ yield Rational(d, n)
+ yield Rational(-n, d)
+ yield Rational(-d, n)
+ d += 1
+
+ @property
+ def _boundary(self):
+ return S.Reals
+
+ def _kind(self):
+ return SetKind(NumberKind)
+
+
+class Naturals(Set, metaclass=Singleton):
+ """
+ Represents the natural numbers (or counting numbers) which are all
+ positive integers starting from 1. This set is also available as
+ the singleton ``S.Naturals``.
+
+ Examples
+ ========
+
+ >>> from sympy import S, Interval, pprint
+ >>> 5 in S.Naturals
+ True
+ >>> iterable = iter(S.Naturals)
+ >>> next(iterable)
+ 1
+ >>> next(iterable)
+ 2
+ >>> next(iterable)
+ 3
+ >>> pprint(S.Naturals.intersect(Interval(0, 10)))
+ {1, 2, ..., 10}
+
+ See Also
+ ========
+
+ Naturals0 : non-negative integers (i.e. includes 0, too)
+ Integers : also includes negative integers
+ """
+
+ is_iterable = True
+ _inf = S.One
+ _sup = S.Infinity
+ is_empty = False
+ is_finite_set = False
+
+ def _contains(self, other):
+ if not isinstance(other, Expr):
+ return False
+ elif other.is_positive and other.is_integer:
+ return True
+ elif other.is_integer is False or other.is_positive is False:
+ return False
+
+ def _eval_is_subset(self, other):
+ return Range(1, oo).is_subset(other)
+
+ def _eval_is_superset(self, other):
+ return Range(1, oo).is_superset(other)
+
+ def __iter__(self):
+ i = self._inf
+ while True:
+ yield i
+ i = i + 1
+
+ @property
+ def _boundary(self):
+ return self
+
+ def as_relational(self, x):
+ return And(Eq(floor(x), x), x >= self.inf, x < oo)
+
+ def _kind(self):
+ return SetKind(NumberKind)
+
+
+class Naturals0(Naturals):
+ """Represents the whole numbers which are all the non-negative integers,
+ inclusive of zero.
+
+ See Also
+ ========
+
+ Naturals : positive integers; does not include 0
+ Integers : also includes the negative integers
+ """
+ _inf = S.Zero
+
+ def _contains(self, other):
+ if not isinstance(other, Expr):
+ return S.false
+ elif other.is_integer and other.is_nonnegative:
+ return S.true
+ elif other.is_integer is False or other.is_nonnegative is False:
+ return S.false
+
+ def _eval_is_subset(self, other):
+ return Range(oo).is_subset(other)
+
+ def _eval_is_superset(self, other):
+ return Range(oo).is_superset(other)
+
+
+class Integers(Set, metaclass=Singleton):
+ """
+ Represents all integers: positive, negative and zero. This set is also
+ available as the singleton ``S.Integers``.
+
+ Examples
+ ========
+
+ >>> from sympy import S, Interval, pprint
+ >>> 5 in S.Naturals
+ True
+ >>> iterable = iter(S.Integers)
+ >>> next(iterable)
+ 0
+ >>> next(iterable)
+ 1
+ >>> next(iterable)
+ -1
+ >>> next(iterable)
+ 2
+
+ >>> pprint(S.Integers.intersect(Interval(-4, 4)))
+ {-4, -3, ..., 4}
+
+ See Also
+ ========
+
+ Naturals0 : non-negative integers
+ Integers : positive and negative integers and zero
+ """
+
+ is_iterable = True
+ is_empty = False
+ is_finite_set = False
+
+ def _contains(self, other):
+ if not isinstance(other, Expr):
+ return S.false
+ return other.is_integer
+
+ def __iter__(self):
+ yield S.Zero
+ i = S.One
+ while True:
+ yield i
+ yield -i
+ i = i + 1
+
+ @property
+ def _inf(self):
+ return S.NegativeInfinity
+
+ @property
+ def _sup(self):
+ return S.Infinity
+
+ @property
+ def _boundary(self):
+ return self
+
+ def _kind(self):
+ return SetKind(NumberKind)
+
+ def as_relational(self, x):
+ return And(Eq(floor(x), x), -oo < x, x < oo)
+
+ def _eval_is_subset(self, other):
+ return Range(-oo, oo).is_subset(other)
+
+ def _eval_is_superset(self, other):
+ return Range(-oo, oo).is_superset(other)
+
+
+class Reals(Interval, metaclass=Singleton):
+ """
+ Represents all real numbers
+ from negative infinity to positive infinity,
+ including all integer, rational and irrational numbers.
+ This set is also available as the singleton ``S.Reals``.
+
+
+ Examples
+ ========
+
+ >>> from sympy import S, Rational, pi, I
+ >>> 5 in S.Reals
+ True
+ >>> Rational(-1, 2) in S.Reals
+ True
+ >>> pi in S.Reals
+ True
+ >>> 3*I in S.Reals
+ False
+ >>> S.Reals.contains(pi)
+ True
+
+
+ See Also
+ ========
+
+ ComplexRegion
+ """
+ @property
+ def start(self):
+ return S.NegativeInfinity
+
+ @property
+ def end(self):
+ return S.Infinity
+
+ @property
+ def left_open(self):
+ return True
+
+ @property
+ def right_open(self):
+ return True
+
+ def __eq__(self, other):
+ return other == Interval(S.NegativeInfinity, S.Infinity)
+
+ def __hash__(self):
+ return hash(Interval(S.NegativeInfinity, S.Infinity))
+
+
+class ImageSet(Set):
+ """
+ Image of a set under a mathematical function. The transformation
+ must be given as a Lambda function which has as many arguments
+ as the elements of the set upon which it operates, e.g. 1 argument
+ when acting on the set of integers or 2 arguments when acting on
+ a complex region.
+
+ This function is not normally called directly, but is called
+ from ``imageset``.
+
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol, S, pi, Dummy, Lambda
+ >>> from sympy import FiniteSet, ImageSet, Interval
+
+ >>> x = Symbol('x')
+ >>> N = S.Naturals
+ >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
+ >>> 4 in squares
+ True
+ >>> 5 in squares
+ False
+
+ >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
+ {1, 4, 9}
+
+ >>> square_iterable = iter(squares)
+ >>> for i in range(4):
+ ... next(square_iterable)
+ 1
+ 4
+ 9
+ 16
+
+ If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
+ `x` value is in ``base_set`` or not before passing it as args)
+
+ >>> squares.lamda(2)
+ 4
+ >>> squares.lamda(S(1)/2)
+ 1/4
+
+ >>> n = Dummy('n')
+ >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
+ >>> dom = Interval(-1, 1)
+ >>> dom.intersect(solutions)
+ {0}
+
+ See Also
+ ========
+
+ sympy.sets.sets.imageset
+ """
+ def __new__(cls, flambda, *sets):
+ if not isinstance(flambda, Lambda):
+ raise ValueError('First argument must be a Lambda')
+
+ signature = flambda.signature
+
+ if len(signature) != len(sets):
+ raise ValueError('Incompatible signature')
+
+ sets = [_sympify(s) for s in sets]
+
+ if not all(isinstance(s, Set) for s in sets):
+ raise TypeError("Set arguments to ImageSet should of type Set")
+
+ if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
+ raise ValueError("Signature %s does not match sets %s" % (signature, sets))
+
+ if flambda is S.IdentityFunction and len(sets) == 1:
+ return sets[0]
+
+ if not set(flambda.variables) & flambda.expr.free_symbols:
+ is_empty = fuzzy_or(s.is_empty for s in sets)
+ if is_empty == True:
+ return S.EmptySet
+ elif is_empty == False:
+ return FiniteSet(flambda.expr)
+
+ return Basic.__new__(cls, flambda, *sets)
+
+ lamda = property(lambda self: self.args[0])
+ base_sets = property(lambda self: self.args[1:])
+
+ @property
+ def base_set(self):
+ # XXX: Maybe deprecate this? It is poorly defined in handling
+ # the multivariate case...
+ sets = self.base_sets
+ if len(sets) == 1:
+ return sets[0]
+ else:
+ return ProductSet(*sets).flatten()
+
+ @property
+ def base_pset(self):
+ return ProductSet(*self.base_sets)
+
+ @classmethod
+ def _check_sig(cls, sig_i, set_i):
+ if sig_i.is_symbol:
+ return True
+ elif isinstance(set_i, ProductSet):
+ sets = set_i.sets
+ if len(sig_i) != len(sets):
+ return False
+ # Recurse through the signature for nested tuples:
+ return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
+ else:
+ # XXX: Need a better way of checking whether a set is a set of
+ # Tuples or not. For example a FiniteSet can contain Tuples
+ # but so can an ImageSet or a ConditionSet. Others like
+ # Integers, Reals etc can not contain Tuples. We could just
+ # list the possibilities here... Current code for e.g.
+ # _contains probably only works for ProductSet.
+ return True # Give the benefit of the doubt
+
+ def __iter__(self):
+ already_seen = set()
+ for i in self.base_pset:
+ val = self.lamda(*i)
+ if val in already_seen:
+ continue
+ else:
+ already_seen.add(val)
+ yield val
+
+ def _is_multivariate(self):
+ return len(self.lamda.variables) > 1
+
+ def _contains(self, other):
+ from sympy.solvers.solveset import _solveset_multi
+
+ def get_symsetmap(signature, base_sets):
+ '''Attempt to get a map of symbols to base_sets'''
+ queue = list(zip(signature, base_sets))
+ symsetmap = {}
+ for sig, base_set in queue:
+ if sig.is_symbol:
+ symsetmap[sig] = base_set
+ elif base_set.is_ProductSet:
+ sets = base_set.sets
+ if len(sig) != len(sets):
+ raise ValueError("Incompatible signature")
+ # Recurse
+ queue.extend(zip(sig, sets))
+ else:
+ # If we get here then we have something like sig = (x, y) and
+ # base_set = {(1, 2), (3, 4)}. For now we give up.
+ return None
+
+ return symsetmap
+
+ def get_equations(expr, candidate):
+ '''Find the equations relating symbols in expr and candidate.'''
+ queue = [(expr, candidate)]
+ for e, c in queue:
+ if not isinstance(e, Tuple):
+ yield Eq(e, c)
+ elif not isinstance(c, Tuple) or len(e) != len(c):
+ yield False
+ return
+ else:
+ queue.extend(zip(e, c))
+
+ # Get the basic objects together:
+ other = _sympify(other)
+ expr = self.lamda.expr
+ sig = self.lamda.signature
+ variables = self.lamda.variables
+ base_sets = self.base_sets
+
+ # Use dummy symbols for ImageSet parameters so they don't match
+ # anything in other
+ rep = {v: Dummy(v.name) for v in variables}
+ variables = [v.subs(rep) for v in variables]
+ sig = sig.subs(rep)
+ expr = expr.subs(rep)
+
+ # Map the parts of other to those in the Lambda expr
+ equations = []
+ for eq in get_equations(expr, other):
+ # Unsatisfiable equation?
+ if eq is False:
+ return False
+ equations.append(eq)
+
+ # Map the symbols in the signature to the corresponding domains
+ symsetmap = get_symsetmap(sig, base_sets)
+ if symsetmap is None:
+ # Can't factor the base sets to a ProductSet
+ return None
+
+ # Which of the variables in the Lambda signature need to be solved for?
+ symss = (eq.free_symbols for eq in equations)
+ variables = set(variables) & reduce(set.union, symss, set())
+
+ # Use internal multivariate solveset
+ variables = tuple(variables)
+ base_sets = [symsetmap[v] for v in variables]
+ solnset = _solveset_multi(equations, variables, base_sets)
+ if solnset is None:
+ return None
+ return fuzzy_not(solnset.is_empty)
+
+ @property
+ def is_iterable(self):
+ return all(s.is_iterable for s in self.base_sets)
+
+ def doit(self, **hints):
+ from sympy.sets.setexpr import SetExpr
+ f = self.lamda
+ sig = f.signature
+ if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
+ base_set = self.base_sets[0]
+ return SetExpr(base_set)._eval_func(f).set
+ if all(s.is_FiniteSet for s in self.base_sets):
+ return FiniteSet(*(f(*a) for a in product(*self.base_sets)))
+ return self
+
+ def _kind(self):
+ return SetKind(self.lamda.expr.kind)
+
+
+class Range(Set):
+ """
+ Represents a range of integers. Can be called as ``Range(stop)``,
+ ``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is
+ not given it defaults to 1.
+
+ ``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value
+ (just as for Python ranges) is not included in the Range values.
+
+ >>> from sympy import Range
+ >>> list(Range(3))
+ [0, 1, 2]
+
+ The step can also be negative:
+
+ >>> list(Range(10, 0, -2))
+ [10, 8, 6, 4, 2]
+
+ The stop value is made canonical so equivalent ranges always
+ have the same args:
+
+ >>> Range(0, 10, 3)
+ Range(0, 12, 3)
+
+ Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
+ set (``Range`` is always a subset of ``Integers``). If the starting point
+ is infinite, then the final value is ``stop - step``. To iterate such a
+ range, it needs to be reversed:
+
+ >>> from sympy import oo
+ >>> r = Range(-oo, 1)
+ >>> r[-1]
+ 0
+ >>> next(iter(r))
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot iterate over Range with infinite start
+ >>> next(iter(r.reversed))
+ 0
+
+ Although ``Range`` is a :class:`Set` (and supports the normal set
+ operations) it maintains the order of the elements and can
+ be used in contexts where ``range`` would be used.
+
+ >>> from sympy import Interval
+ >>> Range(0, 10, 2).intersect(Interval(3, 7))
+ Range(4, 8, 2)
+ >>> list(_)
+ [4, 6]
+
+ Although slicing of a Range will always return a Range -- possibly
+ empty -- an empty set will be returned from any intersection that
+ is empty:
+
+ >>> Range(3)[:0]
+ Range(0, 0, 1)
+ >>> Range(3).intersect(Interval(4, oo))
+ EmptySet
+ >>> Range(3).intersect(Range(4, oo))
+ EmptySet
+
+ Range will accept symbolic arguments but has very limited support
+ for doing anything other than displaying the Range:
+
+ >>> from sympy import Symbol, pprint
+ >>> from sympy.abc import i, j, k
+ >>> Range(i, j, k).start
+ i
+ >>> Range(i, j, k).inf
+ Traceback (most recent call last):
+ ...
+ ValueError: invalid method for symbolic range
+
+ Better success will be had when using integer symbols:
+
+ >>> n = Symbol('n', integer=True)
+ >>> r = Range(n, n + 20, 3)
+ >>> r.inf
+ n
+ >>> pprint(r)
+ {n, n + 3, ..., n + 18}
+ """
+
+ def __new__(cls, *args):
+ if len(args) == 1:
+ if isinstance(args[0], range):
+ raise TypeError(
+ 'use sympify(%s) to convert range to Range' % args[0])
+
+ # expand range
+ slc = slice(*args)
+
+ if slc.step == 0:
+ raise ValueError("step cannot be 0")
+
+ start, stop, step = slc.start or 0, slc.stop, slc.step or 1
+ try:
+ ok = []
+ for w in (start, stop, step):
+ w = sympify(w)
+ if w in [S.NegativeInfinity, S.Infinity] or (
+ w.has(Symbol) and w.is_integer != False):
+ ok.append(w)
+ elif not w.is_Integer:
+ if w.is_infinite:
+ raise ValueError('infinite symbols not allowed')
+ raise ValueError
+ else:
+ ok.append(w)
+ except ValueError:
+ raise ValueError(filldedent('''
+ Finite arguments to Range must be integers; `imageset` can define
+ other cases, e.g. use `imageset(i, i/10, Range(3))` to give
+ [0, 1/10, 1/5].'''))
+ start, stop, step = ok
+
+ null = False
+ if any(i.has(Symbol) for i in (start, stop, step)):
+ dif = stop - start
+ n = dif/step
+ if n.is_Rational:
+ if dif == 0:
+ null = True
+ else: # (x, x + 5, 2) or (x, 3*x, x)
+ n = floor(n)
+ end = start + n*step
+ if dif.is_Rational: # (x, x + 5, 2)
+ if (end - stop).is_negative:
+ end += step
+ else: # (x, 3*x, x)
+ if (end/stop - 1).is_negative:
+ end += step
+ elif n.is_extended_negative:
+ null = True
+ else:
+ end = stop # other methods like sup and reversed must fail
+ elif start.is_infinite:
+ span = step*(stop - start)
+ if span is S.NaN or span <= 0:
+ null = True
+ elif step.is_Integer and stop.is_infinite and abs(step) != 1:
+ raise ValueError(filldedent('''
+ Step size must be %s in this case.''' % (1 if step > 0 else -1)))
+ else:
+ end = stop
+ else:
+ oostep = step.is_infinite
+ if oostep:
+ step = S.One if step > 0 else S.NegativeOne
+ n = ceiling((stop - start)/step)
+ if n <= 0:
+ null = True
+ elif oostep:
+ step = S.One # make it canonical
+ end = start + step
+ else:
+ end = start + n*step
+ if null:
+ start = end = S.Zero
+ step = S.One
+ return Basic.__new__(cls, start, end, step)
+
+ start = property(lambda self: self.args[0])
+ stop = property(lambda self: self.args[1])
+ step = property(lambda self: self.args[2])
+
+ @property
+ def reversed(self):
+ """Return an equivalent Range in the opposite order.
+
+ Examples
+ ========
+
+ >>> from sympy import Range
+ >>> Range(10).reversed
+ Range(9, -1, -1)
+ """
+ if self.has(Symbol):
+ n = (self.stop - self.start)/self.step
+ if not n.is_extended_positive or not all(
+ i.is_integer or i.is_infinite for i in self.args):
+ raise ValueError('invalid method for symbolic range')
+ if self.start == self.stop:
+ return self
+ return self.func(
+ self.stop - self.step, self.start - self.step, -self.step)
+
+ def _kind(self):
+ return SetKind(NumberKind)
+
+ def _contains(self, other):
+ if self.start == self.stop:
+ return S.false
+ if other.is_infinite:
+ return S.false
+ if not other.is_integer:
+ return other.is_integer
+ if self.has(Symbol):
+ n = (self.stop - self.start)/self.step
+ if not n.is_extended_positive or not all(
+ i.is_integer or i.is_infinite for i in self.args):
+ return
+ else:
+ n = self.size
+ if self.start.is_finite:
+ ref = self.start
+ elif self.stop.is_finite:
+ ref = self.stop
+ else: # both infinite; step is +/- 1 (enforced by __new__)
+ return S.true
+ if n == 1:
+ return Eq(other, self[0])
+ res = (ref - other) % self.step
+ if res == S.Zero:
+ if self.has(Symbol):
+ d = Dummy('i')
+ return self.as_relational(d).subs(d, other)
+ return And(other >= self.inf, other <= self.sup)
+ elif res.is_Integer: # off sequence
+ return S.false
+ else: # symbolic/unsimplified residue modulo step
+ return None
+
+ def __iter__(self):
+ n = self.size # validate
+ if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
+ raise TypeError("Cannot iterate over symbolic Range")
+ if self.start in [S.NegativeInfinity, S.Infinity]:
+ raise TypeError("Cannot iterate over Range with infinite start")
+ elif self.start != self.stop:
+ i = self.start
+ if n.is_infinite:
+ while True:
+ yield i
+ i += self.step
+ else:
+ for _ in range(n):
+ yield i
+ i += self.step
+
+ @property
+ def is_iterable(self):
+ # Check that size can be determined, used by __iter__
+ dif = self.stop - self.start
+ n = dif/self.step
+ if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
+ return False
+ if self.start in [S.NegativeInfinity, S.Infinity]:
+ return False
+ if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)):
+ return False
+ return True
+
+ def __len__(self):
+ rv = self.size
+ if rv is S.Infinity:
+ raise ValueError('Use .size to get the length of an infinite Range')
+ return int(rv)
+
+ @property
+ def size(self):
+ if self.start == self.stop:
+ return S.Zero
+ dif = self.stop - self.start
+ n = dif/self.step
+ if n.is_infinite:
+ return S.Infinity
+ if n.is_extended_nonnegative and all(i.is_integer for i in self.args):
+ return abs(floor(n))
+ raise ValueError('Invalid method for symbolic Range')
+
+ @property
+ def is_finite_set(self):
+ if self.start.is_integer and self.stop.is_integer:
+ return True
+ return self.size.is_finite
+
+ @property
+ def is_empty(self):
+ try:
+ return self.size.is_zero
+ except ValueError:
+ return None
+
+ def __bool__(self):
+ # this only distinguishes between definite null range
+ # and non-null/unknown null; getting True doesn't mean
+ # that it actually is not null
+ b = is_eq(self.start, self.stop)
+ if b is None:
+ raise ValueError('cannot tell if Range is null or not')
+ return not bool(b)
+
+ def __getitem__(self, i):
+ ooslice = "cannot slice from the end with an infinite value"
+ zerostep = "slice step cannot be zero"
+ infinite = "slicing not possible on range with infinite start"
+ # if we had to take every other element in the following
+ # oo, ..., 6, 4, 2, 0
+ # we might get oo, ..., 4, 0 or oo, ..., 6, 2
+ ambiguous = "cannot unambiguously re-stride from the end " + \
+ "with an infinite value"
+ if isinstance(i, slice):
+ if self.size.is_finite: # validates, too
+ if self.start == self.stop:
+ return Range(0)
+ start, stop, step = i.indices(self.size)
+ n = ceiling((stop - start)/step)
+ if n <= 0:
+ return Range(0)
+ canonical_stop = start + n*step
+ end = canonical_stop - step
+ ss = step*self.step
+ return Range(self[start], self[end] + ss, ss)
+ else: # infinite Range
+ start = i.start
+ stop = i.stop
+ if i.step == 0:
+ raise ValueError(zerostep)
+ step = i.step or 1
+ ss = step*self.step
+ #---------------------
+ # handle infinite Range
+ # i.e. Range(-oo, oo) or Range(oo, -oo, -1)
+ # --------------------
+ if self.start.is_infinite and self.stop.is_infinite:
+ raise ValueError(infinite)
+ #---------------------
+ # handle infinite on right
+ # e.g. Range(0, oo) or Range(0, -oo, -1)
+ # --------------------
+ if self.stop.is_infinite:
+ # start and stop are not interdependent --
+ # they only depend on step --so we use the
+ # equivalent reversed values
+ return self.reversed[
+ stop if stop is None else -stop + 1:
+ start if start is None else -start:
+ step].reversed
+ #---------------------
+ # handle infinite on the left
+ # e.g. Range(oo, 0, -1) or Range(-oo, 0)
+ # --------------------
+ # consider combinations of
+ # start/stop {== None, < 0, == 0, > 0} and
+ # step {< 0, > 0}
+ if start is None:
+ if stop is None:
+ if step < 0:
+ return Range(self[-1], self.start, ss)
+ elif step > 1:
+ raise ValueError(ambiguous)
+ else: # == 1
+ return self
+ elif stop < 0:
+ if step < 0:
+ return Range(self[-1], self[stop], ss)
+ else: # > 0
+ return Range(self.start, self[stop], ss)
+ elif stop == 0:
+ if step > 0:
+ return Range(0)
+ else: # < 0
+ raise ValueError(ooslice)
+ elif stop == 1:
+ if step > 0:
+ raise ValueError(ooslice) # infinite singleton
+ else: # < 0
+ raise ValueError(ooslice)
+ else: # > 1
+ raise ValueError(ooslice)
+ elif start < 0:
+ if stop is None:
+ if step < 0:
+ return Range(self[start], self.start, ss)
+ else: # > 0
+ return Range(self[start], self.stop, ss)
+ elif stop < 0:
+ return Range(self[start], self[stop], ss)
+ elif stop == 0:
+ if step < 0:
+ raise ValueError(ooslice)
+ else: # > 0
+ return Range(0)
+ elif stop > 0:
+ raise ValueError(ooslice)
+ elif start == 0:
+ if stop is None:
+ if step < 0:
+ raise ValueError(ooslice) # infinite singleton
+ elif step > 1:
+ raise ValueError(ambiguous)
+ else: # == 1
+ return self
+ elif stop < 0:
+ if step > 1:
+ raise ValueError(ambiguous)
+ elif step == 1:
+ return Range(self.start, self[stop], ss)
+ else: # < 0
+ return Range(0)
+ else: # >= 0
+ raise ValueError(ooslice)
+ elif start > 0:
+ raise ValueError(ooslice)
+ else:
+ if self.start == self.stop:
+ raise IndexError('Range index out of range')
+ if not (all(i.is_integer or i.is_infinite
+ for i in self.args) and ((self.stop - self.start)/
+ self.step).is_extended_positive):
+ raise ValueError('Invalid method for symbolic Range')
+ if i == 0:
+ if self.start.is_infinite:
+ raise ValueError(ooslice)
+ return self.start
+ if i == -1:
+ if self.stop.is_infinite:
+ raise ValueError(ooslice)
+ return self.stop - self.step
+ n = self.size # must be known for any other index
+ rv = (self.stop if i < 0 else self.start) + i*self.step
+ if rv.is_infinite:
+ raise ValueError(ooslice)
+ val = (rv - self.start)/self.step
+ rel = fuzzy_or([val.is_infinite,
+ fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])])
+ if rel:
+ return rv
+ if rel is None:
+ raise ValueError('Invalid method for symbolic Range')
+ raise IndexError("Range index out of range")
+
+ @property
+ def _inf(self):
+ if not self:
+ return S.EmptySet.inf
+ if self.has(Symbol):
+ if all(i.is_integer or i.is_infinite for i in self.args):
+ dif = self.stop - self.start
+ if self.step.is_positive and dif.is_positive:
+ return self.start
+ elif self.step.is_negative and dif.is_negative:
+ return self.stop - self.step
+ raise ValueError('invalid method for symbolic range')
+ if self.step > 0:
+ return self.start
+ else:
+ return self.stop - self.step
+
+ @property
+ def _sup(self):
+ if not self:
+ return S.EmptySet.sup
+ if self.has(Symbol):
+ if all(i.is_integer or i.is_infinite for i in self.args):
+ dif = self.stop - self.start
+ if self.step.is_positive and dif.is_positive:
+ return self.stop - self.step
+ elif self.step.is_negative and dif.is_negative:
+ return self.start
+ raise ValueError('invalid method for symbolic range')
+ if self.step > 0:
+ return self.stop - self.step
+ else:
+ return self.start
+
+ @property
+ def _boundary(self):
+ return self
+
+ def as_relational(self, x):
+ """Rewrite a Range in terms of equalities and logic operators. """
+ if self.start.is_infinite:
+ assert not self.stop.is_infinite # by instantiation
+ a = self.reversed.start
+ else:
+ a = self.start
+ step = self.step
+ in_seq = Eq(Mod(x - a, step), 0)
+ ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0))
+ n = (self.stop - self.start)/self.step
+ if n == 0:
+ return S.EmptySet.as_relational(x)
+ if n == 1:
+ return And(Eq(x, a), ints)
+ try:
+ a, b = self.inf, self.sup
+ except ValueError:
+ a = None
+ if a is not None:
+ range_cond = And(
+ x > a if a.is_infinite else x >= a,
+ x < b if b.is_infinite else x <= b)
+ else:
+ a, b = self.start, self.stop - self.step
+ range_cond = Or(
+ And(self.step >= 1, x > a if a.is_infinite else x >= a,
+ x < b if b.is_infinite else x <= b),
+ And(self.step <= -1, x < a if a.is_infinite else x <= a,
+ x > b if b.is_infinite else x >= b))
+ return And(in_seq, ints, range_cond)
+
+
+_sympy_converter[range] = lambda r: Range(r.start, r.stop, r.step)
+
+def normalize_theta_set(theta):
+ r"""
+ Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns
+ a normalized value of theta in the Set. For Interval, a maximum of
+ one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$,
+ returned normalized value would be $[0, 2\pi)$. As of now intervals
+ with end points as non-multiples of ``pi`` is not supported.
+
+ Raises
+ ======
+
+ NotImplementedError
+ The algorithms for Normalizing theta Set are not yet
+ implemented.
+ ValueError
+ The input is not valid, i.e. the input is not a real set.
+ RuntimeError
+ It is a bug, please report to the github issue tracker.
+
+ Examples
+ ========
+
+ >>> from sympy.sets.fancysets import normalize_theta_set
+ >>> from sympy import Interval, FiniteSet, pi
+ >>> normalize_theta_set(Interval(9*pi/2, 5*pi))
+ Interval(pi/2, pi)
+ >>> normalize_theta_set(Interval(-3*pi/2, pi/2))
+ Interval.Ropen(0, 2*pi)
+ >>> normalize_theta_set(Interval(-pi/2, pi/2))
+ Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
+ >>> normalize_theta_set(Interval(-4*pi, 3*pi))
+ Interval.Ropen(0, 2*pi)
+ >>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
+ Interval(pi/2, 3*pi/2)
+ >>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
+ {0, pi}
+
+ """
+ from sympy.functions.elementary.trigonometric import _pi_coeff
+
+ if theta.is_Interval:
+ interval_len = theta.measure
+ # one complete circle
+ if interval_len >= 2*S.Pi:
+ if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
+ k = _pi_coeff(theta.start)
+ return Union(Interval(0, k*S.Pi, False, True),
+ Interval(k*S.Pi, 2*S.Pi, True, True))
+ return Interval(0, 2*S.Pi, False, True)
+
+ k_start, k_end = _pi_coeff(theta.start), _pi_coeff(theta.end)
+
+ if k_start is None or k_end is None:
+ raise NotImplementedError("Normalizing theta without pi as coefficient is "
+ "not yet implemented")
+ new_start = k_start*S.Pi
+ new_end = k_end*S.Pi
+
+ if new_start > new_end:
+ return Union(Interval(S.Zero, new_end, False, theta.right_open),
+ Interval(new_start, 2*S.Pi, theta.left_open, True))
+ else:
+ return Interval(new_start, new_end, theta.left_open, theta.right_open)
+
+ elif theta.is_FiniteSet:
+ new_theta = []
+ for element in theta:
+ k = _pi_coeff(element)
+ if k is None:
+ raise NotImplementedError('Normalizing theta without pi as '
+ 'coefficient, is not Implemented.')
+ else:
+ new_theta.append(k*S.Pi)
+ return FiniteSet(*new_theta)
+
+ elif theta.is_Union:
+ return Union(*[normalize_theta_set(interval) for interval in theta.args])
+
+ elif theta.is_subset(S.Reals):
+ raise NotImplementedError("Normalizing theta when, it is of type %s is not "
+ "implemented" % type(theta))
+ else:
+ raise ValueError(" %s is not a real set" % (theta))
+
+
+class ComplexRegion(Set):
+ r"""
+ Represents the Set of all Complex Numbers. It can represent a
+ region of Complex Plane in both the standard forms Polar and
+ Rectangular coordinates.
+
+ * Polar Form
+ Input is in the form of the ProductSet or Union of ProductSets
+ of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``.
+
+ .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
+
+ * Rectangular Form
+ Input is in the form of the ProductSet or Union of ProductSets
+ of interval of x and y, the real and imaginary parts of the Complex numbers in a plane.
+ Default input type is in rectangular form.
+
+ .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
+
+ Examples
+ ========
+
+ >>> from sympy import ComplexRegion, Interval, S, I, Union
+ >>> a = Interval(2, 3)
+ >>> b = Interval(4, 6)
+ >>> c1 = ComplexRegion(a*b) # Rectangular Form
+ >>> c1
+ CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
+
+ * c1 represents the rectangular region in complex plane
+ surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
+ (2, 6), of the four vertices.
+
+ >>> c = Interval(1, 8)
+ >>> c2 = ComplexRegion(Union(a*b, b*c))
+ >>> c2
+ CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
+
+ * c2 represents the Union of two rectangular regions in complex
+ plane. One of them surrounded by the coordinates of c1 and
+ other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
+ (4, 8).
+
+ >>> 2.5 + 4.5*I in c1
+ True
+ >>> 2.5 + 6.5*I in c1
+ False
+
+ >>> r = Interval(0, 1)
+ >>> theta = Interval(0, 2*S.Pi)
+ >>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
+ >>> c2 # unit Disk
+ PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
+
+ * c2 represents the region in complex plane inside the
+ Unit Disk centered at the origin.
+
+ >>> 0.5 + 0.5*I in c2
+ True
+ >>> 1 + 2*I in c2
+ False
+
+ >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
+ >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
+ >>> intersection = unit_disk.intersect(upper_half_unit_disk)
+ >>> intersection
+ PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
+ >>> intersection == upper_half_unit_disk
+ True
+
+ See Also
+ ========
+
+ CartesianComplexRegion
+ PolarComplexRegion
+ Complexes
+
+ """
+ is_ComplexRegion = True
+
+ def __new__(cls, sets, polar=False):
+ if polar is False:
+ return CartesianComplexRegion(sets)
+ elif polar is True:
+ return PolarComplexRegion(sets)
+ else:
+ raise ValueError("polar should be either True or False")
+
+ @property
+ def sets(self):
+ """
+ Return raw input sets to the self.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion, Union
+ >>> a = Interval(2, 3)
+ >>> b = Interval(4, 5)
+ >>> c = Interval(1, 7)
+ >>> C1 = ComplexRegion(a*b)
+ >>> C1.sets
+ ProductSet(Interval(2, 3), Interval(4, 5))
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
+ >>> C2.sets
+ Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
+
+ """
+ return self.args[0]
+
+ @property
+ def psets(self):
+ """
+ Return a tuple of sets (ProductSets) input of the self.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion, Union
+ >>> a = Interval(2, 3)
+ >>> b = Interval(4, 5)
+ >>> c = Interval(1, 7)
+ >>> C1 = ComplexRegion(a*b)
+ >>> C1.psets
+ (ProductSet(Interval(2, 3), Interval(4, 5)),)
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
+ >>> C2.psets
+ (ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
+
+ """
+ if self.sets.is_ProductSet:
+ psets = ()
+ psets = psets + (self.sets, )
+ else:
+ psets = self.sets.args
+ return psets
+
+ @property
+ def a_interval(self):
+ """
+ Return the union of intervals of `x` when, self is in
+ rectangular form, or the union of intervals of `r` when
+ self is in polar form.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion, Union
+ >>> a = Interval(2, 3)
+ >>> b = Interval(4, 5)
+ >>> c = Interval(1, 7)
+ >>> C1 = ComplexRegion(a*b)
+ >>> C1.a_interval
+ Interval(2, 3)
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
+ >>> C2.a_interval
+ Union(Interval(2, 3), Interval(4, 5))
+
+ """
+ a_interval = []
+ for element in self.psets:
+ a_interval.append(element.args[0])
+
+ a_interval = Union(*a_interval)
+ return a_interval
+
+ @property
+ def b_interval(self):
+ """
+ Return the union of intervals of `y` when, self is in
+ rectangular form, or the union of intervals of `theta`
+ when self is in polar form.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion, Union
+ >>> a = Interval(2, 3)
+ >>> b = Interval(4, 5)
+ >>> c = Interval(1, 7)
+ >>> C1 = ComplexRegion(a*b)
+ >>> C1.b_interval
+ Interval(4, 5)
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
+ >>> C2.b_interval
+ Interval(1, 7)
+
+ """
+ b_interval = []
+ for element in self.psets:
+ b_interval.append(element.args[1])
+
+ b_interval = Union(*b_interval)
+ return b_interval
+
+ @property
+ def _measure(self):
+ """
+ The measure of self.sets.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion, S
+ >>> a, b = Interval(2, 5), Interval(4, 8)
+ >>> c = Interval(0, 2*S.Pi)
+ >>> c1 = ComplexRegion(a*b)
+ >>> c1.measure
+ 12
+ >>> c2 = ComplexRegion(a*c, polar=True)
+ >>> c2.measure
+ 6*pi
+
+ """
+ return self.sets._measure
+
+ def _kind(self):
+ return self.args[0].kind
+
+ @classmethod
+ def from_real(cls, sets):
+ """
+ Converts given subset of real numbers to a complex region.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, ComplexRegion
+ >>> unit = Interval(0,1)
+ >>> ComplexRegion.from_real(unit)
+ CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))
+
+ """
+ if not sets.is_subset(S.Reals):
+ raise ValueError("sets must be a subset of the real line")
+
+ return CartesianComplexRegion(sets * FiniteSet(0))
+
+ def _contains(self, other):
+ from sympy.functions import arg, Abs
+ other = sympify(other)
+ isTuple = isinstance(other, Tuple)
+ if isTuple and len(other) != 2:
+ raise ValueError('expecting Tuple of length 2')
+
+ # If the other is not an Expression, and neither a Tuple
+ if not isinstance(other, (Expr, Tuple)):
+ return S.false
+ # self in rectangular form
+ if not self.polar:
+ re, im = other if isTuple else other.as_real_imag()
+ return fuzzy_or(fuzzy_and([
+ pset.args[0]._contains(re),
+ pset.args[1]._contains(im)])
+ for pset in self.psets)
+
+ # self in polar form
+ elif self.polar:
+ if other.is_zero:
+ # ignore undefined complex argument
+ return fuzzy_or(pset.args[0]._contains(S.Zero)
+ for pset in self.psets)
+ if isTuple:
+ r, theta = other
+ else:
+ r, theta = Abs(other), arg(other)
+ if theta.is_real and theta.is_number:
+ # angles in psets are normalized to [0, 2pi)
+ theta %= 2*S.Pi
+ return fuzzy_or(fuzzy_and([
+ pset.args[0]._contains(r),
+ pset.args[1]._contains(theta)])
+ for pset in self.psets)
+
+
+class CartesianComplexRegion(ComplexRegion):
+ r"""
+ Set representing a square region of the complex plane.
+
+ .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
+
+ Examples
+ ========
+
+ >>> from sympy import ComplexRegion, I, Interval
+ >>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
+ >>> 2 + 5*I in region
+ True
+ >>> 5*I in region
+ False
+
+ See also
+ ========
+
+ ComplexRegion
+ PolarComplexRegion
+ Complexes
+ """
+
+ polar = False
+ variables = symbols('x, y', cls=Dummy)
+
+ def __new__(cls, sets):
+
+ if sets == S.Reals*S.Reals:
+ return S.Complexes
+
+ if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
+
+ # ** ProductSet of FiniteSets in the Complex Plane. **
+ # For Cases like ComplexRegion({2, 4}*{3}), It
+ # would return {2 + 3*I, 4 + 3*I}
+
+ # FIXME: This should probably be handled with something like:
+ # return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
+ complex_num = []
+ for x in sets.args[0]:
+ for y in sets.args[1]:
+ complex_num.append(x + S.ImaginaryUnit*y)
+ return FiniteSet(*complex_num)
+ else:
+ return Set.__new__(cls, sets)
+
+ @property
+ def expr(self):
+ x, y = self.variables
+ return x + S.ImaginaryUnit*y
+
+
+class PolarComplexRegion(ComplexRegion):
+ r"""
+ Set representing a polar region of the complex plane.
+
+ .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
+
+ Examples
+ ========
+
+ >>> from sympy import ComplexRegion, Interval, oo, pi, I
+ >>> rset = Interval(0, oo)
+ >>> thetaset = Interval(0, pi)
+ >>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
+ >>> 1 + I in upper_half_plane
+ True
+ >>> 1 - I in upper_half_plane
+ False
+
+ See also
+ ========
+
+ ComplexRegion
+ CartesianComplexRegion
+ Complexes
+
+ """
+
+ polar = True
+ variables = symbols('r, theta', cls=Dummy)
+
+ def __new__(cls, sets):
+
+ new_sets = []
+ # sets is Union of ProductSets
+ if not sets.is_ProductSet:
+ for k in sets.args:
+ new_sets.append(k)
+ # sets is ProductSets
+ else:
+ new_sets.append(sets)
+ # Normalize input theta
+ for k, v in enumerate(new_sets):
+ new_sets[k] = ProductSet(v.args[0],
+ normalize_theta_set(v.args[1]))
+ sets = Union(*new_sets)
+ return Set.__new__(cls, sets)
+
+ @property
+ def expr(self):
+ r, theta = self.variables
+ return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
+
+
+class Complexes(CartesianComplexRegion, metaclass=Singleton):
+ """
+ The :class:`Set` of all complex numbers
+
+ Examples
+ ========
+
+ >>> from sympy import S, I
+ >>> S.Complexes
+ Complexes
+ >>> 1 + I in S.Complexes
+ True
+
+ See also
+ ========
+
+ Reals
+ ComplexRegion
+
+ """
+
+ is_empty = False
+ is_finite_set = False
+
+ # Override property from superclass since Complexes has no args
+ @property
+ def sets(self):
+ return ProductSet(S.Reals, S.Reals)
+
+ def __new__(cls):
+ return Set.__new__(cls)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..82b57a92952b29ea3392f3dabedaf17eacb6cf83
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/functions.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/functions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69412f5b149c2f6222a6305de4205f400c35b6d9
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/functions.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/mul.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/mul.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9b02261bf009962fea59e3c36f488dc7aa31b6ca
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/mul.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/add.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/add.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c07b25ed19d21febffd6b23a92b34b787179f44
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/add.py
@@ -0,0 +1,79 @@
+from sympy.core.numbers import oo, Infinity, NegativeInfinity
+from sympy.core.singleton import S
+from sympy.core import Basic, Expr
+from sympy.multipledispatch import Dispatcher
+from sympy.sets import Interval, FiniteSet
+
+
+
+# XXX: The functions in this module are clearly not tested and are broken in a
+# number of ways.
+
+_set_add = Dispatcher('_set_add')
+_set_sub = Dispatcher('_set_sub')
+
+
+@_set_add.register(Basic, Basic)
+def _(x, y):
+ return None
+
+
+@_set_add.register(Expr, Expr)
+def _(x, y):
+ return x+y
+
+
+@_set_add.register(Interval, Interval)
+def _(x, y):
+ """
+ Additions in interval arithmetic
+ https://en.wikipedia.org/wiki/Interval_arithmetic
+ """
+ return Interval(x.start + y.start, x.end + y.end,
+ x.left_open or y.left_open, x.right_open or y.right_open)
+
+
+@_set_add.register(Interval, Infinity)
+def _(x, y):
+ if x.start is S.NegativeInfinity:
+ return Interval(-oo, oo)
+ return FiniteSet({S.Infinity})
+
+@_set_add.register(Interval, NegativeInfinity)
+def _(x, y):
+ if x.end is S.Infinity:
+ return Interval(-oo, oo)
+ return FiniteSet({S.NegativeInfinity})
+
+
+@_set_sub.register(Basic, Basic)
+def _(x, y):
+ return None
+
+
+@_set_sub.register(Expr, Expr)
+def _(x, y):
+ return x-y
+
+
+@_set_sub.register(Interval, Interval)
+def _(x, y):
+ """
+ Subtractions in interval arithmetic
+ https://en.wikipedia.org/wiki/Interval_arithmetic
+ """
+ return Interval(x.start - y.end, x.end - y.start,
+ x.left_open or y.right_open, x.right_open or y.left_open)
+
+
+@_set_sub.register(Interval, Infinity)
+def _(x, y):
+ if x.start is S.NegativeInfinity:
+ return Interval(-oo, oo)
+ return FiniteSet(-oo)
+
+@_set_sub.register(Interval, NegativeInfinity)
+def _(x, y):
+ if x.start is S.NegativeInfinity:
+ return Interval(-oo, oo)
+ return FiniteSet(-oo)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py
new file mode 100644
index 0000000000000000000000000000000000000000..b64d1a2a22e15d09f6f10fb4fef730163d468d45
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py
@@ -0,0 +1,53 @@
+from sympy.core.relational import Eq, is_eq
+from sympy.core.basic import Basic
+from sympy.core.logic import fuzzy_and, fuzzy_bool
+from sympy.logic.boolalg import And
+from sympy.multipledispatch import dispatch
+from sympy.sets.sets import tfn, ProductSet, Interval, FiniteSet, Set
+
+
+@dispatch(Interval, FiniteSet) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ return False
+
+
+@dispatch(FiniteSet, Interval) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ return False
+
+
+@dispatch(Interval, Interval) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ return And(Eq(lhs.left, rhs.left),
+ Eq(lhs.right, rhs.right),
+ lhs.left_open == rhs.left_open,
+ lhs.right_open == rhs.right_open)
+
+@dispatch(FiniteSet, FiniteSet) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ def all_in_both():
+ s_set = set(lhs.args)
+ o_set = set(rhs.args)
+ yield fuzzy_and(lhs._contains(e) for e in o_set - s_set)
+ yield fuzzy_and(rhs._contains(e) for e in s_set - o_set)
+
+ return tfn[fuzzy_and(all_in_both())]
+
+
+@dispatch(ProductSet, ProductSet) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ if len(lhs.sets) != len(rhs.sets):
+ return False
+
+ eqs = (is_eq(x, y) for x, y in zip(lhs.sets, rhs.sets))
+ return tfn[fuzzy_and(map(fuzzy_bool, eqs))]
+
+
+@dispatch(Set, Basic) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ return False
+
+
+@dispatch(Set, Set) # type:ignore
+def _eval_is_eq(lhs, rhs): # noqa: F811
+ return tfn[fuzzy_and(a.is_subset(b) for a, b in [(lhs, rhs), (rhs, lhs)])]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/functions.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/functions.py
new file mode 100644
index 0000000000000000000000000000000000000000..2529dbfd458451d7d09e91c717b170df77b1d9fe
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/functions.py
@@ -0,0 +1,262 @@
+from sympy.core.singleton import S
+from sympy.sets.sets import Set
+from sympy.calculus.singularities import singularities
+from sympy.core import Expr, Add
+from sympy.core.function import Lambda, FunctionClass, diff, expand_mul
+from sympy.core.numbers import Float, oo
+from sympy.core.symbol import Dummy, symbols, Wild
+from sympy.functions.elementary.exponential import exp, log
+from sympy.functions.elementary.miscellaneous import Min, Max
+from sympy.logic.boolalg import true
+from sympy.multipledispatch import Dispatcher
+from sympy.sets import (imageset, Interval, FiniteSet, Union, ImageSet,
+ Intersection, Range, Complement)
+from sympy.sets.sets import EmptySet, is_function_invertible_in_set
+from sympy.sets.fancysets import Integers, Naturals, Reals
+from sympy.functions.elementary.exponential import match_real_imag
+
+
+_x, _y = symbols("x y")
+
+FunctionUnion = (FunctionClass, Lambda)
+
+_set_function = Dispatcher('_set_function')
+
+
+@_set_function.register(FunctionClass, Set)
+def _(f, x):
+ return None
+
+@_set_function.register(FunctionUnion, FiniteSet)
+def _(f, x):
+ return FiniteSet(*map(f, x))
+
+@_set_function.register(Lambda, Interval)
+def _(f, x):
+ from sympy.solvers.solveset import solveset
+ from sympy.series import limit
+ # TODO: handle functions with infinitely many solutions (eg, sin, tan)
+ # TODO: handle multivariate functions
+
+ expr = f.expr
+ if len(expr.free_symbols) > 1 or len(f.variables) != 1:
+ return
+ var = f.variables[0]
+ if not var.is_real:
+ if expr.subs(var, Dummy(real=True)).is_real is False:
+ return
+
+ if expr.is_Piecewise:
+ result = S.EmptySet
+ domain_set = x
+ for (p_expr, p_cond) in expr.args:
+ if p_cond is true:
+ intrvl = domain_set
+ else:
+ intrvl = p_cond.as_set()
+ intrvl = Intersection(domain_set, intrvl)
+
+ if p_expr.is_Number:
+ image = FiniteSet(p_expr)
+ else:
+ image = imageset(Lambda(var, p_expr), intrvl)
+ result = Union(result, image)
+
+ # remove the part which has been `imaged`
+ domain_set = Complement(domain_set, intrvl)
+ if domain_set is S.EmptySet:
+ break
+ return result
+
+ if not x.start.is_comparable or not x.end.is_comparable:
+ return
+
+ try:
+ from sympy.polys.polyutils import _nsort
+ sing = list(singularities(expr, var, x))
+ if len(sing) > 1:
+ sing = _nsort(sing)
+ except NotImplementedError:
+ return
+
+ if x.left_open:
+ _start = limit(expr, var, x.start, dir="+")
+ elif x.start not in sing:
+ _start = f(x.start)
+ if x.right_open:
+ _end = limit(expr, var, x.end, dir="-")
+ elif x.end not in sing:
+ _end = f(x.end)
+
+ if len(sing) == 0:
+ soln_expr = solveset(diff(expr, var), var)
+ if not (isinstance(soln_expr, FiniteSet)
+ or soln_expr is S.EmptySet):
+ return
+ solns = list(soln_expr)
+
+ extr = [_start, _end] + [f(i) for i in solns
+ if i.is_real and i in x]
+ start, end = Min(*extr), Max(*extr)
+
+ left_open, right_open = False, False
+ if _start <= _end:
+ # the minimum or maximum value can occur simultaneously
+ # on both the edge of the interval and in some interior
+ # point
+ if start == _start and start not in solns:
+ left_open = x.left_open
+ if end == _end and end not in solns:
+ right_open = x.right_open
+ else:
+ if start == _end and start not in solns:
+ left_open = x.right_open
+ if end == _start and end not in solns:
+ right_open = x.left_open
+
+ return Interval(start, end, left_open, right_open)
+ else:
+ return imageset(f, Interval(x.start, sing[0],
+ x.left_open, True)) + \
+ Union(*[imageset(f, Interval(sing[i], sing[i + 1], True, True))
+ for i in range(0, len(sing) - 1)]) + \
+ imageset(f, Interval(sing[-1], x.end, True, x.right_open))
+
+@_set_function.register(FunctionClass, Interval)
+def _(f, x):
+ if f == exp:
+ return Interval(exp(x.start), exp(x.end), x.left_open, x.right_open)
+ elif f == log:
+ return Interval(log(x.start), log(x.end), x.left_open, x.right_open)
+ return ImageSet(Lambda(_x, f(_x)), x)
+
+@_set_function.register(FunctionUnion, Union)
+def _(f, x):
+ return Union(*(imageset(f, arg) for arg in x.args))
+
+@_set_function.register(FunctionUnion, Intersection)
+def _(f, x):
+ # If the function is invertible, intersect the maps of the sets.
+ if is_function_invertible_in_set(f, x):
+ return Intersection(*(imageset(f, arg) for arg in x.args))
+ else:
+ return ImageSet(Lambda(_x, f(_x)), x)
+
+@_set_function.register(FunctionUnion, EmptySet)
+def _(f, x):
+ return x
+
+@_set_function.register(FunctionUnion, Set)
+def _(f, x):
+ return ImageSet(Lambda(_x, f(_x)), x)
+
+@_set_function.register(FunctionUnion, Range)
+def _(f, self):
+ if not self:
+ return S.EmptySet
+ if not isinstance(f.expr, Expr):
+ return
+ if self.size == 1:
+ return FiniteSet(f(self[0]))
+ if f is S.IdentityFunction:
+ return self
+
+ x = f.variables[0]
+ expr = f.expr
+ # handle f that is linear in f's variable
+ if x not in expr.free_symbols or x in expr.diff(x).free_symbols:
+ return
+ if self.start.is_finite:
+ F = f(self.step*x + self.start) # for i in range(len(self))
+ else:
+ F = f(-self.step*x + self[-1])
+ F = expand_mul(F)
+ if F != expr:
+ return imageset(x, F, Range(self.size))
+
+@_set_function.register(FunctionUnion, Integers)
+def _(f, self):
+ expr = f.expr
+ if not isinstance(expr, Expr):
+ return
+
+ n = f.variables[0]
+ if expr == abs(n):
+ return S.Naturals0
+
+ # f(x) + c and f(-x) + c cover the same integers
+ # so choose the form that has the fewest negatives
+ c = f(0)
+ fx = f(n) - c
+ f_x = f(-n) - c
+ neg_count = lambda e: sum(_.could_extract_minus_sign()
+ for _ in Add.make_args(e))
+ if neg_count(f_x) < neg_count(fx):
+ expr = f_x + c
+
+ a = Wild('a', exclude=[n])
+ b = Wild('b', exclude=[n])
+ match = expr.match(a*n + b)
+ if match and match[a] and (
+ not match[a].atoms(Float) and
+ not match[b].atoms(Float)):
+ # canonical shift
+ a, b = match[a], match[b]
+ if a in [1, -1]:
+ # drop integer addends in b
+ nonint = []
+ for bi in Add.make_args(b):
+ if not bi.is_integer:
+ nonint.append(bi)
+ b = Add(*nonint)
+ if b.is_number and a.is_real:
+ # avoid Mod for complex numbers, #11391
+ br, bi = match_real_imag(b)
+ if br and br.is_comparable and a.is_comparable:
+ br %= a
+ b = br + S.ImaginaryUnit*bi
+ elif b.is_number and a.is_imaginary:
+ br, bi = match_real_imag(b)
+ ai = a/S.ImaginaryUnit
+ if bi and bi.is_comparable and ai.is_comparable:
+ bi %= ai
+ b = br + S.ImaginaryUnit*bi
+ expr = a*n + b
+
+ if expr != f.expr:
+ return ImageSet(Lambda(n, expr), S.Integers)
+
+
+@_set_function.register(FunctionUnion, Naturals)
+def _(f, self):
+ expr = f.expr
+ if not isinstance(expr, Expr):
+ return
+
+ x = f.variables[0]
+ if not expr.free_symbols - {x}:
+ if expr == abs(x):
+ if self is S.Naturals:
+ return self
+ return S.Naturals0
+ step = expr.coeff(x)
+ c = expr.subs(x, 0)
+ if c.is_Integer and step.is_Integer and expr == step*x + c:
+ if self is S.Naturals:
+ c += step
+ if step > 0:
+ if step == 1:
+ if c == 0:
+ return S.Naturals0
+ elif c == 1:
+ return S.Naturals
+ return Range(c, oo, step)
+ return Range(c, -oo, step)
+
+
+@_set_function.register(FunctionUnion, Reals)
+def _(f, self):
+ expr = f.expr
+ if not isinstance(expr, Expr):
+ return
+ return _set_function(f, Interval(-oo, oo))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/intersection.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/intersection.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2db3f6f0e26c9228f35e045993de09f7ffaaef2
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/intersection.py
@@ -0,0 +1,514 @@
+from sympy.core.function import Lambda, expand_complex
+from sympy.core.mul import Mul
+from sympy.core.numbers import ilcm
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.symbol import (Dummy, symbols)
+from sympy.core.sorting import ordered
+from sympy.functions.elementary.complexes import sign
+from sympy.functions.elementary.integers import floor, ceiling
+from sympy.sets.fancysets import ComplexRegion
+from sympy.sets.sets import (FiniteSet, Intersection, Interval, Set, Union)
+from sympy.multipledispatch import Dispatcher
+from sympy.sets.conditionset import ConditionSet
+from sympy.sets.fancysets import (Integers, Naturals, Reals, Range,
+ ImageSet, Rationals)
+from sympy.sets.sets import EmptySet, UniversalSet, imageset, ProductSet
+from sympy.simplify.radsimp import numer
+
+
+intersection_sets = Dispatcher('intersection_sets')
+
+
+@intersection_sets.register(ConditionSet, ConditionSet)
+def _(a, b):
+ return None
+
+@intersection_sets.register(ConditionSet, Set)
+def _(a, b):
+ return ConditionSet(a.sym, a.condition, Intersection(a.base_set, b))
+
+@intersection_sets.register(Naturals, Integers)
+def _(a, b):
+ return a
+
+@intersection_sets.register(Naturals, Naturals)
+def _(a, b):
+ return a if a is S.Naturals else b
+
+@intersection_sets.register(Interval, Naturals)
+def _(a, b):
+ return intersection_sets(b, a)
+
+@intersection_sets.register(ComplexRegion, Set)
+def _(self, other):
+ if other.is_ComplexRegion:
+ # self in rectangular form
+ if (not self.polar) and (not other.polar):
+ return ComplexRegion(Intersection(self.sets, other.sets))
+
+ # self in polar form
+ elif self.polar and other.polar:
+ r1, theta1 = self.a_interval, self.b_interval
+ r2, theta2 = other.a_interval, other.b_interval
+ new_r_interval = Intersection(r1, r2)
+ new_theta_interval = Intersection(theta1, theta2)
+
+ # 0 and 2*Pi means the same
+ if ((2*S.Pi in theta1 and S.Zero in theta2) or
+ (2*S.Pi in theta2 and S.Zero in theta1)):
+ new_theta_interval = Union(new_theta_interval,
+ FiniteSet(0))
+ return ComplexRegion(new_r_interval*new_theta_interval,
+ polar=True)
+
+
+ if other.is_subset(S.Reals):
+ new_interval = []
+ x = symbols("x", cls=Dummy, real=True)
+
+ # self in rectangular form
+ if not self.polar:
+ for element in self.psets:
+ if S.Zero in element.args[1]:
+ new_interval.append(element.args[0])
+ new_interval = Union(*new_interval)
+ return Intersection(new_interval, other)
+
+ # self in polar form
+ elif self.polar:
+ for element in self.psets:
+ if S.Zero in element.args[1]:
+ new_interval.append(element.args[0])
+ if S.Pi in element.args[1]:
+ new_interval.append(ImageSet(Lambda(x, -x), element.args[0]))
+ if S.Zero in element.args[0]:
+ new_interval.append(FiniteSet(0))
+ new_interval = Union(*new_interval)
+ return Intersection(new_interval, other)
+
+@intersection_sets.register(Integers, Reals)
+def _(a, b):
+ return a
+
+@intersection_sets.register(Range, Interval)
+def _(a, b):
+ # Check that there are no symbolic arguments
+ if not all(i.is_number for i in a.args + b.args[:2]):
+ return
+
+ # In case of null Range, return an EmptySet.
+ if a.size == 0:
+ return S.EmptySet
+
+ # trim down to self's size, and represent
+ # as a Range with step 1.
+ start = ceiling(max(b.inf, a.inf))
+ if start not in b:
+ start += 1
+ end = floor(min(b.sup, a.sup))
+ if end not in b:
+ end -= 1
+ return intersection_sets(a, Range(start, end + 1))
+
+@intersection_sets.register(Range, Naturals)
+def _(a, b):
+ return intersection_sets(a, Interval(b.inf, S.Infinity))
+
+@intersection_sets.register(Range, Range)
+def _(a, b):
+ # Check that there are no symbolic range arguments
+ if not all(all(v.is_number for v in r.args) for r in [a, b]):
+ return None
+
+ # non-overlap quick exits
+ if not b:
+ return S.EmptySet
+ if not a:
+ return S.EmptySet
+ if b.sup < a.inf:
+ return S.EmptySet
+ if b.inf > a.sup:
+ return S.EmptySet
+
+ # work with finite end at the start
+ r1 = a
+ if r1.start.is_infinite:
+ r1 = r1.reversed
+ r2 = b
+ if r2.start.is_infinite:
+ r2 = r2.reversed
+
+ # If both ends are infinite then it means that one Range is just the set
+ # of all integers (the step must be 1).
+ if r1.start.is_infinite:
+ return b
+ if r2.start.is_infinite:
+ return a
+
+ from sympy.solvers.diophantine.diophantine import diop_linear
+
+ # this equation represents the values of the Range;
+ # it's a linear equation
+ eq = lambda r, i: r.start + i*r.step
+
+ # we want to know when the two equations might
+ # have integer solutions so we use the diophantine
+ # solver
+ va, vb = diop_linear(eq(r1, Dummy('a')) - eq(r2, Dummy('b')))
+
+ # check for no solution
+ no_solution = va is None and vb is None
+ if no_solution:
+ return S.EmptySet
+
+ # there is a solution
+ # -------------------
+
+ # find the coincident point, c
+ a0 = va.as_coeff_Add()[0]
+ c = eq(r1, a0)
+
+ # find the first point, if possible, in each range
+ # since c may not be that point
+ def _first_finite_point(r1, c):
+ if c == r1.start:
+ return c
+ # st is the signed step we need to take to
+ # get from c to r1.start
+ st = sign(r1.start - c)*step
+ # use Range to calculate the first point:
+ # we want to get as close as possible to
+ # r1.start; the Range will not be null since
+ # it will at least contain c
+ s1 = Range(c, r1.start + st, st)[-1]
+ if s1 == r1.start:
+ pass
+ else:
+ # if we didn't hit r1.start then, if the
+ # sign of st didn't match the sign of r1.step
+ # we are off by one and s1 is not in r1
+ if sign(r1.step) != sign(st):
+ s1 -= st
+ if s1 not in r1:
+ return
+ return s1
+
+ # calculate the step size of the new Range
+ step = abs(ilcm(r1.step, r2.step))
+ s1 = _first_finite_point(r1, c)
+ if s1 is None:
+ return S.EmptySet
+ s2 = _first_finite_point(r2, c)
+ if s2 is None:
+ return S.EmptySet
+
+ # replace the corresponding start or stop in
+ # the original Ranges with these points; the
+ # result must have at least one point since
+ # we know that s1 and s2 are in the Ranges
+ def _updated_range(r, first):
+ st = sign(r.step)*step
+ if r.start.is_finite:
+ rv = Range(first, r.stop, st)
+ else:
+ rv = Range(r.start, first + st, st)
+ return rv
+ r1 = _updated_range(a, s1)
+ r2 = _updated_range(b, s2)
+
+ # work with them both in the increasing direction
+ if sign(r1.step) < 0:
+ r1 = r1.reversed
+ if sign(r2.step) < 0:
+ r2 = r2.reversed
+
+ # return clipped Range with positive step; it
+ # can't be empty at this point
+ start = max(r1.start, r2.start)
+ stop = min(r1.stop, r2.stop)
+ return Range(start, stop, step)
+
+
+@intersection_sets.register(Range, Integers)
+def _(a, b):
+ return a
+
+
+@intersection_sets.register(Range, Rationals)
+def _(a, b):
+ return a
+
+
+@intersection_sets.register(ImageSet, Set)
+def _(self, other):
+ from sympy.solvers.diophantine import diophantine
+
+ # Only handle the straight-forward univariate case
+ if (len(self.lamda.variables) > 1
+ or self.lamda.signature != self.lamda.variables):
+ return None
+ base_set = self.base_sets[0]
+
+ # Intersection between ImageSets with Integers as base set
+ # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
+ # diophantine equations f(n)=g(m).
+ # If the solutions for n are {h(t) : t in Integers} then we return
+ # {f(h(t)) : t in integers}.
+ # If the solutions for n are {n_1, n_2, ..., n_k} then we return
+ # {f(n_i) : 1 <= i <= k}.
+ if base_set is S.Integers:
+ gm = None
+ if isinstance(other, ImageSet) and other.base_sets == (S.Integers,):
+ gm = other.lamda.expr
+ var = other.lamda.variables[0]
+ # Symbol of second ImageSet lambda must be distinct from first
+ m = Dummy('m')
+ gm = gm.subs(var, m)
+ elif other is S.Integers:
+ m = gm = Dummy('m')
+ if gm is not None:
+ fn = self.lamda.expr
+ n = self.lamda.variables[0]
+ try:
+ solns = list(diophantine(fn - gm, syms=(n, m), permute=True))
+ except (TypeError, NotImplementedError):
+ # TypeError if equation not polynomial with rational coeff.
+ # NotImplementedError if correct format but no solver.
+ return
+ # 3 cases are possible for solns:
+ # - empty set,
+ # - one or more parametric (infinite) solutions,
+ # - a finite number of (non-parametric) solution couples.
+ # Among those, there is one type of solution set that is
+ # not helpful here: multiple parametric solutions.
+ if len(solns) == 0:
+ return S.EmptySet
+ elif any(s.free_symbols for tupl in solns for s in tupl):
+ if len(solns) == 1:
+ soln, solm = solns[0]
+ (t,) = soln.free_symbols
+ expr = fn.subs(n, soln.subs(t, n)).expand()
+ return imageset(Lambda(n, expr), S.Integers)
+ else:
+ return
+ else:
+ return FiniteSet(*(fn.subs(n, s[0]) for s in solns))
+
+ if other == S.Reals:
+ from sympy.solvers.solvers import denoms, solve_linear
+
+ def _solution_union(exprs, sym):
+ # return a union of linear solutions to i in expr;
+ # if i cannot be solved, use a ConditionSet for solution
+ sols = []
+ for i in exprs:
+ x, xis = solve_linear(i, 0, [sym])
+ if x == sym:
+ sols.append(FiniteSet(xis))
+ else:
+ sols.append(ConditionSet(sym, Eq(i, 0)))
+ return Union(*sols)
+
+ f = self.lamda.expr
+ n = self.lamda.variables[0]
+
+ n_ = Dummy(n.name, real=True)
+ f_ = f.subs(n, n_)
+
+ re, im = f_.as_real_imag()
+ im = expand_complex(im)
+
+ re = re.subs(n_, n)
+ im = im.subs(n_, n)
+ ifree = im.free_symbols
+ lam = Lambda(n, re)
+ if im.is_zero:
+ # allow re-evaluation
+ # of self in this case to make
+ # the result canonical
+ pass
+ elif im.is_zero is False:
+ return S.EmptySet
+ elif ifree != {n}:
+ return None
+ else:
+ # univarite imaginary part in same variable;
+ # use numer instead of as_numer_denom to keep
+ # this as fast as possible while still handling
+ # simple cases
+ base_set &= _solution_union(
+ Mul.make_args(numer(im)), n)
+ # exclude values that make denominators 0
+ base_set -= _solution_union(denoms(f), n)
+ return imageset(lam, base_set)
+
+ elif isinstance(other, Interval):
+ from sympy.solvers.solveset import (invert_real, invert_complex,
+ solveset)
+
+ f = self.lamda.expr
+ n = self.lamda.variables[0]
+ new_inf, new_sup = None, None
+ new_lopen, new_ropen = other.left_open, other.right_open
+
+ if f.is_real:
+ inverter = invert_real
+ else:
+ inverter = invert_complex
+
+ g1, h1 = inverter(f, other.inf, n)
+ g2, h2 = inverter(f, other.sup, n)
+
+ if all(isinstance(i, FiniteSet) for i in (h1, h2)):
+ if g1 == n:
+ if len(h1) == 1:
+ new_inf = h1.args[0]
+ if g2 == n:
+ if len(h2) == 1:
+ new_sup = h2.args[0]
+ # TODO: Design a technique to handle multiple-inverse
+ # functions
+
+ # Any of the new boundary values cannot be determined
+ if any(i is None for i in (new_sup, new_inf)):
+ return
+
+
+ range_set = S.EmptySet
+
+ if all(i.is_real for i in (new_sup, new_inf)):
+ # this assumes continuity of underlying function
+ # however fixes the case when it is decreasing
+ if new_inf > new_sup:
+ new_inf, new_sup = new_sup, new_inf
+ new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
+ range_set = base_set.intersect(new_interval)
+ else:
+ if other.is_subset(S.Reals):
+ solutions = solveset(f, n, S.Reals)
+ if not isinstance(range_set, (ImageSet, ConditionSet)):
+ range_set = solutions.intersect(other)
+ else:
+ return
+
+ if range_set is S.EmptySet:
+ return S.EmptySet
+ elif isinstance(range_set, Range) and range_set.size is not S.Infinity:
+ range_set = FiniteSet(*list(range_set))
+
+ if range_set is not None:
+ return imageset(Lambda(n, f), range_set)
+ return
+ else:
+ return
+
+
+@intersection_sets.register(ProductSet, ProductSet)
+def _(a, b):
+ if len(b.args) != len(a.args):
+ return S.EmptySet
+ return ProductSet(*(i.intersect(j) for i, j in zip(a.sets, b.sets)))
+
+
+@intersection_sets.register(Interval, Interval)
+def _(a, b):
+ # handle (-oo, oo)
+ infty = S.NegativeInfinity, S.Infinity
+ if a == Interval(*infty):
+ l, r = a.left, a.right
+ if l.is_real or l in infty or r.is_real or r in infty:
+ return b
+
+ # We can't intersect [0,3] with [x,6] -- we don't know if x>0 or x<0
+ if not a._is_comparable(b):
+ return None
+
+ empty = False
+
+ if a.start <= b.end and b.start <= a.end:
+ # Get topology right.
+ if a.start < b.start:
+ start = b.start
+ left_open = b.left_open
+ elif a.start > b.start:
+ start = a.start
+ left_open = a.left_open
+ else:
+ #this is to ensure that if Eq(a.start,b.start) but
+ #type(a.start) != type(b.start) the order of a and b
+ #does not matter for the result
+ start = list(ordered([a,b]))[0].start
+ left_open = a.left_open or b.left_open
+
+ if a.end < b.end:
+ end = a.end
+ right_open = a.right_open
+ elif a.end > b.end:
+ end = b.end
+ right_open = b.right_open
+ else:
+ end = list(ordered([a,b]))[0].end
+ right_open = a.right_open or b.right_open
+
+ if end - start == 0 and (left_open or right_open):
+ empty = True
+ else:
+ empty = True
+
+ if empty:
+ return S.EmptySet
+
+ return Interval(start, end, left_open, right_open)
+
+@intersection_sets.register(EmptySet, Set)
+def _(a, b):
+ return S.EmptySet
+
+@intersection_sets.register(UniversalSet, Set)
+def _(a, b):
+ return b
+
+@intersection_sets.register(FiniteSet, FiniteSet)
+def _(a, b):
+ return FiniteSet(*(a._elements & b._elements))
+
+@intersection_sets.register(FiniteSet, Set)
+def _(a, b):
+ try:
+ return FiniteSet(*[el for el in a if el in b])
+ except TypeError:
+ return None # could not evaluate `el in b` due to symbolic ranges.
+
+@intersection_sets.register(Set, Set)
+def _(a, b):
+ return None
+
+@intersection_sets.register(Integers, Rationals)
+def _(a, b):
+ return a
+
+@intersection_sets.register(Naturals, Rationals)
+def _(a, b):
+ return a
+
+@intersection_sets.register(Rationals, Reals)
+def _(a, b):
+ return a
+
+def _intlike_interval(a, b):
+ try:
+ if b._inf is S.NegativeInfinity and b._sup is S.Infinity:
+ return a
+ s = Range(max(a.inf, ceiling(b.left)), floor(b.right) + 1)
+ return intersection_sets(s, b) # take out endpoints if open interval
+ except ValueError:
+ return None
+
+@intersection_sets.register(Integers, Interval)
+def _(a, b):
+ return _intlike_interval(a, b)
+
+@intersection_sets.register(Naturals, Interval)
+def _(a, b):
+ return _intlike_interval(a, b)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/issubset.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/issubset.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc23e8bf56f1743cd7f08452dd09a0acf981f5da
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/issubset.py
@@ -0,0 +1,144 @@
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.core.logic import fuzzy_and, fuzzy_bool, fuzzy_not, fuzzy_or
+from sympy.core.relational import Eq
+from sympy.sets.sets import FiniteSet, Interval, Set, Union, ProductSet
+from sympy.sets.fancysets import Complexes, Reals, Range, Rationals
+from sympy.multipledispatch import Dispatcher
+
+
+_inf_sets = [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes]
+
+
+is_subset_sets = Dispatcher('is_subset_sets')
+
+
+@is_subset_sets.register(Set, Set)
+def _(a, b):
+ return None
+
+@is_subset_sets.register(Interval, Interval)
+def _(a, b):
+ # This is correct but can be made more comprehensive...
+ if fuzzy_bool(a.start < b.start):
+ return False
+ if fuzzy_bool(a.end > b.end):
+ return False
+ if (b.left_open and not a.left_open and fuzzy_bool(Eq(a.start, b.start))):
+ return False
+ if (b.right_open and not a.right_open and fuzzy_bool(Eq(a.end, b.end))):
+ return False
+
+@is_subset_sets.register(Interval, FiniteSet)
+def _(a_interval, b_fs):
+ # An Interval can only be a subset of a finite set if it is finite
+ # which can only happen if it has zero measure.
+ if fuzzy_not(a_interval.measure.is_zero):
+ return False
+
+@is_subset_sets.register(Interval, Union)
+def _(a_interval, b_u):
+ if all(isinstance(s, (Interval, FiniteSet)) for s in b_u.args):
+ intervals = [s for s in b_u.args if isinstance(s, Interval)]
+ if all(fuzzy_bool(a_interval.start < s.start) for s in intervals):
+ return False
+ if all(fuzzy_bool(a_interval.end > s.end) for s in intervals):
+ return False
+ if a_interval.measure.is_nonzero:
+ no_overlap = lambda s1, s2: fuzzy_or([
+ fuzzy_bool(s1.end <= s2.start),
+ fuzzy_bool(s1.start >= s2.end),
+ ])
+ if all(no_overlap(s, a_interval) for s in intervals):
+ return False
+
+@is_subset_sets.register(Range, Range)
+def _(a, b):
+ if a.step == b.step == 1:
+ return fuzzy_and([fuzzy_bool(a.start >= b.start),
+ fuzzy_bool(a.stop <= b.stop)])
+
+@is_subset_sets.register(Range, Interval)
+def _(a_range, b_interval):
+ if a_range.step.is_positive:
+ if b_interval.left_open and a_range.inf.is_finite:
+ cond_left = a_range.inf > b_interval.left
+ else:
+ cond_left = a_range.inf >= b_interval.left
+ if b_interval.right_open and a_range.sup.is_finite:
+ cond_right = a_range.sup < b_interval.right
+ else:
+ cond_right = a_range.sup <= b_interval.right
+ return fuzzy_and([cond_left, cond_right])
+
+@is_subset_sets.register(Range, FiniteSet)
+def _(a_range, b_finiteset):
+ try:
+ a_size = a_range.size
+ except ValueError:
+ # symbolic Range of unknown size
+ return None
+ if a_size > len(b_finiteset):
+ return False
+ elif any(arg.has(Symbol) for arg in a_range.args):
+ return fuzzy_and(b_finiteset.contains(x) for x in a_range)
+ else:
+ # Checking A \ B == EmptySet is more efficient than repeated naive
+ # membership checks on an arbitrary FiniteSet.
+ a_set = set(a_range)
+ b_remaining = len(b_finiteset)
+ # Symbolic expressions and numbers of unknown type (integer or not) are
+ # all counted as "candidates", i.e. *potentially* matching some a in
+ # a_range.
+ cnt_candidate = 0
+ for b in b_finiteset:
+ if b.is_Integer:
+ a_set.discard(b)
+ elif fuzzy_not(b.is_integer):
+ pass
+ else:
+ cnt_candidate += 1
+ b_remaining -= 1
+ if len(a_set) > b_remaining + cnt_candidate:
+ return False
+ if len(a_set) == 0:
+ return True
+ return None
+
+@is_subset_sets.register(Interval, Range)
+def _(a_interval, b_range):
+ if a_interval.measure.is_extended_nonzero:
+ return False
+
+@is_subset_sets.register(Interval, Rationals)
+def _(a_interval, b_rationals):
+ if a_interval.measure.is_extended_nonzero:
+ return False
+
+@is_subset_sets.register(Range, Complexes)
+def _(a, b):
+ return True
+
+@is_subset_sets.register(Complexes, Interval)
+def _(a, b):
+ return False
+
+@is_subset_sets.register(Complexes, Range)
+def _(a, b):
+ return False
+
+@is_subset_sets.register(Complexes, Rationals)
+def _(a, b):
+ return False
+
+@is_subset_sets.register(Rationals, Reals)
+def _(a, b):
+ return True
+
+@is_subset_sets.register(Rationals, Range)
+def _(a, b):
+ return False
+
+@is_subset_sets.register(ProductSet, FiniteSet)
+def _(a_ps, b_fs):
+ return fuzzy_and(b_fs.contains(x) for x in a_ps)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/mul.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/mul.py
new file mode 100644
index 0000000000000000000000000000000000000000..0dedc8068b7973fd4cb6fbf2854e5fa671d188de
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/mul.py
@@ -0,0 +1,79 @@
+from sympy.core import Basic, Expr
+from sympy.core.numbers import oo
+from sympy.core.symbol import symbols
+from sympy.multipledispatch import Dispatcher
+from sympy.sets.setexpr import set_mul
+from sympy.sets.sets import Interval, Set
+
+
+_x, _y = symbols("x y")
+
+
+_set_mul = Dispatcher('_set_mul')
+_set_div = Dispatcher('_set_div')
+
+
+@_set_mul.register(Basic, Basic)
+def _(x, y):
+ return None
+
+@_set_mul.register(Set, Set)
+def _(x, y):
+ return None
+
+@_set_mul.register(Expr, Expr)
+def _(x, y):
+ return x*y
+
+@_set_mul.register(Interval, Interval)
+def _(x, y):
+ """
+ Multiplications in interval arithmetic
+ https://en.wikipedia.org/wiki/Interval_arithmetic
+ """
+ # TODO: some intervals containing 0 and oo will fail as 0*oo returns nan.
+ comvals = (
+ (x.start * y.start, bool(x.left_open or y.left_open)),
+ (x.start * y.end, bool(x.left_open or y.right_open)),
+ (x.end * y.start, bool(x.right_open or y.left_open)),
+ (x.end * y.end, bool(x.right_open or y.right_open)),
+ )
+ # TODO: handle symbolic intervals
+ minval, minopen = min(comvals)
+ maxval, maxopen = max(comvals)
+ return Interval(
+ minval,
+ maxval,
+ minopen,
+ maxopen
+ )
+
+@_set_div.register(Basic, Basic)
+def _(x, y):
+ return None
+
+@_set_div.register(Expr, Expr)
+def _(x, y):
+ return x/y
+
+@_set_div.register(Set, Set)
+def _(x, y):
+ return None
+
+@_set_div.register(Interval, Interval)
+def _(x, y):
+ """
+ Divisions in interval arithmetic
+ https://en.wikipedia.org/wiki/Interval_arithmetic
+ """
+ if (y.start*y.end).is_negative:
+ return Interval(-oo, oo)
+ if y.start == 0:
+ s2 = oo
+ else:
+ s2 = 1/y.start
+ if y.end == 0:
+ s1 = -oo
+ else:
+ s1 = 1/y.end
+ return set_mul(x, Interval(s1, s2, y.right_open, y.left_open))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/power.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/power.py
new file mode 100644
index 0000000000000000000000000000000000000000..3cad4ee49ab27770143bc121d1fbcd024bf01548
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/power.py
@@ -0,0 +1,107 @@
+from sympy.core import Basic, Expr
+from sympy.core.function import Lambda
+from sympy.core.numbers import oo, Infinity, NegativeInfinity, Zero, Integer
+from sympy.core.singleton import S
+from sympy.core.symbol import symbols
+from sympy.functions.elementary.miscellaneous import (Max, Min)
+from sympy.sets.fancysets import ImageSet
+from sympy.sets.setexpr import set_div
+from sympy.sets.sets import Set, Interval, FiniteSet, Union
+from sympy.multipledispatch import Dispatcher
+
+
+_x, _y = symbols("x y")
+
+
+_set_pow = Dispatcher('_set_pow')
+
+
+@_set_pow.register(Basic, Basic)
+def _(x, y):
+ return None
+
+@_set_pow.register(Set, Set)
+def _(x, y):
+ return ImageSet(Lambda((_x, _y), (_x ** _y)), x, y)
+
+@_set_pow.register(Expr, Expr)
+def _(x, y):
+ return x**y
+
+@_set_pow.register(Interval, Zero)
+def _(x, z):
+ return FiniteSet(S.One)
+
+@_set_pow.register(Interval, Integer)
+def _(x, exponent):
+ """
+ Powers in interval arithmetic
+ https://en.wikipedia.org/wiki/Interval_arithmetic
+ """
+ s1 = x.start**exponent
+ s2 = x.end**exponent
+ if ((s2 > s1) if exponent > 0 else (x.end > -x.start)) == True:
+ left_open = x.left_open
+ right_open = x.right_open
+ # TODO: handle unevaluated condition.
+ sleft = s2
+ else:
+ # TODO: `s2 > s1` could be unevaluated.
+ left_open = x.right_open
+ right_open = x.left_open
+ sleft = s1
+
+ if x.start.is_positive:
+ return Interval(
+ Min(s1, s2),
+ Max(s1, s2), left_open, right_open)
+ elif x.end.is_negative:
+ return Interval(
+ Min(s1, s2),
+ Max(s1, s2), left_open, right_open)
+
+ # Case where x.start < 0 and x.end > 0:
+ if exponent.is_odd:
+ if exponent.is_negative:
+ if x.start.is_zero:
+ return Interval(s2, oo, x.right_open)
+ if x.end.is_zero:
+ return Interval(-oo, s1, True, x.left_open)
+ return Union(Interval(-oo, s1, True, x.left_open), Interval(s2, oo, x.right_open))
+ else:
+ return Interval(s1, s2, x.left_open, x.right_open)
+ elif exponent.is_even:
+ if exponent.is_negative:
+ if x.start.is_zero:
+ return Interval(s2, oo, x.right_open)
+ if x.end.is_zero:
+ return Interval(s1, oo, x.left_open)
+ return Interval(0, oo)
+ else:
+ return Interval(S.Zero, sleft, S.Zero not in x, left_open)
+
+@_set_pow.register(Interval, Infinity)
+def _(b, e):
+ # TODO: add logic for open intervals?
+ if b.start.is_nonnegative:
+ if b.end < 1:
+ return FiniteSet(S.Zero)
+ if b.start > 1:
+ return FiniteSet(S.Infinity)
+ return Interval(0, oo)
+ elif b.end.is_negative:
+ if b.start > -1:
+ return FiniteSet(S.Zero)
+ if b.end < -1:
+ return FiniteSet(-oo, oo)
+ return Interval(-oo, oo)
+ else:
+ if b.start > -1:
+ if b.end < 1:
+ return FiniteSet(S.Zero)
+ return Interval(0, oo)
+ return Interval(-oo, oo)
+
+@_set_pow.register(Interval, NegativeInfinity)
+def _(b, e):
+ return _set_pow(set_div(S.One, b), oo)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/union.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/union.py
new file mode 100644
index 0000000000000000000000000000000000000000..75d867b49969ae2aeea76155dbaae7e05c1a6847
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/union.py
@@ -0,0 +1,147 @@
+from sympy.core.singleton import S
+from sympy.core.sympify import sympify
+from sympy.functions.elementary.miscellaneous import Min, Max
+from sympy.sets.sets import (EmptySet, FiniteSet, Intersection,
+ Interval, ProductSet, Set, Union, UniversalSet)
+from sympy.sets.fancysets import (ComplexRegion, Naturals, Naturals0,
+ Integers, Rationals, Reals)
+from sympy.multipledispatch import Dispatcher
+
+
+union_sets = Dispatcher('union_sets')
+
+
+@union_sets.register(Naturals0, Naturals)
+def _(a, b):
+ return a
+
+@union_sets.register(Rationals, Naturals)
+def _(a, b):
+ return a
+
+@union_sets.register(Rationals, Naturals0)
+def _(a, b):
+ return a
+
+@union_sets.register(Reals, Naturals)
+def _(a, b):
+ return a
+
+@union_sets.register(Reals, Naturals0)
+def _(a, b):
+ return a
+
+@union_sets.register(Reals, Rationals)
+def _(a, b):
+ return a
+
+@union_sets.register(Integers, Set)
+def _(a, b):
+ intersect = Intersection(a, b)
+ if intersect == a:
+ return b
+ elif intersect == b:
+ return a
+
+@union_sets.register(ComplexRegion, Set)
+def _(a, b):
+ if b.is_subset(S.Reals):
+ # treat a subset of reals as a complex region
+ b = ComplexRegion.from_real(b)
+
+ if b.is_ComplexRegion:
+ # a in rectangular form
+ if (not a.polar) and (not b.polar):
+ return ComplexRegion(Union(a.sets, b.sets))
+ # a in polar form
+ elif a.polar and b.polar:
+ return ComplexRegion(Union(a.sets, b.sets), polar=True)
+ return None
+
+@union_sets.register(EmptySet, Set)
+def _(a, b):
+ return b
+
+
+@union_sets.register(UniversalSet, Set)
+def _(a, b):
+ return a
+
+@union_sets.register(ProductSet, ProductSet)
+def _(a, b):
+ if b.is_subset(a):
+ return a
+ if len(b.sets) != len(a.sets):
+ return None
+ if len(a.sets) == 2:
+ a1, a2 = a.sets
+ b1, b2 = b.sets
+ if a1 == b1:
+ return a1 * Union(a2, b2)
+ if a2 == b2:
+ return Union(a1, b1) * a2
+ return None
+
+@union_sets.register(ProductSet, Set)
+def _(a, b):
+ if b.is_subset(a):
+ return a
+ return None
+
+@union_sets.register(Interval, Interval)
+def _(a, b):
+ if a._is_comparable(b):
+ # Non-overlapping intervals
+ end = Min(a.end, b.end)
+ start = Max(a.start, b.start)
+ if (end < start or
+ (end == start and (end not in a and end not in b))):
+ return None
+ else:
+ start = Min(a.start, b.start)
+ end = Max(a.end, b.end)
+
+ left_open = ((a.start != start or a.left_open) and
+ (b.start != start or b.left_open))
+ right_open = ((a.end != end or a.right_open) and
+ (b.end != end or b.right_open))
+ return Interval(start, end, left_open, right_open)
+
+@union_sets.register(Interval, UniversalSet)
+def _(a, b):
+ return S.UniversalSet
+
+@union_sets.register(Interval, Set)
+def _(a, b):
+ # If I have open end points and these endpoints are contained in b
+ # But only in case, when endpoints are finite. Because
+ # interval does not contain oo or -oo.
+ open_left_in_b_and_finite = (a.left_open and
+ sympify(b.contains(a.start)) is S.true and
+ a.start.is_finite)
+ open_right_in_b_and_finite = (a.right_open and
+ sympify(b.contains(a.end)) is S.true and
+ a.end.is_finite)
+ if open_left_in_b_and_finite or open_right_in_b_and_finite:
+ # Fill in my end points and return
+ open_left = a.left_open and a.start not in b
+ open_right = a.right_open and a.end not in b
+ new_a = Interval(a.start, a.end, open_left, open_right)
+ return {new_a, b}
+ return None
+
+@union_sets.register(FiniteSet, FiniteSet)
+def _(a, b):
+ return FiniteSet(*(a._elements | b._elements))
+
+@union_sets.register(FiniteSet, Set)
+def _(a, b):
+ # If `b` set contains one of my elements, remove it from `a`
+ if any(b.contains(x) == True for x in a):
+ return {
+ FiniteSet(*[x for x in a if b.contains(x) != True]), b}
+ return None
+
+@union_sets.register(Set, Set)
+def _(a, b):
+ return None
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/ordinals.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/ordinals.py
new file mode 100644
index 0000000000000000000000000000000000000000..cfe062354cfe58a4747998e51fa0d261e67576cc
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/ordinals.py
@@ -0,0 +1,282 @@
+from sympy.core import Basic, Integer
+import operator
+
+
+class OmegaPower(Basic):
+ """
+ Represents ordinal exponential and multiplication terms one of the
+ building blocks of the :class:`Ordinal` class.
+ In ``OmegaPower(a, b)``, ``a`` represents exponent and ``b`` represents multiplicity.
+ """
+ def __new__(cls, a, b):
+ if isinstance(b, int):
+ b = Integer(b)
+ if not isinstance(b, Integer) or b <= 0:
+ raise TypeError("multiplicity must be a positive integer")
+
+ if not isinstance(a, Ordinal):
+ a = Ordinal.convert(a)
+
+ return Basic.__new__(cls, a, b)
+
+ @property
+ def exp(self):
+ return self.args[0]
+
+ @property
+ def mult(self):
+ return self.args[1]
+
+ def _compare_term(self, other, op):
+ if self.exp == other.exp:
+ return op(self.mult, other.mult)
+ else:
+ return op(self.exp, other.exp)
+
+ def __eq__(self, other):
+ if not isinstance(other, OmegaPower):
+ try:
+ other = OmegaPower(0, other)
+ except TypeError:
+ return NotImplemented
+ return self.args == other.args
+
+ def __hash__(self):
+ return Basic.__hash__(self)
+
+ def __lt__(self, other):
+ if not isinstance(other, OmegaPower):
+ try:
+ other = OmegaPower(0, other)
+ except TypeError:
+ return NotImplemented
+ return self._compare_term(other, operator.lt)
+
+
+class Ordinal(Basic):
+ """
+ Represents ordinals in Cantor normal form.
+
+ Internally, this class is just a list of instances of OmegaPower.
+
+ Examples
+ ========
+ >>> from sympy import Ordinal, OmegaPower
+ >>> from sympy.sets.ordinals import omega
+ >>> w = omega
+ >>> w.is_limit_ordinal
+ True
+ >>> Ordinal(OmegaPower(w + 1, 1), OmegaPower(3, 2))
+ w**(w + 1) + w**3*2
+ >>> 3 + w
+ w
+ >>> (w + 1) * w
+ w**2
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic
+ """
+ def __new__(cls, *terms):
+ obj = super().__new__(cls, *terms)
+ powers = [i.exp for i in obj.args]
+ if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)):
+ raise ValueError("powers must be in decreasing order")
+ return obj
+
+ @property
+ def terms(self):
+ return self.args
+
+ @property
+ def leading_term(self):
+ if self == ord0:
+ raise ValueError("ordinal zero has no leading term")
+ return self.terms[0]
+
+ @property
+ def trailing_term(self):
+ if self == ord0:
+ raise ValueError("ordinal zero has no trailing term")
+ return self.terms[-1]
+
+ @property
+ def is_successor_ordinal(self):
+ try:
+ return self.trailing_term.exp == ord0
+ except ValueError:
+ return False
+
+ @property
+ def is_limit_ordinal(self):
+ try:
+ return not self.trailing_term.exp == ord0
+ except ValueError:
+ return False
+
+ @property
+ def degree(self):
+ return self.leading_term.exp
+
+ @classmethod
+ def convert(cls, integer_value):
+ if integer_value == 0:
+ return ord0
+ return Ordinal(OmegaPower(0, integer_value))
+
+ def __eq__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ return self.terms == other.terms
+
+ def __hash__(self):
+ return hash(self.args)
+
+ def __lt__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ for term_self, term_other in zip(self.terms, other.terms):
+ if term_self != term_other:
+ return term_self < term_other
+ return len(self.terms) < len(other.terms)
+
+ def __le__(self, other):
+ return (self == other or self < other)
+
+ def __gt__(self, other):
+ return not self <= other
+
+ def __ge__(self, other):
+ return not self < other
+
+ def __str__(self):
+ net_str = ""
+ plus_count = 0
+ if self == ord0:
+ return 'ord0'
+ for i in self.terms:
+ if plus_count:
+ net_str += " + "
+
+ if i.exp == ord0:
+ net_str += str(i.mult)
+ elif i.exp == 1:
+ net_str += 'w'
+ elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal:
+ net_str += 'w**(%s)'%i.exp
+ else:
+ net_str += 'w**%s'%i.exp
+
+ if not i.mult == 1 and not i.exp == ord0:
+ net_str += '*%s'%i.mult
+
+ plus_count += 1
+ return(net_str)
+
+ __repr__ = __str__
+
+ def __add__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ if other == ord0:
+ return self
+ a_terms = list(self.terms)
+ b_terms = list(other.terms)
+ r = len(a_terms) - 1
+ b_exp = other.degree
+ while r >= 0 and a_terms[r].exp < b_exp:
+ r -= 1
+ if r < 0:
+ terms = b_terms
+ elif a_terms[r].exp == b_exp:
+ sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult)
+ terms = a_terms[:r] + [sum_term] + b_terms[1:]
+ else:
+ terms = a_terms[:r+1] + b_terms
+ return Ordinal(*terms)
+
+ def __radd__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ return other + self
+
+ def __mul__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ if ord0 in (self, other):
+ return ord0
+ a_exp = self.degree
+ a_mult = self.leading_term.mult
+ summation = []
+ if other.is_limit_ordinal:
+ for arg in other.terms:
+ summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
+
+ else:
+ for arg in other.terms[:-1]:
+ summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
+ b_mult = other.trailing_term.mult
+ summation.append(OmegaPower(a_exp, a_mult*b_mult))
+ summation += list(self.terms[1:])
+ return Ordinal(*summation)
+
+ def __rmul__(self, other):
+ if not isinstance(other, Ordinal):
+ try:
+ other = Ordinal.convert(other)
+ except TypeError:
+ return NotImplemented
+ return other * self
+
+ def __pow__(self, other):
+ if not self == omega:
+ return NotImplemented
+ return Ordinal(OmegaPower(other, 1))
+
+
+class OrdinalZero(Ordinal):
+ """The ordinal zero.
+
+ OrdinalZero can be imported as ``ord0``.
+ """
+ pass
+
+
+class OrdinalOmega(Ordinal):
+ """The ordinal omega which forms the base of all ordinals in cantor normal form.
+
+ OrdinalOmega can be imported as ``omega``.
+
+ Examples
+ ========
+
+ >>> from sympy.sets.ordinals import omega
+ >>> omega + omega
+ w*2
+ """
+ def __new__(cls):
+ return Ordinal.__new__(cls)
+
+ @property
+ def terms(self):
+ return (OmegaPower(1, 1),)
+
+
+ord0 = OrdinalZero()
+omega = OrdinalOmega()
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/powerset.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/powerset.py
new file mode 100644
index 0000000000000000000000000000000000000000..2eb3b41b9859281480bc9517a1cad0abe7a5683f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/powerset.py
@@ -0,0 +1,119 @@
+from sympy.core.decorators import _sympifyit
+from sympy.core.parameters import global_parameters
+from sympy.core.logic import fuzzy_bool
+from sympy.core.singleton import S
+from sympy.core.sympify import _sympify
+
+from .sets import Set, FiniteSet, SetKind
+
+
+class PowerSet(Set):
+ r"""A symbolic object representing a power set.
+
+ Parameters
+ ==========
+
+ arg : Set
+ The set to take power of.
+
+ evaluate : bool
+ The flag to control evaluation.
+
+ If the evaluation is disabled for finite sets, it can take
+ advantage of using subset test as a membership test.
+
+ Notes
+ =====
+
+ Power set `\mathcal{P}(S)` is defined as a set containing all the
+ subsets of `S`.
+
+ If the set `S` is a finite set, its power set would have
+ `2^{\left| S \right|}` elements, where `\left| S \right|` denotes
+ the cardinality of `S`.
+
+ Examples
+ ========
+
+ >>> from sympy import PowerSet, S, FiniteSet
+
+ A power set of a finite set:
+
+ >>> PowerSet(FiniteSet(1, 2, 3))
+ PowerSet({1, 2, 3})
+
+ A power set of an empty set:
+
+ >>> PowerSet(S.EmptySet)
+ PowerSet(EmptySet)
+ >>> PowerSet(PowerSet(S.EmptySet))
+ PowerSet(PowerSet(EmptySet))
+
+ A power set of an infinite set:
+
+ >>> PowerSet(S.Reals)
+ PowerSet(Reals)
+
+ Evaluating the power set of a finite set to its explicit form:
+
+ >>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
+ FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Power_set
+
+ .. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
+ """
+ def __new__(cls, arg, evaluate=None):
+ if evaluate is None:
+ evaluate=global_parameters.evaluate
+
+ arg = _sympify(arg)
+
+ if not isinstance(arg, Set):
+ raise ValueError('{} must be a set.'.format(arg))
+
+ return super().__new__(cls, arg)
+
+ @property
+ def arg(self):
+ return self.args[0]
+
+ def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
+ arg = self.arg
+ if arg.is_FiniteSet:
+ return arg.powerset()
+ return None
+
+ @_sympifyit('other', NotImplemented)
+ def _contains(self, other):
+ if not isinstance(other, Set):
+ return None
+
+ return fuzzy_bool(self.arg.is_superset(other))
+
+ def _eval_is_subset(self, other):
+ if isinstance(other, PowerSet):
+ return self.arg.is_subset(other.arg)
+
+ def __len__(self):
+ return 2 ** len(self.arg)
+
+ def __iter__(self):
+ found = [S.EmptySet]
+ yield S.EmptySet
+
+ for x in self.arg:
+ temp = []
+ x = FiniteSet(x)
+ for y in found:
+ new = x + y
+ yield new
+ temp.append(new)
+ found.extend(temp)
+
+ @property
+ def kind(self):
+ return SetKind(self.arg.kind)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/setexpr.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/setexpr.py
new file mode 100644
index 0000000000000000000000000000000000000000..94d77d5293617a620b70a945888987ce6cc61157
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/setexpr.py
@@ -0,0 +1,97 @@
+from sympy.core import Expr
+from sympy.core.decorators import call_highest_priority, _sympifyit
+from .fancysets import ImageSet
+from .sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
+
+
+class SetExpr(Expr):
+ """An expression that can take on values of a set.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, FiniteSet
+ >>> from sympy.sets.setexpr import SetExpr
+
+ >>> a = SetExpr(Interval(0, 5))
+ >>> b = SetExpr(FiniteSet(1, 10))
+ >>> (a + b).set
+ Union(Interval(1, 6), Interval(10, 15))
+ >>> (2*a + b).set
+ Interval(1, 20)
+ """
+ _op_priority = 11.0
+
+ def __new__(cls, setarg):
+ return Expr.__new__(cls, setarg)
+
+ set = property(lambda self: self.args[0])
+
+ def _latex(self, printer):
+ return r"SetExpr\left({}\right)".format(printer._print(self.set))
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__radd__')
+ def __add__(self, other):
+ return _setexpr_apply_operation(set_add, self, other)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__add__')
+ def __radd__(self, other):
+ return _setexpr_apply_operation(set_add, other, self)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__rmul__')
+ def __mul__(self, other):
+ return _setexpr_apply_operation(set_mul, self, other)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__mul__')
+ def __rmul__(self, other):
+ return _setexpr_apply_operation(set_mul, other, self)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__rsub__')
+ def __sub__(self, other):
+ return _setexpr_apply_operation(set_sub, self, other)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__sub__')
+ def __rsub__(self, other):
+ return _setexpr_apply_operation(set_sub, other, self)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__rpow__')
+ def __pow__(self, other):
+ return _setexpr_apply_operation(set_pow, self, other)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__pow__')
+ def __rpow__(self, other):
+ return _setexpr_apply_operation(set_pow, other, self)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__rtruediv__')
+ def __truediv__(self, other):
+ return _setexpr_apply_operation(set_div, self, other)
+
+ @_sympifyit('other', NotImplemented)
+ @call_highest_priority('__truediv__')
+ def __rtruediv__(self, other):
+ return _setexpr_apply_operation(set_div, other, self)
+
+ def _eval_func(self, func):
+ # TODO: this could be implemented straight into `imageset`:
+ res = set_function(func, self.set)
+ if res is None:
+ return SetExpr(ImageSet(func, self.set))
+ return SetExpr(res)
+
+
+def _setexpr_apply_operation(op, x, y):
+ if isinstance(x, SetExpr):
+ x = x.set
+ if isinstance(y, SetExpr):
+ y = y.set
+ out = op(x, y)
+ return SetExpr(out)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/sets.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/sets.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb61ff6931386f508d56d9eaaa9bdd34f5e1aa98
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/sets.py
@@ -0,0 +1,2749 @@
+from typing import Any, Callable
+from functools import reduce
+from collections import defaultdict
+import inspect
+
+from sympy.core.kind import Kind, UndefinedKind, NumberKind
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple, TupleKind
+from sympy.core.decorators import sympify_method_args, sympify_return
+from sympy.core.evalf import EvalfMixin
+from sympy.core.expr import Expr
+from sympy.core.function import Lambda
+from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
+ fuzzy_not)
+from sympy.core.numbers import Float, Integer
+from sympy.core.operations import LatticeOp
+from sympy.core.parameters import global_parameters
+from sympy.core.relational import Eq, Ne, is_lt
+from sympy.core.singleton import Singleton, S
+from sympy.core.sorting import ordered
+from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol
+from sympy.core.sympify import _sympify, sympify, _sympy_converter
+from sympy.functions.elementary.exponential import exp, log
+from sympy.functions.elementary.miscellaneous import Max, Min
+from sympy.logic.boolalg import And, Or, Not, Xor, true, false
+from sympy.utilities.decorator import deprecated
+from sympy.utilities.exceptions import sympy_deprecation_warning
+from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable,
+ subsets)
+from sympy.utilities.misc import func_name, filldedent
+
+from mpmath import mpi, mpf
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+
+tfn = defaultdict(lambda: None, {
+ True: S.true,
+ S.true: S.true,
+ False: S.false,
+ S.false: S.false})
+
+
+@sympify_method_args
+class Set(Basic, EvalfMixin):
+ """
+ The base class for any kind of set.
+
+ Explanation
+ ===========
+
+ This is not meant to be used directly as a container of items. It does not
+ behave like the builtin ``set``; see :class:`FiniteSet` for that.
+
+ Real intervals are represented by the :class:`Interval` class and unions of
+ sets by the :class:`Union` class. The empty set is represented by the
+ :class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
+ """
+
+ __slots__ = ()
+
+ is_number = False
+ is_iterable = False
+ is_interval = False
+
+ is_FiniteSet = False
+ is_Interval = False
+ is_ProductSet = False
+ is_Union = False
+ is_Intersection: FuzzyBool = None
+ is_UniversalSet: FuzzyBool = None
+ is_Complement: FuzzyBool = None
+ is_ComplexRegion = False
+
+ is_empty: FuzzyBool = None
+ is_finite_set: FuzzyBool = None
+
+ @property # type: ignore
+ @deprecated(
+ """
+ The is_EmptySet attribute of Set objects is deprecated.
+ Use 's is S.EmptySet" or 's.is_empty' instead.
+ """,
+ deprecated_since_version="1.5",
+ active_deprecations_target="deprecated-is-emptyset",
+ )
+ def is_EmptySet(self):
+ return None
+
+ @staticmethod
+ def _infimum_key(expr):
+ """
+ Return infimum (if possible) else S.Infinity.
+ """
+ try:
+ infimum = expr.inf
+ assert infimum.is_comparable
+ infimum = infimum.evalf() # issue #18505
+ except (NotImplementedError,
+ AttributeError, AssertionError, ValueError):
+ infimum = S.Infinity
+ return infimum
+
+ def union(self, other):
+ """
+ Returns the union of ``self`` and ``other``.
+
+ Examples
+ ========
+
+ As a shortcut it is possible to use the ``+`` operator:
+
+ >>> from sympy import Interval, FiniteSet
+ >>> Interval(0, 1).union(Interval(2, 3))
+ Union(Interval(0, 1), Interval(2, 3))
+ >>> Interval(0, 1) + Interval(2, 3)
+ Union(Interval(0, 1), Interval(2, 3))
+ >>> Interval(1, 2, True, True) + FiniteSet(2, 3)
+ Union({3}, Interval.Lopen(1, 2))
+
+ Similarly it is possible to use the ``-`` operator for set differences:
+
+ >>> Interval(0, 2) - Interval(0, 1)
+ Interval.Lopen(1, 2)
+ >>> Interval(1, 3) - FiniteSet(2)
+ Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
+
+ """
+ return Union(self, other)
+
+ def intersect(self, other):
+ """
+ Returns the intersection of 'self' and 'other'.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+
+ >>> Interval(1, 3).intersect(Interval(1, 2))
+ Interval(1, 2)
+
+ >>> from sympy import imageset, Lambda, symbols, S
+ >>> n, m = symbols('n m')
+ >>> a = imageset(Lambda(n, 2*n), S.Integers)
+ >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
+ EmptySet
+
+ """
+ return Intersection(self, other)
+
+ def intersection(self, other):
+ """
+ Alias for :meth:`intersect()`
+ """
+ return self.intersect(other)
+
+ def is_disjoint(self, other):
+ """
+ Returns True if ``self`` and ``other`` are disjoint.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 2).is_disjoint(Interval(1, 2))
+ False
+ >>> Interval(0, 2).is_disjoint(Interval(3, 4))
+ True
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Disjoint_sets
+ """
+ return self.intersect(other) == S.EmptySet
+
+ def isdisjoint(self, other):
+ """
+ Alias for :meth:`is_disjoint()`
+ """
+ return self.is_disjoint(other)
+
+ def complement(self, universe):
+ r"""
+ The complement of 'self' w.r.t the given universe.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, S
+ >>> Interval(0, 1).complement(S.Reals)
+ Union(Interval.open(-oo, 0), Interval.open(1, oo))
+
+ >>> Interval(0, 1).complement(S.UniversalSet)
+ Complement(UniversalSet, Interval(0, 1))
+
+ """
+ return Complement(universe, self)
+
+ def _complement(self, other):
+ # this behaves as other - self
+ if isinstance(self, ProductSet) and isinstance(other, ProductSet):
+ # If self and other are disjoint then other - self == self
+ if len(self.sets) != len(other.sets):
+ return other
+
+ # There can be other ways to represent this but this gives:
+ # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
+ overlaps = []
+ pairs = list(zip(self.sets, other.sets))
+ for n in range(len(pairs)):
+ sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
+ overlaps.append(ProductSet(*sets))
+ return Union(*overlaps)
+
+ elif isinstance(other, Interval):
+ if isinstance(self, (Interval, FiniteSet)):
+ return Intersection(other, self.complement(S.Reals))
+
+ elif isinstance(other, Union):
+ return Union(*(o - self for o in other.args))
+
+ elif isinstance(other, Complement):
+ return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
+
+ elif other is S.EmptySet:
+ return S.EmptySet
+
+ elif isinstance(other, FiniteSet):
+ sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
+ # ignore those that are contained in self
+ return Union(FiniteSet(*(sifted[False])),
+ Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
+ if sifted[None] else S.EmptySet)
+
+ def symmetric_difference(self, other):
+ """
+ Returns symmetric difference of ``self`` and ``other``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, S
+ >>> Interval(1, 3).symmetric_difference(S.Reals)
+ Union(Interval.open(-oo, 1), Interval.open(3, oo))
+ >>> Interval(1, 10).symmetric_difference(S.Reals)
+ Union(Interval.open(-oo, 1), Interval.open(10, oo))
+
+ >>> from sympy import S, EmptySet
+ >>> S.Reals.symmetric_difference(EmptySet)
+ Reals
+
+ References
+ ==========
+ .. [1] https://en.wikipedia.org/wiki/Symmetric_difference
+
+ """
+ return SymmetricDifference(self, other)
+
+ def _symmetric_difference(self, other):
+ return Union(Complement(self, other), Complement(other, self))
+
+ @property
+ def inf(self):
+ """
+ The infimum of ``self``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, Union
+ >>> Interval(0, 1).inf
+ 0
+ >>> Union(Interval(0, 1), Interval(2, 3)).inf
+ 0
+
+ """
+ return self._inf
+
+ @property
+ def _inf(self):
+ raise NotImplementedError("(%s)._inf" % self)
+
+ @property
+ def sup(self):
+ """
+ The supremum of ``self``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, Union
+ >>> Interval(0, 1).sup
+ 1
+ >>> Union(Interval(0, 1), Interval(2, 3)).sup
+ 3
+
+ """
+ return self._sup
+
+ @property
+ def _sup(self):
+ raise NotImplementedError("(%s)._sup" % self)
+
+ def contains(self, other):
+ """
+ Returns a SymPy value indicating whether ``other`` is contained
+ in ``self``: ``true`` if it is, ``false`` if it is not, else
+ an unevaluated ``Contains`` expression (or, as in the case of
+ ConditionSet and a union of FiniteSet/Intervals, an expression
+ indicating the conditions for containment).
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, S
+ >>> from sympy.abc import x
+
+ >>> Interval(0, 1).contains(0.5)
+ True
+
+ As a shortcut it is possible to use the ``in`` operator, but that
+ will raise an error unless an affirmative true or false is not
+ obtained.
+
+ >>> Interval(0, 1).contains(x)
+ (0 <= x) & (x <= 1)
+ >>> x in Interval(0, 1)
+ Traceback (most recent call last):
+ ...
+ TypeError: did not evaluate to a bool: None
+
+ The result of 'in' is a bool, not a SymPy value
+
+ >>> 1 in Interval(0, 2)
+ True
+ >>> _ is S.true
+ False
+ """
+ from .contains import Contains
+ other = sympify(other, strict=True)
+
+ c = self._contains(other)
+ if isinstance(c, Contains):
+ return c
+ if c is None:
+ return Contains(other, self, evaluate=False)
+ b = tfn[c]
+ if b is None:
+ return c
+ return b
+
+ def _contains(self, other):
+ raise NotImplementedError(filldedent('''
+ (%s)._contains(%s) is not defined. This method, when
+ defined, will receive a sympified object. The method
+ should return True, False, None or something that
+ expresses what must be true for the containment of that
+ object in self to be evaluated. If None is returned
+ then a generic Contains object will be returned
+ by the ``contains`` method.''' % (self, other)))
+
+ def is_subset(self, other):
+ """
+ Returns True if ``self`` is a subset of ``other``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 0.5).is_subset(Interval(0, 1))
+ True
+ >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
+ False
+
+ """
+ if not isinstance(other, Set):
+ raise ValueError("Unknown argument '%s'" % other)
+
+ # Handle the trivial cases
+ if self == other:
+ return True
+ is_empty = self.is_empty
+ if is_empty is True:
+ return True
+ elif fuzzy_not(is_empty) and other.is_empty:
+ return False
+ if self.is_finite_set is False and other.is_finite_set:
+ return False
+
+ # Dispatch on subclass rules
+ ret = self._eval_is_subset(other)
+ if ret is not None:
+ return ret
+ ret = other._eval_is_superset(self)
+ if ret is not None:
+ return ret
+
+ # Use pairwise rules from multiple dispatch
+ from sympy.sets.handlers.issubset import is_subset_sets
+ ret = is_subset_sets(self, other)
+ if ret is not None:
+ return ret
+
+ # Fall back on computing the intersection
+ # XXX: We shouldn't do this. A query like this should be handled
+ # without evaluating new Set objects. It should be the other way round
+ # so that the intersect method uses is_subset for evaluation.
+ if self.intersect(other) == self:
+ return True
+
+ def _eval_is_subset(self, other):
+ '''Returns a fuzzy bool for whether self is a subset of other.'''
+ return None
+
+ def _eval_is_superset(self, other):
+ '''Returns a fuzzy bool for whether self is a subset of other.'''
+ return None
+
+ # This should be deprecated:
+ def issubset(self, other):
+ """
+ Alias for :meth:`is_subset()`
+ """
+ return self.is_subset(other)
+
+ def is_proper_subset(self, other):
+ """
+ Returns True if ``self`` is a proper subset of ``other``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
+ True
+ >>> Interval(0, 1).is_proper_subset(Interval(0, 1))
+ False
+
+ """
+ if isinstance(other, Set):
+ return self != other and self.is_subset(other)
+ else:
+ raise ValueError("Unknown argument '%s'" % other)
+
+ def is_superset(self, other):
+ """
+ Returns True if ``self`` is a superset of ``other``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 0.5).is_superset(Interval(0, 1))
+ False
+ >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
+ True
+
+ """
+ if isinstance(other, Set):
+ return other.is_subset(self)
+ else:
+ raise ValueError("Unknown argument '%s'" % other)
+
+ # This should be deprecated:
+ def issuperset(self, other):
+ """
+ Alias for :meth:`is_superset()`
+ """
+ return self.is_superset(other)
+
+ def is_proper_superset(self, other):
+ """
+ Returns True if ``self`` is a proper superset of ``other``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
+ True
+ >>> Interval(0, 1).is_proper_superset(Interval(0, 1))
+ False
+
+ """
+ if isinstance(other, Set):
+ return self != other and self.is_superset(other)
+ else:
+ raise ValueError("Unknown argument '%s'" % other)
+
+ def _eval_powerset(self):
+ from .powerset import PowerSet
+ return PowerSet(self)
+
+ def powerset(self):
+ """
+ Find the Power set of ``self``.
+
+ Examples
+ ========
+
+ >>> from sympy import EmptySet, FiniteSet, Interval
+
+ A power set of an empty set:
+
+ >>> A = EmptySet
+ >>> A.powerset()
+ {EmptySet}
+
+ A power set of a finite set:
+
+ >>> A = FiniteSet(1, 2)
+ >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
+ >>> A.powerset() == FiniteSet(a, b, c, EmptySet)
+ True
+
+ A power set of an interval:
+
+ >>> Interval(1, 2).powerset()
+ PowerSet(Interval(1, 2))
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Power_set
+
+ """
+ return self._eval_powerset()
+
+ @property
+ def measure(self):
+ """
+ The (Lebesgue) measure of ``self``.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, Union
+ >>> Interval(0, 1).measure
+ 1
+ >>> Union(Interval(0, 1), Interval(2, 3)).measure
+ 2
+
+ """
+ return self._measure
+
+ @property
+ def kind(self):
+ """
+ The kind of a Set
+
+ Explanation
+ ===========
+
+ Any :class:`Set` will have kind :class:`SetKind` which is
+ parametrised by the kind of the elements of the set. For example
+ most sets are sets of numbers and will have kind
+ ``SetKind(NumberKind)``. If elements of sets are different in kind than
+ their kind will ``SetKind(UndefinedKind)``. See
+ :class:`sympy.core.kind.Kind` for an explanation of the kind system.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, Matrix, FiniteSet, EmptySet, ProductSet, PowerSet
+
+ >>> FiniteSet(Matrix([1, 2])).kind
+ SetKind(MatrixKind(NumberKind))
+
+ >>> Interval(1, 2).kind
+ SetKind(NumberKind)
+
+ >>> EmptySet.kind
+ SetKind()
+
+ A :class:`sympy.sets.powerset.PowerSet` is a set of sets:
+
+ >>> PowerSet({1, 2, 3}).kind
+ SetKind(SetKind(NumberKind))
+
+ A :class:`ProductSet` represents the set of tuples of elements of
+ other sets. Its kind is :class:`sympy.core.containers.TupleKind`
+ parametrised by the kinds of the elements of those sets:
+
+ >>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
+ >>> list(p)
+ [(1, 3), (2, 3), (1, 4), (2, 4)]
+ >>> p.kind
+ SetKind(TupleKind(NumberKind, NumberKind))
+
+ When all elements of the set do not have same kind, the kind
+ will be returned as ``SetKind(UndefinedKind)``:
+
+ >>> FiniteSet(0, Matrix([1, 2])).kind
+ SetKind(UndefinedKind)
+
+ The kind of the elements of a set are given by the ``element_kind``
+ attribute of ``SetKind``:
+
+ >>> Interval(1, 2).kind.element_kind
+ NumberKind
+
+ See Also
+ ========
+
+ NumberKind
+ sympy.core.kind.UndefinedKind
+ sympy.core.containers.TupleKind
+ MatrixKind
+ sympy.matrices.expressions.sets.MatrixSet
+ sympy.sets.conditionset.ConditionSet
+ Rationals
+ Naturals
+ Integers
+ sympy.sets.fancysets.ImageSet
+ sympy.sets.fancysets.Range
+ sympy.sets.fancysets.ComplexRegion
+ sympy.sets.powerset.PowerSet
+ sympy.sets.sets.ProductSet
+ sympy.sets.sets.Interval
+ sympy.sets.sets.Union
+ sympy.sets.sets.Intersection
+ sympy.sets.sets.Complement
+ sympy.sets.sets.EmptySet
+ sympy.sets.sets.UniversalSet
+ sympy.sets.sets.FiniteSet
+ sympy.sets.sets.SymmetricDifference
+ sympy.sets.sets.DisjointUnion
+ """
+ return self._kind()
+
+ @property
+ def boundary(self):
+ """
+ The boundary or frontier of a set.
+
+ Explanation
+ ===========
+
+ A point x is on the boundary of a set S if
+
+ 1. x is in the closure of S.
+ I.e. Every neighborhood of x contains a point in S.
+ 2. x is not in the interior of S.
+ I.e. There does not exist an open set centered on x contained
+ entirely within S.
+
+ There are the points on the outer rim of S. If S is open then these
+ points need not actually be contained within S.
+
+ For example, the boundary of an interval is its start and end points.
+ This is true regardless of whether or not the interval is open.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1).boundary
+ {0, 1}
+ >>> Interval(0, 1, True, False).boundary
+ {0, 1}
+ """
+ return self._boundary
+
+ @property
+ def is_open(self):
+ """
+ Property method to check whether a set is open.
+
+ Explanation
+ ===========
+
+ A set is open if and only if it has an empty intersection with its
+ boundary. In particular, a subset A of the reals is open if and only
+ if each one of its points is contained in an open interval that is a
+ subset of A.
+
+ Examples
+ ========
+ >>> from sympy import S
+ >>> S.Reals.is_open
+ True
+ >>> S.Rationals.is_open
+ False
+ """
+ return Intersection(self, self.boundary).is_empty
+
+ @property
+ def is_closed(self):
+ """
+ A property method to check whether a set is closed.
+
+ Explanation
+ ===========
+
+ A set is closed if its complement is an open set. The closedness of a
+ subset of the reals is determined with respect to R and its standard
+ topology.
+
+ Examples
+ ========
+ >>> from sympy import Interval
+ >>> Interval(0, 1).is_closed
+ True
+ """
+ return self.boundary.is_subset(self)
+
+ @property
+ def closure(self):
+ """
+ Property method which returns the closure of a set.
+ The closure is defined as the union of the set itself and its
+ boundary.
+
+ Examples
+ ========
+ >>> from sympy import S, Interval
+ >>> S.Reals.closure
+ Reals
+ >>> Interval(0, 1).closure
+ Interval(0, 1)
+ """
+ return self + self.boundary
+
+ @property
+ def interior(self):
+ """
+ Property method which returns the interior of a set.
+ The interior of a set S consists all points of S that do not
+ belong to the boundary of S.
+
+ Examples
+ ========
+ >>> from sympy import Interval
+ >>> Interval(0, 1).interior
+ Interval.open(0, 1)
+ >>> Interval(0, 1).boundary.interior
+ EmptySet
+ """
+ return self - self.boundary
+
+ @property
+ def _boundary(self):
+ raise NotImplementedError()
+
+ @property
+ def _measure(self):
+ raise NotImplementedError("(%s)._measure" % self)
+
+ def _kind(self):
+ return SetKind(UndefinedKind)
+
+ def _eval_evalf(self, prec):
+ dps = prec_to_dps(prec)
+ return self.func(*[arg.evalf(n=dps) for arg in self.args])
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __add__(self, other):
+ return self.union(other)
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __or__(self, other):
+ return self.union(other)
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __and__(self, other):
+ return self.intersect(other)
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __mul__(self, other):
+ return ProductSet(self, other)
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __xor__(self, other):
+ return SymmetricDifference(self, other)
+
+ @sympify_return([('exp', Expr)], NotImplemented)
+ def __pow__(self, exp):
+ if not (exp.is_Integer and exp >= 0):
+ raise ValueError("%s: Exponent must be a positive Integer" % exp)
+ return ProductSet(*[self]*exp)
+
+ @sympify_return([('other', 'Set')], NotImplemented)
+ def __sub__(self, other):
+ return Complement(self, other)
+
+ def __contains__(self, other):
+ other = _sympify(other)
+ c = self._contains(other)
+ b = tfn[c]
+ if b is None:
+ # x in y must evaluate to T or F; to entertain a None
+ # result with Set use y.contains(x)
+ raise TypeError('did not evaluate to a bool: %r' % c)
+ return b
+
+
+class ProductSet(Set):
+ """
+ Represents a Cartesian Product of Sets.
+
+ Explanation
+ ===========
+
+ Returns a Cartesian product given several sets as either an iterable
+ or individual arguments.
+
+ Can use ``*`` operator on any sets for convenient shorthand.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, FiniteSet, ProductSet
+ >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
+ >>> ProductSet(I, S)
+ ProductSet(Interval(0, 5), {1, 2, 3})
+
+ >>> (2, 2) in ProductSet(I, S)
+ True
+
+ >>> Interval(0, 1) * Interval(0, 1) # The unit square
+ ProductSet(Interval(0, 1), Interval(0, 1))
+
+ >>> coin = FiniteSet('H', 'T')
+ >>> set(coin**2)
+ {(H, H), (H, T), (T, H), (T, T)}
+
+ The Cartesian product is not commutative or associative e.g.:
+
+ >>> I*S == S*I
+ False
+ >>> (I*I)*I == I*(I*I)
+ False
+
+ Notes
+ =====
+
+ - Passes most operations down to the argument sets
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Cartesian_product
+ """
+ is_ProductSet = True
+
+ def __new__(cls, *sets, **assumptions):
+ if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
+ sympy_deprecation_warning(
+ """
+ProductSet(iterable) is deprecated. Use ProductSet(*iterable) instead.
+ """,
+ deprecated_since_version="1.5",
+ active_deprecations_target="deprecated-productset-iterable",
+ )
+ sets = tuple(sets[0])
+
+ sets = [sympify(s) for s in sets]
+
+ if not all(isinstance(s, Set) for s in sets):
+ raise TypeError("Arguments to ProductSet should be of type Set")
+
+ # Nullary product of sets is *not* the empty set
+ if len(sets) == 0:
+ return FiniteSet(())
+
+ if S.EmptySet in sets:
+ return S.EmptySet
+
+ return Basic.__new__(cls, *sets, **assumptions)
+
+ @property
+ def sets(self):
+ return self.args
+
+ def flatten(self):
+ def _flatten(sets):
+ for s in sets:
+ if s.is_ProductSet:
+ yield from _flatten(s.sets)
+ else:
+ yield s
+ return ProductSet(*_flatten(self.sets))
+
+
+
+ def _contains(self, element):
+ """
+ ``in`` operator for ProductSets.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> (2, 3) in Interval(0, 5) * Interval(0, 5)
+ True
+
+ >>> (10, 10) in Interval(0, 5) * Interval(0, 5)
+ False
+
+ Passes operation on to constituent sets
+ """
+ if element.is_Symbol:
+ return None
+
+ if not isinstance(element, Tuple) or len(element) != len(self.sets):
+ return False
+
+ return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
+
+ def as_relational(self, *symbols):
+ symbols = [_sympify(s) for s in symbols]
+ if len(symbols) != len(self.sets) or not all(
+ i.is_Symbol for i in symbols):
+ raise ValueError(
+ 'number of symbols must match the number of sets')
+ return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
+
+ @property
+ def _boundary(self):
+ return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
+ for j, b in enumerate(self.sets)))
+ for i, a in enumerate(self.sets)))
+
+ @property
+ def is_iterable(self):
+ """
+ A property method which tests whether a set is iterable or not.
+ Returns True if set is iterable, otherwise returns False.
+
+ Examples
+ ========
+
+ >>> from sympy import FiniteSet, Interval
+ >>> I = Interval(0, 1)
+ >>> A = FiniteSet(1, 2, 3, 4, 5)
+ >>> I.is_iterable
+ False
+ >>> A.is_iterable
+ True
+
+ """
+ return all(set.is_iterable for set in self.sets)
+
+ def __iter__(self):
+ """
+ A method which implements is_iterable property method.
+ If self.is_iterable returns True (both constituent sets are iterable),
+ then return the Cartesian Product. Otherwise, raise TypeError.
+ """
+ return iproduct(*self.sets)
+
+ @property
+ def is_empty(self):
+ return fuzzy_or(s.is_empty for s in self.sets)
+
+ @property
+ def is_finite_set(self):
+ all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
+ return fuzzy_or([self.is_empty, all_finite])
+
+ @property
+ def _measure(self):
+ measure = 1
+ for s in self.sets:
+ measure *= s.measure
+ return measure
+
+ def _kind(self):
+ return SetKind(TupleKind(*(i.kind.element_kind for i in self.args)))
+
+ def __len__(self):
+ return reduce(lambda a, b: a*b, (len(s) for s in self.args))
+
+ def __bool__(self):
+ return all(self.sets)
+
+
+class Interval(Set):
+ """
+ Represents a real interval as a Set.
+
+ Usage:
+ Returns an interval with end points ``start`` and ``end``.
+
+ For ``left_open=True`` (default ``left_open`` is ``False``) the interval
+ will be open on the left. Similarly, for ``right_open=True`` the interval
+ will be open on the right.
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol, Interval
+ >>> Interval(0, 1)
+ Interval(0, 1)
+ >>> Interval.Ropen(0, 1)
+ Interval.Ropen(0, 1)
+ >>> Interval.Ropen(0, 1)
+ Interval.Ropen(0, 1)
+ >>> Interval.Lopen(0, 1)
+ Interval.Lopen(0, 1)
+ >>> Interval.open(0, 1)
+ Interval.open(0, 1)
+
+ >>> a = Symbol('a', real=True)
+ >>> Interval(0, a)
+ Interval(0, a)
+
+ Notes
+ =====
+ - Only real end points are supported
+ - ``Interval(a, b)`` with $a > b$ will return the empty set
+ - Use the ``evalf()`` method to turn an Interval into an mpmath
+ ``mpi`` interval instance
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
+ """
+ is_Interval = True
+
+ def __new__(cls, start, end, left_open=False, right_open=False):
+
+ start = _sympify(start)
+ end = _sympify(end)
+ left_open = _sympify(left_open)
+ right_open = _sympify(right_open)
+
+ if not all(isinstance(a, (type(true), type(false)))
+ for a in [left_open, right_open]):
+ raise NotImplementedError(
+ "left_open and right_open can have only true/false values, "
+ "got %s and %s" % (left_open, right_open))
+
+ # Only allow real intervals
+ if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
+ raise ValueError("Non-real intervals are not supported")
+
+ # evaluate if possible
+ if is_lt(end, start):
+ return S.EmptySet
+ elif (end - start).is_negative:
+ return S.EmptySet
+
+ if end == start and (left_open or right_open):
+ return S.EmptySet
+ if end == start and not (left_open or right_open):
+ if start is S.Infinity or start is S.NegativeInfinity:
+ return S.EmptySet
+ return FiniteSet(end)
+
+ # Make sure infinite interval end points are open.
+ if start is S.NegativeInfinity:
+ left_open = true
+ if end is S.Infinity:
+ right_open = true
+ if start == S.Infinity or end == S.NegativeInfinity:
+ return S.EmptySet
+
+ return Basic.__new__(cls, start, end, left_open, right_open)
+
+ @property
+ def start(self):
+ """
+ The left end point of the interval.
+
+ This property takes the same value as the ``inf`` property.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1).start
+ 0
+
+ """
+ return self._args[0]
+
+ @property
+ def end(self):
+ """
+ The right end point of the interval.
+
+ This property takes the same value as the ``sup`` property.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1).end
+ 1
+
+ """
+ return self._args[1]
+
+ @property
+ def left_open(self):
+ """
+ True if interval is left-open.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1, left_open=True).left_open
+ True
+ >>> Interval(0, 1, left_open=False).left_open
+ False
+
+ """
+ return self._args[2]
+
+ @property
+ def right_open(self):
+ """
+ True if interval is right-open.
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(0, 1, right_open=True).right_open
+ True
+ >>> Interval(0, 1, right_open=False).right_open
+ False
+
+ """
+ return self._args[3]
+
+ @classmethod
+ def open(cls, a, b):
+ """Return an interval including neither boundary."""
+ return cls(a, b, True, True)
+
+ @classmethod
+ def Lopen(cls, a, b):
+ """Return an interval not including the left boundary."""
+ return cls(a, b, True, False)
+
+ @classmethod
+ def Ropen(cls, a, b):
+ """Return an interval not including the right boundary."""
+ return cls(a, b, False, True)
+
+ @property
+ def _inf(self):
+ return self.start
+
+ @property
+ def _sup(self):
+ return self.end
+
+ @property
+ def left(self):
+ return self.start
+
+ @property
+ def right(self):
+ return self.end
+
+ @property
+ def is_empty(self):
+ if self.left_open or self.right_open:
+ cond = self.start >= self.end # One/both bounds open
+ else:
+ cond = self.start > self.end # Both bounds closed
+ return fuzzy_bool(cond)
+
+ @property
+ def is_finite_set(self):
+ return self.measure.is_zero
+
+ def _complement(self, other):
+ if other == S.Reals:
+ a = Interval(S.NegativeInfinity, self.start,
+ True, not self.left_open)
+ b = Interval(self.end, S.Infinity, not self.right_open, True)
+ return Union(a, b)
+
+ if isinstance(other, FiniteSet):
+ nums = [m for m in other.args if m.is_number]
+ if nums == []:
+ return None
+
+ return Set._complement(self, other)
+
+ @property
+ def _boundary(self):
+ finite_points = [p for p in (self.start, self.end)
+ if abs(p) != S.Infinity]
+ return FiniteSet(*finite_points)
+
+ def _contains(self, other):
+ if (not isinstance(other, Expr) or other is S.NaN
+ or other.is_real is False or other.has(S.ComplexInfinity)):
+ # if an expression has zoo it will be zoo or nan
+ # and neither of those is real
+ return false
+
+ if self.start is S.NegativeInfinity and self.end is S.Infinity:
+ if other.is_real is not None:
+ return other.is_real
+
+ d = Dummy()
+ return self.as_relational(d).subs(d, other)
+
+ def as_relational(self, x):
+ """Rewrite an interval in terms of inequalities and logic operators."""
+ x = sympify(x)
+ if self.right_open:
+ right = x < self.end
+ else:
+ right = x <= self.end
+ if self.left_open:
+ left = self.start < x
+ else:
+ left = self.start <= x
+ return And(left, right)
+
+ @property
+ def _measure(self):
+ return self.end - self.start
+
+ def _kind(self):
+ return SetKind(NumberKind)
+
+ def to_mpi(self, prec=53):
+ return mpi(mpf(self.start._eval_evalf(prec)),
+ mpf(self.end._eval_evalf(prec)))
+
+ def _eval_evalf(self, prec):
+ return Interval(self.left._evalf(prec), self.right._evalf(prec),
+ left_open=self.left_open, right_open=self.right_open)
+
+ def _is_comparable(self, other):
+ is_comparable = self.start.is_comparable
+ is_comparable &= self.end.is_comparable
+ is_comparable &= other.start.is_comparable
+ is_comparable &= other.end.is_comparable
+
+ return is_comparable
+
+ @property
+ def is_left_unbounded(self):
+ """Return ``True`` if the left endpoint is negative infinity. """
+ return self.left is S.NegativeInfinity or self.left == Float("-inf")
+
+ @property
+ def is_right_unbounded(self):
+ """Return ``True`` if the right endpoint is positive infinity. """
+ return self.right is S.Infinity or self.right == Float("+inf")
+
+ def _eval_Eq(self, other):
+ if not isinstance(other, Interval):
+ if isinstance(other, FiniteSet):
+ return false
+ elif isinstance(other, Set):
+ return None
+ return false
+
+
+class Union(Set, LatticeOp):
+ """
+ Represents a union of sets as a :class:`Set`.
+
+ Examples
+ ========
+
+ >>> from sympy import Union, Interval
+ >>> Union(Interval(1, 2), Interval(3, 4))
+ Union(Interval(1, 2), Interval(3, 4))
+
+ The Union constructor will always try to merge overlapping intervals,
+ if possible. For example:
+
+ >>> Union(Interval(1, 2), Interval(2, 3))
+ Interval(1, 3)
+
+ See Also
+ ========
+
+ Intersection
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
+ """
+ is_Union = True
+
+ @property
+ def identity(self):
+ return S.EmptySet
+
+ @property
+ def zero(self):
+ return S.UniversalSet
+
+ def __new__(cls, *args, **kwargs):
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
+
+ # flatten inputs to merge intersections and iterables
+ args = _sympify(args)
+
+ # Reduce sets using known rules
+ if evaluate:
+ args = list(cls._new_args_filter(args))
+ return simplify_union(args)
+
+ args = list(ordered(args, Set._infimum_key))
+
+ obj = Basic.__new__(cls, *args)
+ obj._argset = frozenset(args)
+ return obj
+
+ @property
+ def args(self):
+ return self._args
+
+ def _complement(self, universe):
+ # DeMorgan's Law
+ return Intersection(s.complement(universe) for s in self.args)
+
+ @property
+ def _inf(self):
+ # We use Min so that sup is meaningful in combination with symbolic
+ # interval end points.
+ return Min(*[set.inf for set in self.args])
+
+ @property
+ def _sup(self):
+ # We use Max so that sup is meaningful in combination with symbolic
+ # end points.
+ return Max(*[set.sup for set in self.args])
+
+ @property
+ def is_empty(self):
+ return fuzzy_and(set.is_empty for set in self.args)
+
+ @property
+ def is_finite_set(self):
+ return fuzzy_and(set.is_finite_set for set in self.args)
+
+ @property
+ def _measure(self):
+ # Measure of a union is the sum of the measures of the sets minus
+ # the sum of their pairwise intersections plus the sum of their
+ # triple-wise intersections minus ... etc...
+
+ # Sets is a collection of intersections and a set of elementary
+ # sets which made up those intersections (called "sos" for set of sets)
+ # An example element might of this list might be:
+ # ( {A,B,C}, A.intersect(B).intersect(C) )
+
+ # Start with just elementary sets ( ({A}, A), ({B}, B), ... )
+ # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
+ sets = [(FiniteSet(s), s) for s in self.args]
+ measure = 0
+ parity = 1
+ while sets:
+ # Add up the measure of these sets and add or subtract it to total
+ measure += parity * sum(inter.measure for sos, inter in sets)
+
+ # For each intersection in sets, compute the intersection with every
+ # other set not already part of the intersection.
+ sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
+ for sos, intersection in sets for newset in self.args
+ if newset not in sos)
+
+ # Clear out sets with no measure
+ sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
+
+ # Clear out duplicates
+ sos_list = []
+ sets_list = []
+ for _set in sets:
+ if _set[0] in sos_list:
+ continue
+ else:
+ sos_list.append(_set[0])
+ sets_list.append(_set)
+ sets = sets_list
+
+ # Flip Parity - next time subtract/add if we added/subtracted here
+ parity *= -1
+ return measure
+
+ def _kind(self):
+ kinds = tuple(arg.kind for arg in self.args if arg is not S.EmptySet)
+ if not kinds:
+ return SetKind()
+ elif all(i == kinds[0] for i in kinds):
+ return kinds[0]
+ else:
+ return SetKind(UndefinedKind)
+
+ @property
+ def _boundary(self):
+ def boundary_of_set(i):
+ """ The boundary of set i minus interior of all other sets """
+ b = self.args[i].boundary
+ for j, a in enumerate(self.args):
+ if j != i:
+ b = b - a.interior
+ return b
+ return Union(*map(boundary_of_set, range(len(self.args))))
+
+ def _contains(self, other):
+ return Or(*[s.contains(other) for s in self.args])
+
+ def is_subset(self, other):
+ return fuzzy_and(s.is_subset(other) for s in self.args)
+
+ def as_relational(self, symbol):
+ """Rewrite a Union in terms of equalities and logic operators. """
+ if (len(self.args) == 2 and
+ all(isinstance(i, Interval) for i in self.args)):
+ # optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3)
+ # instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x))
+ # XXX: This should be ideally be improved to handle any number of
+ # intervals and also not to assume that the intervals are in any
+ # particular sorted order.
+ a, b = self.args
+ if a.sup == b.inf and a.right_open and b.left_open:
+ mincond = symbol > a.inf if a.left_open else symbol >= a.inf
+ maxcond = symbol < b.sup if b.right_open else symbol <= b.sup
+ necond = Ne(symbol, a.sup)
+ return And(necond, mincond, maxcond)
+ return Or(*[i.as_relational(symbol) for i in self.args])
+
+ @property
+ def is_iterable(self):
+ return all(arg.is_iterable for arg in self.args)
+
+ def __iter__(self):
+ return roundrobin(*(iter(arg) for arg in self.args))
+
+
+class Intersection(Set, LatticeOp):
+ """
+ Represents an intersection of sets as a :class:`Set`.
+
+ Examples
+ ========
+
+ >>> from sympy import Intersection, Interval
+ >>> Intersection(Interval(1, 3), Interval(2, 4))
+ Interval(2, 3)
+
+ We often use the .intersect method
+
+ >>> Interval(1,3).intersect(Interval(2,4))
+ Interval(2, 3)
+
+ See Also
+ ========
+
+ Union
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
+ """
+ is_Intersection = True
+
+ @property
+ def identity(self):
+ return S.UniversalSet
+
+ @property
+ def zero(self):
+ return S.EmptySet
+
+ def __new__(cls, *args, **kwargs):
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
+
+ # flatten inputs to merge intersections and iterables
+ args = list(ordered(set(_sympify(args))))
+
+ # Reduce sets using known rules
+ if evaluate:
+ args = list(cls._new_args_filter(args))
+ return simplify_intersection(args)
+
+ args = list(ordered(args, Set._infimum_key))
+
+ obj = Basic.__new__(cls, *args)
+ obj._argset = frozenset(args)
+ return obj
+
+ @property
+ def args(self):
+ return self._args
+
+ @property
+ def is_iterable(self):
+ return any(arg.is_iterable for arg in self.args)
+
+ @property
+ def is_finite_set(self):
+ if fuzzy_or(arg.is_finite_set for arg in self.args):
+ return True
+
+ def _kind(self):
+ kinds = tuple(arg.kind for arg in self.args if arg is not S.UniversalSet)
+ if not kinds:
+ return SetKind(UndefinedKind)
+ elif all(i == kinds[0] for i in kinds):
+ return kinds[0]
+ else:
+ return SetKind()
+
+ @property
+ def _inf(self):
+ raise NotImplementedError()
+
+ @property
+ def _sup(self):
+ raise NotImplementedError()
+
+ def _contains(self, other):
+ return And(*[set.contains(other) for set in self.args])
+
+ def __iter__(self):
+ sets_sift = sift(self.args, lambda x: x.is_iterable)
+
+ completed = False
+ candidates = sets_sift[True] + sets_sift[None]
+
+ finite_candidates, others = [], []
+ for candidate in candidates:
+ length = None
+ try:
+ length = len(candidate)
+ except TypeError:
+ others.append(candidate)
+
+ if length is not None:
+ finite_candidates.append(candidate)
+ finite_candidates.sort(key=len)
+
+ for s in finite_candidates + others:
+ other_sets = set(self.args) - {s}
+ other = Intersection(*other_sets, evaluate=False)
+ completed = True
+ for x in s:
+ try:
+ if x in other:
+ yield x
+ except TypeError:
+ completed = False
+ if completed:
+ return
+
+ if not completed:
+ if not candidates:
+ raise TypeError("None of the constituent sets are iterable")
+ raise TypeError(
+ "The computation had not completed because of the "
+ "undecidable set membership is found in every candidates.")
+
+ @staticmethod
+ def _handle_finite_sets(args):
+ '''Simplify intersection of one or more FiniteSets and other sets'''
+
+ # First separate the FiniteSets from the others
+ fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
+
+ # Let the caller handle intersection of non-FiniteSets
+ if not fs_args:
+ return
+
+ # Convert to Python sets and build the set of all elements
+ fs_sets = [set(fs) for fs in fs_args]
+ all_elements = reduce(lambda a, b: a | b, fs_sets, set())
+
+ # Extract elements that are definitely in or definitely not in the
+ # intersection. Here we check contains for all of args.
+ definite = set()
+ for e in all_elements:
+ inall = fuzzy_and(s.contains(e) for s in args)
+ if inall is True:
+ definite.add(e)
+ if inall is not None:
+ for s in fs_sets:
+ s.discard(e)
+
+ # At this point all elements in all of fs_sets are possibly in the
+ # intersection. In some cases this is because they are definitely in
+ # the intersection of the finite sets but it's not clear if they are
+ # members of others. We might have {m, n}, {m}, and Reals where we
+ # don't know if m or n is real. We want to remove n here but it is
+ # possibly in because it might be equal to m. So what we do now is
+ # extract the elements that are definitely in the remaining finite
+ # sets iteratively until we end up with {n}, {}. At that point if we
+ # get any empty set all remaining elements are discarded.
+
+ fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
+
+ # Need fuzzy containment testing
+ fs_symsets = [FiniteSet(*s) for s in fs_sets]
+
+ while fs_elements:
+ for e in fs_elements:
+ infs = fuzzy_and(s.contains(e) for s in fs_symsets)
+ if infs is True:
+ definite.add(e)
+ if infs is not None:
+ for n, s in enumerate(fs_sets):
+ # Update Python set and FiniteSet
+ if e in s:
+ s.remove(e)
+ fs_symsets[n] = FiniteSet(*s)
+ fs_elements.remove(e)
+ break
+ # If we completed the for loop without removing anything we are
+ # done so quit the outer while loop
+ else:
+ break
+
+ # If any of the sets of remainder elements is empty then we discard
+ # all of them for the intersection.
+ if not all(fs_sets):
+ fs_sets = [set()]
+
+ # Here we fold back the definitely included elements into each fs.
+ # Since they are definitely included they must have been members of
+ # each FiniteSet to begin with. We could instead fold these in with a
+ # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
+ if definite:
+ fs_sets = [fs | definite for fs in fs_sets]
+
+ if fs_sets == [set()]:
+ return S.EmptySet
+
+ sets = [FiniteSet(*s) for s in fs_sets]
+
+ # Any set in others is redundant if it contains all the elements that
+ # are in the finite sets so we don't need it in the Intersection
+ all_elements = reduce(lambda a, b: a | b, fs_sets, set())
+ is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
+ others = [o for o in others if not is_redundant(o)]
+
+ if others:
+ rest = Intersection(*others)
+ # XXX: Maybe this shortcut should be at the beginning. For large
+ # FiniteSets it could much more efficient to process the other
+ # sets first...
+ if rest is S.EmptySet:
+ return S.EmptySet
+ # Flatten the Intersection
+ if rest.is_Intersection:
+ sets.extend(rest.args)
+ else:
+ sets.append(rest)
+
+ if len(sets) == 1:
+ return sets[0]
+ else:
+ return Intersection(*sets, evaluate=False)
+
+ def as_relational(self, symbol):
+ """Rewrite an Intersection in terms of equalities and logic operators"""
+ return And(*[set.as_relational(symbol) for set in self.args])
+
+
+class Complement(Set):
+ r"""Represents the set difference or relative complement of a set with
+ another set.
+
+ $$A - B = \{x \in A \mid x \notin B\}$$
+
+
+ Examples
+ ========
+
+ >>> from sympy import Complement, FiniteSet
+ >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
+ {0, 2}
+
+ See Also
+ =========
+
+ Intersection, Union
+
+ References
+ ==========
+
+ .. [1] https://mathworld.wolfram.com/ComplementSet.html
+ """
+
+ is_Complement = True
+
+ def __new__(cls, a, b, evaluate=True):
+ a, b = map(_sympify, (a, b))
+ if evaluate:
+ return Complement.reduce(a, b)
+
+ return Basic.__new__(cls, a, b)
+
+ @staticmethod
+ def reduce(A, B):
+ """
+ Simplify a :class:`Complement`.
+
+ """
+ if B == S.UniversalSet or A.is_subset(B):
+ return S.EmptySet
+
+ if isinstance(B, Union):
+ return Intersection(*(s.complement(A) for s in B.args))
+
+ result = B._complement(A)
+ if result is not None:
+ return result
+ else:
+ return Complement(A, B, evaluate=False)
+
+ def _contains(self, other):
+ A = self.args[0]
+ B = self.args[1]
+ return And(A.contains(other), Not(B.contains(other)))
+
+ def as_relational(self, symbol):
+ """Rewrite a complement in terms of equalities and logic
+ operators"""
+ A, B = self.args
+
+ A_rel = A.as_relational(symbol)
+ B_rel = Not(B.as_relational(symbol))
+
+ return And(A_rel, B_rel)
+
+ def _kind(self):
+ return self.args[0].kind
+
+ @property
+ def is_iterable(self):
+ if self.args[0].is_iterable:
+ return True
+
+ @property
+ def is_finite_set(self):
+ A, B = self.args
+ a_finite = A.is_finite_set
+ if a_finite is True:
+ return True
+ elif a_finite is False and B.is_finite_set:
+ return False
+
+ def __iter__(self):
+ A, B = self.args
+ for a in A:
+ if a not in B:
+ yield a
+ else:
+ continue
+
+
+class EmptySet(Set, metaclass=Singleton):
+ """
+ Represents the empty set. The empty set is available as a singleton
+ as ``S.EmptySet``.
+
+ Examples
+ ========
+
+ >>> from sympy import S, Interval
+ >>> S.EmptySet
+ EmptySet
+
+ >>> Interval(1, 2).intersect(S.EmptySet)
+ EmptySet
+
+ See Also
+ ========
+
+ UniversalSet
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Empty_set
+ """
+ is_empty = True
+ is_finite_set = True
+ is_FiniteSet = True
+
+ @property # type: ignore
+ @deprecated(
+ """
+ The is_EmptySet attribute of Set objects is deprecated.
+ Use 's is S.EmptySet" or 's.is_empty' instead.
+ """,
+ deprecated_since_version="1.5",
+ active_deprecations_target="deprecated-is-emptyset",
+ )
+ def is_EmptySet(self):
+ return True
+
+ @property
+ def _measure(self):
+ return 0
+
+ def _contains(self, other):
+ return false
+
+ def as_relational(self, symbol):
+ return false
+
+ def __len__(self):
+ return 0
+
+ def __iter__(self):
+ return iter([])
+
+ def _eval_powerset(self):
+ return FiniteSet(self)
+
+ @property
+ def _boundary(self):
+ return self
+
+ def _complement(self, other):
+ return other
+
+ def _kind(self):
+ return SetKind()
+
+ def _symmetric_difference(self, other):
+ return other
+
+
+class UniversalSet(Set, metaclass=Singleton):
+ """
+ Represents the set of all things.
+ The universal set is available as a singleton as ``S.UniversalSet``.
+
+ Examples
+ ========
+
+ >>> from sympy import S, Interval
+ >>> S.UniversalSet
+ UniversalSet
+
+ >>> Interval(1, 2).intersect(S.UniversalSet)
+ Interval(1, 2)
+
+ See Also
+ ========
+
+ EmptySet
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Universal_set
+ """
+
+ is_UniversalSet = True
+ is_empty = False
+ is_finite_set = False
+
+ def _complement(self, other):
+ return S.EmptySet
+
+ def _symmetric_difference(self, other):
+ return other
+
+ @property
+ def _measure(self):
+ return S.Infinity
+
+ def _kind(self):
+ return SetKind(UndefinedKind)
+
+ def _contains(self, other):
+ return true
+
+ def as_relational(self, symbol):
+ return true
+
+ @property
+ def _boundary(self):
+ return S.EmptySet
+
+
+class FiniteSet(Set):
+ """
+ Represents a finite set of Sympy expressions.
+
+ Examples
+ ========
+
+ >>> from sympy import FiniteSet, Symbol, Interval, Naturals0
+ >>> FiniteSet(1, 2, 3, 4)
+ {1, 2, 3, 4}
+ >>> 3 in FiniteSet(1, 2, 3, 4)
+ True
+ >>> FiniteSet(1, (1, 2), Symbol('x'))
+ {1, x, (1, 2)}
+ >>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
+ FiniteSet({1, 2}, Interval(1, 2), Naturals0)
+ >>> members = [1, 2, 3, 4]
+ >>> f = FiniteSet(*members)
+ >>> f
+ {1, 2, 3, 4}
+ >>> f - FiniteSet(2)
+ {1, 3, 4}
+ >>> f + FiniteSet(2, 5)
+ {1, 2, 3, 4, 5}
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Finite_set
+ """
+ is_FiniteSet = True
+ is_iterable = True
+ is_empty = False
+ is_finite_set = True
+
+ def __new__(cls, *args, **kwargs):
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
+ if evaluate:
+ args = list(map(sympify, args))
+
+ if len(args) == 0:
+ return S.EmptySet
+ else:
+ args = list(map(sympify, args))
+
+ # keep the form of the first canonical arg
+ dargs = {}
+ for i in reversed(list(ordered(args))):
+ if i.is_Symbol:
+ dargs[i] = i
+ else:
+ try:
+ dargs[i.as_dummy()] = i
+ except TypeError:
+ # e.g. i = class without args like `Interval`
+ dargs[i] = i
+ _args_set = set(dargs.values())
+ args = list(ordered(_args_set, Set._infimum_key))
+ obj = Basic.__new__(cls, *args)
+ obj._args_set = _args_set
+ return obj
+
+
+ def __iter__(self):
+ return iter(self.args)
+
+ def _complement(self, other):
+ if isinstance(other, Interval):
+ # Splitting in sub-intervals is only done for S.Reals;
+ # other cases that need splitting will first pass through
+ # Set._complement().
+ nums, syms = [], []
+ for m in self.args:
+ if m.is_number and m.is_real:
+ nums.append(m)
+ elif m.is_real == False:
+ pass # drop non-reals
+ else:
+ syms.append(m) # various symbolic expressions
+ if other == S.Reals and nums != []:
+ nums.sort()
+ intervals = [] # Build up a list of intervals between the elements
+ intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
+ for a, b in zip(nums[:-1], nums[1:]):
+ intervals.append(Interval(a, b, True, True)) # both open
+ intervals.append(Interval(nums[-1], S.Infinity, True, True))
+ if syms != []:
+ return Complement(Union(*intervals, evaluate=False),
+ FiniteSet(*syms), evaluate=False)
+ else:
+ return Union(*intervals, evaluate=False)
+ elif nums == []: # no splitting necessary or possible:
+ if syms:
+ return Complement(other, FiniteSet(*syms), evaluate=False)
+ else:
+ return other
+
+ elif isinstance(other, FiniteSet):
+ unk = []
+ for i in self:
+ c = sympify(other.contains(i))
+ if c is not S.true and c is not S.false:
+ unk.append(i)
+ unk = FiniteSet(*unk)
+ if unk == self:
+ return
+ not_true = []
+ for i in other:
+ c = sympify(self.contains(i))
+ if c is not S.true:
+ not_true.append(i)
+ return Complement(FiniteSet(*not_true), unk)
+
+ return Set._complement(self, other)
+
+ def _contains(self, other):
+ """
+ Tests whether an element, other, is in the set.
+
+ Explanation
+ ===========
+
+ The actual test is for mathematical equality (as opposed to
+ syntactical equality). In the worst case all elements of the
+ set must be checked.
+
+ Examples
+ ========
+
+ >>> from sympy import FiniteSet
+ >>> 1 in FiniteSet(1, 2)
+ True
+ >>> 5 in FiniteSet(1, 2)
+ False
+
+ """
+ if other in self._args_set:
+ return True
+ else:
+ # evaluate=True is needed to override evaluate=False context;
+ # we need Eq to do the evaluation
+ return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
+ for e in self.args)
+
+ def _eval_is_subset(self, other):
+ return fuzzy_and(other._contains(e) for e in self.args)
+
+ @property
+ def _boundary(self):
+ return self
+
+ @property
+ def _inf(self):
+ return Min(*self)
+
+ @property
+ def _sup(self):
+ return Max(*self)
+
+ @property
+ def measure(self):
+ return 0
+
+ def _kind(self):
+ if not self.args:
+ return SetKind()
+ elif all(i.kind == self.args[0].kind for i in self.args):
+ return SetKind(self.args[0].kind)
+ else:
+ return SetKind(UndefinedKind)
+
+ def __len__(self):
+ return len(self.args)
+
+ def as_relational(self, symbol):
+ """Rewrite a FiniteSet in terms of equalities and logic operators. """
+ return Or(*[Eq(symbol, elem) for elem in self])
+
+ def compare(self, other):
+ return (hash(self) - hash(other))
+
+ def _eval_evalf(self, prec):
+ dps = prec_to_dps(prec)
+ return FiniteSet(*[elem.evalf(n=dps) for elem in self])
+
+ def _eval_simplify(self, **kwargs):
+ from sympy.simplify import simplify
+ return FiniteSet(*[simplify(elem, **kwargs) for elem in self])
+
+ @property
+ def _sorted_args(self):
+ return self.args
+
+ def _eval_powerset(self):
+ return self.func(*[self.func(*s) for s in subsets(self.args)])
+
+ def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
+ """Rewriting method for a finite set to a power set."""
+ from .powerset import PowerSet
+
+ is2pow = lambda n: bool(n and not n & (n - 1))
+ if not is2pow(len(self)):
+ return None
+
+ fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
+ if not all(fs_test(arg) for arg in args):
+ return None
+
+ biggest = max(args, key=len)
+ for arg in subsets(biggest.args):
+ arg_set = FiniteSet(*arg)
+ if arg_set not in args:
+ return None
+ return PowerSet(biggest)
+
+ def __ge__(self, other):
+ if not isinstance(other, Set):
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
+ return other.is_subset(self)
+
+ def __gt__(self, other):
+ if not isinstance(other, Set):
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
+ return self.is_proper_superset(other)
+
+ def __le__(self, other):
+ if not isinstance(other, Set):
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
+ return self.is_subset(other)
+
+ def __lt__(self, other):
+ if not isinstance(other, Set):
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
+ return self.is_proper_subset(other)
+
+ def __eq__(self, other):
+ if isinstance(other, (set, frozenset)):
+ return self._args_set == other
+ return super().__eq__(other)
+
+ __hash__ : Callable[[Basic], Any] = Basic.__hash__
+
+_sympy_converter[set] = lambda x: FiniteSet(*x)
+_sympy_converter[frozenset] = lambda x: FiniteSet(*x)
+
+
+class SymmetricDifference(Set):
+ """Represents the set of elements which are in either of the
+ sets and not in their intersection.
+
+ Examples
+ ========
+
+ >>> from sympy import SymmetricDifference, FiniteSet
+ >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
+ {1, 2, 4, 5}
+
+ See Also
+ ========
+
+ Complement, Union
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Symmetric_difference
+ """
+
+ is_SymmetricDifference = True
+
+ def __new__(cls, a, b, evaluate=True):
+ if evaluate:
+ return SymmetricDifference.reduce(a, b)
+
+ return Basic.__new__(cls, a, b)
+
+ @staticmethod
+ def reduce(A, B):
+ result = B._symmetric_difference(A)
+ if result is not None:
+ return result
+ else:
+ return SymmetricDifference(A, B, evaluate=False)
+
+ def as_relational(self, symbol):
+ """Rewrite a symmetric_difference in terms of equalities and
+ logic operators"""
+ A, B = self.args
+
+ A_rel = A.as_relational(symbol)
+ B_rel = B.as_relational(symbol)
+
+ return Xor(A_rel, B_rel)
+
+ @property
+ def is_iterable(self):
+ if all(arg.is_iterable for arg in self.args):
+ return True
+
+ def __iter__(self):
+
+ args = self.args
+ union = roundrobin(*(iter(arg) for arg in args))
+
+ for item in union:
+ count = 0
+ for s in args:
+ if item in s:
+ count += 1
+
+ if count % 2 == 1:
+ yield item
+
+
+
+class DisjointUnion(Set):
+ """ Represents the disjoint union (also known as the external disjoint union)
+ of a finite number of sets.
+
+ Examples
+ ========
+
+ >>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
+ >>> A = FiniteSet(1, 2, 3)
+ >>> B = Interval(0, 5)
+ >>> DisjointUnion(A, B)
+ DisjointUnion({1, 2, 3}, Interval(0, 5))
+ >>> DisjointUnion(A, B).rewrite(Union)
+ Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1}))
+ >>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
+ >>> DisjointUnion(C, C)
+ DisjointUnion({x, y, z}, {x, y, z})
+ >>> DisjointUnion(C, C).rewrite(Union)
+ ProductSet({x, y, z}, {0, 1})
+
+ References
+ ==========
+
+ https://en.wikipedia.org/wiki/Disjoint_union
+ """
+
+ def __new__(cls, *sets):
+ dj_collection = []
+ for set_i in sets:
+ if isinstance(set_i, Set):
+ dj_collection.append(set_i)
+ else:
+ raise TypeError("Invalid input: '%s', input args \
+ to DisjointUnion must be Sets" % set_i)
+ obj = Basic.__new__(cls, *dj_collection)
+ return obj
+
+ @property
+ def sets(self):
+ return self.args
+
+ @property
+ def is_empty(self):
+ return fuzzy_and(s.is_empty for s in self.sets)
+
+ @property
+ def is_finite_set(self):
+ all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
+ return fuzzy_or([self.is_empty, all_finite])
+
+ @property
+ def is_iterable(self):
+ if self.is_empty:
+ return False
+ iter_flag = True
+ for set_i in self.sets:
+ if not set_i.is_empty:
+ iter_flag = iter_flag and set_i.is_iterable
+ return iter_flag
+
+ def _eval_rewrite_as_Union(self, *sets):
+ """
+ Rewrites the disjoint union as the union of (``set`` x {``i``})
+ where ``set`` is the element in ``sets`` at index = ``i``
+ """
+
+ dj_union = S.EmptySet
+ index = 0
+ for set_i in sets:
+ if isinstance(set_i, Set):
+ cross = ProductSet(set_i, FiniteSet(index))
+ dj_union = Union(dj_union, cross)
+ index = index + 1
+ return dj_union
+
+ def _contains(self, element):
+ """
+ ``in`` operator for DisjointUnion
+
+ Examples
+ ========
+
+ >>> from sympy import Interval, DisjointUnion
+ >>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
+ >>> (0.5, 0) in D
+ True
+ >>> (0.5, 1) in D
+ True
+ >>> (1.5, 0) in D
+ False
+ >>> (1.5, 1) in D
+ True
+
+ Passes operation on to constituent sets
+ """
+ if not isinstance(element, Tuple) or len(element) != 2:
+ return False
+
+ if not element[1].is_Integer:
+ return False
+
+ if element[1] >= len(self.sets) or element[1] < 0:
+ return False
+
+ return element[0] in self.sets[element[1]]
+
+ def _kind(self):
+ if not self.args:
+ return SetKind()
+ elif all(i.kind == self.args[0].kind for i in self.args):
+ return self.args[0].kind
+ else:
+ return SetKind(UndefinedKind)
+
+ def __iter__(self):
+ if self.is_iterable:
+
+ iters = []
+ for i, s in enumerate(self.sets):
+ iters.append(iproduct(s, {Integer(i)}))
+
+ return iter(roundrobin(*iters))
+ else:
+ raise ValueError("'%s' is not iterable." % self)
+
+ def __len__(self):
+ """
+ Returns the length of the disjoint union, i.e., the number of elements in the set.
+
+ Examples
+ ========
+
+ >>> from sympy import FiniteSet, DisjointUnion, EmptySet
+ >>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
+ >>> len(D1)
+ 7
+ >>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
+ >>> len(D2)
+ 6
+ >>> D3 = DisjointUnion(EmptySet, EmptySet)
+ >>> len(D3)
+ 0
+
+ Adds up the lengths of the constituent sets.
+ """
+
+ if self.is_finite_set:
+ size = 0
+ for set in self.sets:
+ size += len(set)
+ return size
+ else:
+ raise ValueError("'%s' is not a finite set." % self)
+
+
+def imageset(*args):
+ r"""
+ Return an image of the set under transformation ``f``.
+
+ Explanation
+ ===========
+
+ If this function cannot compute the image, it returns an
+ unevaluated ImageSet object.
+
+ .. math::
+ \{ f(x) \mid x \in \mathrm{self} \}
+
+ Examples
+ ========
+
+ >>> from sympy import S, Interval, imageset, sin, Lambda
+ >>> from sympy.abc import x
+
+ >>> imageset(x, 2*x, Interval(0, 2))
+ Interval(0, 4)
+
+ >>> imageset(lambda x: 2*x, Interval(0, 2))
+ Interval(0, 4)
+
+ >>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
+ ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
+
+ >>> imageset(sin, Interval(-2, 1))
+ ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
+ >>> imageset(lambda y: x + y, Interval(-2, 1))
+ ImageSet(Lambda(y, x + y), Interval(-2, 1))
+
+ Expressions applied to the set of Integers are simplified
+ to show as few negatives as possible and linear expressions
+ are converted to a canonical form. If this is not desirable
+ then the unevaluated ImageSet should be used.
+
+ >>> imageset(x, -2*x + 5, S.Integers)
+ ImageSet(Lambda(x, 2*x + 1), Integers)
+
+ See Also
+ ========
+
+ sympy.sets.fancysets.ImageSet
+
+ """
+ from .fancysets import ImageSet
+ from .setexpr import set_function
+
+ if len(args) < 2:
+ raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
+
+ if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
+ f = Lambda(args[0], args[1])
+ set_list = args[2:]
+ else:
+ f = args[0]
+ set_list = args[1:]
+
+ if isinstance(f, Lambda):
+ pass
+ elif callable(f):
+ nargs = getattr(f, 'nargs', {})
+ if nargs:
+ if len(nargs) != 1:
+ raise NotImplementedError(filldedent('''
+ This function can take more than 1 arg
+ but the potentially complicated set input
+ has not been analyzed at this point to
+ know its dimensions. TODO
+ '''))
+ N = nargs.args[0]
+ if N == 1:
+ s = 'x'
+ else:
+ s = [Symbol('x%i' % i) for i in range(1, N + 1)]
+ else:
+ s = inspect.signature(f).parameters
+
+ dexpr = _sympify(f(*[Dummy() for i in s]))
+ var = tuple(uniquely_named_symbol(
+ Symbol(i), dexpr) for i in s)
+ f = Lambda(var, f(*var))
+ else:
+ raise TypeError(filldedent('''
+ expecting lambda, Lambda, or FunctionClass,
+ not \'%s\'.''' % func_name(f)))
+
+ if any(not isinstance(s, Set) for s in set_list):
+ name = [func_name(s) for s in set_list]
+ raise ValueError(
+ 'arguments after mapping should be sets, not %s' % name)
+
+ if len(set_list) == 1:
+ set = set_list[0]
+ try:
+ # TypeError if arg count != set dimensions
+ r = set_function(f, set)
+ if r is None:
+ raise TypeError
+ if not r:
+ return r
+ except TypeError:
+ r = ImageSet(f, set)
+ if isinstance(r, ImageSet):
+ f, set = r.args
+
+ if f.variables[0] == f.expr:
+ return set
+
+ if isinstance(set, ImageSet):
+ # XXX: Maybe this should just be:
+ # f2 = set.lambda
+ # fun = Lambda(f2.signature, f(*f2.expr))
+ # return imageset(fun, *set.base_sets)
+ if len(set.lamda.variables) == 1 and len(f.variables) == 1:
+ x = set.lamda.variables[0]
+ y = f.variables[0]
+ return imageset(
+ Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
+
+ if r is not None:
+ return r
+
+ return ImageSet(f, *set_list)
+
+
+def is_function_invertible_in_set(func, setv):
+ """
+ Checks whether function ``func`` is invertible when the domain is
+ restricted to set ``setv``.
+ """
+ # Functions known to always be invertible:
+ if func in (exp, log):
+ return True
+ u = Dummy("u")
+ fdiff = func(u).diff(u)
+ # monotonous functions:
+ # TODO: check subsets (`func` in `setv`)
+ if (fdiff > 0) == True or (fdiff < 0) == True:
+ return True
+ # TODO: support more
+ return None
+
+
+def simplify_union(args):
+ """
+ Simplify a :class:`Union` using known rules.
+
+ Explanation
+ ===========
+
+ We first start with global rules like 'Merge all FiniteSets'
+
+ Then we iterate through all pairs and ask the constituent sets if they
+ can simplify themselves with any other constituent. This process depends
+ on ``union_sets(a, b)`` functions.
+ """
+ from sympy.sets.handlers.union import union_sets
+
+ # ===== Global Rules =====
+ if not args:
+ return S.EmptySet
+
+ for arg in args:
+ if not isinstance(arg, Set):
+ raise TypeError("Input args to Union must be Sets")
+
+ # Merge all finite sets
+ finite_sets = [x for x in args if x.is_FiniteSet]
+ if len(finite_sets) > 1:
+ a = (x for set in finite_sets for x in set)
+ finite_set = FiniteSet(*a)
+ args = [finite_set] + [x for x in args if not x.is_FiniteSet]
+
+ # ===== Pair-wise Rules =====
+ # Here we depend on rules built into the constituent sets
+ args = set(args)
+ new_args = True
+ while new_args:
+ for s in args:
+ new_args = False
+ for t in args - {s}:
+ new_set = union_sets(s, t)
+ # This returns None if s does not know how to intersect
+ # with t. Returns the newly intersected set otherwise
+ if new_set is not None:
+ if not isinstance(new_set, set):
+ new_set = {new_set}
+ new_args = (args - {s, t}).union(new_set)
+ break
+ if new_args:
+ args = new_args
+ break
+
+ if len(args) == 1:
+ return args.pop()
+ else:
+ return Union(*args, evaluate=False)
+
+
+def simplify_intersection(args):
+ """
+ Simplify an intersection using known rules.
+
+ Explanation
+ ===========
+
+ We first start with global rules like
+ 'if any empty sets return empty set' and 'distribute any unions'
+
+ Then we iterate through all pairs and ask the constituent sets if they
+ can simplify themselves with any other constituent
+ """
+
+ # ===== Global Rules =====
+ if not args:
+ return S.UniversalSet
+
+ for arg in args:
+ if not isinstance(arg, Set):
+ raise TypeError("Input args to Union must be Sets")
+
+ # If any EmptySets return EmptySet
+ if S.EmptySet in args:
+ return S.EmptySet
+
+ # Handle Finite sets
+ rv = Intersection._handle_finite_sets(args)
+
+ if rv is not None:
+ return rv
+
+ # If any of the sets are unions, return a Union of Intersections
+ for s in args:
+ if s.is_Union:
+ other_sets = set(args) - {s}
+ if len(other_sets) > 0:
+ other = Intersection(*other_sets)
+ return Union(*(Intersection(arg, other) for arg in s.args))
+ else:
+ return Union(*s.args)
+
+ for s in args:
+ if s.is_Complement:
+ args.remove(s)
+ other_sets = args + [s.args[0]]
+ return Complement(Intersection(*other_sets), s.args[1])
+
+ from sympy.sets.handlers.intersection import intersection_sets
+
+ # At this stage we are guaranteed not to have any
+ # EmptySets, FiniteSets, or Unions in the intersection
+
+ # ===== Pair-wise Rules =====
+ # Here we depend on rules built into the constituent sets
+ args = set(args)
+ new_args = True
+ while new_args:
+ for s in args:
+ new_args = False
+ for t in args - {s}:
+ new_set = intersection_sets(s, t)
+ # This returns None if s does not know how to intersect
+ # with t. Returns the newly intersected set otherwise
+
+ if new_set is not None:
+ new_args = (args - {s, t}).union({new_set})
+ break
+ if new_args:
+ args = new_args
+ break
+
+ if len(args) == 1:
+ return args.pop()
+ else:
+ return Intersection(*args, evaluate=False)
+
+
+def _handle_finite_sets(op, x, y, commutative):
+ # Handle finite sets:
+ fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
+ if len(fs_args) == 2:
+ return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
+ elif len(fs_args) == 1:
+ sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
+ return Union(*sets)
+ else:
+ return None
+
+
+def _apply_operation(op, x, y, commutative):
+ from .fancysets import ImageSet
+ d = Dummy('d')
+
+ out = _handle_finite_sets(op, x, y, commutative)
+ if out is None:
+ out = op(x, y)
+
+ if out is None and commutative:
+ out = op(y, x)
+ if out is None:
+ _x, _y = symbols("x y")
+ if isinstance(x, Set) and not isinstance(y, Set):
+ out = ImageSet(Lambda(d, op(d, y)), x).doit()
+ elif not isinstance(x, Set) and isinstance(y, Set):
+ out = ImageSet(Lambda(d, op(x, d)), y).doit()
+ else:
+ out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
+ return out
+
+
+def set_add(x, y):
+ from sympy.sets.handlers.add import _set_add
+ return _apply_operation(_set_add, x, y, commutative=True)
+
+
+def set_sub(x, y):
+ from sympy.sets.handlers.add import _set_sub
+ return _apply_operation(_set_sub, x, y, commutative=False)
+
+
+def set_mul(x, y):
+ from sympy.sets.handlers.mul import _set_mul
+ return _apply_operation(_set_mul, x, y, commutative=True)
+
+
+def set_div(x, y):
+ from sympy.sets.handlers.mul import _set_div
+ return _apply_operation(_set_div, x, y, commutative=False)
+
+
+def set_pow(x, y):
+ from sympy.sets.handlers.power import _set_pow
+ return _apply_operation(_set_pow, x, y, commutative=False)
+
+
+def set_function(f, x):
+ from sympy.sets.handlers.functions import _set_function
+ return _set_function(f, x)
+
+
+class SetKind(Kind):
+ """
+ SetKind is kind for all Sets
+
+ Every instance of Set will have kind ``SetKind`` parametrised by the kind
+ of the elements of the ``Set``. The kind of the elements might be
+ ``NumberKind``, or ``TupleKind`` or something else. When not all elements
+ have the same kind then the kind of the elements will be given as
+ ``UndefinedKind``.
+
+ Parameters
+ ==========
+
+ element_kind: Kind (optional)
+ The kind of the elements of the set. In a well defined set all elements
+ will have the same kind. Otherwise the kind should
+ :class:`sympy.core.kind.UndefinedKind`. The ``element_kind`` argument is optional but
+ should only be omitted in the case of ``EmptySet`` whose kind is simply
+ ``SetKind()``
+
+ Examples
+ ========
+
+ >>> from sympy import Interval
+ >>> Interval(1, 2).kind
+ SetKind(NumberKind)
+ >>> Interval(1,2).kind.element_kind
+ NumberKind
+
+ See Also
+ ========
+
+ sympy.core.kind.NumberKind
+ sympy.matrices.common.MatrixKind
+ sympy.core.containers.TupleKind
+ """
+ def __new__(cls, element_kind=None):
+ obj = super().__new__(cls, element_kind)
+ obj.element_kind = element_kind
+ return obj
+
+ def __repr__(self):
+ if not self.element_kind:
+ return "SetKind()"
+ else:
+ return "SetKind(%s)" % self.element_kind
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7502135eb113f550f6c82fa80e1164cd8bc5d8c5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..515d20fdd4eebf2a136678519e6150aa36ec9e3a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b8812a1a21d3844ee66588697594ef39512bd7e
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8b1d82750a95006c3827e1fe86aaf26bb45230fd
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b04ace9ac228f31920f9956dc7afd48b1d9b407f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f124170724a0e17a066683e94eaa4f249eccb9d3
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5c0f0742eb28f76684f97b2b9ae103da8c45d64b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a19990c1b7802fcf6ba759be4c4233aebc1a9aac
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py
new file mode 100644
index 0000000000000000000000000000000000000000..4338bca6361a917b73d782dab599f2b45c415b94
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py
@@ -0,0 +1,294 @@
+from sympy.core.expr import unchanged
+from sympy.sets import (ConditionSet, Intersection, FiniteSet,
+ EmptySet, Union, Contains, ImageSet)
+from sympy.sets.sets import SetKind
+from sympy.core.function import (Function, Lambda)
+from sympy.core.mod import Mod
+from sympy.core.kind import NumberKind
+from sympy.core.numbers import (oo, pi)
+from sympy.core.relational import (Eq, Ne)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.complexes import Abs
+from sympy.functions.elementary.trigonometric import (asin, sin)
+from sympy.logic.boolalg import And
+from sympy.matrices.dense import Matrix
+from sympy.matrices.expressions.matexpr import MatrixSymbol
+from sympy.sets.sets import Interval
+from sympy.testing.pytest import raises, warns_deprecated_sympy
+
+
+w = Symbol('w')
+x = Symbol('x')
+y = Symbol('y')
+z = Symbol('z')
+f = Function('f')
+
+
+def test_CondSet():
+ sin_sols_principal = ConditionSet(x, Eq(sin(x), 0),
+ Interval(0, 2*pi, False, True))
+ assert pi in sin_sols_principal
+ assert pi/2 not in sin_sols_principal
+ assert 3*pi not in sin_sols_principal
+ assert oo not in sin_sols_principal
+ assert 5 in ConditionSet(x, x**2 > 4, S.Reals)
+ assert 1 not in ConditionSet(x, x**2 > 4, S.Reals)
+ # in this case, 0 is not part of the base set so
+ # it can't be in any subset selected by the condition
+ assert 0 not in ConditionSet(x, y > 5, Interval(1, 7))
+ # since 'in' requires a true/false, the following raises
+ # an error because the given value provides no information
+ # for the condition to evaluate (since the condition does
+ # not depend on the dummy symbol): the result is `y > 5`.
+ # In this case, ConditionSet is just acting like
+ # Piecewise((Interval(1, 7), y > 5), (S.EmptySet, True)).
+ raises(TypeError, lambda: 6 in ConditionSet(x, y > 5,
+ Interval(1, 7)))
+
+ X = MatrixSymbol('X', 2, 2)
+ matrix_set = ConditionSet(X, Eq(X*Matrix([[1, 1], [1, 1]]), X))
+ Y = Matrix([[0, 0], [0, 0]])
+ assert matrix_set.contains(Y).doit() is S.true
+ Z = Matrix([[1, 2], [3, 4]])
+ assert matrix_set.contains(Z).doit() is S.false
+
+ assert isinstance(ConditionSet(x, x < 1, {x, y}).base_set,
+ FiniteSet)
+ raises(TypeError, lambda: ConditionSet(x, x + 1, {x, y}))
+ raises(TypeError, lambda: ConditionSet(x, x, 1))
+
+ I = S.Integers
+ U = S.UniversalSet
+ C = ConditionSet
+ assert C(x, False, I) is S.EmptySet
+ assert C(x, True, I) is I
+ assert C(x, x < 1, C(x, x < 2, I)
+ ) == C(x, (x < 1) & (x < 2), I)
+ assert C(y, y < 1, C(x, y < 2, I)
+ ) == C(x, (x < 1) & (y < 2), I), C(y, y < 1, C(x, y < 2, I))
+ assert C(y, y < 1, C(x, x < 2, I)
+ ) == C(y, (y < 1) & (y < 2), I)
+ assert C(y, y < 1, C(x, y < x, I)
+ ) == C(x, (x < 1) & (y < x), I)
+ assert unchanged(C, y, x < 1, C(x, y < x, I))
+ assert ConditionSet(x, x < 1).base_set is U
+ # arg checking is not done at instantiation but this
+ # will raise an error when containment is tested
+ assert ConditionSet((x,), x < 1).base_set is U
+
+ c = ConditionSet((x, y), x < y, I**2)
+ assert (1, 2) in c
+ assert (1, pi) not in c
+
+ raises(TypeError, lambda: C(x, x > 1, C((x, y), x > 1, I**2)))
+ # signature mismatch since only 3 args are accepted
+ raises(TypeError, lambda: C((x, y), x + y < 2, U, U))
+
+
+def test_CondSet_intersect():
+ input_conditionset = ConditionSet(x, x**2 > 4, Interval(1, 4, False,
+ False))
+ other_domain = Interval(0, 3, False, False)
+ output_conditionset = ConditionSet(x, x**2 > 4, Interval(
+ 1, 3, False, False))
+ assert Intersection(input_conditionset, other_domain
+ ) == output_conditionset
+
+
+def test_issue_9849():
+ assert ConditionSet(x, Eq(x, x), S.Naturals
+ ) is S.Naturals
+ assert ConditionSet(x, Eq(Abs(sin(x)), -1), S.Naturals
+ ) == S.EmptySet
+
+
+def test_simplified_FiniteSet_in_CondSet():
+ assert ConditionSet(x, And(x < 1, x > -3), FiniteSet(0, 1, 2)
+ ) == FiniteSet(0)
+ assert ConditionSet(x, x < 0, FiniteSet(0, 1, 2)) == EmptySet
+ assert ConditionSet(x, And(x < -3), EmptySet) == EmptySet
+ y = Symbol('y')
+ assert (ConditionSet(x, And(x > 0), FiniteSet(-1, 0, 1, y)) ==
+ Union(FiniteSet(1), ConditionSet(x, And(x > 0), FiniteSet(y))))
+ assert (ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(1, 4, 2, y)) ==
+ Union(FiniteSet(1, 4), ConditionSet(x, Eq(Mod(x, 3), 1),
+ FiniteSet(y))))
+
+
+def test_free_symbols():
+ assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
+ ).free_symbols == {y, z}
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(z)
+ ).free_symbols == {z}
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(x, z)
+ ).free_symbols == {x, z}
+ assert ConditionSet(x, Eq(x, 0), ImageSet(Lambda(y, y**2),
+ S.Integers)).free_symbols == set()
+
+
+def test_bound_symbols():
+ assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
+ ).bound_symbols == [x]
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(x, y)
+ ).bound_symbols == [x]
+ assert ConditionSet(x, x < 10, ImageSet(Lambda(y, y**2), S.Integers)
+ ).bound_symbols == [x]
+ assert ConditionSet(x, x < 10, ConditionSet(y, y > 1, S.Integers)
+ ).bound_symbols == [x]
+
+
+def test_as_dummy():
+ _0, _1 = symbols('_0 _1')
+ assert ConditionSet(x, x < 1, Interval(y, oo)
+ ).as_dummy() == ConditionSet(_0, _0 < 1, Interval(y, oo))
+ assert ConditionSet(x, x < 1, Interval(x, oo)
+ ).as_dummy() == ConditionSet(_0, _0 < 1, Interval(x, oo))
+ assert ConditionSet(x, x < 1, ImageSet(Lambda(y, y**2), S.Integers)
+ ).as_dummy() == ConditionSet(
+ _0, _0 < 1, ImageSet(Lambda(_0, _0**2), S.Integers))
+ e = ConditionSet((x, y), x <= y, S.Reals**2)
+ assert e.bound_symbols == [x, y]
+ assert e.as_dummy() == ConditionSet((_0, _1), _0 <= _1, S.Reals**2)
+ assert e.as_dummy() == ConditionSet((y, x), y <= x, S.Reals**2
+ ).as_dummy()
+
+
+def test_subs_CondSet():
+ s = FiniteSet(z, y)
+ c = ConditionSet(x, x < 2, s)
+ assert c.subs(x, y) == c
+ assert c.subs(z, y) == ConditionSet(x, x < 2, FiniteSet(y))
+ assert c.xreplace({x: y}) == ConditionSet(y, y < 2, s)
+
+ assert ConditionSet(x, x < y, s
+ ).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
+ # if the user uses assumptions that cause the condition
+ # to evaluate, that can't be helped from SymPy's end
+ n = Symbol('n', negative=True)
+ assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
+ p = Symbol('p', positive=True)
+ assert ConditionSet(n, n < y, S.Integers
+ ).subs(n, x) == ConditionSet(n, n < y, S.Integers)
+ raises(ValueError, lambda: ConditionSet(
+ x + 1, x < 1, S.Integers))
+ assert ConditionSet(
+ p, n < x, Interval(-5, 5)).subs(x, p) == Interval(-5, 5), ConditionSet(
+ p, n < x, Interval(-5, 5)).subs(x, p)
+ assert ConditionSet(
+ n, n < x, Interval(-oo, 0)).subs(x, p
+ ) == Interval(-oo, 0)
+
+ assert ConditionSet(f(x), f(x) < 1, {w, z}
+ ).subs(f(x), y) == ConditionSet(f(x), f(x) < 1, {w, z})
+
+ # issue 17341
+ k = Symbol('k')
+ img1 = ImageSet(Lambda(k, 2*k*pi + asin(y)), S.Integers)
+ img2 = ImageSet(Lambda(k, 2*k*pi + asin(S.One/3)), S.Integers)
+ assert ConditionSet(x, Contains(
+ y, Interval(-1,1)), img1).subs(y, S.One/3).dummy_eq(img2)
+
+ assert (0, 1) in ConditionSet((x, y), x + y < 3, S.Integers**2)
+
+ raises(TypeError, lambda: ConditionSet(n, n < -10, Interval(0, 10)))
+
+
+def test_subs_CondSet_tebr():
+ with warns_deprecated_sympy():
+ assert ConditionSet((x, y), {x + 1, x + y}, S.Reals**2) == \
+ ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
+
+
+def test_dummy_eq():
+ C = ConditionSet
+ I = S.Integers
+ c = C(x, x < 1, I)
+ assert c.dummy_eq(C(y, y < 1, I))
+ assert c.dummy_eq(1) == False
+ assert c.dummy_eq(C(x, x < 1, S.Reals)) == False
+
+ c1 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
+ c2 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
+ c3 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Complexes**2)
+ assert c1.dummy_eq(c2)
+ assert c1.dummy_eq(c3) is False
+ assert c.dummy_eq(c1) is False
+ assert c1.dummy_eq(c) is False
+
+ # issue 19496
+ m = Symbol('m')
+ n = Symbol('n')
+ a = Symbol('a')
+ d1 = ImageSet(Lambda(m, m*pi), S.Integers)
+ d2 = ImageSet(Lambda(n, n*pi), S.Integers)
+ c1 = ConditionSet(x, Ne(a, 0), d1)
+ c2 = ConditionSet(x, Ne(a, 0), d2)
+ assert c1.dummy_eq(c2)
+
+
+def test_contains():
+ assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
+ assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
+ # `in` should give True or False; in this case there is not
+ # enough information for that result
+ raises(TypeError,
+ lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
+ # here, there is enough information but the comparison is
+ # not defined
+ raises(TypeError, lambda: 0 in ConditionSet(x, 1/x >= 0, S.Reals))
+ assert ConditionSet(x, y > 5, Interval(1, 7)
+ ).contains(6) == (y > 5)
+ assert ConditionSet(x, y > 5, Interval(1, 7)
+ ).contains(8) is S.false
+ assert ConditionSet(x, y > 5, Interval(1, 7)
+ ).contains(w) == And(Contains(w, Interval(1, 7)), y > 5)
+ # This returns an unevaluated Contains object
+ # because 1/0 should not be defined for 1 and 0 in the context of
+ # reals.
+ assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
+ Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
+ c = ConditionSet((x, y), x + y > 1, S.Integers**2)
+ assert not c.contains(1)
+ assert c.contains((2, 1))
+ assert not c.contains((0, 1))
+ c = ConditionSet((w, (x, y)), w + x + y > 1, S.Integers*S.Integers**2)
+ assert not c.contains(1)
+ assert not c.contains((1, 2))
+ assert not c.contains(((1, 2), 3))
+ assert not c.contains(((1, 2), (3, 4)))
+ assert c.contains((1, (3, 4)))
+
+
+def test_as_relational():
+ assert ConditionSet((x, y), x > 1, S.Integers**2).as_relational((x, y)
+ ) == (x > 1) & Contains((x, y), S.Integers**2)
+ assert ConditionSet(x, x > 1, S.Integers).as_relational(x
+ ) == Contains(x, S.Integers) & (x > 1)
+
+
+def test_flatten():
+ """Tests whether there is basic denesting functionality"""
+ inner = ConditionSet(x, sin(x) + x > 0)
+ outer = ConditionSet(x, Contains(x, inner), S.Reals)
+ assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)
+
+ inner = ConditionSet(y, sin(y) + y > 0)
+ outer = ConditionSet(x, Contains(y, inner), S.Reals)
+ assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)
+
+ inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
+ outer = ConditionSet(x, Contains(x, inner), S.Reals)
+ assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))
+
+
+def test_duplicate():
+ from sympy.core.function import BadSignatureError
+ # test coverage for line 95 in conditionset.py, check for duplicates in symbols
+ dup = symbols('a,a')
+ raises(BadSignatureError, lambda: ConditionSet(dup, x < 0))
+
+
+def test_SetKind_ConditionSet():
+ assert ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)).kind is SetKind(NumberKind)
+ assert ConditionSet(x, x < 0).kind is SetKind(NumberKind)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd56148d9d22d9fae0af30c894fd0ab320b756c1
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py
@@ -0,0 +1,50 @@
+from sympy.core.expr import unchanged
+from sympy.core.numbers import oo
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.sets.contains import Contains
+from sympy.sets.sets import (FiniteSet, Interval)
+from sympy.testing.pytest import raises
+
+def test_contains_basic():
+ raises(TypeError, lambda: Contains(S.Integers, 1))
+ assert Contains(2, S.Integers) is S.true
+ assert Contains(-2, S.Naturals) is S.false
+
+ i = Symbol('i', integer=True)
+ assert Contains(i, S.Naturals) == Contains(i, S.Naturals, evaluate=False)
+
+
+def test_issue_6194():
+ x = Symbol('x')
+ assert unchanged(Contains, x, Interval(0, 1))
+ assert Interval(0, 1).contains(x) == (S.Zero <= x) & (x <= 1)
+ assert Contains(x, FiniteSet(0)) != S.false
+ assert Contains(x, Interval(1, 1)) != S.false
+ assert Contains(x, S.Integers) != S.false
+
+
+def test_issue_10326():
+ assert Contains(oo, Interval(-oo, oo)) == False
+ assert Contains(-oo, Interval(-oo, oo)) == False
+
+
+def test_binary_symbols():
+ x = Symbol('x')
+ y = Symbol('y')
+ z = Symbol('z')
+ assert Contains(x, FiniteSet(y, Eq(z, True))
+ ).binary_symbols == {y, z}
+
+
+def test_as_set():
+ x = Symbol('x')
+ y = Symbol('y')
+ assert Contains(x, FiniteSet(y)).as_set() == FiniteSet(y)
+ assert Contains(x, S.Integers).as_set() == S.Integers
+ assert Contains(x, S.Reals).as_set() == S.Reals
+
+def test_type_error():
+ # Pass in a parameter not of type "set"
+ raises(TypeError, lambda: Contains(2, None))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_fancysets.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_fancysets.py
new file mode 100644
index 0000000000000000000000000000000000000000..3582d5aabb130219f25b330d03f7d5961beb6a4f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_fancysets.py
@@ -0,0 +1,1306 @@
+
+from sympy.core.expr import unchanged
+from sympy.sets.contains import Contains
+from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set,
+ ComplexRegion)
+from sympy.sets.sets import (FiniteSet, Interval, Union, imageset,
+ Intersection, ProductSet, SetKind)
+from sympy.sets.conditionset import ConditionSet
+from sympy.simplify.simplify import simplify
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple, TupleKind
+from sympy.core.function import Lambda
+from sympy.core.kind import NumberKind
+from sympy.core.numbers import (I, Rational, oo, pi)
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.symbol import (Dummy, Symbol, symbols)
+from sympy.functions.elementary.complexes import Abs
+from sympy.functions.elementary.exponential import (exp, log)
+from sympy.functions.elementary.integers import floor
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.trigonometric import (cos, sin, tan)
+from sympy.logic.boolalg import And
+from sympy.matrices.dense import eye
+from sympy.testing.pytest import XFAIL, raises
+from sympy.abc import x, y, t, z
+from sympy.core.mod import Mod
+
+import itertools
+
+
+def test_naturals():
+ N = S.Naturals
+ assert 5 in N
+ assert -5 not in N
+ assert 5.5 not in N
+ ni = iter(N)
+ a, b, c, d = next(ni), next(ni), next(ni), next(ni)
+ assert (a, b, c, d) == (1, 2, 3, 4)
+ assert isinstance(a, Basic)
+
+ assert N.intersect(Interval(-5, 5)) == Range(1, 6)
+ assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5)
+
+ assert N.boundary == N
+ assert N.is_open == False
+ assert N.is_closed == True
+
+ assert N.inf == 1
+ assert N.sup is oo
+ assert not N.contains(oo)
+ for s in (S.Naturals0, S.Naturals):
+ assert s.intersection(S.Reals) is s
+ assert s.is_subset(S.Reals)
+
+ assert N.as_relational(x) == And(Eq(floor(x), x), x >= 1, x < oo)
+
+
+def test_naturals0():
+ N = S.Naturals0
+ assert 0 in N
+ assert -1 not in N
+ assert next(iter(N)) == 0
+ assert not N.contains(oo)
+ assert N.contains(sin(x)) == Contains(sin(x), N)
+
+
+def test_integers():
+ Z = S.Integers
+ assert 5 in Z
+ assert -5 in Z
+ assert 5.5 not in Z
+ assert not Z.contains(oo)
+ assert not Z.contains(-oo)
+
+ zi = iter(Z)
+ a, b, c, d = next(zi), next(zi), next(zi), next(zi)
+ assert (a, b, c, d) == (0, 1, -1, 2)
+ assert isinstance(a, Basic)
+
+ assert Z.intersect(Interval(-5, 5)) == Range(-5, 6)
+ assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5)
+ assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity)
+ assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity)
+
+ assert Z.inf is -oo
+ assert Z.sup is oo
+
+ assert Z.boundary == Z
+ assert Z.is_open == False
+ assert Z.is_closed == True
+
+ assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo)
+
+
+def test_ImageSet():
+ raises(ValueError, lambda: ImageSet(x, S.Integers))
+ assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1)
+ assert ImageSet(Lambda(x, y), S.Integers) == {y}
+ assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet
+ empty = Intersection(FiniteSet(log(2)/pi), S.Integers)
+ assert unchanged(ImageSet, Lambda(x, 1), empty) # issue #17471
+ squares = ImageSet(Lambda(x, x**2), S.Naturals)
+ assert 4 in squares
+ assert 5 not in squares
+ assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9)
+
+ assert 16 not in squares.intersect(Interval(0, 10))
+
+ si = iter(squares)
+ a, b, c, d = next(si), next(si), next(si), next(si)
+ assert (a, b, c, d) == (1, 4, 9, 16)
+
+ harmonics = ImageSet(Lambda(x, 1/x), S.Naturals)
+ assert Rational(1, 5) in harmonics
+ assert Rational(.25) in harmonics
+ assert 0.25 not in harmonics
+ assert Rational(.3) not in harmonics
+ assert (1, 2) not in harmonics
+
+ assert harmonics.is_iterable
+
+ assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0)
+
+ assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4)
+ assert ImageSet(Lambda((x, y), 2*x), {4}, {3}).doit() == FiniteSet(8)
+ assert (ImageSet(Lambda((x, y), x+y), {1, 2, 3}, {10, 20, 30}).doit() ==
+ FiniteSet(11, 12, 13, 21, 22, 23, 31, 32, 33))
+
+ c = Interval(1, 3) * Interval(1, 3)
+ assert Tuple(2, 6) in ImageSet(Lambda(((x, y),), (x, 2*y)), c)
+ assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y),), (x, 1/y)), c)
+ assert Tuple(2, -2) not in ImageSet(Lambda(((x, y),), (x, y**2)), c)
+ assert Tuple(2, -2) in ImageSet(Lambda(((x, y),), (x, -2)), c)
+ c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9))
+ assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x),), (y, t, x)), c3)
+ assert Tuple(Rational(1, 8), 3, 9) in ImageSet(Lambda(((t, y, x),), (1/y, t, x)), c3)
+ assert 2/pi not in ImageSet(Lambda(((x, y),), 2/x), c)
+ assert 2/S(100) not in ImageSet(Lambda(((x, y),), 2/x), c)
+ assert Rational(2, 3) in ImageSet(Lambda(((x, y),), 2/x), c)
+
+ S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals)
+ assert S1.base_pset == ProductSet(S.Integers, S.Naturals)
+ assert S1.base_sets == (S.Integers, S.Naturals)
+
+ # Passing a set instead of a FiniteSet shouldn't raise
+ assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3})
+
+ S2 = ImageSet(Lambda(((x, y),), x+y), {(1, 2), (3, 4)})
+ assert 3 in S2.doit()
+ # FIXME: This doesn't yet work:
+ #assert 3 in S2
+ assert S2._contains(3) is None
+
+ raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1))
+
+
+def test_image_is_ImageSet():
+ assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet)
+
+
+def test_halfcircle():
+ r, th = symbols('r, theta', real=True)
+ L = Lambda(((r, th),), (r*cos(th), r*sin(th)))
+ halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi))
+
+ assert (1, 0) in halfcircle
+ assert (0, -1) not in halfcircle
+ assert (0, 0) in halfcircle
+ assert halfcircle._contains((r, 0)) is None
+ # This one doesn't work:
+ #assert (r, 2*pi) not in halfcircle
+
+ assert not halfcircle.is_iterable
+
+
+def test_ImageSet_iterator_not_injective():
+ L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ...
+ evens = ImageSet(L, S.Naturals)
+ i = iter(evens)
+ # No repeats here
+ assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6)
+
+
+def test_inf_Range_len():
+ raises(ValueError, lambda: len(Range(0, oo, 2)))
+ assert Range(0, oo, 2).size is S.Infinity
+ assert Range(0, -oo, -2).size is S.Infinity
+ assert Range(oo, 0, -2).size is S.Infinity
+ assert Range(-oo, 0, 2).size is S.Infinity
+
+
+def test_Range_set():
+ empty = Range(0)
+
+ assert Range(5) == Range(0, 5) == Range(0, 5, 1)
+
+ r = Range(10, 20, 2)
+ assert 12 in r
+ assert 8 not in r
+ assert 11 not in r
+ assert 30 not in r
+
+ assert list(Range(0, 5)) == list(range(5))
+ assert list(Range(5, 0, -1)) == list(range(5, 0, -1))
+
+
+ assert Range(5, 15).sup == 14
+ assert Range(5, 15).inf == 5
+ assert Range(15, 5, -1).sup == 15
+ assert Range(15, 5, -1).inf == 6
+ assert Range(10, 67, 10).sup == 60
+ assert Range(60, 7, -10).inf == 10
+
+ assert len(Range(10, 38, 10)) == 3
+
+ assert Range(0, 0, 5) == empty
+ assert Range(oo, oo, 1) == empty
+ assert Range(oo, 1, 1) == empty
+ assert Range(-oo, 1, -1) == empty
+ assert Range(1, oo, -1) == empty
+ assert Range(1, -oo, 1) == empty
+ assert Range(1, -4, oo) == empty
+ ip = symbols('ip', positive=True)
+ assert Range(0, ip, -1) == empty
+ assert Range(0, -ip, 1) == empty
+ assert Range(1, -4, -oo) == Range(1, 2)
+ assert Range(1, 4, oo) == Range(1, 2)
+ assert Range(-oo, oo).size == oo
+ assert Range(oo, -oo, -1).size == oo
+ raises(ValueError, lambda: Range(-oo, oo, 2))
+ raises(ValueError, lambda: Range(x, pi, y))
+ raises(ValueError, lambda: Range(x, y, 0))
+
+ assert 5 in Range(0, oo, 5)
+ assert -5 in Range(-oo, 0, 5)
+ assert oo not in Range(0, oo)
+ ni = symbols('ni', integer=False)
+ assert ni not in Range(oo)
+ u = symbols('u', integer=None)
+ assert Range(oo).contains(u) is not False
+ inf = symbols('inf', infinite=True)
+ assert inf not in Range(-oo, oo)
+ raises(ValueError, lambda: Range(0, oo, 2)[-1])
+ raises(ValueError, lambda: Range(0, -oo, -2)[-1])
+ assert Range(-oo, 1, 1)[-1] is S.Zero
+ assert Range(oo, 1, -1)[-1] == 2
+ assert inf not in Range(oo)
+ assert Range(1, 10, 1)[-1] == 9
+ assert all(i.is_Integer for i in Range(0, -1, 1))
+ it = iter(Range(-oo, 0, 2))
+ raises(TypeError, lambda: next(it))
+
+ assert empty.intersect(S.Integers) == empty
+ assert Range(-1, 10, 1).intersect(S.Complexes) == Range(-1, 10, 1)
+ assert Range(-1, 10, 1).intersect(S.Reals) == Range(-1, 10, 1)
+ assert Range(-1, 10, 1).intersect(S.Rationals) == Range(-1, 10, 1)
+ assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
+ assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)
+ assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1)
+
+ # test slicing
+ assert Range(1, 10, 1)[5] == 6
+ assert Range(1, 12, 2)[5] == 11
+ assert Range(1, 10, 1)[-1] == 9
+ assert Range(1, 10, 3)[-1] == 7
+ raises(ValueError, lambda: Range(oo,0,-1)[1:3:0])
+ raises(ValueError, lambda: Range(oo,0,-1)[:1])
+ raises(ValueError, lambda: Range(1, oo)[-2])
+ raises(ValueError, lambda: Range(-oo, 1)[2])
+ raises(IndexError, lambda: Range(10)[-20])
+ raises(IndexError, lambda: Range(10)[20])
+ raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
+ assert Range(2, -oo, -2)[2:2:2] == empty
+ assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
+ raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
+ assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
+ raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
+ assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
+ assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
+ assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
+ raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
+ raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
+ assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
+ raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
+ raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
+ assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
+ raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
+ assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
+ raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
+ raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
+ assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
+ assert Range(oo, 0, -2)[-10:0:2] == empty
+ raises(ValueError, lambda: Range(oo, 0, -2)[0])
+ raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
+ raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
+ assert Range(oo, 0, -2)[0:-4:-2] == empty
+ assert Range(oo, 0, -2)[:0:2] == empty
+ raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])
+
+ # test empty Range
+ assert Range(x, x, y) == empty
+ assert empty.reversed == empty
+ assert 0 not in empty
+ assert list(empty) == []
+ assert len(empty) == 0
+ assert empty.size is S.Zero
+ assert empty.intersect(FiniteSet(0)) is S.EmptySet
+ assert bool(empty) is False
+ raises(IndexError, lambda: empty[0])
+ assert empty[:0] == empty
+ raises(NotImplementedError, lambda: empty.inf)
+ raises(NotImplementedError, lambda: empty.sup)
+ assert empty.as_relational(x) is S.false
+
+ AB = [None] + list(range(12))
+ for R in [
+ Range(1, 10),
+ Range(1, 10, 2),
+ ]:
+ r = list(R)
+ for a, b, c in itertools.product(AB, AB, [-3, -1, None, 1, 3]):
+ for reverse in range(2):
+ r = list(reversed(r))
+ R = R.reversed
+ result = list(R[a:b:c])
+ ans = r[a:b:c]
+ txt = ('\n%s[%s:%s:%s] = %s -> %s' % (
+ R, a, b, c, result, ans))
+ check = ans == result
+ assert check, txt
+
+ assert Range(1, 10, 1).boundary == Range(1, 10, 1)
+
+ for r in (Range(1, 10, 2), Range(1, oo, 2)):
+ rev = r.reversed
+ assert r.inf == rev.inf and r.sup == rev.sup
+ assert r.step == -rev.step
+
+ builtin_range = range
+
+ raises(TypeError, lambda: Range(builtin_range(1)))
+ assert S(builtin_range(10)) == Range(10)
+ assert S(builtin_range(1000000000000)) == Range(1000000000000)
+
+ # test Range.as_relational
+ assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(Mod(x, 1), 0)
+ assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(Mod(x + 1, -2), 0)
+
+
+def test_Range_symbolic():
+ # symbolic Range
+ xr = Range(x, x + 4, 5)
+ sr = Range(x, y, t)
+ i = Symbol('i', integer=True)
+ ip = Symbol('i', integer=True, positive=True)
+ ipr = Range(ip)
+ inr = Range(0, -ip, -1)
+ ir = Range(i, i + 19, 2)
+ ir2 = Range(i, i*8, 3*i)
+ i = Symbol('i', integer=True)
+ inf = symbols('inf', infinite=True)
+ raises(ValueError, lambda: Range(inf))
+ raises(ValueError, lambda: Range(inf, 0, -1))
+ raises(ValueError, lambda: Range(inf, inf, 1))
+ raises(ValueError, lambda: Range(1, 1, inf))
+ # args
+ assert xr.args == (x, x + 5, 5)
+ assert sr.args == (x, y, t)
+ assert ir.args == (i, i + 20, 2)
+ assert ir2.args == (i, 10*i, 3*i)
+ # reversed
+ raises(ValueError, lambda: xr.reversed)
+ raises(ValueError, lambda: sr.reversed)
+ assert ipr.reversed.args == (ip - 1, -1, -1)
+ assert inr.reversed.args == (-ip + 1, 1, 1)
+ assert ir.reversed.args == (i + 18, i - 2, -2)
+ assert ir2.reversed.args == (7*i, -2*i, -3*i)
+ # contains
+ assert inf not in sr
+ assert inf not in ir
+ assert 0 in ipr
+ assert 0 in inr
+ raises(TypeError, lambda: 1 in ipr)
+ raises(TypeError, lambda: -1 in inr)
+ assert .1 not in sr
+ assert .1 not in ir
+ assert i + 1 not in ir
+ assert i + 2 in ir
+ raises(TypeError, lambda: x in xr) # XXX is this what contains is supposed to do?
+ raises(TypeError, lambda: 1 in sr) # XXX is this what contains is supposed to do?
+ # iter
+ raises(ValueError, lambda: next(iter(xr)))
+ raises(ValueError, lambda: next(iter(sr)))
+ assert next(iter(ir)) == i
+ assert next(iter(ir2)) == i
+ assert sr.intersect(S.Integers) == sr
+ assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr)
+ raises(ValueError, lambda: sr[:2])
+ raises(ValueError, lambda: xr[0])
+ raises(ValueError, lambda: sr[0])
+ # len
+ assert len(ir) == ir.size == 10
+ assert len(ir2) == ir2.size == 3
+ raises(ValueError, lambda: len(xr))
+ raises(ValueError, lambda: xr.size)
+ raises(ValueError, lambda: len(sr))
+ raises(ValueError, lambda: sr.size)
+ # bool
+ assert bool(Range(0)) == False
+ assert bool(xr)
+ assert bool(ir)
+ assert bool(ipr)
+ assert bool(inr)
+ raises(ValueError, lambda: bool(sr))
+ raises(ValueError, lambda: bool(ir2))
+ # inf
+ raises(ValueError, lambda: xr.inf)
+ raises(ValueError, lambda: sr.inf)
+ assert ipr.inf == 0
+ assert inr.inf == -ip + 1
+ assert ir.inf == i
+ raises(ValueError, lambda: ir2.inf)
+ # sup
+ raises(ValueError, lambda: xr.sup)
+ raises(ValueError, lambda: sr.sup)
+ assert ipr.sup == ip - 1
+ assert inr.sup == 0
+ assert ir.inf == i
+ raises(ValueError, lambda: ir2.sup)
+ # getitem
+ raises(ValueError, lambda: xr[0])
+ raises(ValueError, lambda: sr[0])
+ raises(ValueError, lambda: sr[-1])
+ raises(ValueError, lambda: sr[:2])
+ assert ir[:2] == Range(i, i + 4, 2)
+ assert ir[0] == i
+ assert ir[-2] == i + 16
+ assert ir[-1] == i + 18
+ assert ir2[:2] == Range(i, 7*i, 3*i)
+ assert ir2[0] == i
+ assert ir2[-2] == 4*i
+ assert ir2[-1] == 7*i
+ raises(ValueError, lambda: Range(i)[-1])
+ assert ipr[0] == ipr.inf == 0
+ assert ipr[-1] == ipr.sup == ip - 1
+ assert inr[0] == inr.sup == 0
+ assert inr[-1] == inr.inf == -ip + 1
+ raises(ValueError, lambda: ipr[-2])
+ assert ir.inf == i
+ assert ir.sup == i + 18
+ raises(ValueError, lambda: Range(i).inf)
+ # as_relational
+ assert ir.as_relational(x) == ((x >= i) & (x <= i + 18) &
+ Eq(Mod(-i + x, 2), 0))
+ assert ir2.as_relational(x) == Eq(
+ Mod(-i + x, 3*i), 0) & (((x >= i) & (x <= 7*i) & (3*i >= 1)) |
+ ((x <= i) & (x >= 7*i) & (3*i <= -1)))
+ assert Range(i, i + 1).as_relational(x) == Eq(x, i)
+ assert sr.as_relational(z) == Eq(
+ Mod(t, 1), 0) & Eq(Mod(x, 1), 0) & Eq(Mod(-x + z, t), 0
+ ) & (((z >= x) & (z <= -t + y) & (t >= 1)) |
+ ((z <= x) & (z >= -t + y) & (t <= -1)))
+ assert xr.as_relational(z) == Eq(z, x) & Eq(Mod(x, 1), 0)
+ # symbols can clash if user wants (but it must be integer)
+ assert xr.as_relational(x) == Eq(Mod(x, 1), 0)
+ # contains() for symbolic values (issue #18146)
+ e = Symbol('e', integer=True, even=True)
+ o = Symbol('o', integer=True, odd=True)
+ assert Range(5).contains(i) == And(i >= 0, i <= 4)
+ assert Range(1).contains(i) == Eq(i, 0)
+ assert Range(-oo, 5, 1).contains(i) == (i <= 4)
+ assert Range(-oo, oo).contains(i) == True
+ assert Range(0, 8, 2).contains(i) == Contains(i, Range(0, 8, 2))
+ assert Range(0, 8, 2).contains(e) == And(e >= 0, e <= 6)
+ assert Range(0, 8, 2).contains(2*i) == And(2*i >= 0, 2*i <= 6)
+ assert Range(0, 8, 2).contains(o) == False
+ assert Range(1, 9, 2).contains(e) == False
+ assert Range(1, 9, 2).contains(o) == And(o >= 1, o <= 7)
+ assert Range(8, 0, -2).contains(o) == False
+ assert Range(9, 1, -2).contains(o) == And(o >= 3, o <= 9)
+ assert Range(-oo, 8, 2).contains(i) == Contains(i, Range(-oo, 8, 2))
+
+
+def test_range_range_intersection():
+ for a, b, r in [
+ (Range(0), Range(1), S.EmptySet),
+ (Range(3), Range(4, oo), S.EmptySet),
+ (Range(3), Range(-3, -1), S.EmptySet),
+ (Range(1, 3), Range(0, 3), Range(1, 3)),
+ (Range(1, 3), Range(1, 4), Range(1, 3)),
+ (Range(1, oo, 2), Range(2, oo, 2), S.EmptySet),
+ (Range(0, oo, 2), Range(oo), Range(0, oo, 2)),
+ (Range(0, oo, 2), Range(100), Range(0, 100, 2)),
+ (Range(2, oo, 2), Range(oo), Range(2, oo, 2)),
+ (Range(0, oo, 2), Range(5, 6), S.EmptySet),
+ (Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)),
+ (Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet),
+ (Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)),
+ (Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]:
+ assert a.intersect(b) == r
+ assert a.intersect(b.reversed) == r
+ assert a.reversed.intersect(b) == r
+ assert a.reversed.intersect(b.reversed) == r
+ a, b = b, a
+ assert a.intersect(b) == r
+ assert a.intersect(b.reversed) == r
+ assert a.reversed.intersect(b) == r
+ assert a.reversed.intersect(b.reversed) == r
+
+
+def test_range_interval_intersection():
+ p = symbols('p', positive=True)
+ assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
+ assert Range(4).intersect(Interval(0, 3)) == Range(4)
+ assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
+ assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
+ assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
+ assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
+ assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
+ assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
+ assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet
+ assert Interval(-1, 5).intersect(S.Complexes) == Interval(-1, 5)
+ assert Interval(-1, 5).intersect(S.Reals) == Interval(-1, 5)
+ assert Interval(-1, 5).intersect(S.Integers) == Range(-1, 6)
+ assert Interval(-1, 5).intersect(S.Naturals) == Range(1, 6)
+ assert Interval(-1, 5).intersect(S.Naturals0) == Range(0, 6)
+
+ # Null Range intersections
+ assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet
+ assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet
+
+
+def test_range_is_finite_set():
+ assert Range(-100, 100).is_finite_set is True
+ assert Range(2, oo).is_finite_set is False
+ assert Range(-oo, 50).is_finite_set is False
+ assert Range(-oo, oo).is_finite_set is False
+ assert Range(oo, -oo).is_finite_set is True
+ assert Range(0, 0).is_finite_set is True
+ assert Range(oo, oo).is_finite_set is True
+ assert Range(-oo, -oo).is_finite_set is True
+ n = Symbol('n', integer=True)
+ m = Symbol('m', integer=True)
+ assert Range(n, n + 49).is_finite_set is True
+ assert Range(n, 0).is_finite_set is True
+ assert Range(-3, n + 7).is_finite_set is True
+ assert Range(n, m).is_finite_set is True
+ assert Range(n + m, m - n).is_finite_set is True
+ assert Range(n, n + m + n).is_finite_set is True
+ assert Range(n, oo).is_finite_set is False
+ assert Range(-oo, n).is_finite_set is False
+ assert Range(n, -oo).is_finite_set is True
+ assert Range(oo, n).is_finite_set is True
+
+
+def test_Range_is_iterable():
+ assert Range(-100, 100).is_iterable is True
+ assert Range(2, oo).is_iterable is False
+ assert Range(-oo, 50).is_iterable is False
+ assert Range(-oo, oo).is_iterable is False
+ assert Range(oo, -oo).is_iterable is True
+ assert Range(0, 0).is_iterable is True
+ assert Range(oo, oo).is_iterable is True
+ assert Range(-oo, -oo).is_iterable is True
+ n = Symbol('n', integer=True)
+ m = Symbol('m', integer=True)
+ p = Symbol('p', integer=True, positive=True)
+ assert Range(n, n + 49).is_iterable is True
+ assert Range(n, 0).is_iterable is False
+ assert Range(-3, n + 7).is_iterable is False
+ assert Range(-3, p + 7).is_iterable is False # Should work with better __iter__
+ assert Range(n, m).is_iterable is False
+ assert Range(n + m, m - n).is_iterable is False
+ assert Range(n, n + m + n).is_iterable is False
+ assert Range(n, oo).is_iterable is False
+ assert Range(-oo, n).is_iterable is False
+ x = Symbol('x')
+ assert Range(x, x + 49).is_iterable is False
+ assert Range(x, 0).is_iterable is False
+ assert Range(-3, x + 7).is_iterable is False
+ assert Range(x, m).is_iterable is False
+ assert Range(x + m, m - x).is_iterable is False
+ assert Range(x, x + m + x).is_iterable is False
+ assert Range(x, oo).is_iterable is False
+ assert Range(-oo, x).is_iterable is False
+
+
+def test_Integers_eval_imageset():
+ ans = ImageSet(Lambda(x, 2*x + Rational(3, 7)), S.Integers)
+ im = imageset(Lambda(x, -2*x + Rational(3, 7)), S.Integers)
+ assert im == ans
+ im = imageset(Lambda(x, -2*x - Rational(11, 7)), S.Integers)
+ assert im == ans
+ y = Symbol('y')
+ L = imageset(x, 2*x + y, S.Integers)
+ assert y + 4 in L
+ a, b, c = 0.092, 0.433, 0.341
+ assert a in imageset(x, a + c*x, S.Integers)
+ assert b in imageset(x, b + c*x, S.Integers)
+
+ _x = symbols('x', negative=True)
+ eq = _x**2 - _x + 1
+ assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1
+ eq = 3*_x - 1
+ assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2
+
+ assert imageset(x, (x, 1/x), S.Integers) == \
+ ImageSet(Lambda(x, (x, 1/x)), S.Integers)
+
+
+def test_Range_eval_imageset():
+ a, b, c = symbols('a b c')
+ assert imageset(x, a*(x + b) + c, Range(3)) == \
+ imageset(x, a*x + a*b + c, Range(3))
+ eq = (x + 1)**2
+ assert imageset(x, eq, Range(3)).lamda.expr == eq
+ eq = a*(x + b) + c
+ r = Range(3, -3, -2)
+ imset = imageset(x, eq, r)
+ assert imset.lamda.expr != eq
+ assert list(imset) == [eq.subs(x, i).expand() for i in list(r)]
+
+
+def test_fun():
+ assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)),
+ Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1))
+
+
+def test_Range_is_empty():
+ i = Symbol('i', integer=True)
+ n = Symbol('n', negative=True, integer=True)
+ p = Symbol('p', positive=True, integer=True)
+
+ assert Range(0).is_empty
+ assert not Range(1).is_empty
+ assert Range(1, 0).is_empty
+ assert not Range(-1, 0).is_empty
+ assert Range(i).is_empty is None
+ assert Range(n).is_empty
+ assert Range(p).is_empty is False
+ assert Range(n, 0).is_empty is False
+ assert Range(n, p).is_empty is False
+ assert Range(p, n).is_empty
+ assert Range(n, -1).is_empty is None
+ assert Range(p, n, -1).is_empty is False
+
+
+def test_Reals():
+ assert 5 in S.Reals
+ assert S.Pi in S.Reals
+ assert -sqrt(2) in S.Reals
+ assert (2, 5) not in S.Reals
+ assert sqrt(-1) not in S.Reals
+ assert S.Reals == Interval(-oo, oo)
+ assert S.Reals != Interval(0, oo)
+ assert S.Reals.is_subset(Interval(-oo, oo))
+ assert S.Reals.intersect(Range(-oo, oo)) == Range(-oo, oo)
+ assert S.ComplexInfinity not in S.Reals
+ assert S.NaN not in S.Reals
+ assert x + S.ComplexInfinity not in S.Reals
+
+
+def test_Complex():
+ assert 5 in S.Complexes
+ assert 5 + 4*I in S.Complexes
+ assert S.Pi in S.Complexes
+ assert -sqrt(2) in S.Complexes
+ assert -I in S.Complexes
+ assert sqrt(-1) in S.Complexes
+ assert S.Complexes.intersect(S.Reals) == S.Reals
+ assert S.Complexes.union(S.Reals) == S.Complexes
+ assert S.Complexes == ComplexRegion(S.Reals*S.Reals)
+ assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False
+ assert str(S.Complexes) == "Complexes"
+ assert repr(S.Complexes) == "Complexes"
+
+
+def take(n, iterable):
+ "Return first n items of the iterable as a list"
+ return list(itertools.islice(iterable, n))
+
+
+def test_intersections():
+ assert S.Integers.intersect(S.Reals) == S.Integers
+ assert 5 in S.Integers.intersect(S.Reals)
+ assert 5 in S.Integers.intersect(S.Reals)
+ assert -5 not in S.Naturals.intersect(S.Reals)
+ assert 5.5 not in S.Integers.intersect(S.Reals)
+ assert 5 in S.Integers.intersect(Interval(3, oo))
+ assert -5 in S.Integers.intersect(Interval(-oo, 3))
+ assert all(x.is_Integer
+ for x in take(10, S.Integers.intersect(Interval(3, oo)) ))
+
+
+def test_infinitely_indexed_set_1():
+ from sympy.abc import n, m
+ assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers)
+
+ assert imageset(Lambda(n, 2*n), S.Integers).intersect(
+ imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet
+
+ assert imageset(Lambda(n, 2*n), S.Integers).intersect(
+ imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet
+
+ assert imageset(Lambda(m, 2*m), S.Integers).intersect(
+ imageset(Lambda(n, 3*n), S.Integers)).dummy_eq(
+ ImageSet(Lambda(t, 6*t), S.Integers))
+
+ assert imageset(x, x/2 + Rational(1, 3), S.Integers).intersect(S.Integers) is S.EmptySet
+ assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers
+
+ # https://github.com/sympy/sympy/issues/17355
+ S53 = ImageSet(Lambda(n, 5*n + 3), S.Integers)
+ assert S53.intersect(S.Integers) == S53
+
+
+def test_infinitely_indexed_set_2():
+ from sympy.abc import n
+ a = Symbol('a', integer=True)
+ assert imageset(Lambda(n, n), S.Integers) == \
+ imageset(Lambda(n, n + a), S.Integers)
+ assert imageset(Lambda(n, n + pi), S.Integers) == \
+ imageset(Lambda(n, n + a + pi), S.Integers)
+ assert imageset(Lambda(n, n), S.Integers) == \
+ imageset(Lambda(n, -n + a), S.Integers)
+ assert imageset(Lambda(n, -6*n), S.Integers) == \
+ ImageSet(Lambda(n, 6*n), S.Integers)
+ assert imageset(Lambda(n, 2*n + pi), S.Integers) == \
+ ImageSet(Lambda(n, 2*n + pi - 2), S.Integers)
+
+
+def test_imageset_intersect_real():
+ from sympy.abc import n
+ assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == FiniteSet(-1, 1)
+ im = (n - 1)*(n + S.Half)
+ assert imageset(Lambda(n, n + im*I), S.Integers
+ ).intersect(S.Reals) == FiniteSet(1)
+ assert imageset(Lambda(n, n + im*(n + 1)*I), S.Naturals0
+ ).intersect(S.Reals) == FiniteSet(1)
+ assert imageset(Lambda(n, n/2 + im.expand()*I), S.Integers
+ ).intersect(S.Reals) == ImageSet(Lambda(x, x/2), ConditionSet(
+ n, Eq(n**2 - n/2 - S(1)/2, 0), S.Integers))
+ assert imageset(Lambda(n, n/(1/n - 1) + im*(n + 1)*I), S.Integers
+ ).intersect(S.Reals) == FiniteSet(S.Half)
+ assert imageset(Lambda(n, n/(n - 6) +
+ (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect(
+ S.Reals) == FiniteSet(-1)
+ assert imageset(Lambda(n, n/(n**2 - 9) +
+ (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect(
+ S.Reals) is S.EmptySet
+ s = ImageSet(
+ Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))),
+ S.Integers)
+ # s is unevaluated, but after intersection the result
+ # should be canonical
+ assert s.intersect(S.Reals) == imageset(
+ Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet(
+ Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
+
+
+def test_imageset_intersect_interval():
+ from sympy.abc import n
+ f1 = ImageSet(Lambda(n, n*pi), S.Integers)
+ f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi))
+ f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
+ # complex expressions
+ f4 = ImageSet(Lambda(n, n*I*pi), S.Integers)
+ f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers)
+ # non-linear expressions
+ f6 = ImageSet(Lambda(n, log(n)), S.Integers)
+ f7 = ImageSet(Lambda(n, n**2), S.Integers)
+ f8 = ImageSet(Lambda(n, Abs(n)), S.Integers)
+ f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0)
+
+ assert f1.intersect(Interval(-1, 1)) == FiniteSet(0)
+ assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi)
+ assert f2.intersect(Interval(1, 2)) == Interval(1, 2)
+ assert f3.intersect(Interval(-1, 1)) == S.EmptySet
+ assert f3.intersect(Interval(-5, 5)) == FiniteSet(pi*Rational(-3, 2), pi/2)
+ assert f4.intersect(Interval(-1, 1)) == FiniteSet(0)
+ assert f4.intersect(Interval(1, 2)) == S.EmptySet
+ assert f5.intersect(Interval(0, 1)) == S.EmptySet
+ assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2))
+ assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10))
+ assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2))
+ assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2))
+
+
+def test_imageset_intersect_diophantine():
+ from sympy.abc import m, n
+ # Check that same lambda variable for both ImageSets is handled correctly
+ img1 = ImageSet(Lambda(n, 2*n + 1), S.Integers)
+ img2 = ImageSet(Lambda(n, 4*n + 1), S.Integers)
+ assert img1.intersect(img2) == img2
+ # Empty solution set returned by diophantine:
+ assert ImageSet(Lambda(n, 2*n), S.Integers).intersect(
+ ImageSet(Lambda(n, 2*n + 1), S.Integers)) == S.EmptySet
+ # Check intersection with S.Integers:
+ assert ImageSet(Lambda(n, 9/n + 20*n/3), S.Integers).intersect(
+ S.Integers) == FiniteSet(-61, -23, 23, 61)
+ # Single solution (2, 3) for diophantine solution:
+ assert ImageSet(Lambda(n, (n - 2)**2), S.Integers).intersect(
+ ImageSet(Lambda(n, -(n - 3)**2), S.Integers)) == FiniteSet(0)
+ # Single parametric solution for diophantine solution:
+ assert ImageSet(Lambda(n, n**2 + 5), S.Integers).intersect(
+ ImageSet(Lambda(m, 2*m), S.Integers)).dummy_eq(ImageSet(
+ Lambda(n, 4*n**2 + 4*n + 6), S.Integers))
+ # 4 non-parametric solution couples for dioph. equation:
+ assert ImageSet(Lambda(n, n**2 - 9), S.Integers).intersect(
+ ImageSet(Lambda(m, -m**2), S.Integers)) == FiniteSet(-9, 0)
+ # Double parametric solution for diophantine solution:
+ assert ImageSet(Lambda(m, m**2 + 40), S.Integers).intersect(
+ ImageSet(Lambda(n, 41*n), S.Integers)).dummy_eq(Intersection(
+ ImageSet(Lambda(m, m**2 + 40), S.Integers),
+ ImageSet(Lambda(n, 41*n), S.Integers)))
+ # Check that diophantine returns *all* (8) solutions (permute=True)
+ assert ImageSet(Lambda(n, n**4 - 2**4), S.Integers).intersect(
+ ImageSet(Lambda(m, -m**4 + 3**4), S.Integers)) == FiniteSet(0, 65)
+ assert ImageSet(Lambda(n, pi/12 + n*5*pi/12), S.Integers).intersect(
+ ImageSet(Lambda(n, 7*pi/12 + n*11*pi/12), S.Integers)).dummy_eq(ImageSet(
+ Lambda(n, 55*pi*n/12 + 17*pi/4), S.Integers))
+ # TypeError raised by diophantine (#18081)
+ assert ImageSet(Lambda(n, n*log(2)), S.Integers).intersection(
+ S.Integers).dummy_eq(Intersection(ImageSet(
+ Lambda(n, n*log(2)), S.Integers), S.Integers))
+ # NotImplementedError raised by diophantine (no solver for cubic_thue)
+ assert ImageSet(Lambda(n, n**3 + 1), S.Integers).intersect(
+ ImageSet(Lambda(n, n**3), S.Integers)).dummy_eq(Intersection(
+ ImageSet(Lambda(n, n**3 + 1), S.Integers),
+ ImageSet(Lambda(n, n**3), S.Integers)))
+
+
+def test_infinitely_indexed_set_3():
+ from sympy.abc import n, m
+ assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect(
+ imageset(Lambda(n, 3*pi*n), S.Integers)).dummy_eq(
+ ImageSet(Lambda(t, 6*pi*t), S.Integers))
+ assert imageset(Lambda(n, 2*n + 1), S.Integers) == \
+ imageset(Lambda(n, 2*n - 1), S.Integers)
+ assert imageset(Lambda(n, 3*n + 2), S.Integers) == \
+ imageset(Lambda(n, 3*n - 1), S.Integers)
+
+
+def test_ImageSet_simplification():
+ from sympy.abc import n, m
+ assert imageset(Lambda(n, n), S.Integers) == S.Integers
+ assert imageset(Lambda(n, sin(n)),
+ imageset(Lambda(m, tan(m)), S.Integers)) == \
+ imageset(Lambda(m, sin(tan(m))), S.Integers)
+ assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2)
+ assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2)
+ assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2)
+
+
+def test_ImageSet_contains():
+ assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers)
+ assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet
+ i = Dummy(integer=True)
+ q = imageset(x, x + I*y, S.Integers).intersection(S.Reals)
+ assert q.subs(y, I*i).intersection(S.Integers) is S.Integers
+ q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals)
+ assert q.subs(y, 0) is S.Integers
+ assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers
+ z = cos(1)**2 + sin(1)**2 - 1
+ q = imageset(x, x + I*z, S.Integers).intersection(S.Reals)
+ assert q is not S.EmptySet
+
+
+def test_ComplexRegion_contains():
+ r = Symbol('r', real=True)
+ # contains in ComplexRegion
+ a = Interval(2, 3)
+ b = Interval(4, 6)
+ c = Interval(7, 9)
+ c1 = ComplexRegion(a*b)
+ c2 = ComplexRegion(Union(a*b, c*a))
+ assert 2.5 + 4.5*I in c1
+ assert 2 + 4*I in c1
+ assert 3 + 4*I in c1
+ assert 8 + 2.5*I in c2
+ assert 2.5 + 6.1*I not in c1
+ assert 4.5 + 3.2*I not in c1
+ assert c1.contains(x) == Contains(x, c1, evaluate=False)
+ assert c1.contains(r) == False
+ assert c2.contains(x) == Contains(x, c2, evaluate=False)
+ assert c2.contains(r) == False
+
+ r1 = Interval(0, 1)
+ theta1 = Interval(0, 2*S.Pi)
+ c3 = ComplexRegion(r1*theta1, polar=True)
+ assert (0.5 + I*6/10) in c3
+ assert (S.Half + I*6/10) in c3
+ assert (S.Half + .6*I) in c3
+ assert (0.5 + .6*I) in c3
+ assert I in c3
+ assert 1 in c3
+ assert 0 in c3
+ assert 1 + I not in c3
+ assert 1 - I not in c3
+ assert c3.contains(x) == Contains(x, c3, evaluate=False)
+ assert c3.contains(r + 2*I) == Contains(
+ r + 2*I, c3, evaluate=False) # is in fact False
+ assert c3.contains(1/(1 + r**2)) == Contains(
+ 1/(1 + r**2), c3, evaluate=False) # is in fact True
+
+ r2 = Interval(0, 3)
+ theta2 = Interval(pi, 2*pi, left_open=True)
+ c4 = ComplexRegion(r2*theta2, polar=True)
+ assert c4.contains(0) == True
+ assert c4.contains(2 + I) == False
+ assert c4.contains(-2 + I) == False
+ assert c4.contains(-2 - I) == True
+ assert c4.contains(2 - I) == True
+ assert c4.contains(-2) == False
+ assert c4.contains(2) == True
+ assert c4.contains(x) == Contains(x, c4, evaluate=False)
+ assert c4.contains(3/(1 + r**2)) == Contains(
+ 3/(1 + r**2), c4, evaluate=False) # is in fact True
+
+ raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2))
+
+
+def test_symbolic_Range():
+ n = Symbol('n')
+ raises(ValueError, lambda: Range(n)[0])
+ raises(IndexError, lambda: Range(n, n)[0])
+ raises(ValueError, lambda: Range(n, n+1)[0])
+ raises(ValueError, lambda: Range(n).size)
+
+ n = Symbol('n', integer=True)
+ raises(ValueError, lambda: Range(n)[0])
+ raises(IndexError, lambda: Range(n, n)[0])
+ assert Range(n, n+1)[0] == n
+ raises(ValueError, lambda: Range(n).size)
+ assert Range(n, n+1).size == 1
+
+ n = Symbol('n', integer=True, nonnegative=True)
+ raises(ValueError, lambda: Range(n)[0])
+ raises(IndexError, lambda: Range(n, n)[0])
+ assert Range(n+1)[0] == 0
+ assert Range(n, n+1)[0] == n
+ assert Range(n).size == n
+ assert Range(n+1).size == n+1
+ assert Range(n, n+1).size == 1
+
+ n = Symbol('n', integer=True, positive=True)
+ assert Range(n)[0] == 0
+ assert Range(n, n+1)[0] == n
+ assert Range(n).size == n
+ assert Range(n, n+1).size == 1
+
+ m = Symbol('m', integer=True, positive=True)
+
+ assert Range(n, n+m)[0] == n
+ assert Range(n, n+m).size == m
+ assert Range(n, n+1).size == 1
+ assert Range(n, n+m, 2).size == floor(m/2)
+
+ m = Symbol('m', integer=True, positive=True, even=True)
+ assert Range(n, n+m, 2).size == m/2
+
+
+def test_issue_18400():
+ n = Symbol('n', integer=True)
+ raises(ValueError, lambda: imageset(lambda x: x*2, Range(n)))
+
+ n = Symbol('n', integer=True, positive=True)
+ # No exception
+ assert imageset(lambda x: x*2, Range(n)) == imageset(lambda x: x*2, Range(n))
+
+
+def test_ComplexRegion_intersect():
+ # Polar form
+ X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True)
+
+ unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
+ upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
+ upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
+ lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
+ right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True)
+ first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True)
+
+ assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk
+ assert right_half_disk.intersect(first_quad_disk) == first_quad_disk
+ assert upper_half_disk.intersect(right_half_disk) == first_quad_disk
+ assert upper_half_disk.intersect(lower_half_disk) == X_axis
+
+ c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True)
+ assert c1.intersect(Interval(1, 5)) == Interval(1, 4)
+ assert c1.intersect(Interval(4, 9)) == FiniteSet(4)
+ assert c1.intersect(Interval(5, 12)) is S.EmptySet
+
+ # Rectangular form
+ X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0))
+
+ unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
+ upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1))
+ upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo))
+ lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0))
+ right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo))
+ first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo))
+
+ assert upper_half_plane.intersect(unit_square) == upper_half_unit_square
+ assert right_half_plane.intersect(first_quad_plane) == first_quad_plane
+ assert upper_half_plane.intersect(right_half_plane) == first_quad_plane
+ assert upper_half_plane.intersect(lower_half_plane) == X_axis
+
+ c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10))
+ assert c1.intersect(Interval(2, 7)) == Interval(2, 5)
+ assert c1.intersect(Interval(5, 7)) == FiniteSet(5)
+ assert c1.intersect(Interval(6, 9)) is S.EmptySet
+
+ # unevaluated object
+ C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
+ C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
+ assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False)
+
+
+def test_ComplexRegion_union():
+ # Polar form
+ c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
+ c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
+ c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
+ c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
+
+ p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi))
+ p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi))
+
+ assert c1.union(c2) == ComplexRegion(p1, polar=True)
+ assert c3.union(c4) == ComplexRegion(p2, polar=True)
+
+ # Rectangular form
+ c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9))
+ c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12))
+ c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0))
+ c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20))
+
+ p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12))
+ p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20))
+
+ assert c5.union(c6) == ComplexRegion(p3)
+ assert c7.union(c8) == ComplexRegion(p4)
+
+ assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False)
+ assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4)))
+
+
+def test_ComplexRegion_from_real():
+ c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True)
+
+ raises(ValueError, lambda: c1.from_real(c1))
+ assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False)
+
+
+def test_ComplexRegion_measure():
+ a, b = Interval(2, 5), Interval(4, 8)
+ theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi)
+ c1 = ComplexRegion(a*b)
+ c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True)
+
+ assert c1.measure == 12
+ assert c2.measure == 9*pi
+
+
+def test_normalize_theta_set():
+ # Interval
+ assert normalize_theta_set(Interval(pi, 2*pi)) == \
+ Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
+ assert normalize_theta_set(Interval(pi*Rational(9, 2), 5*pi)) == Interval(pi/2, pi)
+ assert normalize_theta_set(Interval(pi*Rational(-3, 2), pi/2)) == Interval.Ropen(0, 2*pi)
+ assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \
+ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
+ assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \
+ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
+ assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
+ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
+ assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
+ Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
+ assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi)
+ assert normalize_theta_set(Interval(pi*Rational(-3, 2), -pi/2)) == Interval(pi/2, pi*Rational(3, 2))
+ assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi)
+ assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
+ Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
+ assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
+ Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
+ assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
+ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
+ assert normalize_theta_set(Interval.open(4*pi, pi*Rational(9, 2))) == Interval.open(0, pi/2)
+ assert normalize_theta_set(Interval.Lopen(4*pi, pi*Rational(9, 2))) == Interval.Lopen(0, pi/2)
+ assert normalize_theta_set(Interval.Ropen(4*pi, pi*Rational(9, 2))) == Interval.Ropen(0, pi/2)
+ assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
+ Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))
+
+ # FiniteSet
+ assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi)
+ assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi)
+ assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, pi*Rational(3, 2))
+ assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \
+ FiniteSet(pi/2)
+ assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0)
+
+ # Unions
+ assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
+ Union(Interval(0, pi/3), Interval(pi/2, pi))
+ assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \
+ Interval(0, pi)
+
+ # ValueError for non-real sets
+ raises(ValueError, lambda: normalize_theta_set(S.Complexes))
+
+ # NotImplementedError for subset of reals
+ raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1)))
+
+ # NotImplementedError without pi as coefficient
+ raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi)))
+ raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10)))
+ raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi)))
+
+
+def test_ComplexRegion_FiniteSet():
+ x, y, z, a, b, c = symbols('x y z a b c')
+
+ # Issue #9669
+ assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \
+ FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y,
+ b + I*z, c + I*x, c + I*y, c + I*z)
+ assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I)
+
+
+def test_union_RealSubSet():
+ assert (S.Complexes).union(Interval(1, 2)) == S.Complexes
+ assert (S.Complexes).union(S.Integers) == S.Complexes
+
+
+def test_SetKind_fancySet():
+ G = lambda *args: ImageSet(Lambda(x, x ** 2), *args)
+ assert G(Interval(1, 4)).kind is SetKind(NumberKind)
+ assert G(FiniteSet(1, 4)).kind is SetKind(NumberKind)
+ assert S.Rationals.kind is SetKind(NumberKind)
+ assert S.Naturals.kind is SetKind(NumberKind)
+ assert S.Integers.kind is SetKind(NumberKind)
+ assert Range(3).kind is SetKind(NumberKind)
+ a = Interval(2, 3)
+ b = Interval(4, 6)
+ c1 = ComplexRegion(a*b)
+ assert c1.kind is SetKind(TupleKind(NumberKind, NumberKind))
+
+
+def test_issue_9980():
+ c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3))
+ c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3))
+ R = Union(c1, c2)
+ assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \
+ Interval(1, 5)*Interval(1, 3)), False)
+ assert c1.func(*c1.args) == c1
+ assert R.func(*R.args) == R
+
+
+def test_issue_11732():
+ interval12 = Interval(1, 2)
+ finiteset1234 = FiniteSet(1, 2, 3, 4)
+ pointComplex = Tuple(1, 5)
+
+ assert (interval12 in S.Naturals) == False
+ assert (interval12 in S.Naturals0) == False
+ assert (interval12 in S.Integers) == False
+ assert (interval12 in S.Complexes) == False
+
+ assert (finiteset1234 in S.Naturals) == False
+ assert (finiteset1234 in S.Naturals0) == False
+ assert (finiteset1234 in S.Integers) == False
+ assert (finiteset1234 in S.Complexes) == False
+
+ assert (pointComplex in S.Naturals) == False
+ assert (pointComplex in S.Naturals0) == False
+ assert (pointComplex in S.Integers) == False
+ assert (pointComplex in S.Complexes) == True
+
+
+def test_issue_11730():
+ unit = Interval(0, 1)
+ square = ComplexRegion(unit ** 2)
+
+ assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes
+ assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes
+ assert Union(unit, square) == square
+ assert Intersection(S.Reals, square) == unit
+
+
+def test_issue_11938():
+ unit = Interval(0, 1)
+ ival = Interval(1, 2)
+ cr1 = ComplexRegion(ival * unit)
+
+ assert Intersection(cr1, S.Reals) == ival
+ assert Intersection(cr1, unit) == FiniteSet(1)
+
+ arg1 = Interval(0, S.Pi)
+ arg2 = FiniteSet(S.Pi)
+ arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4)
+ cp1 = ComplexRegion(unit * arg1, polar=True)
+ cp2 = ComplexRegion(unit * arg2, polar=True)
+ cp3 = ComplexRegion(unit * arg3, polar=True)
+
+ assert Intersection(cp1, S.Reals) == Interval(-1, 1)
+ assert Intersection(cp2, S.Reals) == Interval(-1, 0)
+ assert Intersection(cp3, S.Reals) == FiniteSet(0)
+
+
+def test_issue_11914():
+ a, b = Interval(0, 1), Interval(0, pi)
+ c, d = Interval(2, 3), Interval(pi, 3 * pi / 2)
+ cp1 = ComplexRegion(a * b, polar=True)
+ cp2 = ComplexRegion(c * d, polar=True)
+
+ assert -3 in cp1.union(cp2)
+ assert -3 in cp2.union(cp1)
+ assert -5 not in cp1.union(cp2)
+
+
+def test_issue_9543():
+ assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals)
+
+
+def test_issue_16871():
+ assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1}
+ assert ImageSet(Lambda(x, x - 3), S.Integers
+ ).intersection(S.Integers) is S.Integers
+
+
+@XFAIL
+def test_issue_16871b():
+ assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers)
+
+
+def test_issue_18050():
+ assert imageset(Lambda(x, I*x + 1), S.Integers
+ ) == ImageSet(Lambda(x, I*x + 1), S.Integers)
+ assert imageset(Lambda(x, 3*I*x + 4 + 8*I), S.Integers
+ ) == ImageSet(Lambda(x, 3*I*x + 4 + 2*I), S.Integers)
+ # no 'Mod' for next 2 tests:
+ assert imageset(Lambda(x, 2*x + 3*I), S.Integers
+ ) == ImageSet(Lambda(x, 2*x + 3*I), S.Integers)
+ r = Symbol('r', positive=True)
+ assert imageset(Lambda(x, r*x + 10), S.Integers
+ ) == ImageSet(Lambda(x, r*x + 10), S.Integers)
+ # reduce real part:
+ assert imageset(Lambda(x, 3*x + 8 + 5*I), S.Integers
+ ) == ImageSet(Lambda(x, 3*x + 2 + 5*I), S.Integers)
+
+
+def test_Rationals():
+ assert S.Integers.is_subset(S.Rationals)
+ assert S.Naturals.is_subset(S.Rationals)
+ assert S.Naturals0.is_subset(S.Rationals)
+ assert S.Rationals.is_subset(S.Reals)
+ assert S.Rationals.inf is -oo
+ assert S.Rationals.sup is oo
+ it = iter(S.Rationals)
+ assert [next(it) for i in range(12)] == [
+ 0, 1, -1, S.Half, 2, Rational(-1, 2), -2,
+ Rational(1, 3), 3, Rational(-1, 3), -3, Rational(2, 3)]
+ assert Basic() not in S.Rationals
+ assert S.Half in S.Rationals
+ assert S.Rationals.contains(0.5) == Contains(0.5, S.Rationals, evaluate=False)
+ assert 2 in S.Rationals
+ r = symbols('r', rational=True)
+ assert r in S.Rationals
+ raises(TypeError, lambda: x in S.Rationals)
+ # issue #18134:
+ assert S.Rationals.boundary == S.Reals
+ assert S.Rationals.closure == S.Reals
+ assert S.Rationals.is_open == False
+ assert S.Rationals.is_closed == False
+
+
+def test_NZQRC_unions():
+ # check that all trivial number set unions are simplified:
+ nbrsets = (S.Naturals, S.Naturals0, S.Integers, S.Rationals,
+ S.Reals, S.Complexes)
+ unions = (Union(a, b) for a in nbrsets for b in nbrsets)
+ assert all(u.is_Union is False for u in unions)
+
+
+def test_imageset_intersection():
+ n = Dummy()
+ s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) +
+ log(Abs(sqrt(-I))))), S.Integers)
+ assert s.intersect(S.Reals) == ImageSet(
+ Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
+
+
+def test_issue_17858():
+ assert 1 in Range(-oo, oo)
+ assert 0 in Range(oo, -oo, -1)
+ assert oo not in Range(-oo, oo)
+ assert -oo not in Range(-oo, oo)
+
+def test_issue_17859():
+ r = Range(-oo,oo)
+ raises(ValueError,lambda: r[::2])
+ raises(ValueError, lambda: r[::-2])
+ r = Range(oo,-oo,-1)
+ raises(ValueError,lambda: r[::2])
+ raises(ValueError, lambda: r[::-2])
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_ordinals.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_ordinals.py
new file mode 100644
index 0000000000000000000000000000000000000000..973ca329586f3e904f9377c44022c266f81c805c
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_ordinals.py
@@ -0,0 +1,67 @@
+from sympy.sets.ordinals import Ordinal, OmegaPower, ord0, omega
+from sympy.testing.pytest import raises
+
+def test_string_ordinals():
+ assert str(omega) == 'w'
+ assert str(Ordinal(OmegaPower(5, 3), OmegaPower(3, 2))) == 'w**5*3 + w**3*2'
+ assert str(Ordinal(OmegaPower(5, 3), OmegaPower(0, 5))) == 'w**5*3 + 5'
+ assert str(Ordinal(OmegaPower(1, 3), OmegaPower(0, 5))) == 'w*3 + 5'
+ assert str(Ordinal(OmegaPower(omega + 1, 1), OmegaPower(3, 2))) == 'w**(w + 1) + w**3*2'
+
+def test_addition_with_integers():
+ assert 3 + Ordinal(OmegaPower(5, 3)) == Ordinal(OmegaPower(5, 3))
+ assert Ordinal(OmegaPower(5, 3))+3 == Ordinal(OmegaPower(5, 3), OmegaPower(0, 3))
+ assert Ordinal(OmegaPower(5, 3), OmegaPower(0, 2))+3 == \
+ Ordinal(OmegaPower(5, 3), OmegaPower(0, 5))
+
+
+def test_addition_with_ordinals():
+ assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) + Ordinal(OmegaPower(3, 3)) == \
+ Ordinal(OmegaPower(5, 3), OmegaPower(3, 5))
+ assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) + Ordinal(OmegaPower(4, 2)) == \
+ Ordinal(OmegaPower(5, 3), OmegaPower(4, 2))
+ assert Ordinal(OmegaPower(omega, 2), OmegaPower(3, 2)) + Ordinal(OmegaPower(4, 2)) == \
+ Ordinal(OmegaPower(omega, 2), OmegaPower(4, 2))
+
+def test_comparison():
+ assert Ordinal(OmegaPower(5, 3)) > Ordinal(OmegaPower(4, 3), OmegaPower(2, 1))
+ assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) < Ordinal(OmegaPower(5, 4))
+ assert Ordinal(OmegaPower(5, 4)) < Ordinal(OmegaPower(5, 5), OmegaPower(4, 1))
+
+ assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) == \
+ Ordinal(OmegaPower(5, 3), OmegaPower(3, 2))
+ assert not Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) == Ordinal(OmegaPower(5, 3))
+ assert Ordinal(OmegaPower(omega, 3)) > Ordinal(OmegaPower(5, 3))
+
+def test_multiplication_with_integers():
+ w = omega
+ assert 3*w == w
+ assert w*9 == Ordinal(OmegaPower(1, 9))
+
+def test_multiplication():
+ w = omega
+ assert w*(w + 1) == w*w + w
+ assert (w + 1)*(w + 1) == w*w + w + 1
+ assert w*1 == w
+ assert 1*w == w
+ assert w*ord0 == ord0
+ assert ord0*w == ord0
+ assert w**w == w * w**w
+ assert (w**w)*w*w == w**(w + 2)
+
+def test_exponentiation():
+ w = omega
+ assert w**2 == w*w
+ assert w**3 == w*w*w
+ assert w**(w + 1) == Ordinal(OmegaPower(omega + 1, 1))
+ assert (w**w)*(w**w) == w**(w*2)
+
+def test_comapre_not_instance():
+ w = OmegaPower(omega + 1, 1)
+ assert(not (w == None))
+ assert(not (w < 5))
+ raises(TypeError, lambda: w < 6.66)
+
+def test_is_successort():
+ w = Ordinal(OmegaPower(5, 1))
+ assert not w.is_successor_ordinal
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_powerset.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_powerset.py
new file mode 100644
index 0000000000000000000000000000000000000000..2e3a407d565f6b9537a296af103ec0a4e137cff9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_powerset.py
@@ -0,0 +1,141 @@
+from sympy.core.expr import unchanged
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.sets.contains import Contains
+from sympy.sets.fancysets import Interval
+from sympy.sets.powerset import PowerSet
+from sympy.sets.sets import FiniteSet
+from sympy.testing.pytest import raises, XFAIL
+
+
+def test_powerset_creation():
+ assert unchanged(PowerSet, FiniteSet(1, 2))
+ assert unchanged(PowerSet, S.EmptySet)
+ raises(ValueError, lambda: PowerSet(123))
+ assert unchanged(PowerSet, S.Reals)
+ assert unchanged(PowerSet, S.Integers)
+
+
+def test_powerset_rewrite_FiniteSet():
+ assert PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet) == \
+ FiniteSet(S.EmptySet, FiniteSet(1), FiniteSet(2), FiniteSet(1, 2))
+ assert PowerSet(S.EmptySet).rewrite(FiniteSet) == FiniteSet(S.EmptySet)
+ assert PowerSet(S.Naturals).rewrite(FiniteSet) == PowerSet(S.Naturals)
+
+
+def test_finiteset_rewrite_powerset():
+ assert FiniteSet(S.EmptySet).rewrite(PowerSet) == PowerSet(S.EmptySet)
+ assert FiniteSet(
+ S.EmptySet, FiniteSet(1),
+ FiniteSet(2), FiniteSet(1, 2)).rewrite(PowerSet) == \
+ PowerSet(FiniteSet(1, 2))
+ assert FiniteSet(1, 2, 3).rewrite(PowerSet) == FiniteSet(1, 2, 3)
+
+
+def test_powerset__contains__():
+ subset_series = [
+ S.EmptySet,
+ FiniteSet(1, 2),
+ S.Naturals,
+ S.Naturals0,
+ S.Integers,
+ S.Rationals,
+ S.Reals,
+ S.Complexes]
+
+ l = len(subset_series)
+ for i in range(l):
+ for j in range(l):
+ if i <= j:
+ assert subset_series[i] in \
+ PowerSet(subset_series[j], evaluate=False)
+ else:
+ assert subset_series[i] not in \
+ PowerSet(subset_series[j], evaluate=False)
+
+
+@XFAIL
+def test_failing_powerset__contains__():
+ # XXX These are failing when evaluate=True,
+ # but using unevaluated PowerSet works fine.
+ assert FiniteSet(1, 2) not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Naturals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Naturals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+ assert S.Naturals0 not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Naturals0 not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+ assert S.Integers not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Integers not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+ assert S.Rationals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Rationals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+ assert S.Reals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Reals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+ assert S.Complexes not in PowerSet(S.EmptySet).rewrite(FiniteSet)
+ assert S.Complexes not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
+
+
+def test_powerset__len__():
+ A = PowerSet(S.EmptySet, evaluate=False)
+ assert len(A) == 1
+ A = PowerSet(A, evaluate=False)
+ assert len(A) == 2
+ A = PowerSet(A, evaluate=False)
+ assert len(A) == 4
+ A = PowerSet(A, evaluate=False)
+ assert len(A) == 16
+
+
+def test_powerset__iter__():
+ a = PowerSet(FiniteSet(1, 2)).__iter__()
+ assert next(a) == S.EmptySet
+ assert next(a) == FiniteSet(1)
+ assert next(a) == FiniteSet(2)
+ assert next(a) == FiniteSet(1, 2)
+
+ a = PowerSet(S.Naturals).__iter__()
+ assert next(a) == S.EmptySet
+ assert next(a) == FiniteSet(1)
+ assert next(a) == FiniteSet(2)
+ assert next(a) == FiniteSet(1, 2)
+ assert next(a) == FiniteSet(3)
+ assert next(a) == FiniteSet(1, 3)
+ assert next(a) == FiniteSet(2, 3)
+ assert next(a) == FiniteSet(1, 2, 3)
+
+
+def test_powerset_contains():
+ A = PowerSet(FiniteSet(1), evaluate=False)
+ assert A.contains(2) == Contains(2, A)
+
+ x = Symbol('x')
+
+ A = PowerSet(FiniteSet(x), evaluate=False)
+ assert A.contains(FiniteSet(1)) == Contains(FiniteSet(1), A)
+
+
+def test_powerset_method():
+ # EmptySet
+ A = FiniteSet()
+ pset = A.powerset()
+ assert len(pset) == 1
+ assert pset == FiniteSet(S.EmptySet)
+
+ # FiniteSets
+ A = FiniteSet(1, 2)
+ pset = A.powerset()
+ assert len(pset) == 2**len(A)
+ assert pset == FiniteSet(FiniteSet(), FiniteSet(1),
+ FiniteSet(2), A)
+ # Not finite sets
+ A = Interval(0, 1)
+ assert A.powerset() == PowerSet(A)
+
+def test_is_subset():
+ # covers line 101-102
+ # initialize powerset(1), which is a subset of powerset(1,2)
+ subset = PowerSet(FiniteSet(1))
+ pset = PowerSet(FiniteSet(1, 2))
+ bad_set = PowerSet(FiniteSet(2, 3))
+ # assert "subset" is subset of pset == True
+ assert subset.is_subset(pset)
+ # assert "bad_set" is subset of pset == False
+ assert not pset.is_subset(bad_set)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_setexpr.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_setexpr.py
new file mode 100644
index 0000000000000000000000000000000000000000..faab1261c8d3e86901b04d30e8bc94de31642b93
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_setexpr.py
@@ -0,0 +1,317 @@
+from sympy.sets.setexpr import SetExpr
+from sympy.sets import Interval, FiniteSet, Intersection, ImageSet, Union
+
+from sympy.core.expr import Expr
+from sympy.core.function import Lambda
+from sympy.core.numbers import (I, Rational, oo)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Dummy, Symbol, symbols)
+from sympy.functions.elementary.exponential import (exp, log)
+from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
+from sympy.functions.elementary.trigonometric import cos
+from sympy.sets.sets import Set
+
+
+a, x = symbols("a, x")
+_d = Dummy("d")
+
+
+def test_setexpr():
+ se = SetExpr(Interval(0, 1))
+ assert isinstance(se.set, Set)
+ assert isinstance(se, Expr)
+
+
+def test_scalar_funcs():
+ assert SetExpr(Interval(0, 1)).set == Interval(0, 1)
+ a, b = Symbol('a', real=True), Symbol('b', real=True)
+ a, b = 1, 2
+ # TODO: add support for more functions in the future:
+ for f in [exp, log]:
+ input_se = f(SetExpr(Interval(a, b)))
+ output = input_se.set
+ expected = Interval(Min(f(a), f(b)), Max(f(a), f(b)))
+ assert output == expected
+
+
+def test_Add_Mul():
+ assert (SetExpr(Interval(0, 1)) + 1).set == Interval(1, 2)
+ assert (SetExpr(Interval(0, 1))*2).set == Interval(0, 2)
+
+
+def test_Pow():
+ assert (SetExpr(Interval(0, 2))**2).set == Interval(0, 4)
+
+
+def test_compound():
+ assert (exp(SetExpr(Interval(0, 1))*2 + 1)).set == \
+ Interval(exp(1), exp(3))
+
+
+def test_Interval_Interval():
+ assert (SetExpr(Interval(1, 2)) + SetExpr(Interval(10, 20))).set == \
+ Interval(11, 22)
+ assert (SetExpr(Interval(1, 2))*SetExpr(Interval(10, 20))).set == \
+ Interval(10, 40)
+
+
+def test_FiniteSet_FiniteSet():
+ assert (SetExpr(FiniteSet(1, 2, 3)) + SetExpr(FiniteSet(1, 2))).set == \
+ FiniteSet(2, 3, 4, 5)
+ assert (SetExpr(FiniteSet(1, 2, 3))*SetExpr(FiniteSet(1, 2))).set == \
+ FiniteSet(1, 2, 3, 4, 6)
+
+
+def test_Interval_FiniteSet():
+ assert (SetExpr(FiniteSet(1, 2)) + SetExpr(Interval(0, 10))).set == \
+ Interval(1, 12)
+
+
+def test_Many_Sets():
+ assert (SetExpr(Interval(0, 1)) +
+ SetExpr(Interval(2, 3)) +
+ SetExpr(FiniteSet(10, 11, 12))).set == Interval(12, 16)
+
+
+def test_same_setexprs_are_not_identical():
+ a = SetExpr(FiniteSet(0, 1))
+ b = SetExpr(FiniteSet(0, 1))
+ assert (a + b).set == FiniteSet(0, 1, 2)
+
+ # Cannot detect the set being the same:
+ # assert (a + a).set == FiniteSet(0, 2)
+
+
+def test_Interval_arithmetic():
+ i12cc = SetExpr(Interval(1, 2))
+ i12lo = SetExpr(Interval.Lopen(1, 2))
+ i12ro = SetExpr(Interval.Ropen(1, 2))
+ i12o = SetExpr(Interval.open(1, 2))
+
+ n23cc = SetExpr(Interval(-2, 3))
+ n23lo = SetExpr(Interval.Lopen(-2, 3))
+ n23ro = SetExpr(Interval.Ropen(-2, 3))
+ n23o = SetExpr(Interval.open(-2, 3))
+
+ n3n2cc = SetExpr(Interval(-3, -2))
+
+ assert i12cc + i12cc == SetExpr(Interval(2, 4))
+ assert i12cc - i12cc == SetExpr(Interval(-1, 1))
+ assert i12cc*i12cc == SetExpr(Interval(1, 4))
+ assert i12cc/i12cc == SetExpr(Interval(S.Half, 2))
+ assert i12cc**2 == SetExpr(Interval(1, 4))
+ assert i12cc**3 == SetExpr(Interval(1, 8))
+
+ assert i12lo + i12ro == SetExpr(Interval.open(2, 4))
+ assert i12lo - i12ro == SetExpr(Interval.Lopen(-1, 1))
+ assert i12lo*i12ro == SetExpr(Interval.open(1, 4))
+ assert i12lo/i12ro == SetExpr(Interval.Lopen(S.Half, 2))
+ assert i12lo + i12lo == SetExpr(Interval.Lopen(2, 4))
+ assert i12lo - i12lo == SetExpr(Interval.open(-1, 1))
+ assert i12lo*i12lo == SetExpr(Interval.Lopen(1, 4))
+ assert i12lo/i12lo == SetExpr(Interval.open(S.Half, 2))
+ assert i12lo + i12cc == SetExpr(Interval.Lopen(2, 4))
+ assert i12lo - i12cc == SetExpr(Interval.Lopen(-1, 1))
+ assert i12lo*i12cc == SetExpr(Interval.Lopen(1, 4))
+ assert i12lo/i12cc == SetExpr(Interval.Lopen(S.Half, 2))
+ assert i12lo + i12o == SetExpr(Interval.open(2, 4))
+ assert i12lo - i12o == SetExpr(Interval.open(-1, 1))
+ assert i12lo*i12o == SetExpr(Interval.open(1, 4))
+ assert i12lo/i12o == SetExpr(Interval.open(S.Half, 2))
+ assert i12lo**2 == SetExpr(Interval.Lopen(1, 4))
+ assert i12lo**3 == SetExpr(Interval.Lopen(1, 8))
+
+ assert i12ro + i12ro == SetExpr(Interval.Ropen(2, 4))
+ assert i12ro - i12ro == SetExpr(Interval.open(-1, 1))
+ assert i12ro*i12ro == SetExpr(Interval.Ropen(1, 4))
+ assert i12ro/i12ro == SetExpr(Interval.open(S.Half, 2))
+ assert i12ro + i12cc == SetExpr(Interval.Ropen(2, 4))
+ assert i12ro - i12cc == SetExpr(Interval.Ropen(-1, 1))
+ assert i12ro*i12cc == SetExpr(Interval.Ropen(1, 4))
+ assert i12ro/i12cc == SetExpr(Interval.Ropen(S.Half, 2))
+ assert i12ro + i12o == SetExpr(Interval.open(2, 4))
+ assert i12ro - i12o == SetExpr(Interval.open(-1, 1))
+ assert i12ro*i12o == SetExpr(Interval.open(1, 4))
+ assert i12ro/i12o == SetExpr(Interval.open(S.Half, 2))
+ assert i12ro**2 == SetExpr(Interval.Ropen(1, 4))
+ assert i12ro**3 == SetExpr(Interval.Ropen(1, 8))
+
+ assert i12o + i12lo == SetExpr(Interval.open(2, 4))
+ assert i12o - i12lo == SetExpr(Interval.open(-1, 1))
+ assert i12o*i12lo == SetExpr(Interval.open(1, 4))
+ assert i12o/i12lo == SetExpr(Interval.open(S.Half, 2))
+ assert i12o + i12ro == SetExpr(Interval.open(2, 4))
+ assert i12o - i12ro == SetExpr(Interval.open(-1, 1))
+ assert i12o*i12ro == SetExpr(Interval.open(1, 4))
+ assert i12o/i12ro == SetExpr(Interval.open(S.Half, 2))
+ assert i12o + i12cc == SetExpr(Interval.open(2, 4))
+ assert i12o - i12cc == SetExpr(Interval.open(-1, 1))
+ assert i12o*i12cc == SetExpr(Interval.open(1, 4))
+ assert i12o/i12cc == SetExpr(Interval.open(S.Half, 2))
+ assert i12o**2 == SetExpr(Interval.open(1, 4))
+ assert i12o**3 == SetExpr(Interval.open(1, 8))
+
+ assert n23cc + n23cc == SetExpr(Interval(-4, 6))
+ assert n23cc - n23cc == SetExpr(Interval(-5, 5))
+ assert n23cc*n23cc == SetExpr(Interval(-6, 9))
+ assert n23cc/n23cc == SetExpr(Interval.open(-oo, oo))
+ assert n23cc + n23ro == SetExpr(Interval.Ropen(-4, 6))
+ assert n23cc - n23ro == SetExpr(Interval.Lopen(-5, 5))
+ assert n23cc*n23ro == SetExpr(Interval.Ropen(-6, 9))
+ assert n23cc/n23ro == SetExpr(Interval.Lopen(-oo, oo))
+ assert n23cc + n23lo == SetExpr(Interval.Lopen(-4, 6))
+ assert n23cc - n23lo == SetExpr(Interval.Ropen(-5, 5))
+ assert n23cc*n23lo == SetExpr(Interval(-6, 9))
+ assert n23cc/n23lo == SetExpr(Interval.open(-oo, oo))
+ assert n23cc + n23o == SetExpr(Interval.open(-4, 6))
+ assert n23cc - n23o == SetExpr(Interval.open(-5, 5))
+ assert n23cc*n23o == SetExpr(Interval.open(-6, 9))
+ assert n23cc/n23o == SetExpr(Interval.open(-oo, oo))
+ assert n23cc**2 == SetExpr(Interval(0, 9))
+ assert n23cc**3 == SetExpr(Interval(-8, 27))
+
+ n32cc = SetExpr(Interval(-3, 2))
+ n32lo = SetExpr(Interval.Lopen(-3, 2))
+ n32ro = SetExpr(Interval.Ropen(-3, 2))
+ assert n32cc*n32lo == SetExpr(Interval.Ropen(-6, 9))
+ assert n32cc*n32cc == SetExpr(Interval(-6, 9))
+ assert n32lo*n32cc == SetExpr(Interval.Ropen(-6, 9))
+ assert n32cc*n32ro == SetExpr(Interval(-6, 9))
+ assert n32lo*n32ro == SetExpr(Interval.Ropen(-6, 9))
+ assert n32cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
+ assert i12cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
+
+ assert n3n2cc**2 == SetExpr(Interval(4, 9))
+ assert n3n2cc**3 == SetExpr(Interval(-27, -8))
+
+ assert n23cc + i12cc == SetExpr(Interval(-1, 5))
+ assert n23cc - i12cc == SetExpr(Interval(-4, 2))
+ assert n23cc*i12cc == SetExpr(Interval(-4, 6))
+ assert n23cc/i12cc == SetExpr(Interval(-2, 3))
+
+
+def test_SetExpr_Intersection():
+ x, y, z, w = symbols("x y z w")
+ set1 = Interval(x, y)
+ set2 = Interval(w, z)
+ inter = Intersection(set1, set2)
+ se = SetExpr(inter)
+ assert exp(se).set == Intersection(
+ ImageSet(Lambda(x, exp(x)), set1),
+ ImageSet(Lambda(x, exp(x)), set2))
+ assert cos(se).set == ImageSet(Lambda(x, cos(x)), inter)
+
+
+def test_SetExpr_Interval_div():
+ # TODO: some expressions cannot be calculated due to bugs (currently
+ # commented):
+ assert SetExpr(Interval(-3, -2))/SetExpr(Interval(-2, 1)) == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(2, 3))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
+
+ assert SetExpr(Interval(-3, -2))/SetExpr(Interval(0, 4)) == SetExpr(Interval(-oo, Rational(-1, 2)))
+ assert SetExpr(Interval(2, 4))/SetExpr(Interval(-3, 0)) == SetExpr(Interval(-oo, Rational(-2, 3)))
+ assert SetExpr(Interval(2, 4))/SetExpr(Interval(0, 3)) == SetExpr(Interval(Rational(2, 3), oo))
+
+ # assert SetExpr(Interval(0, 1))/SetExpr(Interval(0, 1)) == SetExpr(Interval(0, oo))
+ # assert SetExpr(Interval(-1, 0))/SetExpr(Interval(0, 1)) == SetExpr(Interval(-oo, 0))
+ assert SetExpr(Interval(-1, 2))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
+
+ assert 1/SetExpr(Interval(-1, 2)) == SetExpr(Union(Interval(-oo, -1), Interval(S.Half, oo)))
+
+ assert 1/SetExpr(Interval(0, 2)) == SetExpr(Interval(S.Half, oo))
+ assert (-1)/SetExpr(Interval(0, 2)) == SetExpr(Interval(-oo, Rational(-1, 2)))
+ assert 1/SetExpr(Interval(-oo, 0)) == SetExpr(Interval.open(-oo, 0))
+ assert 1/SetExpr(Interval(-1, 0)) == SetExpr(Interval(-oo, -1))
+ # assert (-2)/SetExpr(Interval(-oo, 0)) == SetExpr(Interval(0, oo))
+ # assert 1/SetExpr(Interval(-oo, -1)) == SetExpr(Interval(-1, 0))
+
+ # assert SetExpr(Interval(1, 2))/a == Mul(SetExpr(Interval(1, 2)), 1/a, evaluate=False)
+
+ # assert SetExpr(Interval(1, 2))/0 == SetExpr(Interval(1, 2))*zoo
+ # assert SetExpr(Interval(1, oo))/oo == SetExpr(Interval(0, oo))
+ # assert SetExpr(Interval(1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
+ # assert SetExpr(Interval(-oo, -1))/oo == SetExpr(Interval(-oo, 0))
+ # assert SetExpr(Interval(-oo, -1))/(-oo) == SetExpr(Interval(0, oo))
+ # assert SetExpr(Interval(-oo, oo))/oo == SetExpr(Interval(-oo, oo))
+ # assert SetExpr(Interval(-oo, oo))/(-oo) == SetExpr(Interval(-oo, oo))
+ # assert SetExpr(Interval(-1, oo))/oo == SetExpr(Interval(0, oo))
+ # assert SetExpr(Interval(-1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
+ # assert SetExpr(Interval(-oo, 1))/oo == SetExpr(Interval(-oo, 0))
+ # assert SetExpr(Interval(-oo, 1))/(-oo) == SetExpr(Interval(0, oo))
+
+
+def test_SetExpr_Interval_pow():
+ assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
+ assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
+ assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
+ assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
+ assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))
+
+
+ assert SetExpr(Interval(1, 2))**Rational(5, 2) == SetExpr(Interval(1, 4*sqrt(2)))
+ #assert SetExpr(Interval(-1, 2))**Rational(1, 3) == SetExpr(Interval(-1, 2**Rational(1, 3)))
+ #assert SetExpr(Interval(0, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
+
+ #assert SetExpr(Interval(-4, 2))**Rational(2, 3) == SetExpr(Interval(0, 2*2**Rational(1, 3)))
+
+ #assert SetExpr(Interval(-1, 5))**S.Half == SetExpr(Interval(0, sqrt(5)))
+ #assert SetExpr(Interval(-oo, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
+ #assert SetExpr(Interval(-2, 3))**(Rational(-1, 4)) == SetExpr(Interval(0, oo))
+
+ assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(Rational(1, 25), 1))
+ assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))
+
+ assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
+ assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(Union(Interval(-oo, -1), Interval(Rational(1, 8), oo)))
+ assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(Interval(Rational(-1, 8), Rational(-1, 27)))
+ assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(Interval(Rational(1, 9), Rational(1, 4)))
+ #assert SetExpr(Interval(0, oo))**S.Half == SetExpr(Interval(0, oo))
+ #assert SetExpr(Interval(-oo, -1))**Rational(1, 3) == SetExpr(Interval(-oo, -1))
+ #assert SetExpr(Interval(-2, 3))**(Rational(-1, 3)) == SetExpr(Interval(-oo, oo))
+
+ assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
+ assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
+
+ assert SetExpr(Interval(Rational(1, 3), S.Half))**oo == SetExpr(FiniteSet(0))
+ assert SetExpr(Interval(0, S.Half))**oo == SetExpr(FiniteSet(0))
+ assert SetExpr(Interval(S.Half, 1))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
+ assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(S.Half, 3))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(Rational(-1, 3), Rational(-1, 4)))**oo == SetExpr(FiniteSet(0))
+ assert SetExpr(Interval(-1, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
+ assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(-2, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(Rational(-1, 2), S.Half))**oo == SetExpr(FiniteSet(0))
+ assert SetExpr(Interval(Rational(-1, 2), 1))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(Rational(-2, 3), 2))**oo == SetExpr(Interval(0, oo))
+ assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(-1, S.Half))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
+ assert SetExpr(Interval(-2, S.Half))**oo == SetExpr(Interval(-oo, oo))
+
+ assert (SetExpr(Interval(1, 2))**x).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))
+
+ assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
+ assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
+ assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))
+
+
+def test_SetExpr_Integers():
+ assert SetExpr(S.Integers) + 1 == SetExpr(S.Integers)
+ assert (SetExpr(S.Integers) + I).dummy_eq(
+ SetExpr(ImageSet(Lambda(_d, _d + I), S.Integers)))
+ assert SetExpr(S.Integers)*(-1) == SetExpr(S.Integers)
+ assert (SetExpr(S.Integers)*2).dummy_eq(
+ SetExpr(ImageSet(Lambda(_d, 2*_d), S.Integers)))
+ assert (SetExpr(S.Integers)*I).dummy_eq(
+ SetExpr(ImageSet(Lambda(_d, I*_d), S.Integers)))
+ # issue #18050:
+ assert SetExpr(S.Integers)._eval_func(Lambda(x, I*x + 1)).dummy_eq(
+ SetExpr(ImageSet(Lambda(_d, I*_d + 1), S.Integers)))
+ # needs improvement:
+ assert (SetExpr(S.Integers)*I + 1).dummy_eq(
+ SetExpr(ImageSet(Lambda(x, x + 1),
+ ImageSet(Lambda(_d, _d*I), S.Integers))))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_sets.py b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_sets.py
new file mode 100644
index 0000000000000000000000000000000000000000..5a517739c5b9eababd9ed1ddc74d2e8f43c6b950
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_sets.py
@@ -0,0 +1,1704 @@
+from sympy.concrete.summations import Sum
+from sympy.core.add import Add
+from sympy.core.containers import TupleKind
+from sympy.core.function import Lambda
+from sympy.core.kind import NumberKind, UndefinedKind
+from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
+from sympy.core.power import Pow
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.core.sympify import sympify
+from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
+from sympy.functions.elementary.piecewise import Piecewise
+from sympy.functions.elementary.trigonometric import (cos, sin)
+from sympy.logic.boolalg import (false, true)
+from sympy.matrices.common import MatrixKind
+from sympy.matrices.dense import Matrix
+from sympy.polys.rootoftools import rootof
+from sympy.sets.contains import Contains
+from sympy.sets.fancysets import (ImageSet, Range)
+from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind)
+from mpmath import mpi
+
+from sympy.core.expr import unchanged
+from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
+from sympy.logic import And, Or, Xor
+from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
+
+from sympy.abc import x, y, z, m, n
+
+EmptySet = S.EmptySet
+
+def test_imageset():
+ ints = S.Integers
+ assert imageset(x, x - 1, S.Naturals) is S.Naturals0
+ assert imageset(x, x + 1, S.Naturals0) is S.Naturals
+ assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
+ assert imageset(x, abs(x), S.Naturals) is S.Naturals
+ assert imageset(x, abs(x), S.Integers) is S.Naturals0
+ # issue 16878a
+ r = symbols('r', real=True)
+ assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
+ assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
+ assert (r, r) in imageset(x, (x, x), S.Reals)
+ assert 1 + I in imageset(x, x + I, S.Reals)
+ assert {1} not in imageset(x, (x,), S.Reals)
+ assert (1, 1) not in imageset(x, (x,), S.Reals)
+ raises(TypeError, lambda: imageset(x, ints))
+ raises(ValueError, lambda: imageset(x, y, z, ints))
+ raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
+ assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
+ raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
+ assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
+ def f(x):
+ return cos(x)
+ assert imageset(f, ints) == imageset(x, cos(x), ints)
+ f = lambda x: cos(x)
+ assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
+ assert imageset(x, 1, ints) == FiniteSet(1)
+ assert imageset(x, y, ints) == {y}
+ assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
+ clash = Symbol('x', integer=true)
+ assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
+ in ('x0 + x', 'x + x0'))
+ x1, x2 = symbols("x1, x2")
+ assert imageset(lambda x, y:
+ Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq(
+ ImageSet(Lambda((x1, x2), x1 + x2),
+ Interval(1, 2), Interval(2, 3)))
+
+
+def test_is_empty():
+ for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
+ S.UniversalSet]:
+ assert s.is_empty is False
+
+ assert S.EmptySet.is_empty is True
+
+
+def test_is_finiteset():
+ for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
+ S.UniversalSet]:
+ assert s.is_finite_set is False
+
+ assert S.EmptySet.is_finite_set is True
+
+ assert FiniteSet(1, 2).is_finite_set is True
+ assert Interval(1, 2).is_finite_set is False
+ assert Interval(x, y).is_finite_set is None
+ assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
+ assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
+ assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
+ assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
+ assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
+ assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
+ assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
+ assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
+ assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
+ assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
+ assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
+ assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
+ assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
+ assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False
+ assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True
+
+
+def test_deprecated_is_EmptySet():
+ with warns_deprecated_sympy():
+ S.EmptySet.is_EmptySet
+
+ with warns_deprecated_sympy():
+ FiniteSet(1).is_EmptySet
+
+
+def test_interval_arguments():
+ assert Interval(0, oo) == Interval(0, oo, False, True)
+ assert Interval(0, oo).right_open is true
+ assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
+ assert Interval(-oo, 0).left_open is true
+ assert Interval(oo, -oo) == S.EmptySet
+ assert Interval(oo, oo) == S.EmptySet
+ assert Interval(-oo, -oo) == S.EmptySet
+ assert Interval(oo, x) == S.EmptySet
+ assert Interval(oo, oo) == S.EmptySet
+ assert Interval(x, -oo) == S.EmptySet
+ assert Interval(x, x) == {x}
+
+ assert isinstance(Interval(1, 1), FiniteSet)
+ e = Sum(x, (x, 1, 3))
+ assert isinstance(Interval(e, e), FiniteSet)
+
+ assert Interval(1, 0) == S.EmptySet
+ assert Interval(1, 1).measure == 0
+
+ assert Interval(1, 1, False, True) == S.EmptySet
+ assert Interval(1, 1, True, False) == S.EmptySet
+ assert Interval(1, 1, True, True) == S.EmptySet
+
+
+ assert isinstance(Interval(0, Symbol('a')), Interval)
+ assert Interval(Symbol('a', positive=True), 0) == S.EmptySet
+ raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
+ raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
+ raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit))
+
+ raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
+ raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
+ raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
+
+
+def test_interval_symbolic_end_points():
+ a = Symbol('a', real=True)
+
+ assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
+ assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)
+
+ assert Interval(0, a).contains(1) == LessThan(1, a)
+
+
+def test_interval_is_empty():
+ x, y = symbols('x, y')
+ r = Symbol('r', real=True)
+ p = Symbol('p', positive=True)
+ n = Symbol('n', negative=True)
+ nn = Symbol('nn', nonnegative=True)
+ assert Interval(1, 2).is_empty == False
+ assert Interval(3, 3).is_empty == False # FiniteSet
+ assert Interval(r, r).is_empty == False # FiniteSet
+ assert Interval(r, r + nn).is_empty == False
+ assert Interval(x, x).is_empty == False
+ assert Interval(1, oo).is_empty == False
+ assert Interval(-oo, oo).is_empty == False
+ assert Interval(-oo, 1).is_empty == False
+ assert Interval(x, y).is_empty == None
+ assert Interval(r, oo).is_empty == False # real implies finite
+ assert Interval(n, 0).is_empty == False
+ assert Interval(n, 0, left_open=True).is_empty == False
+ assert Interval(p, 0).is_empty == True # EmptySet
+ assert Interval(nn, 0).is_empty == None
+ assert Interval(n, p).is_empty == False
+ assert Interval(0, p, left_open=True).is_empty == False
+ assert Interval(0, p, right_open=True).is_empty == False
+ assert Interval(0, nn, left_open=True).is_empty == None
+ assert Interval(0, nn, right_open=True).is_empty == None
+
+
+def test_union():
+ assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
+ assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
+ assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
+ assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
+ assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
+ assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
+ Interval(1, 3, False, True)
+ assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
+ assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
+ assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
+ Interval(1, 3, True)
+ assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
+ Interval(1, 3, True, True)
+ assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
+ Interval(1, 3, True)
+ assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
+ assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
+ Interval(1, 3)
+ assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
+ Interval(1, 3)
+ assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
+ assert Union(S.EmptySet) == S.EmptySet
+
+ assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
+ Interval(0, 1)
+ # issue #18241:
+ x = Symbol('x')
+ assert Union(Interval(0, 1), FiniteSet(1, x)) == Union(
+ Interval(0, 1), FiniteSet(x))
+ assert unchanged(Union, Interval(0, 1), FiniteSet(2, x))
+
+ assert Interval(1, 2).union(Interval(2, 3)) == \
+ Interval(1, 2) + Interval(2, 3)
+
+ assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
+
+ assert Union(Set()) == Set()
+
+ assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
+ assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
+ assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
+
+ assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
+ assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
+
+ assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet
+ assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3)
+
+ x = Symbol("x")
+ y = Symbol("y")
+ z = Symbol("z")
+ assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
+ FiniteSet(x, FiniteSet(y, z))
+
+ # Test that Intervals and FiniteSets play nicely
+ assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
+ assert Interval(1, 3, True, True) + FiniteSet(3) == \
+ Interval(1, 3, True, False)
+ X = Interval(1, 3) + FiniteSet(5)
+ Y = Interval(1, 2) + FiniteSet(3)
+ XandY = X.intersect(Y)
+ assert 2 in X and 3 in X and 3 in XandY
+ assert XandY.is_subset(X) and XandY.is_subset(Y)
+
+ raises(TypeError, lambda: Union(1, 2, 3))
+
+ assert X.is_iterable is False
+
+ # issue 7843
+ assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
+ FiniteSet(-sqrt(-I), sqrt(-I))
+
+ assert Union(S.Reals, S.Integers) == S.Reals
+
+
+def test_union_iter():
+ # Use Range because it is ordered
+ u = Union(Range(3), Range(5), Range(4), evaluate=False)
+
+ # Round robin
+ assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]
+
+
+def test_union_is_empty():
+ assert (Interval(x, y) + FiniteSet(1)).is_empty == False
+ assert (Interval(x, y) + Interval(-x, y)).is_empty == None
+
+
+def test_difference():
+ assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
+ assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
+ assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
+ assert Interval(1, 3, True) - Interval(2, 3, True) == \
+ Interval(1, 2, True, False)
+ assert Interval(0, 2) - FiniteSet(1) == \
+ Union(Interval(0, 1, False, True), Interval(1, 2, True, False))
+
+ # issue #18119
+ assert S.Reals - FiniteSet(I) == S.Reals
+ assert S.Reals - FiniteSet(-I, I) == S.Reals
+ assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
+ assert Interval(0, 10) - FiniteSet(1, I) == Union(
+ Interval.Ropen(0, 1), Interval.Lopen(1, 10))
+ assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
+ Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
+ evaluate=False)
+
+ assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
+ assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
+ assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
+ FiniteSet(1, 2)
+ assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
+ assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
+ Union(Interval(0, 1, False, True), FiniteSet(4))
+
+ assert -1 in S.Reals - S.Naturals
+
+
+def test_Complement():
+ A = FiniteSet(1, 3, 4)
+ B = FiniteSet(3, 4)
+ C = Interval(1, 3)
+ D = Interval(1, 2)
+
+ assert Complement(A, B, evaluate=False).is_iterable is True
+ assert Complement(A, C, evaluate=False).is_iterable is True
+ assert Complement(C, D, evaluate=False).is_iterable is None
+
+ assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
+ assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
+ raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))
+
+ assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
+ assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
+ assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
+ Interval(1, 3)) == \
+ Union(Interval(0, 1, False, True), FiniteSet(4))
+
+ assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
+ assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
+ assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False)
+
+ assert Complement(S.Integers, S.UniversalSet) == EmptySet
+ assert S.UniversalSet.complement(S.Integers) == EmptySet
+
+ assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0)))
+
+ assert S.EmptySet - S.Integers == S.EmptySet
+
+ assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)
+
+ assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
+ Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
+ # issue 12712
+ assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
+ Complement(FiniteSet(x, y), Interval(-10, 10))
+
+ A = FiniteSet(*symbols('a:c'))
+ B = FiniteSet(*symbols('d:f'))
+ assert unchanged(Complement, ProductSet(A, A), B)
+
+ A2 = ProductSet(A, A)
+ B3 = ProductSet(B, B, B)
+ assert A2 - B3 == A2
+ assert B3 - A2 == B3
+
+
+def test_set_operations_nonsets():
+ '''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
+ ops = [
+ lambda a, b: a + b,
+ lambda a, b: a - b,
+ lambda a, b: a * b,
+ lambda a, b: a / b,
+ lambda a, b: a // b,
+ lambda a, b: a | b,
+ lambda a, b: a & b,
+ lambda a, b: a ^ b,
+ # FiniteSet(1) ** 2 gives a ProductSet
+ #lambda a, b: a ** b,
+ ]
+ Sx = FiniteSet(x)
+ Sy = FiniteSet(y)
+ sets = [
+ {1},
+ FiniteSet(1),
+ Interval(1, 2),
+ Union(Sx, Interval(1, 2)),
+ Intersection(Sx, Sy),
+ Complement(Sx, Sy),
+ ProductSet(Sx, Sy),
+ S.EmptySet,
+ ]
+ nums = [0, 1, 2, S(0), S(1), S(2)]
+
+ for si in sets:
+ for ni in nums:
+ for op in ops:
+ raises(TypeError, lambda : op(si, ni))
+ raises(TypeError, lambda : op(ni, si))
+ raises(TypeError, lambda: si ** object())
+ raises(TypeError, lambda: si ** {1})
+
+
+def test_complement():
+ assert Complement({1, 2}, {1}) == {2}
+ assert Interval(0, 1).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
+ assert Interval(0, 1, True, False).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
+ assert Interval(0, 1, False, True).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
+ assert Interval(0, 1, True, True).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
+
+ assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
+ assert S.UniversalSet.complement(S.Reals) == S.EmptySet
+ assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
+
+ assert S.EmptySet.complement(S.Reals) == S.Reals
+
+ assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
+ Interval(3, oo, True, True))
+
+ assert FiniteSet(0).complement(S.Reals) == \
+ Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
+
+ assert (FiniteSet(5) + Interval(S.NegativeInfinity,
+ 0)).complement(S.Reals) == \
+ Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
+
+ assert FiniteSet(1, 2, 3).complement(S.Reals) == \
+ Interval(S.NegativeInfinity, 1, True, True) + \
+ Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
+ Interval(3, S.Infinity, True, True)
+
+ assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
+
+ assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
+ Interval(0, oo, True, True)
+ , FiniteSet(x), evaluate=False)
+
+ square = Interval(0, 1) * Interval(0, 1)
+ notsquare = square.complement(S.Reals*S.Reals)
+
+ assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
+ assert not any(
+ pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
+ assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
+ assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
+
+
+def test_intersect1():
+ assert all(S.Integers.intersection(i) is i for i in
+ (S.Naturals, S.Naturals0))
+ assert all(i.intersection(S.Integers) is i for i in
+ (S.Naturals, S.Naturals0))
+ s = S.Naturals0
+ assert S.Naturals.intersection(s) is S.Naturals
+ assert s.intersection(S.Naturals) is S.Naturals
+ x = Symbol('x')
+ assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
+ assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
+ Interval(1, 2, True)
+ assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
+ Interval(1, 2, False, False)
+ assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
+ Interval(1, 2, False, True)
+ assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
+ Union(Interval(0, 1), Interval(2, 2))
+
+ assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
+ assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
+ assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
+ FiniteSet('ham')
+ assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet
+
+ assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
+ assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet
+
+ assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
+ Union(Interval(1, 1), Interval(2, 2))
+ assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
+ Union(Interval(0, 1), Interval(2, 2))
+ assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
+ S.EmptySet
+ assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
+ S.EmptySet
+ assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
+ Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
+ assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
+ Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
+ assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
+ Intersection({1, 2}, Interval(x, y), evaluate=False)
+ assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
+ Intersection({1, 2}, Interval(x, y), evaluate=False)
+ # XXX: Is the real=True necessary here?
+ # https://github.com/sympy/sympy/issues/17532
+ m, n = symbols('m, n', real=True)
+ assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
+ FiniteSet(m)
+
+ # issue 8217
+ assert Intersection(FiniteSet(x), FiniteSet(y)) == \
+ Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
+ assert FiniteSet(x).intersect(S.Reals) == \
+ Intersection(S.Reals, FiniteSet(x), evaluate=False)
+
+ # tests for the intersection alias
+ assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
+ assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet
+
+ assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
+ Union(Interval(1, 1), Interval(2, 2))
+
+
+def test_intersection():
+ # iterable
+ i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
+ assert i.is_iterable
+ assert set(i) == {S(2), S(3)}
+
+ # challenging intervals
+ x = Symbol('x', real=True)
+ i = Intersection(Interval(0, 3), Interval(x, 6))
+ assert (5 in i) is False
+ raises(TypeError, lambda: 2 in i)
+
+ # Singleton special cases
+ assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
+ assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)
+
+ # Products
+ line = Interval(0, 5)
+ i = Intersection(line**2, line**3, evaluate=False)
+ assert (2, 2) not in i
+ assert (2, 2, 2) not in i
+ raises(TypeError, lambda: list(i))
+
+ a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
+ assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])
+
+ assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet
+
+ # issue 12178
+ assert Intersection() == S.UniversalSet
+
+ # issue 16987
+ assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})
+
+
+def test_issue_9623():
+ n = Symbol('n')
+
+ a = S.Reals
+ b = Interval(0, oo)
+ c = FiniteSet(n)
+
+ assert Intersection(a, b, c) == Intersection(b, c)
+ assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet
+
+
+def test_is_disjoint():
+ assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
+ assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True
+
+
+def test_ProductSet__len__():
+ A = FiniteSet(1, 2)
+ B = FiniteSet(1, 2, 3)
+ assert ProductSet(A).__len__() == 2
+ assert ProductSet(A).__len__() is not S(2)
+ assert ProductSet(A, B).__len__() == 6
+ assert ProductSet(A, B).__len__() is not S(6)
+
+
+def test_ProductSet():
+ # ProductSet is always a set of Tuples
+ assert ProductSet(S.Reals) == S.Reals ** 1
+ assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
+ assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3
+
+ assert ProductSet(S.Reals) != S.Reals
+ assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
+ assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
+ assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()
+
+ assert 1 not in ProductSet(S.Reals)
+ assert (1,) in ProductSet(S.Reals)
+
+ assert 1 not in ProductSet(S.Reals, S.Reals)
+ assert (1, 2) in ProductSet(S.Reals, S.Reals)
+ assert (1, I) not in ProductSet(S.Reals, S.Reals)
+
+ assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
+ assert (1, 2, 3) in S.Reals ** 3
+ assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
+ assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
+ assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
+ assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)
+
+ assert ProductSet() == FiniteSet(())
+ assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet
+
+ # See GH-17458
+
+ for ni in range(5):
+ Rn = ProductSet(*(S.Reals,) * ni)
+ assert (1,) * ni in Rn
+ assert 1 not in Rn
+
+ assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)
+
+ S1 = S.Reals
+ S2 = S.Integers
+ x1 = pi
+ x2 = 3
+ assert x1 in S1
+ assert x2 in S2
+ assert (x1, x2) in S1 * S2
+ S3 = S1 * S2
+ x3 = (x1, x2)
+ assert x3 in S3
+ assert (x3, x3) in S3 * S3
+ assert x3 + x3 not in S3 * S3
+
+ raises(ValueError, lambda: S.Reals**-1)
+ with warns_deprecated_sympy():
+ ProductSet(FiniteSet(s) for s in range(2))
+ raises(TypeError, lambda: ProductSet(None))
+
+ S1 = FiniteSet(1, 2)
+ S2 = FiniteSet(3, 4)
+ S3 = ProductSet(S1, S2)
+ assert (S3.as_relational(x, y)
+ == And(S1.as_relational(x), S2.as_relational(y))
+ == And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
+ raises(ValueError, lambda: S3.as_relational(x))
+ raises(ValueError, lambda: S3.as_relational(x, 1))
+ raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))
+
+ Z2 = ProductSet(S.Integers, S.Integers)
+ assert Z2.contains((1, 2)) is S.true
+ assert Z2.contains((1,)) is S.false
+ assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
+ assert Z2.contains(x).subs(x, 1) is S.false
+ assert Z2.contains((x, 1)).subs(x, 2) is S.true
+ assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False)
+ assert unchanged(Contains, (x, y), Z2)
+ assert Contains((1, 2), Z2) is S.true
+
+
+def test_ProductSet_of_single_arg_is_not_arg():
+ assert unchanged(ProductSet, Interval(0, 1))
+ assert unchanged(ProductSet, ProductSet(Interval(0, 1)))
+
+
+def test_ProductSet_is_empty():
+ assert ProductSet(S.Integers, S.Reals).is_empty == False
+ assert ProductSet(Interval(x, 1), S.Reals).is_empty == None
+
+
+def test_interval_subs():
+ a = Symbol('a', real=True)
+
+ assert Interval(0, a).subs(a, 2) == Interval(0, 2)
+ assert Interval(a, 0).subs(a, 2) == S.EmptySet
+
+
+def test_interval_to_mpi():
+ assert Interval(0, 1).to_mpi() == mpi(0, 1)
+ assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
+ assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
+
+
+def test_set_evalf():
+ assert Interval(S(11)/64, S.Half).evalf() == Interval(
+ Float('0.171875'), Float('0.5'))
+ assert Interval(x, S.Half, right_open=True).evalf() == Interval(
+ x, Float('0.5'), right_open=True)
+ assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5'))
+ assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x)
+
+
+def test_measure():
+ a = Symbol('a', real=True)
+
+ assert Interval(1, 3).measure == 2
+ assert Interval(0, a).measure == a
+ assert Interval(1, a).measure == a - 1
+
+ assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
+ assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
+ == 2
+
+ assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
+
+ assert S.EmptySet.measure == 0
+
+ square = Interval(0, 10) * Interval(0, 10)
+ offsetsquare = Interval(5, 15) * Interval(5, 15)
+ band = Interval(-oo, oo) * Interval(2, 4)
+
+ assert square.measure == offsetsquare.measure == 100
+ assert (square + offsetsquare).measure == 175 # there is some overlap
+ assert (square - offsetsquare).measure == 75
+ assert (square * FiniteSet(1, 2, 3)).measure == 0
+ assert (square.intersect(band)).measure == 20
+ assert (square + band).measure is oo
+ assert (band * FiniteSet(1, 2, 3)).measure is nan
+
+
+def test_is_subset():
+ assert Interval(0, 1).is_subset(Interval(0, 2)) is True
+ assert Interval(0, 3).is_subset(Interval(0, 2)) is False
+ assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False
+
+ assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
+ assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
+ assert FiniteSet(1).is_subset(Interval(0, 2))
+ assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
+ assert (Interval(1, 2) + FiniteSet(3)).is_subset(
+ Interval(0, 2, False, True) + FiniteSet(2, 3))
+
+ assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
+ assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False
+
+ assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
+ assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True
+
+ assert Interval(0, 1).is_subset(S.EmptySet) is False
+ assert S.EmptySet.is_subset(S.EmptySet) is True
+
+ raises(ValueError, lambda: S.EmptySet.is_subset(1))
+
+ # tests for the issubset alias
+ assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
+ assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True
+
+ assert S.Naturals.is_subset(S.Integers)
+ assert S.Naturals0.is_subset(S.Integers)
+
+ assert FiniteSet(x).is_subset(FiniteSet(y)) is None
+ assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
+ assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False
+
+ assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
+ assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False
+
+ n = Symbol('n', integer=True)
+ assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
+ assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
+ assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
+ assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
+ assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
+ assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
+ assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
+ assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
+ #issue 19513
+ assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None
+
+def test_is_proper_subset():
+ assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
+ assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
+ assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True
+
+ raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))
+
+
+def test_is_superset():
+ assert Interval(0, 1).is_superset(Interval(0, 2)) == False
+ assert Interval(0, 3).is_superset(Interval(0, 2))
+
+ assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
+ assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
+ assert FiniteSet(1).is_superset(Interval(0, 2)) == False
+ assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
+ assert (Interval(1, 2) + FiniteSet(3)).is_superset(
+ Interval(0, 2, False, True) + FiniteSet(2, 3)) == False
+
+ assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False
+
+ assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
+ assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False
+
+ assert Interval(0, 1).is_superset(S.EmptySet) == True
+ assert S.EmptySet.is_superset(S.EmptySet) == True
+
+ raises(ValueError, lambda: S.EmptySet.is_superset(1))
+
+ # tests for the issuperset alias
+ assert Interval(0, 1).issuperset(S.EmptySet) == True
+ assert S.EmptySet.issuperset(S.EmptySet) == True
+
+
+def test_is_proper_superset():
+ assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
+ assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
+ assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True
+
+ raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))
+
+
+def test_contains():
+ assert Interval(0, 2).contains(1) is S.true
+ assert Interval(0, 2).contains(3) is S.false
+ assert Interval(0, 2, True, False).contains(0) is S.false
+ assert Interval(0, 2, True, False).contains(2) is S.true
+ assert Interval(0, 2, False, True).contains(0) is S.true
+ assert Interval(0, 2, False, True).contains(2) is S.false
+ assert Interval(0, 2, True, True).contains(0) is S.false
+ assert Interval(0, 2, True, True).contains(2) is S.false
+
+ assert (Interval(0, 2) in Interval(0, 2)) is False
+
+ assert FiniteSet(1, 2, 3).contains(2) is S.true
+ assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true
+
+ assert FiniteSet(y)._contains(x) is None
+ raises(TypeError, lambda: x in FiniteSet(y))
+ assert FiniteSet({x, y})._contains({x}) is None
+ assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True
+ assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False
+
+ # issue 8197
+ from sympy.abc import a, b
+ assert isinstance(FiniteSet(b).contains(-a), Contains)
+ assert isinstance(FiniteSet(b).contains(a), Contains)
+ assert isinstance(FiniteSet(a).contains(1), Contains)
+ raises(TypeError, lambda: 1 in FiniteSet(a))
+
+ # issue 8209
+ rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
+ rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
+ s1 = FiniteSet(rad1)
+ s2 = FiniteSet(rad2)
+ assert s1 - s2 == S.EmptySet
+
+ items = [1, 2, S.Infinity, S('ham'), -1.1]
+ fset = FiniteSet(*items)
+ assert all(item in fset for item in items)
+ assert all(fset.contains(item) is S.true for item in items)
+
+ assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
+ assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
+ assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false
+
+ assert S.EmptySet.contains(1) is S.false
+ assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
+
+ assert rootof(x**5 + x**3 + 1, 0) in S.Reals
+ assert not rootof(x**5 + x**3 + 1, 1) in S.Reals
+
+ # non-bool results
+ assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
+ Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
+ assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
+ And(y <= 3, y <= x, S.One <= y, S(2) <= y)
+
+ assert (S.Complexes).contains(S.ComplexInfinity) == S.false
+
+
+def test_interval_symbolic():
+ x = Symbol('x')
+ e = Interval(0, 1)
+ assert e.contains(x) == And(S.Zero <= x, x <= 1)
+ raises(TypeError, lambda: x in e)
+ e = Interval(0, 1, True, True)
+ assert e.contains(x) == And(S.Zero < x, x < 1)
+ c = Symbol('c', real=False)
+ assert Interval(x, x + 1).contains(c) == False
+ e = Symbol('e', extended_real=True)
+ assert Interval(-oo, oo).contains(e) == And(
+ S.NegativeInfinity < e, e < S.Infinity)
+
+
+def test_union_contains():
+ x = Symbol('x')
+ i1 = Interval(0, 1)
+ i2 = Interval(2, 3)
+ i3 = Union(i1, i2)
+ assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
+ raises(TypeError, lambda: x in i3)
+ e = i3.contains(x)
+ assert e == i3.as_relational(x)
+ assert e.subs(x, -0.5) is false
+ assert e.subs(x, 0.5) is true
+ assert e.subs(x, 1.5) is false
+ assert e.subs(x, 2.5) is true
+ assert e.subs(x, 3.5) is false
+
+ U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
+ assert all(el not in U for el in [0, 4, -oo])
+ assert all(el in U for el in [2, 5, 10])
+
+
+def test_is_number():
+ assert Interval(0, 1).is_number is False
+ assert Set().is_number is False
+
+
+def test_Interval_is_left_unbounded():
+ assert Interval(3, 4).is_left_unbounded is False
+ assert Interval(-oo, 3).is_left_unbounded is True
+ assert Interval(Float("-inf"), 3).is_left_unbounded is True
+
+
+def test_Interval_is_right_unbounded():
+ assert Interval(3, 4).is_right_unbounded is False
+ assert Interval(3, oo).is_right_unbounded is True
+ assert Interval(3, Float("+inf")).is_right_unbounded is True
+
+
+def test_Interval_as_relational():
+ x = Symbol('x')
+
+ assert Interval(-1, 2, False, False).as_relational(x) == \
+ And(Le(-1, x), Le(x, 2))
+ assert Interval(-1, 2, True, False).as_relational(x) == \
+ And(Lt(-1, x), Le(x, 2))
+ assert Interval(-1, 2, False, True).as_relational(x) == \
+ And(Le(-1, x), Lt(x, 2))
+ assert Interval(-1, 2, True, True).as_relational(x) == \
+ And(Lt(-1, x), Lt(x, 2))
+
+ assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
+ assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))
+
+ assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
+ assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))
+
+ assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ assert Interval(x, y).as_relational(x) == (x <= y)
+ assert Interval(y, x).as_relational(x) == (y <= x)
+
+
+def test_Finite_as_relational():
+ x = Symbol('x')
+ y = Symbol('y')
+
+ assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
+ assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))
+
+
+def test_Union_as_relational():
+ x = Symbol('x')
+ assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
+ Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
+ assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
+ And(Lt(0, x), Le(x, 1))
+ assert Or(x < 0, x > 0).as_set().as_relational(x) == \
+ And((x > -oo), (x < oo), Ne(x, 0))
+ assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5)
+ ).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5))
+
+
+def test_Intersection_as_relational():
+ x = Symbol('x')
+ assert (Intersection(Interval(0, 1), FiniteSet(2),
+ evaluate=False).as_relational(x)
+ == And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))
+
+
+def test_Complement_as_relational():
+ x = Symbol('x')
+ expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
+ assert expr.as_relational(x) == \
+ And(Le(0, x), Le(x, 1), Ne(x, 2))
+
+
+@XFAIL
+def test_Complement_as_relational_fail():
+ x = Symbol('x')
+ expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
+ # XXX This example fails because 0 <= x changes to x >= 0
+ # during the evaluation.
+ assert expr.as_relational(x) == \
+ (0 <= x) & (x <= 1) & Ne(x, 2)
+
+
+def test_SymmetricDifference_as_relational():
+ x = Symbol('x')
+ expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
+ assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))
+
+
+def test_EmptySet():
+ assert S.EmptySet.as_relational(Symbol('x')) is S.false
+ assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
+ assert S.EmptySet.boundary == S.EmptySet
+
+
+def test_finite_basic():
+ x = Symbol('x')
+ A = FiniteSet(1, 2, 3)
+ B = FiniteSet(3, 4, 5)
+ AorB = Union(A, B)
+ AandB = A.intersect(B)
+ assert A.is_subset(AorB) and B.is_subset(AorB)
+ assert AandB.is_subset(A)
+ assert AandB == FiniteSet(3)
+
+ assert A.inf == 1 and A.sup == 3
+ assert AorB.inf == 1 and AorB.sup == 5
+ assert FiniteSet(x, 1, 5).sup == Max(x, 5)
+ assert FiniteSet(x, 1, 5).inf == Min(x, 1)
+
+ # issue 7335
+ assert FiniteSet(S.EmptySet) != S.EmptySet
+ assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
+ assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)
+
+ # Ensure a variety of types can exist in a FiniteSet
+ assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2)
+
+ assert (A > B) is False
+ assert (A >= B) is False
+ assert (A < B) is False
+ assert (A <= B) is False
+ assert AorB > A and AorB > B
+ assert AorB >= A and AorB >= B
+ assert A >= A and A <= A
+ assert A >= AandB and B >= AandB
+ assert A > AandB and B > AandB
+
+
+def test_product_basic():
+ H, T = 'H', 'T'
+ unit_line = Interval(0, 1)
+ d6 = FiniteSet(1, 2, 3, 4, 5, 6)
+ d4 = FiniteSet(1, 2, 3, 4)
+ coin = FiniteSet(H, T)
+
+ square = unit_line * unit_line
+
+ assert (0, 0) in square
+ assert 0 not in square
+ assert (H, T) in coin ** 2
+ assert (.5, .5, .5) in (square * unit_line).flatten()
+ assert ((.5, .5), .5) in square * unit_line
+ assert (H, 3, 3) in (coin * d6 * d6).flatten()
+ assert ((H, 3), 3) in coin * d6 * d6
+ HH, TT = sympify(H), sympify(T)
+ assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)}
+
+ assert (d4*d4).is_subset(d6*d6)
+
+ assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
+ (Interval(-oo, 0, True, True) +
+ Interval(1, oo, True, True))*Interval(-oo, oo),
+ Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
+ Interval(1, oo, True, True)))
+
+ assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
+ assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
+ assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)
+
+ assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square
+
+ assert len(coin*coin*coin) == 8
+ assert len(S.EmptySet*S.EmptySet) == 0
+ assert len(S.EmptySet*coin) == 0
+ raises(TypeError, lambda: len(coin*Interval(0, 2)))
+
+
+def test_real():
+ x = Symbol('x', real=True)
+
+ I = Interval(0, 5)
+ J = Interval(10, 20)
+ A = FiniteSet(1, 2, 30, x, S.Pi)
+ B = FiniteSet(-4, 0)
+ C = FiniteSet(100)
+ D = FiniteSet('Ham', 'Eggs')
+
+ assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
+ assert not D.is_subset(S.Reals)
+ assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
+ assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])
+
+ assert not (I + A + D).is_subset(S.Reals)
+
+
+def test_supinf():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+
+ assert (Interval(0, 1) + FiniteSet(2)).sup == 2
+ assert (Interval(0, 1) + FiniteSet(2)).inf == 0
+ assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
+ assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
+ assert FiniteSet(5, 1, x).sup == Max(5, x)
+ assert FiniteSet(5, 1, x).inf == Min(1, x)
+ assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
+ assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
+ assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
+ S.Infinity
+ assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
+ S.NegativeInfinity
+ assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')
+
+
+def test_universalset():
+ U = S.UniversalSet
+ x = Symbol('x')
+ assert U.as_relational(x) is S.true
+ assert U.union(Interval(2, 4)) == U
+
+ assert U.intersect(Interval(2, 4)) == Interval(2, 4)
+ assert U.measure is S.Infinity
+ assert U.boundary == S.EmptySet
+ assert U.contains(0) is S.true
+
+
+def test_Union_of_ProductSets_shares():
+ line = Interval(0, 2)
+ points = FiniteSet(0, 1, 2)
+ assert Union(line * line, line * points) == line * line
+
+
+def test_Interval_free_symbols():
+ # issue 6211
+ assert Interval(0, 1).free_symbols == set()
+ x = Symbol('x', real=True)
+ assert Interval(0, x).free_symbols == {x}
+
+
+def test_image_interval():
+ x = Symbol('x', real=True)
+ a = Symbol('a', real=True)
+ assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
+ assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
+ Interval(-4, 2, True, False)
+ assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
+ Interval(0, 4, False, True)
+ assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
+ assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
+ Interval(0, 4, False, True)
+ assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
+ Interval(0, 4, False, True)
+ assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
+ assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
+ Interval(-35, 0) # Multiple Maxima
+ assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
+ + Interval(2, oo) # Single Infinite discontinuity
+ assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
+ Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities
+
+ # Test for Python lambda
+ assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)
+
+ assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
+ ImageSet(Lambda(x, a*x), Interval(0, 1))
+
+ assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
+ ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
+
+
+def test_image_piecewise():
+ f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
+ f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
+ assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
+ assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
+
+
+@XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
+def test_image_Intersection():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
+ Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
+
+
+def test_image_FiniteSet():
+ x = Symbol('x', real=True)
+ assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
+
+
+def test_image_Union():
+ x = Symbol('x', real=True)
+ assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
+ (Interval(0, 4) + FiniteSet(9))
+
+
+def test_image_EmptySet():
+ x = Symbol('x', real=True)
+ assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
+
+
+def test_issue_5724_7680():
+ assert I not in S.Reals # issue 7680
+ assert Interval(-oo, oo).contains(I) is S.false
+
+
+def test_boundary():
+ assert FiniteSet(1).boundary == FiniteSet(1)
+ assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
+ for left_open in (true, false) for right_open in (true, false))
+
+
+def test_boundary_Union():
+ assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
+ assert ((Interval(0, 1, False, True)
+ + Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))
+
+ assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
+ assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
+ == FiniteSet(0, 15)
+
+ assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
+ == FiniteSet(0, 10)
+ assert Union(Interval(0, 10, True, True),
+ Interval(10, 15, True, True), evaluate=False).boundary \
+ == FiniteSet(0, 10, 15)
+
+
+@XFAIL
+def test_union_boundary_of_joining_sets():
+ """ Testing the boundary of unions is a hard problem """
+ assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
+ == FiniteSet(0, 15)
+
+
+def test_boundary_ProductSet():
+ open_square = Interval(0, 1, True, True) ** 2
+ assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
+ + Interval(0, 1) * FiniteSet(0, 1))
+
+ second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
+ assert (open_square + second_square).boundary == (
+ FiniteSet(0, 1) * Interval(0, 1)
+ + FiniteSet(1, 2) * Interval(0, 1)
+ + Interval(0, 1) * FiniteSet(0, 1)
+ + Interval(1, 2) * FiniteSet(0, 1))
+
+
+def test_boundary_ProductSet_line():
+ line_in_r2 = Interval(0, 1) * FiniteSet(0)
+ assert line_in_r2.boundary == line_in_r2
+
+
+def test_is_open():
+ assert Interval(0, 1, False, False).is_open is False
+ assert Interval(0, 1, True, False).is_open is False
+ assert Interval(0, 1, True, True).is_open is True
+ assert FiniteSet(1, 2, 3).is_open is False
+
+
+def test_is_closed():
+ assert Interval(0, 1, False, False).is_closed is True
+ assert Interval(0, 1, True, False).is_closed is False
+ assert FiniteSet(1, 2, 3).is_closed is True
+
+
+def test_closure():
+ assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)
+
+
+def test_interior():
+ assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)
+
+
+def test_issue_7841():
+ raises(TypeError, lambda: x in S.Reals)
+
+
+def test_Eq():
+ assert Eq(Interval(0, 1), Interval(0, 1))
+ assert Eq(Interval(0, 1), Interval(0, 2)) == False
+
+ s1 = FiniteSet(0, 1)
+ s2 = FiniteSet(1, 2)
+
+ assert Eq(s1, s1)
+ assert Eq(s1, s2) == False
+
+ assert Eq(s1*s2, s1*s2)
+ assert Eq(s1*s2, s2*s1) == False
+
+ assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
+ assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
+ assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
+ assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
+ assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false
+
+ assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false
+ assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false
+
+ assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
+ assert Eq(ProductSet(), FiniteSet(1)) is S.false
+
+ i1 = Interval(0, 1)
+ i2 = Interval(x, y)
+ assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))
+
+
+def test_SymmetricDifference():
+ A = FiniteSet(0, 1, 2, 3, 4, 5)
+ B = FiniteSet(2, 4, 6, 8, 10)
+ C = Interval(8, 10)
+
+ assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
+ assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
+ assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
+ FiniteSet(0, 1, 3, 5, 6, 8, 10)
+ raises(TypeError,
+ lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))
+
+ assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
+ FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
+ assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \
+ == FiniteSet(5)
+ assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
+ FiniteSet(3, 4, 6)
+ assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \
+ Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3)))
+ assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
+ Interval(2, 5), Interval(2, 5) - Interval(0, 4))
+
+
+def test_issue_9536():
+ from sympy.functions.elementary.exponential import log
+ a = Symbol('a', real=True)
+ assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))
+
+
+def test_issue_9637():
+ n = Symbol('n')
+ a = FiniteSet(n)
+ b = FiniteSet(2, n)
+ assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
+ assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
+ assert Complement(Interval(1, 3), b) == \
+ Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
+ assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
+ assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)
+
+
+def test_issue_9808():
+ # See https://github.com/sympy/sympy/issues/16342
+ assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
+ assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
+ Complement(FiniteSet(1), FiniteSet(y), evaluate=False)
+
+
+def test_issue_9956():
+ assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
+ assert Interval(-oo, oo).contains(1) is S.true
+
+
+def test_issue_Symbol_inter():
+ i = Interval(0, oo)
+ r = S.Reals
+ mat = Matrix([0, 0, 0])
+ assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
+ Intersection(i, FiniteSet(m))
+ assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
+ Intersection(i, FiniteSet(m, n))
+ assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
+ Intersection(Intersection({m, z}, {m, n, x}), r)
+ assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
+ Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
+ assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
+ Intersection(FiniteSet(3, m, n), r)
+ assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
+ Intersection(r, FiniteSet(n))
+ assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
+ Intersection(r, FiniteSet(sin(x), cos(x)))
+ assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
+ Intersection(r, FiniteSet(x**2, sin(x)))
+
+
+def test_issue_11827():
+ assert S.Naturals0**4
+
+
+def test_issue_10113():
+ f = x**2/(x**2 - 4)
+ assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
+ assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
+ assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))
+
+
+def test_issue_10248():
+ raises(
+ TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
+ )
+ A = Symbol('A', real=True)
+ assert list(Intersection(S.Reals, FiniteSet(A))) == [A]
+
+
+def test_issue_9447():
+ a = Interval(0, 1) + Interval(2, 3)
+ assert Complement(S.UniversalSet, a) == Complement(
+ S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
+ assert Complement(S.Naturals, a) == Complement(
+ S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
+
+
+def test_issue_10337():
+ assert (FiniteSet(2) == 3) is False
+ assert (FiniteSet(2) != 3) is True
+ raises(TypeError, lambda: FiniteSet(2) < 3)
+ raises(TypeError, lambda: FiniteSet(2) <= 3)
+ raises(TypeError, lambda: FiniteSet(2) > 3)
+ raises(TypeError, lambda: FiniteSet(2) >= 3)
+
+
+def test_issue_10326():
+ bad = [
+ EmptySet,
+ FiniteSet(1),
+ Interval(1, 2),
+ S.ComplexInfinity,
+ S.ImaginaryUnit,
+ S.Infinity,
+ S.NaN,
+ S.NegativeInfinity,
+ ]
+ interval = Interval(0, 5)
+ for i in bad:
+ assert i not in interval
+
+ x = Symbol('x', real=True)
+ nr = Symbol('nr', extended_real=False)
+ assert x + 1 in Interval(x, x + 4)
+ assert nr not in Interval(x, x + 4)
+ assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
+ assert Interval(-oo, oo).contains(oo) is S.false
+ assert Interval(-oo, oo).contains(-oo) is S.false
+
+
+def test_issue_2799():
+ U = S.UniversalSet
+ a = Symbol('a', real=True)
+ inf_interval = Interval(a, oo)
+ R = S.Reals
+
+ assert U + inf_interval == inf_interval + U
+ assert U + R == R + U
+ assert R + inf_interval == inf_interval + R
+
+
+def test_issue_9706():
+ assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
+ assert Interval(0, oo).closure == Interval(0, oo, False, True)
+ assert Interval(-oo, oo).closure == Interval(-oo, oo)
+
+
+def test_issue_8257():
+ reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
+ reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
+ assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
+ assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
+ assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
+ assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity
+
+
+def test_issue_10931():
+ assert S.Integers - S.Integers == EmptySet
+ assert S.Integers - S.Reals == EmptySet
+
+
+def test_issue_11174():
+ soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
+ assert Intersection(FiniteSet(-x), S.Reals) == soln
+
+ soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
+ assert Intersection(FiniteSet(x), S.Reals) == soln
+
+
+def test_issue_18505():
+ assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \
+ Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers))
+
+
+def test_finite_set_intersection():
+ # The following should not produce recursion errors
+ # Note: some of these are not completely correct. See
+ # https://github.com/sympy/sympy/issues/16342.
+ assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
+ assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)
+
+ assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
+ assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
+ Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
+ Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
+ Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))
+
+ assert FiniteSet(1+x-y) & FiniteSet(1) == \
+ FiniteSet(1) & FiniteSet(1+x-y) == \
+ Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)
+
+ assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
+ Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)
+
+ assert FiniteSet({x}) & FiniteSet({x, y}) == \
+ Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)
+
+
+def test_union_intersection_constructor():
+ # The actual exception does not matter here, so long as these fail
+ sets = [FiniteSet(1), FiniteSet(2)]
+ raises(Exception, lambda: Union(sets))
+ raises(Exception, lambda: Intersection(sets))
+ raises(Exception, lambda: Union(tuple(sets)))
+ raises(Exception, lambda: Intersection(tuple(sets)))
+ raises(Exception, lambda: Union(i for i in sets))
+ raises(Exception, lambda: Intersection(i for i in sets))
+
+ # Python sets are treated the same as FiniteSet
+ # The union of a single set (of sets) is the set (of sets) itself
+ assert Union(set(sets)) == FiniteSet(*sets)
+ assert Intersection(set(sets)) == FiniteSet(*sets)
+
+ assert Union({1}, {2}) == FiniteSet(1, 2)
+ assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)
+
+
+def test_Union_contains():
+ assert zoo not in Union(
+ Interval.open(-oo, 0), Interval.open(0, oo))
+
+
+@XFAIL
+def test_issue_16878b():
+ # in intersection_sets for (ImageSet, Set) there is no code
+ # that handles the base_set of S.Reals like there is
+ # for Integers
+ assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
+
+def test_DisjointUnion():
+ assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2))
+ assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1))
+ assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1))
+ assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
+ assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
+ assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1)
+ assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0)
+ assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet
+ assert DisjointUnion().rewrite(Union) == S.EmptySet
+ raises(TypeError, lambda: DisjointUnion(Symbol('n')))
+
+ x = Symbol("x")
+ y = Symbol("y")
+ z = Symbol("z")
+ assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1))
+
+def test_DisjointUnion_is_empty():
+ assert DisjointUnion(S.EmptySet).is_empty is True
+ assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True
+ assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False
+
+def test_DisjointUnion_is_iterable():
+ assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True
+ assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False
+ assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True
+ assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False
+
+def test_DisjointUnion_contains():
+ assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5))
+ assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
+ assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
+ assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
+ assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
+ assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
+ assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2))
+ assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
+ assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2))
+ assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
+
+def test_DisjointUnion_iter():
+ D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))
+ it = iter(D)
+ L1 = [(x, 1), (y, 1), (z, 1)]
+ L2 = [(3, 0), (5, 0), (7, 0), (9, 0)]
+ nxt = next(it)
+ assert nxt in L2
+ L2.remove(nxt)
+ nxt = next(it)
+ assert nxt in L1
+ L1.remove(nxt)
+ nxt = next(it)
+ assert nxt in L2
+ L2.remove(nxt)
+ nxt = next(it)
+ assert nxt in L1
+ L1.remove(nxt)
+ nxt = next(it)
+ assert nxt in L2
+ L2.remove(nxt)
+ nxt = next(it)
+ assert nxt in L1
+ L1.remove(nxt)
+ nxt = next(it)
+ assert nxt in L2
+ L2.remove(nxt)
+ raises(StopIteration, lambda: next(it))
+
+ raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet)))
+
+def test_DisjointUnion_len():
+ assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7
+ assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3
+ raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet)))
+
+def test_SetKind_ProductSet():
+ p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2])))
+ mk = MatrixKind(NumberKind)
+ k = SetKind(TupleKind(mk, mk))
+ assert p.kind is k
+ assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk))
+
+def test_SetKind_Interval():
+ assert Interval(1, 2).kind is SetKind(NumberKind)
+
+def test_SetKind_EmptySet_UniversalSet():
+ assert S.UniversalSet.kind is SetKind(UndefinedKind)
+ assert EmptySet.kind is SetKind()
+
+def test_SetKind_FiniteSet():
+ assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind)
+ assert FiniteSet(1, 2).kind is SetKind(NumberKind)
+
+def test_SetKind_Unions():
+ assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind)
+ assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind)
+
+def test_SetKind_DisjointUnion():
+ A = FiniteSet(1, 2, 3)
+ B = Interval(0, 5)
+ assert DisjointUnion(A, B).kind is SetKind(NumberKind)
+
+def test_SetKind_evaluate_False():
+ U = lambda *args: Union(*args, evaluate=False)
+ assert U({1}, EmptySet).kind is SetKind(NumberKind)
+ assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind)
+ assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind)
+ assert U(Interval(1, 2), Interval(4, 5),
+ FiniteSet(1)).kind is SetKind(NumberKind)
+ I = lambda *args: Intersection(*args, evaluate=False)
+ assert I({1}, S.UniversalSet).kind is SetKind(NumberKind)
+ assert I({1}, EmptySet).kind is SetKind()
+ C = lambda *args: Complement(*args, evaluate=False)
+ assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind)
+ assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind)
+ assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind()
+
+def test_SetKind_ImageSet_Special():
+ f = ImageSet(Lambda(n, n ** 2), Interval(1, 4))
+ assert (f - FiniteSet(3)).kind is SetKind(NumberKind)
+ assert (f + Interval(16, 17)).kind is SetKind(NumberKind)
+ assert (f + FiniteSet(17)).kind is SetKind(NumberKind)
+
+def test_issue_20089():
+ B = FiniteSet(FiniteSet(1, 2), FiniteSet(1))
+ assert 1 not in B
+ assert 1.0 not in B
+ assert not Eq(1, FiniteSet(1, 2))
+ assert FiniteSet(1) in B
+ A = FiniteSet(1, 2)
+ assert A in B
+ assert B.issubset(B)
+ assert not A.issubset(B)
+ assert 1 in A
+ C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2)
+ assert A.issubset(C)
+ assert B.issubset(C)
+
+def test_issue_19378():
+ a = FiniteSet(1, 2)
+ b = ProductSet(a, a)
+ c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2))
+ assert b.is_subset(c) is True
+ d = FiniteSet(1)
+ assert b.is_subset(d) is False
+ assert Eq(c, b).simplify() is S.true
+ assert Eq(a, c).simplify() is S.false
+ assert Eq({1}, {x}).simplify() == Eq({1}, {x})
+
+def test_intersection_symbolic():
+ n = Symbol('n')
+ # These should not throw an error
+ assert isinstance(Intersection(Range(n), Range(100)), Intersection)
+ assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection)
+ assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection)
+
+
+@XFAIL
+def test_intersection_symbolic_failing():
+ n = Symbol('n', integer=True, positive=True)
+ assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection(
+ Range(14, n), Range(14, 500, 5))
+ assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection(
+ Interval(14, n), Range(14, 500, 5))
+
+
+def test_issue_20379():
+ #https://github.com/sympy/sympy/issues/20379
+ x = pi - 3.14159265358979
+ assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2))
+
+def test_finiteset_simplify():
+ S = FiniteSet(1, cos(1)**2 + sin(1)**2)
+ assert S.simplify() == {1}
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..76f69e09276a3ccdee79f8c216d3a3b7fc264827
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/core.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2934edbbf0dc36e7cfc36f57512fc349446124e6
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/core.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/tools.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/tools.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..224dd7bbee32246ed8bc7e29af80ead6294f45f1
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/tools.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/traverse.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/traverse.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e8d1cecc8137be94ab041f21b56e435d5a09f93d
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/__pycache__/traverse.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2879b46f8f1093bffdc5ca53dfdfb03454e18984
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_core.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e3be955304d9d898caa9b8f933d1eb692f6fcf16
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_core.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_tools.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_tools.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6be9bdf27ba7bbedffcb48194cd5dc4c4c255c1e
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_tools.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_traverse.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_traverse.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9b9b27b86edbcbb17c57925a6f7579fea58718b1
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/branch/tests/__pycache__/test_traverse.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..51f466a1fb571cb021a7a78bd0758bdc82556955
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_core.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6356576d07ed12dd2ca05da93c744fcefeae05ee
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_core.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_rl.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_rl.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ba0aae5d7e4077ceab6e60589d12ac3792d1a69f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_rl.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tools.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tools.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..062875f889f0ad4348fb33c4f1df82fe08b32c0b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tools.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_traverse.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_traverse.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..14bde7613b3130fa0ec5f0f140ac8bf26dfe1401
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_traverse.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tree.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tree.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c472c9c31138d121d9935ffb82d794f236eaf214
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/__pycache__/test_tree.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_core.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_core.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e19bcab1940c476a8996b7ba92e7645a6230034
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_core.py
@@ -0,0 +1,118 @@
+from __future__ import annotations
+from sympy.core.singleton import S
+from sympy.core.basic import Basic
+from sympy.strategies.core import (
+ null_safe, exhaust, memoize, condition,
+ chain, tryit, do_one, debug, switch, minimize)
+from io import StringIO
+
+
+def posdec(x: int) -> int:
+ if x > 0:
+ return x - 1
+ return x
+
+
+def inc(x: int) -> int:
+ return x + 1
+
+
+def dec(x: int) -> int:
+ return x - 1
+
+
+def test_null_safe():
+ def rl(expr: int) -> int | None:
+ if expr == 1:
+ return 2
+ return None
+
+ safe_rl = null_safe(rl)
+ assert rl(1) == safe_rl(1)
+ assert rl(3) is None
+ assert safe_rl(3) == 3
+
+
+def test_exhaust():
+ sink = exhaust(posdec)
+ assert sink(5) == 0
+ assert sink(10) == 0
+
+
+def test_memoize():
+ rl = memoize(posdec)
+ assert rl(5) == posdec(5)
+ assert rl(5) == posdec(5)
+ assert rl(-2) == posdec(-2)
+
+
+def test_condition():
+ rl = condition(lambda x: x % 2 == 0, posdec)
+ assert rl(5) == 5
+ assert rl(4) == 3
+
+
+def test_chain():
+ rl = chain(posdec, posdec)
+ assert rl(5) == 3
+ assert rl(1) == 0
+
+
+def test_tryit():
+ def rl(expr: Basic) -> Basic:
+ assert False
+
+ safe_rl = tryit(rl, AssertionError)
+ assert safe_rl(S(1)) == S(1)
+
+
+def test_do_one():
+ rl = do_one(posdec, posdec)
+ assert rl(5) == 4
+
+ def rl1(x: int) -> int:
+ if x == 1:
+ return 2
+ return x
+
+ def rl2(x: int) -> int:
+ if x == 2:
+ return 3
+ return x
+
+ rule = do_one(rl1, rl2)
+ assert rule(1) == 2
+ assert rule(rule(1)) == 3
+
+
+def test_debug():
+ file = StringIO()
+ rl = debug(posdec, file)
+ rl(5)
+ log = file.getvalue()
+ file.close()
+
+ assert posdec.__name__ in log
+ assert '5' in log
+ assert '4' in log
+
+
+def test_switch():
+ def key(x: int) -> int:
+ return x % 3
+
+ rl = switch(key, {0: inc, 1: dec})
+ assert rl(3) == 4
+ assert rl(4) == 3
+ assert rl(5) == 5
+
+
+def test_minimize():
+ def key(x: int) -> int:
+ return -x
+
+ rl = minimize(inc, dec)
+ assert rl(4) == 3
+
+ rl = minimize(inc, dec, objective=key)
+ assert rl(4) == 5
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_rl.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_rl.py
new file mode 100644
index 0000000000000000000000000000000000000000..8bfa90ad4d970b21396e0e1b6427b5a5c68fe381
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_rl.py
@@ -0,0 +1,78 @@
+from sympy.core.singleton import S
+from sympy.strategies.rl import (
+ rm_id, glom, flatten, unpack, sort, distribute, subs, rebuild)
+from sympy.core.basic import Basic
+from sympy.core.add import Add
+from sympy.core.mul import Mul
+from sympy.core.symbol import symbols
+from sympy.abc import x
+
+
+def test_rm_id():
+ rmzeros = rm_id(lambda x: x == 0)
+ assert rmzeros(Basic(S(0), S(1))) == Basic(S(1))
+ assert rmzeros(Basic(S(0), S(0))) == Basic(S(0))
+ assert rmzeros(Basic(S(2), S(1))) == Basic(S(2), S(1))
+
+
+def test_glom():
+ def key(x):
+ return x.as_coeff_Mul()[1]
+
+ def count(x):
+ return x.as_coeff_Mul()[0]
+
+ def newargs(cnt, arg):
+ return cnt * arg
+
+ rl = glom(key, count, newargs)
+
+ result = rl(Add(x, -x, 3 * x, 2, 3, evaluate=False))
+ expected = Add(3 * x, 5)
+ assert set(result.args) == set(expected.args)
+
+
+def test_flatten():
+ assert flatten(Basic(S(1), S(2), Basic(S(3), S(4)))) == \
+ Basic(S(1), S(2), S(3), S(4))
+
+
+def test_unpack():
+ assert unpack(Basic(S(2))) == 2
+ assert unpack(Basic(S(2), S(3))) == Basic(S(2), S(3))
+
+
+def test_sort():
+ assert sort(str)(Basic(S(3), S(1), S(2))) == Basic(S(1), S(2), S(3))
+
+
+def test_distribute():
+ class T1(Basic):
+ pass
+
+ class T2(Basic):
+ pass
+
+ distribute_t12 = distribute(T1, T2)
+ assert distribute_t12(T1(S(1), S(2), T2(S(3), S(4)), S(5))) == \
+ T2(T1(S(1), S(2), S(3), S(5)), T1(S(1), S(2), S(4), S(5)))
+ assert distribute_t12(T1(S(1), S(2), S(3))) == T1(S(1), S(2), S(3))
+
+
+def test_distribute_add_mul():
+ x, y = symbols('x, y')
+ expr = Mul(2, Add(x, y), evaluate=False)
+ expected = Add(Mul(2, x), Mul(2, y))
+ distribute_mul = distribute(Mul, Add)
+ assert distribute_mul(expr) == expected
+
+
+def test_subs():
+ rl = subs(1, 2)
+ assert rl(1) == 2
+ assert rl(3) == 3
+
+
+def test_rebuild():
+ expr = Basic.__new__(Add, S(1), S(2))
+ assert rebuild(expr) == 3
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tools.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tools.py
new file mode 100644
index 0000000000000000000000000000000000000000..89774aeb92ead5781966e4f48ad32dc63e1bf7e2
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tools.py
@@ -0,0 +1,32 @@
+from sympy.strategies.tools import subs, typed
+from sympy.strategies.rl import rm_id
+from sympy.core.basic import Basic
+from sympy.core.singleton import S
+
+
+def test_subs():
+ from sympy.core.symbol import symbols
+ a, b, c, d, e, f = symbols('a,b,c,d,e,f')
+ mapping = {a: d, d: a, Basic(e): Basic(f)}
+ expr = Basic(a, Basic(b, c), Basic(d, Basic(e)))
+ result = Basic(d, Basic(b, c), Basic(a, Basic(f)))
+ assert subs(mapping)(expr) == result
+
+
+def test_subs_empty():
+ assert subs({})(Basic(S(1), S(2))) == Basic(S(1), S(2))
+
+
+def test_typed():
+ class A(Basic):
+ pass
+
+ class B(Basic):
+ pass
+
+ rmzeros = rm_id(lambda x: x == S(0))
+ rmones = rm_id(lambda x: x == S(1))
+ remove_something = typed({A: rmzeros, B: rmones})
+
+ assert remove_something(A(S(0), S(1))) == A(S(1))
+ assert remove_something(B(S(0), S(1))) == B(S(0))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_traverse.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_traverse.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee2409616a8b4f750af8baea149b2ea52c56be9d
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_traverse.py
@@ -0,0 +1,84 @@
+from sympy.strategies.traverse import (
+ top_down, bottom_up, sall, top_down_once, bottom_up_once, basic_fns)
+from sympy.strategies.rl import rebuild
+from sympy.strategies.util import expr_fns
+from sympy.core.add import Add
+from sympy.core.basic import Basic
+from sympy.core.numbers import Integer
+from sympy.core.singleton import S
+from sympy.core.symbol import Str, Symbol
+from sympy.abc import x, y, z
+
+
+def zero_symbols(expression):
+ return S.Zero if isinstance(expression, Symbol) else expression
+
+
+def test_sall():
+ zero_onelevel = sall(zero_symbols)
+
+ assert zero_onelevel(Basic(x, y, Basic(x, z))) == \
+ Basic(S(0), S(0), Basic(x, z))
+
+
+def test_bottom_up():
+ _test_global_traversal(bottom_up)
+ _test_stop_on_non_basics(bottom_up)
+
+
+def test_top_down():
+ _test_global_traversal(top_down)
+ _test_stop_on_non_basics(top_down)
+
+
+def _test_global_traversal(trav):
+ zero_all_symbols = trav(zero_symbols)
+
+ assert zero_all_symbols(Basic(x, y, Basic(x, z))) == \
+ Basic(S(0), S(0), Basic(S(0), S(0)))
+
+
+def _test_stop_on_non_basics(trav):
+ def add_one_if_can(expr):
+ try:
+ return expr + 1
+ except TypeError:
+ return expr
+
+ expr = Basic(S(1), Str('a'), Basic(S(2), Str('b')))
+ expected = Basic(S(2), Str('a'), Basic(S(3), Str('b')))
+ rl = trav(add_one_if_can)
+
+ assert rl(expr) == expected
+
+
+class Basic2(Basic):
+ pass
+
+
+def rl(x):
+ if x.args and not isinstance(x.args[0], Integer):
+ return Basic2(*x.args)
+ return x
+
+
+def test_top_down_once():
+ top_rl = top_down_once(rl)
+
+ assert top_rl(Basic(S(1.0), S(2.0), Basic(S(3), S(4)))) == \
+ Basic2(S(1.0), S(2.0), Basic(S(3), S(4)))
+
+
+def test_bottom_up_once():
+ bottom_rl = bottom_up_once(rl)
+
+ assert bottom_rl(Basic(S(1), S(2), Basic(S(3.0), S(4.0)))) == \
+ Basic(S(1), S(2), Basic2(S(3.0), S(4.0)))
+
+
+def test_expr_fns():
+ expr = x + y**3
+ e = bottom_up(lambda v: v + 1, expr_fns)(expr)
+ b = bottom_up(lambda v: Basic.__new__(Add, v, S(1)), basic_fns)(expr)
+
+ assert rebuild(b) == e
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tree.py b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tree.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5cdde747fe3ab90c8fd181701194403bc526067
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/strategies/tests/test_tree.py
@@ -0,0 +1,92 @@
+from sympy.strategies.tree import treeapply, greedy, allresults, brute
+from functools import partial, reduce
+
+
+def inc(x):
+ return x + 1
+
+
+def dec(x):
+ return x - 1
+
+
+def double(x):
+ return 2 * x
+
+
+def square(x):
+ return x**2
+
+
+def add(*args):
+ return sum(args)
+
+
+def mul(*args):
+ return reduce(lambda a, b: a * b, args, 1)
+
+
+def test_treeapply():
+ tree = ([3, 3], [4, 1], 2)
+ assert treeapply(tree, {list: min, tuple: max}) == 3
+ assert treeapply(tree, {list: add, tuple: mul}) == 60
+
+
+def test_treeapply_leaf():
+ assert treeapply(3, {}, leaf=lambda x: x**2) == 9
+ tree = ([3, 3], [4, 1], 2)
+ treep1 = ([4, 4], [5, 2], 3)
+ assert treeapply(tree, {list: min, tuple: max}, leaf=lambda x: x + 1) == \
+ treeapply(treep1, {list: min, tuple: max})
+
+
+def test_treeapply_strategies():
+ from sympy.strategies import chain, minimize
+ join = {list: chain, tuple: minimize}
+
+ assert treeapply(inc, join) == inc
+ assert treeapply((inc, dec), join)(5) == minimize(inc, dec)(5)
+ assert treeapply([inc, dec], join)(5) == chain(inc, dec)(5)
+ tree = (inc, [dec, double]) # either inc or dec-then-double
+ assert treeapply(tree, join)(5) == 6
+ assert treeapply(tree, join)(1) == 0
+
+ maximize = partial(minimize, objective=lambda x: -x)
+ join = {list: chain, tuple: maximize}
+ fn = treeapply(tree, join)
+ assert fn(4) == 6 # highest value comes from the dec then double
+ assert fn(1) == 2 # highest value comes from the inc
+
+
+def test_greedy():
+ tree = [inc, (dec, double)] # either inc or dec-then-double
+
+ fn = greedy(tree, objective=lambda x: -x)
+ assert fn(4) == 6 # highest value comes from the dec then double
+ assert fn(1) == 2 # highest value comes from the inc
+
+ tree = [inc, dec, [inc, dec, [(inc, inc), (dec, dec)]]]
+ lowest = greedy(tree)
+ assert lowest(10) == 8
+
+ highest = greedy(tree, objective=lambda x: -x)
+ assert highest(10) == 12
+
+
+def test_allresults():
+ # square = lambda x: x**2
+
+ assert set(allresults(inc)(3)) == {inc(3)}
+ assert set(allresults([inc, dec])(3)) == {2, 4}
+ assert set(allresults((inc, dec))(3)) == {3}
+ assert set(allresults([inc, (dec, double)])(4)) == {5, 6}
+
+
+def test_brute():
+ tree = ([inc, dec], square)
+ fn = brute(tree, lambda x: -x)
+
+ assert fn(2) == (2 + 1)**2
+ assert fn(-2) == (-2 - 1)**2
+
+ assert brute(inc)(1) == 2