Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py +499 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py +70 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py +238 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py +735 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py +50 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py +82 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine_first.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_count.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_drop_duplicates.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_equals.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_get_numeric_data.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pct_change.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_quantile.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rank.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex_like.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename_axis.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_replace.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_round.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_index.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_numpy.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Also test support for datetime64[ns] in Series / DataFrame
|
3 |
+
"""
|
4 |
+
from datetime import (
|
5 |
+
datetime,
|
6 |
+
timedelta,
|
7 |
+
)
|
8 |
+
import re
|
9 |
+
|
10 |
+
from dateutil.tz import (
|
11 |
+
gettz,
|
12 |
+
tzutc,
|
13 |
+
)
|
14 |
+
import numpy as np
|
15 |
+
import pytest
|
16 |
+
import pytz
|
17 |
+
|
18 |
+
from pandas._libs import index as libindex
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
from pandas import (
|
22 |
+
DataFrame,
|
23 |
+
Series,
|
24 |
+
Timestamp,
|
25 |
+
date_range,
|
26 |
+
period_range,
|
27 |
+
)
|
28 |
+
import pandas._testing as tm
|
29 |
+
|
30 |
+
|
31 |
+
def test_fancy_getitem():
|
32 |
+
dti = date_range(
|
33 |
+
freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
|
34 |
+
)
|
35 |
+
|
36 |
+
s = Series(np.arange(len(dti)), index=dti)
|
37 |
+
|
38 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
39 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
40 |
+
assert s[48] == 48
|
41 |
+
assert s["1/2/2009"] == 48
|
42 |
+
assert s["2009-1-2"] == 48
|
43 |
+
assert s[datetime(2009, 1, 2)] == 48
|
44 |
+
assert s[Timestamp(datetime(2009, 1, 2))] == 48
|
45 |
+
with pytest.raises(KeyError, match=r"^'2009-1-3'$"):
|
46 |
+
s["2009-1-3"]
|
47 |
+
tm.assert_series_equal(
|
48 |
+
s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)]
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def test_fancy_setitem():
|
53 |
+
dti = date_range(
|
54 |
+
freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
|
55 |
+
)
|
56 |
+
|
57 |
+
s = Series(np.arange(len(dti)), index=dti)
|
58 |
+
|
59 |
+
msg = "Series.__setitem__ treating keys as positions is deprecated"
|
60 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
61 |
+
s[48] = -1
|
62 |
+
assert s.iloc[48] == -1
|
63 |
+
s["1/2/2009"] = -2
|
64 |
+
assert s.iloc[48] == -2
|
65 |
+
s["1/2/2009":"2009-06-05"] = -3
|
66 |
+
assert (s[48:54] == -3).all()
|
67 |
+
|
68 |
+
|
69 |
+
@pytest.mark.parametrize("tz_source", ["pytz", "dateutil"])
|
70 |
+
def test_getitem_setitem_datetime_tz(tz_source):
|
71 |
+
if tz_source == "pytz":
|
72 |
+
tzget = pytz.timezone
|
73 |
+
else:
|
74 |
+
# handle special case for utc in dateutil
|
75 |
+
tzget = lambda x: tzutc() if x == "UTC" else gettz(x)
|
76 |
+
|
77 |
+
N = 50
|
78 |
+
# testing with timezone, GH #2785
|
79 |
+
rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern"))
|
80 |
+
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
81 |
+
|
82 |
+
# also test Timestamp tz handling, GH #2789
|
83 |
+
result = ts.copy()
|
84 |
+
result["1990-01-01 09:00:00+00:00"] = 0
|
85 |
+
result["1990-01-01 09:00:00+00:00"] = ts.iloc[4]
|
86 |
+
tm.assert_series_equal(result, ts)
|
87 |
+
|
88 |
+
result = ts.copy()
|
89 |
+
result["1990-01-01 03:00:00-06:00"] = 0
|
90 |
+
result["1990-01-01 03:00:00-06:00"] = ts.iloc[4]
|
91 |
+
tm.assert_series_equal(result, ts)
|
92 |
+
|
93 |
+
# repeat with datetimes
|
94 |
+
result = ts.copy()
|
95 |
+
result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0
|
96 |
+
result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4]
|
97 |
+
tm.assert_series_equal(result, ts)
|
98 |
+
|
99 |
+
result = ts.copy()
|
100 |
+
dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central"))
|
101 |
+
dt = dt.to_pydatetime()
|
102 |
+
result[dt] = 0
|
103 |
+
result[dt] = ts.iloc[4]
|
104 |
+
tm.assert_series_equal(result, ts)
|
105 |
+
|
106 |
+
|
107 |
+
def test_getitem_setitem_datetimeindex():
|
108 |
+
N = 50
|
109 |
+
# testing with timezone, GH #2785
|
110 |
+
rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern")
|
111 |
+
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
112 |
+
|
113 |
+
result = ts["1990-01-01 04:00:00"]
|
114 |
+
expected = ts.iloc[4]
|
115 |
+
assert result == expected
|
116 |
+
|
117 |
+
result = ts.copy()
|
118 |
+
result["1990-01-01 04:00:00"] = 0
|
119 |
+
result["1990-01-01 04:00:00"] = ts.iloc[4]
|
120 |
+
tm.assert_series_equal(result, ts)
|
121 |
+
|
122 |
+
result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"]
|
123 |
+
expected = ts[4:8]
|
124 |
+
tm.assert_series_equal(result, expected)
|
125 |
+
|
126 |
+
result = ts.copy()
|
127 |
+
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0
|
128 |
+
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8]
|
129 |
+
tm.assert_series_equal(result, ts)
|
130 |
+
|
131 |
+
lb = "1990-01-01 04:00:00"
|
132 |
+
rb = "1990-01-01 07:00:00"
|
133 |
+
# GH#18435 strings get a pass from tzawareness compat
|
134 |
+
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
135 |
+
expected = ts[4:8]
|
136 |
+
tm.assert_series_equal(result, expected)
|
137 |
+
|
138 |
+
lb = "1990-01-01 04:00:00-0500"
|
139 |
+
rb = "1990-01-01 07:00:00-0500"
|
140 |
+
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
141 |
+
expected = ts[4:8]
|
142 |
+
tm.assert_series_equal(result, expected)
|
143 |
+
|
144 |
+
# But we do not give datetimes a pass on tzawareness compat
|
145 |
+
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
|
146 |
+
naive = datetime(1990, 1, 1, 4)
|
147 |
+
for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]:
|
148 |
+
with pytest.raises(KeyError, match=re.escape(repr(key))):
|
149 |
+
# GH#36148 as of 2.0 we require tzawareness-compat
|
150 |
+
ts[key]
|
151 |
+
|
152 |
+
result = ts.copy()
|
153 |
+
# GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing,
|
154 |
+
# so setting it as a new key casts to object rather than matching
|
155 |
+
# rng[4]
|
156 |
+
result[naive] = ts.iloc[4]
|
157 |
+
assert result.index.dtype == object
|
158 |
+
tm.assert_index_equal(result.index[:-1], rng.astype(object))
|
159 |
+
assert result.index[-1] == naive
|
160 |
+
|
161 |
+
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
|
162 |
+
with pytest.raises(TypeError, match=msg):
|
163 |
+
# GH#36148 require tzawareness compat as of 2.0
|
164 |
+
ts[naive : datetime(1990, 1, 1, 7)]
|
165 |
+
|
166 |
+
result = ts.copy()
|
167 |
+
with pytest.raises(TypeError, match=msg):
|
168 |
+
# GH#36148 require tzawareness compat as of 2.0
|
169 |
+
result[naive : datetime(1990, 1, 1, 7)] = 0
|
170 |
+
with pytest.raises(TypeError, match=msg):
|
171 |
+
# GH#36148 require tzawareness compat as of 2.0
|
172 |
+
result[naive : datetime(1990, 1, 1, 7)] = 99
|
173 |
+
# the __setitems__ here failed, so result should still match ts
|
174 |
+
tm.assert_series_equal(result, ts)
|
175 |
+
|
176 |
+
lb = naive
|
177 |
+
rb = datetime(1990, 1, 1, 7)
|
178 |
+
msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime"
|
179 |
+
with pytest.raises(TypeError, match=msg):
|
180 |
+
# tznaive vs tzaware comparison is invalid
|
181 |
+
# see GH#18376, GH#18162
|
182 |
+
ts[(ts.index >= lb) & (ts.index <= rb)]
|
183 |
+
|
184 |
+
lb = Timestamp(naive).tz_localize(rng.tzinfo)
|
185 |
+
rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo)
|
186 |
+
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
187 |
+
expected = ts[4:8]
|
188 |
+
tm.assert_series_equal(result, expected)
|
189 |
+
|
190 |
+
result = ts[ts.index[4]]
|
191 |
+
expected = ts.iloc[4]
|
192 |
+
assert result == expected
|
193 |
+
|
194 |
+
result = ts[ts.index[4:8]]
|
195 |
+
expected = ts[4:8]
|
196 |
+
tm.assert_series_equal(result, expected)
|
197 |
+
|
198 |
+
result = ts.copy()
|
199 |
+
result[ts.index[4:8]] = 0
|
200 |
+
result.iloc[4:8] = ts.iloc[4:8]
|
201 |
+
tm.assert_series_equal(result, ts)
|
202 |
+
|
203 |
+
# also test partial date slicing
|
204 |
+
result = ts["1990-01-02"]
|
205 |
+
expected = ts[24:48]
|
206 |
+
tm.assert_series_equal(result, expected)
|
207 |
+
|
208 |
+
result = ts.copy()
|
209 |
+
result["1990-01-02"] = 0
|
210 |
+
result["1990-01-02"] = ts[24:48]
|
211 |
+
tm.assert_series_equal(result, ts)
|
212 |
+
|
213 |
+
|
214 |
+
def test_getitem_setitem_periodindex():
|
215 |
+
N = 50
|
216 |
+
rng = period_range("1/1/1990", periods=N, freq="h")
|
217 |
+
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
218 |
+
|
219 |
+
result = ts["1990-01-01 04"]
|
220 |
+
expected = ts.iloc[4]
|
221 |
+
assert result == expected
|
222 |
+
|
223 |
+
result = ts.copy()
|
224 |
+
result["1990-01-01 04"] = 0
|
225 |
+
result["1990-01-01 04"] = ts.iloc[4]
|
226 |
+
tm.assert_series_equal(result, ts)
|
227 |
+
|
228 |
+
result = ts["1990-01-01 04":"1990-01-01 07"]
|
229 |
+
expected = ts[4:8]
|
230 |
+
tm.assert_series_equal(result, expected)
|
231 |
+
|
232 |
+
result = ts.copy()
|
233 |
+
result["1990-01-01 04":"1990-01-01 07"] = 0
|
234 |
+
result["1990-01-01 04":"1990-01-01 07"] = ts[4:8]
|
235 |
+
tm.assert_series_equal(result, ts)
|
236 |
+
|
237 |
+
lb = "1990-01-01 04"
|
238 |
+
rb = "1990-01-01 07"
|
239 |
+
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
240 |
+
expected = ts[4:8]
|
241 |
+
tm.assert_series_equal(result, expected)
|
242 |
+
|
243 |
+
# GH 2782
|
244 |
+
result = ts[ts.index[4]]
|
245 |
+
expected = ts.iloc[4]
|
246 |
+
assert result == expected
|
247 |
+
|
248 |
+
result = ts[ts.index[4:8]]
|
249 |
+
expected = ts[4:8]
|
250 |
+
tm.assert_series_equal(result, expected)
|
251 |
+
|
252 |
+
result = ts.copy()
|
253 |
+
result[ts.index[4:8]] = 0
|
254 |
+
result.iloc[4:8] = ts.iloc[4:8]
|
255 |
+
tm.assert_series_equal(result, ts)
|
256 |
+
|
257 |
+
|
258 |
+
def test_datetime_indexing():
|
259 |
+
index = date_range("1/1/2000", "1/7/2000")
|
260 |
+
index = index.repeat(3)
|
261 |
+
|
262 |
+
s = Series(len(index), index=index)
|
263 |
+
stamp = Timestamp("1/8/2000")
|
264 |
+
|
265 |
+
with pytest.raises(KeyError, match=re.escape(repr(stamp))):
|
266 |
+
s[stamp]
|
267 |
+
s[stamp] = 0
|
268 |
+
assert s[stamp] == 0
|
269 |
+
|
270 |
+
# not monotonic
|
271 |
+
s = Series(len(index), index=index)
|
272 |
+
s = s[::-1]
|
273 |
+
|
274 |
+
with pytest.raises(KeyError, match=re.escape(repr(stamp))):
|
275 |
+
s[stamp]
|
276 |
+
s[stamp] = 0
|
277 |
+
assert s[stamp] == 0
|
278 |
+
|
279 |
+
|
280 |
+
# test duplicates in time series
|
281 |
+
|
282 |
+
|
283 |
+
def test_indexing_with_duplicate_datetimeindex(
|
284 |
+
rand_series_with_duplicate_datetimeindex,
|
285 |
+
):
|
286 |
+
ts = rand_series_with_duplicate_datetimeindex
|
287 |
+
|
288 |
+
uniques = ts.index.unique()
|
289 |
+
for date in uniques:
|
290 |
+
result = ts[date]
|
291 |
+
|
292 |
+
mask = ts.index == date
|
293 |
+
total = (ts.index == date).sum()
|
294 |
+
expected = ts[mask]
|
295 |
+
if total > 1:
|
296 |
+
tm.assert_series_equal(result, expected)
|
297 |
+
else:
|
298 |
+
tm.assert_almost_equal(result, expected.iloc[0])
|
299 |
+
|
300 |
+
cp = ts.copy()
|
301 |
+
cp[date] = 0
|
302 |
+
expected = Series(np.where(mask, 0, ts), index=ts.index)
|
303 |
+
tm.assert_series_equal(cp, expected)
|
304 |
+
|
305 |
+
key = datetime(2000, 1, 6)
|
306 |
+
with pytest.raises(KeyError, match=re.escape(repr(key))):
|
307 |
+
ts[key]
|
308 |
+
|
309 |
+
# new index
|
310 |
+
ts[datetime(2000, 1, 6)] = 0
|
311 |
+
assert ts[datetime(2000, 1, 6)] == 0
|
312 |
+
|
313 |
+
|
314 |
+
def test_loc_getitem_over_size_cutoff(monkeypatch):
|
315 |
+
# #1821
|
316 |
+
|
317 |
+
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
|
318 |
+
|
319 |
+
# create large list of non periodic datetime
|
320 |
+
dates = []
|
321 |
+
sec = timedelta(seconds=1)
|
322 |
+
half_sec = timedelta(microseconds=500000)
|
323 |
+
d = datetime(2011, 12, 5, 20, 30)
|
324 |
+
n = 1100
|
325 |
+
for i in range(n):
|
326 |
+
dates.append(d)
|
327 |
+
dates.append(d + sec)
|
328 |
+
dates.append(d + sec + half_sec)
|
329 |
+
dates.append(d + sec + sec + half_sec)
|
330 |
+
d += 3 * sec
|
331 |
+
|
332 |
+
# duplicate some values in the list
|
333 |
+
duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20)
|
334 |
+
for p in duplicate_positions:
|
335 |
+
dates[p + 1] = dates[p]
|
336 |
+
|
337 |
+
df = DataFrame(
|
338 |
+
np.random.default_rng(2).standard_normal((len(dates), 4)),
|
339 |
+
index=dates,
|
340 |
+
columns=list("ABCD"),
|
341 |
+
)
|
342 |
+
|
343 |
+
pos = n * 3
|
344 |
+
timestamp = df.index[pos]
|
345 |
+
assert timestamp in df.index
|
346 |
+
|
347 |
+
# it works!
|
348 |
+
df.loc[timestamp]
|
349 |
+
assert len(df.loc[[timestamp]]) > 0
|
350 |
+
|
351 |
+
|
352 |
+
def test_indexing_over_size_cutoff_period_index(monkeypatch):
|
353 |
+
# GH 27136
|
354 |
+
|
355 |
+
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
|
356 |
+
|
357 |
+
n = 1100
|
358 |
+
idx = period_range("1/1/2000", freq="min", periods=n)
|
359 |
+
assert idx._engine.over_size_threshold
|
360 |
+
|
361 |
+
s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
|
362 |
+
|
363 |
+
pos = n - 1
|
364 |
+
timestamp = idx[pos]
|
365 |
+
assert timestamp in s.index
|
366 |
+
|
367 |
+
# it works!
|
368 |
+
s[timestamp]
|
369 |
+
assert len(s.loc[[timestamp]]) > 0
|
370 |
+
|
371 |
+
|
372 |
+
def test_indexing_unordered():
|
373 |
+
# GH 2437
|
374 |
+
rng = date_range(start="2011-01-01", end="2011-01-15")
|
375 |
+
ts = Series(np.random.default_rng(2).random(len(rng)), index=rng)
|
376 |
+
ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]])
|
377 |
+
|
378 |
+
for t in ts.index:
|
379 |
+
expected = ts[t]
|
380 |
+
result = ts2[t]
|
381 |
+
assert expected == result
|
382 |
+
|
383 |
+
# GH 3448 (ranges)
|
384 |
+
def compare(slobj):
|
385 |
+
result = ts2[slobj].copy()
|
386 |
+
result = result.sort_index()
|
387 |
+
expected = ts[slobj]
|
388 |
+
expected.index = expected.index._with_freq(None)
|
389 |
+
tm.assert_series_equal(result, expected)
|
390 |
+
|
391 |
+
for key in [
|
392 |
+
slice("2011-01-01", "2011-01-15"),
|
393 |
+
slice("2010-12-30", "2011-01-15"),
|
394 |
+
slice("2011-01-01", "2011-01-16"),
|
395 |
+
# partial ranges
|
396 |
+
slice("2011-01-01", "2011-01-6"),
|
397 |
+
slice("2011-01-06", "2011-01-8"),
|
398 |
+
slice("2011-01-06", "2011-01-12"),
|
399 |
+
]:
|
400 |
+
with pytest.raises(
|
401 |
+
KeyError, match="Value based partial slicing on non-monotonic"
|
402 |
+
):
|
403 |
+
compare(key)
|
404 |
+
|
405 |
+
# single values
|
406 |
+
result = ts2["2011"].sort_index()
|
407 |
+
expected = ts["2011"]
|
408 |
+
expected.index = expected.index._with_freq(None)
|
409 |
+
tm.assert_series_equal(result, expected)
|
410 |
+
|
411 |
+
|
412 |
+
def test_indexing_unordered2():
|
413 |
+
# diff freq
|
414 |
+
rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME")
|
415 |
+
ts = Series(np.arange(len(rng)), index=rng)
|
416 |
+
ts = ts.take(np.random.default_rng(2).permutation(20))
|
417 |
+
|
418 |
+
result = ts["2005"]
|
419 |
+
for t in result.index:
|
420 |
+
assert t.year == 2005
|
421 |
+
|
422 |
+
|
423 |
+
def test_indexing():
|
424 |
+
idx = date_range("2001-1-1", periods=20, freq="ME")
|
425 |
+
ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
|
426 |
+
|
427 |
+
# getting
|
428 |
+
|
429 |
+
# GH 3070, make sure semantics work on Series/Frame
|
430 |
+
result = ts["2001"]
|
431 |
+
tm.assert_series_equal(result, ts.iloc[:12])
|
432 |
+
|
433 |
+
df = DataFrame({"A": ts.copy()})
|
434 |
+
|
435 |
+
# GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves
|
436 |
+
# like any other key, so raises
|
437 |
+
with pytest.raises(KeyError, match="2001"):
|
438 |
+
df["2001"]
|
439 |
+
|
440 |
+
# setting
|
441 |
+
ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
|
442 |
+
expected = ts.copy()
|
443 |
+
expected.iloc[:12] = 1
|
444 |
+
ts["2001"] = 1
|
445 |
+
tm.assert_series_equal(ts, expected)
|
446 |
+
|
447 |
+
expected = df.copy()
|
448 |
+
expected.iloc[:12, 0] = 1
|
449 |
+
df.loc["2001", "A"] = 1
|
450 |
+
tm.assert_frame_equal(df, expected)
|
451 |
+
|
452 |
+
|
453 |
+
def test_getitem_str_month_with_datetimeindex():
|
454 |
+
# GH3546 (not including times on the last day)
|
455 |
+
idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h")
|
456 |
+
ts = Series(range(len(idx)), index=idx)
|
457 |
+
expected = ts["2013-05"]
|
458 |
+
tm.assert_series_equal(expected, ts)
|
459 |
+
|
460 |
+
idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s")
|
461 |
+
ts = Series(range(len(idx)), index=idx)
|
462 |
+
expected = ts["2013-05"]
|
463 |
+
tm.assert_series_equal(expected, ts)
|
464 |
+
|
465 |
+
|
466 |
+
def test_getitem_str_year_with_datetimeindex():
|
467 |
+
idx = [
|
468 |
+
Timestamp("2013-05-31 00:00"),
|
469 |
+
Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)),
|
470 |
+
]
|
471 |
+
ts = Series(range(len(idx)), index=idx)
|
472 |
+
expected = ts["2013"]
|
473 |
+
tm.assert_series_equal(expected, ts)
|
474 |
+
|
475 |
+
|
476 |
+
def test_getitem_str_second_with_datetimeindex():
|
477 |
+
# GH14826, indexing with a seconds resolution string / datetime object
|
478 |
+
df = DataFrame(
|
479 |
+
np.random.default_rng(2).random((5, 5)),
|
480 |
+
columns=["open", "high", "low", "close", "volume"],
|
481 |
+
index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"),
|
482 |
+
)
|
483 |
+
|
484 |
+
# this is a single date, so will raise
|
485 |
+
with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"):
|
486 |
+
df["2012-01-02 18:01:02"]
|
487 |
+
|
488 |
+
msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)"
|
489 |
+
with pytest.raises(KeyError, match=msg):
|
490 |
+
df[df.index[2]]
|
491 |
+
|
492 |
+
|
493 |
+
def test_compare_datetime_with_all_none():
|
494 |
+
# GH#54870
|
495 |
+
ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]")
|
496 |
+
ser2 = Series([None, None])
|
497 |
+
result = ser > ser2
|
498 |
+
expected = Series([False, False])
|
499 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Index,
|
5 |
+
Series,
|
6 |
+
date_range,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
class TestSeriesDelItem:
|
12 |
+
def test_delitem(self):
|
13 |
+
# GH#5542
|
14 |
+
# should delete the item inplace
|
15 |
+
s = Series(range(5))
|
16 |
+
del s[0]
|
17 |
+
|
18 |
+
expected = Series(range(1, 5), index=range(1, 5))
|
19 |
+
tm.assert_series_equal(s, expected)
|
20 |
+
|
21 |
+
del s[1]
|
22 |
+
expected = Series(range(2, 5), index=range(2, 5))
|
23 |
+
tm.assert_series_equal(s, expected)
|
24 |
+
|
25 |
+
# only 1 left, del, add, del
|
26 |
+
s = Series(1)
|
27 |
+
del s[0]
|
28 |
+
tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64")))
|
29 |
+
s[0] = 1
|
30 |
+
tm.assert_series_equal(s, Series(1))
|
31 |
+
del s[0]
|
32 |
+
tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64")))
|
33 |
+
|
34 |
+
def test_delitem_object_index(self, using_infer_string):
|
35 |
+
# Index(dtype=object)
|
36 |
+
dtype = "string[pyarrow_numpy]" if using_infer_string else object
|
37 |
+
s = Series(1, index=Index(["a"], dtype=dtype))
|
38 |
+
del s["a"]
|
39 |
+
tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype)))
|
40 |
+
s["a"] = 1
|
41 |
+
tm.assert_series_equal(s, Series(1, index=Index(["a"], dtype=dtype)))
|
42 |
+
del s["a"]
|
43 |
+
tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype)))
|
44 |
+
|
45 |
+
def test_delitem_missing_key(self):
|
46 |
+
# empty
|
47 |
+
s = Series(dtype=object)
|
48 |
+
|
49 |
+
with pytest.raises(KeyError, match=r"^0$"):
|
50 |
+
del s[0]
|
51 |
+
|
52 |
+
def test_delitem_extension_dtype(self):
|
53 |
+
# GH#40386
|
54 |
+
# DatetimeTZDtype
|
55 |
+
dti = date_range("2016-01-01", periods=3, tz="US/Pacific")
|
56 |
+
ser = Series(dti)
|
57 |
+
|
58 |
+
expected = ser[[0, 2]]
|
59 |
+
del ser[1]
|
60 |
+
assert ser.dtype == dti.dtype
|
61 |
+
tm.assert_series_equal(ser, expected)
|
62 |
+
|
63 |
+
# PeriodDtype
|
64 |
+
pi = dti.tz_localize(None).to_period("D")
|
65 |
+
ser = Series(pi)
|
66 |
+
|
67 |
+
expected = ser[:2]
|
68 |
+
del ser[2]
|
69 |
+
assert ser.dtype == pi.dtype
|
70 |
+
tm.assert_series_equal(ser, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DatetimeIndex,
|
7 |
+
Index,
|
8 |
+
Series,
|
9 |
+
date_range,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
def test_get():
|
15 |
+
# GH 6383
|
16 |
+
s = Series(
|
17 |
+
np.array(
|
18 |
+
[
|
19 |
+
43,
|
20 |
+
48,
|
21 |
+
60,
|
22 |
+
48,
|
23 |
+
50,
|
24 |
+
51,
|
25 |
+
50,
|
26 |
+
45,
|
27 |
+
57,
|
28 |
+
48,
|
29 |
+
56,
|
30 |
+
45,
|
31 |
+
51,
|
32 |
+
39,
|
33 |
+
55,
|
34 |
+
43,
|
35 |
+
54,
|
36 |
+
52,
|
37 |
+
51,
|
38 |
+
54,
|
39 |
+
]
|
40 |
+
)
|
41 |
+
)
|
42 |
+
|
43 |
+
result = s.get(25, 0)
|
44 |
+
expected = 0
|
45 |
+
assert result == expected
|
46 |
+
|
47 |
+
s = Series(
|
48 |
+
np.array(
|
49 |
+
[
|
50 |
+
43,
|
51 |
+
48,
|
52 |
+
60,
|
53 |
+
48,
|
54 |
+
50,
|
55 |
+
51,
|
56 |
+
50,
|
57 |
+
45,
|
58 |
+
57,
|
59 |
+
48,
|
60 |
+
56,
|
61 |
+
45,
|
62 |
+
51,
|
63 |
+
39,
|
64 |
+
55,
|
65 |
+
43,
|
66 |
+
54,
|
67 |
+
52,
|
68 |
+
51,
|
69 |
+
54,
|
70 |
+
]
|
71 |
+
),
|
72 |
+
index=Index(
|
73 |
+
[
|
74 |
+
25.0,
|
75 |
+
36.0,
|
76 |
+
49.0,
|
77 |
+
64.0,
|
78 |
+
81.0,
|
79 |
+
100.0,
|
80 |
+
121.0,
|
81 |
+
144.0,
|
82 |
+
169.0,
|
83 |
+
196.0,
|
84 |
+
1225.0,
|
85 |
+
1296.0,
|
86 |
+
1369.0,
|
87 |
+
1444.0,
|
88 |
+
1521.0,
|
89 |
+
1600.0,
|
90 |
+
1681.0,
|
91 |
+
1764.0,
|
92 |
+
1849.0,
|
93 |
+
1936.0,
|
94 |
+
],
|
95 |
+
dtype=np.float64,
|
96 |
+
),
|
97 |
+
)
|
98 |
+
|
99 |
+
result = s.get(25, 0)
|
100 |
+
expected = 43
|
101 |
+
assert result == expected
|
102 |
+
|
103 |
+
# GH 7407
|
104 |
+
# with a boolean accessor
|
105 |
+
df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
|
106 |
+
vc = df.i.value_counts()
|
107 |
+
result = vc.get(99, default="Missing")
|
108 |
+
assert result == "Missing"
|
109 |
+
|
110 |
+
vc = df.b.value_counts()
|
111 |
+
result = vc.get(False, default="Missing")
|
112 |
+
assert result == 3
|
113 |
+
|
114 |
+
result = vc.get(True, default="Missing")
|
115 |
+
assert result == "Missing"
|
116 |
+
|
117 |
+
|
118 |
+
def test_get_nan(float_numpy_dtype):
|
119 |
+
# GH 8569
|
120 |
+
s = Index(range(10), dtype=float_numpy_dtype).to_series()
|
121 |
+
assert s.get(np.nan) is None
|
122 |
+
assert s.get(np.nan, default="Missing") == "Missing"
|
123 |
+
|
124 |
+
|
125 |
+
def test_get_nan_multiple(float_numpy_dtype):
|
126 |
+
# GH 8569
|
127 |
+
# ensure that fixing "test_get_nan" above hasn't broken get
|
128 |
+
# with multiple elements
|
129 |
+
s = Index(range(10), dtype=float_numpy_dtype).to_series()
|
130 |
+
|
131 |
+
idx = [2, 30]
|
132 |
+
assert s.get(idx) is None
|
133 |
+
|
134 |
+
idx = [2, np.nan]
|
135 |
+
assert s.get(idx) is None
|
136 |
+
|
137 |
+
# GH 17295 - all missing keys
|
138 |
+
idx = [20, 30]
|
139 |
+
assert s.get(idx) is None
|
140 |
+
|
141 |
+
idx = [np.nan, np.nan]
|
142 |
+
assert s.get(idx) is None
|
143 |
+
|
144 |
+
|
145 |
+
def test_get_with_default():
|
146 |
+
# GH#7725
|
147 |
+
d0 = ["a", "b", "c", "d"]
|
148 |
+
d1 = np.arange(4, dtype="int64")
|
149 |
+
|
150 |
+
for data, index in ((d0, d1), (d1, d0)):
|
151 |
+
s = Series(data, index=index)
|
152 |
+
for i, d in zip(index, data):
|
153 |
+
assert s.get(i) == d
|
154 |
+
assert s.get(i, d) == d
|
155 |
+
assert s.get(i, "z") == d
|
156 |
+
|
157 |
+
assert s.get("e", "z") == "z"
|
158 |
+
assert s.get("e", "e") == "e"
|
159 |
+
|
160 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
161 |
+
warn = None
|
162 |
+
if index is d0:
|
163 |
+
warn = FutureWarning
|
164 |
+
with tm.assert_produces_warning(warn, match=msg):
|
165 |
+
assert s.get(10, "z") == "z"
|
166 |
+
assert s.get(10, 10) == 10
|
167 |
+
|
168 |
+
|
169 |
+
@pytest.mark.parametrize(
|
170 |
+
"arr",
|
171 |
+
[
|
172 |
+
np.random.default_rng(2).standard_normal(10),
|
173 |
+
DatetimeIndex(date_range("2020-01-01", periods=10), name="a").tz_localize(
|
174 |
+
tz="US/Eastern"
|
175 |
+
),
|
176 |
+
],
|
177 |
+
)
|
178 |
+
def test_get_with_ea(arr):
|
179 |
+
# GH#21260
|
180 |
+
ser = Series(arr, index=[2 * i for i in range(len(arr))])
|
181 |
+
assert ser.get(4) == ser.iloc[2]
|
182 |
+
|
183 |
+
result = ser.get([4, 6])
|
184 |
+
expected = ser.iloc[[2, 3]]
|
185 |
+
tm.assert_series_equal(result, expected)
|
186 |
+
|
187 |
+
result = ser.get(slice(2))
|
188 |
+
expected = ser.iloc[[0, 1]]
|
189 |
+
tm.assert_series_equal(result, expected)
|
190 |
+
|
191 |
+
assert ser.get(-1) is None
|
192 |
+
assert ser.get(ser.index.max() + 1) is None
|
193 |
+
|
194 |
+
ser = Series(arr[:6], index=list("abcdef"))
|
195 |
+
assert ser.get("c") == ser.iloc[2]
|
196 |
+
|
197 |
+
result = ser.get(slice("b", "d"))
|
198 |
+
expected = ser.iloc[[1, 2, 3]]
|
199 |
+
tm.assert_series_equal(result, expected)
|
200 |
+
|
201 |
+
result = ser.get("Z")
|
202 |
+
assert result is None
|
203 |
+
|
204 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
205 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
206 |
+
assert ser.get(4) == ser.iloc[4]
|
207 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
208 |
+
assert ser.get(-1) == ser.iloc[-1]
|
209 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
210 |
+
assert ser.get(len(ser)) is None
|
211 |
+
|
212 |
+
# GH#21257
|
213 |
+
ser = Series(arr)
|
214 |
+
ser2 = ser[::2]
|
215 |
+
assert ser2.get(1) is None
|
216 |
+
|
217 |
+
|
218 |
+
def test_getitem_get(string_series, object_series):
|
219 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
220 |
+
|
221 |
+
for obj in [string_series, object_series]:
|
222 |
+
idx = obj.index[5]
|
223 |
+
|
224 |
+
assert obj[idx] == obj.get(idx)
|
225 |
+
assert obj[idx] == obj.iloc[5]
|
226 |
+
|
227 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
228 |
+
assert string_series.get(-1) == string_series.get(string_series.index[-1])
|
229 |
+
assert string_series.iloc[5] == string_series.get(string_series.index[5])
|
230 |
+
|
231 |
+
|
232 |
+
def test_get_none():
|
233 |
+
# GH#5652
|
234 |
+
s1 = Series(dtype=object)
|
235 |
+
s2 = Series(dtype=object, index=list("abc"))
|
236 |
+
for s in [s1, s2]:
|
237 |
+
result = s.get(None)
|
238 |
+
assert result is None
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Series.__getitem__ test classes are organized by the type of key passed.
|
3 |
+
"""
|
4 |
+
from datetime import (
|
5 |
+
date,
|
6 |
+
datetime,
|
7 |
+
time,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pytest
|
12 |
+
|
13 |
+
from pandas._libs.tslibs import (
|
14 |
+
conversion,
|
15 |
+
timezones,
|
16 |
+
)
|
17 |
+
|
18 |
+
from pandas.core.dtypes.common import is_scalar
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
from pandas import (
|
22 |
+
Categorical,
|
23 |
+
DataFrame,
|
24 |
+
DatetimeIndex,
|
25 |
+
Index,
|
26 |
+
Series,
|
27 |
+
Timestamp,
|
28 |
+
date_range,
|
29 |
+
period_range,
|
30 |
+
timedelta_range,
|
31 |
+
)
|
32 |
+
import pandas._testing as tm
|
33 |
+
from pandas.core.indexing import IndexingError
|
34 |
+
|
35 |
+
from pandas.tseries.offsets import BDay
|
36 |
+
|
37 |
+
|
38 |
+
class TestSeriesGetitemScalars:
|
39 |
+
def test_getitem_object_index_float_string(self):
|
40 |
+
# GH#17286
|
41 |
+
ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0]))
|
42 |
+
assert ser["a"] == 1
|
43 |
+
assert ser[1.0] == 1
|
44 |
+
|
45 |
+
def test_getitem_float_keys_tuple_values(self):
|
46 |
+
# see GH#13509
|
47 |
+
|
48 |
+
# unique Index
|
49 |
+
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo")
|
50 |
+
result = ser[0.0]
|
51 |
+
assert result == (1, 1)
|
52 |
+
|
53 |
+
# non-unique Index
|
54 |
+
expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo")
|
55 |
+
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo")
|
56 |
+
|
57 |
+
result = ser[0.0]
|
58 |
+
tm.assert_series_equal(result, expected)
|
59 |
+
|
60 |
+
def test_getitem_unrecognized_scalar(self):
|
61 |
+
# GH#32684 a scalar key that is not recognized by lib.is_scalar
|
62 |
+
|
63 |
+
# a series that might be produced via `frame.dtypes`
|
64 |
+
ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")])
|
65 |
+
|
66 |
+
key = ser.index[1]
|
67 |
+
|
68 |
+
result = ser[key]
|
69 |
+
assert result == 2
|
70 |
+
|
71 |
+
def test_getitem_negative_out_of_bounds(self):
|
72 |
+
ser = Series(["a"] * 10, index=["a"] * 10)
|
73 |
+
|
74 |
+
msg = "index -11 is out of bounds for axis 0 with size 10|index out of bounds"
|
75 |
+
warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
|
76 |
+
with pytest.raises(IndexError, match=msg):
|
77 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
78 |
+
ser[-11]
|
79 |
+
|
80 |
+
def test_getitem_out_of_bounds_indexerror(self, datetime_series):
|
81 |
+
# don't segfault, GH#495
|
82 |
+
msg = r"index \d+ is out of bounds for axis 0 with size \d+"
|
83 |
+
warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
|
84 |
+
with pytest.raises(IndexError, match=msg):
|
85 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
86 |
+
datetime_series[len(datetime_series)]
|
87 |
+
|
88 |
+
def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self):
|
89 |
+
# GH#917
|
90 |
+
# With a RangeIndex, an int key gives a KeyError
|
91 |
+
ser = Series([], dtype=object)
|
92 |
+
with pytest.raises(KeyError, match="-1"):
|
93 |
+
ser[-1]
|
94 |
+
|
95 |
+
def test_getitem_keyerror_with_integer_index(self, any_int_numpy_dtype):
|
96 |
+
dtype = any_int_numpy_dtype
|
97 |
+
ser = Series(
|
98 |
+
np.random.default_rng(2).standard_normal(6),
|
99 |
+
index=Index([0, 0, 1, 1, 2, 2], dtype=dtype),
|
100 |
+
)
|
101 |
+
|
102 |
+
with pytest.raises(KeyError, match=r"^5$"):
|
103 |
+
ser[5]
|
104 |
+
|
105 |
+
with pytest.raises(KeyError, match=r"^'c'$"):
|
106 |
+
ser["c"]
|
107 |
+
|
108 |
+
# not monotonic
|
109 |
+
ser = Series(
|
110 |
+
np.random.default_rng(2).standard_normal(6), index=[2, 2, 0, 0, 1, 1]
|
111 |
+
)
|
112 |
+
|
113 |
+
with pytest.raises(KeyError, match=r"^5$"):
|
114 |
+
ser[5]
|
115 |
+
|
116 |
+
with pytest.raises(KeyError, match=r"^'c'$"):
|
117 |
+
ser["c"]
|
118 |
+
|
119 |
+
def test_getitem_int64(self, datetime_series):
|
120 |
+
idx = np.int64(5)
|
121 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
122 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
123 |
+
res = datetime_series[idx]
|
124 |
+
assert res == datetime_series.iloc[5]
|
125 |
+
|
126 |
+
def test_getitem_full_range(self):
|
127 |
+
# github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7
|
128 |
+
ser = Series(range(5), index=list(range(5)))
|
129 |
+
result = ser[list(range(5))]
|
130 |
+
tm.assert_series_equal(result, ser)
|
131 |
+
|
132 |
+
# ------------------------------------------------------------------
|
133 |
+
# Series with DatetimeIndex
|
134 |
+
|
135 |
+
@pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"])
|
136 |
+
def test_getitem_pydatetime_tz(self, tzstr):
|
137 |
+
tz = timezones.maybe_get_tz(tzstr)
|
138 |
+
|
139 |
+
index = date_range(
|
140 |
+
start="2012-12-24 16:00", end="2012-12-24 18:00", freq="h", tz=tzstr
|
141 |
+
)
|
142 |
+
ts = Series(index=index, data=index.hour)
|
143 |
+
time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
|
144 |
+
|
145 |
+
dt = datetime(2012, 12, 24, 17, 0)
|
146 |
+
time_datetime = conversion.localize_pydatetime(dt, tz)
|
147 |
+
assert ts[time_pandas] == ts[time_datetime]
|
148 |
+
|
149 |
+
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
|
150 |
+
def test_string_index_alias_tz_aware(self, tz):
|
151 |
+
rng = date_range("1/1/2000", periods=10, tz=tz)
|
152 |
+
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
|
153 |
+
|
154 |
+
result = ser["1/3/2000"]
|
155 |
+
tm.assert_almost_equal(result, ser.iloc[2])
|
156 |
+
|
157 |
+
def test_getitem_time_object(self):
|
158 |
+
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
|
159 |
+
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
|
160 |
+
|
161 |
+
mask = (rng.hour == 9) & (rng.minute == 30)
|
162 |
+
result = ts[time(9, 30)]
|
163 |
+
expected = ts[mask]
|
164 |
+
result.index = result.index._with_freq(None)
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
|
167 |
+
# ------------------------------------------------------------------
|
168 |
+
# Series with CategoricalIndex
|
169 |
+
|
170 |
+
def test_getitem_scalar_categorical_index(self):
|
171 |
+
cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
|
172 |
+
|
173 |
+
ser = Series([1, 2], index=cats)
|
174 |
+
|
175 |
+
expected = ser.iloc[0]
|
176 |
+
result = ser[cats[0]]
|
177 |
+
assert result == expected
|
178 |
+
|
179 |
+
def test_getitem_numeric_categorical_listlike_matches_scalar(self):
|
180 |
+
# GH#15470
|
181 |
+
ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0]))
|
182 |
+
|
183 |
+
# 0 is treated as a label
|
184 |
+
assert ser[0] == "c"
|
185 |
+
|
186 |
+
# the listlike analogue should also be treated as labels
|
187 |
+
res = ser[[0]]
|
188 |
+
expected = ser.iloc[-1:]
|
189 |
+
tm.assert_series_equal(res, expected)
|
190 |
+
|
191 |
+
res2 = ser[[0, 1, 2]]
|
192 |
+
tm.assert_series_equal(res2, ser.iloc[::-1])
|
193 |
+
|
194 |
+
def test_getitem_integer_categorical_not_positional(self):
|
195 |
+
# GH#14865
|
196 |
+
ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category"))
|
197 |
+
assert ser.get(3) == "c"
|
198 |
+
assert ser[3] == "c"
|
199 |
+
|
200 |
+
def test_getitem_str_with_timedeltaindex(self):
|
201 |
+
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
|
202 |
+
ser = Series(np.arange(len(rng)), index=rng)
|
203 |
+
|
204 |
+
key = "6 days, 23:11:12"
|
205 |
+
indexer = rng.get_loc(key)
|
206 |
+
assert indexer == 133
|
207 |
+
|
208 |
+
result = ser[key]
|
209 |
+
assert result == ser.iloc[133]
|
210 |
+
|
211 |
+
msg = r"^Timedelta\('50 days 00:00:00'\)$"
|
212 |
+
with pytest.raises(KeyError, match=msg):
|
213 |
+
rng.get_loc("50 days")
|
214 |
+
with pytest.raises(KeyError, match=msg):
|
215 |
+
ser["50 days"]
|
216 |
+
|
217 |
+
def test_getitem_bool_index_positional(self):
|
218 |
+
# GH#48653
|
219 |
+
ser = Series({True: 1, False: 0})
|
220 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
221 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
222 |
+
result = ser[0]
|
223 |
+
assert result == 1
|
224 |
+
|
225 |
+
|
226 |
+
class TestSeriesGetitemSlices:
|
227 |
+
def test_getitem_partial_str_slice_with_datetimeindex(self):
|
228 |
+
# GH#34860
|
229 |
+
arr = date_range("1/1/2008", "1/1/2009")
|
230 |
+
ser = arr.to_series()
|
231 |
+
result = ser["2008"]
|
232 |
+
|
233 |
+
rng = date_range(start="2008-01-01", end="2008-12-31")
|
234 |
+
expected = Series(rng, index=rng)
|
235 |
+
|
236 |
+
tm.assert_series_equal(result, expected)
|
237 |
+
|
238 |
+
def test_getitem_slice_strings_with_datetimeindex(self):
|
239 |
+
idx = DatetimeIndex(
|
240 |
+
["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]
|
241 |
+
)
|
242 |
+
|
243 |
+
ts = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
|
244 |
+
|
245 |
+
result = ts["1/2/2000":]
|
246 |
+
expected = ts[1:]
|
247 |
+
tm.assert_series_equal(result, expected)
|
248 |
+
|
249 |
+
result = ts["1/2/2000":"1/3/2000"]
|
250 |
+
expected = ts[1:4]
|
251 |
+
tm.assert_series_equal(result, expected)
|
252 |
+
|
253 |
+
def test_getitem_partial_str_slice_with_timedeltaindex(self):
|
254 |
+
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
|
255 |
+
ser = Series(np.arange(len(rng)), index=rng)
|
256 |
+
|
257 |
+
result = ser["5 day":"6 day"]
|
258 |
+
expected = ser.iloc[86:134]
|
259 |
+
tm.assert_series_equal(result, expected)
|
260 |
+
|
261 |
+
result = ser["5 day":]
|
262 |
+
expected = ser.iloc[86:]
|
263 |
+
tm.assert_series_equal(result, expected)
|
264 |
+
|
265 |
+
result = ser[:"6 day"]
|
266 |
+
expected = ser.iloc[:134]
|
267 |
+
tm.assert_series_equal(result, expected)
|
268 |
+
|
269 |
+
def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self):
|
270 |
+
# higher reso
|
271 |
+
rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
|
272 |
+
ser = Series(np.arange(len(rng)), index=rng)
|
273 |
+
|
274 |
+
result = ser["1 day 10:11:12":]
|
275 |
+
expected = ser.iloc[0:]
|
276 |
+
tm.assert_series_equal(result, expected)
|
277 |
+
|
278 |
+
result = ser["1 day 10:11:12.001":]
|
279 |
+
expected = ser.iloc[1000:]
|
280 |
+
tm.assert_series_equal(result, expected)
|
281 |
+
|
282 |
+
result = ser["1 days, 10:11:12.001001"]
|
283 |
+
assert result == ser.iloc[1001]
|
284 |
+
|
285 |
+
def test_getitem_slice_2d(self, datetime_series):
|
286 |
+
# GH#30588 multi-dimensional indexing deprecated
|
287 |
+
with pytest.raises(ValueError, match="Multi-dimensional indexing"):
|
288 |
+
datetime_series[:, np.newaxis]
|
289 |
+
|
290 |
+
def test_getitem_median_slice_bug(self):
|
291 |
+
index = date_range("20090415", "20090519", freq="2B")
|
292 |
+
ser = Series(np.random.default_rng(2).standard_normal(13), index=index)
|
293 |
+
|
294 |
+
indexer = [slice(6, 7, None)]
|
295 |
+
msg = "Indexing with a single-item list"
|
296 |
+
with pytest.raises(ValueError, match=msg):
|
297 |
+
# GH#31299
|
298 |
+
ser[indexer]
|
299 |
+
# but we're OK with a single-element tuple
|
300 |
+
result = ser[(indexer[0],)]
|
301 |
+
expected = ser[indexer[0]]
|
302 |
+
tm.assert_series_equal(result, expected)
|
303 |
+
|
304 |
+
@pytest.mark.parametrize(
|
305 |
+
"slc, positions",
|
306 |
+
[
|
307 |
+
[slice(date(2018, 1, 1), None), [0, 1, 2]],
|
308 |
+
[slice(date(2019, 1, 2), None), [2]],
|
309 |
+
[slice(date(2020, 1, 1), None), []],
|
310 |
+
[slice(None, date(2020, 1, 1)), [0, 1, 2]],
|
311 |
+
[slice(None, date(2019, 1, 1)), [0]],
|
312 |
+
],
|
313 |
+
)
|
314 |
+
def test_getitem_slice_date(self, slc, positions):
|
315 |
+
# https://github.com/pandas-dev/pandas/issues/31501
|
316 |
+
ser = Series(
|
317 |
+
[0, 1, 2],
|
318 |
+
DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
|
319 |
+
)
|
320 |
+
result = ser[slc]
|
321 |
+
expected = ser.take(positions)
|
322 |
+
tm.assert_series_equal(result, expected)
|
323 |
+
|
324 |
+
def test_getitem_slice_float_raises(self, datetime_series):
|
325 |
+
msg = (
|
326 |
+
"cannot do slice indexing on DatetimeIndex with these indexers "
|
327 |
+
r"\[{key}\] of type float"
|
328 |
+
)
|
329 |
+
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
|
330 |
+
datetime_series[4.0:10.0]
|
331 |
+
|
332 |
+
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
|
333 |
+
datetime_series[4.5:10.0]
|
334 |
+
|
335 |
+
def test_getitem_slice_bug(self):
|
336 |
+
ser = Series(range(10), index=list(range(10)))
|
337 |
+
result = ser[-12:]
|
338 |
+
tm.assert_series_equal(result, ser)
|
339 |
+
|
340 |
+
result = ser[-7:]
|
341 |
+
tm.assert_series_equal(result, ser[3:])
|
342 |
+
|
343 |
+
result = ser[:-12]
|
344 |
+
tm.assert_series_equal(result, ser[:0])
|
345 |
+
|
346 |
+
def test_getitem_slice_integers(self):
|
347 |
+
ser = Series(
|
348 |
+
np.random.default_rng(2).standard_normal(8),
|
349 |
+
index=[2, 4, 6, 8, 10, 12, 14, 16],
|
350 |
+
)
|
351 |
+
|
352 |
+
result = ser[:4]
|
353 |
+
expected = Series(ser.values[:4], index=[2, 4, 6, 8])
|
354 |
+
tm.assert_series_equal(result, expected)
|
355 |
+
|
356 |
+
|
357 |
+
class TestSeriesGetitemListLike:
|
358 |
+
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
|
359 |
+
def test_getitem_no_matches(self, box):
|
360 |
+
# GH#33462 we expect the same behavior for list/ndarray/Index/Series
|
361 |
+
ser = Series(["A", "B"])
|
362 |
+
|
363 |
+
key = Series(["C"], dtype=object)
|
364 |
+
key = box(key)
|
365 |
+
|
366 |
+
msg = (
|
367 |
+
r"None of \[Index\(\['C'\], dtype='object|string'\)\] are in the \[index\]"
|
368 |
+
)
|
369 |
+
with pytest.raises(KeyError, match=msg):
|
370 |
+
ser[key]
|
371 |
+
|
372 |
+
def test_getitem_intlist_intindex_periodvalues(self):
|
373 |
+
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
|
374 |
+
|
375 |
+
result = ser[[2, 4]]
|
376 |
+
exp = Series(
|
377 |
+
[pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")],
|
378 |
+
index=[2, 4],
|
379 |
+
dtype="Period[D]",
|
380 |
+
)
|
381 |
+
tm.assert_series_equal(result, exp)
|
382 |
+
assert result.dtype == "Period[D]"
|
383 |
+
|
384 |
+
@pytest.mark.parametrize("box", [list, np.array, Index])
|
385 |
+
def test_getitem_intlist_intervalindex_non_int(self, box):
|
386 |
+
# GH#33404 fall back to positional since ints are unambiguous
|
387 |
+
dti = date_range("2000-01-03", periods=3)._with_freq(None)
|
388 |
+
ii = pd.IntervalIndex.from_breaks(dti)
|
389 |
+
ser = Series(range(len(ii)), index=ii)
|
390 |
+
|
391 |
+
expected = ser.iloc[:1]
|
392 |
+
key = box([0])
|
393 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
394 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
395 |
+
result = ser[key]
|
396 |
+
tm.assert_series_equal(result, expected)
|
397 |
+
|
398 |
+
@pytest.mark.parametrize("box", [list, np.array, Index])
|
399 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64])
|
400 |
+
def test_getitem_intlist_multiindex_numeric_level(self, dtype, box):
|
401 |
+
# GH#33404 do _not_ fall back to positional since ints are ambiguous
|
402 |
+
idx = Index(range(4)).astype(dtype)
|
403 |
+
dti = date_range("2000-01-03", periods=3)
|
404 |
+
mi = pd.MultiIndex.from_product([idx, dti])
|
405 |
+
ser = Series(range(len(mi))[::-1], index=mi)
|
406 |
+
|
407 |
+
key = box([5])
|
408 |
+
with pytest.raises(KeyError, match="5"):
|
409 |
+
ser[key]
|
410 |
+
|
411 |
+
def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype):
|
412 |
+
# GH #37218
|
413 |
+
ser = Series([1, 2, 3])
|
414 |
+
key = np.array([4], dtype=any_unsigned_int_numpy_dtype)
|
415 |
+
|
416 |
+
with pytest.raises(KeyError, match="4"):
|
417 |
+
ser[key]
|
418 |
+
with pytest.raises(KeyError, match="4"):
|
419 |
+
ser.loc[key]
|
420 |
+
|
421 |
+
|
422 |
+
class TestGetitemBooleanMask:
|
423 |
+
def test_getitem_boolean(self, string_series):
|
424 |
+
ser = string_series
|
425 |
+
mask = ser > ser.median()
|
426 |
+
|
427 |
+
# passing list is OK
|
428 |
+
result = ser[list(mask)]
|
429 |
+
expected = ser[mask]
|
430 |
+
tm.assert_series_equal(result, expected)
|
431 |
+
tm.assert_index_equal(result.index, ser.index[mask])
|
432 |
+
|
433 |
+
def test_getitem_boolean_empty(self):
|
434 |
+
ser = Series([], dtype=np.int64)
|
435 |
+
ser.index.name = "index_name"
|
436 |
+
ser = ser[ser.isna()]
|
437 |
+
assert ser.index.name == "index_name"
|
438 |
+
assert ser.dtype == np.int64
|
439 |
+
|
440 |
+
# GH#5877
|
441 |
+
# indexing with empty series
|
442 |
+
ser = Series(["A", "B"], dtype=object)
|
443 |
+
expected = Series(dtype=object, index=Index([], dtype="int64"))
|
444 |
+
result = ser[Series([], dtype=object)]
|
445 |
+
tm.assert_series_equal(result, expected)
|
446 |
+
|
447 |
+
# invalid because of the boolean indexer
|
448 |
+
# that's empty or not-aligned
|
449 |
+
msg = (
|
450 |
+
r"Unalignable boolean Series provided as indexer \(index of "
|
451 |
+
r"the boolean Series and of the indexed object do not match"
|
452 |
+
)
|
453 |
+
with pytest.raises(IndexingError, match=msg):
|
454 |
+
ser[Series([], dtype=bool)]
|
455 |
+
|
456 |
+
with pytest.raises(IndexingError, match=msg):
|
457 |
+
ser[Series([True], dtype=bool)]
|
458 |
+
|
459 |
+
def test_getitem_boolean_object(self, string_series):
|
460 |
+
# using column from DataFrame
|
461 |
+
|
462 |
+
ser = string_series
|
463 |
+
mask = ser > ser.median()
|
464 |
+
omask = mask.astype(object)
|
465 |
+
|
466 |
+
# getitem
|
467 |
+
result = ser[omask]
|
468 |
+
expected = ser[mask]
|
469 |
+
tm.assert_series_equal(result, expected)
|
470 |
+
|
471 |
+
# setitem
|
472 |
+
s2 = ser.copy()
|
473 |
+
cop = ser.copy()
|
474 |
+
cop[omask] = 5
|
475 |
+
s2[mask] = 5
|
476 |
+
tm.assert_series_equal(cop, s2)
|
477 |
+
|
478 |
+
# nans raise exception
|
479 |
+
omask[5:10] = np.nan
|
480 |
+
msg = "Cannot mask with non-boolean array containing NA / NaN values"
|
481 |
+
with pytest.raises(ValueError, match=msg):
|
482 |
+
ser[omask]
|
483 |
+
with pytest.raises(ValueError, match=msg):
|
484 |
+
ser[omask] = 5
|
485 |
+
|
486 |
+
def test_getitem_boolean_dt64_copies(self):
|
487 |
+
# GH#36210
|
488 |
+
dti = date_range("2016-01-01", periods=4, tz="US/Pacific")
|
489 |
+
key = np.array([True, True, False, False])
|
490 |
+
|
491 |
+
ser = Series(dti._data)
|
492 |
+
|
493 |
+
res = ser[key]
|
494 |
+
assert res._values._ndarray.base is None
|
495 |
+
|
496 |
+
# compare with numeric case for reference
|
497 |
+
ser2 = Series(range(4))
|
498 |
+
res2 = ser2[key]
|
499 |
+
assert res2._values.base is None
|
500 |
+
|
501 |
+
def test_getitem_boolean_corner(self, datetime_series):
|
502 |
+
ts = datetime_series
|
503 |
+
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
|
504 |
+
|
505 |
+
msg = (
|
506 |
+
r"Unalignable boolean Series provided as indexer \(index of "
|
507 |
+
r"the boolean Series and of the indexed object do not match"
|
508 |
+
)
|
509 |
+
with pytest.raises(IndexingError, match=msg):
|
510 |
+
ts[mask_shifted]
|
511 |
+
|
512 |
+
with pytest.raises(IndexingError, match=msg):
|
513 |
+
ts.loc[mask_shifted]
|
514 |
+
|
515 |
+
def test_getitem_boolean_different_order(self, string_series):
|
516 |
+
ordered = string_series.sort_values()
|
517 |
+
|
518 |
+
sel = string_series[ordered > 0]
|
519 |
+
exp = string_series[string_series > 0]
|
520 |
+
tm.assert_series_equal(sel, exp)
|
521 |
+
|
522 |
+
def test_getitem_boolean_contiguous_preserve_freq(self):
|
523 |
+
rng = date_range("1/1/2000", "3/1/2000", freq="B")
|
524 |
+
|
525 |
+
mask = np.zeros(len(rng), dtype=bool)
|
526 |
+
mask[10:20] = True
|
527 |
+
|
528 |
+
masked = rng[mask]
|
529 |
+
expected = rng[10:20]
|
530 |
+
assert expected.freq == rng.freq
|
531 |
+
tm.assert_index_equal(masked, expected)
|
532 |
+
|
533 |
+
mask[22] = True
|
534 |
+
masked = rng[mask]
|
535 |
+
assert masked.freq is None
|
536 |
+
|
537 |
+
|
538 |
+
class TestGetitemCallable:
|
539 |
+
def test_getitem_callable(self):
|
540 |
+
# GH#12533
|
541 |
+
ser = Series(4, index=list("ABCD"))
|
542 |
+
result = ser[lambda x: "A"]
|
543 |
+
assert result == ser.loc["A"]
|
544 |
+
|
545 |
+
result = ser[lambda x: ["A", "B"]]
|
546 |
+
expected = ser.loc[["A", "B"]]
|
547 |
+
tm.assert_series_equal(result, expected)
|
548 |
+
|
549 |
+
result = ser[lambda x: [True, False, True, True]]
|
550 |
+
expected = ser.iloc[[0, 2, 3]]
|
551 |
+
tm.assert_series_equal(result, expected)
|
552 |
+
|
553 |
+
|
554 |
+
def test_getitem_generator(string_series):
|
555 |
+
gen = (x > 0 for x in string_series)
|
556 |
+
result = string_series[gen]
|
557 |
+
result2 = string_series[iter(string_series > 0)]
|
558 |
+
expected = string_series[string_series > 0]
|
559 |
+
tm.assert_series_equal(result, expected)
|
560 |
+
tm.assert_series_equal(result2, expected)
|
561 |
+
|
562 |
+
|
563 |
+
@pytest.mark.parametrize(
|
564 |
+
"series",
|
565 |
+
[
|
566 |
+
Series([0, 1]),
|
567 |
+
Series(date_range("2012-01-01", periods=2)),
|
568 |
+
Series(date_range("2012-01-01", periods=2, tz="CET")),
|
569 |
+
],
|
570 |
+
)
|
571 |
+
def test_getitem_ndim_deprecated(series):
|
572 |
+
with pytest.raises(ValueError, match="Multi-dimensional indexing"):
|
573 |
+
series[:, None]
|
574 |
+
|
575 |
+
|
576 |
+
def test_getitem_multilevel_scalar_slice_not_implemented(
|
577 |
+
multiindex_year_month_day_dataframe_random_data,
|
578 |
+
):
|
579 |
+
# not implementing this for now
|
580 |
+
df = multiindex_year_month_day_dataframe_random_data
|
581 |
+
ser = df["A"]
|
582 |
+
|
583 |
+
msg = r"\(2000, slice\(3, 4, None\)\)"
|
584 |
+
with pytest.raises(TypeError, match=msg):
|
585 |
+
ser[2000, 3:4]
|
586 |
+
|
587 |
+
|
588 |
+
def test_getitem_dataframe_raises():
|
589 |
+
rng = list(range(10))
|
590 |
+
ser = Series(10, index=rng)
|
591 |
+
df = DataFrame(rng, index=rng)
|
592 |
+
msg = (
|
593 |
+
"Indexing a Series with DataFrame is not supported, "
|
594 |
+
"use the appropriate DataFrame column"
|
595 |
+
)
|
596 |
+
with pytest.raises(TypeError, match=msg):
|
597 |
+
ser[df > 5]
|
598 |
+
|
599 |
+
|
600 |
+
def test_getitem_assignment_series_alignment():
|
601 |
+
# https://github.com/pandas-dev/pandas/issues/37427
|
602 |
+
# with getitem, when assigning with a Series, it is not first aligned
|
603 |
+
ser = Series(range(10))
|
604 |
+
idx = np.array([2, 4, 9])
|
605 |
+
ser[idx] = Series([10, 11, 12])
|
606 |
+
expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12])
|
607 |
+
tm.assert_series_equal(ser, expected)
|
608 |
+
|
609 |
+
|
610 |
+
def test_getitem_duplicate_index_mistyped_key_raises_keyerror():
|
611 |
+
# GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError
|
612 |
+
ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
|
613 |
+
with pytest.raises(KeyError, match="None"):
|
614 |
+
ser[None]
|
615 |
+
|
616 |
+
with pytest.raises(KeyError, match="None"):
|
617 |
+
ser.index.get_loc(None)
|
618 |
+
|
619 |
+
with pytest.raises(KeyError, match="None"):
|
620 |
+
ser.index._engine.get_loc(None)
|
621 |
+
|
622 |
+
|
623 |
+
def test_getitem_1tuple_slice_without_multiindex():
|
624 |
+
ser = Series(range(5))
|
625 |
+
key = (slice(3),)
|
626 |
+
|
627 |
+
result = ser[key]
|
628 |
+
expected = ser[key[0]]
|
629 |
+
tm.assert_series_equal(result, expected)
|
630 |
+
|
631 |
+
|
632 |
+
def test_getitem_preserve_name(datetime_series):
|
633 |
+
result = datetime_series[datetime_series > 0]
|
634 |
+
assert result.name == datetime_series.name
|
635 |
+
|
636 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
637 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
638 |
+
result = datetime_series[[0, 2, 4]]
|
639 |
+
assert result.name == datetime_series.name
|
640 |
+
|
641 |
+
result = datetime_series[5:10]
|
642 |
+
assert result.name == datetime_series.name
|
643 |
+
|
644 |
+
|
645 |
+
def test_getitem_with_integer_labels():
|
646 |
+
# integer indexes, be careful
|
647 |
+
ser = Series(
|
648 |
+
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
|
649 |
+
)
|
650 |
+
inds = [0, 2, 5, 7, 8]
|
651 |
+
arr_inds = np.array([0, 2, 5, 7, 8])
|
652 |
+
with pytest.raises(KeyError, match="not in index"):
|
653 |
+
ser[inds]
|
654 |
+
|
655 |
+
with pytest.raises(KeyError, match="not in index"):
|
656 |
+
ser[arr_inds]
|
657 |
+
|
658 |
+
|
659 |
+
def test_getitem_missing(datetime_series):
|
660 |
+
# missing
|
661 |
+
d = datetime_series.index[0] - BDay()
|
662 |
+
msg = r"Timestamp\('1999-12-31 00:00:00'\)"
|
663 |
+
with pytest.raises(KeyError, match=msg):
|
664 |
+
datetime_series[d]
|
665 |
+
|
666 |
+
|
667 |
+
def test_getitem_fancy(string_series, object_series):
|
668 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
669 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
670 |
+
slice1 = string_series[[1, 2, 3]]
|
671 |
+
slice2 = object_series[[1, 2, 3]]
|
672 |
+
assert string_series.index[2] == slice1.index[1]
|
673 |
+
assert object_series.index[2] == slice2.index[1]
|
674 |
+
assert string_series.iloc[2] == slice1.iloc[1]
|
675 |
+
assert object_series.iloc[2] == slice2.iloc[1]
|
676 |
+
|
677 |
+
|
678 |
+
def test_getitem_box_float64(datetime_series):
|
679 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
680 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
681 |
+
value = datetime_series[5]
|
682 |
+
assert isinstance(value, np.float64)
|
683 |
+
|
684 |
+
|
685 |
+
def test_getitem_unordered_dup():
|
686 |
+
obj = Series(range(5), index=["c", "a", "a", "b", "b"])
|
687 |
+
assert is_scalar(obj["c"])
|
688 |
+
assert obj["c"] == 0
|
689 |
+
|
690 |
+
|
691 |
+
def test_getitem_dups():
|
692 |
+
ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64)
|
693 |
+
expected = Series([3, 4], index=["C", "C"], dtype=np.int64)
|
694 |
+
result = ser["C"]
|
695 |
+
tm.assert_series_equal(result, expected)
|
696 |
+
|
697 |
+
|
698 |
+
def test_getitem_categorical_str():
|
699 |
+
# GH#31765
|
700 |
+
ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"]))
|
701 |
+
result = ser["a"]
|
702 |
+
expected = ser.iloc[[0, 3]]
|
703 |
+
tm.assert_series_equal(result, expected)
|
704 |
+
|
705 |
+
|
706 |
+
def test_slice_can_reorder_not_uniquely_indexed():
|
707 |
+
ser = Series(1, index=["a", "a", "b", "b", "c"])
|
708 |
+
ser[::-1] # it works!
|
709 |
+
|
710 |
+
|
711 |
+
@pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"])
|
712 |
+
def test_duplicated_index_getitem_positional_indexer(index_vals):
|
713 |
+
# GH 11747
|
714 |
+
s = Series(range(5), index=list(index_vals))
|
715 |
+
|
716 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
717 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
718 |
+
result = s[3]
|
719 |
+
assert result == 3
|
720 |
+
|
721 |
+
|
722 |
+
class TestGetitemDeprecatedIndexers:
|
723 |
+
@pytest.mark.parametrize("key", [{1}, {1: 1}])
|
724 |
+
def test_getitem_dict_and_set_deprecated(self, key):
|
725 |
+
# GH#42825 enforced in 2.0
|
726 |
+
ser = Series([1, 2, 3])
|
727 |
+
with pytest.raises(TypeError, match="as an indexer is not supported"):
|
728 |
+
ser[key]
|
729 |
+
|
730 |
+
@pytest.mark.parametrize("key", [{1}, {1: 1}])
|
731 |
+
def test_setitem_dict_and_set_disallowed(self, key):
|
732 |
+
# GH#42825 enforced in 2.0
|
733 |
+
ser = Series([1, 2, 3])
|
734 |
+
with pytest.raises(TypeError, match="as an indexer is not supported"):
|
735 |
+
ser[key] = 1
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from pandas import Series
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
def test_take_validate_axis():
|
9 |
+
# GH#51022
|
10 |
+
ser = Series([-1, 5, 6, 2, 4])
|
11 |
+
|
12 |
+
msg = "No axis named foo for object type Series"
|
13 |
+
with pytest.raises(ValueError, match=msg):
|
14 |
+
ser.take([1, 2], axis="foo")
|
15 |
+
|
16 |
+
|
17 |
+
def test_take():
|
18 |
+
ser = Series([-1, 5, 6, 2, 4])
|
19 |
+
|
20 |
+
actual = ser.take([1, 3, 4])
|
21 |
+
expected = Series([5, 2, 4], index=[1, 3, 4])
|
22 |
+
tm.assert_series_equal(actual, expected)
|
23 |
+
|
24 |
+
actual = ser.take([-1, 3, 4])
|
25 |
+
expected = Series([4, 2, 4], index=[4, 3, 4])
|
26 |
+
tm.assert_series_equal(actual, expected)
|
27 |
+
|
28 |
+
msg = "indices are out-of-bounds"
|
29 |
+
with pytest.raises(IndexError, match=msg):
|
30 |
+
ser.take([1, 10])
|
31 |
+
with pytest.raises(IndexError, match=msg):
|
32 |
+
ser.take([2, 5])
|
33 |
+
|
34 |
+
|
35 |
+
def test_take_categorical():
|
36 |
+
# https://github.com/pandas-dev/pandas/issues/20664
|
37 |
+
ser = Series(pd.Categorical(["a", "b", "c"]))
|
38 |
+
result = ser.take([-2, -2, 0])
|
39 |
+
expected = Series(
|
40 |
+
pd.Categorical(["b", "b", "a"], categories=["a", "b", "c"]), index=[1, 1, 0]
|
41 |
+
)
|
42 |
+
tm.assert_series_equal(result, expected)
|
43 |
+
|
44 |
+
|
45 |
+
def test_take_slice_raises():
|
46 |
+
ser = Series([-1, 5, 6, 2, 4])
|
47 |
+
|
48 |
+
msg = "Series.take requires a sequence of integers, not slice"
|
49 |
+
with pytest.raises(TypeError, match=msg):
|
50 |
+
ser.take(slice(0, 3, 1))
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
MultiIndex,
|
6 |
+
Series,
|
7 |
+
date_range,
|
8 |
+
)
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
|
12 |
+
def test_xs_datetimelike_wrapping():
|
13 |
+
# GH#31630 a case where we shouldn't wrap datetime64 in Timestamp
|
14 |
+
arr = date_range("2016-01-01", periods=3)._data._ndarray
|
15 |
+
|
16 |
+
ser = Series(arr, dtype=object)
|
17 |
+
for i in range(len(ser)):
|
18 |
+
ser.iloc[i] = arr[i]
|
19 |
+
assert ser.dtype == object
|
20 |
+
assert isinstance(ser[0], np.datetime64)
|
21 |
+
|
22 |
+
result = ser.xs(0)
|
23 |
+
assert isinstance(result, np.datetime64)
|
24 |
+
|
25 |
+
|
26 |
+
class TestXSWithMultiIndex:
|
27 |
+
def test_xs_level_series(self, multiindex_dataframe_random_data):
|
28 |
+
df = multiindex_dataframe_random_data
|
29 |
+
ser = df["A"]
|
30 |
+
expected = ser[:, "two"]
|
31 |
+
result = df.xs("two", level=1)["A"]
|
32 |
+
tm.assert_series_equal(result, expected)
|
33 |
+
|
34 |
+
def test_series_getitem_multiindex_xs_by_label(self):
|
35 |
+
# GH#5684
|
36 |
+
idx = MultiIndex.from_tuples(
|
37 |
+
[("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")]
|
38 |
+
)
|
39 |
+
ser = Series([1, 2, 3, 4], index=idx)
|
40 |
+
return_value = ser.index.set_names(["L1", "L2"], inplace=True)
|
41 |
+
assert return_value is None
|
42 |
+
expected = Series([1, 3], index=["a", "b"])
|
43 |
+
return_value = expected.index.set_names(["L1"], inplace=True)
|
44 |
+
assert return_value is None
|
45 |
+
|
46 |
+
result = ser.xs("one", level="L2")
|
47 |
+
tm.assert_series_equal(result, expected)
|
48 |
+
|
49 |
+
def test_series_getitem_multiindex_xs(self):
|
50 |
+
# GH#6258
|
51 |
+
dt = list(date_range("20130903", periods=3))
|
52 |
+
idx = MultiIndex.from_product([list("AB"), dt])
|
53 |
+
ser = Series([1, 3, 4, 1, 3, 4], index=idx)
|
54 |
+
expected = Series([1, 1], index=list("AB"))
|
55 |
+
|
56 |
+
result = ser.xs("20130903", level=1)
|
57 |
+
tm.assert_series_equal(result, expected)
|
58 |
+
|
59 |
+
def test_series_xs_droplevel_false(self):
|
60 |
+
# GH: 19056
|
61 |
+
mi = MultiIndex.from_tuples(
|
62 |
+
[("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
|
63 |
+
)
|
64 |
+
ser = Series([1, 1, 1], index=mi)
|
65 |
+
result = ser.xs("a", axis=0, drop_level=False)
|
66 |
+
expected = Series(
|
67 |
+
[1, 1],
|
68 |
+
index=MultiIndex.from_tuples(
|
69 |
+
[("a", "x"), ("a", "y")], names=["level1", "level2"]
|
70 |
+
),
|
71 |
+
)
|
72 |
+
tm.assert_series_equal(result, expected)
|
73 |
+
|
74 |
+
def test_xs_key_as_list(self):
|
75 |
+
# GH#41760
|
76 |
+
mi = MultiIndex.from_tuples([("a", "x")], names=["level1", "level2"])
|
77 |
+
ser = Series([1], index=mi)
|
78 |
+
with pytest.raises(TypeError, match="list keys are not supported"):
|
79 |
+
ser.xs(["a", "x"], axis=0, drop_level=False)
|
80 |
+
|
81 |
+
with pytest.raises(TypeError, match="list keys are not supported"):
|
82 |
+
ser.xs(["a"], axis=0, drop_level=False)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (422 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc
ADDED
Binary file (3.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc
ADDED
Binary file (5.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc
ADDED
Binary file (853 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc
ADDED
Binary file (5.46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc
ADDED
Binary file (4.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine_first.cpython-310.pyc
ADDED
Binary file (5.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc
ADDED
Binary file (6.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_count.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc
ADDED
Binary file (5.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_drop_duplicates.cpython-310.pyc
ADDED
Binary file (6.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc
ADDED
Binary file (596 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc
ADDED
Binary file (1.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_equals.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_get_numeric_data.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc
ADDED
Binary file (1.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc
ADDED
Binary file (27.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc
ADDED
Binary file (1.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc
ADDED
Binary file (7.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc
ADDED
Binary file (775 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pct_change.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc
ADDED
Binary file (584 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_quantile.cpython-310.pyc
ADDED
Binary file (7.15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rank.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex_like.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc
ADDED
Binary file (7.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename_axis.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc
ADDED
Binary file (1.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_replace.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_round.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_index.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc
ADDED
Binary file (7.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc
ADDED
Binary file (5.45 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_frame.cpython-310.pyc
ADDED
Binary file (2.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_numpy.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|