Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/tokenizers/__init__.py +100 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/__init__.pyi +1123 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__init__.py +14 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__init__.pyi +270 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__init__.py +6 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/base_tokenizer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/bert_wordpiece.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/byte_level_bpe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/char_level_bpe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/sentencepiece_bpe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/sentencepiece_unigram.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/base_tokenizer.py +418 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/bert_wordpiece.py +151 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/byte_level_bpe.py +122 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/char_level_bpe.py +150 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/sentencepiece_bpe.py +102 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/sentencepiece_unigram.py +194 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/models/__init__.py +8 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/models/__init__.pyi +562 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/models/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__init__.py +29 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__init__.pyi +583 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__init__.py +15 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__init__.pyi +593 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__init__.py +9 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__init__.pyi +337 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__init__.py +1 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__pycache__/visualizer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/tools/visualizer-styles.css +170 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/tools/visualizer.py +403 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__init__.py +8 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__init__.pyi +158 -0
- env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/__init__.py +10 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/lazy.py +464 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/code_template.py +96 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/context.py +128 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen_backend_stubs.py +609 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen_executorch.py +978 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen_functionalization_type.py +791 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen_lazy_tensor.py +605 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/gen_vmap_plumbing.py +265 -0
env-llmeval/lib/python3.10/site-packages/tokenizers/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import List, Tuple, Union
|
3 |
+
|
4 |
+
|
5 |
+
Offsets = Tuple[int, int]
|
6 |
+
|
7 |
+
TextInputSequence = str
|
8 |
+
"""A :obj:`str` that represents an input sequence """
|
9 |
+
|
10 |
+
PreTokenizedInputSequence = Union[List[str], Tuple[str]]
|
11 |
+
"""A pre-tokenized input sequence. Can be one of:
|
12 |
+
|
13 |
+
- A :obj:`List` of :obj:`str`
|
14 |
+
- A :obj:`Tuple` of :obj:`str`
|
15 |
+
"""
|
16 |
+
|
17 |
+
TextEncodeInput = Union[
|
18 |
+
TextInputSequence,
|
19 |
+
Tuple[TextInputSequence, TextInputSequence],
|
20 |
+
List[TextInputSequence],
|
21 |
+
]
|
22 |
+
"""Represents a textual input for encoding. Can be either:
|
23 |
+
|
24 |
+
- A single sequence: :data:`~tokenizers.TextInputSequence`
|
25 |
+
- A pair of sequences:
|
26 |
+
|
27 |
+
- A :obj:`Tuple` of :data:`~tokenizers.TextInputSequence`
|
28 |
+
- Or a :obj:`List` of :data:`~tokenizers.TextInputSequence` of size 2
|
29 |
+
"""
|
30 |
+
|
31 |
+
PreTokenizedEncodeInput = Union[
|
32 |
+
PreTokenizedInputSequence,
|
33 |
+
Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence],
|
34 |
+
List[PreTokenizedInputSequence],
|
35 |
+
]
|
36 |
+
"""Represents a pre-tokenized input for encoding. Can be either:
|
37 |
+
|
38 |
+
- A single sequence: :data:`~tokenizers.PreTokenizedInputSequence`
|
39 |
+
- A pair of sequences:
|
40 |
+
|
41 |
+
- A :obj:`Tuple` of :data:`~tokenizers.PreTokenizedInputSequence`
|
42 |
+
- Or a :obj:`List` of :data:`~tokenizers.PreTokenizedInputSequence` of size 2
|
43 |
+
"""
|
44 |
+
|
45 |
+
InputSequence = Union[TextInputSequence, PreTokenizedInputSequence]
|
46 |
+
"""Represents all the possible types of input sequences for encoding. Can be:
|
47 |
+
|
48 |
+
- When ``is_pretokenized=False``: :data:`~TextInputSequence`
|
49 |
+
- When ``is_pretokenized=True``: :data:`~PreTokenizedInputSequence`
|
50 |
+
"""
|
51 |
+
|
52 |
+
EncodeInput = Union[TextEncodeInput, PreTokenizedEncodeInput]
|
53 |
+
"""Represents all the possible types of input for encoding. Can be:
|
54 |
+
|
55 |
+
- When ``is_pretokenized=False``: :data:`~TextEncodeInput`
|
56 |
+
- When ``is_pretokenized=True``: :data:`~PreTokenizedEncodeInput`
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
class OffsetReferential(Enum):
|
61 |
+
ORIGINAL = "original"
|
62 |
+
NORMALIZED = "normalized"
|
63 |
+
|
64 |
+
|
65 |
+
class OffsetType(Enum):
|
66 |
+
BYTE = "byte"
|
67 |
+
CHAR = "char"
|
68 |
+
|
69 |
+
|
70 |
+
class SplitDelimiterBehavior(Enum):
|
71 |
+
REMOVED = "removed"
|
72 |
+
ISOLATED = "isolated"
|
73 |
+
MERGED_WITH_PREVIOUS = "merged_with_previous"
|
74 |
+
MERGED_WITH_NEXT = "merged_with_next"
|
75 |
+
CONTIGUOUS = "contiguous"
|
76 |
+
|
77 |
+
|
78 |
+
from .tokenizers import (
|
79 |
+
AddedToken,
|
80 |
+
Encoding,
|
81 |
+
NormalizedString,
|
82 |
+
PreTokenizedString,
|
83 |
+
Regex,
|
84 |
+
Token,
|
85 |
+
Tokenizer,
|
86 |
+
decoders,
|
87 |
+
models,
|
88 |
+
normalizers,
|
89 |
+
pre_tokenizers,
|
90 |
+
processors,
|
91 |
+
trainers,
|
92 |
+
__version__,
|
93 |
+
)
|
94 |
+
from .implementations import (
|
95 |
+
BertWordPieceTokenizer,
|
96 |
+
ByteLevelBPETokenizer,
|
97 |
+
CharBPETokenizer,
|
98 |
+
SentencePieceBPETokenizer,
|
99 |
+
SentencePieceUnigramTokenizer,
|
100 |
+
)
|
env-llmeval/lib/python3.10/site-packages/tokenizers/__init__.pyi
ADDED
@@ -0,0 +1,1123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class AddedToken:
|
3 |
+
"""
|
4 |
+
Represents a token that can be be added to a :class:`~tokenizers.Tokenizer`.
|
5 |
+
It can have special options that defines the way it should behave.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
content (:obj:`str`): The content of the token
|
9 |
+
|
10 |
+
single_word (:obj:`bool`, defaults to :obj:`False`):
|
11 |
+
Defines whether this token should only match single words. If :obj:`True`, this
|
12 |
+
token will never match inside of a word. For example the token ``ing`` would match
|
13 |
+
on ``tokenizing`` if this option is :obj:`False`, but not if it is :obj:`True`.
|
14 |
+
The notion of "`inside of a word`" is defined by the word boundaries pattern in
|
15 |
+
regular expressions (ie. the token should start and end with word boundaries).
|
16 |
+
|
17 |
+
lstrip (:obj:`bool`, defaults to :obj:`False`):
|
18 |
+
Defines whether this token should strip all potential whitespaces on its left side.
|
19 |
+
If :obj:`True`, this token will greedily match any whitespace on its left. For
|
20 |
+
example if we try to match the token ``[MASK]`` with ``lstrip=True``, in the text
|
21 |
+
``"I saw a [MASK]"``, we would match on ``" [MASK]"``. (Note the space on the left).
|
22 |
+
|
23 |
+
rstrip (:obj:`bool`, defaults to :obj:`False`):
|
24 |
+
Defines whether this token should strip all potential whitespaces on its right
|
25 |
+
side. If :obj:`True`, this token will greedily match any whitespace on its right.
|
26 |
+
It works just like :obj:`lstrip` but on the right.
|
27 |
+
|
28 |
+
normalized (:obj:`bool`, defaults to :obj:`True` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
|
29 |
+
Defines whether this token should match against the normalized version of the input
|
30 |
+
text. For example, with the added token ``"yesterday"``, and a normalizer in charge of
|
31 |
+
lowercasing the text, the token could be extract from the input ``"I saw a lion
|
32 |
+
Yesterday"``.
|
33 |
+
special (:obj:`bool`, defaults to :obj:`False` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
|
34 |
+
Defines whether this token should be skipped when decoding.
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, content, single_word=False, lstrip=False, rstrip=False, normalized=True, special=False):
|
39 |
+
pass
|
40 |
+
@property
|
41 |
+
def content(self):
|
42 |
+
"""
|
43 |
+
Get the content of this :obj:`AddedToken`
|
44 |
+
"""
|
45 |
+
pass
|
46 |
+
@property
|
47 |
+
def lstrip(self):
|
48 |
+
"""
|
49 |
+
Get the value of the :obj:`lstrip` option
|
50 |
+
"""
|
51 |
+
pass
|
52 |
+
@property
|
53 |
+
def normalized(self):
|
54 |
+
"""
|
55 |
+
Get the value of the :obj:`normalized` option
|
56 |
+
"""
|
57 |
+
pass
|
58 |
+
@property
|
59 |
+
def rstrip(self):
|
60 |
+
"""
|
61 |
+
Get the value of the :obj:`rstrip` option
|
62 |
+
"""
|
63 |
+
pass
|
64 |
+
@property
|
65 |
+
def single_word(self):
|
66 |
+
"""
|
67 |
+
Get the value of the :obj:`single_word` option
|
68 |
+
"""
|
69 |
+
pass
|
70 |
+
@property
|
71 |
+
def special(self):
|
72 |
+
"""
|
73 |
+
Get the value of the :obj:`special` option
|
74 |
+
"""
|
75 |
+
pass
|
76 |
+
|
77 |
+
class Encoding:
|
78 |
+
"""
|
79 |
+
The :class:`~tokenizers.Encoding` represents the output of a :class:`~tokenizers.Tokenizer`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
@property
|
83 |
+
def attention_mask(self):
|
84 |
+
"""
|
85 |
+
The attention mask
|
86 |
+
|
87 |
+
This indicates to the LM which tokens should be attended to, and which should not.
|
88 |
+
This is especially important when batching sequences, where we need to applying
|
89 |
+
padding.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
:obj:`List[int]`: The attention mask
|
93 |
+
"""
|
94 |
+
pass
|
95 |
+
def char_to_token(self, char_pos, sequence_index=0):
|
96 |
+
"""
|
97 |
+
Get the token that contains the char at the given position in the input sequence.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
char_pos (:obj:`int`):
|
101 |
+
The position of a char in the input string
|
102 |
+
sequence_index (:obj:`int`, defaults to :obj:`0`):
|
103 |
+
The index of the sequence that contains the target char
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
:obj:`int`: The index of the token that contains this char in the encoded sequence
|
107 |
+
"""
|
108 |
+
pass
|
109 |
+
def char_to_word(self, char_pos, sequence_index=0):
|
110 |
+
"""
|
111 |
+
Get the word that contains the char at the given position in the input sequence.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
char_pos (:obj:`int`):
|
115 |
+
The position of a char in the input string
|
116 |
+
sequence_index (:obj:`int`, defaults to :obj:`0`):
|
117 |
+
The index of the sequence that contains the target char
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
:obj:`int`: The index of the word that contains this char in the input sequence
|
121 |
+
"""
|
122 |
+
pass
|
123 |
+
@property
|
124 |
+
def ids(self):
|
125 |
+
"""
|
126 |
+
The generated IDs
|
127 |
+
|
128 |
+
The IDs are the main input to a Language Model. They are the token indices,
|
129 |
+
the numerical representations that a LM understands.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
:obj:`List[int]`: The list of IDs
|
133 |
+
"""
|
134 |
+
pass
|
135 |
+
@staticmethod
|
136 |
+
def merge(encodings, growing_offsets=True):
|
137 |
+
"""
|
138 |
+
Merge the list of encodings into one final :class:`~tokenizers.Encoding`
|
139 |
+
|
140 |
+
Args:
|
141 |
+
encodings (A :obj:`List` of :class:`~tokenizers.Encoding`):
|
142 |
+
The list of encodings that should be merged in one
|
143 |
+
|
144 |
+
growing_offsets (:obj:`bool`, defaults to :obj:`True`):
|
145 |
+
Whether the offsets should accumulate while merging
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
:class:`~tokenizers.Encoding`: The resulting Encoding
|
149 |
+
"""
|
150 |
+
pass
|
151 |
+
@property
|
152 |
+
def n_sequences(self):
|
153 |
+
"""
|
154 |
+
The number of sequences represented
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
:obj:`int`: The number of sequences in this :class:`~tokenizers.Encoding`
|
158 |
+
"""
|
159 |
+
pass
|
160 |
+
@property
|
161 |
+
def offsets(self):
|
162 |
+
"""
|
163 |
+
The offsets associated to each token
|
164 |
+
|
165 |
+
These offsets let's you slice the input string, and thus retrieve the original
|
166 |
+
part that led to producing the corresponding token.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
A :obj:`List` of :obj:`Tuple[int, int]`: The list of offsets
|
170 |
+
"""
|
171 |
+
pass
|
172 |
+
@property
|
173 |
+
def overflowing(self):
|
174 |
+
"""
|
175 |
+
A :obj:`List` of overflowing :class:`~tokenizers.Encoding`
|
176 |
+
|
177 |
+
When using truncation, the :class:`~tokenizers.Tokenizer` takes care of splitting
|
178 |
+
the output into as many pieces as required to match the specified maximum length.
|
179 |
+
This field lets you retrieve all the subsequent pieces.
|
180 |
+
|
181 |
+
When you use pairs of sequences, the overflowing pieces will contain enough
|
182 |
+
variations to cover all the possible combinations, while respecting the provided
|
183 |
+
maximum length.
|
184 |
+
"""
|
185 |
+
pass
|
186 |
+
def pad(self, length, direction="right", pad_id=0, pad_type_id=0, pad_token="[PAD]"):
|
187 |
+
"""
|
188 |
+
Pad the :class:`~tokenizers.Encoding` at the given length
|
189 |
+
|
190 |
+
Args:
|
191 |
+
length (:obj:`int`):
|
192 |
+
The desired length
|
193 |
+
|
194 |
+
direction: (:obj:`str`, defaults to :obj:`right`):
|
195 |
+
The expected padding direction. Can be either :obj:`right` or :obj:`left`
|
196 |
+
|
197 |
+
pad_id (:obj:`int`, defaults to :obj:`0`):
|
198 |
+
The ID corresponding to the padding token
|
199 |
+
|
200 |
+
pad_type_id (:obj:`int`, defaults to :obj:`0`):
|
201 |
+
The type ID corresponding to the padding token
|
202 |
+
|
203 |
+
pad_token (:obj:`str`, defaults to `[PAD]`):
|
204 |
+
The pad token to use
|
205 |
+
"""
|
206 |
+
pass
|
207 |
+
@property
|
208 |
+
def sequence_ids(self):
|
209 |
+
"""
|
210 |
+
The generated sequence indices.
|
211 |
+
|
212 |
+
They represent the index of the input sequence associated to each token.
|
213 |
+
The sequence id can be None if the token is not related to any input sequence,
|
214 |
+
like for example with special tokens.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
A :obj:`List` of :obj:`Optional[int]`: A list of optional sequence index.
|
218 |
+
"""
|
219 |
+
pass
|
220 |
+
def set_sequence_id(self, sequence_id):
|
221 |
+
"""
|
222 |
+
Set the given sequence index
|
223 |
+
|
224 |
+
Set the given sequence index for the whole range of tokens contained in this
|
225 |
+
:class:`~tokenizers.Encoding`.
|
226 |
+
"""
|
227 |
+
pass
|
228 |
+
@property
|
229 |
+
def special_tokens_mask(self):
|
230 |
+
"""
|
231 |
+
The special token mask
|
232 |
+
|
233 |
+
This indicates which tokens are special tokens, and which are not.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
:obj:`List[int]`: The special tokens mask
|
237 |
+
"""
|
238 |
+
pass
|
239 |
+
def token_to_chars(self, token_index):
|
240 |
+
"""
|
241 |
+
Get the offsets of the token at the given index.
|
242 |
+
|
243 |
+
The returned offsets are related to the input sequence that contains the
|
244 |
+
token. In order to determine in which input sequence it belongs, you
|
245 |
+
must call :meth:`~tokenizers.Encoding.token_to_sequence()`.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
token_index (:obj:`int`):
|
249 |
+
The index of a token in the encoded sequence.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
:obj:`Tuple[int, int]`: The token offsets :obj:`(first, last + 1)`
|
253 |
+
"""
|
254 |
+
pass
|
255 |
+
def token_to_sequence(self, token_index):
|
256 |
+
"""
|
257 |
+
Get the index of the sequence represented by the given token.
|
258 |
+
|
259 |
+
In the general use case, this method returns :obj:`0` for a single sequence or
|
260 |
+
the first sequence of a pair, and :obj:`1` for the second sequence of a pair
|
261 |
+
|
262 |
+
Args:
|
263 |
+
token_index (:obj:`int`):
|
264 |
+
The index of a token in the encoded sequence.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
:obj:`int`: The sequence id of the given token
|
268 |
+
"""
|
269 |
+
pass
|
270 |
+
def token_to_word(self, token_index):
|
271 |
+
"""
|
272 |
+
Get the index of the word that contains the token in one of the input sequences.
|
273 |
+
|
274 |
+
The returned word index is related to the input sequence that contains
|
275 |
+
the token. In order to determine in which input sequence it belongs, you
|
276 |
+
must call :meth:`~tokenizers.Encoding.token_to_sequence()`.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
token_index (:obj:`int`):
|
280 |
+
The index of a token in the encoded sequence.
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
:obj:`int`: The index of the word in the relevant input sequence.
|
284 |
+
"""
|
285 |
+
pass
|
286 |
+
@property
|
287 |
+
def tokens(self):
|
288 |
+
"""
|
289 |
+
The generated tokens
|
290 |
+
|
291 |
+
They are the string representation of the IDs.
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
:obj:`List[str]`: The list of tokens
|
295 |
+
"""
|
296 |
+
pass
|
297 |
+
def truncate(self, max_length, stride=0, direction="right"):
|
298 |
+
"""
|
299 |
+
Truncate the :class:`~tokenizers.Encoding` at the given length
|
300 |
+
|
301 |
+
If this :class:`~tokenizers.Encoding` represents multiple sequences, when truncating
|
302 |
+
this information is lost. It will be considered as representing a single sequence.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
max_length (:obj:`int`):
|
306 |
+
The desired length
|
307 |
+
|
308 |
+
stride (:obj:`int`, defaults to :obj:`0`):
|
309 |
+
The length of previous content to be included in each overflowing piece
|
310 |
+
|
311 |
+
direction (:obj:`str`, defaults to :obj:`right`):
|
312 |
+
Truncate direction
|
313 |
+
"""
|
314 |
+
pass
|
315 |
+
@property
|
316 |
+
def type_ids(self):
|
317 |
+
"""
|
318 |
+
The generated type IDs
|
319 |
+
|
320 |
+
Generally used for tasks like sequence classification or question answering,
|
321 |
+
these tokens let the LM know which input sequence corresponds to each tokens.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
:obj:`List[int]`: The list of type ids
|
325 |
+
"""
|
326 |
+
pass
|
327 |
+
@property
|
328 |
+
def word_ids(self):
|
329 |
+
"""
|
330 |
+
The generated word indices.
|
331 |
+
|
332 |
+
They represent the index of the word associated to each token.
|
333 |
+
When the input is pre-tokenized, they correspond to the ID of the given input label,
|
334 |
+
otherwise they correspond to the words indices as defined by the
|
335 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` that was used.
|
336 |
+
|
337 |
+
For special tokens and such (any token that was generated from something that was
|
338 |
+
not part of the input), the output is :obj:`None`
|
339 |
+
|
340 |
+
Returns:
|
341 |
+
A :obj:`List` of :obj:`Optional[int]`: A list of optional word index.
|
342 |
+
"""
|
343 |
+
pass
|
344 |
+
def word_to_chars(self, word_index, sequence_index=0):
|
345 |
+
"""
|
346 |
+
Get the offsets of the word at the given index in one of the input sequences.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
word_index (:obj:`int`):
|
350 |
+
The index of a word in one of the input sequences.
|
351 |
+
sequence_index (:obj:`int`, defaults to :obj:`0`):
|
352 |
+
The index of the sequence that contains the target word
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
:obj:`Tuple[int, int]`: The range of characters (span) :obj:`(first, last + 1)`
|
356 |
+
"""
|
357 |
+
pass
|
358 |
+
def word_to_tokens(self, word_index, sequence_index=0):
|
359 |
+
"""
|
360 |
+
Get the encoded tokens corresponding to the word at the given index
|
361 |
+
in one of the input sequences.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
word_index (:obj:`int`):
|
365 |
+
The index of a word in one of the input sequences.
|
366 |
+
sequence_index (:obj:`int`, defaults to :obj:`0`):
|
367 |
+
The index of the sequence that contains the target word
|
368 |
+
|
369 |
+
Returns:
|
370 |
+
:obj:`Tuple[int, int]`: The range of tokens: :obj:`(first, last + 1)`
|
371 |
+
"""
|
372 |
+
pass
|
373 |
+
@property
|
374 |
+
def words(self):
|
375 |
+
"""
|
376 |
+
The generated word indices.
|
377 |
+
|
378 |
+
.. warning::
|
379 |
+
This is deprecated and will be removed in a future version.
|
380 |
+
Please use :obj:`~tokenizers.Encoding.word_ids` instead.
|
381 |
+
|
382 |
+
They represent the index of the word associated to each token.
|
383 |
+
When the input is pre-tokenized, they correspond to the ID of the given input label,
|
384 |
+
otherwise they correspond to the words indices as defined by the
|
385 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` that was used.
|
386 |
+
|
387 |
+
For special tokens and such (any token that was generated from something that was
|
388 |
+
not part of the input), the output is :obj:`None`
|
389 |
+
|
390 |
+
Returns:
|
391 |
+
A :obj:`List` of :obj:`Optional[int]`: A list of optional word index.
|
392 |
+
"""
|
393 |
+
pass
|
394 |
+
|
395 |
+
class NormalizedString:
|
396 |
+
"""
|
397 |
+
NormalizedString
|
398 |
+
|
399 |
+
A NormalizedString takes care of modifying an "original" string, to obtain a "normalized" one.
|
400 |
+
While making all the requested modifications, it keeps track of the alignment information
|
401 |
+
between the two versions of the string.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
sequence: str:
|
405 |
+
The string sequence used to initialize this NormalizedString
|
406 |
+
"""
|
407 |
+
|
408 |
+
def append(self, s):
|
409 |
+
"""
|
410 |
+
Append the given sequence to the string
|
411 |
+
"""
|
412 |
+
pass
|
413 |
+
def clear(self):
|
414 |
+
"""
|
415 |
+
Clears the string
|
416 |
+
"""
|
417 |
+
pass
|
418 |
+
def filter(self, func):
|
419 |
+
"""
|
420 |
+
Filter each character of the string using the given func
|
421 |
+
"""
|
422 |
+
pass
|
423 |
+
def for_each(self, func):
|
424 |
+
"""
|
425 |
+
Calls the given function for each character of the string
|
426 |
+
"""
|
427 |
+
pass
|
428 |
+
def lowercase(self):
|
429 |
+
"""
|
430 |
+
Lowercase the string
|
431 |
+
"""
|
432 |
+
pass
|
433 |
+
def lstrip(self):
|
434 |
+
"""
|
435 |
+
Strip the left of the string
|
436 |
+
"""
|
437 |
+
pass
|
438 |
+
def map(self, func):
|
439 |
+
"""
|
440 |
+
Calls the given function for each character of the string
|
441 |
+
|
442 |
+
Replaces each character of the string using the returned value. Each
|
443 |
+
returned value **must** be a str of length 1 (ie a character).
|
444 |
+
"""
|
445 |
+
pass
|
446 |
+
def nfc(self):
|
447 |
+
"""
|
448 |
+
Runs the NFC normalization
|
449 |
+
"""
|
450 |
+
pass
|
451 |
+
def nfd(self):
|
452 |
+
"""
|
453 |
+
Runs the NFD normalization
|
454 |
+
"""
|
455 |
+
pass
|
456 |
+
def nfkc(self):
|
457 |
+
"""
|
458 |
+
Runs the NFKC normalization
|
459 |
+
"""
|
460 |
+
pass
|
461 |
+
def nfkd(self):
|
462 |
+
"""
|
463 |
+
Runs the NFKD normalization
|
464 |
+
"""
|
465 |
+
pass
|
466 |
+
@property
|
467 |
+
def normalized(self):
|
468 |
+
"""
|
469 |
+
The normalized part of the string
|
470 |
+
"""
|
471 |
+
pass
|
472 |
+
def prepend(self, s):
|
473 |
+
"""
|
474 |
+
Prepend the given sequence to the string
|
475 |
+
"""
|
476 |
+
pass
|
477 |
+
def replace(self, pattern, content):
|
478 |
+
"""
|
479 |
+
Replace the content of the given pattern with the provided content
|
480 |
+
|
481 |
+
Args:
|
482 |
+
pattern: Pattern:
|
483 |
+
A pattern used to match the string. Usually a string or a Regex
|
484 |
+
|
485 |
+
content: str:
|
486 |
+
The content to be used as replacement
|
487 |
+
"""
|
488 |
+
pass
|
489 |
+
def rstrip(self):
|
490 |
+
"""
|
491 |
+
Strip the right of the string
|
492 |
+
"""
|
493 |
+
pass
|
494 |
+
def slice(self, range):
|
495 |
+
"""
|
496 |
+
Slice the string using the given range
|
497 |
+
"""
|
498 |
+
pass
|
499 |
+
def split(self, pattern, behavior):
|
500 |
+
"""
|
501 |
+
Split the NormalizedString using the given pattern and the specified behavior
|
502 |
+
|
503 |
+
Args:
|
504 |
+
pattern: Pattern:
|
505 |
+
A pattern used to split the string. Usually a string or a regex built with `tokenizers.Regex`
|
506 |
+
|
507 |
+
behavior: SplitDelimiterBehavior:
|
508 |
+
The behavior to use when splitting.
|
509 |
+
Choices: "removed", "isolated", "merged_with_previous", "merged_with_next",
|
510 |
+
"contiguous"
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
A list of NormalizedString, representing each split
|
514 |
+
"""
|
515 |
+
pass
|
516 |
+
def strip(self):
|
517 |
+
"""
|
518 |
+
Strip both ends of the string
|
519 |
+
"""
|
520 |
+
pass
|
521 |
+
def uppercase(self):
|
522 |
+
"""
|
523 |
+
Uppercase the string
|
524 |
+
"""
|
525 |
+
pass
|
526 |
+
|
527 |
+
class PreTokenizedString:
|
528 |
+
"""
|
529 |
+
PreTokenizedString
|
530 |
+
|
531 |
+
Wrapper over a string, that provides a way to normalize, pre-tokenize, tokenize the
|
532 |
+
underlying string, while keeping track of the alignment information (offsets).
|
533 |
+
|
534 |
+
The PreTokenizedString manages what we call `splits`. Each split represents a substring
|
535 |
+
which is a subpart of the original string, with the relevant offsets and tokens.
|
536 |
+
|
537 |
+
When calling one of the methods used to modify the PreTokenizedString (namely one of
|
538 |
+
`split`, `normalize` or `tokenize), only the `splits` that don't have any associated
|
539 |
+
tokens will get modified.
|
540 |
+
|
541 |
+
Args:
|
542 |
+
sequence: str:
|
543 |
+
The string sequence used to initialize this PreTokenizedString
|
544 |
+
"""
|
545 |
+
|
546 |
+
def __init__(self, sequence):
|
547 |
+
pass
|
548 |
+
def get_splits(self, offset_referential="original", offset_type="char"):
|
549 |
+
"""
|
550 |
+
Get the splits currently managed by the PreTokenizedString
|
551 |
+
|
552 |
+
Args:
|
553 |
+
offset_referential: :obj:`str`
|
554 |
+
Whether the returned splits should have offsets expressed relative
|
555 |
+
to the original string, or the normalized one. choices: "original", "normalized".
|
556 |
+
|
557 |
+
offset_type: :obj:`str`
|
558 |
+
Whether the returned splits should have offsets expressed in bytes or chars.
|
559 |
+
When slicing an str, we usually want to use chars, which is the default value.
|
560 |
+
Now in some cases it might be interesting to get these offsets expressed in bytes,
|
561 |
+
so it is possible to change this here.
|
562 |
+
choices: "char", "bytes"
|
563 |
+
|
564 |
+
Returns
|
565 |
+
A list of splits
|
566 |
+
"""
|
567 |
+
pass
|
568 |
+
def normalize(self, func):
|
569 |
+
"""
|
570 |
+
Normalize each split of the `PreTokenizedString` using the given `func`
|
571 |
+
|
572 |
+
Args:
|
573 |
+
func: Callable[[NormalizedString], None]:
|
574 |
+
The function used to normalize each underlying split. This function
|
575 |
+
does not need to return anything, just calling the methods on the provided
|
576 |
+
NormalizedString allow its modification.
|
577 |
+
"""
|
578 |
+
pass
|
579 |
+
def split(self, func):
|
580 |
+
"""
|
581 |
+
Split the PreTokenizedString using the given `func`
|
582 |
+
|
583 |
+
Args:
|
584 |
+
func: Callable[[index, NormalizedString], List[NormalizedString]]:
|
585 |
+
The function used to split each underlying split.
|
586 |
+
It is expected to return a list of `NormalizedString`, that represent the new
|
587 |
+
splits. If the given `NormalizedString` does not need any splitting, we can
|
588 |
+
just return it directly.
|
589 |
+
In order for the offsets to be tracked accurately, any returned `NormalizedString`
|
590 |
+
should come from calling either `.split` or `.slice` on the received one.
|
591 |
+
"""
|
592 |
+
pass
|
593 |
+
def to_encoding(self, type_id=0, word_idx=None):
|
594 |
+
"""
|
595 |
+
Return an Encoding generated from this PreTokenizedString
|
596 |
+
|
597 |
+
Args:
|
598 |
+
type_id: int = 0:
|
599 |
+
The type_id to be used on the generated Encoding.
|
600 |
+
|
601 |
+
word_idx: Optional[int] = None:
|
602 |
+
An optional word index to be used for each token of this Encoding. If provided,
|
603 |
+
all the word indices in the generated Encoding will use this value, instead
|
604 |
+
of the one automatically tracked during pre-tokenization.
|
605 |
+
|
606 |
+
Returns:
|
607 |
+
An Encoding
|
608 |
+
"""
|
609 |
+
pass
|
610 |
+
def tokenize(self, func):
|
611 |
+
"""
|
612 |
+
Tokenize each split of the `PreTokenizedString` using the given `func`
|
613 |
+
|
614 |
+
Args:
|
615 |
+
func: Callable[[str], List[Token]]:
|
616 |
+
The function used to tokenize each underlying split. This function must return
|
617 |
+
a list of Token generated from the input str.
|
618 |
+
"""
|
619 |
+
pass
|
620 |
+
|
621 |
+
class Regex:
|
622 |
+
"""
|
623 |
+
Instantiate a new Regex with the given pattern
|
624 |
+
"""
|
625 |
+
|
626 |
+
def __init__(self, pattern):
|
627 |
+
pass
|
628 |
+
|
629 |
+
class Token:
|
630 |
+
pass
|
631 |
+
|
632 |
+
class Tokenizer:
|
633 |
+
"""
|
634 |
+
A :obj:`Tokenizer` works as a pipeline. It processes some raw text as input
|
635 |
+
and outputs an :class:`~tokenizers.Encoding`.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
model (:class:`~tokenizers.models.Model`):
|
639 |
+
The core algorithm that this :obj:`Tokenizer` should be using.
|
640 |
+
|
641 |
+
"""
|
642 |
+
|
643 |
+
def __init__(self, model):
|
644 |
+
pass
|
645 |
+
def add_special_tokens(self, tokens):
|
646 |
+
"""
|
647 |
+
Add the given special tokens to the Tokenizer.
|
648 |
+
|
649 |
+
If these tokens are already part of the vocabulary, it just let the Tokenizer know about
|
650 |
+
them. If they don't exist, the Tokenizer creates them, giving them a new id.
|
651 |
+
|
652 |
+
These special tokens will never be processed by the model (ie won't be split into
|
653 |
+
multiple tokens), and they can be removed from the output when decoding.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
|
657 |
+
The list of special tokens we want to add to the vocabulary. Each token can either
|
658 |
+
be a string or an instance of :class:`~tokenizers.AddedToken` for more
|
659 |
+
customization.
|
660 |
+
|
661 |
+
Returns:
|
662 |
+
:obj:`int`: The number of tokens that were created in the vocabulary
|
663 |
+
"""
|
664 |
+
pass
|
665 |
+
def add_tokens(self, tokens):
|
666 |
+
"""
|
667 |
+
Add the given tokens to the vocabulary
|
668 |
+
|
669 |
+
The given tokens are added only if they don't already exist in the vocabulary.
|
670 |
+
Each token then gets a new attributed id.
|
671 |
+
|
672 |
+
Args:
|
673 |
+
tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
|
674 |
+
The list of tokens we want to add to the vocabulary. Each token can be either a
|
675 |
+
string or an instance of :class:`~tokenizers.AddedToken` for more customization.
|
676 |
+
|
677 |
+
Returns:
|
678 |
+
:obj:`int`: The number of tokens that were created in the vocabulary
|
679 |
+
"""
|
680 |
+
pass
|
681 |
+
def decode(self, ids, skip_special_tokens=True):
|
682 |
+
"""
|
683 |
+
Decode the given list of ids back to a string
|
684 |
+
|
685 |
+
This is used to decode anything coming back from a Language Model
|
686 |
+
|
687 |
+
Args:
|
688 |
+
ids (A :obj:`List/Tuple` of :obj:`int`):
|
689 |
+
The list of ids that we want to decode
|
690 |
+
|
691 |
+
skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
|
692 |
+
Whether the special tokens should be removed from the decoded string
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
:obj:`str`: The decoded string
|
696 |
+
"""
|
697 |
+
pass
|
698 |
+
def decode_batch(self, sequences, skip_special_tokens=True):
|
699 |
+
"""
|
700 |
+
Decode a batch of ids back to their corresponding string
|
701 |
+
|
702 |
+
Args:
|
703 |
+
sequences (:obj:`List` of :obj:`List[int]`):
|
704 |
+
The batch of sequences we want to decode
|
705 |
+
|
706 |
+
skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
|
707 |
+
Whether the special tokens should be removed from the decoded strings
|
708 |
+
|
709 |
+
Returns:
|
710 |
+
:obj:`List[str]`: A list of decoded strings
|
711 |
+
"""
|
712 |
+
pass
|
713 |
+
@property
|
714 |
+
def decoder(self):
|
715 |
+
"""
|
716 |
+
The `optional` :class:`~tokenizers.decoders.Decoder` in use by the Tokenizer
|
717 |
+
"""
|
718 |
+
pass
|
719 |
+
def enable_padding(
|
720 |
+
self, direction="right", pad_id=0, pad_type_id=0, pad_token="[PAD]", length=None, pad_to_multiple_of=None
|
721 |
+
):
|
722 |
+
"""
|
723 |
+
Enable the padding
|
724 |
+
|
725 |
+
Args:
|
726 |
+
direction (:obj:`str`, `optional`, defaults to :obj:`right`):
|
727 |
+
The direction in which to pad. Can be either ``right`` or ``left``
|
728 |
+
|
729 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
730 |
+
If specified, the padding length should always snap to the next multiple of the
|
731 |
+
given value. For example if we were going to pad witha length of 250 but
|
732 |
+
``pad_to_multiple_of=8`` then we will pad to 256.
|
733 |
+
|
734 |
+
pad_id (:obj:`int`, defaults to 0):
|
735 |
+
The id to be used when padding
|
736 |
+
|
737 |
+
pad_type_id (:obj:`int`, defaults to 0):
|
738 |
+
The type id to be used when padding
|
739 |
+
|
740 |
+
pad_token (:obj:`str`, defaults to :obj:`[PAD]`):
|
741 |
+
The pad token to be used when padding
|
742 |
+
|
743 |
+
length (:obj:`int`, `optional`):
|
744 |
+
If specified, the length at which to pad. If not specified we pad using the size of
|
745 |
+
the longest sequence in a batch.
|
746 |
+
"""
|
747 |
+
pass
|
748 |
+
def enable_truncation(self, max_length, stride=0, strategy="longest_first", direction="right"):
|
749 |
+
"""
|
750 |
+
Enable truncation
|
751 |
+
|
752 |
+
Args:
|
753 |
+
max_length (:obj:`int`):
|
754 |
+
The max length at which to truncate
|
755 |
+
|
756 |
+
stride (:obj:`int`, `optional`):
|
757 |
+
The length of the previous first sequence to be included in the overflowing
|
758 |
+
sequence
|
759 |
+
|
760 |
+
strategy (:obj:`str`, `optional`, defaults to :obj:`longest_first`):
|
761 |
+
The strategy used to truncation. Can be one of ``longest_first``, ``only_first`` or
|
762 |
+
``only_second``.
|
763 |
+
|
764 |
+
direction (:obj:`str`, defaults to :obj:`right`):
|
765 |
+
Truncate direction
|
766 |
+
"""
|
767 |
+
pass
|
768 |
+
def encode(self, sequence, pair=None, is_pretokenized=False, add_special_tokens=True):
|
769 |
+
"""
|
770 |
+
Encode the given sequence and pair. This method can process raw text sequences
|
771 |
+
as well as already pre-tokenized sequences.
|
772 |
+
|
773 |
+
Example:
|
774 |
+
Here are some examples of the inputs that are accepted::
|
775 |
+
|
776 |
+
encode("A single sequence")`
|
777 |
+
encode("A sequence", "And its pair")`
|
778 |
+
encode([ "A", "pre", "tokenized", "sequence" ], is_pretokenized=True)`
|
779 |
+
encode(
|
780 |
+
[ "A", "pre", "tokenized", "sequence" ], [ "And", "its", "pair" ],
|
781 |
+
is_pretokenized=True
|
782 |
+
)
|
783 |
+
|
784 |
+
Args:
|
785 |
+
sequence (:obj:`~tokenizers.InputSequence`):
|
786 |
+
The main input sequence we want to encode. This sequence can be either raw
|
787 |
+
text or pre-tokenized, according to the ``is_pretokenized`` argument:
|
788 |
+
|
789 |
+
- If ``is_pretokenized=False``: :class:`~tokenizers.TextInputSequence`
|
790 |
+
- If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedInputSequence`
|
791 |
+
|
792 |
+
pair (:obj:`~tokenizers.InputSequence`, `optional`):
|
793 |
+
An optional input sequence. The expected format is the same that for ``sequence``.
|
794 |
+
|
795 |
+
is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
|
796 |
+
Whether the input is already pre-tokenized
|
797 |
+
|
798 |
+
add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
|
799 |
+
Whether to add the special tokens
|
800 |
+
|
801 |
+
Returns:
|
802 |
+
:class:`~tokenizers.Encoding`: The encoded result
|
803 |
+
|
804 |
+
"""
|
805 |
+
pass
|
806 |
+
def encode_batch(self, input, is_pretokenized=False, add_special_tokens=True):
|
807 |
+
"""
|
808 |
+
Encode the given batch of inputs. This method accept both raw text sequences
|
809 |
+
as well as already pre-tokenized sequences.
|
810 |
+
|
811 |
+
Example:
|
812 |
+
Here are some examples of the inputs that are accepted::
|
813 |
+
|
814 |
+
encode_batch([
|
815 |
+
"A single sequence",
|
816 |
+
("A tuple with a sequence", "And its pair"),
|
817 |
+
[ "A", "pre", "tokenized", "sequence" ],
|
818 |
+
([ "A", "pre", "tokenized", "sequence" ], "And its pair")
|
819 |
+
])
|
820 |
+
|
821 |
+
Args:
|
822 |
+
input (A :obj:`List`/:obj:`Tuple` of :obj:`~tokenizers.EncodeInput`):
|
823 |
+
A list of single sequences or pair sequences to encode. Each sequence
|
824 |
+
can be either raw text or pre-tokenized, according to the ``is_pretokenized``
|
825 |
+
argument:
|
826 |
+
|
827 |
+
- If ``is_pretokenized=False``: :class:`~tokenizers.TextEncodeInput`
|
828 |
+
- If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedEncodeInput`
|
829 |
+
|
830 |
+
is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
|
831 |
+
Whether the input is already pre-tokenized
|
832 |
+
|
833 |
+
add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
|
834 |
+
Whether to add the special tokens
|
835 |
+
|
836 |
+
Returns:
|
837 |
+
A :obj:`List` of :class:`~tokenizers.Encoding`: The encoded batch
|
838 |
+
|
839 |
+
"""
|
840 |
+
pass
|
841 |
+
@property
|
842 |
+
def encode_special_tokens(self):
|
843 |
+
"""
|
844 |
+
Modifies the tokenizer in order to use or not the special tokens
|
845 |
+
during encoding.
|
846 |
+
|
847 |
+
Args:
|
848 |
+
value (:obj:`bool`):
|
849 |
+
Whether to use the special tokens or not
|
850 |
+
|
851 |
+
"""
|
852 |
+
pass
|
853 |
+
@staticmethod
|
854 |
+
def from_buffer(buffer):
|
855 |
+
"""
|
856 |
+
Instantiate a new :class:`~tokenizers.Tokenizer` from the given buffer.
|
857 |
+
|
858 |
+
Args:
|
859 |
+
buffer (:obj:`bytes`):
|
860 |
+
A buffer containing a previously serialized :class:`~tokenizers.Tokenizer`
|
861 |
+
|
862 |
+
Returns:
|
863 |
+
:class:`~tokenizers.Tokenizer`: The new tokenizer
|
864 |
+
"""
|
865 |
+
pass
|
866 |
+
@staticmethod
|
867 |
+
def from_file(path):
|
868 |
+
"""
|
869 |
+
Instantiate a new :class:`~tokenizers.Tokenizer` from the file at the given path.
|
870 |
+
|
871 |
+
Args:
|
872 |
+
path (:obj:`str`):
|
873 |
+
A path to a local JSON file representing a previously serialized
|
874 |
+
:class:`~tokenizers.Tokenizer`
|
875 |
+
|
876 |
+
Returns:
|
877 |
+
:class:`~tokenizers.Tokenizer`: The new tokenizer
|
878 |
+
"""
|
879 |
+
pass
|
880 |
+
@staticmethod
|
881 |
+
def from_pretrained(identifier, revision="main", auth_token=None):
|
882 |
+
"""
|
883 |
+
Instantiate a new :class:`~tokenizers.Tokenizer` from an existing file on the
|
884 |
+
Hugging Face Hub.
|
885 |
+
|
886 |
+
Args:
|
887 |
+
identifier (:obj:`str`):
|
888 |
+
The identifier of a Model on the Hugging Face Hub, that contains
|
889 |
+
a tokenizer.json file
|
890 |
+
revision (:obj:`str`, defaults to `main`):
|
891 |
+
A branch or commit id
|
892 |
+
auth_token (:obj:`str`, `optional`, defaults to `None`):
|
893 |
+
An optional auth token used to access private repositories on the
|
894 |
+
Hugging Face Hub
|
895 |
+
|
896 |
+
Returns:
|
897 |
+
:class:`~tokenizers.Tokenizer`: The new tokenizer
|
898 |
+
"""
|
899 |
+
pass
|
900 |
+
@staticmethod
|
901 |
+
def from_str(json):
|
902 |
+
"""
|
903 |
+
Instantiate a new :class:`~tokenizers.Tokenizer` from the given JSON string.
|
904 |
+
|
905 |
+
Args:
|
906 |
+
json (:obj:`str`):
|
907 |
+
A valid JSON string representing a previously serialized
|
908 |
+
:class:`~tokenizers.Tokenizer`
|
909 |
+
|
910 |
+
Returns:
|
911 |
+
:class:`~tokenizers.Tokenizer`: The new tokenizer
|
912 |
+
"""
|
913 |
+
pass
|
914 |
+
def get_added_tokens_decoder(self):
|
915 |
+
"""
|
916 |
+
Get the underlying vocabulary
|
917 |
+
|
918 |
+
Returns:
|
919 |
+
:obj:`Dict[int, AddedToken]`: The vocabulary
|
920 |
+
"""
|
921 |
+
pass
|
922 |
+
def get_vocab(self, with_added_tokens=True):
|
923 |
+
"""
|
924 |
+
Get the underlying vocabulary
|
925 |
+
|
926 |
+
Args:
|
927 |
+
with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
|
928 |
+
Whether to include the added tokens
|
929 |
+
|
930 |
+
Returns:
|
931 |
+
:obj:`Dict[str, int]`: The vocabulary
|
932 |
+
"""
|
933 |
+
pass
|
934 |
+
def get_vocab_size(self, with_added_tokens=True):
|
935 |
+
"""
|
936 |
+
Get the size of the underlying vocabulary
|
937 |
+
|
938 |
+
Args:
|
939 |
+
with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
|
940 |
+
Whether to include the added tokens
|
941 |
+
|
942 |
+
Returns:
|
943 |
+
:obj:`int`: The size of the vocabulary
|
944 |
+
"""
|
945 |
+
pass
|
946 |
+
def id_to_token(self, id):
|
947 |
+
"""
|
948 |
+
Convert the given id to its corresponding token if it exists
|
949 |
+
|
950 |
+
Args:
|
951 |
+
id (:obj:`int`):
|
952 |
+
The id to convert
|
953 |
+
|
954 |
+
Returns:
|
955 |
+
:obj:`Optional[str]`: An optional token, :obj:`None` if out of vocabulary
|
956 |
+
"""
|
957 |
+
pass
|
958 |
+
@property
|
959 |
+
def model(self):
|
960 |
+
"""
|
961 |
+
The :class:`~tokenizers.models.Model` in use by the Tokenizer
|
962 |
+
"""
|
963 |
+
pass
|
964 |
+
def no_padding(self):
|
965 |
+
"""
|
966 |
+
Disable padding
|
967 |
+
"""
|
968 |
+
pass
|
969 |
+
def no_truncation(self):
|
970 |
+
"""
|
971 |
+
Disable truncation
|
972 |
+
"""
|
973 |
+
pass
|
974 |
+
@property
|
975 |
+
def normalizer(self):
|
976 |
+
"""
|
977 |
+
The `optional` :class:`~tokenizers.normalizers.Normalizer` in use by the Tokenizer
|
978 |
+
"""
|
979 |
+
pass
|
980 |
+
def num_special_tokens_to_add(self, is_pair):
|
981 |
+
"""
|
982 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
983 |
+
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
984 |
+
:return:
|
985 |
+
"""
|
986 |
+
pass
|
987 |
+
@property
|
988 |
+
def padding(self):
|
989 |
+
"""
|
990 |
+
Get the current padding parameters
|
991 |
+
|
992 |
+
`Cannot be set, use` :meth:`~tokenizers.Tokenizer.enable_padding` `instead`
|
993 |
+
|
994 |
+
Returns:
|
995 |
+
(:obj:`dict`, `optional`):
|
996 |
+
A dict with the current padding parameters if padding is enabled
|
997 |
+
"""
|
998 |
+
pass
|
999 |
+
def post_process(self, encoding, pair=None, add_special_tokens=True):
|
1000 |
+
"""
|
1001 |
+
Apply all the post-processing steps to the given encodings.
|
1002 |
+
|
1003 |
+
The various steps are:
|
1004 |
+
|
1005 |
+
1. Truncate according to the set truncation params (provided with
|
1006 |
+
:meth:`~tokenizers.Tokenizer.enable_truncation`)
|
1007 |
+
2. Apply the :class:`~tokenizers.processors.PostProcessor`
|
1008 |
+
3. Pad according to the set padding params (provided with
|
1009 |
+
:meth:`~tokenizers.Tokenizer.enable_padding`)
|
1010 |
+
|
1011 |
+
Args:
|
1012 |
+
encoding (:class:`~tokenizers.Encoding`):
|
1013 |
+
The :class:`~tokenizers.Encoding` corresponding to the main sequence.
|
1014 |
+
|
1015 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
1016 |
+
An optional :class:`~tokenizers.Encoding` corresponding to the pair sequence.
|
1017 |
+
|
1018 |
+
add_special_tokens (:obj:`bool`):
|
1019 |
+
Whether to add the special tokens
|
1020 |
+
|
1021 |
+
Returns:
|
1022 |
+
:class:`~tokenizers.Encoding`: The final post-processed encoding
|
1023 |
+
"""
|
1024 |
+
pass
|
1025 |
+
@property
|
1026 |
+
def post_processor(self):
|
1027 |
+
"""
|
1028 |
+
The `optional` :class:`~tokenizers.processors.PostProcessor` in use by the Tokenizer
|
1029 |
+
"""
|
1030 |
+
pass
|
1031 |
+
@property
|
1032 |
+
def pre_tokenizer(self):
|
1033 |
+
"""
|
1034 |
+
The `optional` :class:`~tokenizers.pre_tokenizers.PreTokenizer` in use by the Tokenizer
|
1035 |
+
"""
|
1036 |
+
pass
|
1037 |
+
def save(self, path, pretty=True):
|
1038 |
+
"""
|
1039 |
+
Save the :class:`~tokenizers.Tokenizer` to the file at the given path.
|
1040 |
+
|
1041 |
+
Args:
|
1042 |
+
path (:obj:`str`):
|
1043 |
+
A path to a file in which to save the serialized tokenizer.
|
1044 |
+
|
1045 |
+
pretty (:obj:`bool`, defaults to :obj:`True`):
|
1046 |
+
Whether the JSON file should be pretty formatted.
|
1047 |
+
"""
|
1048 |
+
pass
|
1049 |
+
def to_str(self, pretty=False):
|
1050 |
+
"""
|
1051 |
+
Gets a serialized string representing this :class:`~tokenizers.Tokenizer`.
|
1052 |
+
|
1053 |
+
Args:
|
1054 |
+
pretty (:obj:`bool`, defaults to :obj:`False`):
|
1055 |
+
Whether the JSON string should be pretty formatted.
|
1056 |
+
|
1057 |
+
Returns:
|
1058 |
+
:obj:`str`: A string representing the serialized Tokenizer
|
1059 |
+
"""
|
1060 |
+
pass
|
1061 |
+
def token_to_id(self, token):
|
1062 |
+
"""
|
1063 |
+
Convert the given token to its corresponding id if it exists
|
1064 |
+
|
1065 |
+
Args:
|
1066 |
+
token (:obj:`str`):
|
1067 |
+
The token to convert
|
1068 |
+
|
1069 |
+
Returns:
|
1070 |
+
:obj:`Optional[int]`: An optional id, :obj:`None` if out of vocabulary
|
1071 |
+
"""
|
1072 |
+
pass
|
1073 |
+
def train(self, files, trainer=None):
|
1074 |
+
"""
|
1075 |
+
Train the Tokenizer using the given files.
|
1076 |
+
|
1077 |
+
Reads the files line by line, while keeping all the whitespace, even new lines.
|
1078 |
+
If you want to train from data store in-memory, you can check
|
1079 |
+
:meth:`~tokenizers.Tokenizer.train_from_iterator`
|
1080 |
+
|
1081 |
+
Args:
|
1082 |
+
files (:obj:`List[str]`):
|
1083 |
+
A list of path to the files that we should use for training
|
1084 |
+
|
1085 |
+
trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
|
1086 |
+
An optional trainer that should be used to train our Model
|
1087 |
+
"""
|
1088 |
+
pass
|
1089 |
+
def train_from_iterator(self, iterator, trainer=None, length=None):
|
1090 |
+
"""
|
1091 |
+
Train the Tokenizer using the provided iterator.
|
1092 |
+
|
1093 |
+
You can provide anything that is a Python Iterator
|
1094 |
+
|
1095 |
+
* A list of sequences :obj:`List[str]`
|
1096 |
+
* A generator that yields :obj:`str` or :obj:`List[str]`
|
1097 |
+
* A Numpy array of strings
|
1098 |
+
* ...
|
1099 |
+
|
1100 |
+
Args:
|
1101 |
+
iterator (:obj:`Iterator`):
|
1102 |
+
Any iterator over strings or list of strings
|
1103 |
+
|
1104 |
+
trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
|
1105 |
+
An optional trainer that should be used to train our Model
|
1106 |
+
|
1107 |
+
length (:obj:`int`, `optional`):
|
1108 |
+
The total number of sequences in the iterator. This is used to
|
1109 |
+
provide meaningful progress tracking
|
1110 |
+
"""
|
1111 |
+
pass
|
1112 |
+
@property
|
1113 |
+
def truncation(self):
|
1114 |
+
"""
|
1115 |
+
Get the currently set truncation parameters
|
1116 |
+
|
1117 |
+
`Cannot set, use` :meth:`~tokenizers.Tokenizer.enable_truncation` `instead`
|
1118 |
+
|
1119 |
+
Returns:
|
1120 |
+
(:obj:`dict`, `optional`):
|
1121 |
+
A dict with the current truncation parameters if truncation is enabled
|
1122 |
+
"""
|
1123 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .. import decoders
|
2 |
+
|
3 |
+
|
4 |
+
Decoder = decoders.Decoder
|
5 |
+
ByteLevel = decoders.ByteLevel
|
6 |
+
Replace = decoders.Replace
|
7 |
+
WordPiece = decoders.WordPiece
|
8 |
+
ByteFallback = decoders.ByteFallback
|
9 |
+
Fuse = decoders.Fuse
|
10 |
+
Strip = decoders.Strip
|
11 |
+
Metaspace = decoders.Metaspace
|
12 |
+
BPEDecoder = decoders.BPEDecoder
|
13 |
+
CTC = decoders.CTC
|
14 |
+
Sequence = decoders.Sequence
|
env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__init__.pyi
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class Decoder:
|
3 |
+
"""
|
4 |
+
Base class for all decoders
|
5 |
+
|
6 |
+
This class is not supposed to be instantiated directly. Instead, any implementation of
|
7 |
+
a Decoder will return an instance of this class when instantiated.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def decode(self, tokens):
|
11 |
+
"""
|
12 |
+
Decode the given list of tokens to a final string
|
13 |
+
|
14 |
+
Args:
|
15 |
+
tokens (:obj:`List[str]`):
|
16 |
+
The list of tokens to decode
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
:obj:`str`: The decoded string
|
20 |
+
"""
|
21 |
+
pass
|
22 |
+
|
23 |
+
class BPEDecoder(Decoder):
|
24 |
+
"""
|
25 |
+
BPEDecoder Decoder
|
26 |
+
|
27 |
+
Args:
|
28 |
+
suffix (:obj:`str`, `optional`, defaults to :obj:`</w>`):
|
29 |
+
The suffix that was used to caracterize an end-of-word. This suffix will
|
30 |
+
be replaced by whitespaces during the decoding
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, suffix="</w>"):
|
34 |
+
pass
|
35 |
+
def decode(self, tokens):
|
36 |
+
"""
|
37 |
+
Decode the given list of tokens to a final string
|
38 |
+
|
39 |
+
Args:
|
40 |
+
tokens (:obj:`List[str]`):
|
41 |
+
The list of tokens to decode
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
:obj:`str`: The decoded string
|
45 |
+
"""
|
46 |
+
pass
|
47 |
+
|
48 |
+
class ByteFallback(Decoder):
|
49 |
+
"""
|
50 |
+
ByteFallback Decoder
|
51 |
+
ByteFallback is a simple trick which converts tokens looking like `<0x61>`
|
52 |
+
to pure bytes, and attempts to make them into a string. If the tokens
|
53 |
+
cannot be decoded you will get � instead for each inconvertable byte token
|
54 |
+
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(self):
|
58 |
+
pass
|
59 |
+
def decode(self, tokens):
|
60 |
+
"""
|
61 |
+
Decode the given list of tokens to a final string
|
62 |
+
|
63 |
+
Args:
|
64 |
+
tokens (:obj:`List[str]`):
|
65 |
+
The list of tokens to decode
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
:obj:`str`: The decoded string
|
69 |
+
"""
|
70 |
+
pass
|
71 |
+
|
72 |
+
class ByteLevel(Decoder):
|
73 |
+
"""
|
74 |
+
ByteLevel Decoder
|
75 |
+
|
76 |
+
This decoder is to be used in tandem with the :class:`~tokenizers.pre_tokenizers.ByteLevel`
|
77 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self):
|
81 |
+
pass
|
82 |
+
def decode(self, tokens):
|
83 |
+
"""
|
84 |
+
Decode the given list of tokens to a final string
|
85 |
+
|
86 |
+
Args:
|
87 |
+
tokens (:obj:`List[str]`):
|
88 |
+
The list of tokens to decode
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
:obj:`str`: The decoded string
|
92 |
+
"""
|
93 |
+
pass
|
94 |
+
|
95 |
+
class CTC(Decoder):
|
96 |
+
"""
|
97 |
+
CTC Decoder
|
98 |
+
|
99 |
+
Args:
|
100 |
+
pad_token (:obj:`str`, `optional`, defaults to :obj:`<pad>`):
|
101 |
+
The pad token used by CTC to delimit a new token.
|
102 |
+
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`|`):
|
103 |
+
The word delimiter token. It will be replaced by a <space>
|
104 |
+
cleanup (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
105 |
+
Whether to cleanup some tokenization artifacts.
|
106 |
+
Mainly spaces before punctuation, and some abbreviated english forms.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(self, pad_token="<pad>", word_delimiter_token="|", cleanup=True):
|
110 |
+
pass
|
111 |
+
def decode(self, tokens):
|
112 |
+
"""
|
113 |
+
Decode the given list of tokens to a final string
|
114 |
+
|
115 |
+
Args:
|
116 |
+
tokens (:obj:`List[str]`):
|
117 |
+
The list of tokens to decode
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
:obj:`str`: The decoded string
|
121 |
+
"""
|
122 |
+
pass
|
123 |
+
|
124 |
+
class Fuse(Decoder):
|
125 |
+
"""
|
126 |
+
Fuse Decoder
|
127 |
+
Fuse simply fuses every token into a single string.
|
128 |
+
This is the last step of decoding, this decoder exists only if
|
129 |
+
there is need to add other decoders *after* the fusion
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self):
|
133 |
+
pass
|
134 |
+
def decode(self, tokens):
|
135 |
+
"""
|
136 |
+
Decode the given list of tokens to a final string
|
137 |
+
|
138 |
+
Args:
|
139 |
+
tokens (:obj:`List[str]`):
|
140 |
+
The list of tokens to decode
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
:obj:`str`: The decoded string
|
144 |
+
"""
|
145 |
+
pass
|
146 |
+
|
147 |
+
class Metaspace(Decoder):
|
148 |
+
"""
|
149 |
+
Metaspace Decoder
|
150 |
+
|
151 |
+
Args:
|
152 |
+
replacement (:obj:`str`, `optional`, defaults to :obj:`▁`):
|
153 |
+
The replacement character. Must be exactly one character. By default we
|
154 |
+
use the `▁` (U+2581) meta symbol (Same as in SentencePiece).
|
155 |
+
|
156 |
+
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
157 |
+
Whether to add a space to the first word if there isn't already one. This
|
158 |
+
lets us treat `hello` exactly like `say hello`.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, replacement="▁", add_prefix_space=True):
|
162 |
+
pass
|
163 |
+
def decode(self, tokens):
|
164 |
+
"""
|
165 |
+
Decode the given list of tokens to a final string
|
166 |
+
|
167 |
+
Args:
|
168 |
+
tokens (:obj:`List[str]`):
|
169 |
+
The list of tokens to decode
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
:obj:`str`: The decoded string
|
173 |
+
"""
|
174 |
+
pass
|
175 |
+
|
176 |
+
class Replace(Decoder):
|
177 |
+
"""
|
178 |
+
Replace Decoder
|
179 |
+
|
180 |
+
This decoder is to be used in tandem with the :class:`~tokenizers.pre_tokenizers.Replace`
|
181 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, pattern, content):
|
185 |
+
pass
|
186 |
+
def decode(self, tokens):
|
187 |
+
"""
|
188 |
+
Decode the given list of tokens to a final string
|
189 |
+
|
190 |
+
Args:
|
191 |
+
tokens (:obj:`List[str]`):
|
192 |
+
The list of tokens to decode
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
:obj:`str`: The decoded string
|
196 |
+
"""
|
197 |
+
pass
|
198 |
+
|
199 |
+
class Sequence(Decoder):
|
200 |
+
"""
|
201 |
+
Sequence Decoder
|
202 |
+
|
203 |
+
Args:
|
204 |
+
decoders (:obj:`List[Decoder]`)
|
205 |
+
The decoders that need to be chained
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, decoders):
|
209 |
+
pass
|
210 |
+
def decode(self, tokens):
|
211 |
+
"""
|
212 |
+
Decode the given list of tokens to a final string
|
213 |
+
|
214 |
+
Args:
|
215 |
+
tokens (:obj:`List[str]`):
|
216 |
+
The list of tokens to decode
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
:obj:`str`: The decoded string
|
220 |
+
"""
|
221 |
+
pass
|
222 |
+
|
223 |
+
class Strip(Decoder):
|
224 |
+
"""
|
225 |
+
Strip normalizer
|
226 |
+
Strips n left characters of each token, or n right characters of each token
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, content, left=0, right=0):
|
230 |
+
pass
|
231 |
+
def decode(self, tokens):
|
232 |
+
"""
|
233 |
+
Decode the given list of tokens to a final string
|
234 |
+
|
235 |
+
Args:
|
236 |
+
tokens (:obj:`List[str]`):
|
237 |
+
The list of tokens to decode
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
:obj:`str`: The decoded string
|
241 |
+
"""
|
242 |
+
pass
|
243 |
+
|
244 |
+
class WordPiece(Decoder):
|
245 |
+
"""
|
246 |
+
WordPiece Decoder
|
247 |
+
|
248 |
+
Args:
|
249 |
+
prefix (:obj:`str`, `optional`, defaults to :obj:`##`):
|
250 |
+
The prefix to use for subwords that are not a beginning-of-word
|
251 |
+
|
252 |
+
cleanup (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
253 |
+
Whether to cleanup some tokenization artifacts. Mainly spaces before punctuation,
|
254 |
+
and some abbreviated english forms.
|
255 |
+
"""
|
256 |
+
|
257 |
+
def __init__(self, prefix="##", cleanup=True):
|
258 |
+
pass
|
259 |
+
def decode(self, tokens):
|
260 |
+
"""
|
261 |
+
Decode the given list of tokens to a final string
|
262 |
+
|
263 |
+
Args:
|
264 |
+
tokens (:obj:`List[str]`):
|
265 |
+
The list of tokens to decode
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
:obj:`str`: The decoded string
|
269 |
+
"""
|
270 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/decoders/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (410 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_tokenizer import BaseTokenizer
|
2 |
+
from .bert_wordpiece import BertWordPieceTokenizer
|
3 |
+
from .byte_level_bpe import ByteLevelBPETokenizer
|
4 |
+
from .char_level_bpe import CharBPETokenizer
|
5 |
+
from .sentencepiece_bpe import SentencePieceBPETokenizer
|
6 |
+
from .sentencepiece_unigram import SentencePieceUnigramTokenizer
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (561 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/base_tokenizer.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/bert_wordpiece.cpython-310.pyc
ADDED
Binary file (3.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/byte_level_bpe.cpython-310.pyc
ADDED
Binary file (3.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/char_level_bpe.cpython-310.pyc
ADDED
Binary file (4.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/sentencepiece_bpe.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/__pycache__/sentencepiece_unigram.cpython-310.pyc
ADDED
Binary file (6.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/base_tokenizer.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer
|
4 |
+
from tokenizers.decoders import Decoder
|
5 |
+
from tokenizers.models import Model
|
6 |
+
from tokenizers.normalizers import Normalizer
|
7 |
+
from tokenizers.pre_tokenizers import PreTokenizer
|
8 |
+
from tokenizers.processors import PostProcessor
|
9 |
+
|
10 |
+
|
11 |
+
Offsets = Tuple[int, int]
|
12 |
+
|
13 |
+
|
14 |
+
class BaseTokenizer:
|
15 |
+
def __init__(self, tokenizer: Tokenizer, parameters=None):
|
16 |
+
self._tokenizer = tokenizer
|
17 |
+
self._parameters = parameters if parameters is not None else {}
|
18 |
+
|
19 |
+
def __repr__(self):
|
20 |
+
return "Tokenizer(vocabulary_size={}, {})".format(
|
21 |
+
self._tokenizer.get_vocab_size(),
|
22 |
+
", ".join(k + "=" + str(v) for k, v in self._parameters.items()),
|
23 |
+
)
|
24 |
+
|
25 |
+
def num_special_tokens_to_add(self, is_pair: bool) -> int:
|
26 |
+
"""
|
27 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
28 |
+
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
29 |
+
:return:
|
30 |
+
"""
|
31 |
+
return self._tokenizer.num_special_tokens_to_add(is_pair)
|
32 |
+
|
33 |
+
def get_vocab(self, with_added_tokens: bool = True) -> Dict[str, int]:
|
34 |
+
"""Returns the vocabulary
|
35 |
+
|
36 |
+
Args:
|
37 |
+
with_added_tokens: boolean:
|
38 |
+
Whether to include the added tokens in the vocabulary
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
The vocabulary
|
42 |
+
"""
|
43 |
+
return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens)
|
44 |
+
|
45 |
+
def get_added_tokens_decoder(self) -> Dict[int, AddedToken]:
|
46 |
+
"""Returns the added reverse vocabulary
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
The added vocabulary mapping ints to AddedTokens
|
50 |
+
"""
|
51 |
+
return self._tokenizer.get_added_tokens_decoder()
|
52 |
+
|
53 |
+
def get_vocab_size(self, with_added_tokens: bool = True) -> int:
|
54 |
+
"""Return the size of vocabulary, with or without added tokens.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
with_added_tokens: (`optional`) bool:
|
58 |
+
Whether to count in added special tokens or not
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Size of vocabulary
|
62 |
+
"""
|
63 |
+
return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens)
|
64 |
+
|
65 |
+
def enable_padding(
|
66 |
+
self,
|
67 |
+
direction: Optional[str] = "right",
|
68 |
+
pad_to_multiple_of: Optional[int] = None,
|
69 |
+
pad_id: Optional[int] = 0,
|
70 |
+
pad_type_id: Optional[int] = 0,
|
71 |
+
pad_token: Optional[str] = "[PAD]",
|
72 |
+
length: Optional[int] = None,
|
73 |
+
):
|
74 |
+
"""Change the padding strategy
|
75 |
+
|
76 |
+
Args:
|
77 |
+
direction: (`optional`) str:
|
78 |
+
Can be one of: `right` or `left`
|
79 |
+
|
80 |
+
pad_to_multiple_of: (`optional`) unsigned int:
|
81 |
+
If specified, the padding length should always snap to the next multiple of
|
82 |
+
the given value. For example if we were going to pad with a length of 250 but
|
83 |
+
`pad_to_multiple_of=8` then we will pad to 256.
|
84 |
+
|
85 |
+
pad_id: (`optional`) unsigned int:
|
86 |
+
The indice to be used when padding
|
87 |
+
|
88 |
+
pad_type_id: (`optional`) unsigned int:
|
89 |
+
The type indice to be used when padding
|
90 |
+
|
91 |
+
pad_token: (`optional`) str:
|
92 |
+
The pad token to be used when padding
|
93 |
+
|
94 |
+
length: (`optional`) unsigned int:
|
95 |
+
If specified, the length at which to pad. If not specified
|
96 |
+
we pad using the size of the longest sequence in a batch
|
97 |
+
"""
|
98 |
+
return self._tokenizer.enable_padding(
|
99 |
+
direction=direction,
|
100 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
101 |
+
pad_id=pad_id,
|
102 |
+
pad_type_id=pad_type_id,
|
103 |
+
pad_token=pad_token,
|
104 |
+
length=length,
|
105 |
+
)
|
106 |
+
|
107 |
+
def no_padding(self):
|
108 |
+
"""Disable padding"""
|
109 |
+
return self._tokenizer.no_padding()
|
110 |
+
|
111 |
+
@property
|
112 |
+
def padding(self) -> Optional[dict]:
|
113 |
+
"""Get the current padding parameters
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
None if padding is disabled, a dict with the currently set parameters
|
117 |
+
if the padding is enabled.
|
118 |
+
"""
|
119 |
+
return self._tokenizer.padding
|
120 |
+
|
121 |
+
def enable_truncation(self, max_length: int, stride: Optional[int] = 0, strategy: Optional[str] = "longest_first"):
|
122 |
+
"""Change the truncation options
|
123 |
+
|
124 |
+
Args:
|
125 |
+
max_length: unsigned int:
|
126 |
+
The maximum length at which to truncate
|
127 |
+
|
128 |
+
stride: (`optional`) unsigned int:
|
129 |
+
The length of the previous first sequence to be included
|
130 |
+
in the overflowing sequence
|
131 |
+
|
132 |
+
strategy: (`optional`) str:
|
133 |
+
Can be one of `longest_first`, `only_first` or `only_second`
|
134 |
+
"""
|
135 |
+
return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
|
136 |
+
|
137 |
+
def no_truncation(self):
|
138 |
+
"""Disable truncation"""
|
139 |
+
return self._tokenizer.no_truncation()
|
140 |
+
|
141 |
+
@property
|
142 |
+
def truncation(self) -> Optional[dict]:
|
143 |
+
"""Get the current truncation parameters
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
None if truncation is disabled, a dict with the current truncation parameters if
|
147 |
+
truncation is enabled
|
148 |
+
"""
|
149 |
+
return self._tokenizer.truncation
|
150 |
+
|
151 |
+
def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int:
|
152 |
+
"""Add the given tokens to the vocabulary
|
153 |
+
|
154 |
+
Args:
|
155 |
+
tokens: List[Union[str, AddedToken]]:
|
156 |
+
A list of tokens to add to the vocabulary. Each token can either be
|
157 |
+
a string, or an instance of AddedToken
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
The number of tokens that were added to the vocabulary
|
161 |
+
"""
|
162 |
+
return self._tokenizer.add_tokens(tokens)
|
163 |
+
|
164 |
+
def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int:
|
165 |
+
"""Add the given special tokens to the vocabulary, and treat them as special tokens.
|
166 |
+
|
167 |
+
The special tokens will never be processed by the model, and will be
|
168 |
+
removed while decoding.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
tokens: List[Union[str, AddedToken]]:
|
172 |
+
A list of special tokens to add to the vocabulary. Each token can either be
|
173 |
+
a string, or an instance of AddedToken
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
The number of tokens that were added to the vocabulary
|
177 |
+
"""
|
178 |
+
return self._tokenizer.add_special_tokens(special_tokens)
|
179 |
+
|
180 |
+
def normalize(self, sequence: str) -> str:
|
181 |
+
"""Normalize the given sequence
|
182 |
+
|
183 |
+
Args:
|
184 |
+
sequence: str:
|
185 |
+
The sequence to normalize
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
The normalized string
|
189 |
+
"""
|
190 |
+
return self._tokenizer.normalize(sequence)
|
191 |
+
|
192 |
+
def encode(
|
193 |
+
self,
|
194 |
+
sequence: InputSequence,
|
195 |
+
pair: Optional[InputSequence] = None,
|
196 |
+
is_pretokenized: bool = False,
|
197 |
+
add_special_tokens: bool = True,
|
198 |
+
) -> Encoding:
|
199 |
+
"""Encode the given sequence and pair. This method can process raw text sequences as well
|
200 |
+
as already pre-tokenized sequences.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
sequence: InputSequence:
|
204 |
+
The sequence we want to encode. This sequence can be either raw text or
|
205 |
+
pre-tokenized, according to the `is_pretokenized` argument:
|
206 |
+
|
207 |
+
- If `is_pretokenized=False`: `InputSequence` is expected to be `str`
|
208 |
+
- If `is_pretokenized=True`: `InputSequence` is expected to be
|
209 |
+
`Union[List[str], Tuple[str]]`
|
210 |
+
|
211 |
+
is_pretokenized: bool:
|
212 |
+
Whether the input is already pre-tokenized.
|
213 |
+
|
214 |
+
add_special_tokens: bool:
|
215 |
+
Whether to add the special tokens while encoding.
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
An Encoding
|
219 |
+
"""
|
220 |
+
if sequence is None:
|
221 |
+
raise ValueError("encode: `sequence` can't be `None`")
|
222 |
+
|
223 |
+
return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens)
|
224 |
+
|
225 |
+
def encode_batch(
|
226 |
+
self,
|
227 |
+
inputs: List[EncodeInput],
|
228 |
+
is_pretokenized: bool = False,
|
229 |
+
add_special_tokens: bool = True,
|
230 |
+
) -> List[Encoding]:
|
231 |
+
"""Encode the given inputs. This method accept both raw text sequences as well as already
|
232 |
+
pre-tokenized sequences.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
inputs: List[EncodeInput]:
|
236 |
+
A list of single sequences or pair sequences to encode. Each `EncodeInput` is
|
237 |
+
expected to be of the following form:
|
238 |
+
`Union[InputSequence, Tuple[InputSequence, InputSequence]]`
|
239 |
+
|
240 |
+
Each `InputSequence` can either be raw text or pre-tokenized,
|
241 |
+
according to the `is_pretokenized` argument:
|
242 |
+
|
243 |
+
- If `is_pretokenized=False`: `InputSequence` is expected to be `str`
|
244 |
+
- If `is_pretokenized=True`: `InputSequence` is expected to be
|
245 |
+
`Union[List[str], Tuple[str]]`
|
246 |
+
|
247 |
+
is_pretokenized: bool:
|
248 |
+
Whether the input is already pre-tokenized.
|
249 |
+
|
250 |
+
add_special_tokens: bool:
|
251 |
+
Whether to add the special tokens while encoding.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
A list of Encoding
|
255 |
+
"""
|
256 |
+
|
257 |
+
if inputs is None:
|
258 |
+
raise ValueError("encode_batch: `inputs` can't be `None`")
|
259 |
+
|
260 |
+
return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens)
|
261 |
+
|
262 |
+
def decode(self, ids: List[int], skip_special_tokens: Optional[bool] = True) -> str:
|
263 |
+
"""Decode the given list of ids to a string sequence
|
264 |
+
|
265 |
+
Args:
|
266 |
+
ids: List[unsigned int]:
|
267 |
+
A list of ids to be decoded
|
268 |
+
|
269 |
+
skip_special_tokens: (`optional`) boolean:
|
270 |
+
Whether to remove all the special tokens from the output string
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
The decoded string
|
274 |
+
"""
|
275 |
+
if ids is None:
|
276 |
+
raise ValueError("None input is not valid. Should be a list of integers.")
|
277 |
+
|
278 |
+
return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
|
279 |
+
|
280 |
+
def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool] = True) -> str:
|
281 |
+
"""Decode the list of sequences to a list of string sequences
|
282 |
+
|
283 |
+
Args:
|
284 |
+
sequences: List[List[unsigned int]]:
|
285 |
+
A list of sequence of ids to be decoded
|
286 |
+
|
287 |
+
skip_special_tokens: (`optional`) boolean:
|
288 |
+
Whether to remove all the special tokens from the output strings
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
A list of decoded strings
|
292 |
+
"""
|
293 |
+
if sequences is None:
|
294 |
+
raise ValueError("None input is not valid. Should be list of list of integers.")
|
295 |
+
|
296 |
+
return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)
|
297 |
+
|
298 |
+
def token_to_id(self, token: str) -> Optional[int]:
|
299 |
+
"""Convert the given token to its corresponding id
|
300 |
+
|
301 |
+
Args:
|
302 |
+
token: str:
|
303 |
+
The token to convert
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
The corresponding id if it exists, None otherwise
|
307 |
+
"""
|
308 |
+
return self._tokenizer.token_to_id(token)
|
309 |
+
|
310 |
+
def id_to_token(self, id: int) -> Optional[str]:
|
311 |
+
"""Convert the given token id to its corresponding string
|
312 |
+
|
313 |
+
Args:
|
314 |
+
token: id:
|
315 |
+
The token id to convert
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
The corresponding string if it exists, None otherwise
|
319 |
+
"""
|
320 |
+
return self._tokenizer.id_to_token(id)
|
321 |
+
|
322 |
+
def save_model(self, directory: str, prefix: Optional[str] = None):
|
323 |
+
"""Save the current model to the given directory
|
324 |
+
|
325 |
+
Args:
|
326 |
+
directory: str:
|
327 |
+
A path to the destination directory
|
328 |
+
|
329 |
+
prefix: (Optional) str:
|
330 |
+
An optional prefix, used to prefix each file name
|
331 |
+
"""
|
332 |
+
return self._tokenizer.model.save(directory, prefix=prefix)
|
333 |
+
|
334 |
+
def save(self, path: str, pretty: bool = True):
|
335 |
+
"""Save the current Tokenizer at the given path
|
336 |
+
|
337 |
+
Args:
|
338 |
+
path: str:
|
339 |
+
A path to the destination Tokenizer file
|
340 |
+
"""
|
341 |
+
return self._tokenizer.save(path, pretty)
|
342 |
+
|
343 |
+
def to_str(self, pretty: bool = False):
|
344 |
+
"""Get a serialized JSON version of the Tokenizer as a str
|
345 |
+
|
346 |
+
Args:
|
347 |
+
pretty: bool:
|
348 |
+
Whether the JSON string should be prettified
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
str
|
352 |
+
"""
|
353 |
+
return self._tokenizer.to_str(pretty)
|
354 |
+
|
355 |
+
def post_process(
|
356 |
+
self, encoding: Encoding, pair: Optional[Encoding] = None, add_special_tokens: bool = True
|
357 |
+
) -> Encoding:
|
358 |
+
"""Apply all the post-processing steps to the given encodings.
|
359 |
+
|
360 |
+
The various steps are:
|
361 |
+
1. Truncate according to global params (provided to `enable_truncation`)
|
362 |
+
2. Apply the PostProcessor
|
363 |
+
3. Pad according to global params. (provided to `enable_padding`)
|
364 |
+
|
365 |
+
Args:
|
366 |
+
encoding: Encoding:
|
367 |
+
The main Encoding to post process
|
368 |
+
|
369 |
+
pair: Optional[Encoding]:
|
370 |
+
An optional pair Encoding
|
371 |
+
|
372 |
+
add_special_tokens: bool:
|
373 |
+
Whether to add special tokens
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
The resulting Encoding
|
377 |
+
"""
|
378 |
+
return self._tokenizer.post_process(encoding, pair, add_special_tokens)
|
379 |
+
|
380 |
+
@property
|
381 |
+
def model(self) -> Model:
|
382 |
+
return self._tokenizer.model
|
383 |
+
|
384 |
+
@model.setter
|
385 |
+
def model(self, model: Model):
|
386 |
+
self._tokenizer.model = model
|
387 |
+
|
388 |
+
@property
|
389 |
+
def normalizer(self) -> Normalizer:
|
390 |
+
return self._tokenizer.normalizer
|
391 |
+
|
392 |
+
@normalizer.setter
|
393 |
+
def normalizer(self, normalizer: Normalizer):
|
394 |
+
self._tokenizer.normalizer = normalizer
|
395 |
+
|
396 |
+
@property
|
397 |
+
def pre_tokenizer(self) -> PreTokenizer:
|
398 |
+
return self._tokenizer.pre_tokenizer
|
399 |
+
|
400 |
+
@pre_tokenizer.setter
|
401 |
+
def pre_tokenizer(self, pre_tokenizer: PreTokenizer):
|
402 |
+
self._tokenizer.pre_tokenizer = pre_tokenizer
|
403 |
+
|
404 |
+
@property
|
405 |
+
def post_processor(self) -> PostProcessor:
|
406 |
+
return self._tokenizer.post_processor
|
407 |
+
|
408 |
+
@post_processor.setter
|
409 |
+
def post_processor(self, post_processor: PostProcessor):
|
410 |
+
self._tokenizer.post_processor = post_processor
|
411 |
+
|
412 |
+
@property
|
413 |
+
def decoder(self) -> Decoder:
|
414 |
+
return self._tokenizer.decoder
|
415 |
+
|
416 |
+
@decoder.setter
|
417 |
+
def decoder(self, decoder: Decoder):
|
418 |
+
self._tokenizer.decoder = decoder
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/bert_wordpiece.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Iterator, List, Optional, Union
|
2 |
+
|
3 |
+
from tokenizers import AddedToken, Tokenizer, decoders, trainers
|
4 |
+
from tokenizers.models import WordPiece
|
5 |
+
from tokenizers.normalizers import BertNormalizer
|
6 |
+
from tokenizers.pre_tokenizers import BertPreTokenizer
|
7 |
+
from tokenizers.processors import BertProcessing
|
8 |
+
|
9 |
+
from .base_tokenizer import BaseTokenizer
|
10 |
+
|
11 |
+
|
12 |
+
class BertWordPieceTokenizer(BaseTokenizer):
|
13 |
+
"""Bert WordPiece Tokenizer"""
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
18 |
+
unk_token: Union[str, AddedToken] = "[UNK]",
|
19 |
+
sep_token: Union[str, AddedToken] = "[SEP]",
|
20 |
+
cls_token: Union[str, AddedToken] = "[CLS]",
|
21 |
+
pad_token: Union[str, AddedToken] = "[PAD]",
|
22 |
+
mask_token: Union[str, AddedToken] = "[MASK]",
|
23 |
+
clean_text: bool = True,
|
24 |
+
handle_chinese_chars: bool = True,
|
25 |
+
strip_accents: Optional[bool] = None,
|
26 |
+
lowercase: bool = True,
|
27 |
+
wordpieces_prefix: str = "##",
|
28 |
+
):
|
29 |
+
if vocab is not None:
|
30 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token)))
|
31 |
+
else:
|
32 |
+
tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token)))
|
33 |
+
|
34 |
+
# Let the tokenizer know about special tokens if they are part of the vocab
|
35 |
+
if tokenizer.token_to_id(str(unk_token)) is not None:
|
36 |
+
tokenizer.add_special_tokens([str(unk_token)])
|
37 |
+
if tokenizer.token_to_id(str(sep_token)) is not None:
|
38 |
+
tokenizer.add_special_tokens([str(sep_token)])
|
39 |
+
if tokenizer.token_to_id(str(cls_token)) is not None:
|
40 |
+
tokenizer.add_special_tokens([str(cls_token)])
|
41 |
+
if tokenizer.token_to_id(str(pad_token)) is not None:
|
42 |
+
tokenizer.add_special_tokens([str(pad_token)])
|
43 |
+
if tokenizer.token_to_id(str(mask_token)) is not None:
|
44 |
+
tokenizer.add_special_tokens([str(mask_token)])
|
45 |
+
|
46 |
+
tokenizer.normalizer = BertNormalizer(
|
47 |
+
clean_text=clean_text,
|
48 |
+
handle_chinese_chars=handle_chinese_chars,
|
49 |
+
strip_accents=strip_accents,
|
50 |
+
lowercase=lowercase,
|
51 |
+
)
|
52 |
+
tokenizer.pre_tokenizer = BertPreTokenizer()
|
53 |
+
|
54 |
+
if vocab is not None:
|
55 |
+
sep_token_id = tokenizer.token_to_id(str(sep_token))
|
56 |
+
if sep_token_id is None:
|
57 |
+
raise TypeError("sep_token not found in the vocabulary")
|
58 |
+
cls_token_id = tokenizer.token_to_id(str(cls_token))
|
59 |
+
if cls_token_id is None:
|
60 |
+
raise TypeError("cls_token not found in the vocabulary")
|
61 |
+
|
62 |
+
tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id))
|
63 |
+
tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix)
|
64 |
+
|
65 |
+
parameters = {
|
66 |
+
"model": "BertWordPiece",
|
67 |
+
"unk_token": unk_token,
|
68 |
+
"sep_token": sep_token,
|
69 |
+
"cls_token": cls_token,
|
70 |
+
"pad_token": pad_token,
|
71 |
+
"mask_token": mask_token,
|
72 |
+
"clean_text": clean_text,
|
73 |
+
"handle_chinese_chars": handle_chinese_chars,
|
74 |
+
"strip_accents": strip_accents,
|
75 |
+
"lowercase": lowercase,
|
76 |
+
"wordpieces_prefix": wordpieces_prefix,
|
77 |
+
}
|
78 |
+
|
79 |
+
super().__init__(tokenizer, parameters)
|
80 |
+
|
81 |
+
@staticmethod
|
82 |
+
def from_file(vocab: str, **kwargs):
|
83 |
+
vocab = WordPiece.read_file(vocab)
|
84 |
+
return BertWordPieceTokenizer(vocab, **kwargs)
|
85 |
+
|
86 |
+
def train(
|
87 |
+
self,
|
88 |
+
files: Union[str, List[str]],
|
89 |
+
vocab_size: int = 30000,
|
90 |
+
min_frequency: int = 2,
|
91 |
+
limit_alphabet: int = 1000,
|
92 |
+
initial_alphabet: List[str] = [],
|
93 |
+
special_tokens: List[Union[str, AddedToken]] = [
|
94 |
+
"[PAD]",
|
95 |
+
"[UNK]",
|
96 |
+
"[CLS]",
|
97 |
+
"[SEP]",
|
98 |
+
"[MASK]",
|
99 |
+
],
|
100 |
+
show_progress: bool = True,
|
101 |
+
wordpieces_prefix: str = "##",
|
102 |
+
):
|
103 |
+
"""Train the model using the given files"""
|
104 |
+
|
105 |
+
trainer = trainers.WordPieceTrainer(
|
106 |
+
vocab_size=vocab_size,
|
107 |
+
min_frequency=min_frequency,
|
108 |
+
limit_alphabet=limit_alphabet,
|
109 |
+
initial_alphabet=initial_alphabet,
|
110 |
+
special_tokens=special_tokens,
|
111 |
+
show_progress=show_progress,
|
112 |
+
continuing_subword_prefix=wordpieces_prefix,
|
113 |
+
)
|
114 |
+
if isinstance(files, str):
|
115 |
+
files = [files]
|
116 |
+
self._tokenizer.train(files, trainer=trainer)
|
117 |
+
|
118 |
+
def train_from_iterator(
|
119 |
+
self,
|
120 |
+
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
121 |
+
vocab_size: int = 30000,
|
122 |
+
min_frequency: int = 2,
|
123 |
+
limit_alphabet: int = 1000,
|
124 |
+
initial_alphabet: List[str] = [],
|
125 |
+
special_tokens: List[Union[str, AddedToken]] = [
|
126 |
+
"[PAD]",
|
127 |
+
"[UNK]",
|
128 |
+
"[CLS]",
|
129 |
+
"[SEP]",
|
130 |
+
"[MASK]",
|
131 |
+
],
|
132 |
+
show_progress: bool = True,
|
133 |
+
wordpieces_prefix: str = "##",
|
134 |
+
length: Optional[int] = None,
|
135 |
+
):
|
136 |
+
"""Train the model using the given iterator"""
|
137 |
+
|
138 |
+
trainer = trainers.WordPieceTrainer(
|
139 |
+
vocab_size=vocab_size,
|
140 |
+
min_frequency=min_frequency,
|
141 |
+
limit_alphabet=limit_alphabet,
|
142 |
+
initial_alphabet=initial_alphabet,
|
143 |
+
special_tokens=special_tokens,
|
144 |
+
show_progress=show_progress,
|
145 |
+
continuing_subword_prefix=wordpieces_prefix,
|
146 |
+
)
|
147 |
+
self._tokenizer.train_from_iterator(
|
148 |
+
iterator,
|
149 |
+
trainer=trainer,
|
150 |
+
length=length,
|
151 |
+
)
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/byte_level_bpe.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
|
4 |
+
from tokenizers.models import BPE
|
5 |
+
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
|
6 |
+
|
7 |
+
from .base_tokenizer import BaseTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
class ByteLevelBPETokenizer(BaseTokenizer):
|
11 |
+
"""ByteLevelBPETokenizer
|
12 |
+
|
13 |
+
Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
19 |
+
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
|
20 |
+
add_prefix_space: bool = False,
|
21 |
+
lowercase: bool = False,
|
22 |
+
dropout: Optional[float] = None,
|
23 |
+
unicode_normalizer: Optional[str] = None,
|
24 |
+
continuing_subword_prefix: Optional[str] = None,
|
25 |
+
end_of_word_suffix: Optional[str] = None,
|
26 |
+
trim_offsets: bool = False,
|
27 |
+
):
|
28 |
+
if vocab is not None and merges is not None:
|
29 |
+
tokenizer = Tokenizer(
|
30 |
+
BPE(
|
31 |
+
vocab,
|
32 |
+
merges,
|
33 |
+
dropout=dropout,
|
34 |
+
continuing_subword_prefix=continuing_subword_prefix or "",
|
35 |
+
end_of_word_suffix=end_of_word_suffix or "",
|
36 |
+
)
|
37 |
+
)
|
38 |
+
else:
|
39 |
+
tokenizer = Tokenizer(BPE())
|
40 |
+
|
41 |
+
# Check for Unicode normalization first (before everything else)
|
42 |
+
normalizers = []
|
43 |
+
|
44 |
+
if unicode_normalizer:
|
45 |
+
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
|
46 |
+
|
47 |
+
if lowercase:
|
48 |
+
normalizers += [Lowercase()]
|
49 |
+
|
50 |
+
# Create the normalizer structure
|
51 |
+
if len(normalizers) > 0:
|
52 |
+
if len(normalizers) > 1:
|
53 |
+
tokenizer.normalizer = Sequence(normalizers)
|
54 |
+
else:
|
55 |
+
tokenizer.normalizer = normalizers[0]
|
56 |
+
|
57 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
|
58 |
+
tokenizer.decoder = decoders.ByteLevel()
|
59 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
|
60 |
+
|
61 |
+
parameters = {
|
62 |
+
"model": "ByteLevelBPE",
|
63 |
+
"add_prefix_space": add_prefix_space,
|
64 |
+
"lowercase": lowercase,
|
65 |
+
"dropout": dropout,
|
66 |
+
"unicode_normalizer": unicode_normalizer,
|
67 |
+
"continuing_subword_prefix": continuing_subword_prefix,
|
68 |
+
"end_of_word_suffix": end_of_word_suffix,
|
69 |
+
"trim_offsets": trim_offsets,
|
70 |
+
}
|
71 |
+
|
72 |
+
super().__init__(tokenizer, parameters)
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
|
76 |
+
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
77 |
+
return ByteLevelBPETokenizer(vocab, merges, **kwargs)
|
78 |
+
|
79 |
+
def train(
|
80 |
+
self,
|
81 |
+
files: Union[str, List[str]],
|
82 |
+
vocab_size: int = 30000,
|
83 |
+
min_frequency: int = 2,
|
84 |
+
show_progress: bool = True,
|
85 |
+
special_tokens: List[Union[str, AddedToken]] = [],
|
86 |
+
):
|
87 |
+
"""Train the model using the given files"""
|
88 |
+
|
89 |
+
trainer = trainers.BpeTrainer(
|
90 |
+
vocab_size=vocab_size,
|
91 |
+
min_frequency=min_frequency,
|
92 |
+
show_progress=show_progress,
|
93 |
+
special_tokens=special_tokens,
|
94 |
+
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
95 |
+
)
|
96 |
+
if isinstance(files, str):
|
97 |
+
files = [files]
|
98 |
+
self._tokenizer.train(files, trainer=trainer)
|
99 |
+
|
100 |
+
def train_from_iterator(
|
101 |
+
self,
|
102 |
+
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
103 |
+
vocab_size: int = 30000,
|
104 |
+
min_frequency: int = 2,
|
105 |
+
show_progress: bool = True,
|
106 |
+
special_tokens: List[Union[str, AddedToken]] = [],
|
107 |
+
length: Optional[int] = None,
|
108 |
+
):
|
109 |
+
"""Train the model using the given iterator"""
|
110 |
+
|
111 |
+
trainer = trainers.BpeTrainer(
|
112 |
+
vocab_size=vocab_size,
|
113 |
+
min_frequency=min_frequency,
|
114 |
+
show_progress=show_progress,
|
115 |
+
special_tokens=special_tokens,
|
116 |
+
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
117 |
+
)
|
118 |
+
self._tokenizer.train_from_iterator(
|
119 |
+
iterator,
|
120 |
+
trainer=trainer,
|
121 |
+
length=length,
|
122 |
+
)
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/char_level_bpe.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
|
4 |
+
from ..models import BPE
|
5 |
+
from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str
|
6 |
+
from .base_tokenizer import BaseTokenizer
|
7 |
+
|
8 |
+
|
9 |
+
class CharBPETokenizer(BaseTokenizer):
|
10 |
+
"""Original BPE Tokenizer
|
11 |
+
|
12 |
+
Represents the BPE algorithm, as introduced by Rico Sennrich
|
13 |
+
(https://arxiv.org/abs/1508.07909)
|
14 |
+
|
15 |
+
The defaults settings corresponds to OpenAI GPT BPE tokenizers and differs from the original
|
16 |
+
Sennrich subword-nmt implementation by the following options that you can deactivate:
|
17 |
+
- adding a normalizer to clean up the text (deactivate with `bert_normalizer=False`) by:
|
18 |
+
* removing any control characters and replacing all whitespaces by the classic one.
|
19 |
+
* handle chinese chars by putting spaces around them.
|
20 |
+
* strip all accents.
|
21 |
+
- spitting on punctuation in addition to whitespaces (deactivate it with
|
22 |
+
`split_on_whitespace_only=True`)
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
28 |
+
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
|
29 |
+
unk_token: Union[str, AddedToken] = "<unk>",
|
30 |
+
suffix: str = "</w>",
|
31 |
+
dropout: Optional[float] = None,
|
32 |
+
lowercase: bool = False,
|
33 |
+
unicode_normalizer: Optional[str] = None,
|
34 |
+
bert_normalizer: bool = True,
|
35 |
+
split_on_whitespace_only: bool = False,
|
36 |
+
):
|
37 |
+
if vocab is not None and merges is not None:
|
38 |
+
tokenizer = Tokenizer(
|
39 |
+
BPE(
|
40 |
+
vocab,
|
41 |
+
merges,
|
42 |
+
dropout=dropout,
|
43 |
+
unk_token=str(unk_token),
|
44 |
+
end_of_word_suffix=suffix,
|
45 |
+
)
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix))
|
49 |
+
|
50 |
+
if tokenizer.token_to_id(str(unk_token)) is not None:
|
51 |
+
tokenizer.add_special_tokens([str(unk_token)])
|
52 |
+
|
53 |
+
# Check for Unicode normalization first (before everything else)
|
54 |
+
normalizers = []
|
55 |
+
|
56 |
+
if unicode_normalizer:
|
57 |
+
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
|
58 |
+
|
59 |
+
if bert_normalizer:
|
60 |
+
normalizers += [BertNormalizer(lowercase=False)]
|
61 |
+
|
62 |
+
if lowercase:
|
63 |
+
normalizers += [Lowercase()]
|
64 |
+
|
65 |
+
# Create the normalizer structure
|
66 |
+
if len(normalizers) > 0:
|
67 |
+
if len(normalizers) > 1:
|
68 |
+
tokenizer.normalizer = Sequence(normalizers)
|
69 |
+
else:
|
70 |
+
tokenizer.normalizer = normalizers[0]
|
71 |
+
|
72 |
+
if split_on_whitespace_only:
|
73 |
+
tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
|
74 |
+
else:
|
75 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
76 |
+
|
77 |
+
tokenizer.decoder = decoders.BPEDecoder(suffix=suffix)
|
78 |
+
|
79 |
+
parameters = {
|
80 |
+
"model": "BPE",
|
81 |
+
"unk_token": unk_token,
|
82 |
+
"suffix": suffix,
|
83 |
+
"dropout": dropout,
|
84 |
+
"lowercase": lowercase,
|
85 |
+
"unicode_normalizer": unicode_normalizer,
|
86 |
+
"bert_normalizer": bert_normalizer,
|
87 |
+
"split_on_whitespace_only": split_on_whitespace_only,
|
88 |
+
}
|
89 |
+
|
90 |
+
super().__init__(tokenizer, parameters)
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
|
94 |
+
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
95 |
+
return CharBPETokenizer(vocab, merges, **kwargs)
|
96 |
+
|
97 |
+
def train(
|
98 |
+
self,
|
99 |
+
files: Union[str, List[str]],
|
100 |
+
vocab_size: int = 30000,
|
101 |
+
min_frequency: int = 2,
|
102 |
+
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
103 |
+
limit_alphabet: int = 1000,
|
104 |
+
initial_alphabet: List[str] = [],
|
105 |
+
suffix: Optional[str] = "</w>",
|
106 |
+
show_progress: bool = True,
|
107 |
+
):
|
108 |
+
"""Train the model using the given files"""
|
109 |
+
|
110 |
+
trainer = trainers.BpeTrainer(
|
111 |
+
vocab_size=vocab_size,
|
112 |
+
min_frequency=min_frequency,
|
113 |
+
special_tokens=special_tokens,
|
114 |
+
limit_alphabet=limit_alphabet,
|
115 |
+
initial_alphabet=initial_alphabet,
|
116 |
+
end_of_word_suffix=suffix,
|
117 |
+
show_progress=show_progress,
|
118 |
+
)
|
119 |
+
if isinstance(files, str):
|
120 |
+
files = [files]
|
121 |
+
self._tokenizer.train(files, trainer=trainer)
|
122 |
+
|
123 |
+
def train_from_iterator(
|
124 |
+
self,
|
125 |
+
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
126 |
+
vocab_size: int = 30000,
|
127 |
+
min_frequency: int = 2,
|
128 |
+
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
129 |
+
limit_alphabet: int = 1000,
|
130 |
+
initial_alphabet: List[str] = [],
|
131 |
+
suffix: Optional[str] = "</w>",
|
132 |
+
show_progress: bool = True,
|
133 |
+
length: Optional[int] = None,
|
134 |
+
):
|
135 |
+
"""Train the model using the given iterator"""
|
136 |
+
|
137 |
+
trainer = trainers.BpeTrainer(
|
138 |
+
vocab_size=vocab_size,
|
139 |
+
min_frequency=min_frequency,
|
140 |
+
special_tokens=special_tokens,
|
141 |
+
limit_alphabet=limit_alphabet,
|
142 |
+
initial_alphabet=initial_alphabet,
|
143 |
+
end_of_word_suffix=suffix,
|
144 |
+
show_progress=show_progress,
|
145 |
+
)
|
146 |
+
self._tokenizer.train_from_iterator(
|
147 |
+
iterator,
|
148 |
+
trainer=trainer,
|
149 |
+
length=length,
|
150 |
+
)
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/sentencepiece_bpe.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
|
4 |
+
from tokenizers.models import BPE
|
5 |
+
from tokenizers.normalizers import NFKC
|
6 |
+
|
7 |
+
from .base_tokenizer import BaseTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
class SentencePieceBPETokenizer(BaseTokenizer):
|
11 |
+
"""SentencePiece BPE Tokenizer
|
12 |
+
|
13 |
+
Represents the BPE algorithm, with the pretokenization used by SentencePiece
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
19 |
+
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
|
20 |
+
unk_token: Union[str, AddedToken] = "<unk>",
|
21 |
+
replacement: str = "▁",
|
22 |
+
add_prefix_space: bool = True,
|
23 |
+
dropout: Optional[float] = None,
|
24 |
+
fuse_unk: Optional[bool] = False,
|
25 |
+
):
|
26 |
+
if vocab is not None and merges is not None:
|
27 |
+
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
|
28 |
+
else:
|
29 |
+
tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
|
30 |
+
|
31 |
+
if tokenizer.token_to_id(str(unk_token)) is not None:
|
32 |
+
tokenizer.add_special_tokens([str(unk_token)])
|
33 |
+
|
34 |
+
tokenizer.normalizer = NFKC()
|
35 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
36 |
+
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
37 |
+
|
38 |
+
parameters = {
|
39 |
+
"model": "SentencePieceBPE",
|
40 |
+
"unk_token": unk_token,
|
41 |
+
"replacement": replacement,
|
42 |
+
"add_prefix_space": add_prefix_space,
|
43 |
+
"dropout": dropout,
|
44 |
+
}
|
45 |
+
|
46 |
+
super().__init__(tokenizer, parameters)
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
|
50 |
+
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
51 |
+
return SentencePieceBPETokenizer(vocab, merges, **kwargs)
|
52 |
+
|
53 |
+
def train(
|
54 |
+
self,
|
55 |
+
files: Union[str, List[str]],
|
56 |
+
vocab_size: int = 30000,
|
57 |
+
min_frequency: int = 2,
|
58 |
+
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
59 |
+
limit_alphabet: int = 1000,
|
60 |
+
initial_alphabet: List[str] = [],
|
61 |
+
show_progress: bool = True,
|
62 |
+
):
|
63 |
+
"""Train the model using the given files"""
|
64 |
+
|
65 |
+
trainer = trainers.BpeTrainer(
|
66 |
+
vocab_size=vocab_size,
|
67 |
+
min_frequency=min_frequency,
|
68 |
+
special_tokens=special_tokens,
|
69 |
+
limit_alphabet=limit_alphabet,
|
70 |
+
initial_alphabet=initial_alphabet,
|
71 |
+
show_progress=show_progress,
|
72 |
+
)
|
73 |
+
if isinstance(files, str):
|
74 |
+
files = [files]
|
75 |
+
self._tokenizer.train(files, trainer=trainer)
|
76 |
+
|
77 |
+
def train_from_iterator(
|
78 |
+
self,
|
79 |
+
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
80 |
+
vocab_size: int = 30000,
|
81 |
+
min_frequency: int = 2,
|
82 |
+
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
83 |
+
limit_alphabet: int = 1000,
|
84 |
+
initial_alphabet: List[str] = [],
|
85 |
+
show_progress: bool = True,
|
86 |
+
length: Optional[int] = None,
|
87 |
+
):
|
88 |
+
"""Train the model using the given iterator"""
|
89 |
+
|
90 |
+
trainer = trainers.BpeTrainer(
|
91 |
+
vocab_size=vocab_size,
|
92 |
+
min_frequency=min_frequency,
|
93 |
+
special_tokens=special_tokens,
|
94 |
+
limit_alphabet=limit_alphabet,
|
95 |
+
initial_alphabet=initial_alphabet,
|
96 |
+
show_progress=show_progress,
|
97 |
+
)
|
98 |
+
self._tokenizer.train_from_iterator(
|
99 |
+
iterator,
|
100 |
+
trainer=trainer,
|
101 |
+
length=length,
|
102 |
+
)
|
env-llmeval/lib/python3.10/site-packages/tokenizers/implementations/sentencepiece_unigram.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import Iterator, List, Optional, Union, Tuple
|
4 |
+
|
5 |
+
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
|
6 |
+
from tokenizers.models import Unigram
|
7 |
+
|
8 |
+
from .base_tokenizer import BaseTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
class SentencePieceUnigramTokenizer(BaseTokenizer):
|
12 |
+
"""SentencePiece Unigram Tokenizer
|
13 |
+
|
14 |
+
Represents the Unigram algorithm, with the pretokenization used by SentencePiece
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab: Optional[List[Tuple[str, float]]] = None,
|
20 |
+
replacement: str = "▁",
|
21 |
+
add_prefix_space: bool = True,
|
22 |
+
):
|
23 |
+
if vocab is not None:
|
24 |
+
# Let Unigram(..) fail if only one of them is None
|
25 |
+
tokenizer = Tokenizer(Unigram(vocab))
|
26 |
+
else:
|
27 |
+
tokenizer = Tokenizer(Unigram())
|
28 |
+
|
29 |
+
tokenizer.normalizer = normalizers.Sequence(
|
30 |
+
[normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")]
|
31 |
+
)
|
32 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
33 |
+
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
34 |
+
|
35 |
+
parameters = {
|
36 |
+
"model": "SentencePieceUnigram",
|
37 |
+
"replacement": replacement,
|
38 |
+
"add_prefix_space": add_prefix_space,
|
39 |
+
}
|
40 |
+
|
41 |
+
super().__init__(tokenizer, parameters)
|
42 |
+
|
43 |
+
def train(
|
44 |
+
self,
|
45 |
+
files: Union[str, List[str]],
|
46 |
+
vocab_size: int = 8000,
|
47 |
+
show_progress: bool = True,
|
48 |
+
special_tokens: Optional[List[Union[str, AddedToken]]] = None,
|
49 |
+
initial_alphabet: Optional[List[str]] = None,
|
50 |
+
unk_token: Optional[str] = None,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Train the model using the given files
|
54 |
+
|
55 |
+
Args:
|
56 |
+
files (:obj:`List[str]`):
|
57 |
+
A list of path to the files that we should use for training
|
58 |
+
vocab_size (:obj:`int`):
|
59 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
60 |
+
show_progress (:obj:`bool`):
|
61 |
+
Whether to show progress bars while training.
|
62 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
|
63 |
+
A list of special tokens the model should know of.
|
64 |
+
initial_alphabet (:obj:`List[str]`, `optional`):
|
65 |
+
A list of characters to include in the initial alphabet, even
|
66 |
+
if not seen in the training dataset.
|
67 |
+
If the strings contain more than one character, only the first one
|
68 |
+
is kept.
|
69 |
+
unk_token (:obj:`str`, `optional`):
|
70 |
+
The unknown token to be used by the model.
|
71 |
+
"""
|
72 |
+
|
73 |
+
if special_tokens is None:
|
74 |
+
special_tokens = []
|
75 |
+
|
76 |
+
if initial_alphabet is None:
|
77 |
+
initial_alphabet = []
|
78 |
+
|
79 |
+
trainer = trainers.UnigramTrainer(
|
80 |
+
vocab_size=vocab_size,
|
81 |
+
special_tokens=special_tokens,
|
82 |
+
show_progress=show_progress,
|
83 |
+
initial_alphabet=initial_alphabet,
|
84 |
+
unk_token=unk_token,
|
85 |
+
)
|
86 |
+
|
87 |
+
if isinstance(files, str):
|
88 |
+
files = [files]
|
89 |
+
self._tokenizer.train(files, trainer=trainer)
|
90 |
+
|
91 |
+
def train_from_iterator(
|
92 |
+
self,
|
93 |
+
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
94 |
+
vocab_size: int = 8000,
|
95 |
+
show_progress: bool = True,
|
96 |
+
special_tokens: Optional[List[Union[str, AddedToken]]] = None,
|
97 |
+
initial_alphabet: Optional[List[str]] = None,
|
98 |
+
unk_token: Optional[str] = None,
|
99 |
+
length: Optional[int] = None,
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
Train the model using the given iterator
|
103 |
+
|
104 |
+
Args:
|
105 |
+
iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`):
|
106 |
+
Any iterator over strings or list of strings
|
107 |
+
vocab_size (:obj:`int`):
|
108 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
109 |
+
show_progress (:obj:`bool`):
|
110 |
+
Whether to show progress bars while training.
|
111 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
|
112 |
+
A list of special tokens the model should know of.
|
113 |
+
initial_alphabet (:obj:`List[str]`, `optional`):
|
114 |
+
A list of characters to include in the initial alphabet, even
|
115 |
+
if not seen in the training dataset.
|
116 |
+
If the strings contain more than one character, only the first one
|
117 |
+
is kept.
|
118 |
+
unk_token (:obj:`str`, `optional`):
|
119 |
+
The unknown token to be used by the model.
|
120 |
+
length (:obj:`int`, `optional`):
|
121 |
+
The total number of sequences in the iterator. This is used to
|
122 |
+
provide meaningful progress tracking
|
123 |
+
"""
|
124 |
+
|
125 |
+
if special_tokens is None:
|
126 |
+
special_tokens = []
|
127 |
+
|
128 |
+
if initial_alphabet is None:
|
129 |
+
initial_alphabet = []
|
130 |
+
|
131 |
+
trainer = trainers.UnigramTrainer(
|
132 |
+
vocab_size=vocab_size,
|
133 |
+
special_tokens=special_tokens,
|
134 |
+
show_progress=show_progress,
|
135 |
+
initial_alphabet=initial_alphabet,
|
136 |
+
unk_token=unk_token,
|
137 |
+
)
|
138 |
+
|
139 |
+
self._tokenizer.train_from_iterator(
|
140 |
+
iterator,
|
141 |
+
trainer=trainer,
|
142 |
+
length=length,
|
143 |
+
)
|
144 |
+
|
145 |
+
@staticmethod
|
146 |
+
def from_spm(filename: str):
|
147 |
+
try:
|
148 |
+
import sys
|
149 |
+
|
150 |
+
sys.path.append(".")
|
151 |
+
|
152 |
+
import sentencepiece_model_pb2 as model
|
153 |
+
except Exception:
|
154 |
+
raise Exception(
|
155 |
+
"You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
|
156 |
+
)
|
157 |
+
|
158 |
+
m = model.ModelProto()
|
159 |
+
m.ParseFromString(open(filename, "rb").read())
|
160 |
+
|
161 |
+
precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
|
162 |
+
vocab = [(piece.piece, piece.score) for piece in m.pieces]
|
163 |
+
unk_id = m.trainer_spec.unk_id
|
164 |
+
model_type = m.trainer_spec.model_type
|
165 |
+
byte_fallback = m.trainer_spec.byte_fallback
|
166 |
+
if model_type != 1:
|
167 |
+
raise Exception(
|
168 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
169 |
+
)
|
170 |
+
|
171 |
+
replacement = "▁"
|
172 |
+
add_prefix_space = True
|
173 |
+
|
174 |
+
tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback))
|
175 |
+
|
176 |
+
if precompiled_charsmap:
|
177 |
+
tokenizer.normalizer = normalizers.Sequence(
|
178 |
+
[
|
179 |
+
normalizers.Precompiled(precompiled_charsmap),
|
180 |
+
normalizers.Replace(Regex(" {2,}"), " "),
|
181 |
+
]
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")])
|
185 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
186 |
+
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
187 |
+
|
188 |
+
parameters = {
|
189 |
+
"model": "SentencePieceUnigram",
|
190 |
+
}
|
191 |
+
|
192 |
+
obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
|
193 |
+
BaseTokenizer.__init__(obj, tokenizer, parameters)
|
194 |
+
return obj
|
env-llmeval/lib/python3.10/site-packages/tokenizers/models/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
from .. import models
|
3 |
+
|
4 |
+
Model = models.Model
|
5 |
+
BPE = models.BPE
|
6 |
+
Unigram = models.Unigram
|
7 |
+
WordLevel = models.WordLevel
|
8 |
+
WordPiece = models.WordPiece
|
env-llmeval/lib/python3.10/site-packages/tokenizers/models/__init__.pyi
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class Model:
|
3 |
+
"""
|
4 |
+
Base class for all models
|
5 |
+
|
6 |
+
The model represents the actual tokenization algorithm. This is the part that
|
7 |
+
will contain and manage the learned vocabulary.
|
8 |
+
|
9 |
+
This class cannot be constructed directly. Please use one of the concrete models.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def get_trainer(self):
|
13 |
+
"""
|
14 |
+
Get the associated :class:`~tokenizers.trainers.Trainer`
|
15 |
+
|
16 |
+
Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
|
17 |
+
:class:`~tokenizers.models.Model`.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
:class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
|
21 |
+
"""
|
22 |
+
pass
|
23 |
+
def id_to_token(self, id):
|
24 |
+
"""
|
25 |
+
Get the token associated to an ID
|
26 |
+
|
27 |
+
Args:
|
28 |
+
id (:obj:`int`):
|
29 |
+
An ID to convert to a token
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
:obj:`str`: The token associated to the ID
|
33 |
+
"""
|
34 |
+
pass
|
35 |
+
def save(self, folder, prefix):
|
36 |
+
"""
|
37 |
+
Save the current model
|
38 |
+
|
39 |
+
Save the current model in the given folder, using the given prefix for the various
|
40 |
+
files that will get created.
|
41 |
+
Any file with the same name that already exists in this folder will be overwritten.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
folder (:obj:`str`):
|
45 |
+
The path to the target folder in which to save the various files
|
46 |
+
|
47 |
+
prefix (:obj:`str`, `optional`):
|
48 |
+
An optional prefix, used to prefix each file name
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
:obj:`List[str]`: The list of saved files
|
52 |
+
"""
|
53 |
+
pass
|
54 |
+
def token_to_id(self, tokens):
|
55 |
+
"""
|
56 |
+
Get the ID associated to a token
|
57 |
+
|
58 |
+
Args:
|
59 |
+
token (:obj:`str`):
|
60 |
+
A token to convert to an ID
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
:obj:`int`: The ID associated to the token
|
64 |
+
"""
|
65 |
+
pass
|
66 |
+
def tokenize(self, sequence):
|
67 |
+
"""
|
68 |
+
Tokenize a sequence
|
69 |
+
|
70 |
+
Args:
|
71 |
+
sequence (:obj:`str`):
|
72 |
+
A sequence to tokenize
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
|
76 |
+
"""
|
77 |
+
pass
|
78 |
+
|
79 |
+
class BPE(Model):
|
80 |
+
"""
|
81 |
+
An implementation of the BPE (Byte-Pair Encoding) algorithm
|
82 |
+
|
83 |
+
Args:
|
84 |
+
vocab (:obj:`Dict[str, int]`, `optional`):
|
85 |
+
A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
|
86 |
+
|
87 |
+
merges (:obj:`List[Tuple[str, str]]`, `optional`):
|
88 |
+
A list of pairs of tokens (:obj:`Tuple[str, str]`) :obj:`[("a", "b"),...]`
|
89 |
+
|
90 |
+
cache_capacity (:obj:`int`, `optional`):
|
91 |
+
The number of words that the BPE cache can contain. The cache allows
|
92 |
+
to speed-up the process by keeping the result of the merge operations
|
93 |
+
for a number of words.
|
94 |
+
|
95 |
+
dropout (:obj:`float`, `optional`):
|
96 |
+
A float between 0 and 1 that represents the BPE dropout to use.
|
97 |
+
|
98 |
+
unk_token (:obj:`str`, `optional`):
|
99 |
+
The unknown token to be used by the model.
|
100 |
+
|
101 |
+
continuing_subword_prefix (:obj:`str`, `optional`):
|
102 |
+
The prefix to attach to subword units that don't represent a beginning of word.
|
103 |
+
|
104 |
+
end_of_word_suffix (:obj:`str`, `optional`):
|
105 |
+
The suffix to attach to subword units that represent an end of word.
|
106 |
+
|
107 |
+
fuse_unk (:obj:`bool`, `optional`):
|
108 |
+
Whether to fuse any subsequent unknown tokens into a single one
|
109 |
+
|
110 |
+
byte_fallback (:obj:`bool`, `optional`):
|
111 |
+
Whether to use spm byte-fallback trick (defaults to False)
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
vocab=None,
|
117 |
+
merges=None,
|
118 |
+
cache_capacity=None,
|
119 |
+
dropout=None,
|
120 |
+
unk_token=None,
|
121 |
+
continuing_subword_prefix=None,
|
122 |
+
end_of_word_suffix=None,
|
123 |
+
fuse_unk=None,
|
124 |
+
byte_fallback=False,
|
125 |
+
):
|
126 |
+
pass
|
127 |
+
@staticmethod
|
128 |
+
def from_file(cls, vocab, merge, **kwargs):
|
129 |
+
"""
|
130 |
+
Instantiate a BPE model from the given files.
|
131 |
+
|
132 |
+
This method is roughly equivalent to doing::
|
133 |
+
|
134 |
+
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
135 |
+
bpe = BPE(vocab, merges)
|
136 |
+
|
137 |
+
If you don't need to keep the :obj:`vocab, merges` values lying around,
|
138 |
+
this method is more optimized than manually calling
|
139 |
+
:meth:`~tokenizers.models.BPE.read_file` to initialize a :class:`~tokenizers.models.BPE`
|
140 |
+
|
141 |
+
Args:
|
142 |
+
vocab (:obj:`str`):
|
143 |
+
The path to a :obj:`vocab.json` file
|
144 |
+
|
145 |
+
merges (:obj:`str`):
|
146 |
+
The path to a :obj:`merges.txt` file
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
:class:`~tokenizers.models.BPE`: An instance of BPE loaded from these files
|
150 |
+
"""
|
151 |
+
pass
|
152 |
+
def get_trainer(self):
|
153 |
+
"""
|
154 |
+
Get the associated :class:`~tokenizers.trainers.Trainer`
|
155 |
+
|
156 |
+
Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
|
157 |
+
:class:`~tokenizers.models.Model`.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
:class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
|
161 |
+
"""
|
162 |
+
pass
|
163 |
+
def id_to_token(self, id):
|
164 |
+
"""
|
165 |
+
Get the token associated to an ID
|
166 |
+
|
167 |
+
Args:
|
168 |
+
id (:obj:`int`):
|
169 |
+
An ID to convert to a token
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
:obj:`str`: The token associated to the ID
|
173 |
+
"""
|
174 |
+
pass
|
175 |
+
@staticmethod
|
176 |
+
def read_file(self, vocab, merges):
|
177 |
+
"""
|
178 |
+
Read a :obj:`vocab.json` and a :obj:`merges.txt` files
|
179 |
+
|
180 |
+
This method provides a way to read and parse the content of these files,
|
181 |
+
returning the relevant data structures. If you want to instantiate some BPE models
|
182 |
+
from memory, this method gives you the expected input from the standard files.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
vocab (:obj:`str`):
|
186 |
+
The path to a :obj:`vocab.json` file
|
187 |
+
|
188 |
+
merges (:obj:`str`):
|
189 |
+
The path to a :obj:`merges.txt` file
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
A :obj:`Tuple` with the vocab and the merges:
|
193 |
+
The vocabulary and merges loaded into memory
|
194 |
+
"""
|
195 |
+
pass
|
196 |
+
def save(self, folder, prefix):
|
197 |
+
"""
|
198 |
+
Save the current model
|
199 |
+
|
200 |
+
Save the current model in the given folder, using the given prefix for the various
|
201 |
+
files that will get created.
|
202 |
+
Any file with the same name that already exists in this folder will be overwritten.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
folder (:obj:`str`):
|
206 |
+
The path to the target folder in which to save the various files
|
207 |
+
|
208 |
+
prefix (:obj:`str`, `optional`):
|
209 |
+
An optional prefix, used to prefix each file name
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
:obj:`List[str]`: The list of saved files
|
213 |
+
"""
|
214 |
+
pass
|
215 |
+
def token_to_id(self, tokens):
|
216 |
+
"""
|
217 |
+
Get the ID associated to a token
|
218 |
+
|
219 |
+
Args:
|
220 |
+
token (:obj:`str`):
|
221 |
+
A token to convert to an ID
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
:obj:`int`: The ID associated to the token
|
225 |
+
"""
|
226 |
+
pass
|
227 |
+
def tokenize(self, sequence):
|
228 |
+
"""
|
229 |
+
Tokenize a sequence
|
230 |
+
|
231 |
+
Args:
|
232 |
+
sequence (:obj:`str`):
|
233 |
+
A sequence to tokenize
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
|
237 |
+
"""
|
238 |
+
pass
|
239 |
+
|
240 |
+
class Unigram(Model):
|
241 |
+
"""
|
242 |
+
An implementation of the Unigram algorithm
|
243 |
+
|
244 |
+
Args:
|
245 |
+
vocab (:obj:`List[Tuple[str, float]]`, `optional`, `optional`):
|
246 |
+
A list of vocabulary items and their relative score [("am", -0.2442),...]
|
247 |
+
"""
|
248 |
+
|
249 |
+
def __init__(self, vocab, unk_id, byte_fallback):
|
250 |
+
pass
|
251 |
+
def get_trainer(self):
|
252 |
+
"""
|
253 |
+
Get the associated :class:`~tokenizers.trainers.Trainer`
|
254 |
+
|
255 |
+
Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
|
256 |
+
:class:`~tokenizers.models.Model`.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
:class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
|
260 |
+
"""
|
261 |
+
pass
|
262 |
+
def id_to_token(self, id):
|
263 |
+
"""
|
264 |
+
Get the token associated to an ID
|
265 |
+
|
266 |
+
Args:
|
267 |
+
id (:obj:`int`):
|
268 |
+
An ID to convert to a token
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
:obj:`str`: The token associated to the ID
|
272 |
+
"""
|
273 |
+
pass
|
274 |
+
def save(self, folder, prefix):
|
275 |
+
"""
|
276 |
+
Save the current model
|
277 |
+
|
278 |
+
Save the current model in the given folder, using the given prefix for the various
|
279 |
+
files that will get created.
|
280 |
+
Any file with the same name that already exists in this folder will be overwritten.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
folder (:obj:`str`):
|
284 |
+
The path to the target folder in which to save the various files
|
285 |
+
|
286 |
+
prefix (:obj:`str`, `optional`):
|
287 |
+
An optional prefix, used to prefix each file name
|
288 |
+
|
289 |
+
Returns:
|
290 |
+
:obj:`List[str]`: The list of saved files
|
291 |
+
"""
|
292 |
+
pass
|
293 |
+
def token_to_id(self, tokens):
|
294 |
+
"""
|
295 |
+
Get the ID associated to a token
|
296 |
+
|
297 |
+
Args:
|
298 |
+
token (:obj:`str`):
|
299 |
+
A token to convert to an ID
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
:obj:`int`: The ID associated to the token
|
303 |
+
"""
|
304 |
+
pass
|
305 |
+
def tokenize(self, sequence):
|
306 |
+
"""
|
307 |
+
Tokenize a sequence
|
308 |
+
|
309 |
+
Args:
|
310 |
+
sequence (:obj:`str`):
|
311 |
+
A sequence to tokenize
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
|
315 |
+
"""
|
316 |
+
pass
|
317 |
+
|
318 |
+
class WordLevel(Model):
|
319 |
+
"""
|
320 |
+
An implementation of the WordLevel algorithm
|
321 |
+
|
322 |
+
Most simple tokenizer model based on mapping tokens to their corresponding id.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
vocab (:obj:`str`, `optional`):
|
326 |
+
A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
|
327 |
+
|
328 |
+
unk_token (:obj:`str`, `optional`):
|
329 |
+
The unknown token to be used by the model.
|
330 |
+
"""
|
331 |
+
|
332 |
+
def __init__(self, vocab, unk_token):
|
333 |
+
pass
|
334 |
+
@staticmethod
|
335 |
+
def from_file(vocab, unk_token):
|
336 |
+
"""
|
337 |
+
Instantiate a WordLevel model from the given file
|
338 |
+
|
339 |
+
This method is roughly equivalent to doing::
|
340 |
+
|
341 |
+
vocab = WordLevel.read_file(vocab_filename)
|
342 |
+
wordlevel = WordLevel(vocab)
|
343 |
+
|
344 |
+
If you don't need to keep the :obj:`vocab` values lying around, this method is
|
345 |
+
more optimized than manually calling :meth:`~tokenizers.models.WordLevel.read_file` to
|
346 |
+
initialize a :class:`~tokenizers.models.WordLevel`
|
347 |
+
|
348 |
+
Args:
|
349 |
+
vocab (:obj:`str`):
|
350 |
+
The path to a :obj:`vocab.json` file
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
:class:`~tokenizers.models.WordLevel`: An instance of WordLevel loaded from file
|
354 |
+
"""
|
355 |
+
pass
|
356 |
+
def get_trainer(self):
|
357 |
+
"""
|
358 |
+
Get the associated :class:`~tokenizers.trainers.Trainer`
|
359 |
+
|
360 |
+
Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
|
361 |
+
:class:`~tokenizers.models.Model`.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
:class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
|
365 |
+
"""
|
366 |
+
pass
|
367 |
+
def id_to_token(self, id):
|
368 |
+
"""
|
369 |
+
Get the token associated to an ID
|
370 |
+
|
371 |
+
Args:
|
372 |
+
id (:obj:`int`):
|
373 |
+
An ID to convert to a token
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
:obj:`str`: The token associated to the ID
|
377 |
+
"""
|
378 |
+
pass
|
379 |
+
@staticmethod
|
380 |
+
def read_file(vocab):
|
381 |
+
"""
|
382 |
+
Read a :obj:`vocab.json`
|
383 |
+
|
384 |
+
This method provides a way to read and parse the content of a vocabulary file,
|
385 |
+
returning the relevant data structures. If you want to instantiate some WordLevel models
|
386 |
+
from memory, this method gives you the expected input from the standard files.
|
387 |
+
|
388 |
+
Args:
|
389 |
+
vocab (:obj:`str`):
|
390 |
+
The path to a :obj:`vocab.json` file
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
:obj:`Dict[str, int]`: The vocabulary as a :obj:`dict`
|
394 |
+
"""
|
395 |
+
pass
|
396 |
+
def save(self, folder, prefix):
|
397 |
+
"""
|
398 |
+
Save the current model
|
399 |
+
|
400 |
+
Save the current model in the given folder, using the given prefix for the various
|
401 |
+
files that will get created.
|
402 |
+
Any file with the same name that already exists in this folder will be overwritten.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
folder (:obj:`str`):
|
406 |
+
The path to the target folder in which to save the various files
|
407 |
+
|
408 |
+
prefix (:obj:`str`, `optional`):
|
409 |
+
An optional prefix, used to prefix each file name
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
:obj:`List[str]`: The list of saved files
|
413 |
+
"""
|
414 |
+
pass
|
415 |
+
def token_to_id(self, tokens):
|
416 |
+
"""
|
417 |
+
Get the ID associated to a token
|
418 |
+
|
419 |
+
Args:
|
420 |
+
token (:obj:`str`):
|
421 |
+
A token to convert to an ID
|
422 |
+
|
423 |
+
Returns:
|
424 |
+
:obj:`int`: The ID associated to the token
|
425 |
+
"""
|
426 |
+
pass
|
427 |
+
def tokenize(self, sequence):
|
428 |
+
"""
|
429 |
+
Tokenize a sequence
|
430 |
+
|
431 |
+
Args:
|
432 |
+
sequence (:obj:`str`):
|
433 |
+
A sequence to tokenize
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
|
437 |
+
"""
|
438 |
+
pass
|
439 |
+
|
440 |
+
class WordPiece(Model):
|
441 |
+
"""
|
442 |
+
An implementation of the WordPiece algorithm
|
443 |
+
|
444 |
+
Args:
|
445 |
+
vocab (:obj:`Dict[str, int]`, `optional`):
|
446 |
+
A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
|
447 |
+
|
448 |
+
unk_token (:obj:`str`, `optional`):
|
449 |
+
The unknown token to be used by the model.
|
450 |
+
|
451 |
+
max_input_chars_per_word (:obj:`int`, `optional`):
|
452 |
+
The maximum number of characters to authorize in a single word.
|
453 |
+
"""
|
454 |
+
|
455 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word):
|
456 |
+
pass
|
457 |
+
@staticmethod
|
458 |
+
def from_file(vocab, **kwargs):
|
459 |
+
"""
|
460 |
+
Instantiate a WordPiece model from the given file
|
461 |
+
|
462 |
+
This method is roughly equivalent to doing::
|
463 |
+
|
464 |
+
vocab = WordPiece.read_file(vocab_filename)
|
465 |
+
wordpiece = WordPiece(vocab)
|
466 |
+
|
467 |
+
If you don't need to keep the :obj:`vocab` values lying around, this method is
|
468 |
+
more optimized than manually calling :meth:`~tokenizers.models.WordPiece.read_file` to
|
469 |
+
initialize a :class:`~tokenizers.models.WordPiece`
|
470 |
+
|
471 |
+
Args:
|
472 |
+
vocab (:obj:`str`):
|
473 |
+
The path to a :obj:`vocab.txt` file
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
:class:`~tokenizers.models.WordPiece`: An instance of WordPiece loaded from file
|
477 |
+
"""
|
478 |
+
pass
|
479 |
+
def get_trainer(self):
|
480 |
+
"""
|
481 |
+
Get the associated :class:`~tokenizers.trainers.Trainer`
|
482 |
+
|
483 |
+
Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
|
484 |
+
:class:`~tokenizers.models.Model`.
|
485 |
+
|
486 |
+
Returns:
|
487 |
+
:class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
|
488 |
+
"""
|
489 |
+
pass
|
490 |
+
def id_to_token(self, id):
|
491 |
+
"""
|
492 |
+
Get the token associated to an ID
|
493 |
+
|
494 |
+
Args:
|
495 |
+
id (:obj:`int`):
|
496 |
+
An ID to convert to a token
|
497 |
+
|
498 |
+
Returns:
|
499 |
+
:obj:`str`: The token associated to the ID
|
500 |
+
"""
|
501 |
+
pass
|
502 |
+
@staticmethod
|
503 |
+
def read_file(vocab):
|
504 |
+
"""
|
505 |
+
Read a :obj:`vocab.txt` file
|
506 |
+
|
507 |
+
This method provides a way to read and parse the content of a standard `vocab.txt`
|
508 |
+
file as used by the WordPiece Model, returning the relevant data structures. If you
|
509 |
+
want to instantiate some WordPiece models from memory, this method gives you the
|
510 |
+
expected input from the standard files.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
vocab (:obj:`str`):
|
514 |
+
The path to a :obj:`vocab.txt` file
|
515 |
+
|
516 |
+
Returns:
|
517 |
+
:obj:`Dict[str, int]`: The vocabulary as a :obj:`dict`
|
518 |
+
"""
|
519 |
+
pass
|
520 |
+
def save(self, folder, prefix):
|
521 |
+
"""
|
522 |
+
Save the current model
|
523 |
+
|
524 |
+
Save the current model in the given folder, using the given prefix for the various
|
525 |
+
files that will get created.
|
526 |
+
Any file with the same name that already exists in this folder will be overwritten.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
folder (:obj:`str`):
|
530 |
+
The path to the target folder in which to save the various files
|
531 |
+
|
532 |
+
prefix (:obj:`str`, `optional`):
|
533 |
+
An optional prefix, used to prefix each file name
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
:obj:`List[str]`: The list of saved files
|
537 |
+
"""
|
538 |
+
pass
|
539 |
+
def token_to_id(self, tokens):
|
540 |
+
"""
|
541 |
+
Get the ID associated to a token
|
542 |
+
|
543 |
+
Args:
|
544 |
+
token (:obj:`str`):
|
545 |
+
A token to convert to an ID
|
546 |
+
|
547 |
+
Returns:
|
548 |
+
:obj:`int`: The ID associated to the token
|
549 |
+
"""
|
550 |
+
pass
|
551 |
+
def tokenize(self, sequence):
|
552 |
+
"""
|
553 |
+
Tokenize a sequence
|
554 |
+
|
555 |
+
Args:
|
556 |
+
sequence (:obj:`str`):
|
557 |
+
A sequence to tokenize
|
558 |
+
|
559 |
+
Returns:
|
560 |
+
A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
|
561 |
+
"""
|
562 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (296 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .. import normalizers
|
2 |
+
|
3 |
+
|
4 |
+
Normalizer = normalizers.Normalizer
|
5 |
+
BertNormalizer = normalizers.BertNormalizer
|
6 |
+
NFD = normalizers.NFD
|
7 |
+
NFKD = normalizers.NFKD
|
8 |
+
NFC = normalizers.NFC
|
9 |
+
NFKC = normalizers.NFKC
|
10 |
+
Sequence = normalizers.Sequence
|
11 |
+
Lowercase = normalizers.Lowercase
|
12 |
+
Prepend = normalizers.Prepend
|
13 |
+
Strip = normalizers.Strip
|
14 |
+
StripAccents = normalizers.StripAccents
|
15 |
+
Nmt = normalizers.Nmt
|
16 |
+
Precompiled = normalizers.Precompiled
|
17 |
+
Replace = normalizers.Replace
|
18 |
+
|
19 |
+
|
20 |
+
NORMALIZERS = {"nfc": NFC, "nfd": NFD, "nfkc": NFKC, "nfkd": NFKD}
|
21 |
+
|
22 |
+
|
23 |
+
def unicode_normalizer_from_str(normalizer: str) -> Normalizer:
|
24 |
+
if normalizer not in NORMALIZERS:
|
25 |
+
raise ValueError(
|
26 |
+
"{} is not a known unicode normalizer. Available are {}".format(normalizer, NORMALIZERS.keys())
|
27 |
+
)
|
28 |
+
|
29 |
+
return NORMALIZERS[normalizer]()
|
env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__init__.pyi
ADDED
@@ -0,0 +1,583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class Normalizer:
|
3 |
+
"""
|
4 |
+
Base class for all normalizers
|
5 |
+
|
6 |
+
This class is not supposed to be instantiated directly. Instead, any implementation of a
|
7 |
+
Normalizer will return an instance of this class when instantiated.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def normalize(self, normalized):
|
11 |
+
"""
|
12 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
13 |
+
|
14 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
15 |
+
keep track of the alignment information. If you just want to see the result
|
16 |
+
of the normalization on a raw string, you can use
|
17 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
18 |
+
|
19 |
+
Args:
|
20 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
21 |
+
The normalized string on which to apply this
|
22 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
23 |
+
"""
|
24 |
+
pass
|
25 |
+
def normalize_str(self, sequence):
|
26 |
+
"""
|
27 |
+
Normalize the given string
|
28 |
+
|
29 |
+
This method provides a way to visualize the effect of a
|
30 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
31 |
+
information. If you need to get/convert offsets, you can use
|
32 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
33 |
+
|
34 |
+
Args:
|
35 |
+
sequence (:obj:`str`):
|
36 |
+
A string to normalize
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
:obj:`str`: A string after normalization
|
40 |
+
"""
|
41 |
+
pass
|
42 |
+
|
43 |
+
class BertNormalizer(Normalizer):
|
44 |
+
"""
|
45 |
+
BertNormalizer
|
46 |
+
|
47 |
+
Takes care of normalizing raw text before giving it to a Bert model.
|
48 |
+
This includes cleaning the text, handling accents, chinese chars and lowercasing
|
49 |
+
|
50 |
+
Args:
|
51 |
+
clean_text (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
52 |
+
Whether to clean the text, by removing any control characters
|
53 |
+
and replacing all whitespaces by the classic one.
|
54 |
+
|
55 |
+
handle_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
56 |
+
Whether to handle chinese chars by putting spaces around them.
|
57 |
+
|
58 |
+
strip_accents (:obj:`bool`, `optional`):
|
59 |
+
Whether to strip all accents. If this option is not specified (ie == None),
|
60 |
+
then it will be determined by the value for `lowercase` (as in the original Bert).
|
61 |
+
|
62 |
+
lowercase (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
63 |
+
Whether to lowercase.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True):
|
67 |
+
pass
|
68 |
+
def normalize(self, normalized):
|
69 |
+
"""
|
70 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
71 |
+
|
72 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
73 |
+
keep track of the alignment information. If you just want to see the result
|
74 |
+
of the normalization on a raw string, you can use
|
75 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
76 |
+
|
77 |
+
Args:
|
78 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
79 |
+
The normalized string on which to apply this
|
80 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
81 |
+
"""
|
82 |
+
pass
|
83 |
+
def normalize_str(self, sequence):
|
84 |
+
"""
|
85 |
+
Normalize the given string
|
86 |
+
|
87 |
+
This method provides a way to visualize the effect of a
|
88 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
89 |
+
information. If you need to get/convert offsets, you can use
|
90 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
91 |
+
|
92 |
+
Args:
|
93 |
+
sequence (:obj:`str`):
|
94 |
+
A string to normalize
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
:obj:`str`: A string after normalization
|
98 |
+
"""
|
99 |
+
pass
|
100 |
+
|
101 |
+
class Lowercase(Normalizer):
|
102 |
+
"""
|
103 |
+
Lowercase Normalizer
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(self):
|
107 |
+
pass
|
108 |
+
def normalize(self, normalized):
|
109 |
+
"""
|
110 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
111 |
+
|
112 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
113 |
+
keep track of the alignment information. If you just want to see the result
|
114 |
+
of the normalization on a raw string, you can use
|
115 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
116 |
+
|
117 |
+
Args:
|
118 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
119 |
+
The normalized string on which to apply this
|
120 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
121 |
+
"""
|
122 |
+
pass
|
123 |
+
def normalize_str(self, sequence):
|
124 |
+
"""
|
125 |
+
Normalize the given string
|
126 |
+
|
127 |
+
This method provides a way to visualize the effect of a
|
128 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
129 |
+
information. If you need to get/convert offsets, you can use
|
130 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
131 |
+
|
132 |
+
Args:
|
133 |
+
sequence (:obj:`str`):
|
134 |
+
A string to normalize
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
:obj:`str`: A string after normalization
|
138 |
+
"""
|
139 |
+
pass
|
140 |
+
|
141 |
+
class NFC(Normalizer):
|
142 |
+
"""
|
143 |
+
NFC Unicode Normalizer
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
pass
|
148 |
+
def normalize(self, normalized):
|
149 |
+
"""
|
150 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
151 |
+
|
152 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
153 |
+
keep track of the alignment information. If you just want to see the result
|
154 |
+
of the normalization on a raw string, you can use
|
155 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
156 |
+
|
157 |
+
Args:
|
158 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
159 |
+
The normalized string on which to apply this
|
160 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
161 |
+
"""
|
162 |
+
pass
|
163 |
+
def normalize_str(self, sequence):
|
164 |
+
"""
|
165 |
+
Normalize the given string
|
166 |
+
|
167 |
+
This method provides a way to visualize the effect of a
|
168 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
169 |
+
information. If you need to get/convert offsets, you can use
|
170 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
171 |
+
|
172 |
+
Args:
|
173 |
+
sequence (:obj:`str`):
|
174 |
+
A string to normalize
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
:obj:`str`: A string after normalization
|
178 |
+
"""
|
179 |
+
pass
|
180 |
+
|
181 |
+
class NFD(Normalizer):
|
182 |
+
"""
|
183 |
+
NFD Unicode Normalizer
|
184 |
+
"""
|
185 |
+
|
186 |
+
def __init__(self):
|
187 |
+
pass
|
188 |
+
def normalize(self, normalized):
|
189 |
+
"""
|
190 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
191 |
+
|
192 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
193 |
+
keep track of the alignment information. If you just want to see the result
|
194 |
+
of the normalization on a raw string, you can use
|
195 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
196 |
+
|
197 |
+
Args:
|
198 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
199 |
+
The normalized string on which to apply this
|
200 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
201 |
+
"""
|
202 |
+
pass
|
203 |
+
def normalize_str(self, sequence):
|
204 |
+
"""
|
205 |
+
Normalize the given string
|
206 |
+
|
207 |
+
This method provides a way to visualize the effect of a
|
208 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
209 |
+
information. If you need to get/convert offsets, you can use
|
210 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
211 |
+
|
212 |
+
Args:
|
213 |
+
sequence (:obj:`str`):
|
214 |
+
A string to normalize
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
:obj:`str`: A string after normalization
|
218 |
+
"""
|
219 |
+
pass
|
220 |
+
|
221 |
+
class NFKC(Normalizer):
|
222 |
+
"""
|
223 |
+
NFKC Unicode Normalizer
|
224 |
+
"""
|
225 |
+
|
226 |
+
def __init__(self):
|
227 |
+
pass
|
228 |
+
def normalize(self, normalized):
|
229 |
+
"""
|
230 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
231 |
+
|
232 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
233 |
+
keep track of the alignment information. If you just want to see the result
|
234 |
+
of the normalization on a raw string, you can use
|
235 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
236 |
+
|
237 |
+
Args:
|
238 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
239 |
+
The normalized string on which to apply this
|
240 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
241 |
+
"""
|
242 |
+
pass
|
243 |
+
def normalize_str(self, sequence):
|
244 |
+
"""
|
245 |
+
Normalize the given string
|
246 |
+
|
247 |
+
This method provides a way to visualize the effect of a
|
248 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
249 |
+
information. If you need to get/convert offsets, you can use
|
250 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
251 |
+
|
252 |
+
Args:
|
253 |
+
sequence (:obj:`str`):
|
254 |
+
A string to normalize
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
:obj:`str`: A string after normalization
|
258 |
+
"""
|
259 |
+
pass
|
260 |
+
|
261 |
+
class NFKD(Normalizer):
|
262 |
+
"""
|
263 |
+
NFKD Unicode Normalizer
|
264 |
+
"""
|
265 |
+
|
266 |
+
def __init__(self):
|
267 |
+
pass
|
268 |
+
def normalize(self, normalized):
|
269 |
+
"""
|
270 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
271 |
+
|
272 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
273 |
+
keep track of the alignment information. If you just want to see the result
|
274 |
+
of the normalization on a raw string, you can use
|
275 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
276 |
+
|
277 |
+
Args:
|
278 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
279 |
+
The normalized string on which to apply this
|
280 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
281 |
+
"""
|
282 |
+
pass
|
283 |
+
def normalize_str(self, sequence):
|
284 |
+
"""
|
285 |
+
Normalize the given string
|
286 |
+
|
287 |
+
This method provides a way to visualize the effect of a
|
288 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
289 |
+
information. If you need to get/convert offsets, you can use
|
290 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
291 |
+
|
292 |
+
Args:
|
293 |
+
sequence (:obj:`str`):
|
294 |
+
A string to normalize
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
:obj:`str`: A string after normalization
|
298 |
+
"""
|
299 |
+
pass
|
300 |
+
|
301 |
+
class Nmt(Normalizer):
|
302 |
+
"""
|
303 |
+
Nmt normalizer
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(self):
|
307 |
+
pass
|
308 |
+
def normalize(self, normalized):
|
309 |
+
"""
|
310 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
311 |
+
|
312 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
313 |
+
keep track of the alignment information. If you just want to see the result
|
314 |
+
of the normalization on a raw string, you can use
|
315 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
316 |
+
|
317 |
+
Args:
|
318 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
319 |
+
The normalized string on which to apply this
|
320 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
321 |
+
"""
|
322 |
+
pass
|
323 |
+
def normalize_str(self, sequence):
|
324 |
+
"""
|
325 |
+
Normalize the given string
|
326 |
+
|
327 |
+
This method provides a way to visualize the effect of a
|
328 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
329 |
+
information. If you need to get/convert offsets, you can use
|
330 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
331 |
+
|
332 |
+
Args:
|
333 |
+
sequence (:obj:`str`):
|
334 |
+
A string to normalize
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
:obj:`str`: A string after normalization
|
338 |
+
"""
|
339 |
+
pass
|
340 |
+
|
341 |
+
class Precompiled(Normalizer):
|
342 |
+
"""
|
343 |
+
Precompiled normalizer
|
344 |
+
Don't use manually it is used for compatiblity for SentencePiece.
|
345 |
+
"""
|
346 |
+
|
347 |
+
def __init__(self, precompiled_charsmap):
|
348 |
+
pass
|
349 |
+
def normalize(self, normalized):
|
350 |
+
"""
|
351 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
352 |
+
|
353 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
354 |
+
keep track of the alignment information. If you just want to see the result
|
355 |
+
of the normalization on a raw string, you can use
|
356 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
357 |
+
|
358 |
+
Args:
|
359 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
360 |
+
The normalized string on which to apply this
|
361 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
362 |
+
"""
|
363 |
+
pass
|
364 |
+
def normalize_str(self, sequence):
|
365 |
+
"""
|
366 |
+
Normalize the given string
|
367 |
+
|
368 |
+
This method provides a way to visualize the effect of a
|
369 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
370 |
+
information. If you need to get/convert offsets, you can use
|
371 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
372 |
+
|
373 |
+
Args:
|
374 |
+
sequence (:obj:`str`):
|
375 |
+
A string to normalize
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
:obj:`str`: A string after normalization
|
379 |
+
"""
|
380 |
+
pass
|
381 |
+
|
382 |
+
class Prepend(Normalizer):
|
383 |
+
"""
|
384 |
+
Prepend normalizer
|
385 |
+
"""
|
386 |
+
|
387 |
+
def __init__(self, prepend):
|
388 |
+
pass
|
389 |
+
def normalize(self, normalized):
|
390 |
+
"""
|
391 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
392 |
+
|
393 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
394 |
+
keep track of the alignment information. If you just want to see the result
|
395 |
+
of the normalization on a raw string, you can use
|
396 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
397 |
+
|
398 |
+
Args:
|
399 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
400 |
+
The normalized string on which to apply this
|
401 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
402 |
+
"""
|
403 |
+
pass
|
404 |
+
def normalize_str(self, sequence):
|
405 |
+
"""
|
406 |
+
Normalize the given string
|
407 |
+
|
408 |
+
This method provides a way to visualize the effect of a
|
409 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
410 |
+
information. If you need to get/convert offsets, you can use
|
411 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
412 |
+
|
413 |
+
Args:
|
414 |
+
sequence (:obj:`str`):
|
415 |
+
A string to normalize
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
:obj:`str`: A string after normalization
|
419 |
+
"""
|
420 |
+
pass
|
421 |
+
|
422 |
+
class Replace(Normalizer):
|
423 |
+
"""
|
424 |
+
Replace normalizer
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, pattern, content):
|
428 |
+
pass
|
429 |
+
def normalize(self, normalized):
|
430 |
+
"""
|
431 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
432 |
+
|
433 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
434 |
+
keep track of the alignment information. If you just want to see the result
|
435 |
+
of the normalization on a raw string, you can use
|
436 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
437 |
+
|
438 |
+
Args:
|
439 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
440 |
+
The normalized string on which to apply this
|
441 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
442 |
+
"""
|
443 |
+
pass
|
444 |
+
def normalize_str(self, sequence):
|
445 |
+
"""
|
446 |
+
Normalize the given string
|
447 |
+
|
448 |
+
This method provides a way to visualize the effect of a
|
449 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
450 |
+
information. If you need to get/convert offsets, you can use
|
451 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
452 |
+
|
453 |
+
Args:
|
454 |
+
sequence (:obj:`str`):
|
455 |
+
A string to normalize
|
456 |
+
|
457 |
+
Returns:
|
458 |
+
:obj:`str`: A string after normalization
|
459 |
+
"""
|
460 |
+
pass
|
461 |
+
|
462 |
+
class Sequence(Normalizer):
|
463 |
+
"""
|
464 |
+
Allows concatenating multiple other Normalizer as a Sequence.
|
465 |
+
All the normalizers run in sequence in the given order
|
466 |
+
|
467 |
+
Args:
|
468 |
+
normalizers (:obj:`List[Normalizer]`):
|
469 |
+
A list of Normalizer to be run as a sequence
|
470 |
+
"""
|
471 |
+
|
472 |
+
def normalize(self, normalized):
|
473 |
+
"""
|
474 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
475 |
+
|
476 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
477 |
+
keep track of the alignment information. If you just want to see the result
|
478 |
+
of the normalization on a raw string, you can use
|
479 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
480 |
+
|
481 |
+
Args:
|
482 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
483 |
+
The normalized string on which to apply this
|
484 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
485 |
+
"""
|
486 |
+
pass
|
487 |
+
def normalize_str(self, sequence):
|
488 |
+
"""
|
489 |
+
Normalize the given string
|
490 |
+
|
491 |
+
This method provides a way to visualize the effect of a
|
492 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
493 |
+
information. If you need to get/convert offsets, you can use
|
494 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
495 |
+
|
496 |
+
Args:
|
497 |
+
sequence (:obj:`str`):
|
498 |
+
A string to normalize
|
499 |
+
|
500 |
+
Returns:
|
501 |
+
:obj:`str`: A string after normalization
|
502 |
+
"""
|
503 |
+
pass
|
504 |
+
|
505 |
+
class Strip(Normalizer):
|
506 |
+
"""
|
507 |
+
Strip normalizer
|
508 |
+
"""
|
509 |
+
|
510 |
+
def __init__(self, left=True, right=True):
|
511 |
+
pass
|
512 |
+
def normalize(self, normalized):
|
513 |
+
"""
|
514 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
515 |
+
|
516 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
517 |
+
keep track of the alignment information. If you just want to see the result
|
518 |
+
of the normalization on a raw string, you can use
|
519 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
520 |
+
|
521 |
+
Args:
|
522 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
523 |
+
The normalized string on which to apply this
|
524 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
525 |
+
"""
|
526 |
+
pass
|
527 |
+
def normalize_str(self, sequence):
|
528 |
+
"""
|
529 |
+
Normalize the given string
|
530 |
+
|
531 |
+
This method provides a way to visualize the effect of a
|
532 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
533 |
+
information. If you need to get/convert offsets, you can use
|
534 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
535 |
+
|
536 |
+
Args:
|
537 |
+
sequence (:obj:`str`):
|
538 |
+
A string to normalize
|
539 |
+
|
540 |
+
Returns:
|
541 |
+
:obj:`str`: A string after normalization
|
542 |
+
"""
|
543 |
+
pass
|
544 |
+
|
545 |
+
class StripAccents(Normalizer):
|
546 |
+
"""
|
547 |
+
StripAccents normalizer
|
548 |
+
"""
|
549 |
+
|
550 |
+
def __init__(self):
|
551 |
+
pass
|
552 |
+
def normalize(self, normalized):
|
553 |
+
"""
|
554 |
+
Normalize a :class:`~tokenizers.NormalizedString` in-place
|
555 |
+
|
556 |
+
This method allows to modify a :class:`~tokenizers.NormalizedString` to
|
557 |
+
keep track of the alignment information. If you just want to see the result
|
558 |
+
of the normalization on a raw string, you can use
|
559 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize_str`
|
560 |
+
|
561 |
+
Args:
|
562 |
+
normalized (:class:`~tokenizers.NormalizedString`):
|
563 |
+
The normalized string on which to apply this
|
564 |
+
:class:`~tokenizers.normalizers.Normalizer`
|
565 |
+
"""
|
566 |
+
pass
|
567 |
+
def normalize_str(self, sequence):
|
568 |
+
"""
|
569 |
+
Normalize the given string
|
570 |
+
|
571 |
+
This method provides a way to visualize the effect of a
|
572 |
+
:class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment
|
573 |
+
information. If you need to get/convert offsets, you can use
|
574 |
+
:meth:`~tokenizers.normalizers.Normalizer.normalize`
|
575 |
+
|
576 |
+
Args:
|
577 |
+
sequence (:obj:`str`):
|
578 |
+
A string to normalize
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
:obj:`str`: A string after normalization
|
582 |
+
"""
|
583 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/normalizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (801 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
from .. import pre_tokenizers
|
3 |
+
|
4 |
+
PreTokenizer = pre_tokenizers.PreTokenizer
|
5 |
+
BertPreTokenizer = pre_tokenizers.BertPreTokenizer
|
6 |
+
ByteLevel = pre_tokenizers.ByteLevel
|
7 |
+
CharDelimiterSplit = pre_tokenizers.CharDelimiterSplit
|
8 |
+
Digits = pre_tokenizers.Digits
|
9 |
+
Metaspace = pre_tokenizers.Metaspace
|
10 |
+
Punctuation = pre_tokenizers.Punctuation
|
11 |
+
Sequence = pre_tokenizers.Sequence
|
12 |
+
Split = pre_tokenizers.Split
|
13 |
+
UnicodeScripts = pre_tokenizers.UnicodeScripts
|
14 |
+
Whitespace = pre_tokenizers.Whitespace
|
15 |
+
WhitespaceSplit = pre_tokenizers.WhitespaceSplit
|
env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__init__.pyi
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class PreTokenizer:
|
3 |
+
"""
|
4 |
+
Base class for all pre-tokenizers
|
5 |
+
|
6 |
+
This class is not supposed to be instantiated directly. Instead, any implementation of a
|
7 |
+
PreTokenizer will return an instance of this class when instantiated.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def pre_tokenize(self, pretok):
|
11 |
+
"""
|
12 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
13 |
+
|
14 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
15 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
16 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
17 |
+
the pre-tokenization of a raw string, you can use
|
18 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
19 |
+
|
20 |
+
Args:
|
21 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
22 |
+
The pre-tokenized string on which to apply this
|
23 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
24 |
+
"""
|
25 |
+
pass
|
26 |
+
def pre_tokenize_str(self, sequence):
|
27 |
+
"""
|
28 |
+
Pre tokenize the given string
|
29 |
+
|
30 |
+
This method provides a way to visualize the effect of a
|
31 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
32 |
+
alignment, nor does it provide all the capabilities of the
|
33 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
34 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
35 |
+
|
36 |
+
Args:
|
37 |
+
sequence (:obj:`str`):
|
38 |
+
A string to pre-tokeize
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
42 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
43 |
+
"""
|
44 |
+
pass
|
45 |
+
|
46 |
+
class BertPreTokenizer(PreTokenizer):
|
47 |
+
"""
|
48 |
+
BertPreTokenizer
|
49 |
+
|
50 |
+
This pre-tokenizer splits tokens on spaces, and also on punctuation.
|
51 |
+
Each occurence of a punctuation character will be treated separately.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self):
|
55 |
+
pass
|
56 |
+
def pre_tokenize(self, pretok):
|
57 |
+
"""
|
58 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
59 |
+
|
60 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
61 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
62 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
63 |
+
the pre-tokenization of a raw string, you can use
|
64 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
65 |
+
|
66 |
+
Args:
|
67 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
68 |
+
The pre-tokenized string on which to apply this
|
69 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
70 |
+
"""
|
71 |
+
pass
|
72 |
+
def pre_tokenize_str(self, sequence):
|
73 |
+
"""
|
74 |
+
Pre tokenize the given string
|
75 |
+
|
76 |
+
This method provides a way to visualize the effect of a
|
77 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
78 |
+
alignment, nor does it provide all the capabilities of the
|
79 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
80 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
81 |
+
|
82 |
+
Args:
|
83 |
+
sequence (:obj:`str`):
|
84 |
+
A string to pre-tokeize
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
88 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
89 |
+
"""
|
90 |
+
pass
|
91 |
+
|
92 |
+
class ByteLevel(PreTokenizer):
|
93 |
+
"""
|
94 |
+
ByteLevel PreTokenizer
|
95 |
+
|
96 |
+
This pre-tokenizer takes care of replacing all bytes of the given string
|
97 |
+
with a corresponding representation, as well as splitting into words.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
101 |
+
Whether to add a space to the first word if there isn't already one. This
|
102 |
+
lets us treat `hello` exactly like `say hello`.
|
103 |
+
use_regex (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
104 |
+
Set this to :obj:`False` to prevent this `pre_tokenizer` from using
|
105 |
+
the GPT2 specific regexp for spliting on whitespace.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, add_prefix_space=True, use_regex=True):
|
109 |
+
pass
|
110 |
+
@staticmethod
|
111 |
+
def alphabet():
|
112 |
+
"""
|
113 |
+
Returns the alphabet used by this PreTokenizer.
|
114 |
+
|
115 |
+
Since the ByteLevel works as its name suggests, at the byte level, it
|
116 |
+
encodes each byte value to a unique visible character. This means that there is a
|
117 |
+
total of 256 different characters composing this alphabet.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
:obj:`List[str]`: A list of characters that compose the alphabet
|
121 |
+
"""
|
122 |
+
pass
|
123 |
+
def pre_tokenize(self, pretok):
|
124 |
+
"""
|
125 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
126 |
+
|
127 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
128 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
129 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
130 |
+
the pre-tokenization of a raw string, you can use
|
131 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
132 |
+
|
133 |
+
Args:
|
134 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
135 |
+
The pre-tokenized string on which to apply this
|
136 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
137 |
+
"""
|
138 |
+
pass
|
139 |
+
def pre_tokenize_str(self, sequence):
|
140 |
+
"""
|
141 |
+
Pre tokenize the given string
|
142 |
+
|
143 |
+
This method provides a way to visualize the effect of a
|
144 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
145 |
+
alignment, nor does it provide all the capabilities of the
|
146 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
147 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
148 |
+
|
149 |
+
Args:
|
150 |
+
sequence (:obj:`str`):
|
151 |
+
A string to pre-tokeize
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
155 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
156 |
+
"""
|
157 |
+
pass
|
158 |
+
|
159 |
+
class CharDelimiterSplit(PreTokenizer):
|
160 |
+
"""
|
161 |
+
This pre-tokenizer simply splits on the provided char. Works like `.split(delimiter)`
|
162 |
+
|
163 |
+
Args:
|
164 |
+
delimiter: str:
|
165 |
+
The delimiter char that will be used to split input
|
166 |
+
"""
|
167 |
+
|
168 |
+
def pre_tokenize(self, pretok):
|
169 |
+
"""
|
170 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
171 |
+
|
172 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
173 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
174 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
175 |
+
the pre-tokenization of a raw string, you can use
|
176 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
177 |
+
|
178 |
+
Args:
|
179 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
180 |
+
The pre-tokenized string on which to apply this
|
181 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
182 |
+
"""
|
183 |
+
pass
|
184 |
+
def pre_tokenize_str(self, sequence):
|
185 |
+
"""
|
186 |
+
Pre tokenize the given string
|
187 |
+
|
188 |
+
This method provides a way to visualize the effect of a
|
189 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
190 |
+
alignment, nor does it provide all the capabilities of the
|
191 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
192 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
193 |
+
|
194 |
+
Args:
|
195 |
+
sequence (:obj:`str`):
|
196 |
+
A string to pre-tokeize
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
200 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
201 |
+
"""
|
202 |
+
pass
|
203 |
+
|
204 |
+
class Digits(PreTokenizer):
|
205 |
+
"""
|
206 |
+
This pre-tokenizer simply splits using the digits in separate tokens
|
207 |
+
|
208 |
+
Args:
|
209 |
+
individual_digits (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
210 |
+
If set to True, digits will each be separated as follows::
|
211 |
+
|
212 |
+
"Call 123 please" -> "Call ", "1", "2", "3", " please"
|
213 |
+
|
214 |
+
If set to False, digits will grouped as follows::
|
215 |
+
|
216 |
+
"Call 123 please" -> "Call ", "123", " please"
|
217 |
+
"""
|
218 |
+
|
219 |
+
def __init__(self, individual_digits=False):
|
220 |
+
pass
|
221 |
+
def pre_tokenize(self, pretok):
|
222 |
+
"""
|
223 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
224 |
+
|
225 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
226 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
227 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
228 |
+
the pre-tokenization of a raw string, you can use
|
229 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
230 |
+
|
231 |
+
Args:
|
232 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
233 |
+
The pre-tokenized string on which to apply this
|
234 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
235 |
+
"""
|
236 |
+
pass
|
237 |
+
def pre_tokenize_str(self, sequence):
|
238 |
+
"""
|
239 |
+
Pre tokenize the given string
|
240 |
+
|
241 |
+
This method provides a way to visualize the effect of a
|
242 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
243 |
+
alignment, nor does it provide all the capabilities of the
|
244 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
245 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
246 |
+
|
247 |
+
Args:
|
248 |
+
sequence (:obj:`str`):
|
249 |
+
A string to pre-tokeize
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
253 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
254 |
+
"""
|
255 |
+
pass
|
256 |
+
|
257 |
+
class Metaspace(PreTokenizer):
|
258 |
+
"""
|
259 |
+
Metaspace pre-tokenizer
|
260 |
+
|
261 |
+
This pre-tokenizer replaces any whitespace by the provided replacement character.
|
262 |
+
It then tries to split on these spaces.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
replacement (:obj:`str`, `optional`, defaults to :obj:`▁`):
|
266 |
+
The replacement character. Must be exactly one character. By default we
|
267 |
+
use the `▁` (U+2581) meta symbol (Same as in SentencePiece).
|
268 |
+
|
269 |
+
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
270 |
+
Whether to add a space to the first word if there isn't already one. This
|
271 |
+
lets us treat `hello` exactly like `say hello`.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, replacement="_", add_prefix_space=True):
|
275 |
+
pass
|
276 |
+
def pre_tokenize(self, pretok):
|
277 |
+
"""
|
278 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
279 |
+
|
280 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
281 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
282 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
283 |
+
the pre-tokenization of a raw string, you can use
|
284 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
285 |
+
|
286 |
+
Args:
|
287 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
288 |
+
The pre-tokenized string on which to apply this
|
289 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
290 |
+
"""
|
291 |
+
pass
|
292 |
+
def pre_tokenize_str(self, sequence):
|
293 |
+
"""
|
294 |
+
Pre tokenize the given string
|
295 |
+
|
296 |
+
This method provides a way to visualize the effect of a
|
297 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
298 |
+
alignment, nor does it provide all the capabilities of the
|
299 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
300 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
301 |
+
|
302 |
+
Args:
|
303 |
+
sequence (:obj:`str`):
|
304 |
+
A string to pre-tokeize
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
308 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
309 |
+
"""
|
310 |
+
pass
|
311 |
+
|
312 |
+
class Punctuation(PreTokenizer):
|
313 |
+
"""
|
314 |
+
This pre-tokenizer simply splits on punctuation as individual characters.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
behavior (:class:`~tokenizers.SplitDelimiterBehavior`):
|
318 |
+
The behavior to use when splitting.
|
319 |
+
Choices: "removed", "isolated" (default), "merged_with_previous", "merged_with_next",
|
320 |
+
"contiguous"
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, behavior="isolated"):
|
324 |
+
pass
|
325 |
+
def pre_tokenize(self, pretok):
|
326 |
+
"""
|
327 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
328 |
+
|
329 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
330 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
331 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
332 |
+
the pre-tokenization of a raw string, you can use
|
333 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
334 |
+
|
335 |
+
Args:
|
336 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
337 |
+
The pre-tokenized string on which to apply this
|
338 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
339 |
+
"""
|
340 |
+
pass
|
341 |
+
def pre_tokenize_str(self, sequence):
|
342 |
+
"""
|
343 |
+
Pre tokenize the given string
|
344 |
+
|
345 |
+
This method provides a way to visualize the effect of a
|
346 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
347 |
+
alignment, nor does it provide all the capabilities of the
|
348 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
349 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
350 |
+
|
351 |
+
Args:
|
352 |
+
sequence (:obj:`str`):
|
353 |
+
A string to pre-tokeize
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
357 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
358 |
+
"""
|
359 |
+
pass
|
360 |
+
|
361 |
+
class Sequence(PreTokenizer):
|
362 |
+
"""
|
363 |
+
This pre-tokenizer composes other pre_tokenizers and applies them in sequence
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(self, pretokenizers):
|
367 |
+
pass
|
368 |
+
def pre_tokenize(self, pretok):
|
369 |
+
"""
|
370 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
371 |
+
|
372 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
373 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
374 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
375 |
+
the pre-tokenization of a raw string, you can use
|
376 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
377 |
+
|
378 |
+
Args:
|
379 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
380 |
+
The pre-tokenized string on which to apply this
|
381 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
382 |
+
"""
|
383 |
+
pass
|
384 |
+
def pre_tokenize_str(self, sequence):
|
385 |
+
"""
|
386 |
+
Pre tokenize the given string
|
387 |
+
|
388 |
+
This method provides a way to visualize the effect of a
|
389 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
390 |
+
alignment, nor does it provide all the capabilities of the
|
391 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
392 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
393 |
+
|
394 |
+
Args:
|
395 |
+
sequence (:obj:`str`):
|
396 |
+
A string to pre-tokeize
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
400 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
401 |
+
"""
|
402 |
+
pass
|
403 |
+
|
404 |
+
class Split(PreTokenizer):
|
405 |
+
"""
|
406 |
+
Split PreTokenizer
|
407 |
+
|
408 |
+
This versatile pre-tokenizer splits using the provided pattern and
|
409 |
+
according to the provided behavior. The pattern can be inverted by
|
410 |
+
making use of the invert flag.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
pattern (:obj:`str` or :class:`~tokenizers.Regex`):
|
414 |
+
A pattern used to split the string. Usually a string or a a regex built with `tokenizers.Regex`
|
415 |
+
|
416 |
+
behavior (:class:`~tokenizers.SplitDelimiterBehavior`):
|
417 |
+
The behavior to use when splitting.
|
418 |
+
Choices: "removed", "isolated", "merged_with_previous", "merged_with_next",
|
419 |
+
"contiguous"
|
420 |
+
|
421 |
+
invert (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
422 |
+
Whether to invert the pattern.
|
423 |
+
"""
|
424 |
+
|
425 |
+
def __init__(self, pattern, behavior, invert=False):
|
426 |
+
pass
|
427 |
+
def pre_tokenize(self, pretok):
|
428 |
+
"""
|
429 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
430 |
+
|
431 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
432 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
433 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
434 |
+
the pre-tokenization of a raw string, you can use
|
435 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
436 |
+
|
437 |
+
Args:
|
438 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
439 |
+
The pre-tokenized string on which to apply this
|
440 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
441 |
+
"""
|
442 |
+
pass
|
443 |
+
def pre_tokenize_str(self, sequence):
|
444 |
+
"""
|
445 |
+
Pre tokenize the given string
|
446 |
+
|
447 |
+
This method provides a way to visualize the effect of a
|
448 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
449 |
+
alignment, nor does it provide all the capabilities of the
|
450 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
451 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
452 |
+
|
453 |
+
Args:
|
454 |
+
sequence (:obj:`str`):
|
455 |
+
A string to pre-tokeize
|
456 |
+
|
457 |
+
Returns:
|
458 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
459 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
460 |
+
"""
|
461 |
+
pass
|
462 |
+
|
463 |
+
class UnicodeScripts(PreTokenizer):
|
464 |
+
"""
|
465 |
+
This pre-tokenizer splits on characters that belong to different language family
|
466 |
+
It roughly follows https://github.com/google/sentencepiece/blob/master/data/Scripts.txt
|
467 |
+
Actually Hiragana and Katakana are fused with Han, and 0x30FC is Han too.
|
468 |
+
This mimicks SentencePiece Unigram implementation.
|
469 |
+
"""
|
470 |
+
|
471 |
+
def __init__(self):
|
472 |
+
pass
|
473 |
+
def pre_tokenize(self, pretok):
|
474 |
+
"""
|
475 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
476 |
+
|
477 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
478 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
479 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
480 |
+
the pre-tokenization of a raw string, you can use
|
481 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
482 |
+
|
483 |
+
Args:
|
484 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
485 |
+
The pre-tokenized string on which to apply this
|
486 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
487 |
+
"""
|
488 |
+
pass
|
489 |
+
def pre_tokenize_str(self, sequence):
|
490 |
+
"""
|
491 |
+
Pre tokenize the given string
|
492 |
+
|
493 |
+
This method provides a way to visualize the effect of a
|
494 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
495 |
+
alignment, nor does it provide all the capabilities of the
|
496 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
497 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
498 |
+
|
499 |
+
Args:
|
500 |
+
sequence (:obj:`str`):
|
501 |
+
A string to pre-tokeize
|
502 |
+
|
503 |
+
Returns:
|
504 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
505 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
506 |
+
"""
|
507 |
+
pass
|
508 |
+
|
509 |
+
class Whitespace(PreTokenizer):
|
510 |
+
"""
|
511 |
+
This pre-tokenizer simply splits using the following regex: `\w+|[^\w\s]+`
|
512 |
+
"""
|
513 |
+
|
514 |
+
def __init__(self):
|
515 |
+
pass
|
516 |
+
def pre_tokenize(self, pretok):
|
517 |
+
"""
|
518 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
519 |
+
|
520 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
521 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
522 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
523 |
+
the pre-tokenization of a raw string, you can use
|
524 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
525 |
+
|
526 |
+
Args:
|
527 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
528 |
+
The pre-tokenized string on which to apply this
|
529 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
530 |
+
"""
|
531 |
+
pass
|
532 |
+
def pre_tokenize_str(self, sequence):
|
533 |
+
"""
|
534 |
+
Pre tokenize the given string
|
535 |
+
|
536 |
+
This method provides a way to visualize the effect of a
|
537 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
538 |
+
alignment, nor does it provide all the capabilities of the
|
539 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
540 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
541 |
+
|
542 |
+
Args:
|
543 |
+
sequence (:obj:`str`):
|
544 |
+
A string to pre-tokeize
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
548 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
549 |
+
"""
|
550 |
+
pass
|
551 |
+
|
552 |
+
class WhitespaceSplit(PreTokenizer):
|
553 |
+
"""
|
554 |
+
This pre-tokenizer simply splits on the whitespace. Works like `.split()`
|
555 |
+
"""
|
556 |
+
|
557 |
+
def __init__(self):
|
558 |
+
pass
|
559 |
+
def pre_tokenize(self, pretok):
|
560 |
+
"""
|
561 |
+
Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place
|
562 |
+
|
563 |
+
This method allows to modify a :class:`~tokenizers.PreTokenizedString` to
|
564 |
+
keep track of the pre-tokenization, and leverage the capabilities of the
|
565 |
+
:class:`~tokenizers.PreTokenizedString`. If you just want to see the result of
|
566 |
+
the pre-tokenization of a raw string, you can use
|
567 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str`
|
568 |
+
|
569 |
+
Args:
|
570 |
+
pretok (:class:`~tokenizers.PreTokenizedString):
|
571 |
+
The pre-tokenized string on which to apply this
|
572 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer`
|
573 |
+
"""
|
574 |
+
pass
|
575 |
+
def pre_tokenize_str(self, sequence):
|
576 |
+
"""
|
577 |
+
Pre tokenize the given string
|
578 |
+
|
579 |
+
This method provides a way to visualize the effect of a
|
580 |
+
:class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the
|
581 |
+
alignment, nor does it provide all the capabilities of the
|
582 |
+
:class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use
|
583 |
+
:meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize`
|
584 |
+
|
585 |
+
Args:
|
586 |
+
sequence (:obj:`str`):
|
587 |
+
A string to pre-tokeize
|
588 |
+
|
589 |
+
Returns:
|
590 |
+
:obj:`List[Tuple[str, Offsets]]`:
|
591 |
+
A list of tuple with the pre-tokenized parts and their offsets
|
592 |
+
"""
|
593 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/pre_tokenizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (482 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
from .. import processors
|
3 |
+
|
4 |
+
PostProcessor = processors.PostProcessor
|
5 |
+
BertProcessing = processors.BertProcessing
|
6 |
+
ByteLevel = processors.ByteLevel
|
7 |
+
RobertaProcessing = processors.RobertaProcessing
|
8 |
+
Sequence = processors.Sequence
|
9 |
+
TemplateProcessing = processors.TemplateProcessing
|
env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__init__.pyi
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class PostProcessor:
|
3 |
+
"""
|
4 |
+
Base class for all post-processors
|
5 |
+
|
6 |
+
This class is not supposed to be instantiated directly. Instead, any implementation of
|
7 |
+
a PostProcessor will return an instance of this class when instantiated.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def num_special_tokens_to_add(self, is_pair):
|
11 |
+
"""
|
12 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
is_pair (:obj:`bool`):
|
16 |
+
Whether the input would be a pair of sequences
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
:obj:`int`: The number of tokens to add
|
20 |
+
"""
|
21 |
+
pass
|
22 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
23 |
+
"""
|
24 |
+
Post-process the given encodings, generating the final one
|
25 |
+
|
26 |
+
Args:
|
27 |
+
encoding (:class:`~tokenizers.Encoding`):
|
28 |
+
The encoding for the first sequence
|
29 |
+
|
30 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
31 |
+
The encoding for the pair sequence
|
32 |
+
|
33 |
+
add_special_tokens (:obj:`bool`):
|
34 |
+
Whether to add the special tokens
|
35 |
+
|
36 |
+
Return:
|
37 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
38 |
+
"""
|
39 |
+
pass
|
40 |
+
|
41 |
+
class BertProcessing(PostProcessor):
|
42 |
+
"""
|
43 |
+
This post-processor takes care of adding the special tokens needed by
|
44 |
+
a Bert model:
|
45 |
+
|
46 |
+
- a SEP token
|
47 |
+
- a CLS token
|
48 |
+
|
49 |
+
Args:
|
50 |
+
sep (:obj:`Tuple[str, int]`):
|
51 |
+
A tuple with the string representation of the SEP token, and its id
|
52 |
+
|
53 |
+
cls (:obj:`Tuple[str, int]`):
|
54 |
+
A tuple with the string representation of the CLS token, and its id
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(self, sep, cls):
|
58 |
+
pass
|
59 |
+
def num_special_tokens_to_add(self, is_pair):
|
60 |
+
"""
|
61 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
is_pair (:obj:`bool`):
|
65 |
+
Whether the input would be a pair of sequences
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
:obj:`int`: The number of tokens to add
|
69 |
+
"""
|
70 |
+
pass
|
71 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
72 |
+
"""
|
73 |
+
Post-process the given encodings, generating the final one
|
74 |
+
|
75 |
+
Args:
|
76 |
+
encoding (:class:`~tokenizers.Encoding`):
|
77 |
+
The encoding for the first sequence
|
78 |
+
|
79 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
80 |
+
The encoding for the pair sequence
|
81 |
+
|
82 |
+
add_special_tokens (:obj:`bool`):
|
83 |
+
Whether to add the special tokens
|
84 |
+
|
85 |
+
Return:
|
86 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
87 |
+
"""
|
88 |
+
pass
|
89 |
+
|
90 |
+
class ByteLevel(PostProcessor):
|
91 |
+
"""
|
92 |
+
This post-processor takes care of trimming the offsets.
|
93 |
+
|
94 |
+
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
95 |
+
want the offsets to include these whitespaces, then this PostProcessor must be used.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
trim_offsets (:obj:`bool`):
|
99 |
+
Whether to trim the whitespaces from the produced offsets.
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, trim_offsets=True):
|
103 |
+
pass
|
104 |
+
def num_special_tokens_to_add(self, is_pair):
|
105 |
+
"""
|
106 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
is_pair (:obj:`bool`):
|
110 |
+
Whether the input would be a pair of sequences
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
:obj:`int`: The number of tokens to add
|
114 |
+
"""
|
115 |
+
pass
|
116 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
117 |
+
"""
|
118 |
+
Post-process the given encodings, generating the final one
|
119 |
+
|
120 |
+
Args:
|
121 |
+
encoding (:class:`~tokenizers.Encoding`):
|
122 |
+
The encoding for the first sequence
|
123 |
+
|
124 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
125 |
+
The encoding for the pair sequence
|
126 |
+
|
127 |
+
add_special_tokens (:obj:`bool`):
|
128 |
+
Whether to add the special tokens
|
129 |
+
|
130 |
+
Return:
|
131 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
132 |
+
"""
|
133 |
+
pass
|
134 |
+
|
135 |
+
class RobertaProcessing(PostProcessor):
|
136 |
+
"""
|
137 |
+
This post-processor takes care of adding the special tokens needed by
|
138 |
+
a Roberta model:
|
139 |
+
|
140 |
+
- a SEP token
|
141 |
+
- a CLS token
|
142 |
+
|
143 |
+
It also takes care of trimming the offsets.
|
144 |
+
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
145 |
+
want the offsets to include these whitespaces, then this PostProcessor should be initialized
|
146 |
+
with :obj:`trim_offsets=True`
|
147 |
+
|
148 |
+
Args:
|
149 |
+
sep (:obj:`Tuple[str, int]`):
|
150 |
+
A tuple with the string representation of the SEP token, and its id
|
151 |
+
|
152 |
+
cls (:obj:`Tuple[str, int]`):
|
153 |
+
A tuple with the string representation of the CLS token, and its id
|
154 |
+
|
155 |
+
trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
156 |
+
Whether to trim the whitespaces from the produced offsets.
|
157 |
+
|
158 |
+
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
159 |
+
Whether the add_prefix_space option was enabled during pre-tokenization. This
|
160 |
+
is relevant because it defines the way the offsets are trimmed out.
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __init__(self, sep, cls, trim_offsets=True, add_prefix_space=True):
|
164 |
+
pass
|
165 |
+
def num_special_tokens_to_add(self, is_pair):
|
166 |
+
"""
|
167 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
is_pair (:obj:`bool`):
|
171 |
+
Whether the input would be a pair of sequences
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
:obj:`int`: The number of tokens to add
|
175 |
+
"""
|
176 |
+
pass
|
177 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
178 |
+
"""
|
179 |
+
Post-process the given encodings, generating the final one
|
180 |
+
|
181 |
+
Args:
|
182 |
+
encoding (:class:`~tokenizers.Encoding`):
|
183 |
+
The encoding for the first sequence
|
184 |
+
|
185 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
186 |
+
The encoding for the pair sequence
|
187 |
+
|
188 |
+
add_special_tokens (:obj:`bool`):
|
189 |
+
Whether to add the special tokens
|
190 |
+
|
191 |
+
Return:
|
192 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
193 |
+
"""
|
194 |
+
pass
|
195 |
+
|
196 |
+
class Sequence(PostProcessor):
|
197 |
+
"""
|
198 |
+
Sequence Processor
|
199 |
+
|
200 |
+
Args:
|
201 |
+
processors (:obj:`List[PostProcessor]`)
|
202 |
+
The processors that need to be chained
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(self, processors):
|
206 |
+
pass
|
207 |
+
def num_special_tokens_to_add(self, is_pair):
|
208 |
+
"""
|
209 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
is_pair (:obj:`bool`):
|
213 |
+
Whether the input would be a pair of sequences
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
:obj:`int`: The number of tokens to add
|
217 |
+
"""
|
218 |
+
pass
|
219 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
220 |
+
"""
|
221 |
+
Post-process the given encodings, generating the final one
|
222 |
+
|
223 |
+
Args:
|
224 |
+
encoding (:class:`~tokenizers.Encoding`):
|
225 |
+
The encoding for the first sequence
|
226 |
+
|
227 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
228 |
+
The encoding for the pair sequence
|
229 |
+
|
230 |
+
add_special_tokens (:obj:`bool`):
|
231 |
+
Whether to add the special tokens
|
232 |
+
|
233 |
+
Return:
|
234 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
235 |
+
"""
|
236 |
+
pass
|
237 |
+
|
238 |
+
class TemplateProcessing(PostProcessor):
|
239 |
+
"""
|
240 |
+
Provides a way to specify templates in order to add the special tokens to each
|
241 |
+
input sequence as relevant.
|
242 |
+
|
243 |
+
Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
|
244 |
+
delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
|
245 |
+
sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
|
246 |
+
sequences. The final result looks like this:
|
247 |
+
|
248 |
+
- Single sequence: :obj:`[CLS] Hello there [SEP]`
|
249 |
+
- Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
250 |
+
|
251 |
+
With the type ids as following::
|
252 |
+
|
253 |
+
[CLS] ... [SEP] ... [SEP]
|
254 |
+
0 0 0 1 1
|
255 |
+
|
256 |
+
You can achieve such behavior using a TemplateProcessing::
|
257 |
+
|
258 |
+
TemplateProcessing(
|
259 |
+
single="[CLS] $0 [SEP]",
|
260 |
+
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
261 |
+
special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
|
262 |
+
)
|
263 |
+
|
264 |
+
In this example, each input sequence is identified using a ``$`` construct. This identifier
|
265 |
+
lets us specify each input sequence, and the type_id to use. When nothing is specified,
|
266 |
+
it uses the default values. Here are the different ways to specify it:
|
267 |
+
|
268 |
+
- Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
|
269 |
+
- Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
|
270 |
+
- Specifying both: ``$A:0``, ``$B:1``, ...
|
271 |
+
|
272 |
+
The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.
|
273 |
+
|
274 |
+
**Warning**: You must ensure that you are giving the correct tokens/ids as these
|
275 |
+
will be added to the Encoding without any further check. If the given ids correspond
|
276 |
+
to something totally different in a `Tokenizer` using this `PostProcessor`, it
|
277 |
+
might lead to unexpected results.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
single (:obj:`Template`):
|
281 |
+
The template used for single sequences
|
282 |
+
|
283 |
+
pair (:obj:`Template`):
|
284 |
+
The template used when both sequences are specified
|
285 |
+
|
286 |
+
special_tokens (:obj:`Tokens`):
|
287 |
+
The list of special tokens used in each sequences
|
288 |
+
|
289 |
+
Types:
|
290 |
+
|
291 |
+
Template (:obj:`str` or :obj:`List`):
|
292 |
+
- If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
|
293 |
+
- If a :obj:`List[str]` is provided, a list of tokens
|
294 |
+
|
295 |
+
Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
|
296 |
+
- A :obj:`Tuple` with both a token and its associated ID, in any order
|
297 |
+
- A :obj:`dict` with the following keys:
|
298 |
+
- "id": :obj:`str` => The special token id, as specified in the Template
|
299 |
+
- "ids": :obj:`List[int]` => The associated IDs
|
300 |
+
- "tokens": :obj:`List[str]` => The associated tokens
|
301 |
+
|
302 |
+
The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
|
303 |
+
the same length.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(self, single, pair, special_tokens):
|
307 |
+
pass
|
308 |
+
def num_special_tokens_to_add(self, is_pair):
|
309 |
+
"""
|
310 |
+
Return the number of special tokens that would be added for single/pair sentences.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
is_pair (:obj:`bool`):
|
314 |
+
Whether the input would be a pair of sequences
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
:obj:`int`: The number of tokens to add
|
318 |
+
"""
|
319 |
+
pass
|
320 |
+
def process(self, encoding, pair=None, add_special_tokens=True):
|
321 |
+
"""
|
322 |
+
Post-process the given encodings, generating the final one
|
323 |
+
|
324 |
+
Args:
|
325 |
+
encoding (:class:`~tokenizers.Encoding`):
|
326 |
+
The encoding for the first sequence
|
327 |
+
|
328 |
+
pair (:class:`~tokenizers.Encoding`, `optional`):
|
329 |
+
The encoding for the pair sequence
|
330 |
+
|
331 |
+
add_special_tokens (:obj:`bool`):
|
332 |
+
Whether to add the special tokens
|
333 |
+
|
334 |
+
Return:
|
335 |
+
:class:`~tokenizers.Encoding`: The final encoding
|
336 |
+
"""
|
337 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/processors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (360 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .visualizer import Annotation, EncodingVisualizer
|
env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (255 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/tools/__pycache__/visualizer.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/tokenizers/tools/visualizer-styles.css
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.tokenized-text {
|
2 |
+
width:100%;
|
3 |
+
padding:2rem;
|
4 |
+
max-height: 400px;
|
5 |
+
overflow-y: auto;
|
6 |
+
box-sizing:border-box;
|
7 |
+
line-height:4rem; /* Lots of space between lines */
|
8 |
+
font-family: "Roboto Light", "Ubuntu Light", "Ubuntu", monospace;
|
9 |
+
box-shadow: 2px 2px 2px rgba(0,0,0,0.2);
|
10 |
+
background-color: rgba(0,0,0,0.01);
|
11 |
+
letter-spacing:2px; /* Give some extra separation between chars */
|
12 |
+
}
|
13 |
+
.non-token{
|
14 |
+
/* White space and other things the tokenizer ignores*/
|
15 |
+
white-space: pre;
|
16 |
+
letter-spacing:4px;
|
17 |
+
border-top:1px solid #A0A0A0; /* A gentle border on top and bottom makes tabs more ovious*/
|
18 |
+
border-bottom:1px solid #A0A0A0;
|
19 |
+
line-height: 1rem;
|
20 |
+
height: calc(100% - 2px);
|
21 |
+
}
|
22 |
+
|
23 |
+
.token {
|
24 |
+
white-space: pre;
|
25 |
+
position:relative;
|
26 |
+
color:black;
|
27 |
+
letter-spacing:2px;
|
28 |
+
}
|
29 |
+
|
30 |
+
.annotation{
|
31 |
+
white-space:nowrap; /* Important - ensures that annotations appears even if the annotated text wraps a line */
|
32 |
+
border-radius:4px;
|
33 |
+
position:relative;
|
34 |
+
width:fit-content;
|
35 |
+
}
|
36 |
+
.annotation:before {
|
37 |
+
/*The before holds the text and the after holds the background*/
|
38 |
+
z-index:1000; /* Make sure this is above the background */
|
39 |
+
content:attr(data-label); /* The annotations label is on a data attribute */
|
40 |
+
color:white;
|
41 |
+
position:absolute;
|
42 |
+
font-size:1rem;
|
43 |
+
text-align:center;
|
44 |
+
font-weight:bold;
|
45 |
+
|
46 |
+
top:1.75rem;
|
47 |
+
line-height:0;
|
48 |
+
left:0;
|
49 |
+
width:100%;
|
50 |
+
padding:0.5rem 0;
|
51 |
+
/* These make it so an annotation doesn't stretch beyond the annotated text if the label is longer*/
|
52 |
+
overflow: hidden;
|
53 |
+
white-space: nowrap;
|
54 |
+
text-overflow:ellipsis;
|
55 |
+
}
|
56 |
+
|
57 |
+
.annotation:after {
|
58 |
+
content:attr(data-label); /* The content defines the width of the annotation*/
|
59 |
+
position:absolute;
|
60 |
+
font-size:0.75rem;
|
61 |
+
text-align:center;
|
62 |
+
font-weight:bold;
|
63 |
+
text-overflow:ellipsis;
|
64 |
+
top:1.75rem;
|
65 |
+
line-height:0;
|
66 |
+
overflow: hidden;
|
67 |
+
white-space: nowrap;
|
68 |
+
|
69 |
+
left:0;
|
70 |
+
width:100%; /* 100% of the parent, which is the annotation whose width is the tokens inside it*/
|
71 |
+
|
72 |
+
padding:0.5rem 0;
|
73 |
+
/* Nast hack below:
|
74 |
+
We set the annotations color in code because we don't know the colors at css time.
|
75 |
+
But you can't pass a color as a data attribute to get it into the pseudo element (this thing)
|
76 |
+
So to get around that, annotations have the color set on them with a style attribute and then we
|
77 |
+
can get the color with currentColor.
|
78 |
+
Annotations wrap tokens and tokens set the color back to black
|
79 |
+
*/
|
80 |
+
background-color: currentColor;
|
81 |
+
}
|
82 |
+
.annotation:hover::after, .annotation:hover::before{
|
83 |
+
/* When the user hovers over an annotation expand the label to display in full
|
84 |
+
*/
|
85 |
+
min-width: fit-content;
|
86 |
+
}
|
87 |
+
|
88 |
+
.annotation:hover{
|
89 |
+
/* Emphasize the annotation start end with a border on hover*/
|
90 |
+
border-color: currentColor;
|
91 |
+
border: 2px solid;
|
92 |
+
}
|
93 |
+
.special-token:not(:empty){
|
94 |
+
/*
|
95 |
+
A none empty special token is like UNK (as opposed to CLS which has no representation in the text )
|
96 |
+
*/
|
97 |
+
position:relative;
|
98 |
+
}
|
99 |
+
.special-token:empty::before{
|
100 |
+
/* Special tokens that don't have text are displayed as pseudo elements so we dont select them with the mouse*/
|
101 |
+
content:attr(data-stok);
|
102 |
+
background:#202020;
|
103 |
+
font-size:0.75rem;
|
104 |
+
color:white;
|
105 |
+
margin: 0 0.25rem;
|
106 |
+
padding: 0.25rem;
|
107 |
+
border-radius:4px
|
108 |
+
}
|
109 |
+
|
110 |
+
.special-token:not(:empty):before {
|
111 |
+
/* Special tokens that have text (UNK) are displayed above the actual text*/
|
112 |
+
content:attr(data-stok);
|
113 |
+
position:absolute;
|
114 |
+
bottom:1.75rem;
|
115 |
+
min-width:100%;
|
116 |
+
width:100%;
|
117 |
+
height:1rem;
|
118 |
+
line-height:1rem;
|
119 |
+
font-size:1rem;
|
120 |
+
text-align:center;
|
121 |
+
color:white;
|
122 |
+
font-weight:bold;
|
123 |
+
background:#202020;
|
124 |
+
border-radius:10%;
|
125 |
+
}
|
126 |
+
/*
|
127 |
+
We want to alternate the color of tokens, but we can't use nth child because tokens might be broken up by annotations
|
128 |
+
instead we apply even and odd class at generation time and color them that way
|
129 |
+
*/
|
130 |
+
.even-token{
|
131 |
+
background:#DCDCDC ;
|
132 |
+
border: 1px solid #DCDCDC;
|
133 |
+
}
|
134 |
+
.odd-token{
|
135 |
+
background:#A0A0A0;
|
136 |
+
border: 1px solid #A0A0A0;
|
137 |
+
}
|
138 |
+
.even-token.multi-token,.odd-token.multi-token{
|
139 |
+
background: repeating-linear-gradient(
|
140 |
+
45deg,
|
141 |
+
transparent,
|
142 |
+
transparent 1px,
|
143 |
+
#ccc 1px,
|
144 |
+
#ccc 1px
|
145 |
+
),
|
146 |
+
/* on "bottom" */
|
147 |
+
linear-gradient(
|
148 |
+
to bottom,
|
149 |
+
#FFB6C1,
|
150 |
+
#999
|
151 |
+
);
|
152 |
+
}
|
153 |
+
|
154 |
+
.multi-token:hover::after {
|
155 |
+
content:"This char has more than 1 token"; /* The content defines the width of the annotation*/
|
156 |
+
color:white;
|
157 |
+
background-color: black;
|
158 |
+
position:absolute;
|
159 |
+
font-size:0.75rem;
|
160 |
+
text-align:center;
|
161 |
+
font-weight:bold;
|
162 |
+
text-overflow:ellipsis;
|
163 |
+
top:1.75rem;
|
164 |
+
line-height:0;
|
165 |
+
overflow: hidden;
|
166 |
+
white-space: nowrap;
|
167 |
+
left:0;
|
168 |
+
width:fit-content; /* 100% of the parent, which is the annotation whose width is the tokens inside it*/
|
169 |
+
padding:0.5rem 0;
|
170 |
+
}
|
env-llmeval/lib/python3.10/site-packages/tokenizers/tools/visualizer.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from string import Template
|
5 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple
|
6 |
+
|
7 |
+
from tokenizers import Encoding, Tokenizer
|
8 |
+
|
9 |
+
|
10 |
+
dirname = os.path.dirname(__file__)
|
11 |
+
css_filename = os.path.join(dirname, "visualizer-styles.css")
|
12 |
+
with open(css_filename) as f:
|
13 |
+
css = f.read()
|
14 |
+
|
15 |
+
|
16 |
+
class Annotation:
|
17 |
+
start: int
|
18 |
+
end: int
|
19 |
+
label: int
|
20 |
+
|
21 |
+
def __init__(self, start: int, end: int, label: str):
|
22 |
+
self.start = start
|
23 |
+
self.end = end
|
24 |
+
self.label = label
|
25 |
+
|
26 |
+
|
27 |
+
AnnotationList = List[Annotation]
|
28 |
+
PartialIntList = List[Optional[int]]
|
29 |
+
|
30 |
+
|
31 |
+
class CharStateKey(NamedTuple):
|
32 |
+
token_ix: Optional[int]
|
33 |
+
anno_ix: Optional[int]
|
34 |
+
|
35 |
+
|
36 |
+
class CharState:
|
37 |
+
char_ix: Optional[int]
|
38 |
+
|
39 |
+
def __init__(self, char_ix):
|
40 |
+
self.char_ix = char_ix
|
41 |
+
|
42 |
+
self.anno_ix: Optional[int] = None
|
43 |
+
self.tokens: List[int] = []
|
44 |
+
|
45 |
+
@property
|
46 |
+
def token_ix(self):
|
47 |
+
return self.tokens[0] if len(self.tokens) > 0 else None
|
48 |
+
|
49 |
+
@property
|
50 |
+
def is_multitoken(self):
|
51 |
+
"""
|
52 |
+
BPE tokenizers can output more than one token for a char
|
53 |
+
"""
|
54 |
+
return len(self.tokens) > 1
|
55 |
+
|
56 |
+
def partition_key(self) -> CharStateKey:
|
57 |
+
return CharStateKey(
|
58 |
+
token_ix=self.token_ix,
|
59 |
+
anno_ix=self.anno_ix,
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
class Aligned:
|
64 |
+
pass
|
65 |
+
|
66 |
+
|
67 |
+
class EncodingVisualizer:
|
68 |
+
"""
|
69 |
+
Build an EncodingVisualizer
|
70 |
+
|
71 |
+
Args:
|
72 |
+
|
73 |
+
tokenizer (:class:`~tokenizers.Tokenizer`):
|
74 |
+
A tokenizer instance
|
75 |
+
|
76 |
+
default_to_notebook (:obj:`bool`):
|
77 |
+
Whether to render html output in a notebook by default
|
78 |
+
|
79 |
+
annotation_converter (:obj:`Callable`, `optional`):
|
80 |
+
An optional (lambda) function that takes an annotation in any format and returns
|
81 |
+
an Annotation object
|
82 |
+
"""
|
83 |
+
|
84 |
+
unk_token_regex = re.compile("(.{1}\b)?(unk|oov)(\b.{1})?", flags=re.IGNORECASE)
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
tokenizer: Tokenizer,
|
89 |
+
default_to_notebook: bool = True,
|
90 |
+
annotation_converter: Optional[Callable[[Any], Annotation]] = None,
|
91 |
+
):
|
92 |
+
if default_to_notebook:
|
93 |
+
try:
|
94 |
+
from IPython.core.display import HTML, display
|
95 |
+
except ImportError as e:
|
96 |
+
raise Exception(
|
97 |
+
"""We couldn't import IPython utils for html display.
|
98 |
+
Are you running in a notebook?
|
99 |
+
You can also pass `default_to_notebook=False` to get back raw HTML
|
100 |
+
"""
|
101 |
+
)
|
102 |
+
|
103 |
+
self.tokenizer = tokenizer
|
104 |
+
self.default_to_notebook = default_to_notebook
|
105 |
+
self.annotation_coverter = annotation_converter
|
106 |
+
pass
|
107 |
+
|
108 |
+
def __call__(
|
109 |
+
self,
|
110 |
+
text: str,
|
111 |
+
annotations: AnnotationList = [],
|
112 |
+
default_to_notebook: Optional[bool] = None,
|
113 |
+
) -> Optional[str]:
|
114 |
+
"""
|
115 |
+
Build a visualization of the given text
|
116 |
+
|
117 |
+
Args:
|
118 |
+
text (:obj:`str`):
|
119 |
+
The text to tokenize
|
120 |
+
|
121 |
+
annotations (:obj:`List[Annotation]`, `optional`):
|
122 |
+
An optional list of annotations of the text. The can either be an annotation class
|
123 |
+
or anything else if you instantiated the visualizer with a converter function
|
124 |
+
|
125 |
+
default_to_notebook (:obj:`bool`, `optional`, defaults to `False`):
|
126 |
+
If True, will render the html in a notebook. Otherwise returns an html string.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
The HTML string if default_to_notebook is False, otherwise (default) returns None and
|
130 |
+
renders the HTML in the notebook
|
131 |
+
|
132 |
+
"""
|
133 |
+
final_default_to_notebook = self.default_to_notebook
|
134 |
+
if default_to_notebook is not None:
|
135 |
+
final_default_to_notebook = default_to_notebook
|
136 |
+
if final_default_to_notebook:
|
137 |
+
try:
|
138 |
+
from IPython.core.display import HTML, display
|
139 |
+
except ImportError as e:
|
140 |
+
raise Exception(
|
141 |
+
"""We couldn't import IPython utils for html display.
|
142 |
+
Are you running in a notebook?"""
|
143 |
+
)
|
144 |
+
if self.annotation_coverter is not None:
|
145 |
+
annotations = list(map(self.annotation_coverter, annotations))
|
146 |
+
encoding = self.tokenizer.encode(text)
|
147 |
+
html = EncodingVisualizer.__make_html(text, encoding, annotations)
|
148 |
+
if final_default_to_notebook:
|
149 |
+
display(HTML(html))
|
150 |
+
else:
|
151 |
+
return html
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]:
|
155 |
+
"""
|
156 |
+
Generates a color palette for all the labels in a given set of annotations
|
157 |
+
|
158 |
+
Args:
|
159 |
+
annotations (:obj:`Annotation`):
|
160 |
+
A list of annotations
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
:obj:`dict`: A dictionary mapping labels to colors in HSL format
|
164 |
+
"""
|
165 |
+
if len(annotations) == 0:
|
166 |
+
return {}
|
167 |
+
labels = set(map(lambda x: x.label, annotations))
|
168 |
+
num_labels = len(labels)
|
169 |
+
h_step = int(255 / num_labels)
|
170 |
+
if h_step < 20:
|
171 |
+
h_step = 20
|
172 |
+
s = 32
|
173 |
+
l = 64
|
174 |
+
h = 10
|
175 |
+
colors = {}
|
176 |
+
|
177 |
+
for label in sorted(labels): # sort so we always get the same colors for a given set of labels
|
178 |
+
colors[label] = f"hsl({h},{s}%,{l}%"
|
179 |
+
h += h_step
|
180 |
+
return colors
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def consecutive_chars_to_html(
|
184 |
+
consecutive_chars_list: List[CharState],
|
185 |
+
text: str,
|
186 |
+
encoding: Encoding,
|
187 |
+
):
|
188 |
+
"""
|
189 |
+
Converts a list of "consecutive chars" into a single HTML element.
|
190 |
+
Chars are consecutive if they fall under the same word, token and annotation.
|
191 |
+
The CharState class is a named tuple with a "partition_key" method that makes it easy to
|
192 |
+
compare if two chars are consecutive.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
consecutive_chars_list (:obj:`List[CharState]`):
|
196 |
+
A list of CharStates that have been grouped together
|
197 |
+
|
198 |
+
text (:obj:`str`):
|
199 |
+
The original text being processed
|
200 |
+
|
201 |
+
encoding (:class:`~tokenizers.Encoding`):
|
202 |
+
The encoding returned from the tokenizer
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
:obj:`str`: The HTML span for a set of consecutive chars
|
206 |
+
"""
|
207 |
+
first = consecutive_chars_list[0]
|
208 |
+
if first.char_ix is None:
|
209 |
+
# its a special token
|
210 |
+
stoken = encoding.tokens[first.token_ix]
|
211 |
+
# special tokens are represented as empty spans. We use the data attribute and css
|
212 |
+
# magic to display it
|
213 |
+
return f'<span class="special-token" data-stoken={stoken}></span>'
|
214 |
+
# We're not in a special token so this group has a start and end.
|
215 |
+
last = consecutive_chars_list[-1]
|
216 |
+
start = first.char_ix
|
217 |
+
end = last.char_ix + 1
|
218 |
+
span_text = text[start:end]
|
219 |
+
css_classes = [] # What css classes will we apply on the resulting span
|
220 |
+
data_items = {} # What data attributes will we apply on the result span
|
221 |
+
if first.token_ix is not None:
|
222 |
+
# We can either be in a token or not (e.g. in white space)
|
223 |
+
css_classes.append("token")
|
224 |
+
if first.is_multitoken:
|
225 |
+
css_classes.append("multi-token")
|
226 |
+
if first.token_ix % 2:
|
227 |
+
# We use this to color alternating tokens.
|
228 |
+
# A token might be split by an annotation that ends in the middle of it, so this
|
229 |
+
# lets us visually indicate a consecutive token despite its possible splitting in
|
230 |
+
# the html markup
|
231 |
+
css_classes.append("odd-token")
|
232 |
+
else:
|
233 |
+
# Like above, but a different color so we can see the tokens alternate
|
234 |
+
css_classes.append("even-token")
|
235 |
+
if EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None:
|
236 |
+
# This is a special token that is in the text. probably UNK
|
237 |
+
css_classes.append("special-token")
|
238 |
+
# TODO is this the right name for the data attribute ?
|
239 |
+
data_items["stok"] = encoding.tokens[first.token_ix]
|
240 |
+
else:
|
241 |
+
# In this case we are looking at a group/single char that is not tokenized.
|
242 |
+
# e.g. white space
|
243 |
+
css_classes.append("non-token")
|
244 |
+
css = f'''class="{' '.join(css_classes)}"'''
|
245 |
+
data = ""
|
246 |
+
for key, val in data_items.items():
|
247 |
+
data += f' data-{key}="{val}"'
|
248 |
+
return f"<span {css} {data} >{span_text}</span>"
|
249 |
+
|
250 |
+
@staticmethod
|
251 |
+
def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str:
|
252 |
+
char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations)
|
253 |
+
current_consecutive_chars = [char_states[0]]
|
254 |
+
prev_anno_ix = char_states[0].anno_ix
|
255 |
+
spans = []
|
256 |
+
label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations)
|
257 |
+
cur_anno_ix = char_states[0].anno_ix
|
258 |
+
if cur_anno_ix is not None:
|
259 |
+
# If we started in an annotation make a span for it
|
260 |
+
anno = annotations[cur_anno_ix]
|
261 |
+
label = anno.label
|
262 |
+
color = label_colors_dict[label]
|
263 |
+
spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
|
264 |
+
|
265 |
+
for cs in char_states[1:]:
|
266 |
+
cur_anno_ix = cs.anno_ix
|
267 |
+
if cur_anno_ix != prev_anno_ix:
|
268 |
+
# If we've transitioned in or out of an annotation
|
269 |
+
spans.append(
|
270 |
+
# Create a span from the current consecutive characters
|
271 |
+
EncodingVisualizer.consecutive_chars_to_html(
|
272 |
+
current_consecutive_chars,
|
273 |
+
text=text,
|
274 |
+
encoding=encoding,
|
275 |
+
)
|
276 |
+
)
|
277 |
+
current_consecutive_chars = [cs]
|
278 |
+
|
279 |
+
if prev_anno_ix is not None:
|
280 |
+
# if we transitioned out of an annotation close it's span
|
281 |
+
spans.append("</span>")
|
282 |
+
if cur_anno_ix is not None:
|
283 |
+
# If we entered a new annotation make a span for it
|
284 |
+
anno = annotations[cur_anno_ix]
|
285 |
+
label = anno.label
|
286 |
+
color = label_colors_dict[label]
|
287 |
+
spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
|
288 |
+
prev_anno_ix = cur_anno_ix
|
289 |
+
|
290 |
+
if cs.partition_key() == current_consecutive_chars[0].partition_key():
|
291 |
+
# If the current charchter is in the same "group" as the previous one
|
292 |
+
current_consecutive_chars.append(cs)
|
293 |
+
else:
|
294 |
+
# Otherwise we make a span for the previous group
|
295 |
+
spans.append(
|
296 |
+
EncodingVisualizer.consecutive_chars_to_html(
|
297 |
+
current_consecutive_chars,
|
298 |
+
text=text,
|
299 |
+
encoding=encoding,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
# An reset the consecutive_char_list to form a new group
|
303 |
+
current_consecutive_chars = [cs]
|
304 |
+
# All that's left is to fill out the final span
|
305 |
+
# TODO I think there is an edge case here where an annotation's span might not close
|
306 |
+
spans.append(
|
307 |
+
EncodingVisualizer.consecutive_chars_to_html(
|
308 |
+
current_consecutive_chars,
|
309 |
+
text=text,
|
310 |
+
encoding=encoding,
|
311 |
+
)
|
312 |
+
)
|
313 |
+
res = HTMLBody(spans) # Send the list of spans to the body of our html
|
314 |
+
return res
|
315 |
+
|
316 |
+
@staticmethod
|
317 |
+
def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList:
|
318 |
+
"""
|
319 |
+
Args:
|
320 |
+
text (:obj:`str`):
|
321 |
+
The raw text we want to align to
|
322 |
+
|
323 |
+
annotations (:obj:`AnnotationList`):
|
324 |
+
A (possibly empty) list of annotations
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
A list of length len(text) whose entry at index i is None if there is no annotation on
|
328 |
+
charachter i or k, the index of the annotation that covers index i where k is with
|
329 |
+
respect to the list of annotations
|
330 |
+
"""
|
331 |
+
annotation_map = [None] * len(text)
|
332 |
+
for anno_ix, a in enumerate(annotations):
|
333 |
+
for i in range(a.start, a.end):
|
334 |
+
annotation_map[i] = anno_ix
|
335 |
+
return annotation_map
|
336 |
+
|
337 |
+
@staticmethod
|
338 |
+
def __make_char_states(text: str, encoding: Encoding, annotations: AnnotationList) -> List[CharState]:
|
339 |
+
"""
|
340 |
+
For each character in the original text, we emit a tuple representing it's "state":
|
341 |
+
|
342 |
+
* which token_ix it corresponds to
|
343 |
+
* which word_ix it corresponds to
|
344 |
+
* which annotation_ix it corresponds to
|
345 |
+
|
346 |
+
Args:
|
347 |
+
text (:obj:`str`):
|
348 |
+
The raw text we want to align to
|
349 |
+
|
350 |
+
annotations (:obj:`List[Annotation]`):
|
351 |
+
A (possibly empty) list of annotations
|
352 |
+
|
353 |
+
encoding: (:class:`~tokenizers.Encoding`):
|
354 |
+
The encoding returned from the tokenizer
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
:obj:`List[CharState]`: A list of CharStates, indicating for each char in the text what
|
358 |
+
it's state is
|
359 |
+
"""
|
360 |
+
annotation_map = EncodingVisualizer.__make_anno_map(text, annotations)
|
361 |
+
# Todo make this a dataclass or named tuple
|
362 |
+
char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))]
|
363 |
+
for token_ix, token in enumerate(encoding.tokens):
|
364 |
+
offsets = encoding.token_to_chars(token_ix)
|
365 |
+
if offsets is not None:
|
366 |
+
start, end = offsets
|
367 |
+
for i in range(start, end):
|
368 |
+
char_states[i].tokens.append(token_ix)
|
369 |
+
for char_ix, anno_ix in enumerate(annotation_map):
|
370 |
+
char_states[char_ix].anno_ix = anno_ix
|
371 |
+
|
372 |
+
return char_states
|
373 |
+
|
374 |
+
|
375 |
+
def HTMLBody(children: List[str], css_styles=css) -> str:
|
376 |
+
"""
|
377 |
+
Generates the full html with css from a list of html spans
|
378 |
+
|
379 |
+
Args:
|
380 |
+
children (:obj:`List[str]`):
|
381 |
+
A list of strings, assumed to be html elements
|
382 |
+
|
383 |
+
css_styles (:obj:`str`, `optional`):
|
384 |
+
Optional alternative implementation of the css
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
:obj:`str`: An HTML string with style markup
|
388 |
+
"""
|
389 |
+
children_text = "".join(children)
|
390 |
+
return f"""
|
391 |
+
<html>
|
392 |
+
<head>
|
393 |
+
<style>
|
394 |
+
{css_styles}
|
395 |
+
</style>
|
396 |
+
</head>
|
397 |
+
<body>
|
398 |
+
<div class="tokenized-text" dir=auto>
|
399 |
+
{children_text}
|
400 |
+
</div>
|
401 |
+
</body>
|
402 |
+
</html>
|
403 |
+
"""
|
env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
from .. import trainers
|
3 |
+
|
4 |
+
Trainer = trainers.Trainer
|
5 |
+
BpeTrainer = trainers.BpeTrainer
|
6 |
+
UnigramTrainer = trainers.UnigramTrainer
|
7 |
+
WordLevelTrainer = trainers.WordLevelTrainer
|
8 |
+
WordPieceTrainer = trainers.WordPieceTrainer
|
env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__init__.pyi
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated content DO NOT EDIT
|
2 |
+
class Trainer:
|
3 |
+
"""
|
4 |
+
Base class for all trainers
|
5 |
+
|
6 |
+
This class is not supposed to be instantiated directly. Instead, any implementation of a
|
7 |
+
Trainer will return an instance of this class when instantiated.
|
8 |
+
"""
|
9 |
+
|
10 |
+
class BpeTrainer(Trainer):
|
11 |
+
"""
|
12 |
+
Trainer capable of training a BPE model
|
13 |
+
|
14 |
+
Args:
|
15 |
+
vocab_size (:obj:`int`, `optional`):
|
16 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
17 |
+
|
18 |
+
min_frequency (:obj:`int`, `optional`):
|
19 |
+
The minimum frequency a pair should have in order to be merged.
|
20 |
+
|
21 |
+
show_progress (:obj:`bool`, `optional`):
|
22 |
+
Whether to show progress bars while training.
|
23 |
+
|
24 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
|
25 |
+
A list of special tokens the model should know of.
|
26 |
+
|
27 |
+
limit_alphabet (:obj:`int`, `optional`):
|
28 |
+
The maximum different characters to keep in the alphabet.
|
29 |
+
|
30 |
+
initial_alphabet (:obj:`List[str]`, `optional`):
|
31 |
+
A list of characters to include in the initial alphabet, even
|
32 |
+
if not seen in the training dataset.
|
33 |
+
If the strings contain more than one character, only the first one
|
34 |
+
is kept.
|
35 |
+
|
36 |
+
continuing_subword_prefix (:obj:`str`, `optional`):
|
37 |
+
A prefix to be used for every subword that is not a beginning-of-word.
|
38 |
+
|
39 |
+
end_of_word_suffix (:obj:`str`, `optional`):
|
40 |
+
A suffix to be used for every subword that is a end-of-word.
|
41 |
+
|
42 |
+
max_token_length (:obj:`int`, `optional`):
|
43 |
+
Prevents creating tokens longer than the specified size.
|
44 |
+
This can help with reducing polluting your vocabulary with
|
45 |
+
highly repetitive tokens like `======` for wikipedia
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
class UnigramTrainer(Trainer):
|
50 |
+
"""
|
51 |
+
Trainer capable of training a Unigram model
|
52 |
+
|
53 |
+
Args:
|
54 |
+
vocab_size (:obj:`int`):
|
55 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
56 |
+
|
57 |
+
show_progress (:obj:`bool`):
|
58 |
+
Whether to show progress bars while training.
|
59 |
+
|
60 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`):
|
61 |
+
A list of special tokens the model should know of.
|
62 |
+
|
63 |
+
initial_alphabet (:obj:`List[str]`):
|
64 |
+
A list of characters to include in the initial alphabet, even
|
65 |
+
if not seen in the training dataset.
|
66 |
+
If the strings contain more than one character, only the first one
|
67 |
+
is kept.
|
68 |
+
|
69 |
+
shrinking_factor (:obj:`float`):
|
70 |
+
The shrinking factor used at each step of the training to prune the
|
71 |
+
vocabulary.
|
72 |
+
|
73 |
+
unk_token (:obj:`str`):
|
74 |
+
The token used for out-of-vocabulary tokens.
|
75 |
+
|
76 |
+
max_piece_length (:obj:`int`):
|
77 |
+
The maximum length of a given token.
|
78 |
+
|
79 |
+
n_sub_iterations (:obj:`int`):
|
80 |
+
The number of iterations of the EM algorithm to perform before
|
81 |
+
pruning the vocabulary.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
vocab_size=8000,
|
87 |
+
show_progress=True,
|
88 |
+
special_tokens=[],
|
89 |
+
shrinking_factor=0.75,
|
90 |
+
unk_token=None,
|
91 |
+
max_piece_length=16,
|
92 |
+
n_sub_iterations=2,
|
93 |
+
):
|
94 |
+
pass
|
95 |
+
|
96 |
+
class WordLevelTrainer(Trainer):
|
97 |
+
"""
|
98 |
+
Trainer capable of training a WorldLevel model
|
99 |
+
|
100 |
+
Args:
|
101 |
+
vocab_size (:obj:`int`, `optional`):
|
102 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
103 |
+
|
104 |
+
min_frequency (:obj:`int`, `optional`):
|
105 |
+
The minimum frequency a pair should have in order to be merged.
|
106 |
+
|
107 |
+
show_progress (:obj:`bool`, `optional`):
|
108 |
+
Whether to show progress bars while training.
|
109 |
+
|
110 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`):
|
111 |
+
A list of special tokens the model should know of.
|
112 |
+
"""
|
113 |
+
|
114 |
+
class WordPieceTrainer(Trainer):
|
115 |
+
"""
|
116 |
+
Trainer capable of training a WordPiece model
|
117 |
+
|
118 |
+
Args:
|
119 |
+
vocab_size (:obj:`int`, `optional`):
|
120 |
+
The size of the final vocabulary, including all tokens and alphabet.
|
121 |
+
|
122 |
+
min_frequency (:obj:`int`, `optional`):
|
123 |
+
The minimum frequency a pair should have in order to be merged.
|
124 |
+
|
125 |
+
show_progress (:obj:`bool`, `optional`):
|
126 |
+
Whether to show progress bars while training.
|
127 |
+
|
128 |
+
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
|
129 |
+
A list of special tokens the model should know of.
|
130 |
+
|
131 |
+
limit_alphabet (:obj:`int`, `optional`):
|
132 |
+
The maximum different characters to keep in the alphabet.
|
133 |
+
|
134 |
+
initial_alphabet (:obj:`List[str]`, `optional`):
|
135 |
+
A list of characters to include in the initial alphabet, even
|
136 |
+
if not seen in the training dataset.
|
137 |
+
If the strings contain more than one character, only the first one
|
138 |
+
is kept.
|
139 |
+
|
140 |
+
continuing_subword_prefix (:obj:`str`, `optional`):
|
141 |
+
A prefix to be used for every subword that is not a beginning-of-word.
|
142 |
+
|
143 |
+
end_of_word_suffix (:obj:`str`, `optional`):
|
144 |
+
A suffix to be used for every subword that is a end-of-word.
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
vocab_size=30000,
|
150 |
+
min_frequency=0,
|
151 |
+
show_progress=True,
|
152 |
+
special_tokens=[],
|
153 |
+
limit_alphabet=None,
|
154 |
+
initial_alphabet=[],
|
155 |
+
continuing_subword_prefix="##",
|
156 |
+
end_of_word_suffix=None,
|
157 |
+
):
|
158 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/tokenizers/trainers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (330 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""torchgen
|
2 |
+
|
3 |
+
This module contains codegeneration utilities for PyTorch. It is used to
|
4 |
+
build PyTorch from source, but may also be used for out-of-tree projects
|
5 |
+
that extend PyTorch.
|
6 |
+
|
7 |
+
Note well that we provide no BC guarantees for torchgen. If you're interested
|
8 |
+
in using torchgen and want the PyTorch team to be aware, please reach out
|
9 |
+
on GitHub.
|
10 |
+
"""
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/lazy.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from torchgen.api.types import (
|
4 |
+
BaseCppType,
|
5 |
+
BaseCType,
|
6 |
+
boolT,
|
7 |
+
CType,
|
8 |
+
deviceT,
|
9 |
+
doubleT,
|
10 |
+
generatorT,
|
11 |
+
layoutT,
|
12 |
+
ListCType,
|
13 |
+
longT,
|
14 |
+
memoryFormatT,
|
15 |
+
NamedCType,
|
16 |
+
OptionalCType,
|
17 |
+
scalarT,
|
18 |
+
scalarTypeT,
|
19 |
+
stringT,
|
20 |
+
SymIntT,
|
21 |
+
VectorCType,
|
22 |
+
)
|
23 |
+
|
24 |
+
from torchgen.model import (
|
25 |
+
Argument,
|
26 |
+
BaseTy,
|
27 |
+
BaseType,
|
28 |
+
FunctionSchema,
|
29 |
+
ListType,
|
30 |
+
OperatorName,
|
31 |
+
OptionalType,
|
32 |
+
Return,
|
33 |
+
TensorOptionsArguments,
|
34 |
+
Type,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
_valueT = None
|
39 |
+
|
40 |
+
|
41 |
+
# A ValueT is an IR type which represents the computation of a Tensor. In other
|
42 |
+
# words, a PyTorch user will do operations on lazy tensors, and each output lazy
|
43 |
+
# tensor internally tracks a ValueT representing the IR node that would have
|
44 |
+
# actually produced the value of this tensor for real.
|
45 |
+
#
|
46 |
+
# This is configurable because different lazy tensor backends (LTC vs XLA) will
|
47 |
+
# have different IR representations. (Though, arguably, after unification they
|
48 |
+
# shouldn't!)
|
49 |
+
def getValueT() -> BaseCppType:
|
50 |
+
global _valueT
|
51 |
+
if not _valueT:
|
52 |
+
raise NotImplementedError(
|
53 |
+
"The value type needs to be set with setValueT() in run_gen_lazy_tensor()"
|
54 |
+
)
|
55 |
+
|
56 |
+
return _valueT
|
57 |
+
|
58 |
+
|
59 |
+
def setValueT(val: BaseCppType) -> None:
|
60 |
+
global _valueT
|
61 |
+
_valueT = val
|
62 |
+
|
63 |
+
|
64 |
+
# this is a bad hack. I need to refactor the data model to represent each arg in the schema as an object,
|
65 |
+
# making it easier to represent special properties of an arg.
|
66 |
+
tensorListValueT = BaseCppType("torch::lazy", "Value")
|
67 |
+
|
68 |
+
|
69 |
+
def process_ir_type(
|
70 |
+
typ: Type, properties: "LazyIrProperties", *, symint: bool
|
71 |
+
) -> Union[BaseCType, VectorCType, OptionalCType, ListCType]:
|
72 |
+
"""
|
73 |
+
This function takes a type from NativeFunctions and converts it for use with
|
74 |
+
lazy tensor codegen.
|
75 |
+
|
76 |
+
Type conversion for lazy currently consists of
|
77 |
+
(1) changing at::Tensors into lazy::Values
|
78 |
+
(2) wrapping everything in a BaseCType
|
79 |
+
(3) making cpp-reference types into cpp-value types (e.g. vector instead of IntArrayRef)
|
80 |
+
|
81 |
+
(1) converts at::Tensors to lazy::Values (which wrap lazy::Nodes, with which Lazy IR represents tensors.)
|
82 |
+
There is special handling for Optional[Tensor] or List[Tensor], etc- hence 'tensor-like'
|
83 |
+
|
84 |
+
This is incomplete- there are assertions in places that it's expected to need to add
|
85 |
+
more types as the codegen is used with more operators.
|
86 |
+
"""
|
87 |
+
if isinstance(typ, BaseType):
|
88 |
+
if typ.name == BaseTy.Tensor:
|
89 |
+
return BaseCType(getValueT())
|
90 |
+
elif typ.name == BaseTy.Scalar:
|
91 |
+
if properties.TreatScalarsAsConstants:
|
92 |
+
return BaseCType(scalarT)
|
93 |
+
# at::scalar has special handling,
|
94 |
+
# and is wrapped in an lazy::Value just like at::tensor
|
95 |
+
return BaseCType(getValueT())
|
96 |
+
elif typ.name == BaseTy.ScalarType:
|
97 |
+
return BaseCType(scalarTypeT)
|
98 |
+
elif typ.name == BaseTy.int:
|
99 |
+
return BaseCType(longT)
|
100 |
+
elif typ.name == BaseTy.SymInt:
|
101 |
+
if symint:
|
102 |
+
return BaseCType(getValueT())
|
103 |
+
else:
|
104 |
+
return BaseCType(longT)
|
105 |
+
elif typ.name == BaseTy.bool:
|
106 |
+
return BaseCType(boolT)
|
107 |
+
elif typ.name == BaseTy.float:
|
108 |
+
return BaseCType(doubleT)
|
109 |
+
elif typ.name == BaseTy.str:
|
110 |
+
return BaseCType(stringT)
|
111 |
+
elif typ.name == BaseTy.Device:
|
112 |
+
return BaseCType(deviceT)
|
113 |
+
elif typ.name == BaseTy.Generator:
|
114 |
+
return BaseCType(generatorT)
|
115 |
+
elif typ.name == BaseTy.Layout:
|
116 |
+
return BaseCType(layoutT)
|
117 |
+
elif typ.name == BaseTy.MemoryFormat:
|
118 |
+
return BaseCType(memoryFormatT)
|
119 |
+
else:
|
120 |
+
raise AssertionError(f"TODO add support for type {repr(typ)}")
|
121 |
+
elif isinstance(typ, OptionalType):
|
122 |
+
return OptionalCType(process_ir_type(typ.elem, properties, symint=symint))
|
123 |
+
elif isinstance(typ, ListType):
|
124 |
+
if str(typ.elem) == "Tensor?":
|
125 |
+
# TODO(whc) is this actually correct? or should it use a Vector like above
|
126 |
+
return ListCType(OptionalCType(BaseCType(getValueT())))
|
127 |
+
elif str(typ.elem) == "Tensor":
|
128 |
+
# this is a TensorList which comes in from GetTensorList as a Value
|
129 |
+
return BaseCType(tensorListValueT)
|
130 |
+
elif typ.elem == BaseType(BaseTy.SymInt):
|
131 |
+
# TODO: return a value type. The problem here is analogous to
|
132 |
+
# the problem with tensorListValueT: if you have SymInt[] you
|
133 |
+
# cannot conveniently save the list of Value directly, as nodes
|
134 |
+
# expect to save values as a vector for ALL arguments. So you
|
135 |
+
# need a separate IR node that represents all of the size nodes
|
136 |
+
# assembled into a list. I'm not an LTC dev so I don't want to
|
137 |
+
# figure it out right now. Y'all figure it out...
|
138 |
+
return VectorCType(BaseCType(longT))
|
139 |
+
|
140 |
+
else:
|
141 |
+
return VectorCType(process_ir_type(typ.elem, properties, symint=symint))
|
142 |
+
else:
|
143 |
+
raise AssertionError(f"unrecognized type {repr(typ)}")
|
144 |
+
|
145 |
+
|
146 |
+
# TODO: Determining this based off of CType is bad; this should be computed
|
147 |
+
# from Type directly; then the same logic as process_ir_type can be used
|
148 |
+
#
|
149 |
+
# Invariant: passed typ should be an *owning* CType (e.g., we will report
|
150 |
+
# that ArrayRef<Value> is NOT a value type)
|
151 |
+
def isValueType(typ: CType, properties: "Optional[LazyIrProperties]" = None) -> bool:
|
152 |
+
"""
|
153 |
+
Given a type, determine if it is a Value-like type. This is equivalent to
|
154 |
+
being Tensor-like, but assumes the type has already been transformed.
|
155 |
+
"""
|
156 |
+
if isinstance(typ, BaseCType):
|
157 |
+
# I am regretting my naming conventions, but now we are wrapping at::scalar in
|
158 |
+
# lazy value, while preserving other 'scalar' types as scalars in the IR
|
159 |
+
treat_scalars_as_constants = properties and properties.TreatScalarsAsConstants
|
160 |
+
return (
|
161 |
+
typ.type == getValueT()
|
162 |
+
or (typ.type == scalarT and not treat_scalars_as_constants)
|
163 |
+
or typ.type == SymIntT
|
164 |
+
)
|
165 |
+
elif typ == VectorCType(BaseCType(SymIntT)):
|
166 |
+
# TODO: report True for this
|
167 |
+
return False
|
168 |
+
elif isinstance(typ, (OptionalCType, ListCType, VectorCType)):
|
169 |
+
return isValueType(typ.elem, properties)
|
170 |
+
return False
|
171 |
+
|
172 |
+
|
173 |
+
def isSymIntType(typ: Type) -> bool:
|
174 |
+
return isinstance(typ, BaseType) and typ.name == BaseTy.SymInt
|
175 |
+
|
176 |
+
|
177 |
+
def isWrappedScalarType(typ: Type) -> bool:
|
178 |
+
"""
|
179 |
+
Given a type, determine if it is a c10::scalar which we will wrap in a lazy Value.
|
180 |
+
Since we literally change the type from scalarT to valueT, information is lost.
|
181 |
+
This function helps build a list of wrapped scalars to save that information
|
182 |
+
"""
|
183 |
+
if isinstance(typ, BaseType):
|
184 |
+
# I am regretting my naming conventions, but now we are wrapping at::scalar in
|
185 |
+
# lazy value, while preserving other 'scalar' types as scalars in the IR
|
186 |
+
return typ.name == BaseTy.Scalar
|
187 |
+
elif isinstance(typ, (OptionalType, ListType)):
|
188 |
+
return isWrappedScalarType(typ.elem)
|
189 |
+
return False
|
190 |
+
|
191 |
+
|
192 |
+
# TODO: dedupe with Type.is_generator_like
|
193 |
+
def isGeneratorType(typ: Type) -> bool:
|
194 |
+
if isinstance(typ, BaseType):
|
195 |
+
return typ.name == BaseTy.Generator
|
196 |
+
elif isinstance(typ, (OptionalType)):
|
197 |
+
return isGeneratorType(typ.elem)
|
198 |
+
return False
|
199 |
+
|
200 |
+
|
201 |
+
# This class caches a few derived properties computed from an Argument
|
202 |
+
# and LazyIrProperties
|
203 |
+
class LazyArgument:
|
204 |
+
name: str
|
205 |
+
orig_type: Type
|
206 |
+
lazy_type_: Optional[CType]
|
207 |
+
is_wrapped_scalar: bool
|
208 |
+
is_generator: bool
|
209 |
+
# TODO: this is lies, it is false for symint list
|
210 |
+
is_symint_or_list: bool
|
211 |
+
|
212 |
+
# Whether or not we are treating this as symint or not
|
213 |
+
symint: bool
|
214 |
+
|
215 |
+
# true if this argument is or contains a lazy IR value
|
216 |
+
is_lazy_value: bool
|
217 |
+
|
218 |
+
def __init__(self, arg: Argument, properties: "LazyIrProperties", *, symint: bool):
|
219 |
+
self.name = arg.name
|
220 |
+
self.orig_type = arg.type
|
221 |
+
self.symint = symint
|
222 |
+
self.is_optional = isinstance(arg.type, OptionalType)
|
223 |
+
self.is_generator = isGeneratorType(arg.type)
|
224 |
+
self.lazy_type_ = process_ir_type(arg.type, properties, symint=symint)
|
225 |
+
self.is_wrapped_scalar = isWrappedScalarType(arg.type)
|
226 |
+
self.is_symint_or_list = symint and (
|
227 |
+
isSymIntType(arg.type)
|
228 |
+
or (isinstance(arg.type, OptionalType) and isSymIntType(arg.type.elem))
|
229 |
+
# TODO: lists of symints are not currently treated as value types
|
230 |
+
# or (isinstance(arg.type, ListType) and isSymIntType(arg.type.elem))
|
231 |
+
)
|
232 |
+
|
233 |
+
self.is_lazy_value = isValueType(self.lazy_type, properties)
|
234 |
+
|
235 |
+
@property
|
236 |
+
def lazy_type(self) -> CType:
|
237 |
+
assert (
|
238 |
+
self.lazy_type_ is not None
|
239 |
+
), f"Attempted to access lazy_type for invalid argument {self.name}"
|
240 |
+
return self.lazy_type_
|
241 |
+
|
242 |
+
|
243 |
+
class LazyIrProperties:
|
244 |
+
"""Collection of properties for an IR node
|
245 |
+
|
246 |
+
The property groups are listed below. Each group is mutually
|
247 |
+
exclusive, meaning that only one property from each group can be True
|
248 |
+
at any one time. The properties can be accessed as if they were normal
|
249 |
+
attributes. The mutual exclusivity is automatically handled.
|
250 |
+
"""
|
251 |
+
|
252 |
+
Properties: Tuple[Tuple[str, ...], ...] = (
|
253 |
+
(
|
254 |
+
"ShapePrecompute", # Assume shape has been precomputed
|
255 |
+
"ShapeCompute", # Need to compute the shape on construction
|
256 |
+
"ShapeCache", # Utilize the shape cache to defer computation
|
257 |
+
),
|
258 |
+
(
|
259 |
+
"Lower", # Codegen full lower function
|
260 |
+
"LowerDeclOnly", # Codegen only lower function declaration
|
261 |
+
),
|
262 |
+
(
|
263 |
+
"CanBeReused", # Codegen full reuse function
|
264 |
+
"CanBeReusedDeclOnly", # Codegen only reuse function declaration
|
265 |
+
),
|
266 |
+
(
|
267 |
+
"CreateFn", # Codegen full create function
|
268 |
+
"CreateFnDeclOnly", # Codegen only create function declaration
|
269 |
+
),
|
270 |
+
(
|
271 |
+
"TreatScalarsAsConstants", # Treat Scalars as constants instead of handling like values
|
272 |
+
),
|
273 |
+
)
|
274 |
+
|
275 |
+
def __init__(self, *default_properties: str):
|
276 |
+
properties: Dict[Tuple[str, ...], Optional[str]] = {
|
277 |
+
p: None for p in LazyIrProperties.Properties
|
278 |
+
}
|
279 |
+
self.__dict__["properties"] = properties
|
280 |
+
for p in default_properties:
|
281 |
+
setattr(self, p, True)
|
282 |
+
|
283 |
+
def __getattr__(self, key: str) -> Any:
|
284 |
+
properties = self.__dict__["properties"]
|
285 |
+
for values in LazyIrProperties.Properties:
|
286 |
+
if key in values:
|
287 |
+
return properties[values] == key
|
288 |
+
|
289 |
+
return self.__getattribute__(key)
|
290 |
+
|
291 |
+
def __setattr__(self, key: str, value: Any) -> Any:
|
292 |
+
properties = self.__dict__["properties"]
|
293 |
+
for values in LazyIrProperties.Properties:
|
294 |
+
if key in values:
|
295 |
+
properties[values] = key if value else None
|
296 |
+
return value
|
297 |
+
|
298 |
+
raise KeyError(f"Invalid property: {key}")
|
299 |
+
|
300 |
+
|
301 |
+
# Inspired by a FunctionSchema object, a LazyIrSchema holds the schema of a Lazy IR node.
|
302 |
+
# Unlike a FunctionSchema, it has no round-trippable string form (relating to the YAML),
|
303 |
+
# but carries type information from a native FunctionSchema modified for use with IR nodes,
|
304 |
+
# and preserving original argument names.
|
305 |
+
#
|
306 |
+
# TODO: This is not idiomatic with how other torchgen APIs transform on schema.
|
307 |
+
class LazyIrSchema:
|
308 |
+
# The name of the operator this function schema describes.
|
309 |
+
name: "OperatorName"
|
310 |
+
|
311 |
+
positional_args: Tuple[LazyArgument, ...]
|
312 |
+
keyword_args: Tuple[LazyArgument, ...]
|
313 |
+
|
314 |
+
# TODO: Need to handle collisions with argument names at some point
|
315 |
+
returns: Tuple["Return", ...]
|
316 |
+
|
317 |
+
# if this schema has a Generator arg, list its orig ctype/name but don't
|
318 |
+
# build a LazyArgument since lazy IR doesn't support it
|
319 |
+
generator_arg: Optional[NamedCType] = None
|
320 |
+
|
321 |
+
# original function schema
|
322 |
+
func: FunctionSchema
|
323 |
+
|
324 |
+
# Whether or not we are code-genning for SymInt or not
|
325 |
+
symint: bool
|
326 |
+
|
327 |
+
properties: LazyIrProperties = LazyIrProperties(
|
328 |
+
# default properties
|
329 |
+
"ShapePrecompute",
|
330 |
+
"Lower",
|
331 |
+
"CanBeReused",
|
332 |
+
)
|
333 |
+
opkind: Optional[str] = None
|
334 |
+
|
335 |
+
def __init__(
|
336 |
+
self,
|
337 |
+
func: FunctionSchema,
|
338 |
+
properties: Optional[LazyIrProperties] = None,
|
339 |
+
*,
|
340 |
+
symint: bool,
|
341 |
+
):
|
342 |
+
if properties:
|
343 |
+
self.properties = properties
|
344 |
+
|
345 |
+
self.func = func
|
346 |
+
self.symint = symint
|
347 |
+
positional_args: List[LazyArgument] = []
|
348 |
+
for arg_field in ["pre_self_positional", "self_arg", "post_self_positional"]:
|
349 |
+
if arg_field == "self_arg" and func.arguments.self_arg is not None:
|
350 |
+
arg = func.arguments.self_arg.argument
|
351 |
+
positional_args.append(
|
352 |
+
LazyArgument(arg, self.properties, symint=symint)
|
353 |
+
)
|
354 |
+
elif getattr(func.arguments, arg_field) is not None:
|
355 |
+
positional_args.extend(
|
356 |
+
LazyArgument(arg, self.properties, symint=symint)
|
357 |
+
for arg in getattr(func.arguments, arg_field)
|
358 |
+
)
|
359 |
+
self.positional_args = tuple(positional_args)
|
360 |
+
|
361 |
+
keyword_args: List[LazyArgument] = []
|
362 |
+
for arg_field in [
|
363 |
+
"pre_tensor_options_kwarg_only",
|
364 |
+
"tensor_options",
|
365 |
+
"post_tensor_options_kwarg_only",
|
366 |
+
"out",
|
367 |
+
]:
|
368 |
+
curr_args = getattr(func.arguments, arg_field)
|
369 |
+
if curr_args is not None:
|
370 |
+
if isinstance(curr_args, TensorOptionsArguments):
|
371 |
+
curr_args = curr_args.all()
|
372 |
+
for arg in curr_args:
|
373 |
+
if isGeneratorType(arg.type):
|
374 |
+
assert (
|
375 |
+
self.generator_arg is None
|
376 |
+
), "We expect there is only one generator arg"
|
377 |
+
self.generator_arg = NamedCType(
|
378 |
+
arg.name, arg.type # type:ignore[arg-type]
|
379 |
+
)
|
380 |
+
keyword_args.extend(
|
381 |
+
LazyArgument(arg, self.properties, symint=symint)
|
382 |
+
for arg in curr_args
|
383 |
+
)
|
384 |
+
self.keyword_args = tuple(keyword_args)
|
385 |
+
self.name = func.name
|
386 |
+
self.returns = func.returns
|
387 |
+
|
388 |
+
@property
|
389 |
+
def node_name(self) -> str:
|
390 |
+
"""
|
391 |
+
Return camel-case version of op in node.
|
392 |
+
|
393 |
+
Note: This function also appends any `overload_name` in the operation.
|
394 |
+
For example, if the op is `bitwise_and.Tensor`, the returned name
|
395 |
+
will be `BitwiseAndTensor`.
|
396 |
+
"""
|
397 |
+
op_name = f"{self.name.name}_{self.name.overload_name}".lower()
|
398 |
+
return "".join(word.capitalize() or "" for word in op_name.split("_"))
|
399 |
+
|
400 |
+
@property
|
401 |
+
def aten_name(self) -> str:
|
402 |
+
return str(self.name.name)
|
403 |
+
|
404 |
+
@property
|
405 |
+
def base_name(self) -> str:
|
406 |
+
return f"{self.name.name.base}"
|
407 |
+
|
408 |
+
def filtered_args(
|
409 |
+
self,
|
410 |
+
positional: bool = True,
|
411 |
+
keyword: bool = True,
|
412 |
+
values: bool = True,
|
413 |
+
scalars: bool = True,
|
414 |
+
generator: bool = True,
|
415 |
+
) -> List[LazyArgument]:
|
416 |
+
# This function maintains the sorted order of arguments but provides different filtered views.
|
417 |
+
# Some parts of the code care about kwargs vs args (TS lowerings),
|
418 |
+
# other parts care about whether they need to wrap the arg in a lazy value or leave it alone.
|
419 |
+
# Generators are special cased, as they are needed for fallback/shape-inference but not supported
|
420 |
+
# in TS lowerings and therefore also omitted from lazy IR.
|
421 |
+
args: List[LazyArgument] = []
|
422 |
+
if positional:
|
423 |
+
args.extend(self.positional_args)
|
424 |
+
if keyword:
|
425 |
+
args.extend(self.keyword_args)
|
426 |
+
|
427 |
+
if values and scalars and generator:
|
428 |
+
return args
|
429 |
+
elif values and scalars:
|
430 |
+
return [a for a in args if not a.is_generator]
|
431 |
+
elif values:
|
432 |
+
return [a for a in args if a.is_lazy_value]
|
433 |
+
elif scalars:
|
434 |
+
return [
|
435 |
+
a
|
436 |
+
for a in args
|
437 |
+
if not a.is_lazy_value and (generator or not a.is_generator)
|
438 |
+
]
|
439 |
+
|
440 |
+
return []
|
441 |
+
|
442 |
+
@property
|
443 |
+
def positional_values(self) -> List[LazyArgument]:
|
444 |
+
return self.filtered_args(
|
445 |
+
positional=True, keyword=False, values=True, scalars=False
|
446 |
+
)
|
447 |
+
|
448 |
+
@property
|
449 |
+
def positional_scalars(self) -> List[LazyArgument]:
|
450 |
+
return self.filtered_args(
|
451 |
+
positional=True, keyword=False, values=False, scalars=True
|
452 |
+
)
|
453 |
+
|
454 |
+
@property
|
455 |
+
def keyword_values(self) -> List[LazyArgument]:
|
456 |
+
return self.filtered_args(
|
457 |
+
positional=False, keyword=True, values=True, scalars=False
|
458 |
+
)
|
459 |
+
|
460 |
+
@property
|
461 |
+
def keyword_scalars(self) -> List[LazyArgument]:
|
462 |
+
return self.filtered_args(
|
463 |
+
positional=False, keyword=True, values=False, scalars=True
|
464 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torchgen/code_template.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Mapping, Match, Optional, Sequence
|
3 |
+
|
4 |
+
# match $identifier or ${identifier} and replace with value in env
|
5 |
+
# If this identifier is at the beginning of whitespace on a line
|
6 |
+
# and its value is a list then it is treated as
|
7 |
+
# block substitution by indenting to that depth and putting each element
|
8 |
+
# of the list on its own line
|
9 |
+
# if the identifier is on a line starting with non-whitespace and a list
|
10 |
+
# then it is comma separated ${,foo} will insert a comma before the list
|
11 |
+
# if this list is not empty and ${foo,} will insert one after.
|
12 |
+
|
13 |
+
|
14 |
+
class CodeTemplate:
|
15 |
+
substitution_str = r"(^[^\n\S]*)?\$([^\d\W]\w*|\{,?[^\d\W]\w*\,?})"
|
16 |
+
substitution = re.compile(substitution_str, re.MULTILINE)
|
17 |
+
|
18 |
+
pattern: str
|
19 |
+
filename: str
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def from_file(filename: str) -> "CodeTemplate":
|
23 |
+
with open(filename) as f:
|
24 |
+
return CodeTemplate(f.read(), filename)
|
25 |
+
|
26 |
+
def __init__(self, pattern: str, filename: str = "") -> None:
|
27 |
+
self.pattern = pattern
|
28 |
+
self.filename = filename
|
29 |
+
|
30 |
+
def substitute(
|
31 |
+
self, env: Optional[Mapping[str, object]] = None, **kwargs: object
|
32 |
+
) -> str:
|
33 |
+
if env is None:
|
34 |
+
env = {}
|
35 |
+
|
36 |
+
def lookup(v: str) -> object:
|
37 |
+
assert env is not None
|
38 |
+
return kwargs[v] if v in kwargs else env[v]
|
39 |
+
|
40 |
+
def indent_lines(indent: str, v: Sequence[object]) -> str:
|
41 |
+
return "".join(
|
42 |
+
[indent + l + "\n" for e in v for l in str(e).splitlines()]
|
43 |
+
).rstrip()
|
44 |
+
|
45 |
+
def replace(match: Match[str]) -> str:
|
46 |
+
indent = match.group(1)
|
47 |
+
key = match.group(2)
|
48 |
+
comma_before = ""
|
49 |
+
comma_after = ""
|
50 |
+
if key[0] == "{":
|
51 |
+
key = key[1:-1]
|
52 |
+
if key[0] == ",":
|
53 |
+
comma_before = ", "
|
54 |
+
key = key[1:]
|
55 |
+
if key[-1] == ",":
|
56 |
+
comma_after = ", "
|
57 |
+
key = key[:-1]
|
58 |
+
v = lookup(key)
|
59 |
+
if indent is not None:
|
60 |
+
if not isinstance(v, list):
|
61 |
+
v = [v]
|
62 |
+
return indent_lines(indent, v)
|
63 |
+
elif isinstance(v, list):
|
64 |
+
middle = ", ".join([str(x) for x in v])
|
65 |
+
if len(v) == 0:
|
66 |
+
return middle
|
67 |
+
return comma_before + middle + comma_after
|
68 |
+
else:
|
69 |
+
return str(v)
|
70 |
+
|
71 |
+
return self.substitution.sub(replace, self.pattern)
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
c = CodeTemplate(
|
76 |
+
"""\
|
77 |
+
int foo($args) {
|
78 |
+
|
79 |
+
$bar
|
80 |
+
$bar
|
81 |
+
$a+$b
|
82 |
+
}
|
83 |
+
int commatest(int a${,stuff})
|
84 |
+
int notest(int a${,empty,})
|
85 |
+
"""
|
86 |
+
)
|
87 |
+
print(
|
88 |
+
c.substitute(
|
89 |
+
args=["hi", 8],
|
90 |
+
bar=["what", 7],
|
91 |
+
a=3,
|
92 |
+
b=4,
|
93 |
+
stuff=["things...", "others"],
|
94 |
+
empty=[],
|
95 |
+
)
|
96 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torchgen/context.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
|
3 |
+
import functools
|
4 |
+
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, TypeVar, Union
|
5 |
+
|
6 |
+
import torchgen.local as local
|
7 |
+
from torchgen.model import (
|
8 |
+
BackendIndex,
|
9 |
+
DispatchKey,
|
10 |
+
NativeFunction,
|
11 |
+
NativeFunctionsGroup,
|
12 |
+
NativeFunctionsViewGroup,
|
13 |
+
)
|
14 |
+
from torchgen.utils import context, S, T
|
15 |
+
|
16 |
+
# Helper functions for defining generators on things in the model
|
17 |
+
|
18 |
+
F = TypeVar(
|
19 |
+
"F",
|
20 |
+
NativeFunction,
|
21 |
+
NativeFunctionsGroup,
|
22 |
+
NativeFunctionsViewGroup,
|
23 |
+
Union[NativeFunction, NativeFunctionsGroup],
|
24 |
+
Union[NativeFunction, NativeFunctionsViewGroup],
|
25 |
+
)
|
26 |
+
|
27 |
+
F2 = TypeVar(
|
28 |
+
"F2",
|
29 |
+
NativeFunction,
|
30 |
+
NativeFunctionsGroup,
|
31 |
+
Optional[NativeFunction],
|
32 |
+
bool,
|
33 |
+
str,
|
34 |
+
)
|
35 |
+
|
36 |
+
F3 = TypeVar("F3", Tuple[NativeFunction, Any], List[NativeFunction])
|
37 |
+
|
38 |
+
|
39 |
+
@contextlib.contextmanager
|
40 |
+
def native_function_manager(
|
41 |
+
g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup, NativeFunction]
|
42 |
+
) -> Iterator[None]:
|
43 |
+
if isinstance(g, NativeFunctionsGroup):
|
44 |
+
# By default, we associate all errors with structured native functions
|
45 |
+
# with the out variant. In some cases, it might be better to have
|
46 |
+
# a more specific place to hang things; if so, use
|
47 |
+
# native_function_manager again on the inside
|
48 |
+
f = g.out
|
49 |
+
elif isinstance(g, NativeFunctionsViewGroup):
|
50 |
+
# We associate errors with the view operator
|
51 |
+
f = g.view
|
52 |
+
else:
|
53 |
+
f = g
|
54 |
+
with context(lambda: f"in native_functions.yaml line {f.loc}:\n {f.func}"):
|
55 |
+
with local.parametrize(
|
56 |
+
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
|
57 |
+
use_ilistref_for_tensor_lists=f.part_of_structured_group,
|
58 |
+
):
|
59 |
+
yield
|
60 |
+
|
61 |
+
|
62 |
+
# Given a function that operates on NativeFunction, wrap it into a new function
|
63 |
+
# that sets some appropriate context managers for that native function.
|
64 |
+
# YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound
|
65 |
+
# (you will get an error if we try to access the local variables without having
|
66 |
+
# set them).
|
67 |
+
def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]:
|
68 |
+
@functools.wraps(func)
|
69 |
+
def wrapper(f: F) -> T:
|
70 |
+
with native_function_manager(f):
|
71 |
+
return func(f)
|
72 |
+
|
73 |
+
return wrapper
|
74 |
+
|
75 |
+
|
76 |
+
def with_native_function_and(func: Callable[[F, F2], T]) -> Callable[[F, F2], T]:
|
77 |
+
@functools.wraps(func)
|
78 |
+
def wrapper(f: F, f2: F2) -> T:
|
79 |
+
# The first native_function is assumed to be the one with the appropriate context.
|
80 |
+
with native_function_manager(f):
|
81 |
+
return func(f, f2)
|
82 |
+
|
83 |
+
return wrapper
|
84 |
+
|
85 |
+
|
86 |
+
def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]:
|
87 |
+
@functools.wraps(func)
|
88 |
+
def wrapper(slf: S, f: F) -> T:
|
89 |
+
with native_function_manager(f):
|
90 |
+
return func(slf, f)
|
91 |
+
|
92 |
+
return wrapper
|
93 |
+
|
94 |
+
|
95 |
+
def method_with_nested_native_function(
|
96 |
+
func: Callable[[S, F3], T]
|
97 |
+
) -> Callable[[S, F3], T]:
|
98 |
+
@functools.wraps(func)
|
99 |
+
def wrapper(slf: S, f: F3) -> T:
|
100 |
+
with native_function_manager(f[0]):
|
101 |
+
return func(slf, f)
|
102 |
+
|
103 |
+
return wrapper
|
104 |
+
|
105 |
+
|
106 |
+
# Convenience decorator for functions that explicitly take in a BackendIndex,
|
107 |
+
# instead of indirectly taking one in as a closure
|
108 |
+
def with_native_function_and_index(
|
109 |
+
func: Callable[[F, BackendIndex], T]
|
110 |
+
) -> Callable[[F, BackendIndex], T]:
|
111 |
+
@functools.wraps(func)
|
112 |
+
def wrapper(f: F, backend_index: BackendIndex) -> T:
|
113 |
+
with native_function_manager(f):
|
114 |
+
return func(f, backend_index)
|
115 |
+
|
116 |
+
return wrapper
|
117 |
+
|
118 |
+
|
119 |
+
# Convenience decorator for functions that explicitly take in a Dict of BackendIndices
|
120 |
+
def with_native_function_and_indices(
|
121 |
+
func: Callable[[F, Dict[DispatchKey, BackendIndex]], T]
|
122 |
+
) -> Callable[[F, Dict[DispatchKey, BackendIndex]], T]:
|
123 |
+
@functools.wraps(func)
|
124 |
+
def wrapper(f: F, backend_indices: Dict[DispatchKey, BackendIndex]) -> T:
|
125 |
+
with native_function_manager(f):
|
126 |
+
return func(f, backend_indices)
|
127 |
+
|
128 |
+
return wrapper
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen_backend_stubs.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import re
|
5 |
+
from collections import Counter, defaultdict, namedtuple
|
6 |
+
from typing import Dict, List, Optional, Sequence, Set, Union
|
7 |
+
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
import torchgen.api.dispatcher as dispatcher
|
11 |
+
import torchgen.dest as dest
|
12 |
+
from torchgen.api.types import DispatcherSignature
|
13 |
+
from torchgen.code_template import CodeTemplate
|
14 |
+
from torchgen.context import native_function_manager
|
15 |
+
from torchgen.gen import get_grouped_native_functions, parse_native_yaml
|
16 |
+
from torchgen.model import (
|
17 |
+
BackendIndex,
|
18 |
+
BackendMetadata,
|
19 |
+
DispatchKey,
|
20 |
+
NativeFunction,
|
21 |
+
NativeFunctionsGroup,
|
22 |
+
OperatorName,
|
23 |
+
)
|
24 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
25 |
+
from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target
|
26 |
+
from torchgen.yaml_utils import YamlLoader
|
27 |
+
|
28 |
+
|
29 |
+
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
|
30 |
+
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping)
|
31 |
+
ParsedExternalYaml = namedtuple(
|
32 |
+
"ParsedExternalYaml",
|
33 |
+
["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"],
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def parse_backend_yaml(
|
38 |
+
backend_yaml_path: str,
|
39 |
+
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
|
40 |
+
backend_indices: Dict[DispatchKey, BackendIndex],
|
41 |
+
) -> ParsedExternalYaml:
|
42 |
+
native_functions_map: Dict[OperatorName, NativeFunction] = {
|
43 |
+
f.func.name: f
|
44 |
+
for f in concatMap(
|
45 |
+
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()),
|
46 |
+
grouped_native_functions,
|
47 |
+
)
|
48 |
+
}
|
49 |
+
|
50 |
+
with open(backend_yaml_path) as f:
|
51 |
+
yaml_values = yaml.load(f, Loader=YamlLoader)
|
52 |
+
assert isinstance(yaml_values, dict)
|
53 |
+
|
54 |
+
valid_keys = [
|
55 |
+
"backend",
|
56 |
+
"class_name",
|
57 |
+
"cpp_namespace",
|
58 |
+
"extra_headers",
|
59 |
+
"supported",
|
60 |
+
"autograd",
|
61 |
+
"full_codegen",
|
62 |
+
"non_native",
|
63 |
+
"ir_gen",
|
64 |
+
"symint",
|
65 |
+
]
|
66 |
+
|
67 |
+
backend = yaml_values.pop("backend", None)
|
68 |
+
assert backend is not None, 'You must provide a value for "backend"'
|
69 |
+
|
70 |
+
class_name = yaml_values.pop("class_name", None)
|
71 |
+
|
72 |
+
cpp_namespace = yaml_values.pop("cpp_namespace", None)
|
73 |
+
assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"'
|
74 |
+
|
75 |
+
# Mostly just defaulting to false to stick with LazyTensor convention.
|
76 |
+
use_out_as_primary = yaml_values.pop("use_out_as_primary", False)
|
77 |
+
assert isinstance(
|
78 |
+
use_out_as_primary, bool
|
79 |
+
), f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}"
|
80 |
+
|
81 |
+
use_device_guard = yaml_values.pop("device_guard", False)
|
82 |
+
assert isinstance(
|
83 |
+
use_device_guard, bool
|
84 |
+
), f"You must provide either True or False for device_guard. Provided: {use_device_guard}"
|
85 |
+
|
86 |
+
supported = yaml_values.pop("supported", [])
|
87 |
+
if supported is None:
|
88 |
+
supported = [] # Allow an empty list of supported ops
|
89 |
+
assert isinstance(
|
90 |
+
supported, list
|
91 |
+
), f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})'
|
92 |
+
|
93 |
+
symint = yaml_values.pop("symint", [])
|
94 |
+
if symint is None:
|
95 |
+
symint = [] # Allow an empty list of symint ops
|
96 |
+
assert isinstance(
|
97 |
+
symint, list
|
98 |
+
), f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})'
|
99 |
+
symint_set = set(symint)
|
100 |
+
|
101 |
+
supported_autograd = yaml_values.pop("autograd", [])
|
102 |
+
assert isinstance(
|
103 |
+
supported_autograd, list
|
104 |
+
), f'expected "autograd" to be a list, but got: {supported_autograd}'
|
105 |
+
|
106 |
+
# full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py
|
107 |
+
full_codegen = yaml_values.pop("full_codegen", [])
|
108 |
+
supported.extend(full_codegen)
|
109 |
+
|
110 |
+
# non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py
|
111 |
+
non_native = yaml_values.pop("non_native", {})
|
112 |
+
|
113 |
+
# ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py
|
114 |
+
_ = yaml_values.pop("ir_gen", {})
|
115 |
+
|
116 |
+
assert (
|
117 |
+
len(yaml_values.keys()) == 0
|
118 |
+
), f'{backend_yaml_path} contains unexpected keys: {", ".join(yaml_values.keys())}. \
|
119 |
+
Only the following keys are supported: {", ".join(valid_keys)}'
|
120 |
+
|
121 |
+
def create_backend_index(
|
122 |
+
backend_ops: List[str],
|
123 |
+
symint_ops: Set[str],
|
124 |
+
dispatch_key: DispatchKey,
|
125 |
+
*,
|
126 |
+
use_out_as_primary: bool,
|
127 |
+
use_device_guard: bool,
|
128 |
+
) -> BackendIndex:
|
129 |
+
metadata: Dict[OperatorName, BackendMetadata] = {}
|
130 |
+
for op in backend_ops:
|
131 |
+
op_name = OperatorName.parse(op)
|
132 |
+
assert (
|
133 |
+
op_name in native_functions_map
|
134 |
+
), f"Found an invalid operator name: {op_name}"
|
135 |
+
# See Note [External Backends Follow Dispatcher API]
|
136 |
+
kernel_name = dispatcher.name(native_functions_map[op_name].func)
|
137 |
+
if op in symint_ops:
|
138 |
+
kernel_name += "_symint"
|
139 |
+
# TODO: allow structured external backends later.
|
140 |
+
m = BackendMetadata(
|
141 |
+
kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace
|
142 |
+
)
|
143 |
+
metadata[op_name] = m
|
144 |
+
return BackendIndex(
|
145 |
+
dispatch_key=dispatch_key,
|
146 |
+
use_out_as_primary=use_out_as_primary,
|
147 |
+
external=True,
|
148 |
+
device_guard=use_device_guard,
|
149 |
+
index=metadata,
|
150 |
+
)
|
151 |
+
|
152 |
+
backend_key: Optional[DispatchKey] = None
|
153 |
+
if len(supported) > 0:
|
154 |
+
with context(
|
155 |
+
lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.'
|
156 |
+
):
|
157 |
+
backend_key = DispatchKey.parse(backend)
|
158 |
+
|
159 |
+
backend_idx = create_backend_index(
|
160 |
+
supported,
|
161 |
+
symint_set,
|
162 |
+
backend_key,
|
163 |
+
use_out_as_primary=use_out_as_primary,
|
164 |
+
use_device_guard=use_device_guard,
|
165 |
+
)
|
166 |
+
assert backend_key not in backend_indices
|
167 |
+
backend_indices[backend_key] = backend_idx
|
168 |
+
|
169 |
+
autograd_key: Optional[DispatchKey] = None
|
170 |
+
if len(supported_autograd) > 0:
|
171 |
+
with context(
|
172 |
+
lambda: f'The "autograd" key was specified, which indicates that you would like to override \
|
173 |
+
the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.'
|
174 |
+
):
|
175 |
+
autograd_key = DispatchKey.parse(f"Autograd{backend}")
|
176 |
+
|
177 |
+
autograd_idx = create_backend_index(
|
178 |
+
supported_autograd,
|
179 |
+
symint_set,
|
180 |
+
autograd_key,
|
181 |
+
use_out_as_primary=use_out_as_primary,
|
182 |
+
use_device_guard=use_device_guard,
|
183 |
+
)
|
184 |
+
assert autograd_key not in backend_indices
|
185 |
+
backend_indices[autograd_key] = autograd_idx
|
186 |
+
|
187 |
+
for g in grouped_native_functions:
|
188 |
+
if isinstance(g, NativeFunction):
|
189 |
+
forward_kernels = (
|
190 |
+
[]
|
191 |
+
if backend_key is None
|
192 |
+
else [
|
193 |
+
m
|
194 |
+
for m in [backend_indices[backend_key].get_kernel(g)]
|
195 |
+
if m is not None
|
196 |
+
]
|
197 |
+
)
|
198 |
+
backward_kernels = (
|
199 |
+
[]
|
200 |
+
if autograd_key is None
|
201 |
+
else [
|
202 |
+
m
|
203 |
+
for m in [backend_indices[autograd_key].get_kernel(g)]
|
204 |
+
if m is not None
|
205 |
+
]
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
forward_kernels = (
|
209 |
+
[]
|
210 |
+
if backend_key is None
|
211 |
+
else [
|
212 |
+
m
|
213 |
+
for m in [
|
214 |
+
backend_indices[backend_key].get_kernel(f)
|
215 |
+
for f in g.functions()
|
216 |
+
]
|
217 |
+
if m is not None
|
218 |
+
]
|
219 |
+
)
|
220 |
+
backward_kernels = (
|
221 |
+
[]
|
222 |
+
if autograd_key is None
|
223 |
+
else [
|
224 |
+
m
|
225 |
+
for m in [
|
226 |
+
backend_indices[autograd_key].get_kernel(f)
|
227 |
+
for f in g.functions()
|
228 |
+
]
|
229 |
+
if m is not None
|
230 |
+
]
|
231 |
+
)
|
232 |
+
|
233 |
+
forward_kernels = [f for f in forward_kernels if f is not None]
|
234 |
+
backward_kernels = [f for f in backward_kernels if f is not None]
|
235 |
+
assert (
|
236 |
+
len(forward_kernels) == 0 or len(backward_kernels) == 0
|
237 |
+
), f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \
|
238 |
+
autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \
|
239 |
+
{forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".'
|
240 |
+
|
241 |
+
return ParsedExternalYaml(
|
242 |
+
backend_key, autograd_key, class_name, cpp_namespace, backend_indices
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
def error_on_missing_kernels(
|
247 |
+
native_functions: Sequence[NativeFunction],
|
248 |
+
backend_indices: Dict[DispatchKey, BackendIndex],
|
249 |
+
backend_key: DispatchKey,
|
250 |
+
autograd_key: Optional[DispatchKey],
|
251 |
+
class_name: str,
|
252 |
+
kernel_defn_file_path: str,
|
253 |
+
full_codegen: Optional[List[OperatorName]] = None,
|
254 |
+
) -> None:
|
255 |
+
try:
|
256 |
+
with open(kernel_defn_file_path) as f:
|
257 |
+
backend_defns = f.read()
|
258 |
+
except OSError as e:
|
259 |
+
raise AssertionError(
|
260 |
+
f"Unable to read from the specified impl_path file: {kernel_defn_file_path}"
|
261 |
+
) from e
|
262 |
+
|
263 |
+
if full_codegen is None:
|
264 |
+
full_codegen = []
|
265 |
+
|
266 |
+
indices = [backend_indices[backend_key].index] + (
|
267 |
+
[] if autograd_key is None else [backend_indices[autograd_key].index]
|
268 |
+
)
|
269 |
+
# Quick mapping from each OperatorName used by the external backend
|
270 |
+
# to its backend kernel name
|
271 |
+
expected_backend_op_names: Dict[OperatorName, str] = dict(
|
272 |
+
list(
|
273 |
+
concatMap(
|
274 |
+
lambda index: [
|
275 |
+
(op_name, metadata.kernel) for op_name, metadata in index.items()
|
276 |
+
],
|
277 |
+
indices,
|
278 |
+
)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
expected_backend_native_funcs: List[NativeFunction] = [
|
282 |
+
f
|
283 |
+
for f in native_functions
|
284 |
+
if f.func.name in expected_backend_op_names.keys()
|
285 |
+
and f.func.name not in full_codegen
|
286 |
+
]
|
287 |
+
expected_backend_kernel_name_counts: Dict[str, List[NativeFunction]] = defaultdict(
|
288 |
+
list
|
289 |
+
)
|
290 |
+
for native_f in expected_backend_native_funcs:
|
291 |
+
expected_backend_kernel_name_counts[
|
292 |
+
expected_backend_op_names[native_f.func.name]
|
293 |
+
].append(native_f)
|
294 |
+
|
295 |
+
# This just looks for lines containing "foo(", and assumes that the kernel foo has been implemented.
|
296 |
+
# It might cause false negatives (we won't catch all cases), but that's ok - if we catch a missing kernel
|
297 |
+
# here, then we get a nicer error message. If we miss it, you get a linker error.
|
298 |
+
kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\("
|
299 |
+
actual_backend_kernel_name_counts = Counter(
|
300 |
+
# A bit unwieldy (this could probably be moved into regex),
|
301 |
+
# but we don't want to include kernel names that come from function calls,
|
302 |
+
# like "return torch_xla::XLANativeFunctions::empty_strided_symint(...)".
|
303 |
+
# Easy check is to ignore any lines with colons before the class name.
|
304 |
+
[
|
305 |
+
y
|
306 |
+
for (x, y) in re.findall(kernel_defn_regex, backend_defns)
|
307 |
+
if not x.endswith(":")
|
308 |
+
]
|
309 |
+
)
|
310 |
+
|
311 |
+
missing_kernels_err_msg = ""
|
312 |
+
for expected_name, funcs in expected_backend_kernel_name_counts.items():
|
313 |
+
expected_overload_count = len(funcs)
|
314 |
+
actual_overload_count = actual_backend_kernel_name_counts[expected_name]
|
315 |
+
if expected_overload_count != actual_overload_count:
|
316 |
+
|
317 |
+
def create_decl(f: NativeFunction) -> str:
|
318 |
+
with native_function_manager(f):
|
319 |
+
return DispatcherSignature.from_schema(f.func).decl()
|
320 |
+
|
321 |
+
expected_schemas_str = "\n".join([create_decl(f) for f in funcs])
|
322 |
+
missing_kernels_err_msg += f"""
|
323 |
+
{class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name,
|
324 |
+
but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are:
|
325 |
+
{expected_schemas_str}
|
326 |
+
|
327 |
+
"""
|
328 |
+
assert missing_kernels_err_msg == "", missing_kernels_err_msg
|
329 |
+
|
330 |
+
|
331 |
+
def main() -> None:
|
332 |
+
parser = argparse.ArgumentParser(description="Generate backend stub files")
|
333 |
+
parser.add_argument(
|
334 |
+
"-s",
|
335 |
+
"--source-yaml",
|
336 |
+
"--source_yaml",
|
337 |
+
help="path to source yaml file containing operator external definitions",
|
338 |
+
)
|
339 |
+
parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory")
|
340 |
+
parser.add_argument(
|
341 |
+
"--dry-run", "--dry_run", type=bool, default=False, help="output directory"
|
342 |
+
)
|
343 |
+
parser.add_argument(
|
344 |
+
"--impl-path",
|
345 |
+
"--impl_path",
|
346 |
+
type=str,
|
347 |
+
default=None,
|
348 |
+
help="path to the source C++ file containing kernel definitions",
|
349 |
+
)
|
350 |
+
options = parser.parse_args()
|
351 |
+
|
352 |
+
run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path)
|
353 |
+
|
354 |
+
|
355 |
+
def gen_dispatchkey_nativefunc_headers(
|
356 |
+
fm: FileManager,
|
357 |
+
class_name: str,
|
358 |
+
cpp_namespace: str,
|
359 |
+
backend_indices: Dict[DispatchKey, BackendIndex],
|
360 |
+
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
|
361 |
+
backend_dispatch_key: DispatchKey,
|
362 |
+
autograd_dispatch_key: Optional[DispatchKey],
|
363 |
+
backend_name: str = "",
|
364 |
+
) -> None:
|
365 |
+
assert class_name is not None
|
366 |
+
generated_comment = (
|
367 |
+
"Autogenerated file by gen_backend_stubs.py. Do not edit directly!"
|
368 |
+
)
|
369 |
+
|
370 |
+
# Convert to a set first to remove duplicate kernel names.
|
371 |
+
# Backends are allowed to repeat kernel names; only generate the declaration once!
|
372 |
+
# Sort for deterministic output.
|
373 |
+
backend_declarations = sorted(
|
374 |
+
set(
|
375 |
+
concatMap(
|
376 |
+
lambda f: dest.compute_native_function_declaration(
|
377 |
+
f, backend_indices[backend_dispatch_key]
|
378 |
+
),
|
379 |
+
grouped_native_functions,
|
380 |
+
)
|
381 |
+
)
|
382 |
+
)
|
383 |
+
autograd_declarations = sorted(
|
384 |
+
set(
|
385 |
+
concatMap(
|
386 |
+
lambda f: []
|
387 |
+
if autograd_dispatch_key is None
|
388 |
+
else dest.compute_native_function_declaration(
|
389 |
+
f, backend_indices[autograd_dispatch_key]
|
390 |
+
),
|
391 |
+
grouped_native_functions,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
)
|
395 |
+
|
396 |
+
ns_helper = NamespaceHelper(cpp_namespace)
|
397 |
+
fm.write_with_template(
|
398 |
+
f"{backend_dispatch_key}NativeFunctions.h",
|
399 |
+
"DispatchKeyNativeFunctions.h",
|
400 |
+
lambda: {
|
401 |
+
"generated_comment": generated_comment,
|
402 |
+
"namespace_prologue": ns_helper.prologue,
|
403 |
+
"class_name": class_name,
|
404 |
+
"namespace_epilogue": ns_helper.epilogue,
|
405 |
+
"dispatch_declarations": backend_declarations + autograd_declarations,
|
406 |
+
"BackendName": backend_name,
|
407 |
+
"DispatchKey": backend_dispatch_key,
|
408 |
+
},
|
409 |
+
)
|
410 |
+
|
411 |
+
|
412 |
+
def gen_dispatcher_registrations(
|
413 |
+
fm: FileManager,
|
414 |
+
output_dir: str,
|
415 |
+
class_name: str,
|
416 |
+
backend_indices: Dict[DispatchKey, BackendIndex],
|
417 |
+
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
|
418 |
+
backend_dispatch_key: DispatchKey,
|
419 |
+
dispatch_key: DispatchKey,
|
420 |
+
selector: "SelectiveBuilder",
|
421 |
+
# build_in_tree is true for lazy TS backend and affects include paths, not used for external backends
|
422 |
+
build_in_tree: bool = False,
|
423 |
+
per_operator_headers: bool = False,
|
424 |
+
backend_name: str = "",
|
425 |
+
eager_registration: bool = True,
|
426 |
+
) -> None:
|
427 |
+
headers = [
|
428 |
+
f"{output_dir}/{backend_dispatch_key}NativeFunctions.h",
|
429 |
+
]
|
430 |
+
if build_in_tree:
|
431 |
+
external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers)
|
432 |
+
else:
|
433 |
+
external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers)
|
434 |
+
|
435 |
+
assert class_name is not None
|
436 |
+
backend_index = backend_indices[dispatch_key]
|
437 |
+
|
438 |
+
dispatch_registrations_body = list(
|
439 |
+
concatMap(
|
440 |
+
dest.RegisterDispatchKey(
|
441 |
+
backend_index,
|
442 |
+
Target.REGISTRATION,
|
443 |
+
selector,
|
444 |
+
rocm=False,
|
445 |
+
symint=True,
|
446 |
+
class_method_name=f"{class_name}",
|
447 |
+
skip_dispatcher_op_registration=False,
|
448 |
+
),
|
449 |
+
grouped_native_functions,
|
450 |
+
)
|
451 |
+
)
|
452 |
+
newline = "\n"
|
453 |
+
ns_helper = NamespaceHelper(namespace_str="at")
|
454 |
+
deferred_dispatch_registrations = ""
|
455 |
+
static_init_dispatch_registrations = ""
|
456 |
+
if eager_registration:
|
457 |
+
static_template = CodeTemplate(
|
458 |
+
"""\
|
459 |
+
TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) {
|
460 |
+
$dispatch_registrations_body
|
461 |
+
};"""
|
462 |
+
)
|
463 |
+
static_init_dispatch_registrations = static_template.substitute(
|
464 |
+
dispatch_key=dispatch_key,
|
465 |
+
dispatch_registrations_body=dispatch_registrations_body,
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
deferred_template = CodeTemplate(
|
469 |
+
"""\
|
470 |
+
TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions();
|
471 |
+
TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() {
|
472 |
+
static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key);
|
473 |
+
$dispatch_registrations_body
|
474 |
+
}"""
|
475 |
+
)
|
476 |
+
deferred_dispatch_registrations = deferred_template.substitute(
|
477 |
+
backend_name=backend_name,
|
478 |
+
dispatch_key=dispatch_key,
|
479 |
+
dispatch_registrations_body=dispatch_registrations_body,
|
480 |
+
)
|
481 |
+
|
482 |
+
fm.write_with_template(
|
483 |
+
f"Register{dispatch_key}.cpp",
|
484 |
+
"RegisterDispatchKey.cpp",
|
485 |
+
lambda: {
|
486 |
+
"extra_cuda_headers": "",
|
487 |
+
"external_backend_headers": external_backend_headers_str,
|
488 |
+
"ops_headers": "#include <ATen/Functions.h>"
|
489 |
+
if not per_operator_headers
|
490 |
+
else "",
|
491 |
+
"DispatchKey": dispatch_key,
|
492 |
+
"dispatch_namespace": dispatch_key.lower(),
|
493 |
+
"dispatch_headers": dest.gen_registration_headers(
|
494 |
+
backend_index, per_operator_headers=per_operator_headers, rocm=False
|
495 |
+
),
|
496 |
+
"dispatch_definitions": fm.substitute_with_template(
|
497 |
+
"RegisterDispatchDefinitions.ini",
|
498 |
+
lambda: {
|
499 |
+
"ns_prologue": ns_helper.prologue,
|
500 |
+
"ns_epilogue": ns_helper.epilogue,
|
501 |
+
"static_init_dispatch_registrations": static_init_dispatch_registrations,
|
502 |
+
"deferred_dispatch_registrations": deferred_dispatch_registrations,
|
503 |
+
"dispatch_helpers": dest.gen_registration_helpers(backend_index),
|
504 |
+
"dispatch_namespace": dispatch_key.lower(),
|
505 |
+
"dispatch_namespaced_definitions": "",
|
506 |
+
"dispatch_anonymous_definitions": list(
|
507 |
+
concatMap(
|
508 |
+
dest.RegisterDispatchKey(
|
509 |
+
backend_index,
|
510 |
+
Target.ANONYMOUS_DEFINITION,
|
511 |
+
selector,
|
512 |
+
rocm=False,
|
513 |
+
symint=True,
|
514 |
+
class_method_name=f"{class_name}",
|
515 |
+
skip_dispatcher_op_registration=False,
|
516 |
+
),
|
517 |
+
grouped_native_functions,
|
518 |
+
)
|
519 |
+
),
|
520 |
+
},
|
521 |
+
).split(newline),
|
522 |
+
},
|
523 |
+
)
|
524 |
+
|
525 |
+
|
526 |
+
def run(
|
527 |
+
source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str] = None
|
528 |
+
) -> None:
|
529 |
+
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
|
530 |
+
pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
|
531 |
+
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")
|
532 |
+
|
533 |
+
def make_file_manager(install_dir: str) -> FileManager:
|
534 |
+
return FileManager(
|
535 |
+
install_dir=install_dir, template_dir=template_dir, dry_run=dry_run
|
536 |
+
)
|
537 |
+
|
538 |
+
fm = make_file_manager(output_dir)
|
539 |
+
|
540 |
+
native_yaml_path = os.path.join(
|
541 |
+
pytorch_root, "aten/src/ATen/native/native_functions.yaml"
|
542 |
+
)
|
543 |
+
tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml")
|
544 |
+
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path)
|
545 |
+
native_functions, backend_indices = (
|
546 |
+
parsed_yaml.native_functions,
|
547 |
+
parsed_yaml.backend_indices,
|
548 |
+
)
|
549 |
+
grouped_native_functions = get_grouped_native_functions(native_functions)
|
550 |
+
parsed_backend_yaml = parse_backend_yaml(
|
551 |
+
source_yaml, grouped_native_functions, backend_indices
|
552 |
+
)
|
553 |
+
backend_key = parsed_backend_yaml.backend_key
|
554 |
+
autograd_key = parsed_backend_yaml.autograd_key
|
555 |
+
cpp_namespace = parsed_backend_yaml.cpp_namespace
|
556 |
+
class_name = parsed_backend_yaml.class_name
|
557 |
+
backend_indices = parsed_backend_yaml.backend_indices
|
558 |
+
|
559 |
+
selector = SelectiveBuilder.get_nop_selector()
|
560 |
+
|
561 |
+
if backend_key is None:
|
562 |
+
# This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet.
|
563 |
+
return
|
564 |
+
|
565 |
+
if class_name is None:
|
566 |
+
# class_name is an optional argument to backend yaml file.
|
567 |
+
# if specified it allows an external backend to override
|
568 |
+
# the name of the class that all generated kernel definitions live under.
|
569 |
+
# if not specified, its value is given as native_function_class_name.
|
570 |
+
class_name = backend_indices[backend_key].native_function_class_name()
|
571 |
+
assert class_name is not None
|
572 |
+
|
573 |
+
if impl_path is not None:
|
574 |
+
error_on_missing_kernels(
|
575 |
+
native_functions,
|
576 |
+
backend_indices,
|
577 |
+
backend_key,
|
578 |
+
autograd_key,
|
579 |
+
class_name,
|
580 |
+
impl_path,
|
581 |
+
)
|
582 |
+
|
583 |
+
gen_dispatchkey_nativefunc_headers(
|
584 |
+
fm,
|
585 |
+
class_name,
|
586 |
+
cpp_namespace,
|
587 |
+
backend_indices,
|
588 |
+
grouped_native_functions,
|
589 |
+
backend_key,
|
590 |
+
autograd_key,
|
591 |
+
)
|
592 |
+
|
593 |
+
for dispatch_key in (
|
594 |
+
[backend_key] if autograd_key is None else [backend_key, autograd_key]
|
595 |
+
):
|
596 |
+
gen_dispatcher_registrations(
|
597 |
+
fm,
|
598 |
+
output_dir,
|
599 |
+
class_name,
|
600 |
+
backend_indices,
|
601 |
+
grouped_native_functions,
|
602 |
+
backend_key,
|
603 |
+
dispatch_key,
|
604 |
+
selector,
|
605 |
+
)
|
606 |
+
|
607 |
+
|
608 |
+
if __name__ == "__main__":
|
609 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen_executorch.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
from collections import defaultdict
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, Callable, Dict, List, Optional, Sequence, TextIO, Tuple, Union
|
7 |
+
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
# Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices.
|
11 |
+
from torchgen import dest
|
12 |
+
from torchgen.api import cpp as aten_cpp
|
13 |
+
from torchgen.api.types import CppSignature, CppSignatureGroup, CType, NamedCType
|
14 |
+
from torchgen.context import (
|
15 |
+
method_with_native_function,
|
16 |
+
method_with_nested_native_function,
|
17 |
+
with_native_function_and_index,
|
18 |
+
)
|
19 |
+
from torchgen.executorch.api import et_cpp
|
20 |
+
from torchgen.executorch.api.custom_ops import (
|
21 |
+
ComputeNativeFunctionStub,
|
22 |
+
gen_custom_ops_registration,
|
23 |
+
)
|
24 |
+
from torchgen.executorch.api.types import contextArg, ExecutorchCppSignature
|
25 |
+
from torchgen.executorch.api.unboxing import Unboxing
|
26 |
+
from torchgen.executorch.model import ETKernelIndex, ETKernelKey, ETParsedYaml
|
27 |
+
from torchgen.executorch.parse import ET_FIELDS, parse_et_yaml, parse_et_yaml_struct
|
28 |
+
from torchgen.gen import (
|
29 |
+
get_custom_build_selector,
|
30 |
+
get_native_function_declarations,
|
31 |
+
get_native_function_declarations_from_ns_grouped_kernels,
|
32 |
+
get_native_function_schema_registrations,
|
33 |
+
LineLoader,
|
34 |
+
parse_native_yaml,
|
35 |
+
)
|
36 |
+
from torchgen.model import (
|
37 |
+
BackendIndex,
|
38 |
+
BackendMetadata,
|
39 |
+
DEFAULT_KERNEL_NAMESPACE,
|
40 |
+
DispatchKey,
|
41 |
+
FunctionSchema,
|
42 |
+
Location,
|
43 |
+
NativeFunction,
|
44 |
+
NativeFunctionsGroup,
|
45 |
+
OperatorName,
|
46 |
+
Variant,
|
47 |
+
)
|
48 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
49 |
+
from torchgen.utils import (
|
50 |
+
context,
|
51 |
+
FileManager,
|
52 |
+
make_file_manager,
|
53 |
+
mapMaybe,
|
54 |
+
NamespaceHelper,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def _sig_decl_wrapper(sig: Union[CppSignature, ExecutorchCppSignature]) -> str:
|
59 |
+
"""
|
60 |
+
A wrapper function to basically get `sig.decl(include_context=True)`.
|
61 |
+
For ATen kernel, the codegen has no idea about ET contextArg, so we
|
62 |
+
use this wrapper to add it.
|
63 |
+
"""
|
64 |
+
if isinstance(sig, ExecutorchCppSignature):
|
65 |
+
return sig.decl()
|
66 |
+
|
67 |
+
returns_type = aten_cpp.returns_type(sig.func.returns).cpp_type()
|
68 |
+
cpp_args = [a.decl() for a in sig.arguments()]
|
69 |
+
cpp_args_str = ", ".join([contextArg.decl()] + cpp_args)
|
70 |
+
sig_decl = f"{returns_type} {sig.name()}({cpp_args_str})"
|
71 |
+
return sig_decl
|
72 |
+
|
73 |
+
|
74 |
+
def static_dispatch(
|
75 |
+
sig: Union[CppSignature, ExecutorchCppSignature],
|
76 |
+
f: NativeFunction,
|
77 |
+
backend_indices: List[BackendIndex],
|
78 |
+
) -> str:
|
79 |
+
"""
|
80 |
+
For a given `NativeFunction`, find out the corresponding native function and dispatch to it. If zero or more than one
|
81 |
+
native function exists, error out. A simplified version of register_dispatch_key.py
|
82 |
+
Arguments:
|
83 |
+
sig: A CppSignature for this native function we want to use.
|
84 |
+
f: NativeFunction to generate static dispatch.
|
85 |
+
backend_indices: All available backends.
|
86 |
+
Return:
|
87 |
+
C++ code to call backend-specific functions, e.g., "return at::native::add(self, other, scale);"
|
88 |
+
"""
|
89 |
+
if len(backend_indices) == 0 or f.manual_kernel_registration:
|
90 |
+
return ""
|
91 |
+
|
92 |
+
backends = [b for b in backend_indices if b.has_kernel(f)]
|
93 |
+
static_block = None
|
94 |
+
if len(backends) == 1:
|
95 |
+
backend_metadata = backends[0].get_kernel(f)
|
96 |
+
if backend_metadata:
|
97 |
+
args = ", ".join(a.name for a in sig.arguments())
|
98 |
+
# Here we are assuming there's no difference between CppSignature and NativeSignature for Executorch.
|
99 |
+
static_block = f"return ::{backend_metadata.cpp_namespace}::{backend_metadata.kernel}({args});"
|
100 |
+
else:
|
101 |
+
static_block = f"""
|
102 |
+
ET_ASSERT_UNREACHABLE_MSG("The number of native function(s) binding to {f.func.name} is {len(backends)}.");
|
103 |
+
"""
|
104 |
+
return f"""
|
105 |
+
// {f.namespace}::{f.func}
|
106 |
+
TORCH_API inline {_sig_decl_wrapper(sig)} {{
|
107 |
+
{static_block}
|
108 |
+
}}
|
109 |
+
"""
|
110 |
+
|
111 |
+
|
112 |
+
# Generates Functions.h, which provides the functional public C++ API,
|
113 |
+
# and the scaffolding to call into the dispatcher from these functions.
|
114 |
+
@dataclass(frozen=True)
|
115 |
+
class ComputeFunction:
|
116 |
+
static_dispatch_backend_indices: List[BackendIndex]
|
117 |
+
|
118 |
+
selector: SelectiveBuilder
|
119 |
+
|
120 |
+
use_aten_lib: bool
|
121 |
+
|
122 |
+
is_custom_op: Callable[[NativeFunction], bool]
|
123 |
+
|
124 |
+
@method_with_native_function
|
125 |
+
def __call__(self, f: NativeFunction) -> Optional[str]:
|
126 |
+
if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"):
|
127 |
+
return None
|
128 |
+
if Variant.function not in f.variants:
|
129 |
+
return None
|
130 |
+
sig: Union[CppSignature, ExecutorchCppSignature] = (
|
131 |
+
CppSignatureGroup.from_native_function(
|
132 |
+
f, method=False, fallback_binding=f.manual_cpp_binding
|
133 |
+
).most_faithful_signature()
|
134 |
+
if self.use_aten_lib
|
135 |
+
else ExecutorchCppSignature.from_native_function(f)
|
136 |
+
)
|
137 |
+
if self.use_aten_lib and not self.is_custom_op(f):
|
138 |
+
comma = ", "
|
139 |
+
|
140 |
+
return f"""
|
141 |
+
// {f.namespace}::{f.func}
|
142 |
+
TORCH_API inline {_sig_decl_wrapper(sig)} {{
|
143 |
+
return at::{sig.name()}({comma.join(e.name for e in sig.arguments())});
|
144 |
+
}}
|
145 |
+
"""
|
146 |
+
|
147 |
+
else:
|
148 |
+
return static_dispatch(
|
149 |
+
sig,
|
150 |
+
f,
|
151 |
+
backend_indices=self.static_dispatch_backend_indices,
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
# Generates RegisterCodegenUnboxedKernels.cpp.
|
156 |
+
@dataclass(frozen=True)
|
157 |
+
class ComputeCodegenUnboxedKernels:
|
158 |
+
selector: SelectiveBuilder
|
159 |
+
|
160 |
+
use_aten_lib: bool
|
161 |
+
|
162 |
+
@method_with_nested_native_function
|
163 |
+
def __call__(
|
164 |
+
self,
|
165 |
+
unbox_kernel_entry: Tuple[NativeFunction, Tuple[ETKernelKey, BackendMetadata]],
|
166 |
+
) -> str:
|
167 |
+
f: NativeFunction = unbox_kernel_entry[0]
|
168 |
+
kernel_key: Union[ETKernelKey, List[ETKernelKey]] = unbox_kernel_entry[1][0]
|
169 |
+
kernel_meta: BackendMetadata = unbox_kernel_entry[1][1]
|
170 |
+
|
171 |
+
op_name = f"{f.namespace}::{f.func.name}"
|
172 |
+
if not self.selector.is_root_operator(op_name):
|
173 |
+
return ""
|
174 |
+
|
175 |
+
if not isinstance(kernel_key, list):
|
176 |
+
kernel_key = [kernel_key]
|
177 |
+
used_kernel_keys = self.selector.et_get_selected_kernels(
|
178 |
+
op_name, [k.to_native_string() for k in kernel_key]
|
179 |
+
)
|
180 |
+
if not used_kernel_keys:
|
181 |
+
return ""
|
182 |
+
sig: Union[CppSignature, ExecutorchCppSignature]
|
183 |
+
argument_type_gen: Callable[..., NamedCType]
|
184 |
+
return_type_gen: Callable[..., CType]
|
185 |
+
if self.use_aten_lib:
|
186 |
+
sig = CppSignatureGroup.from_native_function(
|
187 |
+
f, method=False, fallback_binding=f.manual_cpp_binding
|
188 |
+
).most_faithful_signature()
|
189 |
+
argument_type_gen = aten_cpp.argumenttype_type
|
190 |
+
return_type_gen = aten_cpp.returns_type
|
191 |
+
arguments = sig.arguments()
|
192 |
+
kernel_call = f"torch::executor::{f.namespace}::{sig.name()}"
|
193 |
+
else:
|
194 |
+
sig = ExecutorchCppSignature.from_native_function(f)
|
195 |
+
argument_type_gen = et_cpp.argumenttype_type
|
196 |
+
return_type_gen = et_cpp.returns_type
|
197 |
+
arguments = sig.arguments(include_context=False)
|
198 |
+
kernel_call = f"{kernel_meta.cpp_namespace}::{kernel_meta.kernel}"
|
199 |
+
# parse arguments into C++ code
|
200 |
+
binding_list, code_list = Unboxing(
|
201 |
+
argument_type_gen=argument_type_gen
|
202 |
+
).convert_arguments(arguments)
|
203 |
+
|
204 |
+
# for each C++ argument, generate the conversion code
|
205 |
+
code_connector = "\n\t"
|
206 |
+
arg_connector = ", "
|
207 |
+
|
208 |
+
args_str = f"{arg_connector.join(e.name for e in binding_list)}"
|
209 |
+
event_tracer_output_logging = ""
|
210 |
+
output_ids = []
|
211 |
+
|
212 |
+
if len(f.func.returns) == 0:
|
213 |
+
if len(f.func.arguments.out) == 0:
|
214 |
+
raise Exception(
|
215 |
+
f"Can't handle native function {f.func} with no returns and no out yet."
|
216 |
+
)
|
217 |
+
out = f.func.arguments.out[0]
|
218 |
+
return_assignment = f"""stack[{len(binding_list)}] = &{out.name};"""
|
219 |
+
ret_prefix = ""
|
220 |
+
output_ids = [len(binding_list)]
|
221 |
+
else:
|
222 |
+
if len(f.func.arguments.out) == 0:
|
223 |
+
return_assignment = (
|
224 |
+
f"""*stack[{len(binding_list)}] = EValue(result_);"""
|
225 |
+
)
|
226 |
+
ret_prefix = return_type_gen(f.func.returns).cpp_type() + " result_ = "
|
227 |
+
output_ids = [len(binding_list)]
|
228 |
+
else:
|
229 |
+
return_assignment = ""
|
230 |
+
ret_prefix = ""
|
231 |
+
output_ids = [
|
232 |
+
len(binding_list) - (i + 1)
|
233 |
+
for i in reversed(range(len(f.func.arguments.out)))
|
234 |
+
]
|
235 |
+
|
236 |
+
for output_id in output_ids:
|
237 |
+
event_tracer_output_logging += (
|
238 |
+
f"internal::event_tracer_log_evalue("
|
239 |
+
f"context.internal_event_tracer(), "
|
240 |
+
f"*stack[{output_id}]);\n"
|
241 |
+
)
|
242 |
+
|
243 |
+
newline = "\n "
|
244 |
+
return "\n".join(
|
245 |
+
[
|
246 |
+
f"""
|
247 |
+
Kernel(
|
248 |
+
"{f.namespace}::{f.func.name}",{newline + '"' + (k + '",') if k != 'default' else ''}
|
249 |
+
[]({contextArg.defn()}, EValue** stack) {{
|
250 |
+
{code_connector.join(code_list)}
|
251 |
+
|
252 |
+
internal::EventTracerProfileScope event_tracer_scope(context.internal_event_tracer(), "native_call_{f.func.name}");
|
253 |
+
EXECUTORCH_SCOPE_PROF("native_call_{f.func.name}");
|
254 |
+
{ret_prefix}{kernel_call}(context, {args_str});
|
255 |
+
{event_tracer_output_logging}
|
256 |
+
{return_assignment}
|
257 |
+
}}
|
258 |
+
),
|
259 |
+
"""
|
260 |
+
for k in used_kernel_keys
|
261 |
+
]
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
def gen_unboxing(
|
266 |
+
*,
|
267 |
+
native_functions: Sequence[NativeFunction],
|
268 |
+
cpu_fm: FileManager,
|
269 |
+
selector: SelectiveBuilder,
|
270 |
+
use_aten_lib: bool,
|
271 |
+
kernel_index: ETKernelIndex,
|
272 |
+
manual_registration: bool,
|
273 |
+
) -> None:
|
274 |
+
# Iterable type for write_sharded is a Tuple of (native_function, (kernel_key, metadata))
|
275 |
+
def key_func(
|
276 |
+
item: Tuple[NativeFunction, Tuple[ETKernelKey, BackendMetadata]]
|
277 |
+
) -> str:
|
278 |
+
return item[0].root_name + ":" + item[1][0].to_native_string()
|
279 |
+
|
280 |
+
items: List[Tuple[NativeFunction, Tuple[ETKernelKey, BackendMetadata]]] = [
|
281 |
+
(native_function, (kernel_key, metadata))
|
282 |
+
for native_function in native_functions
|
283 |
+
for kernel_key, metadata in kernel_index.get_kernels(native_function).items()
|
284 |
+
]
|
285 |
+
|
286 |
+
header = ["Functions.h" if use_aten_lib else "NativeFunctions.h"]
|
287 |
+
filename = (
|
288 |
+
"RegisterKernels.cpp"
|
289 |
+
if manual_registration
|
290 |
+
else "RegisterCodegenUnboxedKernels.cpp"
|
291 |
+
)
|
292 |
+
cpu_fm.write_sharded(
|
293 |
+
filename,
|
294 |
+
items,
|
295 |
+
key_fn=key_func,
|
296 |
+
env_callable=lambda unbox_kernel_entry: {
|
297 |
+
"unboxed_kernels": [
|
298 |
+
ComputeCodegenUnboxedKernels(selector, use_aten_lib)(unbox_kernel_entry)
|
299 |
+
],
|
300 |
+
"fn_header": header
|
301 |
+
if unbox_kernel_entry == items[0]
|
302 |
+
else [], # Only write header once
|
303 |
+
},
|
304 |
+
num_shards=1,
|
305 |
+
sharded_keys={"unboxed_kernels", "fn_header"},
|
306 |
+
)
|
307 |
+
|
308 |
+
|
309 |
+
@with_native_function_and_index # type: ignore[arg-type]
|
310 |
+
def compute_native_function_declaration(
|
311 |
+
g: Union[NativeFunctionsGroup, NativeFunction], kernel_index: ETKernelIndex
|
312 |
+
) -> List[str]:
|
313 |
+
assert isinstance(g, NativeFunction)
|
314 |
+
sig = ExecutorchCppSignature.from_native_function(f=g)
|
315 |
+
metadata_list = kernel_index.get_kernels(g).values()
|
316 |
+
if metadata_list is None:
|
317 |
+
return []
|
318 |
+
prefix = "TORCH_API"
|
319 |
+
|
320 |
+
# for kernels in lean mode, we declare two versions, one with context and one without.
|
321 |
+
# In the end we will cleanup the unused one.
|
322 |
+
def gen_decl(metadata: BackendMetadata, include_context: bool) -> str:
|
323 |
+
return f"{prefix} {sig.decl(name=metadata.kernel, include_context=include_context)};"
|
324 |
+
|
325 |
+
return [
|
326 |
+
gen_decl(metadata, include_context)
|
327 |
+
for include_context in [False, True]
|
328 |
+
for metadata in metadata_list
|
329 |
+
]
|
330 |
+
|
331 |
+
|
332 |
+
def gen_functions_declarations(
|
333 |
+
*,
|
334 |
+
native_functions: Sequence[NativeFunction],
|
335 |
+
kernel_index: ETKernelIndex,
|
336 |
+
selector: SelectiveBuilder,
|
337 |
+
use_aten_lib: bool,
|
338 |
+
custom_ops_native_functions: Optional[Sequence[NativeFunction]] = None,
|
339 |
+
) -> str:
|
340 |
+
"""
|
341 |
+
Generates namespace separated C++ function API inline declaration/definitions.
|
342 |
+
Native functions are grouped by namespaces and the generated code is wrapped inside
|
343 |
+
namespace blocks.
|
344 |
+
|
345 |
+
E.g., for `custom_1::foo.out` in yaml file we will generate a C++ API as a symbol
|
346 |
+
in `torch::executor::custom_1::foo_out`. This way we avoid symbol conflict when
|
347 |
+
the other `custom_2::foo.out` is available.
|
348 |
+
"""
|
349 |
+
|
350 |
+
# convert kernel index to BackendIndex. This is because we can't handle ETKernelIndex yet.
|
351 |
+
# TODO larryliu: evaluate if this code is still needed. If yes let it handle ETKernelIndex.
|
352 |
+
|
353 |
+
dispatch_key = DispatchKey.CPU
|
354 |
+
backend_index = kernel_index._to_backend_index()
|
355 |
+
|
356 |
+
ns_grouped_functions = defaultdict(list)
|
357 |
+
for native_function in native_functions:
|
358 |
+
ns_grouped_functions[native_function.namespace].append(native_function)
|
359 |
+
functions_declarations = ""
|
360 |
+
newline = "\n"
|
361 |
+
for namespace in ns_grouped_functions:
|
362 |
+
ns_helper = NamespaceHelper(
|
363 |
+
namespace_str=namespace,
|
364 |
+
entity_name="",
|
365 |
+
max_level=3,
|
366 |
+
)
|
367 |
+
declarations = list(
|
368 |
+
mapMaybe(
|
369 |
+
ComputeFunction(
|
370 |
+
static_dispatch_backend_indices=[backend_index],
|
371 |
+
selector=selector,
|
372 |
+
use_aten_lib=use_aten_lib,
|
373 |
+
is_custom_op=lambda f: custom_ops_native_functions is not None
|
374 |
+
and f in custom_ops_native_functions,
|
375 |
+
),
|
376 |
+
ns_grouped_functions[namespace],
|
377 |
+
)
|
378 |
+
)
|
379 |
+
functions_declarations += f"""
|
380 |
+
{ns_helper.prologue}
|
381 |
+
{newline.join(declarations)}
|
382 |
+
{ns_helper.epilogue}
|
383 |
+
"""
|
384 |
+
return functions_declarations
|
385 |
+
|
386 |
+
|
387 |
+
def get_ns_grouped_kernels(
|
388 |
+
*,
|
389 |
+
native_functions: Sequence[NativeFunction],
|
390 |
+
kernel_index: ETKernelIndex,
|
391 |
+
native_function_decl_gen: Callable[
|
392 |
+
[
|
393 |
+
Union[NativeFunctionsGroup, NativeFunction],
|
394 |
+
ETKernelIndex,
|
395 |
+
],
|
396 |
+
List[str],
|
397 |
+
],
|
398 |
+
) -> Dict[str, List[str]]:
|
399 |
+
ns_grouped_kernels: Dict[str, List[str]] = defaultdict(list)
|
400 |
+
for f in native_functions:
|
401 |
+
native_function_namespaces = set()
|
402 |
+
op_kernels = kernel_index.get_kernels(f)
|
403 |
+
for backend_metadata in op_kernels.values():
|
404 |
+
if backend_metadata:
|
405 |
+
namespace = backend_metadata.cpp_namespace
|
406 |
+
native_function_namespaces.add(namespace)
|
407 |
+
else:
|
408 |
+
namespace = DEFAULT_KERNEL_NAMESPACE
|
409 |
+
assert (
|
410 |
+
len(native_function_namespaces) <= 1
|
411 |
+
), f"Codegen only supports one namespace per operator, got {native_function_namespaces}"
|
412 |
+
ns_grouped_kernels[namespace].extend(
|
413 |
+
native_function_decl_gen(f, kernel_index)
|
414 |
+
)
|
415 |
+
return ns_grouped_kernels
|
416 |
+
|
417 |
+
|
418 |
+
def gen_headers(
|
419 |
+
*,
|
420 |
+
native_functions: Sequence[NativeFunction],
|
421 |
+
gen_custom_ops_header: bool,
|
422 |
+
custom_ops_native_functions: Sequence[NativeFunction],
|
423 |
+
selector: SelectiveBuilder,
|
424 |
+
kernel_index: ETKernelIndex,
|
425 |
+
cpu_fm: FileManager,
|
426 |
+
use_aten_lib: bool,
|
427 |
+
) -> None:
|
428 |
+
"""Generate headers.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
native_functions (Sequence[NativeFunction]): a collection of NativeFunction for ATen ops.
|
432 |
+
gen_custom_ops_header (bool): whether we should generate CustomOpsNativeFunctions.h
|
433 |
+
custom_ops_native_functions (Sequence[NativeFunction]): a collection of NativeFunction for custom ops.
|
434 |
+
kernel_index (ETKernelIndex): kernel collection
|
435 |
+
cpu_fm (FileManager): file manager manages output stream
|
436 |
+
use_aten_lib (bool): whether we are generating for PyTorch types or Executorch types.
|
437 |
+
"""
|
438 |
+
aten_headers = ["#include <ATen/Functions.h>"]
|
439 |
+
backend_indices = {DispatchKey.CPU: kernel_index._to_backend_index()}
|
440 |
+
if gen_custom_ops_header:
|
441 |
+
cpu_fm.write_with_template(
|
442 |
+
"CustomOpsNativeFunctions.h",
|
443 |
+
"NativeFunctions.h",
|
444 |
+
lambda: {
|
445 |
+
"nativeFunctions_declarations": get_native_function_declarations(
|
446 |
+
grouped_native_functions=custom_ops_native_functions,
|
447 |
+
backend_indices=backend_indices,
|
448 |
+
native_function_decl_gen=dest.compute_native_function_declaration,
|
449 |
+
),
|
450 |
+
"headers": [
|
451 |
+
"#include <ATen/ATen.h>",
|
452 |
+
"#include <torch/torch.h>",
|
453 |
+
],
|
454 |
+
},
|
455 |
+
)
|
456 |
+
aten_headers.append('#include "CustomOpsNativeFunctions.h"')
|
457 |
+
cpu_fm.write(
|
458 |
+
"Functions.h",
|
459 |
+
lambda: {
|
460 |
+
"static_dispatch_extra_headers": aten_headers
|
461 |
+
if use_aten_lib
|
462 |
+
else ['#include "NativeFunctions.h"'],
|
463 |
+
"Functions_declarations": gen_functions_declarations(
|
464 |
+
native_functions=native_functions,
|
465 |
+
kernel_index=kernel_index,
|
466 |
+
selector=selector,
|
467 |
+
use_aten_lib=use_aten_lib,
|
468 |
+
custom_ops_native_functions=custom_ops_native_functions,
|
469 |
+
),
|
470 |
+
},
|
471 |
+
)
|
472 |
+
cpu_fm.write(
|
473 |
+
"RegisterKernels.h",
|
474 |
+
lambda: {
|
475 |
+
"generated_comment": "@" + "generated by torchgen/gen_executorch.py",
|
476 |
+
},
|
477 |
+
)
|
478 |
+
headers = {
|
479 |
+
"headers": [
|
480 |
+
"#include <executorch/runtime/core/exec_aten/exec_aten.h> // at::Tensor etc.",
|
481 |
+
"#include <executorch/codegen/macros.h> // TORCH_API",
|
482 |
+
"#include <executorch/runtime/kernel/kernel_runtime_context.h>",
|
483 |
+
],
|
484 |
+
}
|
485 |
+
if use_aten_lib:
|
486 |
+
cpu_fm.write(
|
487 |
+
"NativeFunctions.h",
|
488 |
+
lambda: dict(
|
489 |
+
{
|
490 |
+
"nativeFunctions_declarations": get_native_function_declarations(
|
491 |
+
grouped_native_functions=native_functions,
|
492 |
+
backend_indices=backend_indices,
|
493 |
+
native_function_decl_gen=dest.compute_native_function_declaration,
|
494 |
+
),
|
495 |
+
},
|
496 |
+
**headers,
|
497 |
+
),
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
ns_grouped_kernels = get_ns_grouped_kernels(
|
501 |
+
native_functions=native_functions,
|
502 |
+
kernel_index=kernel_index,
|
503 |
+
native_function_decl_gen=compute_native_function_declaration, # type: ignore[arg-type]
|
504 |
+
)
|
505 |
+
cpu_fm.write(
|
506 |
+
"NativeFunctions.h",
|
507 |
+
lambda: dict(
|
508 |
+
{
|
509 |
+
"nativeFunctions_declarations": get_native_function_declarations_from_ns_grouped_kernels(
|
510 |
+
ns_grouped_kernels=ns_grouped_kernels,
|
511 |
+
),
|
512 |
+
},
|
513 |
+
**headers,
|
514 |
+
),
|
515 |
+
)
|
516 |
+
|
517 |
+
|
518 |
+
def gen_custom_ops(
|
519 |
+
*,
|
520 |
+
native_functions: Sequence[NativeFunction],
|
521 |
+
selector: SelectiveBuilder,
|
522 |
+
kernel_index: ETKernelIndex,
|
523 |
+
cpu_fm: FileManager,
|
524 |
+
rocm: bool,
|
525 |
+
) -> None:
|
526 |
+
dispatch_key = DispatchKey.CPU
|
527 |
+
(
|
528 |
+
anonymous_definition,
|
529 |
+
static_init_dispatch_registrations,
|
530 |
+
) = gen_custom_ops_registration(
|
531 |
+
native_functions=native_functions,
|
532 |
+
selector=selector,
|
533 |
+
kernel_index=kernel_index,
|
534 |
+
rocm=rocm,
|
535 |
+
)
|
536 |
+
cpu_fm.write_with_template(
|
537 |
+
f"Register{dispatch_key}CustomOps.cpp",
|
538 |
+
"RegisterDispatchKeyCustomOps.cpp",
|
539 |
+
lambda: {
|
540 |
+
"ops_headers": '#include "CustomOpsNativeFunctions.h"',
|
541 |
+
"DispatchKey": dispatch_key,
|
542 |
+
"dispatch_namespace": dispatch_key.lower(),
|
543 |
+
"dispatch_namespaced_definitions": "",
|
544 |
+
"dispatch_anonymous_definitions": anonymous_definition,
|
545 |
+
"static_init_dispatch_registrations": static_init_dispatch_registrations,
|
546 |
+
},
|
547 |
+
)
|
548 |
+
cpu_fm.write_with_template(
|
549 |
+
f"Register{dispatch_key}Stub.cpp",
|
550 |
+
"RegisterDispatchKeyCustomOps.cpp",
|
551 |
+
lambda: {
|
552 |
+
"ops_headers": "",
|
553 |
+
"DispatchKey": dispatch_key,
|
554 |
+
"dispatch_namespace": dispatch_key.lower(),
|
555 |
+
"dispatch_namespaced_definitions": "",
|
556 |
+
"dispatch_anonymous_definitions": list(
|
557 |
+
mapMaybe(ComputeNativeFunctionStub(), native_functions)
|
558 |
+
),
|
559 |
+
"static_init_dispatch_registrations": static_init_dispatch_registrations,
|
560 |
+
},
|
561 |
+
)
|
562 |
+
|
563 |
+
(
|
564 |
+
aten_schema_registrations,
|
565 |
+
schema_registrations,
|
566 |
+
) = get_native_function_schema_registrations(
|
567 |
+
native_functions=native_functions,
|
568 |
+
schema_selector=selector,
|
569 |
+
)
|
570 |
+
cpu_fm.write(
|
571 |
+
"RegisterSchema.cpp",
|
572 |
+
lambda: {
|
573 |
+
"schema_registrations": schema_registrations,
|
574 |
+
"aten_schema_registrations": aten_schema_registrations,
|
575 |
+
},
|
576 |
+
)
|
577 |
+
|
578 |
+
|
579 |
+
def translate_native_yaml(
|
580 |
+
tags_yaml_path: str,
|
581 |
+
aten_yaml_path: str,
|
582 |
+
native_yaml_path: Optional[str],
|
583 |
+
use_aten_lib: bool,
|
584 |
+
out_file: TextIO,
|
585 |
+
) -> None:
|
586 |
+
"""Translates Executorch DSL dialect to use the same syntax as
|
587 |
+
native_functions.yaml. The major difference is that Executorch DSL dialect
|
588 |
+
supports "op" key, where it refers to the operator name in native_functions.yaml.
|
589 |
+
|
590 |
+
For example, a functions.yaml may have the following entry:
|
591 |
+
|
592 |
+
- op: add.out
|
593 |
+
...
|
594 |
+
|
595 |
+
It needs to be translated to the following:
|
596 |
+
|
597 |
+
- func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
598 |
+
...
|
599 |
+
|
600 |
+
We go in aten_yaml_path and find the operator schema for "add.out" and add it
|
601 |
+
to the original functions.yaml. We also add required field "variants", where for
|
602 |
+
Executorch it will always be "function".
|
603 |
+
|
604 |
+
For ATen mode we don't have to do the translation because native_yaml_path is
|
605 |
+
the same as native_functions.yaml.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing.
|
609 |
+
It is not optional.
|
610 |
+
aten_yaml_path: Path to ATen operator yaml file native_functions.yaml.
|
611 |
+
native_yaml_path: Path to a functions.yaml file to parse.
|
612 |
+
If the path does not exist in the filesystem, it is treated as an
|
613 |
+
empty file. If `custom_ops_yaml_path` exists, the contents of that
|
614 |
+
file are appended to the yaml input to be parsed.
|
615 |
+
use_aten_lib: We use this flag to determine if we want to generate native
|
616 |
+
functions. In ATen mode we should generate out= variants.
|
617 |
+
out_file: The IO object that we are writing into.
|
618 |
+
Returns:
|
619 |
+
None
|
620 |
+
"""
|
621 |
+
if use_aten_lib:
|
622 |
+
with open(aten_yaml_path) as aten_yaml:
|
623 |
+
out_file.writelines(aten_yaml.readlines())
|
624 |
+
return
|
625 |
+
|
626 |
+
native_functions, persisted_fields = parse_et_yaml(
|
627 |
+
aten_yaml_path,
|
628 |
+
tags_yaml_path,
|
629 |
+
None,
|
630 |
+
skip_native_fns_gen=False,
|
631 |
+
)
|
632 |
+
|
633 |
+
func_to_scoped_name: Dict[FunctionSchema, str] = {
|
634 |
+
f.func: f"{f.namespace}::{f.func.name}" for f in native_functions
|
635 |
+
}
|
636 |
+
op_to_scoped_name: Dict[OperatorName, str] = {
|
637 |
+
func.name: name for func, name in func_to_scoped_name.items()
|
638 |
+
}
|
639 |
+
|
640 |
+
schema_dict = {name: str(func) for func, name in func_to_scoped_name.items()}
|
641 |
+
kernel_persist_dict: Dict[str, Dict[str, Any]] = {
|
642 |
+
op_to_scoped_name[op]: v for op, v in persisted_fields.items()
|
643 |
+
}
|
644 |
+
|
645 |
+
if (
|
646 |
+
not native_yaml_path
|
647 |
+
or not os.path.exists(native_yaml_path)
|
648 |
+
or os.stat(native_yaml_path).st_size == 0
|
649 |
+
):
|
650 |
+
return
|
651 |
+
with open(native_yaml_path) as native_yaml:
|
652 |
+
native_es = yaml.load(native_yaml, Loader=LineLoader)
|
653 |
+
if not native_es:
|
654 |
+
return
|
655 |
+
for e in native_es:
|
656 |
+
assert isinstance(e.get("__line__"), int), e
|
657 |
+
loc = Location(native_yaml_path, e.pop("__line__"))
|
658 |
+
with context(lambda: f"in {loc}:\n "):
|
659 |
+
if "variants" not in e:
|
660 |
+
e["variants"] = "function"
|
661 |
+
if "func" in e:
|
662 |
+
continue
|
663 |
+
assert isinstance(e.get("op"), str), e
|
664 |
+
opname = e.pop("op")
|
665 |
+
if "::" not in opname:
|
666 |
+
opname = "aten::" + opname
|
667 |
+
assert opname in schema_dict
|
668 |
+
e["func"] = schema_dict.get(opname)
|
669 |
+
|
670 |
+
# Write out persisted kernel information
|
671 |
+
if opname in kernel_persist_dict:
|
672 |
+
for k, v in kernel_persist_dict[opname].items():
|
673 |
+
e[k] = v
|
674 |
+
|
675 |
+
yaml.dump(native_es, out_file, width=1000)
|
676 |
+
|
677 |
+
|
678 |
+
def parse_yaml(
|
679 |
+
path: Optional[str],
|
680 |
+
tags_yaml_path: str,
|
681 |
+
function_filter: Callable[[NativeFunction], bool],
|
682 |
+
skip_native_fns_gen: bool = False,
|
683 |
+
) -> Tuple[
|
684 |
+
List[NativeFunction],
|
685 |
+
Union[Dict[DispatchKey, Dict[OperatorName, BackendMetadata]], ETKernelIndex],
|
686 |
+
]:
|
687 |
+
if path and os.path.exists(path) and os.stat(path).st_size > 0:
|
688 |
+
with open(path) as f:
|
689 |
+
es = yaml.load(f, Loader=LineLoader)
|
690 |
+
|
691 |
+
# Check for kernel index structure
|
692 |
+
kernel_index = (
|
693 |
+
parse_et_yaml_struct(es) if any("kernels" in e for e in es) else None
|
694 |
+
)
|
695 |
+
|
696 |
+
# Remove ET specific fields from entries for BC compatibility
|
697 |
+
for entry in es:
|
698 |
+
for field in ET_FIELDS:
|
699 |
+
entry.pop(field, None)
|
700 |
+
|
701 |
+
parsed_yaml = parse_native_yaml(
|
702 |
+
path,
|
703 |
+
tags_yaml_path,
|
704 |
+
None,
|
705 |
+
skip_native_fns_gen=skip_native_fns_gen,
|
706 |
+
loaded_yaml=es,
|
707 |
+
)
|
708 |
+
native_functions = list(filter(function_filter, parsed_yaml.native_functions))
|
709 |
+
op_names = [f.func.name for f in native_functions]
|
710 |
+
|
711 |
+
# (1) Return ETKernelIndex if kernel index is present
|
712 |
+
if kernel_index is not None:
|
713 |
+
filtered_index = {
|
714 |
+
op_name: kernel_mapping
|
715 |
+
for op_name, kernel_mapping in kernel_index.index.items()
|
716 |
+
if op_name in op_names
|
717 |
+
}
|
718 |
+
return native_functions, ETKernelIndex(index=filtered_index)
|
719 |
+
|
720 |
+
# (2) Return BackendIndices if kernel index is absent
|
721 |
+
def map_index(
|
722 |
+
m: Dict[OperatorName, BackendMetadata]
|
723 |
+
) -> Dict[OperatorName, BackendMetadata]:
|
724 |
+
return {op: m[op] for op in m if op in op_names}
|
725 |
+
|
726 |
+
backend_indices = {
|
727 |
+
k: map_index(b.index) for (k, b) in parsed_yaml.backend_indices.items()
|
728 |
+
}
|
729 |
+
|
730 |
+
return native_functions, backend_indices
|
731 |
+
else:
|
732 |
+
return [], {}
|
733 |
+
|
734 |
+
|
735 |
+
def parse_yaml_files(
|
736 |
+
tags_yaml_path: str,
|
737 |
+
aten_yaml_path: str,
|
738 |
+
native_yaml_path: Optional[str],
|
739 |
+
custom_ops_yaml_path: Optional[str],
|
740 |
+
selector: SelectiveBuilder,
|
741 |
+
use_aten_lib: bool,
|
742 |
+
) -> Tuple[ETParsedYaml, Optional[ETParsedYaml]]:
|
743 |
+
"""Parses functions.yaml and custom_ops.yaml files.
|
744 |
+
|
745 |
+
Args:
|
746 |
+
tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing.
|
747 |
+
It is not optional.
|
748 |
+
aten_yaml_path: Path to ATen operator yaml file native_functions.yaml.
|
749 |
+
native_yaml_path: Path to a functions.yaml file to parse.
|
750 |
+
If the path does not exist in the filesystem, it is treated as an
|
751 |
+
empty file. If `custom_ops_yaml_path` exists, the contents of that
|
752 |
+
file are appended to the yaml input to be parsed.
|
753 |
+
custom_ops_yaml_path: Path to a custom_ops.yaml file to parse. If
|
754 |
+
the path does not exist in the filesystem, it is ignored.
|
755 |
+
selector: For selective build.
|
756 |
+
use_aten_lib: We use this flag to determine if we want to generate native
|
757 |
+
functions. In ATen mode we should generate out= variants.
|
758 |
+
Returns:
|
759 |
+
A tuple with two elements:
|
760 |
+
[0]: The parsed results of concatenating the contents of
|
761 |
+
`native_yaml_path` and `custom_ops_yaml_path`.
|
762 |
+
[1]: The parsed results of the contents of `custom_ops_yaml_path`, if
|
763 |
+
present. If not present, None.
|
764 |
+
"""
|
765 |
+
import tempfile
|
766 |
+
|
767 |
+
# only include selected ops, this is because we want to avoid
|
768 |
+
def function_filter(f: NativeFunction) -> bool:
|
769 |
+
return selector.is_native_function_selected(f)
|
770 |
+
|
771 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
772 |
+
translated_yaml_path = os.path.join(tmpdirname, "translated.yaml")
|
773 |
+
with open(translated_yaml_path, "w") as translated:
|
774 |
+
translate_native_yaml(
|
775 |
+
tags_yaml_path,
|
776 |
+
aten_yaml_path,
|
777 |
+
native_yaml_path,
|
778 |
+
use_aten_lib,
|
779 |
+
translated,
|
780 |
+
)
|
781 |
+
|
782 |
+
translated_functions, translated_indices = parse_yaml(
|
783 |
+
translated_yaml_path, tags_yaml_path, function_filter, not use_aten_lib
|
784 |
+
)
|
785 |
+
custom_ops_functions, custom_ops_indices = parse_yaml(
|
786 |
+
custom_ops_yaml_path, tags_yaml_path, function_filter, True
|
787 |
+
)
|
788 |
+
|
789 |
+
# Convert BackendIndices to ETKernelIndex
|
790 |
+
if not isinstance(translated_indices, ETKernelIndex):
|
791 |
+
translated_indices = ETKernelIndex.from_backend_indices(translated_indices)
|
792 |
+
if not isinstance(custom_ops_indices, ETKernelIndex):
|
793 |
+
custom_ops_indices = ETKernelIndex.from_backend_indices(custom_ops_indices)
|
794 |
+
|
795 |
+
combined_functions = translated_functions + custom_ops_functions
|
796 |
+
combined_kernel_index = ETKernelIndex.merge_indices(
|
797 |
+
translated_indices, custom_ops_indices
|
798 |
+
)
|
799 |
+
combined_yaml = ETParsedYaml(combined_functions, combined_kernel_index)
|
800 |
+
custom_ops_parsed_yaml = ETParsedYaml(custom_ops_functions, custom_ops_indices)
|
801 |
+
|
802 |
+
return combined_yaml, custom_ops_parsed_yaml
|
803 |
+
|
804 |
+
|
805 |
+
def main() -> None:
|
806 |
+
parser = argparse.ArgumentParser(description="Generate operator source files")
|
807 |
+
# Although we don't refer to --source-path directly, make_file_manager()
|
808 |
+
# expects it to point to a directory that contains a templates/ subdirectory
|
809 |
+
# containing the file templates.
|
810 |
+
parser.add_argument(
|
811 |
+
"-s",
|
812 |
+
"--source-path",
|
813 |
+
help="path to source directory for kernel templates",
|
814 |
+
)
|
815 |
+
parser.add_argument(
|
816 |
+
"--functions-yaml-path",
|
817 |
+
"--functions_yaml_path",
|
818 |
+
help="path to the functions.yaml file to use. Optional, but at least "
|
819 |
+
"one of --functions-yaml-path and --custom-ops-yaml-path must be "
|
820 |
+
"specified.",
|
821 |
+
)
|
822 |
+
parser.add_argument(
|
823 |
+
"--custom-ops-yaml-path",
|
824 |
+
"--custom_ops_yaml_path",
|
825 |
+
help="path to the custom_ops.yaml file to use. Optional, but at least "
|
826 |
+
"one of --functions-yaml-path and --custom-ops-yaml-path must be "
|
827 |
+
"specified.",
|
828 |
+
)
|
829 |
+
parser.add_argument(
|
830 |
+
"--aten-yaml-path",
|
831 |
+
"--aten_yaml_path",
|
832 |
+
help="path to native_functions.yaml file.",
|
833 |
+
)
|
834 |
+
# Note that make_file_manager() also looks at --install-dir.
|
835 |
+
parser.add_argument(
|
836 |
+
"-d",
|
837 |
+
"--install-dir",
|
838 |
+
"--install_dir",
|
839 |
+
help="output directory",
|
840 |
+
default="build/generated",
|
841 |
+
)
|
842 |
+
parser.add_argument(
|
843 |
+
"-o",
|
844 |
+
"--output-dependencies",
|
845 |
+
help="output a list of dependencies into the given file and exit",
|
846 |
+
)
|
847 |
+
# Although we don't refer to --dry-run directly, make_file_manager() looks
|
848 |
+
# for it.
|
849 |
+
parser.add_argument(
|
850 |
+
"--dry-run",
|
851 |
+
action="store_true",
|
852 |
+
help="run without writing any files (still updates outputs)",
|
853 |
+
)
|
854 |
+
parser.add_argument(
|
855 |
+
"--static-dispatch-backend",
|
856 |
+
"--static_dispatch_backend",
|
857 |
+
nargs="*",
|
858 |
+
help="generate static dispatch code for the specific backend (if set)",
|
859 |
+
)
|
860 |
+
parser.add_argument(
|
861 |
+
"--op-registration-whitelist",
|
862 |
+
"--op_registration_whitelist",
|
863 |
+
nargs="*",
|
864 |
+
help="filter op registrations by the whitelist (if set); "
|
865 |
+
"each item is `namespace`::`operator name` without overload name; "
|
866 |
+
"e.g.: aten::empty aten::conv2d ...",
|
867 |
+
)
|
868 |
+
parser.add_argument(
|
869 |
+
"--op-selection-yaml-path",
|
870 |
+
"--op_selection_yaml_path",
|
871 |
+
help="Provide a path to the operator selection (for custom build) YAML "
|
872 |
+
"that contains the information about the set of selected operators "
|
873 |
+
"and their categories (training, ...). Each operator is either a "
|
874 |
+
"full operator name with overload or just a bare operator name. "
|
875 |
+
"The operator names also contain the namespace prefix (e.g. aten::)",
|
876 |
+
)
|
877 |
+
parser.add_argument(
|
878 |
+
"--tags-path",
|
879 |
+
help="Path to tags.yaml. Required by yaml parsing in codegen system.",
|
880 |
+
)
|
881 |
+
parser.add_argument(
|
882 |
+
"--rocm",
|
883 |
+
action="store_true",
|
884 |
+
help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly",
|
885 |
+
)
|
886 |
+
parser.add_argument(
|
887 |
+
"--use-aten-lib",
|
888 |
+
"--use_aten_lib",
|
889 |
+
action="store_true",
|
890 |
+
help="a boolean flag to indicate whether we use ATen kernels or not, in the future this flag will be per "
|
891 |
+
"operator",
|
892 |
+
)
|
893 |
+
parser.add_argument(
|
894 |
+
"--manual_registration",
|
895 |
+
"--manual-registration",
|
896 |
+
action="store_true",
|
897 |
+
help="a boolean flag to indicate whether we want to manually call"
|
898 |
+
"register_kernels() or rely on static init. ",
|
899 |
+
)
|
900 |
+
parser.add_argument(
|
901 |
+
"--generate",
|
902 |
+
type=str,
|
903 |
+
nargs="*",
|
904 |
+
choices=["headers", "sources"],
|
905 |
+
default=["headers", "sources"],
|
906 |
+
help="Generate only a subset of files",
|
907 |
+
)
|
908 |
+
options = parser.parse_args()
|
909 |
+
assert options.tags_path, "tags.yaml is required by codegen yaml parsing."
|
910 |
+
|
911 |
+
selector = get_custom_build_selector(
|
912 |
+
options.op_registration_whitelist,
|
913 |
+
options.op_selection_yaml_path,
|
914 |
+
)
|
915 |
+
|
916 |
+
parsed_yaml, custom_ops_parsed_yaml = parse_yaml_files(
|
917 |
+
aten_yaml_path=options.aten_yaml_path,
|
918 |
+
tags_yaml_path=options.tags_path,
|
919 |
+
native_yaml_path=options.functions_yaml_path,
|
920 |
+
custom_ops_yaml_path=options.custom_ops_yaml_path,
|
921 |
+
selector=selector,
|
922 |
+
use_aten_lib=options.use_aten_lib,
|
923 |
+
)
|
924 |
+
native_functions, kernel_index = (
|
925 |
+
parsed_yaml.native_functions,
|
926 |
+
parsed_yaml.kernel_index,
|
927 |
+
)
|
928 |
+
custom_ops_native_functions = (
|
929 |
+
custom_ops_parsed_yaml.native_functions if custom_ops_parsed_yaml else []
|
930 |
+
)
|
931 |
+
|
932 |
+
cpu_fm = make_file_manager(options=options)
|
933 |
+
|
934 |
+
if "headers" in options.generate:
|
935 |
+
# generate CustomOpsNativeFunctions.h when custom_ops.yaml is present, to match the build system.
|
936 |
+
gen_headers(
|
937 |
+
native_functions=native_functions,
|
938 |
+
gen_custom_ops_header=options.custom_ops_yaml_path,
|
939 |
+
custom_ops_native_functions=custom_ops_native_functions,
|
940 |
+
selector=selector,
|
941 |
+
kernel_index=kernel_index,
|
942 |
+
cpu_fm=cpu_fm,
|
943 |
+
use_aten_lib=options.use_aten_lib,
|
944 |
+
)
|
945 |
+
|
946 |
+
if "sources" in options.generate:
|
947 |
+
gen_unboxing(
|
948 |
+
native_functions=native_functions,
|
949 |
+
cpu_fm=cpu_fm,
|
950 |
+
selector=selector,
|
951 |
+
use_aten_lib=options.use_aten_lib,
|
952 |
+
kernel_index=kernel_index,
|
953 |
+
manual_registration=options.manual_registration,
|
954 |
+
)
|
955 |
+
if custom_ops_native_functions:
|
956 |
+
gen_custom_ops(
|
957 |
+
native_functions=custom_ops_native_functions,
|
958 |
+
selector=selector,
|
959 |
+
kernel_index=kernel_index,
|
960 |
+
cpu_fm=cpu_fm,
|
961 |
+
rocm=options.rocm,
|
962 |
+
)
|
963 |
+
|
964 |
+
if options.output_dependencies:
|
965 |
+
depfile_path = pathlib.Path(options.output_dependencies).resolve()
|
966 |
+
depfile_name = depfile_path.name
|
967 |
+
depfile_stem = depfile_path.stem
|
968 |
+
|
969 |
+
for fm, prefix in [
|
970 |
+
(cpu_fm, ""),
|
971 |
+
]:
|
972 |
+
varname = prefix + depfile_stem
|
973 |
+
path = depfile_path.parent / (prefix + depfile_name)
|
974 |
+
fm.write_outputs(varname, str(path))
|
975 |
+
|
976 |
+
|
977 |
+
if __name__ == "__main__":
|
978 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen_functionalization_type.py
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Callable, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from torchgen.api import cpp, dispatcher
|
5 |
+
from torchgen.api.translate import translate
|
6 |
+
from torchgen.api.types import (
|
7 |
+
BaseCType,
|
8 |
+
Binding,
|
9 |
+
CType,
|
10 |
+
DispatcherSignature,
|
11 |
+
FunctionalizationLambda,
|
12 |
+
iTensorListRefT,
|
13 |
+
NativeSignature,
|
14 |
+
tensorListT,
|
15 |
+
tensorT,
|
16 |
+
VectorCType,
|
17 |
+
ViewInverseSignature,
|
18 |
+
)
|
19 |
+
from torchgen.context import (
|
20 |
+
method_with_native_function,
|
21 |
+
native_function_manager,
|
22 |
+
with_native_function,
|
23 |
+
with_native_function_and,
|
24 |
+
)
|
25 |
+
from torchgen.model import (
|
26 |
+
Argument,
|
27 |
+
BackendIndex,
|
28 |
+
BaseTy,
|
29 |
+
BaseType,
|
30 |
+
FunctionSchema,
|
31 |
+
ListType,
|
32 |
+
NativeFunction,
|
33 |
+
NativeFunctionsGroup,
|
34 |
+
NativeFunctionsViewGroup,
|
35 |
+
Return,
|
36 |
+
SchemaKind,
|
37 |
+
SelfArgument,
|
38 |
+
TensorOptionsArguments,
|
39 |
+
)
|
40 |
+
from torchgen.native_function_generation import (
|
41 |
+
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY,
|
42 |
+
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT,
|
43 |
+
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY,
|
44 |
+
)
|
45 |
+
|
46 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
47 |
+
|
48 |
+
|
49 |
+
# Note: [Mutable Ops Not Using Functionalization]
|
50 |
+
# Ops in this list currently do not work with functionalization and should be fixed.
|
51 |
+
MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION = (
|
52 |
+
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
53 |
+
+ MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
|
54 |
+
+ INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
55 |
+
+ [
|
56 |
+
# It will be BC-breaking, but we should fix their schemas.
|
57 |
+
# should be inplace?
|
58 |
+
"record_stream",
|
59 |
+
# See Note [resize_ in Functionalization]
|
60 |
+
"resize_",
|
61 |
+
"resize_as_",
|
62 |
+
# This function is used as for testing purposes only.
|
63 |
+
"_fill_mem_eff_dropout_mask_",
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
# This file contains codegen that relates to the functionalization pass.
|
68 |
+
# It includes:
|
69 |
+
# - gen_functionalization_definition
|
70 |
+
# Generates dispatcher kernel definitions for the functionalization pass.
|
71 |
+
# - gen_functionalization_registration
|
72 |
+
# Generates dispatcher kernel registrations for the functionalization pass.
|
73 |
+
# - gen_functionalization_view_inverse_declaration
|
74 |
+
# Generates a declaration for an "inverse view", for every view op
|
75 |
+
# that is needed in functionalization. We manually implement their definitions.
|
76 |
+
# - gen_composite_view_copy_kernel
|
77 |
+
# Generates view_copy() composite kernels for all view_copy operators.
|
78 |
+
|
79 |
+
|
80 |
+
# Generates the body of the default composite C++ kernel for a {view}_copy NativeFunction
|
81 |
+
# See Note [view_copy NativeFunctions]
|
82 |
+
@dataclass(frozen=True)
|
83 |
+
class GenCompositeViewCopyKernel:
|
84 |
+
backend_index: BackendIndex
|
85 |
+
|
86 |
+
@method_with_native_function
|
87 |
+
def __call__(self, g: NativeFunctionsViewGroup) -> Optional[str]:
|
88 |
+
if g.view_copy is None:
|
89 |
+
return None
|
90 |
+
|
91 |
+
metadata = self.backend_index.get_kernel(g.view_copy)
|
92 |
+
assert metadata is not None
|
93 |
+
|
94 |
+
# We can make view_copy work in more cases by using reshape()
|
95 |
+
# when a normal view call would ordinarily fail.
|
96 |
+
# This also makes LTC more efficient, because they don't need to include
|
97 |
+
# clone() calls in their graph (which is normally needed by reshape).
|
98 |
+
if str(g.view_copy.func.name) == "view_copy":
|
99 |
+
assert metadata.kernel == "view_copy_symint"
|
100 |
+
return """\
|
101 |
+
at::Tensor view_copy_symint(const at::Tensor & self, at::SymIntArrayRef size) {
|
102 |
+
c10::SymDimVector shape = infer_size_dv(size, self.sym_numel());
|
103 |
+
if (!at::detail::computeStride(self.sym_sizes(), self.sym_strides(), shape).has_value()) {
|
104 |
+
return self.reshape_symint(size);
|
105 |
+
} else {
|
106 |
+
auto output = at::_ops::view::call(self, size);
|
107 |
+
return output.clone(/*memory_format=*/at::MemoryFormat::Contiguous);
|
108 |
+
}
|
109 |
+
}
|
110 |
+
"""
|
111 |
+
# view_copy is a native signature, since we're generating an at::native:: kernel
|
112 |
+
# Functionalization always operates on symints though
|
113 |
+
view_copy_sig = NativeSignature(
|
114 |
+
g.view_copy.func, symint=metadata.supports_symint()
|
115 |
+
)
|
116 |
+
|
117 |
+
# view is a dispatcher signature, since we're calling into the at::_ops API
|
118 |
+
view_sig = DispatcherSignature(g.view.func)
|
119 |
+
|
120 |
+
view_api_name = g.view.func.name.unambiguous_name()
|
121 |
+
exprs = ", ".join(
|
122 |
+
[e.expr for e in translate(view_copy_sig.arguments(), view_sig.arguments())]
|
123 |
+
)
|
124 |
+
|
125 |
+
# view ops today always return either a Tensor or a list of Tensors
|
126 |
+
assert len(g.view.func.returns) == 1
|
127 |
+
assert g.view.func.returns[0].type == BaseType(
|
128 |
+
BaseTy.Tensor
|
129 |
+
) or g.view.func.returns[0].type == ListType(BaseType(BaseTy.Tensor), None)
|
130 |
+
|
131 |
+
if g.view.func.returns[0].type == BaseType(BaseTy.Tensor):
|
132 |
+
return_cloned_output = """\
|
133 |
+
return output.clone(/*memory_format=*/at::MemoryFormat::Contiguous);"""
|
134 |
+
else:
|
135 |
+
# If the return type is a list, we need to clone each tensor in the list.
|
136 |
+
return_cloned_output = f"""\
|
137 |
+
{view_copy_sig.returns_type().cpp_type()} out_clone;
|
138 |
+
for (const auto i : c10::irange(output.size())) {{
|
139 |
+
out_clone.push_back(output[i].clone(/*memory_format=*/at::MemoryFormat::Contiguous));
|
140 |
+
}}
|
141 |
+
return out_clone;"""
|
142 |
+
|
143 |
+
# The default generated composite kernel for {view}_copy() operators just clones
|
144 |
+
# the input tensor, and runs the underlying view on the clone.
|
145 |
+
return f"""
|
146 |
+
{view_copy_sig.defn(name=metadata.kernel)} {{
|
147 |
+
auto output = at::_ops::{view_api_name}::call({exprs});
|
148 |
+
{return_cloned_output}
|
149 |
+
}}
|
150 |
+
"""
|
151 |
+
|
152 |
+
|
153 |
+
def return_str(rets: Tuple[Return, ...], names: List[str]) -> str:
|
154 |
+
assert len(rets) == len(names)
|
155 |
+
if len(rets) == 0:
|
156 |
+
return ""
|
157 |
+
elif len(rets) == 1:
|
158 |
+
return f"return {names[0]};"
|
159 |
+
else:
|
160 |
+
return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});"
|
161 |
+
|
162 |
+
|
163 |
+
def modifies_arguments(f: NativeFunction) -> bool:
|
164 |
+
return any(
|
165 |
+
a.annotation is not None and a.annotation.is_write
|
166 |
+
for a in f.func.arguments.flat_all
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def wrapper_name(func: FunctionSchema) -> str:
|
171 |
+
if func.name.overload_name:
|
172 |
+
return f"{cpp.name(func)}_{func.name.overload_name}"
|
173 |
+
else:
|
174 |
+
return cpp.name(func)
|
175 |
+
|
176 |
+
|
177 |
+
def is_tensor_like(a: Union[Argument, TensorOptionsArguments, SelfArgument]) -> bool:
|
178 |
+
return isinstance(a, SelfArgument) or (
|
179 |
+
isinstance(a, Argument) and a.type.is_tensor_like()
|
180 |
+
)
|
181 |
+
|
182 |
+
|
183 |
+
# We need to wrap / unwrap various arguments from the op in the functionalization kernels.
|
184 |
+
# Some op schemas include non-owning types though (like TensorList),
|
185 |
+
# and when we unwrap them we expect to get out an owning type!.
|
186 |
+
# We also return a lambda that tells you how to conver the non-owning type argument into the owning type.
|
187 |
+
def get_owning_type(t: CType) -> Tuple[CType, Callable[[str], str]]:
|
188 |
+
if t == BaseCType(tensorListT):
|
189 |
+
return VectorCType(BaseCType(tensorT)), lambda x: f"{x}.vec()"
|
190 |
+
if t == BaseCType(iTensorListRefT):
|
191 |
+
return VectorCType(BaseCType(tensorT)), lambda x: f"{{{x}.begin(), {x}.end()}}"
|
192 |
+
# There are technically other non-owning types out there (like IntArrayRef),
|
193 |
+
# but functionalization only actually cares about the ones involving tensors.
|
194 |
+
return t, lambda x: x
|
195 |
+
|
196 |
+
|
197 |
+
# unwraps all tensor-like arguments, returning:
|
198 |
+
# (1) a string containing all of the logic that does the unwrapping
|
199 |
+
# (2) a context, to be used by translate(), with all of the relevant bindings.
|
200 |
+
def unwrap_tensor_args(
|
201 |
+
sig: DispatcherSignature, *, is_view_op: bool
|
202 |
+
) -> Tuple[str, List[Binding]]:
|
203 |
+
context: List[Binding] = []
|
204 |
+
unwrapped_tensor_args: List[str] = []
|
205 |
+
for arg in sig.arguments():
|
206 |
+
if is_tensor_like(arg.argument):
|
207 |
+
# for tensor inputs, we want to unwrap them before passing them into the redispatch calls.
|
208 |
+
unwrapped_name = f"{arg.name}_"
|
209 |
+
# For most ops, the functionalization needs to sync any pending updates on the input tensors
|
210 |
+
# before calling the operator, since otherwise the operator will act on stale data.
|
211 |
+
# For view ops though, we can continue to defer syncing until the tensor is used by
|
212 |
+
# a non-view operator.
|
213 |
+
maybe_sync_input = (
|
214 |
+
"" if is_view_op else f"at::functionalization::impl::sync({arg.name});"
|
215 |
+
)
|
216 |
+
unwrapped_type, conversion_fn = get_owning_type(
|
217 |
+
arg.nctype.remove_const_ref().type
|
218 |
+
)
|
219 |
+
unwrapped_tensor_args.append(
|
220 |
+
f"""
|
221 |
+
{unwrapped_type.cpp_type()} {unwrapped_name};
|
222 |
+
if (at::functionalization::impl::isFunctionalTensor({arg.name})) {{
|
223 |
+
{maybe_sync_input}
|
224 |
+
{unwrapped_name} = at::functionalization::impl::from_functional_tensor({arg.name});
|
225 |
+
}} else {{
|
226 |
+
{unwrapped_name} = {conversion_fn(arg.name)};
|
227 |
+
}}"""
|
228 |
+
)
|
229 |
+
context.append(arg.with_name(unwrapped_name))
|
230 |
+
else:
|
231 |
+
# for non-tensor inputs, we want to pass them directly into the redispatch calls.
|
232 |
+
context.append(arg)
|
233 |
+
unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args)
|
234 |
+
return unwrap_tensor_args_str, context
|
235 |
+
|
236 |
+
|
237 |
+
# converts all tensor-like arguments to meta tensors, which are used to compute stride info. Returns:
|
238 |
+
# (1) a string containing all of the logic that does the conversions.
|
239 |
+
# (2) a context, to be used by translate(), with all of the relevant bindings.
|
240 |
+
def convert_to_meta_tensors(sig: DispatcherSignature) -> Tuple[str, List[Binding]]:
|
241 |
+
context: List[Binding] = []
|
242 |
+
unwrapped_tensor_args: List[str] = []
|
243 |
+
for arg in sig.arguments():
|
244 |
+
if is_tensor_like(arg.argument):
|
245 |
+
# for tensor inputs, we want to unwrap them before passing them into the redispatch calls.
|
246 |
+
a_ = arg.name
|
247 |
+
unwrapped_name = f"{arg.name}_meta"
|
248 |
+
unwrapped_tensor_args.append(f"auto {unwrapped_name} = to_meta({a_});")
|
249 |
+
context.append(arg.with_name(unwrapped_name))
|
250 |
+
else:
|
251 |
+
# for non-tensor inputs, we want to pass them directly into the redispatch calls.
|
252 |
+
context.append(arg)
|
253 |
+
unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args)
|
254 |
+
return unwrap_tensor_args_str, context
|
255 |
+
|
256 |
+
|
257 |
+
# The functionalization codegen currently expects view op schemas to have this form:
|
258 |
+
# foo(Tensor(a), ...) -> Tensor(a) (e.g. transpose)
|
259 |
+
# foo(Tensor(a!), ...) -> Tensor(a!) (e.g. transpose_)
|
260 |
+
def assert_view_op_properties(func: FunctionSchema) -> None:
|
261 |
+
def is_alias(a: Argument) -> bool:
|
262 |
+
return a.annotation is not None
|
263 |
+
|
264 |
+
args = func.arguments.flat_non_out
|
265 |
+
# The first argument is a tensor with an alias semantics (annotations)
|
266 |
+
assert len(args) > 0 and args[0].type == BaseType(
|
267 |
+
BaseTy.Tensor
|
268 |
+
), f"""In the functionalization codegen, we expect the first argument of every view operator to be a tensor,
|
269 |
+
but found an argument of type {str(args[0].type)} for operator: {str(func.name)}."""
|
270 |
+
# No other arguments have aliasing semantics
|
271 |
+
assert is_alias(args[0]) and not any(
|
272 |
+
is_alias(a) for a in args[1:]
|
273 |
+
), """In the functionalization codegen, we expect the first argument of every view operator to alias the output.
|
274 |
+
View operators with multiple aliasing inputs aren't supported yet. Found an operator that doesn't satisfy this constraint"""
|
275 |
+
|
276 |
+
|
277 |
+
# Generates the Functionalization kernel for:
|
278 |
+
# - ops that create aliases (e.g. transpose())
|
279 |
+
# - ops that are views AND mutations (e.g. transpose_())
|
280 |
+
def emit_view_functionalization_body(
|
281 |
+
g: NativeFunctionsViewGroup, *, view_inplace: bool
|
282 |
+
) -> str:
|
283 |
+
if view_inplace:
|
284 |
+
# This op is both an inplace op AND a view op.
|
285 |
+
# See Note [Functionalization Pass - Inplace View Ops] for details.
|
286 |
+
# I currently have the view meta call into the out-of-place variant of the view, to avoid
|
287 |
+
# having to define an extra ~20 inplace {view}_inverse_ functions.
|
288 |
+
# Most view ops don't have NativeFunctionGroup's both, because we don't define out= variants for view ops.
|
289 |
+
# I'm assuming that every inplace-view op has a corresponding out-of-place view op,
|
290 |
+
# with the same name but the trailing underscore removed.
|
291 |
+
# This is currently asserted at parse time in gen.py (see error_check_native_functions).
|
292 |
+
assert g.view_inplace is not None
|
293 |
+
f = g.view_inplace
|
294 |
+
else:
|
295 |
+
f = g.view
|
296 |
+
|
297 |
+
assert g.view_copy is not None
|
298 |
+
with native_function_manager(f):
|
299 |
+
call_sig = DispatcherSignature.from_schema(g.view_copy.func)
|
300 |
+
|
301 |
+
# the "view_copy" op name that the functionalization kernels need to call
|
302 |
+
api_name = g.view_copy.func.name.unambiguous_name()
|
303 |
+
# Sometimes the functionalization pass needs to no-op (e.g. if it was passed non-functional tensors)
|
304 |
+
# "no-op"ing in this context is just redispatching to the original op.
|
305 |
+
noop_api_name = f.func.name.unambiguous_name()
|
306 |
+
|
307 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
308 |
+
assert_view_op_properties(f.func)
|
309 |
+
view_tensor_name = dispatcher_sig.arguments()[0].name
|
310 |
+
|
311 |
+
return_type = dispatcher_sig.returns_type().remove_const_ref().cpp_type()
|
312 |
+
|
313 |
+
unwrap_tensor_args_str, unwrapped_args_ctx = unwrap_tensor_args(
|
314 |
+
dispatcher_sig, is_view_op=True
|
315 |
+
)
|
316 |
+
view_redispatch_args = [
|
317 |
+
e.expr
|
318 |
+
for e in translate(unwrapped_args_ctx, call_sig.arguments(), method=False)
|
319 |
+
]
|
320 |
+
|
321 |
+
forward_lambda = FunctionalizationLambda.from_func(g, is_reverse=False)
|
322 |
+
reverse_lambda = FunctionalizationLambda.from_func(g, is_reverse=True)
|
323 |
+
|
324 |
+
# The meta API call should use the same arguments, but convert all tensors to meta tensors first.
|
325 |
+
meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig)
|
326 |
+
meta_call_args = [
|
327 |
+
e.expr for e in translate(meta_call_ctx, call_sig.arguments(), method=False)
|
328 |
+
]
|
329 |
+
|
330 |
+
if "inplace_view" in f.tags:
|
331 |
+
# See Note [Functionalization Pass - Inplace View Ops] for more details
|
332 |
+
return f"""
|
333 |
+
{dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{
|
334 |
+
if (!at::functionalization::impl::isFunctionalTensor({view_tensor_name})) {{
|
335 |
+
// functionalization is re-entrant, but will no-op if it wasn't passed a FunctionalTensorWrapper.
|
336 |
+
{unwrap_tensor_args_str}
|
337 |
+
at::AutoDispatchSkipFunctionalize guard;
|
338 |
+
return at::_ops::{noop_api_name}::call({', '.join(view_redispatch_args)});
|
339 |
+
}}
|
340 |
+
auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS();
|
341 |
+
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
|
342 |
+
{forward_lambda.decl()} {{
|
343 |
+
if (reapply_views) {{
|
344 |
+
return {forward_lambda.inner_call(reapply_views=True)}
|
345 |
+
}} else {{
|
346 |
+
return {forward_lambda.inner_call(reapply_views=False)}
|
347 |
+
}}
|
348 |
+
}},
|
349 |
+
{reverse_lambda.decl()} {{
|
350 |
+
return {reverse_lambda.inner_call()}
|
351 |
+
}}
|
352 |
+
);
|
353 |
+
auto compute_reference_meta =
|
354 |
+
{view_tensor_name}.key_set().has_backend(c10::BackendComponent::XLABit) ||
|
355 |
+
{view_tensor_name}.key_set().has_backend(c10::BackendComponent::LazyBit);
|
356 |
+
{return_type} reference_tensor_output;
|
357 |
+
if (compute_reference_meta) {{
|
358 |
+
{meta_conversion_str}
|
359 |
+
at::AutoDispatchSkipFunctionalize func_guard;
|
360 |
+
c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch);
|
361 |
+
reference_tensor_output = at::_ops::{noop_api_name}::call({', '.join(meta_call_args)});
|
362 |
+
}}
|
363 |
+
// This function adds the above view meta to the current tensor and replays them off the base,
|
364 |
+
// mutating the size/stride info of the current FunctionalTensorWrapper.
|
365 |
+
// Because of this, we need to make sure to run the reference shape function above,
|
366 |
+
// BEFORE doing this (otherwise we'll end up runnin the reference function using the wrong sizes/strides)
|
367 |
+
at::functionalization::impl::mutate_view_meta({view_tensor_name}, view_meta);
|
368 |
+
// See Note [Propagating strides in the functionalization pass]
|
369 |
+
// XLA/LTC don't implement the logic to propagate strides correctly, so we need to rely
|
370 |
+
// on a reference implementation here (instead of relying on the output from the forward lambda
|
371 |
+
// having the correct stride info)
|
372 |
+
if (compute_reference_meta) {{
|
373 |
+
at::functionalization::impl::set_sizes_strides_offset({view_tensor_name}, reference_tensor_output);
|
374 |
+
}}
|
375 |
+
return {view_tensor_name};
|
376 |
+
}}
|
377 |
+
"""
|
378 |
+
|
379 |
+
else:
|
380 |
+
is_multi_output_view = isinstance(f.func.returns[0].type, ListType)
|
381 |
+
return f"""
|
382 |
+
{dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{
|
383 |
+
{unwrap_tensor_args_str}
|
384 |
+
if (!at::functionalization::impl::isFunctionalTensor({view_tensor_name})) {{
|
385 |
+
// functionalization is re-entrant, but will no-op if it wasn't passed a FunctionalTensorWrapper.
|
386 |
+
at::AutoDispatchSkipFunctionalize guard;
|
387 |
+
return at::_ops::{noop_api_name}::call({', '.join(view_redispatch_args)});
|
388 |
+
}}
|
389 |
+
auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS();
|
390 |
+
auto compute_reference_meta =
|
391 |
+
{view_tensor_name}.key_set().has_backend(c10::BackendComponent::XLABit) ||
|
392 |
+
{view_tensor_name}.key_set().has_backend(c10::BackendComponent::LazyBit);
|
393 |
+
{return_type} reference_tensor_output;
|
394 |
+
if (compute_reference_meta) {{
|
395 |
+
{meta_conversion_str}
|
396 |
+
at::AutoDispatchSkipFunctionalize func_guard;
|
397 |
+
c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch);
|
398 |
+
reference_tensor_output = at::_ops::{noop_api_name}::call({', '.join(meta_call_args)});
|
399 |
+
}}
|
400 |
+
{return_type} tmp_output;
|
401 |
+
{{
|
402 |
+
at::AutoDispatchSkipFunctionalize guard;
|
403 |
+
if (reapply_views) {{
|
404 |
+
tmp_output = at::_ops::{noop_api_name}::call({', '.join(view_redispatch_args)});
|
405 |
+
}} else {{
|
406 |
+
tmp_output = at::_ops::{api_name}::call({', '.join(view_redispatch_args)});
|
407 |
+
}}
|
408 |
+
}}
|
409 |
+
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
|
410 |
+
{forward_lambda.decl()} {{
|
411 |
+
if (reapply_views) {{
|
412 |
+
return {forward_lambda.inner_call(reapply_views=True)}
|
413 |
+
}} else {{
|
414 |
+
return {forward_lambda.inner_call(reapply_views=False)}
|
415 |
+
}}
|
416 |
+
}},
|
417 |
+
{reverse_lambda.decl()} {{
|
418 |
+
return {reverse_lambda.inner_call()}
|
419 |
+
}},
|
420 |
+
/*is_multi_output=*/{str(is_multi_output_view).lower()}
|
421 |
+
);
|
422 |
+
auto out = at::functionalization::impl::create_functional_tensor_with_view_meta(tmp_output, {view_tensor_name}, view_meta);
|
423 |
+
// See Note [Propagating strides in the functionalization pass]
|
424 |
+
if (compute_reference_meta) {{
|
425 |
+
at::functionalization::impl::set_sizes_strides_offset(out, reference_tensor_output);
|
426 |
+
}}
|
427 |
+
return out;
|
428 |
+
}}
|
429 |
+
"""
|
430 |
+
|
431 |
+
|
432 |
+
def maybe_create_output(f: NativeFunction, var_name: str) -> str:
|
433 |
+
if len(f.func.returns) == 0:
|
434 |
+
return ""
|
435 |
+
return_type = dispatcher.returns_type(f.func.returns).remove_const_ref().cpp_type()
|
436 |
+
return f"{return_type} {var_name} = "
|
437 |
+
|
438 |
+
|
439 |
+
# Given a NativeFunction, and a variable name corresponding to the output of redispatching on the function,
|
440 |
+
# this returns two lists of names, consisting of:
|
441 |
+
# - the names of returns corresponding to the original (mutable) inputs of the outer function
|
442 |
+
# - the names of returns corresponding to the (immutable) outputs of the inner redispatched function
|
443 |
+
def get_mutable_redispatch_return_names(
|
444 |
+
f: NativeFunction, inner_return_var: str
|
445 |
+
) -> Tuple[List[str], List[str]]:
|
446 |
+
aliased_returns = []
|
447 |
+
non_aliased_returns = []
|
448 |
+
for i, name in enumerate(f.func.aliased_return_names()):
|
449 |
+
if name is not None:
|
450 |
+
aliased_returns.append(name)
|
451 |
+
else:
|
452 |
+
non_aliased_returns.append(
|
453 |
+
inner_return_var
|
454 |
+
if len(f.func.returns) == 1
|
455 |
+
else f"std::get<{i}>({inner_return_var})"
|
456 |
+
)
|
457 |
+
return aliased_returns, non_aliased_returns
|
458 |
+
|
459 |
+
|
460 |
+
# When functionalization "no-op's" and redispatches on a mutable operator, we need to take care so that:
|
461 |
+
# - For fresh outputs, we return the result of the redispatch (without wrapping outputs)
|
462 |
+
# - For outputs that were aliased to inputs, we return the inputs directly (since some of them might have been wrapped)
|
463 |
+
def return_from_mutable_noop_redispatch(
|
464 |
+
f: NativeFunction, inner_return_var: str
|
465 |
+
) -> str:
|
466 |
+
aliased, non_aliased = get_mutable_redispatch_return_names(f, inner_return_var)
|
467 |
+
# Just get all of the return names, and immediately return them
|
468 |
+
return return_str(f.func.returns, aliased + non_aliased)
|
469 |
+
|
470 |
+
|
471 |
+
def wrap_propagate_mutations_and_return(
|
472 |
+
f: NativeFunction, functional_op: NativeFunction, inner_return_var: str
|
473 |
+
) -> str:
|
474 |
+
mutable_arg_names = f.func.arguments.mutable_arg_names()
|
475 |
+
(
|
476 |
+
aliased_outer_rets,
|
477 |
+
non_aliased_outer_rets,
|
478 |
+
) = get_mutable_redispatch_return_names(f, inner_return_var)
|
479 |
+
_, non_aliased_inner_rets = get_mutable_redispatch_return_names(
|
480 |
+
functional_op, inner_return_var
|
481 |
+
)
|
482 |
+
# The outer function may have a mix of aliased and non-aliased outputs,
|
483 |
+
# But the inner functional op that we're transforming to should only have non-aliased outputs
|
484 |
+
assert len(mutable_arg_names) + len(non_aliased_outer_rets) == len(
|
485 |
+
non_aliased_inner_rets
|
486 |
+
)
|
487 |
+
|
488 |
+
# First, take all of the newly created outputs from the inner call and wrap them into functional tensors
|
489 |
+
updates = []
|
490 |
+
non_aliased_wrapped_ret_names = []
|
491 |
+
for i, inner_ret in enumerate(
|
492 |
+
non_aliased_inner_rets[: len(non_aliased_outer_rets)]
|
493 |
+
):
|
494 |
+
ret_name = f"output_{i}"
|
495 |
+
updates.append(
|
496 |
+
f"""\
|
497 |
+
auto output_{i} = at::functionalization::impl::to_functional_tensor({inner_ret});"""
|
498 |
+
)
|
499 |
+
non_aliased_wrapped_ret_names.append(ret_name)
|
500 |
+
|
501 |
+
# Next, take all of the mutated outputs from the inner call corresponding to mutated inputs,
|
502 |
+
# and propagate the mutations
|
503 |
+
for outer_arg, inner_ret in zip(
|
504 |
+
mutable_arg_names, non_aliased_inner_rets[len(non_aliased_outer_rets) :]
|
505 |
+
):
|
506 |
+
updates.append(
|
507 |
+
f"""\
|
508 |
+
at::functionalization::impl::propagate_xla_data({outer_arg}, {inner_ret});
|
509 |
+
at::functionalization::impl::replace_({outer_arg}, {inner_ret});
|
510 |
+
at::functionalization::impl::commit_update({outer_arg});
|
511 |
+
at::functionalization::impl::sync({outer_arg});"""
|
512 |
+
)
|
513 |
+
|
514 |
+
# Finally, we return:
|
515 |
+
# - Any mutable arguments that also returns
|
516 |
+
# - Any immutable returns that were created wrapping the output from the inner call
|
517 |
+
returns_str = return_str(
|
518 |
+
f.func.returns, aliased_outer_rets + non_aliased_wrapped_ret_names
|
519 |
+
)
|
520 |
+
updates_str = "\n".join(updates)
|
521 |
+
return f"""\
|
522 |
+
{updates_str}
|
523 |
+
{returns_str}"""
|
524 |
+
|
525 |
+
|
526 |
+
# Generates the Functionalization kernel for:
|
527 |
+
# - mutation ops (inplace and out= ops)
|
528 |
+
@with_native_function_and
|
529 |
+
def emit_inplace_functionalization_body(
|
530 |
+
f: NativeFunction, g: NativeFunctionsGroup
|
531 |
+
) -> str:
|
532 |
+
# mutation case
|
533 |
+
assert modifies_arguments(f)
|
534 |
+
|
535 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
536 |
+
|
537 |
+
unwrap_tensor_args_str, unwrapped_args_ctx = unwrap_tensor_args(
|
538 |
+
dispatcher_sig, is_view_op=False
|
539 |
+
)
|
540 |
+
|
541 |
+
mutated_names = [
|
542 |
+
a.name
|
543 |
+
for a in f.func.arguments.flat_all
|
544 |
+
if a.type.is_tensor_like() and a.annotation is not None
|
545 |
+
]
|
546 |
+
non_mutated_names = [
|
547 |
+
a.name
|
548 |
+
for a in f.func.arguments.flat_all
|
549 |
+
if a.type.is_tensor_like() and a.annotation is None
|
550 |
+
]
|
551 |
+
non_mutated_tensor_names = [
|
552 |
+
a.name
|
553 |
+
for a in f.func.arguments.flat_all
|
554 |
+
if a.type == BaseType(BaseTy.Tensor) and a.annotation is None
|
555 |
+
]
|
556 |
+
# all mutable inputs must be functional tensors in order to participate in functionalization
|
557 |
+
check_all_mutated_args_are_functional = " && ".join(
|
558 |
+
["true"]
|
559 |
+
+ [
|
560 |
+
f"at::functionalization::impl::isFunctionalTensor({a})"
|
561 |
+
for a in mutated_names
|
562 |
+
]
|
563 |
+
)
|
564 |
+
check_any_non_mutated_args_are_functional = " || ".join(
|
565 |
+
["false"]
|
566 |
+
+ [
|
567 |
+
f"at::functionalization::impl::isFunctionalTensor({a})"
|
568 |
+
for a in non_mutated_names
|
569 |
+
]
|
570 |
+
)
|
571 |
+
|
572 |
+
check_any_non_mutated_tensors_are_xla = " || ".join(
|
573 |
+
["false"]
|
574 |
+
+ [
|
575 |
+
f"{a}.device().type() == c10::DeviceType::XLA"
|
576 |
+
for a in non_mutated_tensor_names
|
577 |
+
]
|
578 |
+
)
|
579 |
+
# These are used in the cases where we don't functionalize and redispatch to the inplace op
|
580 |
+
# case 1: we hit an inplace op that doesn't have an out-of-place equivalent
|
581 |
+
# case 2: we hit an inplace ops but our inputs are not functional tensors (in which case our kernel just no-ops)
|
582 |
+
inplace_exprs = [
|
583 |
+
e.expr
|
584 |
+
for e in translate(unwrapped_args_ctx, dispatcher_sig.arguments(), method=False)
|
585 |
+
]
|
586 |
+
|
587 |
+
# call the out-of-place variant of the op
|
588 |
+
return_type = (
|
589 |
+
dispatcher.returns_type(g.functional.func.returns).remove_const_ref().cpp_type()
|
590 |
+
)
|
591 |
+
functional_sig = DispatcherSignature.from_schema(g.functional.func)
|
592 |
+
functional_exprs = [
|
593 |
+
e.expr
|
594 |
+
for e in translate(unwrapped_args_ctx, functional_sig.arguments(), method=False)
|
595 |
+
]
|
596 |
+
|
597 |
+
if f.func.is_out_fn():
|
598 |
+
mutable_input_post_processing = "\n".join(
|
599 |
+
[
|
600 |
+
f"""
|
601 |
+
at::functionalization::impl::replace_(
|
602 |
+
{a.name}, {'std::get<' + str(i) + '>(tmp_output)' if len(f.func.returns) > 1 else 'tmp_output'});
|
603 |
+
at::functionalization::impl::commit_update({a.name});"""
|
604 |
+
for (i, a) in enumerate(f.func.arguments.out)
|
605 |
+
if a.annotation and a.annotation.is_write and a.type.is_tensor_like()
|
606 |
+
]
|
607 |
+
)
|
608 |
+
else:
|
609 |
+
mutable_input_post_processing = "\n".join(
|
610 |
+
[
|
611 |
+
f"""
|
612 |
+
at::functionalization::impl::replace_({a.name}, tmp_output);
|
613 |
+
at::functionalization::impl::commit_update({a.name});"""
|
614 |
+
for a in f.func.arguments.flat_all
|
615 |
+
if a.annotation and a.annotation.is_write and a.type.is_tensor_like()
|
616 |
+
]
|
617 |
+
)
|
618 |
+
|
619 |
+
meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig)
|
620 |
+
# We don't want to run the inplace meta func for ops like .set_(), because:
|
621 |
+
# (1) they're unnecessary: inplace meta checks are only useful for ops like add_(),
|
622 |
+
# where broadcasting will work for the out-of-place case but should fail on the inplace call
|
623 |
+
# (2) They'll also fail without adding extra infra: we'd need to convert the input storage argument
|
624 |
+
# into a meta storage
|
625 |
+
any_storage_args = any(
|
626 |
+
a.type == BaseType(BaseTy.Storage) for a in f.func.arguments.flat_all
|
627 |
+
)
|
628 |
+
|
629 |
+
return f"""
|
630 |
+
{dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{
|
631 |
+
if ({str(not any_storage_args and f.func.kind() == SchemaKind.inplace).lower()}) {{
|
632 |
+
// Before converting the mutable op to its functional variant, run meta tensors through the original op.
|
633 |
+
// This will help us catch shape errors that apply to inplace ops that wouldn't apply to their functional variants.
|
634 |
+
// (We can only do this for inplace ops today though, because they technically all support meta tensors).
|
635 |
+
{meta_conversion_str}
|
636 |
+
at::AutoDispatchSkipFunctionalize func_guard;
|
637 |
+
c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch);
|
638 |
+
at::_ops::{f.func.name.unambiguous_name()}::call({', '.join(a.name for a in meta_call_ctx)});
|
639 |
+
}}
|
640 |
+
{unwrap_tensor_args_str}
|
641 |
+
if (!({check_all_mutated_args_are_functional})) {{
|
642 |
+
// We want to disable this check if there are any XLA tensors.
|
643 |
+
// cpu_tensor.copy_(xla_tensor) is valid code.
|
644 |
+
if (!({check_any_non_mutated_tensors_are_xla}) && ({check_any_non_mutated_args_are_functional})) {{
|
645 |
+
// case 1: trying to mutate a non functional tensor with a functional tensor is an error
|
646 |
+
TORCH_INTERNAL_ASSERT(false,
|
647 |
+
"mutating a non-functional tensor with a functional tensor is not allowed.",
|
648 |
+
" Please ensure that all of your inputs are wrapped inside of a functionalize() call.");
|
649 |
+
}} else {{
|
650 |
+
// case 2: arguments are not functional tensors, so we no-op and redispatch.
|
651 |
+
at::AutoDispatchSkipFunctionalize guard;
|
652 |
+
{maybe_create_output(f, 'tmp_output')}at::_ops::{f.func.name.unambiguous_name()}::call({', '.join(inplace_exprs)});
|
653 |
+
{return_from_mutable_noop_redispatch(f, 'tmp_output')};
|
654 |
+
}}
|
655 |
+
}} else {{
|
656 |
+
{return_type} tmp_output;
|
657 |
+
{{
|
658 |
+
at::AutoDispatchSkipFunctionalize guard;
|
659 |
+
tmp_output = at::_ops::{g.functional.func.name.unambiguous_name()}::call({', '.join(functional_exprs)});
|
660 |
+
}}
|
661 |
+
{wrap_propagate_mutations_and_return(f, g.functional, 'tmp_output')}
|
662 |
+
}}
|
663 |
+
}}"""
|
664 |
+
|
665 |
+
|
666 |
+
# The below functions generate RegisterFunctionalization.cpp
|
667 |
+
# These files provide the kernels that run the functionalization pass, which can be opted into
|
668 |
+
# per backend (e.g. XLA or Vulkan), or as a composable transform (functionalize() in functorch).
|
669 |
+
|
670 |
+
|
671 |
+
# See Note [Functionalization Pass: View Inverses].
|
672 |
+
def gen_functionalization_view_inverse_declaration(
|
673 |
+
selector: SelectiveBuilder, g: NativeFunctionsViewGroup
|
674 |
+
) -> Optional[str]:
|
675 |
+
# For every (non-composite) view op, we need a corresponding "inverse view" function.
|
676 |
+
# This generates the declarations so we get a good compiler error when someone adds a new view.
|
677 |
+
@with_native_function
|
678 |
+
def emit_decl_helper(g: NativeFunctionsViewGroup) -> Optional[str]:
|
679 |
+
if g.view.has_composite_implicit_autograd_kernel:
|
680 |
+
return None
|
681 |
+
view_copy_inverse_sig = ViewInverseSignature(g)
|
682 |
+
return view_copy_inverse_sig.decl()
|
683 |
+
|
684 |
+
return emit_decl_helper(g)
|
685 |
+
|
686 |
+
|
687 |
+
def gen_functionalization_registration(
|
688 |
+
selector: SelectiveBuilder,
|
689 |
+
g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup],
|
690 |
+
composite_implicit_autograd_index: BackendIndex,
|
691 |
+
) -> List[str]:
|
692 |
+
@with_native_function
|
693 |
+
def emit_registration_helper(f: NativeFunction) -> str:
|
694 |
+
assert not f.has_composite_implicit_autograd_kernel
|
695 |
+
registration_str = f"TORCH_FN(functionalization::{wrapper_name(f.func)})"
|
696 |
+
return f'm.impl("{f.func.name}", {registration_str});'
|
697 |
+
|
698 |
+
# Don't generate kernels in mobile build
|
699 |
+
if not selector.include_all_operators:
|
700 |
+
return []
|
701 |
+
|
702 |
+
if isinstance(g, NativeFunctionsViewGroup):
|
703 |
+
# functionalization needs to register kernels for view + view_inplace ops
|
704 |
+
# See Note [Functionalization <> torch.Tensor constructor]
|
705 |
+
if str(g.view.func.name) == "lift_fresh":
|
706 |
+
return []
|
707 |
+
view_str = []
|
708 |
+
if not g.view.has_composite_implicit_autograd_kernel:
|
709 |
+
view_str.append(emit_registration_helper(g.view))
|
710 |
+
if (
|
711 |
+
g.view_inplace is not None
|
712 |
+
and not g.view_inplace.has_composite_implicit_autograd_kernel
|
713 |
+
):
|
714 |
+
assert g.view_inplace.is_view_op
|
715 |
+
view_str.append(emit_registration_helper(g.view_inplace))
|
716 |
+
return view_str
|
717 |
+
|
718 |
+
elif isinstance(g, NativeFunctionsGroup):
|
719 |
+
# Gets a hand-written functionalization kernel
|
720 |
+
if g.inplace is not None and str(g.inplace.func.name) == "set_.source_Tensor":
|
721 |
+
fns = []
|
722 |
+
else:
|
723 |
+
fns = list(g.functions())
|
724 |
+
else:
|
725 |
+
if str(g.func.name) in MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION:
|
726 |
+
return []
|
727 |
+
fns = [g]
|
728 |
+
|
729 |
+
registrations = []
|
730 |
+
for f in fns:
|
731 |
+
if f.has_composite_implicit_autograd_kernel:
|
732 |
+
continue
|
733 |
+
if str(f.func.name) == "lift":
|
734 |
+
# See Note [Functionalization <> torch.Tensor constructor]
|
735 |
+
return []
|
736 |
+
if str(f.func.name) == "resize_":
|
737 |
+
# See Note [resize_ in Functionalization]
|
738 |
+
return []
|
739 |
+
assert not f.is_view_op
|
740 |
+
# functionalization needs to generate and register kernels for inplace ops.
|
741 |
+
# We *also* need to directly register CompositeImplicitAUtograd kernels
|
742 |
+
# so that they decompose properly before functioanlization.
|
743 |
+
if modifies_arguments(f):
|
744 |
+
registrations.append(emit_registration_helper(f))
|
745 |
+
return registrations
|
746 |
+
|
747 |
+
|
748 |
+
def gen_functionalization_definition(
|
749 |
+
selector: SelectiveBuilder,
|
750 |
+
# Note: Ideally this code should never have to look at NativeFunction
|
751 |
+
# (and instead only need to operate on grouped NativeFunctions).
|
752 |
+
# The only reason currently is because we need to emit direct dispatch registrations
|
753 |
+
# For CompositeImplicitAutograd operators, which are potentially ungrouped.
|
754 |
+
g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup],
|
755 |
+
) -> List[str]:
|
756 |
+
# Don't generate kernels in mobile build
|
757 |
+
if not selector.include_all_operators:
|
758 |
+
return []
|
759 |
+
|
760 |
+
if isinstance(g, NativeFunctionsViewGroup):
|
761 |
+
# Case 1: emit view -> view_copy kernels for the functionalization pass
|
762 |
+
view_defs = []
|
763 |
+
if not g.composite:
|
764 |
+
# invariant: NativeFunctionsViewGroup's always have a view_copy operator
|
765 |
+
# if the view is not composite (implicit autograd)
|
766 |
+
assert g.view_copy is not None
|
767 |
+
view_defs.append(emit_view_functionalization_body(g, view_inplace=False))
|
768 |
+
if g.view_inplace is not None:
|
769 |
+
view_defs.append(emit_view_functionalization_body(g, view_inplace=True))
|
770 |
+
return view_defs
|
771 |
+
elif isinstance(g, NativeFunction):
|
772 |
+
# Invariant: all mutable operators that we need to handle in functionalization
|
773 |
+
# should have been properly grouped up.
|
774 |
+
# TODO: The below ops all have "problematic" schemas that prevent them from
|
775 |
+
# getting functionalized. Instead of bending over backwards to get things to work,
|
776 |
+
# I think we should either:
|
777 |
+
# (1) fix their schemas (BC-breaking)
|
778 |
+
# (2) hand-write their functionalization kernels
|
779 |
+
if str(g.func.name) not in MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION:
|
780 |
+
assert g.has_composite_implicit_autograd_kernel or not modifies_arguments(g)
|
781 |
+
return []
|
782 |
+
else:
|
783 |
+
# Case 2: emit inplace -> out-of-place kernels for the functionalization pass
|
784 |
+
mutation_defs = []
|
785 |
+
mutation_defs.append(emit_inplace_functionalization_body(g.out, g))
|
786 |
+
if g.inplace is not None:
|
787 |
+
mutation_defs.append(emit_inplace_functionalization_body(g.inplace, g))
|
788 |
+
if g.mutable is not None:
|
789 |
+
mutation_defs.append(emit_inplace_functionalization_body(g.mutable, g))
|
790 |
+
return mutation_defs
|
791 |
+
return []
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen_lazy_tensor.py
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import re
|
5 |
+
from collections import Counter, namedtuple
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Callable,
|
9 |
+
Dict,
|
10 |
+
Iterable,
|
11 |
+
Iterator,
|
12 |
+
List,
|
13 |
+
Optional,
|
14 |
+
Sequence,
|
15 |
+
Tuple,
|
16 |
+
Type,
|
17 |
+
Union,
|
18 |
+
)
|
19 |
+
|
20 |
+
import yaml
|
21 |
+
|
22 |
+
import torchgen.dest as dest
|
23 |
+
|
24 |
+
from torchgen.api.lazy import setValueT
|
25 |
+
from torchgen.api.types import BaseCppType
|
26 |
+
from torchgen.dest.lazy_ir import GenLazyIR, GenLazyNativeFuncDefinition, GenTSLazyIR
|
27 |
+
from torchgen.gen import get_grouped_native_functions, parse_native_yaml
|
28 |
+
|
29 |
+
from torchgen.model import NativeFunction, NativeFunctionsGroup, OperatorName
|
30 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
31 |
+
from torchgen.utils import concatMap, FileManager, NamespaceHelper
|
32 |
+
from torchgen.yaml_utils import YamlLoader
|
33 |
+
from .gen_backend_stubs import (
|
34 |
+
error_on_missing_kernels,
|
35 |
+
gen_dispatcher_registrations,
|
36 |
+
gen_dispatchkey_nativefunc_headers,
|
37 |
+
parse_backend_yaml,
|
38 |
+
)
|
39 |
+
|
40 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
41 |
+
#
|
42 |
+
# Lazy Tensor Codegen
|
43 |
+
#
|
44 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
45 |
+
# Overview
|
46 |
+
# ~~~~~~~~
|
47 |
+
#
|
48 |
+
# This codegen script builds on existing data models and helpers used
|
49 |
+
# by all ATen backends, and adds new functionality specific to lazy
|
50 |
+
# tensor backends.
|
51 |
+
#
|
52 |
+
# Inputs:
|
53 |
+
# - <backend>_native_functions.yaml: controls which operators are
|
54 |
+
# supported by the backend.
|
55 |
+
#
|
56 |
+
# Outputs:
|
57 |
+
# (for all backends)
|
58 |
+
# <DispatchKey>Ir.h defines Lazy IR classes to be constructed during tracing
|
59 |
+
# - opt-in: also generate 'lowering' methods for the TorchScript backend only
|
60 |
+
# <DispatchKey>NativeFunctions.cpp defines implementations of native functions which perform lazy tracing
|
61 |
+
# - opt-in: 'full_codegen' section of backend yaml; 'supported' section omits these implementations
|
62 |
+
# <DispatchKey>NativeFunctions.h declares implementations of native functions for both 'supported' and 'full_codegen'
|
63 |
+
# ops
|
64 |
+
#
|
65 |
+
# Register<DispatchKey>.cpp registers all op implementations with the dispatcher
|
66 |
+
# RegisterAutograd<DispatchKey>.cpp registers all autograd implementations with the dispatcher
|
67 |
+
#
|
68 |
+
# Validation Helpers:
|
69 |
+
# - Shape Inference: errs if any ops in backend yaml require shape inference not provided by meta kernels or
|
70 |
+
# implementations in torch/csrc/lazy/core/shape_inference.*
|
71 |
+
# - native function impls: errs if any 'supported' ops do not have an implementation defined in the backend
|
72 |
+
# (non-codegen) implementation file
|
73 |
+
#
|
74 |
+
#
|
75 |
+
# About the Data Model
|
76 |
+
# ~~~~~~~~~~~~~~~~~~~~
|
77 |
+
#
|
78 |
+
# Modeled after ATen codegen, the first step is to parse yaml and build a data model for the operators
|
79 |
+
# we care about. In this case, the <backend>_native_functions yaml defines a subset of the core operators
|
80 |
+
# (defined in more detail in the main native_functions.yaml), which will be supported by your backend.
|
81 |
+
# Backends can list ops in two categories:
|
82 |
+
# - `supported` ops require hand-implementations but still get codegenned declarations and registrations
|
83 |
+
# - `full_codegen` ops get implementations (and IR classes) generated too
|
84 |
+
#
|
85 |
+
# Each native function is modeled as an object with a schema, and each schema has objects representing their
|
86 |
+
# arguments. Much of the codegen is manipulation of the arguments and their types. For example, lazy tensor
|
87 |
+
# backends need to transform 'at::Tensor' arguments into 'lazy::Value' objects, as well as replacing reference
|
88 |
+
# types (stringref) with actual string objects, and this is done by manipulating the data model objects.
|
89 |
+
# - see api/lazy.py for the lazy data model
|
90 |
+
#
|
91 |
+
# Once the data model is set up, the rest of this script processes a number of templates for output CPP file
|
92 |
+
# and fills in the template values using helpers in `dest/lazy_ir.py` and `dest/lazy_ts_lowering.py`. These
|
93 |
+
# helpers mostly iterate over functions and their arguments, outputting different c++ snippets.
|
94 |
+
#
|
95 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
96 |
+
|
97 |
+
|
98 |
+
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
|
99 |
+
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
|
100 |
+
ParsedExternalYaml = namedtuple(
|
101 |
+
"ParsedExternalYaml",
|
102 |
+
["backend_key", "autograd_key", "cpp_namespace", "backend_indices", "full_codegen"],
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
def parse_native_functions_keys(
|
107 |
+
backend_yaml_path: str,
|
108 |
+
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
|
109 |
+
) -> Tuple[List[OperatorName], List[Any], List[OperatorName]]:
|
110 |
+
native_functions_map: Dict[OperatorName, NativeFunction] = {
|
111 |
+
f.func.name: f
|
112 |
+
for f in concatMap(
|
113 |
+
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()),
|
114 |
+
grouped_native_functions,
|
115 |
+
)
|
116 |
+
}
|
117 |
+
|
118 |
+
with open(backend_yaml_path) as f:
|
119 |
+
yaml_values = yaml.load(f, Loader=YamlLoader)
|
120 |
+
assert isinstance(yaml_values, dict)
|
121 |
+
|
122 |
+
full_codegen = yaml_values.pop("full_codegen", [])
|
123 |
+
non_native = yaml_values.pop("non_native", [])
|
124 |
+
ir_gen = yaml_values.pop("ir_gen", [])
|
125 |
+
assert isinstance(full_codegen, list)
|
126 |
+
assert isinstance(non_native, list)
|
127 |
+
assert isinstance(ir_gen, list)
|
128 |
+
full_codegen_opnames = [OperatorName.parse(name) for name in full_codegen]
|
129 |
+
ir_gen_opnames = [OperatorName.parse(name) for name in ir_gen]
|
130 |
+
return full_codegen_opnames, non_native, ir_gen_opnames
|
131 |
+
|
132 |
+
|
133 |
+
def validate_shape_inference_header(
|
134 |
+
shape_inference_hdr: str, expected_shape_infr_decls: List[str]
|
135 |
+
) -> None:
|
136 |
+
try:
|
137 |
+
with open(shape_inference_hdr) as f:
|
138 |
+
shape_infr_decls = f.read()
|
139 |
+
shape_infr_decl_lines = set(shape_infr_decls.split("\n"))
|
140 |
+
except OSError as e:
|
141 |
+
raise AssertionError(
|
142 |
+
f"Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}"
|
143 |
+
) from e
|
144 |
+
|
145 |
+
shape_infr_regex = r"compute_shape_(\w+)"
|
146 |
+
actual_shape_infr_name_counts = Counter(
|
147 |
+
re.findall(shape_infr_regex, shape_infr_decls)
|
148 |
+
)
|
149 |
+
# TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired.
|
150 |
+
|
151 |
+
missing_decls = [
|
152 |
+
decl for decl in expected_shape_infr_decls if decl not in shape_infr_decl_lines
|
153 |
+
]
|
154 |
+
if missing_decls:
|
155 |
+
raise Exception(
|
156 |
+
f"""Missing shape inference function.\n
|
157 |
+
Please add declare this function in {shape_inference_hdr}:\n
|
158 |
+
and implement it in the corresponding shape_inference.cpp file.\n
|
159 |
+
{os.linesep.join(missing_decls)}"""
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
# Some helper functions for the codegen.
|
164 |
+
def get_ltc_helper_fns() -> str:
|
165 |
+
return """\
|
166 |
+
at::Tensor to_meta(const at::Tensor& tensor) {
|
167 |
+
// undefined tensors can't be converted to the meta device, since they don't have sizes/strides
|
168 |
+
if (!tensor.defined()) return tensor;
|
169 |
+
auto out = at::native::empty_strided_meta_symint(tensor.sym_sizes(), tensor.sym_strides(), \
|
170 |
+
/*dtype=*/c10::make_optional(tensor.scalar_type()), /*layout=*/c10::make_optional(tensor.layout()), \
|
171 |
+
/*device=*/c10::make_optional(c10::Device(c10::kMeta)), /*pin_memory=*/c10::nullopt);
|
172 |
+
// needs to handle wrapped numbers, so dtype promotion works properly.
|
173 |
+
if (tensor.unsafeGetTensorImpl()->is_wrapped_number()) {
|
174 |
+
out.unsafeGetTensorImpl()->set_wrapped_number(true);
|
175 |
+
}
|
176 |
+
return out;
|
177 |
+
}
|
178 |
+
c10::optional<at::Tensor> to_meta(const c10::optional<at::Tensor>& tensor) {
|
179 |
+
if (tensor.has_value()) {
|
180 |
+
return to_meta(*tensor);
|
181 |
+
}
|
182 |
+
return c10::nullopt;
|
183 |
+
}
|
184 |
+
|
185 |
+
std::vector<at::Tensor> to_meta(at::ITensorListRef t_list) {
|
186 |
+
std::vector<at::Tensor> outs;
|
187 |
+
outs.reserve(t_list.size());
|
188 |
+
for (const auto& tensor : t_list) {
|
189 |
+
outs.push_back(to_meta(tensor));
|
190 |
+
}
|
191 |
+
return outs;
|
192 |
+
}
|
193 |
+
"""
|
194 |
+
|
195 |
+
|
196 |
+
class default_args:
|
197 |
+
node_base: str = "Node"
|
198 |
+
node_base_hdr: Optional[str] = None
|
199 |
+
shape_inference_hdr: str = "torch/csrc/lazy/core/shape_inference.h"
|
200 |
+
tensor_class: str = "torch::lazy::LazyTensor"
|
201 |
+
tensor_class_hdr: str = "torch/csrc/lazy/core/tensor.h"
|
202 |
+
lazy_ir_generator: Type[GenLazyIR] = GenLazyIR
|
203 |
+
native_func_definition_generator: Type[
|
204 |
+
GenLazyNativeFuncDefinition
|
205 |
+
] = GenLazyNativeFuncDefinition
|
206 |
+
backend_name: str = "TorchScript"
|
207 |
+
|
208 |
+
|
209 |
+
def main() -> None:
|
210 |
+
parser = argparse.ArgumentParser(description="Generate Lazy Tensor backend files")
|
211 |
+
parser.add_argument(
|
212 |
+
"-s",
|
213 |
+
"--source-yaml",
|
214 |
+
"--source_yaml",
|
215 |
+
help="path to source yaml file containing operator external definitions",
|
216 |
+
)
|
217 |
+
parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory")
|
218 |
+
parser.add_argument(
|
219 |
+
"--dry-run", "--dry_run", type=bool, default=False, help="output directory"
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--impl-path",
|
223 |
+
"--impl_path",
|
224 |
+
type=str,
|
225 |
+
default=None,
|
226 |
+
help="path to the source C++ file containing kernel definitions",
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--gen-ts-lowerings",
|
230 |
+
"--gen_ts_lowerings",
|
231 |
+
action="store_true",
|
232 |
+
help="Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions",
|
233 |
+
)
|
234 |
+
parser.add_argument(
|
235 |
+
"--node-base",
|
236 |
+
"--node_base",
|
237 |
+
type=str,
|
238 |
+
default=default_args.node_base,
|
239 |
+
help="Name of backend specific custom Lazy IR Node base class",
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--node-base-hdr",
|
243 |
+
"--node_base_hdr",
|
244 |
+
type=str,
|
245 |
+
default=default_args.node_base_hdr,
|
246 |
+
help="Path to header file defining custom Lazy IR Node base class",
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--shape-inference-hdr",
|
250 |
+
"--shape_inference_hdr",
|
251 |
+
type=str,
|
252 |
+
default=default_args.shape_inference_hdr,
|
253 |
+
help="Path to header file defining custom Lazy shape inference functions",
|
254 |
+
)
|
255 |
+
parser.add_argument(
|
256 |
+
"--tensor-class",
|
257 |
+
"--tensor_class",
|
258 |
+
type=str,
|
259 |
+
default=default_args.tensor_class,
|
260 |
+
help="Name of backend specific custom Lazy Tensor class",
|
261 |
+
)
|
262 |
+
parser.add_argument(
|
263 |
+
"--tensor-class-hdr",
|
264 |
+
"--tensor_class_hdr",
|
265 |
+
type=str,
|
266 |
+
default=default_args.tensor_class_hdr,
|
267 |
+
help="Path to header file defining custom Lazy Tensor class",
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--backend-name",
|
271 |
+
"--backend_name",
|
272 |
+
type=str,
|
273 |
+
default=default_args.backend_name,
|
274 |
+
help="Name of the backend to generate",
|
275 |
+
)
|
276 |
+
options = parser.parse_args()
|
277 |
+
|
278 |
+
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
|
279 |
+
torch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
|
280 |
+
aten_path = str(torch_root / "aten" / "src" / "ATen")
|
281 |
+
lazy_ir_generator: Type[GenLazyIR] = default_args.lazy_ir_generator
|
282 |
+
if options.gen_ts_lowerings:
|
283 |
+
lazy_ir_generator = GenTSLazyIR
|
284 |
+
native_func_definition_generator: Type[
|
285 |
+
GenLazyNativeFuncDefinition
|
286 |
+
] = default_args.native_func_definition_generator
|
287 |
+
|
288 |
+
run_gen_lazy_tensor(
|
289 |
+
aten_path,
|
290 |
+
options.source_yaml,
|
291 |
+
options.output_dir,
|
292 |
+
options.dry_run,
|
293 |
+
options.impl_path,
|
294 |
+
options.node_base,
|
295 |
+
options.node_base_hdr,
|
296 |
+
options.tensor_class,
|
297 |
+
options.tensor_class_hdr,
|
298 |
+
options.shape_inference_hdr,
|
299 |
+
lazy_ir_generator,
|
300 |
+
native_func_definition_generator,
|
301 |
+
options.backend_name,
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
def run_gen_lazy_tensor(
|
306 |
+
aten_path: str,
|
307 |
+
source_yaml: str,
|
308 |
+
output_dir: str,
|
309 |
+
dry_run: bool,
|
310 |
+
impl_path: Optional[str],
|
311 |
+
node_base: str = default_args.node_base,
|
312 |
+
node_base_hdr: Optional[str] = default_args.node_base_hdr,
|
313 |
+
tensor_class: str = default_args.tensor_class,
|
314 |
+
tensor_class_hdr: str = default_args.tensor_class_hdr,
|
315 |
+
shape_inference_hdr: str = default_args.shape_inference_hdr,
|
316 |
+
lazy_ir_generator: Type[GenLazyIR] = default_args.lazy_ir_generator,
|
317 |
+
native_func_definition_generator: Type[
|
318 |
+
GenLazyNativeFuncDefinition
|
319 |
+
] = default_args.native_func_definition_generator,
|
320 |
+
# build_in_tree is true for TS backend and affects include paths
|
321 |
+
build_in_tree: bool = False,
|
322 |
+
# per_operator_headers changes whether ATen/Functions.h or individual operator headers are used
|
323 |
+
# it must match how ATen was built
|
324 |
+
per_operator_headers: bool = False,
|
325 |
+
backend_name: str = default_args.backend_name,
|
326 |
+
gen_forced_fallback_code: bool = False,
|
327 |
+
use_lazy_shape: bool = True,
|
328 |
+
# the following arguments are temporary customization points for xla backend migration.
|
329 |
+
# do not rely on them otherwise, they should be removed once migration is complete
|
330 |
+
backend_namespace: str = "torch::lazy",
|
331 |
+
get_tensorlist: str = "GetTensorList",
|
332 |
+
get_tensor_or_wrap_number: str = "GetLtcTensorOrCreateForWrappedNumber",
|
333 |
+
try_get_tensor: str = "TryGetLtcTensor",
|
334 |
+
metrics_counter: str = 'TORCH_LAZY_FN_COUNTER("lazy::")',
|
335 |
+
create_tensor: str = "LazyTensor::Create",
|
336 |
+
create_from_first_tensor: bool = False,
|
337 |
+
create_aten_from_ltc_tensor: str = "torch::lazy::CreateAtenFromLtcTensor",
|
338 |
+
tuple_aten_from_ltc_tensors: str = "torch::lazy::TupleAtenFromLtcTensors",
|
339 |
+
lazy_value_class: str = "torch::lazy::Value",
|
340 |
+
lazy_tensor_ptr: str = "LazyTensorPtr",
|
341 |
+
get_device_fn: str = "torch::lazy::GetBackendDevice",
|
342 |
+
) -> None:
|
343 |
+
lv_tokens = lazy_value_class.split("::")
|
344 |
+
lv_class = lv_tokens[-1]
|
345 |
+
lv_ns = "::".join(lv_tokens[:-1])
|
346 |
+
setValueT(BaseCppType(lv_ns, lv_class))
|
347 |
+
template_dir = os.path.join(aten_path, "templates")
|
348 |
+
|
349 |
+
def make_file_manager(install_dir: str) -> FileManager:
|
350 |
+
return FileManager(
|
351 |
+
install_dir=install_dir, template_dir=template_dir, dry_run=dry_run
|
352 |
+
)
|
353 |
+
|
354 |
+
fm = make_file_manager(output_dir)
|
355 |
+
|
356 |
+
native_yaml_path = os.path.join(aten_path, "native/native_functions.yaml")
|
357 |
+
tags_yaml_path = os.path.join(aten_path, "native/tags.yaml")
|
358 |
+
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path)
|
359 |
+
native_functions, backend_indices = (
|
360 |
+
parsed_yaml.native_functions,
|
361 |
+
parsed_yaml.backend_indices,
|
362 |
+
)
|
363 |
+
grouped_native_functions = get_grouped_native_functions(native_functions)
|
364 |
+
|
365 |
+
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
|
366 |
+
"""
|
367 |
+
We sort the native function because of the note in concat_map_codegen.
|
368 |
+
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
|
369 |
+
"""
|
370 |
+
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
|
371 |
+
return str(func.name.name)
|
372 |
+
|
373 |
+
grouped_native_functions = sorted(
|
374 |
+
grouped_native_functions, key=sort_native_function
|
375 |
+
)
|
376 |
+
|
377 |
+
parsed_backend_yaml = parse_backend_yaml(
|
378 |
+
source_yaml, grouped_native_functions, backend_indices
|
379 |
+
)
|
380 |
+
backend_key = parsed_backend_yaml.backend_key
|
381 |
+
autograd_key = parsed_backend_yaml.autograd_key
|
382 |
+
cpp_namespace = parsed_backend_yaml.cpp_namespace
|
383 |
+
backend_indices = parsed_backend_yaml.backend_indices
|
384 |
+
# the following 3 keys are all processed differently
|
385 |
+
# for full_codegen, we generate IR, kernels, etc
|
386 |
+
# for ir_gen, we generate only IR
|
387 |
+
# non_native is used to register kernels not declared in
|
388 |
+
# native_functions.yaml
|
389 |
+
full_codegen, non_native, ir_gen = parse_native_functions_keys(
|
390 |
+
source_yaml, grouped_native_functions
|
391 |
+
)
|
392 |
+
|
393 |
+
def concat_map_codegen(
|
394 |
+
func: Callable[[NativeFunction], Sequence[str]],
|
395 |
+
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
|
396 |
+
ops_list: List[OperatorName] = full_codegen,
|
397 |
+
) -> Iterator[str]:
|
398 |
+
"""
|
399 |
+
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
|
400 |
+
only code-gen additional entries for the inplace variant for the native functions.
|
401 |
+
"""
|
402 |
+
|
403 |
+
for x in xs:
|
404 |
+
fs = list(x.functions()) if isinstance(x, NativeFunctionsGroup) else [x]
|
405 |
+
for f in fs:
|
406 |
+
if f.func.name in ops_list:
|
407 |
+
yield from func(f)
|
408 |
+
|
409 |
+
selector = SelectiveBuilder.get_nop_selector()
|
410 |
+
|
411 |
+
assert backend_key is not None
|
412 |
+
class_name = backend_indices[backend_key].native_function_class_name()
|
413 |
+
|
414 |
+
if impl_path is not None:
|
415 |
+
error_on_missing_kernels(
|
416 |
+
native_functions,
|
417 |
+
backend_indices,
|
418 |
+
backend_key,
|
419 |
+
autograd_key,
|
420 |
+
class_name,
|
421 |
+
impl_path,
|
422 |
+
full_codegen,
|
423 |
+
)
|
424 |
+
|
425 |
+
""" Validate Shape Inference Definitions
|
426 |
+
|
427 |
+
Generated lazy native functions all perform shape inference, by first using a meta:: kernel
|
428 |
+
if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator
|
429 |
+
knows the call signature for compute_shape_{op} because it matches the nativefunction (and meta::) signature,
|
430 |
+
so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev
|
431 |
+
to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
|
432 |
+
the expected signature which can be copy-pasted into shape_inference.h.
|
433 |
+
|
434 |
+
compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported
|
435 |
+
to structured kernels.
|
436 |
+
|
437 |
+
See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information.
|
438 |
+
"""
|
439 |
+
if shape_inference_hdr is not None:
|
440 |
+
expected_shape_infr_decls = list(
|
441 |
+
concat_map_codegen(
|
442 |
+
dest.GenLazyShapeInferenceDefinition(
|
443 |
+
backend_indices[backend_key], tensor_class
|
444 |
+
),
|
445 |
+
grouped_native_functions,
|
446 |
+
)
|
447 |
+
)
|
448 |
+
|
449 |
+
validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls)
|
450 |
+
assert class_name is not None
|
451 |
+
|
452 |
+
# Generate nativefunction declarations
|
453 |
+
# Note, eager registrations is set to False for the lazy TS backend as another LTC backend
|
454 |
+
# may want to register their own lazy kernels instead of registering the TS ones.
|
455 |
+
# The registration will lazily happen when init_ts_backend is called.
|
456 |
+
gen_dispatchkey_nativefunc_headers(
|
457 |
+
fm,
|
458 |
+
class_name,
|
459 |
+
cpp_namespace,
|
460 |
+
backend_indices,
|
461 |
+
grouped_native_functions,
|
462 |
+
backend_key,
|
463 |
+
autograd_key,
|
464 |
+
backend_name,
|
465 |
+
)
|
466 |
+
|
467 |
+
# Generate Dispatcher registrations which hook up the nativefunctions
|
468 |
+
for dispatch_key in (
|
469 |
+
[backend_key] if autograd_key is None else [backend_key, autograd_key]
|
470 |
+
):
|
471 |
+
gen_dispatcher_registrations(
|
472 |
+
fm,
|
473 |
+
output_dir,
|
474 |
+
class_name,
|
475 |
+
backend_indices,
|
476 |
+
grouped_native_functions,
|
477 |
+
backend_key,
|
478 |
+
dispatch_key,
|
479 |
+
selector,
|
480 |
+
build_in_tree=build_in_tree,
|
481 |
+
per_operator_headers=per_operator_headers,
|
482 |
+
backend_name=backend_name,
|
483 |
+
eager_registration=False,
|
484 |
+
)
|
485 |
+
|
486 |
+
# Generate native function impls that build IR nodes
|
487 |
+
ns_helper = NamespaceHelper(cpp_namespace)
|
488 |
+
fm.write_with_template(
|
489 |
+
f"{backend_key}NativeFunctions.cpp",
|
490 |
+
"DispatchKeyNativeFunctions.cpp",
|
491 |
+
lambda: {
|
492 |
+
"includes": [
|
493 |
+
f"#include <{path}>"
|
494 |
+
for path in [
|
495 |
+
tensor_class_hdr,
|
496 |
+
shape_inference_hdr,
|
497 |
+
"ATen/Functions.h",
|
498 |
+
"ATen/native/TensorConversions.h",
|
499 |
+
"ATen/NativeFunctions.h",
|
500 |
+
"ATen/CompositeExplicitAutogradNonFunctionalFunctions.h",
|
501 |
+
"ATen/MetaFunctions.h",
|
502 |
+
"ATen/Operators.h",
|
503 |
+
"ATen/native/CPUFallback.h",
|
504 |
+
"torch/csrc/lazy/core/ir_builder.h",
|
505 |
+
"torch/csrc/lazy/core/lazy_graph_executor.h",
|
506 |
+
"torch/csrc/lazy/core/metrics.h",
|
507 |
+
"torch/csrc/lazy/core/shape.h",
|
508 |
+
f"{output_dir}/{backend_key}NativeFunctions.h",
|
509 |
+
f"{output_dir}/LazyIr.h",
|
510 |
+
]
|
511 |
+
+ (
|
512 |
+
["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"]
|
513 |
+
if gen_forced_fallback_code
|
514 |
+
else []
|
515 |
+
)
|
516 |
+
],
|
517 |
+
"helper_fns": get_ltc_helper_fns(),
|
518 |
+
"native_functions_include": "",
|
519 |
+
"namespace_prologue": ns_helper.prologue,
|
520 |
+
"namespace_epilogue": ns_helper.epilogue,
|
521 |
+
"native_function_definitions": list(
|
522 |
+
concat_map_codegen(
|
523 |
+
native_func_definition_generator(
|
524 |
+
f"{backend_key}NativeFunctions",
|
525 |
+
backend_indices[backend_key],
|
526 |
+
tensor_class,
|
527 |
+
gen_forced_fallback_code,
|
528 |
+
backend_namespace,
|
529 |
+
get_tensorlist,
|
530 |
+
get_tensor_or_wrap_number,
|
531 |
+
try_get_tensor,
|
532 |
+
metrics_counter,
|
533 |
+
create_tensor,
|
534 |
+
create_from_first_tensor,
|
535 |
+
create_aten_from_ltc_tensor,
|
536 |
+
tuple_aten_from_ltc_tensors,
|
537 |
+
lazy_tensor_ptr,
|
538 |
+
get_device_fn,
|
539 |
+
),
|
540 |
+
grouped_native_functions,
|
541 |
+
)
|
542 |
+
),
|
543 |
+
},
|
544 |
+
)
|
545 |
+
# Generate IR node classes
|
546 |
+
lazy_ir_obj = lazy_ir_generator(
|
547 |
+
backend_indices[backend_key], backend_name, node_base, use_lazy_shape
|
548 |
+
)
|
549 |
+
|
550 |
+
fm.write_with_template(
|
551 |
+
"LazyIr.h",
|
552 |
+
"LazyIr.h",
|
553 |
+
lambda: {
|
554 |
+
"lazy_ir_sysinc": [
|
555 |
+
f"#include <{path}>"
|
556 |
+
for path in [
|
557 |
+
"ATen/core/Formatting.h",
|
558 |
+
"c10/core/ScalarType.h",
|
559 |
+
"c10/util/Optional.h",
|
560 |
+
"torch/csrc/lazy/core/hash.h",
|
561 |
+
"torch/csrc/lazy/core/ir.h",
|
562 |
+
"torch/csrc/lazy/core/shape.h",
|
563 |
+
"vector",
|
564 |
+
]
|
565 |
+
],
|
566 |
+
"lazy_ir_inc": [f'#include "{node_base_hdr}"']
|
567 |
+
if node_base_hdr is not None
|
568 |
+
else [],
|
569 |
+
"ir_declarations": list(
|
570 |
+
concat_map_codegen(
|
571 |
+
lazy_ir_obj, grouped_native_functions, full_codegen + ir_gen
|
572 |
+
)
|
573 |
+
),
|
574 |
+
"namespace_prologue": ns_helper.prologue,
|
575 |
+
"namespace_epilogue": ns_helper.epilogue,
|
576 |
+
},
|
577 |
+
)
|
578 |
+
|
579 |
+
# Generate Non Native IR Node classes
|
580 |
+
fm.write_with_template(
|
581 |
+
"LazyNonNativeIr.h",
|
582 |
+
"LazyNonNativeIr.h",
|
583 |
+
lambda: {
|
584 |
+
"lazy_non_native_ir_inc": [
|
585 |
+
f"#include <{path}>"
|
586 |
+
for path in [
|
587 |
+
"torch/csrc/lazy/core/ir.h",
|
588 |
+
"torch/csrc/lazy/core/ir_builder.h",
|
589 |
+
"torch/csrc/lazy/core/internal_ops/ltc_ops.h",
|
590 |
+
"torch/csrc/lazy/core/shape_inference.h",
|
591 |
+
]
|
592 |
+
+ ([node_base_hdr] if node_base_hdr else [])
|
593 |
+
if path
|
594 |
+
],
|
595 |
+
"non_native_ir_nodes": dest.generate_non_native_lazy_ir_nodes(
|
596 |
+
non_native, lazy_ir_obj
|
597 |
+
),
|
598 |
+
"namespace_prologue": ns_helper.prologue,
|
599 |
+
"namespace_epilogue": ns_helper.epilogue,
|
600 |
+
},
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
if __name__ == "__main__":
|
605 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/torchgen/gen_vmap_plumbing.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import textwrap
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Sequence, Tuple
|
4 |
+
|
5 |
+
from torchgen.api.translate import translate
|
6 |
+
from torchgen.api.types import DispatcherSignature
|
7 |
+
from torchgen.context import method_with_native_function
|
8 |
+
from torchgen.model import (
|
9 |
+
Argument,
|
10 |
+
BaseTy,
|
11 |
+
BaseType,
|
12 |
+
FunctionSchema,
|
13 |
+
ListType,
|
14 |
+
NativeFunction,
|
15 |
+
OptionalType,
|
16 |
+
Return,
|
17 |
+
SchemaKind,
|
18 |
+
Type,
|
19 |
+
)
|
20 |
+
from torchgen.utils import mapMaybe
|
21 |
+
|
22 |
+
|
23 |
+
def is_tensor(typ: Type) -> bool:
|
24 |
+
return isinstance(typ, BaseType) and typ.name == BaseTy.Tensor
|
25 |
+
|
26 |
+
|
27 |
+
def is_optional_tensor(typ: Type) -> bool:
|
28 |
+
return isinstance(typ, OptionalType) and is_tensor(typ.elem)
|
29 |
+
|
30 |
+
|
31 |
+
def is_tensor_list(typ: Type) -> bool:
|
32 |
+
return isinstance(typ, ListType) and is_tensor(typ.elem)
|
33 |
+
|
34 |
+
|
35 |
+
def unwrap_tensor(name: str, cur_level_var: str) -> List[str]:
|
36 |
+
result = f"""\
|
37 |
+
Tensor {name}_value;
|
38 |
+
optional<int64_t> {name}_bdim;
|
39 |
+
std::tie({name}_value, {name}_bdim) = unwrapTensorAtLevel({name}, {cur_level_var});"""
|
40 |
+
return textwrap.dedent(result).split("\n")
|
41 |
+
|
42 |
+
|
43 |
+
def unwrap_optional_tensor(name: str, cur_level_var: str) -> List[str]:
|
44 |
+
result = f"""\
|
45 |
+
optional<Tensor> {name}_value;
|
46 |
+
optional<int64_t> {name}_bdim;
|
47 |
+
if ({name}) {{
|
48 |
+
std::tie({name}_value, {name}_bdim) = unwrapTensorAtLevel({name}.value(), {cur_level_var});
|
49 |
+
}}"""
|
50 |
+
return textwrap.dedent(result).split("\n")
|
51 |
+
|
52 |
+
|
53 |
+
def gen_unwraps(
|
54 |
+
flat_arguments: Sequence[Argument], cur_level_var: str
|
55 |
+
) -> Tuple[str, List[str]]:
|
56 |
+
arg_names = [a.name for a in flat_arguments]
|
57 |
+
arg_types = [a.type for a in flat_arguments]
|
58 |
+
|
59 |
+
tensors = [name for typ, name in zip(arg_types, arg_names) if is_tensor(typ)]
|
60 |
+
optional_tensors = [
|
61 |
+
name for typ, name in zip(arg_types, arg_names) if is_optional_tensor(typ)
|
62 |
+
]
|
63 |
+
|
64 |
+
unwraps = []
|
65 |
+
for tensor in tensors:
|
66 |
+
unwraps += unwrap_tensor(tensor, cur_level_var)
|
67 |
+
|
68 |
+
for opt_tensor in optional_tensors:
|
69 |
+
unwraps += unwrap_optional_tensor(opt_tensor, cur_level_var)
|
70 |
+
unwrap_code = "\n".join(unwraps)
|
71 |
+
|
72 |
+
unwrapped_arg_list = []
|
73 |
+
for arg in arg_names:
|
74 |
+
if arg in tensors or arg in optional_tensors:
|
75 |
+
unwrapped_arg_list += [f"{arg}_value", f"{arg}_bdim"]
|
76 |
+
else:
|
77 |
+
unwrapped_arg_list.append(arg)
|
78 |
+
return unwrap_code, unwrapped_arg_list
|
79 |
+
|
80 |
+
|
81 |
+
def gen_case_where_all_bdims_are_none(
|
82 |
+
outer_sig: DispatcherSignature, schema: FunctionSchema, cur_level_var: str
|
83 |
+
) -> str:
|
84 |
+
conditions = []
|
85 |
+
flat_args = schema.arguments.flat_all
|
86 |
+
for arg in flat_args:
|
87 |
+
if not arg.type.is_tensor_like():
|
88 |
+
continue
|
89 |
+
conditions.append(f"!isBatchedAtLevel({arg.name}, {cur_level_var})")
|
90 |
+
|
91 |
+
sig = DispatcherSignature.from_schema(schema)
|
92 |
+
translated_args = ", ".join(
|
93 |
+
e.expr for e in translate(outer_sig.arguments(), sig.arguments())
|
94 |
+
)
|
95 |
+
return f"""\
|
96 |
+
if ({' && '.join(conditions)}) {{
|
97 |
+
return at::_ops::{sig.func.name.unambiguous_name()}::call({translated_args});
|
98 |
+
}}"""
|
99 |
+
|
100 |
+
|
101 |
+
def gen_returns(
|
102 |
+
returns: Tuple[Return, ...], cur_level_var: str, results_var: str
|
103 |
+
) -> str:
|
104 |
+
idx = 0
|
105 |
+
wrapped_returns = []
|
106 |
+
for ret in returns:
|
107 |
+
if is_tensor(ret.type):
|
108 |
+
wrapped_returns.append(
|
109 |
+
f"makeBatched(std::get<{idx}>({results_var}), std::get<{idx + 1}>({results_var}), {cur_level_var})"
|
110 |
+
)
|
111 |
+
idx += 2
|
112 |
+
elif is_tensor_list(ret.type):
|
113 |
+
wrapped_returns.append(
|
114 |
+
f"makeBatchedVector(std::get<{idx}>({results_var}), std::get<{idx+1}>({results_var}), {cur_level_var})"
|
115 |
+
)
|
116 |
+
idx += 2
|
117 |
+
else:
|
118 |
+
wrapped_returns.append(f"std::get<{idx}>({results_var})")
|
119 |
+
idx += 1
|
120 |
+
if len(wrapped_returns) == 1:
|
121 |
+
result = f"return {wrapped_returns[0]};"
|
122 |
+
else:
|
123 |
+
result = f'return std::make_tuple({", ".join(wrapped_returns)});'
|
124 |
+
return result
|
125 |
+
|
126 |
+
|
127 |
+
def accepts_at_least_one_tensor_input(schema: FunctionSchema) -> bool:
|
128 |
+
return any(a.type.is_tensor_like() for a in schema.arguments.flat_all)
|
129 |
+
|
130 |
+
|
131 |
+
def is_mutated_arg(argument: Argument) -> bool:
|
132 |
+
return argument.annotation is not None and argument.annotation.is_write
|
133 |
+
|
134 |
+
|
135 |
+
def gen_vmap_inplace_plumbing(native_function: NativeFunction) -> Optional[str]:
|
136 |
+
# Assumptions:
|
137 |
+
# - only one argument is being modified in-place
|
138 |
+
# - the argument that is being modified in-place is the first argument
|
139 |
+
# - all returns are either Tensor, tuple of Tensor, or TensorList
|
140 |
+
schema = native_function.func
|
141 |
+
sig = DispatcherSignature.from_schema(schema)
|
142 |
+
returns = schema.returns
|
143 |
+
|
144 |
+
# Check assumptions. If these are invalid we return None
|
145 |
+
# and punt the work to handle them to the future.
|
146 |
+
assert schema.kind() == SchemaKind.inplace
|
147 |
+
if not is_mutated_arg(schema.arguments.flat_all[0]):
|
148 |
+
return None
|
149 |
+
if not len([arg for arg in schema.arguments.flat_all if is_mutated_arg(arg)]) == 1:
|
150 |
+
return None
|
151 |
+
|
152 |
+
# Only support cases where all returns are Tensors or vector<Tensor>
|
153 |
+
if len(returns) == 0:
|
154 |
+
return None
|
155 |
+
if not all(is_tensor(ret.type) or is_tensor_list(ret.type) for ret in returns):
|
156 |
+
return None
|
157 |
+
if not accepts_at_least_one_tensor_input(schema):
|
158 |
+
return None
|
159 |
+
|
160 |
+
cur_level_var = "cur_level"
|
161 |
+
|
162 |
+
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
|
163 |
+
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
|
164 |
+
|
165 |
+
return f"""\
|
166 |
+
template <typename batch_rule_t, batch_rule_t batch_rule>
|
167 |
+
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
|
168 |
+
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
|
169 |
+
auto maybe_layer = maybeCurrentDynamicLayer();
|
170 |
+
vmap_check_escaped(maybe_layer, "gen_vmap_inplace_plumbing");
|
171 |
+
int64_t {cur_level_var} = maybe_layer->layerId();
|
172 |
+
{textwrap.indent(bdims_all_none_case, " ")}
|
173 |
+
{textwrap.indent(unwraps, " ")}
|
174 |
+
batch_rule({', '.join(unwrapped_arg_list)});
|
175 |
+
return {schema.arguments.flat_all[0].name};
|
176 |
+
}}"""
|
177 |
+
|
178 |
+
|
179 |
+
def gen_vmap_plumbing_no_returns(native_function: NativeFunction) -> str:
|
180 |
+
schema = native_function.func
|
181 |
+
sig = DispatcherSignature.from_schema(schema)
|
182 |
+
cur_level_var = "cur_level"
|
183 |
+
|
184 |
+
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
|
185 |
+
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
|
186 |
+
|
187 |
+
return f"""\
|
188 |
+
template <typename batch_rule_t, batch_rule_t batch_rule>
|
189 |
+
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
|
190 |
+
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
|
191 |
+
auto maybe_layer = maybeCurrentDynamicLayer();
|
192 |
+
vmap_check_escaped(maybe_layer, "gen_vmap_plumbing_no_returns");
|
193 |
+
int64_t {cur_level_var} = maybe_layer->layerId();
|
194 |
+
{textwrap.indent(bdims_all_none_case, " ")}
|
195 |
+
{textwrap.indent(unwraps, " ")}
|
196 |
+
batch_rule({', '.join(unwrapped_arg_list)});
|
197 |
+
}}"""
|
198 |
+
|
199 |
+
|
200 |
+
def gen_vmap_plumbing(native_function: NativeFunction) -> Optional[str]:
|
201 |
+
schema = native_function.func
|
202 |
+
sig = DispatcherSignature.from_schema(schema)
|
203 |
+
returns = schema.returns
|
204 |
+
|
205 |
+
# Only support cases where all returns are Tensors or vector<Tensor>
|
206 |
+
if not accepts_at_least_one_tensor_input(schema):
|
207 |
+
return None
|
208 |
+
if len(returns) == 0:
|
209 |
+
return gen_vmap_plumbing_no_returns(native_function)
|
210 |
+
if not all(ret.type.is_tensor_like() for ret in returns):
|
211 |
+
return None
|
212 |
+
# in-place views need special handling
|
213 |
+
if "inplace_view" in native_function.tags:
|
214 |
+
return None
|
215 |
+
|
216 |
+
if schema.kind() == SchemaKind.inplace:
|
217 |
+
return gen_vmap_inplace_plumbing(native_function)
|
218 |
+
|
219 |
+
# Don't support these (mutable, out, scratch)
|
220 |
+
if schema.kind() != SchemaKind.functional:
|
221 |
+
return None
|
222 |
+
|
223 |
+
results_var = "results"
|
224 |
+
cur_level_var = "cur_level"
|
225 |
+
|
226 |
+
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
|
227 |
+
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
|
228 |
+
|
229 |
+
wrapped_returns = gen_returns(returns, cur_level_var, results_var)
|
230 |
+
return f"""\
|
231 |
+
template <typename batch_rule_t, batch_rule_t batch_rule>
|
232 |
+
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
|
233 |
+
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
|
234 |
+
auto maybe_layer = maybeCurrentDynamicLayer();
|
235 |
+
vmap_check_escaped(maybe_layer, "gen_vmap_plumbing");
|
236 |
+
int64_t {cur_level_var} = maybe_layer->layerId();
|
237 |
+
{textwrap.indent(bdims_all_none_case, " ")}
|
238 |
+
{textwrap.indent(unwraps, " ")}
|
239 |
+
auto {results_var} = batch_rule({', '.join(unwrapped_arg_list)});
|
240 |
+
{wrapped_returns}
|
241 |
+
}}"""
|
242 |
+
|
243 |
+
|
244 |
+
@dataclass(frozen=True)
|
245 |
+
class ComputeBatchRulePlumbing:
|
246 |
+
@method_with_native_function
|
247 |
+
def __call__(self, f: NativeFunction) -> Optional[str]:
|
248 |
+
opname = str(f.func.name)
|
249 |
+
result = gen_vmap_plumbing(f)
|
250 |
+
return result
|
251 |
+
|
252 |
+
|
253 |
+
def gen_all_vmap_plumbing(native_functions: Sequence[NativeFunction]) -> str:
|
254 |
+
body = "\n".join(list(mapMaybe(ComputeBatchRulePlumbing(), native_functions)))
|
255 |
+
return f"""
|
256 |
+
#pragma once
|
257 |
+
#include <ATen/Operators.h>
|
258 |
+
#include <ATen/functorch/PlumbingHelper.h>
|
259 |
+
|
260 |
+
namespace at {{ namespace functorch {{
|
261 |
+
|
262 |
+
{body}
|
263 |
+
|
264 |
+
}}}} // namespace at::functorch
|
265 |
+
"""
|