diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3d65992e3edb90f471637330fae797b068c8f1d5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f87bfdea532d61d4bc63802eced65f108328e666
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py
@@ -0,0 +1,63 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+# rely on isort to merge the imports
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_autoformer": [
+ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "AutoformerConfig",
+ ],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_autoformer"] = [
+ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "AutoformerForPrediction",
+ "AutoformerModel",
+ "AutoformerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_autoformer import (
+ AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ AutoformerConfig,
+ )
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_autoformer import (
+ AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ AutoformerForPrediction,
+ AutoformerModel,
+ AutoformerPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eaf44207c73ea9c14d25a9e9ecfaac349069bec1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d409542b7536fd6b3c68ca70825775b6fb51cf09
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3d06cf07b33b0e18467dbddf0051f2eff5494d4e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..11909ac5c38c4c487fc28e84e53d863c93563c30
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
@@ -0,0 +1,245 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Autoformer model configuration"""
+
+from typing import List, Optional
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class AutoformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
+ Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Autoformer
+ [huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ prediction_length (`int`):
+ The prediction length for the decoder. In other words, the prediction horizon of the model.
+ context_length (`int`, *optional*, defaults to `prediction_length`):
+ The context length for the encoder. If unset, the context length will be the same as the
+ `prediction_length`.
+ distribution_output (`string`, *optional*, defaults to `"student_t"`):
+ The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
+ loss (`string`, *optional*, defaults to `"nll"`):
+ The loss function for the model corresponding to the `distribution_output` head. For parametric
+ distributions it is the negative log likelihood (nll) - which currently is the only supported one.
+ input_size (`int`, *optional*, defaults to 1):
+ The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
+ multivariate targets.
+ lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
+ The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
+ 5, 6, 7]`.
+ scaling (`bool`, *optional* defaults to `True`):
+ Whether to scale the input targets.
+ num_time_features (`int`, *optional*, defaults to 0):
+ The number of time features in the input time series.
+ num_dynamic_real_features (`int`, *optional*, defaults to 0):
+ The number of dynamic real valued features.
+ num_static_categorical_features (`int`, *optional*, defaults to 0):
+ The number of static categorical features.
+ num_static_real_features (`int`, *optional*, defaults to 0):
+ The number of static real valued features.
+ cardinality (`list[int]`, *optional*):
+ The cardinality (number of different values) for each of the static categorical features. Should be a list
+ of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ embedding_dimension (`list[int]`, *optional*):
+ The dimension of the embedding for each of the static categorical features. Should be a list of integers,
+ having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ d_model (`int`, *optional*, defaults to 64):
+ Dimensionality of the transformer layers.
+ encoder_layers (`int`, *optional*, defaults to 2):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 2):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in encoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
+ `"relu"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the encoder, and decoder.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each encoder layer.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each decoder layer.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability used between the two layers of the feed-forward networks.
+ num_parallel_samples (`int`, *optional*, defaults to 100):
+ The number of samples to generate in parallel for each time step of inference.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated normal weight initialization distribution.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
+ label_length (`int`, *optional*, defaults to 10):
+ Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
+ non-autoregressive generation).
+ moving_average (`int`, defaults to 25):
+ The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
+ Layer.
+ autocorrelation_factor (`int`, defaults to 3):
+ "Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
+ It's recommended in the paper to set it to a number between 1 and 5.
+
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoformerConfig, AutoformerModel
+
+ >>> # Initializing a default Autoformer configuration
+ >>> configuration = AutoformerConfig()
+
+ >>> # Randomly initializing a model (with random weights) from the configuration
+ >>> model = AutoformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "autoformer"
+ attribute_map = {
+ "hidden_size": "d_model",
+ "num_attention_heads": "encoder_attention_heads",
+ "num_hidden_layers": "encoder_layers",
+ }
+
+ def __init__(
+ self,
+ prediction_length: Optional[int] = None,
+ context_length: Optional[int] = None,
+ distribution_output: str = "student_t",
+ loss: str = "nll",
+ input_size: int = 1,
+ lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
+ scaling: bool = True,
+ num_time_features: int = 0,
+ num_dynamic_real_features: int = 0,
+ num_static_categorical_features: int = 0,
+ num_static_real_features: int = 0,
+ cardinality: Optional[List[int]] = None,
+ embedding_dimension: Optional[List[int]] = None,
+ d_model: int = 64,
+ encoder_attention_heads: int = 2,
+ decoder_attention_heads: int = 2,
+ encoder_layers: int = 2,
+ decoder_layers: int = 2,
+ encoder_ffn_dim: int = 32,
+ decoder_ffn_dim: int = 32,
+ activation_function: str = "gelu",
+ dropout: float = 0.1,
+ encoder_layerdrop: float = 0.1,
+ decoder_layerdrop: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ num_parallel_samples: int = 100,
+ init_std: float = 0.02,
+ use_cache: bool = True,
+ is_encoder_decoder=True,
+ # Autoformer arguments
+ label_length: int = 10,
+ moving_average: int = 25,
+ autocorrelation_factor: int = 3,
+ **kwargs,
+ ):
+ # time series specific configuration
+ self.prediction_length = prediction_length
+ self.context_length = context_length if context_length is not None else prediction_length
+ self.distribution_output = distribution_output
+ self.loss = loss
+ self.input_size = input_size
+ self.num_time_features = num_time_features
+ self.lags_sequence = lags_sequence
+ self.scaling = scaling
+ self.num_dynamic_real_features = num_dynamic_real_features
+ self.num_static_real_features = num_static_real_features
+ self.num_static_categorical_features = num_static_categorical_features
+ if cardinality is not None and num_static_categorical_features > 0:
+ if len(cardinality) != num_static_categorical_features:
+ raise ValueError(
+ "The cardinality should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.cardinality = cardinality
+ else:
+ self.cardinality = [0]
+ if embedding_dimension is not None and num_static_categorical_features > 0:
+ if len(embedding_dimension) != num_static_categorical_features:
+ raise ValueError(
+ "The embedding dimension should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.embedding_dimension = embedding_dimension
+ else:
+ self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
+ self.num_parallel_samples = num_parallel_samples
+
+ # Transformer architecture configuration
+ self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
+ self.d_model = d_model
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_attention_heads = decoder_attention_heads
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.decoder_layers = decoder_layers
+
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+
+ self.activation_function = activation_function
+ self.init_std = init_std
+
+ self.use_cache = use_cache
+
+ # Autoformer
+ self.label_length = label_length
+ self.moving_average = moving_average
+ self.autocorrelation_factor = autocorrelation_factor
+
+ super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ @property
+ def _number_of_features(self) -> int:
+ return (
+ sum(self.embedding_dimension)
+ + self.num_dynamic_real_features
+ + self.num_time_features
+ + self.num_static_real_features
+ + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a993fad32785f14f051332655cc9c11fd12d24a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
@@ -0,0 +1,2155 @@
+# coding=utf-8
+# Copyright (c) 2021 THUML @ Tsinghua University
+# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Autoformer model."""
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ ModelOutput,
+ SampleTSPredictionOutput,
+ Seq2SeqTSPredictionOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_autoformer import AutoformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "AutoformerConfig"
+
+
+@dataclass
+class AutoFormerDecoderOutput(ModelOutput):
+ """
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
+ hidden_size)` is output.
+ trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Trend tensor for each time series.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
+ `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
+ encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
+ `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
+ input) to speed up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ trend: torch.FloatTensor = None
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class AutoformerModelOutput(ModelOutput):
+ """
+ Autoformer model output that contains the additional trend output.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
+ hidden_size)` is output.
+ trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Trend tensor for each time series.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
+ Shift values of each time series' context window which is used to give the model inputs of the same
+ magnitude and then used to shift back to the original magnitude.
+ scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
+ Scaling values of each time series' context window which is used to give the model inputs of the same
+ magnitude and then used to rescale back to the original magnitude.
+ static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
+ Static features of each time series' in a batch which are copied to the covariates at inference time.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ trend: torch.FloatTensor = None
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ loc: Optional[torch.FloatTensor] = None
+ scale: Optional[torch.FloatTensor] = None
+ static_features: Optional[torch.FloatTensor] = None
+
+
+from ..deprecated._archive_maps import AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Autoformer
+class AutoformerFeatureEmbedder(nn.Module):
+ """
+ Embed a sequence of categorical features.
+
+ Args:
+ cardinalities (`list[int]`):
+ List of cardinalities of the categorical features.
+ embedding_dims (`list[int]`):
+ List of embedding dimensions of the categorical features.
+ """
+
+ def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
+ super().__init__()
+
+ self.num_features = len(cardinalities)
+ self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
+
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
+ if self.num_features > 1:
+ # we slice the last dimension, giving an array of length
+ # self.num_features with shape (N,T) or (N)
+ cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
+ else:
+ cat_feature_slices = [features]
+
+ return torch.cat(
+ [
+ embed(cat_feature_slice.squeeze(-1))
+ for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
+ ],
+ dim=-1,
+ )
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerStdScaler(nn.Module):
+ """
+ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
+ subtracting from the mean and dividing by the standard deviation.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+ self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ Calculating the scale on the observed indicator.
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
+ denominator = denominator.clamp_min(1.0)
+ loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
+
+ variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
+ scale = torch.sqrt(variance + self.minimum_scale)
+ return (data - loc) / scale, loc, scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerMeanScaler(nn.Module):
+ """
+ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
+ accordingly.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+ self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
+ self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ Calculating the scale on the observed indicator.
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
+ num_observed = observed_indicator.sum(self.dim, keepdim=True)
+
+ scale = ts_sum / torch.clamp(num_observed, min=1)
+
+ # If `default_scale` is provided, we use it, otherwise we use the scale
+ # of the batch.
+ if self.default_scale is None:
+ batch_sum = ts_sum.sum(dim=0)
+ batch_observations = torch.clamp(num_observed.sum(0), min=1)
+ default_scale = torch.squeeze(batch_sum / batch_observations)
+ else:
+ default_scale = self.default_scale * torch.ones_like(scale)
+
+ # apply default scale where there are no observations
+ scale = torch.where(num_observed > 0, scale, default_scale)
+
+ # ensure the scale is at least `self.minimum_scale`
+ scale = torch.clamp(scale, min=self.minimum_scale)
+ scaled_data = data / scale
+
+ if not self.keepdim:
+ scale = scale.squeeze(dim=self.dim)
+
+ return scaled_data, torch.zeros_like(scale), scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerNOPScaler(nn.Module):
+ """
+ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor = None
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
+ loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
+ return data, loc, scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
+def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
+ """
+ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
+ meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
+
+ Args:
+ input_tensor (`torch.FloatTensor`):
+ Input tensor, of which the average must be computed.
+ weights (`torch.FloatTensor`, *optional*):
+ Weights tensor, of the same shape as `input_tensor`.
+ dim (`int`, *optional*):
+ The dim along which to average `input_tensor`.
+
+ Returns:
+ `torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
+ """
+ if weights is not None:
+ weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
+ sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
+ return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
+ else:
+ return input_tensor.mean(dim=dim)
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
+def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
+ """
+ Computes the negative log likelihood loss from input distribution with respect to target.
+ """
+ return -input.log_prob(target)
+
+
+# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Autoformer
+class AutoformerSinusoidalPositionalEmbedding(nn.Embedding):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
+ super().__init__(num_positions, embedding_dim)
+ self.weight = self._init_weight(self.weight)
+
+ @staticmethod
+ def _init_weight(out: nn.Parameter) -> nn.Parameter:
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ n_pos, dim = out.shape
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ out.requires_grad = False # set early to avoid an error in pytorch-1.8+
+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
+ out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
+ out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
+ out.detach_()
+ return out
+
+ @torch.no_grad()
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Autoformer
+class AutoformerValueEmbedding(nn.Module):
+ def __init__(self, feature_size, d_model):
+ super().__init__()
+ self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)
+
+ def forward(self, x):
+ return self.value_projection(x)
+
+
+# Class based on
+# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L39
+# where AutoformerSeriesDecompositionLayer is series_decomp + moving_average
+class AutoformerSeriesDecompositionLayer(nn.Module):
+ """
+ Returns the trend and the seasonal parts of the time series. Calculated as:
+
+ x_trend = AvgPool(Padding(X)) and x_seasonal = X - x_trend
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.kernel_size = config.moving_average
+ self.avg = nn.AvgPool1d(kernel_size=self.kernel_size, stride=1, padding=0)
+
+ def forward(self, x):
+ """Input shape: Batch x Time x EMBED_DIM"""
+ # padding on the both ends of time series
+ num_of_pads = (self.kernel_size - 1) // 2
+ front = x[:, 0:1, :].repeat(1, num_of_pads, 1)
+ end = x[:, -1:, :].repeat(1, num_of_pads, 1)
+ x_padded = torch.cat([front, x, end], dim=1)
+
+ # calculate the trend and seasonal part of the series
+ x_trend = self.avg(x_padded.permute(0, 2, 1)).permute(0, 2, 1)
+ x_seasonal = x - x_trend
+ return x_seasonal, x_trend
+
+
+# Class based on
+# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L6
+# where AutoformerLayernorm is my_Layernorm
+class AutoformerLayernorm(nn.Module):
+ """
+ Special designed layer normalization for the seasonal part, calculated as: AutoformerLayernorm(x) = nn.LayerNorm(x)
+ - torch.mean(nn.LayerNorm(x))
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.layernorm = nn.LayerNorm(config.d_model)
+
+ def forward(self, x):
+ x_hat = self.layernorm(x)
+ bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
+ return x_hat - bias
+
+
+class AutoformerAttention(nn.Module):
+ """
+ AutoCorrelation Mechanism with the following two phases:
+ (1) period-based dependencies discovery (2) time delay aggregation
+ This block replace the canonical self-attention mechanism.
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ autocorrelation_factor: int = 3,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ self.autocorrelation_factor = autocorrelation_factor
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ # (1) period-based dependencies discovery
+ # Resize (truncation or zero filling)
+ queries_time_length = query_states.size(1)
+ values_time_length = value_states.size(1)
+ if queries_time_length > values_time_length:
+ query_states = query_states[:, : (queries_time_length - values_time_length), :]
+ zeros = torch.zeros_like(query_states).float()
+ value_states = torch.cat([value_states, zeros], dim=1)
+ key_states = torch.cat([key_states, zeros], dim=1)
+ else:
+ value_states = value_states[:, :queries_time_length, :]
+ key_states = key_states[:, :queries_time_length, :]
+
+ query_states_fft = torch.fft.rfft(query_states, n=tgt_len, dim=1)
+ key_states_fft = torch.fft.rfft(key_states, n=tgt_len, dim=1)
+ attn_weights = query_states_fft * torch.conj(key_states_fft)
+ attn_weights = torch.fft.irfft(attn_weights, n=tgt_len, dim=1) # Autocorrelation(Q,K)
+
+ src_len = key_states.size(1)
+ channel = key_states.size(2)
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, channel):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, channel)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, channel)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, channel)
+ else:
+ attn_weights_reshaped = None
+
+ # time delay aggregation
+ time_length = value_states.size(1)
+ autocorrelations = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+
+ # find top k autocorrelations delays
+ top_k = int(self.autocorrelation_factor * math.log(time_length))
+ autocorrelations_mean_on_head_channel = torch.mean(autocorrelations, dim=(1, -1)) # bsz x tgt_len
+ if self.training:
+ autocorrelations_mean_on_bsz = torch.mean(autocorrelations_mean_on_head_channel, dim=0)
+ _, top_k_delays_index = torch.topk(autocorrelations_mean_on_bsz, top_k)
+ top_k_autocorrelations = torch.stack(
+ [autocorrelations_mean_on_head_channel[:, top_k_delays_index[i]] for i in range(top_k)], dim=-1
+ )
+ else:
+ top_k_autocorrelations, top_k_delays_index = torch.topk(
+ autocorrelations_mean_on_head_channel, top_k, dim=1
+ )
+
+ top_k_autocorrelations = torch.softmax(top_k_autocorrelations, dim=-1) # bsz x top_k
+
+ # compute aggregation: value_states.roll(delay) * top_k_autocorrelations(delay)
+ if not self.training:
+ # used for compute values_states.roll(delay) in inference
+ tmp_values = value_states.repeat(1, 2, 1)
+ init_index = (
+ torch.arange(time_length)
+ .view(1, -1, 1)
+ .repeat(bsz * self.num_heads, 1, channel)
+ .to(value_states.device)
+ )
+
+ delays_agg = torch.zeros_like(value_states).float() # bsz x time_length x channel
+ for i in range(top_k):
+ # compute value_states roll delay
+ if not self.training:
+ tmp_delay = init_index + top_k_delays_index[:, i].view(-1, 1, 1).repeat(
+ self.num_heads, tgt_len, channel
+ )
+ value_states_roll_delay = torch.gather(tmp_values, dim=1, index=tmp_delay)
+ else:
+ value_states_roll_delay = value_states.roll(shifts=-int(top_k_delays_index[i]), dims=1)
+
+ # aggregation
+ top_k_autocorrelations_at_delay = (
+ top_k_autocorrelations[:, i].view(-1, 1, 1).repeat(self.num_heads, tgt_len, channel)
+ )
+ delays_agg += value_states_roll_delay * top_k_autocorrelations_at_delay
+
+ attn_output = delays_agg.contiguous()
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+class AutoformerEncoderLayer(nn.Module):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+ self.self_attn = AutoformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = AutoformerLayernorm(config)
+ self.decomp1 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp2 = AutoformerSeriesDecompositionLayer(config)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: torch.FloatTensor,
+ layer_head_mask: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ # added layer norm here as an improvement
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, _ = self.decomp1(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, _ = self.decomp2(hidden_states)
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class AutoformerDecoderLayer(nn.Module):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = AutoformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = AutoformerAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = AutoformerLayernorm(config)
+
+ self.decomp1 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp2 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp3 = AutoformerSeriesDecompositionLayer(config)
+
+ # source: https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/layers/Autoformer_EncDec.py#L128
+ self.trend_projection = nn.Conv1d(
+ in_channels=self.embed_dim,
+ out_channels=config.feature_size,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ padding_mode="circular",
+ bias=False,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache: (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the `present_key_value` state to be used for subsequent
+ decoding.
+ """
+ residual = hidden_states
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend1 = self.decomp1(hidden_states)
+ # added layer norm here as an improvement
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend2 = self.decomp2(hidden_states)
+ # added layer norm here as an improvement
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend3 = self.decomp3(hidden_states)
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if encoder_hidden_states is not None:
+ residual_trend = trend1 + trend2 + trend3
+ else:
+ residual_trend = trend1 + trend3
+ residual_trend = self.trend_projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
+ outputs = ((hidden_states, residual_trend),)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class AutoformerPreTrainedModel(PreTrainedModel):
+ config_class = AutoformerConfig
+ base_model_prefix = "model"
+ main_input_name = "past_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, (nn.Linear, nn.Conv1d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
+ pass
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+AUTOFORMER_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`AutoformerConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+AUTOFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Past values of the time series, that serve as context in order to predict the future. These values may
+ contain lags, i.e. additional values from the past which are added in order to serve as "extra context".
+ The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as
+ `static_categorical_features`, `static_real_features`, `past_time_features`).
+
+ The sequence length here is equal to `context_length` + `max(config.lags_sequence)`.
+
+ Missing values need to be replaced with zeros.
+
+ past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`, *optional*):
+ Optional time features, which the model internally will add to `past_values`. These could be things like
+ "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
+ could also be so-called "age" features, which basically help the model know "at which point in life" a
+ time-series is. Age features have small values for distant past time steps and increase monotonically the
+ more we approach the current time step.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
+ the position encodings are learned from scratch internally as parameters of the model, the Time Series
+ Transformer requires to provide additional time features.
+
+ The Autoformer only learns additional embeddings for `static_categorical_features`.
+
+ past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in
+ `[0, 1]`:
+
+ - 1 for values that are **observed**,
+ - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
+
+ static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
+ Optional static categorical features for which the model will learn an embedding, which it will add to the
+ values of the time series.
+
+ Static categorical features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static categorical feature is a time series ID.
+
+ static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
+ Optional static real features which the model will add to the values of the time series.
+
+ Static real features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static real feature is promotion information.
+
+ future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)`):
+ Future values of the time series, that serve as labels for the model. The `future_values` is what the
+ Transformer needs to learn to output, given the `past_values`.
+
+ See the demo notebook and code snippets for details.
+
+ Missing values need to be replaced with zeros.
+
+ future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`, *optional*):
+ Optional time features, which the model internally will add to `future_values`. These could be things like
+ "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
+ could also be so-called "age" features, which basically help the model know "at which point in life" a
+ time-series is. Age features have small values for distant past time steps and increase monotonically the
+ more we approach the current time step.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
+ the position encodings are learned from scratch internally as parameters of the model, the Time Series
+ Transformer requires to provide additional features.
+
+ The Autoformer only learns additional embeddings for `static_categorical_features`.
+
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to
+ make sure the model can only look at previous inputs in order to predict the future.
+
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerEncoder(AutoformerPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`AutoformerEncoderLayer`].
+
+ Args:
+ config: AutoformerConfig
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+ if config.prediction_length is None:
+ raise ValueError("The `prediction_length` config needs to be specified.")
+
+ self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
+ self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
+ config.context_length + config.prediction_length, config.d_model
+ )
+ self.layers = nn.ModuleList([AutoformerEncoderLayer(config) for _ in range(config.encoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = self.value_embedding(inputs_embeds)
+ embed_pos = self.embed_positions(inputs_embeds.size())
+
+ hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class AutoformerDecoder(AutoformerPreTrainedModel):
+ """
+ Transformer decoder consisting of `config.decoder_layers` layers. Each layer is a [`AutoformerDecoderLayer`]
+
+ Args:
+ config: AutoformerConfig
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ if config.prediction_length is None:
+ raise ValueError("The `prediction_length` config needs to be specified.")
+
+ self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
+ self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
+ config.context_length + config.prediction_length, config.d_model
+ )
+ self.layers = nn.ModuleList([AutoformerDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ # https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/models/Autoformer.py#L74
+ self.seasonality_projection = nn.Linear(config.d_model, config.feature_size)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ trend: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, AutoFormerDecoderOutput]:
+ r"""
+ Args:
+ trend (`torch.FloatTensor` of shape `(batch_size, prediction_length, feature_size)`, *optional*):
+ The trend sequence to be fed to the decoder.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If `use_cache` is True, `past_key_values` key value states are returned and can be used to speed up
+ decoding (see `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ input_shape = inputs_embeds.size()[:-1]
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ hidden_states = self.value_embedding(inputs_embeds)
+ embed_pos = self.embed_positions(
+ inputs_embeds.size(), past_key_values_length=self.config.context_length - self.config.label_length
+ )
+ hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ (hidden_states, residual_trend) = layer_outputs[0]
+ trend = trend + residual_trend
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # project seasonality representation
+ hidden_states = self.seasonality_projection(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, trend, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return AutoFormerDecoderOutput(
+ last_hidden_state=hidden_states,
+ trend=trend,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare Autoformer Model outputting raw hidden-states without any specific head on top.",
+ AUTOFORMER_START_DOCSTRING,
+)
+class AutoformerModel(AutoformerPreTrainedModel):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+
+ if config.scaling == "mean" or config.scaling is True:
+ self.scaler = AutoformerMeanScaler(config)
+ elif config.scaling == "std":
+ self.scaler = AutoformerStdScaler(config)
+ else:
+ self.scaler = AutoformerNOPScaler(config)
+
+ if config.num_static_categorical_features > 0:
+ self.embedder = AutoformerFeatureEmbedder(
+ cardinalities=config.cardinality, embedding_dims=config.embedding_dimension
+ )
+
+ # transformer encoder-decoder and mask initializer
+ self.encoder = AutoformerEncoder(config)
+ self.decoder = AutoformerDecoder(config)
+
+ # used for decoder seasonal and trend initialization
+ self.decomposition_layer = AutoformerSeriesDecompositionLayer(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @property
+ def _past_length(self) -> int:
+ return self.config.context_length + max(self.config.lags_sequence)
+
+ def get_lagged_subsequences(
+ self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
+ ) -> torch.Tensor:
+ """
+ Returns lagged subsequences of a given sequence. Returns a tensor of shape (batch_size, subsequences_length,
+ feature_size, indices_length), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i,
+ -indices[k]-subsequences_length+j, :].
+
+ Args:
+ sequence (`torch.Tensor` or shape `(batch_size, context_length,
+ feature_size)`): The sequence from which lagged subsequences should be extracted.
+ subsequences_length (`int`):
+ Length of the subsequences to be extracted.
+ shift (`int`, *optional* defaults to 0):
+ Shift the lags by this amount back in the time index.
+ """
+
+ # calculates the indices of the lags by subtracting the shift value from the given lags_sequence
+ indices = [lag - shift for lag in self.config.lags_sequence]
+
+ # checks if the maximum lag plus the length of the subsequences exceeds the length of the input sequence
+ sequence_length = sequence.shape[1]
+ if max(indices) + subsequences_length > sequence_length:
+ raise ValueError(
+ f"lags cannot go further than history length, found lag {max(indices)} "
+ f"while history length is only {sequence_length}"
+ )
+
+ # extracts the lagged subsequences from the input sequence using the calculated indices
+ lagged_values = []
+ for lag_index in indices:
+ begin_index = -lag_index - subsequences_length
+ end_index = -lag_index if lag_index > 0 else None
+ lagged_values.append(sequence[:, begin_index:end_index, ...])
+
+ # return as stacked tensor in the feature dimension
+ return torch.stack(lagged_values, dim=-1)
+
+ def create_network_inputs(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ past_observed_mask: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Creates the inputs for the network given the past and future values, time features, and static features.
+
+ Args:
+ past_values (`torch.Tensor`):
+ A tensor of shape `(batch_size, past_length, input_size)` containing the past values.
+ past_time_features (`torch.Tensor`):
+ A tensor of shape `(batch_size, past_length, num_features)` containing the past time features.
+ static_categorical_features (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, num_categorical_features)` containing the static categorical
+ features.
+ static_real_features (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, num_real_features)` containing the static real features.
+ past_observed_mask (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, past_length, input_size)` containing the mask of observed
+ values in the past.
+ future_values (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, future_length, input_size)` containing the future values.
+
+ Returns:
+ A tuple containing the following tensors:
+ - reshaped_lagged_sequence (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_lags *
+ input_size)` containing the lagged subsequences of the inputs.
+ - features (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_features)` containing the
+ concatenated static and time features.
+ - loc (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the mean of the input
+ values.
+ - scale (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the std of the input
+ values.
+ - static_feat (`torch.Tensor`): A tensor of shape `(batch_size, num_static_features)` containing the
+ concatenated static features.
+ """
+ # time feature
+ time_feat = (
+ torch.cat(
+ (
+ past_time_features[:, self._past_length - self.config.context_length :, ...],
+ future_time_features,
+ ),
+ dim=1,
+ )
+ if future_values is not None
+ else past_time_features[:, self._past_length - self.config.context_length :, ...]
+ )
+
+ # target
+ if past_observed_mask is None:
+ past_observed_mask = torch.ones_like(past_values)
+
+ context = past_values[:, -self.config.context_length :]
+ observed_context = past_observed_mask[:, -self.config.context_length :]
+ _, loc, scale = self.scaler(context, observed_context)
+
+ inputs = (
+ (torch.cat((past_values, future_values), dim=1) - loc) / scale
+ if future_values is not None
+ else (past_values - loc) / scale
+ )
+
+ # static features
+ log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
+ log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
+ static_feat = torch.cat((log_abs_loc, log_scale), dim=1)
+
+ if static_real_features is not None:
+ static_feat = torch.cat((static_real_features, static_feat), dim=1)
+ if static_categorical_features is not None:
+ embedded_cat = self.embedder(static_categorical_features)
+ static_feat = torch.cat((embedded_cat, static_feat), dim=1)
+ expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)
+
+ # all features
+ features = torch.cat((expanded_static_feat, time_feat), dim=-1)
+
+ # lagged features
+ subsequences_length = (
+ self.config.context_length + self.config.prediction_length
+ if future_values is not None
+ else self.config.context_length
+ )
+ lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
+ lags_shape = lagged_sequence.shape
+ reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
+
+ if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
+ raise ValueError(
+ f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
+ )
+ return reshaped_lagged_sequence, features, loc, scale, static_feat
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=AutoformerModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ past_observed_mask: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ use_cache: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[AutoformerModelOutput, Tuple]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerModel
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly")
+
+ >>> # during training, one provides both past and future values
+ >>> # as well as possible additional features
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> last_hidden_state = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_inputs, temporal_features, loc, scale, static_feat = self.create_network_inputs(
+ past_values=past_values,
+ past_time_features=past_time_features,
+ past_observed_mask=past_observed_mask,
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ future_values=future_values,
+ future_time_features=future_time_features,
+ )
+
+ if encoder_outputs is None:
+ enc_input = torch.cat(
+ (
+ transformer_inputs[:, : self.config.context_length, ...],
+ temporal_features[:, : self.config.context_length, ...],
+ ),
+ dim=-1,
+ )
+ encoder_outputs = self.encoder(
+ inputs_embeds=enc_input,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ if future_values is not None:
+ # Decoder inputs
+ # seasonality and trend from context length
+ seasonal_input, trend_input = self.decomposition_layer(
+ transformer_inputs[:, : self.config.context_length, ...]
+ )
+ mean = (
+ torch.mean(transformer_inputs[:, : self.config.context_length, ...], dim=1)
+ .unsqueeze(1)
+ .repeat(1, self.config.prediction_length, 1)
+ )
+ zeros = torch.zeros(
+ [transformer_inputs.shape[0], self.config.prediction_length, transformer_inputs.shape[2]],
+ device=enc_input.device,
+ )
+
+ decoder_input = torch.cat(
+ (
+ torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
+ temporal_features[:, self.config.context_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ trend_init = torch.cat(
+ (
+ torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
+ temporal_features[:, self.config.context_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+
+ decoder_outputs = self.decoder(
+ trend=trend_init,
+ inputs_embeds=decoder_input,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ else:
+ decoder_outputs = AutoFormerDecoderOutput()
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs + (loc, scale, static_feat)
+
+ return AutoformerModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ trend=decoder_outputs.trend,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ loc=loc,
+ scale=scale,
+ static_features=static_feat,
+ )
+
+
+@add_start_docstrings(
+ "The Autoformer Model with a distribution head on top for time-series forecasting.",
+ AUTOFORMER_START_DOCSTRING,
+)
+class AutoformerForPrediction(AutoformerPreTrainedModel):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+ self.model = AutoformerModel(config)
+ if config.distribution_output == "student_t":
+ self.distribution_output = StudentTOutput(dim=config.input_size)
+ elif config.distribution_output == "normal":
+ self.distribution_output = NormalOutput(dim=config.input_size)
+ elif config.distribution_output == "negative_binomial":
+ self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
+ else:
+ raise ValueError(f"Unknown distribution output {config.distribution_output}")
+
+ self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.feature_size)
+ self.target_shape = self.distribution_output.event_shape
+
+ if config.loss == "nll":
+ self.loss = nll
+ else:
+ raise ValueError(f"Unknown loss function {config.loss}")
+
+ # Initialize weights of distribution_output and apply final processing
+ self.post_init()
+
+ def output_params(self, decoder_output):
+ return self.parameter_projection(decoder_output[:, -self.config.prediction_length :, :])
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ @torch.jit.ignore
+ def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
+ sliced_params = params
+ if trailing_n is not None:
+ sliced_params = [p[:, -trailing_n:] for p in params]
+ return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)
+
+ @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqTSPredictionOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ past_observed_mask: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ future_observed_mask: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ use_cache: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Seq2SeqTSPredictionOutput, Tuple]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerForPrediction
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly")
+
+ >>> # during training, one provides both past and future values
+ >>> # as well as possible additional features
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> loss = outputs.loss
+ >>> loss.backward()
+
+ >>> # during inference, one only provides past values
+ >>> # as well as possible additional features
+ >>> # the model autoregressively generates future values
+ >>> outputs = model.generate(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> mean_prediction = outputs.sequences.mean(dim=1)
+ ```
+
+
+
+ The AutoformerForPrediction can also use static_real_features. To do so, set num_static_real_features in
+ AutoformerConfig based on number of such features in the dataset (in case of tourism_monthly dataset it
+ is equal to 1), initialize the model and call as shown below:
+
+ ```
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerConfig, AutoformerForPrediction
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> # check number of static real features
+ >>> num_static_real_features = batch["static_real_features"].shape[-1]
+
+ >>> # load configuration of pretrained model and override num_static_real_features
+ >>> configuration = AutoformerConfig.from_pretrained(
+ ... "huggingface/autoformer-tourism-monthly",
+ ... num_static_real_features=num_static_real_features,
+ ... )
+ >>> # we also need to update feature_size as it is not recalculated
+ >>> configuration.feature_size += num_static_real_features
+
+ >>> model = AutoformerForPrediction(configuration)
+
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... static_real_features=batch["static_real_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+ ```
+
+
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if future_values is not None:
+ use_cache = False
+
+ outputs = self.model(
+ past_values=past_values,
+ past_time_features=past_time_features,
+ past_observed_mask=past_observed_mask,
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ future_values=future_values,
+ future_time_features=future_time_features,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ return_dict=return_dict,
+ )
+
+ prediction_loss = None
+ params = None
+ if future_values is not None:
+ # outputs.last_hidden_state and trend
+ # loc is 4rd last and scale is 3rd last output
+ params = self.output_params(outputs[0] + outputs[1])
+ distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])
+
+ loss = self.loss(distribution, future_values)
+
+ if future_observed_mask is None:
+ future_observed_mask = torch.ones_like(future_values)
+
+ if len(self.target_shape) == 0:
+ loss_weights = future_observed_mask
+ else:
+ loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)
+
+ prediction_loss = weighted_average(loss, weights=loss_weights)
+
+ if not return_dict:
+ outputs = ((params,) + outputs[2:]) if params is not None else outputs[2:]
+ return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs
+
+ return Seq2SeqTSPredictionOutput(
+ loss=prediction_loss,
+ params=params,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ loc=outputs.loc,
+ scale=outputs.scale,
+ static_features=outputs.static_features,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ future_time_features: torch.Tensor,
+ past_observed_mask: Optional[torch.Tensor] = None,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ ) -> SampleTSPredictionOutput:
+ r"""
+ Greedily generate sequences of sample predictions from a model with a probability distribution head.
+
+ Parameters:
+ past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
+ Past values of the time series, that serve as context in order to predict the future. The sequence size
+ of this tensor must be larger than the `context_length` of the model, since the model will use the
+ larger size to construct lag features, i.e. additional values from the past which are added in order to
+ serve as "extra context".
+
+ The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
+ no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
+ look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
+ of the past.
+
+ The `past_values` is what the Transformer encoder gets as input (with optional additional features,
+ such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).
+
+ Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
+
+ For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
+ of variates in the time series per time step.
+ past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
+ Required time features, which the model internally will add to `past_values`. These could be things
+ like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
+ These could also be so-called "age" features, which basically help the model know "at which point in
+ life" a time-series is. Age features have small values for distant past time steps and increase
+ monotonically the more we approach the current time step. Holiday features are also a good example of
+ time features.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
+ where the position encodings are learned from scratch internally as parameters of the model, the Time
+ Series Transformer requires to provide additional time features. The Time Series Transformer only
+ learns additional embeddings for `static_categorical_features`.
+
+ Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
+ features must but known at prediction time.
+
+ The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
+ future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
+ Required time features for the prediction window, which the model internally will add to sampled
+ predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
+ (for instance as Fourier features). These could also be so-called "age" features, which basically help
+ the model know "at which point in life" a time-series is. Age features have small values for distant
+ past time steps and increase monotonically the more we approach the current time step. Holiday features
+ are also a good example of time features.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
+ where the position encodings are learned from scratch internally as parameters of the model, the Time
+ Series Transformer requires to provide additional time features. The Time Series Transformer only
+ learns additional embeddings for `static_categorical_features`.
+
+ Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
+ features must but known at prediction time.
+
+ The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
+ past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
+ Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
+ in `[0, 1]`:
+
+ - 1 for values that are **observed**,
+ - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
+
+ static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
+ Optional static categorical features for which the model will learn an embedding, which it will add to
+ the values of the time series.
+
+ Static categorical features are features which have the same value for all time steps (static over
+ time).
+
+ A typical example of a static categorical feature is a time series ID.
+ static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
+ Optional static real features which the model will add to the values of the time series.
+
+ Static real features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static real feature is promotion information.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers.
+
+ Return:
+ [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
+ samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
+ multivariate predictions.
+ """
+ outputs = self(
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ past_time_features=past_time_features,
+ past_values=past_values,
+ past_observed_mask=past_observed_mask,
+ future_time_features=None,
+ future_values=None,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ use_cache=False,
+ )
+
+ decoder = self.model.get_decoder()
+ enc_last_hidden = outputs.encoder_last_hidden_state
+ loc = outputs.loc
+ scale = outputs.scale
+ static_feat = outputs.static_features
+
+ num_parallel_samples = self.config.num_parallel_samples
+ repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
+ repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ repeated_past_values = (
+ past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
+ ) / repeated_scale
+
+ time_features = torch.cat((past_time_features, future_time_features), dim=1)
+
+ expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_features.shape[1], -1)
+ features = torch.cat((expanded_static_feat, time_features), dim=-1)
+ repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ lagged_sequence = self.model.get_lagged_subsequences(
+ sequence=repeated_past_values, subsequences_length=self.config.context_length
+ )
+ lags_shape = lagged_sequence.shape
+ reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
+ seasonal_input, trend_input = self.model.decomposition_layer(reshaped_lagged_sequence)
+
+ mean = torch.mean(reshaped_lagged_sequence, dim=1).unsqueeze(1).repeat(1, self.config.prediction_length, 1)
+ zeros = torch.zeros(
+ [reshaped_lagged_sequence.shape[0], self.config.prediction_length, reshaped_lagged_sequence.shape[2]],
+ device=reshaped_lagged_sequence.device,
+ )
+
+ decoder_input = torch.cat(
+ (
+ torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
+ repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ trend_init = torch.cat(
+ (
+ torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
+ repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ decoder_outputs = decoder(
+ trend=trend_init, inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden
+ )
+ decoder_last_hidden = decoder_outputs.last_hidden_state
+ trend = decoder_outputs.trend
+ params = self.output_params(decoder_last_hidden + trend)
+ distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
+ future_samples = distr.sample()
+
+ return SampleTSPredictionOutput(
+ sequences=future_samples.reshape(
+ (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
+ )
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..25cce3750e2e3ea8880ce4320518a2024cd0f6da
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/configuration_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/configuration_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b0c6805857829624e823de3dd0d69b90db5fa891
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/configuration_bert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf2_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf2_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..76107478998cab0413945eaa3b33943a489e0770
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf2_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8eba43839942057872e200f5273b0716a03a7e18
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_pytorch_checkpoint_to_original_tf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_pytorch_checkpoint_to_original_tf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32479dd733d3f445749103260b536f17fd7a01d7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_pytorch_checkpoint_to_original_tf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f75f199f2c0e8e1cbf38567b760ba25539580c38
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..291c730c7d7f6bcae5a781f4d5d48be8c2aff504
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_bert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_flax_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_flax_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f89d46a33fb87a46fcb27b68b9a986139d060030
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_flax_bert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_tf_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_tf_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3e9a48301b7e7181dcb1ca209b5df1b337d359b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_tf_bert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..750979ea4280dfd379c9df5bd6eb241880dfe86a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..abedbf83cd5f5c5affa050f77c230ec8e1199a47
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_tf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_tf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..46cbda1af9434e77e1371cc6a27caeb2d96f5e73
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_tf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7cb149053a3d06a8b8fc1bcc2bc8729c9213771
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py
@@ -0,0 +1,112 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Convert Huggingface Pytorch checkpoint to Tensorflow checkpoint."""
+
+import argparse
+import os
+
+import numpy as np
+import tensorflow as tf
+import torch
+
+from transformers import BertModel
+
+
+def convert_pytorch_checkpoint_to_tf(model: BertModel, ckpt_dir: str, model_name: str):
+ """
+ Args:
+ model: BertModel Pytorch model instance to be converted
+ ckpt_dir: Tensorflow model directory
+ model_name: model name
+
+ Currently supported HF models:
+
+ - Y BertModel
+ - N BertForMaskedLM
+ - N BertForPreTraining
+ - N BertForMultipleChoice
+ - N BertForNextSentencePrediction
+ - N BertForSequenceClassification
+ - N BertForQuestionAnswering
+ """
+
+ tensors_to_transpose = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
+
+ var_map = (
+ ("layer.", "layer_"),
+ ("word_embeddings.weight", "word_embeddings"),
+ ("position_embeddings.weight", "position_embeddings"),
+ ("token_type_embeddings.weight", "token_type_embeddings"),
+ (".", "/"),
+ ("LayerNorm/weight", "LayerNorm/gamma"),
+ ("LayerNorm/bias", "LayerNorm/beta"),
+ ("weight", "kernel"),
+ )
+
+ if not os.path.isdir(ckpt_dir):
+ os.makedirs(ckpt_dir)
+
+ state_dict = model.state_dict()
+
+ def to_tf_var_name(name: str):
+ for patt, repl in iter(var_map):
+ name = name.replace(patt, repl)
+ return f"bert/{name}"
+
+ def create_tf_var(tensor: np.ndarray, name: str, session: tf.Session):
+ tf_dtype = tf.dtypes.as_dtype(tensor.dtype)
+ tf_var = tf.get_variable(dtype=tf_dtype, shape=tensor.shape, name=name, initializer=tf.zeros_initializer())
+ session.run(tf.variables_initializer([tf_var]))
+ session.run(tf_var)
+ return tf_var
+
+ tf.reset_default_graph()
+ with tf.Session() as session:
+ for var_name in state_dict:
+ tf_name = to_tf_var_name(var_name)
+ torch_tensor = state_dict[var_name].numpy()
+ if any(x in var_name for x in tensors_to_transpose):
+ torch_tensor = torch_tensor.T
+ tf_var = create_tf_var(tensor=torch_tensor, name=tf_name, session=session)
+ tf_var.assign(tf.cast(torch_tensor, tf_var.dtype))
+ tf_weight = session.run(tf_var)
+ print(f"Successfully created {tf_name}: {np.allclose(tf_weight, torch_tensor)}")
+
+ saver = tf.train.Saver(tf.trainable_variables())
+ saver.save(session, os.path.join(ckpt_dir, model_name.replace("-", "_") + ".ckpt"))
+
+
+def main(raw_args=None):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--model_name", type=str, required=True, help="model name e.g. google-bert/bert-base-uncased")
+ parser.add_argument(
+ "--cache_dir", type=str, default=None, required=False, help="Directory containing pytorch model"
+ )
+ parser.add_argument("--pytorch_model_path", type=str, required=True, help="/path/to/.bin")
+ parser.add_argument("--tf_cache_dir", type=str, required=True, help="Directory in which to save tensorflow model")
+ args = parser.parse_args(raw_args)
+
+ model = BertModel.from_pretrained(
+ pretrained_model_name_or_path=args.model_name,
+ state_dict=torch.load(args.pytorch_model_path),
+ cache_dir=args.cache_dir,
+ )
+
+ convert_pytorch_checkpoint_to_tf(model=model, ckpt_dir=args.tf_cache_dir, model_name=args.model_name)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..651847aee7b989ad19249b3a5971e48adf3ec8d1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py
@@ -0,0 +1,187 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This script converts a lm-head checkpoint from the "Token Dropping" implementation into a PyTorch-compatible BERT
+model. The official implementation of "Token Dropping" can be found in the TensorFlow Models repository:
+
+https://github.com/tensorflow/models/tree/master/official/projects/token_dropping
+"""
+import argparse
+
+import tensorflow as tf
+import torch
+
+from transformers import BertConfig, BertForMaskedLM
+from transformers.models.bert.modeling_bert import (
+ BertIntermediate,
+ BertLayer,
+ BertOutput,
+ BertPooler,
+ BertSelfAttention,
+ BertSelfOutput,
+)
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def convert_checkpoint_to_pytorch(tf_checkpoint_path: str, config_path: str, pytorch_dump_path: str):
+ def get_masked_lm_array(name: str):
+ full_name = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
+ array = tf.train.load_variable(tf_checkpoint_path, full_name)
+
+ if "kernel" in name:
+ array = array.transpose()
+
+ return torch.from_numpy(array)
+
+ def get_encoder_array(name: str):
+ full_name = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
+ array = tf.train.load_variable(tf_checkpoint_path, full_name)
+
+ if "kernel" in name:
+ array = array.transpose()
+
+ return torch.from_numpy(array)
+
+ def get_encoder_layer_array(layer_index: int, name: str):
+ full_name = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
+ array = tf.train.load_variable(tf_checkpoint_path, full_name)
+
+ if "kernel" in name:
+ array = array.transpose()
+
+ return torch.from_numpy(array)
+
+ def get_encoder_attention_layer_array(layer_index: int, name: str, orginal_shape):
+ full_name = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
+ array = tf.train.load_variable(tf_checkpoint_path, full_name)
+ array = array.reshape(orginal_shape)
+
+ if "kernel" in name:
+ array = array.transpose()
+
+ return torch.from_numpy(array)
+
+ print(f"Loading model based on config from {config_path}...")
+ config = BertConfig.from_json_file(config_path)
+ model = BertForMaskedLM(config)
+
+ # Layers
+ for layer_index in range(0, config.num_hidden_layers):
+ layer: BertLayer = model.bert.encoder.layer[layer_index]
+
+ # Self-attention
+ self_attn: BertSelfAttention = layer.attention.self
+
+ self_attn.query.weight.data = get_encoder_attention_layer_array(
+ layer_index, "_query_dense/kernel", self_attn.query.weight.data.shape
+ )
+ self_attn.query.bias.data = get_encoder_attention_layer_array(
+ layer_index, "_query_dense/bias", self_attn.query.bias.data.shape
+ )
+ self_attn.key.weight.data = get_encoder_attention_layer_array(
+ layer_index, "_key_dense/kernel", self_attn.key.weight.data.shape
+ )
+ self_attn.key.bias.data = get_encoder_attention_layer_array(
+ layer_index, "_key_dense/bias", self_attn.key.bias.data.shape
+ )
+ self_attn.value.weight.data = get_encoder_attention_layer_array(
+ layer_index, "_value_dense/kernel", self_attn.value.weight.data.shape
+ )
+ self_attn.value.bias.data = get_encoder_attention_layer_array(
+ layer_index, "_value_dense/bias", self_attn.value.bias.data.shape
+ )
+
+ # Self-attention Output
+ self_output: BertSelfOutput = layer.attention.output
+
+ self_output.dense.weight.data = get_encoder_attention_layer_array(
+ layer_index, "_output_dense/kernel", self_output.dense.weight.data.shape
+ )
+ self_output.dense.bias.data = get_encoder_attention_layer_array(
+ layer_index, "_output_dense/bias", self_output.dense.bias.data.shape
+ )
+
+ self_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/gamma")
+ self_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/beta")
+
+ # Intermediate
+ intermediate: BertIntermediate = layer.intermediate
+
+ intermediate.dense.weight.data = get_encoder_layer_array(layer_index, "_intermediate_dense/kernel")
+ intermediate.dense.bias.data = get_encoder_layer_array(layer_index, "_intermediate_dense/bias")
+
+ # Output
+ bert_output: BertOutput = layer.output
+
+ bert_output.dense.weight.data = get_encoder_layer_array(layer_index, "_output_dense/kernel")
+ bert_output.dense.bias.data = get_encoder_layer_array(layer_index, "_output_dense/bias")
+
+ bert_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_output_layer_norm/gamma")
+ bert_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_output_layer_norm/beta")
+
+ # Embeddings
+ model.bert.embeddings.position_embeddings.weight.data = get_encoder_array("_position_embedding_layer/embeddings")
+ model.bert.embeddings.token_type_embeddings.weight.data = get_encoder_array("_type_embedding_layer/embeddings")
+ model.bert.embeddings.LayerNorm.weight.data = get_encoder_array("_embedding_norm_layer/gamma")
+ model.bert.embeddings.LayerNorm.bias.data = get_encoder_array("_embedding_norm_layer/beta")
+
+ # LM Head
+ lm_head = model.cls.predictions.transform
+
+ lm_head.dense.weight.data = get_masked_lm_array("dense/kernel")
+ lm_head.dense.bias.data = get_masked_lm_array("dense/bias")
+
+ lm_head.LayerNorm.weight.data = get_masked_lm_array("layer_norm/gamma")
+ lm_head.LayerNorm.bias.data = get_masked_lm_array("layer_norm/beta")
+
+ model.bert.embeddings.word_embeddings.weight.data = get_masked_lm_array("embedding_table")
+
+ # Pooling
+ model.bert.pooler = BertPooler(config=config)
+ model.bert.pooler.dense.weight.data: BertPooler = get_encoder_array("_pooler_layer/kernel")
+ model.bert.pooler.dense.bias.data: BertPooler = get_encoder_array("_pooler_layer/bias")
+
+ # Export final model
+ model.save_pretrained(pytorch_dump_path)
+
+ # Integration test - should load without any errors ;)
+ new_model = BertForMaskedLM.from_pretrained(pytorch_dump_path)
+ print(new_model.eval())
+
+ print("Model conversion was done sucessfully!")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
+ )
+ parser.add_argument(
+ "--bert_config_file",
+ type=str,
+ required=True,
+ help="The config json file corresponding to the BERT model. This specifies the model architecture.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_path",
+ type=str,
+ required=True,
+ help="Path to the output PyTorch model.",
+ )
+ args = parser.parse_args()
+ convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..f645d7c08a327b65df35eff7fa9267b834d3165d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert.py
@@ -0,0 +1,500 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for Bert."""
+
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+class BertTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a BERT tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text, split_special_tokens=False):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(
+ text, never_split=self.all_special_tokens if not split_special_tokens else None
+ ):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A BERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1b19a949abbef25ed52f7e0d0d1efd6c2410d12
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__init__.py
@@ -0,0 +1,130 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
+ "tokenization_convbert": ["ConvBertTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_convbert_fast"] = ["ConvBertTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_convbert"] = [
+ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ConvBertForMaskedLM",
+ "ConvBertForMultipleChoice",
+ "ConvBertForQuestionAnswering",
+ "ConvBertForSequenceClassification",
+ "ConvBertForTokenClassification",
+ "ConvBertLayer",
+ "ConvBertModel",
+ "ConvBertPreTrainedModel",
+ "load_tf_weights_in_convbert",
+ ]
+
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_convbert"] = [
+ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFConvBertForMaskedLM",
+ "TFConvBertForMultipleChoice",
+ "TFConvBertForQuestionAnswering",
+ "TFConvBertForSequenceClassification",
+ "TFConvBertForTokenClassification",
+ "TFConvBertLayer",
+ "TFConvBertModel",
+ "TFConvBertPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
+ from .tokenization_convbert import ConvBertTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_convbert_fast import ConvBertTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_convbert import (
+ CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ConvBertForMaskedLM,
+ ConvBertForMultipleChoice,
+ ConvBertForQuestionAnswering,
+ ConvBertForSequenceClassification,
+ ConvBertForTokenClassification,
+ ConvBertLayer,
+ ConvBertModel,
+ ConvBertPreTrainedModel,
+ load_tf_weights_in_convbert,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_convbert import (
+ TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFConvBertForMaskedLM,
+ TFConvBertForMultipleChoice,
+ TFConvBertForQuestionAnswering,
+ TFConvBertForSequenceClassification,
+ TFConvBertForTokenClassification,
+ TFConvBertLayer,
+ TFConvBertModel,
+ TFConvBertPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/configuration_convbert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/configuration_convbert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..24fb249f45a8deb165852abc43c8f1cb8c064bff
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/configuration_convbert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..456dc3612d66eff780d5c62a88ea424ce179f814
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_convbert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_convbert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..81260dd64eed5a24b58a907e566ef3bf177c3c39
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_convbert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_tf_convbert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_tf_convbert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e6fdacd18802f02e1178e21582c873f7a6cbad2d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/modeling_tf_convbert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88aa5102775e34d87413f6c32f259a34d0c259c0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6d846eedd8705a969f03fb5f61bec1b22d13daac
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/tokenization_convbert_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/configuration_convbert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/configuration_convbert.py
new file mode 100644
index 0000000000000000000000000000000000000000..d309ca396baffcfa707ecd599f7b4d280dc348a9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/configuration_convbert.py
@@ -0,0 +1,160 @@
+# coding=utf-8
+# Copyright The HuggingFace team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ConvBERT model configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class ConvBertConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an
+ ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the ConvBERT
+ [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ head_ratio (`int`, *optional*, defaults to 2):
+ Ratio gamma to reduce the number of attention heads.
+ num_groups (`int`, *optional*, defaults to 1):
+ The number of groups for grouped linear layers for ConvBert model
+ conv_kernel_size (`int`, *optional*, defaults to 9):
+ The size of the convolutional kernel.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Example:
+
+ ```python
+ >>> from transformers import ConvBertConfig, ConvBertModel
+
+ >>> # Initializing a ConvBERT convbert-base-uncased style configuration
+ >>> configuration = ConvBertConfig()
+
+ >>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
+ >>> model = ConvBertModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "convbert"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ embedding_size=768,
+ head_ratio=2,
+ conv_kernel_size=9,
+ num_groups=1,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.embedding_size = embedding_size
+ self.head_ratio = head_ratio
+ self.conv_kernel_size = conv_kernel_size
+ self.num_groups = num_groups
+ self.classifier_dropout = classifier_dropout
+
+
+# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig
+class ConvBertOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ("token_type_ids", dynamic_axis),
+ ]
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d4ff779874b30b0c094c596cedaca597e03ed36
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py
@@ -0,0 +1,57 @@
+# coding=utf-8
+# Copyright 2020 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ConvBERT checkpoint."""
+
+import argparse
+
+from transformers import ConvBertConfig, ConvBertModel, TFConvBertModel, load_tf_weights_in_convbert
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def convert_orig_tf1_checkpoint_to_pytorch(tf_checkpoint_path, convbert_config_file, pytorch_dump_path):
+ conf = ConvBertConfig.from_json_file(convbert_config_file)
+ model = ConvBertModel(conf)
+
+ model = load_tf_weights_in_convbert(model, conf, tf_checkpoint_path)
+ model.save_pretrained(pytorch_dump_path)
+
+ tf_model = TFConvBertModel.from_pretrained(pytorch_dump_path, from_pt=True)
+ tf_model.save_pretrained(pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--convbert_config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained ConvBERT model. \n"
+ "This specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_orig_tf1_checkpoint_to_pytorch(args.tf_checkpoint_path, args.convbert_config_file, args.pytorch_dump_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_convbert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_convbert.py
new file mode 100644
index 0000000000000000000000000000000000000000..d88add4e1390ef790c670c2407f280a8b4ab743a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_convbert.py
@@ -0,0 +1,1337 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ConvBERT model."""
+
+
+import math
+import os
+from operator import attrgetter
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, get_activation
+from ...modeling_outputs import (
+ BaseModelOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel, SequenceSummary
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_convbert import ConvBertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base"
+_CONFIG_FOR_DOC = "ConvBertConfig"
+
+
+from ..deprecated._archive_maps import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def load_tf_weights_in_convbert(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ tf_data = {}
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ tf_data[name] = array
+
+ param_mapping = {
+ "embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings",
+ "embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings",
+ "embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings",
+ "embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma",
+ "embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta",
+ "embeddings_project.weight": "electra/embeddings_project/kernel",
+ "embeddings_project.bias": "electra/embeddings_project/bias",
+ }
+ if config.num_groups > 1:
+ group_dense_name = "g_dense"
+ else:
+ group_dense_name = "dense"
+
+ for j in range(config.num_hidden_layers):
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.query.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/query/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.query.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/query/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.key.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/key/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.key.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/key/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.value.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/value/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.value.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/value/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.conv_kernel_layer.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.conv_kernel_layer.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.conv_out_layer.weight"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.self.conv_out_layer.bias"
+ ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.output.dense.weight"
+ ] = f"electra/encoder/layer_{j}/attention/output/dense/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.attention.output.LayerNorm.weight"
+ ] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/gamma"
+ param_mapping[
+ f"encoder.layer.{j}.attention.output.dense.bias"
+ ] = f"electra/encoder/layer_{j}/attention/output/dense/bias"
+ param_mapping[
+ f"encoder.layer.{j}.attention.output.LayerNorm.bias"
+ ] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/beta"
+ param_mapping[
+ f"encoder.layer.{j}.intermediate.dense.weight"
+ ] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.intermediate.dense.bias"
+ ] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/bias"
+ param_mapping[
+ f"encoder.layer.{j}.output.dense.weight"
+ ] = f"electra/encoder/layer_{j}/output/{group_dense_name}/kernel"
+ param_mapping[
+ f"encoder.layer.{j}.output.dense.bias"
+ ] = f"electra/encoder/layer_{j}/output/{group_dense_name}/bias"
+ param_mapping[
+ f"encoder.layer.{j}.output.LayerNorm.weight"
+ ] = f"electra/encoder/layer_{j}/output/LayerNorm/gamma"
+ param_mapping[f"encoder.layer.{j}.output.LayerNorm.bias"] = f"electra/encoder/layer_{j}/output/LayerNorm/beta"
+
+ for param in model.named_parameters():
+ param_name = param[0]
+ retriever = attrgetter(param_name)
+ result = retriever(model)
+ tf_name = param_mapping[param_name]
+ value = torch.from_numpy(tf_data[tf_name])
+ logger.info(f"TF: {tf_name}, PT: {param_name} ")
+ if tf_name.endswith("/kernel"):
+ if not tf_name.endswith("/intermediate/g_dense/kernel"):
+ if not tf_name.endswith("/output/g_dense/kernel"):
+ value = value.T
+ if tf_name.endswith("/depthwise_kernel"):
+ value = value.permute(1, 2, 0) # 2, 0, 1
+ if tf_name.endswith("/pointwise_kernel"):
+ value = value.permute(2, 1, 0) # 2, 1, 0
+ if tf_name.endswith("/conv_attn_key/bias"):
+ value = value.unsqueeze(-1)
+ result.data = value
+ return model
+
+
+class ConvBertEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ ) -> torch.LongTensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class ConvBertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ConvBertConfig
+ load_tf_weights = load_tf_weights_in_convbert
+ base_model_prefix = "convbert"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+class SeparableConv1D(nn.Module):
+ """This class implements separable convolution, i.e. a depthwise and a pointwise layer"""
+
+ def __init__(self, config, input_filters, output_filters, kernel_size, **kwargs):
+ super().__init__()
+ self.depthwise = nn.Conv1d(
+ input_filters,
+ input_filters,
+ kernel_size=kernel_size,
+ groups=input_filters,
+ padding=kernel_size // 2,
+ bias=False,
+ )
+ self.pointwise = nn.Conv1d(input_filters, output_filters, kernel_size=1, bias=False)
+ self.bias = nn.Parameter(torch.zeros(output_filters, 1))
+
+ self.depthwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
+ self.pointwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ x = self.depthwise(hidden_states)
+ x = self.pointwise(x)
+ x += self.bias
+ return x
+
+
+class ConvBertSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ new_num_attention_heads = config.num_attention_heads // config.head_ratio
+ if new_num_attention_heads < 1:
+ self.head_ratio = config.num_attention_heads
+ self.num_attention_heads = 1
+ else:
+ self.num_attention_heads = new_num_attention_heads
+ self.head_ratio = config.head_ratio
+
+ self.conv_kernel_size = config.conv_kernel_size
+ if config.hidden_size % self.num_attention_heads != 0:
+ raise ValueError("hidden_size should be divisible by num_attention_heads")
+
+ self.attention_head_size = (config.hidden_size // self.num_attention_heads) // 2
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.key_conv_attn_layer = SeparableConv1D(
+ config, config.hidden_size, self.all_head_size, self.conv_kernel_size
+ )
+ self.conv_kernel_layer = nn.Linear(self.all_head_size, self.num_attention_heads * self.conv_kernel_size)
+ self.conv_out_layer = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.unfold = nn.Unfold(
+ kernel_size=[self.conv_kernel_size, 1], padding=[int((self.conv_kernel_size - 1) / 2), 0]
+ )
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+ batch_size = hidden_states.size(0)
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ if encoder_hidden_states is not None:
+ mixed_key_layer = self.key(encoder_hidden_states)
+ mixed_value_layer = self.value(encoder_hidden_states)
+ else:
+ mixed_key_layer = self.key(hidden_states)
+ mixed_value_layer = self.value(hidden_states)
+
+ mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states.transpose(1, 2))
+ mixed_key_conv_attn_layer = mixed_key_conv_attn_layer.transpose(1, 2)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ key_layer = self.transpose_for_scores(mixed_key_layer)
+ value_layer = self.transpose_for_scores(mixed_value_layer)
+ conv_attn_layer = torch.multiply(mixed_key_conv_attn_layer, mixed_query_layer)
+
+ conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
+ conv_kernel_layer = torch.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1])
+ conv_kernel_layer = torch.softmax(conv_kernel_layer, dim=1)
+
+ conv_out_layer = self.conv_out_layer(hidden_states)
+ conv_out_layer = torch.reshape(conv_out_layer, [batch_size, -1, self.all_head_size])
+ conv_out_layer = conv_out_layer.transpose(1, 2).contiguous().unsqueeze(-1)
+ conv_out_layer = nn.functional.unfold(
+ conv_out_layer,
+ kernel_size=[self.conv_kernel_size, 1],
+ dilation=1,
+ padding=[(self.conv_kernel_size - 1) // 2, 0],
+ stride=1,
+ )
+ conv_out_layer = conv_out_layer.transpose(1, 2).reshape(
+ batch_size, -1, self.all_head_size, self.conv_kernel_size
+ )
+ conv_out_layer = torch.reshape(conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size])
+ conv_out_layer = torch.matmul(conv_out_layer, conv_kernel_layer)
+ conv_out_layer = torch.reshape(conv_out_layer, [-1, self.all_head_size])
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in ConvBertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+
+ conv_out = torch.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size])
+ context_layer = torch.cat([context_layer, conv_out], 2)
+
+ # conv and context
+ new_context_layer_shape = context_layer.size()[:-2] + (
+ self.num_attention_heads * self.attention_head_size * 2,
+ )
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+
+class ConvBertSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class ConvBertAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = ConvBertSelfAttention(config)
+ self.output = ConvBertSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class GroupedLinearLayer(nn.Module):
+ def __init__(self, input_size, output_size, num_groups):
+ super().__init__()
+ self.input_size = input_size
+ self.output_size = output_size
+ self.num_groups = num_groups
+ self.group_in_dim = self.input_size // self.num_groups
+ self.group_out_dim = self.output_size // self.num_groups
+ self.weight = nn.Parameter(torch.empty(self.num_groups, self.group_in_dim, self.group_out_dim))
+ self.bias = nn.Parameter(torch.empty(output_size))
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ batch_size = list(hidden_states.size())[0]
+ x = torch.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim])
+ x = x.permute(1, 0, 2)
+ x = torch.matmul(x, self.weight)
+ x = x.permute(1, 0, 2)
+ x = torch.reshape(x, [batch_size, -1, self.output_size])
+ x = x + self.bias
+ return x
+
+
+class ConvBertIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.num_groups == 1:
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ else:
+ self.dense = GroupedLinearLayer(
+ input_size=config.hidden_size, output_size=config.intermediate_size, num_groups=config.num_groups
+ )
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+class ConvBertOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.num_groups == 1:
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ else:
+ self.dense = GroupedLinearLayer(
+ input_size=config.intermediate_size, output_size=config.hidden_size, num_groups=config.num_groups
+ )
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class ConvBertLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ConvBertAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = ConvBertAttention(config)
+ self.intermediate = ConvBertIntermediate(config)
+ self.output = ConvBertOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise AttributeError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ encoder_attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class ConvBertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ConvBertLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions,
+ )
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class ConvBertPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+CONVBERT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CONVBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.",
+ CONVBERT_START_DOCSTRING,
+)
+class ConvBertModel(ConvBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.embeddings = ConvBertEmbeddings(config)
+
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
+
+ self.encoder = ConvBertEncoder(config)
+ self.config = config
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ hidden_states = self.embeddings(
+ input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
+ )
+
+ if hasattr(self, "embeddings_project"):
+ hidden_states = self.embeddings_project(hidden_states)
+
+ hidden_states = self.encoder(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return hidden_states
+
+
+class ConvBertGeneratorPredictions(nn.Module):
+ """Prediction module for the generator, made up of two dense layers."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.activation = get_activation("gelu")
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dense = nn.Linear(config.hidden_size, config.embedding_size)
+
+ def forward(self, generator_hidden_states: torch.FloatTensor) -> torch.FloatTensor:
+ hidden_states = self.dense(generator_hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+
+@add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING)
+class ConvBertForMaskedLM(ConvBertPreTrainedModel):
+ _tied_weights_keys = ["generator.lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.convbert = ConvBertModel(config)
+ self.generator_predictions = ConvBertGeneratorPredictions(config)
+
+ self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.generator_lm_head
+
+ def set_output_embeddings(self, word_embeddings):
+ self.generator_lm_head = word_embeddings
+
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ generator_hidden_states = self.convbert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ )
+ generator_sequence_output = generator_hidden_states[0]
+
+ prediction_scores = self.generator_predictions(generator_sequence_output)
+ prediction_scores = self.generator_lm_head(prediction_scores)
+
+ loss = None
+ # Masked language modeling softmax layer
+ if labels is not None:
+ loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
+ loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + generator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=generator_hidden_states.hidden_states,
+ attentions=generator_hidden_states.attentions,
+ )
+
+
+class ConvBertClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.config = config
+
+ def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
+ x = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class ConvBertForSequenceClassification(ConvBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+ self.convbert = ConvBertModel(config)
+ self.classifier = ConvBertClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class ConvBertForMultipleChoice(ConvBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.convbert = ConvBertModel(config)
+ self.sequence_summary = SequenceSummary(config)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ pooled_output = self.sequence_summary(sequence_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class ConvBertForTokenClassification(ConvBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.convbert = ConvBertModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class ConvBertForQuestionAnswering(ConvBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.convbert = ConvBertModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_tf_convbert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_tf_convbert.py
new file mode 100644
index 0000000000000000000000000000000000000000..7206b3558ace8a26994d9608d3963ee6f34f1e91
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/modeling_tf_convbert.py
@@ -0,0 +1,1468 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 ConvBERT model."""
+
+
+from __future__ import annotations
+
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFSequenceSummary,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_convbert import ConvBertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base"
+_CONFIG_FOR_DOC = "ConvBertConfig"
+
+
+from ..deprecated._archive_maps import TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->ConvBert
+class TFConvBertEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config: ConvBertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ position_ids: tf.Tensor = None,
+ token_type_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ past_key_values_length=0,
+ training: bool = False,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ position_ids = tf.expand_dims(
+ tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFConvBertSelfAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ new_num_attention_heads = int(config.num_attention_heads / config.head_ratio)
+ if new_num_attention_heads < 1:
+ self.head_ratio = config.num_attention_heads
+ num_attention_heads = 1
+ else:
+ num_attention_heads = new_num_attention_heads
+ self.head_ratio = config.head_ratio
+
+ self.num_attention_heads = num_attention_heads
+ self.conv_kernel_size = config.conv_kernel_size
+
+ if config.hidden_size % self.num_attention_heads != 0:
+ raise ValueError("hidden_size should be divisible by num_attention_heads")
+
+ self.attention_head_size = config.hidden_size // config.num_attention_heads
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.query = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+
+ self.key_conv_attn_layer = keras.layers.SeparableConv1D(
+ self.all_head_size,
+ self.conv_kernel_size,
+ padding="same",
+ activation=None,
+ depthwise_initializer=get_initializer(1 / self.conv_kernel_size),
+ pointwise_initializer=get_initializer(config.initializer_range),
+ name="key_conv_attn_layer",
+ )
+
+ self.conv_kernel_layer = keras.layers.Dense(
+ self.num_attention_heads * self.conv_kernel_size,
+ activation=None,
+ name="conv_kernel_layer",
+ kernel_initializer=get_initializer(config.initializer_range),
+ )
+
+ self.conv_out_layer = keras.layers.Dense(
+ self.all_head_size,
+ activation=None,
+ name="conv_out_layer",
+ kernel_initializer=get_initializer(config.initializer_range),
+ )
+
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
+ self.config = config
+
+ def transpose_for_scores(self, x, batch_size):
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
+ return tf.transpose(x, perm=[0, 2, 1, 3])
+
+ def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False):
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(hidden_states)
+ mixed_value_layer = self.value(hidden_states)
+
+ mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ conv_attn_layer = tf.multiply(mixed_key_conv_attn_layer, mixed_query_layer)
+
+ conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
+ conv_kernel_layer = tf.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1])
+ conv_kernel_layer = stable_softmax(conv_kernel_layer, axis=1)
+
+ paddings = tf.constant(
+ [
+ [
+ 0,
+ 0,
+ ],
+ [int((self.conv_kernel_size - 1) / 2), int((self.conv_kernel_size - 1) / 2)],
+ [0, 0],
+ ]
+ )
+
+ conv_out_layer = self.conv_out_layer(hidden_states)
+ conv_out_layer = tf.reshape(conv_out_layer, [batch_size, -1, self.all_head_size])
+ conv_out_layer = tf.pad(conv_out_layer, paddings, "CONSTANT")
+
+ unfold_conv_out_layer = tf.stack(
+ [
+ tf.slice(conv_out_layer, [0, i, 0], [batch_size, shape_list(mixed_query_layer)[1], self.all_head_size])
+ for i in range(self.conv_kernel_size)
+ ],
+ axis=-1,
+ )
+
+ conv_out_layer = tf.reshape(unfold_conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size])
+
+ conv_out_layer = tf.matmul(conv_out_layer, conv_kernel_layer)
+ conv_out_layer = tf.reshape(conv_out_layer, [-1, self.all_head_size])
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = tf.matmul(
+ query_layer, key_layer, transpose_b=True
+ ) # (batch size, num_heads, seq_len_q, seq_len_k)
+ dk = tf.cast(shape_list(key_layer)[-1], attention_scores.dtype) # scale attention_scores
+ attention_scores = attention_scores / tf.math.sqrt(dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ value_layer = tf.reshape(
+ mixed_value_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]
+ )
+ value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
+
+ context_layer = tf.matmul(attention_probs, value_layer)
+ context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
+
+ conv_out = tf.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size])
+ context_layer = tf.concat([context_layer, conv_out], 2)
+ context_layer = tf.reshape(
+ context_layer, (batch_size, -1, self.head_ratio * self.all_head_size)
+ ) # (batch_size, seq_len_q, all_head_size)
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+ if getattr(self, "key_conv_attn_layer", None) is not None:
+ with tf.name_scope(self.key_conv_attn_layer.name):
+ self.key_conv_attn_layer.build([None, None, self.config.hidden_size])
+ if getattr(self, "conv_kernel_layer", None) is not None:
+ with tf.name_scope(self.conv_kernel_layer.name):
+ self.conv_kernel_layer.build([None, None, self.all_head_size])
+ if getattr(self, "conv_out_layer", None) is not None:
+ with tf.name_scope(self.conv_out_layer.name):
+ self.conv_out_layer.build([None, None, self.config.hidden_size])
+
+
+class TFConvBertSelfOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFConvBertAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFConvBertSelfAttention(config, name="self")
+ self.dense_output = TFConvBertSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(self, input_tensor, attention_mask, head_mask, output_attentions, training=False):
+ self_outputs = self.self_attention(
+ input_tensor, attention_mask, head_mask, output_attentions, training=training
+ )
+ attention_output = self.dense_output(self_outputs[0], input_tensor, training=training)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+class GroupedLinearLayer(keras.layers.Layer):
+ def __init__(self, input_size, output_size, num_groups, kernel_initializer, **kwargs):
+ super().__init__(**kwargs)
+ self.input_size = input_size
+ self.output_size = output_size
+ self.num_groups = num_groups
+ self.kernel_initializer = kernel_initializer
+ self.group_in_dim = self.input_size // self.num_groups
+ self.group_out_dim = self.output_size // self.num_groups
+
+ def build(self, input_shape=None):
+ self.kernel = self.add_weight(
+ "kernel",
+ shape=[self.group_out_dim, self.group_in_dim, self.num_groups],
+ initializer=self.kernel_initializer,
+ trainable=True,
+ )
+
+ self.bias = self.add_weight(
+ "bias", shape=[self.output_size], initializer=self.kernel_initializer, dtype=self.dtype, trainable=True
+ )
+ super().build(input_shape)
+
+ def call(self, hidden_states):
+ batch_size = shape_list(hidden_states)[0]
+ x = tf.transpose(tf.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]), [1, 0, 2])
+ x = tf.matmul(x, tf.transpose(self.kernel, [2, 1, 0]))
+ x = tf.transpose(x, [1, 0, 2])
+ x = tf.reshape(x, [batch_size, -1, self.output_size])
+ x = tf.nn.bias_add(value=x, bias=self.bias)
+ return x
+
+
+class TFConvBertIntermediate(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ if config.num_groups == 1:
+ self.dense = keras.layers.Dense(
+ config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ else:
+ self.dense = GroupedLinearLayer(
+ config.hidden_size,
+ config.intermediate_size,
+ num_groups=config.num_groups,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFConvBertOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.num_groups == 1:
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ else:
+ self.dense = GroupedLinearLayer(
+ config.intermediate_size,
+ config.hidden_size,
+ num_groups=config.num_groups,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+
+
+class TFConvBertLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFConvBertAttention(config, name="attention")
+ self.intermediate = TFConvBertIntermediate(config, name="intermediate")
+ self.bert_output = TFConvBertOutput(config, name="output")
+
+ def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False):
+ attention_outputs = self.attention(
+ hidden_states, attention_mask, head_mask, output_attentions, training=training
+ )
+ attention_output = attention_outputs[0]
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.bert_output(intermediate_output, attention_output, training=training)
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "bert_output", None) is not None:
+ with tf.name_scope(self.bert_output.name):
+ self.bert_output.build(None)
+
+
+class TFConvBertEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.layer = [TFConvBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training=False,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states, attention_mask, head_mask[i], output_attentions, training=training
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFConvBertPredictionHeadTransform(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.transform_act_fn = config.hidden_act
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+@keras_serializable
+class TFConvBertMainLayer(keras.layers.Layer):
+ config_class = ConvBertConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.embeddings = TFConvBertEmbeddings(config, name="embeddings")
+
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
+
+ self.encoder = TFConvBertEncoder(config, name="encoder")
+ self.config = config
+
+ def get_input_embeddings(self):
+ return self.embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = value.shape[0]
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ def get_extended_attention_mask(self, attention_mask, input_shape, dtype):
+ if attention_mask is None:
+ attention_mask = tf.fill(input_shape, 1)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype)
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
+
+ return extended_attention_mask
+
+ def get_head_mask(self, head_mask):
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ return head_mask
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(input_shape, 1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(input_shape, 0)
+
+ hidden_states = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, hidden_states.dtype)
+ head_mask = self.get_head_mask(head_mask)
+
+ if hasattr(self, "embeddings_project"):
+ hidden_states = self.embeddings_project(hidden_states, training=training)
+
+ hidden_states = self.encoder(
+ hidden_states,
+ extended_attention_mask,
+ head_mask,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training=training,
+ )
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "embeddings_project", None) is not None:
+ with tf.name_scope(self.embeddings_project.name):
+ self.embeddings_project.build([None, None, self.config.embedding_size])
+
+
+class TFConvBertPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ConvBertConfig
+ base_model_prefix = "convbert"
+
+
+CONVBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CONVBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.",
+ CONVBERT_START_DOCSTRING,
+)
+class TFConvBertModel(TFConvBertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ token_type_ids: Optional[Union[np.array, tf.Tensor]] = None,
+ position_ids: Optional[Union[np.array, tf.Tensor]] = None,
+ head_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ outputs = self.convbert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+
+
+class TFConvBertMaskedLMHead(keras.layers.Layer):
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ super().build(input_shape)
+
+ def get_output_embeddings(self):
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+class TFConvBertGeneratorPredictions(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dense = keras.layers.Dense(config.embedding_size, name="dense")
+ self.config = config
+
+ def call(self, generator_hidden_states, training=False):
+ hidden_states = self.dense(generator_hidden_states)
+ hidden_states = get_tf_activation("gelu")(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING)
+class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, **kwargs)
+
+ self.config = config
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+ self.generator_predictions = TFConvBertGeneratorPredictions(config, name="generator_predictions")
+
+ if isinstance(config.hidden_act, str):
+ self.activation = get_tf_activation(config.hidden_act)
+ else:
+ self.activation = config.hidden_act
+
+ self.generator_lm_head = TFConvBertMaskedLMHead(config, self.convbert.embeddings, name="generator_lm_head")
+
+ def get_lm_head(self):
+ return self.generator_lm_head
+
+ def get_prefix_bias_name(self):
+ return self.name + "/" + self.generator_lm_head.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFMaskedLMOutput]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ generator_hidden_states = self.convbert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ generator_sequence_output = generator_hidden_states[0]
+ prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
+ prediction_scores = self.generator_lm_head(prediction_scores, training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + generator_hidden_states[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=generator_hidden_states.hidden_states,
+ attentions=generator_hidden_states.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+ if getattr(self, "generator_predictions", None) is not None:
+ with tf.name_scope(self.generator_predictions.name):
+ self.generator_predictions.build(None)
+ if getattr(self, "generator_lm_head", None) is not None:
+ with tf.name_scope(self.generator_lm_head.name):
+ self.generator_lm_head.build(None)
+
+
+class TFConvBertClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+
+ self.config = config
+
+ def call(self, hidden_states, **kwargs):
+ x = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = get_tf_activation(self.config.hidden_act)(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+ self.classifier = TFConvBertClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFSequenceClassifierOutput]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.classifier(outputs[0], training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+ self.sequence_summary = TFSequenceSummary(
+ config, initializer_range=config.initializer_range, name="sequence_summary"
+ )
+ self.classifier = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(
+ CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFMultipleChoiceModelOutput]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
+ flat_inputs_embeds = (
+ tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.convbert(
+ flat_input_ids,
+ flat_attention_mask,
+ flat_token_type_ids,
+ flat_position_ids,
+ head_mask,
+ flat_inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.sequence_summary(outputs[0], training=training)
+ logits = self.classifier(logits)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+ if getattr(self, "sequence_summary", None) is not None:
+ with tf.name_scope(self.sequence_summary.name):
+ self.sequence_summary.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassificationLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFTokenClassifierOutput]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(sequence_output)
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ CONVBERT_START_DOCSTRING,
+)
+class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnsweringLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.convbert = TFConvBertMainLayer(config, name="convbert")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: tf.Tensor | None = None,
+ end_positions: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFQuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.convbert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convbert", None) is not None:
+ with tf.name_scope(self.convbert.name):
+ self.convbert.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0fe2c018341c55b2446a6f12052a3fa36bd9246
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert.py
@@ -0,0 +1,503 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for ConvBERT."""
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+# Copied from transformers.models.bert.tokenization_bert.load_vocab
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with bert-base-cased->YituTech/conv-bert-base, ConvBertTokenizer->BertTokenizer, BERT->ConvBERT
+class ConvBertTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a ConvBERT tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original ConvBERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text, split_special_tokens=False):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(
+ text, never_split=self.all_special_tokens if not split_special_tokens else None
+ ):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A ConvBERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ConvBERT sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..65bedb73fe9171f0473c7d5a35c08dee7432eb78
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/tokenization_convbert_fast.py
@@ -0,0 +1,172 @@
+# coding=utf-8
+# Copyright The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for ConvBERT."""
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_convbert import ConvBertTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with bert-base-cased->YituTech/conv-bert-base, Bert->ConvBert, BERT->ConvBERT
+class ConvBertTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" ConvBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ clean_text (`bool`, *optional*, defaults to `True`):
+ Whether or not to clean the text before tokenization by removing any control characters and replacing all
+ whitespaces by the classic one.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original ConvBERT).
+ wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
+ The prefix for subwords.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = ConvBertTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ normalizer_state.get("lowercase", do_lower_case) != do_lower_case
+ or normalizer_state.get("strip_accents", strip_accents) != strip_accents
+ or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
+ ):
+ normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
+ normalizer_state["lowercase"] = do_lower_case
+ normalizer_state["strip_accents"] = strip_accents
+ normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
+ self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
+
+ self.do_lower_case = do_lower_case
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A ConvBERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1 is not None:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ConvBERT sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/image_processing_mask2former.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/image_processing_mask2former.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..74d4ff67fca9ca6eeadedc347c079db630a8b60a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/image_processing_mask2former.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..aae869bdff51041bda7632222eaa5065f97d36eb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__init__.py
@@ -0,0 +1,44 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
+
+
+_import_structure = {}
+
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_mluke"] = ["MLukeTokenizer"]
+
+if TYPE_CHECKING:
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_mluke import MLukeTokenizer
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..f361082fb3c5162bed9d6364ac3dd3a7bdf92104
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,229 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert mLUKE checkpoint."""
+
+import argparse
+import json
+import os
+from collections import OrderedDict
+
+import torch
+
+from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
+from transformers.tokenization_utils_base import AddedToken
+
+
+@torch.no_grad()
+def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size):
+ # Load configuration defined in the metadata file
+ with open(metadata_path) as metadata_file:
+ metadata = json.load(metadata_file)
+ config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"])
+
+ # Load in the weights from the checkpoint_path
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["module"]
+
+ # Load the entity vocab file
+ entity_vocab = load_original_entity_vocab(entity_vocab_path)
+ # add an entry for [MASK2]
+ entity_vocab["[MASK2]"] = max(entity_vocab.values()) + 1
+ config.entity_vocab_size += 1
+
+ tokenizer = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"])
+
+ # Add special tokens to the token vocabulary for downstream tasks
+ entity_token_1 = AddedToken("", lstrip=False, rstrip=False)
+ entity_token_2 = AddedToken("", lstrip=False, rstrip=False)
+ tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]})
+ config.vocab_size += 2
+
+ print(f"Saving tokenizer to {pytorch_dump_folder_path}")
+ tokenizer.save_pretrained(pytorch_dump_folder_path)
+ with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "r") as f:
+ tokenizer_config = json.load(f)
+ tokenizer_config["tokenizer_class"] = "MLukeTokenizer"
+ with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "w") as f:
+ json.dump(tokenizer_config, f)
+
+ with open(os.path.join(pytorch_dump_folder_path, MLukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f:
+ json.dump(entity_vocab, f)
+
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
+
+ # Initialize the embeddings of the special tokens
+ ent_init_index = tokenizer.convert_tokens_to_ids(["@"])[0]
+ ent2_init_index = tokenizer.convert_tokens_to_ids(["#"])[0]
+
+ word_emb = state_dict["embeddings.word_embeddings.weight"]
+ ent_emb = word_emb[ent_init_index].unsqueeze(0)
+ ent2_emb = word_emb[ent2_init_index].unsqueeze(0)
+ state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb])
+ # add special tokens for 'entity_predictions.bias'
+ for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
+ decoder_bias = state_dict[bias_name]
+ ent_decoder_bias = decoder_bias[ent_init_index].unsqueeze(0)
+ ent2_decoder_bias = decoder_bias[ent2_init_index].unsqueeze(0)
+ state_dict[bias_name] = torch.cat([decoder_bias, ent_decoder_bias, ent2_decoder_bias])
+
+ # Initialize the query layers of the entity-aware self-attention mechanism
+ for layer_index in range(config.num_hidden_layers):
+ for matrix_name in ["query.weight", "query.bias"]:
+ prefix = f"encoder.layer.{layer_index}.attention.self."
+ state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name]
+
+ # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
+ entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"]
+ entity_mask_emb = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0)
+ state_dict["entity_embeddings.entity_embeddings.weight"] = torch.cat([entity_emb, entity_mask_emb])
+ # add [MASK2] for 'entity_predictions.bias'
+ entity_prediction_bias = state_dict["entity_predictions.bias"]
+ entity_mask_bias = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0)
+ state_dict["entity_predictions.bias"] = torch.cat([entity_prediction_bias, entity_mask_bias])
+
+ model = LukeForMaskedLM(config=config).eval()
+
+ state_dict.pop("entity_predictions.decoder.weight")
+ state_dict.pop("lm_head.decoder.weight")
+ state_dict.pop("lm_head.decoder.bias")
+ state_dict_for_hugging_face = OrderedDict()
+ for key, value in state_dict.items():
+ if not (key.startswith("lm_head") or key.startswith("entity_predictions")):
+ state_dict_for_hugging_face[f"luke.{key}"] = state_dict[key]
+ else:
+ state_dict_for_hugging_face[key] = state_dict[key]
+
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict_for_hugging_face, strict=False)
+
+ if set(unexpected_keys) != {"luke.embeddings.position_ids"}:
+ raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}")
+ if set(missing_keys) != {
+ "lm_head.decoder.weight",
+ "lm_head.decoder.bias",
+ "entity_predictions.decoder.weight",
+ }:
+ raise ValueError(f"Unexpected missing_keys: {missing_keys}")
+
+ model.tie_weights()
+ assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
+ assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
+
+ # Check outputs
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification")
+
+ text = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
+ span = (0, 9)
+ encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
+
+ outputs = model(**encoding)
+
+ # Verify word hidden states
+ if model_size == "large":
+ raise NotImplementedError
+ else: # base
+ expected_shape = torch.Size((1, 33, 768))
+ expected_slice = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]])
+
+ if not (outputs.last_hidden_state.shape == expected_shape):
+ raise ValueError(
+ f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}"
+ )
+ if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Verify entity hidden states
+ if model_size == "large":
+ raise NotImplementedError
+ else: # base
+ expected_shape = torch.Size((1, 1, 768))
+ expected_slice = torch.tensor([[-0.1482, 0.0609, 0.0322]])
+
+ if not (outputs.entity_last_hidden_state.shape == expected_shape):
+ raise ValueError(
+ f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
+ f" {expected_shape}"
+ )
+ if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Verify masked word/entity prediction
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
+ text = "Tokyo is the capital of ."
+ span = (24, 30)
+ encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
+
+ outputs = model(**encoding)
+
+ input_ids = encoding["input_ids"][0].tolist()
+ mask_position_id = input_ids.index(tokenizer.convert_tokens_to_ids(""))
+ predicted_id = outputs.logits[0][mask_position_id].argmax(dim=-1)
+ assert "Japan" == tokenizer.decode(predicted_id)
+
+ predicted_entity_id = outputs.entity_logits[0][0].argmax().item()
+ multilingual_predicted_entities = [
+ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
+ ]
+ assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan"
+
+ # Finally, save our PyTorch model and tokenizer
+ print("Saving PyTorch model to {}".format(pytorch_dump_folder_path))
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+def load_original_entity_vocab(entity_vocab_path):
+ SPECIAL_TOKENS = ["[MASK]", "[PAD]", "[UNK]"]
+
+ data = [json.loads(line) for line in open(entity_vocab_path)]
+
+ new_mapping = {}
+ for entry in data:
+ entity_id = entry["id"]
+ for entity_name, language in entry["entities"]:
+ if entity_name in SPECIAL_TOKENS:
+ new_mapping[entity_name] = entity_id
+ break
+ new_entity_name = f"{language}:{entity_name}"
+ new_mapping[new_entity_name] = entity_id
+ return new_mapping
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
+ parser.add_argument(
+ "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
+ )
+ parser.add_argument(
+ "--entity_vocab_path",
+ default=None,
+ type=str,
+ help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
+ )
+ parser.add_argument(
+ "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
+ )
+ args = parser.parse_args()
+ convert_luke_checkpoint(
+ args.checkpoint_path,
+ args.metadata_path,
+ args.entity_vocab_path,
+ args.pytorch_dump_folder_path,
+ args.model_size,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ef5e64ed2f6a7a8369c47903eb9628a212cc6a4
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py
@@ -0,0 +1,1614 @@
+# coding=utf-8
+# Copyright 2021 Studio Ousia and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Tokenization classes for mLUKE."""
+
+
+import itertools
+import json
+import os
+from collections.abc import Mapping
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import sentencepiece as spm
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...tokenization_utils_base import (
+ ENCODE_KWARGS_DOCSTRING,
+ AddedToken,
+ BatchEncoding,
+ EncodedInput,
+ PaddingStrategy,
+ TensorType,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+ to_py_obj,
+)
+from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging
+
+
+logger = logging.get_logger(__name__)
+
+EntitySpan = Tuple[int, int]
+EntitySpanInput = List[EntitySpan]
+Entity = str
+EntityInput = List[Entity]
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"}
+
+
+ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
+ return_token_type_ids (`bool`, *optional*):
+ Whether to return token type IDs. If left to the default, will return the token type IDs according to
+ the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
+ of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
+ of returning overflowing tokens.
+ return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
+ Whether or not to return special tokens mask information.
+ return_offsets_mapping (`bool`, *optional*, defaults to `False`):
+ Whether or not to return `(char_start, char_end)` for each token.
+
+ This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
+ Python's tokenizer, this method will raise `NotImplementedError`.
+ return_length (`bool`, *optional*, defaults to `False`):
+ Whether or not to return the lengths of the encoded inputs.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+ **kwargs: passed to the `self.tokenize()` method
+
+ Return:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
+ if *"token_type_ids"* is in `self.model_input_names`).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **entity_ids** -- List of entity ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model.
+
+ - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when
+ `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model
+ (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when
+ `task="entity_span_classification"`).
+ - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when
+ `task="entity_span_classification"`).
+ - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
+ regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
+ - **length** -- The length of the inputs (when `return_length=True`)
+
+"""
+
+
+class MLukeTokenizer(PreTrainedTokenizer):
+ """
+ Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ entity_vocab_file (`str`):
+ Path to the entity vocabulary file.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ task (`str`, *optional*):
+ Task for which you want to prepare sequences. One of `"entity_classification"`,
+ `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity
+ sequence is automatically created based on the given entity span(s).
+ max_entity_length (`int`, *optional*, defaults to 32):
+ The maximum length of `entity_ids`.
+ max_mention_length (`int`, *optional*, defaults to 30):
+ The maximum number of tokens inside an entity span.
+ entity_token_1 (`str`, *optional*, defaults to ``):
+ The special token used to represent an entity span in a word token sequence. This token is only used when
+ `task` is set to `"entity_classification"` or `"entity_pair_classification"`.
+ entity_token_2 (`str`, *optional*, defaults to ``):
+ The special token used to represent an entity span in a word token sequence. This token is only used when
+ `task` is set to `"entity_pair_classification"`.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`):
+ Additional special tokens used by the tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ entity_vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ task=None,
+ max_entity_length=32,
+ max_mention_length=30,
+ entity_token_1="",
+ entity_token_2="",
+ entity_unk_token="[UNK]",
+ entity_pad_token="[PAD]",
+ entity_mask_token="[MASK]",
+ entity_mask2_token="[MASK2]",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ # we add 2 special tokens for downstream tasks
+ # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
+ entity_token_1 = (
+ AddedToken(entity_token_1, lstrip=False, rstrip=False)
+ if isinstance(entity_token_1, str)
+ else entity_token_1
+ )
+ entity_token_2 = (
+ AddedToken(entity_token_2, lstrip=False, rstrip=False)
+ if isinstance(entity_token_2, str)
+ else entity_token_2
+ )
+ additional_special_tokens = kwargs.pop("additional_special_tokens", [])
+ additional_special_tokens += [entity_token_1, entity_token_2]
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ self.vocab_file = vocab_file
+
+ # Original fairseq vocab and spm vocab must be "aligned":
+ # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
+ # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
+ # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-'
+ # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
+
+ # Mimic fairseq token-to-id alignment for the first 4 token
+ self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3}
+
+ # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
+ self.fairseq_offset = 1
+
+ self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset
+ self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
+
+ with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
+ self.entity_vocab = json.load(entity_vocab_handle)
+ for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
+ if entity_special_token not in self.entity_vocab:
+ raise ValueError(
+ f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
+ f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
+ )
+ self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
+ self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
+ self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
+ self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
+
+ self.task = task
+ if task is None or task == "entity_span_classification":
+ self.max_entity_length = max_entity_length
+ elif task == "entity_classification":
+ self.max_entity_length = 1
+ elif task == "entity_pair_classification":
+ self.max_entity_length = 2
+ else:
+ raise ValueError(
+ f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
+ " 'entity_span_classification'] only."
+ )
+
+ self.max_mention_length = max_mention_length
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ task=task,
+ max_entity_length=max_entity_length,
+ max_mention_length=max_mention_length,
+ entity_token_1=entity_token_1,
+ entity_token_2=entity_token_2,
+ entity_unk_token=entity_unk_token,
+ entity_pad_token=entity_pad_token,
+ entity_mask_token=entity_mask_token,
+ entity_mask2_token=entity_mask2_token,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ @property
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size
+ def vocab_size(self):
+ return len(self.sp_model) + self.fairseq_offset + 1 # Add the token
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize
+ def _tokenize(self, text: str) -> List[str]:
+ # TODO check if the t5/llama PR also applies here
+ return self.sp_model.encode(text, out_type=str)
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ if token in self.fairseq_tokens_to_ids:
+ return self.fairseq_tokens_to_ids[token]
+ spm_id = self.sp_model.PieceToId(token)
+
+ # Need to return unknown token if the SP model returned 0
+ return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ if index in self.fairseq_ids_to_tokens:
+ return self.fairseq_ids_to_tokens[index]
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ return out_string
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__
+ def __call__(
+ self,
+ text: Union[TextInput, List[TextInput]],
+ text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
+ entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
+ entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
+ entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
+ entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences, depending on the task you want to prepare them for.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
+ tokenizer does not support tokenization based on pretokenized strings.
+ text_pair (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
+ tokenizer does not support tokenization based on pretokenized strings.
+ entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
+ The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
+ with two integers denoting character-based start and end positions of entities. If you specify
+ `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
+ the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
+ sequence must be equal to the length of each sequence of `entities`.
+ entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
+ The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
+ with two integers denoting character-based start and end positions of entities. If you specify the
+ `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
+ length of each sequence must be equal to the length of each sequence of `entities_pair`.
+ entities (`List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
+ representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
+ Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
+ each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
+ `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
+ is automatically constructed by filling it with the [MASK] entity.
+ entities_pair (`List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
+ representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
+ Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
+ each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
+ `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
+ sequences is automatically constructed by filling it with the [MASK] entity.
+ max_entity_length (`int`, *optional*):
+ The maximum length of `entity_ids`.
+ """
+ # Input type checking for clearer error
+ is_valid_single_text = isinstance(text, str)
+ is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
+ if not (is_valid_single_text or is_valid_batch_text):
+ raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")
+
+ is_valid_single_text_pair = isinstance(text_pair, str)
+ is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
+ len(text_pair) == 0 or isinstance(text_pair[0], str)
+ )
+ if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
+ raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")
+
+ is_batched = bool(isinstance(text, (list, tuple)))
+
+ if is_batched:
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ if entities is None:
+ batch_entities_or_entities_pairs = None
+ else:
+ batch_entities_or_entities_pairs = (
+ list(zip(entities, entities_pair)) if entities_pair is not None else entities
+ )
+
+ if entity_spans is None:
+ batch_entity_spans_or_entity_spans_pairs = None
+ else:
+ batch_entity_spans_or_entity_spans_pairs = (
+ list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
+ )
+
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
+ batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ is_split_into_words=is_split_into_words,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ is_split_into_words=is_split_into_words,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus
+ def _encode_plus(
+ self,
+ text: Union[TextInput],
+ text_pair: Optional[Union[TextInput]] = None,
+ entity_spans: Optional[EntitySpanInput] = None,
+ entity_spans_pair: Optional[EntitySpanInput] = None,
+ entities: Optional[EntityInput] = None,
+ entities_pair: Optional[EntityInput] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast. "
+ "More information on available tokenizers at "
+ "https://github.com/huggingface/transformers/pull/2674"
+ )
+
+ if is_split_into_words:
+ raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
+
+ (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ ) = self._create_input_sequence(
+ text=text,
+ text_pair=text_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ **kwargs,
+ )
+
+ # prepare_for_model will create the attention_mask and token_type_ids
+ return self.prepare_for_model(
+ first_ids,
+ pair_ids=second_ids,
+ entity_ids=first_entity_ids,
+ pair_entity_ids=second_entity_ids,
+ entity_token_spans=first_entity_token_spans,
+ pair_entity_token_spans=second_entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding=padding_strategy.value,
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ prepend_batch_axis=True,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ verbose=verbose,
+ )
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
+ batch_entity_spans_or_entity_spans_pairs: Optional[
+ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
+ ] = None,
+ batch_entities_or_entities_pairs: Optional[
+ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
+ ] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast."
+ )
+
+ if is_split_into_words:
+ raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
+
+ # input_ids is a list of tuples (one for each example in the batch)
+ input_ids = []
+ entity_ids = []
+ entity_token_spans = []
+ for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
+ if not isinstance(text_or_text_pair, (list, tuple)):
+ text, text_pair = text_or_text_pair, None
+ else:
+ text, text_pair = text_or_text_pair
+
+ entities, entities_pair = None, None
+ if batch_entities_or_entities_pairs is not None:
+ entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
+ if entities_or_entities_pairs:
+ if isinstance(entities_or_entities_pairs[0], str):
+ entities, entities_pair = entities_or_entities_pairs, None
+ else:
+ entities, entities_pair = entities_or_entities_pairs
+
+ entity_spans, entity_spans_pair = None, None
+ if batch_entity_spans_or_entity_spans_pairs is not None:
+ entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
+ if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
+ entity_spans_or_entity_spans_pairs[0], list
+ ):
+ entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
+ else:
+ entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None
+
+ (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ ) = self._create_input_sequence(
+ text=text,
+ text_pair=text_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ **kwargs,
+ )
+ input_ids.append((first_ids, second_ids))
+ entity_ids.append((first_entity_ids, second_entity_ids))
+ entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))
+
+ batch_outputs = self._batch_prepare_for_model(
+ input_ids,
+ batch_entity_ids_pairs=entity_ids,
+ batch_entity_token_spans_pairs=entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=return_tensors,
+ verbose=verbose,
+ )
+
+ return BatchEncoding(batch_outputs)
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format
+ def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
+ if not isinstance(entity_spans, list):
+ raise ValueError("entity_spans should be given as a list")
+ elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
+ raise ValueError(
+ "entity_spans should be given as a list of tuples containing the start and end character indices"
+ )
+
+ if entities is not None:
+ if not isinstance(entities, list):
+ raise ValueError("If you specify entities, they should be given as a list")
+
+ if len(entities) > 0 and not isinstance(entities[0], str):
+ raise ValueError("If you specify entities, they should be given as a list of entity names")
+
+ if len(entities) != len(entity_spans):
+ raise ValueError("If you specify entities, entities and entity_spans must be the same length")
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence
+ def _create_input_sequence(
+ self,
+ text: Union[TextInput],
+ text_pair: Optional[Union[TextInput]] = None,
+ entities: Optional[EntityInput] = None,
+ entities_pair: Optional[EntityInput] = None,
+ entity_spans: Optional[EntitySpanInput] = None,
+ entity_spans_pair: Optional[EntitySpanInput] = None,
+ **kwargs,
+ ) -> Tuple[list, list, list, list, list, list]:
+ def get_input_ids(text):
+ tokens = self.tokenize(text, **kwargs)
+ return self.convert_tokens_to_ids(tokens)
+
+ def get_input_ids_and_entity_token_spans(text, entity_spans):
+ if entity_spans is None:
+ return get_input_ids(text), None
+
+ cur = 0
+ input_ids = []
+ entity_token_spans = [None] * len(entity_spans)
+
+ split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
+ char_pos2token_pos = {}
+
+ for split_char_position in split_char_positions:
+ orig_split_char_position = split_char_position
+ if (
+ split_char_position > 0 and text[split_char_position - 1] == " "
+ ): # whitespace should be prepended to the following token
+ split_char_position -= 1
+ if cur != split_char_position:
+ input_ids += get_input_ids(text[cur:split_char_position])
+ cur = split_char_position
+ char_pos2token_pos[orig_split_char_position] = len(input_ids)
+
+ input_ids += get_input_ids(text[cur:])
+
+ entity_token_spans = [
+ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
+ ]
+
+ return input_ids, entity_token_spans
+
+ first_ids, second_ids = None, None
+ first_entity_ids, second_entity_ids = None, None
+ first_entity_token_spans, second_entity_token_spans = None, None
+
+ if self.task is None:
+ if entity_spans is None:
+ first_ids = get_input_ids(text)
+ else:
+ self._check_entity_input_format(entities, entity_spans)
+
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+ if entities is None:
+ first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
+ else:
+ first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]
+
+ if text_pair is not None:
+ if entity_spans_pair is None:
+ second_ids = get_input_ids(text_pair)
+ else:
+ self._check_entity_input_format(entities_pair, entity_spans_pair)
+
+ second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
+ text_pair, entity_spans_pair
+ )
+ if entities_pair is None:
+ second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
+ else:
+ second_entity_ids = [
+ self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
+ ]
+
+ elif self.task == "entity_classification":
+ if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
+ raise ValueError(
+ "Entity spans should be a list containing a single tuple "
+ "containing the start and end character indices of an entity"
+ )
+ first_entity_ids = [self.entity_mask_token_id]
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+
+ # add special tokens to input ids
+ entity_token_start, entity_token_end = first_entity_token_spans[0]
+ first_ids = (
+ first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
+ )
+ first_ids = (
+ first_ids[:entity_token_start]
+ + [self.additional_special_tokens_ids[0]]
+ + first_ids[entity_token_start:]
+ )
+ first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]
+
+ elif self.task == "entity_pair_classification":
+ if not (
+ isinstance(entity_spans, list)
+ and len(entity_spans) == 2
+ and isinstance(entity_spans[0], tuple)
+ and isinstance(entity_spans[1], tuple)
+ ):
+ raise ValueError(
+ "Entity spans should be provided as a list of two tuples, "
+ "each tuple containing the start and end character indices of an entity"
+ )
+
+ head_span, tail_span = entity_spans
+ first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+
+ head_token_span, tail_token_span = first_entity_token_spans
+ token_span_with_special_token_ids = [
+ (head_token_span, self.additional_special_tokens_ids[0]),
+ (tail_token_span, self.additional_special_tokens_ids[1]),
+ ]
+ if head_token_span[0] < tail_token_span[0]:
+ first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
+ first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
+ token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
+ else:
+ first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
+ first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
+
+ for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
+ first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
+ first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]
+
+ elif self.task == "entity_span_classification":
+ if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
+ raise ValueError(
+ "Entity spans should be provided as a list of tuples, "
+ "each tuple containing the start and end character indices of an entity"
+ )
+
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+ first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
+
+ else:
+ raise ValueError(f"Task {self.task} not supported")
+
+ return (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ )
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model
+ def _batch_prepare_for_model(
+ self,
+ batch_ids_pairs: List[Tuple[List[int], None]],
+ batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
+ batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
+ manages a moving window (with user defined stride) for overflowing tokens
+
+
+ Args:
+ batch_ids_pairs: list of tokenized input ids or input ids pairs
+ batch_entity_ids_pairs: list of entity ids or entity ids pairs
+ batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
+ max_entity_length: The maximum length of the entity sequence.
+ """
+
+ batch_outputs = {}
+ for input_ids, entity_ids, entity_token_span_pairs in zip(
+ batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
+ ):
+ first_ids, second_ids = input_ids
+ first_entity_ids, second_entity_ids = entity_ids
+ first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
+ outputs = self.prepare_for_model(
+ first_ids,
+ second_ids,
+ entity_ids=first_entity_ids,
+ pair_entity_ids=second_entity_ids,
+ entity_token_spans=first_entity_token_spans,
+ pair_entity_token_spans=second_entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=None, # we pad in batch afterward
+ return_attention_mask=False, # we pad in batch afterward
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=None, # We convert the whole batch to tensors at the end
+ prepend_batch_axis=False,
+ verbose=verbose,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ batch_outputs = self.pad(
+ batch_outputs,
+ padding=padding_strategy.value,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ return batch_outputs
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model
+ def prepare_for_model(
+ self,
+ ids: List[int],
+ pair_ids: Optional[List[int]] = None,
+ entity_ids: Optional[List[int]] = None,
+ pair_entity_ids: Optional[List[int]] = None,
+ entity_token_spans: Optional[List[Tuple[int, int]]] = None,
+ pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ prepend_batch_axis: bool = False,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
+ entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
+ while taking into account the special tokens and manages a moving window (with user defined stride) for
+ overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
+ or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
+ error.
+
+ Args:
+ ids (`List[int]`):
+ Tokenized input ids of the first sequence.
+ pair_ids (`List[int]`, *optional*):
+ Tokenized input ids of the second sequence.
+ entity_ids (`List[int]`, *optional*):
+ Entity ids of the first sequence.
+ pair_entity_ids (`List[int]`, *optional*):
+ Entity ids of the second sequence.
+ entity_token_spans (`List[Tuple[int, int]]`, *optional*):
+ Entity spans of the first sequence.
+ pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
+ Entity spans of the second sequence.
+ max_entity_length (`int`, *optional*):
+ The maximum length of the entity sequence.
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Compute lengths
+ pair = bool(pair_ids is not None)
+ len_ids = len(ids)
+ len_pair_ids = len(pair_ids) if pair else 0
+
+ if return_token_type_ids and not add_special_tokens:
+ raise ValueError(
+ "Asking to return token_type_ids while setting add_special_tokens to False "
+ "results in an undefined behavior. Please set add_special_tokens to True or "
+ "set return_token_type_ids to None."
+ )
+ if (
+ return_overflowing_tokens
+ and truncation_strategy == TruncationStrategy.LONGEST_FIRST
+ and pair_ids is not None
+ ):
+ raise ValueError(
+ "Not possible to return overflowing tokens for pair of sequences with the "
+ "`longest_first`. Please select another truncation strategy than `longest_first`, "
+ "for instance `only_second` or `only_first`."
+ )
+
+ # Load from model defaults
+ if return_token_type_ids is None:
+ return_token_type_ids = "token_type_ids" in self.model_input_names
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ encoded_inputs = {}
+
+ # Compute the total size of the returned word encodings
+ total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
+
+ # Truncation: Handle max sequence length and max_entity_length
+ overflowing_tokens = []
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
+ # truncate words up to max_length
+ ids, pair_ids, overflowing_tokens = self.truncate_sequences(
+ ids,
+ pair_ids=pair_ids,
+ num_tokens_to_remove=total_len - max_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_tokens"] = overflowing_tokens
+ encoded_inputs["num_truncated_tokens"] = total_len - max_length
+
+ # Add special tokens
+ if add_special_tokens:
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
+ token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
+ entity_token_offset = 1 # 1 * token
+ pair_entity_token_offset = len(ids) + 3 # 1 * token & 2 * tokens
+ else:
+ sequence = ids + pair_ids if pair else ids
+ token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
+ entity_token_offset = 0
+ pair_entity_token_offset = len(ids)
+
+ # Build output dictionary
+ encoded_inputs["input_ids"] = sequence
+ if return_token_type_ids:
+ encoded_inputs["token_type_ids"] = token_type_ids
+ if return_special_tokens_mask:
+ if add_special_tokens:
+ encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
+ else:
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
+
+ # Set max entity length
+ if not max_entity_length:
+ max_entity_length = self.max_entity_length
+
+ if entity_ids is not None:
+ total_entity_len = 0
+ num_invalid_entities = 0
+ valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
+ valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]
+
+ total_entity_len += len(valid_entity_ids)
+ num_invalid_entities += len(entity_ids) - len(valid_entity_ids)
+
+ valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
+ if pair_entity_ids is not None:
+ valid_pair_entity_ids = [
+ ent_id
+ for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
+ if span[1] <= len(pair_ids)
+ ]
+ valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
+ total_entity_len += len(valid_pair_entity_ids)
+ num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)
+
+ if num_invalid_entities != 0:
+ logger.warning(
+ f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
+ " truncation of input tokens"
+ )
+
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
+ # truncate entities up to max_entity_length
+ valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
+ valid_entity_ids,
+ pair_ids=valid_pair_entity_ids,
+ num_tokens_to_remove=total_entity_len - max_entity_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+ valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
+ if valid_pair_entity_token_spans is not None:
+ valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_entities"] = overflowing_entities
+ encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length
+
+ final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
+ encoded_inputs["entity_ids"] = list(final_entity_ids)
+ entity_position_ids = []
+ entity_start_positions = []
+ entity_end_positions = []
+ for token_spans, offset in (
+ (valid_entity_token_spans, entity_token_offset),
+ (valid_pair_entity_token_spans, pair_entity_token_offset),
+ ):
+ if token_spans is not None:
+ for start, end in token_spans:
+ start += offset
+ end += offset
+ position_ids = list(range(start, end))[: self.max_mention_length]
+ position_ids += [-1] * (self.max_mention_length - end + start)
+ entity_position_ids.append(position_ids)
+ entity_start_positions.append(start)
+ entity_end_positions.append(end - 1)
+
+ encoded_inputs["entity_position_ids"] = entity_position_ids
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = entity_start_positions
+ encoded_inputs["entity_end_positions"] = entity_end_positions
+
+ if return_token_type_ids:
+ encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])
+
+ # Check lengths
+ self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
+
+ # Padding
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
+ encoded_inputs = self.pad(
+ encoded_inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding=padding_strategy.value,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ if return_length:
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
+
+ batch_outputs = BatchEncoding(
+ encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
+ )
+
+ return batch_outputs
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad
+ def pad(
+ self,
+ encoded_inputs: Union[
+ BatchEncoding,
+ List[BatchEncoding],
+ Dict[str, EncodedInput],
+ Dict[str, List[EncodedInput]],
+ List[Dict[str, EncodedInput]],
+ ],
+ padding: Union[bool, str, PaddingStrategy] = True,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
+ in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
+ `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
+ are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
+ you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
+ specific device of your tensors however.
+
+ Args:
+ encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
+ Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
+ tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
+ List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
+ collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
+ TensorFlow tensors), see the note above for the return type.
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
+ index) among:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ max_length (`int`, *optional*):
+ Maximum length of the returned list and optionally padding length (see above).
+ max_entity_length (`int`, *optional*):
+ The maximum length of the entity sequence.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
+ masks?](../glossary#attention-mask)
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+ """
+ # If we have a list of dicts, let's convert it in a dict of lists
+ # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
+ if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
+ encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
+
+ # The model's main input name, usually `input_ids`, has be passed for padding
+ if self.model_input_names[0] not in encoded_inputs:
+ raise ValueError(
+ "You should supply an encoding or a list of encodings to this method "
+ f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
+ )
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if not required_input:
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = []
+ return encoded_inputs
+
+ # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
+ # and rebuild them afterwards if no return_tensors is specified
+ # Note that we lose the specific device the tensor may be on for PyTorch
+
+ first_element = required_input[0]
+ if isinstance(first_element, (list, tuple)):
+ # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
+ index = 0
+ while len(required_input[index]) == 0:
+ index += 1
+ if index < len(required_input):
+ first_element = required_input[index][0]
+ # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
+ if not isinstance(first_element, (int, list, tuple)):
+ if is_tf_tensor(first_element):
+ return_tensors = "tf" if return_tensors is None else return_tensors
+ elif is_torch_tensor(first_element):
+ return_tensors = "pt" if return_tensors is None else return_tensors
+ elif isinstance(first_element, np.ndarray):
+ return_tensors = "np" if return_tensors is None else return_tensors
+ else:
+ raise ValueError(
+ f"type of {first_element} unknown: {type(first_element)}. "
+ "Should be one of a python, numpy, pytorch or tensorflow object."
+ )
+
+ for key, value in encoded_inputs.items():
+ encoded_inputs[key] = to_py_obj(value)
+
+ # Convert padding_strategy in PaddingStrategy
+ padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
+ padding=padding, max_length=max_length, verbose=verbose
+ )
+
+ if max_entity_length is None:
+ max_entity_length = self.max_entity_length
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+ if required_input and not isinstance(required_input[0], (list, tuple)):
+ encoded_inputs = self._pad(
+ encoded_inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding_strategy=padding_strategy,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+ return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
+
+ batch_size = len(required_input)
+ if any(len(v) != batch_size for v in encoded_inputs.values()):
+ raise ValueError("Some items in the output dictionary have a different batch size than others.")
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = max(len(inputs) for inputs in required_input)
+ max_entity_length = (
+ max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
+ )
+ padding_strategy = PaddingStrategy.MAX_LENGTH
+
+ batch_outputs = {}
+ for i in range(batch_size):
+ inputs = {k: v[i] for k, v in encoded_inputs.items()}
+ outputs = self._pad(
+ inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding_strategy=padding_strategy,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ return BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+
+
+ Args:
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ max_entity_length: The maximum length of the entity sequence.
+ padding_strategy: PaddingStrategy to use for padding.
+
+
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+
+
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ entities_provided = bool("entity_ids" in encoded_inputs)
+
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(encoded_inputs["input_ids"])
+ if entities_provided:
+ max_entity_length = len(encoded_inputs["entity_ids"])
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ if (
+ entities_provided
+ and max_entity_length is not None
+ and pad_to_multiple_of is not None
+ and (max_entity_length % pad_to_multiple_of != 0)
+ ):
+ max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
+ len(encoded_inputs["input_ids"]) != max_length
+ or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
+ )
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
+ if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
+ encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])
+
+ if needs_to_be_padded:
+ difference = max_length - len(encoded_inputs["input_ids"])
+ if entities_provided:
+ entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if entities_provided:
+ encoded_inputs["entity_attention_mask"] = (
+ encoded_inputs["entity_attention_mask"] + [0] * entity_difference
+ )
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
+ if entities_provided:
+ encoded_inputs["entity_token_type_ids"] = (
+ encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
+ )
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
+ if entities_provided:
+ encoded_inputs["entity_ids"] = (
+ encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
+ )
+ encoded_inputs["entity_position_ids"] = (
+ encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
+ )
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = (
+ encoded_inputs["entity_start_positions"] + [0] * entity_difference
+ )
+ encoded_inputs["entity_end_positions"] = (
+ encoded_inputs["entity_end_positions"] + [0] * entity_difference
+ )
+
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if entities_provided:
+ encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
+ "entity_attention_mask"
+ ]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
+ if entities_provided:
+ encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
+ "entity_token_type_ids"
+ ]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
+ if entities_provided:
+ encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
+ "entity_ids"
+ ]
+ encoded_inputs["entity_position_ids"] = [
+ [-1] * self.max_mention_length
+ ] * entity_difference + encoded_inputs["entity_position_ids"]
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
+ "entity_start_positions"
+ ]
+ encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
+ "entity_end_positions"
+ ]
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ entity_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
+ )
+
+ with open(entity_vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ return out_vocab_file, entity_vocab_file
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An XLM-RoBERTa sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
+ not make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..97d6ddb31ac00cb60820b68cc22a9c30ab1a570c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__init__.py
@@ -0,0 +1,140 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_sentencepiece_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {"configuration_pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig"]}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_pegasus"] = ["PegasusTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_pegasus_fast"] = ["PegasusTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_pegasus"] = [
+ "PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "PegasusForCausalLM",
+ "PegasusForConditionalGeneration",
+ "PegasusModel",
+ "PegasusPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_pegasus"] = [
+ "TFPegasusForConditionalGeneration",
+ "TFPegasusModel",
+ "TFPegasusPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_pegasus"] = [
+ "FlaxPegasusForConditionalGeneration",
+ "FlaxPegasusModel",
+ "FlaxPegasusPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_pegasus import PegasusTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_pegasus_fast import PegasusTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_pegasus import (
+ PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
+ PegasusForCausalLM,
+ PegasusForConditionalGeneration,
+ PegasusModel,
+ PegasusPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_pegasus import (
+ FlaxPegasusForConditionalGeneration,
+ FlaxPegasusModel,
+ FlaxPegasusPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5792cf2579145e69926755e97b5f40403bd91bc7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/configuration_pegasus.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/configuration_pegasus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c211fb10fdbdb0bc0a0707a055de8ccefad56f8e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/configuration_pegasus.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/convert_pegasus_tf_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/convert_pegasus_tf_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1689e7afb9d4177e5977be35c8d72abcaf07d8b6
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/convert_pegasus_tf_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_flax_pegasus.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_flax_pegasus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6480475c15fabd5ff4da05bf2b5bf4718e4d1b90
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_flax_pegasus.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_pegasus.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_pegasus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..db86bc04d49fcb8c6220d12cb72115c1533ef8f3
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_pegasus.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_tf_pegasus.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_tf_pegasus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bb48653e65ef9190495f8b9eda14caf6334ebae9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_tf_pegasus.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ff4b6058bc4142ca70787b7d0b8d9ad50576e4a4
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f4de226a4f5d98e1b44c6346e3d900643776285
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/tokenization_pegasus_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/configuration_pegasus.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/configuration_pegasus.py
new file mode 100644
index 0000000000000000000000000000000000000000..39d3865fd57b4e1c23db97a5d2ca6cab1ecbd0d1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/configuration_pegasus.py
@@ -0,0 +1,164 @@
+# coding=utf-8
+# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PEGASUS model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class PegasusConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`PegasusModel`]. It is used to instantiate an
+ PEGASUS model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the PEGASUS
+ [google/pegasus-large](https://huggingface.co/google/pegasus-large) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the PEGASUS model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`PegasusModel`] or [`TFPegasusModel`].
+ d_model (`int`, *optional*, defaults to 1024):
+ Dimensionality of the layers and the pooler layer.
+ encoder_layers (`int`, *optional*, defaults to 12):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 12):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ scale_embedding (`bool`, *optional*, defaults to `False`):
+ Scale embeddings by diving by sqrt(d_model).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models)
+ forced_eos_token_id (`int`, *optional*, defaults to 1):
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
+ `eos_token_id`.
+
+ Example:
+
+ ```python
+ >>> from transformers import PegasusConfig, PegasusModel
+
+ >>> # Initializing a PEGASUS google/pegasus-large style configuration
+ >>> configuration = PegasusConfig()
+
+ >>> # Initializing a model (with random weights) from the google/pegasus-large style configuration
+ >>> model = PegasusModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "pegasus"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
+
+ def __init__(
+ self,
+ vocab_size=50265,
+ max_position_embeddings=1024,
+ encoder_layers=12,
+ encoder_ffn_dim=4096,
+ encoder_attention_heads=16,
+ decoder_layers=12,
+ decoder_ffn_dim=4096,
+ decoder_attention_heads=16,
+ encoder_layerdrop=0.0,
+ decoder_layerdrop=0.0,
+ use_cache=True,
+ is_encoder_decoder=True,
+ activation_function="gelu",
+ d_model=1024,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ decoder_start_token_id=0,
+ scale_embedding=False,
+ pad_token_id=0,
+ eos_token_id=1,
+ forced_eos_token_id=1,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.use_cache = use_cache
+ self.num_hidden_layers = encoder_layers
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
+ super().__init__(
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ decoder_start_token_id=decoder_start_token_id,
+ forced_eos_token_id=forced_eos_token_id,
+ **kwargs,
+ )
+
+ @property
+ def num_attention_heads(self) -> int:
+ return self.encoder_attention_heads
+
+ @property
+ def hidden_size(self) -> int:
+ return self.d_model
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf183b590c1b853099abae10ded4aa6a120fe107
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py
@@ -0,0 +1,131 @@
+# coding=utf-8
+# Copyright 2020 Google and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+from pathlib import Path
+from typing import Dict
+
+import tensorflow as tf
+import torch
+from tqdm import tqdm
+
+from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
+from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
+
+
+PATTERNS = [
+ # replace left string with right string to get the relevant state_dict key (identical state dict to bart)
+ ["memory_attention", "encoder_attn"],
+ ["attention", "attn"],
+ ["/", "."],
+ [".LayerNorm.gamma", "_layer_norm.weight"],
+ [".LayerNorm.beta", "_layer_norm.bias"],
+ ["r.layer_", "r.layers."],
+ ["output_proj", "out_proj"],
+ ["ffn.dense_1.", "fc2."],
+ ["ffn.dense.", "fc1."],
+ ["ffn_layer_norm", "final_layer_norm"],
+ ["kernel", "weight"],
+ ["encoder_layer_norm.", "encoder.layer_norm."],
+ ["decoder_layer_norm.", "decoder.layer_norm."],
+ ["embeddings.weights", "shared.weight"],
+]
+
+
+def rename_state_dict_key(k):
+ for pegasus_name, hf_name in PATTERNS:
+ k = k.replace(pegasus_name, hf_name)
+ return k
+
+
+# See appendix C of paper for all hyperparams
+
+
+def convert_pegasus(tf_weights: dict, cfg_updates: dict) -> PegasusForConditionalGeneration:
+ cfg_kwargs = DEFAULTS.copy()
+ cfg_kwargs.update(cfg_updates)
+ cfg = PegasusConfig(**cfg_kwargs)
+ torch_model = PegasusForConditionalGeneration(cfg)
+ sd = torch_model.model.state_dict()
+ mapping = {}
+ for k, v in tf_weights.items():
+ new_k = rename_state_dict_key(k)
+ if new_k not in sd:
+ raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
+
+ if "dense" in k or "proj" in new_k:
+ v = v.T
+ mapping[new_k] = torch.tensor(v, dtype=sd[new_k].dtype)
+ assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
+ # make sure embedding.padding_idx is respected
+ mapping["shared.weight"][cfg.pad_token_id] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1])
+ mapping["encoder.embed_tokens.weight"] = mapping["shared.weight"]
+ mapping["decoder.embed_tokens.weight"] = mapping["shared.weight"]
+ empty_biases = {k: torch.zeros_like(v) for k, v in sd.items() if k.endswith("bias") and k not in mapping}
+ mapping.update(**empty_biases)
+ missing, extra = torch_model.model.load_state_dict(mapping, strict=False)
+ unexpected_missing = [
+ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"]
+ ]
+ assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
+ assert extra == [], f"no matches found for the following tf keys {extra}"
+ return torch_model
+
+
+def get_tf_weights_as_numpy(path="./ckpt/aeslc/model.ckpt-32000") -> Dict:
+ init_vars = tf.train.list_variables(path)
+ tf_weights = {}
+ ignore_name = ["Adafactor", "global_step"]
+ for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
+ skip_key = any(pat in name for pat in ignore_name)
+ if skip_key:
+ continue
+ array = tf.train.load_variable(path, name)
+ tf_weights[name] = array
+ return tf_weights
+
+
+def convert_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str):
+ # save tokenizer first
+ dataset = Path(ckpt_path).parent.name
+ desired_max_model_length = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"]
+ tok = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=desired_max_model_length)
+ assert tok.model_max_length == desired_max_model_length
+ tok.save_pretrained(save_dir)
+
+ # convert model
+ tf_weights = get_tf_weights_as_numpy(ckpt_path)
+ cfg_updates = task_specific_params[f"summarization_{dataset}"]
+ if dataset == "large":
+ cfg_updates["task_specific_params"] = task_specific_params
+ torch_model = convert_pegasus(tf_weights, cfg_updates)
+ torch_model.save_pretrained(save_dir)
+ sd = torch_model.state_dict()
+ sd.pop("model.decoder.embed_positions.weight")
+ sd.pop("model.encoder.embed_positions.weight")
+ torch.save(sd, Path(save_dir) / "pytorch_model.bin")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
+ parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
+ args = parser.parse_args()
+ if args.save_dir is None:
+ dataset = Path(args.tf_ckpt_path).parent.name
+ args.save_dir = os.path.join("pegasus", dataset)
+ convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_flax_pegasus.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_flax_pegasus.py
new file mode 100644
index 0000000000000000000000000000000000000000..f822af1f227683e6e6c7a1ce970e9a21134f7fce
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_flax_pegasus.py
@@ -0,0 +1,1530 @@
+# coding=utf-8
+# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Flax PEGASUS model."""
+
+
+import math
+import random
+from functools import partial
+from typing import Callable, Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+import numpy as np
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+from jax.random import PRNGKey
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxSeq2SeqLMOutput,
+ FlaxSeq2SeqModelOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ add_start_docstrings_to_model_forward,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import add_start_docstrings, logging, replace_return_docstrings
+from .configuration_pegasus import PegasusConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/pegasus-large"
+_CONFIG_FOR_DOC = "PegasusConfig"
+
+PEGASUS_START_DOCSTRING = r"""
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+PEGASUS_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+PEGASUS_ENCODE_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+PEGASUS_DECODE_INPUTS_DOCSTRING = r"""
+ Args:
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+ encoder_outputs (`tuple(tuple(jnp.ndarray)`):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
+def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = jnp.zeros_like(input_ids)
+ shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
+ shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
+
+ shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
+ return shifted_input_ids
+
+
+# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
+def create_sinusoidal_positions(n_pos, dim):
+ position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
+ sentinel = dim // 2 + dim % 2
+ out = np.zeros_like(position_enc)
+ out[:, 0:sentinel] = np.sin(position_enc[:, 0::2])
+ out[:, sentinel:] = np.cos(position_enc[:, 1::2])
+
+ return jnp.array(out)
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Pegasus
+class FlaxPegasusAttention(nn.Module):
+ config: PegasusConfig
+ embed_dim: int
+ num_heads: int
+ dropout: float = 0.0
+ causal: bool = False
+ bias: bool = True
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self) -> None:
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+
+ dense = partial(
+ nn.Dense,
+ self.embed_dim,
+ use_bias=self.bias,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
+ self.out_proj = dense()
+
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
+
+ @nn.compact
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ key_value_states: Optional[jnp.ndarray] = None,
+ attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.k_proj(key_value_states)
+ value_states = self.v_proj(key_value_states)
+ else:
+ # self_attention
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.dropout,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights
+
+
+# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Pegasus
+class FlaxPegasusEncoderLayer(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxPegasusAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.encoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+ self.fc1 = nn.Dense(
+ self.config.encoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Pegasus
+class FlaxPegasusEncoderLayerCollection(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.encoder_layers)
+ ]
+ self.layerdrop = self.config.encoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for encoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
+ layer_outputs = (None, None)
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ deterministic,
+ )
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Pegasus
+class FlaxPegasusDecoderLayer(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxPegasusAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ causal=True,
+ dtype=self.dtype,
+ )
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.encoder_attn = FlaxPegasusAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.fc1 = nn.Dense(
+ self.config.decoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+ hidden_states, cross_attn_weights = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Pegasus
+class FlaxPegasusDecoderLayerCollection(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.decoder_layers)
+ ]
+ self.layerdrop = self.config.decoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop):
+ layer_outputs = (None, None, None)
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ deterministic=deterministic,
+ )
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class FlaxPegasusEncoder(nn.Module):
+ config: PegasusConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_source_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
+ self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype)
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ # embed positions
+ embed_pos = jnp.take(self.embed_positions, position_ids, axis=0)
+ # explicitly cast the positions here, since self.embed_positions are not registered as parameters
+ embed_pos = embed_pos.astype(inputs_embeds.dtype)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ last_hidden_state = outputs[0]
+ last_hidden_state = self.layer_norm(last_hidden_state)
+
+ # update the last element in `hidden_states` after applying `layernorm` above
+ hidden_states = None
+ if output_hidden_states:
+ hidden_states = outputs[1]
+ hidden_states = hidden_states[:-1] + (last_hidden_state,)
+
+ if not return_dict:
+ outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=last_hidden_state,
+ hidden_states=hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class FlaxPegasusDecoder(nn.Module):
+ config: PegasusConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_target_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
+
+ self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype)
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ # embed positions
+ positions = jnp.take(self.embed_positions, position_ids, axis=0)
+ # explicitly cast the positions here, since self.embed_positions are not registered as parameters
+ positions = positions.astype(inputs_embeds.dtype)
+
+ hidden_states = inputs_embeds + positions
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ last_hidden_state = outputs[0]
+ last_hidden_state = self.layer_norm(last_hidden_state)
+
+ # update the last element in `hidden_states` after applying `layernorm` above
+ hidden_states = None
+ if output_hidden_states:
+ hidden_states = outputs[1]
+ hidden_states = hidden_states[:-1] + (last_hidden_state,)
+
+ if not return_dict:
+ outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=last_hidden_state,
+ hidden_states=hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Pegasus
+class FlaxPegasusModule(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.shared = nn.Embed(
+ self.config.vocab_size,
+ self.config.d_model,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ dtype=self.dtype,
+ )
+
+ self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+ self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+
+ def _get_encoder_module(self):
+ return self.encoder
+
+ def _get_decoder_module(self):
+ return self.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return FlaxSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel):
+ config_class = PegasusConfig
+ base_model_prefix: str = "model"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: PegasusConfig,
+ input_shape: Tuple[int] = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ attention_mask = jnp.ones_like(input_ids)
+ decoder_input_ids = input_ids
+ decoder_attention_mask = jnp.ones_like(input_ids)
+
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ )["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def init_cache(self, batch_size, max_length, encoder_outputs):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
+ cross-attention of the decoder.
+ """
+ # init input variables to retrieve cache
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
+ )
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0),
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ init_cache=True,
+ method=_decoder_forward, # we only need to call the decoder to init the cache
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig)
+ def encode(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
+
+ >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
+ encode_module = module._get_encoder_module()
+ return encode_module(input_ids, attention_mask, position_ids, **kwargs)
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ method=_encoder_forward,
+ )
+
+ @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig)
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
+
+ >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxPegasusAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past = outputs
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past = outputs
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
+ def __call__(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ decoder_input_ids: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # prepare encoder inputs
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # prepare decoder inputs
+ if decoder_input_ids is None:
+ decoder_input_ids = shift_tokens_right(
+ input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
+ )
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ if decoder_position_ids is None:
+ batch_size, sequence_length = decoder_input_ids.shape
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ )
+
+
+@add_start_docstrings(
+ "The bare Pegasus Model transformer outputting raw hidden-states without any specific head on top.",
+ PEGASUS_START_DOCSTRING,
+)
+class FlaxPegasusModel(FlaxPegasusPreTrainedModel):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ module_class = FlaxPegasusModule
+
+
+append_call_sample_docstring(FlaxPegasusModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Pegasus
+class FlaxPegasusForConditionalGenerationModule(nn.Module):
+ config: PegasusConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype)
+ self.lm_head = nn.Dense(
+ self.model.shared.num_embeddings,
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
+
+ def _get_encoder_module(self):
+ return self.model.encoder
+
+ def _get_decoder_module(self):
+ return self.model.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ position_ids=position_ids,
+ decoder_position_ids=decoder_position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = self.lm_head(hidden_states)
+
+ lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return output
+
+ return FlaxSeq2SeqLMOutput(
+ logits=lm_logits,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
+)
+class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel):
+ module_class = FlaxPegasusForConditionalGenerationModule
+ dtype: jnp.dtype = jnp.float32
+
+ @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=PegasusConfig)
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ deterministic: bool = True,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
+
+ >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> logits = outputs.logits
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxPegasusAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ outputs = decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = module.model.variables["params"]["shared"]["embedding"]
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = module.lm_head(hidden_states)
+
+ lm_logits += module.final_logits_bias.astype(self.dtype)
+ return lm_logits, outputs
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ if past_key_values is None:
+ lm_logits, decoder_outputs = outputs
+ else:
+ (lm_logits, decoder_outputs), past = outputs
+
+ if return_dict:
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
+ logits=lm_logits,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ )
+ else:
+ outputs = (lm_logits,) + decoder_outputs[1:]
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ max_length,
+ attention_mask: Optional[jax.Array] = None,
+ decoder_attention_mask: Optional[jax.Array] = None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # initializing the cache
+ batch_size, seq_length = decoder_input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyways.
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if decoder_attention_mask is not None:
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "encoder_attention_mask": attention_mask,
+ "decoder_attention_mask": extended_attention_mask,
+ "decoder_position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """
+ Returns:
+
+ Summarization example:
+
+ ```pyton
+ >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
+
+ >>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large')
+ >>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large')
+
+ >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
+
+ >>> # Generate Summary
+ >>> summary_ids = model.generate(inputs['input_ids']).sequences
+ >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
+ ```
+
+ Mask filling example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+ >>> TXT = "My friends are but they eat too many carbs."
+
+ >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
+ >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
+ >>> logits = model(input_ids).logits
+
+ >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
+ >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
+ >>> values, predictions = jax.lax.top_k(probs)
+
+ >>> tokenizer.decode(predictions).split()
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxPegasusForConditionalGeneration, PEGASUS_INPUTS_DOCSTRING + FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING
+)
+append_replace_return_docstrings(
+ FlaxPegasusForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_pegasus.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_pegasus.py
new file mode 100644
index 0000000000000000000000000000000000000000..069c6aa6fe631646d20712db8b71e7abb72ac3c5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_pegasus.py
@@ -0,0 +1,1693 @@
+# coding=utf-8
+# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch PEGASUS model."""
+
+import copy
+import math
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_pegasus import PegasusConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/pegasus-large"
+_CONFIG_FOR_DOC = "PegasusConfig"
+
+
+# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Pegasus
+class PegasusSinusoidalPositionalEmbedding(nn.Embedding):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
+ super().__init__(num_positions, embedding_dim)
+ self.weight = self._init_weight(self.weight)
+
+ @staticmethod
+ def _init_weight(out: nn.Parameter) -> nn.Parameter:
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ n_pos, dim = out.shape
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ out.requires_grad = False # set early to avoid an error in pytorch-1.8+
+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
+ out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
+ out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
+ out.detach_()
+ return out
+
+ @torch.no_grad()
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Pegasus
+class PegasusAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[PegasusConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+PEGASUS_ATTENTION_CLASSES = {"eager": PegasusAttention}
+
+
+# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Pegasus, MBART->PEGASUS
+class PegasusEncoderLayer(nn.Module):
+ def __init__(self, config: PegasusConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ config=config,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ layer_head_mask: torch.Tensor,
+ output_attentions: bool = False,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Pegasus, MBART->PEGASUS
+class PegasusDecoderLayer(nn.Module):
+ def __init__(self, config: PegasusConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ is_causal=True,
+ config=config,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ config=config,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class PegasusPreTrainedModel(PreTrainedModel):
+ config_class = PegasusConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, PegasusSinusoidalPositionalEmbedding):
+ pass
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+PEGASUS_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`PegasusConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PEGASUS_GENERATION_EXAMPLE = r"""
+ Summarization example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, PegasusForConditionalGeneration
+
+ >>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
+
+ >>> ARTICLE_TO_SUMMARIZE = (
+ ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
+ ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
+ ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
+ ... )
+ >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
+
+ >>> # Generate Summary
+ >>> summary_ids = model.generate(inputs["input_ids"])
+ >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "California's largest electricity provider has turned off power to hundreds of thousands of customers."
+ ```
+"""
+
+PEGASUS_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class PegasusEncoder(PegasusPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`PegasusEncoderLayer`].
+
+ Args:
+ config: PegasusConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+
+ embed_dim = config.d_model
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
+
+ self.embed_positions = PegasusSinusoidalPositionalEmbedding(
+ config.max_position_embeddings,
+ embed_dim,
+ self.padding_idx,
+ )
+ self.layers = nn.ModuleList([PegasusEncoderLayer(config) for _ in range(config.encoder_layers)])
+ self.layer_norm = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def resize_position_embeddings(self, new_num_position_embeddings: int):
+ """
+ Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
+ config.max_position_embeddings`.
+
+ Arguments:
+ new_num_position_embeddings (`int`):
+ The number of new position embeddings. If position embeddings are learned, increasing the size will add
+ newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
+ position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
+ add correct vectors at the end following the position encoding algorithm, whereas reducing the size
+ will remove vectors from the end.
+ """
+ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
+ self.config.max_position_embeddings = new_num_position_embeddings
+
+ self.embed_positions = PegasusSinusoidalPositionalEmbedding(
+ self.config.max_position_embeddings,
+ self.config.d_model,
+ self.padding_idx,
+ )
+ self.embed_positions.to(self.device)
+
+ def get_position_embeddings(self) -> nn.Embedding:
+ """
+ Returns the position embeddings matrix
+ """
+ return self.embed_positions
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ head_mask=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+
+ hidden_states = inputs_embeds + embed_pos
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class PegasusDecoder(PegasusPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
+
+ Args:
+ config: PegasusConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_target_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
+
+ self.embed_positions = PegasusSinusoidalPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ self.padding_idx,
+ )
+ self.layers = nn.ModuleList([PegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.layer_norm = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def resize_position_embeddings(self, new_num_position_embeddings: int):
+ """
+ Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
+ config.max_position_embeddings`.
+
+ Arguments:
+ new_num_position_embeddings (`int`):
+ The number of new position embeddings. If position embeddings are learned, increasing the size will add
+ newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
+ position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
+ add correct vectors at the end following the position encoding algorithm, whereas reducing the size
+ will remove vectors from the end.
+ """
+ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
+ self.config.max_position_embeddings = new_num_position_embeddings
+
+ self.embed_positions = PegasusSinusoidalPositionalEmbedding(
+ self.config.max_position_embeddings,
+ self.config.d_model,
+ self.padding_idx,
+ )
+ self.embed_positions.to(self.device)
+
+ def get_position_embeddings(self) -> nn.Embedding:
+ """
+ Returns the position embeddings matrix
+ """
+ return self.embed_positions
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ inputs_embeds=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # embed positions
+ positions = self.embed_positions(input_shape, past_key_values_length)
+
+ hidden_states = inputs_embeds + positions
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
+ PEGASUS_START_DOCSTRING,
+)
+class PegasusModel(PegasusPreTrainedModel):
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
+
+ def __init__(self, config: PegasusConfig):
+ super().__init__(config)
+
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
+
+ self.encoder = PegasusEncoder(config, self.shared)
+ self.decoder = PegasusDecoder(config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, value):
+ self.shared = value
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def resize_position_embeddings(self, new_num_position_embeddings: int):
+ """
+ Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
+ config.max_position_embeddings`.
+
+ Arguments:
+ new_num_position_embeddings (`int`):
+ The number of new position embeddings. If position embeddings are learned, increasing the size will add
+ newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
+ position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
+ add correct vectors at the end following the position encoding algorithm, whereas reducing the size
+ will remove vectors from the end.
+ """
+ self.config.max_position_embeddings = new_num_position_embeddings
+ self.encoder.resize_position_embeddings(new_num_position_embeddings)
+ self.decoder.resize_position_embeddings(new_num_position_embeddings)
+
+ def get_position_embeddings(self) -> Tuple[nn.Embedding]:
+ """
+ Returns the position embeddings matrix
+ """
+ return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
+
+ @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Seq2SeqModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, PegasusModel
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+ >>> model = PegasusModel.from_pretrained("google/pegasus-large")
+
+ >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
+ >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
+ >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 4, 1024]
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
+)
+class PegasusForConditionalGeneration(PegasusPreTrainedModel):
+ base_model_prefix = "model"
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(self, config: PegasusConfig):
+ super().__init__(config)
+ self.model = PegasusModel(config)
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
+ return new_embeddings
+
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
+ old_num_tokens = self.final_logits_bias.shape[-1]
+ if new_num_tokens <= old_num_tokens:
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
+ else:
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
+ self.register_buffer("final_logits_bias", new_bias)
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def resize_position_embeddings(self, new_num_position_embeddings: int):
+ """
+ Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
+ config.max_position_embeddings`.
+
+ Arguments:
+ new_num_position_embeddings (`int`):
+ The number of new position embeddings. If position embeddings are learned, increasing the size will add
+ newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
+ position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
+ add correct vectors at the end following the position encoding algorithm, whereas reducing the size
+ will remove vectors from the end.
+ """
+ self.config.max_position_embeddings = new_num_position_embeddings
+ self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
+ self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
+
+ def get_position_embeddings(self) -> Tuple[nn.Embedding]:
+ """
+ Returns the position embeddings matrix
+ """
+ return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
+
+ @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if decoder_input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+
+# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Pegasus
+class PegasusDecoderWrapper(PegasusPreTrainedModel):
+ """
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
+ used in combination with the [`EncoderDecoderModel`] framework.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.decoder = PegasusDecoder(config)
+
+ def forward(self, *args, **kwargs):
+ return self.decoder(*args, **kwargs)
+
+
+class PegasusForCausalLM(PegasusPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ config = copy.deepcopy(config)
+ config.is_decoder = True
+ config.is_encoder_decoder = False
+ super().__init__(config)
+ self.model = PegasusDecoderWrapper(config)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model.decoder = decoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ def get_position_embeddings(self) -> nn.Embedding:
+ """
+ Returns the position embeddings matrix
+ """
+ return self.model.decoder.get_position_embeddings()
+
+ def resize_position_embeddings(self, new_num_position_embeddings: int):
+ """
+ Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
+ config.max_position_embeddings`.
+
+ Arguments:
+ new_num_position_embeddings (`int`):
+ The number of new position embeddings. If position embeddings are learned, increasing the size will add
+ newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
+ position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
+ add correct vectors at the end following the position encoding algorithm, whereas reducing the size
+ will remove vectors from the end.
+ """
+ self.config.max_position_embeddings = new_num_position_embeddings
+ self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
+
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ # Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-base->google/pegasus-large
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ if the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
+ in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, PegasusForCausalLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
+ >>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
+ >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> logits = outputs.logits
+ >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
+ >>> list(logits.shape) == expected_shape
+ True
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ head_mask=head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ logits = self.lm_head(outputs[0])
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
+ ):
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_ids.shape)
+
+ if past_key_values:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+ # first step, decoder_cached_states are empty
+ return {
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_tf_pegasus.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_tf_pegasus.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3acdc027fb1a0ca78bbe0a088767d47343e615a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/modeling_tf_pegasus.py
@@ -0,0 +1,1572 @@
+# coding=utf-8
+# Copyright 2021, Google Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 Pegasus model."""
+
+
+from __future__ import annotations
+
+import random
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFSeq2SeqLMOutput,
+ TFSeq2SeqModelOutput,
+)
+
+# Public API
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFModelInputType,
+ TFPreTrainedModel,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_pegasus import PegasusConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/pegasus-large"
+_CONFIG_FOR_DOC = "PegasusConfig"
+
+
+LARGE_NEGATIVE = -1e8
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
+def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
+ start_tokens = tf.fill(
+ (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
+ )
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids = tf.where(
+ shifted_input_ids == -100,
+ tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
+ shifted_input_ids,
+ )
+
+ # "Verify that `labels` has only positive values and -100"
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
+
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
+ with tf.control_dependencies([assert_gte0]):
+ shifted_input_ids = tf.identity(shifted_input_ids)
+
+ return shifted_input_ids
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
+def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz = input_ids_shape[0]
+ tgt_len = input_ids_shape[1]
+ mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
+ mask_cond = tf.range(shape_list(mask)[-1])
+
+ mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
+
+ if past_key_values_length > 0:
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
+
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
+def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ src_len = shape_list(mask)[1]
+ tgt_len = tgt_len if tgt_len is not None else src_len
+ one_cst = tf.constant(1.0)
+ mask = tf.cast(mask, dtype=one_cst.dtype)
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
+
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
+
+
+# Copied from transformers.models.marian.modeling_tf_marian.TFMarianSinusoidalPositionalEmbedding with Marian->Pegasus
+class TFPegasusSinusoidalPositionalEmbedding(keras.layers.Layer):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, **kwargs):
+ super().__init__(**kwargs)
+
+ if embedding_dim % 2 != 0:
+ raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
+
+ self.embedding_dim = embedding_dim
+ self.num_positions = num_positions
+
+ def build(self, input_shape: tf.TensorShape):
+ """
+ Build shared token embedding layer Shared weights logic adapted from
+ https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
+ """
+
+ weight = self._init_weight(self.num_positions, self.embedding_dim)
+
+ self.weight = self.add_weight(
+ name="embeddings",
+ shape=[self.num_positions, self.embedding_dim],
+ )
+ weight = tf.cast(weight, dtype=self.weight.dtype)
+
+ self.weight.assign(weight)
+
+ super().build(input_shape)
+
+ @staticmethod
+ def _init_weight(n_pos: int, dim: int):
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ table = np.zeros_like(position_enc)
+ # index 0 is all zero
+ table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2])
+ table[:, dim // 2 :] = np.cos(position_enc[:, 1::2])
+ # convert to tensor
+ table = tf.convert_to_tensor(table)
+ tf.stop_gradient(table)
+ return table
+
+ def call(
+ self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
+ ):
+ """Input is expected to be of size [bsz x seqlen]."""
+ if position_ids is None:
+ seq_len = input_shape[1]
+ position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
+ return tf.gather(self.weight, position_ids)
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Pegasus
+class TFPegasusAttention(keras.layers.Layer):
+ """Multi-headed attention from "Attention Is All You Need"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.embed_dim = embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = keras.layers.Dropout(dropout)
+ self.head_dim = embed_dim // num_heads
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
+ self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
+ self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
+ self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
+
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ key_value_states: tf.Tensor | None = None,
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
+ attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
+ key_states = tf.reshape(key_states, proj_shape)
+ value_states = tf.reshape(value_states, proj_shape)
+
+ src_len = shape_list(key_states)[1]
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_weights),
+ [bsz * self.num_heads, tgt_len, src_len],
+ message=(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {shape_list(attn_weights)}"
+ ),
+ )
+
+ if attention_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attention_mask),
+ [bsz, 1, tgt_len, src_len],
+ message=(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {shape_list(attention_mask)}"
+ ),
+ )
+
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_weights = stable_softmax(attn_weights, axis=-1)
+
+ if layer_head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(layer_head_mask),
+ [self.num_heads],
+ message=(
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
+ f" {shape_list(layer_head_mask)}"
+ ),
+ )
+
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
+ )
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_probs = self.dropout(attn_weights, training=training)
+ attn_output = tf.matmul(attn_probs, value_states)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_output),
+ [bsz * self.num_heads, tgt_len, self.head_dim],
+ message=(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {shape_list(attn_output)}"
+ ),
+ )
+
+ attn_output = tf.transpose(
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
+ )
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
+
+ attn_output = self.out_proj(attn_output)
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
+
+ return attn_output, attn_weights, past_key_value
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.embed_dim])
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.embed_dim])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.embed_dim])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Pegasus
+class TFPegasusEncoderLayer(keras.layers.Layer):
+ def __init__(self, config: PegasusConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFPegasusAttention(
+ self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
+ )
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
+ self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ layer_head_mask: tf.Tensor,
+ training: Optional[bool] = False,
+ ):
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
+ attention_mask (`tf.Tensor`): attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ *(encoder_attention_heads,)*
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, self_attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
+ )
+
+ tf.debugging.assert_equal(
+ shape_list(hidden_states),
+ shape_list(residual),
+ message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
+ )
+
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ return hidden_states, self_attn_weights
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.encoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Pegasus
+class TFPegasusDecoderLayer(keras.layers.Layer):
+ def __init__(self, config: PegasusConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFPegasusAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="self_attn",
+ is_decoder=True,
+ )
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
+
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.encoder_attn = TFPegasusAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="encoder_attn",
+ is_decoder=True,
+ )
+ self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
+ self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor | None = None,
+ encoder_hidden_states: tf.Tensor | None = None,
+ encoder_attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ cross_attn_layer_head_mask: tf.Tensor | None = None,
+ past_key_value: Tuple[tf.Tensor] | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
+ attention_mask (`tf.Tensor`): attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`tf.Tensor`):
+ cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
+ encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ *(decoder_attention_heads,)*
+ cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
+ *(decoder_attention_heads,)*
+ past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ return (
+ hidden_states,
+ self_attn_weights,
+ cross_attn_weights,
+ present_key_value,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "encoder_attn", None) is not None:
+ with tf.name_scope(self.encoder_attn.name):
+ self.encoder_attn.build(None)
+ if getattr(self, "encoder_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.encoder_attn_layer_norm.name):
+ self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.decoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+class TFPegasusPreTrainedModel(TFPreTrainedModel):
+ config_class = PegasusConfig
+ base_model_prefix = "model"
+
+
+PEGASUS_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PEGASUS_GENERATION_EXAMPLE = r"""
+ Summarization example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration
+
+ >>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
+
+ >>> ARTICLE_TO_SUMMARIZE = (
+ ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
+ ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
+ ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
+ ... )
+ >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf")
+
+ >>> # Generate Summary
+ >>> summary_ids = model.generate(input_ids)
+ >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
+ ```
+"""
+
+PEGASUS_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
+ decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tf.FloatTensor`, *optional*):
+ hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`,
+ *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions`
+ under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the
+ value in the config will be used instead.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@keras_serializable
+class TFPegasusEncoder(keras.layers.Layer):
+ config_class = PegasusConfig
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`TFPegasusEncoderLayer`].
+
+ Args:
+ config: PegasusConfig
+ """
+
+ def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.layerdrop = config.encoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+
+ self.embed_tokens = embed_tokens
+ self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.layers = [TFPegasusEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ):
+ """
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.dropout(hidden_states, training=training)
+
+ # check attention mask and invert
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask)
+ else:
+ attention_mask = None
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(head_mask)[0],
+ len(self.layers),
+ message=(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(head_mask)[0]}."
+ ),
+ )
+
+ # encoder layers
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if training and (dropout_probability < self.layerdrop): # skip the layer
+ continue
+
+ hidden_states, attn = encoder_layer(
+ hidden_states,
+ attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ )
+
+ if output_attentions:
+ all_attentions += (attn,)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFPegasusDecoder(keras.layers.Layer):
+ config_class = PegasusConfig
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFPegasusDecoderLayer`]
+
+ Args:
+ config: PegasusConfig
+ embed_tokens: output embedding
+ """
+
+ def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.padding_idx = config.pad_token_id
+ self.embed_tokens = embed_tokens
+ self.layerdrop = config.decoder_layerdrop
+ self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+ self.layers = [TFPegasusDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
+
+ self.dropout = keras.layers.Dropout(config.dropout)
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ position_ids: tf.Tensor | None = None,
+ encoder_hidden_states: tf.Tensor | None = None,
+ encoder_attention_mask: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ past_key_values: Tuple[Tuple[tf.Tensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ):
+ r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
+ decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
+
+ # embed positions
+ if position_ids is None:
+ positions = self.embed_positions(input_shape, past_key_values_length)
+ else:
+ positions = self.embed_positions(input_shape, position_ids=position_ids)
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ hidden_states = inputs_embeds
+
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ if input_shape[-1] > 1:
+ combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
+ else:
+ combined_attention_mask = _expand_mask(
+ tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
+ )
+
+ if attention_mask is not None:
+ combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
+
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
+
+ hidden_states = self.dropout(hidden_states + positions, training=training)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
+ present_key_values = () if use_cache else None
+
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
+ for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
+ if attn_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attn_mask)[0],
+ len(self.layers),
+ message=(
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(attn_mask)[0]}."
+ ),
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ dropout_probability = random.uniform(0, 1)
+
+ if training and (dropout_probability < self.layerdrop):
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
+ hidden_states,
+ attention_mask=combined_attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
+ cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ past_key_value=past_key_value,
+ )
+
+ if use_cache:
+ present_key_values += (present_key_value,)
+
+ if output_attentions:
+ all_self_attns += (layer_self_attn,)
+
+ if encoder_hidden_states is not None:
+ all_cross_attns += (layer_cross_attn,)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
+ else:
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_values,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFPegasusMainLayer(keras.layers.Layer):
+ config_class = PegasusConfig
+
+ def __init__(self, config: PegasusConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.shared = keras.layers.Embedding(
+ input_dim=config.vocab_size,
+ output_dim=config.d_model,
+ embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
+ name="model.shared",
+ )
+ # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
+ self.shared.load_weight_prefix = "model.shared"
+
+ self.encoder = TFPegasusEncoder(config, self.shared, name="encoder")
+ self.decoder = TFPegasusDecoder(config, self.shared, name="decoder")
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ decoder_input_ids: tf.Tensor | None = None,
+ decoder_attention_mask: tf.Tensor | None = None,
+ decoder_position_ids: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ decoder_head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: Tuple[Tuple[tf.Tensor]] = None,
+ inputs_embeds: tf.Tensor | None = None,
+ decoder_inputs_embeds: tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ):
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ use_cache = False
+
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
+ encoder_outputs = TFBaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+ # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
+ elif not return_dict and not isinstance(encoder_outputs, tuple):
+ encoder_outputs = encoder_outputs.to_tuple()
+
+ decoder_outputs = self.decoder(
+ decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ # The shared/tied weights expect to be in the model base namespace
+ # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
+ # the current one.
+ with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
+ self.shared.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "decoder", None) is not None:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build(None)
+
+
+@add_start_docstrings(
+ "The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
+ PEGASUS_START_DOCSTRING,
+)
+class TFPegasusModel(TFPegasusPreTrainedModel):
+ def __init__(self, config: PegasusConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.model = TFPegasusMainLayer(config, name="model")
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSeq2SeqModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_input_ids: np.ndarray | tf.Tensor | None = None,
+ decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_head_mask: np.ndarray | tf.Tensor | None = None,
+ cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ **kwargs,
+ ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=output.last_hidden_state,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
+class BiasLayer(keras.layers.Layer):
+ """
+ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
+ so all weights have to be registered in a layer.
+ """
+
+ def __init__(self, shape, initializer, trainable, name, **kwargs):
+ super().__init__(name=name, **kwargs)
+ # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
+ # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
+ # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
+ self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
+
+ def call(self, x):
+ return x + self.bias
+
+
+@add_start_docstrings(
+ "The PEGASUS Model with a language modeling head. Can be used for summarization.",
+ PEGASUS_START_DOCSTRING,
+)
+class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLanguageModelingLoss):
+ _keys_to_ignore_on_load_unexpected = [
+ r"model.encoder.embed_tokens.weight",
+ r"model.decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.model = TFPegasusMainLayer(config, name="model")
+ self.use_cache = config.use_cache
+ # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
+ )
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_output_embeddings(self):
+ return self.get_input_embeddings()
+
+ def set_output_embeddings(self, value):
+ self.set_input_embeddings(value)
+
+ def get_bias(self):
+ return {"final_logits_bias": self.bias_layer.bias}
+
+ def set_bias(self, value):
+ # Replaces the existing layers containing bias for correct (de)serialization.
+ vocab_size = value["final_logits_bias"].shape[-1]
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
+ )
+ self.bias_layer.bias.assign(value["final_logits_bias"])
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_input_ids: np.ndarray | tf.Tensor | None = None,
+ decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ decoder_head_mask: np.ndarray | tf.Tensor | None = None,
+ cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
+ encoder_outputs: Optional[TFBaseModelOutput] = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
+ """
+ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ """
+
+ if labels is not None:
+ labels = tf.where(
+ labels == self.config.pad_token_id,
+ tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
+ labels,
+ )
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
+ lm_logits = self.bias_layer(lm_logits)
+ masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+ return TFSeq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values, # index 1 of d outputs
+ decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
+ decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
+ cross_attentions=outputs.cross_attentions, # index 4 of d outputs
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
+ encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
+ encoder_attentions=outputs.encoder_attentions, # 2 of e out
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqLMOutput(
+ logits=output.logits,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ decoder_attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ if decoder_attention_mask is not None: # xla
+ decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
+ elif past_key_values is not None: # no xla + past_key_values
+ decoder_position_ids = past_key_values[0][0].shape[2]
+ else: # no xla + no past_key_values
+ decoder_position_ids = tf.range(decoder_input_ids.shape[1])
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "decoder_position_ids": decoder_position_ids,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
+ return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+ if getattr(self, "bias_layer", None) is not None:
+ with tf.name_scope(self.bias_layer.name):
+ self.bias_layer.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus.py
new file mode 100644
index 0000000000000000000000000000000000000000..2763b739a9644a2c6256d6fe79799b4616182c0d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus.py
@@ -0,0 +1,285 @@
+# coding=utf-8
+# Copyright 2020 Google and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+
+logger = logging.get_logger(__name__)
+
+
+# TODO ArthurZ refactor this to only use the added_tokens_encoder
+class PegasusTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking single token values. This is the token used when training this model with masked
+ language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
+ It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
+ Summarization](https://arxiv.org/pdf/1912.08777.pdf).
+ mask_token_sent (`str`, *optional*, defaults to `""`):
+ The token used for masking whole target sentences. This is the token used when training this model with gap
+ sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
+ pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
+ Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
+ additional_special_tokens (`List[str]`, *optional*):
+ Additional special tokens used by the tokenizer. If no additional_special_tokens are provided and
+ are used as additional special tokens corresponding to the [original PEGASUS
+ tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
+ that uses the tokens 2 - 104 only for pretraining
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ pad_token="",
+ eos_token="",
+ unk_token="",
+ mask_token="",
+ mask_token_sent="",
+ additional_special_tokens=None,
+ offset=103, # entries 2 - 104 are only used for pretraining
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ self.offset = offset
+ if additional_special_tokens is not None:
+ if not isinstance(additional_special_tokens, list):
+ raise TypeError(
+ f"additional_special_tokens should be of type {type(list)}, but is"
+ f" {type(additional_special_tokens)}"
+ )
+ additional_special_tokens_extended = (
+ ([mask_token_sent] + additional_special_tokens)
+ if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
+ else additional_special_tokens
+ )
+ # fill additional tokens with ..., in case not all additional tokens are already taken
+ additional_special_tokens_extended += [
+ f"" for i in range(len(additional_special_tokens_extended), self.offset - 1)
+ ]
+
+ if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
+ raise ValueError(
+ "Please make sure that the provided additional_special_tokens do not contain an incorrectly"
+ f" shifted list of tokens. Found {additional_special_tokens_extended}."
+ )
+ additional_special_tokens = additional_special_tokens_extended
+ else:
+ additional_special_tokens_extended = []
+ additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
+ additional_special_tokens += [f"" for i in range(2, self.offset)]
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ self.mask_token_sent = mask_token_sent
+ self.vocab_file = vocab_file
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ _added_tokens_decoder = {
+ 0: AddedToken(str(pad_token), special=True),
+ 1: AddedToken(str(eos_token), special=True),
+ }
+
+ if self.mask_token_sent is not None:
+ _added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True)
+ _added_tokens_decoder[3] = AddedToken(str(mask_token), special=True)
+
+ for i in range(2, self.offset):
+ _added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"", special=True)
+
+ # Force update as we want to make sure vocab is enforced (same as fast)
+ self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {})
+ self._added_tokens_decoder.update(_added_tokens_decoder)
+
+ super().__init__(
+ eos_token=eos_token,
+ unk_token=unk_token,
+ mask_token=mask_token,
+ pad_token=pad_token,
+ mask_token_sent=mask_token_sent,
+ offset=offset,
+ additional_special_tokens=additional_special_tokens,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self) -> int:
+ return len(self.sp_model) + self.offset
+
+ def get_vocab(self) -> Dict[str, int]:
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token: str) -> int:
+ """Converts a token (str) to an id using the vocab."""
+ sp_id = self.sp_model.piece_to_id(token)
+ return sp_id + self.offset
+
+ def _convert_id_to_token(self, index: int) -> str:
+ """Converts an index (integer) to a token (str) using the vocab."""
+ if index < self.offset:
+ return self.sp_model.IdToPiece(index)
+ token = self.sp_model.IdToPiece(index - self.offset)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def num_special_tokens_to_add(self, pair=False):
+ """Just EOS"""
+ return 1
+
+ def _special_token_mask(self, seq):
+ all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
+ all_special_ids.remove(self.unk_token_id) # is only sometimes special
+
+ return [1 if x in all_special_ids else 0 for x in seq]
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """Get list where entries are [1] if a token is [eos] or [pad] else 0."""
+ if already_has_special_tokens:
+ return self._special_token_mask(token_ids_0)
+ elif token_ids_1 is None:
+ return self._special_token_mask(token_ids_0) + [1]
+ else:
+ return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
+ and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
+
+ - single sequence: `X `
+ - pair of sequences: `A B ` (not intended use)
+
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
+ separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return token_ids_0 + [self.eos_token_id]
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return token_ids_0 + token_ids_1 + [self.eos_token_id]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1252e959ebc24c3b01fa838081d0d40fd530925
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus_fast.py
@@ -0,0 +1,217 @@
+# coding=utf-8
+# Copyright 2020 Google and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model PEGASUS."""
+
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_pegasus import PegasusTokenizer
+else:
+ PegasusTokenizer = None
+
+
+logger = logging.get_logger(__name__)
+
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
+
+
+class PegasusTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking single token values. This is the token used when training this model with masked
+ language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
+ It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
+ Summarization](https://arxiv.org/pdf/1912.08777.pdf).
+ mask_token_sent (`str`, *optional*, defaults to `""`):
+ The token used for masking whole target sentences. This is the token used when training this model with gap
+ sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
+ pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
+ Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
+ additional_special_tokens (`List[str]`, *optional*):
+ Additional special tokens used by the tokenizer. If no additional_special_tokens are provided and
+ are used as additional special tokens corresponding to the [original PEGASUS
+ tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
+ that uses the tokens 2 - 104 only for pretraining
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = PegasusTokenizer
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ pad_token="",
+ eos_token="",
+ unk_token="",
+ mask_token="",
+ mask_token_sent="",
+ additional_special_tokens=None,
+ offset=103, # entries 2 - 104 are only used for pretraining
+ **kwargs,
+ ):
+ self.offset = offset
+
+ if additional_special_tokens is not None:
+ if not isinstance(additional_special_tokens, list):
+ raise TypeError(
+ f"additional_special_tokens should be of type {type(list)}, but is"
+ f" {type(additional_special_tokens)}"
+ )
+
+ additional_special_tokens_extended = (
+ ([mask_token_sent] + additional_special_tokens)
+ if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
+ else additional_special_tokens
+ )
+ # fill additional tokens with ..., in case not all additional tokens are already taken
+ additional_special_tokens_extended += [
+ f"" for i in range(len(additional_special_tokens_extended), self.offset - 1)
+ ]
+
+ if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
+ raise ValueError(
+ "Please make sure that the provided additional_special_tokens do not contain an incorrectly"
+ f" shifted list of tokens. Found {additional_special_tokens_extended}."
+ )
+ additional_special_tokens = additional_special_tokens_extended
+ else:
+ additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
+ additional_special_tokens += [f"" for i in range(2, self.offset)]
+
+ # pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token
+ # is different from default, we must rebuild the vocab
+ from_slow = kwargs.pop("from_slow", None)
+ from_slow = from_slow or str(pad_token) != "" or str(eos_token) != "" or str(unk_token) != ""
+
+ kwargs.pop("added_tokens_decoder", {})
+
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ pad_token=pad_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ mask_token=mask_token,
+ mask_token_sent=mask_token_sent,
+ offset=offset,
+ additional_special_tokens=additional_special_tokens,
+ from_slow=from_slow,
+ **kwargs,
+ )
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def _special_token_mask(self, seq):
+ all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
+ all_special_ids.remove(self.unk_token_id) # is only sometimes special
+
+ if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
+ raise ValueError(
+ "There should be 3 special tokens: mask_token, pad_token, and eos_token +"
+ f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
+ )
+
+ return [1 if x in all_special_ids else 0 for x in seq]
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """Get list where entries are [1] if a token is [eos] or [pad] else 0."""
+ if already_has_special_tokens:
+ return self._special_token_mask(token_ids_0)
+ elif token_ids_1 is None:
+ return self._special_token_mask(token_ids_0) + [1]
+ else:
+ return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
+ """
+ Build model inputs from a sequence by adding eos to the end. no bos token is added to the front.
+
+ - single sequence: `X `
+ - pair of sequences: `A B ` (not intended use)
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return token_ids_0 + [self.eos_token_id]
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return token_ids_0 + token_ids_1 + [self.eos_token_id]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..313767c02dda89ccb6c3691c56843bb3559be7ca
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py
@@ -0,0 +1,77 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+# rely on isort to merge the imports
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_superpoint": [
+ "SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "SuperPointConfig",
+ ]
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_superpoint"] = ["SuperPointImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_superpoint"] = [
+ "SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "SuperPointForKeypointDetection",
+ "SuperPointPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_superpoint import (
+ SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ SuperPointConfig,
+ )
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_superpoint import SuperPointImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_superpoint import (
+ SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ SuperPointForKeypointDetection,
+ SuperPointPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ff397c1e858bc2ecf0b8b1c15c961e81ce8fa3fd
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a9a6e066208b86479f6ed5ae91a2251653fc5b6a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f586e318a3bf5e693c95523424a51d8558267d9f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/image_processing_superpoint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/image_processing_superpoint.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7c96d3e723ae98c11f83e067e4f64631c77ffe35
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/image_processing_superpoint.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..16f99359aba48b97430af183ae9db386b7cb14fc
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..5970a6e1b4134d08d1fa17f69bbf50316d341665
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py
@@ -0,0 +1,91 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import List
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "magic-leap-community/superpoint": "https://huggingface.co/magic-leap-community/superpoint/blob/main/config.json"
+}
+
+
+class SuperPointConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a
+ SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the SuperPoint
+ [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`):
+ The number of channels in each convolutional layer in the encoder.
+ decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder.
+ keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder.
+ descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder.
+ keypoint_threshold (`float`, *optional*, defaults to 0.005):
+ The threshold to use for extracting keypoints.
+ max_keypoints (`int`, *optional*, defaults to -1):
+ The maximum number of keypoints to extract. If `-1`, will extract all keypoints.
+ nms_radius (`int`, *optional*, defaults to 4):
+ The radius for non-maximum suppression.
+ border_removal_distance (`int`, *optional*, defaults to 4):
+ The distance from the border to remove keypoints.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+
+ Example:
+ ```python
+ >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection
+
+ >>> # Initializing a SuperPoint superpoint style configuration
+ >>> configuration = SuperPointConfig()
+ >>> # Initializing a model from the superpoint style configuration
+ >>> model = SuperPointForKeypointDetection(configuration)
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "superpoint"
+
+ def __init__(
+ self,
+ encoder_hidden_sizes: List[int] = [64, 64, 128, 128],
+ decoder_hidden_size: int = 256,
+ keypoint_decoder_dim: int = 65,
+ descriptor_decoder_dim: int = 256,
+ keypoint_threshold: float = 0.005,
+ max_keypoints: int = -1,
+ nms_radius: int = 4,
+ border_removal_distance: int = 4,
+ initializer_range=0.02,
+ **kwargs,
+ ):
+ self.encoder_hidden_sizes = encoder_hidden_sizes
+ self.decoder_hidden_size = decoder_hidden_size
+ self.keypoint_decoder_dim = keypoint_decoder_dim
+ self.descriptor_decoder_dim = descriptor_decoder_dim
+ self.keypoint_threshold = keypoint_threshold
+ self.max_keypoints = max_keypoints
+ self.nms_radius = nms_radius
+ self.border_removal_distance = border_removal_distance
+ self.initializer_range = initializer_range
+
+ super().__init__(**kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..18755bf4fe01b2b6de2a0a2e0970df7f06909c5a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py
@@ -0,0 +1,175 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import argparse
+import os
+
+import requests
+import torch
+from PIL import Image
+
+from transformers import SuperPointConfig, SuperPointForKeypointDetection, SuperPointImageProcessor
+
+
+def get_superpoint_config():
+ config = SuperPointConfig(
+ encoder_hidden_sizes=[64, 64, 128, 128],
+ decoder_hidden_size=256,
+ keypoint_decoder_dim=65,
+ descriptor_decoder_dim=256,
+ keypoint_threshold=0.005,
+ max_keypoints=-1,
+ nms_radius=4,
+ border_removal_distance=4,
+ initializer_range=0.02,
+ )
+
+ return config
+
+
+def create_rename_keys(config, state_dict):
+ rename_keys = []
+
+ # Encoder weights
+ rename_keys.append(("conv1a.weight", "encoder.conv_blocks.0.conv_a.weight"))
+ rename_keys.append(("conv1b.weight", "encoder.conv_blocks.0.conv_b.weight"))
+ rename_keys.append(("conv2a.weight", "encoder.conv_blocks.1.conv_a.weight"))
+ rename_keys.append(("conv2b.weight", "encoder.conv_blocks.1.conv_b.weight"))
+ rename_keys.append(("conv3a.weight", "encoder.conv_blocks.2.conv_a.weight"))
+ rename_keys.append(("conv3b.weight", "encoder.conv_blocks.2.conv_b.weight"))
+ rename_keys.append(("conv4a.weight", "encoder.conv_blocks.3.conv_a.weight"))
+ rename_keys.append(("conv4b.weight", "encoder.conv_blocks.3.conv_b.weight"))
+ rename_keys.append(("conv1a.bias", "encoder.conv_blocks.0.conv_a.bias"))
+ rename_keys.append(("conv1b.bias", "encoder.conv_blocks.0.conv_b.bias"))
+ rename_keys.append(("conv2a.bias", "encoder.conv_blocks.1.conv_a.bias"))
+ rename_keys.append(("conv2b.bias", "encoder.conv_blocks.1.conv_b.bias"))
+ rename_keys.append(("conv3a.bias", "encoder.conv_blocks.2.conv_a.bias"))
+ rename_keys.append(("conv3b.bias", "encoder.conv_blocks.2.conv_b.bias"))
+ rename_keys.append(("conv4a.bias", "encoder.conv_blocks.3.conv_a.bias"))
+ rename_keys.append(("conv4b.bias", "encoder.conv_blocks.3.conv_b.bias"))
+
+ # Keypoint Decoder weights
+ rename_keys.append(("convPa.weight", "keypoint_decoder.conv_score_a.weight"))
+ rename_keys.append(("convPb.weight", "keypoint_decoder.conv_score_b.weight"))
+ rename_keys.append(("convPa.bias", "keypoint_decoder.conv_score_a.bias"))
+ rename_keys.append(("convPb.bias", "keypoint_decoder.conv_score_b.bias"))
+
+ # Descriptor Decoder weights
+ rename_keys.append(("convDa.weight", "descriptor_decoder.conv_descriptor_a.weight"))
+ rename_keys.append(("convDb.weight", "descriptor_decoder.conv_descriptor_b.weight"))
+ rename_keys.append(("convDa.bias", "descriptor_decoder.conv_descriptor_a.bias"))
+ rename_keys.append(("convDb.bias", "descriptor_decoder.conv_descriptor_b.bias"))
+
+ return rename_keys
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+def prepare_imgs():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im1 = Image.open(requests.get(url, stream=True).raw)
+ url = "http://images.cocodataset.org/test-stuff2017/000000004016.jpg"
+ im2 = Image.open(requests.get(url, stream=True).raw)
+ return [im1, im2]
+
+
+@torch.no_grad()
+def convert_superpoint_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub, test_mode=False):
+ """
+ Copy/paste/tweak model's weights to our SuperPoint structure.
+ """
+
+ print("Downloading original model from checkpoint...")
+ config = get_superpoint_config()
+
+ # load original state_dict from URL
+ original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)
+
+ print("Converting model parameters...")
+ # rename keys
+ rename_keys = create_rename_keys(config, original_state_dict)
+ new_state_dict = original_state_dict.copy()
+ for src, dest in rename_keys:
+ rename_key(new_state_dict, src, dest)
+
+ # Load HuggingFace model
+ model = SuperPointForKeypointDetection(config)
+ model.load_state_dict(new_state_dict)
+ model.eval()
+ print("Successfully loaded weights in the model")
+
+ # Check model outputs
+ preprocessor = SuperPointImageProcessor()
+ inputs = preprocessor(images=prepare_imgs(), return_tensors="pt")
+ outputs = model(**inputs)
+
+ # If test_mode is True, we check that the model outputs match the original results
+ if test_mode:
+ torch.count_nonzero(outputs.mask[0])
+ expected_keypoints_shape = (2, 830, 2)
+ expected_scores_shape = (2, 830)
+ expected_descriptors_shape = (2, 830, 256)
+
+ expected_keypoints_values = torch.tensor([[480.0, 9.0], [494.0, 9.0], [489.0, 16.0]])
+ expected_scores_values = torch.tensor([0.0064, 0.0140, 0.0595, 0.0728, 0.5170, 0.0175, 0.1523, 0.2055, 0.0336])
+ expected_descriptors_value = torch.tensor(-0.1096)
+ assert outputs.keypoints.shape == expected_keypoints_shape
+ assert outputs.scores.shape == expected_scores_shape
+ assert outputs.descriptors.shape == expected_descriptors_shape
+
+ assert torch.allclose(outputs.keypoints[0, :3], expected_keypoints_values, atol=1e-3)
+ assert torch.allclose(outputs.scores[0, :9], expected_scores_values, atol=1e-3)
+ assert torch.allclose(outputs.descriptors[0, 0, 0], expected_descriptors_value, atol=1e-3)
+ print("Model outputs match the original results!")
+
+ if save_model:
+ print("Saving model to local...")
+ # Create folder to save model
+ if not os.path.isdir(pytorch_dump_folder_path):
+ os.mkdir(pytorch_dump_folder_path)
+
+ model.save_pretrained(pytorch_dump_folder_path)
+ preprocessor.save_pretrained(pytorch_dump_folder_path)
+
+ model_name = "superpoint"
+ if push_to_hub:
+ print(f"Pushing {model_name} to the hub...")
+ model.push_to_hub(model_name)
+ preprocessor.push_to_hub(model_name)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--checkpoint_url",
+ default="https://github.com/magicleap/SuperPointPretrainedNetwork/raw/master/superpoint_v1.pth",
+ type=str,
+ help="URL of the original SuperPoint checkpoint you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default="model",
+ type=str,
+ help="Path to the output PyTorch model directory.",
+ )
+ parser.add_argument("--save_model", action="store_true", help="Save model to local")
+ parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub")
+
+ args = parser.parse_args()
+ convert_superpoint_checkpoint(
+ args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..fbbb717570cb704edcccecb50bb863c5038a4dd3
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py
@@ -0,0 +1,272 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for SuperPoint."""
+
+from typing import Dict, Optional, Union
+
+import numpy as np
+
+from ... import is_vision_available
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import resize, to_channel_dimension_format
+from ...image_utils import (
+ ChannelDimension,
+ ImageInput,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+)
+from ...utils import TensorType, logging, requires_backends
+
+
+if is_vision_available():
+ import PIL
+
+logger = logging.get_logger(__name__)
+
+
+def is_grayscale(
+ image: ImageInput,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+):
+ if input_data_format == ChannelDimension.FIRST:
+ return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...])
+ elif input_data_format == ChannelDimension.LAST:
+ return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2])
+
+
+def convert_to_grayscale(
+ image: ImageInput,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+) -> ImageInput:
+ """
+ Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch
+ and tensorflow grayscale conversion
+
+ This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each
+ channel, because of an issue that is discussed in :
+ https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446
+
+ Args:
+ image (Image):
+ The image to convert.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image.
+ """
+ requires_backends(convert_to_grayscale, ["vision"])
+
+ if isinstance(image, np.ndarray):
+ if input_data_format == ChannelDimension.FIRST:
+ gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140
+ gray_image = np.stack([gray_image] * 3, axis=0)
+ elif input_data_format == ChannelDimension.LAST:
+ gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140
+ gray_image = np.stack([gray_image] * 3, axis=-1)
+ return gray_image
+
+ if not isinstance(image, PIL.Image.Image):
+ return image
+
+ image = image.convert("L")
+ return image
+
+
+class SuperPointImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a SuperPoint image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
+ by `do_resize` in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`):
+ Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to
+ `True`. Can be overriden by `size` in the `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
+ the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
+ method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: float = 1 / 255,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"height": 480, "width": 640}
+ size = get_size_dict(size, default_to_square=False)
+
+ self.do_resize = do_resize
+ self.size = size
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Resize an image.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the output image. If not provided, it will be inferred from the input
+ image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ size = get_size_dict(size, default_to_square=False)
+
+ return resize(
+ image,
+ size=(size["height"], size["width"]),
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
+ is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
+ image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
+ `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False)
+
+ images = make_list_of_images(images)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ if do_resize and size is None:
+ raise ValueError("Size must be specified if do_resize is True.")
+
+ if do_rescale and rescale_factor is None:
+ raise ValueError("Rescale factor must be specified if do_rescale is True.")
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [self.resize(image=image, size=size, input_data_format=input_data_format) for image in images]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ # Checking if image is RGB or grayscale
+ for i in range(len(images)):
+ if not is_grayscale(images[i], input_data_format):
+ images[i] = convert_to_grayscale(images[i], input_data_format=input_data_format)
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e3fdbbf10cfb14921704c3831afe6494ceec504
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py
@@ -0,0 +1,500 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch SuperPoint model."""
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+from torch import nn
+
+from transformers import PreTrainedModel
+from transformers.modeling_outputs import (
+ BaseModelOutputWithNoAttention,
+)
+from transformers.models.superpoint.configuration_superpoint import SuperPointConfig
+
+from ...pytorch_utils import is_torch_greater_or_equal_than_1_13
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "SuperPointConfig"
+
+_CHECKPOINT_FOR_DOC = "magic-leap-community/superpoint"
+
+SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST = ["magic-leap-community/superpoint"]
+
+
+def remove_keypoints_from_borders(
+ keypoints: torch.Tensor, scores: torch.Tensor, border: int, height: int, width: int
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Removes keypoints (and their associated scores) that are too close to the border"""
+ mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
+ mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
+ mask = mask_h & mask_w
+ return keypoints[mask], scores[mask]
+
+
+def top_k_keypoints(keypoints: torch.Tensor, scores: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Keeps the k keypoints with highest score"""
+ if k >= len(keypoints):
+ return keypoints, scores
+ scores, indices = torch.topk(scores, k, dim=0)
+ return keypoints[indices], scores
+
+
+def simple_nms(scores: torch.Tensor, nms_radius: int) -> torch.Tensor:
+ """Applies non-maximum suppression on scores"""
+ if nms_radius < 0:
+ raise ValueError("Expected positive values for nms_radius")
+
+ def max_pool(x):
+ return nn.functional.max_pool2d(x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)
+
+ zeros = torch.zeros_like(scores)
+ max_mask = scores == max_pool(scores)
+ for _ in range(2):
+ supp_mask = max_pool(max_mask.float()) > 0
+ supp_scores = torch.where(supp_mask, zeros, scores)
+ new_max_mask = supp_scores == max_pool(supp_scores)
+ max_mask = max_mask | (new_max_mask & (~supp_mask))
+ return torch.where(max_mask, scores, zeros)
+
+
+@dataclass
+class SuperPointKeypointDescriptionOutput(ModelOutput):
+ """
+ Base class for outputs of image point description models. Due to the nature of keypoint detection, the number of
+ keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images,
+ the maximum number of keypoints is set as the dimension of the keypoints, scores and descriptors tensors. The mask
+ tensor is used to indicate which values in the keypoints, scores and descriptors tensors are keypoint information
+ and which are padding.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
+ Loss computed during training.
+ keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`):
+ Relative (x, y) coordinates of predicted keypoints in a given image.
+ scores (`torch.FloatTensor` of shape `(batch_size, num_keypoints)`):
+ Scores of predicted keypoints.
+ descriptors (`torch.FloatTensor` of shape `(batch_size, num_keypoints, descriptor_size)`):
+ Descriptors of predicted keypoints.
+ mask (`torch.BoolTensor` of shape `(batch_size, num_keypoints)`):
+ Mask indicating which values in keypoints, scores and descriptors are keypoint information.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or
+ when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
+ (also called feature maps) of the model at the output of each stage.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ keypoints: Optional[torch.IntTensor] = None
+ scores: Optional[torch.FloatTensor] = None
+ descriptors: Optional[torch.FloatTensor] = None
+ mask: Optional[torch.BoolTensor] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+
+
+class SuperPointConvBlock(nn.Module):
+ def __init__(
+ self, config: SuperPointConfig, in_channels: int, out_channels: int, add_pooling: bool = False
+ ) -> None:
+ super().__init__()
+ self.conv_a = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.conv_b = nn.Conv2d(
+ out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.relu = nn.ReLU(inplace=True)
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=2) if add_pooling else None
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.relu(self.conv_a(hidden_states))
+ hidden_states = self.relu(self.conv_b(hidden_states))
+ if self.pool is not None:
+ hidden_states = self.pool(hidden_states)
+ return hidden_states
+
+
+class SuperPointEncoder(nn.Module):
+ """
+ SuperPoint encoder module. It is made of 4 convolutional layers with ReLU activation and max pooling, reducing the
+ dimensionality of the image.
+ """
+
+ def __init__(self, config: SuperPointConfig) -> None:
+ super().__init__()
+ # SuperPoint uses 1 channel images
+ self.input_dim = 1
+
+ conv_blocks = []
+ conv_blocks.append(
+ SuperPointConvBlock(config, self.input_dim, config.encoder_hidden_sizes[0], add_pooling=True)
+ )
+ for i in range(1, len(config.encoder_hidden_sizes) - 1):
+ conv_blocks.append(
+ SuperPointConvBlock(
+ config, config.encoder_hidden_sizes[i - 1], config.encoder_hidden_sizes[i], add_pooling=True
+ )
+ )
+ conv_blocks.append(
+ SuperPointConvBlock(
+ config, config.encoder_hidden_sizes[-2], config.encoder_hidden_sizes[-1], add_pooling=False
+ )
+ )
+ self.conv_blocks = nn.ModuleList(conv_blocks)
+
+ def forward(
+ self,
+ input,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
+ all_hidden_states = () if output_hidden_states else None
+
+ for conv_block in self.conv_blocks:
+ input = conv_block(input)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (input,)
+ output = input
+ if not return_dict:
+ return tuple(v for v in [output, all_hidden_states] if v is not None)
+
+ return BaseModelOutputWithNoAttention(
+ last_hidden_state=output,
+ hidden_states=all_hidden_states,
+ )
+
+
+class SuperPointInterestPointDecoder(nn.Module):
+ """
+ The SuperPointInterestPointDecoder uses the output of the SuperPointEncoder to compute the keypoint with scores.
+ The scores are first computed by a convolutional layer, then a softmax is applied to get a probability distribution
+ over the 65 possible keypoint classes. The keypoints are then extracted from the scores by thresholding and
+ non-maximum suppression. Post-processing is then applied to remove keypoints too close to the image borders as well
+ as to keep only the k keypoints with highest score.
+ """
+
+ def __init__(self, config: SuperPointConfig) -> None:
+ super().__init__()
+ self.keypoint_threshold = config.keypoint_threshold
+ self.max_keypoints = config.max_keypoints
+ self.nms_radius = config.nms_radius
+ self.border_removal_distance = config.border_removal_distance
+
+ self.relu = nn.ReLU(inplace=True)
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
+ self.conv_score_a = nn.Conv2d(
+ config.encoder_hidden_sizes[-1],
+ config.decoder_hidden_size,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.conv_score_b = nn.Conv2d(
+ config.decoder_hidden_size, config.keypoint_decoder_dim, kernel_size=1, stride=1, padding=0
+ )
+
+ def forward(self, encoded: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ scores = self._get_pixel_scores(encoded)
+ keypoints, scores = self._extract_keypoints(scores)
+
+ return keypoints, scores
+
+ def _get_pixel_scores(self, encoded: torch.Tensor) -> torch.Tensor:
+ """Based on the encoder output, compute the scores for each pixel of the image"""
+ scores = self.relu(self.conv_score_a(encoded))
+ scores = self.conv_score_b(scores)
+ scores = nn.functional.softmax(scores, 1)[:, :-1]
+ batch_size, _, height, width = scores.shape
+ scores = scores.permute(0, 2, 3, 1).reshape(batch_size, height, width, 8, 8)
+ scores = scores.permute(0, 1, 3, 2, 4).reshape(batch_size, height * 8, width * 8)
+ scores = simple_nms(scores, self.nms_radius)
+ return scores
+
+ def _extract_keypoints(self, scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Based on their scores, extract the pixels that represent the keypoints that will be used for descriptors computation"""
+ _, height, width = scores.shape
+
+ # Threshold keypoints by score value
+ keypoints = torch.nonzero(scores[0] > self.keypoint_threshold)
+ scores = scores[0][tuple(keypoints.t())]
+
+ # Discard keypoints near the image borders
+ keypoints, scores = remove_keypoints_from_borders(
+ keypoints, scores, self.border_removal_distance, height * 8, width * 8
+ )
+
+ # Keep the k keypoints with highest score
+ if self.max_keypoints >= 0:
+ keypoints, scores = top_k_keypoints(keypoints, scores, self.max_keypoints)
+
+ # Convert (y, x) to (x, y)
+ keypoints = torch.flip(keypoints, [1]).float()
+
+ return keypoints, scores
+
+
+class SuperPointDescriptorDecoder(nn.Module):
+ """
+ The SuperPointDescriptorDecoder uses the outputs of both the SuperPointEncoder and the
+ SuperPointInterestPointDecoder to compute the descriptors at the keypoints locations.
+
+ The descriptors are first computed by a convolutional layer, then normalized to have a norm of 1. The descriptors
+ are then interpolated at the keypoints locations.
+ """
+
+ def __init__(self, config: SuperPointConfig) -> None:
+ super().__init__()
+
+ self.relu = nn.ReLU(inplace=True)
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
+ self.conv_descriptor_a = nn.Conv2d(
+ config.encoder_hidden_sizes[-1],
+ config.decoder_hidden_size,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.conv_descriptor_b = nn.Conv2d(
+ config.decoder_hidden_size,
+ config.descriptor_decoder_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, encoded: torch.Tensor, keypoints: torch.Tensor) -> torch.Tensor:
+ """Based on the encoder output and the keypoints, compute the descriptors for each keypoint"""
+ descriptors = self.conv_descriptor_b(self.relu(self.conv_descriptor_a(encoded)))
+ descriptors = nn.functional.normalize(descriptors, p=2, dim=1)
+
+ descriptors = self._sample_descriptors(keypoints[None], descriptors[0][None], 8)[0]
+
+ # [descriptor_dim, num_keypoints] -> [num_keypoints, descriptor_dim]
+ descriptors = torch.transpose(descriptors, 0, 1)
+
+ return descriptors
+
+ @staticmethod
+ def _sample_descriptors(keypoints, descriptors, scale: int = 8) -> torch.Tensor:
+ """Interpolate descriptors at keypoint locations"""
+ batch_size, num_channels, height, width = descriptors.shape
+ keypoints = keypoints - scale / 2 + 0.5
+ divisor = torch.tensor([[(width * scale - scale / 2 - 0.5), (height * scale - scale / 2 - 0.5)]])
+ divisor = divisor.to(keypoints)
+ keypoints /= divisor
+ keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
+ kwargs = {"align_corners": True} if is_torch_greater_or_equal_than_1_13 else {}
+ # [batch_size, num_channels, num_keypoints, 2] -> [batch_size, num_channels, num_keypoints, 2]
+ keypoints = keypoints.view(batch_size, 1, -1, 2)
+ descriptors = nn.functional.grid_sample(descriptors, keypoints, mode="bilinear", **kwargs)
+ # [batch_size, descriptor_decoder_dim, num_channels, num_keypoints] -> [batch_size, descriptor_decoder_dim, num_keypoints]
+ descriptors = descriptors.reshape(batch_size, num_channels, -1)
+ descriptors = nn.functional.normalize(descriptors, p=2, dim=1)
+ return descriptors
+
+
+class SuperPointPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = SuperPointConfig
+ base_model_prefix = "superpoint"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = False
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ def extract_one_channel_pixel_values(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor:
+ """
+ Assuming pixel_values has shape (batch_size, 3, height, width), and that all channels values are the same,
+ extract the first channel value to get a tensor of shape (batch_size, 1, height, width) for SuperPoint. This is
+ a workaround for the issue discussed in :
+ https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446
+
+ Args:
+ pixel_values: torch.FloatTensor of shape (batch_size, 3, height, width)
+
+ Returns:
+ pixel_values: torch.FloatTensor of shape (batch_size, 1, height, width)
+
+ """
+ return pixel_values[:, 0, :, :][:, None, :, :]
+
+
+SUPERPOINT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`SuperPointConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+ """
+
+SUPERPOINT_INPUTS_DOCSTRING = r"""
+Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`SuperPointImageProcessor`]. See
+ [`SuperPointImageProcessor.__call__`] for details.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more
+ detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+
+
+@add_start_docstrings(
+ "SuperPoint model outputting keypoints and descriptors.",
+ SUPERPOINT_START_DOCSTRING,
+)
+class SuperPointForKeypointDetection(SuperPointPreTrainedModel):
+ """
+ SuperPoint model. It consists of a SuperPointEncoder, a SuperPointInterestPointDecoder and a
+ SuperPointDescriptorDecoder. SuperPoint was proposed in `SuperPoint: Self-Supervised Interest Point Detection and
+ Description `__ by Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. It
+ is a fully convolutional neural network that extracts keypoints and descriptors from an image. It is trained in a
+ self-supervised manner, using a combination of a photometric loss and a loss based on the homographic adaptation of
+ keypoints. It is made of a convolutional encoder and two decoders: one for keypoints and one for descriptors.
+ """
+
+ def __init__(self, config: SuperPointConfig) -> None:
+ super().__init__(config)
+
+ self.config = config
+
+ self.encoder = SuperPointEncoder(config)
+ self.keypoint_decoder = SuperPointInterestPointDecoder(config)
+ self.descriptor_decoder = SuperPointDescriptorDecoder(config)
+
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(SUPERPOINT_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ labels: Optional[torch.LongTensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SuperPointKeypointDescriptionOutput]:
+ """
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, SuperPointForKeypointDetection
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
+ >>> model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
+
+ >>> inputs = processor(image, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ ```"""
+ loss = None
+ if labels is not None:
+ raise ValueError("SuperPoint does not support training for now.")
+
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ pixel_values = self.extract_one_channel_pixel_values(pixel_values)
+
+ batch_size = pixel_values.shape[0]
+
+ encoder_outputs = self.encoder(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+
+ list_keypoints_scores = [
+ self.keypoint_decoder(last_hidden_state[None, ...]) for last_hidden_state in last_hidden_state
+ ]
+
+ list_keypoints = [keypoints_scores[0] for keypoints_scores in list_keypoints_scores]
+ list_scores = [keypoints_scores[1] for keypoints_scores in list_keypoints_scores]
+
+ list_descriptors = [
+ self.descriptor_decoder(last_hidden_state[None, ...], keypoints[None, ...])
+ for last_hidden_state, keypoints in zip(last_hidden_state, list_keypoints)
+ ]
+
+ maximum_num_keypoints = max(keypoints.shape[0] for keypoints in list_keypoints)
+
+ keypoints = torch.zeros((batch_size, maximum_num_keypoints, 2), device=pixel_values.device)
+ scores = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device)
+ descriptors = torch.zeros(
+ (batch_size, maximum_num_keypoints, self.config.descriptor_decoder_dim),
+ device=pixel_values.device,
+ )
+ mask = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device, dtype=torch.int)
+
+ for i, (_keypoints, _scores, _descriptors) in enumerate(zip(list_keypoints, list_scores, list_descriptors)):
+ keypoints[i, : _keypoints.shape[0]] = _keypoints
+ scores[i, : _scores.shape[0]] = _scores
+ descriptors[i, : _descriptors.shape[0]] = _descriptors
+ mask[i, : _scores.shape[0]] = 1
+
+ hidden_states = encoder_outputs[1] if output_hidden_states else None
+ if not return_dict:
+ return tuple(v for v in [loss, keypoints, scores, descriptors, mask, hidden_states] if v is not None)
+
+ return SuperPointKeypointDescriptionOutput(
+ loss=loss,
+ keypoints=keypoints,
+ scores=scores,
+ descriptors=descriptors,
+ mask=mask,
+ hidden_states=hidden_states,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1ac3ec2c43fb9aca234ae4d805316f38f2b8309
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__init__.py
@@ -0,0 +1,69 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_unispeech_sat": ["UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechSatConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_unispeech_sat"] = [
+ "UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "UniSpeechSatForAudioFrameClassification",
+ "UniSpeechSatForCTC",
+ "UniSpeechSatForPreTraining",
+ "UniSpeechSatForSequenceClassification",
+ "UniSpeechSatForXVector",
+ "UniSpeechSatModel",
+ "UniSpeechSatPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_unispeech_sat import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechSatConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_unispeech_sat import (
+ UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ UniSpeechSatForAudioFrameClassification,
+ UniSpeechSatForCTC,
+ UniSpeechSatForPreTraining,
+ UniSpeechSatForSequenceClassification,
+ UniSpeechSatForXVector,
+ UniSpeechSatModel,
+ UniSpeechSatPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d581dacc3296ed629f71414da409aa3807fda80a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/configuration_unispeech_sat.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/configuration_unispeech_sat.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e2e2606595dd44e4bfebcc7246c049b6954eafc8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/configuration_unispeech_sat.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0c9913d831a021b37e1919d186dfe3f09cef6055
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6e56d323a7b8e3dadca8ff8d5833a3b054c227db
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/modeling_unispeech_sat.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/modeling_unispeech_sat.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..71a7359dc3a57e38109e0b0d4e58f95aeb8a9b56
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/__pycache__/modeling_unispeech_sat.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/configuration_unispeech_sat.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/configuration_unispeech_sat.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e6e40ad48515eaca701a57930ef666cabe439a9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/configuration_unispeech_sat.py
@@ -0,0 +1,327 @@
+# coding=utf-8
+# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" UniSpeechSat model configuration"""
+
+import functools
+import operator
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class UniSpeechSatConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an
+ UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the UniSpeechSat
+ [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32):
+ Vocabulary size of the UniSpeechSat model. Defines the number of different tokens that can be represented
+ by the `inputs_ids` passed when calling [`UniSpeechSatModel`]. Vocabulary size of the model. Defines the
+ different tokens that can be represented by the *inputs_ids* passed to the forward method of
+ [`UniSpeechSatModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for activations inside the fully connected layer.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ feat_proj_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for output of the feature encoder.
+ feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for the output of the feature encoder that's used by the quantizer.
+ final_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the final projection layer of [`UniSpeechSatForCTC`].
+ layerdrop (`float`, *optional*, defaults to 0.1):
+ The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
+ details.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ feat_extract_norm (`str`, *optional*, defaults to `"group"`):
+ The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
+ normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
+ convolutional layers.
+ feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the 1D convolutional layers of the feature
+ extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
+ A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
+ feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
+ conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
+ A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
+ of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
+ conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
+ length of *conv_kernel* defines the number of convolutional layers and has to match the length of
+ *conv_dim*.
+ conv_bias (`bool`, *optional*, defaults to `False`):
+ Whether the 1D convolutional layers have a bias.
+ num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
+ Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
+ embeddings layer.
+ num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
+ Number of groups of 1D convolutional positional embeddings layer.
+ do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
+ Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
+ True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
+ False` corresponds to applying layer norm after the attention layer.
+ apply_spec_augment (`bool`, *optional*, defaults to `True`):
+ Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
+ [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
+ Recognition](https://arxiv.org/abs/1904.08779).
+ mask_time_prob (`float`, *optional*, defaults to 0.05):
+ Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
+ procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
+ reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
+ masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
+ actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
+ mask_time_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the time axis.
+ mask_time_min_masks (`int`, *optional*, defaults to 2):
+ The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
+ irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
+ mask_time_min_masks''
+ mask_feature_prob (`float`, *optional*, defaults to 0.0):
+ Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
+ masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
+ the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
+ span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
+ may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
+ True`.
+ mask_feature_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the feature axis.
+ mask_feature_min_masks (`int`, *optional*, defaults to 0):
+ The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
+ step, irrespectively of `mask_feature_prob`. Only relevant if
+ ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
+ num_codevectors_per_group (`int`, *optional*, defaults to 320):
+ Number of entries in each quantization codebook (group).
+ num_codevector_groups (`int`, *optional*, defaults to 2):
+ Number of codevector groups for product codevector quantization.
+ contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
+ The temperature *kappa* in the contrastive loss.
+ num_negatives (`int`, *optional*, defaults to 100):
+ Number of negative samples for the contrastive loss.
+ codevector_dim (`int`, *optional*, defaults to 256):
+ Dimensionality of the quantized feature vectors.
+ proj_codevector_dim (`int`, *optional*, defaults to 256):
+ Dimensionality of the final projection of both the quantized and the transformer features.
+ diversity_loss_weight (`int`, *optional*, defaults to 0.1):
+ The weight of the codebook diversity loss component.
+ ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
+ Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
+ instance of [`UniSpeechSatForCTC`].
+ ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
+ Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
+ occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
+ of [`UniSpeechSatForCTC`].
+ use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
+ Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
+ instance of [`UniSpeechSatForSequenceClassification`].
+ classifier_proj_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the projection before token mean-pooling for classification.
+ tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
+ A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
+ module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
+ tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
+ *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
+ tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
+ A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
+ *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
+ xvector_output_dim (`int`, *optional*, defaults to 512):
+ Dimensionality of the *XVector* embedding vectors.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The id of the padding token.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the "end-of-sequence" token.
+ num_clusters (`int`, *optional*, defaults to 504):
+ Number of clusters for weak labeling. Only relevant when using an instance of
+ [`UniSpeechSatForPreTraining`].
+
+ Example:
+
+ ```python
+ >>> from transformers import UniSpeechSatModel, UniSpeechSatConfig
+
+ >>> # Initializing a UniSpeechSat microsoft/unispeech-sat-base-100h-libri-ft style configuration
+ >>> configuration = UniSpeechSatConfig()
+
+ >>> # Initializing a model from the microsoft/unispeech-sat-base-100h-libri-ft style configuration
+ >>> model = UniSpeechSatModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "unispeech-sat"
+
+ def __init__(
+ self,
+ vocab_size=32,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout=0.1,
+ activation_dropout=0.1,
+ attention_dropout=0.1,
+ feat_proj_dropout=0.0,
+ feat_quantizer_dropout=0.0,
+ final_dropout=0.1,
+ layerdrop=0.1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-5,
+ feat_extract_norm="group",
+ feat_extract_activation="gelu",
+ conv_dim=(512, 512, 512, 512, 512, 512, 512),
+ conv_stride=(5, 2, 2, 2, 2, 2, 2),
+ conv_kernel=(10, 3, 3, 3, 3, 2, 2),
+ conv_bias=False,
+ num_conv_pos_embeddings=128,
+ num_conv_pos_embedding_groups=16,
+ do_stable_layer_norm=False,
+ apply_spec_augment=True,
+ mask_time_prob=0.05,
+ mask_time_length=10,
+ mask_time_min_masks=2,
+ mask_feature_prob=0.0,
+ mask_feature_length=10,
+ mask_feature_min_masks=0,
+ num_codevectors_per_group=320,
+ num_codevector_groups=2,
+ contrastive_logits_temperature=0.1,
+ num_negatives=100,
+ codevector_dim=256,
+ proj_codevector_dim=256,
+ diversity_loss_weight=0.1,
+ ctc_loss_reduction="mean",
+ ctc_zero_infinity=False,
+ use_weighted_layer_sum=False,
+ classifier_proj_size=256,
+ tdnn_dim=(512, 512, 512, 512, 1500),
+ tdnn_kernel=(5, 3, 3, 1, 1),
+ tdnn_dilation=(1, 2, 3, 1, 1),
+ xvector_output_dim=512,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ num_clusters=504,
+ **kwargs,
+ ):
+ super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
+ self.hidden_size = hidden_size
+ self.feat_extract_norm = feat_extract_norm
+ self.feat_extract_activation = feat_extract_activation
+ self.conv_dim = list(conv_dim)
+ self.conv_stride = list(conv_stride)
+ self.conv_kernel = list(conv_kernel)
+ self.conv_bias = conv_bias
+ self.num_conv_pos_embeddings = num_conv_pos_embeddings
+ self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
+ self.num_feat_extract_layers = len(self.conv_dim)
+ self.num_hidden_layers = num_hidden_layers
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.num_attention_heads = num_attention_heads
+ self.hidden_dropout = hidden_dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.feat_proj_dropout = feat_proj_dropout
+ self.final_dropout = final_dropout
+ self.layerdrop = layerdrop
+ self.layer_norm_eps = layer_norm_eps
+ self.initializer_range = initializer_range
+ self.vocab_size = vocab_size
+ self.num_clusters = num_clusters
+ self.do_stable_layer_norm = do_stable_layer_norm
+ self.use_weighted_layer_sum = use_weighted_layer_sum
+
+ if (
+ (len(self.conv_stride) != self.num_feat_extract_layers)
+ or (len(self.conv_kernel) != self.num_feat_extract_layers)
+ or (len(self.conv_dim) != self.num_feat_extract_layers)
+ ):
+ raise ValueError(
+ "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
+ " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
+ f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
+ f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
+ )
+
+ # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
+ self.apply_spec_augment = apply_spec_augment
+ self.mask_time_prob = mask_time_prob
+ self.mask_time_length = mask_time_length
+ self.mask_time_min_masks = mask_time_min_masks
+ self.mask_feature_prob = mask_feature_prob
+ self.mask_feature_length = mask_feature_length
+ self.mask_feature_min_masks = mask_feature_min_masks
+
+ # parameters for pretraining with codevector quantized representations
+ self.num_codevectors_per_group = num_codevectors_per_group
+ self.num_codevector_groups = num_codevector_groups
+ self.contrastive_logits_temperature = contrastive_logits_temperature
+ self.feat_quantizer_dropout = feat_quantizer_dropout
+ self.num_negatives = num_negatives
+ self.codevector_dim = codevector_dim
+ self.proj_codevector_dim = proj_codevector_dim
+ self.diversity_loss_weight = diversity_loss_weight
+
+ # ctc loss
+ self.ctc_loss_reduction = ctc_loss_reduction
+ self.ctc_zero_infinity = ctc_zero_infinity
+
+ # SequenceClassification-specific parameter. Feel free to ignore for other classes.
+ self.classifier_proj_size = classifier_proj_size
+
+ # XVector-specific parameters. Feel free to ignore for other classes.
+ self.tdnn_dim = list(tdnn_dim)
+ self.tdnn_kernel = list(tdnn_kernel)
+ self.tdnn_dilation = list(tdnn_dilation)
+ self.xvector_output_dim = xvector_output_dim
+
+ @property
+ def inputs_to_logits_ratio(self):
+ return functools.reduce(operator.mul, self.conv_stride, 1)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..56c9d52e185d25bbe0f58ca951419d848eead9de
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py
@@ -0,0 +1,110 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Hubert checkpoint."""
+
+
+import argparse
+
+import torch
+
+from transformers import (
+ UniSpeechSatConfig,
+ UniSpeechSatForAudioFrameClassification,
+ UniSpeechSatForSequenceClassification,
+ UniSpeechSatForXVector,
+ Wav2Vec2FeatureExtractor,
+ logging,
+)
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def convert_classification(base_model_name, hf_config, downstream_dict):
+ model = UniSpeechSatForSequenceClassification.from_pretrained(base_model_name, config=hf_config)
+ model.projector.weight.data = downstream_dict["projector.weight"]
+ model.projector.bias.data = downstream_dict["projector.bias"]
+ model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
+ model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
+ return model
+
+
+def convert_diarization(base_model_name, hf_config, downstream_dict):
+ model = UniSpeechSatForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config)
+ model.classifier.weight.data = downstream_dict["model.linear.weight"]
+ model.classifier.bias.data = downstream_dict["model.linear.bias"]
+ return model
+
+
+def convert_xvector(base_model_name, hf_config, downstream_dict):
+ model = UniSpeechSatForXVector.from_pretrained(base_model_name, config=hf_config)
+ model.projector.weight.data = downstream_dict["connector.weight"]
+ model.projector.bias.data = downstream_dict["connector.bias"]
+ for i, kernel_size in enumerate(hf_config.tdnn_kernel):
+ model.tdnn[i].kernel.weight.data = downstream_dict[
+ f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
+ ]
+ model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
+
+ model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
+ model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
+ model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
+ model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
+ model.objective.weight.data = downstream_dict["objective.W"]
+ return model
+
+
+@torch.no_grad()
+def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ checkpoint = torch.load(checkpoint_path, map_location="cpu")
+
+ downstream_dict = checkpoint["Downstream"]
+
+ hf_config = UniSpeechSatConfig.from_pretrained(config_path)
+ hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
+ base_model_name, return_attention_mask=True, do_normalize=False
+ )
+
+ arch = hf_config.architectures[0]
+ if arch.endswith("ForSequenceClassification"):
+ hf_model = convert_classification(base_model_name, hf_config, downstream_dict)
+ elif arch.endswith("ForAudioFrameClassification"):
+ hf_model = convert_diarization(base_model_name, hf_config, downstream_dict)
+ elif arch.endswith("ForXVector"):
+ hf_model = convert_xvector(base_model_name, hf_config, downstream_dict)
+ else:
+ raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}")
+
+ if hf_config.use_weighted_layer_sum:
+ hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
+
+ hf_feature_extractor.save_pretrained(model_dump_path)
+ hf_model.save_pretrained(model_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
+ )
+ parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
+ parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
+ args = parser.parse_args()
+ convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..93750b64cc3a2db5b0b162a5496ecda4e36746e0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,225 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert UniSpeechSat checkpoint."""
+
+
+import argparse
+
+import fairseq
+import torch
+
+from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+MAPPING = {
+ "post_extract_proj": "feature_projection.projection",
+ "encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
+ "self_attn.k_proj": "encoder.layers.*.attention.k_proj",
+ "self_attn.v_proj": "encoder.layers.*.attention.v_proj",
+ "self_attn.q_proj": "encoder.layers.*.attention.q_proj",
+ "self_attn.out_proj": "encoder.layers.*.attention.out_proj",
+ "self_attn_layer_norm": "encoder.layers.*.layer_norm",
+ "fc1": "encoder.layers.*.feed_forward.intermediate_dense",
+ "fc2": "encoder.layers.*.feed_forward.output_dense",
+ "final_layer_norm": "encoder.layers.*.final_layer_norm",
+ "encoder.layer_norm": "encoder.layer_norm",
+ "encoder.layer_norm_for_extract": "layer_norm_for_extract",
+ "w2v_model.layer_norm": "feature_projection.layer_norm",
+ "quantizer.weight_proj": "quantizer.weight_proj",
+ "quantizer.vars": "quantizer.codevectors",
+ "project_q": "project_q",
+ "final_proj": "project_hid",
+ "w2v_encoder.proj": "lm_head",
+ "label_embs_concat": "label_embeddings_concat",
+ "mask_emb": "masked_spec_embed",
+ "spk_proj": "speaker_proj",
+}
+TOP_LEVEL_KEYS = [
+ "lm_head",
+ "quantizer.weight_proj",
+ "quantizer.codevectors",
+ "project_q",
+ "project_hid",
+ "label_embeddings_concat",
+ "speaker_proj",
+ "layer_norm_for_extract",
+]
+
+
+def set_recursively(hf_pointer, key, value, full_name, weight_type):
+ for attribute in key.split("."):
+ hf_pointer = getattr(hf_pointer, attribute)
+
+ if weight_type is not None:
+ hf_shape = getattr(hf_pointer, weight_type).shape
+ else:
+ hf_shape = hf_pointer.shape
+
+ if hf_shape != value.shape:
+ raise ValueError(
+ f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
+ f" {value.shape} for {full_name}"
+ )
+
+ if weight_type == "weight":
+ hf_pointer.weight.data = value
+ elif weight_type == "weight_g":
+ hf_pointer.weight_g.data = value
+ elif weight_type == "weight_v":
+ hf_pointer.weight_v.data = value
+ elif weight_type == "bias":
+ hf_pointer.bias.data = value
+ else:
+ hf_pointer.data = value
+
+ logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
+
+
+def recursively_load_weights(fairseq_model, hf_model):
+ unused_weights = []
+ fairseq_dict = fairseq_model.state_dict()
+
+ feature_extractor = hf_model.unispeech_sat.feature_extractor
+
+ for name, value in fairseq_dict.items():
+ is_used = False
+ if "conv_layers" in name:
+ load_conv_layer(
+ name,
+ value,
+ feature_extractor,
+ unused_weights,
+ hf_model.config.feat_extract_norm == "group",
+ )
+ is_used = True
+ else:
+ for key, mapped_key in MAPPING.items():
+ mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
+ if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
+ if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key):
+ # special case since naming is very similar
+ continue
+ is_used = True
+ if "*" in mapped_key:
+ layer_index = name.split(key)[0].split(".")[-2]
+ mapped_key = mapped_key.replace("*", layer_index)
+ if "weight_g" in name:
+ weight_type = "weight_g"
+ elif "weight_v" in name:
+ weight_type = "weight_v"
+ elif "bias" in name:
+ weight_type = "bias"
+ elif "weight" in name:
+ # TODO: don't match quantizer.weight_proj
+ weight_type = "weight"
+ else:
+ weight_type = None
+ set_recursively(hf_model, mapped_key, value, name, weight_type)
+ continue
+ if not is_used:
+ unused_weights.append(name)
+
+ logger.warning(f"Unused weights: {unused_weights}")
+
+
+def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
+ name = full_name.split("conv_layers.")[-1]
+ items = name.split(".")
+ layer_id = int(items[0])
+ type_id = int(items[1])
+
+ if type_id == 0:
+ if "bias" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].conv.bias.data = value
+ logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
+ elif "weight" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].conv.weight.data = value
+ logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
+ elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
+ if "bias" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
+ logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
+ elif "weight" in name:
+ if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
+ raise ValueError(
+ f"{full_name} has size {value.shape}, but"
+ f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
+ )
+ feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
+ logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
+ else:
+ unused_weights.append(full_name)
+
+
+@torch.no_grad()
+def convert_unispeech_sat_checkpoint(
+ checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
+):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ if config_path is not None:
+ config = UniSpeechSatConfig.from_pretrained(config_path)
+ else:
+ config = UniSpeechSatConfig()
+
+ dict_path = ""
+
+ if is_finetuned:
+ hf_wav2vec = UniSpeechSatForCTC(config)
+ else:
+ hf_wav2vec = UniSpeechSatForPreTraining(config)
+
+ model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
+ [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
+ )
+ model = model[0].eval()
+
+ recursively_load_weights(model, hf_wav2vec)
+
+ hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
+ parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
+ parser.add_argument(
+ "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
+ )
+ args = parser.parse_args()
+ convert_unispeech_sat_checkpoint(
+ args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/modeling_unispeech_sat.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/modeling_unispeech_sat.py
new file mode 100644
index 0000000000000000000000000000000000000000..f38da0d47f5c3d5589206d595c79bde48b90e288
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech_sat/modeling_unispeech_sat.py
@@ -0,0 +1,1969 @@
+# coding=utf-8
+# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch UniSpeechSat model."""
+
+import math
+import warnings
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...integrations.deepspeed import is_deepspeed_zero3_enabled
+from ...modeling_outputs import (
+ BaseModelOutput,
+ CausalLMOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+ Wav2Vec2BaseModelOutput,
+ XVectorOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_peft_available,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_unispeech_sat import UniSpeechSatConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+_HIDDEN_STATES_START_POSITION = 2
+
+# General docstring
+_CONFIG_FOR_DOC = "UniSpeechSatConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "microsoft/unispeech-sat-base-100h-libri-ft"
+_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
+
+# CTC docstring
+_CTC_EXPECTED_OUTPUT = "'MISTER QUILDER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
+_CTC_EXPECTED_LOSS = 39.88
+
+# Frame class docstring
+_FRAME_CLASS_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sd"
+_FRAME_EXPECTED_OUTPUT = [0, 0]
+
+# Speaker Verification docstring
+_XVECTOR_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sv"
+_XVECTOR_EXPECTED_OUTPUT = 0.97
+
+
+from ..deprecated._archive_maps import UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class UniSpeechSatForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`UniSpeechSatForPreTrainingOutput`], with potential hidden states and attentions.
+
+ Args:
+ loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
+ paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
+ projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
+ Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
+ projected quantized states.
+ projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
+ Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
+ target vectors for contrastive loss.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ projected_states: torch.FloatTensor = None
+ projected_quantized_states: torch.FloatTensor = None
+ codevector_perplexity: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
+def _compute_mask_indices(
+ shape: Tuple[int, int],
+ mask_prob: float,
+ mask_length: int,
+ attention_mask: Optional[torch.LongTensor] = None,
+ min_masks: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
+ ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
+ CPU as part of the preprocessing during training.
+
+ Args:
+ shape: The shape for which to compute masks. This should be of a tuple of size 2 where
+ the first element is the batch size and the second element is the length of the axis to span.
+ mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
+ independently generated mask spans of length `mask_length` is computed by
+ `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
+ actual percentage will be smaller.
+ mask_length: size of the mask
+ min_masks: minimum number of masked spans
+ attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
+ each batch dimension.
+ """
+ batch_size, sequence_length = shape
+
+ if mask_length < 1:
+ raise ValueError("`mask_length` has to be bigger than 0.")
+
+ if mask_length > sequence_length:
+ raise ValueError(
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
+ f" and `sequence_length`: {sequence_length}`"
+ )
+
+ # epsilon is used for probabilistic rounding
+ epsilon = np.random.rand(1).item()
+
+ def compute_num_masked_span(input_length):
+ """Given input length, compute how many spans should be masked"""
+ num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
+ num_masked_span = max(num_masked_span, min_masks)
+
+ # make sure num masked span <= sequence_length
+ if num_masked_span * mask_length > sequence_length:
+ num_masked_span = sequence_length // mask_length
+
+ # make sure num_masked span is also <= input_length - (mask_length - 1)
+ if input_length - (mask_length - 1) < num_masked_span:
+ num_masked_span = max(input_length - (mask_length - 1), 0)
+
+ return num_masked_span
+
+ # compute number of masked spans in batch
+ input_lengths = (
+ attention_mask.sum(-1).detach().tolist()
+ if attention_mask is not None
+ else [sequence_length for _ in range(batch_size)]
+ )
+
+ # SpecAugment mask to fill
+ spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
+ spec_aug_mask_idxs = []
+
+ max_num_masked_span = compute_num_masked_span(sequence_length)
+
+ if max_num_masked_span == 0:
+ return spec_aug_mask
+
+ for input_length in input_lengths:
+ # compute num of masked spans for this input
+ num_masked_span = compute_num_masked_span(input_length)
+
+ # get random indices to mask
+ spec_aug_mask_idx = np.random.choice(
+ np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
+ )
+
+ # pick first sampled index that will serve as a dummy index to pad vector
+ # to ensure same dimension for all batches due to probabilistic rounding
+ # Picking first sample just pads those vectors twice.
+ if len(spec_aug_mask_idx) == 0:
+ # this case can only happen if `input_length` is strictly smaller then
+ # `sequence_length` in which case the last token has to be a padding
+ # token which we can use as a dummy mask id
+ dummy_mask_idx = sequence_length - 1
+ else:
+ dummy_mask_idx = spec_aug_mask_idx[0]
+
+ spec_aug_mask_idx = np.concatenate(
+ [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
+ )
+ spec_aug_mask_idxs.append(spec_aug_mask_idx)
+
+ spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
+
+ # expand masked indices to masked spans
+ spec_aug_mask_idxs = np.broadcast_to(
+ spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
+
+ # add offset to the starting indexes so that indexes now create a span
+ offsets = np.arange(mask_length)[None, None, :]
+ offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
+ batch_size, max_num_masked_span * mask_length
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
+
+ # ensure that we cannot have indices larger than sequence_length
+ if spec_aug_mask_idxs.max() > sequence_length - 1:
+ spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
+
+ # scatter indices to mask
+ np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
+
+ return spec_aug_mask
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatNoLayerNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatLayerNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+
+ hidden_states = hidden_states.transpose(-2, -1)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = hidden_states.transpose(-2, -1)
+
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatGroupNormConvLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
+ self.out_conv_dim = config.conv_dim[layer_id]
+
+ self.conv = nn.Conv1d(
+ self.in_conv_dim,
+ self.out_conv_dim,
+ kernel_size=config.conv_kernel[layer_id],
+ stride=config.conv_stride[layer_id],
+ bias=config.conv_bias,
+ )
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
+
+ def forward(self, hidden_states):
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeechSat
+class UniSpeechSatPositionalConvEmbedding(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ kernel_size=config.num_conv_pos_embeddings,
+ padding=config.num_conv_pos_embeddings // 2,
+ groups=config.num_conv_pos_embedding_groups,
+ )
+
+ weight_norm = nn.utils.weight_norm
+ if hasattr(nn.utils.parametrizations, "weight_norm"):
+ weight_norm = nn.utils.parametrizations.weight_norm
+
+ if is_deepspeed_zero3_enabled():
+ import deepspeed
+
+ with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
+ else:
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+
+ self.padding = UniSpeechSatSamePadLayer(config.num_conv_pos_embeddings)
+ self.activation = ACT2FN[config.feat_extract_activation]
+
+ def forward(self, hidden_states):
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.padding(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatSamePadLayer(nn.Module):
+ def __init__(self, num_conv_pos_embeddings):
+ super().__init__()
+ self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
+
+ def forward(self, hidden_states):
+ if self.num_pad_remove > 0:
+ hidden_states = hidden_states[:, :, : -self.num_pad_remove]
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeechSat
+class UniSpeechSatFeatureEncoder(nn.Module):
+ """Construct the features from raw audio waveform"""
+
+ def __init__(self, config):
+ super().__init__()
+
+ if config.feat_extract_norm == "group":
+ conv_layers = [UniSpeechSatGroupNormConvLayer(config, layer_id=0)] + [
+ UniSpeechSatNoLayerNormConvLayer(config, layer_id=i + 1)
+ for i in range(config.num_feat_extract_layers - 1)
+ ]
+ elif config.feat_extract_norm == "layer":
+ conv_layers = [
+ UniSpeechSatLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
+ ]
+ else:
+ raise ValueError(
+ f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
+ )
+ self.conv_layers = nn.ModuleList(conv_layers)
+ self.gradient_checkpointing = False
+ self._requires_grad = True
+
+ def _freeze_parameters(self):
+ for param in self.parameters():
+ param.requires_grad = False
+ self._requires_grad = False
+
+ def forward(self, input_values):
+ hidden_states = input_values[:, None]
+
+ # make sure hidden_states require grad for gradient_checkpointing
+ if self._requires_grad and self.training:
+ hidden_states.requires_grad = True
+
+ for conv_layer in self.conv_layers:
+ if self._requires_grad and self.gradient_checkpointing and self.training:
+ hidden_states = self._gradient_checkpointing_func(
+ conv_layer.__call__,
+ hidden_states,
+ )
+ else:
+ hidden_states = conv_layer(hidden_states)
+
+ return hidden_states
+
+
+class UniSpeechSatFeatureExtractor(UniSpeechSatFeatureEncoder):
+ def __init__(self, config):
+ super().__init__(config)
+ warnings.warn(
+ f"The class `{self.__class__.__name__}` has been depreciated "
+ "and will be removed in Transformers v5. "
+ f"Use `{self.__class__.__bases__[0].__name__}` instead.",
+ FutureWarning,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeechSat
+class UniSpeechSatFeatureProjection(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
+ self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
+ self.dropout = nn.Dropout(config.feat_proj_dropout)
+
+ def forward(self, hidden_states):
+ # non-projected hidden states are needed for quantization
+ norm_hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.projection(norm_hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states, norm_hidden_states
+
+
+# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeechSat
+class UniSpeechSatAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[UniSpeechSatConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeechSat
+class UniSpeechSatFeedForward(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.intermediate_dropout = nn.Dropout(config.activation_dropout)
+
+ self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.output_dropout = nn.Dropout(config.hidden_dropout)
+
+ def forward(self, hidden_states):
+ hidden_states = self.intermediate_dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ hidden_states = self.intermediate_dropout(hidden_states)
+
+ hidden_states = self.output_dense(hidden_states)
+ hidden_states = self.output_dropout(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatEncoderLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = UniSpeechSatAttention(
+ embed_dim=config.hidden_size,
+ num_heads=config.num_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=False,
+ )
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.feed_forward = UniSpeechSatFeedForward(config)
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ attn_residual = hidden_states
+ hidden_states, attn_weights, _ = self.attention(
+ hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
+ )
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = attn_residual + hidden_states
+
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = hidden_states + self.feed_forward(hidden_states)
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeechSat
+class UniSpeechSatAttnAdapterLayer(nn.Module):
+ def __init__(self, config):
+ """
+ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
+ up training throughput.
+ """
+ super().__init__()
+ self.input_dim = config.adapter_attn_dim
+ self.hidden_dim = config.hidden_size
+
+ self.norm = nn.LayerNorm(self.hidden_dim)
+ self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
+ self.act_fn = nn.ReLU()
+ self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
+
+ def forward(self, hidden_states: torch.FloatTensor):
+ hidden_states = self.norm(hidden_states)
+
+ hidden_states = self.linear_1(hidden_states)
+ hidden_states = self.act_fn(hidden_states)
+ hidden_states = self.linear_2(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeechSat
+class UniSpeechSatEncoderLayerStableLayerNorm(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = UniSpeechSatAttention(
+ embed_dim=config.hidden_size,
+ num_heads=config.num_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=False,
+ )
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.feed_forward = UniSpeechSatFeedForward(config)
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ if getattr(config, "adapter_attn_dim", None) is not None:
+ self.adapter_layer = UniSpeechSatAttnAdapterLayer(config)
+ else:
+ self.adapter_layer = None
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ):
+ attn_residual = hidden_states
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states, attn_weights, _ = self.attention(
+ hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
+ )
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = attn_residual + hidden_states
+ hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
+
+ if self.adapter_layer is not None:
+ hidden_states = hidden_states + self.adapter_layer(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeechSat
+class UniSpeechSatEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layers = nn.ModuleList([UniSpeechSatEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ if attention_mask is not None:
+ # make sure padded tokens output 0
+ expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
+ hidden_states[~expand_attention_mask] = 0
+
+ # extend attention_mask
+ attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
+ attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
+ attention_mask = attention_mask.expand(
+ attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
+ )
+
+ position_embeddings = self.pos_conv_embed(hidden_states)
+ hidden_states = hidden_states + position_embeddings
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
+
+ for layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = torch.rand([])
+
+ skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
+ # under deepspeed zero3 all gpus must run in sync
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer.__call__,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer(
+ hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
+ )
+ hidden_states = layer_outputs[0]
+
+ if skip_the_layer:
+ layer_outputs = (None, None)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeechSat
+class UniSpeechSatEncoderStableLayerNorm(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layers = nn.ModuleList(
+ [UniSpeechSatEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
+ )
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ if attention_mask is not None:
+ # make sure padded tokens are not attended to
+ expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
+ hidden_states[~expand_attention_mask] = 0
+
+ # extend attention_mask
+ attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
+ attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
+ attention_mask = attention_mask.expand(
+ attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
+ )
+
+ position_embeddings = self.pos_conv_embed(hidden_states)
+ hidden_states = hidden_states + position_embeddings
+ hidden_states = self.dropout(hidden_states)
+
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
+
+ for layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = torch.rand([])
+
+ skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
+ # under deepspeed zero3 all gpus must run in sync
+ # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer.__call__,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer(
+ hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
+ )
+ hidden_states = layer_outputs[0]
+
+ if skip_the_layer:
+ layer_outputs = (None, None)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class UniSpeechSatGumbelVectorQuantizer(nn.Module):
+ """
+ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
+ GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.num_groups = config.num_codevector_groups
+ self.num_vars = config.num_codevectors_per_group
+
+ if config.codevector_dim % self.num_groups != 0:
+ raise ValueError(
+ f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`"
+ f" {self.num_groups} for concatenation"
+ )
+
+ # storage for codebook variables (codewords)
+ self.codevectors = nn.Parameter(
+ torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
+ )
+ self.weight_proj = nn.Linear(config.hidden_size, self.num_groups * self.num_vars)
+
+ # can be decayed for training
+ self.temperature = 2
+
+ @staticmethod
+ def _compute_perplexity(probs, mask=None):
+ marginal_probs = probs.mean(dim=0)
+ perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
+ return perplexity
+
+ def forward(self, hidden_states):
+ batch_size, sequence_length, hidden_size = hidden_states.shape
+
+ # project to codevector dim
+ hidden_states = self.weight_proj(hidden_states)
+ hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
+
+ if self.training:
+ # sample code vector probs via gumbel in differentiateable way
+ codevector_probs = nn.functional.gumbel_softmax(
+ hidden_states.float(), tau=self.temperature, hard=True
+ ).type_as(hidden_states)
+
+ # compute perplexity
+ codevector_soft_dist = torch.softmax(
+ hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
+ )
+ perplexity = self._compute_perplexity(codevector_soft_dist)
+ else:
+ # take argmax in non-differentiable way
+ # comptute hard codevector distribution (one hot)
+ codevector_idx = hidden_states.argmax(dim=-1)
+ codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
+ -1, codevector_idx.view(-1, 1), 1.0
+ )
+ codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
+
+ perplexity = self._compute_perplexity(codevector_probs)
+
+ codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
+ # use probs to retrieve codevectors
+ codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
+ codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
+ codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
+
+ return codevectors, perplexity
+
+
+class UniSpeechSatPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = UniSpeechSatConfig
+ base_model_prefix = "unispeech_sat"
+ main_input_name = "input_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ # gumbel softmax requires special init
+ if isinstance(module, UniSpeechSatGumbelVectorQuantizer):
+ module.weight_proj.weight.data.normal_(mean=0.0, std=1)
+ module.weight_proj.bias.data.zero_()
+ nn.init.uniform_(module.codevectors)
+ elif isinstance(module, UniSpeechSatPositionalConvEmbedding):
+ nn.init.normal_(
+ module.conv.weight,
+ mean=0,
+ std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
+ )
+ nn.init.constant_(module.conv.bias, 0)
+ elif isinstance(module, UniSpeechSatFeatureProjection):
+ k = math.sqrt(1 / module.projection.in_features)
+ nn.init.uniform_(module.projection.weight, a=-k, b=k)
+ nn.init.uniform_(module.projection.bias, a=-k, b=k)
+ elif isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Conv1d):
+ nn.init.kaiming_normal_(module.weight)
+
+ if module.bias is not None:
+ k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
+ nn.init.uniform_(module.bias, a=-k, b=k)
+
+ def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
+ """
+ Computes the output length of the convolutional layers
+ """
+
+ def _conv_out_length(input_length, kernel_size, stride):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
+
+ for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
+ input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
+
+ return input_lengths
+
+ def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
+ # Effectively attention_mask.sum(-1), but not inplace to be able to run
+ # on inference mode.
+ non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
+ output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
+ batch_size = attention_mask.shape[0]
+
+ attention_mask = torch.zeros(
+ (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ # these two operations makes sure that all values before the output lengths idxs are attended to
+ attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
+ attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
+ return attention_mask
+
+
+UNISPEECH_SAT_START_DOCSTRING = r"""
+ UniSpeechSat was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
+ Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
+ Auli.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving etc.).
+
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`UniSpeechSatConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+UNISPEECH_SAT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
+ into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
+ soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
+ conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
+ 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+
+
+ `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
+ True`. For all models whose processor has `config.return_attention_mask == False`, such as
+ [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft),
+ `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For
+ such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware
+ that these models also yield slightly different results depending on whether `input_values` is padded or
+ not.
+
+
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare UniSpeechSat Model transformer outputting raw hidden-states without any specific head on top.",
+ UNISPEECH_SAT_START_DOCSTRING,
+)
+class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
+ def __init__(self, config: UniSpeechSatConfig):
+ super().__init__(config)
+ self.config = config
+ self.feature_extractor = UniSpeechSatFeatureEncoder(config)
+ self.feature_projection = UniSpeechSatFeatureProjection(config)
+
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
+
+ if config.do_stable_layer_norm:
+ self.encoder = UniSpeechSatEncoderStableLayerNorm(config)
+ else:
+ self.encoder = UniSpeechSatEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
+ def _mask_hidden_states(
+ self,
+ hidden_states: torch.FloatTensor,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ ):
+ """
+ Masks extracted features along time axis and/or along feature axis according to
+ [SpecAugment](https://arxiv.org/abs/1904.08779).
+ """
+
+ # `config.apply_spec_augment` can set masking to False
+ if not getattr(self.config, "apply_spec_augment", True):
+ return hidden_states
+
+ # generate indices & apply SpecAugment along time axis
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ if mask_time_indices is not None:
+ # apply SpecAugment along time axis with given mask_time_indices
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+ elif self.config.mask_time_prob > 0 and self.training:
+ mask_time_indices = _compute_mask_indices(
+ (batch_size, sequence_length),
+ mask_prob=self.config.mask_time_prob,
+ mask_length=self.config.mask_time_length,
+ attention_mask=attention_mask,
+ min_masks=self.config.mask_time_min_masks,
+ )
+ mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+
+ if self.config.mask_feature_prob > 0 and self.training:
+ # generate indices & apply SpecAugment along feature axis
+ mask_feature_indices = _compute_mask_indices(
+ (batch_size, hidden_size),
+ mask_prob=self.config.mask_feature_prob,
+ mask_length=self.config.mask_feature_length,
+ min_masks=self.config.mask_feature_min_masks,
+ )
+ mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
+ mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
+ hidden_states[mask_feature_indices] = 0
+
+ return hidden_states
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=Wav2Vec2BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ extract_features = self.feature_extractor(input_values)
+ extract_features = extract_features.transpose(1, 2)
+
+ if attention_mask is not None:
+ # compute reduced attention_mask corresponding to feature vectors
+ attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
+
+ hidden_states, extract_features = self.feature_projection(extract_features)
+ hidden_states = self._mask_hidden_states(
+ hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if not return_dict:
+ return (hidden_states, extract_features) + encoder_outputs[1:]
+
+ return Wav2Vec2BaseModelOutput(
+ last_hidden_state=hidden_states,
+ extract_features=extract_features,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings("""UniSpeechSat Model with a quantizer and `VQ` head on top.""", UNISPEECH_SAT_START_DOCSTRING)
+class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
+ def __init__(self, config: UniSpeechSatConfig):
+ super().__init__(config)
+ self.unispeech_sat = UniSpeechSatModel(config)
+ self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
+
+ self.quantizer = UniSpeechSatGumbelVectorQuantizer(config)
+ self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
+ self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
+
+ self.dropout = nn.Dropout(config.final_dropout)
+
+ self.speaker_proj = nn.Linear(config.hidden_size, config.codevector_dim)
+ self.label_embeddings_concat = nn.Parameter(torch.FloatTensor(config.num_clusters, config.codevector_dim))
+ self.label_embeddings_concat.data.zero_()
+
+ self.layer_norm_for_extract = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ if self.config.do_stable_layer_norm:
+ self.layer_norm_for_extract.requires_grad = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def set_gumbel_temperature(self, temperature: int):
+ """
+ Set the Gumbel softmax temperature to a given value. Only necessary for training
+ """
+ self.quantizer.temperature = temperature
+
+ def freeze_feature_extractor(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameters will
+ not be updated during training.
+ """
+ warnings.warn(
+ "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
+ "Please use the equivalent `freeze_feature_encoder` method instead.",
+ FutureWarning,
+ )
+ self.freeze_feature_encoder()
+
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.wav2vec2.feature_extractor._freeze_parameters()
+
+ @staticmethod
+ def compute_contrastive_logits(
+ target_features: torch.FloatTensor,
+ negative_features: torch.FloatTensor,
+ predicted_features: torch.FloatTensor,
+ temperature: int = 1,
+ ):
+ """
+ Compute logits for contrastive loss based using cosine similarity as the distance measure between
+ `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
+ """
+ target_features = torch.cat([target_features, negative_features], dim=0)
+
+ logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1)
+ logits = logits.type_as(target_features)
+
+ # apply temperature
+ logits = logits / temperature
+ return logits
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoFeatureExtractor, UniSpeechSatForPreTraining
+ >>> from transformers.models.unispeech_sat.modeling_unispeech_sat import _compute_mask_indices
+
+ >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-sat-base")
+ >>> model = UniSpeechSatForPreTraining.from_pretrained("microsoft/unispeech-sat-base")
+ >>> # TODO: Add full pretraining example
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.unispeech_sat(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ transformer_features = outputs[0]
+
+ # quantize all (unmasked) extracted features and project to final vq dim
+ extract_features = self.dropout_features(outputs[1])
+
+ # TODO(PVP) - add pretraining logic and add to tests
+ logits = extract_features
+ loss = quantized_features = codevector_perplexity = None
+
+ # layer normalization (has no effect when `config.do_stable_layer_norm == False`)
+ # extract_features = self.layer_norm_for_extract(extract_features)
+ # quantized_features, codevector_perplexity = self.quantizer(extract_features)
+ #
+ # project quantized features twice
+ # quantized_features = self.project_q(quantized_features)
+ # quantized_features = self.project_hid(quantized_features)
+ #
+ # loss = None
+ # logits = quantized_features
+ if not return_dict:
+ if loss is not None:
+ return (loss, logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
+ return (logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
+
+ return UniSpeechSatForPreTrainingOutput(
+ loss=loss,
+ logits=logits,
+ projected_states=transformer_features,
+ projected_quantized_states=quantized_features,
+ codevector_perplexity=codevector_perplexity,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """UniSpeechSat Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
+ UNISPEECH_SAT_START_DOCSTRING,
+ """
+ target_lang (`str`, *optional*):
+ Language id of adapter weights. Adapter weights are stored in the format adapter..safetensors or
+ adapter..bin. Only relevant when using an instance of [`UniSpeechSatForCTC`] with adapters. Uses
+ 'eng' by default.
+ """,
+)
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
+class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):
+ def __init__(self, config, target_lang: Optional[str] = None):
+ super().__init__(config)
+
+ self.unispeech_sat = UniSpeechSatModel(config)
+ self.dropout = nn.Dropout(config.final_dropout)
+
+ self.target_lang = target_lang
+
+ if config.vocab_size is None:
+ raise ValueError(
+ f"You are trying to instantiate {self.__class__} with a configuration that "
+ "does not define the vocabulary size of the language model head. Please "
+ "instantiate the model as follows: `UniSpeechSatForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
+ "or define `vocab_size` of your model's configuration."
+ )
+ output_hidden_size = (
+ config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
+ )
+ self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def tie_weights(self):
+ """
+ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
+ passing `target_lang=...` to `from_pretrained(...)`.
+
+ This method is **not** supposed to be called by the user and is prone to be changed in the future.
+ """
+
+ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
+ # correctly load adapter layers for UniSpeechSat so that we do not have to introduce a new API to
+ # [`PreTrainedModel`]. While slightly hacky, UniSpeechSat never has to tie input and output embeddings, so that it is
+ # ok to repurpose this function here.
+ target_lang = self.target_lang
+
+ if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
+ raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
+ elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
+ logger.info("By default `target_lang` is set to 'eng'.")
+ elif target_lang is not None:
+ self.load_adapter(target_lang, force_load=True)
+
+ def freeze_feature_extractor(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ warnings.warn(
+ "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
+ "Please use the equivalent `freeze_feature_encoder` method instead.",
+ FutureWarning,
+ )
+ self.freeze_feature_encoder()
+
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.unispeech_sat.feature_extractor._freeze_parameters()
+
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.unispeech_sat.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_CTC_EXPECTED_OUTPUT,
+ expected_loss=_CTC_EXPECTED_LOSS,
+ )
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
+ Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
+ the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
+ All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.unispeech_sat(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states)
+
+ logits = self.lm_head(hidden_states)
+
+ loss = None
+ if labels is not None:
+ if labels.max() >= self.config.vocab_size:
+ raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
+
+ # retrieve loss input_lengths from attention_mask
+ attention_mask = (
+ attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
+ )
+ input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
+
+ # assuming that padded tokens are filled with -100
+ # when not being attended to
+ labels_mask = labels >= 0
+ target_lengths = labels_mask.sum(-1)
+ flattened_targets = labels.masked_select(labels_mask)
+
+ # ctc_loss doesn't support fp16
+ log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
+
+ with torch.backends.cudnn.flags(enabled=False):
+ loss = nn.functional.ctc_loss(
+ log_probs,
+ flattened_targets,
+ input_lengths,
+ target_lengths,
+ blank=self.config.pad_token_id,
+ reduction=self.config.ctc_loss_reduction,
+ zero_infinity=self.config.ctc_zero_infinity,
+ )
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutput(
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ UniSpeechSat Model with a sequence classification head on top (a linear layer over the pooled output) for tasks
+ like SUPERB Keyword Spotting.
+ """,
+ UNISPEECH_SAT_START_DOCSTRING,
+)
+class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Sequence classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
+ )
+ self.unispeech_sat = UniSpeechSatModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
+ self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
+ def freeze_feature_extractor(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameters will
+ not be updated during training.
+ """
+ warnings.warn(
+ "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
+ "Please use the equivalent `freeze_feature_encoder` method instead.",
+ FutureWarning,
+ )
+ self.freeze_feature_encoder()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech_sat
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.unispeech_sat.feature_extractor._freeze_parameters()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech_sat
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.unispeech_sat.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.unispeech_sat(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+ if attention_mask is None:
+ pooled_output = hidden_states.mean(dim=1)
+ else:
+ padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
+ hidden_states[~padding_mask] = 0.0
+ pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
+
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ UniSpeech-SAT Model with a frame classification head on top for tasks like Speaker Diarization.
+ """,
+ UNISPEECH_SAT_START_DOCSTRING,
+)
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
+class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Audio frame classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
+ )
+ self.unispeech_sat = UniSpeechSatModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+ self.num_labels = config.num_labels
+
+ self.init_weights()
+
+ def freeze_feature_extractor(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ warnings.warn(
+ "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
+ "Please use the equivalent `freeze_feature_encoder` method instead.",
+ FutureWarning,
+ )
+ self.freeze_feature_encoder()
+
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.unispeech_sat.feature_extractor._freeze_parameters()
+
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.unispeech_sat.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_FRAME_CLASS_CHECKPOINT,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ expected_output=_FRAME_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.unispeech_sat(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ logits = self.classifier(hidden_states)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
+class AMSoftmaxLoss(nn.Module):
+ def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
+ super(AMSoftmaxLoss, self).__init__()
+ self.scale = scale
+ self.margin = margin
+ self.num_labels = num_labels
+ self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
+ self.loss = nn.CrossEntropyLoss()
+
+ def forward(self, hidden_states, labels):
+ labels = labels.flatten()
+ weight = nn.functional.normalize(self.weight, dim=0)
+ hidden_states = nn.functional.normalize(hidden_states, dim=1)
+ cos_theta = torch.mm(hidden_states, weight)
+ psi = cos_theta - self.margin
+
+ onehot = nn.functional.one_hot(labels, self.num_labels)
+ logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
+ loss = self.loss(logits, labels)
+
+ return loss
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
+class TDNNLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
+ self.out_conv_dim = config.tdnn_dim[layer_id]
+ self.kernel_size = config.tdnn_kernel[layer_id]
+ self.dilation = config.tdnn_dilation[layer_id]
+
+ self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
+ self.activation = nn.ReLU()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ if is_peft_available():
+ from peft.tuners.lora import LoraLayer
+
+ if isinstance(self.kernel, LoraLayer):
+ warnings.warn(
+ "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
+ "You should exclude TDNNLayer from LoRA's target modules.",
+ )
+
+ # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
+ hidden_states = hidden_states.transpose(1, 2)
+ weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
+ hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ UniSpeech-SAT Model with an XVector feature extraction head on top for tasks like Speaker Verification.
+ """,
+ UNISPEECH_SAT_START_DOCSTRING,
+)
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
+class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.unispeech_sat = UniSpeechSatModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
+
+ tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
+ self.tdnn = nn.ModuleList(tdnn_layers)
+
+ self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
+ self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
+
+ self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
+
+ self.init_weights()
+
+ def freeze_feature_extractor(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ warnings.warn(
+ "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
+ "Please use the equivalent `freeze_feature_encoder` method instead.",
+ FutureWarning,
+ )
+ self.freeze_feature_encoder()
+
+ def freeze_feature_encoder(self):
+ """
+ Calling this function will disable the gradient computation for the feature encoder so that its parameter will
+ not be updated during training.
+ """
+ self.unispeech_sat.feature_extractor._freeze_parameters()
+
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.unispeech_sat.parameters():
+ param.requires_grad = False
+
+ def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
+ """
+ Computes the output length of the TDNN layers
+ """
+
+ def _conv_out_length(input_length, kernel_size, stride):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return (input_length - kernel_size) // stride + 1
+
+ for kernel_size in self.config.tdnn_kernel:
+ input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
+
+ return input_lengths
+
+ @add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_XVECTOR_CHECKPOINT,
+ output_type=XVectorOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ expected_output=_XVECTOR_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ input_values: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, XVectorOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.unispeech_sat(
+ input_values,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+
+ for tdnn_layer in self.tdnn:
+ hidden_states = tdnn_layer(hidden_states)
+
+ # Statistic Pooling
+ if attention_mask is None:
+ mean_features = hidden_states.mean(dim=1)
+ std_features = hidden_states.std(dim=1)
+ else:
+ feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
+ tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
+ mean_features = []
+ std_features = []
+ for i, length in enumerate(tdnn_output_lengths):
+ mean_features.append(hidden_states[i, :length].mean(dim=0))
+ std_features.append(hidden_states[i, :length].std(dim=0))
+ mean_features = torch.stack(mean_features)
+ std_features = torch.stack(std_features)
+ statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
+
+ output_embeddings = self.feature_extractor(statistic_pooling)
+ logits = self.classifier(output_embeddings)
+
+ loss = None
+ if labels is not None:
+ loss = self.objective(logits, labels)
+
+ if not return_dict:
+ output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XVectorOutput(
+ loss=loss,
+ logits=logits,
+ embeddings=output_embeddings,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )