diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bae4593c87d89c1e1d078e884e92db2e3d8dc2b0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__init__.py @@ -0,0 +1,148 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mbart"] = ["MBartTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mbart_fast"] = ["MBartTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mbart"] = [ + "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", + "MBartForCausalLM", + "MBartForConditionalGeneration", + "MBartForQuestionAnswering", + "MBartForSequenceClassification", + "MBartModel", + "MBartPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mbart"] = [ + "TFMBartForConditionalGeneration", + "TFMBartModel", + "TFMBartPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_mbart"] = [ + "FlaxMBartForConditionalGeneration", + "FlaxMBartForQuestionAnswering", + "FlaxMBartForSequenceClassification", + "FlaxMBartModel", + "FlaxMBartPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mbart import MBartTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mbart_fast import MBartTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mbart import ( + MBART_PRETRAINED_MODEL_ARCHIVE_LIST, + MBartForCausalLM, + MBartForConditionalGeneration, + MBartForQuestionAnswering, + MBartForSequenceClassification, + MBartModel, + MBartPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_mbart import ( + FlaxMBartForConditionalGeneration, + FlaxMBartForQuestionAnswering, + FlaxMBartForSequenceClassification, + FlaxMBartModel, + FlaxMBartPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ac21c6745c87806b4fce3b3cc0883043e251a8c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33ee9c3497f3272070d26c7d468f9b18316ac96c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5658500b12fd72a3ce696b176c1c1efe5595aa7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54265da9eac2e16e62f16ddad2b2a1783315eacf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7ddf473ebc0b06b79fb926b75b84aea3d1a6399 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..47f1301c742ba571226bc7d0470c92a7d2bb35a6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d25b768cc2ca2c3604fe4a5be238d3d41153a126 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5230e36f3acb3014097e41589a431bc9cab66778 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..4823047dcf31517a889fe279541c73450fc7e6d6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py @@ -0,0 +1,386 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MBART model configuration""" +from collections import OrderedDict +from typing import Any, Mapping, Optional + +from ... import PreTrainedTokenizer +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast +from ...onnx.utils import compute_effective_axis_dimension +from ...utils import TensorType, is_torch_available, logging + + +logger = logging.get_logger(__name__) + + +class MBartConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MBartModel`]. It is used to instantiate an MBART + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the MBART + [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MBartModel`] or [`TFMBartModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Example: + + ```python + >>> from transformers import MBartConfig, MBartModel + + >>> # Initializing a MBART facebook/mbart-large-cc25 style configuration + >>> configuration = MBartConfig() + + >>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration + >>> model = MBartModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mbart" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=50265, + max_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + classifier_dropout=0.0, + scale_embedding=False, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + forced_eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + +# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->MBart +class MBartOnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + + if self.use_past: + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + elif self.task == "causal-lm": + # TODO: figure this case out. + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + else: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), + ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), + ] + ) + + return common_inputs + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_outputs = super().outputs + else: + common_outputs = super(OnnxConfigWithPast, self).outputs + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + return common_outputs + + def _generate_dummy_inputs_for_default_and_seq2seq_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + # Generate decoder inputs + decoder_seq_length = seq_length if not self.use_past else 1 + decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, decoder_seq_length, is_pair, framework + ) + decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} + common_inputs = dict(**encoder_inputs, **decoder_inputs) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, encoder_seq_length = common_inputs["input_ids"].shape + decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] + num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads + encoder_shape = ( + batch, + num_encoder_attention_heads, + encoder_seq_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + decoder_past_length = decoder_seq_length + 3 + decoder_shape = ( + batch, + num_decoder_attention_heads, + decoder_past_length, + self._config.hidden_size // num_decoder_attention_heads, + ) + + common_inputs["decoder_attention_mask"] = torch.cat( + [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 + ) + + common_inputs["past_key_values"] = [] + # If the number of encoder and decoder layers are present in the model configuration, both are considered + num_encoder_layers, num_decoder_layers = self.num_layers + min_num_layers = min(num_encoder_layers, num_decoder_layers) + max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers + remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" + + for _ in range(min_num_layers): + common_inputs["past_key_values"].append( + ( + torch.zeros(decoder_shape), + torch.zeros(decoder_shape), + torch.zeros(encoder_shape), + torch.zeros(encoder_shape), + ) + ) + # TODO: test this. + shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape + for _ in range(min_num_layers, max_num_layers): + common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) + return common_inputs + + def _generate_dummy_inputs_for_causal_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + num_encoder_layers, _ = self.num_layers + num_encoder_attention_heads, _ = self.num_attention_heads + past_shape = ( + batch, + num_encoder_attention_heads, + past_key_values_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + + mask_dtype = common_inputs["attention_mask"].dtype + common_inputs["attention_mask"] = torch.cat( + [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + common_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) + ] + return common_inputs + + def _generate_dummy_inputs_for_sequence_classification_and_question_answering( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + # Copied from OnnxConfig.generate_dummy_inputs + # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = tokenizer.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size + common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + elif self.task == "causal-lm": + common_inputs = self._generate_dummy_inputs_for_causal_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + else: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + return common_inputs + + def _flatten_past_key_values_(self, flattened_output, name, idx, t): + if self.task in ["default", "seq2seq-lm"]: + flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) + else: + flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( + flattened_output, name, idx, t + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..eb7f00bf77107ff858a6131305f2e8bf6a17654b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py @@ -0,0 +1,83 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +import torch +from torch import nn + +from transformers import MBartConfig, MBartForConditionalGeneration + + +def remove_ignore_keys_(state_dict): + ignore_keys = [ + "encoder.version", + "decoder.version", + "model.encoder.version", + "model.decoder.version", + "_float_tensor", + "decoder.output_projection.weight", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +def convert_fairseq_mbart_checkpoint_from_disk( + checkpoint_path, hf_config_path="facebook/mbart-large-en-ro", finetuned=False, mbart_50=False +): + state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] + remove_ignore_keys_(state_dict) + vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] + + mbart_config = MBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size) + if mbart_50 and finetuned: + mbart_config.activation_function = "relu" + + state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] + model = MBartForConditionalGeneration(mbart_config) + model.model.load_state_dict(state_dict) + + if finetuned: + model.lm_head = make_linear_from_emb(model.model.shared) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." + ) + parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument( + "--hf_config", + default="facebook/mbart-large-cc25", + type=str, + help="Which huggingface architecture to use: mbart-large", + ) + parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") + parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") + args = parser.parse_args() + model = convert_fairseq_mbart_checkpoint_from_disk( + args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_50=args.mbart_50 + ) + model.save_pretrained(args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..907fd53aa1e5d3214d5e5f2feba99060cbbafe7c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py @@ -0,0 +1,1771 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax MBart model.""" + +import math +import random +from functools import partial +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, + FlaxSeq2SeqQuestionAnsweringModelOutput, + FlaxSeq2SeqSequenceClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_mbart import MBartConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + + +MBART_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`MBartConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +MBART_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +MBART_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + prev_output_tokens = jnp.array(input_ids).copy() + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + + # replace possible -100 values in labels by `pad_token_id` + prev_output_tokens = jnp.where(prev_output_tokens == -100, pad_token_id, input_ids) + index_of_eos = (jnp.where(prev_output_tokens != pad_token_id, 1, 0).sum(axis=-1) - 1).reshape(-1, 1) + decoder_start_tokens = jnp.array( + [prev_output_tokens[i, eos_idx] for i, eos_idx in enumerate(index_of_eos)], dtype=jnp.int32 + ).squeeze() + + prev_output_tokens = prev_output_tokens.at[:, 1:].set(prev_output_tokens[:, :-1]) + prev_output_tokens = prev_output_tokens.at[:, 0].set(decoder_start_tokens) + + return prev_output_tokens + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->MBart +class FlaxMBartAttention(nn.Module): + config: MBartConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class FlaxMBartEncoderLayer(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.encoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + self.fc1 = nn.Dense( + self.config.encoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->MBart +class FlaxMBartEncoderLayerCollection(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.encoder_layers) + ] + self.layerdrop = self.config.encoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for encoder_layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions, + deterministic, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxMBartDecoderLayer(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.encoder_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.fc1 = nn.Dense( + self.config.decoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states = self.encoder_attn_layer_norm(hidden_states) + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->MBart +class FlaxMBartDecoderLayerCollection(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.decoder_layers) + ] + self.layerdrop = self.config.decoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartClassificationHead with Bart->MBart +class FlaxMBartClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + config: MBartConfig + inner_dim: int + num_classes: int + pooler_dropout: float + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense( + self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.dropout = nn.Dropout(rate=self.pooler_dropout) + self.out_proj = nn.Dense( + self.num_classes, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + def __call__(self, hidden_states: jnp.ndarray, deterministic: bool): + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.dense(hidden_states) + hidden_states = jnp.tanh(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class FlaxMBartEncoder(nn.Module): + config: MBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_source_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 + + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + self.embed_positions = nn.Embed( + self.config.max_position_embeddings + self.offset, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.layers = FlaxMBartEncoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(position_ids + self.offset) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + ) + + +class FlaxMBartDecoder(nn.Module): + config: MBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_target_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + self.embed_positions = nn.Embed( + self.config.max_position_embeddings + self.offset, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.layers = FlaxMBartDecoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # embed positions + positions = self.embed_positions(position_ids + self.offset) + + hidden_states = inputs_embeds + positions + hidden_states = self.layernorm_embedding(hidden_states) + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->MBart +class FlaxMBartModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + dtype=self.dtype, + ) + + self.encoder = FlaxMBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + self.decoder = FlaxMBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxMBartPreTrainedModel(FlaxPreTrainedModel): + config_class = MBartConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: MBartConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + # make sure initialization pass will work for FlaxMBartForSequenceClassificationModule + input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = input_ids + decoder_attention_mask = jnp.ones_like(input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->MBart + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape + ) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(MBART_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MBartConfig) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, position_ids, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MBartConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMBartAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # prepare decoder inputs + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + if decoder_position_ids is None: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings( + "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class FlaxMBartModel(FlaxMBartPreTrainedModel): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + module_class = FlaxMBartModule + + +append_call_sample_docstring(FlaxMBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->MBart +class FlaxMBartForConditionalGenerationModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.model.shared.num_embeddings, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["shared"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return output + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + "The MMBart Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING +) +class FlaxMBartForConditionalGeneration(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForConditionalGenerationModule + dtype: jnp.dtype = jnp.float32 + + @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MBartConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMBartAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = module.model.variables["params"]["shared"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = module.lm_head(hidden_states) + + lm_logits += module.final_logits_bias.astype(self.dtype) + return lm_logits, outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + +FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING = r""" + Returns: + + Summarization example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." + >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences + >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"] + + >>> logits = model(input_ids).logits + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ``` +""" + +overwrite_call_docstring( + FlaxMBartForConditionalGeneration, MBART_INPUTS_DOCSTRING + FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING +) +append_replace_return_docstrings( + FlaxMBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC +) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForSequenceClassificationModule with Bart->MBart +class FlaxMBartForSequenceClassificationModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + num_labels: Optional[int] = None + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.classification_head = FlaxMBartClassificationHead( + config=self.config, + inner_dim=self.config.d_model, + num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels, + pooler_dropout=self.config.classifier_dropout, + ) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] # last hidden state + + eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0) + + # The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation + if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer: + if len(jnp.unique(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + + if any(eos_mask.sum(1) == 0): + raise ValueError("There are missing tokens in input_ids") + + # Ensure to keep 1 only for the last token for each example + eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6 + eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0) + + sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1) + logits = self.classification_head(sentence_representation, deterministic=deterministic) + + if not return_dict: + output = (logits,) + outputs[1:] + return output + + return FlaxSeq2SeqSequenceClassifierOutput( + logits=logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + MBART_START_DOCSTRING, +) +class FlaxMBartForSequenceClassification(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForSequenceClassificationModule + dtype = jnp.float32 + + +append_call_sample_docstring( + FlaxMBartForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSeq2SeqSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForQuestionAnsweringModule with Bart->MBart +class FlaxMBartForQuestionAnsweringModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + num_labels = 2 + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.qa_outputs = nn.Dense( + self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return output + + return FlaxSeq2SeqQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MBART_START_DOCSTRING, +) +class FlaxMBartForQuestionAnswering(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForQuestionAnsweringModule + dtype = jnp.float32 + + +append_call_sample_docstring( + FlaxMBartForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxSeq2SeqQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..fc23e2c675dbf2922feb94e8f25d62a6d7086801 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py @@ -0,0 +1,2131 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MBART model.""" +import copy +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqQuestionAnsweringModelOutput, + Seq2SeqSequenceClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_mbart import MBartConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + +# Base model docstring +_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int): + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + prev_output_tokens = input_ids.clone() + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id) + + index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) + decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze() + prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone() + prev_output_tokens[:, 0] = decoder_start_tokens + + return prev_output_tokens + + +# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart +class MBartLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim) + + def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): + """`input_ids' shape is expected to be [bsz x seqlen].""" + + bsz, seq_len = input_ids.shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device + ).expand(bsz, -1) + + return super().forward(positions + self.offset) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart +class MBartAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[MBartConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart +class MBartFlashAttention2(MBartAttention): + """ + MBart flash attention module. This module inherits from `MBartAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # MBartFlashAttention2 attention does not support output_attentions + if output_attentions: + raise ValueError("MBartFlashAttention2 attention does not support output_attentions") + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, q_len, _ = hidden_states.size() + + # get query proj + query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0].transpose(1, 2) + value_states = past_key_value[1].transpose(1, 2) + elif is_cross_attention: + # cross_attentions + key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) + value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) + value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) + value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) + else: + # self_attention + key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) + value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (LlamaRMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout + ) + + attn_output = attn_output.reshape(bsz, q_len, -1) + attn_output = self.out_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +MBART_ATTENTION_CLASSES = { + "eager": MBartAttention, + "flash_attention_2": MBartFlashAttention2, +} + + +class MBartEncoderLayer(nn.Module): + def __init__(self, config: MBartConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + output_attentions: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class MBartDecoderLayer(nn.Module): + def __init__(self, config: MBartConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart +class MBartClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__( + self, + input_dim: int, + inner_dim: int, + num_classes: int, + pooler_dropout: float, + ): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class MBartPreTrainedModel(PreTrainedModel): + config_class = MBartConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["MBartDecoderLayer", "MBartAttention"] + _supports_flash_attn_2 = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + } + return dummy_inputs + + +MBART_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MBartConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MBART_GENERATION_EXAMPLE = r""" + Translation example: + + ```python + >>> from transformers import AutoTokenizer, MBartForConditionalGeneration + + >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") + + >>> example_english_phrase = "42 is the answer" + >>> inputs = tokenizer(example_english_phrase, return_tensors="pt") + + >>> # Translate + >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) + >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + '42 este răspuns' + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, MBartForConditionalGeneration + + >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ['nett', 'sehr', 'ganz', 'nicht', 'so'] + ``` +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that + varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class MBartEncoder(MBartPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`MBartEncoderLayer`]. + + Args: + config: MBartConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = MBartLearnedPositionalEmbedding( + config.max_position_embeddings, + embed_dim, + ) + self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.layernorm_embedding = nn.LayerNorm(embed_dim) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def _backward_compatibility_gradient_checkpointing(self): + # Override to not delete the attribute from the config + if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False): + self.gradient_checkpointing_enable() + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.shape + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input) + + hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if self._use_flash_attention_2: + attention_mask = attention_mask if 0 in attention_mask else None + else: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class MBartDecoder(MBartPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`] + + Args: + config: MBartConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = MBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + ) + self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.layernorm_embedding = nn.LayerNorm(config.d_model) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + if self._use_flash_attention_2: + encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None + else: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input, past_key_values_length) + + hidden_states = inputs_embeds + positions.to(inputs_embeds.device) + hidden_states = self.layernorm_embedding(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {attn_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare MBART Model outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class MBartModel(MBartPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: MBartConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + + self.encoder = MBartEncoder(config, self.shared) + self.decoder = MBartDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings()) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings()) + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # different to other models, MBart automatically creates decoder_input_ids from + # input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", + MBART_START_DOCSTRING, +) +class MBartForConditionalGeneration(MBartPreTrainedModel): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = ["final_logits_bias"] + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: MBartConfig): + super().__init__(config) + self.model = MBartModel(config) + self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) + self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self._resize_final_logits_bias(new_embeddings.weight.shape[0]) + return new_embeddings + + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MBART_GENERATION_EXAMPLE) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id) + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +@add_start_docstrings( + """ + MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + MBART_START_DOCSTRING, +) +class MBartForSequenceClassification(MBartPreTrainedModel): + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] + + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(config, **kwargs) + self.model = MBartModel(config) + self.classification_head = MBartClassificationHead( + config.d_model, + config.d_model, + config.num_labels, + config.classifier_dropout, + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + if input_ids is None and inputs_embeds is not None: + raise NotImplementedError( + f"Passing input embeddings is currently not supported for {self.__class__.__name__}" + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] # last hidden state + + eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) + + if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ + :, -1, : + ] + logits = self.classification_head(sentence_representation) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSequenceClassifierOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MBART_START_DOCSTRING, +) +class MBartForQuestionAnswering(MBartPreTrainedModel): + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] + + def __init__(self, config): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + + self.model = MBartModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward + def forward( + self, + input_ids: torch.Tensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if start_positions is not None and end_positions is not None: + use_cache = False + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = ( + start_logits, + end_logits, + ) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return Seq2SeqQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart +class MBartDecoderWrapper(MBartPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + self.decoder = MBartDecoder(config) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) + + +# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25 +class MBartForCausalLM(MBartPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.model = MBartDecoderWrapper(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MBartForCausalLM + + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + >>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False) + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] + >>> list(logits.shape) == expected_shape + True + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..2c134b520d4300827f16fee16cacf1c04be6c0f7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py @@ -0,0 +1,1573 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 MBart model.""" + + +from __future__ import annotations + +import random +from typing import Optional, Tuple, Union + +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mbart import MBartConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + + +LARGE_NEGATIVE = -1e8 + + +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int): + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + input_ids = tf.where( + input_ids == -100, tf.fill(shape_list(input_ids), tf.cast(pad_token_id, input_ids.dtype)), input_ids + ) + language_id_index = ( + tf.reduce_sum(tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=input_ids.dtype), axis=-1) - 1 + ) + language_id_index = tf.stack( + [tf.range(shape_list(input_ids)[0], dtype=input_ids.dtype), language_id_index], axis=-1 + ) + languages_ids = tf.gather_nd(input_ids, language_id_index) + + shifted_input_ids = tf.concat([tf.expand_dims(languages_ids, axis=-1), input_ids[:, :-1]], axis=-1) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartLearnedPositionalEmbedding with Bart->MBart +class TFMBartLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) + + def call( + self, + input_shape: Optional[tf.TensorShape] = None, + past_key_values_length: int = 0, + position_ids: tf.Tensor | None = None, + ): + """Input is expected to be of size [bsz x seqlen].""" + if position_ids is None: + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32 + return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype)) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->MBart +class TFMBartAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFMBartEncoderLayer(keras.layers.Layer): + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMBartAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + layer_head_mask: tf.Tensor, + training: Optional[bool] = False, + ): + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(encoder_attention_heads,)* + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFMBartDecoderLayer(keras.layers.Layer): + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMBartAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFMBartAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(decoder_attention_heads,)* + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + *(decoder_attention_heads,)* + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFMBartPreTrainedModel(TFPreTrainedModel): + config_class = MBartConfig + base_model_prefix = "model" + + +MBART_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`MBartConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that + varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + +MBART_GENERATION_EXAMPLE = r""" + Translation example: + + ```python + >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration + + >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") + + >>> example_english_phrase = "42 is the answer" + >>> inputs = tokenizer(example_english_phrase, return_tensors="tf") + + >>> # Translate + >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) + >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + '42 este răspuns' + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration + >>> import tensorflow as tf + + >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0] + >>> probs = tf.nn.softmax(logits[0, masked_index], axis=0) + >>> values, predictions = tf.math.top_k(probs, 5) + + >>> tokenizer.decode(predictions).split() + ['nett', 'sehr', 'ganz', 'nicht', 'so'] + ``` +""" + + +@keras_serializable +class TFMBartEncoder(keras.layers.Layer): + config_class = MBartConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFMBartEncoderLayer`]. + + Args: + config: MBartConfig + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = embed_tokens + self.embed_positions = TFMBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFMBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + else: + attention_mask = None + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + ) + + if output_attentions: + all_attentions += (attn,) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMBartDecoder(keras.layers.Layer): + config_class = MBartConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMBartDecoderLayer`] + + Args: + config: MBartConfig + embed_tokens: output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + self.layerdrop = config.decoder_layerdrop + self.embed_positions = TFMBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + self.layers = [TFMBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + position_ids: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[ + TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor] + ]: + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + # embed positions + if position_ids is None: + positions = self.embed_positions(input_shape, past_key_values_length) + else: + positions = self.embed_positions(input_shape, position_ids=position_ids) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + hidden_states = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + hidden_states = self.layernorm_embedding(hidden_states + positions) + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMBartMainLayer(keras.layers.Layer): + config_class = MBartConfig + + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="model.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "model.shared" + + self.encoder = TFMBartEncoder(config, self.shared, name="encoder") + self.decoder = TFMBartDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFSeq2SeqModelOutput, tf.Tensor]: + if decoder_input_ids is None and decoder_inputs_embeds is None: + use_cache = False + + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if decoder_input_ids is None and input_ids is not None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare MBART Model outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class TFMBartModel(TFMBartPreTrainedModel): + def __init__(self, config: MBartConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFMBartMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", + MBART_START_DOCSTRING, +) +class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageModelingLoss): + _keys_to_ignore_on_load_unexpected = [ + r"model.encoder.embed_tokens.weight", + r"model.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model = TFMBartMainLayer(config, name="model") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + def get_decoder(self): + return self.model.decoder + + def get_encoder(self): + return self.model.encoder + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + @unpack_inputs + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MBART_GENERATION_EXAMPLE) + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[TFBaseModelOutput] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: + """ + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + + if labels is not None: + labels = tf.where( + labels == self.config.pad_token_id, + tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), + labels, + ) + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + if decoder_attention_mask is not None: # xla + decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] + elif past_key_values is not None: # no xla + past_key_values + decoder_position_ids = past_key_values[0][0].shape[2] + else: # no xla + no past_key_values + decoder_position_ids = tf.range(decoder_input_ids.shape[1]) + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..d9da6cb45cb388fe8c89d3fb1137403df75bce77 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py @@ -0,0 +1,337 @@ +# coding=utf-8 +# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + + +FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip + + +class MBartTokenizer(PreTrainedTokenizer): + """ + Construct an MBART tokenizer. + + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import MBartTokenizer + + >>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO") + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") + ```""" + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + tokenizer_file=None, + src_lang=None, + tgt_lang=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + additional_special_tokens=None, + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, lstrip=True, normalized=False) if isinstance(mask_token, str) else mask_token + ) + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + self.sp_model_size = len(self.sp_model) + self.lang_code_to_id = { + code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) + } + self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} + self.fairseq_tokens_to_ids[""] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + + self.fairseq_tokens_to_ids.update(self.lang_code_to_id) + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + _additional_special_tokens = list(self.lang_code_to_id.keys()) + + if additional_special_tokens is not None: + # Only add those special tokens if they are not already there. + _additional_special_tokens.extend( + [t for t in additional_special_tokens if t not in _additional_special_tokens] + ) + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + tokenizer_file=None, + src_lang=src_lang, + tgt_lang=tgt_lang, + additional_special_tokens=_additional_special_tokens, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + self._src_lang = src_lang if src_lang is not None else "en_XX" + self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @property + def vocab_size(self): + return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token + + @property + def src_lang(self) -> str: + return self._src_lang + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + prefix_ones = [1] * len(self.prefix_tokens) + suffix_ones = [1] * len(self.suffix_tokens) + if token_ids_1 is None: + return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones + return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "en_XX", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "ro_RO", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" + self.cur_lang_code = self.lang_code_to_id[src_lang] + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" + self.cur_lang_code = self.lang_code_to_id[lang] + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..71107bf0cdaf47e132e4d4985503a8bb4ab732de --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py @@ -0,0 +1,270 @@ +# coding=utf-8 +# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from tokenizers import processors + +from ...tokenization_utils import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_mbart import MBartTokenizer +else: + MBartTokenizer = None + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + + +FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip + + +class MBartTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" MBART tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import MBartTokenizerFast + + >>> tokenizer = MBartTokenizerFast.from_pretrained( + ... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO" + ... ) + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") + ```""" + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = MBartTokenizer + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + src_lang=None, + tgt_lang=None, + additional_special_tokens=None, + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + _additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy() + + if additional_special_tokens is not None: + # Only add those special tokens if they are not already there. + _additional_special_tokens.extend( + [t for t in additional_special_tokens if t not in _additional_special_tokens] + ) + + super().__init__( + vocab_file=vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + src_lang=src_lang, + tgt_lang=tgt_lang, + additional_special_tokens=_additional_special_tokens, + **kwargs, + ) + + self.vocab_file = vocab_file + self.lang_code_to_id = { + lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES + } + + self._src_lang = src_lang if src_lang is not None else "en_XX" + self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang) + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + @property + def src_lang(self) -> str: + return self._src_lang + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. The special tokens depend on calling set_lang. + + An MBART sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "en_XX", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "ro_RO", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" + self.cur_lang_code = self.convert_tokens_to_ids(src_lang) + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" + self.cur_lang_code = self.convert_tokens_to_ids(lang) + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..477802fdc0098d61aa9dfdf2df83f961abb05dab --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__init__.py @@ -0,0 +1,69 @@ +# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_megatron_bert"] = [ + "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "MegatronBertForCausalLM", + "MegatronBertForMaskedLM", + "MegatronBertForMultipleChoice", + "MegatronBertForNextSentencePrediction", + "MegatronBertForPreTraining", + "MegatronBertForQuestionAnswering", + "MegatronBertForSequenceClassification", + "MegatronBertForTokenClassification", + "MegatronBertModel", + "MegatronBertPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_megatron_bert import ( + MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, + MegatronBertForCausalLM, + MegatronBertForMaskedLM, + MegatronBertForMultipleChoice, + MegatronBertForNextSentencePrediction, + MegatronBertForPreTraining, + MegatronBertForQuestionAnswering, + MegatronBertForSequenceClassification, + MegatronBertForTokenClassification, + MegatronBertModel, + MegatronBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..65f7cf62b9e744146bec68e21c291ab5cc2d1742 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/configuration_megatron_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/configuration_megatron_bert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9029ee479cd81b56cdb16fa328ca32a287dafe5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/configuration_megatron_bert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/convert_megatron_bert_checkpoint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/convert_megatron_bert_checkpoint.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e5dcb0fd4aa9027d8c672b123f8dc58ca5ce9ddd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/convert_megatron_bert_checkpoint.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/modeling_megatron_bert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/modeling_megatron_bert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a79b3c2215273488b155c56ae5f78ef4abad5dc9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/modeling_megatron_bert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/configuration_megatron_bert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/configuration_megatron_bert.py new file mode 100644 index 0000000000000000000000000000000000000000..177bc146a22261e0fa02389d3c71e814b1eac627 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/configuration_megatron_bert.py @@ -0,0 +1,129 @@ +# coding=utf-8 +# Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MEGATRON_BERT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class MegatronBertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a + MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT + [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 29056): + Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented + by the `inputs_ids` passed when calling [`MegatronBertModel`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + + Examples: + + ```python + >>> from transformers import MegatronBertConfig, MegatronBertModel + + >>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration + >>> configuration = MegatronBertConfig() + + >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration + >>> model = MegatronBertModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "megatron-bert" + + def __init__( + self, + vocab_size=29056, + hidden_size=1024, + num_hidden_layers=24, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + position_embedding_type="absolute", + use_cache=True, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..0fc67866301fe975951477c68dcbd23f51e85ab8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py @@ -0,0 +1,334 @@ +#################################################################################################### + +# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +#################################################################################################### + +# +# Note: If when running this conversion script you're getting an exception: +# ModuleNotFoundError: No module named 'megatron.model.enums' +# you need to tell python where to find the clone of Megatron-LM, e.g.: +# +# cd /tmp +# git clone https://github.com/NVIDIA/Megatron-LM +# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... +# +# if you already have it cloned elsewhere, simply adjust the path to the existing path +# +# If the training was done using a Megatron-LM fork, e.g., +# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one +# in your path, i.e., /path/to/Megatron-DeepSpeed/ +# + +import argparse +import os +import re +import zipfile + +import torch + +from transformers import MegatronBertConfig + + +#################################################################################################### + + +def recursive_print(name, val, spaces=0): + # Format the message. + if name is None: + msg = None + else: + fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" + msg = fmt.format(name) + + # Print and recurse (if needed). + if isinstance(val, dict): + if msg is not None: + print(msg) + for k in val.keys(): + recursive_print(k, val[k], spaces + 2) + elif isinstance(val, torch.Tensor): + print(msg, ":", val.size()) + else: + print(msg, ":", val) + + +def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size): + # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] + # for compatibility with later versions of NVIDIA Megatron-LM. + # The inverse operation is performed inside Megatron-LM to read checkpoints: + # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 + # If param is the weight tensor of the self-attention block, the returned tensor + # will have to be transposed one more time to be read by HuggingFace BERT. + input_shape = param.size() + if checkpoint_version == 1.0: + # version 1.0 stores [num_heads * hidden_size * num_splits, :] + saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] + param = param.view(*saved_shape) + param = param.transpose(0, 2) + param = param.transpose(1, 2).contiguous() + elif checkpoint_version >= 2.0: + # other versions store [num_heads * num_splits * hidden_size, :] + saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] + param = param.view(*saved_shape) + param = param.transpose(0, 1).contiguous() + param = param.view(*input_shape) + return param + + +#################################################################################################### + + +def convert_megatron_checkpoint(args, input_state_dict, config): + # The converted output model. + output_state_dict = {} + + # old versions did not store training args + ds_args = input_state_dict.get("args", None) + if ds_args is not None: + # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint + # from pprint import pprint + # pprint(vars(ds_args)) + + config.tokenizer_type = ds_args.tokenizer_type + config.vocab_size = ds_args.padded_vocab_size + config.max_position_embeddings = ds_args.max_position_embeddings + config.hidden_size = ds_args.hidden_size + config.num_hidden_layers = ds_args.num_layers + config.num_attention_heads = ds_args.num_attention_heads + config.intermediate_size = ds_args.ffn_hidden_size if "ffn_hidden_size" in ds_args else 4 * ds_args.hidden_size + # pprint(config) + + # The number of heads. + heads = config.num_attention_heads + # The hidden_size per head. + hidden_size_per_head = config.hidden_size // heads + # Megatron-LM checkpoint version + if "checkpoint_version" in input_state_dict.keys(): + checkpoint_version = input_state_dict["checkpoint_version"] + else: + checkpoint_version = 0.0 + + # The model. + model = input_state_dict["model"] + # The language model. + lm = model["language_model"] + # The embeddings. + embeddings = lm["embedding"] + + # The word embeddings. + word_embeddings = embeddings["word_embeddings"]["weight"] + # Truncate the embedding table to vocab_size rows. + word_embeddings = word_embeddings[: config.vocab_size, :] + # Store the word embeddings. + output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings + + # The position embeddings. + pos_embeddings = embeddings["position_embeddings"]["weight"] + assert pos_embeddings.size(0) == config.max_position_embeddings and pos_embeddings.size(1) == config.hidden_size + # Store the position embeddings. + output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings + + # The token-type embeddings. + tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"] + # Store the position embeddings. + output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings + + # The transformer. + transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] + + # The regex to extract layer names. + layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") + + # The simple map of names for "automated" rules. + megatron_to_transformers = { + "attention.dense": ".attention.output.dense.", + "self_attention.dense": ".attention.output.dense.", + "mlp.dense_h_to_4h": ".intermediate.dense.", + "mlp.dense_4h_to_h": ".output.dense.", + } + + # Keep track of the attention/query/value tensor. + attention_qkv_weight = None + + # Extract the layers. + for key, val in transformer.items(): + # Match the name. + m = layer_re.match(key) + + # Stop if that's not a layer + if m is None: + break + + # The index of the layer. + layer_idx = int(m.group(1)) + # The name of the operation. + op_name = m.group(2) + # Is it a weight or a bias? + weight_or_bias = m.group(3) + + # The name of the layer. + layer_name = f"bert.encoder.layer.{layer_idx}" + + # For layernorm(s), simply store the layer norm. + if op_name.endswith("layernorm"): + ln_name = "attention.ln" if op_name.startswith("input") else "ln" + output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val + + # Transpose the QKV matrix. + elif ( + op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" + ) and weight_or_bias == "weight": + # Make sure the QKV pointer is nil. + assert attention_qkv_weight is None, "" + + out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) + # Store the tensor as we need the bias as well to interleave QKV and biases. + attention_qkv_weight = out_val + + # Transpose the bias. + elif ( + op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" + ) and weight_or_bias == "bias": + # Make sure we read the weight tensor. + assert attention_qkv_weight is not None, "" + + # Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved. + q = attention_qkv_weight[0 * config.hidden_size : 1 * config.hidden_size, :] + k = attention_qkv_weight[1 * config.hidden_size : 2 * config.hidden_size, :] + v = attention_qkv_weight[2 * config.hidden_size : 3 * config.hidden_size, :] + + out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) + # Split the bias. + q_bias = out_val[0 * config.hidden_size : 1 * config.hidden_size] + k_bias = out_val[1 * config.hidden_size : 2 * config.hidden_size] + v_bias = out_val[2 * config.hidden_size : 3 * config.hidden_size] + + # Store. + output_state_dict[f"{layer_name}.attention.self.query.weight"] = q + output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias + output_state_dict[f"{layer_name}.attention.self.key.weight"] = k + output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias + output_state_dict[f"{layer_name}.attention.self.value.weight"] = v + output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias + + # Clear the stored tensor. + attention_qkv_weight = None + + # Copy weights and biases as is. + elif weight_or_bias in ["weight", "bias"]: + out_name = megatron_to_transformers[op_name] + output_state_dict[layer_name + out_name + weight_or_bias] = val + + # The final layernorm. + output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"] + output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"] + + # The pooler. + pooler = lm["pooler"] + + # Store the matrix and the bias. + output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"] + output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"] + + # The LM head from Megatron (for RACE). + lm_head = model["lm_head"] + + # The transform matrix. + output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"] + output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"] + + # The transform LN. + output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"] + output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"] + + # For the decoder, we replicate the weights. + output_state_dict["cls.predictions.decoder.weight"] = word_embeddings + output_state_dict["cls.predictions.bias"] = lm_head["bias"] + + # The classifier from Megatron (for MLNI). + binary_head = model["binary_head"] + + # Store the classifier. + output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"] + output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"] + + # It should be done! + return output_state_dict + + +#################################################################################################### + + +def main(): + # Create the argument parser. + parser = argparse.ArgumentParser() + parser.add_argument("--print-checkpoint-structure", action="store_true") + parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint") + parser.add_argument( + "--config_file", + default="", + type=str, + help="An optional config json file describing the pre-trained model.", + ) + args = parser.parse_args() + + # Extract the basename. + basename = os.path.dirname(args.path_to_checkpoint) + + # Load the model. + # the .zip is very optional, let's keep it for backward compatibility + print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"') + if args.path_to_checkpoint.endswith(".zip"): + with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint: + with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict: + input_state_dict = torch.load(pytorch_dict, map_location="cpu") + else: + input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu") + + if args.config_file == "": + # Default config of megatron-bert 345m + config = MegatronBertConfig() + + # different megatron-bert-*-345m models have different vocab sizes, so override the default + # config (which is for megatron-bert-cased-345m) with the actual vocab dimension + config.vocab_size = input_state_dict["model"]["lm_head"]["bias"].numel() + else: + config = MegatronBertConfig.from_json_file(args.config_file) + + # Convert. + print("Converting") + output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config) + + # Print the structure of converted state dict. + if args.print_checkpoint_structure: + recursive_print(None, output_state_dict) + + # Store the config to file. + print("Saving config") + config.save_pretrained(basename) + + # Store the state_dict to file. + output_checkpoint_file = os.path.join(basename, "pytorch_model.bin") + print(f'Saving checkpoint to "{output_checkpoint_file}"') + torch.save(output_state_dict, output_checkpoint_file) + + +#################################################################################################### + +if __name__ == "__main__": + main() + +#################################################################################################### diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/modeling_megatron_bert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/modeling_megatron_bert.py new file mode 100644 index 0000000000000000000000000000000000000000..528bcca3d9bc003147041925905ca22b22501aed --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/modeling_megatron_bert.py @@ -0,0 +1,1836 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MegatronBERT model.""" + + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_megatron_bert import MegatronBertConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MegatronBertConfig" +_CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m" + + +from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + logger.info("Initialize PyTorch weight {}".format(name)) + pointer.data = torch.from_numpy(array) + return model + + +class MegatronBertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + + # In Megatron, layer-norm is applied after the 1st dropout. + # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + past_key_values_length: int = 0, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + + # Megatron BERT moves that layer norm after the drop-out (and to each layer). + # embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert +class MegatronBertSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to MegatronBertAttention below. +class MegatronBertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + return residual + hidden_states + + +# Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm. +class MegatronBertAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.self = MegatronBertSelfAttention(config) + self.output = MegatronBertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + ln_outputs = self.ln(hidden_states) + self_outputs = self.self( + ln_outputs, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert +class MegatronBertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to MegatronBertLayer below. +class MegatronBertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + return input_tensor + hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm. +class MegatronBertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = MegatronBertAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise TypeError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = MegatronBertAttention(config) + self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.intermediate = MegatronBertIntermediate(config) + self.output = MegatronBertOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise AttributeError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + ln_output = self.ln(attention_output) + intermediate_output = self.intermediate(ln_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class MegatronBertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)]) + + # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one + # is simply the final LN (Transformer's BERT has it attached to each hidden layer). + self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + # Because we moved the layer-norm at the end of the hidden layer, we have non-normali- + # zed data here. If that's really needed, we must apply LN to match Transformer's BERT. + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Finalize the hidden states. + hidden_states = self.ln(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert +class MegatronBertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert +class MegatronBertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert +class MegatronBertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = MegatronBertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert +class MegatronBertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MegatronBertLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert +class MegatronBertOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert +class MegatronBertPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MegatronBertLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class MegatronBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MegatronBertConfig + load_tf_weights = load_tf_weights_in_megatron_bert + base_model_prefix = "bert" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Embedding)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +@dataclass +# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert +class MegatronBertForPreTrainingOutput(ModelOutput): + """ + Output type of [`MegatronBertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +MEGATRON_BERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MegatronBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MEGATRON_BERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MegatronBert Model transformer outputting raw hidden-states without any specific head on top.", + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertModel(MegatronBertPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = MegatronBertEmbeddings(config) + self.encoder = MegatronBertEncoder(config) + + self.pooler = MegatronBertPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `next sentence prediction (classification)` head. + """, + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForPreTraining(MegatronBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder"] + + def __init__(self, config, add_binary_head=True): + super().__init__(config) + + self.bert = MegatronBertModel(config) + self.cls = MegatronBertPreTrainingHeads(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + next_sentence_label: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MegatronBertForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MegatronBertForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") + >>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output, pooled_output = outputs[:2] + prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) + total_loss = masked_lm_loss + next_sentence_loss + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return MegatronBertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """MegatronBert Model with a `language modeling` head on top for CLM fine-tuning.""", + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForCausalLM(MegatronBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`") + + self.bert = MegatronBertModel(config, add_pooling_layer=False) + self.cls = MegatronBertOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") + >>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings("""MegatronBert Model with a `language modeling` head on top.""", MEGATRON_BERT_START_DOCSTRING) +class MegatronBertForMaskedLM(MegatronBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.bert = MegatronBertModel(config, add_pooling_layer=False) + self.cls = MegatronBertOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + effective_batch_size = input_shape[0] + + # add a dummy token + if self.config.pad_token_id is None: + raise ValueError("The PAD token should be defined for generation") + attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) + dummy_token = torch.full( + (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device + ) + input_ids = torch.cat([input_ids, dummy_token], dim=1) + + return {"input_ids": input_ids, "attention_mask": attention_mask} + + +@add_start_docstrings( + """MegatronBert Model with a `next sentence prediction (classification)` head on top.""", + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.bert = MegatronBertModel(config) + self.cls = MegatronBertOnlyNSPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, NextSentencePredictorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring). Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") + >>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") + + >>> outputs = model(**encoding, labels=torch.LongTensor([1])) + >>> logits = outputs.logits + >>> assert logits[0, 0] < logits[0, 1] # next sentence was random + ```""" + + if "next_sentence_label" in kwargs: + warnings.warn( + "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" + " `labels` instead.", + FutureWarning, + ) + labels = kwargs.pop("next_sentence_label") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + seq_relationship_scores = self.cls(pooled_output) + + next_sentence_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) + + if not return_dict: + output = (seq_relationship_scores,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return NextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MegatronBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = MegatronBertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MegatronBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output + and a softmax) e.g. for RocStories/SWAG tasks. + """, + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.bert = MegatronBertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MegatronBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForTokenClassification(MegatronBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = MegatronBertModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MegatronBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MEGATRON_BERT_START_DOCSTRING, +) +class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = MegatronBertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dec8eeec2de5663c3fe092b12fdc1a48fde3bd48 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py @@ -0,0 +1,85 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_mobilenet_v1": [ + "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileNetV1Config", + "MobileNetV1OnnxConfig", + ], +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_mobilenet_v1"] = ["MobileNetV1FeatureExtractor"] + _import_structure["image_processing_mobilenet_v1"] = ["MobileNetV1ImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mobilenet_v1"] = [ + "MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST", + "MobileNetV1ForImageClassification", + "MobileNetV1Model", + "MobileNetV1PreTrainedModel", + "load_tf_weights_in_mobilenet_v1", + ] + + +if TYPE_CHECKING: + from .configuration_mobilenet_v1 import ( + MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileNetV1Config, + MobileNetV1OnnxConfig, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_mobilenet_v1 import MobileNetV1FeatureExtractor + from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mobilenet_v1 import ( + MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST, + MobileNetV1ForImageClassification, + MobileNetV1Model, + MobileNetV1PreTrainedModel, + load_tf_weights_in_mobilenet_v1, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc0bb5e8e672b41873ea1110b735403549ec0102 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52babfeb58dbe53b7f41d0921610f83ce88d6a16 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9f36cf731b30ae15d7e76dfb6a8a5ac31e9d01ab Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6f0a3fc4b662e3a3b1de990b017f6c068dbc7b4a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a06a336e1094eacc753f4f7a2cedebb3fa3cd93b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..169e502a209b4b723e99675477a7f837c133f166 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..2b575cb6a1dc48f12904b5115a921ee4f2179ad9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py @@ -0,0 +1,126 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MobileNetV1 model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class MobileNetV1Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a + MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the MobileNetV1 + [google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + depth_multiplier (`float`, *optional*, defaults to 1.0): + Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 + channels. This is sometimes also called "alpha" or "width multiplier". + min_depth (`int`, *optional*, defaults to 8): + All layers will have at least this many channels. + hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): + The non-linear activation function (function or string) in the Transformer encoder and convolution layers. + tf_padding (`bool`, *optional*, defaults to `True`): + Whether to use TensorFlow padding rules on the convolution layers. + classifier_dropout_prob (`float`, *optional*, defaults to 0.999): + The dropout ratio for attached classifiers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 0.001): + The epsilon used by the layer normalization layers. + + Example: + + ```python + >>> from transformers import MobileNetV1Config, MobileNetV1Model + + >>> # Initializing a "mobilenet_v1_1.0_224" style configuration + >>> configuration = MobileNetV1Config() + + >>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration + >>> model = MobileNetV1Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mobilenet_v1" + + def __init__( + self, + num_channels=3, + image_size=224, + depth_multiplier=1.0, + min_depth=8, + hidden_act="relu6", + tf_padding=True, + classifier_dropout_prob=0.999, + initializer_range=0.02, + layer_norm_eps=0.001, + **kwargs, + ): + super().__init__(**kwargs) + + if depth_multiplier <= 0: + raise ValueError("depth_multiplier must be greater than zero.") + + self.num_channels = num_channels + self.image_size = image_size + self.depth_multiplier = depth_multiplier + self.min_depth = min_depth + self.hidden_act = hidden_act + self.tf_padding = tf_padding + self.classifier_dropout_prob = classifier_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + +class MobileNetV1OnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict([("pixel_values", {0: "batch"})]) + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "image-classification": + return OrderedDict([("logits", {0: "batch"})]) + else: + return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..4985e0ff22d79c2a3d79b0553a553e16e7a7089f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,142 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert MobileNetV1 checkpoints from the tensorflow/models library.""" + + +import argparse +import json +import re +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ( + MobileNetV1Config, + MobileNetV1ForImageClassification, + MobileNetV1ImageProcessor, + load_tf_weights_in_mobilenet_v1, +) +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_mobilenet_v1_config(model_name): + config = MobileNetV1Config(layer_norm_eps=0.001) + + if "_quant" in model_name: + raise ValueError("Quantized models are not supported.") + + matches = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$", model_name) + if matches: + config.depth_multiplier = float(matches[1]) + config.image_size = int(matches[2]) + + # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of + # the usual 1000. The first class (index 0) is "background". + config.num_labels = 1001 + filename = "imagenet-1k-id2label.json" + repo_id = "huggingface/label-files" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k) + 1: v for k, v in id2label.items()} + id2label[0] = "background" + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + return config + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our MobileNetV1 structure. + """ + config = get_mobilenet_v1_config(model_name) + + # Load 🤗 model + model = MobileNetV1ForImageClassification(config).eval() + + # Load weights from TensorFlow checkpoint + load_tf_weights_in_mobilenet_v1(model, config, checkpoint_path) + + # Check outputs on an image, prepared by MobileNetV1ImageProcessor + image_processor = MobileNetV1ImageProcessor( + crop_size={"width": config.image_size, "height": config.image_size}, + size={"shortest_edge": config.image_size + 32}, + ) + encoding = image_processor(images=prepare_img(), return_tensors="pt") + outputs = model(**encoding) + logits = outputs.logits + + assert logits.shape == (1, 1001) + + if model_name == "mobilenet_v1_1.0_224": + expected_logits = torch.tensor([-4.1739, -1.1233, 3.1205]) + elif model_name == "mobilenet_v1_0.75_192": + expected_logits = torch.tensor([-3.9440, -2.3141, -0.3333]) + else: + expected_logits = None + + if expected_logits is not None: + assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print("Pushing to the hub...") + repo_id = "google/" + model_name + image_processor.push_to_hub(repo_id) + model.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="mobilenet_v1_1.0_224", + type=str, + help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1__'.", + ) + parser.add_argument( + "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." + ) + parser.add_argument( + "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_movilevit_checkpoint( + args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..34cdb11cd9f32f44d7e24187a473480b2ad6d691 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for MobileNetV1.""" + +import warnings + +from ...utils import logging +from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor + + +logger = logging.get_logger(__name__) + + +class MobileNetV1FeatureExtractor(MobileNetV1ImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class MobileNetV1FeatureExtractor is deprecated and will be removed in version 5 of Transformers." + " Please use MobileNetV1ImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..086ab892492065c9a1a29a8b2bace4f35fb1ef8d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py @@ -0,0 +1,326 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for MobileNetV1.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + get_resize_output_image_size, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +class MobileNetV1ImageProcessor(BaseImageProcessor): + r""" + Constructs a MobileNetV1 image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by + `do_resize` in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`): + Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image + is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the + `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. + Can be overridden by the `crop_size` parameter in the `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_normalize: + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Optional[Dict[str, int]] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 256} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size) + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + self._valid_processor_keys = [ + "images", + "do_resize", + "size", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge + resized to keep the input aspect ratio. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + default_to_square = True + if "shortest_edge" in size: + size = size["shortest_edge"] + default_to_square = False + elif "height" in size and "width" in size: + size = (size["height"], size["width"]) + else: + raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") + + output_size = get_resize_output_image_size( + image, + size=size, + default_to_square=default_to_square, + input_data_format=input_data_format, + ) + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_resize: Optional[bool] = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ): + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. + resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): + `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has + an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use if `do_normalize` is set to `True`. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size) + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [ + self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_center_crop: + images = [ + self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..adfb5c5670d81b0f4919b3894d124345ca434de4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py @@ -0,0 +1,482 @@ +# coding=utf-8 +# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MobileNetV1 model.""" + + +from typing import Optional, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention +from ...modeling_utils import PreTrainedModel +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_mobilenet_v1 import MobileNetV1Config + + +logger = logging.get_logger(__name__) + + +# General docstring +_CONFIG_FOR_DOC = "MobileNetV1Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/mobilenet_v1_1.0_224" +_EXPECTED_OUTPUT_SHAPE = [1, 1024, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v1_1.0_224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def _build_tf_to_pytorch_map(model, config, tf_weights=None): + """ + A map of modules from TF to PyTorch. + """ + + tf_to_pt_map = {} + + if isinstance(model, MobileNetV1ForImageClassification): + backbone = model.mobilenet_v1 + else: + backbone = model + + prefix = "MobilenetV1/Conv2d_0/" + tf_to_pt_map[prefix + "weights"] = backbone.conv_stem.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = backbone.conv_stem.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = backbone.conv_stem.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.normalization.running_var + + for i in range(13): + tf_index = i + 1 + pt_index = i * 2 + + pointer = backbone.layer[pt_index] + prefix = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" + tf_to_pt_map[prefix + "depthwise_weights"] = pointer.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var + + pointer = backbone.layer[pt_index + 1] + prefix = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" + tf_to_pt_map[prefix + "weights"] = pointer.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var + + if isinstance(model, MobileNetV1ForImageClassification): + prefix = "MobilenetV1/Logits/Conv2d_1c_1x1/" + tf_to_pt_map[prefix + "weights"] = model.classifier.weight + tf_to_pt_map[prefix + "biases"] = model.classifier.bias + + return tf_to_pt_map + + +def load_tf_weights_in_mobilenet_v1(model, config, tf_checkpoint_path): + """Load TensorFlow checkpoints in a PyTorch model.""" + try: + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + + # Load weights from TF model + init_vars = tf.train.list_variables(tf_checkpoint_path) + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_checkpoint_path, name) + tf_weights[name] = array + + # Build TF to PyTorch weights loading map + tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) + + for name, pointer in tf_to_pt_map.items(): + logger.info(f"Importing {name}") + if name not in tf_weights: + logger.info(f"{name} not in tf pre-trained weights, skipping") + continue + + array = tf_weights[name] + + if "depthwise_weights" in name: + logger.info("Transposing depthwise") + array = np.transpose(array, (2, 3, 0, 1)) + elif "weights" in name: + logger.info("Transposing") + if len(pointer.shape) == 2: # copying into linear layer + array = array.squeeze().transpose() + else: + array = np.transpose(array, (3, 2, 0, 1)) + + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + + logger.info(f"Initialize PyTorch weight {name} {array.shape}") + pointer.data = torch.from_numpy(array) + + tf_weights.pop(name, None) + tf_weights.pop(name + "/RMSProp", None) + tf_weights.pop(name + "/RMSProp_1", None) + tf_weights.pop(name + "/ExponentialMovingAverage", None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") + return model + + +def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: + """ + Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: + https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 + """ + in_height, in_width = features.shape[-2:] + stride_height, stride_width = conv_layer.stride + kernel_height, kernel_width = conv_layer.kernel_size + + if in_height % stride_height == 0: + pad_along_height = max(kernel_height - stride_height, 0) + else: + pad_along_height = max(kernel_height - (in_height % stride_height), 0) + + if in_width % stride_width == 0: + pad_along_width = max(kernel_width - stride_width, 0) + else: + pad_along_width = max(kernel_width - (in_width % stride_width), 0) + + pad_left = pad_along_width // 2 + pad_right = pad_along_width - pad_left + pad_top = pad_along_height // 2 + pad_bottom = pad_along_height - pad_top + + padding = (pad_left, pad_right, pad_top, pad_bottom) + return nn.functional.pad(features, padding, "constant", 0.0) + + +class MobileNetV1ConvLayer(nn.Module): + def __init__( + self, + config: MobileNetV1Config, + in_channels: int, + out_channels: int, + kernel_size: int, + stride: Optional[int] = 1, + groups: Optional[int] = 1, + bias: bool = False, + use_normalization: Optional[bool] = True, + use_activation: Optional[bool or str] = True, + ) -> None: + super().__init__() + self.config = config + + if in_channels % groups != 0: + raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") + if out_channels % groups != 0: + raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") + + padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) + + self.convolution = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + groups=groups, + bias=bias, + padding_mode="zeros", + ) + + if use_normalization: + self.normalization = nn.BatchNorm2d( + num_features=out_channels, + eps=config.layer_norm_eps, + momentum=0.9997, + affine=True, + track_running_stats=True, + ) + else: + self.normalization = None + + if use_activation: + if isinstance(use_activation, str): + self.activation = ACT2FN[use_activation] + elif isinstance(config.hidden_act, str): + self.activation = ACT2FN[config.hidden_act] + else: + self.activation = config.hidden_act + else: + self.activation = None + + def forward(self, features: torch.Tensor) -> torch.Tensor: + if self.config.tf_padding: + features = apply_tf_padding(features, self.convolution) + features = self.convolution(features) + if self.normalization is not None: + features = self.normalization(features) + if self.activation is not None: + features = self.activation(features) + return features + + +class MobileNetV1PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileNetV1Config + load_tf_weights = load_tf_weights_in_mobilenet_v1 + base_model_prefix = "mobilenet_v1" + main_input_name = "pixel_values" + supports_gradient_checkpointing = False + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.BatchNorm2d): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +MOBILENET_V1_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILENET_V1_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`MobileNetV1ImageProcessor.__call__`] for details. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.", + MOBILENET_V1_START_DOCSTRING, +) +class MobileNetV1Model(MobileNetV1PreTrainedModel): + def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True): + super().__init__(config) + self.config = config + + depth = 32 + out_channels = max(int(depth * config.depth_multiplier), config.min_depth) + + self.conv_stem = MobileNetV1ConvLayer( + config, + in_channels=config.num_channels, + out_channels=out_channels, + kernel_size=3, + stride=2, + ) + + strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] + + self.layer = nn.ModuleList() + for i in range(13): + in_channels = out_channels + + if strides[i] == 2 or i == 0: + depth *= 2 + out_channels = max(int(depth * config.depth_multiplier), config.min_depth) + + self.layer.append( + MobileNetV1ConvLayer( + config, + in_channels=in_channels, + out_channels=in_channels, + kernel_size=3, + stride=strides[i], + groups=in_channels, + ) + ) + + self.layer.append( + MobileNetV1ConvLayer( + config, + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + ) + ) + + self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.conv_stem(pixel_values) + + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.layer): + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + last_hidden_state = hidden_states + + if self.pooler is not None: + pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) + else: + pooled_output = None + + if not return_dict: + return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=all_hidden_states, + ) + + +@add_start_docstrings( + """ + MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + MOBILENET_V1_START_DOCSTRING, +) +class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel): + def __init__(self, config: MobileNetV1Config) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.mobilenet_v1 = MobileNetV1Model(config) + + last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels + + # Classifier head + self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) + self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(self.dropout(pooled_output)) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d24a5fad7b9d2c9cae6de18871f22f4e52437fb1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__init__.py @@ -0,0 +1,62 @@ +# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_mpt": ["MPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MptConfig", "MptOnnxConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mpt"] = [ + "MPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "MptForCausalLM", + "MptModel", + "MptPreTrainedModel", + "MptForSequenceClassification", + "MptForTokenClassification", + "MptForQuestionAnswering", + ] + +if TYPE_CHECKING: + from .configuration_mpt import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP, MptConfig, MptOnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mpt import ( + MPT_PRETRAINED_MODEL_ARCHIVE_LIST, + MptForCausalLM, + MptForQuestionAnswering, + MptForSequenceClassification, + MptForTokenClassification, + MptModel, + MptPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8825ad696733691890393db96356ab7df8db756 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/configuration_mpt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/configuration_mpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bcf49e5d05d5876cead16f0a8884234a87fad75c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/configuration_mpt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/modeling_mpt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/modeling_mpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd0bacc4e489363753921487a86958b5a3ae73e7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/modeling_mpt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/configuration_mpt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/configuration_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..5c1cb4d783b307bd47d0c8624e390d478db79aa2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/configuration_mpt.py @@ -0,0 +1,246 @@ +# coding=utf-8 +# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Mpt configuration""" +from typing import TYPE_CHECKING, Optional, Union + + +if TYPE_CHECKING: + pass + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class MptAttentionConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate + attention layers according to the specified arguments, defining the layers architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the MPT + [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward + compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + attn_type (`str`, *optional*, defaults to `"multihead_attention"`): + type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`. + attn_pdrop (`float`, *optional*, defaults to 0.0): + The dropout probability for the attention layers. + attn_impl (`str`, *optional*, defaults to `"torch"`): + The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`. + clip_qkv (`float`, *optional*): + If not `None`, clip the queries, keys, and values in the attention layer to this value. + softmax_scale (`float`, *optional*, defaults to `None`): + If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to + `1/sqrt(hidden_size)`. + prefix_lm (`bool`, *optional*, defaults to `False`)): + Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument + which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another + bi-directionally. Tokens outside the prefix use causal attention. + qk_ln (`bool`, *optional*, defaults to `False`): + Whether to apply layer normalization to the queries and keys in the attention layer. + attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)): + Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train` + mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each + token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored. + alibi (`bool`, *optional*, defaults to `True`): + Whether or not to use the alibi bias instead of positional embedding. + alibi_bias_max (`int`, *optional*, defaults to 8): + The maximum value of the alibi bias. + """ + + def __init__( + self, + attn_type="multihead_attention", + attn_pdrop=0, + attn_impl="torch", + clip_qkv=None, + softmax_scale=None, + prefix_lm=False, + qk_ln=False, + attn_uses_sequence_id=False, + alibi=True, + alibi_bias_max=8, + **kwargs, + ): + super().__init__() + self.attn_type = attn_type + self.attn_pdrop = attn_pdrop + self.attn_impl = attn_impl + self.clip_qkv = clip_qkv + self.softmax_scale = softmax_scale + self.prefix_lm = prefix_lm + self.attn_uses_sequence_id = attn_uses_sequence_id + self.alibi = alibi + self.qk_ln = qk_ln + self.alibi_bias_max = alibi_bias_max + + if attn_type not in ["multihead_attention", "multiquery_attention"]: + raise ValueError( + f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}" + ) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + if config_dict.get("model_type") == "mpt": + config_dict = config_dict["attn_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class MptConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to the Mpt-7b architecture + [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + d_model (`int`, *optional*, defaults to 2048): + Dimensionality of the embeddings and hidden states. + n_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + n_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + expansion_ratio (`int`, *optional*, defaults to 4): + The ratio of the up/down scale in the MLP. + max_seq_len (`int`, *optional*, defaults to 2048): + The maximum sequence length of the model. + vocab_size (`int`, *optional*, defaults to 50368): + Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by + the `inputs_ids` passed when calling [`MptModel`]. Check [this + discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the + `vocab_size` has been defined. + resid_pdrop (`float`, *optional*, defaults to 0.0): + The dropout probability applied to the attention output before combining with residual. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers. + emb_pdrop (`float`, *optional*, defaults to 0.0): + The dropout probability for the embedding layer. + learned_pos_emb (`bool`, *optional*, defaults to `True`): + Whether to use learned positional embeddings. + attn_config (`dict`, *optional*): + A dictionary used to configure the model's attention module. + init_device (`str`, *optional*, defaults to `"cpu"`): + The device to use for parameter initialization. Defined for backward compatibility + logit_scale (`float`, *optional*): + If not None, scale the logits by this value. + no_bias (`bool`, *optional*, defaults to `True`): + Whether to use bias in all linear layers. + verbose (`int`, *optional*, defaults to 0): + The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This + argument is deprecated. + embedding_fraction (`float`, *optional*, defaults to 1.0): + The fraction to scale the gradients of the embedding layer by. + norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`): + Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward + compatibility. + use_cache (`bool`, *optional*, defaults to `False`): + Whether or not the model should return the last key/values attentions (not used by all models). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + + Example: + + ```python + >>> from transformers import MptConfig, MptModel + + >>> # Initializing a Mpt configuration + >>> configuration = MptConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = MptModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "mpt" + attribute_map = { + "num_attention_heads": "n_heads", + "hidden_size": "d_model", + "num_hidden_layers": "n_layers", + } + + def __init__( + self, + d_model: int = 2048, + n_heads: int = 16, + n_layers: int = 24, + expansion_ratio: int = 4, + max_seq_len: int = 2048, + vocab_size: int = 50368, + resid_pdrop: float = 0.0, + layer_norm_epsilon: float = 1e-5, + emb_pdrop: float = 0.0, + learned_pos_emb: bool = True, + attn_config: MptAttentionConfig = None, + init_device: str = "cpu", + logit_scale: Optional[Union[float, str]] = None, + no_bias: bool = True, + verbose: int = 0, + embedding_fraction: float = 1.0, + norm_type: str = "low_precision_layernorm", + use_cache: bool = False, + initializer_range=0.02, + **kwargs, + ): + if attn_config is None: + self.attn_config = MptAttentionConfig() + elif isinstance(attn_config, dict): + self.attn_config = MptAttentionConfig(**attn_config) + else: + self.attn_config = attn_config + self.d_model = d_model + self.n_heads = n_heads + self.n_layers = n_layers + self.expansion_ratio = expansion_ratio + self.max_seq_len = max_seq_len + self.vocab_size = vocab_size + self.resid_pdrop = resid_pdrop + self.emb_pdrop = emb_pdrop + self.learned_pos_emb = learned_pos_emb + self.init_device = init_device + self.logit_scale = logit_scale + self.no_bias = no_bias + self.verbose = verbose + self.embedding_fraction = embedding_fraction + self.norm_type = norm_type + self.layer_norm_epsilon = layer_norm_epsilon + self.use_cache = use_cache + self.initializer_range = initializer_range + super().__init__(**kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/modeling_mpt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/modeling_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..864e9c09ca3cb72fb4976d58d324c246b7b27034 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/modeling_mpt.py @@ -0,0 +1,942 @@ +# coding=utf-8 +# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MPT model.""" + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss +from torch.nn import functional as F + +from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + QuestionAnsweringModelOutput, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import logging +from .configuration_mpt import MptConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b" +_CONFIG_FOR_DOC = "MptConfig" + + +from ..deprecated._archive_maps import MPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None): + r""" + Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it + relies on a translation invariance of softmax for quick implementation. This implementation has been copied from + the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi: + https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292 + """ + alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length) + num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads)) + + base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float() + base = base * (alibi_bias_max / num_heads_power_of_2) + + slopes = 1.0 / torch.pow(2, base) + slopes = slopes.view(1, num_heads_power_of_2, 1, 1) + + if num_heads_power_of_2 != num_heads: + slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...] + + alibi = alibi * slopes + return alibi.squeeze(0) + + +class MptAttention(nn.Module): + """Multi-head self attention. + Using torch or triton attention implemetation enables user to also use additive bias. + """ + + def __init__(self, config: MptConfig): + super().__init__() + self.hidden_size = config.hidden_size + self.n_heads = config.n_heads + self.max_seq_length = config.max_seq_len + self.head_dim = self.hidden_size // self.n_heads + self.softmax_scale = config.attn_config.softmax_scale + if self.softmax_scale is None: + self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads) + + self.attn_dropout_p = config.attn_config.attn_pdrop + self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) + self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + + def forward( + self, + hidden_states: torch.Tensor, + position_bias: torch.Tensor, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + ): + batch_size, seq_length = hidden_states.shape[:2] + + mixed_qkv = self.Wqkv(hidden_states) + query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2) + query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) + key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) + value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) + + if past_key_value is not None: + if len(past_key_value) != 0: + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + past_key_value = (key_states, value_states) + else: + past_key_value = (key_states, value_states) + + attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale + + query_length = seq_length if past_key_value is None else seq_length + past_key_value[0].shape[2] + + if position_bias is not None: + if len(position_bias.shape) != 3: + raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}") + key_length = key_states.shape[-2] + + position_bias_query_index = max(0, position_bias.size(1) - query_length) + position_bias_key_index = max(0, position_bias.size(2) - key_length) + + position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:] + + attention_scores = attention_scores + position_bias + + if attention_mask is not None: + attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min) + + # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training) + + context_states = torch.matmul(attn_weights, value_states) + context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) + attn_output = self.out_proj(context_states) + + return attn_output, attn_weights, past_key_value + + +class MptMLP(nn.Module): + def __init__(self, config: MptConfig): + super().__init__() + hidden_size = config.hidden_size + + self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False) + self.act = nn.GELU(approximate="none") + self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False) + self.hidden_dropout = config.attn_config.attn_pdrop + + def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: + hidden_states = self.act(self.up_proj(hidden_states)) + + intermediate_output = self.down_proj(hidden_states) + + output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training) + output = output + residual + + return output + + +class MptBlock(nn.Module): + def __init__(self, config: MptConfig): + super().__init__() + hidden_size = config.hidden_size + + self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + # backward compatibility with weights on the Hub + self.norm_1.bias = None + + self.num_heads = config.n_heads + self.attn = MptAttention(config) + + self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + # backward compatibility with weights on the Hub + self.norm_2.bias = None + + self.ffn = MptMLP(config) + + self.dropout_rate = config.attn_config.attn_pdrop + self.resid_attn_dropout = nn.Dropout(self.dropout_rate) + + def forward( + self, + hidden_states: torch.Tensor, + position_bias: torch.Tensor, + attention_mask: torch.Tensor, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + use_cache: bool = False, + output_attentions: bool = False, + ): + # hidden_states: [batch_size, seq_length, hidden_size] + # Layer norm at the beginning of the transformer layer. + layernorm_output = self.norm_1(hidden_states) + + residual = hidden_states + + # Self attention. + attn_outputs, attn_weights, past_key_value = self.attn( + layernorm_output, + position_bias=position_bias, + attention_mask=attention_mask, + past_key_value=layer_past, + ) + + hidden_states = self.resid_attn_dropout(attn_outputs) + residual + + layernorm_output = self.norm_2(hidden_states) + + # Get residual + residual = hidden_states + + # MLP. + output = self.ffn(layernorm_output, residual) + outputs = (output,) + + if use_cache: + outputs += (past_key_value,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs # hidden_states, present, attentions + + +class MptPreTrainedModel(PreTrainedModel): + config_class = MptConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["MptBlock"] + _keys_to_ignore_on_load_missing = [r"lm_head.*."] + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module: nn.Module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, LayerNorm): + if module.bias is not None: + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + @staticmethod + def _convert_to_mpt_cache( + past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: + """ + Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...])) + """ + batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape + batch_size_times_num_heads = batch_size * num_heads + # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] + # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] + return tuple( + ( + layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length), + layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim), + ) + for layer_past in past_key_value + ) + + +MPT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MptConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): + `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` + (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. + + If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as + `input_ids`. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): + Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see + `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have + their past given to this model should not be passed as `input_ids` as they have already been computed. + + Each element of `past_key_values` is a tuple (past_key, past_value): + - past_key: [batch_size * num_heads, head_dim, kv_length] + - past_value: [batch_size * num_heads, kv_length, head_dim] + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + + If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see + `past_key_values`). + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.", + MPT_START_DOCSTRING, +) +class MptModel(MptPreTrainedModel): + def __init__(self, config: MptConfig): + super().__init__(config) + + self.hidden_size = config.hidden_size + self.num_heads = config.n_heads + + # Embedding + LN Embedding + self.wte = nn.Embedding(config.vocab_size, self.hidden_size) + + # Transformer blocks + self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)]) + + # Final Layer Norm + self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) + # backward compatibility with weights on the Hub + self.norm_f.bias = None + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None): + return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device) + + def set_input_embeddings(self, new_embeddings: torch.Tensor): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if past_key_values is None: + past_key_values = tuple([None] * len(self.blocks)) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Compute alibi tensor: check build_alibi_tensor documentation + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values[0] is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) + else: + attention_mask = attention_mask.to(hidden_states.device) + + alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device) + + causal_mask = _prepare_4d_causal_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + causal_mask = causal_mask.bool() + + for block, layer_past in zip(self.blocks, past_key_values): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + alibi, + causal_mask, + layer_past, + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=causal_mask, + use_cache=use_cache, + output_attentions=output_attentions, + position_bias=alibi, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Add last hidden state + hidden_states = self.norm_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + MPT_START_DOCSTRING, +) +class MptForCausalLM(MptPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: MptConfig): + super().__init__(config) + self.transformer = MptModel(config) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings: torch.Tensor): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + **kwargs, + ) -> dict: + # only last tokens for input_ids if past is not None + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, # NITS should it be layer_past? + "use_cache": use_cache, + "attention_mask": attention_mask, + } + ) + return model_inputs + + @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(lm_logits.device) + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + batch_size, seq_length, vocab_size = shift_logits.shape + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def _reorder_cache( + self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: + """ + This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + + Output shares the same memory storage as `past`. + """ + # Get a copy of `beam_idx` on all the devices where we need those indices. + device_to_beam_idx = { + past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past + } + reordered_past = tuple( + ( + layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), + layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), + ) + for layer_past in past + ) + return reordered_past + + +@add_start_docstrings( + """ + The MPT Model transformer with a sequence classification head on top (linear layer). + + [`MptForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + MPT_START_DOCSTRING, +) +class MptForSequenceClassification(MptPreTrainedModel): + def __init__(self, config: MptConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = MptModel(config) + self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + MPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + MPT_START_DOCSTRING, +) +class MptForTokenClassification(MptPreTrainedModel): + def __init__(self, config: MptConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = MptModel(config) + if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: + classifier_dropout = config.classifier_dropout + elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: + classifier_dropout = config.hidden_dropout + else: + classifier_dropout = 0.1 + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + batch_size, seq_length = labels.shape + loss_fct = CrossEntropyLoss() + loss = loss_fct( + logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (logits,) + transformer_outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The MPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD + (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MPT_START_DOCSTRING, +) +class MptForQuestionAnswering(MptPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.transformer = MptModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, 2) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7fa695eba80863d87dcfc8c68250515f4a4b7b53 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__init__.py @@ -0,0 +1,67 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_musicgen": [ + "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MusicgenConfig", + "MusicgenDecoderConfig", + ], + "processing_musicgen": ["MusicgenProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_musicgen"] = [ + "MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST", + "MusicgenForConditionalGeneration", + "MusicgenForCausalLM", + "MusicgenModel", + "MusicgenPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_musicgen import ( + MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, + MusicgenConfig, + MusicgenDecoderConfig, + ) + from .processing_musicgen import MusicgenProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_musicgen import ( + MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST, + MusicgenForCausalLM, + MusicgenForConditionalGeneration, + MusicgenModel, + MusicgenPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/convert_musicgen_transformers.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/convert_musicgen_transformers.py new file mode 100644 index 0000000000000000000000000000000000000000..f1eb9e40704dfea65719075f1abf3f9eb1d0eede --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/convert_musicgen_transformers.py @@ -0,0 +1,235 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert MusicGen checkpoints from the original repository.""" +import argparse +from pathlib import Path +from typing import Dict, OrderedDict, Tuple + +import torch +from audiocraft.models import MusicGen + +from transformers import ( + AutoFeatureExtractor, + AutoTokenizer, + EncodecModel, + MusicgenDecoderConfig, + MusicgenForConditionalGeneration, + MusicgenProcessor, + T5EncoderModel, +) +from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"] + + +def rename_keys(name): + if "emb" in name: + name = name.replace("emb", "model.decoder.embed_tokens") + if "transformer" in name: + name = name.replace("transformer", "model.decoder") + if "cross_attention" in name: + name = name.replace("cross_attention", "encoder_attn") + if "linear1" in name: + name = name.replace("linear1", "fc1") + if "linear2" in name: + name = name.replace("linear2", "fc2") + if "norm1" in name: + name = name.replace("norm1", "self_attn_layer_norm") + if "norm_cross" in name: + name = name.replace("norm_cross", "encoder_attn_layer_norm") + if "norm2" in name: + name = name.replace("norm2", "final_layer_norm") + if "out_norm" in name: + name = name.replace("out_norm", "model.decoder.layer_norm") + if "linears" in name: + name = name.replace("linears", "lm_heads") + if "condition_provider.conditioners.description.output_proj" in name: + name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj") + return name + + +def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]: + """Function that takes the fairseq Musicgen state dict and renames it according to the HF + module names. It further partitions the state dict into the decoder (LM) state dict, and that for the + encoder-decoder projection.""" + keys = list(state_dict.keys()) + enc_dec_proj_state_dict = {} + for key in keys: + val = state_dict.pop(key) + key = rename_keys(key) + if "in_proj_weight" in key: + # split fused qkv proj + state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :] + state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :] + state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :] + elif "enc_to_dec_proj" in key: + enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val + else: + state_dict[key] = val + return state_dict, enc_dec_proj_state_dict + + +def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig: + if checkpoint == "small" or checkpoint == "facebook/musicgen-stereo-small": + # default config values + hidden_size = 1024 + num_hidden_layers = 24 + num_attention_heads = 16 + elif checkpoint == "medium" or checkpoint == "facebook/musicgen-stereo-medium": + hidden_size = 1536 + num_hidden_layers = 48 + num_attention_heads = 24 + elif checkpoint == "large" or checkpoint == "facebook/musicgen-stereo-large": + hidden_size = 2048 + num_hidden_layers = 48 + num_attention_heads = 32 + else: + raise ValueError( + "Checkpoint should be one of `['small', 'medium', 'large']` for the mono checkpoints, " + "or `['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` " + f"for the stereo checkpoints, got {checkpoint}." + ) + + if "stereo" in checkpoint: + audio_channels = 2 + num_codebooks = 8 + else: + audio_channels = 1 + num_codebooks = 4 + + config = MusicgenDecoderConfig( + hidden_size=hidden_size, + ffn_dim=hidden_size * 4, + num_hidden_layers=num_hidden_layers, + num_attention_heads=num_attention_heads, + num_codebooks=num_codebooks, + audio_channels=audio_channels, + ) + return config + + +@torch.no_grad() +def convert_musicgen_checkpoint( + checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", safe_serialization=False +): + fairseq_model = MusicGen.get_pretrained(checkpoint, device=device) + decoder_config = decoder_config_from_checkpoint(checkpoint) + + decoder_state_dict = fairseq_model.lm.state_dict() + decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict( + decoder_state_dict, hidden_size=decoder_config.hidden_size + ) + + text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-base") + audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz") + decoder = MusicgenForCausalLM(decoder_config).eval() + + # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection + missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False) + + for key in missing_keys.copy(): + if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS: + missing_keys.remove(key) + + if len(missing_keys) > 0: + raise ValueError(f"Missing key(s) in state_dict: {missing_keys}") + + if len(unexpected_keys) > 0: + raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}") + + # init the composite model + model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder) + + # load the pre-trained enc-dec projection (from the decoder state dict) + model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict) + + # check we can do a forward pass + input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1) + decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1) + + with torch.no_grad(): + logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits + + if logits.shape != (2 * decoder_config.num_codebooks, 1, 2048): + raise ValueError("Incorrect shape for logits") + + # now construct the processor + tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + feature_extractor = AutoFeatureExtractor.from_pretrained( + "facebook/encodec_32khz", padding_side="left", feature_size=decoder_config.audio_channels + ) + + processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer) + + # set the appropriate bos/pad token ids + model.generation_config.decoder_start_token_id = 2048 + model.generation_config.pad_token_id = 2048 + + # set other default generation config params + model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate) + model.generation_config.do_sample = True + model.generation_config.guidance_scale = 3.0 + + if pytorch_dump_folder is not None: + Path(pytorch_dump_folder).mkdir(exist_ok=True) + logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}") + model.save_pretrained(pytorch_dump_folder, safe_serialization=safe_serialization) + processor.save_pretrained(pytorch_dump_folder) + + if repo_id: + logger.info(f"Pushing model {checkpoint} to {repo_id}") + model.push_to_hub(repo_id, safe_serialization=safe_serialization) + processor.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint", + default="small", + type=str, + help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: " + "`['small', 'medium', 'large']` for the mono checkpoints, or " + "`['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` " + "for the stereo checkpoints.", + ) + parser.add_argument( + "--pytorch_dump_folder", + required=True, + default=None, + type=str, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument( + "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." + ) + parser.add_argument( + "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." + ) + parser.add_argument( + "--safe_serialization", + action="store_true", + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).", + ) + + args = parser.parse_args() + convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/processing_musicgen.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/processing_musicgen.py new file mode 100644 index 0000000000000000000000000000000000000000..847c542a6016152a779d1a97e78b1d6e2a29c751 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/processing_musicgen.py @@ -0,0 +1,140 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Text/audio processor class for MusicGen +""" +from typing import List, Optional + +import numpy as np + +from ...processing_utils import ProcessorMixin +from ...utils import to_numpy + + +class MusicgenProcessor(ProcessorMixin): + r""" + Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor + class. + + [`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See + [`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information. + + Args: + feature_extractor (`EncodecFeatureExtractor`): + An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input. + tokenizer (`T5Tokenizer`): + An instance of [`T5Tokenizer`]. The tokenizer is a required input. + """ + + feature_extractor_class = "EncodecFeatureExtractor" + tokenizer_class = ("T5Tokenizer", "T5TokenizerFast") + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + self.current_processor = self.feature_extractor + self._in_target_context_manager = False + + def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): + return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) + + def __call__(self, *args, **kwargs): + """ + Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text` + argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more + information. + """ + # For backward compatibility + if self._in_target_context_manager: + return self.current_processor(*args, **kwargs) + + audio = kwargs.pop("audio", None) + sampling_rate = kwargs.pop("sampling_rate", None) + text = kwargs.pop("text", None) + if len(args) > 0: + audio = args[0] + args = args[1:] + + if audio is None and text is None: + raise ValueError("You need to specify either an `audio` or `text` input to process.") + + if text is not None: + inputs = self.tokenizer(text, **kwargs) + + if audio is not None: + audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) + + if audio is None: + return inputs + + elif text is None: + return audio_inputs + + else: + inputs["input_values"] = audio_inputs["input_values"] + if "padding_mask" in audio_inputs: + inputs["padding_mask"] = audio_inputs["padding_mask"] + return inputs + + def batch_decode(self, *args, **kwargs): + """ + This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids + from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's + [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. + """ + audio_values = kwargs.pop("audio", None) + padding_mask = kwargs.pop("padding_mask", None) + + if len(args) > 0: + audio_values = args[0] + args = args[1:] + + if audio_values is not None: + return self._decode_audio(audio_values, padding_mask=padding_mask) + else: + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the + docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]: + """ + This method strips any padding from the audio values to return a list of numpy audio arrays. + """ + audio_values = to_numpy(audio_values) + bsz, channels, seq_len = audio_values.shape + + if padding_mask is None: + return list(audio_values) + + padding_mask = to_numpy(padding_mask) + + # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** + # token (so that the generated audio values are **not** treated as padded tokens) + difference = seq_len - padding_mask.shape[-1] + padding_value = 1 - self.feature_extractor.padding_value + padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value) + + audio_values = audio_values.tolist() + for i in range(bsz): + sliced_audio = np.asarray(audio_values[i])[ + padding_mask[i][None, :] != self.feature_extractor.padding_value + ] + audio_values[i] = sliced_audio.reshape(channels, -1) + + return audio_values diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3ac7ff1c99b064f418b16d59e10d05eedc998cb4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py @@ -0,0 +1,59 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_recurrent_gemma": ["RecurrentGemmaConfig"], +} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_recurrent_gemma"] = [ + "RecurrentGemmaForCausalLM", + "RecurrentGemmaModel", + "RecurrentGemmaPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_recurrent_gemma import RecurrentGemmaConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_recurrent_gemma import ( + RecurrentGemmaForCausalLM, + RecurrentGemmaModel, + RecurrentGemmaPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14f1e40e07a2d68c108c81c0e41fd5c5b3ff89cf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f197349ffbb0e860527bbcf5475d09ea772340d3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be4900f88ae8d2da2aee39509112634a76ac8c8b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61947657830e5d03310482ce37ebd8a6f695d38d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py new file mode 100644 index 0000000000000000000000000000000000000000..f5a3f9673a3d20cee07a90fc3ffd64eb2d0c4d60 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py @@ -0,0 +1,158 @@ +# coding=utf-8 +# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" RecurrentGemma model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class RecurrentGemmaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`RecurrentGemmaModel`]. It is used to instantiate a RecurrentGemma + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the RecurrentGemma-7B. + + e.g. [google/recurrentgemma-2b](https://huggingface.co/google/recurrentgemma-2b) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + num_hidden_layers (`int`, *optional*, defaults to 26): + The number of hidden layers in the model. + vocab_size (`int`, *optional*, defaults to 256000): + Vocabulary size of the RecurrentGemma model. Defines the number of + different tokens that can be represented by the + `inputs_ids` passed when calling [`RecurrentGemmaModel`] + hidden_size (`int`, *optional*, defaults to 2560): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 7680): + Dimension of the MLP representations. + num_attention_heads (`int`, *optional*, defaults to 10): + The number of heads for the attention block and the number of + heads/blocks for the block-diagonal layers used in the RG-LRU gates. + This number must divide `hidden_size` and `lru_width`. + lru_width (`int` or `None`, *optional*): + Dimension of the hidden representations of the RG-LRU. If `None` + this will be set to `hidden_size`. + Whether to scale the output of the embeddings by `sqrt(hidden_size)`. + attention_window_size (`int`, *optional*, defaults to 2048): + The size of the attention window used in the attention block. + conv1d_width (`int`, *optional*, defaults to 4): + The kernel size of conv1d layers used in the recurrent blocks. + logits_soft_cap (`float`, *optional*, defaults to 30.0): + The value at which the logits should be soft-capped to after the transformer and LM-head computation in the Causal LM architecture. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether the model should return the last key/values + attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + eos_token_id (`int`, *optional*, defaults to 1): + End of stream token id. + bos_token_id (`int`, *optional*, defaults to 2): + Beginning of stream token id. + hidden_activation (``str` or `function``, *optional*, defaults to `"gelu_pytorch_tanh"`): + The hidden activation used in the recurrent block as well as the MLP layer of the decoder layers. + partial_rotary_factor (`float`, *optional*, defaults to 0.5): + The partial rotary factor used in the initialization of the rotary embeddings. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + block_types (`List[str]`, *optional*, defaults to `('recurrent', 'recurrent', 'attention')`): + List of aleternating blocks that will be repeated to initialize the `temporal_block` layer. + attention_dropout (`float`, *optional*, defaults to 0.0): dropout value to use after the attention softmax. + num_key_value_heads (`16`, *optional*, defaults to 16): Number of key value heads to use GQA. + attention_bias (`bool`, *optional*, defaults to `False`): whether or not the linear q,k,v of the Attention layer should have bias + w_init_variance_scale (`float`, *optional*, defaults to 0.01): weight initialization variance. + ```python + >>> from transformers import RecurrentGemmaModel, RecurrentGemmaConfig + + >>> # Initializing a RecurrentGemma recurrentgemma-2b style configuration + >>> configuration = RecurrentGemmaConfig() + + >>> # Initializing a model from the recurrentgemma-2b style configuration + >>> model = RecurrentGemmaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "recurrent_gemma" + + def __init__( + self, + num_hidden_layers=26, + vocab_size=256000, + hidden_size=2560, + intermediate_size=3 * 2560, + num_attention_heads=10, + lru_width=None, + attention_window_size=2048, + conv1d_width=4, + logits_soft_cap=30.0, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + eos_token_id=1, + bos_token_id=2, + hidden_activation="gelu_pytorch_tanh", + partial_rotary_factor=0.5, + rope_theta=10000.0, + block_types=("recurrent", "recurrent", "attention"), + attention_dropout=0.0, + num_key_value_heads=None, + attention_bias=False, + w_init_variance_scale=0.01, + **kwargs, + ): + self.num_hidden_layers = num_hidden_layers + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_attention_heads = num_attention_heads + self.lru_width = lru_width if lru_width is not None else hidden_size + self.attention_window_size = attention_window_size + self.conv1d_width = conv1d_width + self.logits_soft_cap = logits_soft_cap + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.partial_rotary_factor = partial_rotary_factor + self.block_types = list(block_types) + self.hidden_activation = hidden_activation + self.head_dim = self.hidden_size // self.num_attention_heads + self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads + if self.num_key_value_heads > self.num_attention_heads: + raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`") + self.attention_dropout = attention_dropout + self.attention_bias = attention_bias + self.w_init_variance_scale = w_init_variance_scale + self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + **kwargs, + ) + + @property + def layers_block_type(self): + return (self.block_types * 100)[: self.num_hidden_layers] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..dc6619e217e4fde4666c05e0edb99eae499a07fa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py @@ -0,0 +1,222 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import os +import warnings + +import torch +from accelerate import init_empty_weights + +from transformers import GemmaTokenizer, RecurrentGemmaConfig, RecurrentGemmaForCausalLM + + +try: + from transformers import GemmaTokenizerFast +except ImportError as e: + warnings.warn(e) + warnings.warn( + "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" + ) + GemmaTokenizerFast = None + +import regex as re + + +""" +Sample usage: + +``` +python src/transformers/models/gemma/convert_gemma_weights_to_hf.py \ + --input_dir /path/to/downloaded/gemma/weights --model_size 7B --output_dir /output/path +``` + +Thereafter, models can be loaded via: + +```py +from transformers import GemmaForCausalLM, GemmaTokenizerFast + +model = GemmaForCausalLM.from_pretrained("/output/path") +tokenizer = GemmaTokenizerFast.from_pretrained("/output/path") +``` + +Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions +come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). +""" + +gemma_2b_config = RecurrentGemmaConfig( + num_attention_heads=10, + num_key_value_heads=1, + hidden_size=2560, + intermediate_size=15360, + vocab_size=256000, + num_hidden_layers=26, +) + +gemma_7b_config = RecurrentGemmaConfig() + +CONFIG_MAPPING = {"2B": gemma_2b_config, "7B": gemma_7b_config} +LAYER_NAME_MAPPING = {"embedder.weight": "model.embed_tokens.weight"} + + +def write_model(save_path, input_base_path, config, safe_serialization=True, push_to_hub=False, dtype=torch.float32): + print(f"Fetching all parameters from the checkpoint at '{input_base_path}'") + model_state_dict = torch.load(input_base_path, map_location="cpu") + + REPLACEMENT = { + "blocks.": "layers.", + ".ffw_down.b": ".down_proj.b", + ".ffw_down.w": ".down_proj.w", + ".ffw_up.b": ".up_proj.bias", + ".ffw_up.w": ".up_proj.weight", + "recurrent_block": "temporal_block", + "attention_block": "temporal_block", + "temporal_block.proj_final": "temporal_block.out_proj", + "norm.scale": "norm.weight", + ".proj_k": ".k_proj", + ".proj_q": ".q_proj", + ".proj_v": ".v_proj", + ".proj_final": ".o_proj", + "embedder.input_embedding": "embed_tokens.weight", + "conv_1d.w": "conv_1d.weight", + "conv_1d.b": "conv_1d.bias", + "input_gate.w": "input_gate.weight", + "input_gate.b": "input_gate.bias", + "a_param": "recurrent_param", + "a_gate.b": "recurrent_gate.bias", + "a_gate.w": "recurrent_gate.weight", + } + + state_dict = {} + for k, v in model_state_dict.items(): + k = "model." + k + pattern = re.compile("|".join(map(re.escape, REPLACEMENT.keys()))) + key = pattern.sub(lambda match: REPLACEMENT[match.group(0)], k) + if "conv_1d.weight" in key: + v = v[:, None, :].transpose(0, 2) + if "up_proj.weight" in key: + state_dict[key.replace("up_proj", "gate_proj")] = v[0].T.contiguous() + v = v[1].T.contiguous() + if "up_proj.bias" in key: + state_dict[key.replace("up_proj", "gate_proj")] = v[0, 0, 0].clone() + v = v[1, 0, 0].contiguous() + if "recurrent_gate.bias" in key: + state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone() + elif "recurrent_gate.weight" in key: + state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone() + elif "input_gate.b" in key: + state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone() + elif "input_gate.w" in key: + state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone() + elif "embed_tokens" in key: + state_dict[key] = v[: config.vocab_size, :].contiguous().clone() + state_dict["lm_head.weight"] = v[: config.vocab_size, :].contiguous().clone() + else: + state_dict[key] = v.contiguous() + + torch.set_default_dtype(dtype) + + print("Loading the checkpoint in a Gemma model.") + with init_empty_weights(): + model = RecurrentGemmaForCausalLM(config) + model.load_state_dict(state_dict, assign=True, strict=True) + + model.config.torch_dtype = torch.float32 + del model.config._name_or_path + print("Saving in the Transformers format.") + + if push_to_hub: + print(f"pushing the model to {save_path}") + else: + model.save_pretrained(save_path, safe_serialization=safe_serialization) + + +def write_tokenizer(input_tokenizer_path, save_path, push_to_hub=False): + # Initialize the tokenizer based on the `spm` model + tokenizer_class = GemmaTokenizer if GemmaTokenizerFast is None else GemmaTokenizerFast + print(f"Saving a {tokenizer_class.__name__} to {save_path}.") + tokenizer = tokenizer_class(input_tokenizer_path) + if push_to_hub: + tokenizer.push_to_hub(save_path) + else: + tokenizer.save_pretrained(save_path) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--input_checkpoint", + help="Absolute path to the target Gemma weights.", + default="/home/arthur/transformers_recurrentgemma/google/recurrent-gemma-2b-it/ToBeDeleted/2b-it.pt", + ) + parser.add_argument( + "--tokenizer_checkpoint", + help="Location of Gemma tokenizer model", + ) + parser.add_argument( + "--model_size", + default="2B", + choices=["2B", "7B", "tokenizer_only"], + help="'f' models correspond to the finetuned versions, and are specific to the Gemma2 official release. For more details on Gemma2, checkout the original repo: https://huggingface.co/google/gemma-7b", + ) + parser.add_argument( + "--output_dir", + default="google/recurrent-gemma-2b-it-hf", + help="Location to write HF model and tokenizer", + ) + parser.add_argument( + "--pickle_serialization", + help="Whether or not to save using `safetensors`.", + action="store_true", + default=False, + ) + parser.add_argument( + "--convert_tokenizer", + help="Whether or not to convert the tokenizer as well.", + action="store_true", + default=False, + ) + parser.add_argument( + "--push_to_hub", + help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.", + action="store_true", + default=False, + ) + parser.add_argument( + "--dtype", + default="float32", + help="Target dtype of the converted model", + ) + args = parser.parse_args() + + if args.convert_tokenizer: + if args.tokenizer_checkpoint is None: + raise ValueError("Path to the tokenizer is required when passing --convert_tokenizer") + + spm_path = os.path.join(args.tokenizer_checkpoint) + write_tokenizer(spm_path, args.output_dir, args.push_to_hub) + + config = CONFIG_MAPPING[args.model_size] + dtype = getattr(torch, args.dtype) + write_model( + config=config, + input_base_path=args.input_checkpoint, + save_path=args.output_dir, + safe_serialization=not args.pickle_serialization, + push_to_hub=args.push_to_hub, + dtype=dtype, + ) + + +if __name__ == "__main__": + main() diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py new file mode 100644 index 0000000000000000000000000000000000000000..c21f99ce48bd32d9853a3dc09271550d2a916fec --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py @@ -0,0 +1,942 @@ +# coding=utf-8 +# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch RecurrentGemma model.""" + +import math +from typing import Dict, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import AttentionMaskConverter +from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_recurrent_gemma import RecurrentGemmaConfig + + +logger = logging.get_logger(__name__) +_CONFIG_FOR_DOC = "RecurrentGemmaConfig" +_MAX_SQRT_GRADIENT = 1000.0 + + +# Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma +class RecurrentGemmaRMSNorm(nn.Module): + def __init__(self, dim: int, eps: float = 1e-6): + super().__init__() + self.eps = eps + self.weight = nn.Parameter(torch.zeros(dim)) + + def _norm(self, x): + return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) + + def forward(self, x): + output = self._norm(x.float()) + # Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16) + # See https://github.com/huggingface/transformers/pull/29402 + output = output * (1.0 + self.weight.float()) + return output.type_as(x) + + +ALL_LAYERNORM_LAYERS.append(RecurrentGemmaRMSNorm) + + +class RecurrentGemmaRotaryEmbedding(nn.Module): + def __init__(self, dim, base=10000, device=None): + super().__init__() + self.dim = dim + self.base = base + self.register_buffer("inv_freq", None, persistent=False) + + @torch.no_grad() + # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding.forward with Gemma->RecurrentGemma + def forward(self, x, position_ids, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.inv_freq is None: + self.inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim) + ) + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 since bfloat16 loses precision on long contexts + # See https://github.com/huggingface/transformers/pull/29285 + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +class RecurrentGemmaSdpaAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: RecurrentGemmaConfig): + super().__init__() + self.config = config + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = config.head_dim + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads + self.partial_rotary_factor = config.partial_rotary_factor + + self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True) + self.rotary_emb = RecurrentGemmaRotaryEmbedding( + int(self.partial_rotary_factor * self.head_dim), + base=config.rope_theta, + ) + + def forward( + self, + hidden_states: torch.Tensor, + position_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cache_position: Optional[torch.LongTensor] = None, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None) + + # Partial rotary embedding + query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1) + key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1) + query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) + query_states = torch.cat((query_rot, query_pass), dim=-1) + key_states = torch.cat((key_rot, key_pass), dim=-1) + + if use_cache and hasattr(self, "key_states"): + cache_kwargs = {"cache_position": cache_position} + key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states.contiguous(), + key_states.contiguous(), + value_states.contiguous(), + attn_mask=causal_mask, # pretty much a must for sliding window backend! + dropout_p=self.attention_dropout if self.training else 0.0, + scale=self.head_dim**-0.5, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, self.hidden_size) + attn_output = self.o_proj(attn_output) + return attn_output + + def _setup_cache(self, batch_size, device, dtype=None): + if dtype is None and self.config.torch_dtype is not None: + dtype = self.config.torch_dtype + dtype = dtype if dtype is not None else torch.float32 + cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim) + self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device) + self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device) + + @torch.no_grad() + def _update_cache(self, key_states, value_states, **cache_kwargs): + """ + torch.compile compatible sliding window. + Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`. + The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`: + + indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size + tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, + 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 0]) + + We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`) + """ + cache_position = cache_kwargs.get("cache_position") + if cache_position.shape[0] > self.config.attention_window_size: + # int indexing -> device sync? in compile, use tensor + k_out = key_states[:, :, -self.config.attention_window_size :, :] + v_out = value_states[:, :, -self.config.attention_window_size :, :] + else: + slicing = torch.ones( + self.config.attention_window_size, dtype=torch.long, device=value_states.device + ).cumsum(0) + cache_position = cache_position.clamp(0, self.config.attention_window_size - 1) + to_shift = cache_position >= self.config.attention_window_size - 1 + indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size + + k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device) + k_out = k_out[:, :, indices] + v_out = v_out[:, :, indices] + + k_out[:, :, cache_position] = key_states + v_out[:, :, cache_position] = value_states + + self.key_states, self.value_states = k_out, v_out + return k_out, v_out + + +class SqrtBoundDerivative(torch.autograd.Function): + """Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`.""" + + @staticmethod + def forward(ctx, x: torch.Tensor) -> torch.Tensor: + """The forward pass, which is a normal `sqrt`.""" + ctx.save_for_backward(x) + return torch.sqrt(x) + + @staticmethod + def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: + """The backward pass, which clips the `sqrt` gradient.""" + (x,) = ctx.saved_tensors + clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2)) + return grad_output / torch.sqrt(clipped_x_times_4) + + +class RecurrentGemmaRglru(nn.Module): + """A Real-Gated Linear Recurrent Unit (RG-LRU) layer.""" + + def __init__(self, config): + super().__init__() + self.num_attention_heads = config.num_attention_heads + self.block_width = config.lru_width // self.num_attention_heads + + self.recurrent_param = nn.Parameter(torch.empty([config.lru_width])) + self.input_gate_weight = nn.Parameter( + torch.empty([self.num_attention_heads, self.block_width, self.block_width]) + ) + self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) + + self.recurrent_gate_weight = nn.Parameter( + torch.empty([self.num_attention_heads, self.block_width, self.block_width]) + ) + self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) + self.recurrent_states = None + + def forward( + self, + activations: torch.Tensor, + position_ids: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + batch_size, seq_len, lru_width = activations.shape + reset = position_ids[:, :, None] == 0 + + reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width) + reshape_act = reshape_act.permute(1, 0, 2) + + res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight) + input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) + + res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight) + recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) + + # Compute the parameter `A` of the recurrence. + log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param) + recurrent_gate = torch.exp(log_recurrent_gate) + a_square = torch.exp(2 * log_recurrent_gate) + + # Gate the input. + gated_inputs = activations * input_gate + + # Apply gamma normalization to the input. We need to clip the derivatives of + # `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying + multiplier = 1 + tracing = isinstance(activations, torch.fx.Proxy) or ( + hasattr(torch, "_dynamo") and torch._dynamo.is_compiling() + ) + if not torch.jit.is_tracing() and not tracing: + multiplier = SqrtBoundDerivative.apply(1 - a_square) + multiplier = reset + ~reset * multiplier + normalized_x = gated_inputs * multiplier.type(activations.dtype) + + hidden_states, recurrent_states = self._rnn_scan( + hidden_states=normalized_x, + recurrent_gate=recurrent_gate, + reset=reset, + recurrent_states=self.recurrent_states, + ) + self.recurrent_states = recurrent_states + return hidden_states + + # TODO refactor + def _rnn_scan( + self, + hidden_states: torch.Tensor, + recurrent_gate: torch.Tensor, + reset: torch.Tensor, + recurrent_states: Union[torch.Tensor, None], + acc_dtype: torch.dtype = torch.float32, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Runs the recurrence of a linear RNN. + + Args: + hidden_states: The input sequence. + recurrent_gate: The diagonal of the recurrence matrix `A`. + reset: Indicator of document boundaries, e.g. when to reset the hidden state + of the RNN. + recurrent_states: The initial hidden state. + acc_dtype: The data type for the accumulation. + + Returns: + The output of the linear recurrence. + """ + # Multiply `a` by the reset. + recurrent_gate = recurrent_gate * ~reset + + if hidden_states.shape[1] == 1: + # Using scan in sampling mode. + if recurrent_states is None: # same here, when decoding you always have cache + return hidden_states, hidden_states[:, 0].type(acc_dtype) + + else: + contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to( + recurrent_gate.device + ) + contextualized_states += hidden_states.type(acc_dtype) + return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1] + + else: + # Using scan in linear mode. + if recurrent_states is None: + recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device) + + contextualized_states = torch.zeros_like(hidden_states) + for t in range(hidden_states.shape[1]): + recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device) + recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype) + contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype) + + return contextualized_states, recurrent_states + + +class RecurrentGemmaRecurrentBlock(nn.Module): + """Griffin and Hawk's recurrent block.""" + + def __init__(self, config): + super().__init__() + self.lru_width = config.lru_width + self.hidden_size = config.hidden_size + self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) + self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) + self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size) + self.conv1d_width = config.conv1d_width + self.conv_1d = nn.Conv1d( + config.lru_width, + config.lru_width, + kernel_size=config.conv1d_width, + groups=config.lru_width, + padding=config.conv1d_width - 1, + ) + self.rg_lru = RecurrentGemmaRglru(config) + self.act_fn = ACT2FN[config.hidden_activation] + + self.conv1d_state = None + + def forward( + self, + input_states: torch.Tensor, + position_ids: torch.Tensor, + attention_mask: torch.Tensor, + cache_position: torch.Tensor, + use_cache: bool = True, + ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + _, seq_len, _ = input_states.shape + + y_branch = self.linear_y(input_states) + y_branch = self.act_fn(y_branch) + + x_branch = self.linear_x(input_states) + x_branch = x_branch.transpose(1, 2) + + if use_cache: + if cache_position.shape[0] != 1: # prefill + self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0)) + x_branch = self.conv_1d(x_branch)[..., :seq_len] + else: # decoding + conv_state = torch.cat((self.conv1d_state, x_branch), -1) + x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias + x_branch = x_branch.unsqueeze(-1) + self.conv1d_state = conv_state[:, :, 1:] + else: + x_branch = self.conv_1d(x_branch)[..., :seq_len] + + x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids) + + hidden_states = x_branch * y_branch + hidden_states = self.linear_out(hidden_states) + return hidden_states + + def _setup_cache(self, batch, device, dtype): + # recurrent_states always computed in full precision + self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32) + self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype) + + +TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention} + + +class RecurrentGemmaMlp(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size // 2 + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) + self.act_fn = ACT2FN[config.hidden_activation] + + def forward(self, hidden_states): + gate = self.act_fn(self.gate_proj(hidden_states)) + return self.down_proj(gate * self.up_proj(hidden_states)) + + +class RecurrentGemmaDecoderLayer(nn.Module): + """Griffin and Hawk's residual block.""" + + def __init__(self, config, layer_idx): + super().__init__() + self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config) + self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.mlp_block = RecurrentGemmaMlp(config) + + def forward( + self, + activations: torch.Tensor, + position_ids: torch.Tensor, + attention_mask: torch.Tensor, + cache_position: torch.Tensor = None, + use_cache: bool = None, + ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + raw_activations = activations + inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences + + hidden_states = self.temporal_block( + inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache + ) + + residual = hidden_states + raw_activations + + hidden_states = self.channel_pre_norm(residual) + hidden_states = self.mlp_block(hidden_states) + + hidden_states = hidden_states + residual + return hidden_states + + +RECURRENTGEMMA_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`RecurrentGemmaConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.", + RECURRENTGEMMA_START_DOCSTRING, +) +class RecurrentGemmaPreTrainedModel(PreTrainedModel): + config_class = RecurrentGemmaConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["RecurrentGemmaDecoderLayer"] + _skip_keys_device_placement = ["cache"] + _supports_flash_attn_2 = False + _supports_sdpa = False # we can't compare with eager for now + _supports_cache_class = True + + def _init_weights(self, module): + std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width) + if isinstance(module, nn.Conv1d): + torch.nn.init.normal_(module.weight, mean=0.0, std=std) + torch.nn.init.zeros_(module.bias) + elif isinstance(module, RecurrentGemmaSdpaAttention): + torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) + torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) + torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) + + std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size) + torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std) + elif isinstance(module, RecurrentGemmaRecurrentBlock): + torch.nn.init.zeros_(module.linear_x.bias) + torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) + + torch.nn.init.zeros_(module.linear_y.bias) + torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) + + std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width) + torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std) + torch.nn.init.zeros_(module.linear_out.bias) + elif isinstance(module, RecurrentGemmaRglru): + std = math.sqrt( + self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads) + ) + torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std) + torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std) + torch.nn.init.zeros_(module.input_gate_bias) + torch.nn.init.zeros_(module.recurrent_gate_bias) + + module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8) + module.recurrent_param.data.log_().mul_(0.5) + module.recurrent_param.data.neg_().exp_().sub_(1.0).log_() + elif isinstance(module, nn.Linear): + torch.nn.init.normal_(module.weight, mean=0.0, std=std) + if getattr(module, "bias", None) is not None: + torch.nn.init.zeros_(module.bias) + + def _setup_cache(self, config, batch, device, dtype): + layers = getattr(self, "model", self).layers + for layer in layers: + layer.temporal_block._setup_cache(batch, device, dtype) + + def reset_cache(self, batch, device, dtype): + pass + + +RECURRENTGEMMA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.", + RECURRENTGEMMA_START_DOCSTRING, +) +class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RecurrentGemmaDecoderLayer`] + + Args: + config: RecurrentGemmaConfig + """ + + def __init__(self, config: RecurrentGemmaConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.gradient_checkpointing = False + + self.register_buffer( + "normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False + ) + # Initialize weights and apply final processing + self.post_init() + + # Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings + def get_input_embeddings(self): + return self.embed_tokens + + # Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + position_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cache_position: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + hidden_states = inputs_embeds + + if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`? + self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype) + + if cache_position is None: + cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) + + hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype) + + all_hidden_states = () if output_hidden_states else None + for i, residual_block in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + residual_block.__call__, hidden_states, position_ids, causal_mask, cache_position, use_cache + ) + else: + hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache) + + hidden_states = self.final_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + ) + + # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static + # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. + # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using + # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 + # Ignore copy + def _update_causal_mask(self, attention_mask, input_tensor, cache_position): + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + target_length = max(self.config.attention_window_size, sequence_length) + + diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) + causal_mask = diagonal + if sequence_length != 1: + causal_mask = torch.triu(diagonal, diagonal=-1) + + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + if attention_mask.dim() == 2: + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) + causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) + + if attention_mask is not None and attention_mask.device.type == "cuda": + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + +# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma +class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = RecurrentGemmaModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + # Ignore copy + @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + cache_position: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + use_cache: Optional[bool] = None, + **kwargs, # for now we need this for generation + ) -> Union[Tuple, CausalLMOutput]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM + + >>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b") + >>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b") + + >>> prompt = "What is your favorite condiment?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "What is your favorite condiment?" + ```""" + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True + outputs = self.model( + input_ids=input_ids, + cache_position=cache_position, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + # Soft-cap the logits TODO remove if always done. + # if self.config.logits_soft_cap is not None: + cap = self.config.logits_soft_cap + logits = nn.functional.tanh(logits / cap) * cap + + logits = logits.float() + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + # Ignore copy + def prepare_inputs_for_generation( + self, input_ids, attention_mask=None, inputs_embeds=None, cache_position=None, use_cache=None, **kwargs + ): + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + + attention_mask = attention_mask[:, -self.config.attention_window_size :] + + past_length = cache_position[0] + if past_length > 0: + position_ids = position_ids[:, past_length:] + + if inputs_embeds is not None: + model_inputs = {"inputs_embeds": inputs_embeds[:, past_length:]} + else: + model_inputs = {"input_ids": input_ids[:, past_length:].contiguous()} + + if cache_position is not None: + cache_position = cache_position[-position_ids.shape[1] :] + + model_inputs.update( + { + "position_ids": position_ids, + "attention_mask": attention_mask, + "cache_position": cache_position, + "use_cache": use_cache, + } + ) + return model_inputs + + # Ignore copy + def _reorder_cache(self, past_key_values, beam_idx): + for layer in self.layers: + if hasattr(layer.temporal_block, "key_states"): + k_state = layer.temporal_block.key_states + v_state = layer.temporal_block.value_states + k_state = k_state.index_select(0, beam_idx.to(k_state.device)) + v_state = v_state.index_select(0, beam_idx.to(v_state.device)) + return None diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ab1dd5284a32e40551a110ae4e45dbe489c75824 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__init__.py @@ -0,0 +1,56 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_sew_d": ["SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWDConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_sew_d"] = [ + "SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST", + "SEWDForCTC", + "SEWDForSequenceClassification", + "SEWDModel", + "SEWDPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_sew_d import ( + SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST, + SEWDForCTC, + SEWDForSequenceClassification, + SEWDModel, + SEWDPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50cfcb4a8da509a12d78571a90576d05914426f9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/configuration_sew_d.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/configuration_sew_d.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..69abf40d82ea3048006f76b0db287e8a253c8b75 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/configuration_sew_d.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/convert_sew_d_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/convert_sew_d_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..004b338152db2518f0ab304cb1cacca4328db2d7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/convert_sew_d_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/modeling_sew_d.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/modeling_sew_d.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..323f456c0903a78ba6affb13ce544a1d9a545fe7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/__pycache__/modeling_sew_d.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/configuration_sew_d.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/configuration_sew_d.py new file mode 100644 index 0000000000000000000000000000000000000000..9e96a1f22b30bfd97559320ae8d4266ff34e9ec4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/configuration_sew_d.py @@ -0,0 +1,296 @@ +# coding=utf-8 +# Copyright 2021 ASAPP Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SEW-D model configuration""" + +import functools +import operator + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class SEWDConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SEWDModel`]. It is used to instantiate a SEW-D + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the SEW-D + [asapp/sew-d-tiny-100k](https://huggingface.co/asapp/sew-d-tiny-100k) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32): + Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`SEWD`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + squeeze_factor (`int`, *optional*, defaults to 2): + Sequence length downsampling factor after the encoder and upsampling factor after the transformer. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + position_buckets (`int`, *optional*, defaults to 256): + The maximum size of relative position embeddings. + share_att_key (`bool`, *optional*, defaults to `True`): + Whether to share attention key with c2p and p2c. + relative_attention (`bool`, *optional*, defaults to `True`): + Whether to use relative position encoding. + pos_att_type (`Tuple[str]`, *optional*, defaults to `("p2c", "c2p")`): + The type of relative position attention, it can be a combination of `("p2c", "c2p")`, e.g. `("p2c")`, + `("p2c", "c2p")`, `("p2c", "c2p")`. + norm_rel_ebd (`str`, *optional*, defaults to `"layer_norm"`): + Whether to use layer norm in relative embedding (`"layer_norm"` if yes) + hidden_act (`str` or `function`, *optional*, defaults to `"gelu_python"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"`, `"gelu_python"` and `"gelu_new"` are supported. + hidden_dropout (`float`, *optional*, defaults to 0.1): + Deprecated. Not used by the model and will be removed in a future version. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + final_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the final projection layer of [`SEWDForCTC`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-7): + The epsilon used by the layer normalization layers in the transformer encoder. + feature_layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization after the feature encoder. + feat_extract_norm (`str`, *optional*, defaults to `"group"`): + The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group + normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D + convolutional layers. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the feature encoder. + feat_extract_activation (`str, `optional`, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): + A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length + of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The + length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + apply_spec_augment (`bool`, *optional*, defaults to `True`): + Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see + [SpecAugment: A Simple Data Augmentation Method for Automatic Speech + Recognition](https://arxiv.org/abs/1904.08779). + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2),: + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0),: + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + diversity_loss_weight (`int`, *optional*, defaults to 0.1): + The weight of the codebook diversity loss component. + ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): + Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an + instance of [`SEWDForCTC`]. + ctc_zero_infinity (`bool`, *optional*, defaults to `False`): + Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly + occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance + of [`SEWDForCTC`]. + use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): + Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an + instance of [`Wav2Vec2ForSequenceClassification`]. + classifier_proj_size (`int`, *optional*, defaults to 256): + Dimensionality of the projection before token mean-pooling for classification. + + Example: + + ```python + >>> from transformers import SEWDConfig, SEWDModel + + >>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration + >>> configuration = SEWDConfig() + + >>> # Initializing a model (with random weights) from the asapp/sew-d-tiny-100k style configuration + >>> model = SEWDModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "sew-d" + + def __init__( + self, + vocab_size=32, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + squeeze_factor=2, + max_position_embeddings=512, + position_buckets=256, + share_att_key=True, + relative_attention=True, + pos_att_type=("p2c", "c2p"), + norm_rel_ebd="layer_norm", + hidden_act="gelu_python", + hidden_dropout=0.1, + activation_dropout=0.1, + attention_dropout=0.1, + feat_proj_dropout=0.0, + final_dropout=0.1, + initializer_range=0.02, + layer_norm_eps=1e-7, + feature_layer_norm_eps=1e-5, + feat_extract_norm="group", + feat_extract_activation="gelu", + conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), + conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), + conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), + conv_bias=False, + num_conv_pos_embeddings=128, + num_conv_pos_embedding_groups=16, + apply_spec_augment=True, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + ctc_loss_reduction="mean", + ctc_zero_infinity=False, + use_weighted_layer_sum=False, + classifier_proj_size=256, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + **kwargs, + ): + super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) + self.hidden_size = hidden_size + self.feat_extract_norm = feat_extract_norm + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.num_feat_extract_layers = len(self.conv_dim) + self.num_hidden_layers = num_hidden_layers + self.intermediate_size = intermediate_size + self.squeeze_factor = squeeze_factor + self.max_position_embeddings = max_position_embeddings + self.position_buckets = position_buckets + self.share_att_key = share_att_key + self.relative_attention = relative_attention + self.norm_rel_ebd = norm_rel_ebd + self.pos_att_type = list(pos_att_type) + self.hidden_act = hidden_act + self.num_attention_heads = num_attention_heads + self._hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.feat_proj_dropout = feat_proj_dropout + self.final_dropout = final_dropout + self.layer_norm_eps = layer_norm_eps + self.feature_layer_norm_eps = feature_layer_norm_eps + self.initializer_range = initializer_range + self.vocab_size = vocab_size + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. " + "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " + f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " + f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.apply_spec_augment = apply_spec_augment + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + # ctc loss + self.ctc_loss_reduction = ctc_loss_reduction + self.ctc_zero_infinity = ctc_zero_infinity + + # sequence classification + self.use_weighted_layer_sum = use_weighted_layer_sum + self.classifier_proj_size = classifier_proj_size + + @property + def inputs_to_logits_ratio(self): + return functools.reduce(operator.mul, self.conv_stride, 1) + + @property + def hidden_dropout(self): + logger.warning_once("hidden_dropout is not used by the model and will be removed as config attribute in v4.35") + return self._hidden_dropout + + def to_dict(self): + """ + Serializes this instance to a Python dictionary. + """ + output = super().to_dict() + output["hidden_dropout"] = output.pop("_hidden_dropout") + return output diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/convert_sew_d_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/convert_sew_d_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..7844d7912f2c8b2b0605e739549e877a4c7ee7dc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/convert_sew_d_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,318 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert SEW checkpoint.""" + + +import argparse +import json +import os + +import fairseq +import torch +from fairseq.data import Dictionary + +# Register SEW's fairseq modules +from sew_asapp import tasks # noqa: F401 + +from transformers import ( + SEWDConfig, + SEWDForCTC, + SEWDModel, + Wav2Vec2CTCTokenizer, + Wav2Vec2FeatureExtractor, + Wav2Vec2Processor, + logging, +) + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +MAPPING = { + "post_extract_proj": "feature_projection", + "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", + "attention.self.query_proj": "encoder.encoder.layer.*.attention.self.query_proj", + "attention.self.key_proj": "encoder.encoder.layer.*.attention.self.key_proj", + "attention.self.value_proj": "encoder.encoder.layer.*.attention.self.value_proj", + "attention.output.dense": "encoder.encoder.layer.*.attention.output.dense", + "attention.output.LayerNorm": "encoder.encoder.layer.*.attention.output.LayerNorm", + "intermediate.dense": "encoder.encoder.layer.*.intermediate.dense", + "output.dense": "encoder.encoder.layer.*.output.dense", + "output.LayerNorm": "encoder.encoder.layer.*.output.LayerNorm", + "encoder.encoder.rel_embeddings": "encoder.encoder.rel_embeddings", + "encoder.encoder.LayerNorm": "encoder.encoder.LayerNorm", + "encoder.upsample.0": "encoder.upsample.projection", + "encoder.layer_norm": "encoder.layer_norm", + "w2v_model.layer_norm": "layer_norm", + "w2v_encoder.proj": "lm_head", + "mask_emb": "masked_spec_embed", +} + + +def set_recursively(hf_pointer, key, value, full_name, weight_type): + for attribute in key.split("."): + hf_pointer = getattr(hf_pointer, attribute) + + if weight_type is not None: + hf_shape = getattr(hf_pointer, weight_type).shape + else: + hf_shape = hf_pointer.shape + + assert hf_shape == value.shape, ( + f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" + f" {value.shape} for {full_name}" + ) + + if weight_type == "weight": + hf_pointer.weight.data = value + elif weight_type == "weight_g": + hf_pointer.weight_g.data = value + elif weight_type == "weight_v": + hf_pointer.weight_v.data = value + elif weight_type == "bias": + hf_pointer.bias.data = value + else: + hf_pointer.data = value + + logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") + + +def recursively_load_weights(fairseq_model, hf_model, is_finetuned): + unused_weights = [] + fairseq_dict = fairseq_model.state_dict() + + feature_extractor = hf_model.sew_d.feature_extractor if is_finetuned else hf_model.feature_extractor + + for name, value in fairseq_dict.items(): + is_used = False + if "conv_layers" in name: + load_conv_layer( + name, + value, + feature_extractor, + unused_weights, + hf_model.config.feat_extract_norm == "group", + ) + is_used = True + else: + for key, mapped_key in MAPPING.items(): + mapped_key = "sew_d." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key + + if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: + is_used = True + if "*" in mapped_key: + layer_index = name.split(key)[0].split(".")[-2] + if not layer_index.isnumeric(): + continue + mapped_key = mapped_key.replace("*", layer_index) + if "weight_g" in name: + weight_type = "weight_g" + elif "weight_v" in name: + weight_type = "weight_v" + elif "weight" in name: + weight_type = "weight" + elif "bias" in name: + weight_type = "bias" + else: + weight_type = None + set_recursively(hf_model, mapped_key, value, name, weight_type) + continue + if not is_used: + unused_weights.append(name) + + logger.warning(f"Unused weights: {unused_weights}") + + +def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): + name = full_name.split("conv_layers.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + if type_id == 0: + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.bias.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.weight.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( + f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" + " found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + else: + unused_weights.append(full_name) + + +def convert_config(model, is_finetuned): + config = SEWDConfig() + if is_finetuned: + fs_config = model.w2v_encoder.w2v_model.cfg + else: + fs_config = model.cfg + + config.conv_bias = fs_config.conv_bias + conv_layers = eval(fs_config.conv_feature_layers) + config.conv_dim = [x[0] for x in conv_layers] + config.conv_kernel = [x[1] for x in conv_layers] + config.conv_stride = [x[2] for x in conv_layers] + config.feat_extract_activation = "gelu" + config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group" + config.final_dropout = 0.0 + config.hidden_act = fs_config.activation_fn.name + config.hidden_size = fs_config.encoder_embed_dim + config.initializer_range = 0.02 + config.intermediate_size = fs_config.encoder_ffn_embed_dim + config.layer_norm_eps = 1e-5 + config.layerdrop = fs_config.encoder_layerdrop + config.num_attention_heads = fs_config.encoder_attention_heads + config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups + config.num_conv_pos_embeddings = fs_config.conv_pos + config.num_feat_extract_layers = len(conv_layers) + config.num_hidden_layers = fs_config.encoder_layers + config.squeeze_factor = fs_config.squeeze_factor + # DeBERTa-specific parameters: + config.max_position_embeddings = fs_config.max_position_embeddings + config.position_buckets = fs_config.position_buckets + config.share_att_key = fs_config.share_att_key + config.relative_attention = fs_config.relative_attention + config.position_biased_input = fs_config.position_biased_input + config.pos_att_type = tuple(fs_config.pos_att_type.split("|")) + config.norm_rel_ebd = fs_config.norm_rel_ebd + + # take care of any params that are overridden by the Wav2VecCtc model + if is_finetuned: + fs_config = model.cfg + config.final_dropout = fs_config.final_dropout + config.layerdrop = fs_config.layerdrop + config.activation_dropout = fs_config.activation_dropout + config.apply_spec_augment = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 + config.attention_dropout = fs_config.attention_dropout + config.feat_proj_dropout = fs_config.dropout_input + config.hidden_dropout = fs_config.dropout + config.mask_feature_length = fs_config.mask_channel_length + config.mask_feature_prob = fs_config.mask_channel_prob + config.mask_time_length = fs_config.mask_length + config.mask_time_prob = fs_config.mask_prob + + config.feature_extractor_type = "Wav2Vec2FeatureExtractor" + config.tokenizer_class = "Wav2Vec2CTCTokenizer" + + return config + + +@torch.no_grad() +def convert_sew_checkpoint( + checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True +): + """ + Copy/paste/tweak model's weights to transformers design. + """ + + if is_finetuned: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( + [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} + ) + else: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) + + if config_path is not None: + config = SEWDConfig.from_pretrained(config_path) + else: + config = convert_config(model[0], is_finetuned) + model = model[0].eval() + + return_attention_mask = True if config.feat_extract_norm == "layer" else False + feature_extractor = Wav2Vec2FeatureExtractor( + feature_size=1, + sampling_rate=16000, + padding_value=0, + do_normalize=True, + return_attention_mask=return_attention_mask, + ) + + if is_finetuned: + if dict_path: + target_dict = Dictionary.load(dict_path) + + # important change bos & pad token id since CTC symbol is and + # not as in fairseq + target_dict.indices[target_dict.bos_word] = target_dict.pad_index + target_dict.indices[target_dict.pad_word] = target_dict.bos_index + config.bos_token_id = target_dict.pad_index + config.pad_token_id = target_dict.bos_index + config.eos_token_id = target_dict.eos_index + config.vocab_size = len(target_dict.symbols) + vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") + if not os.path.isdir(pytorch_dump_folder_path): + logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) + return + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + with open(vocab_path, "w", encoding="utf-8") as vocab_handle: + json.dump(target_dict.indices, vocab_handle) + tokenizer = Wav2Vec2CTCTokenizer( + vocab_path, + unk_token=target_dict.unk_word, + pad_token=target_dict.pad_word, + bos_token=target_dict.bos_word, + eos_token=target_dict.eos_word, + word_delimiter_token="|", + do_lower_case=False, + ) + processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) + processor.save_pretrained(pytorch_dump_folder_path) + + hf_model = SEWDForCTC(config) + else: + hf_model = SEWDModel(config) + feature_extractor.save_pretrained(pytorch_dump_folder_path) + + recursively_load_weights(model, hf_model, is_finetuned) + + hf_model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" + ) + args = parser.parse_args() + convert_sew_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/modeling_sew_d.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/modeling_sew_d.py new file mode 100644 index 0000000000000000000000000000000000000000..aadcf6f6693c5b490ea9467e09ee15c8f01c6df7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew_d/modeling_sew_d.py @@ -0,0 +1,1752 @@ +# coding=utf-8 +# Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SEW model.""" + +import math +import warnings +from collections.abc import Sequence +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss, LayerNorm + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import softmax_backward_data +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_sew_d import SEWDConfig + + +logger = logging.get_logger(__name__) + +_HIDDEN_STATES_START_POSITION = 1 + + +# General docstring +_CONFIG_FOR_DOC = "SEWDConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h" +_EXPECTED_OUTPUT_SHAPE = [1, 292, 384] + +# CTC docstring +_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" +_CTC_EXPECTED_LOSS = 0.21 + +# Audio class docstring +_SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting" +_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" +_SEQ_CLASS_EXPECTED_LOSS = 3.16 + + +from ..deprecated._archive_maps import SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +# Copied from transformers.models.deberta_v2.modeling_deberta_v2.make_log_bucket_position +def make_log_bucket_position(relative_pos, bucket_size, max_position): + sign = torch.sign(relative_pos) + mid = bucket_size // 2 + abs_pos = torch.where( + (relative_pos < mid) & (relative_pos > -mid), + torch.tensor(mid - 1).type_as(relative_pos), + torch.abs(relative_pos), + ) + log_pos = ( + torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid + ) + bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign) + return bucket_pos + + +# Copied from transformers.models.deberta_v2.modeling_deberta_v2.build_relative_position +def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None): + """ + Build relative position according to the query and key + + We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key + \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - + P_k\\) + + Args: + query_size (int): the length of query + key_size (int): the length of key + bucket_size (int): the size of position bucket + max_position (int): the maximum allowed absolute position + device (`torch.device`): the device on which tensors will be created. + + Return: + `torch.LongTensor`: A tensor with shape [1, query_size, key_size] + """ + + q_ids = torch.arange(0, query_size, device=device) + k_ids = torch.arange(0, key_size, device=device) + rel_pos_ids = q_ids[:, None] - k_ids[None, :] + if bucket_size > 0 and max_position > 0: + rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) + rel_pos_ids = rel_pos_ids.to(torch.long) + rel_pos_ids = rel_pos_ids[:query_size, :] + rel_pos_ids = rel_pos_ids.unsqueeze(0) + return rel_pos_ids + + +@torch.jit.script +# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand +def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): + return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) + + +@torch.jit.script +# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand +def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): + return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) + + +@torch.jit.script +# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand +def pos_dynamic_expand(pos_index, p2c_att, key_layer): + return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) + + +# Copied from transformers.models.deberta.modeling_deberta.get_mask +def get_mask(input, local_context): + if not isinstance(local_context, DropoutContext): + dropout = local_context + mask = None + else: + dropout = local_context.dropout + dropout *= local_context.scale + mask = local_context.mask if local_context.reuse_mask else None + + if dropout > 0 and mask is None: + mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) + + if isinstance(local_context, DropoutContext): + if local_context.mask is None: + local_context.mask = mask + + return mask, dropout + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD +class SEWDNoLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD +class SEWDLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD +class SEWDGroupNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD +class SEWDPositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.num_conv_pos_embeddings, + padding=config.num_conv_pos_embeddings // 2, + groups=config.num_conv_pos_embedding_groups, + stride=config.squeeze_factor, + ) + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + + self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW +class SEWDSamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +# Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD +class SEWDUpsampling(nn.Module): + def __init__(self, config): + super().__init__() + self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) + self.activation = ACT2FN[config.feat_extract_activation] + self.squeeze_factor = config.squeeze_factor + + def forward(self, hidden_states): + hidden_states = self.projection(hidden_states) + hidden_states = self.activation(hidden_states) + + if self.squeeze_factor > 1: + # transform embedding channels to sequence length + bsz, src_len, src_embed_dim = hidden_states.size() + tgt_len = src_len * self.squeeze_factor + tgt_embed_dim = src_embed_dim // self.squeeze_factor + hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) + hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD +class SEWDFeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + + if config.feat_extract_norm == "group": + conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [ + SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) + ] + elif config.feat_extract_norm == "layer": + conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] + else: + raise ValueError( + f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" + ) + self.conv_layers = nn.ModuleList(conv_layers) + self.gradient_checkpointing = False + self._requires_grad = True + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +class SEWDFeatureExtractor(SEWDFeatureEncoder): + def __init__(self, config): + super().__init__(config) + warnings.warn( + f"The class `{self.__class__.__name__}` has been depreciated " + "and will be removed in Transformers v5. " + f"Use `{self.__class__.__bases__[0].__name__}` instead.", + FutureWarning, + ) + + +# Copied from transformers.models.deberta.modeling_deberta.ContextPooler +class ContextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) + self.dropout = StableDropout(config.pooler_dropout) + self.config = config + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + + context_token = hidden_states[:, 0] + context_token = self.dropout(context_token) + pooled_output = self.dense(context_token) + pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) + return pooled_output + + @property + def output_dim(self): + return self.config.hidden_size + + +# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2 +class XSoftmax(torch.autograd.Function): + """ + Masked Softmax which is optimized for saving memory + + Args: + input (`torch.tensor`): The input tensor that will apply softmax. + mask (`torch.IntTensor`): + The mask matrix where 0 indicate that element will be ignored in the softmax calculation. + dim (int): The dimension that will apply softmax + + Example: + + ```python + >>> import torch + >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax + + >>> # Make a tensor + >>> x = torch.randn([4, 20, 100]) + + >>> # Create a mask + >>> mask = (x > 0).int() + + >>> # Specify the dimension to apply softmax + >>> dim = -1 + + >>> y = XSoftmax.apply(x, mask, dim) + ```""" + + @staticmethod + def forward(self, input, mask, dim): + self.dim = dim + rmask = ~(mask.to(torch.bool)) + + output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) + output = torch.softmax(output, self.dim) + output.masked_fill_(rmask, 0) + self.save_for_backward(output) + return output + + @staticmethod + def backward(self, grad_output): + (output,) = self.saved_tensors + inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output) + return inputGrad, None, None + + @staticmethod + def symbolic(g, self, mask, dim): + import torch.onnx.symbolic_helper as sym_help + from torch.onnx.symbolic_opset9 import masked_fill, softmax + + mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) + r_mask = g.op( + "Cast", + g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), + to_i=sym_help.cast_pytorch_to_onnx["Bool"], + ) + output = masked_fill( + g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) + ) + output = softmax(g, output, dim) + return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) + + +# Copied from transformers.models.deberta.modeling_deberta.DropoutContext +class DropoutContext(object): + def __init__(self): + self.dropout = 0 + self.mask = None + self.scale = 1 + self.reuse_mask = True + + +# Copied from transformers.models.deberta.modeling_deberta.XDropout +class XDropout(torch.autograd.Function): + """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" + + @staticmethod + def forward(ctx, input, local_ctx): + mask, dropout = get_mask(input, local_ctx) + ctx.scale = 1.0 / (1 - dropout) + if dropout > 0: + ctx.save_for_backward(mask) + return input.masked_fill(mask, 0) * ctx.scale + else: + return input + + @staticmethod + def backward(ctx, grad_output): + if ctx.scale > 1: + (mask,) = ctx.saved_tensors + return grad_output.masked_fill(mask, 0) * ctx.scale, None + else: + return grad_output, None + + @staticmethod + def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: + from torch.onnx import symbolic_opset12 + + dropout_p = local_ctx + if isinstance(local_ctx, DropoutContext): + dropout_p = local_ctx.dropout + # StableDropout only calls this function when training. + train = True + # TODO: We should check if the opset_version being used to export + # is > 12 here, but there's no good way to do that. As-is, if the + # opset_version < 12, export will fail with a CheckerError. + # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: + # if opset_version < 12: + # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) + return symbolic_opset12.dropout(g, input, dropout_p, train) + + +# Copied from transformers.models.deberta.modeling_deberta.StableDropout +class StableDropout(nn.Module): + """ + Optimized dropout module for stabilizing the training + + Args: + drop_prob (float): the dropout probabilities + """ + + def __init__(self, drop_prob): + super().__init__() + self.drop_prob = drop_prob + self.count = 0 + self.context_stack = None + + def forward(self, x): + """ + Call the module + + Args: + x (`torch.tensor`): The input tensor to apply dropout + """ + if self.training and self.drop_prob > 0: + return XDropout.apply(x, self.get_context()) + return x + + def clear_context(self): + self.count = 0 + self.context_stack = None + + def init_context(self, reuse_mask=True, scale=1): + if self.context_stack is None: + self.context_stack = [] + self.count = 0 + for c in self.context_stack: + c.reuse_mask = reuse_mask + c.scale = scale + + def get_context(self): + if self.context_stack is not None: + if self.count >= len(self.context_stack): + self.context_stack.append(DropoutContext()) + ctx = self.context_stack[self.count] + ctx.dropout = self.drop_prob + self.count += 1 + return ctx + else: + return self.drop_prob + + +# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaV2->SEWD, DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout +class SEWDSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.activation_dropout) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DisentangledSelfAttention with attention_probs_dropout_prob->attention_dropout, hidden_dropout_prob->activation_dropout +class DisentangledSelfAttention(nn.Module): + """ + Disentangled self-attention module + + Parameters: + config (`DebertaV2Config`): + A model config class instance with the configuration to build a new model. The schema is similar to + *BertConfig*, for more details, please refer [`DebertaV2Config`] + + """ + + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_attention_heads = config.num_attention_heads + _attention_head_size = config.hidden_size // config.num_attention_heads + self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) + self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) + self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) + + self.share_att_key = getattr(config, "share_att_key", False) + self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] + self.relative_attention = getattr(config, "relative_attention", False) + + if self.relative_attention: + self.position_buckets = getattr(config, "position_buckets", -1) + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + self.pos_ebd_size = self.max_relative_positions + if self.position_buckets > 0: + self.pos_ebd_size = self.position_buckets + + self.pos_dropout = StableDropout(config.activation_dropout) + + if not self.share_att_key: + if "c2p" in self.pos_att_type: + self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) + if "p2c" in self.pos_att_type: + self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = StableDropout(config.attention_dropout) + + def transpose_for_scores(self, x, attention_heads): + new_x_shape = x.size()[:-1] + (attention_heads, -1) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) + + def forward( + self, + hidden_states, + attention_mask, + output_attentions=False, + query_states=None, + relative_pos=None, + rel_embeddings=None, + ): + """ + Call the module + + Args: + hidden_states (`torch.FloatTensor`): + Input states to the module usually the output from previous layer, it will be the Q,K and V in + *Attention(Q,K,V)* + + attention_mask (`torch.BoolTensor`): + An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum + sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* + th token. + + output_attentions (`bool`, optional): + Whether return the attention matrix. + + query_states (`torch.FloatTensor`, optional): + The *Q* state in *Attention(Q,K,V)*. + + relative_pos (`torch.LongTensor`): + The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with + values ranging in [*-max_relative_positions*, *max_relative_positions*]. + + rel_embeddings (`torch.FloatTensor`): + The embedding of relative distances. It's a tensor of shape [\\(2 \\times + \\text{max_relative_positions}\\), *hidden_size*]. + + + """ + if query_states is None: + query_states = hidden_states + query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) + key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) + value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) + + rel_att = None + # Take the dot product between "query" and "key" to get the raw attention scores. + scale_factor = 1 + if "c2p" in self.pos_att_type: + scale_factor += 1 + if "p2c" in self.pos_att_type: + scale_factor += 1 + scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) + attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype)) + if self.relative_attention: + rel_embeddings = self.pos_dropout(rel_embeddings) + rel_att = self.disentangled_attention_bias( + query_layer, key_layer, relative_pos, rel_embeddings, scale_factor + ) + + if rel_att is not None: + attention_scores = attention_scores + rel_att + attention_scores = attention_scores + attention_scores = attention_scores.view( + -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) + ) + + # bsz x height x length x dimension + attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) + attention_probs = self.dropout(attention_probs) + context_layer = torch.bmm( + attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer + ) + context_layer = ( + context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) + .permute(0, 2, 1, 3) + .contiguous() + ) + new_context_layer_shape = context_layer.size()[:-2] + (-1,) + context_layer = context_layer.view(new_context_layer_shape) + if output_attentions: + return (context_layer, attention_probs) + else: + return context_layer + + def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): + if relative_pos is None: + q = query_layer.size(-2) + relative_pos = build_relative_position( + q, + key_layer.size(-2), + bucket_size=self.position_buckets, + max_position=self.max_relative_positions, + device=query_layer.device, + ) + if relative_pos.dim() == 2: + relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) + elif relative_pos.dim() == 3: + relative_pos = relative_pos.unsqueeze(1) + # bsz x height x query x key + elif relative_pos.dim() != 4: + raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") + + att_span = self.pos_ebd_size + relative_pos = relative_pos.long().to(query_layer.device) + + rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0) + if self.share_att_key: + pos_query_layer = self.transpose_for_scores( + self.query_proj(rel_embeddings), self.num_attention_heads + ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) + pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( + query_layer.size(0) // self.num_attention_heads, 1, 1 + ) + else: + if "c2p" in self.pos_att_type: + pos_key_layer = self.transpose_for_scores( + self.pos_key_proj(rel_embeddings), self.num_attention_heads + ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) + if "p2c" in self.pos_att_type: + pos_query_layer = self.transpose_for_scores( + self.pos_query_proj(rel_embeddings), self.num_attention_heads + ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) + + score = 0 + # content->position + if "c2p" in self.pos_att_type: + scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor) + c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) + c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) + c2p_att = torch.gather( + c2p_att, + dim=-1, + index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), + ) + score += c2p_att / scale.to(dtype=c2p_att.dtype) + + # position->content + if "p2c" in self.pos_att_type: + scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) + if key_layer.size(-2) != query_layer.size(-2): + r_pos = build_relative_position( + key_layer.size(-2), + key_layer.size(-2), + bucket_size=self.position_buckets, + max_position=self.max_relative_positions, + device=query_layer.device, + ) + r_pos = r_pos.unsqueeze(0) + else: + r_pos = relative_pos + + p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) + p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) + p2c_att = torch.gather( + p2c_att, + dim=-1, + index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), + ).transpose(-1, -2) + score += p2c_att / scale.to(dtype=p2c_att.dtype) + + return score + + +# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->SEWD +class SEWDAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = DisentangledSelfAttention(config) + self.output = SEWDSelfOutput(config) + self.config = config + + def forward( + self, + hidden_states, + attention_mask, + output_attentions=False, + query_states=None, + relative_pos=None, + rel_embeddings=None, + ): + self_output = self.self( + hidden_states, + attention_mask, + output_attentions, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + ) + if output_attentions: + self_output, att_matrix = self_output + if query_states is None: + query_states = hidden_states + attention_output = self.output(self_output, query_states) + + if output_attentions: + return (attention_output, att_matrix) + else: + return attention_output + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD +class SEWDIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout +class SEWDOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.activation_dropout) + self.config = config + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->SEWD +class SEWDLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = SEWDAttention(config) + self.intermediate = SEWDIntermediate(config) + self.output = SEWDOutput(config) + + def forward( + self, + hidden_states, + attention_mask, + query_states=None, + relative_pos=None, + rel_embeddings=None, + output_attentions=False, + ): + attention_output = self.attention( + hidden_states, + attention_mask, + output_attentions=output_attentions, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + ) + if output_attentions: + attention_output, att_matrix = attention_output + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + if output_attentions: + return (layer_output, att_matrix) + else: + return layer_output + + +# Copied from transformers.models.deberta_v2.modeling_deberta_v2.ConvLayer +class ConvLayer(nn.Module): + def __init__(self, config): + super().__init__() + kernel_size = getattr(config, "conv_kernel_size", 3) + groups = getattr(config, "conv_groups", 1) + self.conv_act = getattr(config, "conv_act", "tanh") + self.conv = nn.Conv1d( + config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups + ) + self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.hidden_dropout_prob) + self.config = config + + def forward(self, hidden_states, residual_states, input_mask): + out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() + rmask = (1 - input_mask).bool() + out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) + out = ACT2FN[self.conv_act](self.dropout(out)) + + layer_norm_input = residual_states + out + output = self.LayerNorm(layer_norm_input).to(layer_norm_input) + + if input_mask is None: + output_states = output + else: + if input_mask.dim() != layer_norm_input.dim(): + if input_mask.dim() == 4: + input_mask = input_mask.squeeze(1).squeeze(1) + input_mask = input_mask.unsqueeze(2) + + input_mask = input_mask.to(output.dtype) + output_states = output * input_mask + + return output_states + + +# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DebertaV2Encoder with DebertaV2->SEWD +class SEWDTransformerEncoder(nn.Module): + """Modified BertEncoder with relative position bias support""" + + def __init__(self, config): + super().__init__() + + self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)]) + self.relative_attention = getattr(config, "relative_attention", False) + + if self.relative_attention: + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + + self.position_buckets = getattr(config, "position_buckets", -1) + pos_ebd_size = self.max_relative_positions * 2 + + if self.position_buckets > 0: + pos_ebd_size = self.position_buckets * 2 + + self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) + + self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] + + if "layer_norm" in self.norm_rel_ebd: + self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) + + self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None + self.gradient_checkpointing = False + + def get_rel_embedding(self): + rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None + if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): + rel_embeddings = self.LayerNorm(rel_embeddings) + return rel_embeddings + + def get_attention_mask(self, attention_mask): + if attention_mask.dim() <= 2: + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) + elif attention_mask.dim() == 3: + attention_mask = attention_mask.unsqueeze(1) + + return attention_mask + + def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): + if self.relative_attention and relative_pos is None: + q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) + relative_pos = build_relative_position( + q, + hidden_states.size(-2), + bucket_size=self.position_buckets, + max_position=self.max_relative_positions, + device=hidden_states.device, + ) + return relative_pos + + def forward( + self, + hidden_states, + attention_mask, + output_hidden_states=True, + output_attentions=False, + query_states=None, + relative_pos=None, + return_dict=True, + ): + if attention_mask.dim() <= 2: + input_mask = attention_mask + else: + input_mask = attention_mask.sum(-2) > 0 + attention_mask = self.get_attention_mask(attention_mask) + relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) + + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[0] + else: + next_kv = hidden_states + rel_embeddings = self.get_rel_embedding() + output_states = next_kv + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (output_states,) + + if self.gradient_checkpointing and self.training: + output_states = self._gradient_checkpointing_func( + layer_module.__call__, + next_kv, + attention_mask, + query_states, + relative_pos, + rel_embeddings, + output_attentions, + ) + else: + output_states = layer_module( + next_kv, + attention_mask, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + output_attentions=output_attentions, + ) + + if output_attentions: + output_states, att_m = output_states + + if i == 0 and self.conv is not None: + output_states = self.conv(hidden_states, output_states, input_mask) + + if query_states is not None: + query_states = output_states + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None + else: + next_kv = output_states + + if output_attentions: + all_attentions = all_attentions + (att_m,) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (output_states,) + + if not return_dict: + return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class SEWDEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.pos_conv_embed = SEWDPositionalConvEmbedding(config) + self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) + self.encoder = SEWDTransformerEncoder(config) + self.upsample = SEWDUpsampling(config) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor + if attention_mask is None: + attention_mask = torch.ones( + (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device + ) + else: + # make sure padded tokens output 0 + hidden_states[~attention_mask.bool()] = 0.0 + + input_lengths = (attention_mask.long()).sum(-1) + # apply pooling formula to get real output_lengths + output_lengths = input_lengths // self.config.squeeze_factor + attention_ids = ( + torch.arange(0, max_encoder_length, device=output_lengths.device) + .view(1, -1) + .expand(output_lengths.shape[0], -1) + ) + attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() + + n_input_timesteps = hidden_states.shape[1] + + hidden_states = hidden_states.transpose(1, 2) + position_embeddings = self.pos_conv_embed(hidden_states) + pooled_hidden_states = self.pool(hidden_states) + min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) + hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] + hidden_states = hidden_states.transpose(1, 2) + + encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions) + + hidden_states = self.upsample(encoder_outputs.last_hidden_state) + if hidden_states.shape[1] < n_input_timesteps: + hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) + + if not return_dict: + return tuple( + v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None + ) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class SEWDPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SEWDConfig + base_model_prefix = "sew-d" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, SEWDPositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + if is_deepspeed_zero3_enabled(): + import deepspeed + + if hasattr(module, "weight_v") and hasattr(module, "weight_g"): + with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): + nn.init.kaiming_normal_(module.weight.data) + else: + with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): + nn.init.kaiming_normal_(module.weight.data) + else: + nn.init.kaiming_normal_(module.weight.data) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: + module.bias.data.zero_() + + def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the convolutional layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + return input_lengths + + def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): + output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + +SEWD_START_DOCSTRING = r""" + SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech + Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, + Yoav Artzi. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving etc.). + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`SEWDConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SEWD_INPUTS_DOCSTRING = r""" + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install + soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and + conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.", + SEWD_START_DOCSTRING, +) +# Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps +class SEWDModel(SEWDPreTrainedModel): + def __init__(self, config: SEWDConfig): + super().__init__(config) + self.config = config + self.feature_extractor = SEWDFeatureEncoder(config) + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps) + + self.project_features = config.conv_dim[-1] != config.hidden_size + if self.project_features: + self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.feature_dropout = nn.Dropout(config.feat_proj_dropout) + + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + self.encoder = SEWDEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + extract_features = self.feature_extractor(input_values) + extract_features = extract_features.transpose(1, 2) + extract_features = self.layer_norm(extract_features) + + if self.project_features: + extract_features = self.feature_projection(extract_features) + hidden_states = self.feature_dropout(extract_features) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + + hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) + + encoder_outputs = self.encoder( + hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = encoder_outputs[0] + + if not return_dict: + return (hidden_states,) + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", + SEWD_START_DOCSTRING, +) +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD +class SEWDForCTC(SEWDPreTrainedModel): + def __init__(self, config, target_lang: Optional[str] = None): + super().__init__(config) + + self.sew_d = SEWDModel(config) + self.dropout = nn.Dropout(config.final_dropout) + + self.target_lang = target_lang + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that " + "does not define the vocabulary size of the language model head. Please " + "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. " + "or define `vocab_size` of your model's configuration." + ) + output_hidden_size = ( + config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size + ) + self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + """ + This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when + passing `target_lang=...` to `from_pretrained(...)`. + + This method is **not** supposed to be called by the user and is prone to be changed in the future. + """ + + # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to + # correctly load adapter layers for SEWD so that we do not have to introduce a new API to + # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is + # ok to repurpose this function here. + target_lang = self.target_lang + + if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: + raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") + elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: + logger.info("By default `target_lang` is set to 'eng'.") + elif target_lang is not None: + self.load_adapter(target_lang, force_load=True) + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.sew_d.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.sew_d.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_CTC_EXPECTED_OUTPUT, + expected_loss=_CTC_EXPECTED_LOSS, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): + Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to + the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. + All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., + config.vocab_size - 1]`. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.sew_d( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + if labels.max() >= self.config.vocab_size: + raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") + + # retrieve loss input_lengths from attention_mask + attention_mask = ( + attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) + ) + input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + + # assuming that padded tokens are filled with -100 + # when not being attended to + labels_mask = labels >= 0 + target_lengths = labels_mask.sum(-1) + flattened_targets = labels.masked_select(labels_mask) + + # ctc_loss doesn't support fp16 + log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) + + with torch.backends.cudnn.flags(enabled=False): + loss = nn.functional.ctc_loss( + log_probs, + flattened_targets, + input_lengths, + target_lengths, + blank=self.config.pad_token_id, + reduction=self.config.ctc_loss_reduction, + zero_infinity=self.config.ctc_zero_infinity, + ) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB + Keyword Spotting. + """, + SEWD_START_DOCSTRING, +) +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD +class SEWDForSequenceClassification(SEWDPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + if hasattr(config, "add_adapter") and config.add_adapter: + raise ValueError( + "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)" + ) + self.sew_d = SEWDModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) + self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameters will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.sew_d.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.sew_d.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_SEQ_CLASS_CHECKPOINT, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.sew_d( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + hidden_states = self.projector(hidden_states) + if attention_mask is None: + pooled_output = hidden_states.mean(dim=1) + else: + padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + hidden_states[~padding_mask] = 0.0 + pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..917e408410744ea94d23d18573a70b41112176d1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/configuration_unispeech.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/configuration_unispeech.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..523f9adfd225180d40c55ae8f9eff619044413a6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/configuration_unispeech.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/convert_unispeech_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/convert_unispeech_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa0d26447cb91f9df9554a44fe34afbab9b19c27 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/convert_unispeech_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/modeling_unispeech.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/modeling_unispeech.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aba9e04cdf4e6527d8750f0ecdebd32b74dc014b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__pycache__/modeling_unispeech.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3954fe4594dad04c3908a447f36dd02a1dea8c7c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__init__.py @@ -0,0 +1,50 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_upernet": ["UperNetConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_upernet"] = [ + "UperNetForSemanticSegmentation", + "UperNetPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_upernet import UperNetConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5678bf3804d19f892c124554a7bc6c965c60d17 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/configuration_upernet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/configuration_upernet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3495989c8360f2157b2d6af77ac7e4abd75712c2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/configuration_upernet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_convnext_upernet_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_convnext_upernet_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d44b45ccf6068f0487f827dba9cf331ae7ac21a0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_convnext_upernet_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_swin_upernet_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_swin_upernet_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4eb2360887d31ff2b2946cbb4c7471b13110f356 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/convert_swin_upernet_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/modeling_upernet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/modeling_upernet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5262906eb615ebbde631dae42e09c0b4da98a0c9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/__pycache__/modeling_upernet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/configuration_upernet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/configuration_upernet.py new file mode 100644 index 0000000000000000000000000000000000000000..609818c80d17b728322d52586ab1cfedf687f8e0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/configuration_upernet.py @@ -0,0 +1,138 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" UperNet model configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ..auto.configuration_auto import CONFIG_MAPPING + + +logger = logging.get_logger(__name__) + + +class UperNetConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of an [`UperNetForSemanticSegmentation`]. It is used to + instantiate an UperNet model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the UperNet + [openmmlab/upernet-convnext-tiny](https://huggingface.co/openmmlab/upernet-convnext-tiny) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`): + The configuration of the backbone model. + backbone (`str`, *optional*): + Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this + will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` + is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. + use_pretrained_backbone (`bool`, *optional*, `False`): + Whether to use pretrained weights for the backbone. + use_timm_backbone (`bool`, *optional*, `False`): + Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers + library. + backbone_kwargs (`dict`, *optional*): + Keyword arguments to be passed to AutoBackbone when loading from a checkpoint + e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. + hidden_size (`int`, *optional*, defaults to 512): + The number of hidden units in the convolutional layers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): + Pooling scales used in Pooling Pyramid Module applied on the last feature map. + use_auxiliary_head (`bool`, *optional*, defaults to `True`): + Whether to use an auxiliary head during training. + auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): + Weight of the cross-entropy loss of the auxiliary head. + auxiliary_channels (`int`, *optional*, defaults to 256): + Number of channels to use in the auxiliary head. + auxiliary_num_convs (`int`, *optional*, defaults to 1): + Number of convolutional layers to use in the auxiliary head. + auxiliary_concat_input (`bool`, *optional*, defaults to `False`): + Whether to concatenate the output of the auxiliary head with the input before the classification layer. + loss_ignore_index (`int`, *optional*, defaults to 255): + The index that is ignored by the loss function. + + Examples: + + ```python + >>> from transformers import UperNetConfig, UperNetForSemanticSegmentation + + >>> # Initializing a configuration + >>> configuration = UperNetConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = UperNetForSemanticSegmentation(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "upernet" + + def __init__( + self, + backbone_config=None, + backbone=None, + use_pretrained_backbone=False, + use_timm_backbone=False, + backbone_kwargs=None, + hidden_size=512, + initializer_range=0.02, + pool_scales=[1, 2, 3, 6], + use_auxiliary_head=True, + auxiliary_loss_weight=0.4, + auxiliary_in_channels=384, + auxiliary_channels=256, + auxiliary_num_convs=1, + auxiliary_concat_input=False, + loss_ignore_index=255, + **kwargs, + ): + super().__init__(**kwargs) + if use_pretrained_backbone: + raise ValueError("Pretrained backbones are not supported yet.") + + if backbone_config is not None and backbone is not None: + raise ValueError("You can't specify both `backbone` and `backbone_config`.") + + if backbone_config is None and backbone is None: + logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") + backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) + elif isinstance(backbone_config, dict): + backbone_model_type = backbone_config.get("model_type") + config_class = CONFIG_MAPPING[backbone_model_type] + backbone_config = config_class.from_dict(backbone_config) + + if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: + raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") + + self.backbone_config = backbone_config + self.backbone = backbone + self.use_pretrained_backbone = use_pretrained_backbone + self.use_timm_backbone = use_timm_backbone + self.backbone_kwargs = backbone_kwargs + self.hidden_size = hidden_size + self.initializer_range = initializer_range + self.pool_scales = pool_scales + self.use_auxiliary_head = use_auxiliary_head + self.auxiliary_loss_weight = auxiliary_loss_weight + self.auxiliary_in_channels = auxiliary_in_channels + self.auxiliary_channels = auxiliary_channels + self.auxiliary_num_convs = auxiliary_num_convs + self.auxiliary_concat_input = auxiliary_concat_input + self.loss_ignore_index = loss_ignore_index diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_convnext_upernet_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_convnext_upernet_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..eeb3ab5fc9938171099a47feef23c4694d8b5169 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_convnext_upernet_to_pytorch.py @@ -0,0 +1,214 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ConvNext + UperNet checkpoints from mmsegmentation.""" + +import argparse +import json + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation + + +def get_upernet_config(model_name): + auxiliary_in_channels = 384 + if "tiny" in model_name: + depths = [3, 3, 9, 3] + hidden_sizes = [96, 192, 384, 768] + if "small" in model_name: + depths = [3, 3, 27, 3] + hidden_sizes = [96, 192, 384, 768] + if "base" in model_name: + depths = [3, 3, 27, 3] + hidden_sizes = [128, 256, 512, 1024] + auxiliary_in_channels = 512 + if "large" in model_name: + depths = [3, 3, 27, 3] + hidden_sizes = [192, 384, 768, 1536] + auxiliary_in_channels = 768 + if "xlarge" in model_name: + depths = [3, 3, 27, 3] + hidden_sizes = [256, 512, 1024, 2048] + auxiliary_in_channels = 1024 + + # set label information + num_labels = 150 + repo_id = "huggingface/label-files" + filename = "ade20k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + label2id = {v: k for k, v in id2label.items()} + + backbone_config = ConvNextConfig( + depths=depths, hidden_sizes=hidden_sizes, out_features=["stage1", "stage2", "stage3", "stage4"] + ) + config = UperNetConfig( + backbone_config=backbone_config, + auxiliary_in_channels=auxiliary_in_channels, + num_labels=num_labels, + id2label=id2label, + label2id=label2id, + ) + + return config + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config): + rename_keys = [] + + # fmt: off + # stem + rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight")) + rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias")) + rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight")) + rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias")) + # stages + for i in range(len(config.backbone_config.depths)): + for j in range(config.backbone_config.depths[i]): + rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter")) + rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight")) + rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias")) + rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight")) + rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias")) + rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight")) + rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias")) + rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight")) + rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias")) + if i > 0: + rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight")) + rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias")) + rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight")) + rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias")) + + rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight")) + rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias")) + + # decode head + rename_keys.extend( + [ + ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), + ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), + ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), + ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), + ] + ) + # fmt: on + + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +def convert_upernet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): + model_name_to_url = { + "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", + "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", + "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", + "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", + "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", + } + checkpoint_url = model_name_to_url[model_name] + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["state_dict"] + + config = get_upernet_config(model_name) + model = UperNetForSemanticSegmentation(config) + model.eval() + + # replace "bn" => "batch_norm" + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + if "bn" in key: + key = key.replace("bn", "batch_norm") + state_dict[key] = val + + # rename keys + rename_keys = create_rename_keys(config) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + + model.load_state_dict(state_dict) + + # verify on image + url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" + image = Image.open(requests.get(url, stream=True).raw).convert("RGB") + + processor = SegformerImageProcessor() + pixel_values = processor(image, return_tensors="pt").pixel_values + + with torch.no_grad(): + outputs = model(pixel_values) + + if model_name == "upernet-convnext-tiny": + expected_slice = torch.tensor( + [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] + ) + elif model_name == "upernet-convnext-small": + expected_slice = torch.tensor( + [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] + ) + elif model_name == "upernet-convnext-base": + expected_slice = torch.tensor( + [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] + ) + elif model_name == "upernet-convnext-large": + expected_slice = torch.tensor( + [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] + ) + elif model_name == "upernet-convnext-xlarge": + expected_slice = torch.tensor( + [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] + ) + print("Logits:", outputs.logits[0, 0, :3, :3]) + assert torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving processor to {pytorch_dump_folder_path}") + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model and processor for {model_name} to hub") + model.push_to_hub(f"openmmlab/{model_name}") + processor.push_to_hub(f"openmmlab/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="upernet-convnext-tiny", + type=str, + choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], + help="Name of the ConvNext UperNet model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_swin_upernet_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_swin_upernet_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..9580af7c46a50c26c25fe5a9f2728188fbd0193e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/convert_swin_upernet_to_pytorch.py @@ -0,0 +1,297 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Swin Transformer + UperNet checkpoints from mmsegmentation. + +URL: https://github.com/open-mmlab/mmsegmentation/tree/master/configs/swin +""" + +import argparse +import json + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation + + +def get_upernet_config(model_name): + auxiliary_in_channels = 384 + window_size = 7 + if "tiny" in model_name: + embed_dim = 96 + depths = (2, 2, 6, 2) + num_heads = (3, 6, 12, 24) + elif "small" in model_name: + embed_dim = 96 + depths = (2, 2, 18, 2) + num_heads = (3, 6, 12, 24) + elif "base" in model_name: + embed_dim = 128 + depths = (2, 2, 18, 2) + num_heads = (4, 8, 16, 32) + window_size = 12 + auxiliary_in_channels = 512 + elif "large" in model_name: + embed_dim = 192 + depths = (2, 2, 18, 2) + num_heads = (6, 12, 24, 48) + window_size = 12 + auxiliary_in_channels = 768 + + # set label information + num_labels = 150 + repo_id = "huggingface/label-files" + filename = "ade20k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + label2id = {v: k for k, v in id2label.items()} + + backbone_config = SwinConfig( + embed_dim=embed_dim, + depths=depths, + num_heads=num_heads, + window_size=window_size, + out_features=["stage1", "stage2", "stage3", "stage4"], + ) + config = UperNetConfig( + backbone_config=backbone_config, + auxiliary_in_channels=auxiliary_in_channels, + num_labels=num_labels, + id2label=id2label, + label2id=label2id, + ) + + return config + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config): + rename_keys = [] + + # fmt: off + # stem + rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight")) + rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias")) + rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight")) + rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias")) + # stages + for i in range(len(config.backbone_config.depths)): + for j in range(config.backbone_config.depths[i]): + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight")) + rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias")) + + if i < 3: + rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight")) + rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight")) + rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias")) + rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight")) + rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias")) + + # decode head + rename_keys.extend( + [ + ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), + ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), + ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), + ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), + ] + ) + # fmt: on + + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, backbone_config): + num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] + for i in range(len(backbone_config.depths)): + dim = num_features[i] + for j in range(backbone_config.depths[i]): + # fmt: off + # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight") + in_proj_bias = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ + dim : dim * 2, : + ] + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ + dim : dim * 2 + ] + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ + -dim :, : + ] + state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] + # fmt: on + + +def correct_unfold_reduction_order(x): + out_channel, in_channel = x.shape + x = x.reshape(out_channel, 4, in_channel // 4) + x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) + return x + + +def reverse_correct_unfold_reduction_order(x): + out_channel, in_channel = x.shape + x = x.reshape(out_channel, in_channel // 4, 4) + x = x[:, :, [0, 2, 1, 3]].transpose(1, 2).reshape(out_channel, in_channel) + + return x + + +def correct_unfold_norm_order(x): + in_channel = x.shape[0] + x = x.reshape(4, in_channel // 4) + x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) + return x + + +# there was an incompatibility with this version, due to a new implementation of their downsampling operation using nn.Unfold. +# was resolved as seen here: +# https://github.com/open-mmlab/mmdetection/blob/31c84958f54287a8be2b99cbf87a6dcf12e57753/mmdet/models/utils/ckpt_convert.py#L96. +def reverse_correct_unfold_norm_order(x): + in_channel = x.shape[0] + x = x.reshape(in_channel // 4, 4) + x = x[:, [0, 2, 1, 3]].transpose(0, 1).reshape(in_channel) + return x + + +def convert_upernet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): + model_name_to_url = { + "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", + "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", + "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", + "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", + } + checkpoint_url = model_name_to_url[model_name] + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[ + "state_dict" + ] + + for name, param in state_dict.items(): + print(name, param.shape) + + config = get_upernet_config(model_name) + model = UperNetForSemanticSegmentation(config) + model.eval() + + # replace "bn" => "batch_norm" + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + if "bn" in key: + key = key.replace("bn", "batch_norm") + state_dict[key] = val + + # rename keys + rename_keys = create_rename_keys(config) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config.backbone_config) + + # fix downsample parameters + for key, value in state_dict.items(): + if "downsample" in key: + if "reduction" in key: + state_dict[key] = reverse_correct_unfold_reduction_order(value) + if "norm" in key: + state_dict[key] = reverse_correct_unfold_norm_order(value) + + model.load_state_dict(state_dict) + + # verify on image + url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" + image = Image.open(requests.get(url, stream=True).raw).convert("RGB") + + processor = SegformerImageProcessor() + pixel_values = processor(image, return_tensors="pt").pixel_values + + with torch.no_grad(): + outputs = model(pixel_values) + logits = outputs.logits + + print(logits.shape) + print("First values of logits:", logits[0, 0, :3, :3]) + # assert values + if model_name == "upernet-swin-tiny": + expected_slice = torch.tensor( + [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] + ) + elif model_name == "upernet-swin-small": + expected_slice = torch.tensor( + [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] + ) + elif model_name == "upernet-swin-base": + expected_slice = torch.tensor( + [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] + ) + elif model_name == "upernet-swin-large": + expected_slice = torch.tensor( + [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] + ) + print("Logits:", outputs.logits[0, 0, :3, :3]) + assert torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving processor to {pytorch_dump_folder_path}") + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model and processor for {model_name} to hub") + model.push_to_hub(f"openmmlab/{model_name}") + processor.push_to_hub(f"openmmlab/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="upernet-swin-tiny", + type=str, + choices=[f"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], + help="Name of the Swin + UperNet model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/modeling_upernet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/modeling_upernet.py new file mode 100644 index 0000000000000000000000000000000000000000..2d5b4443e35df3ddbf75744b6198915ae724bb6f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/upernet/modeling_upernet.py @@ -0,0 +1,440 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch UperNet model. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.""" + +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...modeling_outputs import SemanticSegmenterOutput +from ...modeling_utils import PreTrainedModel +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings +from ...utils.backbone_utils import load_backbone +from .configuration_upernet import UperNetConfig + + +# General docstring +_CONFIG_FOR_DOC = "UperNetConfig" + + +class UperNetConvModule(nn.Module): + """ + A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution + layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int]], + padding: Union[int, Tuple[int, int], str] = 0, + bias: bool = False, + dilation: Union[int, Tuple[int, int]] = 1, + ) -> None: + super().__init__() + self.conv = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + padding=padding, + bias=bias, + dilation=dilation, + ) + self.batch_norm = nn.BatchNorm2d(out_channels) + self.activation = nn.ReLU() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + output = self.conv(input) + output = self.batch_norm(output) + output = self.activation(output) + + return output + + +class UperNetPyramidPoolingBlock(nn.Module): + def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: + super().__init__() + self.layers = [ + nn.AdaptiveAvgPool2d(pool_scale), + UperNetConvModule(in_channels, channels, kernel_size=1), + ] + for i, layer in enumerate(self.layers): + self.add_module(str(i), layer) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + hidden_state = input + for layer in self.layers: + hidden_state = layer(hidden_state) + return hidden_state + + +class UperNetPyramidPoolingModule(nn.Module): + """ + Pyramid Pooling Module (PPM) used in PSPNet. + + Args: + pool_scales (`Tuple[int]`): + Pooling scales used in Pooling Pyramid Module. + in_channels (`int`): + Input channels. + channels (`int`): + Channels after modules, before conv_seg. + align_corners (`bool`): + align_corners argument of F.interpolate. + """ + + def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: + super().__init__() + self.pool_scales = pool_scales + self.align_corners = align_corners + self.in_channels = in_channels + self.channels = channels + self.blocks = [] + for i, pool_scale in enumerate(pool_scales): + block = UperNetPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) + self.blocks.append(block) + self.add_module(str(i), block) + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + ppm_outs = [] + for ppm in self.blocks: + ppm_out = ppm(x) + upsampled_ppm_out = nn.functional.interpolate( + ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners + ) + ppm_outs.append(upsampled_ppm_out) + return ppm_outs + + +class UperNetHead(nn.Module): + """ + Unified Perceptual Parsing for Scene Understanding. This head is the implementation of + [UPerNet](https://arxiv.org/abs/1807.10221). + """ + + def __init__(self, config, in_channels): + super().__init__() + + self.config = config + self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) + self.in_channels = in_channels + self.channels = config.hidden_size + self.align_corners = False + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + # PSP Module + self.psp_modules = UperNetPyramidPoolingModule( + self.pool_scales, + self.in_channels[-1], + self.channels, + align_corners=self.align_corners, + ) + self.bottleneck = UperNetConvModule( + self.in_channels[-1] + len(self.pool_scales) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + # FPN Module + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + for in_channels in self.in_channels[:-1]: # skip the top layer + l_conv = UperNetConvModule(in_channels, self.channels, kernel_size=1) + fpn_conv = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + self.fpn_bottleneck = UperNetConvModule( + len(self.in_channels) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + + def init_weights(self): + self.apply(self._init_weights) + + def _init_weights(self, module): + if isinstance(module, nn.Conv2d): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + + def psp_forward(self, inputs): + x = inputs[-1] + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = torch.cat(psp_outs, dim=1) + output = self.bottleneck(psp_outs) + + return output + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # build laterals + laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] + + laterals.append(self.psp_forward(encoder_hidden_states)) + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( + laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners + ) + + # build outputs + fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] + # append psp feature + fpn_outs.append(laterals[-1]) + + for i in range(used_backbone_levels - 1, 0, -1): + fpn_outs[i] = nn.functional.interpolate( + fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners + ) + fpn_outs = torch.cat(fpn_outs, dim=1) + output = self.fpn_bottleneck(fpn_outs) + output = self.classifier(output) + + return output + + +class UperNetFCNHead(nn.Module): + """ + Fully Convolution Networks for Semantic Segmentation. This head is the implementation of + [FCNNet](https://arxiv.org/abs/1411.4038>). + + Args: + config: + Configuration. + in_channels (int): + Number of input channels. + kernel_size (int): + The kernel size for convs in the head. Default: 3. + dilation (int): + The dilation rate for convs in the head. Default: 1. + """ + + def __init__( + self, config, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 + ) -> None: + super().__init__() + + self.config = config + self.in_channels = config.auxiliary_in_channels + self.channels = config.auxiliary_channels + self.num_convs = config.auxiliary_num_convs + self.concat_input = config.auxiliary_concat_input + self.in_index = in_index + + conv_padding = (kernel_size // 2) * dilation + convs = [] + convs.append( + UperNetConvModule( + self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + for i in range(self.num_convs - 1): + convs.append( + UperNetConvModule( + self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + if self.num_convs == 0: + self.convs = nn.Identity() + else: + self.convs = nn.Sequential(*convs) + if self.concat_input: + self.conv_cat = UperNetConvModule( + self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 + ) + + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + def init_weights(self): + self.apply(self._init_weights) + + def _init_weights(self, module): + if isinstance(module, nn.Conv2d): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # just take the relevant feature maps + hidden_states = encoder_hidden_states[self.in_index] + output = self.convs(hidden_states) + if self.concat_input: + output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) + output = self.classifier(output) + return output + + +class UperNetPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = UperNetConfig + main_input_name = "pixel_values" + + def _init_weights(self, module): + if isinstance(module, UperNetPreTrainedModel): + module.backbone.init_weights() + module.decode_head.init_weights() + if module.auxiliary_head is not None: + module.auxiliary_head.init_weights() + + def init_weights(self): + """Initialize the weights""" + self.backbone.init_weights() + self.decode_head.init_weights() + if self.auxiliary_head is not None: + self.auxiliary_head.init_weights() + + +UPERNET_START_DOCSTRING = r""" + Parameters: + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +UPERNET_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See + `attentions` under returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under + returned tensors for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""", + UPERNET_START_DOCSTRING, +) +class UperNetForSemanticSegmentation(UperNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.backbone = load_backbone(config) + + # Semantic segmentation head(s) + self.decode_head = UperNetHead(config, in_channels=self.backbone.channels) + self.auxiliary_head = UperNetFCNHead(config) if config.use_auxiliary_head else None + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, SemanticSegmenterOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation + >>> from PIL import Image + >>> from huggingface_hub import hf_hub_download + + >>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") + >>> model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny") + + >>> filepath = hf_hub_download( + ... repo_id="hf-internal-testing/fixtures_ade20k", filename="ADE_val_00000001.jpg", repo_type="dataset" + ... ) + >>> image = Image.open(filepath).convert("RGB") + + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + + >>> logits = outputs.logits # shape (batch_size, num_labels, height, width) + >>> list(logits.shape) + [1, 150, 512, 512] + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + outputs = self.backbone.forward_with_filtered_kwargs( + pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions + ) + features = outputs.feature_maps + + logits = self.decode_head(features) + logits = nn.functional.interpolate(logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False) + + auxiliary_logits = None + if self.auxiliary_head is not None: + auxiliary_logits = self.auxiliary_head(features) + auxiliary_logits = nn.functional.interpolate( + auxiliary_logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False + ) + + loss = None + if labels is not None: + if self.config.num_labels == 1: + raise ValueError("The number of labels should be greater than one") + else: + # compute weighted loss + loss_fct = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) + loss = loss_fct(logits, labels) + if auxiliary_logits is not None: + auxiliary_loss = loss_fct(auxiliary_logits, labels) + loss += self.config.auxiliary_loss_weight * auxiliary_loss + + if not return_dict: + if output_hidden_states: + output = (logits,) + outputs[1:] + else: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SemanticSegmenterOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )